

Run-Time Interrupt Processing

10-2

10.3 Interrupt Procedure Preface

At the beginning of each interrupt procedure, before the prologue described in the
preceding chapter, the compiler inserts an interrupt procedure preface which ac­
complishes the following steps:

1. Push the ES register contents onto the stack.

2. Push the OS register contents onto the stack.

3. Load the OS register with a new data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

4. Push the AX register contents onto the stack.

5. Push the CX register contents onto the stack.

6. Push the OX register contents onto the stack.

7. Push the BX register contents onto the stack.

8. Push the SI register contents onto the stack.

9. Push the 01 register contents onto the stack.

10. At this point, a CALL instruction transfers control to the procedure prologue
(described in Chapter 9).

At the point where the procedure prologue gains control, the stack layout is as
shown in Figure 10-2.

higher
locations

II:

I!:! z
=> o o ..
�~�

lower
locations

Flag reg. contentl

return segment addre ..

return ollset

ES reg. contents
DS reg. contents
AX reg. contents
CX reg. contents
DX reg. contents
ax reg. contenta
51 reg. contents
DI reg. contents

I
I

}

2 bytes

Present regardl ... of
program size

CPU .. atus Information

Stack pointer

Figure 10-2. Stack Layout After Interrupt Procedure Preface
and Before Procedure Prologue

After the procedure prologue is executed, at the point where the code compiled from
the procedure body gains control, the stack layout is as shown in Figure 10-3.

The return from the procedure body transfers control back into the interrupt pro­
cedure preface. At this point the procedure epilogue (see Chapter 9) has restored the
stack to the layout of Figure 10-2. The interrupt procedure preface continues with
the following steps.

11. Pop the stack into the 01 register.

12. Pop the stack into the SI register.

13. Pop the stack into the BX register.

14. Pop the stack into the OX register.

15. Pop the stack into the CX register.

16. Pop the stack into the AX register.

17. Pop the stack into the OS register.

PL/M-86

PL/M-86 Run-Time Interrupt Processing

higher
locations

a:
w ... z
::>

8
'" a

lowar
locations

parameter 0
parameter 1

parametern

return aegment addre ..

returnoffaet

old data segment
addre.s

loealy.rlable.

i4 old stack marker

This s:,ace may be
used urlng pro-
cadure execution

}
}

I

I

Absent if any parameter Is
referenced within a nested procedure.

Absent In SMALL program

Only in PUBLIC procadura in
LARGE program

Only in raentrant procedure

New stack marker (BP reg. contants)

Stack pOinter may change
during procedure execution

Figure 10-3. Stack Layout During Execution of Interrupt Procedure Body

18. Pop the stack into the ES register.

19. Enable interrupts.

20. Execute an IRET instruction to return from the interrupt procedure. This
restores the IP, CS, and flag register contents from the stack.

At this point the stack has been .-estored to the state it was in before the interrupt oc­
curred, and processing continues normally.

10.4 Writing Interrupt Vectors Separately

In some cases it may be desirable to write the interrupt vector separately (in
PL/M-86 or assembly language). This can be done by using NOINTVECTOR to
prevent generation of an interrupt vector by the compiler. The separately created in­
terrupt vector can then be linked into the program.

Creation of a separate explicit interrupt vector requires some care, since PL/M-86
provides access to a procedure's normal (i.e., called) entry point, not to its interrupt
entry point. The interrupt entry point fitst saves the status of the interrupted pro­
gram before invoking the interrupt procedure through its normal entry point. The
exact length of these operations depends on the compilation options chosen, the at­
tributes of the interrupt procedure, and the version of the compiler being used.
Thus, the CODE control should be used to determine the displacement of the inter­
rupt entry point from the normal entry point where this feature is desired.

10-3

Run-Time Interrupt Processing

10-4

The usefulness of a separately created interrupt vector can be seen by considering an
example.

Suppose that two modules for a multimodule program are developed separately.
Both use interrupt procedures, but at the time when the modules are written the
assignment of interrupt numbers to the various interrupt procedures has not been
determined.

The two modules are therefore compiled with the NOINTVECTOR control. When
this is done, the n in an INTERRUPT n attribute is igIlQred-since normally it
would only be used to put the procedure's entry in the proper location within the in­
terrupt vector.

Later, when the program is linked together, a separately created interrupt vector can
be linked in. Within this interrupt vector, the placement of the entry for a given in­
terrupt procedure determines which interrupt number will activate that procedure.

Similarly, you could have a library of interrupt procedures, all compiled with
NOINTVECTOR. Any program could then have any of these procedures linked in,
with a separately created interrupt vector.

PLlM-86

APPENDIX A
THE IXREF PROGRAM

A.1 General

The IXREF program is supplied on the same diskette as the ISIS-II PL/M-86 Com­
piler. It uses intermediate files produced by the compiler under the IXREF control
(see Section 3.2.5) to produce an intermodule cross-reference file.

