




























































































































































































































































































































































































































�i�A�P�X�8�6�~�8�8� Family Utilities Additional Information for InteUec Series III Users 

Example 4: Building and Using Library Files 

A library isa file �t�h�~�t� contains object modules. Libraries allow you to collect 
commonly used pieces of software into one file. The library file can be included in a 
LINK86 invocation,.and LINK86 will use the modules to resolve references. 

You can add the output from a translator, LINK86, or LOC86 to a library. The 
modules added may be relocatable or absolute; they can have unresolved references 
or be completely linked. . 

Let's consider the following scenario - we have created six routines (SINE, 
COSINE, TANGENT,COSECANT, SECANT, and COTANGENT). We want to 
create a library file that will allow each routine to be linked to programs separately. 

The first step necessary to create the library is to translate each routine separately. If 
we were to put them ina single source module, the translator would translate them 
into one module with six public symbols. We could add this module to a library, but 
when we tried to link one of the routines into a program, all six would be included. 

Once the routines are translated, LIB86 can be used to create a library file and add 
modules. The LIST command is used to display the contents of the library and the 
publics contained within it. 

SERIES-III 8086 LIBRARIAN Vx.y 

* 
* 
* 

: F : TR 
SIN 

SINE 
COS 

COSINE 

=-ADD :F1:SEC.LNK, 
:F1:TAN,LNK to T 

L:S T TRIS.LIB �~�'�L�J�8� 

* 

:FO:TRIG.LIB 
SIN 

SINE 
COS 

COSINE 
SEC 

SECANT 
CSC 

COSECANT 
COT 

COTANGENT 
TAN 

TANGENT 

/ :F1:CO"".LNK, &<c r > 

1-7 



Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities 

1-8 

Example 5: Linking and Locating Programs with 
Overlays Using OVERLAY Control 

The easiest way to build an 8086 program that contain overlays is with LINK86's 
OVERLA Y control. Overlay modules built with this control reside in the same file 
as the root. The operating system supplies routines that will load the overlays con
structed in this way. See Intellee Series III Microcomputer Development System 
Programmer's Reference. 

After the program modules that will constitute the root and its overlays are 
translated, each of the overlays and the root must be linked separately. Then the 
root and all of the overlays are linked together. 

The example below shows the first step toward linking overlays-linking all of the 
modules that will constitute each overlay and the root separately: 

• • v I 

~'ER\..AY(CVE 

86 RJ8T.JB~,q • C " 

Notice that all of the modules, including the root, are linked with the OVERLAY 
and NOBIND controls. The overlay name for the root is not as critical as for the 
overlays, since the overlay name is used when calling the loader. 

Finally, the overlays and root must be linked together. Since anyone of the files 
could be the root, LINK86 requires that for the final link the file containing the root 
must be first in the input list. During this final the OVERLAY control is not used: 

In the invocation, the optional BIND control is specified. The resulting object file is 
executable on a Series III. 

Figure 1-5 shows the LINK86 print file listing for the above invocation. 

There is nothing special about the invocation line to LOC86 when locating a file that 
contains overlays or that has been bound: 

The RESERVE control prevents LOC86 from assigning memory addresses reserved 
for the operating system. Figure 1-6 illustrates the printont from this invocation. 



iAPX 8~88FamDy Utilities Additional Information for InteHec Series III Users 

SEilES-IlI bOil. LIKEB. Vlr.,. 

IUUT YIL&S: BOOt.UI:.OY1.LIII:. OY2.LIII:. 013· .... 1:. O'''.UI: 
OUTPUT FILE: PBOG~86 
COli'nOLS SPECIFIED II UYOCATIOII COIUll.D~ 

IUID 
DATE: ""'IDOl" rIllE: 

LIllI: ....O'IIODOLB BOOT 

LOGICAL SBGUlrS UCLODED: 
LUGTB ADDBBSSALIGI ~GJlBn 

3C87B ------ G CODB 
OD008 ------ G COWST 
28110B ----- G DITA 

CLASS 
CODB 
COIIST 
DAtA 

OYBIILA! 
lOOt 
BOOt 
ROOt 

r-------------~=======---~ 

-

IIPOTMODOLBS nCLUDBD: 
IOOT.UI(BOOT) 
OY1.LH(PUSB) 
OY2.LH(ILUDB) 
OY3.LU(Plt:ILUDB) 
OYII.LU(PUTLOAD) 

GIOUP Mn 

GROUP IAMB: 
OPr-SI1' 
OOOOB 
3CEClil 
3C&&B 

COROUP 
SBOUIT IAMI 
CODB\CODI\BOOT 
COOl\COOB\P1SSl 
COOB \ CO DB \P ASS2 

SYlOOL TULE 01' MODOLB Roor 

BlSB OI'PSET TYPE SYMBOL 

G(2) 251CB PUB' ACTon 

G(2) 01'228 PUB BASEPUOPSEXlST 
0(2) 01)26B PUB JiIODEID 
G(.2) 002b8 PUB CLlsa.OOIlD 
0(2) 01'008 POB COIIIIorSCOliT 1101. 
a(2) Ol'lAB PliB CURRBITOYEIlLUILU 

-M 

OYBILU IAMB .. ROOT. IIODULB lAME' ,. lOOT 

BASB' OPFSET TYPE SYMBOL 

G(2) IIU08 . SYM MBMORY 
0(2) ODOOB SYM LASTIMIODBID 
1H2) ODOJtB SYM LASTSG.ODBIB 
G(2) OD06B SIM LASTIDIODBID 
G(2) ODOCB SIM LUTn.ODEID 
G(2) 0010B SIM LASTGRIIOOEIO 
G(2) 01)1118 SIll LASTOYIIODEID 
0(2) 0018B SIM LASTG.ODEIO 

OYBRLAY lAME .. ROOT. MODULE NAMB LIT 

BASE OFPSET TIPE SIMBOL 

G(2) 1iA20B SIM MBMORY 
G(2) OP56B SIM LUBASE 
G(2) OF56B BAS LUIIODE 
G(2) op6l1B SYM t'IRSTIOOE 
0(2) OF96B SIM TEIIPLATB 
ocn 016£B SIM GBTLIT 
STACI 0004B SYM I 

