

Example Programs

INC SI ;longer number. Then
;SI=SI+1
LOOP LOOP1 ;
MoV CX, NUM2 iNumber of bytes yet
junused in longer
;number.
LOOP2: JNB DONE ;If no carry, CF=0,

;then done.

ADC BYTE PTR [BX] [SI],0 ;Add carry to remaining

;bytes

INC SI ;of longer number. Then

;SI=SI+1.,

LOOP LOOPZ2
DONE: .

MULTI_TWO ENDS
END START

With some additional instructions, this same routine will do arithmetic for packed-
decimal numbers. Packed-decimal means the 8 bits of each byte are interpreted as 2
decimal digits, e.g., 01100111B would mean 67 decimal instead of 67 hexadecimal
(103 decimal).

Below is the core of an 8086 routine to do decimal subtraction for packed-decimal
numbers.

Example 7:

Mov sI, 0
MOV CX, NUMBYTES
cLC

MORE?: MOV AL, FIRST [SI]
SBB AL, SECOND ([SII

DAS

MOV SECOND [SI1, AL
INC SI

LOOP MORE?

Interrupt Procedures

Example 8:

;The following illustrates the use of interrupt procedures
;for the 8086. The code sets up six interrupt procedures
;for a hypothetical 8086 system involved in some type of
;process control application. There are 4 sensing devices
;and two alarm devices, each of which can supply external
;interrupts to the 8086. The different interrupt-handling
;procedures shown below are arbitrary, that is, the events
;and responses described are not inherent in the 8086 but

ASM86

Example Programs

;rather in this hypothetical control application. The
;procedures merely illustrate the diverse possibilities
;for handling situations of varying importance and
;urgency.

ASSUME CS:INTERRUPT_PROCEDURES, DS:DATA_VAR

DEVICE_1_PORT EQU OFOOOH
DEVICE_2_PORT EQU 0FO002H
DEVICE_3_PORT EQU OF004H
DEVICE_4_PORT EQU OF006H
WARNING _LIGHTS EQU OEOOOH
CONTROL_1 EQU 0EQO8H
EXTRN CONVERT_VALUE:FAR
;Positioning this EXTRN here indicates
;that CONVERT_VALUE is outside of
;all segments in this module.
INTERRUPT_PROC_TABLE SEGMENT BYTE AT O
ORG 08H

DD ALARM_1 ;non-maskable interrupt
type 2

;0ne 64K area of memory contains pointers to the routines
;that handle interrupts. This area begins at absolute
;address zero. The address for the routine appropriate
;to each interrupt type is expected as the contents of the
;double word whose address is &4 times that type. Thus the
;address for the handler of non-maskable-interrupt type 2
;is stored as the contents of absolute location 8. These
;addresses are also called interrupt vectors since they
;point to the respective procedures.

;The first 32 interrupt types (0-31) are defined or
;reserved by INTEL for present and future uses. (See the
;8086 User's Manual for more detail.) User-interrupt type
;32 must therefore use location 128 (=80H) for its
;interrupt vector.

ORG 08H

DD ALARM_2 ; INTERRUPT TYPE 32
DD DEVICE_1 ;INTERRUPT TYPE 33
DD DEVICE_2 ;INTERRUPT TYPE 34
DD DEVICE_3 ;INTERRUPT TYPE 35
DD DEVICE_&4 ;INTERRUPT TYPE 36

INTERRUPT_PROC_TABLE ENDS

DATA_VAR SEGMENT PUBLIC

EXTRN INPUT_1_VAL:BYTE, OUTPUT_2_VAL:BYTE,
& INPUT 3 VAL:BYTE, INPUT_4_VAL:BYTE
EXTRN ALARM_FLAG:BYTE, INPUT_FLAG:BYTE

;The names above are used by 1 or more of the procedures
;below, but the location or value referred to is located
;(defined) in a different module. These EXTeRNal
;references are resolved when the modules are linked
;together, meaning all addresses will then be known.
;Declaring these EXTRNs here indicates what segment they
;are in.

DATA_VAR ENDS

G-15

Example Programs

;The names below are defined later in this module. The
;PUBLIC directive makes their addresses available for
;jother modules to use.

PUBLIC ALARM_1, ALARM_2, DEVICE_1, DEVICE_2, DEVICE_3,
& DEVICE 4

INTERRUPT_PROCEDURES SEGMENT
ALARM_1 PROC FAR

;The routine for type 2, ''ALARM_1'' is the most drastic
;because this interrupt is intended to signal disastrous
;conditions such as power failure. It is non-maskable,
;i.e., it cannot be inhibited by the ClLear Interrupts
;(CLI) instruction.

MOV DX, WARNING_LIGHTS
MOV AL, OFFH

ouT DX, AL ;turn on all lights
MOV DX, CONTROL_1 ;

MOV AL, 38H ;turn off

ouT DX,AL imachine

HLT ;stop all processing

ALARM_1 ENDP
ALARM_2 PROC FAR

PUSH DX

PUSH AX

MOV DX, WARNING _LIGHTS

MOV AL, 1 ;turn on warning light #1
ouT DX,AL ;to warn operator of device

MoV ALARM_FLAG, OFFH ;set alarm flag to inhibit

POP AX ;later processes which may
;now be dangerous

POP DX

IRET ;return from interrupt:
;this restores the flags
;and returns control
;the interrupted
;instruction stream

ALARM 2 ENDP
DEVICE_1 PROC

PUSH DX

PUSH AX

MOV DX, DEVICE_1_PORT

IN AL, DX ;get input byte from
MOV INPUT_1_VAL, AL ;device_ store value
MOV INPUT_FLAG,2 ;this may alert another

