
ISIS-II PL/M-86 COMPILER
OPERATOR'S MANUAL

Manual Order No.: 9800478A

Copyright © 1978 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

iSBC PROMPT
ICE Library Manager Promware
iCS MCS RMX
Insite Megachassis UP!
Intel Micromap ~Scope

lntellec Multibus

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

Printed in U.S.A. A56/479/3K TP

PREFACE

This manual describes the operation of the PL/M-86 Compiler, Version 1.0. The
compiler accepts PL/M-86 source as input and produces relocatable 8086 object
code as output. The compiler runs under the ISIS-II operating system which sup­
ports relocation and linkage of object code programs. The manual is one of a series
of documents describing this system and its operation.

This manual assumes that the reader is conversant with PL/M-86, is familiar with
the ISIS-II operating system, and knows how to operate the Intellec Microcomputer
Development System hardware. The reader is referred to the following Intel publica­
tions to gain such familiarity:

• PL/M-86 Programming Manual 98-466

• ISIS-II System User's Guide 98-306

• Intellec Microcomputer Development System Operator's Manual 98-129

The compiler requires the following software and hardware environments for proper
execution:

Software

For the Compiler

• ISIS-II Operating System

For Object Programs

• QRL86 or LINK86 and LOC86

• PL/M-86 library file, PLM86.LIB

For Intermodule Cross-Reference Listings

• IXREF Program (if intermodule cross-reference listing is desired)

Hardware

• 8080 Intellec Microcomputer Development System

• 64K bytes of RAM memory (includes space required for ISIS-II)

• An ISIS-supported direct access device and controller (such as diskette drive)

• Console device (TTY or CRT)

iii

PAGE
CHAPTER!
HOW TO USE THE PL/M-86
COMPILER

CHAPTER 2
COMPILER INVOCATION AND FILE
USAGE
Compiler Invocation 2-1
File Usage 2-2

CHAPTER 3
COMPILER CONTROL LANGUAGE
Introduction to Compiler Controls 3-1
Listing Selection Controls 3-2
Listing Format Controls 3-4
The LEFTMARGIN Control 3-7
Object File Controls 3-7
The WORKFILES Control 3-12
Source Inclusion Controls. .. 3-12
Program Size Controls 3-13
Conditional Compilation Controls 3-14

CHAPTER 4
OBJECT MODULE SECTIONS
Code Section 4-1
Constant Section 4-1
Data Section 4-1
Stack Section 4-2
Memory Section 4-2

CHAPTER 5
PROGRAM SIZE
8086 Memory Concepts 5-1
The SMALL Case 5-1
The MEDIUM Case ., . 5-3
The LARGE Case 5-4

CHAPTER 6
FLOATING-POINT ARITHMETIC
Representation of REAL Values 6-1
The REAL Math Facility 6-2
Error Categories 6-3
The SET$REAL$MODE Procedure 6-4

iv

CONTENTS

The GET$REAL$ERROR Procedure 6-4
Saving and Restoring REAL Status 6-5
Linkage to the Facility 6-5

CHAPTER 7
LISTING FORMATS
Program Listing 7-1
Symbol and Cross-Reference Listing 7-2
Compilation Summary 7-3

CHAPTER 8
RUN-TIME DATA
REPRESENTATIONS
BYTE Values
WORD Values
INTEGER Values
REAL Values
POINTER Values

CHAPTER 9
RUN-TIME PROCEDURE AND
ASSEMBLY LANGUAGE LINKAGE

8-1
8-1
8-1
8-1
8-1

Calling Sequence 9-1
Procedure Prologue 9-2
Procedure Epilogue 9-3
Value Returned From Typed Procedure 9-3

CHAPTER 10
RUN-TIME INTERRUPT
PROCESSING
General 10-1
The Interrupt Vector 10-1
Interrupt Procedure Preface 10-2
Writing Interrupt Vectors Separately 10-3

APPENDIX A
THE IXREF PROGRAM

APPENDIXB
PROGRAM CONSTRAINTS

APPENDIXC
ERROR MESSAGES

FIGURE TITLE PAGE

1-1
3-1

3-2

3-3

3-4

3-5

7-1
7-2
7-3
9-1

Interactive Compilation Sequence
Sample Program Showing the
OPTIMIZE(O) Control
Sample Program Showing the
OPTIMIZE(I) Control
Sample Program Showing the
OPTIMIZE(2) Control
Sample Program Showing the
SET(DEBUG=) Control
Sample Program Showing the
NOCOND Control
Program Listing
Cross-Reference Listing
Compilation Summary
Stack Layout During Execution of

Procedure Body

1-1

3-9

3-10

3-11

3-15

3-15
7-1
7-3
7-3

9-1

ILLUSTRATIONS & TABLES I

FIGURE TITLE PAGE

9-2 Stack Layout After Execution of
Procedure Body 9-2

10-1 Stack Layout Upon Activation of
Interrupt Procedure 10-2

10-2 Stack Layout After Interrupt Procedure
Preface and Before Procedure
Prologue 10-1

10-3 Stack Layout During Execution of
Interrupt Procedure Body 10-3

A-I Intermodule Cross-Reference Listing A-3

TABLE TITLE PAGE

3-1 Compiler Controls 3-2

v

CHAPTER 1
HOW TO USE

THE PL/M-86 COMPILER

This chapter presents all of the information necessary to begin using the PL/M-86
Compiler. It is not necessary to be familiar with all the features described in the rest
of this manual in order to make effective use of the compiler. If you are a beginning
user you are particularly encouraged to start using the compiler and to gain ex­
perience with PL/M-86 before concerning yourself with special features. The exam­
ple included in this chapter can be entered exactly as shown to get a feel for the pro­
cedures involved in using the compiler.

The compiler is supplied on a diskette which does not contain an operating system or
relocation software. It may be desirable to copy the compiler to another diskette
(such as a system diskette). Section 2.2.4 lists the files that contain the code of the
compiler.

The following example illustrates the normal sequence of operations used to compile
a PL/M-86 program from system bootstrap to the end of compilation. The steps in­
volved are as follows:

1. Power up the Intellec hardware.

2. Insert a system diskette into Drive O. In this example, the system diskette
contains the compiler.

3. Insert a nonsystem diskette into Drive 1. In this example, this diskette contains a
PL/M-86 source file to be compiled.

4. Bootstrap the ISIS-II Operating System.

5. Compile the program with the PL/M-86 Compiler. After compilation, the
program may be linked and relocated.

Refer to the ISIS-II System Users Guide for detailed instructions for all of these
steps with the exception of compiling your program. This manual describes program
compilation.

In the interactive sequence shown in Figure 1-1, underlined text is output by the
system, all other text is typed by the user. Comments appearing to the right of
semicolons are for clarification, not material entered by the user. This example
shows how to compile a complete program that does not require more than 64K
bytes of storage for the code or more than 64K bytes for data.

:t~'e' 5v:;;te'rl identifies itself

at'>e compllf'r 1:;; inVOKed

l.s.LS:.l.l.-E.L.L~ab._c.o.::'Io.~L".l;.;.b. .. _.!l..l_n
aLLI1::.at.-CUI1~.l.""l..l.QU_Cu~;:L~.l:E ______ U_ellU(>"U_~~8.UllSl

;tne rr0'1r3',. rl·a y· no oe linKed and relocated

Figure 1-1. Interactive Compilation Sequence

1-1

How to Use the Compiler

1-2

In the normal usage of the PL/M-86 Compiler the compilation listing is written by
default to a diskette file on the same diskette as the source file. This file has the same
name as the source file, but has the extension LST. Thus, in the example above, the
listing is found in :FI:MYPROG.LST. Similarly, the object code file is on the same
diskette and has the same file name, but has the extension OBJ. In the example
:FI :MYPROG.OBJ contains the object code produced by compiling
:Fl :MYPROG .SRC.

A detailed explanation of all of the steps used in the example, with the exception of
the command that invokes the PL/M-86 Compiler, may be found in the ISIS-II
System Users Guide. See also Appendix A of this manual for an explanation of
when the PLM86.LlB file should be linked in.

The normal method of invoking the compiler, when no special actions are needed, is
simply to give its name (PLM86) and the name of your source file. The source file
must be on a diskette and must contain a PL/M-86 source module. This command
has the form

PLM86 source-file

if the compiler is in Drive O.

In this chapter everything necessary to use the compiler in its simplest mode of
operation has been shown, and you need not read the remainder of this manual
unless you need additional features. The remaining chapters of the manual provide a
detailed description of all available compiler features.

PLlM-86

COMPILER
AND

CHAPTER 2
INVOCATION
FILE USAGE

Throughout this manual, the following conventions are used in describing the com­
mands and controls associated with the compiler:

• Upper-case letters (and numerals) represent text that must be entered as shown
in the description (however, you may enter these items in lower-case).

• Lower-case letters are used to represent variable parts of the command or
control.

• Square brackets [] are used to enclose parts of the command or control that
may be omitted (the brackets themselves are not part of the command or con­
trol).

The following discussions assume that the ISIS-II system has been bootstrapped. A
diskette containing the PL/M-86 Compiler must be mounted in one of the diskette
drives. (Note that a system diskette must be mounted in Drive 0.)

2.1 Compiler Invocation

The PL/M-86 Compiler is invoked from the ISIS-II console using the standard com­
mand format described in the ISIS-II System User's Guide. Continuation line can be
specified by using the amperand (&) as a continuation character. The amperand can
be used any place there is a space or other delimiter.

The invocation command hets the general form

[:device:]pLM86 source-file [controls]

where

• device identifies which drive contains the compiler diskette. This may be
omitted if the compiler diskette is in Drive O.

• source-file is the name of the file containing the PL/M-86 source module.

• controls is an optional sequence of compiler controls. The use of these controls
is described in Chapter 3.

Examples:

l. PLM86 :Fl:PROGl.SRC

The compiler is directed to compile the source module on :Fl:PROGl.SRC.
This file resides on the diskette in Drive 1 and has the name PROG 1.SRC.

2. :Fl:PLM86 :Fl :MYPROG.sRC PRINT(:LP:) TITLE(,TEST PROGRAM #4')

In this example, the compiler diskette is in Drive 1. The compiler is directed to
compile the source module on :Fl :MYPROG.SRC, directing all printed output
to :LP:, and placing 'TEST PROGRAM #4' in the header on each page of the
listing.

2-1

Compiler Invocation and File Usage

2-2

2.2 File Usage

2.2.1 Input Files

The compiler reads the PL/M-86 source from the source-file specified on the com­
mand line (see previous section) and also from any files specified with INCLUDE
controls (see Section 3.7). These files must be standard ISIS-II diskette files. The
source input should contain a PL/M-86 source module.

2.2.2 Output Files

Two output files are produced during each compilation unless specific controls are
used to suppress them. These are the listing and object code files. Each of these may
be explicitly directed to some standard ISIS-II pathname (device or file) by using the
PRINT and OBJECT controls respectively. If the user does not control these out­
puts explicitly, the compiler writes them to disk files on the diskette containing the
input file. These files have the same file name as the input file, but have the exten­
sions LST for the listing and OB1 for the object code. For example, if the compiler is
invoked by

PLM86 :F1 :MYPROG.SRC

the listing and all other printed output is written to :FI :MYPROG.LST and the ob­
ject code to :FI :MYPROG.OBJ. If these files already exist they are overwritten. If
they do not exist the compiler creates them.

The object code file may be used as input to the ISIS-II relocation and linkage
facilities.

2.2.3 Compiler Work Files

The compiler uses work files during its operation which are deleted at the comple­
tion of compilation. All of these files are on diskette drive 1 unless the WORKFILES
control (see Section 3.6) is used to specify another device.

All of the work files have names with the extension TMP. Therefore, you should
avoid naming files with the extension TMP on any device used by the compiler for
work files, as there is a possibility that they will be destroyed by the operation of the
compiler.

2.2.4 Compiler Code Files

The compiler's object code resides in eight diskette files. These files must be present
for proper execution of the compiler:

PLM86
PLM86.0VO
PLM86.0V1
PLM86.0V2
PLM86.0V3
PLM86.0V4
PLM86.0V5
PLM86.0V6

The diskette containing these files may be mounted in any diskette drive-not.
necessarily Drive O.

PL/M-86

CHAPTER 3
COMPILER CONTROL LANGUAGE

3.1 Introduction to Compiler Controls

The exact operation of the compiler may be controlled by a number of controls
which specify options such as the type of listing to be produced and the destination
of the object file. Controls may be specified as part of the ISIS-II command invok­
ing the compiler, or as control lines appearing as part of the source input file.

A control line is a source line containing a dollar sign ($) in the left margin. Normal­
ly, the left margin is set at column one, but this may be changed with the
LEFTMARGIN control. Control lines are introduced into the source to allow selec­
tive control over sections of the program. For example, it may be desirable to sup­
press the listing for certain sections of a program, or to cause page ejects at certain
places.

A line is considered a control line by the compiler if there is a dollar sign in the left
margin, even if it appears to be part of a PL/M-86 comment or character string con­
stant.

On a control line, the dollar sign is followed by zero or more blanks and then by a se­
quence of controls. The controls must be separated from each other by one or more
blanks.

Examples of control lines:

$NOCODE
$ EJECT

XREF
CODE

There are two types of controls: primary and general. Primary controls must occur
either in the invocation command or on a control line which precedes the first non­
control line of the source file. Primary controls may not be changed within a
module. General controls may occur either in the invocation command or on a con­
trol line located anywhere in the source input and may be changed freely within a
module.

There are a large number of available controls, but few will be needed for most com­
pilations as a set of defaults is built into the compiler. The controls are summarized
in Table 3-1.

A control consists of a control-name which, depending on the particular control,
may be followed by a parenthesized control parameter.

Examples of controls:

LIST
NOXREF
OBJECT(PROG2.0BJ)

3-1

Compiler Control Language

3-2

Table 3-1: Compiler Controls

Primary Control Names Default

PRINT / NOPRINT PRINT(source-file.LST)
OBJECT / NOOBJECT OBJECT(source-file.OBJ)
SYMBOLS/NOSYMBOLS NOSYMBOLS
XREF / NOXREF NOXREF
IXREF / NOIXREF NOIXREF
PAGING / NOPAGING PAGING
DEBUG / NODE BUG NODEBUG
OPTIMIZE OPTIMIZE(1)
DATE no date
TITLE module name
PAGEWIDTH PAGEWIDTH(120)
PAGELENGTH PAGELENGTH(60)
INTVECTOR / NOINTVECTOR INTVECTOR
WORKFILES WORKFILES(:F1:, :F1:)
SMALL / MEDIUM / LARGE SMALL

General Control Names Default

LIST / NOLIST LIST
CODE/NOCODE NOCODE
EJECT -
INCLUDE -
LEFTMARGIN LEFTMARGIN(1)
OVERFLOW / NOOVERFLOW NOOVERFLOW
SET / RESET -
IF / ELSEIF / ELSE / ENDIF -
SAVE / RESTORE -
COND/NOCOND COND
SUBTITLE no subtitle

3.2 Listing Selection Controls

These controls determine what types of listings are to be produced and on which
device they are to appear. The controls are:

PRINT I NOPRINT
LIST I NOLIST
CODE I NOcODE
XREF I NOXREF
IXREF I NOIXREF
SYMBOLS I NOSYMBOLS

3.2.1 PRINT / NOPRINT

These are primary controls. They have the form:

PRINT[(pathname)]

NOPRINT

Default: PRINT(source-file.LST)

The PRINT control specifies that printed output is to be produced. Pathname is a
standard ISIS-II path name which specifies the file or device to receive the printed
output. Any output-type device, including a disk file, may be given. If the control is
absent, or if a PRINT control appears without a pathname, printed output is
directed to the same device used for source input and the output file has the same
name as the source file but with the extension LST.