BASB OFFSET TIPI SYMBOL 

G(2) 0.,OD8 PUB USUItBROOTCOItIlO 
-L 

G(2) OFOCIl PUB BIIIDCOlfTROL 
G(2) 21jE&B PUB BUI'BASE 
0(2) OD5AB PUB COCO.II 
G(2) 01'508 POll CURB'lIItFILlUM 
G(2) OFtiBB PUB CURREIlRECIIBEl 

---
USB OFFSET TIP!: SYMBOL 

G(2) 0002B SYM COPYRIGBT 
0(2) OD028 SIll FIRStINlOD&lD 
0(2) OD068 SIM FUSfSGIODBIJl 
G(.2) ODUR SIM I'USTTOIIOD&ID 
G(2) OOOBH SIM FUSUIIOB&ID 
G(2) OD12H SIM FIaSTGalODIID 
G(2) ODHiR SIM FIRSTOYlODIID 
aU) ODUB SIM FIRSTBIIODEIO 

BASE OFFSET TUE SIMBOL 

G(2) 003CH BAS SGIODE 
G(2) OF5811 SYM LITIO 
G(2) OF5AR SIM FIRST NO DUDS 
G(2) orBER SYM CUlIR8IITRECUJDEX 
G(2) OFB9H SIM II 
STAe, 00068 SIM INDO 
G(1) 0207H SIM SGLIT 

Figure I-S. LINK86 Listing for Program with Overlays 

1-9 



Additional Information for Intellec. Series III Users 

1-10 

GROUP HAP 

ADDRESS GROUP OR SEGMEBT BAME 
078008 CGROUP 

CODE\CODE\ROOT 
CODE\CODE\PASS1 
CODE\CODE\PASS2 
CODE\CODE\PIC_PASS2 
CODE\CODE\FASTLOAD 

1031108 DGROUP 
COBST\COMST\ROOT 
DA'U\DATA\ROOT 
STACK\STAC((\ 

Figure 1-6 LOC86 Listing for Program with Overlays 

iAPX 86,88 Family Utilities 



iAPX 86,88 Family Utilities Additional Information for Intellec Series III Users 

Example 6: Linking and Locating Programs with Overlays 
Without OVERLAY Control 

It is harder to produce overlay modules without using the OVERLAY control. 
However, sometimes it is necessary to build programs in this way, for example, 
building a program for running under an operating system that does not support 
overlay modules contained in the same file as the root module. 

But regardless of the reason, building overlays in this fashion places an extra burden 
on the programmer. He must do some of the work that would be left to LINKS6 
(and LOCS6) if he were to use the OVERLAY control. In the following example we 
prepare a root and two overlay modules in separate files. 

First we must compile all modules. Examples of the invocation lines are shown 
below: 

RUN PLM86 ::':ROCT.SRC SMALL<:r> 

RUN PLM86 ::' :JV- .SRC SMALL<:r> 

RuN PLM86 :;:' :8V2.SRC SMALL<:r> 

In the next step we must link the root module to resolve external symbols with a 
library and to obtain a link map: 

RUN LINK86 ::-:RC8T.OBJ,USER.LIB MAP<cr> 

We will need the link map for locating purposes. The link map, shown in figure 1-7, 
shows the size of each segment in the root. Since the overlays are self-contained 
except for references to the root, we do not need a link map for them. The PL/M-S6 
listing files will show the size of each overlay's segments, as illustrated in figure I-S. 

Note that the length of the root's code segment and OV I's code segment must fit 
within 64K. This means that the code for the overlays must be in a part of memory 
contiguous with the root (to avoid altering the CS register during execution). OV2's 
CONST and DATA segments are larger than OVI's so that the STACK segment 
must be placed to leave room for OV2's CONST and DATA segments. If the 
overlays share the STACK and MEMORY segments with the root, they must be 
located at the same address. 

SERIES-III 8086 LIMICER. Vx.y 

I.POT PILES: :F1:ROOT.OBJ.USER.LIB 
OUTPUT FILE: :F1:ROOT.LNK 
CONTROLS SPECIFIED IN INVOCATIO. COKHAND: 

MAP 
DATE: III1IDDIYY TIME: 

LIIK MAP OF MODULE LOAIER 

LOGICAL SEGMEITS IICLODED: 
LENGTH ADDRESS ALIGN SEGMENT 

8A9S8 ------ W CODE 
03818 ------ W CONST 
02918 ------ W DATA 
0030B ------ W STACK 
00008 ------ W MEMORY 

INPUT MODULES IICLUDED: 
:F1:ROOT.OBJlROOT) 
:YO:OSEB.LIBlLOADER) 
:FO:USER.LIB(BXIT) 
:YO:USER.LIfilBRROR) 
:FO:USER.LIBltIME) 

CLASS 
CODE 
CONST 
DATA 
STACIC 
HEHORY 

OVERLAY 

Figure 1-7. LINK86 Map for Root File 

1-11 



Additional Information for Intellec Series III Users iAPX 86s88 FamiJy Utilities 

1-12 

MODULE INFORMATION: 
CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
918 LINES READ 
o PROGRAM ERROR(S) 

END OF Pl/M-86 COMPILATION 

MODULE INFORMATION 

END 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
918 LINES READ 
o PROGRAM ERROR(S) 

OF Pl/M-86 COMPILATION 

·OV1's segment size information 

7531H 
0081H 
0181H 
0040H 

300010 
1290 
3850 

640 

this is the COOE segment 
this is the CONST segment 
t his i s the DA T A s e gme n t 
this is the STACK segment 

OV2's segment size information 

1B9AH 
0101H 
0454H 
0067H 

70660 
2570 

11080 
1030 

this is 
this is 
this is 
this is 

the CODE segment 
the CONST segment 
the DATA segment 
the STACK segment 

Figure 1-8. Module Information for Overlays 

After computing the required location for the root's DGROUP and STACK, we can 
locate the root module. The resulting file will not be executable, but it allows us to 
resolve references- to the root's code and data symbols in the overlays. The following 
LOC86 invocation will leave room for the overlays' code segments and place the 
DGROUP in the first unused memory location. (In the command line below, the DS 
register is initialized to OFFCEH, and the CS register is initialized to 0.) The STACK 
and MEMORY segments will be located above OV2's DATA segment: 