;routine or device that
;this interrupt and input
;occurred

ASM86

POP AX
POP DX
IRET
DEVICE 1 ENDP
DEVICE_2 PROC
PUSH DX
PUSH AX
MOV AL, OUTPUT_2_ VAL
MOV DX, DEVICE_2_PORT
OUT DX,AL
POP AX
POP DX
IRET
DEVICE 2 ENDP
DEVICE 3 PROC
PUSH DX
PUSH AX .
MOV DX, DEVICE_3_PORT
IN AL, DX
AND AL,OFH
MOV INPUT_3_VAL, AL
POP AX
POP DX
IRET
DEVICE 3 ENDP
DEVICE_4 PROC
PUSH DX
PUSH CX
PUSH AX
MOV DX, DEVICE_ 4 PORT
IN AL, DX
MOV CL, AL
CALL CONVERT_VALUE
MOV INPUT_4_ VAL, AL
POP AX
POP CX
POP DX
IRET
DEVICE 4 ENDP
INTERRUPT_PROCEDURES ENDS
END

Example Programs

;when this interrupt-type
;occurs, the action necessary
;is to notify device_2_ port
;0f the event

;o9et value, to output
;to device_2_port

;when a device_3 interrupt
;occurs only the Lower byte
;at the port is of value

smask off top four bits
;store value for use
;by later routines

;in another module

;a device_& interrupt
;provides a value which
;needs immediate

;conversion by another
;procedurebefore this
sinterrupt-handler can allow
;it to be used at input_&4_val

;converts input value in
;CL to new result in AL
;and saves that result
;input_4 _val

in

Example Programs

Timing Loop

Example 9:

;This example is a procedure for supplying timing loops
;for a program. The amount of time delayed is set by a
;byte parameter passed in the AL register, with the amount
;of time = PARAM * 100 microseconds. This is assuming that
;the 8086 is running at 8 MHZ.

ASSUME CS:TIMER_SEG

TIMER_SEG SEGMENT

TIME PROC

DELAY_LOOP: MOV CL, 78H ;shift count for supplying
SHR CL,CL ;proper delay via SHR countdown
DEC AL ;rdecrement timer count

JNZ DELAY_LOOP

RET
TIME ENDP
TIMER_SEG ENDS

END

1/0 Routines

The examples below (10-13) illustrate the type of procedures used by the SDK86
Serial I/0 Monitor to communicate with the keyboard and display units during
execution.

The first, SIO__CHAR__RDY, tests whether an input character is awaiting
processing.

The second SIO_OUT__CHAR, outputs a character unless SIO_CHAR__RDY
reports an input character is there, which is handled first.

The third, SIO_OUT__STRING, puts out an entire string of characters, e.g., a
page heading, using SIO_OUT__CHAR for each output byte.

Example 10:

SIO_CHAR_RDY PROC NEAR

PUSH BP ;save old value

MOV BP, SP

MOV DX, OFFF2H ;address of status port to DX

IN AL,DX ;input from status port

TEST AL, 2H ;is read-data-ready line=1,
;i.e., character pending?

JNZ READY ;if so, return TRUE

MOV AL, O ;if not, return FALSE: AL=0

POP BP ;restore old value

RET ;done, no char waiting

ASMB86

ASMB86

Example Programs

READY:
MOV AL, OFFH ;return TRUE: AL=all ones
pPoP BP ;restore old value
RET ;done, char is waiting

SI0_CHAR_RDY ENDP

Example 11:

The above procedure also appears in this example, which introduces names for some
of the specific numbers used above, and for some that will be used in later examples.
These names can make it easier to read the procedure and understand what is going
on, or at least what is intended.

The example also uses BX and reorders the code to save a few bytes.

TRUE EQU OFFH
FALSE EQU OH

STATUS_PORT EQU OFFF2H
DATA_PORT EQU OFFFOH

ASCII_MASK EQU 7FH

CONTROL_S EQU 13H

CONTROL_Q EQU 11H

CARR_RET EQU ODH

SI0O_CHAR_RDY?2 PROC NEAR

PUSH BX ;save old BX value

Mov BL, TRUE ;prepare for one result
Mov DX, STATUS_PORT ;check the facts

IN AL,DX ;char waiting???

TEST AL, 2H ;if 2nd bit ON, char is
JNZ RESULT ;waiting hence skip over
MOV BL, FALSE ;FALSE set-up here if 2nd

;bit was off, hence no
;char waiting

RESULT: MOV AL, BL ;AL receives whichever
pop BX restore old BX value
RET ;

SI0_CHAR_RDY2 ENDP

Example 12:
SIO_OUT_CHAR PROC NEAR

;This routine outputs an input parameter to the USART
;output port when UART is ready for output transmit
;buffer empty. The input to this routine is on the stack.

PUSH B8P
MoV BP, SP

CALL SIO_CHAR_RDY ;keyboard input pending?

RCR AL, 1 ;put Llow-byte into CF to test

JNB QUTPUT ;if no input char waiting from
;keyboard, go to output loop

Example Programs

CHECK:

OUTPUT:

MoV DX, DATA_PORT
IN AL, DX

AND AL, ASCII_MASK
MoV CHAR, AL

CMP AL, CONTROL_S
JNZ QUTPUT

CMP CHAR, CONTROL_Q

JZ OUTPUT
CALL SIO_CHAR_RDY
RCR AL, 1
JNB CHECK

MOV DX, DATA_PORT
IN AL,DX

AND AL, ASCII_MASK
MOV CHAR, AL

CMP AL, CARR_RET
JNZ CHECK

JMP NEXTCOMMAND

CONTINUE:

SI0_OUT_CHAR

MOV DX, STATUS_PORT
IN AL, DX

TEST AL, 1

Jz QUTPUT

MOV DX, DATA_PORT
MOV AL, [BP) + &

Example 13:

SIO_OUT_STRING

ouT DX,AL
POP BP
RET 2
ENDP
PROC NEAR

ASM86

;char waiting: get it

;char to AL from that port
;strip off high bit, leaving
;ASCII code

;save char

;is char control-$§?

;if this halt-display signal
;is not rec'd, continue
;output at OUTPUT

;if control-S rec'd, must
;await its release

;Control-Q received?