PLlM-86

PL/M-86 Compiler Control Language

Example: PRINT(:LP:)

This causes printed output to be directed to the line printer.

The NOPRINT control specifies that no printed output is to be produced, even if
implied by other listing controls such as LIST and CODE.

3_2.2 LIST / NOLIST

These are general controls. They have the form:

LIST

NOLIST

Default: LIST

The LIST control specifies that listing of the source program is to resume with the
next source line read.

The NOLIST control specifies that listing of the source program is to be suppressed
until the next occurrence, if any, of a LIST control.

When LIST is in effect, all input lines (from the source file or from an INCLUDE
file), induding control lines, are listed. When NOLIST is in effect, only source lines
associated with error messages are listed.

Note that the LIST control cannot override a NOPRINT control. If NOPRINT is in
effect, no listing whatsoever is produced.

3.2.3 CODE / NOCODE

These are general controls. They have the form:

CODE

NOCODE

Default: NOCODE

The CODE control specifies that listing of the generated object code, in standard
assembly language format is to begin. This listing is interleaved with the program
listing on the listing file.

The NOCODE control specifies that listing of the generated object code is to be sup­
pressed until the next occurrence, if any, of a CODE control.

Note that the CODE control cannot override a NOPRINT control.

3.2.4 XREF / NOXREF

These are primary controls. They have the form:

XREF

NOXREF

Default: NOXREF

3-3

Compiler Control Language

3-4

The XREF control specifies that a cross-reference listing of source program iden­
tifiers is to be produced on the listing file.

The NOXREF control suppresses the cross-reference listing.

Note that the XREF control cannot override a NOPRINT control.

3.2.5 IXREF / NOIXREF

These are primary controls. They have the form:

IXREF[(pathname)]

NOIXREF

Default: NOIXREF

The IXREF control causes an "intermediate intermodule cross-reference file" to be
produced and written out to the file specified by the pathname. If no pathname is
supplied, the file will be written on the same device used for source input and will
have the same name as the source file but with the extension IXI.

The intermediate file contains all PUBLIC and EXTERNAL identifiers declared in
the module being compiled, together with their types, dimensions, and attributes.

After compilation, the IXREF program (which is independent of the compiler) can
be used to merge two or more of these intermediate files to produce an intermodule
cross-reference listing, as explained in Appendix C.

The NOIXREF control suppresses the production of the intermediate file.

3.2.6 SYMBOLS / NOSYMBOLS

These are primary controls. They have the form:

SYMBOLS

NOSYMBOLS

Default: NOSYMBOLS

The SYMBOLS control specifies that a listing of all identifiers in the PL/M-86
source program and their attributes is to be produced on the listing file.

The NOSYMBOLS control suppresses such a listing.

Note that the SYMBOLS control cannot override a NOPRINT control.

3.3 Listing Format Controls

These controls determine the format of the listing output of the compiler. The con­
trols are:

PAGING I NOPAGING
PAGELENGTH
PAGEWIDTH
DATE
TITLE
SUBTITLE
EJECT

PL/M-86

PL/M-86 Compiler Control Language

3.3.1 PAGING / NOPAGING

These are primary controls. They have the form:

PAGING

NOPAGING

Default: PAGING

The PAGING control specifies that the listed output is to be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and
possibly a user specified title and/ or date.

The NOP AGING control specifies that page ejecting, page heading, and page
numbering are not to be performed. Thus, the listing appears on one long "page" as
would be suitable for a slow serial output device. If NOP AGING is specified, a page
eject is not generated if an EJECT control is encountered.

3.3.2 PAGELENGTH

This is a primary control. It has the form:

PAGELENGTH(length)

Default: PAGELENGTH(60)

where length is a non-zero, unsigned integer specifying the maximum number of
lines to be printed per page of listing output. This number is taken to include the
page headings appearing on a page.

The minimum value for length is 5.

3.3.3 PAGEWIDTH

This is a primary control. It has the form:

PAGEWIDTH(width)

Default: PAGEWIDTH(120)

where width is a non-zero, unsigned integer specifying the maximum line width, in
characters, to be used for listing output.

The minimum value for width is 60; the maximum value is 132.

3.3.4 DATE

This is a primary control. It has the form:

DATE(date)

Default: no date

where dateis any sequence of nine or fewer characters not containing parentheses.

The date appears in the heading of all pages of listing output exactly as given in the
DATE control.

Example: DATE(25 NOV 78)

3-5

Compiler Control Language

3-6

3.3.5 TITLE

This is a primary control. It has the form:

TITLE('title')

Default: module name

where titIeis a sequence of printable ASCII characters which are enclosed in quotes.

The sequence, truncated on the right if necessary to fit, is placed in the title line of
each page of listed output.

The maximum length allowed for title is 60 characters, but a narrow pagewidth may
restrict this number further.

Example: TITLE(,TEST PROGRAM 4')

3.3.6 SUBTitLE

This is a general control. It has the form:

SU BTITLE(' subtitle')

Default: no subtitle

where subtitle is a sequence of printable ASCII characters which are enclosed in
quotes.

The sequence, truncated on the right if necessary to fit, is placed in the subtitle line
of each page of listed output.

The maximum length allowed for subtitle is 60 characters, but a narrow pagewidth
may restrict this number further.

Example: SUBTITLE(,TEST PROGRAM4')

When a SUBTITLE control appears before the first noncontrol line in the source
file, it causes the specified subtitle to appear on the first page and all subsequent
pages until another SUBTITLE control appears.

A subsequent SUBTITLE control causes a page eject, and the new subtitle appears
on the next page and all subsequent pages until the next SUBTITLE control.

3.3.7 EJECT

This is a general control. It has the form:

EJECT

It causes printing of the current page to terminate and a new page to be started. The
control line containing the EJECT control is the first line printed (following the page
heading) on the new page.

If the NOPRINT, NOLIST or NOPAGING controls are in effect, the EJECT con­
trol is ignored.

PLlM-86

PLlM-86 Compiler Control Language

3.4 The LEFTMARGIN Control

This is the only control for specifying the format of the source input. It is a general
control with the form:

LEFTMARGIN(column)

Default: LEFTMARGIN(1)

where column is a non-zero, unsigned integer specifying the left margin of the source
input. All characters to the left of this position on subsequent input lines are not
processed by the compiler (but do appear on the listing).

The new setting of the left margin takes effect on the next input line. It remains in ef­
fect for all input from the source file and any INCLUDE files until it is reset by
another LEFTMARGIN control.

Note that a control line is one that contains a dollar sign in the column specified by
the most recent LEFTMARGIN control.

3.5 Object File Controls

These controls determine what type of object file is to be produced and on which
device it is to appear. The controls are:

INTVECTOR I NOINTVECTOR
OVERFLOW I NOOVERFLOW
OPTIMIZE
OBJECT I NOOBJECT
DEBUG I NODE BUG

3.5.1 INTVECTOR / NOINTVECTOR

These are primary controls. They have the form:

INTVECTOR

NOINTVECTOR

Default: INTVECTOR

Under the INTVECTOR control, the compiler creates an interrupt vector consisting
of a 4-byte entry for each interrupt procedure in the module. For Interrupt n, the in­
terrupt vector entry is located at absolute location 4* n. See Chapter 10 for further
discussion.

Alternatively, it may be desirable to create the interrupt vector independently, using
either PL/M-86 or assembly language. In this case, the NOINTVECTOR control is
used and the compiler does not generate any interrupt vector. The implications of
this are discussed in Chapter 10.

3.5.2 OVERFLOW / NOOVERFlOW

These are general controls. They have the form:

OVERFLOW

NOOVERFLOW

Default: NOOVERFLOW

3-7

Compiler Control Language

3-8

These controls specify whether overflow is to be detected in performing signed
(INTEGER) arithmetic. If the NOOVERFLOW control is specified, no overflow
detection is implemented in the compiled module and the results of overflow in sign­
ed arithmetic are undefined. If the OVERFLOW control is specified, overflow in
signed arithmetic results in a nonmaskable Interrupt 4, and it is the programmer's
responsibility to provide an interrupt procedure to handle the interrupt. Failure to
provide such a procedure may result in unpredictable program behavior when
overflow occurs.

Note that the use of the OVERFLOW control results in some expansion of the ob­
ject code.

3.5.3 OPTIMIZE

This is a primary control. It has the form:

OPTIMIZE (n)

Default: OPTIMIZE (1)

where nmay be 0, I, or 2.

This control governs the kinds of optimization to be performed in generating object
code.

OPTIMIZE(O) specifies that no optimization is to be performed.

OPTIMIZE(1) specifies "folding" of constant expressions, strength reduction, and
elimination of common subexpressions.

OPTIMIZE(2) specifies all of the optimizations performed under OPTIMIZE(I),
plus another class of optimizations including short jump optimization and static and
dynamic peephole optimizations. An example program showing the code produced
under each of these controls is shown in Figure 3-1 for OPTIMIZE(O), Figure 3-2 for
OPTIMIZE(1), and Figure 3-3 for OPTIMIZE(2).

3.5.4 OBJECT / NOOBJECT

These are primary controls. They have the form:

OBJECT[(pathname)]

NOOBJECT

Default: OBJECT(source-file.OBJ)

The OBJECT control specifies that an object module is to be created during the
compilation. The pathname is a standard ISIS-II pathname which specifies the file
to receive the object module. If the control is absent, or if an OBJECT control ap­
pears without a pathname, the object module is directed to the same device and file
name as used for source input, but with the extension OBJ.

Example: OBJECT(:F1 :OTHER.OBJ)

This would cause the object code to be written to the file :FI :OTHER.OBJ.

The NOOBJECT control specifies that an object module is not to be produced.

PLlM-86

PL/M-86 Compiler Control Language

PL/M-U COMPILER EXAMPLE

ISIS-II PL/M-86 DE8UG XOl2 COMPILATION or MODUlo! EXAMPLE
OBIIEC! MODULE PL~CED IN IFUEX.OBII
COMPILER INVOKED 8Y' PLM86 IFIIEX.P86 COD! OPTIMlZEIO)

EXAMPLE' 001
OECLARE IA,B,C) WOAD, 0(100) WORD, I. LITERALLY'S"
DO WHILE DIA+8) < DIA+B+III

0002 FA CLI
0003 2EBElbOOOO MOV
0008 BCOOOO MOV
OOOB BlEC MOV
0000 16 PUSH
OOOE IF POP
OOOF FB STl

U,
0010 881E0200 MOV
0014 031EOOOO ADD
0018 DIU SHL
001l 8B360200 MOV
OOU 03360000 ADD
0022 DIE6 SHL
0024 8B870600 MOV
0028 38840800 CMP
002C 7203 JB
002£ E91BOO JMP

D(C) = O(C) + I:

0031 881£0400
0035 DIE3
0037 88870600
003B 81eOOl00
003F 8BIE0400
0043 DIE)
0045 89870600

ENOl

0049 E9C4FF
141

IF A < B + (I. -

004C 88060200
0050 81C00400
0054 39060000
0058 7203
005A E90DOO

TH~:N A • A •

0050 88060000
0061 OlEO
0063 89060000
0067 E90COO

~I :
ELSE A = A +

0061. 88060000
oon BlCOOIOO
0072 89060000

UI
9 END EXAMPLE'

0076 FB
0077 r.

MODULE INFORMATION I

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
9 LINES READ
o PROGRAM ERROR (5)

• 0078H
• OOOOH
• OOCEK
• 00008

END OF PL/M-86 COMPILATION

MOV
SHL
MOV
ADD
MoV
SHL
MoV

JMP

I)

2,

11

MoV
ADD
CMP
JB
JMP

MoV
SHL
MOV
JMP

MoV
ADD
MOV

STl
RioT

1200
00

2060
00

STATEMENT

55, CS 1 "STAcurRAME
sp, 'nTAC~'OFFS!T
BP,SP
SS
os

8X,B
8X,l
BX,l
SI,B
SI,l
SI,I
AX,DIUI
AX,DISI+2HI
.. 5H
U

, STATEMENT ••
BX,C
BX,l
AX,DIBXI
"X,1H
BX,C
BX,l
DI8XI,AX

STATEMENT • 5
83

, STATEMENT • 6
AX,8
AX,.H
A.,AX
$+5H
U

, STATEMENT • 1
AX,A
AX.I
A.lX
U

, STATEMENT ••

AX,l
AX.IK
A,AX

I STATEMENT • 9

Figure 3-1. Sample Program Showing the OPTIMIZE (0) Control

3-9

Compiler Control Language

3-10

PL/M-S6 COMPILER EXAMPLF:

ISIS-II PL/M"S6 DP.8UG X012 COMPILATION UF' MODlJL.E EXAMPLF.:
DBJE:T MODULF: PLACED IN: F 1: EX. OBJ
:OMPILER INVOKED BY: PL'B6 :FI:EX.PB6 CODE OPTIMIZE[I)

EXAMPLU DO.
DECLARE (A,~.C) ~URO, 0(100) WORD, L LITERALLY'S',
DO wHILE DCAtB} < O(AtB+l);

0002 fA
0003 2EBU 60000
OOOB FlCOOOO
0006 BHE:C
0000 16
OOOE U
OOOF FB

raJ:
0010 BBIE0200
0014 03lEOOOO
0019 01 E"3
OOIA "8B10600
OOIE 3BB10BOO
oon 1203
0024 E90FGO

O(C) = (He)

0021 ~~1E'(j4uO

0026 01 EJ
0020 BI8706000100

EIII{):

0033 E.9LJHF
14 :

IF A < B t (L

0036 88060200
OOJA BIC00400
D03e: 39060000
0042 7203
n044 I=:YU70{)

r Hfo, (~ A = A

0041 ""60000
004B E90bUO

at:
ELSE. A = •

004P. ~lr6000001~()

ra2 :
END EXA1.-~P(JE:

0054 F B
0055 1'4

_OOULE: INFORMATION:

t

-

•

t

:OOF AREA SIZE
CONSTANT AR~A SIZE
'ARIABLE AREA SIZE
MAXIMUM STACK SIZ~
9 LINES READ

0056H
OOOOil
OflCEH
OOOOH

o PROGRAM ERROR(S)

END or PL/M-86 COMP[LA'J ION

rLI _0,
."'Ov
~'ov

PUSH
POP
6T1

foIIJ'"
ADD
SHL
"OV
CI~P

JR
J'P

I:

~~ ()V

SKL
ADD

~J~' P

II

2 ;

I;