Once the root is located, we can use it to resolve external references in the overlay 
modules. The overlay modules cannot call each other, since only one is resident in 
memory at any time. The link commands are shown below. The NOPUBLICS with 
the EXCEPT control is used to avoid conflicts when we use the located overlays to 
resolve external references in the root: 

> 

t:1 :Cy1 .OBJ, P.:BL:CSONL 
XCEP-;-(~'v1CGDE, 2V:CAT 

RUN ~INK86 :F1:0V2 
NOP~BL:CS EXCEPT( 

The PUBLICSONL Y control resolves references to public symbols contained in the 
root~ 



'''. 
iAPX 86.83 Family Utilities Additional Information for Intellec Series III Users 

After the overlays have been linked; they must be located. The code and data 
segments must be placed in the memory locations that were reserved when we first 
located the root. In this case the STACK and MEMORY segments must be the same 
for the overlays and the root: 

The CGROUP and DGROUP base address must be specified in order to compute 
offset information. The final base address assigned to DGROUP by LOC86 will be 
rounded up to OFFDOH. 

Once the overlays are located, the root is linked and located into an executable form. 
The PUBLICSONL Y control will resolve references to symbols in the overlay 
modules. Other than the addition of this input control, the LINK86 and LOC86 
command must be ide~tical to those used previously: 

The executable forms of the root and its overlay files are contained in :Fl :ROOT, 
:Fl:,OVl, and :Fl:OV2. Figure 1-9 shows the resulting layout of memory. 

1 r- cs 

ROOT CODE 

I SPACE 

fOS 
OVERLAY 

8A9C 

I 
CODE 

fFFCO_DSOSS SPACE 

ROOT DATA 

OFFCE 

I 
SPACE 

IOSOF 
OVERLAY 

105EO 

I 
DATA 

fos" 
SPACE 

STACK AREA 

10B34 

10Q3 
10C34 • SP 

MEMORY 

Figure 1-9. Memory Organization for Example 6 
I'"' 

121616-10 

1-13 



Additional Information for Intellec Series III Users iAPX 86,88 Family Utilities 

1-14 

Example 7: Linking 8089 Programs with 8086 Programs 

The process of linking and locating 8086 programs with 8089 programs that use 8089 
local memory is very similar to creating overlay modules in separate files. 

Let us consider the following example: we have created an 8086 program and two 
8089 program modules. The 8089 programs reference each other's symbols and 
public symbols in the 8086 program. In addition, one of the 8089 programs must be 
resident in 8089 local memory. 

The first step is to translate the programs. The 8089 program modules must be 
translated separately, since they will be located in different 8089 address spaces. The 
following lines illustrate the invocation lines to the translators: 

AS!"89 : F1 :TASK' .A89<:"> 

AS~,89 :F1 :TASK2.A89<:r> 

T ASK2 should be linked and located first for 8089 local memory. This linkage will 
leave unresolved external references, but it is needed to resolve the references in 
TASKl: 

R L ~~ _: N K 8 6 : F ~ : T ASK 2 . 0 B u , 8 0 8 9 . LIB < : r > 

R ... N LOC86 :F1:TASK2.LNK RESERVE(10000H TO OFFFFFH)<c r > 

The RESERVE control in the locate above is a precaution to avoid exceeding 64K. 

The next step is to link and locate the object modules that will reside in the 8086's 
address space. The external references to the 8089 program module that is resident in 
8089 local memory are resolved with the PUBLICSONL Y control. The invocation 
lines for linking and locating the modules are: 

6 :F1 :PROG86.0B 
,:~1 :iASK~ .OBu, 89.LIB, &<:1'> 

:F1:86N89.LN 

R'JN LOC86 :F1:86N89.LNK<c r > 

:Fl :86N89 contains an absolute object module that includes PROG86 and TASKl. 
It may be loaded and executed on an 8086-based system. However, the 8089 pro
gram to be located in 8089 local memory still has some unresolved external 
references. To resolve those references we must relink with PUBLICSONLY and 
relocate. The invocation lines to LINK86 and LOC86 shown below are identical to 
those used earlier. This is necessary to guarantee that the references resolved earlier 
are not invalidated: 

Rv~ ~INK86 :F 1 :TAS 
...... -.. .. f"' 

>7 ______ _ 

R~N ~2C86 :F1:iAS<2.LNK RESERVE(10000H TO OFFFCFH)<c r > 

NOTE 
The example above makes many assumptions about the 8089 and 8086 code 
that it deals with. In most practical situations it is usually necessary to use a 
more complex LINK86 and LOC86 invocation. However, the example 
above illustrates the key linking and locating principles underlying 
ASM861 ASM89 module combination. 



iAPX 86~88 Family Utilities Additional Information for Intellec Series III Users 

Invocation Examples 

The following foldout pages contain examples of the iAPX 86,88 Family utility con
trols and commands. The examples, all in the "interactive 8086" mode, may be used 
in conjunction with syntax specifications given: 

• In Chapter 2 for LI,NK86 

• In Chapter 3 for CREF86 

• In Chapter 4 for LIB86 

• In Chapter 5 for LOC86 

When using the directions in these chapters, fold out the page in this appendix con
taining examples of the command or control you are interested in. 

The following is a sample Series III OH86 invocation: 

> CH86 :F3:DONE TO :F3:FINI.HEX<::r> 

1-15 





iAPX 86,88 Family Utilities 

Comments 

This example defines two public symbols, VARONE 
and VARTWO, with absolute addresses 50H and 
2000H, respectively. 

In this example the root file is RTFILE and UB1 and 
LlB2 are library files. 

This line creates an L TL module. The output object 
file is TEST with no extension. 

Cor,trol 

ASSIGN 

ASSUMEROOT 

BIND/NOBIND > 

This example specifies default to avoid ambiguity. > 

COMMENTS/NOCOMMENTS > 

FASTLOAD/NOFASTLOAD > 

INITCODE > 

LINES/NOLINES > 

LINES is the default, so it need not be specified. > 

This MEMPOOL example will increase the minimum 
dynamic memory requirements by 20H bytes, and by 
default the maximum size will increase, if necessary, 
to equal the minimum. 

The minimum dynamjc memory requirement is 100H. 
The maximum dynamic memory requirement is 
300H. 

