
FORTRAN-S6
USER'S GUIDE

Order Number: 121570-002

Copyright © 1981, 1982 Intel Corporation
J Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli
cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel
products:

BXP
CREDIT
i
ICE
iCS
im
iMMX
Insite

Intel
Intel
Intelevision
Intellec
Intellink
iOSP
iPDS
iRMX

iSBC
iSBX
iSXM
Library Manager
MCS
Megachassis
Micromainframe
Micromap

Multibus
Multichannel
Multimodule
Plug-A-Bubble
PROMPT
RMX/80
System 2000
UPI

A915 / 383/ 2K DO

REV. REVISION HISTORY DATE

-001 Original issue 8/81
-002 Revised to support Version 1.5 of the FORTRAN-86 7/82

Compiler

iii

PREFACE

This manual provides language, compiler, and run-time information specific to
FORTRAN-86.

It is designed to support new users as well as those already familiar with FORTRAN.

This manual contains fifteen chapters and nine appendixes:

• Chapter 1, "Overview", describes FORTRAN-86, the compiler, the run-time
support, the operating environment, and program development.

• Chapter 2, "Program Structure", describes the parts of a FORTRAN program
and their required order.

• Chapter 3, "Language Elements", describes FORTRAN's lexical structure.

• Chapter 4, "Program Delimitors and Comments", describes comment lines,
procedure headings, and their use.

• Chapter 5, "Data and Specification Statements", describes data types, arrays,
arguments, and specification statements.

• Chapter 6, "Subprograms", describes subroutines, external functions, intrinsic
functions, statement functions, and BLOCK DATA subprograms.

• Chapter 7, "Expressions", describes the FORTRAN expressions and their use.

• Chapter 8, "Executable Statements", describes assignment statements, control
statements, and data-transfer statements.

• Chapter 9, "Input and Output", describes the file-handling and 110
statements.

• Chapter 10, "Sample Programs", describes sample FORTRAN-86 programs.

• Chapter 11, "Compiler Controls", describes the FORTRAN-86 controls with
an indication of use.

• Chapter 12, "Compiler Operation", describes compiler invocation, input files,
output files, overlay files, and compiler messages.

• Chapter 13, "Compiler Output", describes the listing output and the object
module output.

• Chapter 14, "Program Linkage, Relocation, and Execution", describes how to
run programs.

• Chapter 15, "Errors and Warnings", describes language and run-time errors
and recovery.

• Appendix A, "Differences Between FORTRAN-86 and Other Versions of
FORTRAN", lists how FORTRAN-86 differs from ANSI FORTRAN 77 and
from FORTRAN-80.

• Appendix B, "Processor-Dependent Features of FORTRAN-86", lists the
features dependent on the 8086, 8087, and 8088 processors.

• Appendix C, "Compiler Capacity", lists the upper limits imposed by the
compiler or,its environment.

• Apppendix D, "Language Summary", lists the FORTRAN statements,
symbols, intrinsic functions and subroutines.

• Appendix E, "Character Sets and Collating Sequence", gives the ASCII
character set.

• Appendix F, "Hollerith Data Type", describes the Hollerith data type.

v

vi

• Appendix 0 7 "Run-Time Data Representations'\ describes the internal
representations of FORTRAN data types.

• Appendix H, "Linking to Subprograms Written in Other Languages",
describes parameter passing, returned values from functions, and sharing of
data between FORTRAN-86 and other iAPX 86, 8S family languages.

• Appendix I, "Run-Time Interface'\ describes error handlers, interrupt
processing, and the logical record interface for users not executing their pro
grams on the Series-III.

• Appendix J, uCompiler Invocation and Additional Information for Series III
Users", provides examples and information specific to the Series III Operating
System.

• Appendix K, uCompiler Invocation and Additional Information for iRMX 86
Users", provides information and examples specific to the iRMX 86-based
system.

"Microsystems 80" Nomenclature

Over the last several years, the increase in microcomputer system and software com
plexity has given birth to a new family of microprocessor products oriented towards
solving these increasingly complex problems. This new generation of
microprocessors is both powerful and flexible and includes many processor
enhancements such as numeric floating point extensions, 1/0 processors, and
operating system functionality in silicon.

As Intel's product line has grown and evolved, its microprocessor product number
ing system has become inadequate to name VLSI solutions involving the above
enhancements.

In order to accommodate these new VLSI systems, we've allowed the 8086 family
name to evolve into a more comprehensive numbering scheme, while still including
the basis of the previous 8086 nomenclature.

We've adopted the following prefixes to provide differentiation and consistency
among our Microsystem 80 related product lines:

iAPX - Processor Series
iRMX - Operating Systems
iSBC Single Board Computers
iSBX - MUL TIMODULE Boards

Concentrating on the iAPX Series, two Processor Families are defined:

iAPX 86 - 8086 CPU based system
iAPX 88 - 8088 CPU based system

With additional suffix information, configuration options within each iAPX system
can be identified, for example:

iAPX 86/10 CPU Alone (8086)
iAPX 86/11 CPU + lOP (8086 + 8089)
iAPX 88/20 CPU + Math Extension (8088 + 8087)
iAPX 88/21 CPU + Math Extension + lOP (8088 + 8087 + 8089)

This nomenclature is intended as an addition to, rather than a replacement for,
Intel's current part numbers. These new series level descriptions are used to describe
the functional capabilities provided by specific configurations of the processors in

the 8086 Family. The hardware used to implement each functional configuration is
still described by referring to the parts involved (as is the case for the majority of the
8086 information described in this manual).

This improved nomenclature provides a more meaningful view of system capability
and performance within the evolving Microsystem 80 architecture.