To use this facility, first compile all modules that are to be cross-referenced, using
the IXREF controlin each case. Then run the IXREF program as explained below.

A.2 Invoking the IXREF Program

The IXREF program invocation command has the following general form:

[:device:]IXREF input-list [controls]

where

• device identifies which drive contains the diskette with the IXREF program.
This may be omitted if the diskette is in Drive O.

• input-list is a list of path names of intermediate files produced by the compiler
under the IXREF control. The path names must be separated by commas (spaces
may also be inserted between pathnames). The pathnames may be in any order
and may use the "wild card" construction (see ISIS-II System User's Guide, In­
tel document number 98-306). If any of the specified files is not a valid in­
termediate file, IXREF will type the pathname and the message BAD RECORD
TYPE and will skip the file.

• controls is an optional sequence of one or more controls separated by spaces.
Controls are described below.

If the invocation command is too long to be typed on one line, you can break it by
typing an & character followed by a carriage return. The & must not be within a
pathname or control. IXREF responds to the & with a ** prompt to show that it is
waiting for a continuation line.

A.3 Controls

The control sequence in the IXREF program invocation is optional. If no controls
are used, the output file will have the following characteristics:

• The output pathname will be the same as the first pathname in the input-list, but
with the extension IXO.

• No title will be placed at the top of each page.

• All identifiers declared PUBLIC or EXTERNAL will be listed.

Four controls are provided to modify the characteristics of the output file.

A.3.1 THE PRINT CONTROL

This control has the form
PRINT (path name)

where pathname is a standard ISIS-II pathname to specify the name of the output
file.

A-I

The IXREF Program

A-2

A.3.2 THE TITLE CONTROL

This control has the form

TITLE ('string')

where string is a sequence of up to 60 characters to be placed at the top of each page
of output. If the 60-character limit is exceeded, the string will be truncated on the
right.

A.3.3 THE PUBLICS CONTROL

This control has the form

PUBLICS

and specifies that only PUBLIC identifiers are to be represented in the output file.

A.3.4 THE EXTERNALS CONTROL

This control has the form

EXTERNALS

and specifies that only EXTERNAL identifiers are to be represented in the output
file.

A.4 The IXREF Output File

Figure A-I shows a typical intermodule cross-reference file produced by IXREF.
Note that a "wild card" construction was used in the input-list to input all files on
Drive 1 with the extension IXI. Controls were used to specify a title and a pathname
for the output file.

The file contains two listings, the "intermodule cross-reference listing" and the
"module directory." Both are sorted alphabetically. Note that in the illustration,
portions of the intermodule cross-reference listing have been omitted.

Each entry in the intermodule cross-reference listing begins with an identifier in the
left column. In the right column, we have the attributes of the identifier, then a
semicolon followed by the names of all modules in which it is declared PUBLIC or
EXTERNAL.

The first entry after the semicolon is the name of the module in which the identifier
is declared PUBLIC. If no PUBLIC declaration is found, the notation **
UNRESOLVED ** appears. Thus we can see that ACTUALBASEPTR is a WORD
variable declared PUBLIC in module MACRO and EXTERNAL in modules
SYMSCN and STACK.

In the next entry, we see that ACTUALBLOCKENDMARKER is an array of two
BYTE elements, declared PUBLIC in module MACRO.

In the module directory, each entry begins with a module name. In the second col­
umn, we find the name of the PL/M-86 source file from which the module was com­
piled, and in the third column we find the name of the diskette where the source file
resides. (A diskette is named when it is formatted with the ISIS-II FORMAT com­
mand.)

PL/M-86

PLlM-86 The IXREF Program

ISIS-I I IXPEF INTER-MODULE CROSS-R~fERENCE

ISIS-II IXPEf. VI.I
INVOKED ?Y:
-I XPEf : FI:'. IX I T ITLO('1 "TER-MODULE CROSS-REFERENCE') ,

PR I NT(: fI : ASSEMB .OllT)

ACTUALBASEPTR •••••••••••••• ORO; ~ACRO SY"SCN STACK
A CTUALBLOCK~NOMAnER B HE (2); MACRO
ACTUAJ.DELIMITER PROCEDURE BYTE; MACRO SCNFSM
A:rUALPROTECTF.D ~'tTE; MACRO S':NFSIr4

. .
BLKSTK "nEt 17); PUBLICOCL DRIVE STACK MACRO
BLOCKNO BYTE; •• UNRESOLVED •• ENOLIN

. .

