
ICE-8a™ IN-CIRCUIT EMULATOR
OPER~TING INSTRUCTIONS

FOR ISIS-II USERS

Manual Order Number 9800949-01

Copyright © 1979 Intel Corporation
'--____ ---'1 Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 r'--____ ---'

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers A yen ue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, blit not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX
Intel Micromap UPI
Intellec Multibus I'Scope

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A104/0879/10K FL

PREFACE

This document describes the purpose and the use of the ICE-88 In-Circuit
Emulator for the Intel 8088 microprocessor.

The ICE-88 module is an optional addition to the Intellec Microcomputer
Development System. The ICE-88 module aids in testing and modification of the
hardware and software for new products designed around the 8088
microprocessor.

Chapter 1 describes the mission of the ICE-88 emulator as a developmental aid
for system designs based on Intel's 8088 microprocessor.

Chapter 2 gives step-by-step instructions for installing the ICE-88 hardware in the
Intellec chassis and connecting the ICE-88 emulator to the user prototype system.

Chapter 3 presents a hands-on debugging session with the ICE-88 emulator.

Chapter 4 describes the elements of the ICE-88 emulator command language, and
the notations, conventions, and syntactic rules used in this manual.

Chapter 5 defines the operands, operators, and expressions used in the ICE-88
commands.

Chapter 6 contains discussions and specifications of the emulation and trace con
trol commands.

Chapter 7 contains discussions and specifications of the interrogation and utility
commands.

Chapter 8 contains discussions and specifications of the compound and macro
commands used in ICE-88 emulator operation.

Appendix A is a list of all the ICE-88 emulator keywords (literals), and their
abbreviations, in alphabetical order.

Appendix B is a list of ICE-88 emulator error and warning messages with
interpretations.

Appendix C contains a syntactic summary of the ICE-88 emulator commands.

Appendix D presents the electrical and physical characteristics of the ICE-88
emulator.

Appendix E presents the 8088 assembler instructions in hexadecimal order.

To use this manual effectively, you need to understand the 8086/8088 architec
ture and the technique of programming and debugging. The following publica
tions contain detailed information related to this manual:

iii

iv

ISIS-II User's Guide
808018085 Assembly Language Programming Manual
ISIS-II 808018085 Macro Assembler Operator's Manual
MCS-86™ Assembly Language Reference Manual
MCS-86™ Assembler Operating Instructions for ISIS-II Users
MCS-86™ User's Manual
PLIM-86 Programming Manual
PLIM-86 Operator's Manual
MCS-86™ Software Development Utilities Operating for

ISIS-Il Users
InteJJec® Microcomputer Development Systems Hardware

Reference Manual
InteJJec® Microcomputer Development Systems Operator's Manual
Intellec® Series II Hardware Reference Manual
Intellec® Series II Installation and Service Manual
A Guide to InteJJec® Microcomputer Development Systems

9800306
9800301
9800292
9800640
9800641
9800722
9800466
9800478

9800639

9800132
9800129
9800556
9800559
9800565

I . -

n

CHAPTER 1
INTRODUCTION
ICE-88™ In-Circuit Emulator

PAGE

Integrated Hardware/Software Development
ICE-88™ In-Circuit Emulation

User Program Execution Control
Memory Mapping
Symbolic Debugging
Display
Operating Modes

Emulation
Interrogation and Utility

Macro and Compound Commands
ICE-88™ Architecture

ICE-88™ Software
ICE-88™ Firmware
ICE-88™ Hardware

Generalized Development Cycle With ICE-88™
A Generalized Emulation Session

CHAPTER 2

1-1
1-2
1-2
1-2
1-3
1-4
1-4
1-5
1-5
1-6
1-8
1-8
1-9
1-9
1-9

I-tO
1-12

ICE-88™ INSTALLATION PROCEDURES
ICE-88™ Components 2-1
Required and Optional Hardware 2-1
Hardware Installation Procedures 2-2

Installation Procedure for Intellec Model
800 and 888 2-2

Installation Procedure for Intellec Series II Model
220 and 230 2-3

Confidence Test 2-4

CHAPTER 3
SAMPLE ICE-88™ SESSIONS
AT THE TERMINAL
How To Use This Chapter
Analysis of the Sample Program
Hands-On Demonstration

Session 1
Session 2

CHAPTER 4
ELEMENTS OF THE ICE-88™
COMMAND LANGUAGE
Introduction
Notation and Conventions Used in This Manual
Syntactic Rules Used in the Manual
Character Set
Introduction to Tokens

3-1
3-2
3-5
3-6

3-12

4-1
4-3
4-4
4-6
4-7

CONTENTS

PAGE

Keywords 4-7
Reference Keywords 4-7

Registers 4-8
Status Registers 4-10
8088 Pin References 4-11
Emulation Registers 4-12

Command Keywords 4-12
Simple Commands 4-12
Compound Commands 4-13
Macro Commands 4-13
Utility Command Keywords 4-14
N um ber Base and Radix Commands 4-14
Memory Mapping Command Keywords 4-14
Hardware Register Command Keywords 4-15
Memory and Port Contents Command

Keywords 4-15
Symbol Table and Statement Number Table

Command Keywords 4-16
Emulation Control Command Keywords 4-16
Trace Control Commands 4-17

User Names 4-17
Symbols 4-17
Statement Numbers 4-18

Special Tokens 4-18
Entering Commands at the Console 4-19

CHAPTER 5
EXPRESSIONS
Operands 5-2

Numeric Constants 5-2
Masked Constants 5-3
Keyword References 5-3
Symbolic References 5-4
Statement Number Reference 5-5
Memory References 5-5
Typed Memory Reference 5-6
Port References 5-7
String Constants 5-7
Parenthesized Expressions 5-9

Operators 5-9
Classes of Operators 5-9
Arithmetic Operators 5-9
Content Operators 5-12
Relational Operators 5-12
LogicalOperators 5-12

Arithmetic and Logical Semantic Rules 5-14
How Expressions are Evaluated 5-15

"Case Studies" in Evaluating Expressions 5-15
Command Contexts 5-22

v

CHAPTER 6
EMULATION AND TRACE
CONTROL COMMANDS

PAGE

Emulation Control Commands 6-1
Discussion
Execution Match Condition
Non-Execution Match Condition

Address Match Range
Match Status List
Data Match Range
Segment Register Usage
Match Condition Restrictions

Setting The Go-Register
Setting Tracepoint Registers
Command Signal Timeout
Emulation Timer
Set Breakpoint Register Command
Set Tracepoint Register Command
GoCommand
Set GO-Register (GR) Command
STEP Command
Display Emulation Register Command
Set CLOCK Command
Display CLOCK Command
Set RWTIMEOUT Command
Display RWTIMEOUT Command
ENABLE/DISABLE RDY Command

Trace Control Command
Discussion
Trace Display Mode
Moving the Buffer Pointer
Displaying Trace Data
Trace Display Formats
Display of Trace Data in Frames Mode
Display of Trace Data in Instructions Mode
Operand Fields

Display of Cycles in Instruction Mode
Gaps in Trace in Instruction Mode

Extended Example of Trace Displays
Set TRACE Display Mode Command
ENABLE/DISABLE TRACE Command
Display TRACE Command
MOVE, OLDEST, and NEWEST Commands .. .
PRINT Command

CHAPTER 7
INTERROGATION AND UTILITY
COMMANDS
Utility Commands Involving ISIS-II

Discussion
ICE-88™ Command
EXIT Command
LOAD Command

vi

6-2
6-4
6-6
6-6
6-7
6-8
6-8
6-8

6-10
6-11
6-12
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-19
6-20
6-20
6-21
6-22
6-22
6-23
6-23
6-24
6-25
6-25
6-26
6-26
6-27
6-28
6-29
6-31
6-32
6-33
6-33
6-34

7-2
7-2
7-5
7-6
7-7

CONTENTS (CONT'D.) I

PAGE

7-8 SA VE Command
LIST Command

Number Bases and Radix Commands
Discussion
Console Input Radixes: SUFFIX Command
Console Output Radixes: Base Command
Set or Display Console Input Radix Commands ..
Set or Display Console Output Radix Commands .

Hardware Register Commands
Discussion
Set Register Command
RESET HARDWARE Command

Memory Mapping Commands
Discussion
MAP DISK Command
MAP INTELLEC Command
Set MAP Status Command
Display MAP Status Command
RESET MAP Command

Set Memory and Port Contents Commands
Discussion

Setting Memory Contents
Port Content References

Set Memory Command
Set Input/Output Port Contents Command

Symbol Table and Statement Number Table
Commands

Discussion
DEFINE Symbol Command
Display Symbols Command
Display Statement Numbers Command
Display Modules Command
Change Symbol Command
REMOVE Symbols Command
TYPE Command
Set DOMAIN Command
RESET DOMAIN Command

Display Commands
Discussion

Registers
Status Register
Pin References

General Formats for Numeric Values
Display NESTING Command
The EVALUATE Command
Display Processor and Status Registers

Command
Display Memory Command
Display 110 Command
Display ST ACK Command
Display Boolean Command
Display NESTING Command ;
EVALUATE Command

7-9
7-10
7-10
7-10
7-11
7-12
7-13
7-14
7-14
7-18
7-19
7-20
7-20
7-24
7-25
7-26
7-28
7-29
7-30
7-30
7-32
7-35
7-37
7-38

7-39
7-39
7-45
7-46
7-47
7-48
7-49
7-50
7-51
7-52
7-53
7-54
7-54
7-54
7-56
7-58
7-58
7-68
7-68

7-70
7-71
7-72
7-73
7-74
7-75
7-76

I

· -n

CHAPTER 8 PAGE
ICE-88™ ENHANCEMENTS
Compound Commands 8-1

REPEAT Command 8-1
COUNT Command.......................... 8-3
IF Command 8-5
Nesting Compound Commands 8-6

Macro Commands 8-8
Defining and Invoking Macros 8-8
Local and Global Defaults 8-9
Formal and Actual Parameters 8-10
Details on Macro Expansion 8-12
Macro Table Commands 8-12
Saving Macros 8-13
Further Examples 8-14
Off-line Facilities 8-16

INCLUDE Command 8-16
WRITE Command 8-17

TABLE

1-1

1-2

3-1
4-1
4-2
4-3
5-1
5-2

5-3
5-4
5-5
5-6
5-7

TITLE PAGE

Summary of Emulation
Commands 1-6

Summary of Basic Interrogation and
Utility Commands 1-7

Key Addresses in CARS Logic 3-16
Definition of GO Command Functions ... 4-2
Notational Symbols 4-3
Classes of Hardware Elements 4-8
Elements of Numeric Constants 5-3
ASCII Printing Characters and CODES

(20H-7EH) 5-8
ICE™ Operators 5-10
Classes of Operators 5-11
Content Operators 5-12
Arithmetic and Logical Semantic Rules 5-14
Conditions and Notation for Examples ... 5-17

CONTENTS (CONT'D.)

APPENDIX A
ICE-88™ KEYWORDS AND THEIR
ABBREVIA TIONS

APPENDIXB
ERROR MESSAGES

APPENDIXC
ICE-88™ COMMAND SYNTAX
SUMMARY

APPENDIXD
ELECTRICAL AND PHYSICAL
CHARACTERISTICS OF ICE-88™

APPENDIXE
INSTRUCTIONS IN HEXADECIMAL
ORDER

TABLE

5-8
5-9
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

7-9
7-10
7-11
8-1

TABLES

TITLE PAGE

Representative Cases of Expressions 5-18
Command Contexts 5-23
8088 General Registers 7-14
Pointer Registers 7-15
Index Registers 7-15
Segment Registers 7-15
Status Registers 7-15
Pin References 7-16
Flag References 7-16
Symbolic References and Statement

References 7-41
Classes of Hardware Elements 7-54
Numeric Value Display Formats 7-58
Display Values Per Line 7-60
Tracking a COUNT Command 8-4

vii

FIGURE TITLE PAGE

1-1
1-2
1-3

3-1

viii

8088 CPU Functional Block Diagram 1-1
ICE-88™ Functional Block Diagram I-to
Typical Development Cycle with ICETM

Module 1-11
CARS Module Listing 3-3

ILLUSTRATIONS

FIGURE TITLE PAGE

3-2
4-1
5-1
6-1

DELAY Module Listing 3-4
Example of a GO Command 4-1
A Simple Module of Evaluation 5-16
Non-Execution Match Condition 6-9

Change I

CHAPTER 11
INTRODUCTION

This manual presents the operation of the ICE-88 In-Circuit Emulator for the
Intel 8088 microprocessor. As an introduction to the use of this microprocessor
design aid, this chapter contains a brief discussion of integrated hardware/
software development, in-circuit emulation, and the ICE-88 architecture. Also, a
generalized development cycle with the ICE-88 emulator and a generalized emula
tion session are presented.

ICE-SS In-Circuit Emulator

The ICE-88 module provides in-circuit emulation for 8088 microprocessor-based
systems. Figure 1-1 shows the functional block diagram of the 8088 CPU. The
ICE-88 module consists of three circuit boards which reside in the Intellec
Microcomputer Development System. A cable and buffer box connect the Intellec
system to the user system by replacing the user's 8088. In this manner the Intellec
debug functions are extended into the user system. Using the ICE-88 module, the
designer can execute prototype software in continuous or single-step mode and
can substitute Intellec equivalents for user devices, such as memory.

(RAX)

(RBX)

(RCX)

(RDX)

INTR

NMI

RESET

READY

TEST

REGISTER
FILE

RAH RAL

RBH RBL

RCH RCL

RDH RDL

SI

01

BP

SP

l6-BIT ALU

PSW

..

.,

.,

.,

-*-RQ/GTO
t t

HOLD

RELOCATION
REGISTER

FILE

ES

CS

SS

DS

IP

BUS
INTERFACE

UNIT

I

+
INSTRUCTION

QUEUE

!
CONTROL TIMING

AND STATUS
LOGIC

t t t
CLK

HLDA MN/MX

4

... 8

) 8 .,
3

3

t t
GNO +5V

r----

H
~

A18/S0

A16/S3

AD7ADO

INIA. WR. RD

DT/R.DEN.ALE

QSO. QSl

SO.S1,S2.SSO

Figure 1-1. 8088 CPU Functional Block Diagram

I-I

Introduction to the ICI<:-88

1-2

Integrated Hardware/Software Development

The ICE-88 emulator allows hardware and software development to proceed con
currently. This is more effective than the traditional method of independent hard
ware and software development followed by a system integration phase. With the
ICE-88 emulator, prototype hardware can be added to the system as it is design
ed. The software and hardware can be used to test each other as the product is
developed.

Conceptually, the ICE-88 emulator can be viewed as assisting three stages of
development:

1. The ICE-88 emulator can be operated without being connected to the user's
system, so its debugging capabilities can be used to facilitate software
development before any of the user's hardware is available.

2. To begin integration of software and hardware development efforts, the
user's prototype need consist of no more than an 8088 CPU socket. Through
the ICE-88 emulator's mapping capabilities, Intellec system equivalents (such
as Intellec memory) can be substituted for missing prototype hardware. As
each section of the user's hardware is completed, it can be added to the pro
totype, replacing the Intellec equivalent. Thus each section of the hardware
and software can be "system" tested as it becomes available.

3. When the user's prototype is complete, it can be tested using the system
software which will drive the final product. The ICE-88 emulator can be used
for real time emulation of the 8088 to debug the system as a complete unit.

Thus the ICE-88 emulator provides the user with the ability to debug a prototype or
production system at any stage in its development without introducing extraneous
hardware or software test tools.

In-Circuit Emulation

The ICE-88 In-Circuit Emulator is a diagnostic tool that is used for testing and
debugging the hardware and software of user-designed 8088 microcomputer-based
systems. Such testing may begin during the early phases of user system development
and may continue throughout the life cycle of the user's system.

The interface between the in-circuit emulator and the user system is implemented at
the connector pins of the user system microprocessor chip. These pins carry the
information that establishes the characteristics and status of the user system. The
interface makes it possible for the in-circuit emulator to continually monitor user
operations and to provide control of these operations. More specifically, the in
circuit emulator monitors execution of the user program and controls the conditions
under which the user program execution is initiated and terminated.

User Program Execution Control

Starting and stopping execution of the user program at predefined points or condi
tions is an essential task of the in-circuit emulator as it is often not feasible or
desirable to execute the entire user program. For example, a single routine may be
executed because either other routines have not yet been coded or because a fault
(bug) has been isolated to that routine.

The starting address for execution is readily established by loading a known value
into the program counter of the user processor while the processor is inactive. Ter
mination of execution is a more involved procedure which requires the in-circuit
emulator to halt the processor when a predetermined multi-condition state exists at

ICI<:-88

ICE-88 Introduction to the ICE-88

the 8088 pins. This process requires prior storage of state values within the in-circuit
emulator hardware and dynamic comparison of these values with the states of
specified data, address and/or status pins of the processor. The point at which the
user program execution is terminated is known as the breakpoint.

A breakpoint may be specified to cause the user program to halt execution when a
given memory location is addressed during a processor fetch (i.e., loaded into the

. 8088 execution queue). However, very often the operator is more interested in the
data value of a memory location or an I/O port. In the latter cases both the type of
instruction (read, write, input, or output) and the data value are prespecified and are
dynamically compared with the processor pin states. It is also possible to specify
"don't care" comparisons with the data pins and thereby halt execution whenever
the designated type of instruction is extracted from the queue for execution.

A wide range of breakpoint conditions are possible through comparison of the pro
cessor chip states with predesignated values. The full range of breakpoint conditions
that may be specified by the operator are presented in subsequent chapters.

Memory Mapping

Memory for the user system can be resident in the user system or "borrowed"
from the Intellec System through the ICE-88 emulator's mapping capability.

The ICE-88 emulator allows 1 megabyte of user memory to be addressed by the
8088. This user memory space consists of 1024 IK byte segments that can be
mapped in lK blocks to:

I. Physical memory in the user's system,

2. Either of two IK blocks of the ICE-88 emulator high speed memory,

3. Intellec expansion memory,

4. A random access diskette file.

The first 64K of Intellec RAM memory is dedicated to Intellec system software.
Therefore the RAM boards within the Intellec system that are used by the ICE-88
emulator to store the user program employ effective addresses beyond the 64K
byte memory accessable to Intellec system software.

Mapping consists of specifying where each "logical" memory block that the 8088
addresses will physically exist within various physical memories. During emula
tion the memory map is used to determine the existence and physical location of
the logical memory space being referenced by the user program.

If a logical segment of addresses is not activated by associating the segment with
a physical memory, the segment is "guarded." A guarded segment is logically
nonexistent and any reference to the segment by the user program results in an
error. Thus, the ICE-88 emulator can trap memory accesses outside the intended
memory for program and data. All blocks are initially guarded following system
reset and any segment may be guarded on command after its initial activation.

Mapping enables the user to allocate segments of user memory space to physical
memories other than the RAM/ROM of the user system. This feature permits
testing of the user program prior to installation of user memory and also pro
vides a convenient means of executing modified code in "borrowed" memory
while the bulk of user program is resident within the user system.

1-3

Introduction to the ICE-88

1-4

Symbolic Debugging

Symbols and PL/M statement numbers may be substituted for numeric values in
any of the ICE-88 commands. This allows the user to make symbolic references
to 1/0 ports, memory addresses, and data in a user program. Thus the user need
not search listings for addresses of variables or program subroutines.

Symbols can be used to reference variables, procedures, program labels, and •
source statements. Thus a variable can be displayed or changed by referring to it
by name rather than by its absolute location in memory. Using symbols for state
ment labels, program labels, and procedure names allows the user to set break
points or disassemble a section of code into its assembly mnemonics much more
easily.

Furthermore, each symbol may have associated with it one of the types BYTE,
WORD, INTEGER, SINTEGER (for short, 8-bit integer) or POINTER. Thus
when the user examines or modifies a variable from the source program, he
doesn't need to remember its type. For example, the command"!V AR" displays
the value in memory of variable V AR in a format appropriate to its type, while
the command"!V AR = !V AR + 1" increments the value of the variable by one.

The user symbol table generated along with the object file during a PL/M-86
compilation or by the 8086 Assembler is loaded into the ICE-88 emulator along
with the user program which is to be emulated. The user may add to this symbol
table any additional symbolic values for memory addresses, constants, or
variables that are found to be useful during system debugging.

In addition, the ICE-88 emulator provides access to all the 8088 registers and
flags through mnemonic reference. The READY, NMI, TEST, HOLD, RESET,
INTR, and MN/MX pins can also be read.

Display

Three basic types of data are available for display: trace data, 8088 termination
conditions, and test parameters. Trace data is collected from the 8088 pins during
execution of the user program. Trace data collection can be continuous or selec
tive. Tracepoints allow the user to selectively turn trace off and on as desired
during 'emulation. The tracepoints are stored by the ICE-88 hardware on com
mand prior to emulation. If trace data collected exceeds the capacity of the trace
buffer, the older trace data is overwritten by current data. Trace buffer pointers
entered by the operator permit selection of the trace information for display.

The 8088 termination conditions are the status values of the 8088 processor that
are accessable following termination of user program execution. The 8088 ter
mination conditions include the values of registers, flags, input pins, I/O ports,
status information, and the contents of the logical user memory space locations
currently activated by the memory map. Some of this information is the same as
that collected in the trace buffer. All 8088 termination conditions are displayed
by console entry of the memory or port address or the name of the register, flag,
or input pin.

Hardware resident test parameters are entered by the operator and stored within
the ICE-88 emulator hardware. Such information includes breakpoints, trace
points, the memory map, and the tracepointer used for control of trace data
display. The operator displays this information to verify the correct entry or to
determine the values of test parameters that were previously entered.

ICE-88

ICE-88 Introduction to the ICE-88

Software resident test parameters are entered by the operator and stored within
ICE-88 software. These parameters are used to establish values that affect hard
ware only upon entry of other commands. For example, the symbol manipulation
commands establish the relationship between the object code of the user program
and symbols, statement numbers, and module names that are used by the
operator to reference the user program code and data symbolically.

Operating Modes

The ICE-88 software is a development system-based program which provides the
user with easy-to-use commands for defining breakpoints, initiating emulation,
and interrogating and altering user status recorded during emulation. ICE-88
commands are configured with a broad range of modifiers which provide the user
with maximum flexibility in describing the operation to be performed.

There are two distinct phases of operation when the ICE-88 emulator is used for
debugging. The interval when the user program is being executed is referred to as
the emulation phase. The interval when the operator establishes and modifies test
parameters and displays (or prints) test results is the interrogation phase.

Emulation

Emulation commands to the ICE-88 emulator control the process of setting up
and running an emulation of the user's program and examining the results of the
emulation. Breakpoints and tracepoints enable the ICE-88 emulator to halt and
provide a detailed trace in any part of the user's program. A summary of the
emulation commands is shown in table 1-1.

Breakpoints. The ICE-88 emulator has two breakpoint registers which allow the
user to halt emulation when a specified condition is met. The breakpoint registers
may be set up as execution or non-execution breakpoints. An execution break
point consists of a single address which causes a break whenever the 8088 exe
cutes an instruction byte which was obtained from that address. A non-execution
breakpoint causes an emulation break when a specified condition other than an
instruction execution occurs. This condition can contain up to four parts:

1. A set of address values,

2. A particular status of the 8088 bus (one or more of memory or 110 read or
write, instruction fetch, halt, or interrupt acknowledge),

3. A set of data values,

4. A segment register (break occurs when the register is used in an effective
address calculation).

Break on a set of address values has three capabilities:

1. To break on a single address.

2. To set any number of breakpoints within a limited range (1024 bytes) of
memory.

3. To break in an unlimited range. Execution is halted on any memory access to
an address greater than or equal to (or less than or equal to) the breakpoint
address.

An external breakpoint match output for user access is provided on the buffer,
which allows synchronization of other test equipment when a break occurs.

1-5

Introduction to the ICE-88

1-6

Tracepoints. The ICE-88 emulator has two tracepoint registers which establish
match conditions to conditionally start and stop trace collection. The trace
information is gathered at least twice per bus cycle, first when the address signals
are valid and second when the data signals are valid. Trace information is also
collected each CPU cycle during which the execution queue is active.

Each trace frame contains the 20 address/data line values and detailed informa
tion on the status of the 8088. The trace memory can store up to 1023 frames, or
an average of about 300 bus cycles, of trace data. The trace memory contains the
last 1023 frames of trace data collected, even if this spans several separate emula
tions. The user has the option of displaying each frame of the trace data or
displaying by instruction in actual 8086 Assembler mnemonics. The trace data
can be made available after an emulation.

Table 1-1. Summary of Emulation Commands

Command Description

GO Initializes emulation and allows the user to specify
the starting pOint and breakpoints. Example:

GO FROM .START TILL. DELAY EXECUTED

where START and DELAY are statement labels.

STEP Allows the user to single-step through the
program.

GR Sets the GO-register to a set of one or more
breakpoint conditions or causes the display of the
current GO-register settings.

ENABLE/DISABLE TRACE Turn trace data collection on or off.

TRACE Set trace display mode to display trace data in
frame or instruction format or display current
trace display mode.

OLDEST Move trace buffer pointer to top of trace buffer.

NEWEST Move trace buffer pointer to bottom of trace
buffer.

MOVE Move trace buffer pointer forward or backwards in
buffer a specified number or buffer entries.

PRINT Display one or more entries from the trace data
buffer.

CLOCK Specify system clock as internal (8088-provided) or
external (user-provided) or cause current clock
setting to be displayed.

RWTIMEOUT. Allows the user to time out READ/WRITE
command signals based on the time taken by the
8088 to access expansion Intellec memory or disk-
based memory.

ENABLE/ DISABLE RDY Allows the user to enable or disable the user
ready signal for accessing Intellec resident
memory or disk memory.

Interrogation and Utility

Interrogation and utility commands give the user convenient access to detailed
information about the program and the state of the 8088 which is useful in

ICE-88

ICE-8S Introduction to the ICE-8S

debugging hardware and software. Changes can be made in both user program
memory and the state of the 8088. Commands are also provided for various
utility operations such as loading and saving program files, defining symbols and
macros, setting up the memory map, and returning control to ISIS-II. A sum
mary of the basic interrogation and utility commands is shown in table 1-2.

Table 1-2. Summary of Basic Interrogation and Utility Commands

Command Description

Memory / Register Commands Display or change the contents of:

• Memory
• 8088 Registers
• ICE-88 Pseudo-Registers
• 8088 Status flags
• 8088 Input pins
• 80881/0 ports

Memory Mapping Commands Display, declare, set, or reset the ICE-88 memory
mapping.

ASM Disassembles the memory into 8086 assembler
mnemonics.

LOAD

SAVE

LIST

EVALUATE

Symbol Manipulation
Commands

TYPE

SUFFIX/BASE

Fetches user symbol table and object code from the
input file.

Sends user symbol table and object code to the output
file.

Sends a copy of all output (including prompts, input line
echos, and error messages) to the chosen output device
(e.g., disk, printer) as well as the console.

Displays the value of an expression in binary, octal,
decimal, hexadecimal, and ASCII.

These commands allow the user to:

Display any or all symbols, program modules, and pro
gram line numbers and their associated values (loca
tions in memory).

Set the domain (choose the particular program module)
for the line numbers.

Define new symbols as they are needed in debugging.

Remove any or all symbols, modules, and program
statements.

Change the value or type of any symbol.

Assigns or changes the type of any symbol in the
symbol table.

Establishes the default base for numeric values in input
text/output display (binary, octal, decimal, or
hexadecimal).

1-7

Introduction to the ICE-88

1-8

Macro and Compound Commands

The ICE-88 emulator allows the user to program the operation by using macros
and compound commands.

A macro consists of a set of ICE-88 commands with up to ten command
parameters and is typically used to perform any task that is required frequently.
Commands are provided to define, display, and delete macros, to invoke macros
with ap optional list of arguments, and to save macros in a diskette file or to
load previously created macros from a diskette file.

As an example, the following macro may be used to emulate a user program
from a start address until a breakpoint is encountered, then to continue until a
condition is satisfied:

DEFINE MACRO GO

EM

IP = OFFSET %0
CS = SEGMENT %0
REPEAT

GOTILL %1
:DISPLAY

UNTIL %2
ENDR

;DISPLACEMENT OF START ADDRESS
;BASE OF START ADDRESS

;EMULATE TO BREAKPOINT
;INVOKE MACRO TO DISPLAY

VARIABLES OF INTEREST
;CONTINUE UNTIL SOME CONDITION

:GO .START, #20 EXECUTED OR .A LEN 10T READ, !FLAG =0

The last line invokes macro GO, causing emulation to begin at label START, to
break whenever statement #20 is executed or any element of a 10-byte array A is
read, and then to continue unless the variable FLAG has a value of zero.

Compound commands are control structures to either conditionally execute other
commands (IF), or to execute other commands until some condition is met or the
commands have been executed a certain number of times (COUNT, REPEAT).

For example, the following compound command is used to repeat a set of com
mands until a condition is met:

IP = OFFSET .START
CS = SEGMENT .START
REPEAT

UNTIL IP = 1000H
STEP

ENDR

;DISPLACEMENT OF START ADDRESS
;BASE OF START ADDRESS

;BREAK CONDITION
;SINGLE STEP

In this command the condition IP = 1000H is tested every STEP. If the sequence
of STEPs reaches IP = 1000H, the loop will terminate.

ICE-8S Architecture

This section contains a brief description of the software, firmware and hardware
that compose the ICE-88 emulator. The information serves as an introduction to
more detailed information presented in the remaining chapters of this manual.

ICE-88

ICE-88 Introduction to the ICE-88

Software

The ICE-88 software together with ISIS-II and the user program symbol table is
resident within the 64K byte memory of the Intellec system. None of this space is
available to user program code. User program address space mapped to the
Intellec system resides in RAM boards (i.e., extended Intellec memory) whose
physical addresses are above the reserved 64K byte address range.

The functions performed by the software are dependent on the ICE-88 emulator
operating mode. In the interrogation mode, the software provides arithmetic and
logical conversions as necessary to establish compatibility between the ICE-88
hardware and the operator. This task includes conversion of operator commands
to a form usable by the firmware and the evaluation of symbolic entries as
necessary to provide absolute address and data values to the hardware. The soft
ware also reconverts hardware supplied information (trace data, error codes, map
data, etc.) to forms that are meaningful to the operator. In the emulation mode,
the software supports the accessing of user code from the diskette. In this mode
the software also terminates emulation when directed by the hardware (break
point) or the operator (ESCape key).

Firmware commands are hardware related commands that are sent to the ICE-88
firmware to initiate a specific action. In general, each ICE-88 (operator-entered)
command is an element of higher level language that is converted to a specific
series of lower level firmware commands (assuming that the command requires a
hardware action). Thus, while the LOAD command merely specifies loading of a
user program into user address space, the actual process requires reading of the
memory map and writing of the user code into user, ICE memory, Intellec
memory, or diskette memory as indicated by the map. Not only are multiple
firmware commands required, but the set of firmware commands issued is depen
dent on the parameters included within the command.

ICE-SS Firmware

The ICE-88 firmware consists of a 12K-byte ROM-resident program that is
executed by an 8080 "ICE processor" of the ICE-88 hardware. The firmware
performs three major functions. During start-up or system reset, the firmware
resets all hardware test parameters and performs a series of go/no-go tests to
ensure proper operations of the hardware. In the interrogation mode, the firm
ware decodes the firmware commands and initiates the specified hardware opera
tions, including the sequencing of data transfers to and from the software. In the
emulation mode, the firmware supports user program activities that require use
of Intellec resources such as the transfer of user code from diskette or extended
Intellec memory.

Hardware

The ICE-88 hardware consists of five circuit boards, a buffer box assembly, and
four cables. Three of the circuit boards plug into the Intellec chassis:

• FM Controller Board

• 88 Controller Board

• Trace Board

Two smaller circuit boards are housed within the buffer box assembly:

• Buffer Board 1

• Buffer Board 2

1-9

Introduction to the ICE-88 ICE-88

I-tO

1/0
PORT

The buffer box cable assembly interconnects the user hardware and the ICE-88
emulator circuit boards within the Intellec chassis. Connection to the user system
is made by this cable via the 40-pin socket that normally contains the 8088 user
processor. When the ICE-88 emulator is thus connected to the user system, the
functions of the user processor are assumed by an 8088 located within the buffer
box assembly. The 8088 in the buffer box assembly is called the user processor
within this manual. The buffer box assembly is located near the user end of this
cable assembly.

X and Y cables interconnect the buffer box and two circuit boards in the Intellec
chassis. The T cable provides direct connection between the 88 Controller Board
and the Trace Board.

A block diagram of the ICE-88 hardware is shown in figure 1-2.

Generalized Development Cycle with ICE-SS

Figure 1-3 diagrams a generalized product development cycle using the ICE-88
emulator as a design aid. The sequence of events in developing a new product
using the Intellec system with the ICE-88 emulator is approximately as follows.

• Complete the specifications for the prototype hardware design, software
control logic, and integrated system performance.

• Organize both the hardware and software designs into logical blocks that are
readily understandable, have well-defined inputs and outputs, and are easy to
test. Breaking down the design is an interactive process, but is extremely
valuable in reducing the time required for prototyping, programming, testing,
and modification.

BUFFER
BD1

USER
SYSTEM

BUFFER
BD2

8080

USER --~~-l
CABLE

r---'---, ~
BUS

SWITCH
LOGIC

BUFFER BOX CABLE

BUFFER
CONTROL

841'1l'gRESSES

~ t COUNTER STATUS
~RD~/W~T ______________ ~~~ __ W_W_D_AT_A_lIN_ES __ ~ ____________ ~~ __________ ~-+ __________ ~ ____ _

------,-~----------
I
I
I
I

INT RESETI 8080 8228
SYS
BUS

ICE
RAM

2·PORT I TRACE
RAM

TRACE
DATA

I
INVOKE
LOGIC

INTEL .:ml

ICE
PROCESSOR

RD/WTCONT

CONTROL 1--..... ____

WB8
CONTROL
PROGRAM

RAM I

I
I
I
I
I

LEC / BUS

CONTROL 1_-----------------.... __ .::W80::;.-DA_TA .. lIliiiNE .. S ---I---... ------..... -"P---.... --... .;..-... -~ """!"'-..:... I

(BACKPLANE
CONNECTIONS)

FM CONTROLLER BOARD 88 CONTROLLER BOARD

Figure 1-2. ICE-88™ Functional Block Diagram

TRACE BOARD

ICE-88 Introduction to the ICE-88

• Program the software modules in PL/M-86 and/or in ASM-86 assembly
language, naming and storing the programmed modules as files under
ISIS-II. Compile or assemble the modules, linking and loading the combina
tions you are ready to test, creating an object-code (machine language) ver
sion. Desk-check each module as it is completed.

• As software modules are ready for testing, load them into ICE, Intellec
system or diskette and emulate them via the ICE processor, using the ICE-88
emulator in the 'software' mode. The ICE-88 system allows you to use ICE
supplied memory as part of the "prototype" system. The advantages of this
feature to software development include:

1. You do not have to be concerned about overflowing your prototype
system memory in the initial stages of software development. You have
the freedom to test the program and compact it later without having to
make room for extra memory in your prototype.

2. You may test your program in RAM memory, and make patches quickly
and easily without having to erase and reprogram PROM memory. In
later test phases, the ICE module can control program execution from
PROM or ROM in your prototype. The ICE module can map RAM
memory to ICE- supplied memory to replace prototype memory in set
increments to test out software changes before reprogramming.

• As software modules pass initial stages of check-out, they can be loaded in
the 2K of ICE-88 memory for emulation and testing in "real-time."

• Hardware proto typing can begin with just a 8088 CPU socket. Through
ICE-88 emulator mapping capabilities, ICE-supplied equivalents can be
substituted for missing prototype hardware. As each module of the user's
hardware becomes available, it can be added to the prototype, replacing the
ICE-supplied equivalent. In this way, modules of software and hardware can
be system-tested as they become available.

• You can use memory in ICE-supplied systems to check the interaction of
prototype hardware and proven software. The ability to map memory is
helpful in isolating system problems. You can exercise all prototype memory
from a program residing initially ICE-supplied memory, and reassign
memory block-by-block to the user's system as code is verified. Hardware
failures can then be isolated quickly, because interactions between prototype
parts occur only at your command. You do not have to use the prototype to
debug itself.

• The debugging/testing process can proceed through each hardware and
software module, using ICE-88 commands to control execution and check
that each module gets data or control information from the correct locations,
and places correct data or other signals in the proper cells or output locations
for subsequent modules to use.

SCOPE OF INTELLEC DEVELOPMENT SYSTEM WITH AN ICE MODULE

Figure 1-3. Typical Development Cycle with ICE™ Module

1-11

Introduction to the ICE-88

1-12

• Eventually, you test all hardware and software together. The program can
reside in RAM or PROM in your system, or in RAM in Intellec systems. All
other hardware can be in the prototype. The ICE-88 emulator connected to
the system through the microprocessor socket can emulate, test, and trace all
the operations of the system.

• After the prototype has been completely tested, the ICE-88 emulator can be
used to verify the product in production test. The test procedures you
developed for the final prototype testing can serve as the basis for production
test routines, running the program from metal-masked ROM in the produc
tion system.

A Generalized Emulation Session

This section describes the main steps in an emulation session. You may not
always perform all the procedures given here in every emulation session, but the
main outline is the same in all sessions. The discussion emphasizes some of the
features of the ICE-88 emulator that have not been presented earlier. For the
details of the command language, see Chapters 4 through 8.

1. Install the ICE-88 hardware in the Intellec chassis (see Chapter 2).

2. If you are using any prototype hardware, remove socket protector and attach
the cable that connects the user hardware to the ICE-88 circuit boards to the
prototype via the 40-pin socket. Otherwise leave socket protector attached to
the cable.

3. Boot the system, and obtain the hyphen prompt from the ISIS-II system.
Enter the ICE-88 command, and obtain the asterisk prompt from the ICE-88
emulator.

4. From the software to be tested, determine how many memory addresses in
the Intellec system are required to perform the current emulation. For exam
ple, if your program presently uses 3K of memory but your prototype has
only lK installed, you need to "borrow" 2K of memory from the ICE-88
emulator.

ICE-88 system memory is available from three sources: 2K of "real-time"
ICE memory, extended Intellec RAM memory, and diskette memory. This
memory is available for user program mapping and is organized in blocks of
1 K (1024) bytes of contiguous memory. 1024 such blocks are logically
available; the amount that is physically available depends upon what you
have installed in the Intellec system.

The ICE memory provides you with 2K of RAM memory that enables you to
run object code at approximately real-time speed.

Intellec memory is capable of providing 960 1 K blocks of logical address
space. The Intellec system software occupies the lowest 64K of Intellec RAM
memory. Therefore, any Intellec memory available to the user programs must
be mapped to addresses above 64K (extended lntellec memory). The amount
of Intellec memory physically available is dependent upon the number of
card slots available in the Intellec system and the memory physically
installed. (Do not use 016 memory boards.) If diskette memory is used, the
full range of 1024 blocks of logical memory is available to the user program
up to the size of the diskette.

Typically, your program occupies logical locations in low memory. If you
intend to use Intellec memory for this emulation, you must map the memory
space used by your program into extended lntellec memory. The ICE-88
emulator stores the mapping in its memory map, and refers each memory
reference in your program to the proper physical location in lntellec memory.

ICE-88

ICE-88 Introduction to the ICE-88

For example, suppose your code requires absolute addresses OOOOH to
OFFFH (the H means hexadecimal radix), or 4096 contiguous locations begin
ning at location 0; the lowest address in memory. To map these addresses
into the beginning of extended Intellec memory, the mapping command
would be:

MAP INTELLEC = 64 LENGTH 62

This command declares that 62K of RAM memory is physically available in
extended Intellec memory starting at the lower boundary of extended
memory.

MAP 0 LENGTH 4 = INTELLEC

This command maps the logical memory required by your program to the
address space in lower Intellec extended memory.

5. Load your program from diskette into the memory locations you have
mapped, using the LOAD command.

6. The ICE-88 emulator has three modes of operation: interrogation,
continuous emulation, and single-step emulation. The asterisk prompt signals
that the ICE-88 emulator is in the interrogation mode, ready to accept any
command.

7. In the interrogation mode, prepare the system for emulation by defining
symbols and setting emulation breakpoints and tracepoints.

ICE-88 software provides keywords for all 8088 registers and flags. In addi
tion, you may use symbols to refer to memory locations and contents. The
user symbol table is generated along with the object file during PL/M com
pilation or ASM assembly. This table can be loaded into Intellec memory
when the user program is loaded.

You are encouraged to add to this symbol table any additional symbolic
values for memory addresses, constants, or variables that you may find
useful during system debugging. Symbols may be substituted for numeric
values in any of the ICE-88 commands.

Symbolic reference is a great advantage to the designer. You do not need to
recall or look up the addresses of key locations in your program, as they
change with each assembly; you can use meaningful symbols from your
source program instead. This facility is especially valuable for high-level
language debugging. You can completely debug a program written in PL/M
by referencing symbols defined in the source code. You do not need to
become involved with the machine level code generated by the compiler. For
example, the command:

GO FROM .START TILL .RSL T WRITTEN

begins real-time emulation of the program at the address referenced by the
label START in the designer's PL/M-86 program. The command also
specifies that the program is to break emulation when the 8088
microprocessor writes to the memory location referenced by RSL T. You do
not have to be concerned with the physical locations of START and RSL T .
The ICE-88 software supplies them automatically from information stored in
the symbol table.

8. Enter a GO command to begin real-time emulation. The ICE-88 emulator
uses a pseudo-register called the GO-register to contain the halting conditions
that you have specified, either in the GO command or previously.

9. When emulation halts, you display the trace data collected during that
emulation. The ICE-88 emulator loads trace data into a trace buffer. Using
ICE-88 commands, you can position the trace buffer pointer to the informa
tion that you desire to review, and display one, several, or all the entries in
the buffer. You can set the display mode to one frame per line or one
instruction per line of display.

1-13

Introduction to the ICE-88

1-14

10. To control emulation more precisely and to obtain more detailed trace data
than with continuous emulation, you can command the ICE-88 emulator to
execute single-step emulation. After each step emulated, you can display the
current entry in the trace buffer and the current settings of the 8088 registers
and pins.

11. You can examine and change memory locations, 8088 registers and flags, and
110 ports, to provide you with valuable information on program operation.
You may alter data or register values to observe their effect on the next
emulation, or you can patch in changes to your program code itself. You can
display and change symbolic values in the symbol table and breakpoint and
tracepoint values.

12. Alternate between interrogation and emulation until you have checked
everything you want to check.

13. At the end of the emulation session, you can save your debugged code on an
ISIS-II diskette file, using the ICE-88 SAVE command. The operation can be
specified to save program code, symbol tables, and (for PL/M programs) the
source code line number table.

You can start another session immediately, resetting all parameters to their
initial values with a few simple commands, or you can exit to ISIS-II to
terminate the session.

This introduction is intended to show you some of the scope and power of the
ICE-88 emulator in operation, and to suggest how this integrated softwarel
hardware design aid can fit into your development cycle. Chapter 2 contains
installation instructions. Chapter 3 contains a hands-on tutorial involving a
sample program to be debugged. Chapter 4 describes the meta-notation used in
this manual to specify command syntax and semantics. Chapter 5 presents a
detailed description of expressions used in this manual. The remaining chapters
present the details of the command language in a format and sequence designed
for reference.

ICE-88

Change 1

CHAPTER 2
ICE-88 INSTALLATION PROCEDURES

This chapter contains information on the installation of the ICE-88 emulator.

ICE-88 Components

The following items are included in the ICE-88 package.

• FM Controller board (PN 1002609): A circuit board that plugs into the
lntellec chassis. The FM Controller contains the 8080 ICE processor,
12K-byte firmware ROM, and 3K-byte scratch pad RAM.

• 88 Controller board (PN 1002585): A circuit board that plugs into the
Intellec chassis. The 88 Controller contains the 2K-byte ICE RAM, I K by
6-bit MAP memory, and 512 byte 2-Port memory.

• Trace board (PN 1001849): A circuit board that plugs into the Intellec
chassis. The Trace board contains RAM for trace data, tracepoints, and
breakpoints.

• ICE-88 Buffer Box Assembly (PN 4002604): A cable assembly that contains
the ICE-88 Buffer Box Assembly. The Buffer Box contains two small circuit
boards that contain the 8088 user processor and gating and control logic for
communications with the user system, MAP RAM, ICE RAM, 2-Port RAM,
and Trace RAM. The cable assembly also contains the user cable that plugs
into the 40-pin receptacle that normally houses the user's 8088, the X cable
that attaches to the 88 Controller board, and the Y cable that attaches to the
FM Controller board.

• Intellec Microcomputer Development System 800 Triple Auxiliary Connector
(PN 1001854 or 1001855) and Intellec Series II Triple Auxiliary Connector
(PN 1001858): Each connector consists of a set of three parallel circuit board
connectors that provide electrical interconnection between the FM Controller,
Trace board and the 88 Controller when they are installed in the Intellec
chassis.

• Ground Cable (PN 4000481): A cable that provides signal ground to the ICE-88
Buffer Box Assembly from the user system.

• Required software files on the ICE-88 diskette:

• ICE88 • ICE88.0V5
• ICE88.0VO • ICE88.0V6
• ICE88.0VI • ICE88.0V7
• ICE88.0V2 • ICE88.0V8
• ICE88.0V3 • ICE88.0VE
• ICE88.0V4

Required and Optional Hardware
ICE-88 emulators require one of the following hardware configurations:

• Intellec model 800 with:

CRT

MDS-2DS or DDS

64KofRAM

3 adjacent card slots available on the motherboard

• Intellec model 888 with 64K of RAM

• Intellec Series II, model 220 or 230 with:

3 adjacent card slots available in the expansion chassis and 64K of RAM

2-1

ICE-88 Installation Procedures

2-2

The following are optional enhancements to an ICE-88 system:

• Serial or parallel printer for hard-copy output
• One or more boards of Intellec expansion memory. If Intellec expansion

memory is to be used for emulating 8088 program memory, additional card
slots are needed for iSBC-32 or iSBC-64 memory boards. If Intellec expan
sion memory is used, it is recommended that all Intellec memory consist of
iSBC-32 and/or iSBC-64 memory boards. iSBC-16 memory boards contain
only 16 bits of address. Therefore, if any iSBC-16 boards are present when
expansion memory is being used, each 16K RAM board will be duplicated on
each 64K page of addressable memory making these duplicated areas
unusable for program storage.

NOTE

The Monitor in the Intellec model 800 and 888 occupies the upper 2K
of the first 64K of Intellec memory. This address space will be
duplicated on each 64K page of Intellec expansion memory used and
therefore is unusable for user program storage.

Hardware Installation Procedures

The installation procedures of the ICE-88 emulator are presented in the next two
sections as follows: the procedure for Intellec model 800 and 888; and the pro
cedure for Intellec Series II, model 220 and 230.

Installation Procedure for Intellec Model 800 and 888

I. Disconnect the power cords of the Intellec system and the user system.

2. Install the Intellec peripherals (diskette drives, CRT, printer), following the
instruction guidelines given in the InteJJec Microcomputer Development
System Hardware Reference Manual.

3. Inspect the ICE-88 components for damage.

4. Remove the top cover of the Intellec chassis.

5. Mount shorting plug PI to terminal E5-E6, setting device code to 2. (When
shipped, PI is mounted to E5-E6.) Mount shorting plug P2 to terminal
E7-E8, to select -IOV as -5V power source. (When shipped, P2 is mounted to
E7-E8.). Mount and align the lowest position of the MDS Triple Auxiliary
Connector (PN 1001854 or 1001855) on the FM Controller. Then insert them
into an odd-numbered card slot.

6. Mount the Trace board into the middle slot of the Triple Auxiliary
Connector.

7. Mount the 88 Controller board into the highest numbered slot of the Triple
Auxiliary Connector.

8. MOUNT THE T CABLE ASSEMBLY CONNECTING THE ICE TRACE
BOARD TO THE 88 CONTROLLER BOARD, MATING THE MISSING
PIN ON THE TERMINAL WITH THE BLOCKED INSERT ON THE
RECEPTACLE.

9. Expand the Intellec memory as required for user software.

10. ATTACH THE RIBBON CABLE MARKED X TO THE CABLE
RECEPTACLE ON THE 88 CONTROLLER BOARD MARKED X
MATING THE MISSING PIN ON THE TERMINAL WITH THE
BLOCKED INSERT ON THE RECEPTACLE.

11. ATTACH THE RIBBON CABLE MARKED Y TO THE CABLE
RECEPTACLE ON THE FM CONTROLLER BOARD MARKED Y
MATING THE MISSING PIN ON THE TERMINAL WITH THE
BLOCKED INSERT ON THE RECEPTACLE.

ICE-88

ICE-88 ICE-88 Installation Procedures

12. If a user prototype is to be connected, remove the Socket Protector Assembly
from the user end of the ICE-88 Buffer Box Assembly and insert the 40-pin
cable terminal into the 8088 socket on the user system. The Socket Protector
Assembly guards the terminal pins from damage and inadvertent grounding.

13. Mount the male plug of the Ground Connector into the female receptacle of
the 68-136 Terminal Pin at the user end of the cable assembly.

14. Mount the clip end of the Ground Connector to an appropriate point in the
user system to provide signal. ground.

15. Replace the top cover of the Intellec chassis.

16. Insert the power cords of the Intellec system and the user system into their
sockets. Connect both to power sources.

Installation Procedure for Intellec Series II
Model 220 and 230

1. Disconnect the power cords of the Intellec chassis and user system.

2. Install the Intellec peripherals (diskette drives, CRT, printer), following the
instruction guidelines given in the Intellec Series II Installation and Service
Manual.

3. Inspect the ICE-88 components for damage.

4. Remove the front cover of the expansion chassis to be used to house the
ICE-88 circuit boards.

5. Mount shorting plug PI to terminal E5-E6, setting device code to 2. (When
shipped, PI is mounted to E5-E6.) Mount shorting plug P2 to terminal
E7-E8 to select -10V as -5V power source. (When shipped, P2 is mounted to
E7-E8.) Mount and align the lowest position of the EMDS Triple Auxiliary
Connector (PN 1001858) on the FM Controller. Then insert them into a card
slot.

6. Mount the ICE-88 Trace board into the middle slot of the Triple Auxiliary
Connector.

7. Mount the 88 Controller board into the highest numbered slot of the Triple
Auxiliary Connector.

8. MOUNT THE ICE-88 T CABLE ASSEMBLY CONNECTING THE ICE
TRACE BOARD TO THE 88 CONTROLLER BOARD, MATING THE
MISSING PIN ON THE TERMINAL WITH THE BLOCKED INSERT ON
THE RECEPTACLE.

9. Expand the Intellec memory as required for user software.

10. ATTACH THE RIBBON CABLE MARKED X TO THE CABLE
RECEPTACLE ON THE 88 CONTROLLER BOARD MARKED X
MATING THE MISSING PIN ON THE TERMINAL WITH THE
BLOCKED INSERT ON THE RECEPTACLE.

11. ATTACH THE RIBBON CABLE MARKED Y TO THE CABLE
RECEPTACLE ON THE FM CONTROLLER BOARD MARKED Y
MATING THE MISSING PIN ON THE TERMINAL WITH THE
BLOCKED INSERT ON THE RECEPTACLE.

12. If a user prototype is to be connected, remove the Socket Protector Assembly
from the user end of the ICE-88 Buffer Box Assembly and insert the 40-pin
cable terminal into the 8088 socket on the user system. The Socket Protector
Assembly guards the terminal pins from damage and inadvertent grounding.

13. Mount the male plug of the Ground Connector into tl;1e female receptacle of
the 68-136 Terminal Pin at the user end of the cable assembly.

14. Mount the clip end of the Ground Connector to an appropriate point in the
user system to provide signal ground.

2-3

ICE-88 Installation Procedures

2-4

15. Replace the front cover of the expansion chassis.

16. Insert the power cords of the Intellec system and the user system into their
sockets. Connect both to power sources.

The distance between the two connectors of the T ribbon cable can be
adjusted by bending the cable to match the spacing between the Trace board
and the 88 Controller board.

NOTE

Keep Socket Protector Assembly mounted on the end of the ICE Buf
fer Box Assembly whenever the terminal is not attached to a user
system. This will prevent inadvertant pin damage.

When removing the Socket Protector Assembly from the end of the
ICE Buffer Box Assembly, use care to prevent pin damage.

Confidence Testing

At the conclusion of the installation procedures for the Intellec Model 800 or
888, or the Intellec Series II, execute the DIAG88 confidence program. The
DIAG88 program resets and invokes the ICE-88 emulator, executes a set of hard
ware confidence tests, and terminates by returning a set of "PASS" or "FAIL"
display messages. Execute the following sequence to run the confidence tests:

• Boot the system to run under ISIS-II and wait for the hyphen prompt from the
ISIS-II system.

• Enter the command CONF and wait for the prompt, *.
• Enter the command IN IT DIAG88.CON and wait for the prompt, *.
• Enter the command TEST to cause DIAG88 to execute the confidence tests.

Wait for the test message displays. DIAG88 will display a "PASS/FAIL"
message for each diagnostic test contained in DIAG88. If any displayed test
message denotes a "FAIL," the installed hardware is not operating properly.
Inspect the hardware for improper installation and rerun DIAG88. If all the
displayed test messages denote "PASS,", the hardware has been installed cor
rectly and is operating properly.

• Enter the command EXIT to return control to the ISIS-II system.

ICE-88

CHAPTER 3
SAMPLE ICE-88 SESSI·ONS

AT THE TERMINAL

This chapter introduces a few useful ICE-88 commands and provides hands-on
experience with the ICE-88 emulator. To reduce the need for cross-reference, this
chapter includes brief discussions of the commands used in the examples. The
user program to be simulated is a simple traffic light controller. The user pro
gram logic is described before the hands-on session to help you understand what
is going on.

