

8087 Support Library Implementing the IEEE Standard

Normalizing mode. If meeting the Standard is a more important criterion to you
than the choice between Normalizing and warning modes, you can select warning
mode ("0" masked), which fully meets the Standard.

If you do wish to implement the TEMP_REAL arithmetic with extra exponent bits,
we list below some useful pointers about when the "0" error occurs:

a. TEMP_REAL numbers are considered Oenormal by the NPX whenever the
Biased Exponent is 0 (minimum exponent). This is true even if the explicit
integer bit of the significand is 1. Such numbers can occur as the result of
Underflow.

b. The 8087 FLD instruction can cause a "0" error if a number is being loaded
from memory. It cannot cause a "0" error if it is coming from elsewhere in the
8087 stack.

c. The 8087 FCOM and FTST instructions will cause a "0" error for unnormal
operands as well as denormal operands.

d. In cases where both "D" and "I" errors occur, you will want to know which is
signalled first. When a comparison instruction is issued between a non-existent
stack element and a denormal number in 8086 memory, the" 0" and" I" errors
are issued simultaneously. In all other situations, a stack "I" error takes
precedence over a "0" error, and a "D" error takes precedence over a non­
stack" I" error.

6-3

APPENDIX A
GILOSSARY OF 8087 AND

FLOATING-POINT TERMINOLOGY

We continue in this appendix the convention of Chapter 6, capitalizing terms which
have precise technical meanings. Such terms appear as entries in this glossary. Thus
you may interpret any non-standard capitalization as a cross-reference.

Affine Mode: a state of the 8087, selected in the 8087 Control Word, in which
infinities are treated as having a sign. Thus the values +INFINITY and -INFINITY
are considered different; and they can be compared with finite numbers and with

. each other.

Base: (1) a term used in logarithms and· exponentials. In both contexts, it is a
number which is being raised to a power. The two equations (y = log base b of x) and
(bY = x) are the same.

Base: (2) a number which defines the representation being used for a string of
digits. Base 2 is the binary representation; Base 10 is the decimal representation;
Base 16 is the hexadecimal representation. In each case, the Base is the factor of
increased significance for each succeeding digit (working up from the bottom).

Bias: the difference between the unsigned Integer which appears in the Exponent
field of a Floating Point Number and the true Exponent that it represents. To obtain
the true Exponent, you must subtract the Bias from the given Exponent. For
example, the Short Real format has a Bias of 127 whenever the given Exponent is
non-zero. If the 8-bit Exponent field contains 10000011, which is 131, the true
Exponent is 131-127, or +4.

Biased Exponent.: the Exponent as it appears in a Floating Point Number, inter­
preted as an unsigned, positive number. In the above example, 131 is the Biased
Exponent.

Binary Coded Decimal: a method of storing numbers which retains a base 10
representation. Each decimal digit occupies 4 full bits (one hexadecimal digit). The
hex values A through F (1010 through 11ll) are not used. The 8087 supports a
"Packed Decimal" format which consists of 9 bytes of Binary Coded Decimal (18
decimal digits), and one sign byte.

Binary Point: an entity just like a decimal point, except that it exists in binary
numbers. Each binary digit to the right of the Binary Point is multiplied by an
increasing negative power of two.

C3-CO: the four "condition code" bits of the 8087 Status Word. These bits are set
to certain values by the compare, test, examine, and remainder functions of the
8087.

Characteristic: a term used for some non-Intel computers, meaning the Exponent
field .of a Floating Point Number.

Chop: to set the fractional part of a real number to zero, yielding the nearest
integer in the direction of zero.

Control Word: a 16-bit 8087 register that the user can set, to determine the modes
of computation the 8087 will use, and the error interrupts that will be enabled.

Denormal: a special form of Floating]Point Number, produced when an
Underflow occurs. On the 8087, a Denormal is defined as a number with a Biased
Exponent which is zero. By providing a Significand with leading zeros, the range of

A-I

Glossary of 8087 and Floating-Point Terminology 8087 Support Library

A-2

possible negative Exponents can be extende-d by the number of bits in the Signifi­
cando Each leading zero is a bit of lost accuracy, so the extended Exponent range is
obtained by reducing significance.

Double Extended: the Standard's term for the 8087 Temporary Real format, with
more Exponent and Significand bits than the Double (Long Real) format, and an
explicit Integer bit in the Significand.

Double Floating Point Number: the Standard's term for the 8087's 64-bit Long
Real format.

Environment: the 14 bytes of 8087 registers affected by the FSTENV and
FLDENV instructions. It encompasses the (~ntire state of the 8087, except for the 8
Temporary Real numbers of the 8087 stack. Included are the Control Word, Status
Word, Tag Word, and the instruction, opcode, and operand information provided
by interrupts.

Exception: any of the six error conditions (1., D, 0, U, Z, P) signalled by the 8087.

Exponent: (1) any power which is raised by an exponential function. For example,
the operand to the function mqerEXP is an Exponent. The Integer operand to
mqerYI2 is an Exponent.

Exponent: (2) the field of a Floating Point Number which indicates the magnitude
of the number. This would fall under the above more general definition (1), except
that a Bias sometimes needs to be subtracted to obtain the correct power.

Floating Point Number: a sequence of data bytes which, when interpreted in a
standardized way, represents a Real number. Floating Point Numbers are more ver­
satile than Integer representations in two ways. First, they include fractions. Second,
their Exponent parts allow a much wider range of magnitude than possible with
fixed-length Integer representations.

Gradual Underflow: a method of handling the Underflow error condition which
minimizes the loss of accuracy in the result. If there is a Denormal number which
represents the correct result, that Denormal is returned. Thus digits are lost only to
the extent of denormalization. Most computers return zero when Underflow occurs,
losing all significant digits.

Implicit Integer Bit: a part of the Significand in the Short Real and Long Real for­
mats which is not explicitly given. In these formats, the entire given Significand is
considered to be to the right of the Binary Point. A single Implicit Integer Bit to the
left of the Binary Point is always 1, except in one case. When the Exponent is the
minimum (Biased Exponent is 0), the Implicit Integer Bit is O.

Indefinite: a special value that is returned by functions when the inputs are such
that no other sensible answer is possible. For each Floating Point format there exists
one non-Trapping NaN which is designated as the Indefinite value.' For binary
Integer formats, the negative number furthest from zero is often considered the
Indefinite value. For the 8087 Packed Decimal format, the Indefinite value contains
alII's in the sign byte and the uppermost digits byte.