;if this continuation-signal
;rec'd, to do next output

ikeep checking for new keyboard
;input, looping from CHECK

;to here until input waiting

;get waiting character

1

;if char=carriage-return,
;skip this instruction, which
;loops to await control-Q, and
;90 to NEXTCOMMAND

;loop until status port
;and transmit line indicate
;ready to put out character

’

;output port address to DX
;character from stack to AL
;output character in AL through

;restore original BP value
;repositions SP behind prior
;parameter

;:Outputs a string stored in the ''extra'' segment (uses ES
;as base), the string being pointed to by a 2-word pointer
;on the stack

PUSH BP

MOV BP, SP

MOV SI,0

LES BX, DWORD PTR

[(BP] + 4

ASMS86

Example Programs

;load ES with base address and BX with offset of string
; (addresses pushed onto stack by calling routine)

CHECK:

CMP BYTE PTR ES:

Jz DONE

[(gx] [s1l, 0

MoV AL,BYTE PTR ES: [BX]

PUSH AX

CALL SIO_OUT_CHAR

INC S1

JMP CHECK
DONE:

POP BP

RET 4

SIO_OUT_STRING

ENDP

(511

;terminator character
;is ASCII

;null = all zeroes if
;done, exit

;put next char on

;stack for output by
;this called procedure

;point index to next
;char

;after return, resets
;SP behind former
;parameters

G-21

186

APPENDIX H
INSTRUCTION SET SUMMARY

POP = Pop:
Memory

Register
Segment register

XCHG = Exchange:
Register/memory with register

Register with accumulator
IN = Input from:

Fixed port

Variable port

OUT = OQutput to:

Fixed port

Variable port

XLAT = Translate byte to AL
LEA = Load EA to register
LDS = Load pointer to DS
LES = Load pointer to ES
LAHF = Load AH with flags
SAHF = Store AH into flags
PUSHF = Push flags

POPF = Pop flags

186
Clock Comments

FUNCTION FORMAT Cycles
DATA TRANSFER
MOV = Move:
Register to Register/Memory [1000100w][modreg rm | 2112
Register/memory to register [T 000101 w][modreg rm | 2/9
immediate to register/memory [T 100011 w[mod000 wm | data | dataitw=1 1} 12-13 8/16-bit
Immediate to register [To11w reg | data [dataitw=-1 | 3-4 8/16-bit
Memory to accumulator [fo10000w] addrlow [addrhigh | 9
Accumulator to memory [fo1o001w] addrow | addrhigh | 8
Register/memory to segment register [1 000 1 11 0 | mod0reg rm | 2/9
Segment register to register/memory [1 000110 0] modOreg vm | 2/11
PUSH = Push:
Memory 1117111 1] mod110 vm | 16
Register m@
Segment register [@m

[0007111 1] modo00 rm |

|01011 reg
[000reg111|

(reg+01)

[To00011w]
10010

modreg rm |

reg

[t t1oo0iow]
1110110w

port]

[110011 w]

|11010111|

[fooo0t1101]
[T 1000710 1]
[t 1000100]

[ooiiiii]
[ooiiri0]
[[oo1iio0]
[ooiiio]

port

modreg v/m |

modreg rm |

modreg rm |

20
10

11

(mod + 11)
(mod # 11)

18
18

©® O Ww

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

Instruction Set Memory ASMS86
186 INSTRUCTION SET SUMMARY (Continued)
186
Clock Comments
FUNCTION FORMAT Cycles
ARITHMETIC
ADD = Add:
Reg/memory with register to either l[oooo000dw| modreg rm | 3/10
immediate to register-memory [t 00000sw] mod000 rm | data | dataitsw=01 | 4/16
Immediate to accumulator [oooo0010w] data | daaitw-1 | 3/4 8/16-bit
ADC = Add with carry:
Reg/memory with register to either [o00100dw] modreg rm 3/10
Immediate to registerzmemory [foo0000sw|[modo10 rm | data [dataifsw-01 | 4/16
Immediate to accumulator [boot1o0t1o0w] dta | dataitw-1_ | 3/4 8/16-bit
INC = Increment:
Register/memory [111111 w] mod000 rm | 3/15
Register 01000 r@ 3
SUB = Subtract:
Reg/memory and register to either [oo1010dw][modreg rm | 3/10
Immediate from register:memory [100000sw] modi01 rm] data | dataifsw-01 | 4/16
Immediate from accumulator [oo10110w] data | daaitw-1] 3/4 8/16-bit
SBB = Subtract with borrow:
Reg/memory and register to either [oo0t10dw] modreg rm | 3/10
Immediate from register/memory (100000sw] modot1 rm | data [dataifsw-01 | 4/16
Immediate from accumulator [oooti1ow][data | dataifw-1) 3/4 8/16-bit
DEC = Decrement:
Register/memory (111111 w] modo0t rm | 3/15
Register 01001 reg 3
CMP = Compare:
Register/memory with register [oot1 1010 w] modreg rm | 3/10
Register with register/memory foor1100w] modreg rm | 3/10
Immediate with register/memory (1000005 w|] modi1l rm | data | dataitsw=01 | 3/10
Immediate with accumulator [Pot111ow] data [dataitw-1] 3/4 8/16-bit
NEG = Change sign [t111011 w] mod01t rm | 3
AAA = ASCI| adjust for add IO 0110111 8
DAA — Decimal adjust for add 0010011 1 I 4
AAS - ASCII adjust for subtract |0 0111111] 7
DAS - Decimal adjust for subtract |0 0101111 4
MUL = Multiply (unsigned)- (11110117 w[mod100 rm |
Register-Byte 26-28
Register-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43
IMUL = Integer multiply (signed): [1711011 w[modi101 rm |
Register-Byte
Register-Word
Memory-Byte
Memory-Word
UL = Infeger i [0T1 016 T modreg rim]
- lsigned) oo e ame BT
DIV = Divide (unsigned): [T1i1011w] modit0rm |
Register-Byte 29
Register-Word 38
Memory-Byte 35
Memory-Word 44

Shaded areas indicate instructions not avaitable in iAPX 86, 88 microsystems.