How To Use This Chapter

• To use this program as a hands-on tutorial, you must enter the source code
for the two modules using the ISIS text editor on your system. Omit the line
number and nesting information that is on the listing; these values are assign
ed by the compiler and assembler.

• Compile the CARS module with the PL/M-86 compiler program. Assuming
that the source file is named CARS.SRC, the compile step could look like:

-PLM86 :F1 :CARS.SRC PRINT(:F1 :CARS.PRT) DEBUG

The object file created by PL/M-86 is named CARS.OBJ. (The DEBUG con
trol generates the symbol table for use by the ICE-88 emulator.)

• Assemble the DELAY module with the ASM86 assembler. Assuming that the
source file is named DELAY .SRC, the assemble step could look like:

-ASM86 :F1:DELAY.SRC PRINT(:F1:DELAY.PRT) OBJECT(:F1:DELAY.OBJ) DEBUG

As indicated, the object module is named DELAY .OBJ.

• Link and Locate CARS and DELAY using the MCS-86 utility QRL86. The
command we used looks like:

-QRL86 :F1:CARS.OBJ, :F1:DELAY.OBJ TO :F1:CARS &
**ORIGIN ,(0) PRINT(:F1 :CARS.QRL) MAP

The ampersand (&) is entered before the carriage return to request a con
tinuation line. The beginning of the continuation line is indicated by a double
asterisk prompt (**).

The executable file is now named CARS; program addresses start at zero (0)
because of the ORIGIN control in the QRL86 invocation.

• For further information on the procedures for editing, compiling,
assembling, linking, and locating programs for the MCS-86 Microprocessor,
refer to the following manuals:

Text Editor: ISIS-JI System User's Guide

PL/M-86 Compiler: PL/M-86 Programming Manual
PL/M-86 Operator's Manual

ASM-86 Assembler

QRL86

MCS-86™ Assembly Language Reference Manual
MCS-86™ Assembler Operating Instructions for

ISIS-JI Users

MCS-86™ Software Development Utilities Operating
Instructions for ISIS-JI Users.

• Study the logic of CARS, the program to be emulated. The material includes
text discussion and program listings.

• Install the ICE-88 hardware, following the procedure given in Chapter 2.
Leave the socket protector on to protect the pins at the end of the cable.

• Insert an ISIS-II system diskette in drive 0 and boot ISIS.

3-1

Sample ICE-SS Sessions at the Terminal

3-2

• Copy CARS to the diskette containing the ICE-88 program. Insert this
diskette in drive 1.

• Enter the command

:F1:ICE88

to load the ICE software and start it executing. The ICE-88 emulator signals
readiness to accept commands by displaying an asterisk prompt (*).

• To obtain a diskette copy of the session, enter the command:

LIST :F1:0UTPUT.LOG

Of course, you can give your list file any name you desire instead of OUT
PUT.LOG.

• Enter the commands as shown, and obtain the results shown in the listing.

Analysis of the Sample Program

The application presented is a simple traffic light controller. Imagine an intersec
tion of a main street and a side street. The desired operation is that the light
should stay green on the main street until a decision involving the number of cars
waiting on the side street and the amount of time they have been waiting has
been satisfied. We suppose that there is a sensor in the pavement on the side
street that sends an interrupt to the computer when a car arrives. We do not in
clude the control of a yellow light on either street.

Refer to the following figures:

Figure 3-1. CARS Module Listing
Figure 3-2. Delay Module Listing

Associated with each street is a time called the cycle length. In the program, the
variable named SIDE$CYCLE$LENGTH controls the fixed length of time the
light is green on the side street when that cycle is called into action. Even though
the light stays green on the main street until the decision rule is satisfied, we need
a variable MAIN$CYCLE$LENGTH that is involved in the decision rule.

The decision rule is as follows. The side street gets a green light if either of the
following two conditions is satisfied.

1. Two or more cars are waiting on the side street, and the main street has had
the green light for a period of time greater than or equal to the variable
MAIN$CYCLE$LENGTH.

2. One car is waiting on the side street, and the main street has had the green
light for a period of time equal to or greater than two times the variable
MAIN$CYCLE$LENGTH.

The system has one input and one output. The input is a signal that a car has ar
rived on the side street since the last time we sampled the input. The variable
CARS$W AITING contains the number of cars waiting on the side street. The
output goes to the traffic light controller. We assume that sending the controller
a 1 makes the light on the main street green and the light on the side street red;
sending it a 0 makes the light on the main street red and the light on the side
street green. The variable LIGHT$ST ATUS represents this output.

ICE-SS

ICE-88

2
3
4
5
6

7 1

8 2
9 2

10 1

11 2
12 2

13 1

14 2
15 2
16 2

17 2

18 2
19 2
20 2
21 3
22 3
23 3
24 3
25 2
26 2

27 1
28 1
29 1
30 1
31 2
32 2
33 2
34 2

35 2
36 3
37 3
38 3
39 3
40 2

41 1

Sample ICE-88 Sessions at the Terminal

/* TRAFFIC LIGHT CONTROLLER PROGRAM * /

CARS:
DO;

DECLARE (MAIN$TIME, SIDE$TIME) BYTE;
DECLARE MAIN$CYCLE$LENGTH BYTE DATA(8), SIDE$CYCLE$LENGTH BYTE DATA(5);
DECLARE CARS$WAITING BYTE;
DECLARE LlGHT$STATUS BYTE;
DECLARE FOREVER LITERALLY 'WHILE I';

SIDE$STREET$CAR:
PROCEDURE;

CARS$WAITING = CARS$WAITING + 1;
END SIDE$STREET$CAR;

/* FOLLOWING PROCEDURE CODED IN ASSEMBLY LANGUAGE AND LINKED IN * /
DELAY:
PROCEDURE(TIME$HUNDREDTHS) EXTERNAL;

DECLARE TIME$HUNDREDTHS BYTE;
END DELAY;

DISPLAY:
PROCEDURE (CYCLE$TIME);

DECLARE CYCLE$TIME BYTE;
LlGHT$STATUS = LlGHT$STATUS;

END DISPLAY;

CYCLE:
PROCEDURE;

LlGHT$STATUS = 0; /* MAIN RED, SIDE GREEN * /
SIDE$TIME = 0;
DO WHILE SIDE$TIME <= SIDE$CYCLE$LENGTH;

CALL DISPLA Y(SIDE$TIM E);
CALL DELAY(100);
SIDE$TIM E = SIDE$TIM E * 1;

END;
LlGHT$STATUS = 1; /* MAIN GREEN, SIDE RED * /

END CYCLE;

/* MAIN PROGRAM - EXECUTION BEGINS HERE * /

LlGHT$ST ATUS = 1; / * START WITH MAIN GREEN * I
CARS$WAITING = 0;
MAIN$TlME = 0;
DO FOREVER;

END;

CALL DISPLA Y(MAIN$TIME);
CALL DELAYI(100);
MAIN$TIME = MAIN$TIME * 1;
IF (CARS$WAITING >= 2) AND (MAIN$TIME)= MAIN$CYCLE$LENGTH)

DO;
OR (CARS$WAITING = 1) AND (MAIN$TIME >= 2 * MAIN$CYCLE$LENGTH) THEN

CALL CYCLE;
CARS$WAITING = 0:
MAIN$TIME = 0;

END;

END CARS;

Figure 3-1. CARS Module Listing

3-3

Sample ICE-88 Sessions at the Terminal ICE-88

LOC OBJ LINE SOURCE

1 CGROUP GROUP ABS_O,CODE,CONST,DAT A,ST ACK, MEMORY
2 DGROUP GROUP ABS_O,CODE,CONST,DAT A,ST ACK, MEMORY
3 ASSUME DS:DGROUP,CS:CGROUP,SS:DGROUP
4 CONST SEGMENT WORD PU BLiC 'CONST'
5 CONST ENDS
6 DATA SEGMENT WORD PUBLIC 'DATA'
7 DATA ENDS
8 STACK SEGMENT WORD STACK 'STACK'

0000 9 STACK_BASE LABEL BYTE
10 STACK ENDS
11 MEMORY SEGMENT WORD MEMORY 'MEMORY'

0000 12 MEMORY _LABEL BYTE
13 MEMORY ENDS
14 ABS_O SEGMENT BYTE ATO

0000 15 M LABEL BYTE
16 ; TIME DELAY SUBROUTINE
17
18 ABS_O ENDS
19 CODE SEGMENT WORD PUBLIC 'CODE'
20 PUBLIC DELAY

0000 58 21 DELA Y: POP BX ;POP RETURN ADDR. OFF STACK
0000 59 22 POPCX ;POP ARGUMENT OFF STACK INTO CX REG.
0002 53 23 PUSH BX ;REPLACE RETURN ADDR. ON STACK
0003 8AC1 24 MOV AL,CL ; PLfM LINKAGE CONVENTION
0005 B5FF 25 MOV CH,255
0007 8ACD 26 LAB1: MOV CL,CH
0009 FEC9 27 LAB2: DEC CL
OOOB 891 E2300 R 28 MOV TEMP,BX ; WASTE
OOOF 891E2300 R 29 MOV TEMP,BX ; DITTO
0013 891 E2300 R 30 MOV TEMP,BX
0017 891E2300 R 31 MOV TEMP,BX
001 B 90 32 NOP
001C 75EB 33 JNZ LAB2
001E FEC8 34 DEC AL
0020 75E5 35 JNZ LAB1
0022 C3 36 RET

37
0023 38 TEMP LABEL WORD
0023 (2 39 DB 2 DUP

??

40 CODE ENDS
41 END

Figure 3-2. DELAY Module Listing

3-4

ICE-88 Sample ICE-88 Sessions at the Terminal

The program is initialized with constants and variables set as follows.

MAIN$CYCLE$LENGTH = 8 seconds
SIDE$CYCLE$LENGTH = 5 seconds
MAIN$TIME = 0 (Time since last change to MAIN GREEN, SIDE RED)
SIDE$TIME = not set yet. (Time since last change to SIDE GREEN)
LlGHT$STATUS = 1 (MAIN GREEN, SIDE RED)
CARS$WAITING = 0

The CARS program contains a procedure CYCLE to change the lights back and
forth. CYCLE holds the side street light green (main red) until its counter,
SIDETIME, exceeds the SIDECYCLELENGTH (nominally 5 seconds).

The ICE-88 test suite includes commands that simulate the arrival of cars on the
side street, and that display the values of the program variables involved in the
light change logic. The procedure SIDESTREETCAR represents the nucleus of
the interrupt routine that would handle the sensor interrupts in a real traffic light
controller program. The interrupt-enabling logic is omitted for simplicity. Pro
cedure DISPLAY is a "vestige" of a previous version of CARS. CARS also calls
DELAY when a "one-second" timer is required.

Hands-On Demonstration

This demonstration involves the one program CARS. The version we ran did not
have ahy serious logic errors, so that the effects of the ICE-88 commands could
be clearly seen. The length of the delay produced by the DELAY routine is
longer than desired; you may adjust the calling parameter if you desire a "true"
one-second delay.

The material represents two separate sessions at the terminal. The beginning and
end of each session is clearly indicated. By using two sessions we can demonstrate
the use of the PUT and INCLUDE commands.

The pair of sessions is organized as follows-session 1 shows how to define and
save macros on file; the macros defined in this session are of two kinds: general
purpose MCS-86 utilities (PUSH88, POP88, SETIP) and macros that are par
ticular to CARS, the demonstration program.

The demonstration emphasizes the ICE-88 macro facility, showing how four
basic ICE operations (initialize, emulate, display, change) can be organized into
named blocks-the building blocks of test sequences.

The define macro command has the syntax:

DEFINE MACRO macro-name cr

[command cr] ...

EM

The commands inside a macro definition (including calls to other macros) are
not examined or executed by the ICE-88 emulator urttil the macro is invoked. A
macro call has the format: :macro-name. More details on commands are given in
the following discussion.

3-5

Sample ICE-88 Sessions at the Terminal

3-6

Session 1

o We begin the session by entering :Fl:ICE88 to ISIS-II (hyphen prompt), and
receive the ICE-88 sign-on message and asterisk prompt. To record the ses
sion on diskette file, we enter a LIST command with the drive and filename
that is to contain the output of the ICE-88 operations (including error
messages if any).

Many of the commands include comments. A comment is preceded by a
semicolon (;) to separate it from the command.

The discussion is keyed to the listing by margin numbers.

Macro PUSH88 simulates the MCS-86 PUSH instruction. SP is the stack
pointer; SS is the base address of the stack segment.

POP88 is the reverse procedure, simulating the MCS-86 POP instruction.

The parameter 0/00 in both PUSH88 and POP88 lets us "push" or "pop"
any register (or expression, etc.) as long as it can be expressed as a WORD
type quantity.

2 Macro SETIP resets the instruction pointer CS:IP to the address (symbol,
expression, etc.) passed as a parameter when the macro is invoked. CS is the
base of the code segment and IP is the instruction pointer relative to CS.
Like PUSH88 and POP88, SETIP is a useful macro for restarting emulation
at a desired point (without "softwiring" start addresses into your emulation
macros).

3 Macro TYPES demonstrates how to set up to use typed memory references.
A symbol that stands for the address of a variable (not a procedure name)
can be defined or assigned a memory-type. Examples of memory-types are
BYTE, WORD, and POINTER. In our CARS program, all the key variables
are of type BYTE. Since the symbols are loaded with the program rather
than being DEFINED, we assign types to the variable with the commands of
the form:

TYPE .symbol-name = memory-type

Then, as shown later on (e.g., in macro VARIABLES, step 6 of session 1)
we can refer to the contents of any typed variable with a typed memory
reference of the form

!symbol-name

The contents produced by a typed memory reference are automatically of the
type assigned or declared.

See Chapter 7 for more details on memory types.

ICE-88

ICE-88

o -:F1 :ICE88
ISIS-IIICE-88 V1.0

"LIST :F1:DEC10.LOG ;SESSION ONE

1 "DEFINE MACRO PUSH88
·"SP = SP - 2T ;MOVE POINTER TO NEW TOP OF STACK
·"WORD SS:SP = %0 ;PUSH PARAMETER ON STACK
·"EM ;END OF MACRO PUSH88

"DEFINE MACRO POP88
·*%0 = WORD SS:SP
·*SP = SP + 2T
·*EM

2 *DEFINE MACRO SETIP
·*CS = SEG (%0)
·*IP = OFF (%0)

;POP PARAMETER OFF STACK
;MOVE POINTER TO NEW TOP OF STACK
;END OF MACRO POP88

·*EM ;END OF MACRO SETIP

3 'ODEFINE MACRO TYPES
·*TYPE .MAINTIME = BYTE ;FROM PLM LISTING
·'OTYPE .SIDETIME = BYTE ;FROM PLM LISTING
·"TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
·*TYPE .SIDECYCLELENGTH = BYTE ;FROM PLM LISTING
·*TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
·*TYPE .L1GHTSTATUS = BYTE ;FROM PLM LISTING
·'OEM ;END OF MACRO TYPES

Sample ICE-88 Sessions at the Terminal

3-7

Sample ICE-SS Sessions at the Terminal

3-8

4 We define a macro INIT to handle the map and load steps for our program,
CARS.

In the macro INIT, the command MAP 0 LENGTH 2 = ICE 0 assigns two
memory blocks (lK segments) to ICE memory. The CARS program was
LOCATed at ORIG IN 0 (QRL step discussed above) to facilitate mapping to
ICE memory.

INIT defines a useful symbol, .START = CS:IP. After LOAD, CS:IP points to
the first executable instruction in the user program. CS is the base of the code
segment and IP is the instruction pointer (relative to CS).

Then, INIT calls the TYPES macro defined in step 3. This macro will become
part of INIT whenever INIT is called. Until INIT is called, however, the call to
TYPES is not executed.

Finally, INIT displays the symbol and statement number tables, to verify that
the LOAD step has been completed, and that the TYPES macro has executed.

5 Macro EXAM is designed to test the logic that controls the light change.
Basically, the macro block is an indefinite REPEAT loop (the block beginning
with REPEAT and ending with ENDREPEAT). On each iteration a single step
is emulated (one instruction). Following that, we use an IF command to look for
certain addresses and take appropriate actions. The action taken in all cases is to
display the PL/M statement or an equivalent message using the WRITE com
mand (see step 6 for more on the WRITE command). In addition, we skip both
DELAY and DISPLAY by popping the return address and call parameter off
the stack.

ICE-SS

ICE-88 Sample ICE·88 Sessions at the Terminal

4 *DEFINE MACRO INIT
·*MAP 0 LENGTH 2 = ICE 0 ;MEMORY SPACE,FOR CARS PROGRAM
.*MAP 0 LENGTH 2 ;DISPLAY WHAT WE MAPPED
·*LOAD :F1 :CARS
·*DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
·*:TYPES ;MACRO FOR TYPE DEFINITIONS
·*SYMBOLS
·*L1NES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
.*EM ;END OF MACRO INIT

5 *DEFINE MACRO EXAM
·*REPEAT
·*STEP
·*IF CS = SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
·*WRITE 'CALL DISPLAY'
.*:POP88IP ;RESTORE RETURN ADDRESS
·*SP = SP + 2T ;DISCARD PARAMETER
.*ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
·*WRITE 'CALL DELAY'
·*:POP88IP
·*SP = SP + 2T
.*ORIF CS = SEG(.. CARS#30) AND IP = OFF(.. CARS#30) THEN
·*WRITE 'STARTING MAIN LOOP'
.*ORIF CS = SEG(.. CARS#34) AND IP = OFF(.. CARS#34) THEN
·*WRITE 'START OF IF TEST'
.* :VARIABLES
·*ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
·*WRITE 'CALL CYCLE'
·*ENDIF
·*ENDREPEAT
·*EM ;END OF MACRO EXAM

3-9

Sample ICE-88 Sessions at the Terminal

3-10

6 Macro VARIABLES employs the WRITE command to display the key program
variables with identifiers. The general syntax of WRITE is:

WRITE element [, element] ...

The elements to be "written" (displayed at the console) can be strings (e.g.,
'SIDETIME') enclosed in single quotes, expressions, or constants of the form
BaaL expression. Two or more elements can be combined by listing them in
the order you desire, separated by commas. The strings in our commands serve
to label the displays.

V ARIABLES also uses typed memory references; they have the format:

!symbol-name

Note that each of the symbol names in VARIABLES must be assigned a type
(by macro TYPES) before LOOK can be called. Then, the typed reference pro
duces the contents of the given address. For example, if symbol .A is the address
of a variable of type BYTE, !A means the same thing as BYTE.A; if .A is a
WORD-type variable, however, !A means WORD.A.

The display produced by VARIABLES is shown in session 2 below.

7 Macro TEST combines several macros and simple commands in a test suite.
First we initialize the system be executing GO FROM START TILL .. CARS#30
EXECUTED. Statement #30 in the beginning of the main loop.

Next, TEST uses a parameter to assign a value to CARSWAITING. When we
call TEST, we supply any value we wish as a parameter.

Last, TEST calls EXAM to single step through the program displaying any calls
that occur.

8 The DIR MAC command produces a display of the titles of all the macros we
defined, in the order they were defined.

9 To display the definition of any macro, use a command with the form:

MACRO macro-name

Using this command, we display the definition of macro SETIP.

10 We save our macro definition on a permanent file for use in later sessions.

11 The EXIT command closes all files and returns us to ISIS-II (hyphen prompt).

ICE-88

ICE-88 Sample ICE-88 Sessions at the Terminal

6 *DEFINE MACRO VARIABLES
·*WRITE 'LiGHTSTATUS = ',!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
·*WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME
.*WRITE 'SIDECYCLELENGTH = ',!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
·*EM ;END OF MACRO VARIABLES

7 'DEFINE MACRO TEST
·*GO FROM .START TILL .. CARS#30 EXECUTED
.* !CARSWAITING = %0
.* :VARIABLES
·*:EXAM
.*EM ;END OF MACRO TEST

8 'DIR MAC
PUSH88
POP88
SETIP
TYPES
INIT
EXAM
VARIABLES
TEST

9 'MACRO SETIP
DEFINE MACRO SETIP
CS= SEG (%0)
IP = OFF (%0)
EM ;END OF MACRO SETIP

10 'PUT :F1 :TEST.INC MACRO

11 'EXIT

3-11

Sample ICE·88 Sessions at the Terminal

3-12

Session 2

o We call up the ICE-88 program and specify a LIST file as before.

The INCLUDE command causes the ICE-88 emulator to read commands
from a file rather than from the console. The form of this command is just:

INCLUDE :drive: filename

In our case, the file :FI:TEST.INC contains the macro definitions from ses
sion I. Thus, when we enter the command:

INCLUDE :F1 :TEST.INC

The ICE-88 emulator reads in all the macro definitions from PUSH88
through TEST, then returns control to the console.

ICE·88

ICE-88 Sample ICE-88 Sessions at the Terminal

o -:F1 :ICE88
ISIS-IlICE-88 V1.0

* LIST :F1:DEC11.LOG

1 *INCLUDE :F1 :TEST.INC
*DEFINE MACRO PUSH88

;SESSION TWO

.*SP = SP - 2T ;MOVE POINTER TO NEW TOP OF STACK
·*WORD SS:SP = %0 ;PUSH PARAMETER ON STACK
.*EM ;END OF MACRO PUSH88
*DEFINE MACRO POP88
.*%0 = WORD SS:SP ;POP PARAMETER OFF STACK
·*SP = SP + 2T ;MOVE POINTER TO NEW TOP OF STACK
·*EM ;END OF MACRO POP88
*DEFINE MACRO SETIP
·*CS = SEG (%0)
.*IP = OFF (%0)
·*EM ;END OF MACRO SETIP
*DEFINE MACRO TYPES
.*TYPE .MAINTIME = BYTE ;FROM PLM LISTING
.*TYPE .SIDETIME BYTE ;FROM PLM LISTING
.*TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
.*TYPE .SIDECYCLELENGTH = BYTE ;FROM PLM LISTING
.*TYPE .CARSWAITING = BYTE ;FROM PLM LISTING
.*TYPE .LlGHTSTATUS = BYTE ;FROM PLM LISTING
.*EM ;END OF MACRO TYPES
*DEFINE MACRO INIT
.*MAP 0 LENGTH 2 = ICE 0 ;MEMORY SPACE FOR CARS PROGRAM
.*MAP 0 LENGTH 2 ;DISPLAY WHAT WE MAPPED
·*LOAD :F1 :CARS
.*DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
.*:TYPES ;MACRO FOR TYPE DEFINITIONS
·*SYMBOLS
·*LlNES ;DISPLAY SYMBOL AND LINE NUMBER TABLES
.*EM ;END OF MACRO INIT
*DEFINE MACRO EXAM
·*REPEAT
·*STEP
·*IF CS = SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
·*WRITE 'CALL DISPLAY'
·*:POP88IP ;RESTORE RETURN ADDRESS
·*SP = SP + 2T ;DISCARD PARAMETER
.*ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
.*WRITE 'CALL DELAY'
·*:POP88IP
·*SP = SP + 2T
.*ORIF CS = SEG(.. CARS#30) AND IP = OFF(..CARS#30) THEN
·*WRITE 'STARTING MAIN LOOP'
·*ORIF CS = SEG(.. CARS#34) AND IP = OFF(..CARS#34) THEN
·*WRITE 'START OF IF TEST'
·*:VARIABLES
.*ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN
.*WRITE 'CALL CYCLE'
·*ENDIF
·*ENDREPEAT
·*EM ;END OF MACRO EXAM
*DEFINE MACRO VARIABLES
·*WRITE 'LiGHTSTATUS = '.!L1GHTSTATUS,', CARSWAITING = ',!CARSWAITING
.*WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ' ,!MAINTIME
·*WRITE 'SIDECYCLELENGTH = ',!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
·*EM ;END OF MACRO VARIABLES
*DEFINE MACRO TEST
.*GO FROM .START TILL .. CARS#30 EXECUTED
.*!CARSWAITING = %0
.* :VARIABLES
·*:EXAM
.*EM ;END OF MACRO TEST

3-13

Sample ICE-88 Sessions at the Terminal

3-14

2 We invoke macro INIT with a macro call of the form:

: macro-name

In our example, the call is:

:INIT

First, the macro is "expanded" to form a block of executable commands.
The expansion of INIT involves expanding the macro TYPES, at the point
that TYPES is called within INIT (see the definition of INIT on the previous
page). As INIT is expanded, each command is checked for syntax; any error
here would abort the macro call. However, no errors occur and we reach the
EM token marking the end of the macro expansion.

3 The commands in INIT now execute. The MAP commands allocate space in
ICE memory for our code and display the resulting map (T indicates decimal
radix):

OOOOT=ICE OOOOT 0001T=ICE 0001T

The SYMBOLS command displays the symbol table; the listing shows the
symbol names and corresponding addresses. We see that .START is present
in an unnamed module at the head of the table, and other symbols are listed
in the order they appear within the two program modules, .. CARS and
.. DELA Y. Note the type specifications on the program variables named in
the macro TYPES.

The LINES command displays the statement numbers and corresponding
addresses from CARS. DELAY has no line numbers because the assembler
does not produce a line number table.

ICE-88

ICE-88 Sample ICE-88 Sessions at the Terminal

2 *:INIT
e*MAP 0 LENGTH 2 = ICE 0
e*MAP 0 LENGTH 2
e*LOAD :F1 :CARS

;MEMORYSPACEFORCARSPROGRAM
;DISPLAY WHAT WE MAPPED

e*DEFINE .START = CS:IP ;HANDY SYMBOL FOR RESTARTING
e*:TYPES ;MACRO FOR TYPE DEFINITIONS
"*TYPE .MAINTIME = BYTE ;FROM PLM LISTING
"*TYPE .SIDETIME = BYTE ;FROM PLM LISTING
"*TYPE .MAINCYCLELENGTH = BYTE ;FROM PLM LISTING
"*TYPE .SIDECYCLELENGTH BYTE ;FROM PLM LISTING
"*TYPE .CARSWAtTING = BYTE ;FROM PLM LISTING
"*TYPE .lIGHTSTATUS = BYTE ;FROM PLM LISTING
"*EM ;END OF MACRO TYPES
e*SYMBOLS
e*lINES
e*EM

3 OOOOT=ICE OOOOT
eST ART =0002H
MODULE .. CARS
eMEMORY=0120H

OOOIT =ICE 0001 T

;DISPLAY SYMBOL AND LINE NUMBERTABLES
;END OF MACRO INIT

eMAINTIME=0106H OF BYT
eSIDETIME=0107H OF BYT
eMAINCYCLELENGTH=0104H OF BYT
eSIDECYCLELENGTH=0105H OF BYT
eCARSWAITING=0108H OF BYT
ellGHTSTATUS=0109H OF BYT
eSIDESTREETCAR=008EH
eDISPLAY=0098H
eCYCLE=00A7H
MODULE .. DELAY
eDELAY=OODEH
eLAB1=OOE5H
eLAB2=OOE7H
eM=OOOOH
eMEMORY _=0012:0000H
eSTACK_BASE=0011 :0010H
eTEMP=0101 H
MODULE .. CARS
#1=008EH
#2=008EH
#3=008EH
#4=008EH
#5=008EH
#6=008EH
#7=008EH
#8=0091 H
#9=0096H
#11=0098H
#12=0098H
#13=0098H
#14=009BH
#15=009BH
#16=00A3H
#17=00A7H
#18=00AAH
#19=OOAFH
#20=00B4H
#21=OOC1 H
#22=00CBH
#23=00CEH
#24=00D3H
#25=OOD6H
#26=00DBH
#27=0002H
#28=0015H
#29=001 AH
#30=001 FH
#31=001 FH
#32=0026H
#33=002CH
#34=0037H
#35=007CH

3-15

Sample ICE-88 Sessions at the Terminal

3-16

4. We now invoke macro TEST to exercise the program logic. We wish to
demonstrate that the code will branch to CYCLE when either of the following
two conditions is true:

1) CARSWAITING = 1 AND MAINTIME >= 16 seconds

2) CARSWAITING >= 2 AND MAINTIME >= 8 seconds

In the definition of TEST (look back at step 1) the second command is:

!CARSWAITING = 0/00

The parameter %0 lets us set the contents of CARSWAITING to any BYTE
quantity we require. Thus we test condition 1 by our command:

TEST1

This results in the expansion:

!CARSWAITING = 1

The expansion of TEST involves the expansion of the macros VARIABLES and
EXAM at the point each is called in the body of TEST.

Macro TEST now begins to execute. To help us follow the displays, we can iden
tify some key addresses in the portions of code we are checking, as shown in
table 3-1.

Table 3-1. Key Addresses in CARS Logic

ADDRESS (IP)
lINE# PLACE IN

NUMBER CARSCODE

0002H #27 START OF MAIN PROGRAM (.START)

001FH #30,31 START OF MAIN 'DO' BLOCK

0037H #34 START OF IF TEST

007CH #35,36 START OF CONDITIONAL 'DO' BLOCK

007FH #37 POINT OF RETURN FROM 'CALL CYCLE'

0089H #39,40 END OF BOTH CONDITIONAL AND MAIN 'DO' BLOCKS

0098H #13 BEGINNING OF DISPLAY (SKIPPED)

OOA7H #17 BEGINNING OF CYCLE

OODBH #26 ENDOFCYCLE

OODEH (#17) BEGINNING OF DELAY (SKIPPED)

ICE-S8

ICE-88 Sample ICE-88 Sessions at the Terminal

#36=007CH
#37=007FH
#38=0084H
#39=0089H
#40=0089H
#41=OOBCH
MODULE .. DELAY

4 *:TEST1
.*GO FROM .START TILL .. CARS#30 EXECUTED
.*!CARSWAITING = 1
·*:VARIABLES
"*WRITE 'LiGHTSTATUS= ',!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING
"*WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH, " MAINTIME = ',!MAINTIME
"*WRITE'SIDECYCLELENGTH = ',!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME
"*EM ;ENDOF MACRO VARIABLES
·*:EXAM
"*REPEAT
"·*STEP
".*IF CS = SEG(.DISPLAY) AND IF = OFF(.DISPLAY)THEN
.... *WRITE 'CALL DISPLAY'
.... *:POP88IP ;RESTORE RETURN ADDRESS
.... ·*IP=WORDSS:SP ;POP PARAMETER OFF STACK
..... *SP = SP + 2T ;MOV POINTERTO NEWTOP OF STACK
..... *EM ;END OF MACRO POP88
.... *SP = SP + 2T ;DISCARD PARAMETER
.... *ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
.... *WRITE 'CALL DELAY'
.... *:POP88IP
.. • .. *IP = WORD SS:SP
.... ·*SP = SP + 2T
·····*EM
.... *SP=SP + 2T

;POP PARAMETER OFF STACK
;MOVE POINTER TO NEW TOP OF STACK
;END OF MACRO POP88

.... *ORIF CS = SEG(.. CARS#30) AND IP = OFF(.. CARS#30) THEN

.... *WRITE 'STARTING MAIN LOOP'

.... *ORIF CS = SEG(.. CARS#34) AND IP = OFF(.. CARS#34) THEN

.... *WRITE 'START OF IF TEST'

.... * :VARIABLES

..... *WRITE 'LiGHTSTATUS = ',!LlGHTSTATUS,', CARSWAITING = ',!CARSWAITING

.. • .. *WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME= ',!MAINTIME

..... *WRITE 'SIDECYCLELENGTH = ',!SIDECYCLELENGTH,', SIDETIME = ',!SIDETIME

.... ·*EM ;END OF MACRO VARIABLES

.... *ORIF CS =(.CYCLE) AND IP = OFF(.CYCLE) THEN

.... *WRITE 'CALL CYCLE'

.... *ENDIF
"·*ENDREPEAT
"*EM ;END OF MACRO EXAM
·*EM ;END OF MACRO TEST

3-17

Sample ICE-88 Sessions at the Terminal

3-18

5 The messages 'EMULATION BEGUN' and 'EMULATION TERMINATED,
CS:IP = 0000:0023' are produced by the command 'GO FROM .START TILL
.. CARS#30 EXECUTED.'

6 The next three "display lines are produced by macro VARIABLES. We see that
LIGHTSTATUS is 1 (main street green), and that CARSW AITING has been
set to 1 by the command '!CARSWAITING = l' in TEST. MAIN
CYCLELENGTH and SIDECYCLELENGTH are constants at 8 and 5 respec
tively. MAINTIME and SIDETIME both are zero.

7 This is the beginning of the REPEAT loop in macro EXAM. The first STEP
ends with address 0098H in the instruction pointer; this is the beginning of
DISPLAY and macro EXAM displays the 'CALL DISPLAY' message.

8 When the beginning of DELAY appears in CS:IP, EXAM displays 'CALL
DELAY'.

9 Address 0037H is the address of the first instruction generated by the IF
statement on line #34 of CARS. EXAM displays the message 'START OF IF
TEST', and also displays (via a call to macro VARIABLES) the values of the
variables involved in the IF condition. The only change since the last such
display is that MAINTIME has been incremented to 1.

ICE-88

ICE-88

5 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0023H

6 LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOOH
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH

7 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0028H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0029H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH

8 CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0030H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0033H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0037H

9 START OF IF TEST
LlGHTSTATUS = 0001H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0040H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0045H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0046H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:004AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:004CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:004EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0050H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0052H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0053H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0058H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:005AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:005DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:005EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0062H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0064H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0066H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0068H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:006AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:006CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0070H
EMULATION BEGUN

Sample ICE-88 Sessions at the Terminal

3-19

Sample ICE-88 Sessions at the Terminal

3-20

10 The previous twenty-eight STEPs comprise the IF-test. Address 0079H is the
end of the IF test, and 0089H is the end of the main loop. Since address 007CH
did not appear, we know that the conditional loop did not execute.

11 Here we are at the beginning of the main loop in CARS.

12 This time through the IF test, MAINTIME is 2. We omit most of the STEPs
through the test (address 003CH to 0079H) from the text; these are identical to
the series shown at step 9.

13 The start of the main loop again; still no light change.

ICE-88

ICE·88

EMULATION TERMINATED, CS:IP=OOOO:0072H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0073H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0075H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0077H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN

10 EMULATION TERMINATED, CS:IP=0000:0089H

11 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH
STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0023H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0028H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0029H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0030H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0033H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0037H

12 STARTOFIFTEST
LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0002H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:003EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0040H
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0077H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH

13 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0023H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0028H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0029H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0030H

Sample ICE·88 Sessions at the Terminal

3-21

Sample ICE·S8 Sessions at the Terminal

3-22

14 MAINTIME equals 3; still a long way to go until MAINTIME equals 16. We
now omit all steps from the text except the beginning and end of the IF test, so
that we can concentrate on the value of MAINTIME.

15 MAINTIME equals 4.

16 MAINTIME equals 5.

ICE-S8

ICE-88

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0033H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

14 LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0003H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

•
•
•

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0077H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

15 LlGHTSTATUS = 0001H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0004H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001 FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

16 LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0005H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

Sample ICE-88 Sessions at the Terminal

3-23

Sample ICE-88 Sessions at the Terminal

3-24

17 MAINTIME equals 6.

18 MAINTIME equals 7.

19 MAINTIME equals 8.

ICE-88

ICE-88

EMULATION TERMINATED, CS:IP=OOOO:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:001FH
STARTING MAIN LOOP
EMULAITON BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0037H
START OF IF TEST

17 LlGHTSTATUS;::: 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH ;::: 0008H, MAINTIME == 0006H
SIDECYCLELENGTH = OOOSH, SIDETIME == OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:003CH
EMULATION BEGUN

•
•
•

•
•
•

EMULATION TERMINATED, CS:IP==OOOO:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP==OOOO:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0037H
START OF IF TEST

18 LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0007H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:003CH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP==OOOO:0089H
EMULATION BEGUN
EMULATtON TERMINATED, CS:IP=OOOO:OO1FH
STARING MAIN LOOP
EMULATION BEGUN

•
•
•
EMULATION TERMINATED, CS:IP=OOOO:0037H
START OF IF TEST

19 LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME :;: 0008H
SIDECYCLELENGTH = OOOSH, SIDETIME = OOOOH
EMULATION BEGUN

Sample ICE-88 Sessions at the Terminal

3-25

Sample ICE-88 Sessions at the Terminal ICE-88

20 MAINTIME equals 9.

21 MAINTIME equals 10 (OAH).

3-26

ICE-88

EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0037H
ST ART OF IF TEST

20 LlGHTSTATUS = 0001H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = 0009H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

21 LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOAH
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•

•

Sample ICE-88 Sessions at the Terminal

3-27

Sample ICE .. 88 Sessions at the Terminal

3·28

22 MAINTIME equals 11 (OBH).

23 MAINTIME equals 12 (OCH).

24 MAINTIME equals 13 (ODH).

ICE-88

ICE-88

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

22 LlGHTSTATUS = 0001 H, CARSWAITING == 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOBH
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

23 LlGHTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOCH
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN

•
•
•

•
•
•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

24 ltG HTST ATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = OOODH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:003CH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:001FH
STARING MAIN LOOP
EMULATION BEGUN

Sample ICE-S8 Sessions at the Terminal

3-29

Sample ICE-88 Sessions at the Terminal

3-30

25 MAINTIME equals 14 (OEH).

26 MAINTIME equals 15 (OFH).

27 Finally, MAINTIME equals 16 or two times MAINCYCLELENGTH. This
time the condition 'CARSWAITING = 1 AND MAINTIME >= 2 * MAIN
CYCLELENGTH' is TRUE and we should see a call to CYCLE at the end
of the IF test.

ICE-88

ICE-88

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

25 LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOEH
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001 FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

26 LlG HTSTATUS = 0001 H, CARSWAITING = 0001 H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOFH
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=0000:0079H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:001 FH
STARTING MAIN LOOP
EMULATION BEGUN

•
•
•

•
•
•
EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST

27 LlGHTSTATUS = 0001H, CARSWAITING = 0001H
MAINCYCLELENGTH = 0008H, MAINTIME = 0010H
SIDECYCLELENGTH = 0005H, SIDETIME = OOOOH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0040H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0045H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0046H

Sample ICE-88 Sessions at the Terminal

3-31

Sample ICE-88 Sessions at the Terminal

3-32

28 Address 7CH in the beginning of the conditional 'DO' loop.

29 Here is the beginning of CYCLE (OA 7H). CYCLE is a loop controlled by the
statement 'DO WHILE SIDETIME <= SIDECYCLELENGTH';
SIDECYCLELENGTH is 5, so the loop should exit when SIDETIME equals
6. We could have included ICE-88 commands in macro EXAM to examine
CYCLE more closely (LIGHTSTATUS should be set to zero, and
SIDETIME should increment on each iteration). In our example, however,
we simply wait for CYCLE to return to the main program. The rest of the
display on this page shows two iterations of CYCLE. We have omitted the
printout of the remaining iterations.

ICE-88

ICE-88

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:004AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:004CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:004FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0050H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0052H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0053H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0058H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:005AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:005DH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:005EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0062H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0064H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0066H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0068H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0072H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0073H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0075H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0077H
EMULATION BEGUN

28 EMULATION TERMINATED, CS:IP=OOOO:007CH
EMULATION BEGUN

29 EMULATION TERMINATED, CS:IP=OOOO:OOA7H
CALL CYCLE
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOA8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOAAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOAFH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB4H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOC1H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOC5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCAH

Sample ICE-88 Sessions at the Terminal

3-33

Sample ICE-88 Sessions at the Terminal

3-34

30 Address ODBH is the end of CYCLE. Two steps later, 07FH is the return
address from the call to cycle.

ICE-88

ICE-88

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCBH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOD3H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB4H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOC1H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOC5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCBH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOD3H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB4H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOC1H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOC5H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCAH

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCAH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOCBH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOD3H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB4H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOB8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBEH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:00D6H
EMULATION BEGUN

30 EMULATION TERMINATED, CS:IP=OOOO:OODBH
EMULATION BEGUN

Sample ICE-88 Sessions at the Terminal

3-35

Sample ICE-88 Sessions at the Terminal

3-36

31 Here we are back at the start of the main loop.

32 The display of variables shows LIGHTST ATUS at 1 and CARSW AITING at
zero. SIDETIME is 6 as we expected. MAINTIME is 1 and will continue to
increment as long as we allow the program to emulate.

33 We consider this test "successful," and abort the emulation by pressing the
ESC key.

34 Now to test the second condition. The macro call 'TEST 2' produces an
expansion of macro TEST; this time CARSW AITING is set to 2. Otherwise,
the expansion produces an executable macro identical to 'TEST l' shown in
step 4.

ICE-88

ICE-88

EMULATION TERMINATED, CS:IP=OOOO:OODCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:007FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0084H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:001FH

31 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0023H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0028H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0029H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0030H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0033H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0037H
START OF IF TEST

32 lIGHTSTATUS = 0001H, CARSWAITING = OOOOH
MAINCYCLELENGTH = 0008H, MAINTIME = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:003CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:003EH

33 PROCESSING ABORTED

34 *:TEST 2
·*GO FROM .STARTTILL .. CARS#30 EXECUTED
.*!CARSWAITING = 2
·*:VARIABLES

Sample ICE-88 Sessions at the Terminal

.. *WRITE 'lIGHTSTATUS =' ,!lIGHTSTATUS,', CARSWAITING =' ,!CARSWAITING
"*WRITE 'MAINCYCLELENGTH =' ,!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME
.. *WRITE 'SIDECYCLELENGTH =' ,!SIDECYCLELENGTH,', SIDETIME =' ,!SIDETIME
"*EM ;END OF MACRO VARIABLES
·*:EXAM
"*REPEAT
"·*STEP
"·*IF CS =SEG(.DISPLAY) AND IP = OFF(.DISPLAY) THEN
.... *WRITE 'CALL DISPLAY'
.... *:POP88IP ;RESTORE RETURN ADDRESS
.... ·*IP = WORD SS:SP ;POP PARAMETER OFF STACK
.... ·*SP = SP + 2T ;MOVE POINTER TO NEW TOP OF STACK
.... ·*EM ;END OF MACRO POP88
.... *SP = SP + 2T ;DISCARD PARAMETER
.... *ORIF CS = SEG(.DELAY) AND IP = OFF(.DELAY) THEN
.... *WRITE 'CALL DELAY'
.... *:POP881P
.... ·*IP = WORD SS:SP
• *SP = SP + 2T
·····*EM
.... *SP=SP + 2T

;POP PARAMETER OFF STACK
;MOVE POINTER TO NEW TOP OF STACK
;END OF MACRO POP88

.... *ORIF CS = SEG(.. CARS#30) AND IP = OFF(..CARS#30) THEN

.... *WRITE 'STARTING MAIN LOOP'

.... *ORIF CS = SEG(.. CARS#34) AND IP = OFF(.. CARS#34) THEN

.... *WRITE 'START OF IF TEST'
····*:VARIABLES
.... ·*WRITE 'lIGHTSTATUS = ',!lIGHTSTATUS,', CARSWAITING =' ,!CARSWAITING
• *WRITE 'MAINCYCLELENGTH = ',!MAINCYCLELENGTH,', MAINTIME = ',!MAINTIME

Sample ICE-88 Sessions at the Terminal

3-38

35 We emulate to the start of the main loop, as before. This time
CARSW AITING is 2, and we should CALL CYCLE as soon as MAINTIME
equals 8. We omit the intermediate steps.

36 MAINTIME is 8, equal to MAINCYCLELENGTH.

ICE-88

ICE-88 Sample ICE-88 Sessions at the Terminal

..... *WRITE 'SIDECYCLELENGTH =' ,!SIDECYCLELENGTH,', SIDETIME =' ,!SIDETIME

..... *EM ;END OF MACRO VARIABLES

.... *ORIF CS = SEG(.CYCLE) AND IP = OFF(.CYCLE) THEN

.... *WRITE 'CALL CYCLE'

.. ··*ENDIF
"·*ENDREPEAT
"*EM ;END OF MACRO EXAM

35 EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0023H
LlGHTSTATUS = 0001H, CARSWAITING = 0002H
MAINCYCLELENGTH = 0008H, MAINTIME = OOOOH
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0028H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0029H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0030H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0033H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0037H
START OF IF TEST
LlGHTSTATUS = 0001 H, CARSWAITING = 0002H
MAINCYCLELENGTH = 0008H, MAINTIME = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN

36 START OF IFTEST
LlGHTSTATUS = 0001 H, CARSWAITING = 0002H
MAINCYCLELENGTH = 0008H, MAINTIME = 0008H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0041H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0045H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0046H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:004AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:004CH
EMULATION. BEGUN
EMULATION TERMINATED, CS:IP=OOOO:004FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0050H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0052H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0053H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:0058H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:005AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:005CH

3-39

Sample ICE-88 Sessions at the Terminal

3-40

37 And here's the beginning of CYCLE. Once more we omit the steps in
CYCLE from the test.

38 This is the end of CYCLE, and the return to the main program.

39 Back to the start of the main loop.

ICE-88

ICE-88

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:005EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0062H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0064H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0066H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0068H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006AH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:006EH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0070H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0072H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0073H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0075H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0077H
EMULATION BEGUN

37 EMULATION TERMINATED, CS:IP=OOOO:007CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOA7H
CALL CYCLE
EMULATION BEGUN

•
•
•

EMULATION TERMINATED, CS:IP=OOOO:OOB8H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOBEH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OOD6H
EMULATION BEGUN

38 EMULATION TERMINATED, CS:IP=OOOO:OODBH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODCH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:007FH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0084H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0089H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:001 FH

39 STARTING MAIN LOOP
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0023H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0098H
CALL DISPLAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0028H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0029H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:OODEH
CALL DELAY
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0030H

Sample ICE-88 Sessions at the Terminal

3-41

Sample ICE-88 Sessions at the Terminal

3-42

40 We consider this test "successful," abort emulation, and exit from the
ICE-88 emulator back to ISIS-II (hyphen prompt).

ICE-88

ICE-88

EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0033H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=OOOO:0037H
START OF IF TEST

40 LlGHTSTATUS = 0001 H, CARSWAITING = OOOOH
MAINCYCLELENGTH = 0008H, MAINTIME = 0001 H
SIDECYCLELENGTH = 0005H, SIDETIME = 0006H
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003CH
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=0000:003EH
PROCESSING ABORTED

*EXIT

Sample ICE-88 Sessions at the Terminal

3-43

CHAPTER 4
ELEMENTS OF THE ICE-881M

COMMAND LANGUAGE

I ntrod uction

The ICE-88 software provides you with an easy-to-use English language com
mand set for controlling ICE-88 emulator execution in a variety of functional
modes.

The commands enable you to:

• Initialize the ICE-88 system; map your program to memory in your system,
ICE-88 memory, disk memory, or in the Intellec Microcomputer Develop
ment System; and load your program from a diskette file.

• Specify starting and stopping conditions for emulation.

• Execute real-time emulation of your software (and hardware).

• Execute single-step emulation.

• Specify conditions for trace data collection.

• Collect and display trace data on conditions occurring during emulation.

• Display and alter 8088 registers, memory locations, and 110 ports.

• Copy the (modified) program from mapped memory to a diskette file, and
exit the ICE-88 system.

An example of one complete command, in this case one of the forms of the GO
command, is shown in figure 4-1. This command causes emulation to start and
specifies the conditions that will halt emulation. The command is made up of ten
separate "words" (character strings that are referred to as tokens): GO, FROM,
0123H, TILL, lOOOH, TO, 1100H, READ, USING, and CS. Each of these
tokens provides a particular element of information necessary to inform the
ICE-88 emulator of the specific command functions (see table 4-1). The tokens
also form the following command components: the FROM clause, match-range,
match-status, segment-register-usage, match-condition, and TILL clause. This
string of tokens requests the ICE-88 emulator to "start emulation at location
0123H and to continue emulation until data is read from any memory location
within the match-range (partition) of addresses 1000H through llOOH using the
CS segment register in the effective address calculation." Each command is com
posed of one or more such tokens.

GO FROM 0123H TILL 1000H TO 1100H READ USING CS

token1 token2 token3 token4 tokenS token6 token7 token8 token9 token10

'-y-----I yo ~ yo

FROM-clause match-range match- segment-
status register-

usage

match-condition

yo

TILL-clause

Figure 4-1. Example of a GO Command

4-1

Elements of the ICE-SS Command Language

4-2

Token
Number

2

3

2,3

4

5

6

7

5,6,7

8

9

10

9,10

5 thru 10

4thru10

Table 4-1. Definition of GO Command Functions

Name

GO

FROM

0123H

FROM clause

TILL

1000H

TO

1100H

match-range

READ

USING

CS

segment-register-usage

match-condition

TILL clause

Function

GO command specifier; requests and
initiates emulation.

Indicates that the next token or
expression is the starting address for
emulation.

Starting address in hexadecimal
radix.

FROM 0123H causes the instruction
pOinter (IP) to be loaded with 0123H,
the starting address for emulation.
Also, the code segment register (CS)
is loaded with O.

Indicates that the breakpoint (halting)
parameters are to follow.

Specifies the lowest address of a
range of memory locations. This
parameter is the lower bound of a
memory partition.

Indicates that the upper bound
(address) of the range (partition) of
memory locations is to follow.

Specifies the highest address of the
range of memory locations.

Emulation is to halt if an access to any
memory location whose address falls
with in the range of 1000H to 11 OOH.

Emulation is to halt if any of the above
memory locations are read.

Indicates a segment register is to
follow.

The code segment register(CS) must
be used in the effective address
calculation in order to match.

Emulation is to halt if the CS is used.

Emulation is to halt if data is read
from any memory location in the
match-range.

TILL 1000H TO 1100H READ USING CS
specifies that the emulation is to halt
whenever the match-condition is met.
This clause is also called the "GO
register" in the ICE-88 language.

Note: The match-condition consists of the three sub-conditions: match-range (tokens 5,6,7),
match-status (token 8), and segment-register-usage (tokens 9,10). All three of these
conditions must be matched for emulation to halt.

As briefly indicated in figure 4-1, the commands are written in an I CE-88 com
mand language composed of a unique character set and vocabulary of tokens
augmented by a particular set of syntactic rules. The tokens are constructed from
the character set and in turn are used to construct commands. The tokens consist
of a set of predefined literals augmented by user-defined literals that provide
symbolic references. Table 4-1 contains the definition of each token shown in
figure 4-1.

ICE-SS

ICE-88 Elements of the ICE-88 Command Language

The purpose of this chapter is to present a detailed specification of the ICE-88
command language. The language consists of two parts, a vocabulary that is used
to convey elements of information to the ICE-88 emulator and a "grammar"
(syntactic rules) used to group command words into command constructs such as
the FROM clause shown in figure 4-1. The remainder of this chapter is devoted
to the presentation of the command language. The initial discussion deals with
class-names and the notation used to describe the language and will include a
listing of the syntactic rules that govern command construction. This will be
followed by a presentation of the command literals (keywords) and a discussion
of symbolic references.

Notation and Conventions Used in This Manual

This manual employs a set of notational symbols and conventions to describe the
structure of commands and other language constructs. The features of this nota
tion are described in the following paragraphs. Table 4-2 contains the notational
symbols used to define and describe the command structures.

Symbol

-

.. ..

...

{ } ...

{ }
[] ...

[]

Table 4-2. Notational Symbols

Meaning

"is defined as"

Mutual exclusion

May be repeated indefinitely

At least one entry must be selected. If more than one entry is
selected, they may be selected in any order.

One of the enclosed entries must be selected.

Selection of the enclosed entries is optional. If more than one entry is
selected, they may be selected in any order.

Selection of the enclosed entries is optional but only one entry may
be selected. If this symbol encloses only one entry, that entry is
optional.

In addition to the above notational symbols, a set of class-names is used to assist
in the definition and description of entities in the ICE-88 command language.
Each class-name is an identifier for a specific set of characters, mnemonics, or
constructs, and is always shown in lower-case italics. Any character string not in
lower-case italics is a specific character, mnemonic or construct. For example, the
class-name segment-register refers to the entire class of segment registers. The
character string CS refers to the Code Segment Register, which is one of the four
segment registers.

As shown in figure 4-1, the smallest meaningful unit of information contained
within a command is a mnemonic character string that is the equivalent of a
word. Examples are: GO, 0123H, and FROM. These mnemonics are assigned the
class-name: token. In addition to these basic elements, the tokens are combined
into multi-token forms such as the FROM clause and match-condition shown in
figure 4-1.

4-3

Elements of the ICE-SS Command Language

4-4

The ICE-88 vocabulary is made up of two classes of mnemonics: tokens and
special- tokens:

token == constant:: keyword:: symbol:: string:: operand
special-token == operator:: punctuation-mark:: delimiter:: terminator

The notational symbol (::) specifies mutual exclusion. That is, a token is a con
stant or keyword or symbol or string or operand.

Each of the above classes of tokens and special-tokens is defined later in this
chapter or in the next chapter in the discussion of expressions.

Syntactic Rules Used in the Manual

This manual employs a set of conventions to describe the structure of com
mands and other ICE-88 language forms. Items 1 and 2 below specify the use
of class-names and tokens respectively. The features of this notation system
are as follows:

I. A lower-case italicized entry in the description of a command is the
class-name for a set or class of tokens. To create an actual operable com
mand, you must enter a particular member of this class. A class-name never
appears in an actual operable command. For example, the lower-case entry:

breakpoint-register

means that the command will accept any of the three tokens: BRa, BRI or
BR (BR means BRa and BRl). Classes of tokens that have generalized usage,
such as the classes of reference keywords and command keywords, are
explained and assigned class-names in this chapter. Additional classes of
tokens that appear in the syntax descriptions of particular commands are ex
plained in the discussion of semantics that accompanies those commands.

2. An upper-case entry is a token that must be used literally as given. A valid
abbreviation of that token may substitute for the full token as given. The
token may be a command word, or it may be a particular member of a class
of references. For example, the upper-case entry

DEFINE

is a command word that must be used as given unless abbreviated. The
abbreviation DEF may be used in place of DEFINE. As another example,
the upper-case entry

BR1

means that breakpoint register 1 must be named as and where given.