WIJV
/HJt;
C'~P

Je
.J'AP

Sf1L
d"'lP

AUO

SIl
HLT

B6D
00

20bO
00

STATE"ENT

S5. CS: ~~STACK$FRAME
SP, M1@STACKSQfoFSE:T
RP, SP
S5
DS

P,)(,B

BX,A
~X,l

AX.D[SXl
o\)(,O{BX+2HJ
S+5H
H

IiX,C
HK,l
D [BXl .1 H

~X', fl
AX',4H
~, A.X
$+Sf.I
01

4., t H

STATEIJIENT • 4

STATEMF:NT • 6

STATf:Mfi;NT • 7

STATEMEN'f • 8

Figure 3-2. Sample Program Showing the OPTIMIZE (1) Control

PL/M-86

PLlM-86

PL/M-So COMPIl,f:R

ISIS-II PL/M-8b DEPUG X012 CO\lPILATION OF' '>1CWUI..f': EXAMPLE
JBJECT MODULf PLAno IN :f'! :F.X.OAJ
:O.PIL~R I~V[)KEO BY: PI",Ro :FI:FX.PSo CODE OPTIMIZE(21

EXAMPLE, : UU/
DECLARE'. I A, H ,C) W(l~D , 0(\00) WORD, L LITERALLY
00 WHILF: O(AtB} < D(A,+tHl):

STA'rE~Er-:T •
0002 fA eLl
0003 2E8[160000 MOV 5S ,CS:@.STACKSf-RAME
ODDS ACOOOO ,JOV SP, !i(aST ACK SOFF' SET
ODOR BbEC MOV AP, SP
0000 16 PUSH SS
OOOE If PUP %
00 OF fA STl

(n:
0010 8BIE'O](lO MOV kX, B
0014 031<.0000 ADD BX ,A
0018 DIU SHL ElX,l
OOIA 8S870600 t.lOV 4X,O [ax)
DOlE 3B870800 CMP AX,OUH+2H)
0022 730D JNB @4

DIC) = DCC) + II
STATEMENT • 0024 881E0400 Mav 8X,C

0028 DIE3 SHL ax,l
DOH 8387060001 ADl1 o [BX 1,1 H

END;
STATEMENT •

002F EBDr JMP @3
@4:

II' A < B + (L - II

'5' I

3

4

5

STATEMENT , 6
0031 AI0200
0034 83C004
0037 39060000
0038 7306

THEN A = A •
0030 01260000
0041 fA
0042 F4

(a1:
ELSE A = A +

0043 8300000001
nlD ~XAto',PLE:

01')48 FEI
0049 1'4

MODULE INFORMATIOr-.:

:OOE AREA SIZE
:::ONSTANT AREA SlZ~
VARIABLE A.REA SIZE
~AXIMUM STACK SIZE:
9 Ll_ES READ
o PROGRAM ERROHS)

E:NO OF' PL,/M-S6 ~OMPILATIOI~

004AH
ooaOH
OOCE"
OOOOH

21

II

MOV
ADD
C·p
JNB

SHL
SrI
HLT

ADD

STI
HLT

740
00

2060
00

A.X,8
AX,4H
A,A.X
@I

STATEMENT • 7
A, I

STATEMENT • 8
A,1M

STATEM~NT •

Compiler Control Language

Figure 3-3. Sample Program Showing the OPTIMIZE (2) Control

3-11

Compiler Control Language

3-12

3.5.5 DEBUG / NODEBUG

These are primary controls. They have the form:

DEBUG

NODE BUG

Default: NODE BUG

The DEBUG control specifies that the object module is to contain the name and
relative address of each symbol whose address is known at compile-time, and the
statement number and relative address of each source program statement.

The NODEBUG control specifies that this information is not to be placed in the ob­
ject module.

3.6 The WORKFILES Control

The WORKFILES control is a primary control, with the form

WORKFILES (:device:, :device:)

Default: WORKFILES(:F1 :,:F1:)

Each deviceis the name of a direct access device such as a diskette drive.

During compilation, the compiler creates work files which are deleted at the end of
compilation (see Section 2.2.3). If the WORKFILES control is not used, these files
will be on :Fl:. The WORKFILES control allows you to specify any two devices for
storage of these files. For example, to specify storage of work files on Drives 1 and
0, use

WORKFILES (:FO:,:F1:)

Note that two device names are required. To specify only one device, specify it
twice-for example, to put all work files on Drive 0, use

WORKFILES (:FO:,:FO:)

As a rule of thumb, the space required for work files on each device is roughly equal
to the total space required for the PL/M-86 source (including "included" source
files-see Section 3.7 below). If only one device is used for work files, it should have
twice this amount of space available.

3.7 Source Inclusion Controls

These controls allow the input source to be changed to a different file. The controls
are:

INCLUDE
SAVE I RESTORE

3.7.1 INCLUDE

INCLUDE is a general control, with the form:

INCLUDE (path name)

where pathnameis a standard ISIS-II pathname specifying a disk file.

Example: INCLUDE(:F1 :SYSLlB.SRC)

PLlM-86

PL/M-86 Compiler Control Language

An INCLUDE control must be the rightmost control in a control line or in the in­
vocation command.

The INCLUDE control causes subsequent source lines to be input from the specified
file. Input will continue from this file until an end-of-file is detected. At that time,
input will be resumed from the file which was being processed when the INCLUDE
control was encountered.

An included file may itself contain INCLUDE controls. Note that such nesting of in­
cluded files may not exceed a depth of five.

3.7.2 SAVE / RESTORE

These are general controls. They have the form:

SAVE

RESTORE

These controls allow the settings of certain general controls to be saved on a stack
before an INCLUDE control switches the input source to another file, and then
restored after the end of the included file. However, SAVE and RESTORE can be
used for other purposes as well. The controls whose settings are saved and restored
are

LIST I NOLIST
CODE I NOcODE
OVERFLOW I NOOVERFLOW
LEFTMARGIN
cOND/NOcOND

The SAVE control saves all of these settings on a stack. This stack has a maximum
capacity of five sets of control settings, which corresponds to the maximum nesting
depth of five for the INCLUDE control.

The RESTORE control restores the most recently saved set of control settings from
the stack.

3.8 Program Size Controls

These controls specify the memory size requirements of the program that is to con­
tain the module being compiled. They affect the operation of the compiler in various
ways and impose certain constraints on the source module being compiled, as ex­
plained in detail in Chapter 5.

Note that for maximum efficiency of the object code, the smallest usable size should
be used for any given program. Also note that all modules of a program must be
compiled with the same size control. These are primary controls. They have the form

SMALL

MEDIUM

LARGE

Default: SMALL

3-13

Compiler Control Language

3-14

3.8.1 SMALL

The SMALL control provides for programs with the following space requirements:

• Not more than 64K bytes total for code sections from all modules

• Not more than 64K bytes total for constant, data, stack, and memory sections
from all modules.

See Chapters 4 and 5 for details.

Note that the SMALL size should always be used to compile modules originally writ­
ten in PL/M-80.

3.8.2 MEDIUM

The MEDIUM control provides for programs with the following space re­
quirements:

• Not more than one megabyte total for code sections from all modules

• Not more than 64K bytes total for constant, data, stack, and memory sections
from all modules.

Note that no one code section (compiled from one module) may exceed 64K bytes.
See Chapters 4 and 5 for details.

3.8.3 LARGE

The LARGE control provides for programs with the following space requirements:

• Not more than one megabyte total for code sections from all modules

• Not more than one megabyte total for data sections from all modules

• Not more than 64K bytes total for stack sections from all modules

• Not more than 64K bytes total for memory sections from all modules.

In the LARGE case, no constant section is produced. Instead, the program con­
stants are placed in the code section of each module.

Note that no one code or data section may exceed 64K bytes.

See Chapters 4 and 5 for details.

3.9 Conditional Compilation Controls

These controls allow selected portions of the source file to be skipped by the com­
piler if specified conditions are not met. Figure 3-4 shows an example program using
the conditional compilation controls, while Figure 3-5 shows the same example with
NOCOND being used.

The controls are

SET I RESET
IF I ELSEIF / ELSE I ENDIF
COND/NOCOND

PLlM-86

PL/M-86 Compiler Control Language

PL/M-86 COMPILER EXlMPI .. F.

ISIS-II PL/~-86 DEBUG XOl2 CO"PII.'TIO' OF -ODULE EXAMPLE
JBJE=T MODULE PLACf;n 1 N • FI 'CEX .C1kJ
=OMPILER INVOKED RY: PL_86'F! 'Cn.P8b SET(DERUG=3)

10

II
12

13

EXAtJlPLF;: 03;

DECLAPE RDOLEAN I,ITEPALLY 'RnE', TRUE LITERALLY 'OFFH', FAloSE LITERALLY '0"

PRINTSQIAG'IOSTlCS' PPOCEDURg (SWITCHES, TABLES) EXTERNAL,
DECLAR~ (SWITCHES, TABLES) ~OOLEAN:
END PRINTSDIAGNOSTICS:

DISPLAYSPPO~PT: PROCEDURE EXTERNAL' END DISPLAYSPROMPT,

A"AITSCR' PROCEDURE EXTER~AL' ENO AWAITSCR:

SU' OEBUG = I
CALL PRINTSDIAGNDSTICS (TRUE, FALSF):

S RESET (TRAP)
SELSEIF OEBUG = 2

CALL PR INTSOI AGtJOSTICS C TRUE, TRUEII
S RESET (TRAP)
SELsEIF DEBUG = 3

CALL PRINTSDIAGNOSTICS (TRUE, TRUEII
S SET (TRAP)
SENDIF

SIF TRAP
CALL DISPLAYSPPOMPT,
CALL A_AITSCR:

SENDIF

END EXAMPLE'

~OOULE INFOUATION:

CODE AREA SIZE
=DNSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STA~K SIZE
29 LINES READ
o PROGRAM ERROR (s)

= 00lFH
OOOOH
OOOOH
0008H

liD
00
00
80

END OF PL/M-86 COMPILATION

Figure 3-4. Sample Program Showing the SET(DEBUG=) Control

PL/M-86 CO~PILER £lAMPLF.

ISIS-II PL/0-86 DE:BUG XOl2 CUMPILATION OF MODULE EXAMPLE
OBJECT MODULE PLACED IN :F!:CEX.ORJ
=O~PILER INVOKED BY: PLMR6:Ft :CF-X,P86 SETCDEBUGa3) NOCONO

10

11
12

13

EXAMPLE: D~I

DECLAR~ BOOLEAN LIn:PALLY 'BYTE'. TPUE LITERALLY 'OFFH'. FALSE LITEPALLY '0',

PRINTSOIAGNOSTICS: PROCEDURE (SWITCHES, TABLES) EXTERNAL'
DECLARE (SWITCHES, TABLES) BOOLEAN'
END PRINTSDlAGNOSTICSI

DISPLAHPROMPTI PROCEDURE EXTERNAL' END DISPLAYSPROMPT;

AWAITSCR. PROCEOUR~ EXTERNAL: END AWAITSCR,

SIF DEBUG = I
SELSEIF D~BUG • 3

CALL PRINTSDIAGhOSTlCS (TRUE, TRUE>:
S SET (TRAP)
SENDIF

SIF TRAP
CALL DISPLAYSPROMPT,
CALL AWAITSCR'

SEND IF

END EXA~PLE'

MODULE INFORMATION:

CODE AREA SIZE OOIFH 310
CONSTANT AREA SIZE OOOOH 00
VARIABLE AREA SIZE = OOOOH 00
MAXIMUM STACK SIZE: 0008H 80
29 LINEs READ
o PROGRAM EPROP (5)

END OF PL/M-86 COMPILATION

Figure 3-5. Sample Program Showing the NOCOND Control

3-15

Compiler Control Language

3-16

3.9.1 SET / RESET

These are general controls. The SET control has the general form

SET (switch assignment list)

where the switch assignment list consists of one or more switch assignments
separated by commas. A switch assignment has the form

switch[=value]

where

• switch is a name which is formed according to the PL/M-86 rules for identifiers.
Note that a switch name exists only at the compiler control level, and therefore
you may have a switch with the same name as an identifier in the program; no
conflict is possible. However, note that a PL/M-86 reserved word may not be
used as a switch name.

• value is a whole-number constant in the range 0 to 255. This value is assigned to
the switch. If the value and the = sign are omitted from the switch assignment,
the default value OFFH ("true") is assigned to the switch.

The following is an example of a SET control line:

$SET(TEST,ITERATION=3)

This example sets the switch TEST to "true" (OFFH) and the switch ITERATION
to 3. Note that switches do not need to be declared.

The RESET control has the form

RESET (switch list)

where switch list consists of one or more switch names that have already occurred in
SET controls.

Each switch in the switch list is set to "false" (0).

3.9.2 IF / ELSE / ELSEIF / ENDIF

These controls provide the actual conditional capability, using conditions which are
based on the values of switches.

These controls cannot be used in the invocation of the compiler, and each must be
the only control on its control line.

An IF control and an ENDIF control are used to delimit an "IF element," which
can have several different forms. The simplest form of IF element is

$IF condition
text
$ENDIF

where

• condition is a limited form of PL/M expression, in which the only operators
allowed are OR, XOR, NOT, AND, <, <=, =, >=, and >, and the only
operands allowed are switches which have already appeared in SET controls and
whole-number constants in the range 0 to 255. Parenthesized sUbexpressions are
not allowed. Within these restrictions, the condition is evaluated according to
the PL/M-86 rules for expression evaluation. Note that the condition ends with
a carriage return.

• text is text which will be processed normally by the compiler if the least
significant bit of the value of condition is a I, or skipped if the bit is a O. Note
that text may contain any mixture of PL/M-86 source and compiler controls. If
the text is skipped, any controls within it are not processed.

PL/M-86

PL/M-86 Compiler Control Language

The second form of IF element contains an ELSE element:

$IF condition
text 1
$ELSE
text 2
$ENDIF

In this construction, text 1 will be processed normally if the least significant bit of
the value of condition is aI, while text 2 will be skipped. If the bit is a 0, text 1 will
be skipped and text 2 will be processed normally.

Note that only one ELSE element is allowed within an IF element.

The most general form of IF element allows one or more ELSEIF elements to be in­
troduced beforethe ELSE element (if any):

$IF condition 1
text 1
$ELSEIF condition 2
text 2
$ELSEIF condition 3
text 3

$ELSEIF condition n
text n
$ELSE
text n+1
$ENDIF

where any of the ELSEIF elements may be omitted, as may the ELSE element.

The conditions are tested in sequence. As soon as one of them yields a value with a 1
as its least significant bit, the associated text is processed normally. All other text in
the IF element is skipped. If none of the conditions yields a least significant bit of I,
the text in the ELSE element (if any) is processed normally and all other text in the
IF element is skipped.

3.9.3 COND / NOCONO

These controls determine whether text within an IF element will appear in the listing
if it is skipped. They are general controls with the form

COND

NOCONO

Default: COND

The COND control specifies that any text that is skipped is to be listed (without
statement or level numbers). Note that a COND control cannot override a NOLIST
or NOPRINT control, and that a COND control will not be processed if it is within
text which is skipped.