H-2

ASMS86 Instruction Set Memory

186 INSTRUCTION SET SUMMARY (Continued)

186 c
Clock omments
FUNCTION FORMAT Cycles
ARITHMETIC (Continued):
1DIV = Integer divide (signed): 1111011 w[modt11 ©vm | 44-52
Register-Byte
Register-Word 53-61
Memory-Byte 50-58
Memory-Word 59-67
AAM = ASCII adjust for multiply [f1010100]00001010] 19
AAD = ASCII adjust for divide [f1o10101J00001010] 15
CBW == Convert byte to word 10011000 | 2
CWD -= Convert word to double word 10011001] 4
LOGIC
Shift/Rotate instructions:
Register/Memary by 1 [t101000w] mod TTTom | 2/15
Register/Memory by CL [t 101001 w[mod TTTom | 5+n/17+n

TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
AND = And:
Reg/memory and register to either [po1o000dw[modreg rm | 3/10
Immediate to register/memory [fooo0000w[modi00 mm | data [dataitw=1 | 4/16
Immediate to accumulator [oo10010w] data [dataitw=1] 3/4 8/16-bit
TEST = And function to flags, no result:
Register/memory and register [foocoo010w] modreg vm] 3/10
Immediate data and register/memory (1 111011 w| mod000 wvm | data [dataitw=1] 4/10
Immediate data and accumulator [to1o0100w] data | dataitw=1] 3/4 8/16-bit
OR=0r;
Reg/memory and register to either [000010dw] modreg rm | 3/10
Immediate to register/memory [000000 w] mod001 wm | data | dataitw=1 | 4/16
immediate to accumulator [0000110w] data [dataifw=1] 3/4 8/16-bit
XOR = Exclusive or:
Reg/memory and register to either [oo1100dw[modreg rm | 3/10
Immediate to register/memory [t 000000w] mod110 m] data [damitw=1 | 4/16
Immediate to accumulator [oot1 1010 w] data [dataitw=1] 3/4 8/16-bit
NOT = invert register/memory (111011 w] mod0i10 ©vm | 3
STRING MANIPULATION:
MOVS = Move byte/word [[oi1o0o07row 14
CMPS = Compare byte/word |1 010011 wl 22
SCAS = Scan byte/word |1 010111w 15
LODS = Load byte/wd to ALAX [[010110w] 12

STOS = Stor byte/wd from AL/A

1010101 w 10

Shaded areas indicate instructions not available in IAPX 86, 88 microsystems.

H-3

CINS

CONTROL TRANSFER

CALL = Call:
Direct within segment

Register memory
indirect within segment

Direct intersegment

Indirect intersegment

JMP = Unconditional jump:
Short/long

Direct within segment

Register'memory indirect within segment[1

Direct intersegment

Indirect intersegment

RET = Return from CALL:
Within segment

Within seg adding immed to SP
Intersegment

Intersegment adding immediate to SP

[t 1101000] displow | disp-high |

[fri1971 1] modo10rm |

[foor1010] segment offset]
[segment selector |

11111 1] modotirm | (mod ~11)

[11oto 1] displow |

[11o01001] disp-low] disp-high]

111111 1] modi00rm |

[110101 0] segment offset |
[segment selector |

[T11 11171 1] mod101rm | (mod - 11)

[tTio0o00071 1

[t 100001 0] datalow [date-high |

[t100710711

[t 100101 0] datalow [datechigh |

14
13/19

23

38

13
13
1117

13

26

16
18
22

25

Instruction Set Memory ASMS86
186 INSTRUCTION SET SUMMARY (Continued)
186
Clock Comments

FUNCTION FORMAT Cycles

STRING MANIPULATION (Continued):

Repeated by count in CX

MOVS - Move string [111001 0]1010010w] 8+8n

CMPS — Compare string [f111001 210100711 w] 5+22n

SCAS - Scan string [[1r1001zJ1010111w] 5+15n

LODS - Load string [f1r10010J1010110w] 6+11n

STOS - Store string (111001010101 01w] 6+9n

Shaded areas indicate instructions not available in IAPX 86, 88 microsystems.

H-4

ASM86

186 INSTRUCTION SET SUMMARY (Continued)

Instruction Set Memory

186
FUNCTION FORMAT ccylzfeks Comments
CONTROL TRANSFER (Continued):
JE/JZ = Jump on equal-zero [p1110100] disp | 4/13 13 if IMP
JL/AINGE = Jump onlessmot greater or equat [o1r111100] disp | 4/13 t'aken
JLE/JNG = Jump on s or equalmot greater [o1111110] disp] 4/13 n40|tft‘i’\k/|epn
JB/INAE = Jump on belowinot above or equal [o1110010] disp] 4/13
JBE/JINA = lumponbeloworequabnotaboe [0 111011 0 | disp | 4/13
JP/JPE = Jump on parity parity even l[o1111010] disp | 4/13
J0 == Jump on overfiow [o1110000] disp | 4/13
J8 = Jump on sign [o1111000] disp | 4/13
JNE/JNZ = Jump on not equalinot zero [or110710 1] disp] 4/13
JINL/JGE = Jumpon not lessigreater or equal EEEEELRER! disp] 4/13
JNLE/JG = Jump on notless or equargreater EEEEEEER disp] 4/13
JNB/JAE = Jumpon notbelowaboveorequal [0 111001 1] disp | 4/13
JINBE/JA = Jumponnotbeloworequababove [0 11 10 11 1] disp | 4/13
JNP/JPQ = Jump an not parpar odd [o111101 1] disp | 4/13
JINO = Jump onnot overfiow [ot111000 1] disp] 4/13
JNS = Jump o notsign [o1111001] disp | 4/13
LOOP = Loop OX times [11100010] disp | 5/15
LOOPZ/LOOPE - Logpwhie eroequa [[1100001] asn_] 6/16
LOOPNZ/LOOPNE = Loop whilenotzeroequal [1 110000 0 [disp] 61/236 JMP taken/
JCXZ = Jump on CX zero [t 1100071 1] disp] 5 JMP not taken

INT=Interrupt:
Type specified

Type 3
INTO = Interrupt on overflow

IRET = Interrupt return

[11001101]

type

]

|11001100]
11001110

(11001111

47
45
48/4

28

if INT. taken/
if INT. not
taken

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

Instruction Set Memory ASM86

186 INSTRUCTION SET SUMMARY (Continued)

186
FUNCTION FORMAT Clock Comments
Cycles
PROCESSOR CONTROL
CLC = Clear carry [f1111000] 2
CMC = Complement carry m 2
STC = Set carry |_1_1—T_11—_0_0-_I| 2
CLD = Clear direction m@ 2
STD = Set direction m@ 2
CLI = Clear interrupt ‘m 2
STI=Set interrupt W 2
HLT = Halt [[1110100] 2
WAIT = Wait [foot1107 1] 6 iftest =0
LOCK =Bus lock prefix [T1110000] 2
ESC = Processor Extension Escape [fo01 17T 7] modLLL vm | 6
(TTT LLL are opcode to processor extension)

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems.