3. A single required entry is shown without any enclosures, whereas a single
optional entry is denoted by enclosing in brackets. For example, in the com
mand syntax

STEP [FROM address]

the token STEP is required. The significance of the brackets around the en
try: FROM address means that its selection is optional in this command.

ICE-SS

ICE-88 Elements of the ICE-88 Command Language

4. Where only one entry must be selected from a menu of two or more entries,
the choices for the required entry are denoted by enclosing them in braces.
For example,

TRACE = { iNR:T~~CTlON }

indicates that FRAME or INSTRUCTION
TRACE and = are required as given.

must be selected; the tokens

5. An optional entry is enclosed in brackets []. For example,

STEP [FROM address]

means that the commmand word STEP is required but the clause FROM
address is optional in this command.

Where a choice exists for an optional entry, the choices are given in a vertical
arrangement enclosed in brackets. For example, the command

OFWORD

[

OF BYTE]

DEFINE [module-name] symbol = expr OF SINTEGER
OF INTEGER
OF POINTER

means that DEFINE, symbol, =, and expr are required in this command and
module-name is optional. The brackets around the vertical arrangement of
memory type designators denotes that selection of a memory type designator
is optional but only one designator may be selected per DEFINE command.

6. A group of require<1 jnclusive choices is given in a vertical arrangement and
enclosed in braces (t I.) followed by a repeat symbol (...). "Inclusive" means
that more than one of the items can be entered in the same command, and items
can appear in any order; no item can be entered more than once. The menu of
inclusive items represents a required entry or entries. For example:

READ
WRITTEN
INPUT

match-status-list - OUTPUT
FETCHED
HALT
ACKNOWLEDGE

This notation indicates that one or more items from the vertical list is required
to specify a match-status-list. If more than one item is used, they can be in any
order and must be separated by commas.

To complete the example:

WRITTEN, HALT, READ, FETCHED

is a valid match-status-list.

4-5

Elements of the ICE-88 Command Language

4-6

7. A group of optional inclusive choices is given in a vertical arrangement and
enclosed in brackets and followed by a repeat symbol (...). "Inclusive" means
that more than one of the items can be entered in the same command, and the
items can appear in any order; no item can be used more than once. The menu
of inclusive items represent an optional entry or entries. For example:

[

NOCODE J
LOAD path-name NOSYMBOL

NOLINE

This notation indicates that none, one, or more than one choice of NOCODE,
NOSYMBOL, and/or NOLINE may be included in one LOAD command; if
more than one is used, the entries can be in any order.

To complete the example:

LOAD :FO:TEST NOSYMBOL NOCODE NOLINE

is a valid command.

8. Where mutually exclusive entries can be shown on one line, the following
shorthand notation can be used:

SUFFIX=Y:: 0:: Q:: T:: H

This example is equivalent to

SUFFIX=U}

9. Where an entry can be repeated indefinitely at the user's option, the syntax is
notated by enclosing the repeatable entry in brackets [] followed by an ellip
sis For example,

operand [operator operand]

indicates that operator operand can be repeated as many times as desired.

Character Set

The valid characters in the ICE-88 command language include upper and lower
case alphabetic ASCII characters A through Z and the set of digits 0 through 9.
The space serves as a delimiter for tokens, and carriage-return/line-feed
characters are also valid, delimiting command lines. A question mark, ?, @ sign,
$ sign, and underscore (_) are also valid in user-defined names entered in the
command language.

The algebraic operators + and - (binary and unary), the asterisk (*), slash (I),
relational operators (=, <, », the ampersand, semicolon, colon, period, paren
theses, exclamation mark (!), pound sign (#), percent sign (070) and comma, con
stitute the only other valid ASCII characters for the ICE-88 emulator. Non
printing characters are ignored, except tabs, form feed, etc. are treated as spaces.
Other characters are errors.

ICE-88

ICE-88 Elements of the ICE-88 Command Language

alphabetic characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz@?_

numeric characters:

01 23456789 (A BCD E F: hexadecimal characters)

special characters:

+ -<=>$'&).(;*I#!:,%

This character set is used to construct the vocabulary that constitutes the com
mand language.

Introduction to Tokens

A token in the ICE-88 command language is roughly equivalent to a "word" in
the English language. It consists of a string of alphanumeric characters that may
be augmented by a one or two special character prefix that serves as a token
identifier. Tokens are divided into the following types: keywords, user
names, and special-tokens. Examples are:

REGISTERS, .START, .. MODULE, .SAM, 0400, 123AH.

Keywords

The ICE-88 emulator recognizes a general class of predefined tokens that are
fixed in the command language. They provide two functions. Reference keywords
are used to specify locations having unique predefined functions. Command
keywords specify command type and sub functions within a command. The
following sections define and describe these keyword classes. Each class and
associated keyword set is presented in the following paragraphs. Appendix A
contains a listing of ICE-88 keywords and their abbreviations.

The reason for discussing the various classes and subsets here is to smooth the
later discussions of commands, where the class-names are used to show what
elements may appear in which commands.

Reference Keywords

The command language contains a set of system defined mnemonic tokens that
are used to address system objects. Each device such as the accumulator or a
register is assigned a specific mnemonic that is to be used to address and access
the contents of that device. These identifiers are called reference keywords.
Reference keywords are used in commands to refer to 8088 processor registers
and flags, emulation registers, memory locations, and 110 ports.

The total set of reference keywords is subdivided by types, each of which is refer
enced by a class name. Class names are always shown in lower case italics. For
example, the class name general-register denotes the set of four 16-bit general
work registers in the 8088 processor. A reference keyword is assigned to each ele
ment within the given class and is always shown in upper case. For example,
"RAX" denotes the contents of the accumulator (RAX register) of the general
register set.

4-7

Elements of the ICE-88 Command Language

4-8

Registers

The 8088 register structure contains three files of four 16-bit registers, a set of
miscellaneous registers, and a set of four pseudo-registers. The three files of
registers are the general register file, the pointer and index file, and the segment
register file (see table 4-3). The miscellaneous set consists of the instruction
pointer, flag register, CAUSE register, OPCODE register, PIP register, TIMER
register, HTIMER register, BUFFERSIZE register, LOWER register, and
UPPER register. The pseudo-register set consists of the breakpoint and trace
point registers. The miscellaneous register set and the pseudo-registers provide a
variety of functions to the ICE-88 emulator that are described in the appropriate
command sections of this manual. The register structures are described in the
following paragraphs.

Table 4-3. Classes of Hardware Elements

Class Name Hardware Elements
general-register 8-bit and 16-bit work register
pointer-register 16-bit address register
index-register 16-bit address register
segment-register 16-bit segment reference register
status-register 8 and 16-bit status registers
em u lation-reg ister breakpoint and tracepoint

registers

General Register File. The RAX, RBX, RCX, and RDX registers compose the
General Register File. These registers participate interchangeably in 8088
arithmetic and logical operations. These registers are assigned the following
mnemonics:

RAX: Accumulator
RBX: Base Register
RCX: Count Register
RDX: Data Register

Note: these are the 8088 AX, BX, CX, DX
registers (i.e., the ICE-88 software
requires 'R' to be prefixed to
the 8088 names).

The general registers are unique within the 8088 as their upper and lower bytes
are individually addressable. Thus, each of the general registers contains two
8-bit register files called the H file and L file as illustrated below.

H File L File
15 8 7 o

RAX: RAH RAL
RBX: RBH RBL
RCX: RCH RCL
RDX: RDH RDL

General Register File

Pointer and Index Register File. The BP, SP, SI, and DI registers are called the
Pointer and Index Register File. The registers in this group are similar in that
they generally contain offset addresses used for addressing within a segment.
They can participate interchangeably in 16-bit arithmetic and logical operations
and can also be used in address computation. The mnemonics associated with
these registers are:

ICE-88

ICE-88 Elements of the ICE-88 Command Language

SP: Stack Pointer
BP: Base Pointer
SI: Source Index
DI: Destination Index

The pointer and index registers are illustrated below.

15 0

~~:I= =====1
Point and Index Register File

Segment Register File. The CS, DS, SS, and ES registers constitute the Segment
Register File. These registers provide a significant function in the memory
addressing mechanisms of the 8088. They are similar in that they are used in all
memory address computations. The mnemonics associated with these registers
are:

CS: Code Segment Register
DS: Data Segment Register
SS: Stack Segment Register
ES: Extra Segment Register

The contents of the CS register define the current code segment. All instruction
fetches are taken to be relative to CS using the instruction pointer (lP) as an
offset.

The contents of the OS register define the current data segment. All data
references except those involving BP, SP, or DI in a string instruction are taken
by default to be relative to DS.

The contents of the SS register define the current stack segment. All data
references which implicitly or explicitly involve SP or BP are taken by default to
be relative to SSe

The contents of the ES register define the current extra segment. The extra seg
ment has no specific use, although it is usually treated as an additional data
segment.

The segment registers are illustrated below

15 0

Segment Register File

4-9

Elements of the ICE-88 Command Language

4-10

Status Registers

The instruction pointer, flag register, CAUSE register, OPCODE register, PIP
register, TIMER register, HTIMER register, BUFFERSIZE register, LOWER
register, and UPPER register, constitute the status register set. These registers
provide a variety of functions to the ICE-88 emulator. These registers are
assigned the following mnemonics:

IP: Instruction Pointer
RF: Flag Register
CAUSE: CAUSE Register
OPCODE: OPCODE Register
PIP: Previous Instruction Register
TIMER: TIMER Register
HTIMER: HTIMER Register
BUFFERSIZE: BUFFERSIZE Register
LOWER: LOWER Register
UPPER: UPPER Register

The contents of the IP register define the offset to the CS register in instruction
address computations. The Flag Register contains the status flag values in the same
format as that pushed by the 8088 PUSHF instruction. The CAUSE register retains
the cause of the last break in emulation and the OPCODE register stores the opcode
fetched in the last instruction-fetch cycle in trace data. The Previous Instruction
Register stores the displacement part of the address of the last instruction-fetch in
trace data. TIMER contains the low-order 16 bits of the 2-MHz timer indicating
how long emulation has run (read only). HTIMER contains the high-order 16 bits of
the timer (read-only). BUFFERSIZE contains the count (displayed in decimal only)
of frames of valid trace data collected in the trace buffer (16 bit, read-only).
LOWER contains the lowest available address in Intellec memory above the ICE-88
software (16 bit, read-only). UPPER contains the highest available address in
Intellec system memory below the user's symbol table (16 bit, read-only).

The status registers are illustrated below.

15 7 o
IP: I

RF: I (see below)

CAUSE: .(see below)

OPCODE: I
PIP:

TIMER:

HTIMER:

BUFFERSIZE:

LOWER:

UPPER:

Status Registers

The Flag Register contains nine status bits. The following mnemonics are
assigned to each of the status values in the register:

AFL: Auxiliary-carry out of low byte to high byte
CFL: Carry or borrow out of high bit
DFL: Direction of string manipulation instruction
IFL: Interrupt-enable (external)

ICE-88

Change 1

ICE·88 Elements of the ICE·88 Command Language

OFL: Overflow flag for signed arithmetic
PFL: Parity
SFL: Sign of the result of an operation
TFL: Trap used to place processor in single step mode for debug
ZFL: Zero indicates a zero value result of an instruction

AFL is set if an instruction caused a carry out of bit 3 and into bit 4 of a
resulting value. CFL is set if an instruction caused a carry or a borrow out of the
high order bit. DFL controls the direction of the string manipulation instructions.
IFL enables or disables external interrupts. OFL denotes an overflow condition in
a signed arithmetic operation. SFL indicates the sign of the result of an opera
tion. TFL places the processor in a single-step mode for program debugging.
ZFL indicates a zero valued result of an instruction. The positions of the status
bits in the RF Register are shown below.

15 14 13 12 11 10

on I OFl I'Fl I TFl I SFl I ZFl

Flag Register

The CAUSE Register stores the cause for the last break in emulation. The con
tents of this register are defined below.

Cause Register

The byte returned by the "Read Break Cause" hardware command contains the
following bit values (if bit = 1, then the specified condition is true, otherwise
false):

Bit Position

o
1
2
3
4
5
6

8088 Pin References

Condition

Breakpoint 0 matched
Breakpoint 1 matched
Both breakpoints matched sequentially
Guarded memory access occurred
User aborted processing
Timeout on user READY
Timeout on user HOLD

The ICE-88 emulator provides access to sever. 8088 pins. The pin names reference
I-bit values. Pin names are read-only references only. The following mnemonics
are assigned to reference the 8088 processor pins shown below.

Mnemonic 8088 Pin

RDY READY

NMI NMI

Meaning

Acknowledgement from addressed memory or I/O
device that it has completed data transfer.

Non-maskable interrupt.

4-11

Elements of the ICE-88 Command Language

4-12

TEST

HOLD

RST

MN

lR

TEST

HOLD

RESET

MN/MX

INTR

Emulation Registers

Used by the wait-for-signal instruction for processor
synchronization purposes.

Request for local bus "hold."

Causes processor to immediately terminate present
activity.

Specifies minimum/maximum configuration (1 =

minimum).

Maskable interrupt request.

The emulation registers consist of the breakpoint registers and the trace registers.

Type

Breakpoint register
Trace point register
GO register

Class Name

break-reg
trace-reg
go-reg

Keywords

BRO, BR1, BR
ONTRACE,OFFTRACE
GR

The term break-reg is the class name for the two breakpoint registers used to halt
emulation. The term trace-reg is the class name for the two registers that control
tracing. The term go-reg refers to the GO-register, an ICE-88 pseudo-register that
controls the breaking of real-time emulation.

Command Keywords

The command keywords specify command types and command functions to be
executed. ICE-88 commands are of three major types: simple commands, com
pound commands, and macro commands. The following sections define the
associated command formats and illustrate the use of keywords in each of the
command types. Each of the formats is specified and illustrated by example using
appropriate command keywords. The full vocabulary of command keywords is
presented following the command descriptions.

Simple Commands

Simple commands are of one of three types.

• Set! change commands

• Display commands

• Execution commands

The following sections describe the formats and provides examples of each of
these simple commands.

Set/Change Commands. The set/change commands have the following format:

item-type [item-qualifier] ... = new-setting

where

item-type A keyword or user name of an alterable element.

item-qualifier A keyword, user name or value used to provide further
specification of the particular element that is to be set or
altered.

new-setting The value that the specified item is to be set to.

ICE-88

ICE-88

Examples:

BRO = 1000H EXECUTED
BYTE 10FFH = 3AH
.. MOD1 .SYMBA .SYMBB = 10FFH

Elements of the ICE-S8 Command Language

Display Commands. The display commands have the following format:

item-type [item-qualifier] ...

where

item-type A keyword or user name of a displayable element or set of
displayable elements.

item-qualifier A keyword, user name or value used to provide further
specification of the particular element(s) to be displayed.

Examples:

BRO
BYTE10FFH
.. MOD1.SYMBA.SYMBB
REGISTER
RAX
FLAG
STACK 10

Execution Commands. The execution commands have the following format:

command-verb [command-parameter] ...

where

command-verb A command keyword that describes an action that is
to be performed.

command-parameter A keyword that specifies the objects of the action
denoted by the command-verb.

Examples:

GO
GO FROM .START
GO FROM .ST ART TILL 1000H EXECUTED
TRACE
PRINT ALL
PRINT 10
MOVE -10

Compound Commands

Complete description of the formats of the compound commands and the use of
keywords with these commands is contained in Chapter 8.

Macro Commands

Complete description of the formats of the macro commands and the use of
keywords with these commands is contained in Chapter 8.

Elements of the ICE-88 Command Language

4-14

Utility Command Keywords

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. The ICE-88
emulator runs under ISIS-II control, and can call upon ISIS-II for file manage
ment functions through the utility commands. These commands employ the
following command keywords:

Keyword

EXIT
LIST
LOAD

NOCODE
NOLINE

NOSYMBOL

SAVE

Function

Commands control to be returned to ISIS-II.
Commands emulation output to be copied to printer or file.
Commands user program 10 load into memory accessed by
the ICE-88 emulator.
A Modifier specifying that program code is not to be saved.
A Modifier specifying that the line number table is not to be
saved.
A Modifier specifying that the symbol table is not to be
saved to diskette.
Commands user program to be saved on an external device.

N umber Base and Radix Commands

The ICE-88 emulator commands and displays involve several different number
bases (radixes). This section describes the command keywords and radixes used to
control the number base.

Keyword

BASE
SUFFIX
EVALUATE

H

a
Q

T
Y
ASCII

Function

Set or display console output radix.
Set or display console input radix.
Commands a numeric constant or expression to be displayed
in all five possible output radixes.
Hexadecimal (base 16).
Octal (base 8).
Octal (base 8).
Decimal (base 10).
Binary (base 2).

ASCII character code.

Memory Mapping Command Keywords

These commands display, declare, set or reset the ICE-88 memory mapping. The
ICE-88 emulator uses these maps to determine what memory is installed on a
prototype system and what memory resources are being "borrowed" from the
Intellec system and ICE-88 emulator for testing purposes. These commands
employ the following keywords:

Keyword

DISK
GUARDED

ICE
INTELLEC
MAP

NOVERIFY

RESET
USER

Function

Maps logical memory segments into a diskette file.
Declares memory segments to be guarded. Accesses to
addresses in these segments are error conditions.
Maps memory segments into ICE "real-time" memory.
Maps memory segments to expanded Intellec memory.
Commands the ICE-88 emulator to display, declare, set, or
reset memory mapping.
Specifies that the normal read-after-write verification of data
loaded into memory be suppressed.
Resets the memory mapping.
Maps logical segments into user's prototype memory.

ICE-88

ICE-88 Elements of the ICE-88 Command Language

Hardware Register Command Keywords

This section presents the keywords used in the ICE-88 emulator to specify and
modify hardware register commands.

Keyword

CLOCK

DISABLE

DONE
ENABLE

ERROR

EXTERNAL

FLAG
HARDWARE
INFINITE
INTERNAL

NOERROR
PIN
REGISTER

RWTIMEOUT

Function

Command keyword indicating that a system clock
specification is to follow.
Command keyword indicating that a command function is to
be disabled.
Command modifier setting timeout on DONE.
Command keyword indicating that a command function is to
be enabled.
Command modifier specifying that an error is to be reported
whenever the command signal times out.
The ICE-88 emulator is to operate from an external (user
provided) clock.
Contents of the 9 flags are to be displayed.
Reset command modifier, causes a hardware reset.
Set command signal timeout to "infinite," disabling timeout.
The ICE-88 emulator is to operate from an internal (8088-
provided) clock.
Specifies that the command signal is not to halt emulation.
Contents of the six 8088-input pins are to be displayed.
Contents of the thirteen 16-bit 8088 registers and RF are to
be displayed.
Used to enable or disable memory access timeout.

Memory and Port Contents Command Keywords

These commands give access to the content or current value stored in designated
memory locations or input! output ports.

Keyword

ABSOLUTE
BASE
BOOL
BYTE
INTEGER
LENGTH

ASM

NESTING

POINTER
PORT
SINTEGER
STACK
SYM BOLICALL Y

WORD
WPORT

Function

Display all addresses as 20-bit numbers.
Display all addresses in base and displacement format.
Display expression as a boolean value.
1-byte, unsigned integer value
2-byte, signed value
Indicates that an integer value denoting the length of a
partition is to follow.
Indicates that a range of memory is to be disassembled into
8088 assembly language mnemonics.
Indicates that the starting and return addresses of all
currently active procedures are to be displayed.
4-byte, pOinter value
Reference to 8-bit 110 ports.
1-byte, signed integer value.
Indicates that words from the user's stack is to be displayed.
Causes each numeric value output to be displayed as a
symbol or source statement number plus a remainder.
2-byte, unsigned integer value.
Reference to 16-bit 110 ports.

4-15

Elements of the ICE-88 Command Language

4-16

Symbol Table and Statement Number Table Command Keywords

The ICE-88 emulator maintains a symbol table and source program statement
number table to enable the user to refer to memory addresses and other values by
using symbolic references and statement number references in ICE-88 commands.
The following are command keywords contained in these commands:

Keyword

DEFINE
DOMAIN

LINE

MODULE
OF
REMOVE
SYMBOL
TYPE

Function

Command keyword used to define a symbol.
Keyword used to establish a default module for source
statement number references.
Specifies the display of all of the source statement number
table.
Command modifer for the ICE-88 rT)odule table.
Specifies that a memory type designation is to follow.
Specifies that symbolic reference(s) islare to be deleted.
Command modifier for the entire ICE-88 symbol table.
Indicates an assignment or change of memory type to a
symbolic reference.

Emulation Control Command Keywords

The emulation control commands permit the user to specify the starting address
where emulation is to begin, and to specify and display the software or hardware
conditions for halting emulation and returning control to the console for further
·commands. These commands employ the following keywords:

Keyword

ACKNOWLEDGE
AND

DOWN
EXECUTED
FOREVER
FETCHED
FROM
GO
HALT
INPUT
LOCATION

OR

OBJECT

OUTPUT
READ
STEP
TILL
UP

USING
VALUE

WRITTEN

Function

Match on 8088 interrupt acknowledge.
Indicates a match on both breakpoint registers required to
halt emulation.
Less than or equal to the referenced address or data val ue.
An instruction fetch out of the execution queue.
All break conditions disabled.
Memory read into the execution queue.
Keyword introducing a starting address.
Command keyword that starts emulation.
8088 processor halt.
1/0 port read.
Denotes the following constant or expression to be an
address.
Indicates that a match on either breakpoint register will halt
emulation.
Indicates that a memory reference or typed memory
reference is to follow.
110 port write.
Memory read.
Single-step emulation command.
A keyword introducing one or more match or halt conditions.
Greater than or equal to the referenced address or data
value.
Indicates that a segment register is to be specified.
Denotes the following constant or expression to be a data
value.
Memory write.

ICE-88

ICE-88 Elements of the ICE-88 Command Language

Trace Control Commands

The trace control commands allow the user to display or change the match condi
tion in either or both of two tracepoint registers and to establish a tracepoint to
conditionally start and stop trace collection. These commands employ the follow
ing keywords:

Keyword

ADDR
ALL

CONDITION ALL y

DMUX
FRAME

INSTRUCTION

MARK

MOVE
NEWEST
NOW
OFF
OLDEST
ON
PRINT

QDEPTH
QSTS
STS
TRACE

User Names

Function

20-bit address in hexadecimal format.
A function keyword indicating that the entire trace buffer
contents are to be displayed.
Indicates trace is to be turned on when ONTRACE matches
and turned off when OFFTRACE matches.
Type of frame.
Indicates that a trace reference is to follow or that the trace
buffer is to be displayed frame by frame.
A function keyword indicating that data in the trace buffer is
to be displayed in instruction format.
Equals 1 if trace was turned off before current frame or if
emulation broke before current frame.
Command keyword moves the trace buffer pOinter.
Moves trace buffer pointer to bottom of buffer.
Indicates trace setting for beginning of next emulation.
Indicates trace turned off.
Moves trace buffer pointer to top of buffer.
Indicates trace turned on.
Command keyword calling for a display of one or more
entries from the trace data buffer.
Queue depth.
2 queue status bits, QS1 , QSO.
3 status bits S2, S1, SO.
Command keyword indicating that the mode of display for
trace data is to be set.

The command language permits the programmer and operator to employ sym
bolic addressing through the use of user-generated tokens as opposed to system
generated tokens (keywords). The language permits four types of user names:
symbols, module names, statement numbers, and macro names (see Chapter 8).

Symbols

A symbol is a sequence of contiguous alphanumeric characters, prefixed by a
period (.), that references a'location in a symbol table. The symbol has two uses.
The referenced table location always contains a number; it may be an address of
an instruction or variable in a program module, or it may be used directly as a
numerical value. In the first case, the symbol is an alternative method of pro
gram addressing (symbolic as opposed to direct numeric addresses). In the second
case, it provides a method for storing and retrieving data values symbolically
into/from the table itself.

4-17

Elements of the ICE-88 Command Language

4-18

As an example, consider the symbol .BEGIN in module .. MAINLOOP. The
entire reference to this occurrence of .BEGIN is:

.. MAINLOOP.BEGIN

where

the double period (..) designates MAINLOOP as a module name and

the single period (.) designates BEGIN as a symbol name.

Statement Numbers

In the process of compiling a source module in DEBUG mode, the PL/M
compiler generates a set of (source) statement numbers, one for each source
statement in the module. Each statement number is linked to the absolute
address of the first instruction generated by the PL/M compiler for the
associated source statement in the source program. Each compiled program
will contain a table of statement numbers and absolute addresses. Items
(addresses) in the table are referenced by entering the associated statement
number.

The form of reference is

module-name # decimal-J 0

where

is the 'number' sign; this designates the reference as a statement number
and

decimaJ-JO is the (source) statement number (a numeric constant). The
default suffix of decimaJ-JO is always decimal.

For example,

.. MAINLOOP#123

#123 is statement number 123 in the source program MAINLOOP. This
reference would obtain the address of the first instruction generated by source
statement 123 of module MAINLOOP.

Statement numbers are an alternative to program addressing, as opposed to
labels in the program.

Special Tokens

The command language contains two special token sets that provide special func
tions: operators and punctuation.

Operators

Type Class Name Operators

relational rel-op =, < , >, < =, < >, >=
plus plus-op + , -, (binary and unary)
mult multi-op *, I, MOD, MASK
logical log-op NOT, AND, OR, XOR

ICE-88

ICE-88 Elements of the ICE-88 Command Language

Punctuation

Type Class Name Punctuation Characters

Punctuation punct-op '&. , ; : !)($ CR LF SP % # .. !!

The use of punctuation characters are defined in those sections that define com
mand formats.

Entering Commands at the Console

The ICE-88 emulator displays an asterisk prompt (*) at the left margin when it is
ready to accept a command from the console.

Each command is entered as a command line, which consists of one or more input
lines; the length of an input line is limited to the number of characters that one line
of the console display can contain.

The ICE-88 emulator recognizes the carriage return as the terminator for a com
mand line. If it is necessary to use more than one input line to enter a command,
each intermediate input line should end with an ampersand (&). When the ICE-88
emulator encounters the ampersand, it suppresses the interpretation of the com
mand that would occur on encountering the carriage return that follows. After the
carriage return is executed, the ICE-88 emulator displays a double asterisk prompt
(**) to acknowledge the continuation of the command line.

Tokens in the command are separated by blanks, unless the construct requires
another form of separator. For example, tokens in a list are separated by com
mas; in this case, blanks (spaces) may be inserted for clarity but are not required.

Any input line may include comments. The comments are preceded by a
semicolon (;), and must appear after any portion of the command that is in that
input line; in other words, if the first character in an input line is a semicolon (;),
the entire input line is comments. Characters in a comment are not interpreted
by ICE-88 and are not stored internally except in a DEFINE MACRO command.
The main use of comments is to document an emulation session while it is in
progress.

Comments may not be continued from input line to input line. If an ampersand
is used to continue a command line that also contains comments, the ampersand
must come before the comment. An ampersand that is embedded in a comment is
ignored by the ICE-88 emulator.

You can use ISIS-II editing capabilities to correct errors in the current input line.
The line-editing characters are as follows:

Characters

RUBOUT

CTRLX

CTRLR

Result

Delete last character entered in input line. The deleted
character is echoed immediately. The RUBOUT func
tion can be repeated, deleting one character each time
it is pressed.

Delete entire input line. (CR TL Z gives the same
result.)

Display entire input line as entered so far. This is
useful after a RUBOUT, to review which characters
have been deleted.

4-19

Elements of the ICE-88 Command Language

4-20

ESC Cancel entire command being entered.

CRTLP Input next character literally.

Carriage Return Terminate input line or command line.

Line Feed Terminate input line

Once a line terminator (carriage return or line feed) has been entered, that line
can no longer be edited.

The dollar sign ($) is ignored by the ICE-88 emulator in identifiers. You can use
it as a separator when you want to combine two words into one token. For
example, suppose you wanted to combine the two system groups DATA and STS
into one symbol for your use. Instead of DAT AANDSTS, you can use the
$ character as a separator: DA T AANDSTS.

ICE-88

CHAPTER 51
EXPRESSIONS

An expression is a formula that evaluates to a number. The formula can contain
operands, operators, and parentheses. Expressions and operands appear in the
ICE-88 emulator as command arguments to specify numeric values or boolean
conditions. Depending on the command context, the resulting number is inter
preted either as a numeric value or as a logical state (TRUE/FALSE). All expres
sions and operands represent one of the following:

• Pointer: a pair of 16-bit unsigned integers. One integer is called the base (b)
and the other integer is called the displacement (d). This manual
uses the notation b:d to denote a pointer with a base band
displacement d. The ':' operator is a base-displacement integer con
nector (see table 5-3). Pointers may be used as memory addresses;
then the 20-bit absolute address is 16*b + d.

• Integer: a single 16-bit unsigned integer treated modulo 65536. This is a
special case of a pointer, with the base value equal to O.

The ICE-88 emulator provides only unsigned-integer arithmetic on pointers and
integers. The arithmetic operations are always applied separately to bases and
displacements (i.e., integer arithmetic is always 16-bit). Signed arithmetic is not
provided.

A few examples are all that is necessary to illustrate the concept of expressions.

1. The simplest form of an expression is a single value. That is, an expression
that contains only one operand and no operators or parentheses.

3
FFFFH
1270

2. The following expressions contain both operands and operators.

2 + 3
1 00111 00111 01111 Y - 1 01 Y
127/44
0100:00FFH

3. The following expressions contain operands, operators and parentheses.

2 * (6 + 4)
(127 + 44) 120

4. The use of symbols to reference numeric values represents a significant
capability of the ICE-88 emulator. The following examples illustrate the use
of symbols in expressions .

. SYMBA OR .SYMBC
(!VAR1 + 10)/(!VAR2 - .SYMBD)

This introduction to expressions is sufficient for the first reading of this manual
or if the reader is familiar with previous ICE products. Therefore, you may skip
the remainder of this chapter and read the remaining chapters using the examples

5-1

Expressions

5-2

to gain further familiarity with the use of expressions in ICE-88 commands. The
remainder of this chapter describes how expressions are constructed by represent
ing the types of operands and operators that can be used, and provides the rules
and some examples to explain how expressions are evaluated. The chapter also
describes numeric and logical (boolean) command contexts, and gives a condens
ed syntax summary for expressions.

Operands

All operands are composed qf either pointers or unsigned integers. Operands can be
specified by any of the following references:

• numeric constant

• masked constant

• keyword reference

• symbolic reference

• statement number reference

• memory reference

• typed memory reference

• port reference

• string

• (expression)

The following paragraphs define and explain each of the above operand types
and formats.

Numeric Constants

A numeric constant produces a 16-bit integer value and is specified by a sequence
composed of decimal digits and the letters "A" through "F" (hexadecimal
digits), and optionally a suffix to specify explicitly the constant's radix:

numeric-constant == digit ... [suffix]

Where:

digit == 0:: 1 :: 2:: 3:: 4 :: 5 :: 6 :: 7:: 8:: 9 :: A :: B :: C :: D :: E :: F

And:

suffix == H :: T : : 0 :: Q :: Y

In the absence of a suffix, the default input radix for the current context is used.
In most cases this is the radix set by the SUFFIX command; however, some com
mands may default their parameters to other radices. The allowed radices and
their suffixes are: hexadecimal ("H"), decimal ("T"), octal ("0" or "Q"), and
binary ("Y"). The radix determines which characters are valid in the constant.
Numeric constants represent fixed unsigned integer values. The elements of
numeric constants are summarized in table 5-1; examples are as follows:

ICE-88

ICE-88

Examples:

1001111010100111Y
1234
1974T
A2EH
1770

Table 5-1. Elements of Numeric Constants

Number Base Valid Digits Explicit Radix Examples

Binary (base 2) 0,1 Y 1100111010110101Y

Octal (base 8) 0-7 0,0 47260

Decimal (base 10) 0-9 T 397T

Hexadecimal (base 16) 0-9, A - F H OOFE3H

(multiple of 1024) 0-9 - 64

A numeric constant entered through the console with an explicit radix is inter
preted accordingly. If it contains any digits that are invalid for that radix, an
error results.

A numeric constant entered from the console without an explicit radix is inter
preted according to the implicit radix that applies to the context. In most con
texts, the implicit radix is initially hexadecimal (H); in these contexts, the implicit
radix can be set to Y, Q, 0, Tor H by using the SUFFIX command.

Masked Constants

A masked constant is syntactically identical to a numeric constant except it may
not contain the "T" suffix and must contain one or more "X" characters. Each
"X" character represents a 'don't care' digit (I, 3, or 4 bits depending upon
whether the radix is binary, octal, or hexadecimal). The radix, either explicit or
implicit (i.e., previously specified), must be binary, octal or hexadecimal. The
following are examples of masked constants:

10X1X01Y
3X4Q

6FX1H

(binary - 2 don't care bits shown explicitly)
(octal - 3 don't care bits implicit because each octal
numeral represents 3 bits; equivalent to OIIXXXI00Y)
(hexadecimal - 4 don't care bits, implicit because each
hexadecimal numerical represents 4 bits; equivalent to
01101111XXXXOOOI Y)

Keyword References

Keyword references are used to gain access to all of the system variables, in
cluding registers, status flags, input pins, and status information. When one is
used in a command, the value returned is a 16-bit integer and is the current con
tents of the referenced object. Thus indirection through referenced variables is
obtained. The values of system variables may be used in boolean conditions in
control structures. A keyword reference may reference a value less than 16 bits.

Expressions

5-3

Expressions

5-4

If the keyword reference returns a value of less than 16 bits, the value is coerced to
16 bits by right-justifying it and filling the high-order bits with zeroes. (Refer to
Chapter 4 for a listing and description of reference keywords.)

Examples:

SP = SP-2
RAX
TIMER
AFLOR OFL

(decrement the contents of the Stack Pointer)
(display the contents of the Accumulator)
(display the contents of the TIMER register)
("OR" Auxiliary-carry and Overflow flags)

Symbolic References

A symbolic reference points to a entry in the ICE-88 symbol table. Correspond
ing to .each symbol table entry is a pointer value that represents an address or a
constant. When a symbol reference is entered as an operand, its corresponding
value is obtained from the referenced table location and used in the associated
expression. A symbolic reference is specified in the following format:

symbolic-ref = [module-ref] symbol ...

Module references and symbols are both user-assigned. Module names are
LOADed with a program-they cannot be assigned from the ICE-88 emulator.
Most symbols are also LOADed. The module name identifies a particular symbol
table that contains the symbols associated with a particular program module. The
symbol table contains the symbols that are used by that program. Module names
and symbols are composed of user names and identifying prefixes. User names
are composed of character strings where each character may be an alphabetic
character, digit, "@", underscore (_), or "?" with the exception that the first
character in the string may not be a digit. The module name is prefixed by a dou
ble period (" .. "):

module-ref == . . module-name

A symbol is identified by a single period prefix (" .' '):

symbol == .symbol-name

Therefore the format for a symbolic reference can be shown as follows:

symbolic-ref = [.. module-name] .symbol-name ...

If a module name is present, then only the referenced module's symbol table is
searched; otherwise all of the current symbol table is scanned for the referenced
symbol. If more that one symbol is referenced, the symbol table is scanned for
the occurrence of the first symbol in the list. Then the table is scanned for the
first occurrence of the second symbol following the entry for the first symbol.
This is repeated in sequence for all the symbols in the list. The value returned is
the pointer containing the base and displacement address values for the entry
specified by the symbolic reference.

The use of the symbol table provides you with considerable freedom in referenc
ing and retrieving user variables. The ability to assign symbolic names to
variables, procedures, and module names allows you to assign them names that
can be associated with their functions and interrelations within the program. For

ICE-88

ICE-88

example, assume that the symbol .X represents a variable that is used in pro
cedures PROCX, PROCY, and PROCZ of module MODABLE. Then the value
of variable X in PROCY can be retrieved with the following symbolic reference:

.. MODABLE.PROCY.X

whereas the value of variable X in PROCZ is obtained by:

.MODABLE .. PROCZ.X

Statement Number Reference

A statement number reference points to the address of the first instruction
generated by the compiler for the source statement specified by the associated
statement number. Statement number information for each compiled program
module is stored in its statement number table. Therefore program locations can
be referenced symbolically via statement number. The LINK process can combine
different modules, each with its own set of statement numbers. Therefore, a
statement number reference may require a module reference in the same format
as that used in a symbolic reference. A statement number reference uses the
following format:

source-statement-ref == [.. module-name] # statement-number

The statement number is an integer value that specifies the number of the source
statement. If the statement number does not have an explicit suffix, the default
suffix is decimal. If more than one program module is currently loaded into
ICE-88 memory, a module reference is required to distinguish the reference from
identical reference numbers in other modules. Examples are:

#45
.. TEST1 #12FH

The value returned is a pointer value that is the absolute address of the first in
struction generated by the compiler for the source statement referenced by the
statement number.

Memory References

References to memory specify the type of reference as well as the memory loca
tion (address) required. A memory reference uses the following format:

memory-ref=reference-type address

reference-type

BYTE

WORD

SINTEGER

INTEGER

POINTER

Definition

1-byte integer value at location' 'address."

2-byte integer value with low byte at "address" and high byte at
"address" + 1.

Same as BYTE.

Same as WORD.

4-byte pOinter value located at "address" through "address" + 3.

Expressions

5-5

Expressions

5-6

When changing memory or referencing it in an expression, BYTE is equivalent to
SINTEGER and WORD to INTEGER. However, when displaying memory, the
format of the display is either unsigned (BYTE, WORD) or signed (SINTEGER,
INTEGER). (See Display Memory command, Chapter 7.)

Examples:

BYTE 1000H
BYT 0100:0000H
WORD 101
INTEGER .ABLE
POINTER CS:IP

Typed Memory Reference

A typed memory reference employs the symbols contained in the ICE-88 symbol
table to obtain both location and type of memory reference. Each symbol has
one of the following types of memory references or has no type:

BYTE
WORD
SINTEGER
INTEGER
POINTER

1-byte integer value
2-byte integer value
Sameas BYTE
Same as WORD
4-byte pointer value

If a symbol has a memory reference type, the symbol represents a memory
reference. If the symbol has no memory reference type, the symbol represents a
label, procedure name, or a constant. If the source language translator generates
type information in the object file, then the type values are loaded with the sym
bols in the ICE-88 emualtor. The user may also specify memory reference type
when defining symbols or when using the ICE-88 TYPE command.

A typed memory reference is executed with the following format:

typed-mem-ref == [! !module-name] !symbol-name

Example:

Assume symbol table .. SAM contains:

Symbol Type Base Value Displacement Value

.X BYTE 100H 0

.Y WORD 100H 0

.2 POINTER 100H 0

Also assume:

Memory Location Content

Therefore:

!!SAM lX = 21

1000H
1001H
1002H
1003H

!!SAM lY = 4321
!!SAM !Z = 8765:4321

21
43
65
87

ICE-88

ICE-88

Port References

The ICE-88 emulator supports a maximum of 64K 8-bit or 32K 16-bit 110 ports.
These ports are referenced in the following format:

port-ref =PORT address: :WPORT address

PORT references an 8-bit 110 port at location "address." WPORT references a
16-bit 110 port at location "address." The value of "address" must be an
integer. The port is read or written immediately when referenced.

Examples:

PORT 123
PORT RDX
WPORT1FFH

String Constants

Anyone of the ASCII characters (ASCII codes OOH through 7FH) can be entered
as a string constant by enclosing the character in single quotes. The operand
value of a string constant is a 16-bit integer with the high-order bits set to 0, and
the 7-bit ASCII code in the low-order seven bits. For example, the string constant
"A" has the value 0000000001000001 Y (0041H).

In data communications usage, an ASCII-coded character consists of seven low
order data bits (bits 0-6), and a parity bit (bit 7). Thus another way to describe
the operand value of an ASCII string constant is as a two-byte integer; the high
byte is all zeros and the low byte contains the 8-bit ASCII value with the parity
bit set to O.

Table 5-2 gives the pnntmg ASCII characters with their corresponding hex
adecimal codes (codes 20H through 7EH). Note that some console keyboards
output upper case ASCII characters only, or lack keys for some of the non
printing ASCII codes.

Expressions

5-7

Expressions ICE-88

Table 5-2. ASCII Printing Characters and CODES (20H-7EH)

Character Hex Code Character Hex Code Character Hex Code

Space (SP) 20 @ 40 60
! 21 A 41 a 61
" 22 8 42 b 62
23 C 43 c 63
$ 24 0 44 d 64
% 25 E 45 e 65
& 26 F 46 f 66 , 27 G 47 9 67
(28 H 48 h 68
) 29 I 49 i 69
* 2A J 4A j 6A
+ 28 K 48 k 68
, 2C L 4C I 6C
- 20 M 40 m 60

2E N 4E n 6E
I 2F 0 4F 0 6F
0 30 P 50 P 70
1 31 Q 10 q 71
2 32 R 52 r 72
3 33 S 53 5 73
4 34 T 54 t 74
5 35 U 55 u 75
6 36 V 56 v 76
7 37 W 57 w 77
8 38 X 58 x 78
9 39 Y 59 y 79

3A Z 5A z 7A
, 38] 58 { 78
< 3C I 5C I 7C
= 3D [50 } 70
> 3E A (t) 5E 7E
? 3F - (+-) 5F

5-8

ICE-88

Parenthesized Expressions

(exp): an operand whose value is the value of the parenthesized expression, e.g.,
(1 +2+3) = 6 (operand value).

Operators

An expression can contain any combination of unary and binary operators. Table
5-3 describes all the operators available to the ICE-88 emulator. The operators
are ranked in order of precedence from highest (1) to lowest (10). Other things
being equal, the operator with the highest precedence is evaluated first. The
operators are shown in the table as they are to be entered in expressions. The
class content- operators has too many details to fit the table; see table 5-5. The
table identifies each operator as unary or binary. A unary operator takes one
operand, and a binary operator takes two operands.

Classes of Operators

For discussion, the operators are classed as shown in table 5-4. Table 5-6
specifies the arithmetic and logical semantic rules for operators.

Arithmetic Operators

The ICE scanner distinguishes unary "+" and "-" from binary "+" and "-" by
context. Unary "+" is superfluous, since it is a no-operation.

A unary "-" applied to an integer means "2's complement modulo 65536." In
other words, (-N) evaluates to (65536 - N). As the ICE-88 emulator uses only
unsigned arithmetic, unary "-" does not apply to pointers. The unary "-" is also
used in the MOVE and PRINT commands (see MOVE and PRINT commands in
Chapter 6).

Binary "+" applies to pointer and integer values only and results in the arithmetic
sum or' its two operands. In the case of the sum of two integers, the result is
treated modulo 65536 (any high-order bits after the sixteenth bit are dropped). In
the case of the sum of a pointer and an integer, the displacement value of the
pointer is summed with the integer modulo 65536 and the base value of the
pointer is unchanged.

Binary "-" applies to pointer and integer values only and results in the arithmetic
difference of the two operands. In the case of the difference of two integers, the
result is the 2's complement difference of the two integers; this result is also
treated modulo 65536, so that a "negative" result (-N) ends up as (65536 - ,N). An
integer may also be subtracted from a pointer. In this case, the result is the 2's
complement difference of the pointer displacement and the integer modulo 65536
and the base value of the pointer remains unchanged. The "-" can be used to ob
tain the arithmetic difference of two pointers but only if they have the same base
value. In this case the result is the 2's complement difference of the
displacements modulo 65536 and the resulting base value is set equal to zero. An
error occurs if the base values of the pointers are not equal.

Expressions

5-9

Expressions

5-10

The operators "*", "I", "MOD", and "MASK" can be applied only to integer
operands and return only integer results.

Binary "*,, results in the multiplication of two integer operands, truncated to the
low-order 16 bits.

Binary "I" causes the first integer operand to be divided by the second. The
result is the integer quotient; the remainder, if any, is lost. Thus, (5/3) evaluates
to (1).

Binary "MOD" returns the remainder after integer division as an integer result,
and the quotient part of the division is lost. Thus, (5 MOD 3) evaluates to (2),
the remainder of (5/3).

Binary "MASK" performs a bitwise logical AND on two integer operands. If
either corresponding bit is aI, or if both are 1 's, the result has 1 in that bit; if
both are 0, the result has 0 in that bit. MASK is identical to the boolean "AND"
operator, except that MASK has higher precedence.

:, SEGMENT, OFFSET have the highest precedence of the arithmetic operators.
Binary "*", "I", and "MOD" have equal precedence, lower than unary "-".
Binary "+" and "-" have equal precedence, lower than "*", "I", and "MOD".
"MASK" has lowest precedence of the arithmetic operators (see table 5-3).

Precedence'

2

3

4

5

6

7

Operator

OFFSET

SEGMENT

+

MOD

+

MASK

content
operator'

Table 5-3. ICETM Operators

Unary
Binary2

u

u

u

u

u

b

b

b

b

b

b

u

b

EffecP

Base, displacement integer connector for a pOinter
(e.g., 1234:5678 or CS:IP).

DeSignates integer value that is the displacement of
a pointer (e.g., OFFSET 1234:5678 is 5678).

Designates integer value that is the base of a
pOinter (e.g., SEGMENT 1234:5678 is 1234).

Unary plus.

Unary minus, (-N) means (65536-N), the 2's
complement of N, modulo 2'6

Integer multiplication.

Integer division. The result is the integer quotient;
the remainder (if any) is lost.

Modulo reduction. The remainder after division,
expressed as an integer.

Addition.

Subtraction.

Bitwise AND. Higher precedence than identical
operation AND (see below).

Treats operand as memory or port address, returns
the content of that address.

Is equal to. Result is either TRUE (FFFFH) or FALSE
(0).

ICE-88

ICE-88

Precedence 1

7

8

9

10

Notes:

Table 5-3. ICETM Operators (Cont'd.)

Operator

>
<

<>
>=

<=

NOT

AND

OR

XOR

Unary
Binary2

b

b

b

b

b

u

b

b

b

EffectJ

Is greater than. Result is TRUE or FALSE.

Is less than. Result is TRUE or FALSE.

Is not equal to. Result is TRUE or FALSE.

Is greater than or equal to. Result is TRUE or
FALSE.

Is less than or equal to. Result is TRUE or FALSE.

Unary Logical (1 's) complement. Bitwise 1 becomes
0, 0 becomes 1; TRUE becomes FALSE, FALSE
becomes TRUE.

Bitwise AND. If both corresponding bits are 1 's,
result has 1 in that bit; else O. TRUE AND TRUE
yields a TRUE result; any other combination is
FALSE.

Bitwise inclusive OR. If either corresponding bit is
a 1, result has 1 in that bit; else O. If either operand
is TRUE, result is TRUE; else FALSE.

Bitwise exclusive OR. If corresponding bits are
different, result has 1 in that bit; else O. If one
operand is TRUE and the other is FALSE, result is
TRUE; if both are TRUE or both are FALSE, result is
FALSE.

11 = highest precedence (evaluated first), 10 = lowest precedence.

2U = unary, b = binary.

JRefer to text for additional details.

'content-operator is one of the token$ BYTE, WORD, SINTEGER, INTEGER, POINTER,
PORT,orWPORT.

Table 5-4. Classes of Operators

Class Operators

(Numeric)
Arithmetic

unary +, -, SEGMENT, OFFSET,
binary *, I, MOD, +, -, MASK,:

Content
unary can ten t-operators

(Boolean)
Relational

binary =. >. <. <>. >=. <=
Logical

unary NOT
binary AND,OR,XOR

Unary +, -, SEGMENT, OFFSET,
content-operators,
NOT

Binary *, I, MOD, +, -, MASK, :,
relational-operators,
AND,OR, XOR

Expressions

5-11

Expressions

5-12

Content Operators

Content operators are keywords that refer to the contents of memory locations
and 110 ports. In expressions, they function as unary operators with precedence
immediately below "MASK." Table 5-5 summarizes the content operators for the
ICE-88 emulator.

Table 5-5. Content Operators

Operator Content Returned

BYTE 1-byte integer value from the addressed location in user memory.

WORD 2-byte integer value from the addressed location in user memory.

SINTEGER Same as BYTE.

INTEGER Same as WORD.

POINTER 4-byte pointer value from the addressed location in user memory.

PORT 1-byte value from addressed 8-bit I/O port.

WPORT 2-byte value from addressed 16-bit 110 port.

To be used in an expression, a content operator must precede a single operand
that can be interpreted as a valid address. A partition of addresses (using a
keyword such as TO or LENGTH) cannot be used in an expression. Further
more, the address given must be accessible (not GUARDED) if it uses the
memory map (see MAP commands in Chapter 7).

Relational Operators

A relational operator calls for a comparison of the values of its two operands.
The six possible relational operations are shown in table 5-4. Each comparison is
either true when the expression is evaluated, or it is false. The result is correspon
dingly TRUE (FFFFH) or FALSE (0).

Logical Operators

The "NOT" logical operator results in aI's complement of an operand; a 16-bit
operand is assumed. The following are examples of "NOT" logical operations:

Operand Operation Result

0 NOT FFFFH
1 NOT FFFEH

11110110Y NOT 1111111100001001Y
FFFFH NOT 0
FFFEH NOT 1

ICE-88

ICE-88

ANDing two operands results in the following values depending upon bit pair
values:

bit 1 bit 2 Result

0 0 0
0 1 0
1 0 0
1 1 1

Examples:

Logical Operation Result

OANDO 0
1010Y AND 1001Y 1000Y
FFFFH ANDO 0
FFFFH AN D FFFFH FFFFH
1 ANDO 0

ORing two operands results in the following values depending upon bit pair values:

bit 1 bit 2 Result

o
o
1
1

Examples:

o
1
o
1

o
1
1
1

Logical Operation

OORO
10RO
1010Y OR 1001Y
FFFFH OR 0
FFFFH OR FFFFH

Result

o
1

1011Y
FFFFH
FFFFH

The result of an "XOR" operation is as follows:

bit 1 bit 2 Result

o
o
1
1

Examples:

o
1
o
1

o
1
1
o

Logical Operation

OXORO
1XORO
1010Y XOR 1001Y
FFFFH XORO
FFFFH XOR FFFFH

Result

o
1

11Y
FFFFH

o

Expressions

5-13

Expressions

5-14

Arithmetic and Logical Semantic Rules

Table 5-6 provides a summary of the semantic rules that apply to arithmetic and
logical operations. The table specifies the function performed by each type of
arithmetic and logical operation, the input required, and the result of the operation
(output).

Table 5-6. Arithmetic and Logical Semantic Rules

Operation Operators Input Output Function

logical AND, OR, XOR, MASK 2 integers integer Bitwise conjunction or disjunction of integers.

not NOT integer integer One's complement of an integer.

relational <. >. <=. >=, <>. = (1) 2 pointers, same integer Logical test of relational expression. If the displace-
base ment integer values satisfy relational operation (true),

(2) 2 integers integer then the output integer value = FFFFH. If the displace-
ment integer values do not satisfy the realtional opera-
tion (false), the output integer = O. If the base values of
the input pointers are not equal, an error occurs.

arithmetic ',I,MOD 2 integers integer Unsigned product (*), quotient(l), or remainder(MOD)
of two integers.

memory- BYTE, WORD, INTEGER, pointer or integer Fetches content of memory location addressed by in-
content SINTEGER integer putvalue.

memory- POINTER pointer or pOinter Fetches content of memory location addressed by in-
content integer put value.

1/0- PORT,WPORT integer integer Fetches content of I/O port (8-bit or 16-bit) addressed
content by input value.

+(binary) + (1) pointer, integer pointer Sum of the displacement values, same base as the
(2)integer, integer integer pointer. Sum of the integers.

-(binary) - (1) 2 pointers with integer Two's complement difference of displacement values.
= base values Error occurs if base values are unequal.

(2) pointer & pOinter Two's complement difference of pOinter displacement
integer value and integer input, same base as the pointer.

-(unary) - integer integer Two's complement of the input integer.

+(unary) + All types same No change.

override (1) integer & pointer pOinter Replaces current base value of pointer with input in-
basel teger value.
construct (2) 2 integers pOinter Constructs new pointer with base value set to first in-
pointer put integer value and displacement set to second in-

teger.
offset OFFSET pointer integer Generates integer value whose value is the displace-

ment value of the input pOinter.

segment SEGMENT pointer integer Generates integer whose value is the base value of the
input pointer.

ICE-88

ICE-88

How Expressions are Evaluated

This section provides a simple conceptual model of how the ICE-88 emulator
evaluates an expression. The model involves a loop that scans the expression
iteratively (figure 5-1). The loop terminates in either of two ways:

• When the expression resolves to a single numeric value.

• When a syntax error (or other error) occurs.

The ICE-88 emulator goes through the scan loop once for each operator in the
expression. On each scan, the operator (unary or binary) that must be applied
next is identified.

The next operator is always:

• the leftmost operator

• with highest precedence (table 5-3)

• that is enclosed in the innermost pair of parentheses.

If this next operator is unary, and has a numeric operand, the operation is per
formed on the operand to produce a numeric result. If the next operator is
binary, and has a pair of operands, the operation is performed on the pair of
operands to produce a numeric result. If the next operator does not have the re
quired number of numeric operands, a syntax error results, and the loop ter
minates.

A pair of parentheses is "cleared" when it contains just a single numeric value;
that is:

(numeric-value) - numeric-value

After performing any operation, the numeric result becomes an operand for the
next scan. Parentheses are cleared before the next scan begins.

"Case Studies" in Evaluating Expressions

Here are some representative cases of expressions showing how they are evaluated
by the ICE-88 emulator. In some examples, the steps in evaluation are shown,
but most show just the overall result. Table 5-7 summarizes the cases. The
EVALUATE (EVA) command used in these examples performs the evaluation
and displays the result in the four numeric radixes (Y, Q, T, and H), plus the
ASCII printing equivalent (if any) in single quotes. The examples in this section
assume the initial conditions shown in table 5-8. This table also describes the
special notation used in some of the examples. The examples also assume SUF
FIX = T; that is, any number without an explicit radix is decimal.