PAGE I

XPEFSYMBUf BYTE(6); PUBLICDCL ENOLIN DRIVE REL08J SCNFSM
XREfSYMBUfPREVIOUS •••••••• BYTE(6); PUBLICDCL SCNFSM
XREfUTILITYNAME B¥TEOI); PUBLICOCL DRIVE INIT
ZERO ... IJWHD; ~ACRO STACK SCNF'SM
ZEROADORESS ••••••••••••••• oOPO; ASSE"B RELOBJ

ASSE"B ASSEMB.sec
ORI V E ORI VE.SI'C
ENOLI N .. ENOL IN .s~c
1 NIT .. I Ii IT .. SPC
MACRO .. MA.CRO .S~C
PUBI, ICOCL •••••••••• '" •• , • PUSL IC. SRC
RELOBJ RELOBJ.SPC
SCNFSM SCNFS~.SPC
STACK .. STACK .. SPC
SYMSC ••••••••••••••••••••• SYNSC'. SHC

SOURCE
DRIVE
END
INIT.OVL
MACRO.SRC
DRIVE
MELOBJ
SOURCE
Syt-tSCN .STK
SiMSC'.STK

Figure A-I. Intermodule Cross-Reference Listing

A.S Error Conditions

IX REF detects the following error conditions in the invocation command:

• Incorrect file specifications in input-list or PRINT control (IX REF terminates
and produces no output).

• Nonexistent file in input-list (if possible, IXREF skips to next pathname and
continues; otherwise it terminates and produces no output).

• Missing parenthesis in PRINT or TITLE control (IXREF terminates and
produces no output).

• Misspelled or unknown controls (IXREF terminates and produces no output).

• PUBLICS and EXTERNALS controls used in same invocation of IXREF
(IXREF terminates and produces no output).

• Repetition of a control (IXREF terminates and produces no output).

A-3

The IX REF Program

A-4

A.6 Temporary Files Used by IXREF

While running, IXREF uses the following temporary files:

:device:IXIN.TMP
:device: IXOUT. TMP
:device:MODNM.TMP

where device is the same device specified for the first file in the input-list. These files
are deleted when IXREF terminates. Therefore, if you have any files with these
names on the same device as the first file in the input-list, you must rename them
before running IXREF.

PL/M-86

APPENDIX B
PROGRAM CONSTRAINTS

Certain fixed size tables within the compiler constrain various features of a user pro­
gram to certain maximums. These limits are summarized below:

MAXIMUM:

Number of elements in a factored declare list
Number of members in a structure
Number of labels on a statement
Number of procedures in a module
Number of DO blocks in a procedure
Nesting of blocks
Length of an input source line (including CR and LF)
Length of a string constant
Nesting of INCLUDE controls

32
32

9
255
255

18
122
255

5

B-1

APPENDIX C
ERROR MESSAGES

The compiler may issue five varieties of error messages:

• Source PL/M-86 errors

• Fatal command tail and control errors

• Fatal input! output errors

• Fatal insufficient memory errors

• Fatal compiler failure errors

The source errors are reported in the program listing; the fatal errors are reported on
the console device.

C.1 Source PL/M-86 Errors

Nearly all of the source PL/M-86 errors are interspersed in the listing at the point of
error and follow the general format:

***ERROR #mmm, STATEMENT #nnn, NEAR "aaa", message

where

• mmm is the error number from the list below

• nnn is the source statement number where the error occurs

• aaa is the source text near where the error is detected

• message is the error explanation from the list below

Source error message list:

1.INVALID PL/ M-86 CHARACTER

2.UNPRINTABLE ASCII CHARACTER

3.1DENTIFIER, STRING, OR NUMBER TOO LONG, TRUNCATED

4.1LLEGAL NUMERIC CONSTANT TYPE

5.INVALIDCHARACTER IN NUMERIC CONSTANT

6.1LLEGAL MACRO REFERENCE, RECURSIVE EXPANSION

7.LlMIT EXCEEDED: MACROS NESTED TOO DEEPLY

B.lNVALID CONTROL FORMAT

9. INVALID CONTROL

10.lLLEGAL USE OF PRIMARY CONTROL AFTER NON-CONTROL LINE

11.MISSING CONTROL PARAMETER

12.1NVALID CONTROL PARAMETER

13.LlMIT EXCEEDED: INCLUDE NESTING

14.1NVALID CONTROL FORMAT, INCLUDE NOT LAST CONTROL

15.MISSING INCLUDE CONTROL PARAMETER

16.1LLEGAL PRINT CONTROL

17. INVALID PATH-NAME

1B.INVALID MULTIPLE LABELS AS MODULE NAMES

19.INVALID LABEL IN MODULE WITHOUT MAIN PROGRAM

C-l

Error Messages

C-2

20.MISMATCHED IDENTIFIER AT END OF BLOCK

21.MISSING PROCEDURE NAME

22.INVALID MULTIPLE LABELS AS PROCEDURE NAMES

23.INVALID LABELLED END IN EXTERNAL PROCEDURE

24.1NVALID STATEMENT IN EXTERNAL PROCEDURE

25.UNDECLAREDPARAMETER

26.INVALID DECLARATION, STATEMENT OUT OF PLACE

27.LlMIT EXCEEDED: NUMBER OF DO BLOCKS (terminal error)