Related Publications

For information on the Intellec Series-III Microcomputer Development System, see
the following manuals:

• A Guide to the Intellee Series III Microcomputer Development System, 121632

• Intellee Series III Microcomputer Development System Product Overview,
121575

• Intellee Series III Microcomputer Development System Console Operating
Instructions, 121609

• Intellec Series III Microcomputer Development System Programmer's
Reference Manual, 121618

• ISIS-II CREDIT CR T-Based Text Editor User's Guide, 9800902

For information on the iRMX 86 operating system, see the following manuals:

• iRMX 86 Human Interface Reference Manual, 9803202

• iRMX 86 Nucleus Reference Manual, 9803122

• EDIT Reference Manual, 143587

For information on auxiliary products, see the following manuals:

• 8086/8087/8088 Macro Assembly Language Reference Manual for 8086-Based
Development Systems, 121627

• 8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based
Development Systems, 121628

• iAPX 86,88 Family Utilities User's Guide for 8086-Based Development
Systems, 121616

• PascaI-86 User's Guide, 121539

• PL/M-86 User's Guide, 121662

• ICE-86 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800714

• ICE-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949

• The 8086 Family User's Manual, 9800722

• The 8086 Family User's Manual Numerics Supplement, 121586

• User's Guide for the iSBC 957B iAPX 86,88 Interface and Execution Package,
143979

Notational Conventions

UPPERCASE

italics

Characters shown in uppercase must be entered in the
order shown. You may enter the characters in uppercase
or lowercase.

Italics indicate variable information, such as filename or
address.

vii

[]

{ }

{ } ...

punctuation

m·p-UN

viii

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which
case it is optional.

At least one of the enclosed items must be selected unless
the field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless
otherwise noted.

Ellipses indicate that the preceding argument or
parameter may be repeated.

Punctuation other than ellipses, braces and brackets must
be entered as shown. For example, the punctuation
shown in the following command must be entered:

SUBMIT PLM86(PROGA,SRC, '9 SEPT 81 ')

In interactive examples, input lines and user responses are
printed in white on black to differentiate input lines from
system output.

Shading indicates FORTRAN-86 extensions from ANSI
FORTRAN 77.

CHAPTER 1 PAGE
OVERVIEW
The Compiler and Run-Time System 1-1

Compiler Features 1-1
Run-Time Support Libraries 1-1

Hardware and Software Environments 1-2
Program Development Environment 1-2
Run-Time Environment ... ~ 1-2

Compiler Installation 1-3
The Program Development Process 1-3

CHAPTER 2
PROGRAM STRUCTURE
Basic Structure
FORTRAN Statements

Statement Order

CHAPTER 3
LANGUAGE ELEMENTS

2-1
2-1
2-2

Basic Alphabet 3-1
Statement Elements 3-1

Constants 3-1
Symbolic Names 3-2
Statement Labels 3-2
Keywords 3-2

Statements and Lines 3-3
Line Format 3-3

CHAPTER 4
PROGRAM DELIMITERS AND
COMMENTS
Comments 4-1
Headings 4-1

PROGRAM Statement 4-1
FUNCTION Statement 4-1
SUBROUTINE Statement 4-2
BLOCK OAT A Statement 4-2

END Statement 4-2

CHAPTERS
DATA AND SPECIFICATION
STATEMENTS
DataTypes 5-1

Integer Data 5-1
Integer Constants 5-2
INTEGER Type Statement 5-2

Floating-Point Data 5-3
Floating-Point Constants 5-3
REAL Type Statement 5-4
DOUBLE PRECISION Type Statement 5-4
TEMP REAL Type Statement 5-5

Logical Data 5-5
Logical Constants 5-5
LOGICAL Type Statement 5-5

CONTENTS I

Character Data
Character Constants
CHARACTER Type Statement

PAGE
5-6
5-6
5-6

Hollerith Data
IMPLICIT Statement
PARAMETER Statement
Arrays

DIMENSION Statement
Kinds of Array Declarators
Properties of Arrays
Referencing Array Elements

Character Substrings
Substring Specification
Substring Expressions

Memory Definition
EQUIV ALENCE Statement
COMMON Statement

5-6
5-7
5-7
5-7
5-8
5-8
5-9

5-10
5-10
5-11
5-11
5-11
5-11
5-12

SAVE Statement 5-12
DATA Statement 5-12

Implied-DO in a DATA Statement 5-13
INTRINSIC Statement 5-13
EXTERNAL Statement 5-14

CHAPTER 6
SUBPROGRAMS
Subroutines and Functions

Subroutines
Intrinsic Subroutines

Functions
FUNCTION Subprograms
Intrinsic Functions
8087 Control Intrinsics
8086 Interrupt Control Intrinsics
Statement Functions
The 070 VAL Function

BLOCK DATA Subprograms

CHAPTER 7
EXPRESSIONS

6-1
6-2
6-2
6-2
6-2
6-3

6-18
6-20
6-21
6-22
6-22

Arithmetic Expressions 7-1
Character Expressions 7-3
Relational Expressions 7-3

Arithmetic Relational Expressions 7-4
Character Relational Expressions 7-4

Logical Expressions 7-4
Bitwise Boolean Operations 7-6
Precedence of Operators 7-6
Floating-Point Topics 7-7

CHAPTER 8
EXECUTABLE STATEMENTS
Assignment Statements 8-1

Arithmetic Assignment Statements 8-1

ix

Character Assignment Statements
Logical Assignment Statements

IF Statements
Block IF

PAGE
8-2
8-2
8-2
8-2

Block IF Statement 8-4
ELSE IF Statement 8-4
ELSE Statement ;-~ 8-4
END IF Statement 8-4
Logical IF Statement 8-5
Arithmetic IF Statement 8-5

DO Statement 8-5
CONTINUE Statement 8-6
CALL Statement 8-6
RETURN Statement 8-6
ASSIGN Statement 8-7
GO TO Statements 8-7

Unconditional GO TO Statement 8-7
Computed GO TO Statement 8-7
Assigned GO TO Statement 8-8