Expressions

5-15

Expressions

YES

5-16

PERFORM THE
OPERATION;

RESULT IS
ANUMBER

Figure 5-1. A Simple Model of Evaluation

ICE-88

ICE-88

Table 5-7. Conditions and Notation for Examples

Conditions

All memory locations are accessible (none are GUARDED).
SUFFIX = T (implicit radix is decimal).
IP = 1000H
DEFINE .AA = 2000H
DEFINE. BB = FFFFH
BYTE 1000H = 3EH
BYTE 2000H = 23H

Notation

» has higher precedence than.
»= has higher or equal precedence.
u1,u2, ... unary operators
b1,b2, ... binary operators

Case 1: EVALUATE operand

An expression can be composed of just a single operand, requiring
at most a lookup to produce a numeric result.

Examples:

EVA 10 (input)
1010Y 120 10T AH " (display)

EVA IP (input)
1000000000000Y 100000 4096T 1000H " (display)

EVA .AA (input)
10000000000000Y 200000 8192T 2000H " (display)

EVA 1234H:5678H (input)
1234:5678H 179BBH (display)

Case 2: EVALUATE unary-operator operand

A unary operator with a single primary operand evaluates to a number.

Examples:

EVA -2 (input)
1111111111111110Y 177760 65534T FFFEH It' (display)

EVA BYTE .AA (input)
100011Y 430 35T 23H 'I' (display)

EVA NOT IP (input)
1110111111111111Y 1677770 61439T EFFFH '0' (display)

Case 3: EVALUATE operand binary-operator operand

The binary operator is applied to its two operands to produce a numeric result.

Examples:

EVA 10 + 20 (input)
11110Y 360 30T 1 EH "

EVA .AA > 10 (input)
1111111111111111Y 1777770 65535T FFFFH " (display)

Expressions

5-17

Expressions

5-18

Table 5-8. Representative Cases of Expressions

Case Expression Precedence
Result of Lookup

Plus One Scan

1 operand None number

2 unary-operator operand Any number

3 operand binary-operator
operand Any number

4 operand b1 operand b2 operand b1 »= b2 number b2 number (case
3)

b2» b1 number b1 number (case
3)

5 operand b1 (operand b2 b2» b1 number b1 number (case
operand) 3)

b1 »= b2 number b1 number (case
3)

6 u1 operand b1 operand u1 »b1 number b1 number (case
3)

b1 » u1 u1 number (case 2)

7 operand b1 u1 operand u1 »b1 number b1 number (case
3)

b1 »u1 ERROR (See case 8)

8 operand b1 (u1 operand) u1 »b1 number b1 number (case
3)

b1 »u1 number b1 number (case
3)

9 u1 u2 operand u2» u1 u1 number (case 2)
u1 »= u2 ERROR (See case 10)

10 u1 (u2 operand) u2» u1 u1 number (case 2)
u1 »= u2 u1 number (case 2)

EVA .AA OR IP (input)
11000000000000Y 300000 12288T 3000H '0' (display)

EVA 0100H:0010H + .AA (input)
0100:2010H 03010H (display)

Case 4: EVALUATE operand bI operand b2 operand

The binary operator with the highest precedence is evaluated first. If they have
equal precedence, bI (the leftmost) is evaluated first.

A. b1 »= b2

Examples:

EVA 10+ .AA - IP (input)
1000000001010Y 100120 4106T 100AH " (display)

EVA 10* .AA - IP (input)
11000000000000Y 300000 12288T 3000H '0' (display)

EVA IP = .AA OR . BB (input)
1111111111111111Y 1777770 65535T FFFFH

EVA 1 + 2 - 3 (input)
OY 00 OT OH " (display)

EVA 3 * 2 + 1 (input)
111Y 70 7T 7H " (display)

"

ICE-88

ICE-88

B. b2»b1

Examples:

EVA 2 + 3 * 4 (input)
1110Y 16Q 14T EH " (display)

EVA. BB OR .AA AND IP (input)
1111111111111111Y 177777Q 65535T FFFFH " (display)

EVA 1 OR 2 AND 3 (input)
11Y 3Q 3T 3H " (display)

Case 4 also fits expressions of any length that use only binary operators. Here is
an example showing the steps in the evaluation.

Step Operation Result

0 Expression .BB OR IP = .AA AND AFAFH XOR .AA MOD 277

1 Lookup FFFFH OR 1000H = 2000H AND AFAFH XOR 2000H MOD 277

2 MOD FFFFH OR 1000H = 2000H AND AFAFH XOR 9FH

3 FFFFH OR 0 AND AFAFH XOR 9FH

4 AND FFFFH OR 0 XOR 9FH

5 OR FFFFH XOR 9FH

6 XOR FF60H

More examples:

EVA 2 XOR 3 MASK 41 MOD 33
10Y 2Q 2T 2H "

EV A 2 * 3 + 5 I 3 + 6
11 01 Y 15Q 13T D H "

EVA2 + 3 * 5 + 7
11000Y 30Q 24T 18H "

Case 5: EVALUATE operand bl (operand b2 operand)

Binary operator b2 is evaluated first, even if it has lower precedence than bI. Use
parentheses when b2 must be evaluated before b 1.

Examples:

EVA 2 * (3 + 5)
10000Y 20Q 16T 10H "

EVA .BB I (.AA MASK AFAFH)
111Y 7Q 7T 7H "

This case can be generalized to include any number of binary operators and any
arrangement of parentheses. For example:

Step Operation Result

0 Expression 10 * (44 + (17 * 15 - 6) 17)
1 2nd* 10 * (44 + (255 - 6) 1 7)
2 10 * (44 + (249) 1 7)
3 Clear 0 10 * (44 + 249 I 7)
4 1 10*(44 + 35)

5 + 10 * (79)

6 Clear 0 10 * 79
7 1st* 790

Expressions

5-19

Expressions

5-20

Case 6: EVALUATE ul operand bl operand

Precedence decides which operator is evaluated first.

A. u1» b1

Examples:

EVA-10+22
1100Y 140 12T CH "

EVA BYTE .AA OR .BB
1111111111111111Y 1777770 65535T FFFFH "

EVA NOT .SS AND AFAFH
OY OQ OT OH "

B. b1»u1

Examples:

EVA BYTE .AA -1000H
111110Y 76Q 62T 3EH I>'

EVA NOT .BB/23
1111010011011110Y 1723360 62686T F4DEH 'Tt'

Case 7: EVALUATE operand bl ul operand

The unary operator must have higher precedence than the binary operator.

A. u1» b1 is valid.

Examples:

EVA10*-2
1111111111101100Y 177754Q 65516T FFECH 'L'

EVA .AA AND NOT .BB
OY OQ OT OH "

B. b1» u1

This produces an error. The operator b 1 must I be evaluated next, and requires
two numeric operands, but ul operand has not yet been evaluated to a numeric
result.

Examples:

EVA 10 + BYTE .AA
SYNTAX ERROR

EVA .AA MASK NOT .SS
SYNTAX ERROR

ICE-88

ICE-88

Case 8: EVALUATE operand bl (ul operand)

Unary operator ul is evaluated first, even if it has lower precedence than binary
operator bl. Parentheses must be used when ul has lower precedence than bl.

Examples:

EVA 10 + (BYTE .AA)
101101Y 550 45T 2DH '-'

EVA .AA MASK (NOT. BB)
OY OQ OT OH "

Case 9: EVALUATE ul u2 operand

Unary operator u2 must have higher precedence than ul to evaluate without an
error.

A. u1» u1 is valid.

Examples:

EVA BYTE -FOOOH
111110Y 76Q 62T 3EH I>'

EVA NOT BYTE .AA
11111111110111100Y 177734Q 65500T FFDCH "

B. u1 »= u2

Examples of this case shown below result in an error.

Examples:

EVA BYTE NOT .AA
SYNTAX ERROR

EVA - BYTE .AA
SYNTAX ERROR

EVA BYTE BYTE 1000H
SYNTAX ERROR

EVA - - 5
SYNTAX ERROR

Case 10: EVALUATE ul (u2 operand)

Unary operator u2 is evaluated first, even if it has lower precedence than ul.
Parentheses must be used when u2 has lower precedence than ul.

Examples:

EVA BYTE (NOT .AA)
111101Y 75Q 61T 3DH '='

EVA - (BYTE .AA)
11111111110111101Y 177735Q 65501T FFDDH ']'

Expressions

5-21

Expressions ICE-88

5-22

EVA BYTE (BYTE 1000H)
11111110Y 376Q 254T FEH It'

EVA - (- 5)
101Y 50 5T 5H "

Two other "cases" can be diagrammed as:

operand b1 b2 operand
operand u1 b2 operand

Both forms produce an error no matter which operator has higher precedence,
and no arrangement of parentheses can resolve the error.

These examples show the basic ways to control evaluation with and without
parentheses. Parentheses must be used when two operators are concatenated and
the second operator has lower precedence than the first.

Command Contexts

All expressions produce numeric values as results. The interpretation or use of the
result depends upon the command that contains the expression. The term numeric
expression means an expression in a numeric command context. Numeric command
contexts treat the result as an numeric value; all bits are significant.

The term boolean-expression means an expression in a boolean command con
text. Only integer values may be used in boolean contexts. Boolean command con
texts test only the least significant bit (LSB) of the result, to obtain a TRUE or
FALSE value. The result of a boolean expression is TRUE if its LSB is 1 , FALSE if
its LSB is O. Thus, any number can have a boolean interpretation.

The BOOL command can be used instead of the EVALUATE command to display
the evaluation of an expression as TRUE or FALSE.

A boolean expression uses relational and logical operators to manipulate
TRUE/FALSE values. When a relational operator is evaluated, the result is always
either 0 (FALSE) or FFFFH (TRUE). These results can have a numeric interpreta
tion, but relational operators have limited usefulness in numeric contexts.

When logical operators are applied to TRUE/FALSE values, the results are also
boolean. Specifically:

NOT:

AND:

OR:

NOT FALSE -+ TRUE
NOTTRUE -+ FALSE

TRUE AND TRUE -+ TRUE
TRUE AND FALSE -+ FALSE
FALSE AND TRUE -+ FALSE
FALSE AND FALSE -+ FALSE

TRUE OR TRUE -+ TRUE
TRUE OR FALSE -+ TRUE
FALSE OR TRUE -+ TRUE
FALSE OR FALSE -+ FALSE

ICE-88

XOR: TRUE XOR TRUE - FALSE
TRUE XOR FALSE - TRUE
FALSE XOR TRUE - TRUE
FALSE XOR FALSE - FALSE

In addition to numeric and boolean contexts, there are several other contexts that
control the interpretation or use of a number or expression. These contexts are sum
marized in table 5-9 for reference.

Table 5-9. Command Contexts

Type of Entry Contexts Interpretation Limitations Examples of Use

Numeric expression Set and change 16-bit unsigned All operands and operators IP = .AA*256T + 10FFFH
commands, etc. number; bit size allowed. Numeric constant

may be reduced to without suffix is interpreted
fit destination. in current default radix.

Boolean expression BOOl, IF, lSB = 0 FALSE All operands and operators .AA AND .BB AND NOT .CC
UNTil, WHilE lSB = 1 TRUE allowed. Numeric constants

without suffix are interpreted
in current default radix.

Address FROM, content- Pointer to memory Only arithmetic operators are GO FROM .BB + 10
operator, parli- or 16-bit (or fewer) allowed outside of the outer-
tion, SAVE address in memory most parentheses. Constant

or 1/0 without suffix is interpreted
in the current default radix.

Decimal number statement-num- positive number No operators are allowed out- PRINT 10
ber, MOVE, side the outermost parenthe-
PRINT ses. All constants without suf-

fix are decimal.

Expressions

-5-23

CHAPTER 6
EMULATION AND TRACE

CONTROL COMMANDS

Chapter 6 contains discussions, examples, and syntax summaries for each of the
ICE-88 emulation and trace control commands.

The following brief outline of Chapter 6 shows how the emulation and trace control
commands have been classified.

Emulation Control Commands

Set Breakpoint Register Command
Set Tracepoint Register Command
GO Command
GRCommand
STEP Command
Display Emulation Register Command
Set CLOCK Command
Display CLOCK
Set RWTIMEOUT Command
Display R WTIMEO UT Command
ENABLE/DISABLE RDY Command

Trace Control Commands

Set TRACE Display Command
ENABLE/DISABLE TRACE Command
Display TRACE
MOVE, OLDEST, and NEWEST Commands
PRINT Command

Emulation Control Commands

The ICE-88 emulator contains an 8088 as the emulation processor. During emula
tion, this processor executes the instructions in the user program that have been
mapped and loaded into the ICE-88 system. The operations of the user system can
be monitored through the 8088 processor signals. The commands in this section
allow you to specify the starting address where emulation is to begin, and to specify
and display the software or hardware conditions for halting emulation and returning
control to the console for further commands.

6-1

Emulation and Trace Control Commands

6-2

The commands in this section are as follows:

COMMAND

Set Breakpoint-Register

Set Tracepoint-Register

GO command

GR command

STEP command

Display Emulation Register

Set CLOCK

Display CLOCK

Set RWTIMEOUT

Display RWTIMEOUT

ENABLE/DISABLE RDY

Discussion

PURPOSE

Set match condition for halting emulation.

Set match condition for starting or halting trace
data collection.

Begin real-time emulation.

Enable or set and enable breakpoint registers
to halt emulation.

Execute single-step emulation.

Display GO-register, breakpoint and tracepoint
register settings.

Designate system clock.

Display clock setting.

Enable or disable halting of emulation and
error message on memory access timeout.

Display current setting of memory access
timeout.

Enable or disable user ready signal for memory
access.

The emulation control commands tell the ICE-88 emulator where to start emula
tion and when to halt emulation. After the ICE-88 emulator has been loaded by
ISIS-II, the following initialization is executed:

• The GO-register (GR) is set to FOREVER. The setting of GR identifies the
combination of factors that are enabled to halt emulation. The setting
FOREVER means no factors are enabled.

• Both breakpoint registers (BRO and BRl) are set to don't care and initially
disabled.

To initialize for emulation, you map the locations in prototype and ICE-supplied
memory that are to be accessible to the ICE-88 emulator, and load your program
code into mapped locations. After the code has been loaded, the ICE-88
emulator initializes for emulation as follows:

• The instruction pointer (IP) and code segment register (CS) are loaded with
the address of the first executable instruction in your program.

Now you can begin emulation by entering the command GO, followed by a car
riage return. At the command GO, the following occurs:

• Emulation begins with the instruction at the address that is in the IP and CS;
this is the first executable instruction in your program.

ICE·88

ICE-88 Emulation and Trace Control Commands

• The message EMULATION BEGUN is displayed at the console.

• Emulation continues until you press the ESC key, or until a fatal error
occurs. (See Appendix B for error messages.)

Now if you press the ESC key, the following happens.

• The ICE-88 emulator completes executing the current instruction.

• Emulation halts; the IP and CS contain the address of the next instruction to
be executed.

• The message EMULATION TERMINATED, CS:IP=bbbb:ddddH is
displayed. The value displayed is the address of the next instruction to be
executed.

• The message PROCESSING ABORTED is displayed, acknowledging the user
abort (ESC key).

This is the simplest case of starting and stopping emulation. When the GO
register is set to FOREVER, you can enter the command GO to start emulation
at the current CS:IP address, and press the ESC key to halt emulation.

Instead of starting wherever the CS:IP happens to be, you may specify the start
ing address you want for each GO command. There are two ways to do this.
First, you can set the CS: IP directly to any desired address with commands of
the form CS = expr, IP = expr, then enter the GO command to start emulation at
that address. Second, you can specify the starting address as part of the GO com
mand; this form of the GO command is as follows:

GO [FROM address]

The meta-term address means the following type of entry.

numeric-expression A numeric expression is evaluated to give the address
(see Chapter 5). (Table 5-9 specifies restrictions.)

For example, to start emulation with the instruction at memory location 3000H, you
could enter:

cs=O
IP = 3000H
GO

Or, you can enter:

GO FROM 3000H

The effect is the same either way.

The following form of the GO command is also valid.

GO [FROM address] FOREVER

This form of the GO command enables you to optionally select the starting address
and to disable the factors that halt emulation. For example, to start emulation with
the instruction at memory location 3000H and to set the GO-register to FOREVER,
you can enter:

GO FROM 3000H FOREVER

The effect of this command is to start emulation with the instruction at location
3000H. Emulation will stop only when you abort processing.

6-3

Emulation and Trace Control Commands

6-4

The ICE~88 emulator has two breakpoint registers, BRO and BRI. Each of these
registers can be set to hold a "match condition" that can be used to halt real~
time emulation when the register is enabled. A second form of the GO command
can be used to both load and enable breakpoint registers. This form of the GO
command is:

GO [FROM address] [TILL match-condition [{~~D}match-cOnditiOn]]

This command loads the match~condjtjons into the breakpoint registers and
enables the registers to halt emulation on the desired set of system conditions
contained in these match~condjtjons . Match conditions are of two types:

match-condition == {
execution-match-cOnditiOn }
non-execution-match-condition

The breakpoint registers may be set to contain either type of match~condition.

Execution Match Condition

An executjon-match~condjtjon consists of a single 20~bit field plus the keyword
EXECUTED, where each address bit can take anyone of three values: 0, I, or
"don't care." An execution match condition is examined when the 8088 CPU ex
ecutes an instruction byte, that is, when the byte is fetched from the 8088 instruc
tion queue. The condition "matches" when the executed instruction byte was ob
tained from a memory location whose 20-bit address matches the contents of the
selected breakpoint register.

execution-match-condition == {
address EXECUTED }
masked-const EXECUTED

Entering an address causes all 20 bits of the match condition to be loaded with 0
and I bit values. The address contains a base and displacement (e.g., .X or
50:3000H); note that a single constant is evaluated modulo 65536 (e.g., 12345H is
the same as 2345H-use 1234:5H to get all 20 bits). Entering a masked-constant
causes the 20 bit field to contain 0, 1, or "don't care" values. The "don't care"
values are ignored. The masked-constant can be 20 bits in length.

The following examples illustrate the use of this form of the GO command. The
examples assume that the initial contents of the breakpoint registers are as shown
below:

BRO = XXXXXH (all bits set to "don't care")

BR1 = XXXXXH (all bits set to "don't care")

Also, in these examples, the address of .START is 0000:0002H, .DELA Y is at
OOOO:OODEH, and .DISPLA Y is at 0000:0098H. Each example will list a GO
command followed by the contents of the breakpoint registers as set by the com
mand.

I. Go from .ST ART until the first instruction in .DELA Y is executed.

GO FROM .START TILL .DELAY EXECUTED

BRO = OOODEH E (OOODEH is the 20-bit address of .DELAY, the last E
specifies "EXECUTED")

BR1 = XXXXXH (BR1 is unchanged)

ICE-88

ICE-88 Emulation and Trace Control Commands

This command loads BRO with the given match condition: " . DELAY
EXECUTED" .

2. Go from .ST ART until address 0200H is executed.

GO FROM .START TILL 0200H EXEC

BRO = 00200H E

BR1 =XXXXXH

This command loads the numeric address and Hexecuted" status into BRO
and leaves BRI unchanged.

3. Go from .START until address lOO:0200H is executed.

GO FROM .START TILL 100:0200H EXEC

BRO = 01200H E

BR1 =XXXXXH

The pointer address lOO:0200H and Hexecuted" status are loaded into BRO
and BRI is unchanged.

4. Go from .START until an address in an address range specified by a masked
constant is executed.

GO FROM .ST ART TILL 10XXH EXECUTED

BRO = 010XXH E

BR1 =XXXXXH

The masked constant address loaded into BRO specifies a range of addresses:
OIOOOH through OlOFFH. BRO remains unchanged.

5. Load two execution match conditions, one in each breakpoint register, and
"OR" the conditions.

GO FROM .STARTTILL .DELAY EXEC OR .DISPLAY EXEC

BRO = OOODEH E (Halt when .DELAY is executed.)

BR1 = 00098H E (Halt when . DISPLAY is executed.)

This command sets emulation to halt when either the instruction located at
location OOODEH (.DELA Y) or location 00098H (.DISPLAY) is executed.

6. Load two execution match conditions and "AND" them.

GO FROM .STARTTILL .DELAY EXEC AND .DISPLAY EXEC

BRO = OOODEH E (Halt when .DELAY is executed.)

BR1 = 00098H E (Halt when .DISPLAY is executed.)

ERR AE:INVALID "AND" IN GO-REG (Error message generated by
this command)

This command attempts to set emulation to halt when the instruction located at
location OOODEH (. DELAY) "AND" the instruction located at location 00098H
(.DISPLA Y) are executed. Execution of two separate instructions can not occur
at the same time. Therefore an error message is generated by this command and
the command is not executed.

6-5

Emulation and Trace Control Commands

6-6

Non-Execution Match Condition

The non-execution-match-condition must contain one or more of four types of
fields: a set of addresses, a list of bus status types, a set of data values, and a
segment register designation. A non-execution-match-condition matches whenever
a breakpoint that contains a set of one or more of the above fields matches
corresponding state values in the user system during real-time or single step
emulation.

. . . match-status-/ist I address-match-range I
non-executlon-match-condltlon == data-match-range

segment-register-usage

Address-match-range, match-status-list, data-match-range, and segment-register
usage must be used in the order shown. At least one of these fields must be
entered in a given command to establish a non-execution match condition.

Address Match Range

An address-match-range may consist of a single address or masked constant, an
"unlimited" range of addresses, or a set of match partitions. If an "unlimited"
range of addresses are to be entered, an address value modified by the mnemonic
UP or DOWN is entered. UP implies any address value equal to or greater than
the stated address. DOWN implies any address value equal to or less than the
stated address. The match partition may be any of three types: partitions,
memory references, and/or typed memory references. If the address-match range
contains more than one partition, all partitions must have the same base and
their displacements must lie within a lK-byte range. If there is only a single parti
tion, it must lie within a lK-byte range to be contained in a single breakpoint
register. If the partition does not lie within a lK range, two registers are required
to hold the partition. Therefore an address-match range can be defined as:

address:: masked-const

address UP:: address DOWN

address-match-range ==

[

partition]
OBJECT memory-reference
OBJECT typed-memory-reference

By expanding the definition of partitions and memory reference to their compo
nent parts, the definition of address-match range becomes:

address-match-range ==

address: : masked-const

address UP:: address DOWN

address TO address
address LENGTH length
OBJ ECT BYTE address
OBJECT WORD address
OBJECT SINTEGER address
OBJECT INTEGER address
OBJECT POINTER address
OBJECT typed-memory-ref

ICE-88

ICE-88 Emulation and Trace Control Commands

For example, an address-malch-range of a single address would be 3000H,
whereas using the masked constant 30XXH would result in a match range of
3000H through 30FFH. Two examples of the use of partitions in a match range
are:

4000 TO 4100

and

4000 LENGTH 101

Both of these partition specifications result in the range of addresses 4000
through 4100.

A sequence of discontinuous addresses can be specified by:
OBJECT BYTE 4000, OBJECT WORD 3188, OBJECT !!MOD1 !SYMSAM, ...

This would result in a string of discontinuous match addresses, the third address
in the above string being specified by a typed memory reference. OBJECT
indicates a partition beginning at the low address of the memory object and
whose length is the length of the object. In the above example, "OBJECT BYTE
4000" specifies a one-byte partition whose address is 4000. "OBJECT WORD
3188" specifies a two-byte partition starting at 3188 and ending at 3189. "OB
JECT .. MODI .SYMSAM" specifies a partition starting at the address given in
the symbol table for ! !MODI !SYMSAM and whose length is specified by the
memory type of symbol .SYMSAM. For example if .SYMSAM is type WORD,
the partition will be two bytes in length.

Match Status List

The match-slatus-Jist field matches whenever the 8088 bus status is any of those
listed in the match status list:

READ

WRITTEN

INPUT

OUTPUT

FETCHED

HALT

ACKNOWLEDGE

match on memory read other than an instruction
fetch.

match on memory write.

match on an 1/0 read.

match on an 1/0 write.

match on a memory read into the execution queue.

match on 8088 halt.

match on 8088 interrupt acknowledge.

A match-status-list may consist of one or more of the above bus status types and
they may be listed in any order:

match-status-list ==

READ
WRITTEN
INPUT
OUTPUT
FETCHED
HALT
ACKNOWLEDGE

An example of a match-status-list would be:

FETCHED, READ, HALT, WRITTEN, ACKNOWLEDGE

6-7

Emulation and Trace Control Commands

6-8

Data Match Range

The data-match-range field can be used to specify data values. The syntax is
similar to address-match-range, except the OBJECT form is not allowed. In this
case, the values specified by address will be treated as data values and used to
match against values on the 8088 address/data lines at data time.

[

address:: masked-const]

data-match-range == VALUE address UP:: address DOWN

[partition] , ...

Data values must be integers. The set of values which match this field is the same
as for address-match-range. Since the 8088 deals only with 8-bit data values, only
the low order 8 bits in the data values are significant.

Segment Register Usage

The segment-register-usage field is used to specify one of the four segment
registers. A match occurs whenever the segment register used in an effective ad
dress calculation is the one specified in the segment-register-usage field. Segment
register usage occurs at data time.

segment-reg;ster-usage ==

Match Condition Restrictions

[

USING SS]
USING CS
USING DS
USING ES

Figure 6-1 illustrates a detailed specification of the non-execution-match
condition. The following examples illustrate a set of restrictions that must be
observed in the use of match conditions in emulation commands.

Data values, bus status and segment register usage come out of the 8088 at data
time. Address values and bus status are available at address-time. The following
restrictions apply to match conditions.

• Breakpoint register BRO cannot contain data-time values and breakpoint
register BRI contain address-time values if the two registers are ANDed (the
reverse is permissible).

• Neither BRO nor BRI may contain an execution-match-condition if they are
to beANDED.

A warning message is issued after a Set BR command or a Set OR command if
the command results in either of the above conditions. An Error is issued on a
GO command if the command results in either of the above conditions.

• If a match-condition specifies both address and data or segment register
usage, the match condition requires both breakpoint registers; hence this
match-condition cannot OR/ AND with another match-condition.

All partitions in a multi-partition match condition must have the same base
value. For example, the following command generates the error message shown.

GO FROM .STARTTILLO:OOOO LEN 2, 100:1000H READ
ERR AD:DIFFERING BASIS (error message)

ICE-88

0"1
~

address: : masked-const

addressUP:: address DOWN

address TO address
address LENGTH length

OBJECT BYTE address
OBJECT WORD address
OBJECT SINTEGER address
OBJECT INTEGER address
OBJECT POINTER address

OBJECT typed-mem-ref

READ
WRITTEN
INPUT
OUTPUT I, •••

FETCHED
HALT
ACKNOWLEDGE

VALUE address:: VALUE masked-const

VALUE address UP
VALUE address DOWN

VALUE [address TO address]
address LENGTH length ' ... []SIN.GS~ USING CS

USING OS
USING ES

11((address-match-range) .. till(status- _ III((data match-range) _ register-~ I
I (match- I ~segment- I

list) usage)

Note: (address-match-range), (match-status-list), (data-match-range), and (segment
register-usage) must be used in the order shown. At least one of these field
must be entered in a given command and no filed may be repeated in the
command.

Figure 6-1. Non-Execution Match Condition

n
t'!'j
I

QC
QC

t'!'j

a
= i s·
= = = Co

:;J
~
~

n
Q

= -~
n
Q
a
a = = Co
rIJ

Emulation and Trace Control Commands

6-10

All the displacement values must be within a lK-byte range to be contained in a
single breakpoint register. Displacements which exceed lK must be contained in a
single partition.

The following match condition cannot be contained in one breakpoint register.

GO FROM .START TILL 0:0000 LENGTH 2048T WRITTEN

The above command would require both breakpoint registers as the partition is
2K-bytes in length.

The following command would generate an error as two partitions are specified
and the displacements exceed 1 K.

GO FROM .START TILL 0, 2048T WRITTEN

The following command would generate an error as the partition requires both
breakpoint registers. Therefore the partition" .BEGIN" cannot be entered.

GO FROM .START TILL 0 LEN 2048T, .BEGIN W

Segment register usage can only be used in conjunction with a single match value
as illustrated in the example below.

GO FROM .DELAY TILL .MAINTIME READ USING OS

The last form of the GO command is in the following format:

GO [FROM address] [TILL break-reg [1~~D~reak-regll
where break-reg references breakpoint register BRO, BRI or BR. This command
form is used when the breakpoint registers have been set prior to the entering of
this command. The command enables the referenced breakpoint register but does
not set its contents. The Set Breakpoint command, GR command, or a previous
GO command must be used to set the required breakpoint registers. Care is
required in ANDing two breakpoint registers in this command. Only two non
execution-match-conditions can be "anded." An error results if either of the con
ditions described below occur.

• BRO contains data values or segment register usage and BR 1 contains address
values.

• Either of the breakpoint registers contains an execution-match-condition.

Setting the Go-Register

To enable either (or both using BR) of the breakpoint registers as a halt condi
tion, you can use a set GR command of the form:

G R = halt-go-condition

The meta-term hait-go'-condition means any of three exclusive types of halt
conditions:

halt-go-condition == { ~~:~~:a:-reg [1~~Dl break-reg] }

TlLLmatch-cond [1~~Dl match-COnd]

ICE-88

ICE-88 Emulation and Trace Control Commands

Using the FOREVER condition in the Go-Register command:

GR = FOREVER

would disable both breakpoint registers.

The following command would enable BRI:

GR = TILL BR1

Both registers can be enabled and ORed with the following command:

GR = TILL BR1 OR BRO

BRO would be loaded with a match condition and enabled with the following
command:

GR = TILL 3000H WRITTEN, FETCHED

The following command would load BRO with the first match condition and BRI
with the second stated match condition:

GR = TILL 3000H WRITTEN, FETCHED OR INPUT VALUE 01 USING DS

BRO would contain the match condition 3000H WRITTEN, FETCHED and BRI
would contain the match condition INPUT VALUE 01 USING DS and both
registers would be enabled and ORed.

The following command would require both breakpoint registers to contain the
match condition:

GR == TILL .DELAY FETCHED OR READ VALUE .MAINTIME USING DS

BRO would contain the match condition .DELA Y FETCHED and BRI would
contain the match condition READ VALUE .MAINTIME USING DS.

The following command would require both breakpoint registers to contain
match conditions that are" anded":

GR = TILL !SIDETIME READ AND VALUE 8

BRO would contain the condition .SIDETIME READ and BRI would contain the
match condition VALUE 8 . These conditions are ANDED.

Setting Tracepoint Registers

The ICE-88 emulator has two tracepoint registers, ONTRACE and OFFTRACE.
A tracepoint register may only contain a non-execution match condition. Also the
match range may only contain an address, masked constant, or data, and seg
ment register usage may not be used with an address condition. For example, the
following commands are valid:

ONT = 3000H WRITTEN, FETCHED
OFF = INPUT VALUE 01 USING DS

6-11

Emulation and Trace Control Commands

6-12

However, the commands:

OFFTRACE = 3000H EXECUTED
ONTRACE = 3000H READ USING CS

are invalid as EXECUTED is invalid in a tracepoint, and the segment register CS
is specified with an address condition.

Command Signal Timeout

When the 8088 accesses INTELLEC- or DISK-mapped memory, a command
signal timer starts counting. If the access is not completed before it times out, the
ICE-88 emulator will cause the READ and WRITE command signals to go inac
tive to the user system. The RWTIMEOUT commands are used to set and
display the current setting of the command signal timer.

Emulation Timer

An emulation timer is enabled when emulation is running. The timer can be used
to determine how long it takes the ICE-88 emulator to emulate a given segment
of code. The timer is a 2-MHz clock (i.e., counts are intervals of 500 ns), derived
from the crystal on the Control board.

The timer starts when the GO command is entered, starting emulation. The timer
starts counting at the first T3 state of the first instruction emulated. HTIMER
stops counting where a maximum count of approximately 33 minutes is reached.
TIMER continues counting modulo 65536.

The timer is reset to 0 (before starting to count) when the GO command is
entered with a FROM clause or when CS,IP is changed or when
ENABLE/DISABLE TRACE. If you want to reset the timer without changing
the current program counter, enter a command such as GO FROM CS:IP.

After emulation halts, you can display the value of the timer in the current out
put radix. The display command TIMER displays the low 16 bits of the timer
value; the command HTIMER displays the high 16 bits of the timer value. The
tokens TIMER and HTIMER can also be used as keyword references in com
mands and expressions.

With the timer, you can measure the real elapsed time required to emulate a
given code sequence. The elapsed time can then be compared to the calculated
time based on the number of clock states in each instruction and the speed of the
system clock. Note that code mapped to user runs at real-time; the timer value
for code mapped to prototype memory is the real-time value.

ICE-88

ICE-88 Emulation and Trace Control Commands

Set Breakpoint Register Command

(1) break-reg = address EXECUTED:: masked-const EXECUTED

(2) break-reg = [address-match-range] [match-status-list 1 [data-match-range][seg-reg-usage 1

NOTE
Form (2) requires that the address-match-range, match-status-list,
data-match-range, and seg-reg-usage fields be used in the order
shown. At least one field is required in a given command and no field
may be repeated in the command. Restriction: the fields selected must
fit in one breakpoint register.

Examples:

BRO = 1 XXXH EXECUTED
BR1 = 3000H UP WRITTEN
BR = 3000H TO 30FFH READ
BR = 3000H LENGTH FEH, OBJ ECT !VAR WRITTEN

break-reg

address

masked-const

EXECUTED

address-match-range

match-status-/ist

data-match-range

seg-reg-usage

The name of one of the breakpoint registers (BRO, BRI)
or BR to set both registers to the same match condition.

The assignment operator.

The address of the memory location or II 0 port, or a
data value.

A masked constant used to define a range of memory
locations or data values.

Denotes that the match condition is the execution (CPU
fetch of the instruction byte from the instruction queue)
of the instruction byte whose address is given by address
or masked-const.

A set of one or more addresses. (See page 6-6.)

A set of bus status conditions to be used as match
parameters. (See page 6-7.)

A set of data values to be used as match parameters. (See
page 6-8.)

A specification of one of the segment registers to be used
as a match parameter. (See page 6-8.)

6-13

Emulation and Trace Control Commands

6-14

Set Tracepoint Register Command

READ

tace-reg=

WRITTEN

~ J ~SINGS~ address J INPUT VALUE address USING CS
OUTPUT , ... USING OS

masked-const FETCHED VALUEmasked-const USING ES
HALT

(address
match)
range)

ACKNOWLEDGE

(match
status
list)

NOTE

(data-match-range) (segment
register
usage)

The address-match-range, match-status-list, data-match-range, and
segment-register-usage fields must be used in a command in the order
shown. At least one field is required in a given command and no field
may be repeated in the command. A segment-register-usage field or
data-match-range may not be used with an address condition (address
match-range field); because you cannot mix address-time fields with
data-time fields.

Examples:

ONTRACE = 2340 READ, ACKNOWLEDGE
OFFTRACE = INPUT, OUTPUT VALUE 1234H
ONTRACE = !X FETCH ED
ONTRACE = R,W VALUE 40XX USING ES
OFFTRACE = USING ES

trace-reg

address

masked-const

match-status-list

data-match-range

segmen t -register-usage

The name of one of the tracepoint registers, ONTRACE
or OFFTRACE.

The assignment operator.

The address of the memory location or 110 port, or a
data value (see Data Match Range).

A masked constant used to define a range of memory
locations or data values.

See Match Status List. (See page 6-7.)

See Data-Match Range. (See page 6-8.)

See Segment Register Usage. (See page 6-8.)

ICE-88

ICE-88 Emulation and Trace Control Commands

Go Command

FROM address

GO lFOREVER [(I
TILL break-reg ~~D

TILL match-cond [(~~DI

break-reg]

Examples:

GO

GO

GO FROM 3000H
GO FROM .START TILL BRO
GO FROM 3000H TILL 3000H EXECUTED
GO TILL INPUT VALUE 10
GO FROM 1 OOOH TILL 3000H TO 30FFH READ USING DS
GO FROM 3000H TILL OBJECT POINTER .START READ

Command keyword that starts emulation, subject to
the current start and halt conditions.

FROM Keyword introducing a starting address.

address The address of the memory location of the first
instruction to emulate, i.e., the start address.

FOREVER Disables all breakpoint conditions; emulation can be
stopped only by user aborting processing.

TILL A keyword introducing one or more match or halt
conditions.

break-reg One of the breakpoint registers (BRO, BRl), or BR to
set both registers to the same match setting.

match-cond One of the following forms of breakpoint register
settings.

1. execution-match-condition. (See page 6-4.)

2. non-execution-match-condition. (See page 6-6.)

NOTES

The ICE-88 emulator cannot enter GO or STEP with the 8088 Trap
Flag (TFL) set. Therefore a warning message will be issued whenever
GO or STEP commands are executed with TFL = 1 , and TFL will be
set to O.

If either breakpoint register contains a match range other than a single
match-value and the breakpoint register has changed since the last GO
command, the message "LOADING RANGE BREAKPOINTS" is
issued and, it takes approximately 10 seconds to load breakpoints and
hardware before emulation begins.

6-15

Emulation and Trace Control Commands

6-16

Set GO-Register (GR) Command

FOREVER

GR= TILL break-reg [I~~D} break-reg]

TlLLmatch-cond [{~~Dl match-cond]

Examples:

GR = FOREVER
GR=TILLBR1
GR = TILL BRO OR BR1
GR = TILL OBJECT !ABLE1
GR = TILL OBJECT POINTER 0123 READ, WRITTEN VALUE 30 USING DS

GR

FOREVER

TILL

break-reg

match-cand

Command keyword referring to the GO-register (halting
conditions for emulation).

The assignment operator.

Disables all breakpoint conditions; emulation can be
stopped only by user aborting processing.

A keyword introducing one or more match or halt
conditions.

One of the breakpoint registers, BRO or BRI (or BR to
denote both breakpoint registers) that is to be enabled.

One of the following forms of breakpoint register
settings:

1. execution-match-condition. (See page 6-4.)

2. non-execution-match-condition. (See page 6-6.)

ICE-88

ICE-88

Change 1

Emulation and Trace Control Commands

STEP Command

STEP [FROM address]

Examples:

STEP
STEP FROM 1 FFFH
STEP FROM .. MOD .GO
STEP FROM !PTR
STEP FROM #123 + 10
STEP FROM CS:(WORD .X) ;SHORT JUMP INDIRECT THROUGH .X

STEP

FROM

address

A command keyword that causes the ICE-88 emulator
to execute a single step of emulation.

A function keyword introducing the address where a
single step of emulation is to be executed.

See address. (See page 6-14.)

The STEP command causes the ICE-88 emulator to execute one single step of
emulation. If FROM address is not included in the command, the emulation step
is executed from the current address. If FROM address is included in the com
mand, the value of the address is loaded into the CS and IP and the step is ex
ecuted from this location.

NOTE
The STEP command is very useful in repeat loops and macros (see
Chapter 8), where terminating condition can be given (UNTIL or
WHILE) and system status and values can be displayed after each step.
However, the user is cautioned that a hardware reinitialization occurs
intermittently with a reset timeout when the RESET pin is pulsed during
a repeat of the STEP command.

6-17

Emulation and Trace Control Commands

6-18

Display Emulation Register Command

GR

[
ABSOLUTE]

break-reg BASE [expr]

trace-reg [
ABSOLUTE]
BASE [expr]

Examples:

GR

GR
BR1
BRO BASECS
BRO BASECS
BR BASE
OFFTRACE
OFF ABSOLUTE
ONT BASE OS
ONTRACE BASE OS

A command keyword that causes the content of the
GO-register (factors enabled to halt emulation) to be
displayed.

break-reg One of the breakpoint register keywords BRO or BRl,
to obtain a display of the register setting, or the
keyword BR to cause the display of the settings of both
breakpoint registers.

trace-reg One of the tracepoint register keywords ONTRACE or
OFFTRACE to command the display of the content of
the designated register.

ABSOLUTE Display all addresses as 20-bit numbers (this is the
default).

BASE Display all addresses in base and displacement format
(e.g., 0000: 1000H). If no expr is given, display with the
base that was used to set the register.

expr An integer value that specifies that all addresses are to
be displayed as their displacement from (expr)* 16. An
error occurs if an address needs a displacement of less
than 0 or greater than 65535 from the base (expr).
Typically expr will be a segment register name; thus
"BRO BASE CS" displays the displacements of the ad
dresses in BRO using the current code segment register.
If no expr is given, use the base that the register was
set with.

NOTE

Data values are always displayed as 8-bit numbers, masked-constants
as 8-bit, 16-bit or 20-bit strings with Xs (in hexadecimal if possible, or
else in binary).

Internal to the ICE-88 emulator, match addresses are stored as 20-bit
numbers. Thus "GO TILL 20:8 R" breaks whenever 208H is read,
even if it is read as 10:108H.

ICE-88

ICE-88 Emulation and Trace Control Commands

Set CLOCK Command

CLOCK =

Examples:

[
INTERNAL]
EXTERNAL

CLOCK = INTERNAL
CLOCK = EXTERNAL

CLOCK

INTERNAL

EXTERNAL

This command keyword enables the user to designate
the type of clock being used in the system: user
provided clock or ICE-provided clock.

The assignment operator.

Designates that the ICE-provided clock is being
selected. This is necessary whenever the cable is not
plugged into user system. When clock is set to Internal,
the ICE-88 emulator is operated in stand-alone mode.
The Socket Protector should be mounted on user cable
in this mode of operation.

Designates the clock to be user supplied. This is
necessary whenever the cable is plugged into a user
system.

Display CLOCK Command

CLOCK

Examples:

CLOCK

CLOCK A command keyword that causes the display of the clock
setting.

6-19

Emulation and Trace Control Commands

6-20

Set RWTIMEOUT Command

{

INFINITE }

RWTIMEOUT = expr-10 [ERROR]

expr-10 NOERROR

Examples:

RWTIMEOUT = INFINITE

RWTIMEOUT = 500 ERROR

RWTIMEOUT = 500

;DISABLE RWTIMEOUT

;SETTIMEOUTTO HALT EMULATION W/REPORT

;HALT EMULATION WITH ERROR REPORT

RWTlMEOUT = 1500 NOERROR ;SET TIMER BUT DO NOT HALT EMU LATION WHEN IT
;TIMESOUT

RWTIMEOUT

INFINITE

expr-IO

ERROR

NOERROR

A command keyword denoting that a command signal
timeout function is to be set.

Denotes that the command is a set signal timeout
command.

Sets command signal timeout to "infinite" effectively
disabling the timeout.

An integer value that specifies the timeout value in
microseconds. The integer value must be greater than 0
and less than 32K, and' the default suffix when
evaluating expr-IO is decimal.

Specifies that error is to be reported whenever
command signal times out.

Specifies that command signal timeout is not to halt
emulation.

Display RWTIMEOUT Command

RWTIMEOUT

RWTIMEOUT Causes the current setting of the command signal
timeout to be displayed.

ICE-88

ICE-88

Change 1

Emulation and Trace Control Commands

ENABLE/DISABLE ROY Command

1. ENABLE RDY
2. DISABLE RDY

ENABLE A command keyword denoting that an ICE-88 element
is to be enabled.

DISABLE

RDY

A command keyword denoting that an ICE-88 element
is to be disabled.

A reference keyword specifying the user ready signal
for memory access.

The ICE-88 emulator allows the user to enable and disable the user ready signal. If
RDY is enabled, the ready signal to the 8088 is a local ready (generated by the
ICE-88 emulator) AND user ready; otherwise ready to the 8088 is either the local I
ready when mapped to local memory or user ready when mapped to user memory.
RDY is initially enabled.

NOTE
Must disable RDY if clock is INTERNAL and you are using INTELLEC
memory or DISK memory. When emulating in the user memory with
DISABLE ROY invoked, the user ready pin must be active to continue
emulation.

6-21

Emulation and Trace Control Commands

6-22

Trace Control Commands

The ICE-88 emulator can record program execution through the collection of
trace data in a trace buffer during real-time and single-step emulation. The com
mands in this section allow you to specify the conditions for enabling and disabl
ing trace data collection during emulation and to control the display of trace
data.

The commands in this section are as follows:

COMMAND

Set TRACE Display Mode

PURPOSE

Establishes trace data that will be displayed
as frames or instructions.

ENABLE/DISABLE TRACE Enables or disables the collection of trace
data.

Display TRACE Mode

MOVE, OLDEST, NEWEST

PRINT

Discussion

Causes the display of the current display
mode.

Set trace buffer pointer to entry to be
displayed.

Display one or more entries from the trace
buffer.

The unit of emulation is the instruction. During real-time and single-step emula
tion, the ICE-88 emulator traces program execution twice per 8088 bus cycle:
first when the address signals are valid and then when the data signals are valid.
It also traces each CPU clock cycle during which the execution queue is active.

The ICE-88 emulator contains a trace buffer used to collect trace data (frames)
during real-time and single-step emulation. The trace buffer holds a total of 1023
frames or approximately 300 bus cycles of typical trace information. Each entry
in the buffer is a frame, and is either half a bus cycle or contains queue status,
or both. Each frame contains:

bit-size

20
3
2
3
2

purpose

Address/data
Bus status (SO, S1, S2)
Queue Status (QSO, QS1)
Queue depth
Frame type indicator: address, data, or queue status
Start/ stop trace marker for conditional trace

Trace is initially unconditionally on and the buffer is initially empty. The buffer
is cleared whenever the user changes the IP or CS, either by a FROM clause on a
GO or STEP command or by a Change command. Otherwise new trace data is
appended to the end of existing trace data and the most recent 1023 frames are
retained in the buffer. Similarly, the TIMER and HTIMER registers are reset to
zero each time the user changes the IP Qr CS register. Also, whenever the user
issues an enable/disable trace command, the trace buffer is cleared to empty and
TIMER and HTIMER are reset to zero when the user next enters emulation.

ICE-88

ICE-88 Emulation and Trace Control Commands

The user can control the collection of trace data using the tracepoint registers.
The enable/disable trace command enables trace conditionally and unconditional
ly or disables trace unconditionally:

ENABLE TRACE Turns trace on unconditionally during sub
sequent emulations.

ENABLE TRACE r (ON }~
CONDITIONALL y ~OW OFFU

Trace will be turned on whenever the
ONTRACE register matches and turned
off whenever the OFFTRACE register
matches.

NOW ON indicates that trace is turned on for the beginning of the next emula
tion; NOW OFF indicates it is off; if neither is present the trace is left in its cur
rent state.

DISABLE TRACE Turns trace off unconditionally during sub
sequent emulations.

The trace display command allows the user to examine collected trace data
displayed in one of two modes: as "raw" data or disassembled with instructions
appearing as 8086 assembler mnemonics.

Instructions in the trace buffer are counted by occurrences of queue status in
dicating "first instruction byte out of queue" (i.e., QSO=l and QSl=O). Since the
8088 defines instruction prefix bytes as well as the first non-prefix byte as "first
instruction bytes," an 8088 instruction with one prefix byte counts as two in
structions when using the MOVE or PRINT commands. However, if a PRINT
command prints the requested number of instructions and ends up after a prefix
byte but before the non-prefix instruction, it completes printing the entire non
prefix instruction. When the user switches from frames to instructions mode, if
the buffer pointer is not at the oldest or newest frame, then the pointer is moved
to a "first byte out of queue" frame if it is not already pointing at one before
beginning to MOVE or PRINT the requested number of instructions.

Trace Display Mode

The trace display mode controls the type of an entry to be displayed or located in
the trace buffer. An entry can be a frame, or an instruction. The initial trace
display mode is INSTRUCTION. To set the trace display mode, use one of the
following commands.

TRACE = FRAM E
TRACE = INSTRUCTION

To display an entry from the buffer, move the pointer to the desired entry and
enter a PRINT command. However, it is not necessary to move the pointer if
you use a PRINT ALL or PRINT -decimal command.

Moving the Buffer Pointer

The pointer movement commands are MOVE, OLDEST, and NEWEST.

The command OLDEST (followed by carriage return) moves the pointer to the
top of the buffer, in any trace display mode. The NEWEST command moves the
pointer to the bottom of the buffer (i.e., after the last instruction or frame).
"Top" refers to the oldest trace data, "bottom" refers to the newest trace data.

6-23

Emulation and Trace Control Commands

6-24

The MOVE command has the following form:

MOVE [[+ :: -] decimal]

The meta-term decimal means any numeric quantity; if no explicit input-radix is
given, the ICE-88 emulator assumes decimal radix. The value of decimal is the
number of entries between the current pointer position and the desired position.
Movement in a plus (+) direction is toward the bottom (newest point) of the
buffer; if neither (+) nor (-) is entered, a forward movement is assumed as the
default. Movement in a minus (-) direction is toward the top (oldest point) of the
buffer. The size of the move does not count the entry under the pointer when the
MOVE command is given.

For example, assuming FRAME mode, if the pointer is pointing at frame 100
and you issue the command "MOVE 10", the pointer is moved to point to frame
110. Under the same initial conditions, if you issue the command "MOVE -10",
the pointer is moved to point to frame 90. If decimal-number is larger than the
number of entries between the current pointer location and the bottom (for
" +") or top (for "-"), the pointer is moved only to the bottom or top, respec
tively. In short, you cannot move the pointer outside the range of buffer loca
tions.

If the MOVE command has no number following it, "MOVE 1" is executed.

The trace display mode in effect controls the size of each move. Under FRAME
mode, the command MOVE 10 moves down ten frames; under instruction, the
same command moves down ten instructions.

Displaying Trace Data

The PRINT command displays one or more entries from the buffer. This command
has the form:

PRINT [[+ :: -] decimal]: :PRINT ALL

With (+) or no sign, decimal entries lower (toward the bottom) than the current
pointer position are displayed. With (-), decimal entries above (toward the top)
the current pointer position are displayed. The command PRINT without a
decimal modifier is equivalent to PRINT 1 (one entry is displayed).

The PRINT command displays the number of entries requested, then moves the
pointer to point to the next entry just past the last one displayed. As an illustra
tion, the commands:

OLDEST
PRINT 10
PRINT 10

are equivalent to the commands

OLDEST
PRINT20

The command PRINT ALL displays the entire trace buffer; PRINT ALL is
equivalent to the commands:

OLDEST
PRINT1023

ICE-88

ICE-88 Emulation and Trace Control Commands

TRACE Display Formats

Display of Trace Data in Frames Mode

The display has one frame per line. The header at the top of display has the follow
ing format (one line of display shown also):

FRAME ADDR STS OSTS ODEPTH DMUX MARK
0000: 0002CH F N 0 A 0

How to interpret the Frames mode display:

Header entry Meaning

FRAME Frame number; decimal number from 0000 to 1022. The colon
separates the frame number from the next entry (ADDR).

ADDR The 20-bit address in Hexadecimal radix (five digits plus suffix H)
when DMUX = A (address frame). When DMUX = D (data
frame), the last 2 digits (8 bits) of this number are data, and the
first digit is status: S6, S5, S4, S3 (MSB to LSB). Bits S4 and S3 are
the segment register used in effective address calculation:

S4 S3 Segment Register

0 0 ES
0 1 SS
1 0 CS or none
1 1 DS

STS A one-character display of processor action, as follows:

QSTS

QDEPTH

DMUX

MARK

A Interrupt Acknowledge
F Instruction Fetch
H Halt
I Input
o Output
R Read (Memory)
W Write (Memory)
? Passive State

STS is valid on ADDR and DATA frames only (DMUX = A or D).

Queue status; a one-character display, as follows:

E Empty the queue
F First byte of opcode executed out of queue
N Nothing coming out of queue
S Subsequent byte of opcode executed out of queue

Number of bytes in queue (decimal number). Valid on ADDR
frames only (DMUX = A).

Type of frame; a one-character display as follows:

A Address
D Data
Q Queue
S Stop emulation

1 if trace was turned off before this frame or if emulation broke
before this frame.

6-25

Emulation and Trace Control Commands

6-26

Display of Trace Data in Instructions Mode

The display shows the disassembled instruction mnemonic and any operands, and
any succeeding cycles. Each instruction combines several frames of trace data.
Machine cycles after the instruction fetch are displayed four cycles per display
line, using as many lines as necessary.

First, we discuss the header and the instruction display. Display of cycles is
discussed later on. The headers apply to the first line of the display entry-the
line with the frame numbers. The Instructions mode header has the following
format (two instructions are also shown):

FRAME ADDR PREFIX MNEMONIC OPERANDS COMMENTS
0006: 000E7H DEC CL
0010: 000E9H MOV WORD PTR [0101 H],BX

00101 H-W- 2CH-DS 00102H-W- OOH-DS

Header entry Meaning

FRAME The (decimal) number of the frame where the first byte (or prefix)
of the instruction came out of the 8088 execution queue.

ADDR Address of first byte (or prefix) of instruction; 20-bit number in
Hexadecimal radix (five Hex digits plus suffix H).

PREFIX Prefix other than segment-override (LOCK, REPE, REPNE) if
specified in assembly language else blank.

MNEMONIC MCS-86 assembler mnemonic for the instruction.

OPERANDS Zero, one, or two operands separated by commas. The formats for
the operand fields are discussed below.

COMMENTS The word ";SHORT" for a JMP or CALL instruction to an
address within the same segment of field bytes that contains the
instruction's address, or the word ";LONG" for a branch to a
different segment, or the characters ";?" for an opcode value that
does not correspond to a valid instruction.

Operand fields

1. Registers: the MCS-86 register identifiers are displayed:

RAL,RAH,RBL,RBH,RCL,RCH,RDL,RDH,
RAX, RBX, RCX, RDX

Example (comments field omitted):

FRAME ADDR PREFIX MNEMONIC OPERANDS
0003: 00206H MOV AL,BYTE PTR [OOOOH)

00200H-R- 34H-DS

2. Memory operands have the following display format:

[{
CS}] {BYTE} ['{BX}' J ['{DI}' J['{XXXXH} , J OS: WORD PTR [BP) [SI) [)
ES DWORD +xxH
SS ? -xxH

ICE-88

ICE-88 Emulation and Trace Control Commands

Example: the display ES:BYTE PTR [BX] [SI] [+OIH]
represents the operand BYTE ES :(BX + SI + 1)

More examples showing memory operand display.