28.MISSING'THEN'

29.1LLEGAL STATEMENT

30.LlMIT EXCEEDED: NUMBER OF LABELS ON STATEMENT

31.LlMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

32.INVALID SYNTAX, TEXT IGNORED UNTIL ';'

33.DUPLICATE LABEL DECLARATION

34.DUPLICATE PROCEDURE DECLARATION

35.LlMIT EXCEEDED: NUMBER OF PROCEDURES (terminal error)

36.MISSING PARAMETER

37.MISSING ')' AT END OF PARAMETER LIST

38.DUPLICATE PARAMETER NAME

39.INVALID ATTRIBUTE OR INITIALIZATION, NOT AT MODULE LEVEL

40.DUPLICATE ATTRIBUTE

41.CONFLICTING ATTRIBUTE

42.INVALID INTERRUPT VALUE

43.MISSING INTERRUPT VALUE

44.ILLEGAL ATTRIBUTE, 'INTERRUPT' WITH PARAMETERS

45.1LLEGAL ATTRIBUTE, 'INTERRUPT' WITH TYPED PROCEDURE

46.1LLEGAL USE OF LABEL

47.MISSING ')' AT END OF FACTORED DECLARATION

48.ILLEGAL DECLARATION STATEMENT SYNTAX

49.LlMIT EXCEEDED: NUMBER OF ITEMS IN FACTORED DECLARE

50.INVALID ATTRIBUTES FOR BASE

51.INVALID BASE, MEMBER OF BASED STRUCTURE

52.1NVALID BASE, MEMBER OF ARRAY OF STRUCTURES

53.1NVALID STRUCTURE MEMBER IN BASE

54.UNDECLARED BASE

55.UNDECLARED STRUCTURE MEMBER IN BASE

56.INVALID MACRO TEXT, NOT A STRING CONSTANT

57.INVALID DIMENSION, ZERO ILLEGAL

58.1NVALID STAR DIMENSION IN FACTORED DECLARATION

59.1LLEGAL DIMENSION ATTRIBUTE

60.MISSING ')' AT END OF DIMENSION

61.MISSING TYPE

62.1NVALID STAR DIMENSION WITH 'STRUCTURE' OR 'EXTERNAL'

PLlM-86

PL/M-86

63 INVALID DIMENSION WITH THIS ATTRIBUTE

64.MISSING STRUCTURE MEMBERS

65.MISSING ')' AT END OF STRUCTURE MEMBER LIST

66.INVALID STRUCTURE MEMBER, NOT AN IDENTIFIER

67.DUPLICATE STRUCTURE MEMBER NAME

68.LlMIT EXCEEDED: NUMBER OF STRUCTURE MEMBERS

69.1NVALID STAR DIMENSION WITH STRUCTURE MEMBER

70.INVALID MEMBER TYPE, 'STRUCTURE' ILLEGAL

71.INVALID MEMBER TYPE, 'LABEL' ILLEGAL

72.MISSING TYPE FOR STRUCTURE MEMBER

73.1NVALID ATTRIBUTE OR INITIALIZATION, NOT AT MODULE LEVEL

74.'DATA' OR 'INITIAL'

75.MISSING ARGUMENT OF 'AT', 'DATA', OR 'INITIAL'

76.CONFLICTING ATTRIBUTE WITH PARAMETER

77.INVALID PARAMETER DECLARATION, BASE ILLEGAL

78.DUPLICATE DECLARATION

79.ILLEGAL PARAMETER TYPE

80.INVALID DECLARATION, LABEL MAY NOT BE BASED

81.CONFLICTING ATTRIBUTE WITH 'BASE'

82.INVALID SYNTAX, MISMATCHED '('

83.LlMIT EXCEEDED: DYNAMIC STORAGE (terminal error)

84.LlMIT EXCEEDED: BLOCK NESTING (terminal error)

85.LONG STRING ASSUMED CLOSED AT NEXT SEMICOLON OR QUOTE

86.LlMIT EXCEEDED: SOURCE LINE LENGTH

87.MISSING 'END', END-OF-FILE ENCOUNTERED

88.1NVALID PROCEDURE NESTING, ILLEGAL IN REENTRANT
PROCEDURE

89.MISSING 'DO' FOR MODULE

90.MISSING NAME FOR MODULE

91.ILLEGAL PAGELENGTH CONTROL VALUE

92.ILLEGAL PAGEWIDTH CONTROL VALUE

93.MISSING 'DO' FOR 'END', 'END' IGNORED

94.ILLEGAL CONSTANT, TOO LARGE FOR CONTEXTUALLY
DETERMINED TYPE

95.1LLEGAL RESPECIFICATION OF PRIMARY CONTROL IGNORED

96.COMPILER ERROR: SCOPE STACK UNDERFLOW

97.COMPILER ERROR: PARSE STACK UNDERFLOW

98.INCLUDE FILE IS NOT A DIRECT ACCESS FILE (terminal error)