Program Halt Statements 8-8
PAUSE Statement 8-8
STOP Statement 8-8

CHAPTER 9
INPUT AND OUTPUT
Records, Files, and Units 9-1

Records 9-1
Files 9-1

External Files 9-1
Internal Files 9-2

Units 9-2
File-Handling Statements 9-2

OPEN Statement 9-2
Unit Specifier 9-3
1/0 Status Specifier 9-3
Error Specifier 9-3
File-Name Specifier 9-4
File-Status Specifier 9-4
Access-Method Specifier 9-4
Formatting Specifier 9-5
Record-Length Specifier 9-5
Blank Specifier ',' 9-5
Carriage-Control Specifier 9-6
Opening a Connected Unit 9-6

CLOSE Statement.... 9-7
Unit Specifier 9-7
File-Disposition Specifier 9-7

BACKSPACE Statement 9-8
REWIND Statement 9-8
ENDFILE Statement 9-9

Data-Transfer 110 Statements 9-9
READ Statement..... 9-9

Control-Information List -....... 9-9

x

CONTENTS (Cont'do)1

PAGE
Input List 9-11
Implied-DO List 9-12

WRITE Statement , 9-12
PRINT Statement 9-13

Formatted Data Transfer 9-13
FORMAT Statement 9-13

Repeatable Edit Descriptors 9-14
Nonrepeatable Edit Descriptors 9-18

List-Directed Formatting 9-21
List-Directed Input 9-22
List-Directed Output 9-23

Unformatted Data Transfer 9-23

CHAPTER 10
EXAMPLES
1/0 Examples 10-1

Program lA (PROGIA.FTN) 10-1
Program IB (PROGIB.FTN) 10-2
Program lC (PROGIC.FTN) 10-3

TEMPREAL Example 10-4
Program 2 (PROG2.FTN) 10-4

$INTERRUPTExample 10-6
Program 3 (PROG3.FTN) 10-6

$REENTRANT Example 10-7
Program 4 (PROG4.FTN) 10-7

Function Subprogram Example 10-8
Program 5 (PROG5.FTN) 10-8

CHAPTER 11
COMPILER CONTROLS
Invoking the Compiler 11-1
Kinds of Compiler Controls 11-1
Using Compiler Controls 11-2

Listing Deviceer File Selection 11-2
Controlling Listed Format and Content 11-2
Source Selection and Processing 11-3
Object Selection and Content 11-3
Use of Controls in Stages of Development 11-3

Control Definitions 11-5
CODE/NOCODE Controls 11-5
DEBUG/NODEBUG Controls 11-6
D066/D077 Controls ~ 11-7
EJECT Control 11-8
ERRORLIMIT INOERRORLIMIT Controls ... 11-9
FREEFORM/NOFREEFORM Controls 11-10
IGNORE Control 11-11
INCLUDE Control 11-12
INTERRUPT Control 11-13
LIST/NOLIST Controls 11-14
OBJECT/NOOBJECT Controls 11-15
OVERLAP/NOOVERLAP Controls 11-16
P AGELENGTH Control 11-17
P AGEWIDTH Control 11-18

PAGE
PRINT/NOPRINTControls 11-19
REENTRANT Control 11-20
STORAGE Control 11-21
SUBTITLE Control 11-22
SYMBOLS/NOSYMBOLS Controls 11-23
TITLE Control 11-24
TYPE/NOTYPE Controls 11-25
XREF INOXREF Controls 11-26

CHAPTER 12
COMPILER OPERATION
Input Files 12-1
Output Files 12-1
Work Files 12-2
Compiler Messages 12-2

CHAPTER 13
COMPILER OUTPUT
Program Listing 13-1

Listing Preface 13-1
Source Listing 13-1
Symbol Listing 13-2
Pseudo-Assembly Language Listing 13-2
Error Message Listing 13-3
Compilation Summary 13-3
Sign-off Message 13-4

Object Files 13-4
Work Files 13-4

CHAPTER 14
LINKING, RELOCATING, AND
EXECUTING PROGRAMS
Introduction 14-1
Memory Allocation 14-1
Linking Object Modules 14-1

Use of Libraries •........................... 14-2
Run-Time Support Libraries 14-2
Linking with Non-FORTRAN Procedures 14-3

Locating Object Modules 14-4
Preconnecting Files 14-5
Executing Programs 14-5

CHAPTER 15
ERRORS AND WARNINGS
Compiler Controls and the Error Listing 15-1
Compiler Error Messages 15-1

Error Format 15-1
Error Messages 15-2
Compiler Control Error Messages 15-11
Compiler Failure Error Messages 15-11

Run-Time Errors 15-11
Input/Output Exceptions 15-12
Operating Environment Error 15-19

CONTENTS (Cont'd.) I

PAGE
integer Exceptions 15-20
Range and Check Exceptions 15-20
Floating-Point Function Exceptions 15-20
Floating-Point 8087 Exceptions 15-21

APPENDIX A
DIFFERENCES BETWEEN
FORTRAN-86 AND OTHER
VERSIONS OF FORTRAN
Extensions to FORTRAN77 A-I
Deviations from the ANS 1978 Standard A-I
Differences Between FORTRAN-80 and

FORTRAN-86 A-2

APPENDIXB
PROCESSOR-DEPENDENT
FEATURES OF FORTRAN-86

APPENDIXC
COMPILER CAPACITY

APPENDIXD
LANGUAGE SUMMARY
Statement Summary D-l
Symbol Summary D-9

APPENDIXE
CHARACTER SET AND COLLATING
SEQUENCE

APPENDIXF
HOLLERITH DATA TYPE
Hollerith as a Data Type F-l
Hollerith Constants F-l

Hollerith Constants in DATA Statements F-l
Hollerith Constants in CALL Statements F-l