Infinity: a value which has greater magnitude than any Integer, or any Real
number. The existence of Infinity is subject to heated philosophical debate.
However, it is often useful to consider Infinity as another number, subject to special
rules of arithmetic. All three Intel Floating Point formats provide representations
for +INFINITY and -INFINITY. They support two ways of dealing with Infinity:
Projective (unsigned) and Affine (signed).

8087 Support Library Glossary of 8087 and Floating-Point Terminology

Integer: a number (positive, negative, or zero) which is finite and has no fractional
part. "Integer" can also mean the computer representation for such a number: a
sequence of data bytes, interpreted in a standard way. It is perfectly reasonable for
Integers to be represented iIi a Floating Point format; this is what the 8087 does
whenever an Integer is pushed onto the 8087 stack.

Invalid Operation: the error condition -for the 8087 which covers all cases not
covered by other errors. Included are 8087 stack overflow and underflow, NaN
inputs, illegal infinite inputs, out-of-range inputs, and illegal unnormal inputs.

Long Integer: an Integer format supported by the 8087 which consists of a 64-bit
Two's Complement quantity.

Long Real: a Floating Point Format supported by the 8087, which consists of a
sign, an II-bit Biased Exponent, an Implicit Integer Bit, and a 52-bit Significand; a
total of 64 explicit bits.

Mantissa: a term used for some non-Intel computers, meaning the Significand of a
Floating Point Number.

Masked: a term which applies to each of the six 8087 Exceptions I,D,Z,O, U ,P. An
exception is Masked if a corresponding bit in the 8087 Control Word is set to 1. If an
exception is Masked, the 8087 will not generate an interrupt when the error condi­
tion occurs; it will instead provide its own error recovery.

NaN: an abbreviation for "Not a Number"; a Floating Point quantity which does
not represent any numeric or infinite quantity. NaN's should be returned by func­
tions which encounter serious errors. If created during a sequence of calculations,
they are transmitted to the final answer, and can contain information about where
the error occurred.

NDP: Numeric Data Processor. This is any iAPX86 or iAPX88 system that con­
tains an 8087 or the full 8087 emulator.

Non-Trapping NaN: a NaN in which the most significant bit of the fractional part
of the Significand is 1. By convention, these NaN's can undergo certain operations
without visible error. Non-Trapping NaN's are implemented for the 8087 via the
software in EH87 .LIB.

Normal: the representation of a number in a Floating Point format in which the
Significand has an Integer bit 1 (either explicit or Implicit).

Normalizing Mode: a state, recommended by the Standard, in which non-normal
inputs are automatically converted to normal inputs whenever they are used in
arithmetic. Normalizing Mode is implemented for the 8087 via the software in
EH87.LIB.

NPX: Numeric Processor Extension. This is either the 8087 or the full 8087
emulator.

Overflow: an error condition in which the correct answer is finite, but has
magnitude too great to be represented in the destination format.

Packed Decimal: an Integer format supported by the 8087. A Packed Decimal
number is a IO-byte quantity, with nine bytes of 18 Binary Coded Decimal digits,
and one byte for the sign.

Pop: to remove from a stack the last item that was placed on the stack.

A-3

Glossary of 8087 and Floating-Point Terminology 8087 Support Library

A-4

Precision Control: an option, programmed through the 8087 Control Word, which
allows all 8087 arithmetic to be performed with reduced precision. Since no speed
advantage results from this option, its only use is for strict compatibility with the
Standard, and with other computer systems.

Precision Exception: an 8087 error condition which results when a calculation does
not return an exact answer. This exception is usually Masked and ignored; it is used
only in extremely critical applications, when the user must know if the results are
exact.

Projective Mode: a state of the 8087, selected in the 8087 Control Word, in which
infinities are treated as not having a sign. Thus the values +INFINITY and
-INFINITY are considered the same. Certain operations, such as comparison to
finite numbers, are illegal in Projective Mode but legal in Affine Mode. Thus Pro­
jective Mode gives you a greater degree of error control over infinite inputs.

Pseudo Zero: a special value of the Temporary Real format. It is a number with a
zero significand and an Exponent which is neither all zeroes or all ones. Pseudo­
zeroes can come about as the result of multiplication of two Unnormal numbers; but
they are very rare.

Real: any finite value (negative, positive, or zero), which can be represented by a
decimal expansion. The fractional part of the decimal expansion can contain an
infinite number of digits. Reals can be represented as the points of a line marked off
like a ruler. The term "Real" can also refer to a Floating Point Number which
represents a Real value.

Short Integer: an Integer format supported by the 8087 which consists of a 32-bit
Two's Complement quantity. Short Integer is not the shortest 8087 Integer format­
there is the 16-bit W ordJnteger.

Short Real: a Floating Point Format supported by the 8087, which consists of a
sign, an 8-bit Biased Exponent, an Implicit Integer Bit, and a 23-bit Significand; a
total of 32 explicit bits.

Significand: the part of a Floating Point Number which consists of the most
significant non-zero bits of the number, if the number were written out in an
unlimited binary format. The Significand alone is considered to have a Binary Point
after the first (possibly Implicit) bit; the Binary Point is then moved according to the
value of the Exponent.

Single .Extended: a Floating Point format, required by the Standard, which pro­
vides greater precision than Single; it also provides an explicit Integer Significand
bit. The 8087's Temporary Real format meets the Single Extended requirement as
well as the Double Extended requirement.

Single Floating Point Number: the Standard's term for the 8087's 32-bit Short
Real format.

Standard: "a Proposed Standard for Binary Floating-Point Arithmetic," Draft 8.0
of IEEE Task P754, Computer, March 1981, pp. 51-62.

Status Word: A 16-bit 8087 register which can be manually set, but which is usually
controlled by side effects to 8087 instructions. It contains condition codes, the 8087
stack pointer, busy and interrupt bits, and error flags.

Tag Word: a 16-bit 8087 register which is automatically maintained by the 8087.
For each space in the 8087 stack, it tells if the space is occupied by a number; if so, it
gives information about what kind of numbler.

8087 Support Library Glossary of 8087 and Floating-Point Terminology

Temporary Real: the main Floating Point Format used by the 8087. It consists of a
sign, a IS-bit Biased Exponent, and a Significand with an explicit Integer bit and 63
fractional-part bits.

Transcendental: one of a class of functions for which polynomial formulas are
always approximate, never exact for more than isolated values. The 8087 supports
trigonometric, exponential., and logarithmic functions; all are Transcendental.

Trapping NaN: a NaN which causes an "In error whenever it enters into a calcula­
tion or comparison, even a non-ordered comparison.