The NOCOND control specifies that text within an IF element which is skipped is
not to be listed. However, the controls that delimit the skipped text will be listed,
providing an indication that something has been skipped. Note that a NOCOND
control will not be processed if it is within text which is skipped.

3-17

CHAPTER 4
OBJECT MODULE SECTIONS

The output of the compiler is an object file containing the compiled module. This
object module may be linked with other object modules and located using either
QRL86 alone or LINK86 and LOC86 together. A knowledge of the makeup of an
object module is not necessary for PL/M-86 programming, but for those desiring to
study this subject in detail, this chapter is included.

The object module output by the compiler contains five sections.

• Code Section

• Constant Section (Absent in LARGE case-see below)

• Data Section

• Stack Section

• Memory Section

As explained in the next chapter, these sections can be combined in various ways in­
to "memory segments" for execution, depending on the size of the program
(SMALL, MEDIUM, or LARGE).

4.1 Code Section

This section contains the object code generated by the source program. If the
LARGE control is used, this section also contains the information that would other­
wise be in the constant section.

In addition, the code section for the main program module contains a "main pro­
gram prologue" generated by the compiler. This code precedes the code compiled
from the source program, and sets the CPU up for program execution by initializing
various registers and enabling interrupts.

4.2 Constant Section

This section contains all variables initialized with the DATA initialization, as well as
all REAL constants and all constant lists. If the LARGE control is used, this in­
formation is placed in the code section and no constant section is produced.

4.3 Data Section

All variables which are not parameters, based, located with an AT attributp , in­
itialized with the DATA attribute, or local to a REENTRANT procedure are
allocated space in this section.

In addition, when a nested procedure contains a reference to any parameter of an
enclosing procedure, all parameters of the enclosing procedure are placed in the data
section upon entry to the enclosing procedure during program execution. During
compilation, space is reserved in the data section for this purpose.

4-1

Object Module Sections

4-2

4.4 Stack Section

The stack section is used in executing procedures, as explained in Chapters 9 and 10.
lt is also used for any temporary storage used by the program but not explicitly
declared in the source module (such as temporary variables generated by the com­
piler).

The exact size of the stack is automatically determined by the compiler except for
possible multiple incarnations of reentrant procedures. The user can override this
computation of stack size and explicitly state the stack requirement during the
relocation process.

NOTE

When using reentrant procedures the user must be careful to allocate a
stack section large enough to accommodate all possible storage required
by multiple incarnations of such procedures. The stack size can be ex­
plicitly specified during the relocation and linkage process.

The stack space requirement of each procedure is shown in the listing produced by
the SYMBOLS or XREF control. This information can be used to compute the addi­
tional stack space required for reentrant procedures.

4.5 Memory Section

This is the area of memory referenced by the built-in PL/M-86 identifier
MEMORY. Its maximum allowable size depends on the size control used in com­
pilation (SMALL, MEDIUM, or LARGE) as explained in Chapter 5.

The compiler generates a memory section of length zero, and it is the user's respon­
sibility to specify the actual (run-time) space required during the linkage and reloca­
tion process.

PLlM-86

CHAPTER 5
PROGRAM SIZE

The allocation (via relocation and linkage) of runtime memory for a program
depends on the size control (SMALL, MEDIUM, or LARGE) specified in compiling
the modules of the program. All modules of a program must be compiled with the
same size control.

The size also influences the way in which locations are referenced in the compiled
program, and this in turn leads to certain programming restrictions for each size
control.

A PL/M-86 programmer need not be concerned about memory addressing concepts
on the 8086, as the size controls transparently handle the mechanics of program
segmentation. The simple rule is:

• For programs with less than 64K bytes of code and with less than 64K bytes of
data (for a maximum program size of 128K bytes) use the default (SMALL con­
trol) and observe the restrictions given in section 5.2.1.

• If you just can't squeeze your code into 64K bytes, but all your data fits in 64K
bytes, use the MEDIUM control and observe the restrictions in 5.3.1.

• If you also need more than 64K bytes of data, use the LARGE control and
observe the restrictions in 5.4.1.

Otherwise, the material in this chapter needn't be studied.

5.1 8086 Memory Concepts

8086 memory space has an extent of one megabyte, but a 16-bit value can only ad­
dress 64K locations. A complete physical address requires 20 bits. Therefore, a 16-
bit quantity is used as an offset, and references one of 64K possible locations within
a segment of 8086 memory.

A segment is defined as up to 64K contiguous memory locations, beginning at a 16-
byte boundary.

Any location in 8086 memory can be specified by specifying a particular segment
and using a 16-bit value as the offset to specify where the location lies within that
segment.

Since a segment always starts at a 16-byte boundary, the 20-bit physical address of
the first location in the segment always ends with four zero bits. Therefore, it can be
shifted to the right four bits without loss of information. This yields a 16-bit quanti­
ty called a segment address. Four CPU registers (CS, DS, SS, and ES) are used by
default to hold segment addresses.

To form a 20-bit physical address, a segment address is shifted left four bits and an
offset is added to it.

5.2 The SMALL Case

The SMALL case is the default case, and should be used whenever possible for
greatest efficiency. As explained below in Section 5.2.2, the SMALL case must be
used to compile PL/M-80 programs.

5-1

Program Size

5-2

When modules compiled with the SMALL control are linked, the code sections from
all modules are combined and an; allocated space within one segment. The segment
address for this segment is kept in the CS register. The constant, data, stack, and
memory sections from all modules are allocated space within a second segment. The
segment address for this second segment is kept in the DS register, with an identical
copy in the SS register.

Therefore, the SMALL control may be used if the total size of all code sections does
not exceed 64K, and the total size of all constant, data, stack, and memory sections
does not exceed 64K.

Since there is only one segment for code, the segment address for this segment (CS
register) is never updated during program execution. Likewise, since there is only
one segment for constants, data, stack, and memory sections, the segment address
for this segment (DS and SS registers) is never updated (except when an interrupt oc­
curs, as explained in Chapter 10). Therefore, when any location is referenced, only a
16-bit offset is calculated and then used in conjunction with the appropriate segment
address. POINTER values are therefore 16-bit values in the SMALL case, and this
leads to the following restrictions.

5.2.1 Programming Restrictions in the SMALL Case

The following restrictions must be observed:

1. A whole-number constant may not be assigned to a POINTER variable. For
example:

DECLARE P POINTER;
P=100;

is not allowed.

2. A whole-number constant may not be used to initialize a POINTER variable.
For example:

DECLARE P POINTER INITIAL(100);

is not allowed.

3. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not be used with the @ operator. For example:

DECLARE B BYTE AT(100), P POINTER; P=@B;

is not allowed.

4. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not have the PUBLIC attribute. For example:

DECLARE B BYTE AT(100) PUBLIC;

is not allowed.

Restrictions I, 2, and 3 have the net effect of ensuring that all POINTER values used
by the program in the SMALL case are within one of the two segments. Absolutely
located variables can be referenced, but not via POINTER values.

Note that Restrictions 3 and 4 do not apply when the "location" within the AT at­
tribute is formed with the @ operator.

Restriction 4 arises because EXTERNAL variables are assumed to be in the data seg­
ment.

PLlM-86

PLlM-86

5.2.2 PL/M-80 Compatibility

The SMALL control should always be used when compiling a program written in
PL/M-80. The compiler produces error messages to flag violations of any of the
restrictions or to flag the use of the new reserved keyboards (INTEGER, REAL, and
POINTER) as programmer-defined identifiers. Otherwise, complete upwards com­
patibility is provided by PL/M-86.

5.3 The MEDIUM Case

In a program compiled with the MEDIUM control, a separate segment is used for
the code section of each compiled module. Therefore, the total space required for
code may exceed 64K, although the maximum size of anyone code section is still
limited to 64K.

The constant, data, stack, and memory sections of all modules are combined and are
allocated space within a single segment.

At any moment during program execution, one segment of code is the "current"
segment, and its segment address is kept in the CS register. This segment address is
updated whenever a PUBLIC or EXTERNAL procedure is activated, since this may
involve a new code segment.

The segment address for the segment containing constants, data, stack, and memory
sections is kept in the DS register (with an identical copy in the SS register) and is
never changed (except when an interrupt occurs, as explained in Chapter 10).

With the MEDIUM option, a POINTER value is a four-byte quantity containing a
segment address and an offset. Therefore, the first three restrictions of the SMALL
case do not apply. However, the MEDIUM case introduces two minor restrictions
on indirect procedure activation.

5.3.1 Programming Restrictions in the MEDIUM Case

The following restrictions must be observed:

1. When a PUBLIC or EXTERNAL procedure is indirectly activated, a
POINTER variable must be used in the CALL statement. This is normal prac­
tice in PL/M-86. For example:

DECLARE P POINTER, W WORD;
PROC: PROCEDU RE PU BUC;

ENDPROC;

P=@PROC; CALL P; /*RECOMMENDED WHERE AN INDIRECT
CALL MUST BE USED* /

W=.PROC; CALL W; /*NOT ALLOWED* /

Program Size

5-3

Program Size PL/M-86

5-4

2. When a procedure that is not PUBLIC or EXTERNAL is indirectly activated, a
WORD variable must be used. This is consistent with PL/M-80, and is not
recommended in PL/M-86 programs because WORD variables do not range
over the entire 8086 address space (but are restricted to offsets within an assum­
ed segment). For example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDU RE; / * LOCAL * /

END LPROC;
P=@ LPROC; CALL P;

W=.LPROC; CALL W;

/*NOT ALLOWED* /

/*NOT RECOMMENDED, BUT ALLOWED* /

3. A variable that is absolutely located (by using the AT attribute with a numeric
constant) may not have the PUBLIC attribute. For example:

DECLARE B BYTE AT(1 00) PU BLlC;

is not allowed.

Restrictions 1 and 2 arise from the fact that the code segment address may change
during program execution. Restriction 3 is the same as Restriction 4 in the SMALL
case, and arises for the same reason.

5.4 The LARGE Case

In a program compiled with the LARGE control, a separate segment is used for the
code section (with constants) from each compiled module. Thus the total space re­
quired for code and constants may exceed 64K, but the total for the code section
(with constants) from anyone module is limited to 64K.

A separate segment is used for the data section from each compiled module. Thus
the total space required for data sections may exceed 64K, although the size of any
one data section is limited to 64K.

The stack sections from all modules are combined in one segment, and the memory
sections for all modules are combined in another segment. Thus the total space re­
quired for stack is limited to 64K, and the total space required for memory is also
limited to 64K.

At any moment during program execution, one code segment and one data segment
are "current." Code and data segments are paired, so that the current code and data
segments are always from the same module. The compiler implements this pairing
by placing the segment address for the data segment in a reserved location in the
code section. During program execlition, the segment addresses for the current code
and data segments are kept in the CS and DS registers, respectively, and are updated
whenever a PUBLIC or EXTERNAL procedure is activated, as this may involve
new code and data segments.

The stack segment address is kept in the SS register.

PLlM-86

5.4.1 Programming Restrictions in the LARGE Case

The following restrictions must be observed:

1. When a PUBLIC or EXTERNAL procedure is indirectly activated, a
POINTER variable must be used in the CALL statement. This is normal prac­
tice in PL/M-86. For example:

DECLARE P POINTER, W WORD;
PROC: PROCEDURE PUBLIC;

END PROC;

P=@PROC; CALL P; /*RECOMMENDED WHERE AN INDIRECT
CALL MUST BE MADE* /

W=.PROC; CALL W; /*NOT ALLOWED* /

2. When a procedure that is not PUBLIC or EXTERNAL is indirectly activated, a
WORD variable must be used. This is consistent with PL/M-80, and is not
recommended in PL/M-86 programs because WORD variables do not range
over the entire 8086 address space (but are restricted to offsets within an assum­
ed segment). For example:

DECLARE P POINTER, W WORD;
LPROC: PROCEDURE; /*LOCAL * /

END LPROC;

P=@ LPROC; CALL P; /*NOT ALLOWED* /

W=.LPROC; CALLW; /*NOT RECOMMENDED, BUT ALLOWED* /

These are the same as Restrictions 1 and 2 in the MEDIUM case, and arise for the
same reason.

Program Size

5-5

CHAPTER 6
FLOATING-POINT ARITHMETIC

Programming using the PL/M-86 REAL data type is explained in the PL/M-86
Programming Manual, 98-466. That manual contains all the information necessary
for REAL programming, with the exception of REAL error control and the use of
REALs by interrupting programs. This chapter covers these two topics, and in addi­
tion describes the general aspects of the design of the REAL math facility used to
support REAL arithmetic in PL/M-86.

6.1 Representation of REAL Values

This section describes Intel's standard single-precision format for floating-point
arithmetic. All PL/M-86 REAL values use this format.

A REAL value occupies four contiguous memory bytes, which may be viewed as 32
contiguous bits. The bits are divided into fields as follows:

sign
(1 bit)

where

exponent fraction
(8 bits) (23 bits)

• The byte with the lowest address contains the least significant 8 bits of the
fraction field, and the byte with the highest address contains the sign bit and the
most significant 7 bits of the exponent field.

• The sign bit is 0 if the REAL value is positive or zero, or 1 if the REAL value is
negative.

• The exponent field contains a value "offset" by 127-in other words, the actual
exponent can be obtained from the exponent field value by subtracting 127. This
field is all O's if the REAL value is zero.

• The fraction field contains the binary digits of the fractional part of the REAL
value, when it is represented in "binary scientific" notation (see below). This
field is all O's if the REAL value is zero.

The following examples Illustrate these concepts.

Consider the following binary number (which is equivalent to the decimal value
10.25):

1010.018

(The"." in this number is a binary point.) The same number can be represented as

1.01001 B * 23

This is "binary scientific" notation, with the binary point immediately to the right
of the most significant digit. The digits 01001 are the fractional part, and 3 is the ex­
ponent. This value would be represented as follows:

• The sign bit would be 0, since the value is positive.

• The exponent field would contain the binary equivalent of 127 + 3=130.

• The leftmost digits of the fraction field would be 01001, and the remainder of
this field would be all O's.

6-1

Floating-Point Arithmetic

6-2

The complete 32-bit representation would be

o 10000010 01001000000000000000000

and the contents of the four contiguous memory bytes would be as follows:

highest address: 01000001
00100100
00000000

lowest address: 00000000

Note that the most significant digit is not actually represented, since by definition it
is a "1" unless the REAL value is zero. If the REAL value is zero, the entire 32-bit
representation is all D's.

For a second example, consider the fraction 1116, or 0.0625. In binary, this is

0.0001 B

In "binary scientific" we would have

1.0000B * 2- 4

The actual exponent, -4, would be represented as 123 (127-4), and the fraction field
would contain all O's.

The largest possible value for a valid exponent field is 254, which corresponds to an
actual exponent of 127. The largest possible absolute value for a positive or negative
REAL value is therefore

1.11111111111111111111111 B * 2127

or approximately 3.37* 1038

The lowest permissible exponent field value for a non-zero REAL value is 1, which
corresponds to an actual exponent of -126. The smallest possible absolute value for a
positive or negative REAL value is therefore

1.0B * 2- 126

or approximately 1.10-38

6.2 The REAL Math Facility

From the program's point of view, the facility consists of the following:

• The REAL stack, used to hold operands and results during REAL operations.