Hollerith Format Specification F-2
'A' Editing of Hollerith Data F-2

APPENDIXG
RUN-TIME DATA
REPRESENTATIONS
Storage Units G-l
Data Types G-l

APPENDIXH
LINKING TO SUBPROGRAMS
WRITTEN IN OTHER LANGUAGES
Introduction H-l
Calling Sequence H-2

Arguments H-2
Returned Values H-3
Data Types H-3

xi

Floating-Point Data Types
Integer Data Types
Logical Data Types
Character Data Types
Arrays and Structures as Arguments
Procedures as Arguments

Further Linkage Considerations
Register Usage
Stack Usage
Initialization of the FORTRAN-86 Run-Time

Environment

APPENDIX I
RUN-TIME INTERFACE

PAGE
H-3
H-3
H-4
H-4
H-5
H-5
H-6
H-6
H-6

H-6

Run-Time Support Overview. I-I
Application Object Code Independence I-I
Low End Application 1-2

Run-Time Libraries 1-3
I/O Run-Time Libraries... 1-3
Numerics Ru~-Time Libraries 1-3
Summary 1-3

Logical Record Interfacing 1-3
Run-Time Interrupt Processing 1-4

Interrupt Procedure Preface and Epilogue 1-5
Interrupt HandUng for Real Arithmetic

Errors 1-7

APPENDIXJ
ADDITIONAL INFORMATION
FOR SERIES III OPERATING
SYSTEM USERS
Program Development Environment J-l
Compiler Installation J-I
Program Disk Contents J-l
Compiler Operation J-2

Invoking the Compiler J-2
Files Used by the Compiler J-3

Input Files J-3

xii

CONTENTS (Cont'd.)

PAGE
Output Files J-3
Work Files J-4

Compiler Messages J-4
Insufficient Memory Error Messages J-4

Linking, Locating, and Executing
on the Series III J-5

Sample Link Operations J-5
Examples J-6

Sample Locate Operations J-6
Executing Programs J-7
Series III - Specific Compiler Controls J-8
Interrupt Handling on the Series III J-8

8087 Support J-8
Related Publications J-1O

APPENDIXK
ADDITIONAL INFORMATION FOR
iRMX 86 OPERATING SYSTEM USERS
Program Development Environment K-I
Compiler Installation ". K-I
Program Disk Contents K-l
Compiler Operation K-2

Invoking the Compiler on an iRMX 86-Based
System "... K-2

Files Used by the Compiler K-3
Input Files K-3
Output Files K-3
Work Files K-4

Compiler Messages K-4
Linking, Locating, and Executing in an

iRMX 86-Based Environment K-4
Sample Link Operations K-5
Examples K-5

Locating Object Modules K-6
Preconnecting Files K -7
Executing Programs in an iRMX 86 Environment ... K-7
iRMX 86 - Specific Examples K-7
Related Publications K-7

TABLE

5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4

6-5

6-6
6-7
6-8
6-9
6-10
6-11
6-12

7-1
7-2

7-3
7-4
7-5
7-6

TITLE PAGE

Value Ranges of INTEGER Data 5-2
Value Ranges of Floating-Point Data 5-4
Value Ranges of LOGICAL Data 5-5
Subscript Reference 5-10
Type-Conversion Functions 6-4
Truncation and Rounding Functions 6-7
Remainder Functions 6-8
Absolute Value, Sign Transfer, Positive

Difference, and Double Precision
Product Functions 6-9

Choosing the Largest or Smallest Value
Functions ,.............. 6-11

Length and Index Functions 6-12
Arithmetic Functions 6-13
Trigonometric Functions 6-14
Hyperbolic Functions 6-16
Lexical Relationship Functions 6-17
8087 Control Intrinsics 6-18
Implicit Type Conversions in Statement

Functions 6-22
Arithmetic Operators 7-1
Type and Length of Results of Arithmetic

Expressions (Addition, Subtraction,
Multiplication, Division and
Exponentiation) 7-2

Evaluation Methods for Y**X 7-3
RelationalOperators 7-3
Logical Operators 7-4
Value of a Logical Expression with

.NOT. 7-5

FIGURE TITLE PAGE

1-1

2-1
3-1
6-1

6-2

8-1

10-1

FORTRAN-86 Program Development
Process 1-4

Order of FORTRAN Statements 2-2
FORTRAN Line Format 3-3
8087 Control Word Format for

FORTRAN-86 6-19
8087 Status-Word Format for

FORTRAN-86 (STSW87) 6-20
Nesting Levels of IF, ELSE IF, and

ELSE Blocks 8-3
PROGIA.FTN-Direct Access,

Unformatted 110 10-1

TABLE

7-7

7-8

7-9

7-10

7-11

8-1

9-1

9-2
9-3
9-4

11-1
11-2
D-l
D-2
D-3
E-l
G-l
H-l

TABLES I

TITLE PAGE

Value of a Logical Expression with
.AND. 7-5

Value of a Logical Expression with
.OR. 7-5

Value of a Logical Expression with
.EQV. 7-5

Value of a Logical Expression with
.NEQV. 7-5

Length of Results of Logical Expressions
(.AND., .OR., .EQV., .NEQV.) 7-6

Type Conversions in Arithmetic
Assignment Statements 8-2

Output Forms of Exponents for D and E
Editing 9-16

G Editing for O.I~N<IO**d 9-16
Interpretation of Band Z Values 9-18
Floating-Point Editing for Output with

the Scale-Factor Edit Descriptor P 9-20
Types of Con trois 11-1
Controls and Their Abbreviations 11-2
Arithmetic Operators D-9
Relational Operators D-9
Logical Operators D-I0
Character Set and Collating Sequence E-l
Summary of Storage Units G-l
FORTRAN-86 Data Types and Their