Two's Complement: a method of representing Integers. If the uppermost bit is 0,
the number is considered positive, with the value given by the rest of the bits. If the
uppermost bit is 1, the number is negative, with the value obtained by subtracting
(2bit count) from all the given bits. For example~, the 8-bit number 11111100 is -4, ob­
tained by subtracting 28 from 252.

Unbiased Exponent: the true value that tells how far and in which direction to
move the Binary Point of the Significand of a Floating Point Number. For example,
if a Short Real Exponent is 131, we subtract the Bias 127 to obtain the Unbiased
Exponent +4. Thus the Real number being represented is the Significand with the
Binary Point shifted 4 bits to the right.

Underflow: an error condition in which the correct answer is non-zero, but has a
magnitude too small to be represented as a Normal number in the destination
Floating Point format. The Standard specifies that an attempt be made to represent
the number as a Denormal.

Unmasked: a term which applies to each of the six 8087 Exceptions I,D,Z,O, U,P.
An exception is Unmasked if a corresponding bit in the 8087 Control Word is set to
O. If an exception is Unmasked, the 8087 will generate an interrupt when the error
condition occurs. You can provide an interrupt routine that customizes your error
recovery.

Unnormal: a Temporary Real representation in which the explicit Integer bit of the
Significand is zero, and the exponent is non-zero. We consider Unnormal numbers
as distinct from Denormal numbers.

Word Integer: an Integer format supported by both the 8086 and the 8087 that con­
sists of a 16-bit Two's Complement quantity.

Zerodivide: an error condition in which the inputs are finite, but the correct
answer, even with an unlimited exponent, has infinite magnitude.

A-5

APPENDIX B
EXTERNAL SYMBOLS USED

B'y THE 8087 EMULATOR

Intel translators put into generated object modules a number of special external
symbols when the NPX is used by programs. These symbols are explained and listed
in this appendix, so that you can recognize them in listings issued by LINK86 and
LOC86.

The machine code generated by an 8087 instruction for the 8087 component is
usually the WAIT opcode, followed by an ESCAPE opcode, followed by further
code which identifies the operands and/or the specific instruction. (See the
80861808718088 j\1acro Assembly Language Reference Manual for the details of
these opcodes).

The emulator can be called using the same amount of code. Instead of the WAIT
and ESCAPE opcodes, a two-byte call to an 8086 interrupt routine is used. The
interrupt routines are written to decode the remaining instruction bytes in the same
way that the 8086/8087 decodes them.

Thus, for each 8087 instruction, there are two opcode bytes which differ when the
emulator is used instead of the chip. Each two-byte pattern for the 8087 chip is
stored under a special name in 8087.LIB. The corresponding two-byte pattern for
the emulator is stored under the same name in E8087.LIB. The special names are
built into all Intel translators that support the 8087. Instead of issuing the opcode
for an 8087 instruction, the translator issues the appropriate external name. LINK86
then supplies the correct opcodes when the externals are satisfied, either by
8087 .LIB or E8087 .LIB.

87NULL.LIB satisfies the external names with the same opcodes as 8087.LIB. It is
up to the user program to insure that any resulting 8087 instructions are never
executed.

Here are the special names. The colon given is part of the name; it exists to make it
impossible for the name to be generated by any Intel translators.

M: N e S
M:~:)DS
M: N E S
M:~)SS
M:_NST
M: we S
M:=WDS
M: WES
M:=WSS
M:_WST
M: WT

B-1

APPENDIX C
SUMMAIRY OF 8087 FLOATING

POINT FORMATS

The 8087 supports three formats for real numbers. All formats are in reverse order
when stored in 8086 memory. That is, the first byte (lowest memory address) is the
least significant byte of th(~ Significand; the last byte (highest memory address) con­
tains the sign and the top seven bits of the Exponent.

The three formats supported are the 32-bit Short Real, the 64-bit Long Real, and the
80-bit Temporary Real.

Short Real:
I-bit Sign
8-bit Exponent:
O-bit Implicit Integer Bit:
23-bit Fractional Part:

Long Real:
I-bit Sign
II-bit Exponent:
O-bit Implicit Integer Bit:
52-bit Fractional Part:

Temporary Real:
I-bit Sign
15-bit Exponent:
I-bit Explicit Integer Bit
63-bit Fractional Part:

Bias 126 if Exponent zero; 127 if non-zero
o if Exponent zero; I if non-zero
digits to the right of the Binary Point

Bias 1022 if Exponent zero; 1023 if non-zero
o if Exponent zero; 1 if non-zero
digits to the right of the Binary Point

Bias 16382 if Exponent zero; 16383 if non-zero

digits to the right of the Binary Point

Special Values in All Three Formats:
Infinity: maximum exponent and zero Significand
NaN: maximum exponent and non-zero Significand
Zero: minimum exponent and zero Significand
Denormal: minimum exponent and non··zero Significand

C-I

· .- I APPENDIX D L SUMMARY OF 8087 INSTRUCTIONS n

On the following pages you will find a reference chart of NPX instructions. Here is
an explanation of each column of the chart.

Opcode: This column gives the machine codes generated by ASM86 and LINK86
for the given instruction. Digits and upper-case letters "A" through "F" are hexa­
decimal digits. In addition, the following special codes are used:

• "i" denotes a 4-bit quantity whose top bit is 0, and whose bottom three bits give
the 8087 stack element number for the instruction.

• "j" denotes "i" plus 8. It is a 4-bit quantity whose top bit is 1, and whose
bottom three bits give the 8087 stack element number for the instruction.

• "I" followed by a digit denotes a MODRM byte, as described in the ASM86
language manual. Th(~ digit gives the value of the middle REG field of the byte
(bits 5,4,3). The MOD field (bits 7,6) can be any of the values 00, 01, or 10. The
RIM field (bits 2,1,0) can be any of the 8 possible values. For some values of
MOD and RIM, theH~ will be one or two immediate displacement bytes follow­
ing the MODRM byte, as defined by the 8086 architecture.

The machine codes are those for the 8087 component, produced by linking 8087.LIB
to your ASM-86 object modules. If there is a segment override byte, it goes between
the first (W AIT or NaP) byte and the second (ESCAPE) byte.

The code for the 8087 emulator, produced by linking E8087.LIB, differs as follows:
The FWAIT instruction produces a Nap (90 hex) byte instead of the 8086 WAIT
(9B hex) byte. AU other instructions produce a first byte of CD hex, the 8086 INT
instruction, instead of the WAIT or Nap byte produced for the 8087. If there is no
segment override byte, the second byte's top hexadecimal digit is "1" instead of
"D", giving an 8086 interrupt number between 18 hex and IF hex. The remaining
parts of the instruction are the same. If there is a segment override byte, the byte is
replaced by an interrupt number between 14 hex and 17 hex, as shown below. The
third ESCAPE byte remains the same, and is interpreted by the emulator.