• The REAL error byte, consisting of 8 bits. The bits in this byte correspond to
the possible errors that can arise during REAL operations (see Section 6.3
below). To indicate an error, the corresponding bit is set to 1. There is a builtin
procedure (described below) that allows the program to read and clear the
REAL error byte.

The REAL error byte is initialized to all D's.

PL/M-86

PL/M-86 Floating-Point Arithmetic

• The REAL mode word, consisting of 16 bits.

Bits 0-7 are a program-specified mask for error conditions. If an error occurs
and the corresponding bit in the REAL mode word is 0, the REAL math facility
interrupts the CPU with Interrupt 16 so that the error can be reported. If the bit
is 1, no interrupt occurs (however, the error is still recorded by setting the cor­
responding bit in the REAL error byte). These bits are initialized to alll's (Le.,
all errors are masked). In most cases the programmer will want to change this
mask. A builtin procedure (described below) allows the program to alter the
comtents of the REAL mode word.

The remaining bits (8-15) of the REAL mode word are reserved and must be set
to zero.

6.3 Error Categories

WARNING: If an error occurs that is masked, the result is undefined. The undefin­
ed result can cause other errors to occur later. This is true of all errors except the IN­
EXACT error which, if masked, will give the correctly rounded result. Therefore,
the suggested value for the REAL mode word is one that masks the INEXACT error
and unmasks all other errors. This value is 0040H. (See the SET$REAL$MODE
procedure below for directions on setting the REAL mode word.)

The errors that can occur in floating-point operations fall into the following eight
categories:

1. Stack error. This is caused by REAL stack underflow or overflow.

REAL stack underflow can be caused by failing to restore the REAL status after
returning from an interrupt procedure that saved the status (see below).

REAL stack overflow can be caused by too many intermediate REAL results ac­
cumulating in the REAL stack. This might occur if REAL procedure calls are
nested too deeply. No rule can be given for avoiding this situation, as it depends
on the number of intermediate results involved in specific computations.
However, the compiler ensures that no single procedure will cause REAL stack
overflow when the stack is initially empty. If a stack error occurs within a par­
ticular procedure, modify the code for that procedure to call the builtin pro­
cedures SA VE$REAL$ST ATUS and RESTORE$REAL$ST ATUS (described
below). Save the stack contents before performing REAL arithmetic in the pro­
cedure and restore the stack contents before returning.

This error causes Bit 0 of the REAL error byte to be set to 1, and if Bit 0 of the
REAL mode word is 0, it will cause Interrupt 16 to occur.

2. Invalid error. This occurs whenever an operand is not a valid REAL value.

This error is most likely to be caused by referencing an uninitialized REAL
variable or by referencing a location that does not contain a REAL value (as
might occur with an out-of-range subscript for a REAL array).

This error causes Bit 1 of the REAL error byte to be set to 1, and if Bit 1 of the
REAL mode word is 0, it will cause Interrupt 16 to occur.

3. Zero divide error. This results from an attempt to divide by zero.

This error causes Bit 2 of the REAL error byte to be set to 1, and if Bit 2 of the
REAL mode word is 0, it will cause Interrupt 16 to occur.

6-3

Floating-Point Arithmetic

6-4

4. Overflow error. This occurs whenever a result is too large in absolute value to
store.

This error can arise in the following operations: assignment, addition, subtrac­
tion, multiplication, division, and conversion of a REAL value to an INTEGER
value.

This error causes Bit 3 of the REAL error byte to be set to 1, and if Bit 3 of the
REAL mode word is 0, it will cause Interrupt 16 to occur.

5. Underflow error. This occurs whenever a nonzero result is too small in absolute
value to store.

This error can arise in the following operations: assignment, addition, subtrac­
tion, multiplication, and division.

This error causes Bit 4 of the REAL error byte to be set to 1, and if Bit 4 of the
REAL mode word is 0, it will cause Interrupt 16 to occur.

6. Domain error. This occurs whenever an operand is not within the domain of the
operation being performed.

This error is most likely to be caused by referencing an uninitialized REAL
variable or by referencing a location that does not contain a REAL value (as
might occur with an out-of-range subscript for a REAL array).

This error causes Bit 5 of the REAL error byte to be set to 1, and if Bit 5 of the
REAL mode word is 0, it will cause Interrupt 16 to occur.

7. Inexact error. This occurs whenever the result of a floating-point operation is
rounded up or down.

This error causes Bit 6 of the REAL error byte to be set to 1, and if Bit 6 of the
REAL mode word is 0, it will cause Interrupt 16 to occur. Normally this error
should always be masked.

8. This bit is not used.

6.4 THE SET$REAL$MODE PROCEDURE

SET$REAL$MODE is a builtin untyped procedure, activated by a CALL statement
with the following form:

CALL SET$REAL$MODE (modeword) ;

where

• modewordis an expression with a WORD value.

The value of modewordbecomes the new contents of the REAL mode word. If bits
8-15 are not zero in mode word then the results are undefined. The suggested value
for modewordis 0040H. This value will cause Interrupt 16 to occur for all but the in­
exact condtions. As for all interrupts, it is the user's responsibility to supply an In­
terrupt 16 procedure.

6.5 The GET$REAL$ERROR Procedure

GET$REAL$ERROR is a builtin BYTE procedure activated by a function reference
with the following form:

GET$REAL$ERROR

PL/M-86

PL/M-86 Floating-Point Arithmetic

The BYTE value returned is the current contents of the REAL error byte. This pro­
cedue also clears the error byte in the REAL math facility.

6.6 Saving and Restoring REAL Status

If any interrupt procedure performs any floating-point operation, it will change the
REAL status. If such an interrupt procedure is activated during a floating-point
operation, the program will be unable to continue the interrupted operation correct­
ly after return from the interrupt procedure. Therefore, it is necessary for any inter­
rupt procedure that performs a floating-point operation to first save the REAL
status and subsequently restore it before returning. The builtin procedures
SA VE$REAL$STATUS and RESTORE$~EAL$ST ATUS make this possible.

6.6.1 The SAVE$REAl$STATUS Procedure

SAVE$REAL$STATUS is a builtin untyped procedure activated by a CALL state­
ment with the form

CALL SAVE$REAL$STATUS (location) ;

where

• location is a pointer to a memory area of 100 bytes where the REAL status
information will be saved.

The REAL status is saved at the specified location, and the REAL stack and error
byte are reinitialized. The REAL mode word is left unchanged.

In an Interrupt 16 procedure that uses the REAL math facility, the
GET$REAL$ERROR builtin must be invoked before the
SA VE$REAL$ST A TUS procedure. Otherwise the cause of the error
cannot be determined and an infinite loop may result.

6.6.2 The RESTORE$REAl$STATUS Procedure

RESTORE$REAL$ST ATUS is an untyped builtin procedure activated by a CALL
statement of the form

CALL RESTORE$REAL$ST ATUS (location) ;

where

• location is a pointer to the area where REAL status was previously saved by the
SA VE$REAL$ST ATUS procedure.

The REAL status is restored, using the saved information at the specified location.

6.7 Linkage to the Facility

The PLM86.LIB library file (supplied with the compiler) contains the REAL math
facility. This will be automatically linked into an object program that requires
floating-point operations, assuming PLM86.LIB is named in the link list.

6-5

CHAPTER 71
LISTING FORMATS.

7.1 Program Listing

During the compilation process a listing of the source input is produced. (See
Chapters 2 and 3 for details of the file conventions for this listing.) Each page of the
listing carries a numbered page-header which identifies the compiler, and optionally
gives a title, a subtitle, and/or a date. The first part of the listing contains a sum­
mary of the compilation beginning with the compiler identification and the name of
the PL/M-86 source module being compiled. The next line names the file receiving
the object code. Finally, the command line used to invoke the compiler is reproduc­
ed. The listing of the program itself follows. A sample program listing is shown in
Figure 7-1.

PL/M-86 COMPII,ER 51'ACK MODULE 10 NOV 77 PAGE

ISIS-II PL/M-86 DEBUG .\001 COMPILATION OF MODIlLE STACK
~BJE=T MODULE PLACED IN :Ft :STACK.O~J
COMPILER INVOKED BY: PL.B6 :Fl :STAC~.SRC PAGEWIDTH(85) CODE XREF T1TLE('STACK MODULE

10

-') DATEClO NQV 77)

STACK: no; I*This module illo1ements a BYTE stack. with. DUSh and pop.'

UFCLARE 5(100) fHtE:, I*StacK storaqe*/
r BYTE PljhT.lC INItIAL (-1); I*Stacle index*1

Pl'~H: PROCf~DUPE (fl.) PUf1LIC; /*Pushes B onto staCIe./
1 STATEMENT • 3

PLlfiH PROC NEAR
0000 55 Pl1fiH BP
0001 89FC ~·ov BP,SP

0003
0007
OOOA

OOOF;
OOO~'

0011
0015
0018
ODIC
0010
0022
0025
0027
0028
0029

002A
002~

Dr..CLAAE B B'ln:1
S(1':=l+1) H; I.Jncre~ent T and store B*I

; STATF.ME~T • 5
HAObb400 .OV AL, r
80COOl Al)D AL,lH
88060400 '~ov To ~L
END PU,sH:

STATE"ENT f 6
PIJSH f,ND?

POP: Pfo;UO:O(IRF: Byl'F' PUhLIC; ;Hleturns value pODDed from stacie.;
: STATEMENT • 7

P(IP PROC N[AR
~5

8~E;C

i-l.t::TURI~

8.066400
80F~Ol
880b6400
rA
2EBEI6n',F
!lCOOOO
89EC
16
IF
FA
.ND POP,

5D
C3

PUSIi BP
H)'-l [\P,SP

S«('r:=T-l)+l): ;*oecrement T, then return S(T+l).1
, STATEMENT • 8

r-1OV 4L,T
SUB ArJ,lH
f<rOV 1', 4L
eLI
.ov ss,CS:~@STACKSFR'ME

t-IOV SP,@(aSTACKSOFFSET
f.,OV B~.SP

PUSH SS
POP OS
511

STATil"ENT • 9
PCP SP
PET

~ND STACK: 1*~loduLe ends here.'
STATE'<ENT • 10

Figure 7-1. Program Listing

7-1

Listing Format"

7-2

The listing contains a copy of the source input plus additional information. To the
left of the source image appear two columns of numbers. The first column provides
a sequential numbering of PL/M-86 statements. Error messages, if any, refer to
these statement numbers. The second column gives the block nesting depth of the
current statement.

Lines included with the INCLUDE control are marked with "=" just to the left of
the source image. If the included file contains another INCLUDE control, lines in­
cluded by this "nested" INCLUDE are marked with "=1". For yet another level of
nesting, "=2" is used to mark each line, and so forth up to the compiler's limit of
five levels of nesting. These markings make it easy to see where included text begins
and ends.

Should a source line be too long to fit on the page in one line it will be continued on
the following line. Such continuation lines are marked with "-" just to the left of the
source image.

The CODE control may be used to obtain the 8086 assembly code produced in the
translation of each PL/M-86 statement. This code listing appears interspersed in the
source text in six columns of information conforming to standard assembly
language format:

1 . Location counter (hexadecimal notation)

2. Resultant binary code (hexadecimal notation)

3. Label field

4. Opcode mnemonic

5. Symbolic arguments

6. Comment field

Not all six of these columns will appear on anyone line of the code listing. Compiler
generated labels (e.g. those which mark the beginning and ending of a DO WHILE
loop) are preceded by "@". The comments appearing on PUSH and POP instruc­
tions indicate the stack depth associated :vith the stack instruction.

7.2 Symbol and Cross-Reference Listing

If specified by the XREF or SYMBOLS control, a. summary of all identifier usage
appears following the program listing.

Depending on whether the SYMBOLS or XREF control was used to request the
identifier usage summary, five or six types of information are provided in the sym­
bol or cross-reference listing. These are as follows:

1. Statement number where identifier was defined.

2. Relative address associated with identifier

3. Size of object identified in bytes.

4. The identifier.

5. Attributes of the identifier.

6. Statement numbers where identifier was referenced (XREF control only).

Notice that a single identifier may be declared more than once in a source module
(Le., an identifier defined twice in different blocks). Each such unique object, even
though named by the same identifier, appears as a separate entry in the listing.

The address given for each object is the location of that object relative to the start of
its associated section. Which section is applicable depends upon the attributes ohhe
object (see Chapter 8).

PLlM-86

PLlM-86 Listing Formats

Figure 7-2 is an example of the cross-reference listing.

PL/M-8b caMPIl,1CP STACK MODULE 10 NJV 77 PAGE

3 OQ04H BYTE PARAM.ETld< AUTOr.tAT1C
4 5

7 OOOEH 30 PDP PRUCEDURE WiTE PUBLIC STACK=OQOOH

3 OOOOH 14 PU," PR(lCE[)URt: PUBLIC STACK=OOOOH

2 OOOOH 100 S BYTE ARRA'f{ 1 on)
5 8

1 OOOOH 51 ACI'I. PROO:OUKE STACK=OOOOH

2 OU64H tIIYTE PUr)LIC INITIAL
5 ,

Figure 7-2. Cross-Reference Listing

7.3 Compilation Summary

Following the listing (or appearing alone if NOLIST is in effect) is a compilation
summary. Six pieces of information are provided:

• Code area size gives the size in bytes of the code section of the output module.

• Constant area size gives the size in bytes of the constant section of the output
module.

• Variable area size gives the size in bytes of the data section of the output
module.

• Maximum stack size gives the size in bytes of the stack section allocated for the
output module.

• Lines read gives the number of source lines processed during compilation.

• Program errors gives the number of error messages issued during compilation.

Figure 7-3 is an example of the compilation summary. Refer to Chapter 4 for an ex­
planation of the various object module sections.

::DD~ AREA Slzr 004A'-1 74f1
:ONSTANT AREA SlZ~ nooOH OD
VAR]IIBl,E kREA SIZfo llOCEH 206D
""AXI~IU"l STACK SIZE? 0000.'-1 OD
9 LI~ES PEAD
o PROGRAM E~f<OH.s)

Figure 7-3. Compilation Summary

7-3

CHAPTER 8
RUN-TIME DATA REPRESENTATIONS

8.1 Byte Values

A BYTE value occupies a single byte of memory, except when it is a BYTE
parameter stored on the stack.

A BYTE parameter on the stack occupies two contiguous memory bytes. The BYTE
value is in the first byte (lower address), and the contents of the second byte (higher
address) are undefined.

8.2 Word Values

A WORD value occupies two contiguous memory bytes. The least significant 8 bits
of the value are in the first byte (lower address), and the most significant 8 bits are in
the second byte (higher address).

8.3 Integer Values

An INTEGER value occupies two contiguous memory bytes. The least significant 8
bits of the value are in the first byte (lower address), and the most significant 8 bits
are in the second byte (higher address).

8.4 Real Values

A REAL value occupies four contiguous memory bytes, as described in Chapter 6.

8.5 Pointer Values

The representation of a POINTER value depends on the size control used in com­
pilation. In the SMALL case, a POINTER value is a 16-bit offset and is represented
in the same manner as a WORD value.