Equivalents in Pascal-86, PL/M-86,
and ASM-86 H-4

ILLUSTRATIONSI

FIGURE TITLE PAGE

10-2

10-3
10-4
10-5
10-6
10-7
13-1
H-l

H-2

PROG I B.FTN-Sequential Access,
Formatted 110 10-2

PROGIC.FTN-List Directed I/O 10-3
PROG2.FTN-TEMP REAL 10-4
PROG3.FTN-$INTERRUPT Control ... 10-6
PROG4.FTN-$REENTRANT Control .. 10-7
PROG5.FTN-Functon Subprogram 10-8
Sample Portion of a Code Listing 13-5
8086 Stack Layout During Execution

of a FORTRAN-86 Subprogram H-7
Sample ASM-86 Program H-8

xiii

ILLUSTRATIONS (Cont'd.>1

FIGURE TITLE PAGE FIGURE TITLE PAGE

I-I Application Program and Run-Time 1-6 8086 Stack Layout When Interrupt

Libraries in User System I-I
1-7

Procedure Gains Control 1-5

1-2 Use of UDI Library I-I 8086 Stack Layout After Interrupt

1-3 UDl Libraries in Series III Procedure Preface and Before

Development 1-2 Procedure Prologue 1-5

1-4 UOl Libraries with iRMX 86 1-8 8086 Stack Layout During Execution of

Operating System 1-2
1-9

Interrupt Procedure Body 1-6

1-5 110 and Numerics Run-Time Libraries Routine to Redirect Interrupts 1-7

in System 1-3

xiv

CHAPTER 1
OVERVIEW

This chapter introduces FORTRAN-86 and explains how it fits into the process of
developing software for your iAPX 86 or iAPX S8 application system.

FORTRAN-S6 is a high-level language designed for programming the 8086 and SOSS
microprocessors. It is a superset of the FORTRAN 77 subset defined by the
American National Standards Institute (ANSI). FORTRAN-86 also includes addi
tional features helpful in microprocessor software development. FORTRAN-86 is
compatible with FORTRAN-80.

The FORTRAN-86 compiler translates your FORTRAN-86 source programs into
relocatable MCS-86 object modules, which you can then link to other such modules,
coded in FORTRAN or in other S086/S0S8Ianguages. The compiler provides listing
output, error messages, and a number of compiler controls to aid in program
development and debugging.

With the compiler comes a set of relocatable object libraries to be linked in with
your own code; these provide complete run-time support for input! output,
arithmetic functions, and in line code execution by the optional SOS7 Numeric Data
Processor. After linking your own modules together with these Intel-supplied library
modules, you can locate your final linked program to run on an Intel development
system, or in RAM, PROM, or ROM on your own SOS6- or 80SS-based custom
hardware.

To perform the steps following compilation, you use the standard S086 Family soft
ware development utilities-LINKS6, LOC86, LIBS6, and OHS6. You can then
debug your programs using the resident monitor program or the ICE-S6 In-Circuit
Emulator. For firmware systems, you may then use the Universal Prom Program
mer (UPP) with its Universal Prom Mapper (UPM) software to burn your programs
into PROM.

1.1 The Compiler and Run-Time System

1.1.1 Compiler Features

The FORTRAN-86 compiler includes a number of features to make programming
and debugging easier. Compiler controls allow you to specify the form and content
of your source code, object code, and output listing.

Controls are provided to copy (INCLUDE) source code from other files in addition
to the main source file, to perform code optimizations, to output debug information
in the object file for use by LINK86 and the ICE-S6 emulator, and to specify inter
rupt procedures. The compiler also provides an optional symbol listing and controls
to format the output listing to your own specifications.

1.1.2 Run-Time Support Libraries

The run-time support libraries, provided in relocatable object code form to be linked
to your compiled object program, allow you to run your program in a number of
hardware environments. You simply choose the run-time libraries that match the
hardware/software configuration you are using.

1-1

Overview

1-2

These libraries provide all 110 support, including device drivers, needed to run your
programs on your system. You may also choose to have floating-point arithmetic
operations performed either via floating-point software routines on your 8086 pro
cessor, or using the on-chip capabilities of an 8087 Numeric Data Processor for
higher performance; in either case, all required arithmetic and interface software is
included in the run-time libraries.

In addition, the modular structure of the I/O libraries allows you to substitute your
own device drivers for non-standard 110 devices, if you wish. For instructions, see
Appendix I.

1.2 Hardware and Software Environments

1.2.1 Program Development Environment

To run the compiler, you must have certain hardware and software. The system
dependent appendix (Appendix J for Series III and Appendix K for iRMX-86) lists
these requirements.

A system with a printer is also recommended for producing hard-copy output
listings, but may be separate from the one used to compile programs.

To link and relocate programs after you have compiled them, and to prepare them
for loading (or PROM programming) and execution, you need the following
software:

• LINK86

• LOC86

• LIB86
! OH86

Instructions for using these utility programs are given in the iAPX 86, 88 Family
Utilities User's Guide for 8086-Based Development Systems.

Depending on your development environment and your final run-time environment,
you may also wish to use the following hardware and software:

• The ICE-86 In-Circuit Emulator

• The SDK-86 System Design Kit, optionally with the SDK-C86 Software and
Cable Interface

• The iSBC 957B iAPX 86,88 Interface and Execution Package

• The Universal PROM Programmer (UPP) with the Universal PROM Mapper
(UPM) software.

1.2.2 Run-Time Environment

Your compiled, linked, and located program code may run in any of the following
environments:

• A Series-III development system under the Series-III resident operating system

• An iSBC system with an iAPX 86,88 CPU board and the iRMX 86 operating
system.

• A custom-designed 8086- or 8088-based microcomputer system.

In the latter case (an environment without Intel operating system support), you will
need to write your own I/O drivers (as described in Appendix I) and provide a soft
ware interface to your own operating system.

FORTRAN-86

FORTRAN-86

The amount of memory required at run time will depend on the size of your applica
tion program.