99.INVALID REAL CONSTANT

100.INVALID STRING CONSTANT IN EXPRESSION

101.1NVALID ITEM FOLLOWS DQT OR AT SIGN OPERATOR

102.MISSING PRIMARY OPERAND

103.MISSING ')' AT END OF SUBEXPRESSION

104.1LLEGAL PROCEDURE INVOCATION WITH DOT OR AT SIGN
OPERATOR

Error Messages

C-3

Error Messages

C-4

105.UNDECLARED IDENTIFIER

106.ILLEGAL PAGELENGTH(4) AND SUBTITLE COMBINATION

107.INVALID USE OF '@' WITH LOCAL PROCEDURE

108.1NVALID USE OF'.' WITH PUBLIC OR EXTERNAL PROCEDURE

110.lNVALID LEFT OPERAND OF QUALIFICATION, NOT A STRUCTURE

111.1NVALID RIGHT OPERAND OF QUALIFICATION, NOT IDENTIFIER

112. UNDECLARED STRUCTURE MEMBER

113.MISSING ')' AT END OF ARGUMENT LIST

114.1NVALID SUBSCRIPT, MULTIPLE SUBSCRIPTS ILLEGAL

115.MISSING ')' AT END OF SUBSCRIPT

116.MISSING '=' IN ASSIGNMENT STATEMENT

117.MISSING PROCEDURE NAME IN CALL STATEMENT

118.1NVALID INDIRECT CALL, IDENTIFIER NOT A WORD OR POINTER
SCALAR

119.LlMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

120.LlMIT EXCEEDED: EXPRESSION TOO COMPLEX (terminal error)

121.LlMIT EXCEEDED: EXPRESSION TOO COMPLEX (terminal error)

122.LlMIT EXCEEDED: PROGRAM TOO COMPLEX (terminal error)

123.INVALID DOTORATSIGN OPERAND, BUILT-IN PROCEDURE
ILLEGAL

124.MISSING ARGUMENTS FOR BUILT-IN PROCEDURE

125.1LLEGAL ARGUMENT FOR BUILT-IN PROCEDURE

126.MISSING ')' AFTER BUILT-IN PROCEDURE ARGUMENT LIST

127.1NVALID SUBSCRIPT ON NON-ARRAY

128.1NVALID LEFT-HAND OPERAND OF ASSIGNMENT

129.ILLEGAL 'CALL' WITH TYPED PROCEDURE

130.ILLEGAL REFERENCE TO OUTPUT OR OUTWORD FUNCTION

131.ILLEGAL REFERENCE TO UNTYPED PROCEDURE

132.ILLEGAL USE OF LABEL

133.1LLEGAL REFERENCE TO UNSUBSCRIPTED ARRAY

134.1LLEGAL REFERENCE TO UNSUBSCRIPTED MEMBER ARRAY

135.1LLEGAL REFERENCE TO AN UNQUALIFIED STRUCTURE

136.1NVALID RETURN FOR UNTYPED PROCEDURE, VALUE ILLEGAL

137.MISSING VALUE IN RETURN FOR TYPED PROCEDURE

138.MISSING INDEX VARIABLE

139.1NVALID INDEX VARIABLE TYPE

140.MISSING '=' FOLLOWING INDEX VARIABLE

141.MISSING 'TO' CLAUSE

142.MISSING IDENTIFIER FOLLOWING GOTO

143.1NVALID REFERENCE FOLLOWING GOTO, NOT A LABEL

144.INVALID GOTO LABEL, NOT AT LOCAL OR MODULE LEVEL

145.MISSING 'TO' FOLLOWING 'GO'