In the MEDIUM and LARGE cases, a POINTER value consists of a segment ad­
dress and an offset and occupies four contiguous memory bytes. The 16-bit offset
occupies the first two bytes (lower addresses) with the least significant 8 bits in the
first byte and the most significant 8 bits in the second byte. The 16-bit segment ad­
dress occupies the third and fourth bytes, with the least significant 8 bits in the third
byte and the most significant 8 bits in the fourth byte.

8-1

CHAPTER 9
RUN-TIME PROCEDURE AND

ASSEMBLY LANGUAGE LINKAGE

This chapter describes the handling at run time of non-interrupt procedures.
Assembly-language subroutines that are to be linked with PL/M-86 programs or
procedures must be compatible with these conventions. The easiest way to ensure
compatibility is simply to write a dummy procedure in PL/M-86 with the same argu­
ment list as the desired assembly language subroutine, and with the same attributes.
Then compile the dummy procedure with the correct size control and with the
CODE control specified. This will produce a pseudoassembly listing of the
generated 8086 code, which may then be simply copied as the prologue and epilogue
of the assembly language subroutine. This having been done, an understanding of
the material in this chapter is not needed.

For the handling of interrupt procedures, see Chapter 10.

9.1 Calling Sequence

For each procedure activation (CALL statement or function reference) in the
source, the object code uses a calling sequence. The calling sequence places the pro­
cedure's actual parameters (if any) on the stack and then activates the procedure
with a CALL instruction.

The parameters are placed on the stack in left-to-right order. Since the direction of
stack growth is from higher locations to lower locations, this means that the first
parameter occupies the highest position on the stack, and the last parameter oc­
cupies the lowest position. Note that a BYTE parameter value occupies two bytes on
the stack, with the value in the lower byte. The contents of the higher byte are
undefined. See Chapter 8 for details on data representations.

After the parameters are passed, the CALL instruction places the return address on
the stack. In the SMALL case, this is a 16-bit offset (the contents of the IP register)
and occupies two contiguous bytes on the stack.

In the MEDIUM and LARGE cases, the return address is a POINTER value con­
sisting of a segment address and offset. The 16-bit segment address (contents of the
CS register) is pushed first, and then the offset (IP register contents) is pushed.

Control is then passed to the code of the procedure, by updating the IP register and
(in the MEDIUM and LARGE cases) the CS register.

At the point where the procedure gains control, then, the stack layout is as shown in
Figure 9-1.

higher
locations

lower
locations

parameter 0
parameter 1

parameter n

return segment address

return offset

-
l

Stack marker (BP reg. contents)

Each parameter occupies 2 or 4
bytes - see text

Absent in SMALL program

Stack pointer (SP reg. contents)

Figure 9-1. Stack Layout at Point Where a Non-Interrupt
Procedure Is Activated

9-1

Run-Time Procedure and Assembly Language Linkage

9-2

9.2 Procedure Prologue

In compiling the procedure itself, the compiler inserts at the beginning a sequence of
code called the prologue. This code accomplishes the following steps:

I. If the procedure has the PUBLIC attribute and the program size is LARGE, the
contents of the DS register are placed on the stack. Then the DS register is up­
dated with a value which is found in the current code segment (Le., the segment
containing the procedure). (The DS register contains the segment address for the
current data segment; thus this step implements the pairing of code and data
segments in the LARGE case, and is not needed in the SMALL and MEDIUM
cases because the data segment does not change.)

2. If any parameter of the procedure is referenced by a nested procedure, all
parameters are removed from the stack and placed in space reserved for them in
the data segment.

3. If the procedure has the REENTRANT attribute, space is reserved on the stack
for any variables declared within the procedure (this does not include based
variables, variables with the DATA attribute, or variables with the AT at­
tribute).

4. The stack marker offset (BP register contents) is placed on the stack, and the
current stack pointer (SP register contents) is used to update the BP register.

Control then passes to the code compiled from the executable statements in the pro­
cedure body. At this point, the stack layout is as shown in Figure 9-2.

higher
locations

a:
'" ...
z
:::>
o ..,
'" ..,
~

lower
locations

I
parameter 0
parameter 1

parametern

return segment address

return offset

old data segment
address

local .ariablas

.. old stack marke,

This space may be
used during pro·
cedure execution

}
I

I

I

Absent if any parameter is
referenced within a nested procedure.

Absent in SMALL program

Only in PUBLIC procedure in
LARGE program

Only in reentrant procedure

New stack marker (BP reg. contents)

Stack pointer may change
during procedure execution

Figure 9-2. Stack Layout During Execution of
Non-Interrupt Procedure Body

During execution of the procedure, further stack space may be used for temporary
storage generated by the compiler.

PLlM-86

PLlM-86 Run-Time Procedure and Assembly Language Linkage

9.3 Procedure Epilogue

To return from the procedure, the compiler inserts a code sequence called the
epilogue. This accomplishes the following steps:

1. If the compiler has used stack locations for temporary storage during procedure
execution, the stack pointer (SP register) is loaded with the stack marker (BP
register contents). This has the effect of discarding the temporary storage.

2. The old stack marker is restored by popping the stored value from the stack into
the BP register.

3. If space was reserved on the stack for variables declared within a reentrant
procedure, this space is discarded by adjusting the stack pointer (SP register).

4. If the procedure has the PUBLIC attribute and the program size is LARGE, the
old data segment address is restored by popping the stored value from the stack
into the DS register.

5. A RET instruction is used to return from the procedure. If the program size is
SMALL, the RET pops the stored return address (a 16-bit offset) into the IP
register. It also discards any parameters stored on the stack.

If the program size is MEDIUM or LARGE, the RET pops the stored return­
address offset from the stack into the IP register and then pops the return­
address segment address into the CS register. It also discards any parameters
stored on the stack.

9.4 Value Returned from Typed Procedure

The result of a typed procedure is returned as follows:

Procedure Type Result Returned in:

BYTE AL Register
WORD AX Register
INTEGER AX Register
POINTER (SMALL size) BX Register
POINTER (MEDIUM size) ES and BX Registers
POINTER (LARGE size) ES and BX Registers
REAL Top of RMU stack

9-3

CHAPTER 10
RUN-TIME INTERRUPT PROCESSING

10.1 General

An interrupt is initiated when the CPU receives a signal on its "maskable interrupt"
pin from some peripheral device.

Note that the CPU does not respond to this signal unless interrupts are enabled. The
"main program prologue" (code inserted by the compiler at the beginning of the
main program) enables interrupts.

If interrupts are enabled, the following actions take place:

1. The CPU issues an "acknowledge interrupt" signal and waits for the
interrupting device to send an interrupt number.

2. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

3. Interrupts are disabled by clearing the IF flag.

4. Single stepping is disabled by clearing the TF flag.

5. The CPU activates the interrupt procedure corresponding to the interrupt
number sent by the interrupting device. The mechanism for this activation is
described below.

10.2 The Interrupt Vector

If the NOINTVECTOR control is not used, an interrupt vector entry is automatical­
ly generated by the compiler for each interrupt procedure. Collectively, the interrupt
vector entries form the interrupt vector. If NOINTVECTOR is used, the program­
mer must supply the interrupt vector as explained below in Section 10.4.

The interrupt vector is an absolutely located array of POINTER values beginning at
location O. Thus the nth entry is at location 4* n, and contains the location of a pro­
cedure declared with the INTERRUPT nattribute.

Note that the first and second bytes of each entry contain an offset, while the second
two bytes contain a segment address. The entries are always four-byte pointers, and
the segment address is always used in transferring to the interrupt procedure, even if
the program size is SMALL.

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (lP register contents) are placed on the stack.

At the point where the procedure is activated, the stack layout is as shown in Figure
10-1.

higher
locations

:.::::i! 0
cr:Z
.... =>
<1.10

o
lower
locations

Flag reg. contents

return segment address

return offset

2bytes

Present regardless of
program size

t--------f- Stack pointer

Figure 10-1. Stack Layout at Point Where an Interrupt Procedure
Gains Control

10-1

Run-Time Interrupt Processing

10-2

10.3 Interrupt Procedure Preface

At the beginning of each interrupt procedure, before the prologue described in the
preceding chapter, the compiler inserts an interrupt procedure preface which ac­
complishes the following steps:

1. Push the ES register contents onto the stack.

2. Push the OS register contents onto the stack.

3. Load the OS register with a new data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

4. Push the AX register contents onto the stack.

5. Push the CX register contents onto the stack.

6. Push the OX register contents onto the stack.

7. Push the BX register contents onto the stack.

8. Push the SI register contents onto the stack.

9. Push the 01 register contents onto the stack.

10. At this point, a CALL instruction transfers control to the procedure prologue
(described in Chapter 9).

At the point where the procedure prologue gains control, the stack layout is as
shown in Figure 10-2.

higher
locations

II:

I!:! z
=> o o ..
~

lower
locations

Flag reg. contentl

return segment addre ..

return ollset

ES reg. contents
DS reg. contents
AX reg. contents
CX reg. contents
DX reg. contents
ax reg. contenta
51 reg. contents
DI reg. contents

I
I

}

2 bytes

Present regardl ... of
program size

CPU .. atus Information

Stack pointer

Figure 10-2. Stack Layout After Interrupt Procedure Preface
and Before Procedure Prologue

After the procedure prologue is executed, at the point where the code compiled from
the procedure body gains control, the stack layout is as shown in Figure 10-3.

The return from the procedure body transfers control back into the interrupt pro­
cedure preface. At this point the procedure epilogue (see Chapter 9) has restored the
stack to the layout of Figure 10-2. The interrupt procedure preface continues with
the following steps.

11. Pop the stack into the 01 register.

12. Pop the stack into the SI register.

13. Pop the stack into the BX register.

14. Pop the stack into the OX register.

15. Pop the stack into the CX register.

16. Pop the stack into the AX register.

17. Pop the stack into the OS register.

PL/M-86

PL/M-86 Run-Time Interrupt Processing

higher
locations

a:
w ... z
::>

8
'" a

lowar
locations

parameter 0
parameter 1

parametern

return aegment addre ..

returnoffaet

old data segment
addre.s

loealy.rlable.

i4 old stack marker

This s:,ace may be
used urlng pro-
cadure execution

}
}

I

I

Absent if any parameter Is
referenced within a nested procedure.

Absent In SMALL program

Only in PUBLIC procadura in
LARGE program

Only in raentrant procedure

New stack marker (BP reg. contants)

Stack pOinter may change
during procedure execution

Figure 10-3. Stack Layout During Execution of Interrupt Procedure Body

18. Pop the stack into the ES register.

19. Enable interrupts.

20. Execute an IRET instruction to return from the interrupt procedure. This
restores the IP, CS, and flag register contents from the stack.

At this point the stack has been .-estored to the state it was in before the interrupt oc­
curred, and processing continues normally.

10.4 Writing Interrupt Vectors Separately

In some cases it may be desirable to write the interrupt vector separately (in
PL/M-86 or assembly language). This can be done by using NOINTVECTOR to
prevent generation of an interrupt vector by the compiler. The separately created in­
terrupt vector can then be linked into the program.

Creation of a separate explicit interrupt vector requires some care, since PL/M-86
provides access to a procedure's normal (i.e., called) entry point, not to its interrupt
entry point. The interrupt entry point fitst saves the status of the interrupted pro­
gram before invoking the interrupt procedure through its normal entry point. The
exact length of these operations depends on the compilation options chosen, the at­
tributes of the interrupt procedure, and the version of the compiler being used.
Thus, the CODE control should be used to determine the displacement of the inter­
rupt entry point from the normal entry point where this feature is desired.

10-3

Run-Time Interrupt Processing

10-4

The usefulness of a separately created interrupt vector can be seen by considering an
example.

Suppose that two modules for a multimodule program are developed separately.
Both use interrupt procedures, but at the time when the modules are written the
assignment of interrupt numbers to the various interrupt procedures has not been
determined.

The two modules are therefore compiled with the NOINTVECTOR control. When
this is done, the n in an INTERRUPT n attribute is igIlQred-since normally it
would only be used to put the procedure's entry in the proper location within the in­
terrupt vector.

Later, when the program is linked together, a separately created interrupt vector can
be linked in. Within this interrupt vector, the placement of the entry for a given in­
terrupt procedure determines which interrupt number will activate that procedure.

Similarly, you could have a library of interrupt procedures, all compiled with
NOINTVECTOR. Any program could then have any of these procedures linked in,
with a separately created interrupt vector.

PLlM-86

APPENDIX A
THE IXREF PROGRAM

A.1 General

The IXREF program is supplied on the same diskette as the ISIS-II PL/M-86 Com­
piler. It uses intermediate files produced by the compiler under the IXREF control
(see Section 3.2.5) to produce an intermodule cross-reference file.

To use this facility, first compile all modules that are to be cross-referenced, using
the IXREF controlin each case. Then run the IXREF program as explained below.

A.2 Invoking the IXREF Program

The IXREF program invocation command has the following general form:

[:device:]IXREF input-list [controls]

where

• device identifies which drive contains the diskette with the IXREF program.
This may be omitted if the diskette is in Drive O.

• input-list is a list of path names of intermediate files produced by the compiler
under the IXREF control. The path names must be separated by commas (spaces
may also be inserted between pathnames). The pathnames may be in any order
and may use the "wild card" construction (see ISIS-II System User's Guide, In­
tel document number 98-306). If any of the specified files is not a valid in­
termediate file, IXREF will type the pathname and the message BAD RECORD
TYPE and will skip the file.

• controls is an optional sequence of one or more controls separated by spaces.
Controls are described below.

If the invocation command is too long to be typed on one line, you can break it by
typing an & character followed by a carriage return. The & must not be within a
pathname or control. IXREF responds to the & with a ** prompt to show that it is
waiting for a continuation line.

A.3 Controls

The control sequence in the IXREF program invocation is optional. If no controls
are used, the output file will have the following characteristics:

• The output pathname will be the same as the first pathname in the input-list, but
with the extension IXO.

• No title will be placed at the top of each page.

• All identifiers declared PUBLIC or EXTERNAL will be listed.

Four controls are provided to modify the characteristics of the output file.

A.3.1 THE PRINT CONTROL

This control has the form
PRINT (path name)

where pathname is a standard ISIS-II pathname to specify the name of the output
file.

A-I

The IXREF Program

A-2

A.3.2 THE TITLE CONTROL

This control has the form

TITLE ('string')

where string is a sequence of up to 60 characters to be placed at the top of each page
of output. If the 60-character limit is exceeded, the string will be truncated on the
right.

A.3.3 THE PUBLICS CONTROL

This control has the form

PUBLICS

and specifies that only PUBLIC identifiers are to be represented in the output file.

A.3.4 THE EXTERNALS CONTROL

This control has the form

EXTERNALS

and specifies that only EXTERNAL identifiers are to be represented in the output
file.

A.4 The IXREF Output File

Figure A-I shows a typical intermodule cross-reference file produced by IXREF.
Note that a "wild card" construction was used in the input-list to input all files on
Drive 1 with the extension IXI. Controls were used to specify a title and a pathname
for the output file.