You may increase the speed of floating-point arithmetic operations and reduce code
size in your programs by including an 8087 Numeric Data Processor in your system.
Detailed specifications are provided in the 8086 Family User's Manual Supplement
for the 8087 Numeric Data Processor.

1.3 Compiler Installation

The FORTRAN-86 software package includes this manual (the FORTRAN-86
User's Guide), the FORTRAN-86 Pocket Reference, supplementary literature
including a customer letter and Software Problem Report forms, and two single
and one double-density program diskettes. The contents of the disks are listed in
Appendixes J and K.

Once you have your compile-time environment configured all you need to do for
installation is to copy the compiler and run-time library files from the product
diskette to the single- or double-density diskette or hard disk you are using on your
system. For diskette systems, copying is necessary only for back-up or if you want
the compiler and libraries to reside on other diskettes.

1.4 The Program Development Process

The FORTRAN-86 compiler and run-time libraries are part of the integrated set of
tools that make up the total 8086 development solution for your microcomputer
system. Figure 1-1 shows how you use these tools to develop programs using
FORTRAN-86. The shaded boxes represent Intel products.

The steps in the software development process are as follows:

1. Define the problem completely.

2. Outline the proposed solution in terms of hardware plus software.

3. Design the software for your system. This important step may consist of several
sub-steps, including breaking down the task into modules, choosing the pro
gramming language, and selecting the algorithms to be used. You may decide to
code some modules in languages other than FORTRAN, such as
8086/8087/8088 Macro Assembly Language, PL/M-86, or Pascal-86.

4. Code your programs and prepare them for translation using a text editor, such
as the CRED IT CRT -based text editor.

5. Translate your FORTR~N program code using the FORTRAN-86 compiler.

6. Correct any compile-time errors reported via error messages, using the text
editor, and re-translate.

7. Using LINK86 (and LOC86 if needed), link the resulting relocatable object
module to the necessary run-time libraries supplied with FORTRAN-86 and the
operating system. The use of LINK86 and LOC86 depends on your application;
for detailed instructions, see the iAPX 86, 88 Family Utilities User's Guide for
8086-Based Development Systems.

8. You can now run your programs and debug them, with the aid of FORTRAN's
run-time error messages. Your execution vehicle for debugging can be a
Series-III system with its resident monitor and (optionally) an ICE-86 or ICE-88
In-Circuit Emulator, an iRMX-based system, or RAM on an SDK-86 System
Design Kit or iAPX 86,88 Single Board Computer with resident monitor.

Overview

1-3

Overview

LEGEND

({\ IINTEL PRODUCTS

D USER-CODED
SOFTWARE

1-4

FORTRAN
86

SOURCE

OTHER
RELOCAT

ABLE
OBJECT

MODULES

LIBRARIES

FORTRAN-86

r-------------,
I I

I I
LTL

CODE

I
I
I
I

ABSOLUTE I
OBJECT 1----...

CODE I
I I L ____________ J

CUSTOM
DESIGNED

USER
SYSTEM

Figure 1-1. FORTRAN -86 Program Development Process 121570-1

FORTRAN-86

9. Translate and debug your other system modules, including those coded in other
languages. Once you have performed the desired amount of testing of each
individual module, you can link them together and optionally locate them using
LINK86 and LOC86.

10. Test and debug your software in your chosen debug environment.

11. Produce a final debugged object module and transfer it to your run-time
environment. How you do this depends on the nature of that environment and
the tools you are using.

• When the environment is a development system, use the execution
command to load and run your program.

• When the environment is RAM on an SDK-86 kit or an iAPX 86,88 Single
Board Computer system, use OH86 to obtain a hexadecimal object code
file. Then, if you've been developing your programs on a Series-III, use an
appropriate tool for downloading them into your execution board (the
ICE-86 In-Circuit Emulator, the SDK-C86 Software and Cable Interface,
or the iSBC 957B Interface and Execution Package).

• When the environment is ROM on an SDK-86, iAPX 86,88 Single Board
Computer system, or your own custom-designed hardware, use the Univer
sal PROM Programmer (UPP) with its Universal PROM Mapper (UPM)
software to burn your program into PROM.

Note that you can do your hardware development in parallel with software develop
ment, and that you can take intermediate hardware/software integration steps if you
are using the ICE-86 In-Circuit Emulator.

For instructions on the use of other Intel products discussed in this section, refer to
the manuals listed in the preface to this book.

Overview

1-5

CHAPTER 21
PROGRAM STRUCTUR~

2.1 Basic Structure

You can divide a FORTRAN program into distinct program units. These units can
be thought of as sequences of statements and comments. The program unit is either
a main program or a subprogram depending on its first statement. A main program
usually has a PROGRAM statement as its first statement but this is optional. It can
contain any statements except BLOCK DATA, FUNCTION, or SUBROUTINE
statements as these define subprograms. A main program cannot be referenced by a
subprogram or by itself. Any FORTRAN program must have only one main pro
gram, but it can have any number of subprograms.

There are three kinds of subprograms: BLOCK DATA, FUNCTION, or
SUBROUTINE. A BLOCK DATA subprogram begins with a BLOCK DATA state
ment, and provides initial values for variables and array elements in named
COMMON blocks. A detailed description is in Chapter 6, "Subprograms".

Any executable program is called a procedure. FUNCTION and SUBROUTINE
subprograms are external procedures. Either the main program or programs written
in other iAPX 86,88 languages can call these procedures. A FUNCTION sub
program begins with a FUNCTION statement and returns a value when referenced.
A SUBROUTINE subprogram begins with a SUBROUTINE statement. See
Chapter 6 for a complete explanation of FUNCTION and SUBROUTINE
subprograms.

2.2 FORTRAN Statements

In FORTRAN there are two kinds of statements, executable or nonexecutable.
Executable statements do calculations, read or write data from external media, and
control program execution. Nonexecutable statements define the characteristics or
values of data and define program units. The following list classifies FORTRAN
statements as executable or nonexecutable. You can find complete definitions in the
chapters indicated.