146.MISSING ')' AFTER 'AT' RESTRICTED EXPRESSION

147.MISSING IDENTIFIER FOLLOWING DOT OR AT SIGN OPERATOR

PLlM-86

PL/M-86 Error Messages

148.INVALID QUALIFICATION IN RESTRICTED REFERENCE

149.1NVALID SUBSCRIPTING IN RESTRICTED REFERENCE

150.MISSING ')' AT END OF RESTRICTED SUBSCRIPT

151.INVALID OPERAND IN RESTRICTED EXPRESSION

152.MISSING ')' AFTER CONSTANT LIST

153.INVALID NUMBER OF ARGUMENTS IN CALL, TOO MANY

154.INVALID NUMBER OF ARGUMENTS IN CALL, TOO FEW

155.INVALID RETURN IN MAIN PROGRAM

156.MISSING RETURN STATEMENT IN TYPED PROCEDURE

157.INVALID ARGUMENT, ARRAY REQUIRED FOR LENGTH OR LAST

158.INVALID DOT OR AT SIGN OPERAND, LABEL ILLEGAL

159.COMPILER ERROR: PARSE STACK UNDERFLOW

160.COMPILER ERROR: OPERAND STACK UNDERFLOW

161.COMPILER ERROR: ILLEGAL OPERAND STACK EXCHANGE

162.COMPILER ERROR: OPERATOR STACK UNDERFLOW

163.COMPILER ERROR: GENERATION FAILURE

164.COMPILER ERROR: SCOPE STACK OVERFLOW

165.COMPILER ERROR: SCOPE STACK UNDERFLOW

166.COMPILER ERROR: CONTROL STACK OVERFLOW

167.COMPILER ERROR: CONTROL STACK UNDERFLOW

168.COMPILER ERROR: BRANCH MISSING IN 'IF' STATEMENT

169.1LLEGAL FORWARD CALL

170.lLLEGAL RECURSIVE CALL

171.1NVALID USE OF DELIMITER OR RESERVED WORD IN EXPRESSION

172.1NVALID LABEL: UNDEFINED

173.INVALID LEFT SIDE OF ASSIGNMENT: VARIABLE DECLARED WITH
OAT A ATTRI BUTE

174.1NVALID NULL PROCEDURE

175.ILLEGAL POINTER ARITHMETIC IN RESTRICTED EXPRESSION

176.1NVALID ABSOLUTE ADDRESS, TOO LARGE

178.ILLEGAL REAL ARITHMETIC IN RESTRICTED EXPRESSION

179.ILLEGAL REAL CONSTANT IN 'AT' CLAUSE RESTRICTED
EXPRESSION

180.lNVALID OPERATOR OR OPERAND, TYPE CONFLICTS WITH
EXPECTED TYPE

181.LlMIT EXCEEDED: CONSTANT OR CODE SEGMENT SIZE

182.ILLEGAL REFERENCE TO ABSOLUTE ADDRESS WITH SMALL OPTION
SPECIFIED

183.INVALID 'AT' RESTRICTED REFERENCE, EXTERNAL ATTRIBUTE
CONFLICTS WITH PUBLIC

184.1NVALID EXPRESSION, TWO SUCCESSIVE RELATIONAL
OPERATORS

185.LlMIT EXCEEDED: NUMBER OF EXTERNAL ITEMS

186.1NVALID RESTRICTED EXPRESSION, TYPE CON FLiCTS WITH TARGET

187.1LLEGAL INITIALIZATION TO A BASED OR AUTOMATIC ADDRESS

C-5

Error Messages

C-6

188.MISSING ENDIF OPTION

189.MISSING OR INVALID CONDITIONAL COMPILATION PARAMETER

190.MISSING OR INVALID CONDITIONAL COMPILATION CONSTANT

191.MISPLACED ELSE OR ENDIF OPTION

192.MISPLACED ENDIF OPTION

193.CONDITIONAL COMPILATION PARAMETER NAME TOO LONG,
TRUNCATED

194.MISSING OPERATOR IN CONDITIONAL COMPILATION EXPRESSION

195.INVALID CONDITIONAL COMPILATION CONSTANT TOO LARGE

196.INVALID UNDEFINED CONDITIONAL COMPILATION PARAMETER

197.LlMIT EXCEEDED: SAVE NESTING

198.MISPLACED RESTORE OPTION

199.LlMIT EXCEEDED: PROCEDURE COMPLEXITY FOR OPTIMIZE(2)
(terminal error)

200.LlMIT EXCEEDED: STATEMENT SIZE

201.1NVALID DO CASE BLOCK, AT LEAST ONE CASE REQUIRED

202.LlMIT EXCEEDED: NUMBER OF ACTIVE CASES

203.LlMIT EXCEEDED: NESTING OF TYPED PROCEDURE CALLS

204.LlMIT EXCEEDED: NUMBER OF ACTIVE PROCEDURES OR DO CASE
GROUPS

205.ILLEGAL NESTING OF BLOCKS, ENDS NOT BALANCED

206.LlMIT EXCEEDED: CODE SEGMENT SIZE

207.LlMIT EXCEEDED: SEGMENT SIZE

208.LlMIT EXCEEDED: STRUCTURE SIZE

209.ILLEGAL INITIALIZATION OF MORE SPACE THAN DECLARED

210.INVALID RESTRICTED EXPRESSION, VALUE TOO LARGE FOR
TARGET

211.INVALID IDENTIFIER IN 'AT' RESTRICTED REFERENCE

212.INVALID RESTRICTED REFERENCE IN 'AT', BASE ILLEGAL

213.UNDEFINED RESTRICTED REFERENCE IN 'AT'

214.COMPILER ERROR: INVALID OPERATION

215.COMPILER ERROR: EOF READ IN FINAL ASSEMBLY

216.COMPILER ERROR: BAD LABEL ADDRESS

217.ILLEGAL INITIALIZATION OF AN EXTERNAL VARIABLE

218.LlMIT EXCEEDED: REAL EXPRESSION COMPLEXITY

219.COMPILER ERROR: REAL STACK OVERFLOW

220.LlMIT EXCEEDED: BASIC BLOCK COMPLEXITY

221.LlMIT EXCEEDED: STATEMENT SIZE

222.INVALID ABSOLUTE LOCATION FOR PUBLIC WITHOUT LARGE
OPTION

Note: If a terminal error is encountered, program text beyond the point of error is
not compiled. A terminal error message will appear at the beginning of the program
listing and at the point of error in the program listing.