FRAME ADDR PREFIX MNEMONIC OPERANDS

0000: FF380H ADD ES:BYTE PTR [BX] [SI], AL

0025: FF480H ADD ES:BYTE PTR [BX] [SI] [+01H], AL

0050: FF580H MOV AL, BYTE PTR [0001 H]

Notes on the memory operand format:

• The first field is the segment register field. It is only displayed if the
instruction has a segment-override prefix.

• In the second field, an entry"? PTR" means that the type of the pointer
cannot be determined from the context.

Example: LEA AX,? PTR [34AOH]

• The base register (BX, BP) and index register (DI, SI) fields are not
displayed for direct memory operands. When these fields are displayed, they
are enclosed in brackets (shown as "[" and "]" in the format given earlier).

• The last field is either a 16-bit unsigned (word) number, or a signed 8-bit
(byte) number. The entry is displayed enclosed in brackets.

• At least one of the last three fields (base register, index register, number) is
displayed for any memory operand.

3. Immediate data is displayed as a byte or word number, without brackets.

Example:

FRAME ADDR PREFIX MNEMONIC OPERANDS
0932: FF391 H TEST AL, 07H

4. Labels for the JUMP and CALL instructions:

-Within 128 bytes of current address-$ ± xxH

Example:

0934: FF393H JE $-06H

-Within same 64K segment as current address-$ +xxxxH

Example:

0000: FFOOOH JMP $+1005H

-To a different segment-base:dispJacement

Example:

0978: FFFFOH JMP FFOO:0096H

Note: the first two labels represent "SHORT" (intra-segment) branches, the third
is a "LONG" (inter-segment) branch.

Display of Cycles in Instruction Mode. After the instruction mnemonic and
operands are displayed, the display shows succeeding cycles performed by the
current instruction. Four cycles are shown per line of display; the display uses as
many lines as needed to show all cycles.

6-27

Emulation and Trace Control Commands

6-28

The general format for cycles display is:

address-status-data-segment

Examples:

-Read/Write:

12345H-R- 34H-DS
45100H-W-70H-SS

(8-bit read of data 34H from address 12345H using OS)
(8-bit write of data 70H to address 45100H using SS)

-Input/Output: (no segment register; 16-bit address)

F FO 0 H -1-01 H (8-bit input of data 01 H from port FFOOH)
FFDAH-O-34H (8-bit output of data 34H to port FFDAH)

-Interrupt Acknowledge: no address field, "A" for "acknowledge" status, 8-bit
interrupt type.

Example:

FRAME ADDR PREFIX MNEMONIC OPERANDS COMMENTS
0971: FF391H TEST AL,07H
0977: FF393H JE $-06H ; SHORT
0986: FF38DH MOV DX,FFEAH
0995: FF390H IN AL,DX

FFEAH-I- OOH
A- FFH
A- FFH 003FCH-R- OH-CS 003FDH-R- OOH-CS 003FEH-R- FFH-CS

003FFH-R- FFH-CS OOOBAH-W- 46H-SS OOOBBH-W- F2H-SS OOOBCH-W- OOH-SS
OOOB9H-W- FFH-SS

Note that:

a. The I cycle is part of the IN instruction; the rest of the cycles are the
interrupt.

b. The "A" cycle is traced twice; ignore the first one.

c. Interrupt is type OFFH

d. The five cycles after the "A" cycle are as follows:

- Read IP of interrupt vector
-Read CS of interrupt vector
- Write flags to stack
- Write old CS to stack
-Write old IP to stack

- Fetch cycles do not appear as cycles; they are used to display the opcode
mnemonic and operands.

- Halt cycles never appear as cycles; they appear as the mnenonic HL T.

Gaps in Trace in Instruction Mode. In Instruction mode, a gap in trace data is
shown as three asterisks (***). A gap in trace is produced by tracepoints or by buffer
overflow.

A gap in trace data also is reflected by a MARK = 1 in Frames mode.

ICE-88

ICE-88 Emulation and Trace Control Commands

Extended Example of Trace Displays

The following example (from SDK-86 Monitor) shows most of the features of trace
displays discussed in this section.

*ONTRACE=FFOO:96
*OFFTRACE=FFFF:O
*ONT
ONT=FF096H A,I,O,H,F,R,W
*OFFT
OFFT=FFFFOH A,I,O,H,F,R,W
*ENABLE TRACE CONDITIONALLY NOW ON
*GO TILL FFOO:9F EXECUTED
EMULATION BEGUN
EMULATION TERMINATED, CS:IP=FFOO:00A1H
*BUF
BUF=03FDH
*P-20
FRAME ADDR PREFIX MNEMONIC OPERANDS COMMENTS
0876: FF390H IN AL,DX

FFEAH-I- OOH
0880: FF391H TEST AL,07H
0886: FF393H JE $-06H ; SHORT
0895: FF38DH MOV DX,FFEAH
0904: FF390H IN AL,DX

FFEAH-I- OOH
0908: FF391H TEST AL,07H
0914: FF393H JE $-06H ; SHORT
0923: FF38DH MOV DX,FFEAH
0932: FF390H IN AL,DX

FFEAH-I- OOH
0936: FF391H TEST AL,07H
0942: FF393H JE $-06H ; SHORT
0951: FF38DH MOV DX,FFEAH
0960: FF390H IN AL,DX

FFEAH-I- OOH
0964: FF391H TEST AL,07H
0970: FF393H JE $-06H ; SHORT

0985: FF098H MOV SS,WORD PTR [0092H]
FF092H-R-07H-CS FF093H-R-00-CS

1004: FF09CH MOV SP,0050H
1012: FF09FH MOV BP,SP
*;TRACE TURNED OFF AT FFFF:O, BACK ON AT FFOO:96, BREAK AT FFOO:9F
*BRO
BRO=FF09EH E
*ONT
ONT=FF096H A,I,O,H,F,R,W
*OFFT
OFFT=FFFFOH A,I,O,H,F,R,W
*TRA=FRA
*P-25
FRAME ADDR STS QSTS QDEPTH DMUX MARK
0996: FF09CH F N 1 A 0
0997: 2F09CH F S 1 Q 0
0998: 2FOBCH F N 1 D 0
0999: FF092H R N 1 A 0
1000: 2F007H R N 1 D 0
1001 : FF093H R N 1 A 0
1002: 2FOOOH R N 1 D 0
1003: FF09DH F N 1 A 0
1004: 2F050H F F 1 D 0
1005: FF09EH F N 1 A 0
1006: 2F09EH F S 1 Q 0
1007: 2FOOOH F N 1 D 0
1008: FF09FH F N 1 A 0
1009: 2F09FH F S 1 Q 0
1010: 2F08BH F N 1 D 0
1011 : FFOAOH F N 1 A 0
1012: 2FOA8H F F 1 Q 0
1013: 2FOECH F N 1 D 0

6-29

Emulation and Trace Control Commands ICE-88

1014: FFOA1H F N 1 A 0
1015: 2FOA9H F S 1 Q 0
1016: 2F02EH F N 1 0 0
1017: FFOA2H F N 1 A 0
1018: 2F08EH F N 2 0 0
1019: FFOA3H F N 2 A 0
1020: 2F01 EH F N 3 0 0

6-30

ICE-88 Emulation and Trace Control Commands

Set TRACE Display Mode Command

TRACE = I FRAME I
INSTRUCTION

Examples:

TRACE = FRAM E
TRACE = INSTRUCTION

TRACE

FRAME

INSTRUCTION

A command keyword indicating that the mode of
display for trace data is to be set.

A function keyword indicating that data in the trace
buffer is to be displayed frame by frame.

A function keyword indicating that data in the trace
buffer is to be displayed by instruction. Each instruc
tion is equivalent to one or more machine cycles.

In the FRAME mode, trace data is displayed one frame per line, with fields for
frame number, address/data, bus status, queue status, queue depth, type of
frame (address, data or queue) and start/stop trace marker.

In the INSTRUCTION mode, trace is disassembled with instructions appearing
as 8086 assembler mnemonics. All other cycle data other than instruction fetches,
the address, status and data of the cycle are displayed. Memory fetches into the
execution queue and queue activity are not shown explicitly. Instead, they are us
ed to find the instruction bytes that were executed when the instruction is taken
from the queue. Whenever it is impossible to disassemble frames, immediately
before or after a frame with the START/STOP trace marker set, the gap is in
dicated by a line containing three asterisks ("***"). In either mode, status ap
pears as "F," "R," "W," "I," "0," "H," or "A" corresponding to the match
status(es) set in the tracepoint register, and "addresses are displayed as 20-bit
numbers is the displacement of the address from that base.

6-31

Emulation and Trace Control Commands

6-32

ENABLE/DISABLE TRACE Command

1. ENABLE TRACE [CON DITIONALL Y [NOW ON]]
NOW OFF

2. DISABLE TRACE

Examples:

ENABLE TRACE
ENABLE TRACE CONDITIONALLY
ENABLE TRACE CONDITIONALLY NOW ON
ENABLE TRACE CONDITIONALLY NOW OFF
DISABLE TRACE

ENABLE

DISABLE

CONDITIONALLY

NOW ON

NOW OFF

TRACE

A command keyword that causes trace data collection
to be conditionally or unconditionally enabled.

A command keyword that causes trace data collection
to be disabled.

A command modifier that specifies that trace will be
turned on whenever the ONTRACE register matches
and turned off whenever the OFFTRACE register
matches.

Indicates that trace is turned on for the beginning of
the next emulation (see Note).

Indicates that trace is turned off for the beginning of
the next emulation (see Note).

Command modifier denoting that trace is to be
enabled I disabled.

NOTE

If ENABLE TRACE CONDITIONALLY, the tracepoints will
inadvertently match and turn trace on or off when entering emulation
if the tracepoint is set to match on a Fetch at address 00008 or 00009,
and when exiting emulation if the tracepoint is set to match on a Read
at address 00008 or 00009. Conditional trace should not be set-up
ONTRACE/OFFTRACE tracepoints at memory locations 00008 or
00009 as the ICE-88 emulator uses these two memory locations when
emulation is broken.

If neither NOW ON or NOW OFF is selected (Le., ENABLE TRACE
CONDITIONALL Y), trace is left in its current state.

ICE-88

ICE-88 Emulation and Trace Control Commands

Display TRACE Command

TRACE

Example:

TRACE

TRACE A command keyword that, if entered from the keyboard
as a single token, causes the current TRACE mode (FRA
for FRAME or INS for INSTRUCTIONS) to be
displayed.

MOVE, OLDEST, an~ NEWEST Commands

MOVE [[+: :-]decima/]
OLDEST
NEWEST

Example:

MOVE
MOVE +6
MOVE -11
OLDEST
NEWEST

MOVE

+

decimal

OLDEST

NEWEST

A command keyword that moves the buffer pointer
one or more entries forward (toward the most recent
entries) or backward (toward the earliest entries). An
entry is a frame or instruction, depending on the
TRACE mode in effect.

A unary operator specifying a forward movement. Plus
is the default.

A unary operator specifying a backward movement.

A number, evaluated in decimal radix (if no explicit
suffix is given), that gives the number of entries to be
included in the MOVE.

A command keyword that moves the pointer to the
earliest entry in the buffer.

A command keyword that moves the pointer to the
latest entry in the buffer.

6-33

Emulation and Trace Control Commands

PRINT Command

1. PRINT ALL
2. PRINT [[+::-]decima/]

6-34

Example:

PRINT
PRINT ALL
PRINT +5
PRINT 5
PRINT -10

PRINT

ALL

+

decimal

A command keyword calling' for a display of one or
more entries from the trace data buffer. The entries are
displayed as frames or instructions, depending on the
current trace mode.

A function keyword indicating that the entire trace
buffer contents are to be displayed.

A unary operator directing the display of decimal
entries below (entered later then) the current buffer
pointer location. See DISCUSSION (page 6-24) for
details. Plus is the default.

A unary operator directing the display of
decimal-number entries above (entered earlier than) the
current buffer pointer location. See DISCUSSION
(page 6-24) for details.

A numeric constant, evaluated in decimal suffix, giving
the number of entries to be displayed.

ICE-8S

CHAPTER 7
INTERROGATION AND

UTILITY COMMANDS

Chapter 7 contains discussions, examples and syntax summaries for each of the
ICE-88 interrogation and utility commands.

The following brief outline of Chapter 7 shows how the interrogation and utility
commands have been clasified.

Utility Commands Involving ISIS-II

ICE88 Command
EXIT Command
LOAD Command
SAVE Command
LIST Command

Number Bases and Radix Commands

Set or Display Console Input Radix Commands
Set or Display Console Output Radix Commands

Hardware Register Commands

Set Register Command
RESET HARDWARE Command

Memory Mapping Commands

MAP DISK Command
MAP INTELLEC Command
Set MAP Status Command
Display MAP Status Command
RESET MAP Command

Set Memory and Port Content Commands

Set Memory Command
Set Input/Output Port Command

Symbol Table and Statement Number Table Commands

DEFINE Symbol Command
Display Symbols Command
Display Statement Numbers Command
Display Modules Command
Change Symbol Command
REMOVE Symbols Command
REMOVE Modules Command
TYPE Command
Set DOMAIN Command
RESET DOMAIN Command

Display Commands

Display Processor and Status Registers Command
Display Memory Command
Display 110 Command
Display STACK Command
Display Boolean Command
Display NESTING Command
Evaluate Command

7-1

Interrogation and Utility Commands

7-2

Utility Commands Involving ISIS-II

The Intel Systems Implementation Supervisor (ISIS-II) is the diskette operating
system for the Intellec Microcomputer Development System. The ICE-88
emulator runs under ISIS-II control, and can call upon ISIS-II for file manage
ment function.

The following commands are included in this section:

Command

ICE88
EXIT
LOAD

SAVE
LIST

Purpose

Load ICE-88 program from diskette.
Return control to ISIS-II.
Load user program into memory accessed by ICE-8S
emulator.
Copy user program from memory onto diskette.
Copy ICE-SS emulation output to printer or file.

Discussion

ICE-88 commands can use ISIS-II pathnames to direct ISIS-II to a desired
diskette file or other output device.

For diskette files, the format of pathname is as follows.

:drive:fjlename

The entry :drive: stands for one of the references to ISIS disk drives, as follows.

:FO:
:Fl:
:F2:
:F3:
:F4:
:F5:
:F6:
:F7:

drive 0
drive 1
drive 2
drive 3

Single-density or double density drives on a double-density system

The entry filename must follow the second colon (after drive) without any in
tervening spaces. A filename has the following components.

identifier [.extension]

The entry identifier is a name assigned by the user, and is made up of one to six
alphanumeric characters. The extension is an optional part of the filename, con
sisting of one to three alphanumeric characters preceded by a single period. The
extension must be used if it is present in the directory listing of the file on the
diskette. If used, the extension follows the identifier without any spaces. Some
extensions (e.g., .BAK) are assigned by system processors; others can be assigned
at the desire of the user. An extension provides a second level of file identifica
tion; it can be used to identify different versions of the same program, or to give
supplemental information about the file (e.g., author, data, version).

Fully compiled or assembled programs ready to run (emulate) do not have system
assigned extensions, although they may have extensions assigned by the user.

For devices other than diskette files, the format of pathname is as follows.

:device:

ICE-8S

ICE-88 Interrogation and Utility Commands

The following devices are commonly accessed in ICE-88 commands.

:Device:

:LP:
:HP:
:TO:
:CO:

Output Device

Line printer
High-speed paper tape punch
Teletypewriter printer
Console display

For more information on ISIS-II filenames and device codes, refer to the ISIS-Il
System User's Guide.

The ICE88 command, entered after an ISIS-II prompt, directs ISIS-II to load the
ICE-88 program from the specified diskette drive, into a reserved area in Intellec
memory. The ICE-88 emulator begins operation as soon as it is loaded, initializ
ing its hardware and program variables, and signaling readiness to accept ICE-88
commands by displaying an asterisk prompt.

NOTE

Inspect disk contammg ICE-88 program prior to loading into the disk
drive. If the diskette contains a write protect tab, remove the tab to
write-enable the disk. If the ICE-88 program is loaded from a disk con
taining a write-protect tab, an ISIS ERR 24 (write protect) will results.

The EXIT command ends the emulation session and returns control to ISIS-II.
The command issues a hardware reset before exiting.

The LOAD command loads the object code from the named file and drive into
the areas of memory specified by the memory map. Modules are loaded in the
order of their appearance in the source file. The modules names, symbols, and
statement numbers are placed in reserved areas of Intellec memory. Symbols and
statement numbers are grouped into tables by module, in the order in which they
appear. Both a base value and a displacement value are loaded for all symbols
and statement numbers. Any symbol that has no type information is given no
type specification in the symbol table. If no exclude modifiers are included in the
command, module names are loaded into the ICE-88 module table in the order in
which they appear following any module names already in the table, symbols and
their types (if present) local to each module are loaded into that module's symbol
table in the order in which they appear, and statement numbers local to each
module are loaded into that module's statement table (for PL/M 86 programs) in
the order in which they appear.

The command can include one or more exclude modifiers to control what is to be
loaded. If NOCODE is included, the program code is omitted from the load,
e.g., it is already in ROM. If NO LINE is included, the program statement
number table is not loaded. If NOSYMBOL is included, the program symbol
table is not loaded. Any combination of one, two, or three exclusion modifiers
may be included, although the command with all three modifiers represents a
"null" command. No modifier may be named twice in the same load command.

The SAVE command copies the user program currently loaded from memory on
to the specified file and drive. If the diskette installed on the given drive does not
have the named file in its directory, ISIS-II creates the file and opens it for write.
If the named file does exist on the diskette, the file is overwritten and the
previous contents are lost. If no explicit drive number is given, drive 0 is
assumed.

7-3

Interrogation and Utility Commands

7-4

The command can include one or more modifiers to control what is to be saved.
If NOSYMBOL is included, the symbol table is not copied from memory to
diskette. If NOLINE is included, the statement number table (for PL/M-86 pro
grams) is not saved. The modifiers NOCODE and partition are mutually ex
clusive: if one is used, the other may not be included. If NOCODE is included,
the program object code is not copied to diskette. If partitions are included, only
the code stored in the memory addresses in the partitions (ranges of addresses)
are saved. If neither NOCODE nor Partition appears in the command, any code
between the lower and highest addresses in each lK segment that has been
previously loaded is saved. If no code has been loaded, no code is saved. When
more than one modifier is used, separate them with spaces. No modifier may be
used twice in the same SAVE command. The SAVE operation does not alter the
program code, symbol table, or statement number table in memory.

The LIST command saves a record of the emulation session, including high
volume data such as trace data, on a hard-copy device or on a diskette file in
addition to sending it to the console. Only one device or file other than the con
sole can be specified (active) at a given time.

The initial device is :CO:, output to the console. Other devices that can be
specified are a line printer (:LP:), high-speed paper tape punch (:HP:), and
teletypewriter printer (:TO:).

Instead of a hard-copy device, a diskette file can be specified. If the output is to
a diskette file, the file is opened when the LIST command is invoked, and output
is stored from the beginning of the file, writing over any existing data. Specifying
a new file or device in a later LIST command closes any existing open file and
avoids over-writing any more data. Specifying the same file in a later LIST
causes the delete of the file and starting over.

When LIST is in effect (with a device or file other than :CO:), all output from
the ICE-88 emulator, including system prompts, commands, and error messages,
is sent both to the named device or file and to the console display. To restore
output to the console only (no other device), use the command LIST :CO:.

ICE·SS

ICE-8tt

Change 1

Interrogation and Utility Commands

ICE88 Command

[:drive:]ICE88 [WORKFILES(:alt. drive:)]

Examples:

:F1:ICE88
:F1 :ICE88 WORKFILES(:F2:)

: drive: The number of the diskette drive containing the ICE-88 software
diskette. The number is preceded by the letter F, and enclosed in
colons. This drive is also the default drive for the ICE temporary
workfile.

ICE88 The name of the ICE-88 program file under ISIS-II. The filename
follows the second colon without any intervening spaces.

WORKFILES Control keyword specifying that an alternate disk drive is to be
used for the ICE temporary workfile

:alt. drive: The number of the diskette drive containing the diskette where the
temporary workfile is to be stored. The number is preceded by the
letter F, and enclosed in colons.

NOTE
Inspect the diskette containing the ICE-88 program prior to loading into
the diskette drive. If the WORKFILES control is specified, the diskette
containing the ICE-88 program may be write protected. If the
WORKFILES control is not specified, the diskette containing the ICE-88
program must not be write protected or an ISIS ERR24 (write protect)
will result. In this case, if the diskette contains a write protect tab,
remove the tab to write-enable the diskette.

7-5

Interrogation and Utility Commands

7-6

EXIT Command

EXIT

Example:

EXIT

EXIT A command keyword that returns control from the ICE-88
emulator to ISIS-II. The command issues a hardware reset before
exiting, and leaves the file used for DISK-mapped memory intact.

ICE-88

ICE-88 Interrogation and Utility Commands

LOAD Command

LOAD [:drive :]filename ~NOCODE J
NOSYMBOL
NOLINE

Examples:

LOAD :FO:TEST.VR1
LOAD :F1 :MYPROG NOLINE
LOAD :F2:COUNT. ONE NOCODE NOLINE
LOAD :F3:NEWCOD NOSYMBOL

LOAD

:drive :

filename

A command keyword that loads the software on the given file and
drive into the c'ombination of prototype and Intellec memory
specified by a previous MAP command.

The diskette drive (:FO:, :FI:, :F2:, or :F3:) that contains the target
file. If no drive is given, :FO: (drive 0) is the default.

The name of the desired program as compiled or assembled, linked,
and located. The filename follows the second colon with no inter
vening spaces.

NOCODE A modifier specifying that program code is not to be loaded.

NOSYMBOL A modifier specifying that the program symbol table is not to be
loaded.

NOLINE A modifier specifying that the program line number table (for
PL/M-86 programs) is not to be loaded.

7-7

Interrogation and Utility Commands

7-8

SAVE Command

SAVE [:drive:]filename NOCODE::partition [,partition] ...

Examples:

NOSYMBOL
NOLINE

SAVE :F1 :TEST
SAVE :FO:MYPROG 0800 TO OFFF NOLINE
SAVE :F2:COUNT.TWO NOLINE NOSYMBOL
SAVE :F3:NEWSYM NOCODE NOLINE
SAVE :F1 :TEST #1 TO #50, .. SUBR #1 TO .. SUBR #20

SA VE The command keyword that directs the ICE-88 emulator to write
the designated software elements to the indicated file and drive.

:drive : The diskette drive (:FO:, :Fl:, :F2:, :F3:) holding the diskette
that is to contain the saved software. If no explicit drive number
is given, drive 0 is the default.

filename The name of the file that is to receive the saved information.
The name of the file, including the extension if present, must
follow the rules for naming files under ISIS-II. The filename im
mediately follows the second colon. If the filename does not ex
ist on the designated diskette, ISIS-II creates the file and opens it
for write. If it does exist, the current file is destroyed.

NOCODE A modifier specifying that program code is not to be saved.

partition A construct specifying a range of one or more contiguous
locations in memory; the contents of the specified locations are
saved, but code in other locations is not copied.

NOSYMBOL A modifier specifying that the symbol table is not to be saved to
diskette.

NOLINE A modifier specifying that the line number table (for PL/M-86
programs) is not to be saved.

ICE-88

ICE-88 Interrogation and Utility Commands

LIST Command

(a) LIST :device:

(b) LIST [:drive] filename

Examples:

LIST :LP:
LIST :CO:
LIST :F1 :ICEFIL

LIST,

:device:

: drive:

filename

The command keyword directing all ICE-88 emulator output to
be sent to the specified device or file, and to the console.

An ISIS-II device code, indicating a hard-copy output device to
receive the output.

The diskette drive holding the diskette on which output is to be
written. If no explicit drive is given, drive 0 is assumed.

The name of the file on the target diskette. The filename imme
diately follows the second colon, without intervening spaces.

7-9

Interrogation and Utility Commands

7-10

Number Bases and Radix Commands

ICE-88 commands and displays involve several different number bases (radixes).
This section describes the various radixes used by the ICE-88 emulator and the
commands used to control some of them. Most radixes are set by the ICE-88
emulator and cannot be changed, but others are under your control.

This section gives details on the following commands.

Command

SUFFIX
BASE

Discussion

Purpose

Set or display console input radix.
Set or display console output radix.

The commands given in detail in this section refer to the radixes used for console
input and console output.

Console Input Radixes; SUFFIX Command

Any number entered from the console can include an explicit input radix. An
explicit input radix consists of one of the following alphabet characters appended
directly to the number as entered.

Explicit Example Radix Specified
Radix

y 1001Y Binary (base 2)
0,0 110 Octal (base 8)

T 9T Decimal (base 10)
H 9H Hexadecimal (base 16)
K 3K Multiple of 1024 decimal

The implicit input radix is the base used by the ICE-88 emulator to interpret
numbers entered from the console without an explicit radix.

To display the current implicit input radix, enter the command token SUFFIX
followed by a carriage return. The implicit input radix can be Y, Q, T, or H, as
defined earlier. The initial implicit radix is hexadecimal.

You can change the implicit input radix by entering a command with the form
SUFFIX = suffix, where suffix is any of the characters Y, Q, 0, T, or H. This
SUFFIX command can be used where several numbers are to be entered in the
same radix.

Note that K (multiple of 1024) cannot be specified as an implicit input radix.

For some kinds of entries from the console, the implicit input radix is always
decimal (T). Entries with implicit decimal radix are:

• Numbers entered after MOVE and PRINT keywords.

• Program statement numbers.

• Value in COUNT command.

• Timeout value in RWTIMEOUT

• Segment numbers in MAP.

An explicit radix always takes precedence over the implicit radix .. If the digits in
the number entered cannot be interpreted in either the explicit or the implicit
radix, an error message is displayed.

ICE-88

ICE-88 Interrogation and Utility Commands

Console Output Radixes; BASE Command

Numeric information such as memory and register contents, and data, is
displayed in the current console output radix. The console output radix can be
one of the following.

Output
Radix

y

0,0
T
H

ASCII

Radix Specified

Binary
Octal
Decimal
Hexadecimal
ASCII character for each byte

The initial output radix is hexadecimal (H).

To display the current console output radix, enter the command token BASE
followed by carriage return. The display consists of a single character, Y, Q, T,
H, or A (for ASCII).

You can change the console output radix by entering a command with the form
BASE = base, where base is one of the single characters Y, Q, 0, T, or H, or the
token ASCII. Once the radix is set with a BASE command, it stays in effect until
another BASE command is entered.

7-11

Interrogation and Utility Commands

7-12

Set or Display Console Input Radix Commands

SUFFIX

SUFFIX = Y::Q::O::T::H

Examples:

SUFFIX

SUFFIX = Y

SUFFIX

y

Q,O

T

H

A command keyword referring to the implicit console input radix.
The token SUFFIX alone displays the current setting (Y, Q, T, or
H).

The assignment operator, indicating that the new setting is to
follow.

Binary radix.

Octal radix.

Decimal radix.

Hexadecimal radix.

ICE-S8

ICE-88 Interrogation and Utility Commands

Set or Display Console Output Radix Commands

BASE

BASE = Y::Q::O::T::H::ASCII

Examples:

BASE

BASE = Q

BASE

y

Q,O

T

H

ASCII

A command keyword referring to the system console output
radix. The token BASE alone displays the current setting (Y, Q,
T, H, or A).

The assignment operator, indicating that the new setting is to
follows.

Binary radix.

Octal radix.

Decimal radix.

Hexadecimal radix.

Each byte represented by its corresponding ASCII character,
without separators.

7-13

Interrogation and Utility Commands

7-14

Hardware Register Commands

This section presents the keywords used in the ICE-88 emulator to refer to the
following types of hardware registers and signals.

• 8088 Processor Register

• 8088 Status Flags

• ICE-88 Status Registers

• 8088 Pin Signals

The following commands that refer to hardware registers and signals are discuss
ed in this section.

Command Purpose

Set Register Set (change) the contents of any of the writeable 8088
registers.

RESET HARDWARE Reset ICE-88 hardware to initial state.

Discussion

Tables 7-1 through 7-6 show the tokens used to refer to any 8088 8-bit register, 16-bit
register or pin signal.

Meta-term Class of tokens

general-register 16-bit and 8-bit work registers

pointer-register 16-bit pointer registers

index -register 16-bit index registers

segment-register 16-bit segment reference registers

status-register 8- and 16-bit status registers

pin-reference 8088 pin signals

flag-reference 8088 status flags

Table 7-1. 8088 General Registers

reference 8088 Register and Interpretation

RAX 16-bit Accumulator
RAH High 8 bits of Accumulator
RAL Low 8 bits of Accumulator
RBX 16-bit Base Register
RBH High 8 bits of Base Register
RBL Low 8 bits of Base Register
RCX 16-bit Count Register
RCH High 8 bits of Count Register
RCL Low 8 bits of Count Register
RDX 16-bit Data Register
RDH High 8 bits of Data Register
RDL Low 8 bits of Data Register

ICE-88

ICE-88 Interrogation and Utility Commands

Table 7-2. Pointer Registers

reference 8088 Register and Interpretation

SP 16-bit Stack Pointer

BP 16-bit Base Pointer

Table 7-3. Index Registers

reference 8088 Register and Interpretation

SI 16-bit Source Index

01 16-bit Destination Register

Table 7-4. Segment Registers

reference 8088 Register and Interpretation

CS 16-bit Code Segment Register

OS 16-bit Data Segment Register

SS 16-bit Stack Segment Register

ES 16-bit Extra Segment Register

Table 7-5. Status Registers

reference Register and Interpretation

IP 16-bit Instruction Pointer Register

RF 16-bit Flag Register

CAUSE (Read only) 8-bit Cause of last break in emulation

OPCODE (Read only) 8-bit Previous opcode executed

PIP (Read only) 16-bit Previous Instruction Pointer Register

TIMER (Read only) Low 16 bits of emulation timer

HTIMER (Read only) High 16 bits of emulation timer

BUFFERSIZE (Read only) 16-bit trace buffer size Register

LOWER (Read only) 16-bit Intellec address register

UPPER (Read only) 16-bit Intellec address register
(displayed in decimal only)

Change 1 7-15

Interrogation and Utility Commands

7-16

Table 7-6. Pin References

reference 8088 Pin (Read only)

ROY READY

NMI NMI

TEST TEST

HOLD HOLD

RST RESET

MN MN/MN (minimum/maximum configuration)

IR INTR

Table 7-7. Flag References

reference Flag

AFL Auxiliary-carry out of low byte to high byte

CFL Carry or borrow out of high byte

DFL Direction of string manipulation instruction

IFL Interrupt-enable (external)

OFL Overflow flag in signed arithmetic

PFL Parity

SFL Sign of the result of an operation

TFL Trap used to place processor in single step mode
for debug

ZFL Zero indicates a zero value result of an operation

To set (change) the content of one of the processor registers, use a command with
the form:

reference = expr

Where expr is a numerical constant or numerical expression giving the desired new
contents. Each of the registers that can be changed with this command has a definite
size (16, 8, or 1 bits). If the new contents represents fewer bits than the destination
register, the bits are right -justified in the register, and the remaining bits are set to
zero. In other words the ICE-88 emulator assumes that the quantity represents the
lowest-order bits, and sets any unspecified high-order bits to zero.

The RESET HARDWARE command is used to restore the ICE-88 hardware to the
initial program load condition. One use for this command might be to reset the
hardware when reconfiguring. The EXIT command includes the RESET HARD
W ARE function.

ICE-88

ICE-88 Interrogation and Utility Commands

When a RESET HARDW ARE command is issued, the ICE-88 emulator attempts to
reset the hardware without disturbing any internal controls or user specified setup
(breakpoints, map, or enable/disable trace conditionally). If this attempt is suc
cessful, the ICE-88 emulator returns a prompt to the user immediately:

*CLOCK = INTERNAL
* RESET HARDWARE ;This reset will not encounter any problems.

;Prompt appears immediately, no internal setup
;affected.

The user may now continue his processing.

If, however, this attempt is unsuccessful, the ICE-88 emulator will warn the user
that it is beginning to reinitialize the hardware. It then attempts to reset the hard
ware by using initialization procedures and then restoring internal controls and
setup to the pre-reset state (trace, however, cannot be restored to its previous state,
and will be enabled unconditionally). Although no internal registers or flags are
changed, the integrity of user memory, ICE memory, and current disk-mapped
memory cannot be guaranteed. If this attempt to reset the hardware is successful,
the ICE-88 emulator will return a warning to the user that the hardware has been
initialized followed by a prompt. The user may then examine memory for integrity,
reload memory or continue processing.

NOTE

If the above reinitialization is successful, the ICE-88 emulator may require
up to approximately 30 seconds to fully restore the map.

If the ICE-88 emulator detects an error during this attempt, it will return an error
message and a prompt to the user. No warning that the hardware has been
reinitialized will be returned. The user should attempt to resolve the error condition
and MUST reissue the RESET HARDWARE command. The ICE-88 emulator will
then go through the reinitialization as described above. The following example
illustrates the procedure required to respond to an error condition:

*CLOCK = EXTERNAL
ERR 40:NO USER CLOCK
*RESET HARDWARE
WARN C8:REINITIALIZING - FAULT
ERR 40:NO USER CLOCK

*CLO= INT
*RESET HARDWARE

WARN C8:REINITIALIZING FAULT
WARN C6:HARDWARE REINITIALIZED

;This command forces an error condition.
;Error respo·nse.
;Not able to reset, tries to reinitialize.

;Reports an error and no warning that hardware
was reinitialized; thus, reinitialization was not able
to complete. The user must clear the error
condition and then reset the hardware again in
;order to get the hardware into a known state.
;Clears the error condition, must reset again.
;This reset must clear the incomplete reset from
;above.

;Note that the user is informed that the hardware
;has been reinitialized and that the user specified
;setup (map, breakpoints, etc.) has been restored.
;Memory contents (ICE memory, user memory,
;and current disk-mapped memory) cannot be
guaranteed. The user must verify the contents or
reload his code and data.

7-17

Interrogation and Utility Commands

7-18

Set Register Command

reference = contents

Examples:

RAX = OOOOH
IP = F23AH
IP = IP + 1
RDL = FFH
CS = WORD .SAM

reference

contents

The keyword name of any of the writeable registers, as follows:

general registers (see table 7-1).
pointer registers (see table 7-2).
index registers (see table 7-3).
segment registers (se¢ table 7-4).
status registers (see table 7-5).

The assignment operator.

A numeric expression.

ICE-88

ICE-88 Interrogation and Utility Commands

RESET HARDWARE Command

RESET HARDWARE

Example:

RESET HARDWARE

RESET A command keyword restoring its object to a reset condition.

HARDW ARE A function keyword restoring ICE-88 hardware to the reset
condition that occurs after the initiallCE-88 emulator invocation.

7-19

Interrogation and Utility Commands

7-20

Memory Mapping Commands

The commands in this section control ICE-88 memory map. The ICE-88 emulator
uses the map to identify what user memory is installed and what types and sizes of
memory are being "borrowed" from the ICE-88 emulator for testing purposes.

This section gives details on the following commands.

Command

MAP DISK

MAP INTELLEC

Set MAP Status

Purpose

Declare which disk file is available for mapping to.

Declare which physical Intellec segments are available for
mapping memory to.

Assign up to 1024 1 K segments of memory locations to
USER, ICE, INTELLEC, DISK, or GUARDED status.

Display MAP Status Display status of one or more memory segments.

RESET MAP

Discussion

Restore the memory map to its initial condition, all
GUARDED.

A maximum of 1M byte (megabyte or 1,048,576 bytes) locations are accessible with
the 20-bit addressing scheme used by the 8088 processor. The MAP commands allow
this 1M logical address space to be mapped in lK-byte segments (on IK boundaries)
to any of (1) physical memory in the user's system, (2) either of two lK-byte
segments of ICE-88 "real-time" memory, (3) a random-access disk file, (4) any
IK-byte segment in expansion Intellec memory (addresses at 64K or above), or (5) as
guarded (i.e., the logical addresses do not physically exist).

The ICE-88 module supplies 2K bytes of high-speed static memory which may be
mapped for "real-time" execution. The speed of this memory will allow near real
time operation. The 2K bytes may be mapped in lK-byte segments into appropriate
address space within the 8088's 1M byte address space.

Disk-based memory and expansion Intellec memory both provide substantially
slower execution speeds since all accesses to these memories require additional pro
cessing by the ICE-88 emulator. The first 64K of Intellec memory is reserved for
system and ICE-88 software. Therefore, any memory assigned to tQe user must
reside in expansion Intellec memory above 64K.

The MAP commands are used to declare, set, display, and reset the ICE-88 memory
mapping. The ICE-88 emulator has 1M logical addresses divided into 1024 logical
address segments, each starting on a IK boundary and representing lK bytes of
memory. Each segment is addressed by a decimal segment number, n . The value of
n is an integer value between 0 and 1023. For any given segment n, that segment
contains addresses nK through nK + 1023. For example, the lowest logical segment
in memory space contains addresses 0 through 1023 (OK through OK + 1023). In a
like manner, logical segment 10 would contain addresses 10240 through 11263 (10K
through 10K + 1023). All partitions used in MAP commands must contain segment
numbers whose values lie between 0 and 1023.

ICE-88

ICE-88 Interrogation and Utility Commands

If the diskette is to be used for user memory, the MAP DISK command must be used
to declare the disk file to be used. The syntax of the MAP DISK command is:

MAP DISK = [:drive:] filename

The command opens the ISIS-II file specified by file-name, checks how may
physical segments will fit on the diskette, and reports this number to you. MAP
DISK may only be declared initially and once following each RESET MAP
command.

If Intellec memory is to be used for user memory, the MAP INTELLEC command
must be used to specify the physical memory segments in extended Intellec memory
to be used by user programs. The syntax of the MAP INTELLEC command is:

MAP INTELLEC = partition [, partition] ...

where partition is defined as:

" _ {Physical-segment-number
partItIon = physical-segment-number

[TO physical-segment-number] }
LENGTH physical-segment-Iength

This command declares physical memory segments in expanded Intellec memory
and checks that the memory physically exists by writing to it and reading back. An
error occurs if any partitions extend below 64K as extended Intellec memory exists
only at addresses 64K or above. Therefore the range of physical-segment-number
values is 64-1023 (inclusive), the range of physical-segment-length values is 1-960
(inclusive). A warning is issued if the memory does not exist. INTELLEC declara
tions are cumulative between RESET MAP commands. Logical memory segments
may not be set to Intellec or disk until the associated MAP INTELLEC or MAP
DISK commands have been entered.

NOTE

When mapping to Intellec memory, the monitor prom circuitry does not
decode the four high order bits of a 20-bit address. Therefore, addresses of
the 20-bit form XXXX 1111 lXXX XXXX XXX X (where X is don't care)
will be overshadowed by the monitor and should not be used as addresses to
be mapped.

The Set MAP Status command is then used to map logical memory segments to
physical segments. The syntax of the Set MAP Status command is:

USER [NOVERIFY]

{

GUARDED }

MAP partition = ICE fphysical-segment-number] [NOVERIFY]
INTELLEC fphysical-segment-number] [NOVERIFY]
DISK physical-segment-number [NOVERIFY]

where

partition ==
logical-segment-number [TO logical-segment-number]
logical-segment-number LENGTH logical-segment-Iength

7-21

Interrogation and Utility Commands

7-22

The Set MAP Status command sets the memory map by assigning logical segments
to physical addresses in memory:

USER

ICE

INTELLEC

DISK

GUARDED

NOVERIFY

The logical segments specified are set to exist in the user's memory
at the same physical addresses as those specified in the logical
segments.

The logical segments specified are set to exist in ICE-88
"real-time" memory. 'The partition specified may only contain a
maximum of two segments and the physicaJ-segment- number
value must be 0 or 1, if one is given.

The logical segments specified in the partition are set to exist in
extended Intellec memory starting in the physical segment specified
by the physicaJ-segment-number in the command, if one is given.

The logical segments specified in the partition are set to exist on the
disk file starting at the physical segment specified by the physi
caJ-segment-number in the command, if one is given.

All accesses to memory addresses in the segments speci
fied by the input parameter, partition are error conditions.
All memory is initially GUARDED.

Specifies that write-verification will not be performed when
using the ICE-88 Change command to change the contents
of memory. This is useful when memory-mapped 1/0 is
being used. Whenever a logical memory segment is mapped
USER, ICE, INTELLEC, or DISK, it is write-verified unless
explitly NOVERIFY.

When mapping to ICE memory, INTELLEC memory or DISK memory, if a
physicaJ-segment-number is given in the command, the first logical segment
specified in the partition is set to the physical segment specified by the physicaJ
segment-number and subsequent logical segments are set at subsequent physical
segments. If more logical segments are specified than physical segments available,
logical segment will be assigned to available physical segments and an error message
is displayed indicating that the remaining logical segments are unassigned. If
physicaJ-segment-number is omitted in the command, the ICE emulator assigns
from unassigned physical segments in the designated memory. If Intellec or disk
memory is specified, an error occurs if the resulting physical segment is not one of
those previously declared by a MAP INTELLEC or MAP DISK command. An
error also occurs if there are insufficient physical segments unassigned to map the
specified logical segments.

The Display MAP Status command displays the current setting of the map for the
unguarded memory segments specified by partition , if given. If a partition is not
given, all the unguarded segments for the entire range from 0 to 1023 are displayed.
The display is to the following format. The segments are displayed, four segments
per line, each of the form:

logical-segment = type physical-segment [N]

where:

logical-segment == four decimal digits with T suffix

type == ICE:: USE:: INT:: DIS

physical-segment == four decimal digits with T suffix for ICE, INT, DIS and
four blanks for USE

ICE-88

ICE-88 Interrogation and Utility Commands

Example 1.

MAP OTO 3

Display:

OOOOT = USE 0001T = ICE OOOOT 0002T = INT 0064T 0003 = DIS OOOOT

Display:

OOOOT = USE 0001T = ICE OOOOT 0002T = INT 0064T 0003 = DIS OOOOT
0004T = DIS 0001T 0004T = DIS 0002T 0006T = USE 0007 = USE

1023T = DIS

The RESET MAP sets the memory map to its initial condition, all GUARDED, and
"undeclares" the DISK and INTELLEC memory available. Multiple logical
segments may be mapped to the same physical segment. Reassignment of a logical
segment to a different physical segment causes the physical segment originally
mapped to become "guarded," or unused, and reassignable, providing no other
logical segment is currently mapped to it.

7-23

Interrogation and Utility Commands

7-24

MAP DISK Command

MAP DISK = [:drive:]filename

Examples:

MAP DISK = :FO: MYPROG
MAP DISK = :F1 :TEST1
MAP DIS = TEST2

MAP

DISK

:drive :

filename

A command keyword referring to some operation on the ICE-88
memory map.

A command modifier that specifies that an ISIS-II disk file is to be
opened and available for mapping user memory to.

The disk drive (:FO:,:Fl:,:F2:,or :F3:) that contains the target file.
If no drive is specified, :FO: (drive 0) is the default.

The name of the desired disk file that is to be opened. The filename
follows the second colon with no intervening spaces.

The assignment operator.

ICE-88

ICE-88 Interrogation and Utility Commands

MAP INTELLEC Command

MAP INTELLEC = I segmentno [TO segmentno 1 I
segmentno LENGTH segment/en [

• segmentno [TO segmentno 1]
• segmentno LENGTH segment/en ...

Examples:

MAP INTELLEC = 73
MAP INTELLEC = 100 TO 123
MAP INT = 100 LENGTH 23
MAP INT = 65,68 TO 76,100 LEN 23

MAP

INTELLEC

segmentno

TO

LENGTH

segmentien

A command keyword referring to some operation on the ICE-88
memory map.

A command modifier specifying Intellec memory.

A segment number (64 to 1023) that specifies a physical memory
segment in Intellec memory. It is used to map Intellec memory in
one of the following ways:

• As the address of a single physical segment in Intellec memory.

• As the address of the first physical segment in Intellec memory
of apartition of physical segments being mapped.

• As the address of the last physical segment in Intellec memory
of a partition of physical segments being mapped.

A connector keyword that denotes that a segment number is to
follow that defines the upper bound of a memory partition.

A connector keyword that denotes that a segment length value is to
follow.

A segment length value (1 to 960) that defines the length of a
partition of memory.

The assignment operator.

NOTE
All mapping to Intellec memory is contingent upon the amount of expanded
Intellec memory a user has in his system.

7-25

Interrogation and Utility Commands

7-26

Set MAP Status Command

MAP
{

/ogsegmentno [TO /ogsegmentno 1 I
/ogsegmentno LENGTH segment/en

(

GUARDED I
USER [NOVERIFYl

ICE [physegmentno j [NOVERIFYj

INTELLEC [physegmentno 1 [NOVERIFYj

DISK [physegmentno j [NOVERIFYj

Examples:

MAP 457 = ICE 0 NOVERIFY
MAP 100 TO 200 = USER
MAP 201 LEN 62 = INT 65 NOV
MAP 263 LENGTH 87 = DISK 100
MAP 351 TO 400 = DIS NOV
MAP 401 TO 456 = GUARDED
MAP 458 TO 1023 GUA

MAP

!ogsegmentno

TO

LENGTH

segment/en

GUARDED

USER

ICE

INTELLEC

A command keyword refering to some operation on the ICE-88
memory map.

A logical segment number (0 to 1023) that specifies a segment in
logical address space. It is used to set the ICE-88 map in one of
the following ways:

• As the address of a single segment of logical addresses.

• As the address of the first segment of a partition of logical
addresses.

• As the address of the last segment of a partition of logical
addresses.

A connector keyword that denotes that a logical segment
number is to follow that defines the upper bound of a parti
tion of logical segments.

A connector keyword that denotes that a logical segment length
value is to follow defining a partition of logical segments.

A segment length [1 to 1024] that defines the length of partition
of memory.

The assignment operator

The initial state of all memory segments. Any reference to a
guarded address causes an error message. In the emulation mode
accesses to a guarded location will cause emulation to terminate
upon completion of the current instruction. In the interrogation
mode, no access to the given location will be made.

Refers to locations in user prototype memory.

Refers to locations in ICE-88 memory.

Refers to locations in Intellec memory.

ICE-88

ICE-88

DISK

physegmentno

NOVERIFY

Interrogation and Utility Commands

Refers to locations in diskette memory.

A physical segment number (0 to 1023) that specifies a physical
segment of memory locations. Intellec expanded memory
physical segment numbers are limited to a range of 1-960. If pre
sent in the command, the first logical segment in the partition is
set equal to the value of physegmentno and the subsequent
logical segments are set equal to the subsequent physical segment
number values. If no physegmentno is entered, the ICE-88
emulator assigns physical segments from those declared but not
yet mapped to.

A function keyword that suppresses the normal read-after-write
verification of data loaded into the designated memory.

7-27

Interrogation and Utility Commands

7-28

Display MAP Status Command

MAP {
/ogsegmentno [TO /ogsegmentno] }
/ogsegmentno LENGTH /ogsegmentlen

Examples:

MAP
MAP 0 TO 100
MAP 123 LENGTH 200
MAP 300 LEN 400

MAP A command keyword referring to some operation on the ICE-88
memory map.

iogsegmentno A segment number (0 to 1023) that specifies a segment of addresses
in logical address space. It is used in the following ways:

• As the address of a single segment of logical addresses.

• As the address of the first logical segment of a partition of
logical segments.

• As the address of the last logical segment of a partition of
logical segments.

TO A connector keyword that denotes that segment number is to
follow that defines the upper bound of apartition of logical
segments.

LENGTH A connector keyword that denotes that a segment length value that
defines the length of a partition of logical segments.

/ogsegmen tien A segment length [1 to 1024] that defines the length of a partition
of memory.

ICE-88

ICE-88 Interrogation and Utility Commands

RESET MAP Command

RESET MAP

Example:

RESET MAP

RESET

MAP

A command keyword that restores its object to its initial state, as
after an initial ICE-88 invocation.

As the object of RESET, the token MAP causes the memory map
to be set to its initial condition, all GUARDED. The available
DISK and INTELLEC memory is deleted from the map.

7-29

Interrogation and Utility Commands

7-30

Set Memory and Port Content Commands

The commands in this section set new values or change the current content stored in
designated memory locations or input/output ports. The commands discussed in
this section are as follows. The purpose of each command is indicated by its title.

Command

Set Memory Contents

Set Input/Output Port Contents

Discussion

Memory Content References

A memory content reference has the form:

memory-type address
[!!mod-name] !symbol-name ...

The meta-term memory-type means one of the following "content-of" modifiers
for memory locations.

BYTE

WORD

SINTEGER

INTEGER

POINTER

The content of a single byte (8-bit) memory location. The
address following BYTE is treated as a logical address; the physical
address whose content is referenced is determined by look-up in the
ICE-88 memory map (see Memory and I/O Port Mapping
Commands).

The content of two adjacent bytes in memory. The most significant
byte is located in the high address of the address pair; the least
significant byte is stored in the low address of the pair. The
address following WORD is treated as a logical address; the
ICE-88 memory map is consulted to find the physical address
whose content is referenced.

The same as BYTE except when displaying.

The same as WORD except when displaying.

The content of four adjacent bytes in memory, interpreted as a
base and displacement. The displacement is located at the low 2
bytes of the 4 and the base is at the high 2 bytes. The address
following POINTER is treated as a logical address; the ICE-88
memory map is consulted to find the physical address whose con
tent is referenced.

ICE-88

ICE-88 Interrogation and Utility Commands

The meta-term address means one of the following types of entries.

numeric-expression The forms for numeric expressions are presented in Chapter
5. The result obtained when the expression is evaluated
becomes an address modulo 64K.

(mem-type address) A memory content reference with a form such as BYTE
(WORD 1000) represents an indirect reference. The content
of the address or address-pair inside the parentheses is treated
as the address for the mem-type outside the parentheses.

To obtain the content of bytes, words, or pointers in a range of addresses, use the
form:

memory-type partition

Apartition can be a single address, or one of the following types of constructs.

address TO address

address LENGTH number-ot-bytes (for BYTE and SINTEGER)

address LENGTH number-ot-words (for WORD and INTEGER)

address LENGTH number-ot-double-words (for POINTER)

The first form of partition uses the keyword TO. The address on the right of
the keyword TO must be greater than or equal to the one on the left. With BYTE
and SINTEGER, this form allows you to access the content of each byte location in
the range; the range includes both the first and last address in the partition.
With WORD or INTEGER, the first address is treated as the low address of the first
address pair in the range; subsequent pairs of addresses are accessed until the
second address is reached. If the second address is the low address of a pair, the
word formed from the content of that address and the next consecutive higher
address is accessed; if the second address is not the low address of a pair (that is, if it
turns out to be the high address of a pair already accessed in the range), the access
ends after the last complete pair has been accessed. Word-length accesses can begin
on either an even-numbered or an odd-numbered address. With POINTER, the first
address is treated as the low address of the first address quadruple in the range;
subsequent quadruples of addresses are accessed until the second address is reached.
If the second address is the low address of a quadruple, the pointer formed from the
content of that address and the next three consecutive higher addresses is accessed; if
the second address is not the low address of the quadruple, the access ends after the
last quadruple has been accessed. Pointer length accesses can begin on either an
even-numbered or an odd-numbered access.

The second, third, and fourth forms use the keyword LENGTH. The address
preceding the keyword LENGTH is the starting address in the range, as with the first
form (using TO). The number or expression following the keyword LENGTH gives
the number of addresses (when the controlling memory-type is BYTE or
SINTEGER), the number of address pairs (for WORD or INTEGER) or the number
of addresses quadruples (for POINTER) (Must be an integer value).

7-31

Interrogation and Utility Commands

7-32

Setting Memory Contents

To assign a new content to a byte, sinteger, word, integer, pointer or reallocation,
use a command with the form:

I mem-type address I = new-content
[!!mod-name] !symbol-name ...

The meta-terms mem-type and address represent the types of entries discussed
earlier in this section.

The meta-term new-content represents one of the following types of entries (for
single addresses, setting the content of a range of addresses will be discussed later
on).

numeric-expression A numeric expression evaluated by the ICE-88 emulator to a
single number.

If mem-type is a POINTER, new-content must be a pointer value. Otherwise, new
content must be an integer value.

When a single byte address is to be set, the ICE-88 emulator treats the new
content as an 8-bit quantity. If new-content has more than eight bits, the least
significant eight bits in the quantity are used as the new content; and the other
(higher) bits are lost. If new-content has fewer than eight bits, the bit values in the
quantity are right-justified (placed in the low-or.der bits in the address), and the
remaining (high) bits in the location are set to zeroes.

Here are some examples of setting byte contents. The first line of each example
shows the command that sets the new contents; the second line gives a command
that produces a display of the contents just set; the third line shows the resulting
display. The output radix is assumed to be H (hexadecimal).

* BYTE 1000H = FFH

*BYTE 1000H

BYT 0000:1000H=FFH

*BYTE 1010H = RAL + 1

*BYTE 1010H

BYT 0000:1010H=F1 H

*BYTE 1020H = FF11H

*BYTE 1020H

BYT 0000:1020H=11 H

*BYTE 1030H = 1Y

*BYTE 1030H

BYT 0000:1030H=01 H

*BYTE 1040H = 'A'

*BYTE 1040H

BYT 0000:1040H=41 H

*BYTE 1050H = BYTE 1000H

*BYTE 1050H

BYT 0000:1050H=FFH

(or)

(or)

(or)

(or)

(or)

(or)

* BYTE 0100:0000 = FFH

* BYTE 0100:0000

BYT 0100:0000H=FFH

*BYT100:10H = RAL + 1

* BYT 100:10H

BYT 0100:0010H=F1 H

* BYTE 100:20 = FF11 H

* BYTE 100:20

BYT 0100:0020H=11 H

*BYT 103:0 = 1Y

*BYT 103:0H

BYT 0103:0000H=01 H

*BYT 104:0 = 'A'

* BYT 100:40

BYT 0100:0040H=41 H

*BYTE 100:50H = BYT 100:0H

*BYT 105:0

BYT 0100:0050=FFH

You can change the radix used to display the contents, using the Set Output Radix
(BASE) command.