MAP/NOMAP > 

MEMPOOL 

> 
> 

> 
> 

SERIES III LINK86 EXAMPLES 

Examples 

LINK86 TEST.OBJ,USER.LIB BIND PRINT<cr> 

LINK86 GEN.OBJ NOBIND<cr> 

LINK86 :F1:S0URCE.OBJ NOCOMMENTS <cr> 

LINK86 :F1 :MYPROG INITCODE<cr> 

LINK86 :F1:RUN.OBJ NOLINES<cr> 

LINK86 :F1:TEST.OBJ LINES<cr> 

LINK86 :F1:TESTER.OBJ MAP<cr> 

LINK86.86 :F3:MAIN.OBJ,USER.OBJ, &<cr> 
PUBLICSONLYC:F2:8089.LOC) NOMAP<cr> 

LINK86 :F1:TEST.OBJ,USER.LIB, &<cr> 
PASCAL.LIB BIND MEMPOOL(+20H)<cr> 

1-17/1-18 



iAPX 86,88 Family Utilities 

Comments 

The LlNK86 output module will have the name 
specified in parentheses in the control. 

This example removes all debug and public records 
from the object file. 

The EXCEPT in the NOPUBLICS overrides the 
PURGE. 

This use of ORDER specifies the order of segments 
for two groups. 

This example will create an overlay record, and the 
name of the overlay wil be OVERLA Y1. 

First the constituent files must be linked to form 
overlays. 

The print file is :F1 :TEMP1.MP1. 

The print file is :F1 :PROG.MP1. 

The print file is :F1 :THE.MAP. 

This example removes information about line 
numbers, local symbols, and comments from the 
print file. 

This statement removes all but the segment informa
tion and error messages from the print file. 

Control 

NAME 

OBJECTCONTROLS 

ORDER 

OVERLAY/NOOVERLAY 

PRINT INOPRINT 

PRINT CONTROLS 

> 
> 

> 
> 

> 
> 

> 
> 

> 
> 

> 

SERIES III LI N K86 EXAMPLES 

Examples 

LINK86 :F1:TOM.OBJ,SYS.LIB NAME &<cr> 
(THIS_IS_A_VERY_LONG_MODULE@NAME.)<cr> 

LINK86 : F1 :FINAL, USER.LIB, &<cr> 
SYS.LIB OBJECTCONTROLS(PURGE)<cr> 

LINK86 FILE1,FILE2,FILE3 TO &<cr> 
:F1 :OV1.LNK OVERLAY(OVERLAY1)<cr> 

LINK86 FILE4,FILE5,FILE6 TO &<cr> 
:F1 :OV2. LNK OVERLAY(OVERLAY2)<cr> 

LINK86 FILE7,FILE8,FILE9 TO &<cr> 
:F1:ROOT.LNK OVERLAY(ROOT)<cr> 

:F1:ROOT. "'M'.I't'.'~I; 

LINK86 :F1:PROG.OBJ<cr> 

1-19/1-20 



iAPX 86,88 Family Utilities 

Comments 

Public information concerning only OATA1, DATA2, 
LABEL3, and PROC4 is placed in the object file and 
print file. 

All public symbol information will be included in both 
the print file and output file. 

This example will produce a file containing only the 
absolute public symbol records from :F1 :8089.LOC. 
The object file will be :F1 :8089.LNK. 

This will resolve the references in ROOT.OBJ to 
absolute public symbols in the separately linked and 
located overlays OV1 and OV2. 

This produces an object file containing no debug or 
public information. 

This confirms that the line and symbol information 
should be kept in the print file. 

This will change the translator-assigned name 
CGROUP to THE@CODE. A subsequent linkage 
would not combine THE@CODE with a group named 
CGROUP. 

This changes the name .of the CODE group to 
CGROUP. 

This tells the loader that 15FFH bytes of code is the 
minimum requirement for MEMORY. The new max
imum size of MEMORY is 35FFH. 

This increments MEMORY's minimum size by 1 FFH 
(7951 D) bytes. The maximum size of MEMORY is 
equal to the old minimum size plus 3FEH (159020). 

The local symbol records will be included in the 
object file. 

PURGE is a shorthand for NOSYMBOLS, 
NOCOMMENTS, NOPUBLlCS, NOTYPE, and 
NOLINES. 

SYMBOLCOLUMNS has no effect, since BIND was 
not specified. 

The symbol table will be printed on a line printer. 

LlBMOD will retain its type information. 

Control 

PUBLICS/NOPUBLICS 

PUBLICSONLY 

PURGE/NOPURGE 

RENAMEGROUPS 

SEGSIZE 

SYMBOLS/NOSYMBOLS 

SYMBOLCOLUMNS 

TYPE/NOTYPE 

SERIES III LINK86 EXAMPLES 

Examples 

> LINK86 PUBLICSONLY(:F1 :8089.LOC)<cr> 

> LINK86 :F1:INDEX.OBJ PURGE<cr> 

> LINK86 :F3:TEST.OBJ,USER.LIB PURGE<cr> 

> LINK86 :F1:TEST.OBJ SYMBOLCOLUMNS(1)<cr> 

> LINK86 :F1 :LIBMOD.OBJ TYPE<cr> 

1-2111-22 



iAPX 86,88 Family Utilities 

Comments 

The cross-reference listing will have 35 lines on each 
page. 

The cross-reference listing will be 100 characters 
wide maximum per page. 

The path name of the print file will be :F1 :MYFILE. 

The message in the TITLE control must be placed on 
one line. If the message contains special characters, 
it must be enclosed in single quotes ('). 

Control 

SERIES III CREF86 EXAMPLES 

Examples 

PAGELENGTH 

PAGEWIDTH > 
> 

PRINT > 
> 

TITLE > 
> 
> 
> 

1-23/1-24 



iAPX 86,88 Family Utilities 

Comments 

Three object files are added to the USER.LlB. 

Three modules from the library L1B.ABC are added 
to :F3:PROJ.TOM. 

This command will produce an empty library file 
called TOMS.LlB. 

Four modules are deleted from the library USER. LIB. 