PLlM-86

PLlM-86 Error Messages

C.2 Fatal Command Tail and Control Errors

Fatal command tail errors are caused by an improperly specified compiler invoca­
tion command or an improper control. The errors which may occur here are as
follows:

ILLEGAL COMMAND TAIL SYNTAX OR VALUE
UNRECOGNIZED CONTROL IN COMMAND TAIL
INCLUDE FILE IS NOT A DISKETTE FILE
INVOCATION COMMAND DOES NOT END WITH <CR><LF>
INCORRECT DEVICE SPECIFICATION
SOURCE FILE NOT A DISKETTE FILE
SOURCE FILE NAME INCORRECT
SOURCE FILE EXTENSION INCORRECT
ILLEGAL COMMAND TAIL SYNTAX
MISPLACED CONTROL: WORKFILES ALREADY OPENED

C.3 Fatallnput/Output Errors

Fatal input/output errors occur when the user incorrectly specifies a pathname for
compiler input or output. These error messages are of the form:

PLlM-86 1/0 ERROR­
FILE:
NAME:
ERROR:

COMPILATION TERMINATED

The errors that may occur here are as follows:

ILLEGAL FILENAME SPECIFICATION
ILLEGAL OR UNRECOGNIZED DEVICE SPECIFICATION IN FILENAME
ATTEMPT TO OPEN AN ALREADY OPEN FILE
NOSUCH FILE
FILE IS WRITE PROTECTED
FILE IS NOT ON A DISKETTE
DEVICE TYPE NOT COMPATIBLE WITH INTENDED USE
FILENAME REQUIRED ON DISKETTE FILE
NULL FILE EXTENSION
ATTEMPT TO READ PAST EOF

C.4 Fatal Insufficient Memory Errors

The fatal insufficient memory errors are caused by a system configuration with not
enough RAM memory to support the compiler.

The errors that may occur due to insufficient memory are as follows:

NOT ENOUGH MEMORY FOR COMPILATION
DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY

C-7

PLlM-86

C-8

Error Messages

C.s Fatal Compiler Failure Errors

The fatal compiler failure errors are internal errors that should never occur. If you
encounter such an error, please report it to Intel Corporation, 3065 Bowers Avenue,
Santa Clara, California 95051, Attn: Software Marketing Department. The errors
falling into this class are as follows:

SYNC FAILURE READING GLOBALS
UNKNOWN FATAL ERROR
96. COMPILER ERROR: SCOPE STACK UNDERFLOW
97. COMPILER ERROR: PARSE STACK UNDERFLOW

159. COMPILER ERROR: PARSE STACK UNDERFLOW
160. COMPILER ERROR: OPERAND STACK UNDERFLOW
161. COMPILER ERROR: ILLEGAL OPERAND STACK EXCHANGE
162. COMPILER ERROR: OPERATOR STACK UNDERFLOW
163. COMPILER ERROR: GENERATION FAILURE
164. COMPILER ERROR: SCOPE STACK OVERFLOW
165. COMPILER ERROR: SCOPE STACK UNDERFLOW
166. COMPILER ERROR: CONTROL STACK OVERFLOW
167. COMPILER ERROR: CONTROL STACK UNDERFLOW
168. COMPILER ERROR: BRANCH MISSING IN 'IF' STATEMENT
214. COMPILER ERROR: INVALID OPERATION
215. COMPILER ERROR: EOF READ IN FINAL ASSEMBLY
216. COMPILER ERROR: BAD LABEL ADDRESS
219. COMPILER ERROR: REAL STACK OVERFLOW

arithmetic overflow, 3-7
assembly language linkage, 9-1
AT attribute, 9-2

based variable, 4-1
block nesting depth, 7-2
BYTE data, 8-1

CODE control, 3-3
code section, 4-1
compilation summary, 7-3
compiler code files, 2-2
compiler controls, 3-1
compiler diskette, 2-1
COND control, 3-17
conditional compilation, 3-14
constant section, 4-1
constraints, B-1
continuation lines, 2-1
control defaults, 3-2
control lines, 3-1
control parameter, 3-1
cross-reference listing, 7-2

DATA attribute, 4-1
data section, 4-1
DATE control, 3-5
DEBUG control, 3-12
defaults, 3-2

EJECT control, 3-6
ELSE control, 3-16
ELSE element, 3-16
ELSEIF control, 3-16
ELSEIF element, 3-16
ENDIF control, 3-16
EXTERNAL attribute, A-2
EXTERNALS control

(IX REF program), A-2

floating-point arithmetic, 6-1

general controls, 3-1
GET$REAL$ERROR (PL/M-86 builtin

procedure),6-4.