ICE-88

ICE-88 Interrogation and Utility Commands

When a single word address is to be set, the ICE-88 emulator treats the new- con
tent as a pair of bytes. The least significant byte is loaded into the low address in the
pair, and the most significant byte is loaded into the high address in the pair. If new
content has fewer than 16 bits, the bit values are loaded starting with the low ad
dress, and right-justified. The remaining (high) bits in the address pair are set to
zeroes. The following examples demonstrate some of the possibilities for the setting
address pairs.

*WORD 1000H = 1122H
*WORD 1000H
WOR 0000:1 OOOH=1122H

*WORD 1010H = FFH
*WORD 1010H
WOR 0000:1010H=00FFH

*WORD 1030H = WORD 1000H
*WORD 1030H
WOR OOOO:1030H=1122H

(or)

(or)

(or)

*WORDO:1000H = 1122H
*WOR 0:1 OOOH
WOR 0000:1 000H=1122H

*WOR 101 :OH =FFH
*WORD 101:0
WOR 0101 :OOOOH=OOFFH

*WORD 0:1 030H = WaR 0:1 OOOH
*WOR 103:0
WOR 0103:0000H=1122H

When a single pointer is to be set, the ICE-88 emulator treats the new-content as a
displacement and base. The least significant byte is loaded into the low address in
the quadruple, and most significant byte is loaded into the high address. The follow
ing examples demonstrate some of the possibilities for setting pointers.

*POINTER 1000H = 1122:3344H
*POINTER 10000H
POI0000:1000H=1122:3344H

(or) *POI100:0 = 1122:3344H
*POI0:1000H
POI0000:1000H=1122:3344H

A command of the form BYTE X =BYTE Y copies the content of the address Y to
the content of address X where addresses X and Yare either integer or pointer values
as shown in the examples above. A command of the form WORD X = WORD Y
copies the content of address Y to location X, and the content of address (Y + 1) to
location (X + 1). A command of the form POINTER X = POINTER Y copies the
content of location Y through (Y + 3) to locations X through (X+3) respectively. A
command of the form BYTE X = WORD Y copies the content of address Y to loca
tion X; the content of location (X + 1) is unchanged. A command of the form
WORD X = BYTE Y copies the content of address Y to location X; the content of
location (X + 1) is set to a byte of zeroes. POINTER X = BYTE Y copies (Y) to (X)
zeroes in (X) + 1 to (X) + 3.

The commands used to set a range of addresses differ in some details.

One way to set a range of addresses is with the command of the form:

mem-type address =list of new-content values

With this form the address on the left side of the equals sign gives the starting loca
tion and the number of values in the list to the right of the equals sign tells the
ICE-88 emulator how many consecutive addresses to load. Consecutive locations are
changed to the values of the new-contents in left-to-right order. The list of new
content values can consist of expressions, multi-character strings and memory
partitions.

7-33

Interrogation and Utility Commands

7-34

Here are some examples showing the use of this form of the set memory contents
command.

*BYTE 1000H = 11 H, 22H, 33H, 44H, 55H, 66H, 'AB'

* BYT 1000H LEN 8T
BYT 0000:1000H=11 H 22H 33H 44H 55H 66H 41 H 42H

*WOR 200:0H = FFFFH, WORD 100:0H

*WOR 200:0H LENGTH 4T

WOR 0200:0000H=FFFFH 2211 H

*POI4000:20H = 1122:3344H, WOR 1002H, BYT 1002

*POI4000:20H

POI4000:0020H=1122:3344 0000:4433 0000:0033

To set a range of addresses all to the same new value, use a command of the form:

mem-type partition = new-content

The forms of partition are discussed above in this section. All addresses in the parti
tion are set to the single new-content value. The following examples show some of
the possible results obtained with this command form.

*BYT 1000H TO 1005H =FFH
*BYTE 1000H LEN 5H

BYT 0000:1000H=FFH FFH FFH FFH FFH

*WORD 200:0 LENGTH 6T = AAOOH

*WOR 200:0H TO 200AH

WOR 0200:0000H=AAOOH AAOOH AAOOH AAOOH AAOOH AAOOH

*POINTER 3000H LEN 3T = 1234:5678H

POI 0:3000H TO 0:300BH

WOR 0000:3000H=1234:56781234:56781234:5678

The last form of the set memory contents command sets the contents of each address
in a range (partition) to the corresponding new-content in a list of values. This form
is as follows.

mem-type partition =list of new-content values

This form combines the two forms discussed above. The list of new-content values
can consist of expressions, multi-character strings and memory partitions.

If the number of locations in the partition is equal to the number of values in the
new-content list, the addressed locations are set to the corresponding values in the
list, in left-to-right order.

If the number of locations in the range is greater than the number of new values in
the list, the locations are filled with the values from left-to-right, repeating the
values in left-to-right order as necessary to fill all the locations. The maximum
number of new content bytes that can be repeated is 128. With more than 128 bytes,
the data is transferred but not repeated, and an error message is displayed.

If the number of new values in the list is greater than the number of locations in the
partition, the lowest location receives the first value, and successive locations in the
range receive values in left-to-right order until all locations in the range have re
ceived values. The excess values are then detected by the ICE-88 emulator as an error
condition, and an error message is displayed. The excess values are lost.

ICE-88

ICE-88 Interrogation and Utility Commands

Here are a few examples showing this form of command.

* BYT 1 OOOH TO 1004H = 'ABCDE'
o,BYT 1000H LEN 5T
BYT OOOO:1000H=41 H 42H 43H 44H 45H

o,WORD 200:0H LENGTH 6T = 1122H, 'AB'
o,WOR 200:0H TO 200:AH
WaR 0220:0000H=1122H 0041 H 0042H 1122H 0041 H 0042H

o,BYTE 1000H TO 1002H = 11H, 22H, 33H, FFH
(an error message such as EXCESSIVE DATA is displayed)
* BYT 100:0 LEN 4T
BYT 1000:0000=11 H 22H 33H 44H

In the third example, note that the byte at location 1003H retains the value set in the
first example in the group of examples (44H rather than the FFH given in the
command.)

Port Content References

The set port contents commands parallel those of the set memory contents com
mands with exception of port addressing. There are a total of 65536 8-bit ports
available for input/output in the ICE-88 emulator. The ports are referenced by the
mnemonic PORT. These ports can be referenced as 16-bit ports by the mnemonic
WPORT. Each port is referenced by a port-number that is an integer value in the
range of 0 through 65535.

To assign a new content to an 8-bit or 16-bit port, use the following command with
the form:

port-type port-number = new-content

The meta-terms port-type and port-number are used to specify individual ports.

port-type Defines the port type and size:

PORT An 8-bit port.

WPORT A 16-bit port.

port-number An integer value specifying a specific port.

The following are examples of the use of this command form.

PORT 123 = FFH

WPORT 123 = FFFFH

One way of setting a range of ports is with the command of the form:

port-type port-number =/ist of new-content values

With this form the port-number on the left side of the equals sign gives the starting
port location and the list to the right of the equals sign tells the ICE-88 emulator how
many consecutive ports to load. Consecutive ports are changed to the values of the
new-contents in left-to-right order.

7-35

Interrogation and Utility Commands

7-36

Here are some examples showing the use of this form.

PORT 1000H = 11,22, 33H, 44H, 55H, 66H

WPORT 1000H = 1122H, 3344H, 5566H

To set a range of ports all to the same new value, use a command of the form:

port-type partition = new-content

The following are examples of this form:

PORT 1 OOOH TO 1005 = FFH

WPORT 2000H LENGTH 20H = FFFFH

The last form of the set port contents sets the contents of each port in a range (parti
tion) to the corresponding new-content in a list of values. This form is as follows:

port-type partition = list of new-content values

If the number of ports in the partition is equal to the number of values in the new
content list, the addressed ports are set to the corresponding values in the list, in left
to-right order.

If the number of ports in the range is greater than the number of new values in the
list, the ports are filled with the new values from left-to-right, repeating the values in
left-to-right order as necessary to fill all the ports.

If the number of new values in the list is greater than the number of ports in the par
titian, the lowest numbered port receives the first value, and successive ports in the
range receive values in left-to-right order until all ports in the range have received
values. The excess values are then detected by the ICE-88 emulator as an error con
dition, and an error message is displayed. The excess values are lost.

Here are a few examples showing this form of command.

PORT 1000 TO 1005H = 'ABCDE'

WPORT 2000H LEN 6T = 1122H, 'AB'

PORT 1000H TO 1002H = IlH, 22H, 33H, FFH

(an error message such as EXCESSIVE DATA is displayed)

ICE·88

ICE-88 Interrogation and Utility Commands

Set Memory Command

mem-type partition =new-content [, new-content] ...
typed-mem-ref = numeric-expression

Examples:

BYTE 0800H = FFH
BYTE 7000H LENGTH 16T = OOH
BYT 0800 TO 0805 = 12H, 34H, 56H, 78H, 9AH, BCH
WORD 70FFH = IP
WOR 7000H = PIP + 1
POINTER 8000H = ABCD:1234H
BYTE 0800H = 'ABCDE'
POl7000H = POl4000H LEN 20H
BYT#56 = FAH
!VAR = 75
!X =!X + 1
!!MODA !PTR = SS:SP

mem-type

partition

new-content

One of the six memory "content-of" modifiers BYTE, WORD,
SINTEGER, INTEGER, or POINTER.

One or more contiguous locations in memory.

One of the following types of entries, to be used as the new contents
of the memory location:

numeric-expression

'string'

mem-type partition

port-type partition

typed-mem-ref See page 5-6.

7-37

Interrogation and Utility Commands

7-38

Set Input/Output Port Contents Command

port-type partition = new-content [, new-content] ...

Examples:

PORT 0800H =FFH
PORT 7000H LENGTH 16T = OOH
POR 0880 TO 0885 = 12H, 34H, 56H, 78H, 9A, BCH
WPORT 70FFH = IP
WPO 7000H = PIP + 1
PORT 0800H = 'ABCDE'
PORT56= FAH

port-type

partition

new-content

One of the two port "content-of" modifiers PORT or WPORT.

One or more contiguous ports (must be integers).

One of the following types of entries, to be used as the new contents
of the port:

numeric-expression

'string'

mem-type partition

port-type partition

ICE·88

ICE-88 Interrogation and Utility Commands

Symbol Table and Statement Number
Table Commands

The the ICE-88 emulator maintains a symbol table and source program statement
number table to allow you to refer to memory addresses and other values by using
symbolic references and statement references in the ICE-88 commands.

This section gives details on the following commands.

Command

DEFINE Symbol
Display Symbols
Display Statement Numbers
Display Modules
Change Symbol
REMOVE Symbols
REMOVE Module
TYPE
Set DOMAIN
RESET DOMAIN

Discussion

The ICE-88 symbol table receives symbols from two sources; the symbol table
associated with the user program can be copied to the symbol table when the pro
gram is loaded, and the user can define additional symbols for use during the emula
tion session.

Corresponding to each symbol in the table is a number that you can interpret and
use either as an address or as a numeric value (variable or constant). The next few
paragraphs discuss the kinds of symbols that can appear in the table, and the inter
pretation of the corresponding symbol table quantity (address or value).

Instruction and statement labels are loaded with the program code. The symbol
table gives the address of the instruction corresponding to the label.

A program variable is a symbol for a quantity that can have its value changed as a
result of an instruction in the program. Program variables are LOADed with the
program code. The symbol table gives the address where the variable value is stored.

A program constant is a symbol for a label set to a constant value (for example,
using the assembler directive EQU or SET). Program constants are loaded into the
symbol table when the program code is loaded. The symbol table gives the constant
value associated with the symbol.

A module name is the label of a simple DO block that is not nested in any other
block (for PL/M-86), or a label that is the object of a NAME directive (in 8086
assembly language). If no NAME directive is given, the module name is the same as
the source file name without the extension. For example, if the source file name is
":FI :MYPROG.A88," the module name will be "MYPROG."

7-39

Interrogation and Utility Commands

7-40

A module name itself does not have a corresponding address value in the symbol
table. However, symbols contained in a module are considered to be "local" to that
module; the ICE-88 emulator thus allows you to reference multiple occurrences of
the same symbol name in different modules, by using the module name as a modifier
in the symbolic reference.

The symbol table is organized to preserve the modular structure present in the pro
gram. Initially (before any code is loaded), the symbol table consists of one
"unnamed" module. Any symbols defined without a specific module name are
stored in the unnamed module in the order they were defined. The unnamed module
is always the first module in the symbol table. Following the unnamed module,
named modules are stored in the symbol table in the order that the modules were
loaded into the ICE-88 emulator. Symbols local to each named module are stored in
the order they appear in the module.

In addition to the symbols stored when the program code is loaded, you can use the
DEFINE Symbol command to define new symbols for your use during the emula
tion session. The rules for user-defined symbols are as follows.

The name of the new symbol (symbol-name) can be defined with a maximum of 122
characters. However, the ICE-88 emulator truncates each symbol-name to the first
31 characters. Thus, to be different, two symbols must be unique in the first 31
characters.

The first character in the new symbol-name must be an alphabetic character, or one
of the three characters @ or? or underscore (_). The remaining characters after the
first can be these characters or numeric digits.

You can specify the module that is to contain the new symbol you define. Symbols
defined without a module are placed in the unnamed module at the head of the
table, in the order they were defined. Symbols defined with an existing module name
are placed in that module's section of the table; the module named must already
exist in the table.

The new symbol name cannot duplicate a symbol name already present in the
module specified. You can, however, have two or more symbols of the same name in
different modules.

When you define a new symbol, you also specify the value corresponding to it in the
table. You can treat the value you assign as an address or as a numeric value for use
other than addressing.

The DEFINE Symbol command has the following form.

DEFINE symbolic-reference = address: : value [OF memory-type]

The forms of symbolic-reference are shown in Table 7-8. The meaning of each form
is as follows. Not all forms can be used in a DEFINE Symbol command.

A simple symbolic-reference has the form . symbol-name. the ICE-88 emulator
searches for this form of reference starting with the first symbol in the unnamed
module. If the symbol is not in the unnamed module, the ICE-88 emulator searches
through the named modules in the order they were loaded, and takes the first
occurrence of the symbol in the first (earliest) module that contains it.

When you define a symbol without a module, it is placed in the unnamed module.

ICE-SS

ICE-88 Interrogation and Utility Commands

The symbolic-reference can include a module-reference. The module reference
immediately precedes the symbol name; the module-name is identified by a prefix
consisting of a double period (..). When you define a symbol with a module
reference, the symbol is added to the symbols under that module. A later reference
to a symbol with a module name restricts the search to that module.

Table 7-8. Symbolic References and Statement References

Type of Meta-notation Example Display DEFINE Change REMOVE Reference

Symbolic .symbol-name .ABC YES YES YES YES

Symbolic .. module. symbol-name .. MAIN.DEF YES, if module is already
present in table.

Symbolic .symbol-name.symbol-name .XX.YY YES NO YES YES

Statement #statement-number #56 YES NO NO NO

Statement .. module#stmt-number .. MAIN#44 YES NO NO NO

The meta-term address/value as used in the DEFINE Symbol command means one
of the forms of numeric expressions given in Chapter 4.

The meta-term memory-type one of the following memory types: BYTE, WORD,
SINTEGER, INTEGER, or POINTER.

Once a symbol has been defined or loaded, any reference to that symbol is
equivalent to supplying its corresponding address or value.

To display the value from the symbol table corresponding to any symbol, enter the
appropriate symbolic reference followed by a carriage return. The ICE-88 emulator
displays the symbol table value on the next line.

To display the entire symbol table, enter the command SYMBOL followed by a car
riage return. Symbols are displayed module by module, starting with the unnamed
module. The address/value corresponding to each symbol is also displayed.

Example 1.

*.SAM
.SAM=0200:1 FE2H OF INT

Example 2.

* .. MYPROG .SAM
.SAM=0200:1 FE2H OF INT

(command)
(display)

(command)
(display)

7-41

Interrogation and Utility Commands

7-42

Example 3.

*SYMBOL
.TEMP=0000:0001 H
MODULE .. MAIN
.BEGIN= 0800:0050H
. VAR=0800:01 OOH OF BYT
MODULE .. SUBR
. PROC=0800:0069H
.X=0800:01 01 H OF WOR

(command)
(display)

The ICE-88 emulator also maintains a statement number table for user programs
written in PL/M-86 source code. The statement numbers are assigned by the
PL/M-86 compiler. Corresponding to each source statement number in the table is
the address of the first instruction generated by that source statement.

Table 7-8 shows the forms used to refer to statement number in the ICE-88
emulator. The simplest form is the statement-number prefixed by a number sign (#).
A module- reference can precede the statement reference, since the statement
number table preserves any modular structure in the program. Thus, two modules
compiled separately can have the same statement numbers; the module reference
tells the ICE-88 emulator which statement number to use.

To display the address corresponding to a statement-number, enter the appropriate
statement number reference followed by a carriage return.

The ICE-88 emulator does not allow you to change the address corresponding to any
existing statement number, to define any new statement numbers, or to delete
(REMOVE) any statement numbers.

To display the value from the statement number table of any statement number,
enter the appropriate statement number reference followed by a carriage return. The
ICE-88 emulator displays the statement number value on the next line.

Example 1.

*#1
#1 =0800:0050H

Example 2.

* .. MAIN #2
#2=0800:0057H

(command)
(display)

(command)
(display)

To display the addresses of all the statement numbers in the statement number table,
enter the keyword LINE. The ICE-88 emulator displays all the statement number
addresses starting on the line following the command.

Example.

*UNE
MODULE .. MAIN
#1 =0800:0050H
#2=0800: 0057 H
MODULE .. SUBR
#1=1140:0012H
#2=1140:0037H
#3=1140:00DFH

(command)
(display)

ICE-88

ICE-88 Interrogation and Utility Commands

To display the names of all the modules currently in the ICE-88 module table, enter
the keyword MODULE. The ICE-88 emulator displays the names of all the modules
currently in the table.

Example.

*MODULE
MODULE .. MAIN
MODULE .. SUBR

(command)
(display)

You can change the address/value corresponding to an existing symbol by entering a
command of the form:

symbolic-reference=address::value [OF memory-type]

Any of the three forms of symbolic-reference shown in table 7-8 can be used to iden
tify the symbol whose value is to be changed. The symbol must already exist as
referenced.

The forms of address: :value are discussed earlier in this section. Any of these forms
may be used to change the value of an existing symbol.

Where multiple occurrences of the same symbol name exist in the table, the rules for
table search given earlier determine which of the several instances of the symbol is to
receive the new address value .

To delete one or more symbols from the table, use a command of the form:

REMOVE list of symbolic-references

The symbolic-references in the list are separated by commas. The ICE-88 emulator
searches the table for each reference using the search rules given earlier, deleting the
first occurrence of each symbol name that fits the type of reference given.

Note that deleting a symbol from the ICE-88 symbol table makes that symbol in
accessible to the ICE-88 emulator but does not affect the program code.

To delete the entire symbol table and the statement number table, enter the com
mand REMOVE SYMBOL.

To delete one or more modules, enter the following command:

REMOVE MODULE module-name [, module-name] ...

Removing a module removes all symbols and statement numbers in the module, but
does not affect object code.

Example 1.

REMOVE MODULE .. MAIN

Example 2.

REM MOD .. MAIN, .. SUBR

7-43

Interrogation and Utility Commands

7-44

The TYPE command allows you to assign or change the memory type of any symbol
in the symbol table. The TYPE command is entered in the following format:

TYPE symbolic-reference = memory-type

The referenced symbol is assigned the memory type entered in the command.

Example.

TYPE .. MYPROG .SAM = WORD

The symbol .SAM now is memory type WORD.

The Set DOMAIN command establishes a specified module as the default module
for statement numbers. The RESET DOMAIN command establishes the first
module in the module table after the unnamed module as the default for statement
numbers, if there is a module other than the unnamed module; otherwise it
establishes the unnamed module as the default. This is the initial domain.

Setting the domain should be especially useful for avoiding having to use module
names on statement numbers from a particular module while debugging that portion
of the program.

ICE-88

ICE-88 Interrogation and Utility Commands

DEFINE Symbol Command

DEFINE [module-name] symbol = expression [OF memory-type]

Examples:

DEFINE .. MAIN .BEGIN = F3H OF BYTE
DEF .CAR = OOOO:OFOOH
DEF .VAR = 123T OF WOR
DEF .ENT1 = .VAR + 100FWOR
DEF .CAT2 = 0700:0050H OF POI
DEF .. SUBRA .CAT2 = OOOO:OOFOH OF POI

DEFINE A command keyword that tells the ICE-88 emulator to enter the
new symbol in the appropriate module table and assign the symbol
the initial value given.

module-name A sequence of contiguous alphanumeric characters, prefixed by a
pair of periods (..) that references a program module.

symbol A sequence of contiguous alphanumeric characters, prefixed by a
period (.) that references a location in a symbol table.

The assignment operator.

expression A numeric expression.

OF A command modifier keyword denoting that a specification of
memory type is to follow.

memory-type A specification of the memory type of the symbol: BYTE, WORD,
SINTEGER, INTEGER, or POINTER. If omitted, symbol has no
type.

7-45

Interrogation and Utility Commands

7-46

Display Symbols Command

SYMBOL

[module-name) symbol [symbol) ...

Examples:

SYMBOL
.ABC
.. MAIN.DEF
.. XX.YY
.SU BR.ABC. DEF

SYMBOL A command keyword that tells the ICE-88 emulator to display the
entire ICE-88 symbol table, module by module.

module-name A sequence of continuous alphanumeric characters, prefixed by a
period (..) that references a program module.

symbol A sequence of contiguous alphanumeric characters, prefixed by a
period (.) that references a location in a symbol table.

ICE-88

ICE-88 Interrogation and Utility Commands

Display Statement Numbers Command

LINE

[module-name] #decimal-10

Examples:

LINE
#54
.. MAIN#44

LINE A command keyword that tells the ICE-88 emulator to display all
statement numbers and associated absolute addresses currently in
the statement number table.

module-name A sequence of contiguous alphanumeric characters, prefixed by a
pair of periods (..) that reference a program module.

The "number" sign designating the reference as a statement
number.

decimal-10 The (source) statement number (a numeric constant). The default
suffix is always decimal.

7-47

Interrogation and Utility Commands

7-48

Display Modules Command

MODULE

Example;

MODULE

MODULE A command keyword that tells the ICE-88 emulator to display the
names of all the modules currently in the module table.

ICE-88

ICE-88 Interrogation and Utility Commands

Change Symbol Command

[module-name] symbol [symbol] ... = expression [OF memory-type]

Examples:

.ABC = 2000H

.. MAIN.DEF = AAFFH OF WaR

.. SUBR.PARM = .ABC + 10

.TEMP = .ABC + .. MAIN.DEF OF WORD

module-name A sequence of contiguous alphanumeric characters, prefixed by a
pair of periods (..), that references a program module.

symbol A sequence of alphanumeric characters, prefixed by a period (.)
that references a location in the symbol table.

The assignment operator.

expression A numeric expression.

OF A command modifier keyword denoting that a specification of
memory type is to follow.

memory-type A specification of the memory type of the changed symbol: BYTE,
WORD, SINTEGER, INTEGER, or POINTER. If omitted, do
not change symbol's type.

7-49

Interrogation and Utility Commands

7-50

REMOVE Symbols Command

REMOVE [module-name] symbol [symbol] ... [, [module-name] symbol [symbo/] ...] ...

REMOVE SYMBOL

REMOVE MODULE module-name [,module-name] ...

Examples:

REMOVE .ABC
REMOVE .. MAIN.DEF
REMOVE .HIJ,.PARM1, .. MAIN.TWO,.CARS,.CARS1 .. SUBR.XX
REMOVE SYMBOL
REMOVE MODULE .. MAIN, .. SUBR, .. CALC

REMOVE A command keyword causing the symbols that follow to be deleted
from the ICE-88 symbol table.

module-name A sequence of alphanumeric characters, prefixed by a pair of
periods (..) that references a program module.

symbol A sequence of alphanumeric characters, prefixed by a period (.)
that references a location in the symbol table.

SYMBOL A command modifier that tells the ICE-88 emulator to delete the
entire current symbol table.

MODULE A command modifier that tells the ICE-88 emulator to delete all the
symbols and lines of the named module from the tables but does
not affect object code.

ICE-88

ICE-88 Interrogation and Utility Commands

TYPE Command

TYPE [module-name] symbol [symbol] ... = memory-type

Examples:

TYPE
TYPE .ABC = POINTER
TYPE .. MAIN.DEF = WaR
TYPE .. SUBR.PARM.XX.YY = BYT

TYPE A command keyword that allows the user to assign or change the
memory type of any symbol in the symbol table.

module-name A sequence of alphanumeric characters, prefixed by a pair of
periods (..) that references a program module.

symbol A sequence of alphanumeric characters prefixed by a period (.) that
references a location in the symbol table.

The assignment operator.

memory-type A specification of the memory type to be assigned to the referenced
symbol: BYTE, WORD, SINTEGER, INTEGER, or POINTER.

7-51

Interrogation and Utility Commands

7-52

Set DOMAIN Command

DOMAIN module-name

Example:

DOMAIN .. MAIN

DOMAIN A command keyword that causes the ICE-88 emulator to establish
the named module as the default module for statement numbers.

module-name A sequence of alphanumeric characters prefixed by a pair of
periods (..) that references a program module.

ICE-88

ICE-88 Interrogation and Utility Commands

RESET DOMAIN Command

RESET DOMAIN

Example:

RESET DOMAIN

RESET

DOMAIN

A command keyword restoring its object to a reset condition.

A modifier keyword that causes the ICE-88 emulator to establish
the first module after the unnamed module as the default module
for statement numbers. If there are no named modules, the
unnamed module is established as the default module.

7-53

Interrogation and Utility Commands

7-54

Display Commands

This section presents the ICE-88 commands that allow you to reference and display
the following systems elements.

• 8088 Processor Registers

• ICE-88 Status Registers

• 8088 Pin Signals

• Memory

• Ports
• Status Flags

The following commands are discussed in this section.

Command

Display Processor
and Status Registers

Display Memory

Display 1/0

Display STACK

Display Boolean

Display NESTING

EVALUATE

Discussion

Registers

Purpose

Display the current contents of any of the 8088 processor
registers and ICE-88 status registers.

Display the contents of a range of memory.

Display the contents of a range of I/O locations.

Display the contents of the user's stack.

Display boolean values.

Display procedure starting and return addresses.

Display numeric constant or expression in all five
possible output radixes.

The 8088 register structure contains three files of four 16-bit registers and a set of
miscellaneous registers. The three files of registers are the general register file, the
pointer and index file, and the segment register file. The miscellaneous set consists
of the instruction pointer, flag register, CAUSE register, OPCODE register, PIP
register, TIMER register, HTIMER register, BUFFERSIZE register, UPPER
register and LOWER register. The register structures are described in the following
paragraphs.

Table 7-9. Classes of Hardware Elements

Class Name Hardware Elements

general-register 16-bit work register
pointer-register 16-bit address register
index-register 16-bit address register
segment-register 16-bit segment reference register
status-register 8 and 16-bit status registers

ICE-88

ICE-88 Interrogation and Utility Commands

General Register File. The RAX, RBX, RCX, and RDX registers compose the
General Register File. These registers participate interchangeably in 8088 arithmetic
and logical operations. These registers are assigned the following mnemonics:

RAX: Accumulator
RBX: Base Register
RCX: Count Register
RDX: Data Register

The general registers are unique within the 8088 as their upper and lower bytes are
individually addressable. Thus the general registers contain two 8-bit register files
called the H file and L file as illustrated below:

H File L File

1S 87 o
RAX: RAM RAL

RBX: RBH RBL

RCX: RCH RCL

RDX: RDH RDL

General Register File

Pointer and Index Register File. The BP ,SP ,SI, and DI set of 16-bit registers is
called the Pointer and Index Register File. The registers in this group are similar in
that they generally contain offset addresses used for addressing within a segment.
They can participate interchangeably in 16-bit arithmetic and logical operations.
They are also used in address computation. The mnemonics associated with these
registers are:

SP: Stack Pointer
BP: Base Pointer
SI: Source Index
01: Destination Index

The pointer and index registers are illustrated below:

15 0

~il====1
Pointer and Index Register File

Segment Register File. The CS,DS,SS, and ES registers constitute the Segment
Register File. These registers provide a significant function in the memory address
ing mechanisms of the 8088 .. They are similar in that they are used in all memory
address computations. The mnemonics associated with these registers are:

CS: Code Segment Register
OS: Data Segment Register
SS: Stack Segment Register
ES: Extra Segment Register

The contents of the CS register define the current code segment. All instruction
fetches are taken to be relative to CS using the instruction pointer (lP) as an offset.

7-55

Interrogation and Utility Commands

7-56

The contents of the DS register define the current data segment. All data references
except those involving BP ,SP, or DI in a string instruction, are taken by default to
be relative to DS.

The contents of the SS register define the current stack segment. All data references
which implicitly or explicitly involve SP or BP are taken by default to be relative to
SS.

The contents of the ES register define the current extra segment. The extra segment
has no specific use, although it is usually treated as an additional data segment.

The segment registers are illustrated below:

Segment Register File

Status Register

The instruction pointer, flag register, CAUSE register, OPCODE register, PIP
register, TIMER register, HTIMER register, BUFFERSIZE register UPPER
register, and LOWER register constitute the status register set. These registers pro
vide a variety of functions to the 8088. These registers are assigned the following
mnemonics:

IP: Instruction Register
RF: Flag Register
CAUSE: CAUSE Register
OPCODE: OPCODE Register
PIP: Previous Instruction Register
TIMER: TIMER Register
HTIMER: HTIMER Register
BUFFERSIZE: BUFFERSIZE Register
LOWER: LOWER Register
UPPER: UPPER Register

The contents of the IP register defines the offset to the CS register in instruction
address computations. The Flag Register contains the status flag values. The
CAUSE register is used to retain the cause of the last break in emulation. The
OPCODE register stores the opcode fetched in the last instruction-fetch cycle in
trace data. The Previous Instruction Register is used to store the displacement
part of the address of the last instruction-fetch in trace data. TIMER contains
the low-order 16 bits of the 2-MHz timer indicating how long emulation has run
(read only). HTIMER contains the high-order 16 bits of the timer (read only).
BUfFERSIZE contains the count (displayed in decimal only) of frames of valid
trace data collected in the trace buffer (16 bit, read only). The LOWER register
contains the lowest available address in Intellec memory above the ICE-88 soft
ware (16 bit read only). The UPPER register contains the highest available
address in Intellec memory below the user's symbol table (16 bit, read only).

ICE-88

Change 1

ICE-88 Interrogation and Utility Commands

The status registers are illustrated below:

15 7 o
IP:

RF: 1-----------1

CAUSE: I
OPCODE:r--____ .L...-I ___ ~

PIP:
1-----------1

TIMER:
1-----------1

HTIMER:
~--------~ BUFFERSIZE:

LOWER: ~--------~
~-----------I UPPER: &...-________1

Status Registers

The Flag Register (RF) contains nine status values, each one a bit in length. The
following mnemonics are assigned to each of the status values in the register:

AFL: Auxiliary-carry
CFL: Carry
DFL: Direction
IFL: Interrupt-enable
OFL: Overflow
PFL: Parity
SFL: Sign
TFL: Trap
ZFL: Zero

AFL is set if an instruction caused a carry out of bit 3 and into bit 4 of a resulting
value. CFL is set if an instruction caused a carry or a borrow out of the high order
bit. DFL controls the direction of the string manipulation instructions. IFL enables
or disables external interrupts. OFL is used to denote an overflow condition in a
signed arithmetic operation. SFL is used to indicate the sign of the result of an
operation. TFL is used to place the processor in a single-step mode for program
debugging. ZFL is used to indicate a zero valued result of an instruction. The posi
tion of the status bits in the RF Register are shown below:

15 14 13 12 11 10 9 8 7 6 4 3 2 o

I OFL I DFL IIFL I TFL I SFL I ZFL I I CFL I

Flag Registers

The CAUSE Register is used to store the cause for the last break in emulation. The
contents of this register is shown below:

7 6 5 4 2 o

Cause Register

7-57

Interrogation and Utility Commands

7-58

The byte returned by the "Read Break Cause" hardware command contains the
following bit values (if bit = 1, then the specified condition is true, otherwise false):

Bit Position

Pin References.

o
1

2
3
4
5
6

Condition

Breakpoint 0 matched
Breakpoint 1 matched
Both breakpoints matched sequentially
Guarded memory access occurred
User aborted processing
Timeout on user READY
Timeout on user HOLD

In addition to the status registers, the ICE-88 emulator provides access to six 8088
pins. The following mnemonics are assigned to reference the 8088 processor pins
shown below:

Mnemonic 8088 Pin

ROY READY
NMI NMI
TEST TEST
HOLD HOLD
RST RESET
MN MN/MX
IR INTR

General Formats for Numeric Values

The ICE-88 emulator displays numeric values in a variety of formats depending
upon the type of the numeric value. Table 7-10 defines the display formats for each
of the numeric types.

Table 7-10. Numeric Value Display Formats

Type Class Name Definition

BYTE byte An 8-bit value displayed in the current base.

SINTEGER sinteger sign byte-number (short integer number)

WORD word A 16-bit value displayed in the current base.

INTEGER integer sign word

sign + ::-

bit 0:: 1

POINTER pOinter base: displacement H

base 4 hexadecimal digits (the base value of painter)

displacement 4 hexadecimal digits (the displacement value of pointer)

ICE-88

ICE-88 Interrogation and Utility Commands

If the high order bit of an INTEGER or SINTEGER is 1, the numeric value is com
plemented and the sign is set negative ("-"). For example, FFH is displayed as
-OIH as SINTEGER and FOOOH is displayed as -IOOOH as INTEGER.

In base ASCII, a pair of apostrophes enclose a single char~cter in the case of a byte
value or encloses two characters if a word value is to be displayed. In the case of a
word, the high order byte appears on the left of the character pair.

In the four numeric bases, the BYTE and WORD values have a suffix and sufficient
leading zeroes to contain the following number of digits.

Hexidecimal Decimal Octal Binary

BYTE 2 3

I
3

I
8

I WORD 4 5 6 16

The Display Processor and Status Register Command allows you to display any of
the 8-bit and 16-bit registers, the status flags and 8088 pin values. All referenced
items are displayed on one line separated by spaces. However, if any displayed value
would extend beyond column 80, a new line of display is initiated. Each reference is
displayed according to the appropriate format shown below. The names are trun
cated to three characters.

8-bit-register-name = byte

16-bit-register-name = word

status-flag-name = bit

pin-name = bit

Example 1.

RAX, RBH, SP, CAUSE, AFL, HTIMER, BUFFERSIZE

Display:

RAX=0001H RBH=2FH SP=FFE7H CAU=OOH AFL=1 HTI=008EH BUF=D1A2H

Example 2.

REGISTER

Display:

RAX=OOOOH RBX=OOA2H RCX=0001 H RDX=0010H SP=OOOAH BP= OOOOH SI=0123H
DI=OOOOH CS=OOOOH DS=FF1 EH SS= OOOOH ES=OOOOH RF=OOOOH IP=FABCH

Example 3.

FLAG

Display:

CLF=O PFL=O AFL=O ZFL=O SFL=O TFL=1 IFL=O DFL=O OFL=O

7-59

Interrogation and Utility Commands

7-60 .

Example 4.

PIN

Display:

RDY=1 NMI=O TES=1 HOL=O RST=O MN=1 IR=O

The Display Memory command enables you to display a range of one or more
memory locations. When displaying memory, the format of the display depends
upon the memory type, given either explicitly by a mem-type or implicity by the type
of a symbol in a typed-memory-reference . For example, suppose that four con
secutive bytes of memory contain A5H, 81H, 34H and OCOH. The following are
sample outputs in each of the four bases: hexadecimal, decimal, octal and binary:

Memory Hexadecimal Decimal Octal Binary
Type

BYTE A5H 165T 2450 10100101Y
WORD 81A5H 33189T 1006450 1000000110100101Y
SINTEGER -5BH -91T -1330 -01011011Y
INTEGER -7E5BH -32347T -771330 -0111111001011011Y
POINTER C034:81A5H

Pointer type memory is always displayed in hexadecimal, regardless of the current
output base. The Display memory command permits you to display more than one
line of memory values. Each line of display contains the memory address of the first
value displayed on that line followed by a maximum number of values as indicated
by the following table.

Table 7 -11. Display Values Per Line

Hexadecimal Decimal Octal Binary ASCII

BYTE 16 8 8 4 64

WORD 8 8 8 2 32

SINTEGER 8 8 8 4 32

INTEGER 8 8 4 2 16

POINTER 4 - - - -

Assume that the following memory locations contain the values shown below (in
hexadecimal) :

Address Content

OOOOOH OOH 41 H 42H 43H 45H 20H 30H 30H 74H 68H 65H 72H 20H 43H 61 H 6CH
00010H 69H 66H 6FH 72H 6EH 69H 61 H OOH OAH 20H 20H 20H 20H 20H 20H 20H
00020H 20H 20H 20H 6CH 61 H 77H 20H 70H 72H 6FH 76H 69H 64H 65H 64H 20H
00030H 66H 6FH 72H 20H 70H 72H 6FH 67H 72H 61 H 60H 73H 20H 6FH 66H 20H
00040H 74H 68H 69H 73H 20H 73H 6FH 72H 74H 2EH 20H 20H 54H 68H 69H 73H

ICE-S8

ICE-88 Interrogation and Utility Commands

The following commands display the above memory values with BASE = H.

Example 1.

BYTE 0000 :0030

Display:

BYT 0000:0030H=66H

Example 2.

BYT 0:30 TO 0:3F

Display:

BYT OOOO:0030H=66H 6FH 72H 20H 70H 72H 6FH 67H 72H 61 H 6DH 73H 20H 6FH 66H 20H

Example 3.

WORD 0000:30

Display:

WOR 0000:0030H=6F66H

Example 4.

WOR 0:30 LEN 10H

Display:

WOR OOOO:0030H= 6F66H 2072H 7270H 676FH 6172H 736DH 6F20H 2066H
WOR OOOO:0040H= 6874H 7369H 7320H 726FH 2E74H 2020H 6854H 7369H

Example 5.

POINTER 0:30

Display:

POI0000:0030H=2072:6F66H

Example 6.

POI 0:30 TO 0:3C

Display:

POI0000:0030H=2072:6F66H 676F:7270 736D:6172H 2066:6F20H

Example 7.

POI 0:30 TO 0:4F

Display:

POI0000:0030H=2072:6F66H 676F:7270H 736D:6172H 2066:6F20H
POI0000:0040H=7369:6874H 726F:7320H 2020:2E74H 7369:6854H

7-61

Interrogation and Utility Commands

7-62

The following examples illustrate display in decimal (BASE=T).

Example 8.

BYTE 0000 :0030

Display:

BYT 0000:0030H=1 02T

Example 9.

BYT 0:30 TO 0:3F

Display:

BYT 0000:0030H=102T 111T 114T 032T 112T 114T 111T 103T
BYTOOOO:0038H=114T 097T 109T 115T 032T 111T 102T 032T

Example 10.

WORD 0:30

Display:

WOR OOOO:0030H=28518T

Example 11.

WORD 00:30 TO 00:4E

Display

WOR OOOO:0030H= 28518T 08306T 29296T 26479T 24946T 29549T 28448T 08294T
WOR OOOO:0040H= 26740T 29545T 29472T 29295T 11892T 08224T 26708T 29545T

Example 12.

POINTER 0:30

Display:

POI0000:0030H=2072:6F66H

Example 13.

POINTER 0:30 TO 0:3C

Display:

POI0000:0030H=2072:6F66H 676F:7270H 736D:6172H 2066:6F20H

ICE-88

ICE-88 Interrogation and Utility Commands

The following examples illustrate memory displays in octal (BASE=Q).

Example 14.

BYTE 0000:0030

Display:

BYT 0000:0030H=146Q

Example 15.

BYT 0:30 LEN 10H

Display:

BYT 0000:0030H=146Q 157Q 162Q 040Q 1600 162Q 157Q 147Q
BYT 0000:0038H=162Q 141 Q 1550 163Q 0400 157Q 146Q 040Q

Example 16.

WORO:30

Display

WOR 0000:0030H=067546Q

Example 17:

WORD 0:30 LEN 10H

Display:

WOR 0000:0030H=067546Q 020162Q 071160Q 063557Q
WOR 0000:0038H=060562Q 0715550 067440Q 020146Q
WOR 0000:0040H=064164Q 071551Q 071440Q 071157Q
WOR 0000:0048H=0271640 020040Q 064124Q 071551Q

Example 18.

POINTER 0:30 LEN 4

Display:

POI OOOO:0030H=2072:6F66H 676F:7270H 736D:6172H 2066:6F20H

The following examples illustrate memory displays in binary (BASE=Y).

Example 19.

BYTE 0:30

Display:

BYT OOOO:0030H=011 0011 OY

7-63

Interrogation and Utility Commands

7-64

Example 20.

BYTE 0:30 TO 0:3F

Display:

BYT 0000:0030H=01100110Y 01101111Y 01110010Y 00100000Y
BYT 0000:0034H=01110000Y 01110010Y 01101111Y 01100111Y
BYT 0000:0038H=01110010Y 01100001Y 01101101Y 01110011Y
BYT 0000:003CH=00100000Y 01101111Y 01100110Y 00100000Y

Example 21.

WORO:30

Display:

WOR 0000:0030H=0110111101100110Y

Example 22.

WOR 0:30 LEN 10H

Display:

WOR 0000:0030H=011 01111011 0011 OY 0010000001110010Y
WOR 0000:0034H=0111 001 00111 OOOOY 0110011101101111 Y
WOR 0000:0038H=011 00001 0111 001 OY 0111001101101101 Y
WOR 0000:003CH=0110111100100000Y 0010000001100110Y
WOR 0000:0040H=011 01000011101 OOY 0111001101101001 Y
WOR 0000:0044H=0111 0011 001 OOOOOY 0111001001101111 Y
WOR 0000:0048H=001 0111 0011101 OOY 0010000000100000Y
WOR 0000:004CH=011 01 00001 01 01 OOY 0111001101101001 Y

Example 23.

POINTER 0:30

Display:

POI OOOO:0030H=2072:6F66H (Always displayed in hexadecimal.)

The Display 110 command enables you to display byte ports (PORT) and word
ports (WPORT) in a manner similar to the Display memory command. Single port
contents or the contents of a range of ports may be displayed. However, only a
single integer is required to specify the port address. The following examples
illustrate the Display I/O command. The implied suffix in these examples is H
(hexadecimal) for address specification.

Example 1.

BASE=Y
PORT 120H

Display:

POR 0120H=10111111Y

ICE-88

ICE-88 Interrogation and Utility Commands

Example 2.

PORT 120 LEN 10

Display:

POR0120H=10111111Y 10111111Y 10111111Y 01111111Y
POR 0124H=10111111Y 10111111Y 10111111Y 01111111Y
POR 0128H=10111111Y 10111111Y 10111111Y 01111111Y
POR 012CH=10111111Y 10111111Y 10111111Y 01111111Y

Example 3.

BASE = 0
PORT 120

Display:

PO R 0120 H =2770

Example 4.

PORT 120 TO 12F

Display:

POR 0120H=227Q 1770 2770 1770 2770 1770 2770 1770
POR 0128H=277Q 1770 2770 1770 2770 1770 2770 1770

Example 5.

BASE =T
POR 120

Display

POR 0120H=191T

Example 6.

PORT 120 TO 12F

Display;

POR 0120H=191T 127T 191T 127T 191T 127T 191T 27T
POR 0127H=191T 127T 191T 127T 191T 127T 191T 127T

Example 7.

BASE= H
PORT 120

Display:

POR 0120H=BFH

7-65

Interrogation and Utility Commands

7-66

Example 8.

PORT 120 TO 12F

Display:

POR 0120H=BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH BFH 7FH

Example 9.

BASE=Y
WPORT 120

Display:

WPO 0120H=0111101110111111Y

Example 10.

WPORT 120 TO 12E

Display:

WPO 0120H=0111101110111111 Y 0111111110111111Y
WPO 0124H=0111111110111111Y 0111101110111111 Y
WPO 0128H=0111111110111111Y 0111101110111111 Y
WPO 012CH=0111101110111111Y 0111101110111111Y

Example 11.

BASE= Q
WPORT120

Display

WPO 0120H=077677Q

Example 12.

WPORT 120 TO 13E

Display:

WPO 0120H=0776770 0776770 0776770 0756770 0756770 0776770 0756770 0776770
WPO 0130H=0776770 0776770 0756770 0776770 0756770 0776770 0776770 0756770

Example 13.

BASE=T
WPORT 120

Display:

WPO 0120H=32703T

ICE-88

ICE-88 Interrogation and Utility Commands

Example 14.

WPORT 120 TO 13E

Display:

WPO 0120H= 32703T 32703T 32703T 31679T 31679T 32703T 31679T 32703T
WPO 0130H= 32703T 32703T 31679T 32703T 31679T 32703T 32703T 31679T

Example 15.

BASE = H
WPORT 120

Display:

WPO 0120H=7FBFH

Example 16.

WPORT 120 TO 13E

Display:

WPO 0120H=7FBFH 7FBFH 7FBFH 7BBFH 7BBFH 7FBFH 7BBFH 7FBFH
WPO 0130H=7FBFH 7FBFH 7BBFH 7FBFH 7BBFH 7FBFH 7FBFH 7BBFH

The Display STACK causes the top n words of the user's stack (i.e., user memory
pointed at by SS:SP) where n is an integer value in the command that specifies the
number words in the stack to be displayed.

Example

STACK 10

Display:

WOR OOOO:OOOOH= 4100H 4342H 2045H 3D30H 6874H 265H 4320H 6C61 H
WOR 0000:0010H= 6669H 726FH 696EH OD61 H 200AH 2020H 2020H 2020H

The Display Boolean command is used to display the boolean value of an integer
value contained in the command:

Example:

BOOl FFH

Display:

TRUE

Example:

BOOl!X =!Y

Display:

FALSE

7-67

Interrogation and Utility Commands

7-68

The Display NESTING Command

The Display NESTING command enables you to display the starting and return
addresses of all procedures that are currently active. The user stack is scanned for
procedure starting and return addresses as follows (all references to stack manipula
tions are restricted to the scope of the nesting module only):

1. Set b = CS

2. Set d = SP (word at the top of the user stack). If the 5 bytes from (b,d-5)
through (b,d-l) can be interpreted as a short call (direct or indirect) (2,3, or 4
bytes), then b,d is assumed to be a return address.

3. Set WORD temp$b:d = next word on the user stack. If the 5 bytes from
(temp$b,d-5) through (temp$b,d-l) can be interpreted as a long call (direct or
indirect) (2,3,4 or 5 bytes), INT (1 or 2 bytes), or INTO, then b,d (and the next
word in the stack for INT and INTO) can be assumed to be a return address.

4. The return address, type of call (i.e., short call direct), INT, or INTO, and the
starting address (for direct only) are displayed.

The above procedure is repeated until 16 iterations fail to find a return address or
the stack memory enters guarded memory. Care should be taken in using this com
mand as the above method is susceptible to error.

The EVALUATE Command

The EV ALU ATE command handles the arithmetic computation involved in
translating integers from one radix to another and computes the 20-bit address of a
pointer. This command has the form EVALUATE expr, where expr is any numeric
constant or numeric expression. Upon receiving this command, the ICE-88 emulator
evaluates any expression to a single number. If it is an integer, it displays the result
in the four bases Y, Q, T, and H, and the corresponding ASCII characters, all on
one line. For ASCII, the characters are enclosed in single quotes (' '); printing
characters are displayed (ASCII codes 20H through 7EH after bit 7 is masked off),
while non-printing characters are suppressed.

When the EVALUATE command is followed by the keyword 'SYMBOLICALLY'
(preceding the carriage return) the numeric value output by the command displayed
as a symbol or statement number plus a remainder. The ICE-88 symbols and state
ment numbers are searched to find the one with the same base whose value is closest
to but not greater than the value being output. In the event that a symbol and a
statement number have the same value, the symbol is used. The value is then
displayed as either the selected symbol plus a numeric-constant or the selected state
ment number plus a numeric-constant, where the numeric-constant is the
remainder in the current output base. If no symbol or statement number has a value
less than or equal to the number being output, the value is output as a numeric
constant. If the remainder is zero, the numeric constant is omitted.

If the numeric expression has a non-zero base, the value is displayed as a pointer
(base:disp).

ICE-88

ICE-88 Interrogation and Utility Commands

Here are several examples of the use of the EVALUATE command, with the display
produced by each one.

Example 1:

EVALUATE 123T

Display:

1111011Y 1730 123T 7BH ,{,

Example 2:

EVA FFH + 256T

Display:

111111111 Y 7770 511 T 1 FFH "

Note that the addition was performed first, then the result was displayed in the four
bases. The result contained only non-printing ASCII characters, displayed as empty
quotes.

Example 3:

EVA 111 :0222H SYMBOLICALLY

Display:

0111 :0222H

This example assumes that no symbol or statement numbers match.

Example 4:

EVA 111:222H SYM

Display:

.. MOD1.SAM + 0021 H

This example assumes that symbol .. MOD1.SAM is at address at 111 :201 and no
symbols or statement numbers exist in the interval 111 :201 through 111 :222.

7-69

Interrogation and Utility Commands

7-70

Display Processor and Status Registers Command

reference [, reference] ...

REGISTER

FLAG

PIN

Examples:

RAX
RBH, SI, AFl, HOl
REGISTER
R
FlA
PIN

reference

REGISTER

FLAG

PIN

Any of the reference keywords that reference processor
registers, status registers and pins. Also can include memory and
I/O in list.

A command keyword requesting the display of the thirteen
16-bit 8088 registers and RF.

A command keyword requesting the display of the nine status
flags.

A command keyword requesting the display of the contents of
the seven input pins.

ICE-88

ICE-88 Interrogation and Utility Commands

Display Memory Command

memory-designator address rTO address J
LLENGTH length

ASMaddress rTO address J
l!-ENGTH length

Examples:

BYTE 1000:100H
WOR 0:123 TO 0:200
SIN 100:0 LENGTH 200
INT 200:200
POINTER 200:200
POI 200:200 TO 200:2FE
ASM 1000:123
ASM 1000:123 TO 1000:400
ASM 2000:000 LEN 100

memory-designator One of the following keywords that specify the size and type of
memory referenced:

address

TO

LENGTH

length

ASM

BYTE

WORD

SINTEGER

INTEGER

POINTER

A I-byte (8-bit) integer value.

A 2-byte (l6-bit) integer value.

A I-byte (8-bit) short integer number (see
Table 7-2).

A 2-byte (l6-bit) integer value (see Table 7-2).

A 4-byte (two I6-bit integer) value.

A pointer value containing a base and a displacement that
together specify an address of a memory location.

A partition keyword that denotes that an address is to follow.
This address defines the upper bound of the required range of
addresses in the partition.

A partition keyword that denotes that a length value is to
follow.

An integer value specifying the number of addresses to be
contained in the partition (bytes, words or pairs of words,
depending on memory-designator).

A command keyword specifying the display of instructions in
disassembled format. (See Display of Trace Data in Instruc
tions Mode, page 6-26.)

7-71

Interrogation and Utility Commands

7-72

Display I/O Command

{
PORT }
WPORT

Examples:

PORT FF12H

address rTO address 1
LLENGTH lengtf!j

POR FFOO TO FFFF
POR 1000 LEN 200
WPORT123H
WPO 100 TO 200
WPO 100 LENGTH 101

PORT

WPORT

address

TO

LENGTH

length

Keyword reference to 8088 8-bit I/O port(s).

Keyword reference to 8088 16-bit I/O port(s).

An integer value to that specifies the address of a 8088 port.

A partition keyword that denotes that an address is to follow.
This address defines the upper bound of the required range of
port addresses in the partition.

A partition keyword that denotes that a length value is to
follow.

An integer value specifying the number of port addresses (byte
or word ports) to be contained in the partition.

ICE-88

ICE-88 Interrogation and Utility Commands

Display STACK Command

STACK expression

STACK 10H
STA .SAM
STACK .SAM + 20

STACK

expression

A command keyword that requests the display of the contents of
the user's stack. The stack is located in user memory referenced
by the pointer value SS:SP.

An integer expression. The value of this expression defines the
number of words at the top of the STACK that are to be
displayed.

7-73

Interrogation and Utility Commands

7-74

Display Boolean Command

Baal expression

Examples:

Baal FFH
BOO CS=DS AND IP > 50
BOO BYTE .X = F2H
Baal !SAM
BOOlCFl

BOOL A command keyword requesting the display of the boolean value
(TRUE, FALSE) of the input value, expression.

expression A boolean expression. The value of this expression is evaluated to a
boolean value. If the least significant bit of the expression = 1, the
boolean value is TRUE, otherwise the boolean value is FALSE.

ICE-88

ICE-88 Interrogation and Utility Commands

Display NESTING Command

NESTING

Example:

NESTING

NESTING A command keyword that causes the display of the starting and return
address of all procedures that are currently active.

7-75

Interrogation and Utility Commands

7-76

EVALUATE Command

EVALUATE numeric-expression [SYM BOLICALL Y]

Examples:

EVALUATE 123T

EVALUATE 4142H

EVALUATE FFH + 256T

EVALUATE A command keyword that directs the ICE-88 emulator to
evaluate the expression and display the result in all four
number bases and ASCII.

numeric A numeric expression or numeric constant.
expression

SYMBOLICALL Y This keyword causes each numeric value output by the
command to be displayed as a symbol or source statement
number plus a remainder.