Iinterrupt
14
15
16
17

Override
ES
CS
SS
DS

Instruction: This column gives the 8087 instruction just as it appears in an ASM-86
program. Operands which begin with "mem" can be replaced with any memory
operand denoting a data area of the correct number of bytes. The number following
"mem" gives the decimal number of memory bytes acted upon. A trailing "r" in the
name denotes a REAL format, "i" denotes an INTEGER format, and "d" denotes
a Binary Coded Decimal format.

Function: This column gives a concise description of the function performed by the
instruc'tion. .

Clocks: This column giv(~s the typical number of clock cycles used by the 8087 chip
to execute the instruction. It is not an exact number. If a MODRM byte is involved,
a typical time of 9 cycles is added for calculating the effective address of the memory
operand.

0-1

Summary of 8087 Instructions 8087 Support Library

ErrID: This column gives the hexadecimal value returned by the procedure
DECODE in the library EH87.LIB, describE'd in Chapter 5. The value indicates the
type of instruction which caused an error, and is returned in the OPERATION field
of the structure EST A TE87 .

Errors: This column lists the possible exceptions which can occur if the instruction
is executed.

Opcode Instruction Funl:tion Clocks ErrlD Errors

9B D9 FO F2XM1 ST -(2 1* ST) - 1 500 19 UP
9B D9 E1 FABS ST +-1 ST 1 14 01 I
9B DE C1 FADD ST(1) ---ST(fl + ST, pop 90 05 IDOUP
9B DC Ci FADD ST(i),ST ST(i) -ST(i) + ST 85 05 IDOUP
9B D8 Ci FADD ST,ST(i) ST -ST(i) + ST 85 05 IDOUP
9B D8 10 FADD mem4r ST -ST + m·em4r 114 05 IDOUP
9B DC 10 FADD mem8r ST ---ST + m·em8r 119 05 IDOUP
9B DE Ci FADDP ST(i),ST ST(i) -ST(i) + ST, pop 90 05 IDOUP
9B DF 14 FBLD mem10d push, ST -mem10d 309 10 I
9B DF 16 FBSTP mem10d mem10d +-ST, pop 539 OF I
9B D9 EO FCHS ST +- - ST 15 02 I
9B DB E2 FCLEX clear exceptions 5
9B D8 D1 FCOM compare ST - ST(1) 45 03 ID
9B D8 Di FCOM ST(i) compare ST - STO) 45 03 ID
9B D8 12 FCOM mem4r compare ST - mem4r 74 03 ID
9B DC 12 FCOM mem8r compare ST - mem8r 79 03 ID
9B D8 D9 FCOMP compare ST - ST(1), pop 47 03 ID
9B D8 Dj FCOMP STO) compare ST - ST(i), pop 47 03 ID
9B D8 13 FCOMP mem4r compare ST - mem4r , pop 77 03 ID
9B DC 13 FCOMP mem8r compare ST - mem8r , pop 81 03 ID
9B DE D9 FCOMPP compare ST - ST(1), pop 2 50 03 ID
9B D9 F6 FDECSTP decrement stack pointer 9
9B DB E1 FDISI set interrup1 mask 5
9B DE F1 FDIV ST(1) +-ST(1) 1 ST, pop 202 09 IDZOUP
9B DC Fj FDIV ST(i),ST ST(i) +- ST(i) I ST 1.98 09 IDZOUP
9B D8 Fi FDIV ST,ST(i) ST +- ST I ST(i) 198 09 IDZOUP
9B D8 16 FDIV mem4r ST -ST I mE~m4r 229 09 IDZOUP
9B DC 16 FDIV mem8r ST +-ST I mom8r 234 09 IDZOUP
9B DE Fj FDIVP ST(i)'ST ST(i) +-ST(i) I ST, pop 202 09 IDZOUP
9B DE F1 FDIVR ST(1) +-ST I ST(1), pop 203 OA IDZOUP
9B DC Fj FDIVR ST(i),ST ST(i) +-ST I ST(i) 199 OA IDZOUP
9B D8 Fj FDIVR ST,ST(i) ST +-ST(i) I ST 199 OA IDZOUP
9B D8 17 FDIVR mem4r ST +-mem4r I ST 230 OA IDZOUP
9B DC 17 FDIVR mem8r ST +-mem8r I ST 235 OA IDZOUP
9B DE Fi FDIVRP ST(i),ST ST(i) +-ST I ST(i), pop 203 OA IDZOUP
9B DB EO FENI clear interrupt mask 5
9B DD Ci FFREE ST(i) empty ST(i) 11
9B DE 10 FIADD mem2i ST +- ST + mem2i 129 05 IDOP
9B DA 10 FIADD mem4i ST +- ST + mem4i 134 05 IDOP
9B DE 12 FICOM mem2i compare ST - mem2i 89 03 ID
9B DA 12 FICOM mem4i compare ST - mem4i 94 03 ID
9B DE 13 FICOMP mem2i compare ST - mem2i , pop 91 03 ID
9B DA 13 FICOMP mem4i compare ST - mem4i , pop 96 03 ID
9B DE 16 FIDIV mem2i ST +-ST - ml3m2i 239 09 IDZOUP
9B DA 16 FIDIV mem4i ST +-ST - ml3m4i 245 09 IDZOUP
9B DE 17 FIDIVR mem2i ST +- mem2i 1 ST 239 OA IDZOUP
9B DA 17 FIDIVR mem4i ST +- mem4i I ST 246 OA IDZOUP
9B DF 10 FILD mem2i push, ST +- rnem2i 59 10 I
9B DB 10 FILD mem4i push, ST +- rnem4i 65 10 I
9B DF 15 FILD mem8i push, ST +- rnem8i 73 10 I
9B DE 11 FIMUL mern2i ST +- ST * mem2i 139 08 IDOP
9B DA 11 FIMUL mem4i ST +- ST * m'em4i 145 08 IDOP
9B D9 F7 FINCSTP increment s1[ack pOinter 9
9B DB E3 FINIT initialize 8087 5
9B DF 12 FIST mem2i mern2i +- ST 95 OF IP
9B DB 12 FIST mem4i mem4i +- ST 97 OF IP
9B DF 13 FISTP mem2i mem2i +- ST, pop 97 OF IP
9B DB 13 FISTP mem4i mem4i +- ST, pop 99 OF IP
9B DF 17 FISTP mem8i mem8i +- ST, pop 109 OF IP
9B DE 14 FISUB mem2i ST +- ST - mem2i 129 06 IDOP