H-6

ASMS86 Instruction Set Memory

FOOTNOTES

The effective Address (EA) of the memory operand is REG is assigned according to the following table:
computed according to the mod and r/m fields: 16-Bit(w = 1) 8-Bit(w = 0)

if mod = 11 then r/mis treated as a REG field gg? g;((gg? gt
. _ — 0 disp-| lisp-hi

|fmocé OtOthen DISP = 0%, disp-low and disp-high 010 DX 010 DL
are absen o . 011 BX 011 BL
if mod = 01 then DISP = disp-low sign-extended to 100 sp 100 AH
16-bits, disp-high is absent 101 BP 101 CH
if mod = 10then DISP = disp-high: disp-low 110 SI 110 DH
if r/m = 000 then EA = (BX) + (SI) + DISP 111 DI 111 BH

if /m = 001 then EA = (BX) + (DI) + DISP

if r’'m = 010 then EA = (BP) + (Sl) + DISP The bhvsical add ¢ al ds add b
. B e physical addresses of all operands addressed by
ifr/m = 011then EA = (BP) + (D) + DISP the BP register are computed using the SS segment

I

ifr/m = 100 then EA = (Sl) + DISP register. The physical addresses of the destination op-
ifr/m = 101 then EA = (DI) + DISP erands of the string primitive operations (those ad-
ifr/m = 110then EA = (BP) + DISP* dressed by the DI register) are computed using the ES
ifr/m = 111 then EA = (BX) -+ DISP segment, which may not be overridden.

DISP follows 2nd byte of instruction (before data if
required)

*exceptif mod = 00 and r/m = 110 then EA = disp-high: disp-low.

SEGMENT OVERRIDE PREFIX
B 01reg 11 OI

reg is assigned according to the following:

Segment
reg Register
00 ES
01 CSs
10 SS
1 DS

H-7

INDEX

17-bit number, 3-2
186 Clocks, H-1-H-7
186 Instruction Set Summary, H-1-H-7
8086,/8087/8088 Development tools, vi, 1-1, 1-2
8086,/8088 flags
(see Flags)
8087 Control word, 6-110
8087 Data types, 3-1, 3-2, 6-112
8087 Emulators, 6-116
8087 environment, 6-109
8087 Exception pointers, 6-112
8087 Rounding masks, 6-114
8087 Status word, 6-109
8087 Tag word, 6-111

AAA, ASCII Adjust for Addition, 6-21
AAD, ASCII Adjust for Division, 6-22
AAM, ASCII Adjust for Multiplication, 6-23
AAS, ASCII Adjust for Subtraction, 6-24
ABS, external type, 5-2
ADC, Add with Carry, 6-25
ADD, 6-26
addition operator, +, 4-12
addressability of data/code, 1-9, 2-5, 4-14-4-15
address expression, 3-4, 2-6, 2-7, 4-7--4-8 '
addressing modes, 4-3, 6-1
based address, 4-4
based indirect address, 4-4, 4-18
direct address, 4-3
indexed address, 4-4
register indirect address, 4-3, 4-18
align-type, segment attribute, 2-2
AND, Logical And, 4-13
AND, Logical expression operator, 6-27
anonymous references, 4-5, 6-5
arithmetic operators, 4-10-4-12
Assembly language, 1-1
assembly language statements, 1-5
ASSUME directive, 1-9, 2-5-2-8, 4-5, 4-14, 4-18
AT, Segment combine-type, 2-3, 4-9
attribute operators
attribute overriding operators, 4-4—4-16
attribute value operators, 4-17-4-21

base relocatability, 4-9, 4-18
BOUND, check array, 6-28
BYTE
external variable type, 5-2
segment align-type, 2-2
variable type operand, 3-18, 4-16, 4-17

CALL, 6-29

CBW, Convert Byte to word, 6-31
Character Set, 1-3

CI, console input, 7-19
classname, segment attribute, 2-3
CLC, Clear Carry Flag, 6-32
CLD, Clear Direction Flag, 6-33
CLI, Clear Interrupt Flag, 6-34

CMC, Complement Carry Flag, 6-35
CMP, Compare, 6-36
CMPS, Compare String, 6-99
CMPSB, Compare Byte String, 6-99
CMPSW, Compare Word String, 6-99
CO, console output, 7-19
CODEMACRO directive, A-1-A-17
codemacro matching, A-14
codemacro modifiers, A-4
codemacro range specifiers, A-4
codemacros, A-1-A-17
codemacro specifiers, A-3
Codemacros, list of, A-18—-A-33
combine-type, segment attribute, 2-2
combining logical segments, 2-2, 2-8
COMMON, segment combine-type, 2-2
conditional jump instructions, 4-16, 6-12—6-13, 6-52
constants, 3-2, 3-5, 4-24

ASCII, 3-3, 3-7, 3-8

binary, 3-3

decimal, 3-3

decimal real, 3-2, 3-3

hexadecimal, 3-3

hexadecimal real, 3-2, 3-3

octal, 3-3
continuation lines, 1-5
CPU hardware, overview, 1-5
Crowley, Aleister, 3-4
CWD, Convert Word to Double Word, 6-37 -