ICE-88

CHAPTER 8
ICE-88 ENHANCEMENTS

The command features described in this chapter enhance the operation of the
ICE-88 emulator by extending the power of the simple ICE-88 commands.

ICE-88 enhancements are of two kinds: compound commands and macro com
mands. These features are as follows:

Compound commands:

REPEA T command
COUNT command
IF command

Macro commands:

DEFINE MACRO command
Invoke macro command
Display macro command
Macro directory command
REMOVE MACRO command
PUT MACRO command

Please note that the examples in this chapter are independent of each other. The
introduction to each example gives the initial conditions for that example, and does
not assume any results or conditions from any previous examples.

Compound Commands

A compound command is a control structure that contains zero or more commands.
The compound commands discussed in this chapter are the REPEAT, COUNT, and
IF commands; the DEFINE MACRO command is also a type of compound com
mand. As the command titles indicate, REPEAT and COUNT are looping com
mands, and IF establishes conditional execution, and DEFINE MACRO establishes
a named command block. All compound commands can have a "local" setting for
the default SUFFIX (console input radix), as described under Local and Global
Defaults in this chapter.

REPEAT Command

The REPEAT command executes zero or more ICE commands in a loop; the loop
can also contain zero or more logical conditions for termination.

The REPEAT command consists of the REPEAT keyword, zero or more com
mands of any type, zero or more exit conditions using WHILE or UNTIL, and the
keyword END. Enter each of these elements on its own line of the console display;
terminate each input line with an intermediate carriage return (shown as cr in the
command syntax). The syntax or REPEAT can be shown as follows:

REPEATer

[
command er J
WHILE boolean-expression er
UNTIL boolean-expression er

END

8-1

Enhancements

8-2

After each intermediate carriage return, the ICE emulator begins the next line with a
period (giving an indented appearance), then the asterisk prompt to signal readiness
to accept the next element. After the END keyword, enter a final carriage return to
begin the sequence of execution. The final carriage return after END is not shown in
the syntax, since all commands terminate with a final carriage return. The END
keyword can be entered as ENDR or ENDREPEAT; the characters after END serve
as a form of "comment" to indicate which loop is being terminated.

The elements to be repeated are shown in brackets in the syntax. Each element can
be a command, a WHILE clause, or an UNTIL clause. You can mix these elements
in any order, using any number of each type of element.

Each command is executed when it is encountered on each iteration. After the com
mand has been completely executed, the loop proceeds to the next element.

The WHILE and UNTIL keywords introduce exit clauses. The WHILE clause ter
minates execution of the loop when its boolean-expression evaluates FALSE. The
UNTIL clause terminates the loop when its boolean-expression evaluates TRUE.

In both the WHILE and UNTIL clauses, the boolean-expression is evaluated each
time the clause is encountered; that is, once per iteration. Evaluation at each itera
tion involves looking up the values of any references in the expression. Thus, the
result can change with each evaluation. Refer to Chapter 5 for an explanation of
how expressions are evaluated.

The choice of WHILE or UNTIL is usually a matter of convenience - there is
always a way to convert one into the other. For example, "WHILE bool-expr" is
equivalent to "UNTIL NOT (bool-expr)."

NOTE

To terminate execution of a REPEAT (or COUNT) loop, press the ESC key
at the console. The ICE command currently executing halts wherever it hap
pens to be; if you are emulating, the current instruction is completed before
the break. ICE responds to the ESC with the asterisk prompt.

Here are some brief examples of the REPEAT command.

Example 1: Generate an ASCII table similar to Table 5-2.

DEFINE .TEMP = 40H
REPEAT

WHILE .TEMP <=7EH
EVALUATE .TEMP
.TEMP = .TEMP + 1

ENDR

Example 2: Single-step through the user program and display the trace data col
lected for each instruction until a repetitious routine (.DELA Y) is reached.

TRACE = INSTRUCTIONS
CS = SEG .ST ART
IP = OFF .ST ART
REPEAT

UNTIL CS:IP = .DELAY
STEP
PRINT -1

ENDR

ICE-88

ICE-88

Example 3: Using a complex combination of conditions in the boolean expression.

REPEAT
UNTIL (CS:IP > .END XOR !VAR1 = 0) AND (.TEMP > 0 XOR !VAR2 = 1)
STEP
REGISTER

ENDR

Example 4: Emulate from the start of the program (.ST ART) until a breakpoint
(.END EXECUTED) is reached, display status registers, then continue emulating,
halting, and displaying status until a terminating condition (BYTE . V AR = 2) is
reached.

CS = SEG .START
IP = OFF .ST ART
REPEAT

GO TILL .END EXECUTED
REGISTER
UNTIL !VAR = 2

ENDR

COUNT Command

Like REPEAT, the COUNT command sets up a loop. In addition to the WHILE
and UNTIL clauses discussed under REPEAT, COUNT includes a loop counter that
terminates the loop if no exit condition is met before the counter runs out.

The COUNT command has the form:

COUNT arithmetic expression cr

~
command cr J
WHILE boolean-expression cr
U NTI L boolean-expression cr

END

The arithmetic-expression after COUNT controls the (maximum) number of itera
tions to be performed. If a numeric constant is used (for example, COUNT 10), the
ICE emulator interprets it in implicit decimal radix; in other words, any number
entered after COUNT without an explicit radix is interpreted as a decimal number.

If the entry after COUNT is an arithmetic-expression, it is evaluated to give the
number of iterations. The COUNT expression is evaluated once, before any loop
elements are encountered. It is not evaluated again on any interation. The COUNT
expression uses the values of any references it contains as they stand at the time of
evaluation. For example, consider the following command sequence:

DEFINE .XX = 2
COUNT .XX

.XX = .XX + 1
END

This loop goes through two iterations, although .XX has value 4 when the loop
terminates.

Enhancements

8-3

Enhancements

8-4

The loop terminates when the number of iterations given by the COUNT expression
has been performed or when an exit condition is tested and causes exit, whichever
comes first. The following example illustrates this concept.

DEFIN E .XX = 1
COUNT5

.XX= .XX+1
WHilE .XX < 5

END

To show that the loop terminates on the WHILE condition before the COUNT
expression is exhausted, we can "track" the loop in operation. Table 8-1 shows the
track.

Table 8-1. Tracking a COUNT Command

Iteration .XX .XX<5

1 2 TRUE
2 3 TRUE
3 4 TRUE
4 5 FALSE

The loop terminates during the fourth iteration, when .XX < 5 becomes FALSE.

Conversely, the COUNT expression specifies the maximum number of iterations to
be performed in case no exit clause produces an exit on any iteration. For example:

TRACE = INSTRUCTION
CS = SEG .START
IP = OFF .ST ART
COUNT10

UNTIL CS:IP =. DELAY
STEP
PRINT -1

END

In this command, the COUNT expression specifies a maximum of ten STEPs, in
case the first instruction at .DELA Y is not reached during any iteration.

With a REPEAT command or with a COUNT command that include one or more
clauses, there may be no direct way to tell how many iterations occurred before the
loop terminated. For these cases, you can insert a loop counter as a loop element.
For example, to obtain table 8-1 as a display (or LIST file output) you could use the
following sequence.

BASE =T
DEFINE . ITER = 0
DEFINE. XX = 1
COUNT 10

.XX = .XX + 1

.ITER = .ITER + 1

.ITER

.XX
BOOl.XX<5
WHILE .XX < 5

END

The command BaaL .XX < 5 produces a display of TRUE or FALSE.

ICE-88

ICE-88

The fonowing example emulates to a breakpoint, displays status registers, then con
tinues emulating, breaking, and displaying status for a definite number of iterations:

CS = SEG .START
IP = OFF .START
COUNT 10

GO TILL .PAUSE EXECUTED
REGISTER

END

IF Command

The IF command permits conditional execution in a command sequence. The IF
command has the form:

IF boolean-expression [THEN] cr
[command cr] ...

rGRIF boolean-expression [THEN] crl
L [command cr] .. , J
rELSE cr J L [command cr] .. ,

END

The command must have the IF clause; the ORIF and ELSE clauses are optional.
The command can include as many ORIF clauses as desired. The IF and ORIF
clauses each contain a single condition (boolean expression). Any clause can contain
none, one, or more commands. A clause with no commands simply produces an exit
when its condition is TRUE.

ICE examines each boolean expression in turn, clause by clause, looking for the first
TRUE condition. if a TRUE condition is found, the commands in that clause are ex
ecuted and the IF command terminates. If none of the conditions is TRUE, the com
mands in the ELSE clause are executed and the IF command terminates. If the
ELSE clause is omitted and no condition is TRUE, the IF command terminates with
no commands executed.

The END keyword is required to close off the IF command; it can be written as
ENDIF to clarify nesting.

Here is an example of the IF command.

BASE =T
IP=1
IFIP<1

EVALUATE 1
ORIF IP < 2

EVALUATE 2
ORIF IP<3

EVALUATE 3
ELSE

EVALUATE 4
END

This example displays the result of EVALUATE 2 and then terminates. The first
condition (IF IP < 1) is FALSE, so EVALUATE 1 is skipped. The second condition
(ORIF IP < 2) is TRUE, so EVALUATE 2 is executed and the IF command ter
minates. The third condition (OPRIF IP < 3) is not tested, even though it happens to
be TRUE.

Enhancements

8-5

Enhancements

8-6

In practice, however, the IF command is useful when it is nested in a REPEAT or
COUNT loop rather than appearing at the "top" level. The reason for this is that
you want to test conditions that can change (due to other commands in the loop),
whereas at the top level the TRUE or FALSE state of any condition is known, or can
be determined with the BaaL command. Thus, the result from the previous exam
ple can be obtained with fewer steps:

Baal IP < 1 (Displays FALSE)
Baal IP < 2 (Displays TRUE)
EVALUATE 2

Nesting Compound Commands

The REPEAT, COUNT, and IF commands can be nested to provide a variety of
con trol structures.

Each nested compound command must have its own END keyword. When entering
a nested command sequence, you may wish to use the keywords ENDR, ENDC, and
ENDIF, to help you keep straight which command you intend to close off. The
ICE-88 emulator does not check nesting levels at entry, and if an END is omitted,
the resulting error makes it necessary to enter the entire command again.

Each nested REPEAT or COUNT command can contain its own exit clauses
(WHILE or UNTIL). Each such exit clause can terminate the loop that contains it,
but has no effect on any outer loops or commands.

As an example of nesting, suppose you want to STEP through a program with trace
display, but skip a repetitive timeout routine, .DELA Y, that is called with an 8088
short-call instruction several times during program execution. One way to achieve
this effect is with the following command sequence:

TRACE = INSTRUCTION
CS = SEG .ST ART
IP = OFF .ST ART
REPEAT

IF CS:IP = .DElAY
IP = WORD SS:SP
SP=SP + 2

ENDIF
STEP
PRINT -1

ENDR

At each call to .DELA Y in the program, the displacement of the return address for
the call is pushed on the stack. The keyword SP refers to the stack pointer, and SS is
the stack segment register; SS:SP is the address of the top of the stack where the
return address is stored. The effects of the commands IP = WORD SS:SP and SP =
SP + 2 are to load the return address back into IP and reset the stack pointer just as
if the return instruction at the end of .DELA Y had been executed.

As another example of nesting, suppose the user code at statements #21 and #22 is
incorrect or not written yet. The following sequence emulates to the point where
substitute code is to be inserted, inserts the code (equivalent to IF MARK> 0 THEN
PTR = PTR + 2 in PL/M), then continues emulating beginning with statement #23
(the insertion is made any time emulation reaches statement #21):

ICE-88

ICE-88

GO FROM .ST ART TILL #21 EXECUTED
REPEAT

IF !MARK >0
!PTR = !PTR + 2

ENDIF
GO FROM #23

ENDR

An exit can be made only when a condition is tested, not when it occurs. To cause an
exit, the test must be placed at the point in the loop where the condition occurs. For
example, consider the following command sequence:

CS = SEG .ST ART
IP = OFF .START
REPEAT

UNTIL IP = 1000H
STEP

ENDR

In this command the condition IP = lOOOH is tested after every STEP. If the
sequence of STEPs reaches IP = IOOOH as the next instruction, the loop will ter
minate. By contrast, consider this example:

CS = SEG .ST ART
IP = OFF .START
REPEAT

UNTIL IP = 1000H
COUNT 10

STEP
ENDC

ENDR

In the second example, the condition IP = IOOOH is tested after every ten STEPs.
The loop exits only if IP = lOOOH occurs at the end of some group of ten instruc
tions. If IP = IOOOH occurs during one of the groups of ten STEPs, the loop does
not terminate because that condition is changed by subsequent STEPs before the
test can be made.

If the command has more than one exit clause, each exit clause is tested when it is
encountered. If the result at the moment of the test causes an exit, the loop ter
minates; otherwise, the loop proceeds to the next element.

The loop exits only when the current test causes it, even though some other clause in
the loop would cause an exit if it could be tested at that moment. Consider this
(artificial) example:

DEFINE .ZZ = 0
CS=O
IP=O
REPEAT

UNTIL IP > 10H
COUNT5
STEP
ENDC
PRINT -10
WHILE .ZZ = 0
.ZZ= .ZZ + 1

ENDR

Enhancements

8-7

Enhancements

8-8

Assume for this example that the code being emulated (with" STEP) contains only
two-byte instructions. Then, after the first time through the loop, IP = OAH (lOT)
and .ZZ = I. On the second iteration, the test IP > lOH is FALSE when it is
encountered, so the STEP and PRINT commands are executed again. At this point,
IP > IOH is TRUE but since it is not tested, no exit occurs. Instead, the condition
.ZZ = 0 is tested, found to be false, and the loop exits.

Macro Commands

A macro is a block of commands. When a block of commands is defined as a macro,
it is stored on diskette so that it can be executed more than once without having to
enter the commands each time. The macro commands described in this chapter
allow you to perform the following functions:

• Define a macro, specifying the macro name, the command block, and any
formal parameters (points where text can be filled in at the time of the macro
call).

• Invoke (call) a macro by name, giving actual parameters to fill in the blank
fields in the macro definition, to begin the execution of the command block.

• Display the text of any macro as it was defined.

• Display the names of all macros currently defined.

• Remove one or more macros.

• Save one or more macro definitions on an ISIS-II file.

In addition, the off-line facility (INCLUDE command) allows you to enter macro
definitions from diskette files for use in the current test sequence.

Defining and Invoking Macros

Each macro is defined once in the test session. The syntax of the DEFINE MACRO
(DEF MAC) command is as follows:

DEF MAC macro-name cr
[command cr] ...

EM

Once it is defined, you can invoke (call) a macro as often as desired. The syntax of a
macro call is:

:macro-name [actual-parameter-list]

The macro definition command causes the macro name and block of commands to
be stored in a table of macro definitions' in a temporary ISIS-II file named
MAC. TMP. (This file is removed by the ICE EXIT command).

WARNING

If you have a file on the ICE diskette named MAC. TMP it will be lost
when you enter the ICE-88 emulator.

A macro-name must begin with an alphabet letter, or with one of the character "?"
or "@". The characters after the first character can be alphabet letters, "?", "@",
or numeric digits. The macro name must not duplicate a previously-defined macro
name.

ICE-88

ICE-88

A macro definition may not appear within any other command (REPEAT,
COUNT, IF, or another macro definition). The command block in the macro defini
tion can include any command except another DEF MAC command or a REMOVE
MACRO command.

The macro name in the macro invocation must be the name of a previously-defined
macro. The form of actual-parameter-list is discussed later in this chapter.

Here is a simple macro definition:

DEFMACGOER
REPEAT

GO FROM .START TILL BRO
END

EM

To invoke this macro and cause its command block to begin executing, enter the
macro name preceded by a colon (:). For example:

:GOER

A macro definition can include calls to other macros, but a macro cannot call itself
recursively. Any macros called from within a macro must have been defined when
the calling macro is invoked. Macro calls can be nested; i.e., one macro calls
another, which calls another, and so on. The level of nesting is limited only by the
memory space required to contain the macro expansions and "stack" the macro
calls.

When a macro is called as an outer level command the following operations occur:

• System default (SUFFIX) is saved in case a new default is set inside the macro.

• The text of each actual parameter in the call is substituted for the corresponding
formal parameter in the definition.

• The expanded command block is executed if all commands are valid as
expanded.

• When the last command has finished, the former system default is restored.

• The macro exits. Control returns to the console (asterisk prompt).

The next several sections provide details on these operations, including the treatment
of nested macro calls.

Local and Global Defaults

The system default can have a "local" setting within a macro; this default is as
follows:

Default Refers to:

SUFFIX Default radix for console input.

When a macro is called (or any compound command is executed), the current
"global" setting of SUFFIX, is saved so that it can be restored after the macro
finishes executing its commands. The global default continues in effect within the
macro unless and until a new (local) default is set with a SUFFIX command in the
macro. Defaults other than SUFFIX are changed globally when they are set within a
macro.

Enhancements

8-9

Enhancements

8-10

When the macro finishes executing its command block, the previous SUFFIX
default is restored. Thus, any SUFFIX default that is set within a macro has no
effect after that macro has exited.

Here is an (artificial) example of a macro with a local default:

DEF MACSETO
SUFFIX = H
BYTE 0 TO 10 = 0

EM

Without the local SUFFIX command, the range of addresses to be set would depend
on the global SUFFIX in effect when the macro SETO is called. The global SUFFIX
is restored after SETO exits.

Formal and Actual Parameters

A formal parameter marks a place in an ICE command where variable text can be
"filled in" when the macro is called. A formal parameter can represent part of a
token or a field of one or more tokens. A macro definition can contain up to ten for
mal parameters. A formal parameter has the form:

%n

where n is a decimal digit, 0 to 9.

Formal parameters can appear in the macro definition in any order, and each one
can appear any number of times. In most cases, the formal parameters form a com
plete numeric sequence with 0700 as the lowest numbered parameter (even if 070 is not
the first parameter to appear). However, one or more parameters can be omitted
from the sequence; the effect of omitting a formal parameter from the sequence is to
ignore the actual parameter in the call that corresponds to the omitted formal
parameter.

The macro call can contain as many actual parameters as desired. Enter mUltiple
parameters as a list, with entries separated by commas. The first actual parameter in
the list is substituted at all points that 0700 appears in the macro definition; the
second parameter substitutes for 0701, and so on.

An actual parameter can be "null," causing ICE to substitute a null for the formal
parameter to which it corresponds. You can pass a null parameter to a macro in two
ways:

• Enter no actual parameter between consecutive commas.

• Omit one or more parameters from the end of the list.

If too few actual parameters are entered, the ICE-88 emulator supplies nulls for the
extra formal parameters. If too many actual parameters are entered, the extra actual
parameters are ignored.

If any actual parameter contains a carriage return, a comma, or a single quote mark,
the entire parameter must be enclosed in single quotes to identify it as a single actual
parameter. In other words, parameters with these characters must be entered as
strings. A single quote within a string is entered as (").

ICE-88

ICE-88

Here are some examples to demonstrate the use of formal and actual parameters:

Example 1:

DEF MAC MEM
%OlNTEGER 0/01

EM

In the call to this macro, parameter 0700 can become "S" or null. Parameter % 1 can
be any valid address or partition. Examples of calls to this macro:

Macro call

:MEM S, 1000H
:MEM, 1000H TO 100FH

Example 2:

DEF MAC RPT
REPEAT

0/00
0/01
0/02
0/03
0/04
0/05
0/06
0/07
0/08
0/09

END
EM

Expansion

SINTEGER 1000H
INTEGER 1000H TO 100FH

Macro RPT can accept up to ten commands to be repeated. For example:

:RPT GO TILL BRO, PRINT -1, REGISTERS, GO TILL BR1, PRINT -10

If fewer than ten commands are given, as in the example above, the extra formal
parameters are ignored (treated as nulls). This shows how to do REPEAT on one
line with no end required.

Example 3:

DEF MAC BRS
BR%O = % 1

EM

Use of macro BRS may-t'equire parameters entered as strings, since some ways to set
breakpoints involve embedded commas. For example:

:BRS 0, 1000H EXECUTED

This parameter is valid, but this one:

BRS 0, FFH, .ST ART LEN 100H

results in the expansion:

BRa = FFH

Enhancements

8-11

Enhancements

8-12

To obtain the correct expansion, make the parameter a string:

:BRS 0, 'FFH, .START LEN 100H'

This results in the expansion:

BRO = FFH, .START LEN 100H

Details on Macro Expansion

The syntax and semantics of commands in a macro block are ignored at the point of
definition; they are not determined until invocation, any may be different on each
invocation through the use of formal parameters.

When a macro is called, its definition is expanded by adding the text of any actual
parameters in the call at the points indicated by formal parameters in the definition.
If the expanded macro contains any calls to other macros, the text of any such
macros is also expanded, forming in effect one overall block of commands. The
results of expansion are displayed at the console. Expansion continues until the last
EM is reached. If the expansion results in a set of complete, valid commands, the
commands are executed. An error results if any command is incomplete or invalid
after expansion.

A macro invoked in a REPEAT, COUNT, or IF command is expanded immediately
after the macro call command is entered. Thus, a macro called in a REPEAT or
COUNT command is expanded only once, and a macro called in an IF command is
expanded whether the condition in the IF or ORIF clause that contains the macro
call is TRUE or FALSE.

Macro Table Commands

The macro table contains the name and text of all macros currently defined. The text
is stored as it is defined, and does not contain any expansions.

The DEFINE MACRO (DEF MAC) command adds the macro defined to the end of
the table. The syntax of this command appears earlier in this chapter. The DEF
MAC command may not appear with any other command.

The REMOVE MACRO (REM MAC) command removes one or more macro
definitions from the table. The syntax of this command is:

REM MAC [macro-name [,macro-name] ...]

If the list of macro-names is omitted, all macros are removed. The REM MAC com
mand may not appear within any other command.

The display macro command displays the name and definition of one or more
macros from the macro table. The syntax is:

MAC [macro-name],macro-name] ...]

If the list of macro-names is omitted the definitions of all macros in the table are
displayed.

The macro directory command displays the names of all macros in the table. The
syntax is:

DIR MAC

ICE-88

ICE-88

Here are some examples of these commands (assume that the table contains all the
macro examples defined thus far in this chapter):

Example 1:

*DIR MAC
GOER
SETO
MEM
RPT
BRS

Example 2:

*MAC GOER
DEFMACGOER
REPEAT
GO FROM .ST ART TILL BRO
END
EM

Example 3:

REM MAC BRS

Example 4:

*DIR MAC
GOER
SETO
MEM
RPT

Example 5:

*DEF MAC NULL
*EM

Example 6:

*DIR MAC
GOER
SETO
MEM
RPT
NULL

Saving Macros

(command)
(display)

(command)
(display)

(command)

(Command)

(command)

(command)
(display)

The PUT MACRO (PUT MAC) command causes one or more macro definitions to
be copied from table to an ISIS-II diskette file. The syntax is:

PUT [:drive:] filename MACRO [macro-name[,macro-name] ...]

If any macro names are entered, those macro definitions are saved. If no list of
macro names is given, all macros in the table are saved. The definitions in the macro
table are not affected by the operation.

Enhancements

8-13

Enhancements

8-14

The file containing the saved macro can later be edited or brought into another ses
sion with the INCLUDE command, discussed later in this chapter.

If the named file does not exist, it is created by the PUT command. If the file does
exist on the diskette, the file is opened for input and the macros in the list are written
on the file, destroying the previous contents of that file.

Further Examples

Here are a few more examples of macros. These macros simulate stack operations,
calls, and returns in the ICE-88 emulator.

A stack is an area of memory, indexed (addressed) by a register called the stack
pointer (SP) and stack segment register (SS). The stack is used to save status
information required for an orderly return from a procedure call.

In the ICE-88 emulator, the stack is in mapped memory. The bottom (first available
location) is the highest address in the stack area; the stack expands as needed into
successively lower addresses. The stack pointer points to the address (word) at the
top of the stack; this address contains the last item pushed on the stack. As each new
word is pushed on the stack, SP is decremented to point to the new top address.
Most of the values that need to be saved on the stack are 16-bit values. The high byte
is stored in the address pointed to by (SS:SP - I), and the low byte is stored in the
next lower address (equivalent to SS:SP - 2).

The MCS-86 assembly language PUSH rp instruction sets SP to the next available
word, then stores the content of the given register pair rp in adjacent addresses at
that position. We can simulate this action with a macro, as follows:

DEF MAC PUSH88
SP = SP -2T
WORD SS:SP =%0

EM

;decrement SP
;Iow byte in low address, high byte in
high address.

The formal parameter 0700 lets us use PUSH88 to save any register pair or other 16-
bit value; for examples:

:PUSH88IP
:PUSH88 RAX
:PUSH88 RBX
:PUSH88 RCX

;save instruction register
;save RAX
;save RBX
;save RCX

The complementary MCS-86 POP rp instruction copies the contents of the two top
bytes pack into the given register pair, then increments SP to the new top of the
stack. A macro for this function is:

DEF MAC POP88
%0 = WORD SS:SP
SP = SP + 2T

EM

Here are some calls to POP88, corresponding to the PUSH88 calls given earlier:

:POP88 RCX
:POP88 RBX
:POP88 RAX
:POP88IP

ICE-88

ICE-88

Here are some macros that use PUSH88 and POP88.

1. Macro to "call" (short-call) a procedure:

DEF MAC CALL88
:PUSH88IP
GO FROM CS:%O

EM

This macro can be invoked with or without a halt condition:

:CALL88 . PROC or
:CALL88 . PROC TILL BRO

2. Macro to "call" (long-call) a procedure:

DEF MAC LCALL88
:PUSH88 CS
:PUSH88IP
GO FROM %0

EM

To invoke this macro:

:LCALL88 .PROC or
:LCALL88 .PROC TILL BR1

3. Macro to "return" (short-return) from a procedure:

DEF MAC RET88
:POP88IP
GO %0

EM

To invoke this macro:

:RET88 or
:RET88 TILL BRO

4. Macro to "return" (long-return) from a procedure:

DEF MAC LRET88
:POP88IP
:POP88 CS
GO %0

EM

To invoke this macro:

:LRET88 or
:LRET88 TILL BRO

Enhancements

8-15

Enhancements

8-16

5. Macro to single-step through user code, skipping over a specified procedure
whenever that procedure is called from the user program, and printing the
instruction just executed each time.

DEF MACRO SKIP
REPEAT

IF CS:IP = 0/00
:POP88IP

ENDIF
STEP
PRINT -1

ENDR
EM

DEF MACRO LSKIP
REPEAT

IF CS:IP = 0/00
:POP88IP
:POP88CS

ENDIF
STEP
PRINT -1

ENDR
EM

(short-called procedure)

(long-called procedure)

Suppose the user program contains a respective timer routine named DELAY that is
called from several places in the program. The following macro invocation causes
the ICE-88 emulator to step through the program without emulating the timer
routine:

:SKIP .DELAY

Off-line Facilities

In addition to the compound and macro commands described above, the INCLUDE
command allows you to access macro definitions stored in diskette files and to cause
them to be executed from these files rather than the console.

INCLUDE Command

The INCLUDE command causes input to be taken from the file specified until the
end-of-file, at which point input continues to be taken from the previous source,
normally the console.

The syntax of the INCLUDE command is:

INCLUDE J [:dri~e:] filename I
l :devlce:

Nesting of INCLUDE command is permitted. For example:

IP = .START
REPEAT

UNTIL IP = .HAL T
INCLUDE PROGA.lNC

INCLUDE PROGS.INC
ENDR

ICE-88

ICE-88

The console (:CI:) may-be given as the filename, in which cases control-Z must be
used as end-of-file. The files are echoed on the console.

As macros can be complex and editing may be required on the macro definition, the
INCLUDE command allows you to access offline macro definitions and to create
online macros, which combine to form the macro suite for a particular debugging
session. However, command lines may appear in the INCLUDE file, not just macro
definitions.

Write Command

The WRITE command writes one or more list elements to the console and to the list
file at run time.

The syntax of the WRITE command is:

WRITE list-element [,Iist-element]

where

list-element == string:: expr :: BOOl expr

For example:

WRITE $CTIME, 'SECONDS SINCE LIGHT CHANGE'

Would output a message showing the time in seconds (in CARS2) (see Chapter 3)
since the traffic light changed.

This command writes the list-element (s) to the console all on the same line except
when the nest-element will not fit into the remaining character space on the current
line. In this event, a carriage return and a line feed will be inserted. If the list-element
is a string, it will be displayed. If the list-element is an expr, the value of the expres
sion is displayed in the current base. A single character string is displayed as a string.
When a single character string is used in an expression, its corresponding hex
adecimal value is used in evaluating the expression, and the value of the expression is
displayed.

If the list-element is BOOL expr, ICE displays the boolean value TRUE when the
least significant bit (LSB) of the result is 1, FALSE when the LSB is 0; no spaces are
provided either before or after the boolean value.

Enhancements

8-17

ABSOLUTE ABS
ACKNOWLEDGE ACK
ADDR ADD
AFL AFL
ALL ALL
AND AND
ASCII ASC
ASM ASM
BASE BAS
BOOL BOO
BP BP
BR BR
BRO BRO
BRl BRI
BUFFERSIZE BUF
ByTE BYT
CAUSE CAU
CFL. CFL
CLOCK CLO
CONDlTlONALL Y CON
COUNT COU ,C
CS CS
DEFINE DEF
DFL DFL
01 01
DIR DIR
DISABLE DIS
DISK DIS
DMUX DMU
DOMAIN DOM
DOWN DOW
OS DS
ELSE ELS
EM EM
ENABLE ENA
END END
ERROR ERR
ES ES
EVALUATE EVA
EXECUTED EXE,E
EXiT EXI
EXTERNAL EXT
FETCHED FET
FLAG FLA
FOREVER FOR
FRAME FRA
FROM FRO,F
GO G
GR G
GUARDED GUA
H H
HALT HAL,H
HARDW ARE HAR
HOLD HOL
HTiMER HTI
ICE ICE
IF IF

APPENDIX A
ICE-88 KEYWORDS

AND THEIR ABBREVIATIONS

IFL IFL RAH RAH
INCLUDE INC RAL RAL
INFINITE INF RAX RAX
INPUT INP ,I RBH RBH
INSTRUCTION INS RBL RBL
INTEGER INT RBX RBX
INTELLEC INT RCH RCH
INTERNAL INT RCL RCL
IP IP RCX RCX
IR IR RDH RDH
LENGTH LEN RDL RDL
LINE LIN RDX RDX
LIST LIS RDY RDY
LOAD LOA READ REA,R
LOWER LOW REGISTER REG,R
MACRO MAC REMOVE REM
MAP MAP REPEAT REP
MARK MAR RESET RES
MASK MAS RF RF
MATCH MAT RST RST
MN MN RWTlMEOUT RWT
MOD MOD SAVE SAV
MODULE MOD SEGMENT SEG
MOVE MOV,M SFL SFL
NESTING NES SI SI
NEWEST NEW,N SINTEGER SIN
NMI NMI SP SP
NOCODE NOC SS SS
NOERROR NOE STACK STA
NOLINE NOL STEP STE,S
NOSYMBOL. NOS STS STS
NOT NOT SUFFIX SUF
NOVERIFY NOV SYMBOL SYM
NOW NOW SYMBOLICALL Y SYM
OBJECT OBJ T T
OF OF TEST TES
OFF OFF TFL TFL
OFFSET OFF THEN THE
OFFTRACE OFF TILL TlL,T
OFL OFL TIMER TIM
OLDEST OLD,O TO TO
ON ON TRACE TRA
ON TRACE ONT TyPE TYP
OPCODE OPC UNTlL. UNT
OR OR UP UP
ORIF ORI UPPER UPP
OUTPUT OUT ,0 USE USE
PFL PFL USER USE
PIN PIN VALUE VAL
PIP PIP WHILE WHI
POINTER POI WORD WOR
PORT POR WPORT WPO
PRINT PRI,P WRITE WRI
PUT PUT WRITTEN WRI,W
Q Q XOR XOR
QDEPTH QDE Y Y
QSTS QST ZFL ZFL

A-I

APPENDIX B I
ERROR MESSAGES

The following is a list of error messages.

ERR 10:RSL TS BLK INACCESSIBLE
A BUS TIMEOUT WAS DETECTED ON AN ATTEMPT TO WRITE THE
RESU L TS BLOCK.

ERR 11 :XMIT BLK INACCESSIBLE
A BUS TIMEOUT WAS DETECTED ON AN ATTEMPT TO READ THE
TRANSMIT BLOCK.

ERR 16:DVC CD FORMAT ERROR
THE FORMAT BYTE OF DEVICE CODE TABLE WAS DETERMINED TO
BE NON-ZERO.

ERR 17:DVC NOT IN DVC CD TABLE
A DEVICE CODE CORRESPONDING TO THIS ICE WAS NOT FOUND IN
TH E DEVICE CODE TABLE.

ERR 21 :COMMAND NOT ALLOWED NOW
THE COMMAND CODE IN THE PARAMETER BLOCK CANNOT BE PRO
CESSED ATTHIS TIME.

ERR 30:PGM MEMORY FAILURE
DATA READ BACK FROM PROGRAM MEMORY DID NOT AGREE WITH
DATA WRITTEN.

ERR 31 :DATA MEMORY FAILURE
DATA READ BACK FROM DATA MEMORY DID NOT AGREE WITH DATA
WRITTEN.

ERR 32:BREAKPOINT MEM FAILURE
DATA READ BACK FROM BREAKPOINT MEMORY DID NOT AGREE
WITH DATA WRITTEN.

ERR 33:MEMORY MAP FAILURE
DATA READ BACK FROM MEMORY MAP DID NOT AGREE WITH DATA
WRITTEN.

ERR 34:CABLE FAILURE
CABLE DIAGNOSTIC PROGRAM DETECTED A FAILURE IN THE
CABLE.

ERR 35:CONTROL CIRCUIT FAILURE
CONTROL DIAGNOSTIC PROGRAM DETECTED A FAILURE IN THE
CONTROL CIRCUITRY (SEE NOTE 1).

ERR 36:PAGE FAULT
NOT AN ERROR. ACCESS WAS MADE TO DISK MAPPED MEMORY
AND FIRMWARE DOESN'T HAVE PAGE CONTAINING THAT
LOCATION.

ERR 37:INTELLEC MEMORY FAILURE
INTELLEC MEMORY DOES NOT VERIFY WHEN WRITTEN TO: IT MAY
BE MISSING, NON-WRITABLE, OR BAD MEMORY.

B-1

Error Messages

B-2

ERR 40:NO USER CLOCK
IN EXTERNAL CLOCK MODE, THE CPU CLOCK IS NOT PRESENT.

ERR 41 :NO USER VCC
IN EXTERNAL CLOCK MODE, THE USER VCC IS NOT PRESENT.

ERR 42:GUARDED ACCESS
ACCESS WAS MADE TO A GUARDED MEMORY OR 1/0 LOCATION.

ERR 43:PROCESSOR NOT RUNNING
IN EXTERNAL CLOCK MODE, THE USER READY SIGNAL IS NOT
PRESENT.

ERR 48:READY TIMEOUT
IN EXTERNAL CLOCK MODE WITH TIMEOUT ON READY SELECTED, A
COMMAND TIMEOUT OCCURRED.

ERR 49:HOLD SEQUENCE ERROR
A HOLD REQUEST WAS INITIATED AND REMOVED BEFORE HOLD
ACK BECAME ACTIVE (SEE NOTE 2).

ERR 4A:HOLD TIMEOUT
CANNOT EXIT EMULATION OR EXAMINE USER MEMORY BECAUSE
HOLD IS INACTIVE TOO LONG IN THE USER SYSTEM (SEE NOTE 1).

ERR 4B:RESET TIMEOUT
CANNOT EXIT EMULATION BECAUSE RESET IS INACTIVE (SEE
NOTE 1).

ERR 80:SYNTAX ERROR
THE TOKEN FLAGGED IS NOT ONE THAT IS ALLOWED IN THE CUR
RENT CONTEXT.

ERR 81:INVALID TOKEN
THE TOKEN FLAGGED DOES NOT FOLLOW THE RULES FOR A WELL
FORMED TOKEN.

ERR 82:NO SUCH LINE NUMBER
THE SPECIFIED LINE NUMBER DOES NOT EXIST IN THE CURRENT
MODULE.

ERR 83:INAPPROPRIATE NUMBER
THE VALUE IS NOT APPROPRIATE IN THE CURRENT CONTEXT.

ERR 84:PARTITION BOUNDS ERROR
THE PARTITION VALUES ENTERED IN A COMMAND ARE NOT COR
RECT. EITHER THE LEFT PART OF THE PARTITION IS GREATER THAN
THE RIGHT PART OR THE VALUES OF THE PARTITION EXTREMES
ARE OUT OF RANGE IN THE CURRENT CONTEXT.

ERR 85:ITEM ALREADY EXISTS
THE ITEM ENTERED IN A DEFINE COMMAND IS CURRENTLY DEFINED
IN THE SYMBOL TABLE.

ERR 86:ITEM DOES NOT EXIST
THE ITEM PRINTED ON THE PRECEDING LINE DOES NOT RESIDE IN
THE SYMBOL TABLE.

ICE-88

ICE-88

ERR 87:DUPLICATE CHANNEL
THE CHANNEL SPECIFIED APPEARS MORE THAN ONCE IN A CHAN
NEL LIST.

ERR 88:MACRO PARAMETER ERROR
TOO MANY MACRO PARAMETERS OR MACRO PARAMETER TOO
LONG.

ERR 89:MISSING CR-LF IN FILE
INCLUDE FILE DOESN'T END IN CARRIAGE-RETURN LINE-FEED.

ERR 8A:FORMAT ALREADY EXISTS
THE FORMAT SPECIFIED IN A DEFINE COMMAND IS ALREADY
DEFINED.

ERR 8B:FORMAT DOES NOT EXIST
THE FORMAT SPECIFIED HAS NOT BEEN DEFINED.

ERR 8C:COMPARE MODE NOT ACTIVE
FIND COMMAND WAS ISSUED WHILE COMPARE TRACE MODE WAS
NOT ACTIVE.

ERR 8D:EMPTY TRACE BUFFER
TRACE BUFFER IS UNINITIALIZED.

ERR 8E:INVALID TRACE REFERENCE
TRACE REFERENCE MADE WHILE TRACE BUFFER UNINITIALIZED.

ERR 8F:NON-NULL STRING NEEDED
A NULL STRING WAS USED WHERE A NON-NULL STRING IS
REQUIRED.

ERR 90:MEMORY OVERFLOW
MEMORY REQUIREMENTS OF ALL DYNAMIC TABLES EXCEED THE
AMOUNT OF MEMORY AVAILABLE.

ERR 91 :ST ACK OVERFLOW
THE CAPACITY OF A STATICALLY ALLOCATED STACK INTERNAL TO
THE DIAGNOSTIC PROGRAM HAS BEEN EXCEEDED.

ERR 92:COMMAND TOO LONG
THE CAPACITY OF THE STATICALLY ALLOCATED INTERMEDIATE
CODE BUFFER HAS BEEN EXCEEDED.

ERR 93:MODULE DOES NOT EXIST
MODULE SPECIFIED DOES NOT EXIST IN SYMBOL TABLE.

ERR 94:NON-CHANGEABLE ITEM
AN ATTEMPT WAS MADE TO CHANGE AN ITEM THAT MAY NOT BE
CHANGED.

ERR 95:INVALID OBJECT FILE
FILE SPECIFIED IN A LOAD COMMAND IS NOT A VALID OBJECT FILE.

ERR 96:INVALID WITHIN ACTIVATE
THE COMMAND IS NOT VALID WITHIN AN ACTIVATE BLOCK.

ERR 97:EXCESSIVE DATA
THE AMOUNT OF DATA ATTEMPTED TO BE INSERTED INTO A PARTI
TION EXCEEDED THE SIZE OF THE PARTITION.

Error Messages

B-3

Error Messages

B-4

ERR 98:MORE THAN 16 CHANNELS
MORE THAN 16 CHANNELS SPECIFIED IN A CHANNEL LIST.

ERR 99:EXCESSIVE ITERATED DATA
THE AMOUNT OF DATA TO BE REPEATED THROUGHOUT A RANGE
OF MEMORY EXCEEDS THE SIZE OF THE BUFFER ALLOCATED TO
HOLD SUCH DATA.

ERR 9A:TOO MANY GROUPS
NUMBER OF GROUPS DEFINED BY USER MAY NOT EXCEED 43.

ERR 9B:TOO MANY CHANNELS
NUMBER OF CHANNELS DEFINED BY USER MAY NOT EXCEED 128.

ERR 9C:UNSUITABLE EXECUTE FILE
THE FILE REFERENCED IN AN EXECUTE COMMAND EITHER CON
TAINS CODE THAT IS OUT-OF-BOUNDS FOR THE EXECUTE COM
MAND OR IT IS A MAIN MODULE.

ERR 9D:LlNE TOO LONG
COMMAND LINE WAS LONGER THAN 122 CHARACTERS.

ERR 9E:HOST-ONL Y COMMAND
THE COMMAND ISSUED IS NOT ALLOWED IN AN ACTIVATION LIST.

ERR 9F:PROCESS ALREADY ACTIVE
ATTEMPT MADE TO ACTIVATE A PROCESS THAT WAS ALREADY
ACTIVE.

ERR AO:TOO MANY PARTITIONS
NUMBER OF PARTITIONS OR SINGLE BREAKPOINTS IN A BREAK
POINT REGISTER EXCEED MAXIMUM PERMISSIBLE VALUE.

ERR A1 :PARTITION CROSSES PAGE
BREAKPOINT PARTITION WAS NOT CONTAINED ON A SINGLE PAGE.

ERR A2:ILLEGAL CLOCK VALUE
VALUE SPECIFIED FOR CLOCK IS NOT A PERMISSIBLE VALUE.

ERR A3:PROCESS ALREADY DORMANT
ATTEMPT MADE TO SUSPEND OR TERMINATE A DORMANT
PROCESS.

ERR A4:MACRO FILE FULL
MACRO FILE CONTAINS MORE THAN 64K CHARACTERS.

ERR A7:POINTERVALUE REQUIRED
A NON-POINTER VALUE WAS USED IN A CONTEXT THAT MUST USE A
POINTER.

ERR A8:INTEGERVALUE REQUIRED
A NON-INTEGER (I.E., POINTER WITH NON-ZERO BASE) VALUE WAS
USED IN A CONTEXT THAT MUST USE AN INTEGER.

ERR A9:CANNOT REDECLARE MAP
AN ATTEMPT WAS MADE TO DECLARE THE DISK MAP AFTER IT WAS
ALREADY DECLARED-THE MAP MUST BE RESET IN ORDER TO
REDECLARE.

ICE-88

ICE-88

ERR AA:MEMORY UNAVAILABLE
THE INTELLEC OR DISK MEMORY EXPLICITLY GIVEN IN A SET-MAP
COMMAND WAS NEVER DECLARED; OR NO EXPLICIT MEMORY WAS
GIVEN AND THERE IS NO MORE INTELLEC, DISK OR ICE MEMORY
AVAILABLE FORTHE ICE-88 EMULATOR TO ASSIGN.

ERR AC:T AKES TOO MANY BRS
A MATCH CONDITION WAS GIVEN THAT REQUIRES MORE BREAK
POINT REGISTERS THAN IS ALLOWED IN THE CURRENT CONTEXT;
EITHER IT REQUIRED MORE THAN ONE REGISTER IN A SET BREAK
POINT COMMAND, OR REQUIRED MORE THAN TWO REGISTERS IN A
TILL CLAUSE.

ERR AD:DIFFERING BASES
TWO POINTERS WITH DIFFERENT BASES WERE USED IN A CONTEXT
WHERE THEY MUST HAVE THE SAME BASE; E.G., THE LOWER AND
UPPER BOUNDS OF A PARTITION.

ERR AE:INVALID "AND" IN GO-REG
THE GO-REGISTER IS "TILL BRO AND BR1" DURING A GO COMMAND
BUT EITHER (1) BRO OR BR1 CONTAINS AN EXECUTION-TYPE MATCH
CONDITION OR (2) BRO CONTAINS A DATA-TIME CONDITION AND BR1
CONTAINS AN ADDRESS-TIME CONDITION.

ERR B2:INVALID BASE
THE BASE USED IN THE DISPLAY BREAKPOINT ITRACEPOINT COM
MAND IS OUT OF RANGE FOR PART OR ALL OF THE ADDRESSES IN
THE REGISTER (E.G., "BRO BASE 0" WHEN BRO CONTAINS ADDRESS
10000H).

ERR B3:SYMBOL HAS NO TYPE
A SYMBOL BEING USED IN A TYPED MEMORY REFERENCE (E.G.,
"!X") HAS NO TYPE.

ERR B5:BLOCK IS EMPTY

WARN CO:UNSATISFIED EXTERNALS
THE PROGRAM JUST LOADED CONTAINS EXTERNALS WHICH WERE
NOT SATISFIED AT LINK TIME. THE PROGRAM WAS LOADED
CORRECTLY EXCEPT FOR REFERENCES TO THE UNSATISFIED
EXTERNALS.

WARN C1 :MAPPING OVER SYSTEM
THE USER HAS MODIFIED THE MAP SO THAT PART OF HIS ADDRESS
SPACE INCLUDES EITHER THE ISIS SYSTEM OR THE GID SOFTWARE
PACKAGE.

WARN C2:HARDWARE MISSING
AT ATTEMPT WAS MADE TO INITIALIZE THE DEVICE WHOSE GENERIC
DEVICE CODE NUMBER IS PRINTED ON THE PREVIOUS LINE BUT NO
DEVICE RESPONDED. A GENERIC DEVICE CODE IS THE FIRST OF
FOUR CONSECUTIVE DEVICE CODES RESERVED FOR A SPECIFIC
TYPE OF DEVICE.

WARN C3:MULTIPLE HARDWARE
AN ATTEMPT WAS MADE TO INITIALIZE THE DEVICE WHOSE DEVICE
CODE NUMBER IS PRINTED ON THE PREVIOUS LINE BUT MORE
THAN ONE DEVICE RESPONDED.

Error Messages

B-5

Error Messages

B-6

WARN C4:INVALID "AND" IN GR
THE GO-REGISTER IS AS DESCRIBED FOR ERR AE AFTER GR, BRO OR
BR1 WAS CHANGED.

WARN C5:INTELLEC MEM FAILURE
THE INTELLEC MEMORY WHOSE PHYSICAL SEGMENT NUMBER IS
ON PREVIOUS LINE DOES NOT VERIFY WHEN WRITTEN TO: IT MAY
BE MISSING, NON-WRITABLE, OR BAD MEMORY.

WARN C6:HARDWARE REINITIALIZED
THE HARDWARE HAS BEEN REINITIALIZED, CLEARING THE MAP
AND MAKING TRACE UNCONDITIONALLY ON.

WARN C7:CLEARING TFL TO 0

WARN C8:REINITIALIZING-FAUL T
THE HARDWARE IS BEING REINITIALIZED

ERR E7:ILLEGAL FILENAME [4]
THE FILENAME SPECIFIED DOES NOT CONFORM TO A WELL
FORMED ISIS FILENAME.

ERR E8:ILLEGAL DEVICE [5]
ILLEGAL OR UNRECOGNIZED DEVICE IN FILENAME.

ERR E9:FILE OPEN FOR INPUT [6]
ATTEMPT TO WRITE TO A FILE OPEN FOR INPUT.

ERR EB:FILE OPEN FOR OUTPUT [8]

ERR EC:DIRECTORY FULL [9]

ERR EE:FILE ALREADY IN USE [11]

ERR EF:FILE ALREADY OPEN [12]
ATTEMPT TO OPEN A FILE THAT WAS ALREADY OPEN.

ERR FO:NO SUCH FILE [13]
THE FILE SPECIFIED DOES NOT EXIST.

ERR F1 :WRITE-PROTECT FILE [14]
ATTEMPT TO OPEN A WRITE-PROTECTED FILE FOR THE PURPOSES
OF WRITING DATA INTO IT.

ERR F3:CHECKSUM ERROR [16]
A CHECKSUM ERROR IN A HEX OBJECT FILE WAS ENCOUNTERED
DURING LOADING.

ERR F6:DISK FILE REQUIRED [19]
ATTEMPT TO USE A NON-DISKETTE FILE WHERE A DISKETTE FILE
WAS REQUIRED.

ERR F9:ILLEGAL ACCESS [22]
ATTEMPT TO OPEN A READ-ONLY FILE FOR'THE PURPOSES OF
STORING DATA (I.E., SPECIFYING :CI: AS THE LIST DEVICE) OR A .
WRITE-ONLY FILE AS A SOURCE OF DATA (I.E., :LP: IN A LOAD
COMMAND).

ICE-88

Change 1

ICE-88

Change 1

ERR FA:NO FILE NAME [23]
NO FILENAME SPECIFIED FOR A DISKETTE FILE (I.E., NO FILENAME
FOLLOWING :F1 :).

ERR FD:"DONE" TIMED OUT
THE DEVICE WHOSE DEVICE CODE NUMBER IS PRINTED ON THE
PRECEDING LINE WAS INVOKED BUT FAILED TO RETURN DONE
WITHIN FIVE SECONDS.

ERR FE:"ACKNOWLEDGE" TIMED OUT
THE DEVICE WHOSE DEVICE CODE NUMBER IS PRINTED ON THE
PRECEDING LINE WAS INVOKED BUT FAILED TO ACKNOWLEDGE
WITHIN 5 MILLISECONDS.

ERR FF:NULL FILE EXTENSION [28]
A FILE WAS SPECIFIED SO AS TO CONTAIN AN EXTENSION BUT NO
EXTENSION WAS SPECIFIED.

Note 1. If error 35, 4A, or 4B occurs during emulation, hardware will be reset as if
a RESET HARDWARE was executed. The emulation will not be recover
able as all registers will be set to the values they contained at the begin
ning of emulation. Warning message C6 may be issued.

Note 2. Error 49 will cause emulation to exit properly and warning message C6 will
be issued.

Note 3. Bracketed number following error l1lessage refers to the ISIS error iden
tified by this number.

Note 4. Error messages other than those documented in this list should not
occur. If you encounter such an error, please report it to Intel Corpo
ration, MCSD Customer Marketing, 3065 Bowers Avenue, Santa Clara,
CA 95051, or to your local Field Application Engineer.

Error Messages

B-7

APPENDIX C
ICE-88' COMMAND SYNTAX SUMMARY

Command Summary

debug session == [top-level command cr] ...

top-level command == define macro command:: remove macro command:: command

command == compound command:: simple command

compound command == if command:: repeat command:: count command:: write command

simple command == display break/trace command:: set break/trace command::
go command:: step command:: go-register command::
enable/disable trace command:: traoe command:: oldest command::
newest command:: print command:: move command: : clock command::
command signal timeout command:: enable/disable ready command::
display command:: change command:: define command::
display symbols command:: display lines command::
display modules command:: change symbol command::
remove symbols command:: set domain command::
reset domain command:: display map command::
declare map command:: set map command:: reset map command::
load command:: save command:: suffix command: : base command::
evaluate command:: list command:: exit command::
reset hardware command:: display macro command::
put macro command:: dir command:: include command

Expressions

expr == boolean term [or-op boolean term] ...

or-op == OR :: XOR

boolean term == boolean factor [AND boolean factor] ...

boolean factor == [NOT] boolean primary

boolean primary == arith expr [rel-op arith expr]

rel-op == < :: > :: <= :: >= :: <> :: =

arith expr == memory reference :: port name :: address

address == arith term [MASK arith term] .,.

arith term == term [Plus-op term] ...

plus-op == + ::-

term == factor [mult-op factor] ...

mult-op == * :: I :: MOD

factor == [Plus-op] [segment-op] primary

segment-op ==primary::: OFFSET:: SEGMENT

primary == (expr) :: numeric constant:: source statement number:: string::
symbolic reference:: keyword reference

symbolic reference == [module name] symbol [symbol] ...

module name == . .identifier

symbol == .identifier

C-I

Command Syntax Summary

C-2

source statement number == [module name] # primary-1 0

primary-tO == primary

keyword reference == register name:: flag name:: pin name:: typed memory reference

partition == address [TO address] :: address LENGTH address

Keyword Operators

register name == RAL:: RAH:: RBL:: RBH:: RCL:: RCH:: RDL:: RDH:: RAX:: RBX:: RCX::
RDX:: SP:: BP:: SI:: DI:: SS:: DS:: ES:: IP:: CAUSE:: OPCODE:: RF:: PIP::
TIMER:: HTIMER:: BUFFERSIZE:UPPER:LOWER

flag name == AFL :: CFL :: DFL :: IFL :: OFL :: PFL :: SFL :: TFL :: ZFL

pin name == RDY:: NMI:: TEST:: HOLD:: RST:: MN:: IR

port name == PORT address:: WPORT address

memory reference == memory-designation address

memory-designation == BYTE:: WORD:: SINTEGER:: INTEGER:: POINTER

typed memory reference == l!! identifier] ! identifier [! identifier] ...