0-2

8087 Support Library Summary of 8087 Instructions

Opcode Instruction Function Clocks ErrlD Errors

9B DA 14 FISUB mem4i ST ~ ST - mem4i 134 06 lOOP
9B DE 15 FISU BR mem2i ST ~ mem2i - ST 129 07 lOOP
9B DA 15 FISU BR mem4i ST ~ mem4i - ST 134 07 lOOP
9B 09 Ci FLD ST(i) push, ST .-- old ST(i) 20 10 I
9B DB 15 FLD mem10r push, ST .-- mem1 Or 66 10 10
9B 09 10 FLD mem4r push, ST ~ mem4r 52 10 10
9B DO 10 FLD mem8r push, ST ~ mem8r 55 10 10
9B 09 E8 FLD1 push, ST ~ 1.0 18 11 I
9B 09 15 FLDCW mem2i control word ~ mem2i 19
9B 09 14 FLDENV menn14 environment ~ mem14 49
9B 09 EA FLDL2E push, ST ~ log base 2 of e 18 13 I
9B 09 E9 FLDL2T push, ST ~ log base 2 of 10 19 12 I
9B 09 EC FLDLG2 push, ST ~ log base 10 of 2 21 15 I
9B 09 ED FLDLN2 push, ST ~ log base e of 2 20 16 I
9B 09 EB FLDPI push, ST ~ Pi 19 14 I
9B 09 EE FLDZ push, ST .-- +0.0 14 17 I
9B DE C9 FMUL ST(1) ~ ST(1) * ST, pop 142 08 IDOUP
9B DC Cj FMUL ST(i),ST ST(i) ~ ST(i) * ST 138 08 IDOUP
9B 08 Cj FMUL ST,STO) ST ~ ST * ST(i) 138 08 IDOUP
9B 08 11 FMUL mem41' ST +- ST * mem4r 127 08 IDOUP
9B DC 11 FMUL mem81r ST ~ ST * mem8r 170 08 IDOUP
9B DE Cj FMULP ST(i)"ST ST(i) ~ ST(i) * ST, pop 142 08 IDOUP
90 DB E2 FNCLEX nowait clear exceptions 5
90 DB E1 FNDISI nowait set interrupt mask 5
90 DB EO FNENI nowait clear interrupt mask 5
90 DB E3 FNINIT nowait initialize 8087 5
9B 09 DO FNOP no operation 13
90 DO 16 FNSAVE mern94 nowait mem94 ~ 8087 state 219
90 09 17 FNSTCW mem2i nowait mem2i ~ control word 24
90 09 16 FNSTENV mBm14 nowait mem14 ~ environment 54
90 DO 17 FNSTSW mem2i nowait mem2i ~ status word 24
9B 09 F3 FPATAN ST ~ arctan(ST(1)OST), pop 650 10 UP
9B 09 F8 FPREM ST +- REPEAT(ST - ST(1)) 125 1E IOU
9B 09 F2 FPTAN push, ST(1)/ST +- tan(old ST) 400 1C IP
9B 09 FC FRNDINT ST +- round(ST) 45 1F IP
9B DO 14 FRSTOR mern94 8087 state ~- mem94 219
9B DO 16 FSAVE mem94 mem94 +- 8087 state 219
9B 09 FD FSCALE ST +- ST * 2 ** ST(1) 35 18 IOU
9B 09 FA FSQRT ST +- square root of ST 183 OC lOP
9B DO Di FST ST(i) ST(i) ~ ST 18 OF I
9B 09 12 FST mem4r mem4r +- ST 96 OF IOUP
9B DO 12 FST mem8r mem8r +- ST 109 OF IOUP
9B 09 17 FSTCW mem2i mem2i .-- control word 24
9B 09 16 FSTENV mem14 mem14 .-- environment 54
9B DO OJ FSTP ST(i) ST(i) +- ST, pop 20 OF I
9B DB 17 FSTP mem10r mem10r +- ST, pop 64 OF I
9B 09 13 FSTP mem4r mem4r ~ ST, pop 98 OF IOUP
9B DO 13 FSTP mem8r mem8r +- ST, pop 111 OF IOUP
9B DO 17 FSTSW mem2i mem2i +- status word 24
9B DE E9 FSUB ST(1) +- ST(1) - ST, pop 90 06 IDOUP
9B DC Ej FSUB ST(i),ST ST(i) +- STO) - ST 85 06 IDOUP
9B 08 Ei FSUB ST,ST(i) ST of- ST - ST(i) 85 06 IDOUP
9B 08 14 FSUB mem4r ST ST - rnem4r 114 06 IDOUP
9B DC 14 FSUB mem8r ST of- ST - rnem8r 119 06 IDOUP
9B DE Ej FSUBP ST(i),ST ST(i) +- ST(i) - ST, pop 90 06 IDOUP
9B DE E1 FSUBR ST(1) +- ST - ST(1), pop 90 07 IDOUP
9B DC Ei FSU BR ST(i),ST ST(i) ST .- ST(i) 87 07 IDOUP
9B 08 Ej FSUBR ST,ST(i) ST of- ST(i) -- ST 87 07 IDOUP
9B 08 15 FSUBR mem4r ST mem4r - ST 114 07 IDOUP
9B DC 15 FSUBR mem8r ST of- memBr - ST 119 07 IDOUP
9B DE Ei FSUBRP ST(i),ST ST(i) of- ST .- ST(i), pop 90 07 IDOUP
9B 09 E4 FTST compare ST - 0.0 42 04 10
9B FWAIT wait for 8087 ready
9B 09 E5 FXAM C3-CO +- type of ST 17
9B 09 C9 FXCH exchange ST and ST(1) 12 OE I
9B 09 Cj FXCH ST(i) exchange ST and ST(i) 12 OE I
9B 09 F4 FXTRACT push, ST(1) expo, ST +- sig 50 OB I
9B 09 F1 FYL2X ST +- ST(1) * log2(ST), pop 950 1A P
9B 09 F9 FYL2XP1 ST ST(1) * log2(ST +1), pop 850 1B P

D-3

------.

· " C APPENDIX E
SUMMARY OF SUPPORT

___________ L_IB_R_A_R_Y __ F_U_N_C_TI_O_N_S~
n

The following pages give condensed summaries of the procedures and functions of
the three libraries DCONS7.LIB, CEL87.LIB, and EH87.LIB. You can use this
appendix as a quick reference guide after you have assimilated the material in the
main part of this manual.