DAA, Decimal Adjust for Addition, 6-38
DAS, Decimal Adjust for Subtraction, 6-39
data types, 3-1, 3-2
DB, Define byte directive,3-3, A-7
DD, Define directive, 3-3, A-7
debug information, control of, 3-19
DEC, Decrement, 6-40
Delimiters, 1-4, 7-20
DIV, divide, 6-41
division operator, /, 4-11
Dot operator, codemacro operator, A-12
DQ, Define word directive, 3-4
DT, Define tbyte directive, 3-4
DUP, repeated data initialization, 3-7-3-8
DW, Define word directive, 3-3, A-7
DWORD

external variable type, 5-2

variable type operand, 3-18, 4-16, 4-17

END directive, 5-3-5-5

ENTER, high level entry, 6-43

EQ, Relational expression operator, 4-12

EQU directive, 4-17, 4-24

ESC, Escape, 6-42

EVEN directive, 3-19

expression operands, 4-2, 4-6—4-8
address expressions, 4-7—-4-8
numbers, 4-2, 4-6, 4-25

EXTRN directive, 4-9, 4-10, 5-1-5-3

Index-1

Index

F2XMI, Calculate, 6-123
FABS, absolute value, 6-124
FADD, add real, 6-125
FADDP, Add real and pop, 6-126
FAR
external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17
FBLD, Load packed decimal, 6-127
FBSTP, Store packed decimal, 6-128
FCHS, change sign, 6-129
FCLEX, clear exceptions, 6-130
FCOM, Compare real, 6-131
FCOMP, Compare real and pop, 6-133
FCOMPP, Compare real and pop twice, 6-135
FDECSTP, Decrement stack: pointer, 6-137
FDISI, Disable interrupts, 6-138
FDIV, Divide real, 6-139
FDIVP, Divide real and pop, 6-140
FDIVR, Reversed divide real, 6-141
FDIVRP, Reversed divide real and pop, 6-142
FENI, Enable interrupts, 6-143
FFREE, Free stack element, 6-144
FIADD, Add integer, 6-145
FICOM, Compare integer, 6-146
FICOMP, Compare integer and pop, 6-148
FIDIV, Divide integer, 6-150
FIDIVR, Reversed divide integer, 6-151
FILD, Load integer, 6-152
FIMUL, Multiply integer, 6-153
FINCSTP, Increment stack pointer, 6-154
FINIT, Initialize processor, 6-155
FIST, Store integer, 6-156
FISTP, Store integer and pop, 6-157
FISUB, Subtract integer, 6-158
FISUBR, Reversed subtract integer, 6-159
Flags, 6-4, 6-8, 6-14, 6-16, B-1-B-3
FLD, Load real, 6-160
FLDCW, Load control word, 6-161
FLDENYV, Load 8087 environment, 6-162
FLDL2E, Load log,e, 6-165
FLDL2T, Load log,10, 6-166
FLDLG?2, Load log,,2, 6-163
FLDLN2, Load log,2, 6-164
FLDPI, Load I1, 6-167
FLDZ, Load +0.0, 6-168
FLD1, Load +1.0, 6-169
Floating Point Stack, 4-2, 6-108
FMUL, Multiply real, 6-170
FMULP, Multiply read and pop, 6-171

FNCLEX, Clear exceptions with no WAIT, 6-130
FNDISI, Disable interrupts with no WAIT, 6-138
FNENI, Enable interrupts with no WAIT, 6-143
FNINIT, Initialize processor with no WAIT, 6-155

FNOP, No operation, 6-172

FNSAVE, Save 8087 state with no WAIT, 6-178
FNSTCW, Store control word with no WAIT, 6-183
FNSTENYV, Store 8087 environment with no WAIT, 6-184
FNSTSW, Store 8087 status word with no WAIT, 6-187

forward references, 1-3, 2-7
FPATAN, Partial arctangent, 6-173
FPREM, Partial remainder, 6-174
FPTAN, Partial tangent, 6-175
FRNDINT, Round to integer, 6-176
FRSTOR, Restore 8087 state, 6-177

Index-2

FSAVE, Save 8087 state, 6-178

FSCALE, Scale, 6-180

FSQRT, Square root, 6-181

FST, Store real, 6-182

FSTCW, Store control word, 6-183 .
FSTENYV, Store 8087 environment, 6-184
FSTP, Store real and pop, 6-186

FSTSW, Store 8087 status word, 6-187
FSUB, Subtract real, 6-188

FSUBP, Subtract real and pop, 6-189
FSUBR, Reversed subtract real, 6-190
FSUBRP, Reversed subtract real and pop, 6-191
FTST, Test, 6-192

FWAIT, CPU WAIT alternate form, 6-193
FXAM, Examine, 6-194

FXCH, Exchange, 6-195

ASM86

FXTRACT, Extract exponent and significand, 6-196

FYL2X, Calculate Y log,x, 6-198
FYL2P1, Calculate Y log,(X + 1), 6-199

GE, Relational expression operator, 4-12
GROUP directive, 2-8, 4-9, 4-18
GT, Relational expression operator, 4-12

HIGH operator, 4-10
HLT, Halt, 6-44

Identifiers, 1-4
indeterminate initialization of data, 3-6

initializing a segment register, 2-6, 2-8, 4-18, 5-3-5-5, F-2

IDIV, Integer Divide, 6-45
IMUL, Integer Multiply, 6-46
IN, Input byte or word, 6-48
INC, Increment, 6-49
INPAGE, segment align-type, 2-2
INS, input IO address to memory, 6-100
instruction operands, 4-1, 4-2
immediate, 4-2
register, 4-2, 6-3
memory, 4-3, 6-1-6-3
instruction statements, 4-1, 6-1
INT, Interrupt, 6-50
integer constants, 3-2
INTO, Interrupt on Overflow, 6-50
Interrupt Procedures, G-14
interrupts, 6-13-6-14
IRET, Interrupt Return, 6-51

JA, Jump or Above, 6-52

JAE, Jump or Above or Equal, 6-52

JB, Jump or Below, 6-52

JBE, Jump or Below or Equal, 6-52

JC, Jump or Carry Flag, 6-52

Jeond, conditional jump instructions
(see conditional jump instructions)