Emulation Controls and Commands

display break/trace command == break/trace reg [display break/trace mode]

set break/trace command == break/trace reg = match-cond

break/trace reg == break reg:: trace reg

break reg == BR:: BRO:: BR1

trace reg == aNT RACE :: OFFTRACE

display break/trace mode == ABSOLUTE:: BASE [expr]

match-cond == execution match code: : non-execution match cond

execution match cond == match value EXECUTED

non-execution match cond == address match range [match status list] [data match range]
[segment register usage] :: match status list [data match range]
[segment register usage] :: data match range
[segment register usage] :: segment register usage

match value == address:: masked constant

address match range == match range

data match range == VALU E match range

match range == match value:: match partition [, match partition] ... :: address up/down

match partition == partition:: OBJECT memory reference:: OBJECT typed memory reference

upldown == UP:: DOWN

match status list == match status [, match status] ...

match status == READ:: WRITTEN:: INPUT:: OUTPUT:: FETCHED: : HALT:: ACKNOWLEDGE

segment register usage == USING segment register name

segment register name == SS :: CS :: DS : : ES

go command == GO [FROM address] [go-register]

step command == STEP [FROM address]

go-register command == G R [= go-register]

ICE-88

ICE-88 Command Syntax Summary

go-register == FOREVER:: TILL break

break == break reg [and/or break reg] :: match-cond [and/or match-cond]

and/or == AND:: OR

enable/disable trace command == ENABLE TRACE [CONDITIONALLY [NOW initial trace]] ::
DISABLE TRACE

initial trace == ON :: OFF

trace command == TRACE [= trace mode]

trace mode == FRAME:: INSTRUCTION

oldest command == OLDEST

newest command == NEWEST

print command == PRINT [[Plus-op] primary-10] :: PRINT ALL

move command == MOVE [[Plus-op] primary-10]

clock command == CLOCK [= clock setting]

clock setting == INTERNAL:: EXTERNAL

command signal timeout command == RWTIMEOUT [= new signal]

new signal == INFINITE:: expr-10 [ERROR]:: expr-10 NOERROR

expr-10 == expr

enable/disable ready command == ENABLE RDY:: DISABLE RDY

Interrogation and Utility Commands

display command == reference [, reference] ... :: mem or i/o partition:: ASM partition::
REGISTER:: FLAG:: PIN:: STACK expr :: BOOL expr

mem or i/o == memory-designaltion :: PORT:: WPORT

change command == reference = expr :: mem or i/o partition = change exp [, change exp 1 ...

change exp == mem or i/o partition:: expr :: string

define command == DEFIN E [module name] symbol = expr [OF type 1

display symbols command == SYMBOL:: symbolic reference

display lines command == LIN E :: source statement number

display modules command == MODULE

change symbol command == symbolic reference = expr [OF type 1

remove symbols command == REMOVE symbolic reference [, symbolic reference] ... ::
REMOVE SYMBOL::
REMOVE MODU LE module name [, module name] ...

type == memory desig

set domain command == DOMAIN module name

reset domain command == RESET DOMAIN

display map command == MAP [partition]

declare map command == MAP DISK = file name:: MAP I NTELLEC = partition [, partition f ...
set map command == MAP partition = new memory map

reset map command == RESET MAP

new memory map == GUARDED:: USER [NOVERIFYl :: ICE [address] [NOVERIFY] ::
INTELLEC [address] [NOVERIFY] :: DISK [address] [NOVERIFY]

C-3

Command Syntax Summary

C-4

load command == LOAD path name {NOCODE }
NOSYMBOL
NOLINE

save command == SAVE path name {save code }
NOSYMBOL
NOLINE

save code == NOCODE :: parition [, partition] ...

suffix command == SUFFIX [= suffix]

base command == BASE [=base]

suffix == Y : : 0 : : Q :: T :: H

base == suffix:: ASCII

display nesting command == NESTING

evaluate command == EVALUATE expr [SYMBOLICALLY]

list command == LIST path name

exit command == EXIT

reset hardware command == RESET HARDWARE

cr == carriage-return line-feed

Macro Definition Command

define macro command == DEFINE MACRO macro name cr macro body EM

macro name == identifier

macro body == [command cr] ...

IF Command

if command == IF expr [THEN] cr true-list
[ORIF expr [THEN] crtrue-list] ...
[ELSE cr false-list]

true-list == [command cr] .. .

false-list == [command cr] .. .

end if == END

Looping Commands

repeat command == REPEAT cr loop-list end-repeat

end-repeat == END

count command == COUNT expr-10 cr loop-list end-count

expr-10.== expr

end-count == END

loop-list == [loop elemen t cr] ...

loop element == command:: loop exit

loop exit == WHILE EXPR :: UNTIL expr

ICE-88

ICE-88

Macro Invocation Command

macro invocation command == macro name:: [actual parameter list]

actual parameter list == actual parameter [, actual parameter] ...

actual parameter == [limited token] ... :: string

limited token == any token except cr, string or ","

Remove Macro Command

remove macro command == REMOVE MACRO [macro list]

macro list == macro name [, macro name] ...

Display Macro Command

display macro command == MACRO [macro list]

Put Macro Command

put macro command == PUT file name MACRO [macro list]

Director Command

dir command == DlR directory

directory == MACRO

Include Command

include command == INCLUDE file name

Write Command

write command == WRITE list element [, list element] ...

list element == string:: expr :: BOOl expr

Command Syntax Summary

C-5

APPENDIX D
ELECTRICAL AND PHYSICAL

CHARACTERISTICS

DC Characteristics of ICE-88 User Cable

1. Output Low Voltages VoL(Max) IOL(Min)

ADO-AD7, AS-A15 O.4V SmA

A16/S3-A19/S6, SSO, RD, lOCK, OSO, OS1, SO, S1, O.4V BmA
S2, WR, 101M, DT/R, DEN, ALE, INTA

HlDA O.4V 7mA

MATCHO O.4V 16mA

2. Output High Voltages VoH(Min) IOH(Min)

ADO-AD7, AB-A 15 2.4V - 2mA

A16/S3-A19/S6, SSO, RD, lOCK, OSO, OS1, SO, S1,
2.4V -2mA

S2, WR, 101M, DT/A, DEN, ALE, INTA

HlDA 2.4V -3.0 rnA

MATCHO OR MATCH1 2.4V -O.B rnA

3. Input Low Voltages V1L(Max) IIL(Max)

ADO-AD7, AB-A 15 O.BV -0.2 rnA

NMI, ClK O.BV -0.4 rnA

READY O.BV -0.8 rnA

INTR, HOLD, TEST, RESET O.BV -1.4 rnA

MN/MX (0.1Ilf to GND) O.BV -3.3 rnA

4. Input High Voltages V1H(Min) IIH(Max)

ADO-AD7, AB-A15 2.0V BOllA

NMI,ClK 2.0V 20llA

READY 2.0V 60llA

INTR,HOlD,TEST,RESET 2.0V -0.4 rnA

MN/MX 2.0V -1.1 rnA

5. RQ/GTO, RQ/GT1 are pulled up to +5V through a 5.6K ohm resistor. No current is taken
from user circuit at Vcc pin.

Specifications

ICE-88 Operating Environment

Required Hardware:
IntelJec Microcomputer Development System with:

1. Three adjacent slots for ICE-BB
2. 64K of Intellec Memory. If expansion memory is desired, no more than 32K may be 16K

RAM boards.
System Console
Intellec Diskette Operating System
ICE-8B Module

D-l

Electrical and Physical Characteristics

D-2

Required Software:
System Monitor
ISIS-II, Version 3.4 or subsequent
ICE-88 Software

Equipment Supplied
Printed Circuit Boards (3)
Interface Cable and Emulation Buffer Module
Operator's Manual
ICE-88 Software

Emulation Clock
User system clock up to 5 MHz or 2 MHz internal clock in stand-along mode.

Physical Characteristics

Printed Circuit Boards:

Width
Height
Depth
Packaged Weight

Electrical Characteristics

Vee = +5V ±1%
Icc = 16A maximum; 11A typical
VDD = +12V ±5%
IDD = 120 mA maximum; 80 mA typical
Vss = -10V ±5% or -12V ± 5% (optional)
Iss = 15 mA maximum; 12 rnA typical

Environmental Characteristics
Operating Temperature: 0° to 40°C

12.00 in
6.75 in
0.50 in

(30.48 cm)
(17.15 cm)
(1.27cm)

Operating Humidity: Up to 95% relative humidity without condensation.

ICE·88

00 00000000 MOD REGR/M ADD
01 00000001 MOD REGR/M ADD
02 00000010 MOD REGR/M ADD
03 00000011 MOD REGR/M ADD
04 00000100 ADD
05 00000101 ADD
06 00000110 PUSH
07 00000111 POP
08 00001000 MOD REGR/M OR
09 00001001 MOD REGR/M OR
OA 00001010 MOD REGR/M OR
OB 00001011 MOD REGR/M OR
OC 00001100 OR
0000001101 OR
OE 00001110 PUSH
OF 00001111 (not used)
10 00010000 MOD REGR/M ADC
11 00010001 MOD REGR/M ADC
12 00010010 MOD REGR/M ADC
13 00010011 MOD REGR/M ADC
14 00010100 ADC
15 00010101 ADC
16 00010110 PUSH
17 00010111 POP
18 00011000 MOD REGR/M SBB
19 00011001 MOD REGR/M SBB
1A 00011010 MOD REGR/M SBB
1 B 00011011 MOD REGR/M SBB
1C 00011100 SBB
1000011101 SBB
1 E 00011110 PUSH
1 F 00011111 POP
20 00100000 MOD REGR/M AND
21 00100001 MOD REGR/M AND
22 00100010 MOD REGR/M AND
23 00100011 MOD REGR/M AND
24 00100100 AND
25 00100101 AND
26 00100110 ES:
27 00100111 DAA
28 00101000 MOD REGR/M SUB
29 00101001 MOD REGR/M SUB
2A 00101010 MOD REGR/M SUB
2B 00101011 MOD REGR/M SUB
2C 00101100 SUB
2000101101 SUB
2E 00101110 CS:
2F 00101111 DAS
30 00110000 MOD REGR/M XOR
31 00110001 MOD REGR/M XOR
32 00110010 MOD REGR/M XOR
33 00110011 MOD REGR/M XOR
34 00110100 XOR
35 00110101 XOR
36 00110110 SS:
37 00110111 AAA
38 00111000 MOD REGR/M CMP
39 00111001 MOD REGR/M CMP
3A 00111010 MOD REGR/M CMP
3B 00111011 MOD REGR/M CMP
3C 00111100 CMP
3D 00111101 CMP
3E 00111110 OS:
3F 00111111 AAS
40 01000000 INC
41 01000001 INC

APPENDIX E
INSTRUCTIONS IN

HEXADECIMAL ORDER

EA,REG BYTE ADD (REG) TO EA
EA,REG WORD ADD (REG) TO EA
REG,EA BYTE ADD (EA) TO REG
REG,EA WORD ADD (EA) TO REG
AL,DATA8 BYTE ADD DATA TO REG AL
AX,DATA16 WORD ADD DATA TO REG AX
ES PUSH (ES) ON STACK
ES POP STACK TO REG ES
EA,REG BYTE OR (REG) TO EA
EA,REG WORD OR (REG) TO EA
REG,EA BYTE OR (EA) TO REG
REG,EA WORD OR (EA) TO REG
AL,DATA8 BYTEOR DATA TO REG AL
AX,DATA16 WORD OR DATA TO REG AX
CS PUSH (CS) ON STACK

EA,REG BYTE ADD (REG) W I CARRY TO EA
EA,REG WORD ADD (REG) WI CARRY TO EA
REA,EA BYTE ADD (EA) WI CARRY TO REG
REG,EA WORD ADD (EA) W I CARRY TO REG
AL,DATA8 BYTE ADD DATAW/CARRYTO REG AL
AX,DATA16 WORD ADD DATA WI CARRY TO REG AX
SS PUSH (SS) ON STACK
SS POP STACK TO REG SS
EA,REG BYTE SUB (REG) WI BORROW FROM EA
EA,REG WORD SUB (REG) WI BORROW FROM EA
REG,EA BYTE SUB (EA) WI BORROW FROM REG
REG,EA WORD SUB (EA) WI BORROW FROM REG
AL,DATA8 BYTE SUB DATA W I BORROW FROM REG AL
AX,DATA16 WORD SUB DATA WI BORROW FROM REG AX
OS PUSH (OS) ON STACK
OS POP STACK TO REG OS
EA,REG BYTE AND (REG) TO EA
EA,REG WORD AND (REG) TO EA
REG,EA BYTE AND (EA) TO REG
REG,EA WORD AND (EA) TO REG
AL,DATA8 BYTE AND DATA TO REG AL
AX,DATA16 WORD AND DATA TO REG AX

SEGMENT OVERIDE WI SEGMENT REG ES
DECIMAL ADJUST FOR ADD

EA,REG BYTE SUBTRACT (REG) FROM EA
EA,REG WORD SUBTRACT (REG) FROM EA
REG,EA BYTE SUBTRACT (EA) FROM REG
REG,EA WORD SUBTRACT (EA) FROM REG
AL,DATA8 BYTE SUBTRACT DATA FROM REG AL
AX,DATA16 WORD SUBTRACT DATA FROM REG AX

SEGMENT OVERIDE WI SEGMENT REG CS
DECIMAL ADJUST FOR SU BTRACT

EA,REG BYTE XOR (REG) TO EA
EA,REG WORD XOR (REG) TO EA
REG,EA BYTE XOR (EA) TO REG
REG,EA WORD XOR (EA) TO REG
AL,DATA8 BYTE XOR DATA TO REG AL
AX,DATA16 WORD XOR DATA TO REG AX

SEGMENT OVERIDE WI SEGMENT REG SS
ASCII ADJ UST FOR ADD

EA,REG BYTE COMPARE (EA) WITH (REG)
EA,REG WORD COMPARE (EA) WITH (REG)
REG,EA BYTE COMPARE (REG) WITH (EA)
REG,EA WORD COMPARE (REG) WITH (EA)
AL,DATA8 BYTE COMPARE DATA WITH (AL)
AX,DATA16 WORD COMPARE DATA WITH (AX)

SEGMENT OVERIDE WI SEGMENT REG OS
ASCII ADJUST FOR SUBTRACT

AX INCREMENT (AX)
CX INCREMENT (CX)

E-l

Instructions in Hexadecimal Order

E-2

42 01000010
43 01000011
44 01000100
45 01000101
46 01000110
47 01000111
48 01001000
49 01001001
4A 01001010
4B 01001011
4C 01001100
4D 01001101
4E 01001110
4F 01001111
50 01010000
51 01010001
52 01010010
53 01010011
54 01010100
55 01010101
56 01010110
57 01010111
58 01011000
59 01011001
5A 01011010
5B 01011011
5C 01011100
5D 01011101
5E 01011110
5F 01011111
60 01100000
61 01100001
62 01100010
63 01100011
64 01100100
65 01100101
66 01100110
67 01100111
68 01101000
69 01101001
6A 01101010
6B 01101011
6C 01101100
6D 01101101
6E 01101110
6F 01101111
70 01110000
71 01110001
72 01110010
73 01110011
.74 01110100
75 01110101
76 01110110
77 01110111
78 01111000
79 01111001
7A 01111010
7B 01111011
7C 01111100
7D 01111101
7E 01111110
7F 01111111
80 10000000 MOD 000 RIM
80 10000000 MOD 001 RIM
80 10000000 MOD 010 RIM
80 10000000 MOD 011 RIM
80 10000000 MOD 100 RIM
80 10000000 MOD 101 RIM
80 10000000 MOD 110 RIM
80 10000000 MOD 111 RIM
81 10000001 MOD 000 RIM
81 10000001 MOD 001 RIM
81 10000001 MOD 010 RIM

INC DX
INC BX
INC SP
INC BP
INC SI
INC DI
DEC AX
DEC CX
DEC DX
DEC BX
DEC SP
DEC BP
DEC SI
DEC DI
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SP
PUSH BP
PUSH SI
PUSH DI
POP AX
POP CX
POP DX
POP BX
POP SP
POP BP
POP SI
POP DI
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
JO DISP8
JNO DISP8
JB/JNAE DISP8
JNB/JAE DISP8
JE/JZ DISP8
JNE/JNZ DISP8
JBE/JNA DISP8
JNBE/JA DISP8
JS DISP8
JNS DISP8
JP/JPE DISP8
JNP/JPO DISP8
JL/JNGE DISP8
JNL/JGE DISP8
JLE/JNG DISP8
JNLE/JG DISP8
ADD EA, DA T A8
OR EA,DATA8
ADC EA,DATA8
SBB EA,DATA8
AND EA,DATA8
SUB EA,DATA8
XOR EA,DATA8
CMP EA,DATA8
ADD EA,DATA16
OR EA,DATA16
ADC EA,DATA16

INCREMENT (DX)
INCREMENT (BX)
INCREMENT (SP)
INCREMENT (BP)
INCREMENT (SI)
INCREMENT (DI)
DECREMENT (AX)
DECREMENT (CX)
DECREMENT (OX)
DECREMENT (BX)
DECREMENT (SP)
DECREMENT (BP)
DECREMENT (SI)
DECREMENT (01)
PUSH (AX) ON STACK
PUSH (CX) ON STACK
PUSH (DX) ON STACK
PUSH (BX) ON STACK
PUSH (SP) ON STACK
PUSH (BP) ON STACK
PUSH (SI) ON STACK
PUSH (DI) ON STACK
POP STACK TO REG AX
POP STACK TO REG CX
POP STACK TO REG DX
POP STACK TO REG BX
POP STACK TO REG SP
POP STACK TO REG BP
POP STACK TO REG SI
POP STACK TO REG DI

8088 Assembly Language

JUMP ON OVERFLOW
JUMP ON NOT OVERFLOW
JUMPON BELOW/NOT ABOVEOR EQUAL
JUMPO~ NOT BELOW/ABOVE OR EQUAL
JUMP ON EQUAL/ZERO
JUMP ON NOT EQUAL/NOT ZERO
JUMP ON BELOW OR EQUAL/NOT ABOVE
JUMPON NOT BELOW OR EQUAL/ABOVE
JUMPON SIGN
JUMP ON NOT SIGN
JUMP ON PARITY /PARITY EVEN
JUMP ON NOT PARITY /PARITY ODD
JUMP ON LESS/NOT GREATER OR EQUAL
JUMP ON NOT LESS/GREATER OR EQUAL
JUMP ON LESS OR EQUAL/NOT GREATER
JUMP ON NOT LESS OR EQUAL/GREATER
BYTE ADD DATA TO EA
BYTE OR DATA TO EA
BYTE ADD DATA W / CARRY TO EA
BYTE SUB DATA W/ BORROW FROM EA
BYTE AND DATA TO EA
BYTE SUBTRACT DATA FROM EA
BYTE XOR DATA TO EA
BYTE COMPARE DATA WITH (EA)
WORD ADD DATA TO EA
WORDOR DATA TO EA
WORD ADD DATA W / CARRY TO EA

8088 Assembly Language Instructions in Hexadecimal Order

81 10000001 MOD 011 RIM SBB EA,DATA16 WORD SUB DATA W I BORROW FROM EA
85 10000001 MOD 100 RIM AND EA,DATA16 WORD AND DATA TO EA
81 10000001 MOD 101 RIM SUB EA,DATA16 WORD SUBTRACT DATA FROM EA
81 10000001 MOD 110 RIM XOR EA,DATA16 WORD XOR OAT A TO EA
81 10000001 MOD 111 RIM CMP EA,DATA16 WORD COMPARE DATA WITH (EA)
82 10000010 MOD 000 RIM ADD EA,DATA8 BYTE ADD DATA TO EA
82 10000010 MOD 001 RIM (not used)
82 10000010 MOD 010 RIM ADC EA,DATA8 BYTE ADD DATA W I CARRY TO EA
82 10000010 MOD 011 RIM SBB EA,DATA8 BYTE SUB DATA WI BORROW FROM EA
82 10000010 MOD 100 RIM (not used)
82 10000010 MOD 101 RIM SUB EA,DATA8 BYTE SUBTRACT DATA FROM EA
82 10000010 MOD 110 RIM (not used)
82 10000010 MOD 111 RIM CMP EA,DATA8 BYTE COMPARE DATA WITH (EA)
83 10000011 MOD 000 RIM ADD EA,DATA8 WORD ADD OAT A TO EA
83 10000011 MOD 001 RIM (not used)
83 10000011 MOD 010 RIM ADC EA,DATA8 WORD ADD DATA W I CARRY TO EA
83 10000011 MOD 011 RIM SBB EA,DATA8 WORD SU B DATA W I BORROW FROM EA
83 10000011 MOD 100 RIM (not used)
83 10000011 MOD 101 RIM SUB EA,DATA8 WORDSUBTRACTDATAFROMEA
83 10000011 MOD 110 RIM (not used)
83 10000011 MOD 111 RIM CMP EA,DATA8 WORD COMPARE DATA WITH (EA)
84 10000100 MOD REGR/M TEST EA,REG BYTE TEST (EA) WITH (REG)
85 10000101 MOD REGR/M TEST EA,REG WORD TEST (EA) WITH (REG)
86 10000110 MOD REGR/M XCHG REG,EA BYTE EXCHANGE (REG) WITH (EA)
87 10000111 MOD REGR/M XCHG REG,EA WORD EXCHANGE (REG) WITH (EA)
88 10001000 MOD REGR/M MOV EA,REG BYTE MOVE (REG) TO EA
89 10001001 MOD REGR/M MOV EA,REG WORD MOVE (REG) TO EA
8A 10001010 MOD REGR/M MOV REG,EA BYTE MOVE (EA) TO REG
8B 10001011 MOD REGR/M MOV REG,EA WORD MOVE (EA) TO REG
8C 10001100 MOD OSR RIM MOV EA,SR WORD MOVE (SEGMENT REG SR) TO EA
8C 10001100 MOD 1-- RIM (not used)
8010001101 MOD REGR/M LEA REG,EA LOAD EFFECTIVE ADDRESS OF EA TO REG
8E 10001110 MOD OSR RIM MOV SR,EA WORD MOVE (EA) TO SEGMENT REG SR
8E 10001110 MOD -- RIM (not used)
8F 10001111 MOD 000 RIM POP EA POP STACK TO EA
8F 10001111 MOD 001 RIM (not used)
8F 10001111 MOD 010 RIM (not used)
8F 10001111 MOD 011 RIM (not used)
8F 10001111 MOD 100 RIM (not used)
8F 10001111 MOD 101 RIM (not used)
8F 10001111 MOD 110 RIM (not used)
8F 10001111 MOD 111 RIM (not used)
90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NOP)
91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX)
92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (OX)
93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX)
94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP)
95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP)
96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI)
97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (01)
98 10011000 CBW BYTE CONVERT (AL) TO WORD (AX)
99 10011001 CWO WORD CONVERT (AX) TO DOUBLE WORD
9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT CALL
9B 10011011 WAIT WAIT FOR TEST SIGNAL
9C 10011100 PUSHF PUSH FLAGS ON STACK
9010011101 POPF POP STACK TO FLAGS
9E 10011110 SAHF STORE (AH) INTO FLAGS
9F 10011111 LAHF LOAD REG AH WITH FLAGS
AO 10100000 MOV AL,ADDR16 BYTE MOVE (ADDR) TO REG AL
All0100001 MOV AX,ADDR16 WORD MOVE (ADDR) TO REG AX
A210100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR
A310100011 MOV ADDR16,AX WORD MOVE (AX) TO ADDR
A410100100 MOVS DST8SRC8 BYTE MOVE, STRING OP
A510100101 MOVS DST16,SRC16 WORD MOVE, STRING OP
A610100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING OP
A710100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING OP
A810101000 TEST AL,DATA8 BYTE TEST (AL) WITH OAT A
A910101001 TEST AX,DATA16 WORD TEST (AX) WITH DATA
AA10101010 STOS DST8 BYTE STORE, STRING OP
AB10l0l0ll STOS DST16 WORD STORE, STRING OP
AC10l0ll00 LODS SRC8 BYTE LOAD, STRING OP
AD10101101 LODS SRC16 WORD LOAD, STRING OP
AE10l0lll0 SCAS DIPTR8 BYTE SCAN, STRING OP

E-3

Instructions in Hexadecimal Order 8088 Assembly Language

AF 10101111 SCAS DIPTR16 WORD SCAN, STRING OP
BO 10110000 MOV Al,DATA8 BYTE MOVE DATA TO REG Al
B1 10110001 MOV Cl,DATA8 BYTE MOVE DATA TO REG Cl
B210110010 MOV Dl,DATA8 BYTE MOVE DATA TO REG Dl
B310110011 MOV Bl,DATA8 BYTE MOVE DATA TO REG Bl
B410110100 MOV AH,DATA8 BYTE MOVE DATA TO REG AH
B510110101 MOV CH,DATA8 BYTE MOVE DATA TO REG CH
B610110110 MOV DH,DATA8 BYTE MOVE DATA TO REG DH
B710110111 MOV BH,DATA8 BYTE MOVE DATA TO REG BH
B810111000 MOV AX,DATA16 WORD MOVE DATA TO REG AX
B910111001 MOV CX,DATA16 WORDMOVEDATATOREGCX
BA 10111010 MOV DX,DATA16 WORD MOVE DATA TO REG DX
BB10111011 MOV BX,DATA16 WORDMOVEDATATOREGBX
BC10111100 MOV SP,DATA16 WORDMOVEDATATOREGSP
B010111101 MOV BP,OATA16 WORD MOVE DATA TO REG BP
BE10111110 MOV SI,OATA16 WORD MOVE DATA TO REG SI
BF10111111 MOV DI,OATA16 WORD MOVE DATA TO REG 01
CO 11000000 (not used)
C111000001 (not used)
C211000010 RET DATA16 INTRA SEGMENT RETURN, ADD DATA TO REG SP
C311000011 RET INTRA SEGMENT RETURN
C411000100 MOD REGR/M lES REG,EA WORD lOAD REG AND SEGMENT REG ES
C511000101 MOD REGR/M lOS REG,EA WORD lOAD REG AND SEGMENT REG OS
C611000110 MOD 000 RIM MOV EA,DATA8 BYTE MOVE DATA TO EA
C611000110 MOD 001 RIM (not used)
C611000110 MOD 010 RIM (not used)
C611000110 MOD 011 RIM (not used)
C611000110 MOD 100 RIM (not used)
C611000110 MOD 101 RIM (not used)
C611000110 MOD 110 RIM (not used)
C611000110 MOD 111 RIM (not used)
C711000111 MOD 000 RIM MOV EA,DATA16 WORD MOVE DATA TO EA
C711000111 MOD 001 RIM (not used)
C711000111 MOD 010 RIM (not used)
C711000111 MOD 011 RIM (not used)
C711000111 MOD 100 RIM (not used)
C711000111 MOD 101 RIM (not used)
C711000111 MOD 110 RIM (not used)
C711000111 MOD 111 RIM (not used)
C811001000 (not used)
C911001001 (not used)
CA 11001010 RET DATA16 INTER SEGMENT RETURN, ADD DATA TO REG SP
CB11001011 RET INTER SEGMENT RETURN
CC11001100 INT 3 TYPE 31NTERRUPT
C011001101 INT TYPE TYPED INTERRUPT
CE11001110 INTO INTERRUPT ON OVERFLOW
CF 11001111 IRET RETURN FROM INTERRUPT
DO 11010000 MOD 000 RIM ROl EA,1 BYTE ROT ATE EA lEFT 1 BIT
DO 11010000 MOD 001 RIM ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT
DO 11010000 MOD 010 RIM RCl EA,1 BYTE ROTATE EA lEFT THRU CARRY 1 BIT
DO 11010000 MOD 011 RIM RCR EA,1 BYTE ROTATE EA RIGHT THRU CARRY 1 BIT
DO 11010000 MOD 100 RIM SHl EA,1 BYTE SHIFT EA lEFT 1 BIT
DO 11010000 MOD 101 RIM SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT
DO 11010000 MOD 110 RIM (not used)
DO 11010000 MOD 111 RIM SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1 BIT
0111010001 MOD 000 RIM ROl EA,1 WORD ROT A TE EA lEFT 1 BIT
01 11010001 MOD 001 RIM ROR EA,1 WORD ROTATE EA RIGHT 1 BIT
D1 11010001 MOD 010 RIM RCl EA,1 WORD ROTATE EA lEFT THRU CARRY 1 BIT
D1 11010001 MOD 011 RIM RCR EA,1 WORD ROTATE EA RIGHTTHRU CARRY 1 BIT
01 11010001 MOD 100 RIM SHl EA,1 WORD SHIFT EA lEFT 1 BIT
01 11010001 MOD 101 RIM SHR EA,1 WORD SHIFT EA RIGHT 1 BIT
01 11010001 MOD 110 RIM (not used)
01 11010001 MOD 111 RIM SAR EA,1 WORD SHIFT SIGNED EA RIGHT 1 BIT
0211010010 MOD 000 RIM ROl EA,Cl BYTE ROTATE EA lEFT (Cl) BITS
0211010010 MOD 001 RIM ROR EA,Cl BYTE ROTATE EA RIGHT (Cl) BITS
0211010010 MOD 010 RIM RCl EA,Cl BYTE ROTATE EA lEFTTHRU CARRY (Cl) BITS
0211010010 MOD 011 RIM RCR EA,Cl BYTE ROTATE EA RIGHTTHRU CARRY (Cl) BITS
0211010010 MOD 100 RIM SHl EA,Cl BYTE SHIFT EA lEFT (Cl) BITS
0211010010 MOD 101 RIM SHR EA,Cl BYTE SHIFT EA RIGHT (Cl) BITS
0211010010 MOD 110 RIM (not used)
0211010010 MOD 111 RIM SAR EA,Cl BYTE SHIFT SIGNED EA RIGHT (Cl) BITS
0311010011 MOD 000 RIM ROl EA,Cl WORD ROTATE EA lEFT (Cl) BITS
0311010011 MOD 001 RIM ROR EA,Cl WORD ROTATE EA RIGHT (Cl) BITS

E-4

8088 Assembly Language Instructions in Hexadecimal Order

0311010011 MOD 010 RIM RCL EA,CL WORD ROTATE EA LEFTTHRU CARRY (CL) BITS
0311010011 MOD 011 RIM RCR EA,CL WORD ROTATE EA RIGHT THRU CARRY (CL) BITS
0311010011 MOD 100 RIM SHL EA,CL WORD SHIFT EA LEFT (CL) BITS
0311010011 MOD 101 RIM SHR EA,CL WORD SHIFT EA RIGHT (CL) BITS
0311010011 MOD 110 RIM (not used)
0311010011 MOD 111 RIM SAR EA,CL WORD SHIFT SIGNED EA RIGHT (CL) BITS
0411010100 00001010 AAM ASCII ADJUST FOR MULTIPLY
0511010101 00001010 ADD ASCII ADJUST FOR DIVIDE
0611010110 (not used)
0711010111 XLAT TABLE TRANSLATE USING (BX)
08 11011--- MOD --- RIM ESC EA ESCAPE TO EXTERNAL DEVICE
EO 11100000 LOOPNZI LOOPNE DISP8 LOOP (CX) TIMES WHILE NOT ZERO/NOT EQUAL
E1 11100001 LOOPZ/LOOPE DISP8 LOOP (CX) TIMES WHILE ZERO/EQUAL
E211100010 LOOP DISP8 LOOP (CX) TIMES
E3 11100011 JCXZ DISP8 JUMP ON (CX)=O
E411100100 IN AL,PORT BYTE INPUT FROM PORT TO REG AL
E511100101 IN AX,PORT WORD INPUT FROM PORT TO REG AX
E611100110 OUT AL,PORT BYTE OUTPUT (AL) TO PORT
E711100111 OUT AX,PORT WORD OUTPUT (AX) TO PORT
E811101000 CALL DISP16 DIRECT INTRA SEGMENT CALL
E911101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP
EA11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT JUMP
EB11101010 JMP DISP8 DIRECT INTRA SEGMENT JUMP
EC11101010 IN AL,DX BYTE INPUT FROM PORT (OX) TO REG AL
ED11101010 IN AX,DX WORD INPUT FROM PORT (OX) TO REG AX
EE 11101010 OUT OX BYTE OUTPUT (AL) TO PORT (OX)
EF 11101010 OUT OX WORD OUTPUT (AX) TO PORT (OX)
FO 11110000 LOCK BUS LOCK PREFIX
F1 11110001 (not used)
F2 11110010 REPNZ REPEAT WHILE (CX)*O AND (ZF)=O
F3 11110011 REPN REPEAT WHILE (CX)*O AND (ZF)=1
F411110100 HLT HALT
F5 11110101 CMC COMPLEMENT CARRY FLAG
F6 11110110 MOD 000 RIM TEST EA,DATA8 BYTE TEST (EA) WITH OAT A
F6 11110110 MOD 001 RIM (not used)
F611110110 MOD 010 RIM NOT EA BYTE INVERT EA
F611110110 MOD 011 RIM NEG EA BYTE NEGATE EA
F611110110 MOD 100 RIM MUL EA BYTE MULTIPLY BY (EA), UNSIGNED
F611110110 MOD 101 RIM IMUL EA BYTE MULTIPLY BY (EA), SIGNED
F611110110 MOD 110 RIM DIV EA BYTE DIVIDE BY (EA), UNSIGNED
F6 11110110 MOD 111 RIM IDIV EA BYTE DIVIDE BY (EA), SIGNED
F7 11110111 MOD 000 RIM TEST EA,DATA16 WORD TEST (EA) WITH DATA
F7 11110111 MOD 001 RIM (not used)
F7 11110111 MOD 010 RIM NOT EA WORD INVERT EA
F7 11110111 MOD 011 RIM NEG EA WORD NEGATE EA
F7 11110111 MOD 100 RIM MUL EA WORD MULTIPLY BY (EA), UNSIGNED
F7 11110111 MOD 101 RIM IMUL EA WORD MULTIPLY BY (EA), SIGNED
F7 11110111 MOD 110 RIM DIV EA WORD DIVIDE BY (EA), UNSIGNED
F7 11110111 MOD 111 RIM IDIV EA WORD DIVIDE BY (EA), SIGNED
F811111000 CLC CLEAR CARRY FLAG
F9 11111001 STC SET CARRY FLAG
FA 11111010 CLI CLEAR INTERRUPT FLAG
FB11111011 STI SET INTERRUPT FLAG
FC 11111100 CLD CLEAR DIRECTION FLAG
FD 11111101 STD SET DIRECTION FLAG
FE 11111110 MOD 000 RIM INC EA BYTE INCREMENT EA
FE 11111110 MOD 001 RIM DEC EA BYTE DECREMENT EA
FE 11111110 MOD 010 RIM (not used)
FE 11111110 MOD 011 RIM (not used)
FE 11111110 MOD 100 RIM (not used)
FE 11111110 MOD 101 RIM (not used)
FE 11111110 MOD 110 RIM (not used)
FE 11111110 MOD 111 RIM (not used)
FF 11111111 MOD 000 RIM INC EA WORD INCREMENT EA
FF 11111111 MOD 001 RIM DEC EA WORD DECREMENT EA
FF 11111111 MOD 010 RIM CALL EA INDIRECT INTRA SEGMENT CALL
FF 11111111 MOD 011 RIM CALL EA INDIRECT INTER SEGMENT CALL
FF 11111111 MOD 100 RIM JMP EA INDIRECT INTRA SEGMENT JUMP
FF 11111111 MOD 101 RIM JMP EA INDIRECT INTER SEGMENT JUMP
FF 11111111 MOD 110 RIM PUSH EA PUSH (EA) ON STACK
FF 11111111 MOD 111 RIM (not used)

E-5

Instructions in Hexadecimal Order 8088 Assembly Language

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE:

16-81T (W=1) 8-81T (W=O) SEGMENT REG

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 OX 010 DL 10 SS
011 BX 011 BL 11 OS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 01 111 BH

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BX) + (SI) OS
00 001 (BX) + (01) OS
00 010 (BP) + (SI) SS
00 011 (BP)+(DI) SS
00 100 (SI) DS
00 101 (DI) DS
00 110 DISP16 (DIRECT ADDRESS) DS
00 111 (BX) DS
01 000 (BX) + (SI) + DISP8 DS
01 001 (BX)+(DI)+DISP8 DS
01 010 (BP) + (SI) + DISP8 SS
01 011 (BP) + (DI) + DISP8 SS
01 100 (SI) + DISP8 OS
01 101 (01) + DISP8 OS
01 110 (BP) + 0lSP8 SS
01 111 (BX)+DISP8 OS
10 000 (BX) + (SI) + DISP16 OS
10 001 (BX)+(DI)+DISP16 OS
10 010 (BP)+(SI)+DlSP16 SS
10 011 (BP)+(DI)+DISP16 SS
10 100 (SI) + DISP16 DS
10 101 (01) + DISP16 DS
10 110 (BP)+DISP16 SS
10 111 (BX)+DISP16 DS
11 000 REG AX 1 AL
11 001 REG CX 1 CL
11 010 REG OX 1 DL
11 011 REGBX/BL
11 100 REG SP 1 AH
11 101 REG BP 1 CH
11 110 REG SII DH
11 111 REG 011 BH

FLAGS REGISTER CONTAINS:

X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

E-6

8088 Assembly Language

SET MATRIX

Lo
Hi 8 9 A B C 0 E

0 OR OR OR OR OR OR PUSH
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I CS

1 SBB SBB SBB SBB SBB SBB PUSH
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i w.i OS

2 SUB SUB SUB SUB SUB SUB SEG
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I eCS

3 CMP CMP CMP CMP CMP CMP SEG
b.f.r/m w.f.r/m b.t.r/m w.t.r/m b.i W.I oDS

4 DEC DEC DEC DEC DEC DEC DEC
AX CX DX BX SP BP SI

5 POP POP POP POP POP POP POP
AX CX DX BX SP BP SI

6

7 JS JNS JPI JNPI JLI JNLI JLEI
JPE JPO JNGE JGE. JNG

8 MOV MOV MOV MOV MOV LEA MOV
b.f.r/m w.f.r/m b.t.r/m w.t.r/m sr,f,r/m sr,t,r/m

9 CBW CWD CALL WAIT PUSHF POPF SAHF I.d

A TeST TeST STOS STOS LOOS LOOS SCAS b,i,a w,l,a
... - ---

B MOV MOV MOV MOV MOV MOV MOV
i-AX i - CX i - DX i - BX i - SP i - BP i - SI

C RET. RET INT INT INTO 1.(i+SP) I Type 3 (Any)

0 ESC ESC ESC ESC ESC ESC ESC
0 1 2 3 4 5 6

E CALL JMP JMP JMP IN IN OUT
d d I.d si.d v,b v,w v,b

F CLC STC CLI STI CLD STD
Grp 2
b.r/m

where

modDr/m 000 001 010 011 100 101 110

Immed ADD OR ADC SBB AND SUB XOR

Shift ROl ROR RCl RCR SHLISAl SHR -
Grp 1 TEST - NOT NEG MUL IMUl DIV

Grp2 INC DEC CAll CAll JMP JMP PUSH
id Lid id Lid

F Hi
0

POP 1
DS

DAS 2

AAS 3

DEC 4
DI

POP 5
DI

6

JNLEI 7
JG

POP 8
rim

LAHF 9

SCAS A

MOV 8
i - DI

IRET C

ESC 0
7

OUT E
v,w

Grp 2 F
w.r/m

111

CMP

SAR

IDIV

-

Instructions in Hexadecimal Order

8086 INSTRUCTION

Lo
0 1 2

ADD ADD ADD
b.f.r/m w.f.r/m b.t.r/m

ADC ADC ADC
b.f.r/m w.t.r/m b.t.r/m

AND AND AND
b.f.r/m w.f.r/m b.t.r/m

XOR XOR XOR
b.t.r/m w.f.r/m b.t.r/m

INC INC INC
AX CX DX

PUSH PUSH PUSH
AX CX DX

JO JNO JBI
JNAE

Immed Immed Immed
b.r/m w.r/m b.r/m

XCHG XCHG XCHG
AX CX DX

MOV MOV MOV
m - AL m -AX AL - m

MOV MOV MOV
i - AL i - CL i - DL

RET.
(i+SP)

Shift Shift Shift
b w b.v

LOOPNZI LOOPZI LOOP LOOPNE LOOPE

LOCK REP

b = byte operation
d = direct
f = from CPU reg
i = immediate
ia = immed. to accum.
id = indirect

3

ADD
w.t.r/m

ADC
w.t.r/m

AND
w.t.r/m

XOR
w.t.r/m

INC
BX

PUSH
BX

JNBI
JAE

Immed
is.r/m

XCHG
BX

MOV
AX - m

MOV
i.- BL

RET

Shift
w.v

JCXZ

REP
Z

is = immed. byte. sign ext.
I = long ie. intersegment

4 5 6
ADD ADD PUSH
b. ia w.ia ES
ADC ADC PUSH
b.i W.I SS

AND AND SEG
b.i w.i oES

XOR XOR SEG
b.i w.i oSS

INC INC INC
SP BP SI

PUSH PUSH PUSH
SP BP SI

JEI JNEI JBEI
JZ JNZ JNA

TEST TEST XCHG
b.r/m w.r/m b.r/m

XCHG XCHG XCHG
SP BP SI

MOVS MOVS CMPS

MOV MOV MOV
i - AH i - CH i - DH

LES LDS MOV
b.i.r/m

AAM AAD

IN IN OUT
b w b

HLT CMC
Grp 1
b.r/m

m = memory
rIm = EA is second byte
si = short intrasegment
sr = segment register
t = to CPU reg
v = variable
w = word operation
z = zero

7

POP
ES

POP
SS

DAA

AAA

INC
DI

PUSH
DI

JNBEI
JA

XCHG
w.r/m

XCHG
DI

CMPS

MOV
i - BH

MOV
w.i.r/m

XLAT

OUT
w

Grp 1
w.r/m

E-7

ABSOLUTE,6-18
ACKNOWLEDGE, 6-7
Actual Parameters, 8-10
ADDR, 6-25,6-27
Address match range, 6-6
AFL, 4-10,7-16
ALL,6-24
AND, 5-11, 5-13, 5-14
Arithmetic operators, 5-9
ASCII,4-14
ASCII codes, 5-8, 7-59
ASM,4-15,7-71

Base, 7-11
BASE, 4,14, 7-11,7-13
Base pointer, 4-9
Binary operator, 5-9, 5-10, 5-11
BOOL, 7-67, 7-74
BP, 4-9,7-15
Breakpoint registers, 4-12, 6-4
BR, 4-12,6-4
BRO, 4-12, 6-4
BR1, 4-12, 6-4
Buffer pointer, 6-23
BUFFERSIZE,7-15
BUFFERSIZE register, 4-10
BYTE, 5-5, 5-6, 5-12, 7-30, 7-58

CARS module listing, 3-3
CAUSE, 4-10,7-15
CAUSE register, 4-10
CFL, 4-10, 7-16
Change Symbol command, 7-43, 7-49
Character set, 4-6
CLOCK, 4-15, 6-19
Code segment register, 4-9
Command contexts, 5-22
Command keywords, 4-12
Command signal timeout, 6-12
COMMENTS, 6-26
Compound commands, 8-1
Console input radixes (SUFFIX), 7-10
Console output radixes (BASE), 7-11
Content operators, 5-12
CS, 4-9, 7-15
COUNT,8-3
COUNT command, 8-3, 8-6

Data match range, 6-8
Data segment register, 4-9
DEFINE MACRO command, 8-8, 8-12
DEFINE Symbol command, 7-40, 7-45
DELAY module listing, 3-4
Destination index, 4-9
Device, 7-2, 7-9
DFL, 4-10, 7-16
DI, 4-9, 7-15
Digit, 5-2
DIR,8-12
DISK, 4-14, 7-22, 7-23

INDEX

DISABLE,4-15
Display, 1-4
Display Boolean command, 7-67,7-74
Display CLOCK command, 6-19
Display commands, 4-13, 7-54
Display Emulation Register command, 6-18
Display 110 command, 7-64, 7-72
Display Macro command, 8-12
Display MAP Status command, 7-22, 7-28
Display Memory command, 7-60, 7-71
Display Modules command, 7-43, 7-48
Display Processor and Status Register

command, 7-59, 7-70
Display RWTIMEOUTcommand, 6-20
Display STACK command, 7-67, 7-73
Display Statement Numbers

command, 7-42, 7-47
Display Symbols command, 7-41, 7-46
Display TRACE command, 6-33
DMUX, 6-25
DOWN, 6-8, 6-9
Drive, 7-2, 7-7,7-9
DS, 4-9, 7-15

ELSE,8-5
EM,8-8
Emulation control keywords, 4-16
Emulation control commands, 6-1
Emulation timer, 6-12
ENABLE,4-15
ENABLE/DISABLE RDY command, 6-21
ENABLE/DISABLE TRACE

command, 6-23,6-32
END, 8-1, 8-3
ES, 4-9, 7-15
EVALUATE,4-14
EV ALUATE command, 7-68, 7-76
EXECUTED,6-4
Execution commands, 4-13
Execution match condition, 6-4
EXIT,7-6
EXIT command, 7-3, 7-6
Explicit radix, 5-3, 7-10
Expressions, 5-1
Extra segment register, 4-9
EXTERNAL,4-15

FETCHED,6-7
Filename, 7-2, 7-7, 7-9
FLAG,4-15
Flag references, 7-16
Flag register, 4-10
FOREVER, 6-2, 6-3,6-10
Formal parameters, 8-10
FRAME, 6-25, 6-26, 6-27
Frames mode, 6-25
FROM, 6-3, 6-4; 6-10

General register file, 7-55
General registers, 7-14

Index-!

Index-2

Generalized Development Cycle with
ICE-88,1-1O

Generalized Emulation Session, 1-12
GO, 6-3, 6-4
GO command, 6-3, 6-15

'·GR, 4-12,6-2,6-10
GR register, 4-12, 6-2, 6-10
GUARDED,7-22

H,4-14
HALT,6-7
HALT GO condition, 6-10
HARDWARE,4-15
Hardware installation procedures, 2-2
Hardware register command

keywords, 4-15
HTIMER, 4-10,6-12, 7-15
HTIMER register, 4-10, 6-12, 6-22
HOLD,4-12

ICE,7-21
ICE-88 architecture, 1-8
ICE-88 components, 2-1
ICE-88 firmware, 1-9
ICE-88 hardware, 1-9
ICE-88 In-circuit emulation, 1-2
ICE-88 In-circuit Emulator, 1-1
ICE-88 software, 1-9
ICE88 command, 7-3, 7-5
IF,8-5
IF command, 8-5, 8-6
IFL, 4-10, 7-16
Implicit radix, 7-10
INCLUDE, 8-16
INCLUDE command, 8-16
Index registers, 7-15
INPUT,6-7
Installation Procedure for Intellec Series II

Model 220 and 230,2-3
Installation Procedure for Intellec

Model 800 and 888, 2-3
INSTRUCTION,6-23
Instruction mode, 6-26
Instruction pointer, 4-10
Interrogation and Utility commands, 1-6
Integer, 5-1
INTEGER, 5-5, 5-6, 5-12, 7-30, 7-58
INTELLEC, 7-20, 7-21, 7-22
INTERNAL,4-15
INTR,4-12
Invoke Macro command, 8-8
IP, 4-10,7-15
IR, 4-12, 7-16

Keyword references, 5-3
Keywords, 4-7

LENGTH, 6-6, 6-7
LINE,7-47
LIST,7-4
LIST command, 7-4, 7-9
LOAD,7-3
LOAD command, 7-3, 7-7
Local and global defaults, 8-9
Logical operators, 5-12
LOWER, 4-10, 7-15

MACTMP, 8-8
MACRO, 8-8
Macro commands, 8-8
Macro Directory command, 8-12
Macro expansion, 8-12
Macro table commands, 8-12
MAP DISK command, 7-21, 7-24
MAP INTELLEC command, 7-21, 7-25
MARK,6-25
MASK, 5-10, 5-14
Masked constant, 5-3
Match condition, 6-4
Match condition restrictions, 6-8
Match status list, 6-7
Memory and port contents, 4-15
Memory mapping, 4-14
Memory mapping commands, 7-20
Memory references, 5-5
MN,7-16
MN/MX, 4-12
MNEMONIC, 6-26
MOD, 5-10, 5-14
Module name. 5-4. 7-39
MOVE. 6-23, 6-33
MOVE command, 6-33

Nesting compound command, 8-6
NEWEST,6-23
NEWEST command, 6-33
NMI,7-16
NOCODE.7-3
NOLINE,7-3
Non-execution match condition, 6-6, 6-9
NOSYMBOL.7-3
NOT, 5-11,5-12,5-14
Notation and conventions used in this

manual,4-3
Notational symbols, 4-3
NOVERIFY, 7-22
Number base, 5-3
Number base and radix

commands, 4-14, 7-10
Numeric constant, 5-2
Numeric value display formats, 7-58

0,4-14
OBJECT,6-7
OF,7-40
OFF, 6-23, 6-32
OFFSET, 5-10,5-14
OFFTRACE, 6-11, 6-12
OFL, 4-11, 7-16
OLDEST,6-23
OLDEST command, 6-33
ON, 6-23. 6-32
ONTRACE, 6-11, 6-12
OPCODE, 4-10, 7-15
OPCODE register, 4-10
OPERANDS, 6-26
Operands, 5-2
Operating modes, 1-5
Operators, 4-18, 5-9
OR, 5-11, 5-13, 5-14
ORIF,8-5
OUTPUT,6-7

ICE-88

ICE-88

Partition, 6-6, 7-21, 7-31
Parenthesized expressions, 5-9
Pathname, 7-2
PFL, 4-11, 7-16
PIN, 4-15
Pin references 4-11, 7-16
PIP, 4-10, 7-15
POINTER, 5-5, 5-12, 7-30, 7-58
Pointer, 5-1
Pointer and index file, 4-8
Pointer registers, 7-15
PORT, 5-7, 5-12
Port content references, 7-35
Port reference, 5-12
PREFIX, 6-26
Previous instruction register, 4-10, 7-15
PRINT,6-24
PRINT command, 6-34
Punctuation, 4-19
PUT MACRO command, 8-13

Q,4-14
QDEPTH, 6-25
QSTS, 6-25

RAH,7-14
RAL,7-14
RAX, 7-14
RBH,7-14
RBL,7-14
RBX, 7-14
RCH,7-14
RCL,7-14
RCX, 7-14
RDH,7-14
RDL,7-14
RDX, 7-14
RDY, 7-16
READ,6-7
READY, 4-11
Reference keywords, 4-7
REGISTER,4-15
Registers, 4-8
Relational Operators, 5-12
REMOVE MACRO command, 8-12
REMOVE MODULE command, 7-43, 7-50
REMOVE Symbols command, 7-43, 7-50
REPEAT command, 8-1, 8-6
Required and optional hardware, 2-1
RESET,4-12
RESET Domain command, 7-44, 7-57
RESET HARDWARE command, 7-19
RESET MAP command, 7-23,7-29
RF, 4-10, 7-15
RST,7-16
RWTIMEOUT, 4-15, 6-12

SAVE command, 7-3, 7-8
Saving macros, 8-13
SEGMENT, 5-10, 5-14
Segment register file, 4-9
Segment register usage, 6-8
Segment registers, 7-15
Semantic rules, 5-14
Set Breakpoint Register command, 6-13
Set! change commands, 4-12

Set CLOCK command, 6-19
Set Domain command, 7-44, 7-52
Set GO-Register (GR) command, 6-16
Set Input/Output Port Contents

command, 7-35, 7-38
Set Map Status command, 7-21, 7-26
Set Memory command, 7-37
Set memory and Port Contents

commands, 7-30
Set or Display Console Input Radix

commands, 7-12
Set or Display Console Output Radix

commands, 7-13
Set Register command, 7-18
Set RWTIMEOUT command, 6-20
Set TRACE Display Mode command, 6-31
Set Tracepoint Register command, 6-14
Setting the GO Register, 6-10
Setting memory contents, 7-32
Setting tracepoint registers, 6-11
SFL, 4-11,7-16
SI, 4-9, 7-15
Simple commands, 4-12
SINTEGER, 5-5, 5-6, 5-12, 7-30, 7-58
Source index, 4-9
SP, 4-9, 7-15
Special tokens, 4-18
SS, 4-9, 7-15
STACK,7-73
Stack pointer, 4-9
Stack segment register, 4-9
Statement number reference, 5-5
Statement number table, 4-16
Statement numbers, 4-18
Statement references, 7-41
Status bits, 4-10
Status registers, 4-10, 7-15
STEP command, 6-17
String constants, 5-7
STS, 6-25
Suffix, 7-10
SUFFIX, 4-14, 7-10, 7-12, 8-9
SUFFIX command, 7-10
Symbolic debugging, 1-4
Symbolic references, 5-4, 7-40, 7-41
Symbols, 4-17,7-39
Symbol table, 4-16
Symbol Table and Statement Number

Table commands, 7-39

T,4-14
TEST,7-16
TFL, 4-11, 7-16
THEN,8-5
TILL, 6-4, 6-10
TIMER, 4-10, 6-12, 6-22, 7-15
TIMER register, 4-10
TO, 6-6, 7-31
Tokens, 4-7
Trace buffer, 6-22
Trace control, 4-17
Trace control commands, 6-22
Trace display formats, 6-25
Trace display mode, 6-23
Tracepoint registers, 6-11

Index-3

Index-4

TYPE command, 7-44, 7-51
Typed memory reference, 5-6

Unary operators, 5-9,5-11,5-14
UNTIL, 8-1, 8-2, 8-3
UP, 6-7,6-8
UPPER, 4-10, 7-15
USER, 7-21,7-22
User names, 4-17
USING CS, 6-8
USING DS, 6-8
USING ES, 6-8
USING SS, 6-8
Utility commands, 4-14, 7-2

WHILE, 8-1, 8-2, 8-3
WORD, 5-5, 5-6, 5-12, 7-30, 7-58
WPORT, 5-7, 5-12, 7-35
WRITE,8-17
WRITE command, 8-17
WRITTEN,6-7

XOR, 5-11,5-13, 5-14

Y,4-14

ZFL, 4-11, 7-16

8086 Pin references, 4-11

ICE-88

REQUEST FOR READER'S COMMENTS

ICE-88™ln-Circuit Emulator
Operating Instructions

9800949-01

The Microcomputer Division Technical Publications Department attempts to provide documents that meet
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is It at the right level? What other types of
documents are needed?

4. Old you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ _ DATE _________________ _
TITLE ___ __

COMPANYNAME/DEPARTMENT __ _____

ADDRESS _____________________________________ _

CITY __________________ _ STATE _____ _ ZIP CODE ________ _

Please check here If you require 8 written reply. 0

WE'D LIKE YOUR COMMENTS 000

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

111111 NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987·8080

Printed in U.S.A.