The 8087 Emulator is summarized in Appendix D, the table of 8087 instructions.

E-I

DCON87.LIB

E-2

All input parameters to DCON87 .LIB are 4··byte long pointers to 8086 memory buf­
fers which contain the inputs and outputs. The pointer(s) are pushed onto the 8086
stack, high byte first, before calling the procedure. The procedure returns with the
pointer(s) popped off the 8086 stack.

The first three procedures have one input pointer. The last four procedures have two
input pointers.

mqcBIN_DECLOW (Convert binary number to decimal string)

Input: BIN_DECLOW _BLOCK_PTR --.
4-byte BIN_PTR - input binary number.
I-byte BIN_TYPE: 0 for SHORT __ REAL

1 for LONG_REAL
2 for TEMP __ REAL

I-byte DEC_LENGTH: length of output field
4-byte DEC_PTR - output decimal significand, decimal point at right
2-byte DEC_EXPONENT: base ten exponent of output-
I-byte DEC_SIGN: sign of output~. in ASCII

Sign and digits output for unusual inputs:
NaN = " .. "
+INFINITY = "++"
-INFINITY = "--"
+0 = "0 "
-0 = "-0"

Errors: I,D,P

mqcDEC_BIN (Convert decimal string ,to binary number)

Input: DEC_BIN_BLOCK_PTR-
4-byte BIN_PTR - output binary number.
I-byte BIN_TYPE: 0 for SHORT __ REAL

I for LONG_REAL
2 for TEMP __ REAL

I-byte DEC_LENGTH: length of input field
4-byte DEC_PTR - input string.

Errors: O,U,P

mqcDECLOW_BIN (Convert decimal string, low-level interface, to binary
number)

Input: DECCLOW _BIN_BLOCK_PTR -
4-byte BIN_PTR - output binary number.
I-byte BIN_TYPE: 0 for SHORT __ REAL

I for LONG_REAL
2 for TEMP_REAL

I-byte DEC_LENGTH: length of input field
4-byte DEC_PTR - input string, stripped down to decimal digits
2-byte DEC_EXPONENT: base ten exponent, with decimal point to

right of input
I-byte DEC_SIGN: sign of input, in ASCII

Errors: O,U,P

mqcLONG_ TEMP (Convert LONG_REAIL to TEMP_REAL)

Inputs: LONG_REAL_PTR - input number
TEMP _REAL_PTR - output number

Error: D

mqcSHORT _TEMP (Convert SHORT_REAL to TEMP_REAL)

Inputs: SHORT __ REAL __ PTR - input number
TEMP _REAL_PTR - output number

Error: D

mqcTEMP _LONG (Convert TEMP_REAL to LONG_REAL)

Inputs: TEMP _REAL_PTR - input number
LONG_REAL_PTR - output number

Errors: 1,0, U,P

mqcTEMP _SHORT (Convert TEMP_REAL to SHORT_REAL)

Inputs: TEMP _REAL_PTR - input number
SHORT __ REAL __ PTR - output number

Errors: I,O,U,P

DCON87.LIB

E-3

CEL87.LIB

E-4

"x" denotes the 8087 stack top ST.

"y" denotes the 8087 next stack element ST(l).

"STK" denotes a 2-byte integer pushed onto the 8086 stack.

All 8086 and 8087 stack inputs are popped on successful return.

The errors columns give the hexadecimal cod.e left in the II-bit 8087 opcode register t
along with the possible errors the function can produce. Unmasked errors will trap
with the input(s) on the 8087 stack if under the "Inputs" column; with the output(s)
on the 8087 stack if under the "Outputs" column. The first of the three hex digits
tells how many numbers are on the 8087 stack when a trap handler is called.

Errors, trap with:
Name Function Inputs Outputs

mqerACS x = arc cosine(x) 175 I
mqerASN x = arc sine(x) 174 I
mqerAT2 x = arc tangent(y Ix) 277 I 277 U
mqerATN x = arc tangent(x) 176 I
mqerCOS x = cosine(x) 172 I
mqerCSH x = hyperbolic cosine(x) 16F 10
mqerDIM x = max(y-x,+O) 265 I 265 OU *
mqerEXP x = e ** x 16B IOU
mqerlA2 AX = roundaway(x) 17E I
mqerlA4 DXAX = roundaway(x) 168 I
mqerlAX x = roundaway(x) 167 I
mqerlC2 AX = chop(x) 17E I 17E P
mqerlC4 DXAX = chop(x) 179 I 179 P
mqerlCX x = chop(x) 166 I 166 P
mqerlE2 AX = roundeven(x) 180 I 180 P
mqerlE4 DXAX = roundeven(x) 17B I 17B P
mqerlEX x = roundeven(x) 178 I 178 P
mqerLGD x = common log(x) 16D IZ
mqerLGE x = naturallog(x) 16C IZ
mqerMAX x = max(x,y) 282 I
mqerMIN x = min(x,Y) 281 I
mqerMOD x = (y mod x), has sign(y) 269 I 269 U
mqerRMD x = (y mod x), close to 0 27A I 27A U
mqerSGN x = (y with x's sign) 264 I
mqerSIN x = sine(x) 171 I
mqerSNH x = hyperbolic sine(x) 16E 10
mqerTAN x = tangent(x) 173 IZ
mqerTNH x = hyperbolic tangent(x) 170 I
mqerY2X x = y *. x 26A IZOU
mqerYI2 x = x *. AX 27C IOU
mqerYI4 x = x *. DXAX 27C IOU
mqerYIS x = x *. STK 27C IOU

* mqerDIM, mqerMAX, mqerMIN and mqerSGN can produce "D" errors from
within their interiors.

-----..... ------.. -.. --------------.-.-----.. ---.-.. -.--.--.---.---.---------------- ._----

EH87.LIB

All EH87 .LIB procedures operate on a structure EST A TE87, summarized below.