JCXZ, Jump or CX Zero, 6-52

JE, Jump or Equal, 6-52

JG, Jump or Greater, 6-52

JGE, Jump or Greater or Equal, 6-52

JL, Jump or Less, 6-52

JLE, Jump or Less or Equal, 6-52

JMP, Jump, 6-54—6-55

JNA, Jump or Not Above, 6-52

JNAE, Jump or Not Above or Equal, 6-52

JNB, Jump or Not Below, 6-52

ASM86

JNC, Jump on No Carry Flag, 6-52
JNBE, Jump or Not Below or Equal, 6-52
JNE, Jump or Not Equal, 6-52

JNG, Jump or Not Greater, 6-52

JNGE, Jump or Not Greater or Equal, 6-52
JNL, Jump or Not Less, 6-52

JNLE, Jump or Not Less or Equal, 6-52
JNO Jump or Not Overflow Flag, 6-52
JNP, Jump or Not Parity Flag, 6-52

JNS, Jump or Not Sign Flag, 6-52

JNZ, Jump or Not Zero Flag, 6-52

JO, Jump or Overflow Flag, 6-52

JP, Jump or Parity Flag, 6-52

JPE, Jump or Parity Even, 6-52

JPO, Jump or Parity Odd, 6-52

JS, Jump or Sign, 6-52

JZ, Jump or Zero Flag, 6-52

label
attributes of, 3-1-3-2 .
defining, 3-2, 3-15-3-18, 4-1, 4-24
operand of instruction or expression, 4-3
LABEL directive, 3-17-3-18, 4-17
LAHF, Load AH with Flags, 6-56
LDS, Load Pointer into PS, 6-57
LE, Relational expression operator, 4-12
LEA, Load Effective Address, 6-58
LEAVE, high level exit, 6-59
LENGTH operator, 4-20
LES, Load pointer into ES, 6-57
Location counter ($), 3-18
LOCK, Lock Bus, 6-60
LODS, Load String, 6-100
LODSB, Load byte string, 6-100
LODSW, Load word string, 6-100
logical address, 1-8
logical segments
(see segments)
logical operators, 4-13
LOOP, 6-61
LOOPE, Loop while Equal, 6-61
LOOPNE, Loop while Not Equal, 6-61
LOOPNZ, Loop while Not Zero, 6-61
LOOPZ, Loop while Zero, 6-61
LOW operator, 4-10
LT, Relational expression operator, 4-12

Macro Processor Language (MPL), 1-5
arguments to macros, 7-6
-arithmetic expressions, 7-11
bracket function, 7-10
call-literally character (), 7-6
. CI, console input, 7-19
CO, console output, 7-19
comments as macros, 7-8
conditional assembly, 7-14
console I/0
(see CI, CO, IN, OUT under Macro Processing
Language)
DEFINE function, 7-2
delimiters
comma, 7-6
identifier, 7-20
literal, 7-21
other, 7-20

EQ, relational operator, 7-11
EQS, string compare function, 7-12
Escape function, 7-9
EVAL function, 7-12
EXIT function, 7-16
GT, relational operator, 7-11
GTS, string compare function, 7-12
IF ... THEN ... [ELSE ...] F1 function, 7-14
IN function, 7-19
LE, relational operator, 7-11
LEN function, 7-17
LES, string compare function, 7-12
Local Symbols, 7-7
Logical expressions, 7-11, 7-12
MATCH function, 7-18
Metacharacter (%), 7-11
NE, relational operator, 7-11
NES, string compare function, 7-12
OUT function, 7-19
parameters, 7-6
REPEAT function, 7-16
SET, Built-in macro function, 7-11
String compares, 7-12
SUBSTR function, 7-17
values, range of; 7-11
WHILE function, 7-15
MASK operator, 4-22
Memory Segmentation model, 1-8
MEMORY, segment combine-type, 2-2

“mnemonic, 1-1, 1-3, 4-1, 4-24, 6-1, 6-6, 6-20, 6-122

MOD, expression operator, 4-11
modrm byte, 6-2, 6-16

MODRM, Codemacro directive, A-6
module, source, 1-9, 5-1, 5-5

MOV, Move data, 6-62

MOVS, Move string, 6-100
MOVSB, Move byte string, 6-100
MOVSW, Move word string, 6-100
MUL, Multiply, 6-64

multiplication operator, *, 4-11

NAME directive, 5-5
NE, Relational expression operator, 4-12
NEAR
external label type, 5-2
label type operand, 3-18, 4-16, 4-17
PROC type, 3-17
NEG, Negate, 6-65
NOP, No operation, 6-66
NOSEGFIX, Codemacro directive, A-5
NOT, Logical expression operator, 4-13
NOT, Logical Not, 6-67
NOTHING, Assume operand, 2-5, 2-7
numbers, 4-6, 4-10, 4-24

OFFSET operator, 2-9, 4-15, 4-18
offset relocatability, 4-9, 4-18
offset, variable/label attribute, 1-8, 3-1, 3-4, 3-6, 3-15,
4-8, 4-9
operands, expression
(see expression operands)
operands, instruction
(see instruction operands)
operator precedence, 4-23, 7-11

Index

Index-3

Index

operators, expression
arithmetic, 4-10-4-12
attribute, 4-14-4-21
logical, 4-13
record-specific, 4-21-4-23
relational, 4-12-4-13
OR, Logical expression operator, 4-13
OR, Logical Or, 6-68
ORG directive, 3-18
OUT, Output byte or word, 6-69
OUTS, 6-100