Control 

ADD 

CREATE 

DELETE 

* 
* 
* 

* 
* 
* 

* 
* 

* 
* 

* 
* 
* 

* 
* 
* 

SERIES III LIBS6 EXAMPLES 

Examples 

CREATE :F3:TOMS.LIB<cr> 

CREATE :FO:USER.LIB<cr> 

, CRT, &<C'r> 

EXIT *1111.6 
> 

LIST * 

* 

* 

LIST USER.LIB<cr> 
USER.LIB 

TEMP 
TEST 
EXEC 
MAIN 
LOOP 

LIST USER. LIB(TEMF, TEST)<cr> 
USER.LIB 

TEMP 
TEST 

LIST USER. LIB, TEMP. LIB<cr> 
USER.LIB 

TEMP 
TEST 
EXEC 
MAIN 
LOOP 

TEMP.LIB 
MODULE1 
MODULE3 
MODULETC 

1-25/1-26 



iAPX 86,88 Family Utilities 

Comments 

If SEG1 is byte alignable, it will be located at 15FFH. 
If SEG2 is byte or word alignable, it will be at 4F5AH. 

Address assignment of groups, segments, and 
classes can be in any order, unless they are 
absolute. 

A long jump to GO will be placed at location 
OFFFFOH. 

The initialization code is placed at address 32768 
decimal (8000H). 

Control 

ADDRESSES 

BOOTSTRAP 

COMMENTS/NOCOMMENTS > 

> 

INITCODE/NOINITCODE > 

No initialization code will be produced. > 

LINES/NOLINES > 

LINES is the default, so it need not be specified. > 

This statement removes all debug records from the 
object file, but keeps the information in the print file. 

MAP/NOMAP > 

NAME > 

OBJECTCONTROLS 

SERIES III LOC86 EXAMPLES 

Examples 

LOC86 : F1: SOURCE. LNK NOCOMMENTS<c r> 

LOC86 : F1 :TEMP. LNK COMMENTS<c r > 

LOC86 :F1:FORK.LNK INITCODE(32768)<:,) 

LOC86 :F1:TEST.LNK NOINITCODE<c r ) 

LOC86 :F1:RUN.LNK NOLINES<cr) 

LOC86 :F1:TEST.LNK<cr> 

LOC86 : F1 :TESTER. LNK MAP<cr> 

NOPUBLICS is implied by PURGE, but PUBLICS 
overrides it. 

LOC86 :F3:PASCL1. >1 
> OBJECTCONTROLS ( 

SEG@A of CLASS1 will be the first relocatable 
segment located. SEG@B will be next, followed 
immediately by any other segments contained within 
CLASS1. The extra segments in CLASS1 (and all of 
the segments in CLASS2) are located in the order in 
which they are encountered. Finally, the list in the 
SEGMENTS subcontrol is handled. 

ORDER 

1-27/1-28 



iAPX 86,88 Family Utilities 

Comments 

The print file is :F1:TEMP.MP2. 

The print file is :F5:INTERPL.MP2. 

The print file is :F1 :MAP. 

Information about line numbers is removed from the 
print file. 

All but the segment information is removed from the 
print file. 

No public information is included in the output files 
(:F7:PRIVAT.MP2 and :F7:PRIVAT). 

All public symbol information will be included in both 
the print file and output file. 

The object file contains no public or debug informa
tion, and the symbol table does not appear in the 
print file. 

The line and symbol information will be kept in the 
print file and object file. 

This control reserves the high order 64K of memory. 

A 200H and a 100H section of memory at the top and 
bottom of memory are reserved. 

The size of segment MEMORY will be increased by 
2000 bytes. 

The size of segment FREUD will be decreased by 
511 bytes. 

The new segment size for XEN DA is 7770 bytes. 

:F9:AUTO will start at IGNITION. 

:F7:HAL TS will start at location 200H. 

This statement will include the local symbol records 
in the object file and the symbol information in the 
print file. 

PURGE is a shorthand for NOSYMBOLS, 
NOCOMMENTS, NOPUBLlCS, and NOLINES. 

The symbol table will be printed on a line printer. A 
line printer line can hold a four-column symbol table. 

Control 

PRINT INOPRINT 

PRINTCONTROLS 

PUBLICS/NOPUBLICS 

PURGE/NOPURGE 

RESERVE 

SEGSIZE 

START 

SYMBOLS/NOSYMBOLS 

SYMBOLCOLUMNS 

> 

> 

> 
> 

> 

> 

> 

> 

> 

> 

> 

SERIES III Loe86 EXAMPLES 

Examples 

LOC86 :F5:INTERP.LNK<cr> 

LOC86 :F4:PROG.LNK PRIN T,C:F1:MAP)<cr> 

LOC86 :F1:LINEAR.LNK &<cr> 
PR INTCONTROLS CNOLINES) <c r> 

LOC86 :F7:PRIVAT.LNK NOPUBLICS<cr> 

LOC86 :F3:PROJ5.LNK PURGE<cr> 

LOC86 :F9:AUTO.LNK START(IGNITION)<c r > 

LOC86 :F7:HALTS.LNK STARTCOOH,200H)<c r ) 

LOC86 GESHTA.LNK SYMBOLS<cr> 

LOC86 :F3:TEST.LNK PURGE<cr> 

LOC86 :F1 :TEST.LNK SYMBOLCOLUMNS(1)<o' > 

1-29/1-30 



absolute object file formats, A-I 
absolute object modules, 1-2 
AD,5-3 
address, 

in ADDRESSES control, 5-3 
in ASSIGN control, 2-4 
in INITCODE control, 5-6 
in RESERVE control, 5-16 

ADDRESSES, 5-3 
addressing, 

A,4-2 
absolute, 1-4, 2-4 
ADD,4-2 
SOS6, 1-5 
relative, 1-4 

alignment, 
boundaries, I-S 
of segments, 1-7 

AR,2-5 
AS, 2-4 
ASSIGN,2-4 
available memory, effect of, C-l 

BI,2-6 
BIND,2-6 
BOOTSTRAP, 5-4 
bound modules (see LTL modules) 
BS,5-4 

C,4-3 
class, SOS6, 1-9 
CLASSES, 5-3,5-11 
class name, 

in ADDRESSES control, 5-3 
in ORDER control, 

LINKS6, 2-15 
LOCS6,5-ll 

in SEGSIZE control, 
LINKS6, 2-i3 
LOCS6,5-17 

CM,2-7 
COMMENTS, 

in OBJECTCONTROLS, 
LINKS6,2-14 
LOCS6, 5-10 

in-PRINTCONTROLS, 
LINKS6,2-IS 
LOCS6, 5-13 

LINKS6 control, 2-7 
LOCS6 control, 5-5 

control summary, 
CREFS6, E-I 
LIBS6, F-l 
LINKS6, D-I 
LOCS6, G-l 

CREATE,4-3 
CREFS6, 

controls, 
PAGELENGTH, 3-3 
P AGEWIDTH, 3-4 

INDEX 

PRINT,3-5 
TITLE,3-6 

control summary, 3-2 
error messages, E-I 
in development process, 1-1 
input, 3-1 
invocation, 3-2 
output, 3-1 
print file, 3-7 
Series III invocation examples, 1-23/1-24 
use of libraries, 1-3 