The file contains two listings, the "intermodule cross-reference listing" and the
"module directory." Both are sorted alphabetically. Note that in the illustration,
portions of the intermodule cross-reference listing have been omitted.

Each entry in the intermodule cross-reference listing begins with an identifier in the
left column. In the right column, we have the attributes of the identifier, then a
semicolon followed by the names of all modules in which it is declared PUBLIC or
EXTERNAL.

The first entry after the semicolon is the name of the module in which the identifier
is declared PUBLIC. If no PUBLIC declaration is found, the notation **
UNRESOLVED ** appears. Thus we can see that ACTUALBASEPTR is a WORD
variable declared PUBLIC in module MACRO and EXTERNAL in modules
SYMSCN and STACK.

In the next entry, we see that ACTUALBLOCKENDMARKER is an array of two
BYTE elements, declared PUBLIC in module MACRO.

In the module directory, each entry begins with a module name. In the second col­
umn, we find the name of the PL/M-86 source file from which the module was com­
piled, and in the third column we find the name of the diskette where the source file
resides. (A diskette is named when it is formatted with the ISIS-II FORMAT com­
mand.)

PL/M-86

PLlM-86 The IXREF Program

ISIS-I I IXPEF INTER-MODULE CROSS-R~fERENCE

ISIS-II IXPEf. VI.I
INVOKED ?Y:
-I XPEf : FI:'. IX I T ITLO('1 "TER-MODULE CROSS-REFERENCE') ,

PR I NT(: fI : ASSEMB .OllT)

ACTUALBASEPTR •••••••••••••• ORO; ~ACRO SY"SCN STACK
A CTUALBLOCK~NOMAnER B HE (2); MACRO
ACTUAJ.DELIMITER PROCEDURE BYTE; MACRO SCNFSM
A:rUALPROTECTF.D ~'tTE; MACRO S':NFSIr4

. .
BLKSTK "nEt 17); PUBLICOCL DRIVE STACK MACRO
BLOCKNO BYTE; •• UNRESOLVED •• ENOLIN

. .

PAGE I

XPEFSYMBUf BYTE(6); PUBLICDCL ENOLIN DRIVE REL08J SCNFSM
XREfSYMBUfPREVIOUS •••••••• BYTE(6); PUBLICDCL SCNFSM
XREfUTILITYNAME B¥TEOI); PUBLICOCL DRIVE INIT
ZERO ... IJWHD; ~ACRO STACK SCNF'SM
ZEROADORESS ••••••••••••••• oOPO; ASSE"B RELOBJ

ASSE"B ASSEMB.sec
ORI V E ORI VE.SI'C
ENOLI N .. ENOL IN .s~c
1 NIT .. I Ii IT .. SPC
MACRO .. MA.CRO .S~C
PUBI, ICOCL •••••••••• '" •• , • PUSL IC. SRC
RELOBJ RELOBJ.SPC
SCNFSM SCNFS~.SPC
STACK .. STACK .. SPC
SYMSC ••••••••••••••••••••• SYNSC'. SHC

SOURCE
DRIVE
END
INIT.OVL
MACRO.SRC
DRIVE
MELOBJ
SOURCE
Syt-tSCN .STK
SiMSC'.STK

Figure A-I. Intermodule Cross-Reference Listing

A.S Error Conditions

IX REF detects the following error conditions in the invocation command:

• Incorrect file specifications in input-list or PRINT control (IX REF terminates
and produces no output).

• Nonexistent file in input-list (if possible, IXREF skips to next pathname and
continues; otherwise it terminates and produces no output).

• Missing parenthesis in PRINT or TITLE control (IXREF terminates and
produces no output).

• Misspelled or unknown controls (IXREF terminates and produces no output).

• PUBLICS and EXTERNALS controls used in same invocation of IXREF
(IXREF terminates and produces no output).

• Repetition of a control (IXREF terminates and produces no output).

A-3

The IX REF Program

A-4

A.6 Temporary Files Used by IXREF

While running, IXREF uses the following temporary files:

:device:IXIN.TMP
:device: IXOUT. TMP
:device:MODNM.TMP

where device is the same device specified for the first file in the input-list. These files
are deleted when IXREF terminates. Therefore, if you have any files with these
names on the same device as the first file in the input-list, you must rename them
before running IXREF.

PL/M-86

APPENDIX B
PROGRAM CONSTRAINTS

Certain fixed size tables within the compiler constrain various features of a user pro­
gram to certain maximums. These limits are summarized below:

MAXIMUM:

Number of elements in a factored declare list
Number of members in a structure
Number of labels on a statement
Number of procedures in a module
Number of DO blocks in a procedure
Nesting of blocks
Length of an input source line (including CR and LF)
Length of a string constant
Nesting of INCLUDE controls

32
32

9
255
255

18
122
255

5

B-1

APPENDIX C
ERROR MESSAGES

The compiler may issue five varieties of error messages:

• Source PL/M-86 errors

• Fatal command tail and control errors

• Fatal input! output errors

• Fatal insufficient memory errors

• Fatal compiler failure errors

The source errors are reported in the program listing; the fatal errors are reported on
the console device.

C.1 Source PL/M-86 Errors

Nearly all of the source PL/M-86 errors are interspersed in the listing at the point of
error and follow the general format:

***ERROR #mmm, STATEMENT #nnn, NEAR "aaa", message

where

• mmm is the error number from the list below

• nnn is the source statement number where the error occurs

• aaa is the source text near where the error is detected

• message is the error explanation from the list below

Source error message list:

1.INVALID PL/ M-86 CHARACTER

2.UNPRINTABLE ASCII CHARACTER

3.1DENTIFIER, STRING, OR NUMBER TOO LONG, TRUNCATED

4.1LLEGAL NUMERIC CONSTANT TYPE

5.INVALIDCHARACTER IN NUMERIC CONSTANT

6.1LLEGAL MACRO REFERENCE, RECURSIVE EXPANSION

7.LlMIT EXCEEDED: MACROS NESTED TOO DEEPLY

B.lNVALID CONTROL FORMAT

9. INVALID CONTROL

10.lLLEGAL USE OF PRIMARY CONTROL AFTER NON-CONTROL LINE

11.MISSING CONTROL PARAMETER

12.1NVALID CONTROL PARAMETER

13.LlMIT EXCEEDED: INCLUDE NESTING

14.1NVALID CONTROL FORMAT, INCLUDE NOT LAST CONTROL

15.MISSING INCLUDE CONTROL PARAMETER

16.1LLEGAL PRINT CONTROL

17. INVALID PATH-NAME

1B.INVALID MULTIPLE LABELS AS MODULE NAMES

19.INVALID LABEL IN MODULE WITHOUT MAIN PROGRAM

C-l

Error Messages

C-2

20.MISMATCHED IDENTIFIER AT END OF BLOCK

21.MISSING PROCEDURE NAME

22.INVALID MULTIPLE LABELS AS PROCEDURE NAMES

23.INVALID LABELLED END IN EXTERNAL PROCEDURE

24.1NVALID STATEMENT IN EXTERNAL PROCEDURE

25.UNDECLAREDPARAMETER

26.INVALID DECLARATION, STATEMENT OUT OF PLACE

27.LlMIT EXCEEDED: NUMBER OF DO BLOCKS (terminal error)

28.MISSING'THEN'

29.1LLEGAL STATEMENT

30.LlMIT EXCEEDED: NUMBER OF LABELS ON STATEMENT

31.LlMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

32.INVALID SYNTAX, TEXT IGNORED UNTIL ';'

33.DUPLICATE LABEL DECLARATION

34.DUPLICATE PROCEDURE DECLARATION

35.LlMIT EXCEEDED: NUMBER OF PROCEDURES (terminal error)

36.MISSING PARAMETER

37.MISSING ')' AT END OF PARAMETER LIST

38.DUPLICATE PARAMETER NAME

39.INVALID ATTRIBUTE OR INITIALIZATION, NOT AT MODULE LEVEL

40.DUPLICATE ATTRIBUTE

41.CONFLICTING ATTRIBUTE

42.INVALID INTERRUPT VALUE

43.MISSING INTERRUPT VALUE

44.ILLEGAL ATTRIBUTE, 'INTERRUPT' WITH PARAMETERS

45.1LLEGAL ATTRIBUTE, 'INTERRUPT' WITH TYPED PROCEDURE

46.1LLEGAL USE OF LABEL

47.MISSING ')' AT END OF FACTORED DECLARATION

48.ILLEGAL DECLARATION STATEMENT SYNTAX

49.LlMIT EXCEEDED: NUMBER OF ITEMS IN FACTORED DECLARE

50.INVALID ATTRIBUTES FOR BASE

51.INVALID BASE, MEMBER OF BASED STRUCTURE

52.1NVALID BASE, MEMBER OF ARRAY OF STRUCTURES

53.1NVALID STRUCTURE MEMBER IN BASE

54.UNDECLARED BASE

55.UNDECLARED STRUCTURE MEMBER IN BASE

56.INVALID MACRO TEXT, NOT A STRING CONSTANT

57.INVALID DIMENSION, ZERO ILLEGAL

58.1NVALID STAR DIMENSION IN FACTORED DECLARATION

59.1LLEGAL DIMENSION ATTRIBUTE

60.MISSING ')' AT END OF DIMENSION

61.MISSING TYPE

62.1NVALID STAR DIMENSION WITH 'STRUCTURE' OR 'EXTERNAL'

PLlM-86

PL/M-86

63 INVALID DIMENSION WITH THIS ATTRIBUTE

64.MISSING STRUCTURE MEMBERS

65.MISSING ')' AT END OF STRUCTURE MEMBER LIST

66.INVALID STRUCTURE MEMBER, NOT AN IDENTIFIER

67.DUPLICATE STRUCTURE MEMBER NAME

68.LlMIT EXCEEDED: NUMBER OF STRUCTURE MEMBERS

69.1NVALID STAR DIMENSION WITH STRUCTURE MEMBER

70.INVALID MEMBER TYPE, 'STRUCTURE' ILLEGAL

71.INVALID MEMBER TYPE, 'LABEL' ILLEGAL

72.MISSING TYPE FOR STRUCTURE MEMBER

73.1NVALID ATTRIBUTE OR INITIALIZATION, NOT AT MODULE LEVEL

74.'DATA' OR 'INITIAL'

75.MISSING ARGUMENT OF 'AT', 'DATA', OR 'INITIAL'

76.CONFLICTING ATTRIBUTE WITH PARAMETER

77.INVALID PARAMETER DECLARATION, BASE ILLEGAL

78.DUPLICATE DECLARATION

79.ILLEGAL PARAMETER TYPE

80.INVALID DECLARATION, LABEL MAY NOT BE BASED

81.CONFLICTING ATTRIBUTE WITH 'BASE'

82.INVALID SYNTAX, MISMATCHED '('

83.LlMIT EXCEEDED: DYNAMIC STORAGE (terminal error)

84.LlMIT EXCEEDED: BLOCK NESTING (terminal error)

85.LONG STRING ASSUMED CLOSED AT NEXT SEMICOLON OR QUOTE

86.LlMIT EXCEEDED: SOURCE LINE LENGTH

87.MISSING 'END', END-OF-FILE ENCOUNTERED

88.1NVALID PROCEDURE NESTING, ILLEGAL IN REENTRANT
PROCEDURE

89.MISSING 'DO' FOR MODULE

90.MISSING NAME FOR MODULE

91.ILLEGAL PAGELENGTH CONTROL VALUE

92.ILLEGAL PAGEWIDTH CONTROL VALUE

93.MISSING 'DO' FOR 'END', 'END' IGNORED

94.ILLEGAL CONSTANT, TOO LARGE FOR CONTEXTUALLY
DETERMINED TYPE

95.1LLEGAL RESPECIFICATION OF PRIMARY CONTROL IGNORED

96.COMPILER ERROR: SCOPE STACK UNDERFLOW

97.COMPILER ERROR: PARSE STACK UNDERFLOW

98.INCLUDE FILE IS NOT A DIRECT ACCESS FILE (terminal error)

99.INVALID REAL CONSTANT

100.INVALID STRING CONSTANT IN EXPRESSION

101.1NVALID ITEM FOLLOWS DQT OR AT SIGN OPERATOR

102.MISSING PRIMARY OPERAND

103.MISSING ')' AT END OF SUBEXPRESSION

104.1LLEGAL PROCEDURE INVOCATION WITH DOT OR AT SIGN
OPERATOR

Error Messages

C-3

Error Messages

C-4

105.UNDECLARED IDENTIFIER

106.ILLEGAL PAGELENGTH(4) AND SUBTITLE COMBINATION

107.INVALID USE OF '@' WITH LOCAL PROCEDURE

108.1NVALID USE OF'.' WITH PUBLIC OR EXTERNAL PROCEDURE

110.lNVALID LEFT OPERAND OF QUALIFICATION, NOT A STRUCTURE

111.1NVALID RIGHT OPERAND OF QUALIFICATION, NOT IDENTIFIER

112. UNDECLARED STRUCTURE MEMBER

113.MISSING ')' AT END OF ARGUMENT LIST

114.1NVALID SUBSCRIPT, MULTIPLE SUBSCRIPTS ILLEGAL

115.MISSING ')' AT END OF SUBSCRIPT

116.MISSING '=' IN ASSIGNMENT STATEMENT

117.MISSING PROCEDURE NAME IN CALL STATEMENT

118.1NVALID INDIRECT CALL, IDENTIFIER NOT A WORD OR POINTER
SCALAR

119.LlMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

120.LlMIT EXCEEDED: EXPRESSION TOO COMPLEX (terminal error)

121.LlMIT EXCEEDED: EXPRESSION TOO COMPLEX (terminal error)

122.LlMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

123.INVALID DOTORATSIGN OPERAND, BUILT-IN PROCEDURE
ILLEGAL

124.MISSING ARGUMENTS FOR BUILT-IN PROCEDURE

125.1LLEGAL ARGUMENT FOR BUILT-IN PROCEDURE

126.MISSING ')' AFTER BUILT-IN PROCEDURE ARGUMENT LIST

127.1NVALID SUBSCRIPT ON NON-ARRAY

128.1NVALID LEFT-HAND OPERAND OF ASSIGNMENT

129.ILLEGAL 'CALL' WITH TYPED PROCEDURE

130.ILLEGAL REFERENCE TO OUTPUT OR OUTWORD FUNCTION

131.ILLEGAL REFERENCE TO UNTYPED PROCEDURE

132.ILLEGAL USE OF LABEL

133.1LLEGAL REFERENCE TO UNSUBSCRIPTED ARRAY

134.1LLEGAL REFERENCE TO UNSUBSCRIPTED MEMBER ARRAY

135.1LLEGAL REFERENCE TO AN UNQUALIFIED STRUCTURE

136.1NVALID RETURN FOR UNTYPED PROCEDURE, VALUE ILLEGAL

137.MISSING VALUE IN RETURN FOR TYPED PROCEDURE

138.MISSING INDEX VARIABLE

139.1NVALID INDEX VARIABLE TYPE

140.MISSING '=' FOLLOWING INDEX VARIABLE

141.MISSING 'TO' CLAUSE

142.MISSING IDENTIFIER FOLLOWING GOTO

143.1NVALID REFERENCE FOLLOWING GOTO, NOT A LABEL

144.INVALID GOTO LABEL, NOT AT LOCAL OR MODULE LEVEL

145.MISSING 'TO' FOLLOWING 'GO'