Elements of EST ATE87:

OPERATION WORD
ARGUMENT BYTE

ARG1 (5) WORD
ARG1_FULL BYTE
ARG2(5) WORD
ARG2_FULL BYTE
RESULT BYTE

RES1(5) WORD
RES1_FULL BYTE
RES2(5) WORD
RES2_FULL BYTE
FORMAT BYTE

REGISTER BYTE

CONTROL_WORD WORD
STATUS_WORD WORD
TAG_WORD WORD
ERROR_POINTERS(5) WORD

STACK_87(40) WORD

instruction or procedure which caused error
two nibbles, each coded:

O=no operand
1=ST(0)
2=ST(1)
3=ST(REGISTER)
4=see FORMAT
5=TEMP REAL
6=64-bit integer
7=BCD

bit 3 means push once
value of bottom-nibble argument
true if ARG1 contains a value
value of top-nibble argument
true if ARG2 contains a value
formats of result, as in ARGUMENT; except

bit 3 on means pop once, bit 7 on means
pop twice

value of bottom-nibble result
true if RES1 contains a value
value of top-nibble result
true if RES2 contains a value
format of type 4 ARGUMENT or RESULT:

0=32-bit real
1 =32-bit iflteger
2=64-bit real
3=16-bit integer

8087 stack register number for type 3
ARGUMENT or RESULT

8087 control word
8087 status word
8087 tag word
8087 instruction pointer, opcode, operand

pointer
8087 stack of 8 temporary real values

DECODE: Push 4-byte ESTATE87_PTR and 2-byte ERRORS87 before calling.
DECODE fills EST ATE87 with information about the 8087 error that caused the
exception.

ENCODE: Push 4-byte ESTATE87 _PTR, 2-byte ERRORS87, 2-byte
CONTROL_WORD, I-byte RETRY_FLAG before calling. ENCODE restores
the 8087 to the state indicated by EST A TE87; if RETR Y _FLAG is true it retries the
error operation using CONTROL_WORD.

FILTER: Push 2-byte ERRORS87 befon~ calling. FILTER calls DECODE,
NORMAL, SIEVE, and ENCODE. FILTER returns AL TRUE if either NORMAL
or SIEVE returned TRUE.

NORMAL: Push 4-byte EST ATE87 _PTR and 2-byte ERRORS87 before calling.
NORMAL returns AL TRUE if "D" was th~: only error in ERRORS87; it also nor­
malizes arguments if operation was not a load operation.

SIEVE: Push 4-byte EST ATE87 _PTR and 2-byte ERRORS87 before calling.
SIEVE returns AL TRUE if there was a non-trapping NaN which should not have
caused an "I" error.

E-5

· " C APPENDIX F
PUBLIC SYMBOLS IN THE

_____________ S_U_P_P_O_R_T_L_I_B_R_A_R~Y n

Each of the three libraries DCON87.LIB, CEL87.LIB, and EH87.LIB contain
public symbols other than the names of the procedures documented in this manual.
They are internal names, used either within th(! libraries or by Intel translators.

You should not use any of these names in your programs.

There are no extra public names in the 8087 emulator or interface libraries, other
than those listed in Appendix B. The names in Appendix B cannot be generated by
Intel translators, so there is no possibility of conflict.

Following is a list of all public names, both documented and undocumented, for
each library.

DCON87.LIB
CHK_UNMSKD_O_U_ERR
MQCBINDEC
MQCBIN_DECLOW
MQCDBX
MQCDBXDB
MQCDECBliN
MQCDECB1[NLO
MQCDECLOW ~BIN
MQCDEC_.BIN
MQCLONG_ TEMP
MQCSHORT_TEMP

CEL87.LIB
MQERACS
MQERAIN
MQERANT
MQERASN
MQERAT2
MQERATN
MQERCI2
MQERCOS
MQERCSH
MQERDIM
MQEREXP
MQERIA2
MQERIA4
MQERIAX
MQERIC2
MQERIC4
MQERICX
MQERIE2
MQERIE4
MQERIEX
MQERINT
MQERIRT
MQERLGlD
MQERLGlE
MQERMAX

MQERMIN
MQERMOD
MQERNI2
MQERNIN
MQERRI2
MQERRMD
MQERRNT
MQERSGN
MQERSIN
MQERSNH
MQERTAN
MQERTNH
MQERY2X
MQERYI2
MQERYI4
MQERYIS
MQ_l
MQ_2XMll
MQ_63U
MQ_63Ul
MQ_63UPI2
MQ_AT2
MQ_CONST
MQ_COS
MQ_CP2N63

MQCSNGXDB
MQCSNX
MQCTEMP _LONG
MQCTEMP _SHORT
MQCXDB
MQCXDBDB
MQCXDBSNG
MQCXSN
POWER_OF_IO
UNMSKD_OV _OR_UN
XCPTN_RTRN

MQ_DECIDE
MQ_EXIT
MQ_EXMl
MQ_I
MQ_IRCHK
MQ_LOG
MQ_LOGIO
MQ_LOGDN
MQ_MQRPI
MQ_NAN
MQ_NOF
MQ_NORM
MQ_NQ
MQ_OF
MQ_PO
MQ_PI2
MQ_PII
MQ_Q
MQ_RAD
MQ_RERR
MQ_SIN
MQ_TXAM
MQ_UO
MQ_YL2X

F-I

Public Symbols in the Support Library

F-2

,EH87.LIB

DECODE
ENCODE
FILTER
FQFORTRANSTATUSCHECK
MQERACS
MQERAIN
MQERANT
MQERASN
MQERAT2
MQERATN
MQERCI2
MQERCOS
MQERCSH
MQERDIM
MQEREXP
MQERINT
MQERIRT
MQERLGD
MQERLGE
MQERMAX
MQERMIN
MQERMOD
MQERN12
MQERNIN
MQERR12
MQERRMD
MQERRNT

8087 Support Library

MQERSGN
MQERSIN
MQERSNH
MQERTAN
MQERTNH
MQERY2X
MQERY14
NORMAL
SIEVE
TQDECODE87
TQENCODE87
TQFETCH_AND_STORE
TQINSTRUCTION_RETRY
TQNANFIL TER
TQNORM87
TQNORMALIZE
TQPOP _ THE_TOP
TQREALMA THFIL TER
TQRESTORE_PTRS
TQSA VE_PTRS
TQUNPOP _ THE_TOP
TQ_312
TQ_320
TQ_322
TQ_324
TQ_326

8'087.LIB, 2-3
87NULL.LIB, 2-3, 2-4

Accuracy of decimal conversions, 3--4
ACS, 4-7
Affine mode, A-I
Arc cosine, 4-7
Arc sine, 4-9
Arctangent,4-11,4-14
ASN,4-9
AT2,4-11
ATN,4-14

Base, A-I
Bias, A-I
Biased exponent, A-I
BIN_DECLOW, 3-7
Binary Coded Decimal, A-I
Binary point, A-I
Binary to decimal conversion, 3-7