cross-reference listing, 3-7 
CS, 5-3, 5-11 

D,4~3 
data records, SOS6, A-3 
debug records, 

LINKS6, 2-21 
LOCS6,5-15 

DELETE,4-3 

E,4-4 
ENDREC, A-7 
error messages, 

CREFS6,E-I 
LIBS6, F-I 
LINKS6,D-2 
LOCS6, G-2 
OH86, H-I 

examples, Series III, 
invocation, 

CREF86, 1-21/1-24 
LIBS6, 1-2511-26 
LINKS6, 1-17 II-IS 
LOC86, 1-27/1-2S 
OH86,1-15 

program development, 
CREF86,1-6 
LIBS6,1-7 
LINK86, 1-2, 1-5, I-S, 1-11, 1-14 
LOC86, 1-4, 1-5, I-S, 1-12 

EXIT,4-4 
external references, 

cross-reference listing, 3-7 
definition of, 1-2 
resolution of, 1-3 

FASTLOAD,2-S 
FL,2-8 

GR,5-3 
group, 

addressing, 1-9 
SOS6,1-9 

group map, 2-27 
group name, 

in ADDRESSES control, 5-3 
in LINK86 ORDER control, 2-15 
in LINK86 RENAMEGROUP control, 2-22 

GROUPS, 5-3 

Index-l 



Index 

hexadecimal·decimal conversion, B-1 
hexadecimal object file format, 

conversion to, 6-1 
records of, 

IC, 

data, A-I3 
end of file, A-15 
extended address, A·12 
start address, A -14 

LINK86,2-9 
LOC86,5-6 

INITCODE, 
LINK86,2-9 
LOC86,5-6 

initialization code, 
LINK86,2-9 
LOC86,5-6 

input list control, 2-20 

L,4-6 
LHEADR, A-6 
LI, 

LINK86, 2-10 
LOC86,5-7 

LIB86, 
commands, 

ADD,4-2 
CREATE,4-3 
DELETE, 4-4 
EXIT,4-5 
LIST,4-6 

command summary, 4-1, F-l 
error messages, F-l 
in development process, 1-1 
input, 4-1 
invocation, 4-1 
Series III invocation examples, 1-25/1-26 

librarian (see LIB86) 
libraries, 

adding to, 4-2 
creating, 4-3 
deleting from, 4-4 
listing contents of, 4-6 
use of by CREF86, 1-3 
use of by LINK86, 1-3 

line number control, 
LINK86, 2-10 
LOC86,5-7 

LINES, 
in OBJECTCONTROLS, 

LINK86,2-14 
LOC86,5-10 

in PRINTCONTROLS, 
LINK86, 2-18 
LOC86,5-13 

LINK86, 2-10 
LOC86,5-7 

link map, 2-27 
linkage (see LINK86) 
LINK86, 

and LOC86, 1-4 
controls, 

ASSIGN,2-4 
ASSUMEROOT, 2-5 

Index-2 

BIND,2·6 
COMMENTS, 2-7 
FASTLOAD,2-8 
INITCODE,2-9 
LINES, 2-10 
MAP, 2-11 
MEMPOOL,2-12 
NAME,2-13 
NOBIND,2-6 
NOCOMMENTS, 2-7 
NOFASTLOAD,2-8 
NOLINES, 2-10 

iAPX 86,88 Family Utilities 

NOMAP, 2-11 
NOOVERLAY, 2-16 
NOPRINT,2-17 
NOPUBLICS, 2-19 
NOPURGE, 2-21 
NOSYMBOLS, 2-24 
NOTYPE,2-26 
OBJECTCONTROLS, 2-14 
ORDER,2-15 
OVERLAY, 2-16 
PRINT,2-17 
PRINTCONTROLS, 5-12 
PUBLICS, 2·19 
PUBLICSONL Y, 2-20 
PURGE,2-21 
RENAMEGROUPS, 2-22 
SEGSIZE, 2-23 
SYMBOLCOLUMNS,2-25 
SYMBOLS, 2-24 
TYPE,2-26 

control summary, 2-2, D-I 
error messages, D-2 
in development process, I-I 
input, 1-4, 2-1, 2-20 
invocation, 2-1 
output, 1-4, 2-1 
print file, 2-27 
segment combination, 1-7 
Series III invocation examples, 1-17/1-18 
use of libraries, 1-3 

LIST,4-6 
load-time-Iocatable module (see L TL module) 
location (see LOC86) 
location algorithm, 

for modules with overlays, 5-25 
for segments, 5-24 

LOC86, 
and LINK86, 1-4 
controls, 

ADDRESSES, 5-3 
BOOTSTRAP, 5-4 
COMMENTS, 5-5 
INITCODE, 5-6 
LINES, 5-7 
MAP, 5-8 
NAME,5-9 
NOCOMMENTS, 5-5 
NOINITCODE, 5-6 
NOLINES, 5-7 
NOMAP, 5-8 
NOPRINT,5-12 
NOPUBLICS, 5-14 
NOPURGE,5-15 



iAPX 86,88 Family Utilities 

NOSYMBOLS, 5-19 
OBJECTCONTROLS, 5-10 
ORDER,5-11 
PRINT,5-12 
PRINTCONTROLS, 5-13 
PUBLICS, 5-14 
PURGE,5-15 
RESERVE,5-16 
SEGSIZE,5-17 
START,5-18 
SYMBOLS, 5-19 
SYMBOLCOLUMNS, 5-19 

control summary, 5-2, G-l 
error messages, G-2 
in development process, 1-1 
input, 1-4,5-1 
invocation, 2-1 
output, 1-4, 5-1 
print file, 5-21 
Series III invocation examples, 1-27/1-28 