146.MISSING ')' AFTER 'AT' RESTRICTED EXPRESSION

147.MISSING IDENTIFIER FOLLOWING DOT OR AT SIGN OPERATOR

PLlM-86

PL/M-86 Error Messages

148.INVALID QUALIFICATION IN RESTRICTED REFERENCE

149.1NVALID SUBSCRIPTING IN RESTRICTED REFERENCE

150.MISSING ')' AT END OF RESTRICTED SUBSCRIPT

151.INVALID OPERAND IN RESTRICTED EXPRESSION

152.MISSING ')' AFTER CONSTANT LIST

153.INVALID NUMBER OF ARGUMENTS IN CALL, TOO MANY

154.INVALID NUMBER OF ARGUMENTS IN CALL, TOO FEW

155.INVALID RETURN IN MAIN PROGRAM

156.MISSING RETURN STATEMENT IN TYPED PROCEDURE

157.INVALID ARGUMENT, ARRAY REQUIRED FOR LENGTH OR LAST

158.INVALID DOT OR AT SIGN OPERAND, LABEL ILLEGAL

159.COMPILER ERROR: PARSE STACK UNDERFLOW

160.COMPILER ERROR: OPERAND STACK UNDERFLOW

161.COMPILER ERROR: ILLEGAL OPERAND STACK EXCHANGE

162.COMPILER ERROR: OPERATOR STACK UNDERFLOW

163.COMPILER ERROR: GENERATION FAILURE

164.COMPILER ERROR: SCOPE STACK OVERFLOW

165.COMPILER ERROR: SCOPE STACK UNDERFLOW

166.COMPILER ERROR: CONTROL STACK OVERFLOW

167.COMPILER ERROR: CONTROL STACK UNDERFLOW

168.COMPILER ERROR: BRANCH MISSING IN 'IF' STATEMENT

169.1LLEGAL FORWARD CALL

170.lLLEGAL RECURSIVE CALL

171.1NVALID USE OF DELIMITER OR RESERVED WORD IN EXPRESSION

172.1NVALID LABEL: UNDEFINED

173.INVALID LEFT SIDE OF ASSIGNMENT: VARIABLE DECLARED WITH
OAT A ATTRI BUTE

174.1NVALID NULL PROCEDURE

175.ILLEGAL POINTER ARITHMETIC IN RESTRICTED EXPRESSION

176.1NVALID ABSOLUTE ADDRESS, TOO LARGE

178.ILLEGAL REAL ARITHMETIC IN RESTRICTED EXPRESSION

179.ILLEGAL REAL CONSTANT IN 'AT' CLAUSE RESTRICTED
EXPRESSION

180.lNVALID OPERATOR OR OPERAND, TYPE CONFLICTS WITH
EXPECTED TYPE

181.LlMIT EXCEEDED: CONSTANT OR CODE SEGMENT SIZE

182.ILLEGAL REFERENCE TO ABSOLUTE ADDRESS WITH SMALL OPTION
SPECIFIED

183.INVALID 'AT' RESTRICTED REFERENCE, EXTERNAL ATTRIBUTE
CONFLICTS WITH PUBLIC

184.1NVALID EXPRESSION, TWO SUCCESSIVE RELATIONAL
OPERATORS

185.LlMIT EXCEEDED: NUMBER OF EXTERNAL ITEMS

186.1NVALID RESTRICTED EXPRESSION, TYPE CON FLiCTS WITH TARGET

187.1LLEGAL INITIALIZATION TO A BASED OR AUTOMATIC ADDRESS

C-5

Error Messages

C-6

188.MISSING ENDIF OPTION

189.MISSING OR INVALID CONDITIONAL COMPILATION PARAMETER

190.MISSING OR INVALID CONDITIONAL COMPILATION CONSTANT

191.MISPLACED ELSE OR ENDIF OPTION

192.MISPLACED ENDIF OPTION

193.CONDITIONAL COMPILATION PARAMETER NAME TOO LONG,
TRUNCATED

194.MISSING OPERATOR IN CONDITIONAL COMPILATION EXPRESSION

195.INVALID CONDITIONAL COMPILATION CONSTANT TOO LARGE

196.INVALID UNDEFINED CONDITIONAL COMPILATION PARAMETER

197.LlMIT EXCEEDED: SAVE NESTING

198.MISPLACED RESTORE OPTION

199.LlMIT EXCEEDED: PROCEDURE COMPLEXITY FOR OPTIMIZE(2)
(terminal error)

200.LlMIT EXCEEDED: STATEMENT SIZE

201.1NVALID DO CASE BLOCK, AT LEAST ONE CASE REQUIRED

202.LlMIT EXCEEDED: NUMBER OF ACTIVE CASES

203.LlMIT EXCEEDED: NESTING OF TYPED PROCEDURE CALLS

204.LlMIT EXCEEDED: NUMBER OF ACTIVE PROCEDURES OR DO CASE
GROUPS

205.ILLEGAL NESTING OF BLOCKS, ENDS NOT BALANCED

206.LlMIT EXCEEDED: CODE SEGMENT SIZE

207.LlMIT EXCEEDED: SEGMENT SIZE

208.LlMIT EXCEEDED: STRUCTURE SIZE

209.ILLEGAL INITIALIZATION OF MORE SPACE THAN DECLARED

210.INVALID RESTRICTED EXPRESSION, VALUE TOO LARGE FOR
TARGET

211.INVALID IDENTIFIER IN 'AT' RESTRICTED REFERENCE

212.INVALID RESTRICTED REFERENCE IN 'AT', BASE ILLEGAL

213.UNDEFINED RESTRICTED REFERENCE IN 'AT'

214.COMPILER ERROR: INVALID OPERATION

215.COMPILER ERROR: EOF READ IN FINAL ASSEMBLY

216.COMPILER ERROR: BAD LABEL ADDRESS

217.ILLEGAL INITIALIZATION OF AN EXTERNAL VARIABLE

218.LlMIT EXCEEDED: REAL EXPRESSION COMPLEXITY

219.COMPILER ERROR: REAL STACK OVERFLOW

220.LlMIT EXCEEDED: BASIC BLOCK COMPLEXITY

221.LlMIT EXCEEDED: STATEMENT SIZE

222.INVALID ABSOLUTE LOCATION FOR PUBLIC WITHOUT LARGE
OPTION

Note: If a terminal error is encountered, program text beyond the point of error is
not compiled. A terminal error message will appear at the beginning of the program
listing and at the point of error in the program listing.

PLlM-86

PLlM-86 Error Messages

C.2 Fatal Command Tail and Control Errors

Fatal command tail errors are caused by an improperly specified compiler invoca­
tion command or an improper control. The errors which may occur here are as
follows:

ILLEGAL COMMAND TAIL SYNTAX OR VALUE
UNRECOGNIZED CONTROL IN COMMAND TAIL
INCLUDE FILE IS NOT A DISKETTE FILE
INVOCATION COMMAND DOES NOT END WITH <CR><LF>
INCORRECT DEVICE SPECIFICATION
SOURCE FILE NOT A DISKETTE FILE
SOURCE FILE NAME INCORRECT
SOURCE FILE EXTENSION INCORRECT
ILLEGAL COMMAND TAIL SYNTAX
MISPLACED CONTROL: WORKFILES ALREADY OPENED

C.3 Fatallnput/Output Errors

Fatal input/output errors occur when the user incorrectly specifies a pathname for
compiler input or output. These error messages are of the form:

PLlM-86 1/0 ERROR­
FILE:
NAME:
ERROR:

COMPILATION TERMINATED

The errors that may occur here are as follows:

ILLEGAL FILENAME SPECIFICATION
ILLEGAL OR UNRECOGNIZED DEVICE SPECIFICATION IN FILENAME
ATTEMPT TO OPEN AN ALREADY OPEN FILE
NOSUCH FILE
FILE IS WRITE PROTECTED
FILE IS NOT ON A DISKETTE
DEVICE TYPE NOT COMPATIBLE WITH INTENDED USE
FILENAME REQUIRED ON DISKETTE FILE
NULL FILE EXTENSION
ATTEMPT TO READ PAST EOF

C.4 Fatal Insufficient Memory Errors

The fatal insufficient memory errors are caused by a system configuration with not
enough RAM memory to support the compiler.

The errors that may occur due to insufficient memory are as follows:

NOT ENOUGH MEMORY FOR COMPILATION
DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY

C-7

PLlM-86

C-8

Error Messages

C.s Fatal Compiler Failure Errors

The fatal compiler failure errors are internal errors that should never occur. If you
encounter such an error, please report it to Intel Corporation, 3065 Bowers Avenue,
Santa Clara, California 95051, Attn: Software Marketing Department. The errors
falling into this class are as follows:

SYNC FAILURE READING GLOBALS
UNKNOWN FATAL ERROR
96. COMPILER ERROR: SCOPE STACK UNDERFLOW
97. COMPILER ERROR: PARSE STACK UNDERFLOW

159. COMPILER ERROR: PARSE STACK UNDERFLOW
160. COMPILER ERROR: OPERAND STACK UNDERFLOW
161. COMPILER ERROR: ILLEGAL OPERAND STACK EXCHANGE
162. COMPILER ERROR: OPERATOR STACK UNDERFLOW
163. COMPILER ERROR: GENERATION FAILURE
164. COMPILER ERROR: SCOPE STACK OVERFLOW
165. COMPILER ERROR: SCOPE STACK UNDERFLOW
166. COMPILER ERROR: CONTROL STACK OVERFLOW
167. COMPILER ERROR: CONTROL STACK UNDERFLOW
168. COMPILER ERROR: BRANCH MISSING IN 'IF' STATEMENT
214. COMPILER ERROR: INVALID OPERATION
215. COMPILER ERROR: EOF READ IN FINAL ASSEMBLY
216. COMPILER ERROR: BAD LABEL ADDRESS
219. COMPILER ERROR: REAL STACK OVERFLOW

arithmetic overflow, 3-7
assembly language linkage, 9-1
AT attribute, 9-2

based variable, 4-1
block nesting depth, 7-2
BYTE data, 8-1

CODE control, 3-3
code section, 4-1
compilation summary, 7-3
compiler code files, 2-2
compiler controls, 3-1
compiler diskette, 2-1
COND control, 3-17
conditional compilation, 3-14
constant section, 4-1
constraints, B-1
continuation lines, 2-1
control defaults, 3-2
control lines, 3-1
control parameter, 3-1
cross-reference listing, 7-2

DATA attribute, 4-1
data section, 4-1
DATE control, 3-5
DEBUG control, 3-12
defaults, 3-2

EJECT control, 3-6
ELSE control, 3-16
ELSE element, 3-16
ELSEIF control, 3-16
ELSEIF element, 3-16
ENDIF control, 3-16
EXTERNAL attribute, A-2
EXTERNALS control

(IX REF program), A-2

floating-point arithmetic, 6-1

general controls, 3-1
GET$REAL$ERROR (PL/M-86 builtin

procedure),6-4.

IF control, 3-16
IF element, 3-16
INCLUDE control, 3-12
input files, 2-2
INTEGER data, 8-1
intermediate files, 3-4
intermodule cross-reference listing, A-2
interrupt, 10-1
INTERRUPT attribute, 10-1
interrupt procedure pn;face, 10-2
INTVECTOR control, 3-7
invoking the compiler, 2-1
IXR£F control, 3-4
IXREF program, A-I

INDEX

LARGE control, 3-14
LEFTMARGIN control, 3-7
library file, iii
line printer, 3-3
line width, 5-5
LIST control, 3-3
listing format controls, 3-4
listing selection controls, 3-2
listings, 7-1

main program module, 4-1
main program prologue, 4-1
MEDIUM control, 3-14
memory section, 4-2
multimodule program, 10-4
multiple incarnations of reentrant

procedures, 4-2

nested IF elements, 3-6
nesting of included files, 3-12
NOCODE control, 3-3
NOCOND control, 3-17
NODEBUG control, 3-12
NOINTVECTOR control, 3-7
NOIXREF control, 3-4
NO LIST control, 3-3
NOOBJECT control, 3-8
NOOVERFLOW control, 3-7
NOPAGING control, 3-5
NOPRINT control, 3-2
NOSYMBOLS control, 3-4
NOXREF control, 3-3

object code, 2-2
OBJECT control, 3-8
object file, 2-2
object file controls, 3-7
object module, 4-1
optimization controls, 3-8
OPTIMIZE control, 3-8
output files, 2-2, A-2
overflow condition, 3-7
OVERFLOW control, 3-7

page eject, 3-16
page heading, 3-6
page numbering, 3-6
P AGE LENGTH control, 3-5
P AGEWIDTH control, 3-5
PAGING control, 3-5
parameter, 3-1
PLM86.LIB, 6-5
POINTER data, 8-1
primary controls, 3-1
PRINT control (IXREF program), A-I
PRINT control (PL/M-86 Compiler), 3-2
printed output, 3-2
procedure call, 9-1
procedure epilogue, 9-3
procedure linkage, 9-1

Index-l

Index-2

procedure prologue, 9-2
program counter, 7-1
program listing, 7-1
program size, 3-13, 5-1
program size constraints, 3-1
PUBLIC attribute, 9-2
PUBLICS control (IXREF program), A-2

REAL data, 4-1
real math errors, 6-3
real math facility, 6-2
REAL data, 8-1
reentrant procedure, 4-1
relative address, 7-2
RESET control, 3-16
RESTORE control, 3-13
RESTORE$REAL$STATUS (PLlM-86

builtin procedure), 6-5
results returned by procedures, 9-3
run-time conventions, 9-1

SAVE control, 3-13
SA VE$REAL$STATUS (PLlM-86 builtin

procedure), 6-5
section (of object module), 4-1
SET control, 3-16
SET$REAL$MODE (PLlM-86 builtin

procedure), 6-4

size constraints, 8-1
SMALL control, 3-14
source file, 2-1
source format controls, 3-4
source inclusion control, 3-12
stack section, 4-2
stack size, 4-2
statement number, 7-1
storage allocation, 5-1
string constant, 3-1
SUBTITLE control, 3-6
symbol,3-4
symbol listing, 7-2
symbolic debugging, 3-12
SYMBOLS control, 3-4
system diskette, 1-1

temporary storage, A-4
TITLE control (IXREF program), A-2
TITLE control (PLlM-86 Compiler), 3-6

WORD data, 8-1
work files, 2-2
WORKFILES control, 3-12

XREF control, 3-3

PL/M-86

ISIS-II PLlM-86 Compilers Operator's Manual
9800478A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ____________________________ DATE ________________ _
TITLE __ ___

COMPANYNAME/DEPARTMENT ___ _
ADDRESS __ __

CITY __________________________ ------------STATE-------------------ZIPCODE-------------------

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form will help
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

Attention:

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Technical Publications

I ntel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

II First Class
Permit No. 1040
Santa Clara, CA