EXECUTABLE STATEMENTS
• Arithmetic, logical, and character assignment statements (Chapter 8)

• ASSIGN statement (Chapter 8)

• Unconditional, assigned, and computed GOTO statements (Chapter 8)

• Arithmetic and logical IF statements (Chapter 8)

• Block IF, ELSE IF, ELSE, and END IF statements (Chapter 8)

• CONTINUE statement (Chapter 8)

• STOP and PAUSE statements (Chapter 8)

• DO statement (Chapter 8)

• READ, WRITE, and PRINT statements (Chapter 9)

• REWIND, BACKSPACE, ENDFILE, OPEN, and CLOSE statements
(Chapter 9)

• CALL and RETURN statements (Chapter 8)

• END statement (Chapter 4)

2-1

Program Structure

2-2

NONEXECUTABLE STATEMENTS
• PROGRAM, BLOCK DATA, FUNCTION, and SUBROUTINE statements

(Chapter 4)

• DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, EXTERNAL,
INTRINSIC, and SAVE statements (Chapter 5)

• INTEGER, REAL, DOUBLE PRECISION, TEMPREAL, LOGICAL,
CHARACTER type statements (Chapter 5)

• 'DAT A statement (Chapter 5)

• PARAMETER statement (Chapter 5)

• FORMAT statement (Chapter 9)

• statement-function statement (Chapter 6)

2.2.1 Statement Order

FORTRAN program units must follow this standard order:

• Comment lines can appear anywhere"before the END statement.

• The PROGRAM statement can appear only as the first statement of a main
program. FUNCTION, SUBROUTINE, and BLOCK DATA statements can
appear only as the first statement in a subprogram.

• FORMAT statements can appear anywhere before the END statement.

• PARAMETER statements can appear anywhere before DATA,
statement-function, and executable statements.

• IMPLICIT statements must appear before all other specification statements
except PARAMETER and FORMAT statements.

• All other specification statements (DIMENSION, COMMON,
EQUIV ALENCE, EXTERNAL, INTRINSIC, and SAVE) must appear before
all DATA statements.

• DATA statements can appear anywhere after the specification statements.

• All statement-function statements must appear before all executable statements.

• All executable statements must appear before the END statement.

• The END statement must be the last statement in a program unit.

Figure 2-1 summarizes the rules for ordering FORTRAN statements in a program
unit. In this figure, vertical lines separate statement types that can be mixed and
horizontal lines separate those that cannot.

PROGRAM, FUNCTION, SUBROUTINE
OR BLOCK DATA STATEMENTS

IMPLICIT
STATEMENTS

PARAMETER
COMMENT STATEMENTS OTHER LINES SPECIFICATION

FORMAT STATEMENTS
STATEMENTS

STATEMENT-
FUNCTION

DATA
STATEMENTS

STATEMENTS
EXECUTABLE
STATEMENTS

END STATEMENT

Figure 2-1. Order of FO RTRAN Statements 121570-2

FORTRAN-86

CHAPTER 3
LANGUAGE ELEMENTS

3.1 Basic Alphabet

The character set for FORTRAN-86 is the set of all upper- and lower-case letters,
the digits 0 through 9, and the following special characters:

+

*
/
(
)

$

Blank
Equal Sign
Plus
Minus
Asterisk
Slash
Left Parenthesis
Right Parenthesis
Comma
Period
Single Quote
Dollar Sign

-] <11'

Blanks are significant only in character strings. They can be used to improve pro
gram readability . For example:

A=B*C+(O**2/E)

is the same as

A = B*C + (O**2/E)

The compiler counts blanks in the total number of characters allowed in a
FORTRAN line. They have no effect on the total memory space the object program
occupies.

3.2 Statement Elements

The letters, digits and special characters of the FORTRAN-86 character set form the
basic elements of a FORTRAN statement. These -basic elements are conStants,
symbolic names, statement labels, keywords, and operators. There are no reserved
words in FORTRAN so that any combination of the character set is acceptable as
long as it complies to certain rules outlined in the next sections.

3.2.1 Constants

A constant is a value which does not change. In FORTRAN, there are arithmetic,
logical and character constants. Each constant has a data type and a length . See
Chapter 5, "Data and Specification Statements," for details on constants.

3-1

Language Elements FORTRAN-86

3-2

3.2.2 Symbolic Names

Each variable in FORTRAN must have a symbolic name. A symbolic name consists
of 1 to 6 alphanumeric characters in standard FORTRAN, 1 to 31 in FORTRAN-86.
The first character must be a letter. For example,

A
a
C3 PO

are all correct symbolic names whereas

1ACG

is not.

The compiler considers A and a equivalent.

A symbolic name can be either global or local. Any global symbolic name has the
scope of the entire program. The following is a list of global symbolic names:

• Main program name

• Subroutine names

• External function names

• BLOCK DATA subprogram names

• named COMMON names

A local symbolic name can represent different entities in different program units or
statement functions. The following is a list of local symbolic names:

• Array names

• Variable names

• Statement-function names

• Intrinsic-function names

• Dummy procedure names

Variables which appear as dummy arguments in a statement function have a scope
of that statement only.

3.2.3 Statement Labels

You can give a label to any statement in a FORTRAN program but you must give a
label to any statement that is referenced by another line in the program. A statement
label is a sequence of 1 to 5 digits, with at least one being nonzero. The compiler
ignores leading zeros in a statement label.

3.2.4 Keywords

FORTRAN keywords are very important. All but two types of statements "begin with
a keyword, and the compiler uses it to identify the statement. Most keywords fulfill
the requirements of a symbolic name. Since there are no reserved words, however,
the compiler distinguishes between keywords and symbolic names by the context.