PAGE, segment align-type, 2-2, 4-9
paragraph number
segment base pointer, 1-8, 2-7
variable/label attribute, 3-1, 4-18
parameter passing, G-4—-G-12
PARA, Segment align-type, 2-2, 4-9
physical address, 1-8
physical segments, 1-8, 1-9
(see segments)
pointer to variable/labe, 3-6, 6-7
POP, Pop from stack, 6-70
POPA, Pop All Registers, 6-71
POPF, Pop Flags, 6-72
Prefix, instructions, 4-1
PREFX, Codemacro directive, A-2
PROC/ENDP directives, 3-2, 3-15-3-17
PROCLEN, Codemacro directive, A-14
program linkage, 5-1-5-5
program module
(see module, source)
PTR operator, 4-15-4-16
PUBLIC directive, 5-1
PUBLIC, segment combine-type, 2-2, 4-9
PURGE directive, 3-19
PUSH, Push onto stack, 6-73
PUSHA, Push All Registers, 6-75
PUSHF, Push Flags, 6-76

QWORD
external variable type, 5-2
variable type operand, 4-16, 4-17

RCL, Rotate through Carry Left, 6-77-
RCR, Rotate through Carry Right, 6-79
real constants, 3-2-3-3

RECORD directive, 3-8

record field-name, usage as shift count, 4-22

Records

allocation and initialization, 3-8, 3-10, A-7

definition, 3-8—3-9

introduction, 3-8

record-specific operators, 4-21-4-23
Record-specific operators, 4-21-4-23

register expression, 4-3—4-6, 4-7-4-8, 4-25

Registers, 4-24

base or pointer registers, 1-6, 4-3, 4-4, 4-5, 4-7

general registers, 1-6

implicit use of, 1-7, 4-4—4-6, 4-15, 6-5

segment registers, 1-7, 4-4-4-6
relational operators, 4-12—4-13
RELB, Codemacro directive, A-8
relocatable expressions, 4-9, 4-12
relocatability, 4-9

Index-4

RELW, Codemacro directive, A-8
REP, Repeat, 6-81

REPE, 6-81

repeated initialization of data, 3-7-3-8
REPNE, 6-81

REPNZ, 6-81

REPZ, 6-81

reserved words, 6-1

RET, Return, 6-82

RFIX, Codemacro directive, A-10
RFIXM, Codemacro directive, A-10
RNFIX, Codemacro directive, A-11
RNFIXM, Codemacro directive, A-12
ROL, Rotate Left, 6-83

ROR, Rotate Right, 6-85

RWFIX, Codemacro directive, A-13

SAHF, Store AH into Flags, 6-87
SAL, Shift Arithmetic left, 6-88
SAR, Shift Arithmetic Right, 6-90
SBB, Subtract with Borrow, 6-92
SCAS, Scan string, 6-100

SCASB, Scan byte string, 6-100
SCASW, Scan word string, 6-100
scope of identifiers, 1-4, 3-15
SEGFIX, Codemacro directive, A-4

ASMS86

segment attribute of variables/labels, 3-1, 3-4, 3-6, 4-8, 4-9

SEGMENT/ENDS directive, 1-9, 2-1-2-5, 4-9

Segment override, 4-14—4-15

Segment Override Prefix, 2-6, 4- 14—4-15 6-2

segment register, default usage, 4-4-4-6

segments '
logical segments, 1-8, 2-1, 4-9
physical segments, 1-8, 2-1, 4-9

SEG operator, 2-7, 2-9, 4-18

Separators, 1-4

shift count, record name, 4-22

SHL, expression operator, 4-11

SHL, Shift Left, 6-88

SHORT operator, 4-16

SHR, expression operator, 4-11

SHR, Shift Right, 6-94

SIZE operator, 4-21

ST, 8087 registers, 4-2

STACK, segment combine-type, 2-2, 4-9

STC, Set Carry Flag, 6-96

STD, Set Direction Flag, 6-97

STI, Set Interrupt Flag, 6-98

storage of 16-bit data in memory

STOS, Store string, 6-100

STOSB, Store byte string, 6-100

STOSW, Store word string, 6-100

String instructions, 4-5, 6-4—-6-6, 6-10-6-12, 6-99

strings

(see constants, ASCII)
structure fields, accessing of, 4-8
Structures

allocation and initialization, 3-12-3-14, 4-8

definition, 3-11-3-12

-introduction, 3-10
STRUC/ENDS directive, 3-11
SUB, subtract, 6-102
subtraction operator, —, 4-12
syntax notation, 1-10

ASM86

TBYTE
external variable type, 5-2
variable type operand, 3-18, 4-16, 4-17
TEST, 6-103
THIS operator, 4-17
Tokens, 1-4
TYPE operator, 4-19-4-20
typing of operands, 1-3, 4-15, 4-17
type of variable or label, 3-1-3-2, 3-4

variable
attributes of, 3-1, 4-9
defining, 3-3-3-5, 4-24
initializing, 3-4, 3-5-3-8
operand of instruction or expression, 4-3

WAIT, 6-104
WIDTH operator, 4-23

Index

WORD
external variable type, 5-2
Segment align-type, 2-2
Variable type operand, 3-18, 4-16, 4-17

XCHG, Exchange, 6-105

XLAT, Translate, 6-106

XLATB, Translate, 6-106

XOR, Logical Exclusive Or, 4-13

XOR, Logical expression operator, 6-107

+, addition operator, 4-12

/, division operator, 4-11

7, indeterminate initialization, 3-6, 3-7, 4-17
$, location counter symbol, 3-18, 4-17

*, multiplication operator, 4-11

7SEG, the default segment, 2-5

—-, subtraction operator, 4-12

Index-5

] ® ASM86 Language Reference Manual
Intel 121703-003

REQUEST FOR READER’S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this publi-
cation. If you have any comments on the product that this publication describes, piease contact your Intel repre-
sentative. If you wish to order publications, contact the Intel Literature Department (see page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for improve-
ment.

3. s this the right type of publication for your needs? Is it at the right level? What other types of publications are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating)

NAME DATE

TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE ZIP CODE
(COUNTRY)

Please check here if you require a written reply. []

WE’D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All

comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.1040 SANTACLARA,CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

Attn: Technical Publications M/S 6-2000
3065 Bowers Avenue

Santa Clara, CA 95051

NO POSTAGE
NECESSARY
IF MAILED
INU.S.A.

inte|®
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

SOFTWARE

0255/7.5K/0385/WCP/AD