Calls to PL/M-86 functions, 4-5
CEL87.LIB, 4-1ff, E-4
Characteristic, A-I
Chop, A-I
Chop functions, 4-26, 4-28, 4-30
Chopping functions, list of, 4-1
Common Elementary Function Library, 4-1 ff
Common logarithm, 4-37
Control word, 8087,4-6, A-I
COS, 4-16
Cosine, 4-16
CSH,4-18

D exception, 4-11, 5-1, 6-3
DCON87.LIB, E-2
DEC_BIN,3-1O
Decimal conversion, 3-1 ff
Decimal logarithm, 4-37
Decimal to binary conversion, 3-10, 3-12
Declarations, ASM-86, 3-1,4-2
Declarations, PL/M-86, 3-2,4-3
DECLOW_BIN,3-12
DECODE,5-12
Denormal, iii, A-I
Difference, positive, 4-19
DIM,4-19
Double extended format, 6-1, A-2
Double floating point number, A-2

E8087.LIB, 2-3
EH87 .LIB, E-5
Emulator, 2-1 ff
Emulator, symbols used, B-1
ENCODE,5-14
Environment, A-2
Error handler module, 5-1 ff
Error reporting, 3-5, 4-6
ESTATE87. 5-2, 5-12

INDEX

Exception, definition, A-2
Exception handler, in ASM-86, 5-4
Exception handler, in PL/M-86, 5-9
Exceptions, emulation of, 2-1
EXP, 4-21
Exponent, A-2
Exponential function, 4-21
Exponential function, any base, 4-59
Exponential functions, list of, 4-1

FILTER, 5-17
Floating point number, A-2
Format of decimal numbers, 3-5
Format, C-l
FSTP-generated errors, 4-5

Gradual underflow, A-2

Hyperbolic cosine, 4-18
Hyperbolic functions, list of, 4-1
Hyperbolic sine, 4-53
Hyperbolic tangent, 4-57

IA2,4-23
IA4,4-24
iAPX convention, v, vi
lAX, 4-25
IC2,4-26
IC4,4-28
ICX, 4-30
IE2,4-32
IE4,4-34
IEEE Standard, 3-4,6-1 ff
lEX, 4-35
Implicit integer bit, A-2
Indefinite, A-2
Infinity format, C-l
Infinity, A-2
INIT87, 2-2, 2-3
INITFP, 2-2, 2-3
Initializing the 8087, 2-2
Instruction address register, 8087, 4-6
Instruction set, 8087, D-l ff
Integer power, 4-62, 4-64, 4-66
Integer, A-3
Interrupts, 2-2
Invalid operation, A-3
Inverse cosine, 4-7
Inverse hyperbolic sine, example, 4-40
Inverse sine, 4-9
Inverse tangent, 4-11,4-14

LGD,4-37
LGE,4-39
Linkage, 2-3, 3-22, 4-69, 5-24
Logarithm, common, 4-37
Logarithm, natural, 4-39
Logarithmic functions, list of, 4-1
Long integer, A-3

Index-l

Index

LONG_TEMP, 3-14
Long real format, C-l

Mantissa, A-3
Manuals, related, v
MAX, 4-41
Maximum function, 4-41
MIN,4-43
Minimum function, 4-43
MOD,4-45
Modulus function, 4-45, 4-47

NaN format, C-l
NaN, A-3
Natural logarithm, 4-39
NDP, vi, A-3
Need for Support Library, 1-1
Nomenclature for 8086 family, v
Non-ordered comparisons, 5-2
Non-trapping NaN's, 5-2, 5-17, 5-20, A-3
NORMAL,5-20
Normal distribution, example, 4-21
Normal number, A-3
Normalizing mode, 5-1, 5-17, 5-20, A-3
Notational,;onventions, iv
NPX, vi, A-3

Opcode register, 8087, 4-6
Overflow, A-3

Packed decimal, A-3
Partial emulator, 2-1
PE8087,2-1
PL/M-86 function calls, 4-5
Polar-to-rectangular conversion, example, 4-16, 4-51
Pop, A-3
Positive difference, 4-19
Power function, 4-62, 4-64, 4-66
Precision control, A-4
Precision exception, A-4
Projective mode, A-4
Pseudo zero, v, A-4
Public symbols, F-l
Publications, related, v

Real number, A-4
Recovery of error information, 5-12
Rectangular-to-polar conversion, 4-11
Register usage, 4-6
Remainder function, 4-45, 4-47

.Index-2

8087 Support Library

Returning from exception handler, 5-14
RMD,4-47
Roundaway function, 4-23 thru 4-25
Roundeven function, 4-32, 4-34, 4-35
Rounding functions, list of, 4-1

SGN,4-49
Short integer, A-4
Short real format, C-l
SHORT_TEMP, 3-16
SIEVE,5-22
Sign transfer function, 4-49
Significand, A-4
SIN,4-51
Sine, 4-51
Single extended format, A-4
Single floating point number, A-4
SNH,4-53
Stack requirements, 2-2, 3-4, 4-5
Standard, A-4
Status word, A-4
System software, 1-1

Tag word, A-4
TAN,4-55
Tangent, 4-55
TEMP_LONG,3-18
Temporary real format, C-l
TEMP __ SHORT, 3-20
TNH,4-57
Transcendental, A-5
Trapping Nan, A-5
Trigonometric functions, list of, 4-1
Truncation functions, list of, 4-1
Twos complement, A-5

Unbiased exponent, A-5
Underflow, A-5
Unmasked exception, A-5
Unnormal, v, A-5

Word integer, A-5

Y2X, 4-59
YI2,4-62
YI4,4-64
YIS,4-66

Zerodivide,A-5

8087 Support Library Reference ~
121 i

IREQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide documents that meet the needs of al
product users. This form lets you participate directly in the documentation process. Your com men
'help us correct and improve our manuals. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completen~
this document. If you ha.ve any comments on the equipment software itself, please contact yoU!
representative. If you wish to order manuals contact the Intel Literature Department (see page ii (
manual).

1. Please describe any errors you found in this manual (include page number).

2. Does the document cover the information you expected or required? Please make suggestiol
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other typ
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating.). ________ _

NAME _____________ . ________________ ___ DATE _______ _

TITLE _______________________________________ _

COMPANY NAME/DEPARTMENT

ADDRESS __ _

CITY ________________ __ STATE ______ _ ZIP CODE ____ _

(COUNTRY)

Please check here if you require a written reply. 0

'0 LIKE YOUR COMMENTS .••

I document Is one of a series describing Intel products. Your comments on the back of this form will
I us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
ments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL]
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA --.-
POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: "Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

IIIIII NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Sa.nta Clara, California 95051 (408) 987-8080

Printed in U.S.A.