L TL controls, 
BIND,2-6 
FASTLOAD,2-8 
MEMPOOL,2-12 
ORDER,2-15 
PRINTCONTROLS, 2-18 
SEGSIZE, 2-23 
SYMBOLCOLUMNS, 2-25 

L TL modules, 1-2, 1-4, 1-10 

MA, 
LINK86,2-11 
LOC86,5-8 

MAP, 
LINK86,2-11 
LOC86,5-8 

maxim urn-size, 
in MEMPOOL control, 2-12 
in SEGSIZE control, 2-23 

memory, 
configuration with overlays, 1-10 
8086, 1-5 

memory map, 5-23 
memory requirements controls, 

LINK86 MEMPOOL, 2-12 
SEGSIZE, 

LINK86, 2-23 
LOC86,5-17 

MEMPOOL,2-12 
minimum-size, 

in MEMPOOL control, 2-12 
in SEGSIZE control, 2-23 

MODEND,A-9 
module attributes, A-2 
module identification, A-2 
module name, 

in LINK86 NAME control, 2-13 
in L.OC86 NAME control, 5-9 

MP,2-'12 

NA, 
LINK86, 2-13 
LOC86,5-9 

NAME 
LINK86,2-11. 

LOC86,5-9 
naming output module, 

LINK86,2-13 
LOC86,5-9 

NOBI, 2-6 
NOBIND,2-6 
NOCM,2-7 
NOCOMMENTS, 

in OBJECTCONTROLS, 
LINK86,2-14 
LOC86, 5-10 

in PRINTCONTROLS, 
LINK86,2-18 
LOC86, 5-13 

LINK86,2-7 
LOC86,5-5 

NOFASTLOAD,2-8 
NOFL, 2-8 
NOIC, 5-6 
NOINITCODE,5-6 
NOLI, 

LINK86, 2-10 
LOC86,5-7 

NOLINES, 
in OBJECTCONTROLS, 

LINK86,2-14 
LOC86,5-10 

in PRINTCONTROLS, 
LINK86,2-18 
LOC86,5-13 

LINK86, 2-10 
LOC86,5-7 

NOMA, 
LINK86, 2-11 
LOC86,5-8 

NOMAP 
LINK86, 2-11 
LOC86,5-8 

NOOV, 2-16 
NOOVERLAY, 2-16 
NOPL, 

LINK86,2-19 
LOC86,5-14 

NOPR, 
LINK86, 2-17 
LOC86,5-12 

NOPRINT, 
LINK86, 2-17 
LOC86,5-12 

NOPU, 
LINK86, 2-21 
LOC86,5-15 

NOPUBLICS, 
in OBJECTCONTROLS, 

LINK86, 2-14 
LOC86,5-10 

in PRINTCONTROLS, 
LINK86, 2-18 
LOC86,5-13 

LINK86, 2-19 
LOC86,5-14 

NOPURGE, 
in OBJECTCONTROLS, 

LINK86,2-14 
LOC86,5-1O 

Index 

Index-3 



Index 

in PRINTCONTROLS, 
LINK86, 2-18 
LOC86,5-13 

LINK86,2-21 
LOC86,5-15 

NOSB, 
LINK86, 2-24 
LOC86,5-19 

NOSYMBOLS, 
in OBJECTCONTROLS, 

LINK86, 2-14 
LOC86,5-1O 

in PRINTCONTROLS, 
LINK86, 2-18 
LOC86,5-13 

LINK86, 2-24 
LOC86,5-19 

NOTY, 2-26 
NOTYPE, 

in OBJECTCONTROLS, 2-14 
in PRINTCONTROLS, 2-18 
LINK86, 2-26 

OBJECTCONTROLS, 
LINK86,2-14 
LOC86,5-1O 

object module format, 1-4, A-I 
OC, 

LINK86,2-14 
LOC86,5-1O 

OD, 
LINK86,2-15 
LOC86,5-11 

offset, 5-18 
OH86, 

error messages, H-l 
in development process, 1-1 
input, 6-1 
invocation, 6-1 
output, 6-1 
Series III invocation example, 1-15 

ORDER, 
LINK86, 2-15 
LOC86,5-11 

OV,2-16 
OVERLAY, 2-16 
overlay controls, 

ASSUMEROOT, 2-5 
OVERLAY, 2-16 

overlay, 8086, 1-10 
overlay name, 

ADDRESSES, 5-3 
LINK86 ORDER control, 2-15 
LINK86 OVERLAY control, 2-16 
SEGSIZE, 
- LINK86, 2-23 

LOC86,5-17 
overlays and location, 5-25 
OVLDEF, A-7 

PAGELENGTH, 3-3 
P AGEWIDTH, 3-4 
paragraph,5-18 
pathname, 

in ASSUMEROOT control, 2-5 

Index-4 

in LIB86 commands, 4-1 
in PRINT control, 

LINK86, 2-17 
LOC86,5-12 

iAPX 86,88 Family Utilities 

in PUBLICSONL Y control, 2-20 
PC, 

LINK86, 2-18 
LOC86,5-13 

PEDATA,A-1O 
performance-memory relationship, C-l 
PIC, 1-10 
PIDATA, A-I0 
PL, 

CREF86,3-3 
LINK86,2-19 
LOC86,5-14 

PO, 2-20 
position-independent code (see PIC) 
PR, 

CREF86,3-5 
LINK86, 2-17 
LOC86,5-12 

PRINT, 
CREF86,3-5 
LINK86, 2-17 
LOC86,5-12 

PRINTCONTROLS, 
LINK86,2-18 
LOC86,5-13 

print file, 
controls, 

CREF86,3-2 
LINK86,2-18 
LOC86,5-13 

CREF86, 
cross-reference information, 3-8 
header, 3-7 
module list, 3-8 
warnings, 3-7 

LINK86, 
error messages, 2-30 
group map, 2-28 
header, 2-27 
link map, 2-11,2-27 
symbol table, 2-29 