IF control, 3-16
IF element, 3-16
INCLUDE control, 3-12
input files, 2-2
INTEGER data, 8-1
intermediate files, 3-4
intermodule cross-reference listing, A-2
interrupt, 10-1
INTERRUPT attribute, 10-1
interrupt procedure pn;face, 10-2
INTVECTOR control, 3-7
invoking the compiler, 2-1
IXR£F control, 3-4
IXREF program, A-I

INDEX

LARGE control, 3-14
LEFTMARGIN control, 3-7
library file, iii
line printer, 3-3
line width, 5-5
LIST control, 3-3
listing format controls, 3-4
listing selection controls, 3-2
listings, 7-1

main program module, 4-1
main program prologue, 4-1
MEDIUM control, 3-14
memory section, 4-2
multimodule program, 10-4
multiple incarnations of reentrant

procedures, 4-2

nested IF elements, 3-6
nesting of included files, 3-12
NOCODE control, 3-3
NOCOND control, 3-17
NODEBUG control, 3-12
NOINTVECTOR control, 3-7
NOIXREF control, 3-4
NO LIST control, 3-3
NOOBJECT control, 3-8
NOOVERFLOW control, 3-7
NOPAGING control, 3-5
NOPRINT control, 3-2
NOSYMBOLS control, 3-4
NOXREF control, 3-3

object code, 2-2
OBJECT control, 3-8
object file, 2-2
object file controls, 3-7
object module, 4-1
optimization controls, 3-8
OPTIMIZE control, 3-8
output files, 2-2, A-2
overflow condition, 3-7
OVERFLOW control, 3-7

page eject, 3-16
page heading, 3-6
page numbering, 3-6
P AGE LENGTH control, 3-5
P AGEWIDTH control, 3-5
PAGING control, 3-5
parameter, 3-1
PLM86.LIB, 6-5
POINTER data, 8-1
primary controls, 3-1
PRINT control (IXREF program), A-I
PRINT control (PL/M-86 Compiler), 3-2
printed output, 3-2
procedure call, 9-1
procedure epilogue, 9-3
procedure linkage, 9-1

Index-l

Index-2

procedure prologue, 9-2
program counter, 7-1
program listing, 7-1
program size, 3-13, 5-1
program size constraints, 3-1
PUBLIC attribute, 9-2
PUBLICS control (IXREF program), A-2

REAL data, 4-1
real math errors, 6-3
real math facility, 6-2
REAL data, 8-1
reentrant procedure, 4-1
relative address, 7-2
RESET control, 3-16
RESTORE control, 3-13
RESTORE$REAL$STATUS (PLlM-86

builtin procedure), 6-5
results returned by procedures, 9-3
run-time conventions, 9-1

SAVE control, 3-13
SA VE$REAL$STATUS (PLlM-86 builtin

procedure), 6-5
section (of object module), 4-1
SET control, 3-16
SET$REAL$MODE (PLlM-86 builtin

procedure), 6-4

size constraints, 8-1
SMALL control, 3-14
source file, 2-1
source format controls, 3-4
source inclusion control, 3-12
stack section, 4-2
stack size, 4-2
statement number, 7-1
storage allocation, 5-1
string constant, 3-1
SUBTITLE control, 3-6
symbol,3-4
symbol listing, 7-2
symbolic debugging, 3-12
SYMBOLS control, 3-4
system diskette, 1-1

temporary storage, A-4
TITLE control (IXREF program), A-2
TITLE control (PLlM-86 Compiler), 3-6

WORD data, 8-1
work files, 2-2
WORKFILES control, 3-12

XREF control, 3-3

PL/M-86

ISIS-II PLlM-86 Compilers Operator's Manual
9800478A

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that meet the needs of all
Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _

NAME ____________________________ DATE ________________ _
TITLE __ ___

COMPANYNAME/DEPARTMENT ___ _
ADDRESS __ __

CITY __________________________ ------------STATE-------------------ZIPCODE-------------------

Please check here if you require a written reply. 0

WE'D LIKE YOUR COMMENTS . ..

This document is one of a series describing Intel products. Your comments on the back of this form will help
us produce better manuals. Each reply will be carefully reviewed by the responsible person. All comments and
suggestions become the property of Intel Corporation.

Attention:

BUSINESS REPLY MAIL

No Postage Stamp Necessary if Mailed in U.S.A.

Postage will be paid by:

Technical Publications

I ntel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

II First Class
Permit No. 1040
Santa Clara, CA