LOC86, 
errors and warnings, 5-24 
memory map, 5-23 
symbol table, 5-21 

print file name, 
LINK86, 2-17 
LOC86,5-12 

program development, 1-1 
PU, 

LINK86,2-21 
LOC86,5-15 

PUBLICS, 
in LIB86 LIST control, 4-6 
in OBJECTCONTROLS, 

LINK86,2-14 
LOC86,5-1O 

in PRINTCONTROLS, 
LINK86,2-18 
LOC86,5-13 

LINK86, 2-19 



iAPX 86,88 Family Utilities 

LOC86,5-14 
PUBLICSONLY, 2-20 
public symbol, 1-2, 5-18 
public symbol cross-references, 3-7 
public symbol records, 

in libraries, 4-6 
LINK86, 

PUBLICS/NOPUBLICS, 2-19 
PUBLICSONL Y, 2-20 

LOC86,5-14 
PURGE, 

in OBJECTCONTROLS, 
LINK86,2-14 
LOCS6,5-1O 

in PRINTCONTROLS, 
LINK86,2-1S 
LOC86,5-13 

LINK86, 2-21 
LOC86,5-15 

PW,3-4 

record formats, 
end, A-7 
L-module header, A-6 
module end, A-9 
overlay definition, A-7 
physical enumerated data, A-1O 
physical iterated data, A-1O 
register initialization, A-8 
R-module header, A-6 
sample, A-4 
T -module header, A-5 

record syntax, A-3 
REG IN,., A-8 
register initialization, 2-9, 5-6, A-S 
relocatable object module, 1-2 
relocation (see LOC86) 
RENAMEGROUPS, 2-22 
RESERVE,5-16 
RG,2-22 
RHEADR, A-6 
RS,5-16 

SAMREC,A-4 
SB, 

LINKS6, 2-24 
LOC86,5-19 

SC, 
LINKS6, 2-25 
LOC86,5-20 

segment, 
alignment, 1-7, 2-28 
combining, 1-8 
8086, 1-6, A-2 
locating, 1-8, 5-24 
memory, I-S, 2-23,5-17 
ordering, 

LINK86, 2-15 
LOC86, 5-11, 5-24 

stac~, I-S 

segment addressability, A,;.2 
segment location algorithm, 

absolute segments, 5-24 
relocatable segments, 5-25 
segment ordering, 5-24 

segment map, 2-29 
segment name, 

in ADDRESS control, 5-3 
in ORDER control, 

LINK86, 2-15 
LOCS6,5-11 

in SEGSIZE control, 
LINK86, 2-23 
LOCS6,5-17 

SEGMENTS, 5-3 
SEGSIZE, 

LINKS6, 2-23 
LOC86,5-17 

Series III information, 
continuation-line characters, 1-1 
environmental considerations, 1-1 
ISIS-II conventions, 1-1 
program development examples, 1-2 
prompts, 1-1 
related publications, 1-2 
software version compatibilities, 1-1 

size, 5-17 
SM, 5-3, 5-11 
SS, 

LINKS6, 2-23 
LOC86,5-17 

ST,5-18 
START,5-18 
start address, 5-4, 5-1S 
SYMBOLCOLUMNS, 

LINKS6, 2-25 
LOC86,5-20 

SYMBOLS, 
in OBJECTCONTROLS, 

LINK6,2-14 
LOC86,5-1O 

in PRINTCONTROLS, 
LINK86, 2-1S 
LOC86,5-13 

LINKS6, 2-24 
LOC86,5-19 

symbol table, 
LINK86, 2-25, 2-29 
LOC86, 5-20, 5-21 

THEADR,A-5 
TITLE,3-6 
TT,3-6 
TY,2-26 
TYPE, 

in OBJECTCONTROLS, 2-14 
in PRINTCONTROLS, 2-1S 
LINK86 control, 2-26 

type checking, 2-26 

variable name, 2-4 

Index 

Index-5 



iAPX 86,88 Family Utilities User's Guide 
121616-002 

REQUEST FOR READER'S COMMENTS 

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel 
product users. This form lets you participate directly in the publication process. Your comments will help 
us correct and improve our publications. Please take a few minutes to respond. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this publication. If you have any comments on the product that this publication describes, please contact 
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see 
page ii of this manual). 

1. Please describe any errors you fou.nd in this publication (include page number). 

2. Does the publication cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of publication for your needs? Is it at the right level? What other types of 
publications are needed? 

---,-' .. -"." "".,--"""'''''''''".,,-------

---,--,-"--------- -------".'-,--,._" ... ,_.,,-,--.-,. ... _._-.,-,_.--,,--.... 

.. _",---_._._-,_._--",-,,, ... ,,.,,,.,,,,,, .. ,,._.--------

4. Did you have any difficulty understanding descriptions or wording? Where? 

--,_._-----,--"-----..... _---"-,-----,-,,,'-,, ..... '"._ .. ,., """.,,_._.,,---._.'.',,_._----_. 

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating) . 

N AM E._., ... ,_ .. ,.,."."".,.,.,., .. ,_"_.,,_ .. ___ .. _____ ,,, .. ____ . __ .. ""_._,_",._" ... , .. _"" .. __ . __ ,.,,_,, __ ._.,, .... ,." .. ,",., .. " 

TIT L E ___ " .. "._,"_ "' .. ,_" ... ,,, ....... _,,,.,,,,._.,,_,, .. ,,_. __ ,,.,,,,,_.,, __ . ___ .,,,,,,,' .. "." ...... ".,,,.,,,.,". .,,., .. "_."",.",_. __ .... " .. ,._,,_,,. __ ,.__ """'''''.' ."."" .... , .. , 

COMPANY NAME/DEPARTMENT 

ADDRESS 

CIT Y _ .... ___ " .. ,,, .. ,,,,,,' " .. , .""., .... "_,_ .. ,, ...... ~''' ... ,,_._,. __ ._.,,_._.'''._ ... __ STATE 
(COUNTRY) 

Please check here if you require a written reply. [J 

.... _._ .. _,_. ___ ..... _ DATE ..... _. ___ .. __ .. _____ _ 

ZIP CODE " .... ____ , _____ _ 



WE'D LIKE YOUR COMMENTS •.• 

This document is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
AUn: Technical Publications MIS 6-2000 
3065 Bowers Avenue 
Santa Clara, CA 95051 

" "" 
NO POSTAGE 
NECESSARY 

IF MAILED 
IN U.S.A. 



intJ 
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080 

Printed in U.S.A. 