FORTRAN-86 Language Elements

3.3 Statements and Lines

Each FORTRAN statement is made up of lines. The first line is the initial line and
each subsequent line is a continuation line. FORTRAN-86 can have up to 19 con
tinuation lines.

3.3.1 Line Format

FORTRAN-86 lines must follow a specified order. Figure 3-1 shows this order.

Each line has a maximum of 72 characters. The first 5 positions may contain the
statement label. If there is no statement label for a line or if it is a continuation line,
these positions must be left blank. Position 6 is the continuation field. If this posi
tion contains a 0 or a blank, the line is an initial line. If it contains any other
FORTRAN character, it is a continuation line. The actual statement does not begin
until column 7.

You can deviate from the standard FO R TRAN line format by using the
FREEFORM control. See section 11.4.6, "FREEFORM CONTROL" for details.

LINE CHARACTER POSITIONS

2 3 4 5 6 7 8 9 70 71 72 T I~'~------------------'T~----------------~
CONTINUATION STAT,EMENT

STATEMENT FIELD FIELD
LABEL FIELD

Figure 3-1. FORTRAN Line Format 121570-3

3-3

CHAPTER 4
PROGRAM DELIMITERS

AND COMMENTS

4.1 Comments

Comments in FORTRAN are lines which document the program. Comment lines
are useful for describing the intent of the program between the lines. Each comment
line must begin with either the letter 'C' or an asterisk (*) in position 1. A completely
blank line is treated as a comment. Comment lines can appear anywhere before the
END statement including between an initial line and its continuation lines or
between any two continuation lines. Comment lines have no effect on program
execution or memory requirements.

4.2 Headings

You can divide a FORTRAN program into a main program and any number of sub
programs as described in Chapter 2, "Program Structure". Each unit begins with a
different statement which defines the unit. The following sections describe these
initial statements:

4.2.1 PROGRAM Statement

The PROGRAM statement names the main program. This statement is optional,
but if it is present, it must be the first statement in the main program. Its syntax is

PROG RAM name

where name is the symbolic name you give your main program. This name is global
to the entire executable program and cannot be the same as the name of any func
tion, subroutine, BLOCK DATA subprogram, common block, or any local variable
within the main program.

4.2.2 FUNCTION Statement

The FUNCTION statement introduces a FUNCTION subprogram. It must be the
first statement in the subprogram. Its syntax is

[type] FUNCTION name <[arg[,arg]p

where type is one of the specified data types INTEGER, REAL, DOUBLE
PRECISION, TEMPREAL, LOGICAL, or CHARACTER (see Chapter 5, "Data
and Specification Statements"). The name is the symbolic name you give your sub
program and each arg is the name of a dummy argument that is either a variable,
array, or procedure.

The FUNCTION name can appear as a variable within the subprogram. It is
defined or redefined every time the program activates the function. The value of this
variable at the end of the subprogram is the resulting, or return, value of the func
tion. A function can change the values of its dummy arguments. If there are no
dummy arguments, the parentheses still must be present. The uses of FUNCTION
subprograms are described in Chapter 6, "Subprograms".

4-1

Program Delimiters and Comments FORTRAN-86

4-2

4.2.3 SUBROUTINE Statement

The SUBROUTINE statement introduces a SUBROUTINE subprogram. This state
ment must be the first statement in the subroutine. Its syntax is

SUBROUTINE name [([arg[,arg]])]

where name is the symbolic name you give to your subroutine and each arg is a
dummy argument which is either a variable, array or procedure. A subroutine can
change the values of its dummy arguments. If there are no dummy arguments, either
form, 'SUBROUTINE name' or 'SUBROUTINE name ()' is acceptable. The uses
of subroutines are described in Chapter 6, "Subprograms".

4.2.4 BLOCK DATA Statement

The BLOCK DATA statement introduces a BLOCK DATA subprogram. It must be
the first statement in the subprogram. Its syntax is

BLOCK DATA [name]

where name is the optional name you can give to the subprogram. A BLOCK
OAT A subprogram is used to initialize global data and contains no executable
statements. See section 6.2, "BLOCK DATA Subprograms".

4.3 END Statement

The END statement indicates the end of a program unit, either a main program or a
subprogram. Its syntax is

END

The END statement must be the last statement in a program unit. When executed in
a main program, it terminates the program. When executed in a subprogram, it acts
as a RETURN statement and transfers control back to the main program.

You must enter an END statement only in positions 7 through 72 of an initial line,
and the END statement cannot extend to a continuation line. No other statement
can have an initial line that looks like an END statement.

CHAPTER 5
DATA AND SPECIFICATION

STATEMENTS

FORTRAN-86 provides a number of data types and specification statements. This
chapter describes each of these in detail.

5.1 Data Types

FORTRAN-86 allows four different types of data: integer, floating-point, logical,
and character. There are floating-point data types: real, double precision, nd

A symbolic name representing a constant, variable, array, or function
ldentl les its type.

You can specify the type of a named constant, variable, array, external function, or
statement function with a type statement. In the absence of a specific declaration,
the FORTRAN default typing convention takes effect. In this convention, the first
letter of the name implies the particular type. A first letter of I, J, K, L, M, or N
indicates type INTEGER; any other letter indicates type REAL. An IMPLICIT
statement can change this convention (see section 5.2) .

Type statements can also specify data length or array dimension information. You
cannot specify the type of a name explicitly more than once in a program unit.
PROGRAM, SUBROUTINE, and BLOCK DATA names cannot appear in type
statements.

In FORTRAN, there are four levels of setting data lengths: compiler default, the
i~~[~RE~~lJlirg the IMPLICIT statement, and type specification statements. If
you do not specifically declare any data lengths, the following compiler defaults are
in effect:

INTEGER
LOGICAL
REAL
CHARACTER

If you specify a length in an IMPLICIT statement, this specification overrides both
the STORAGE control and the compiler defaults for the given class of names.

If you specify a length in a type statement, it overrides the IMPLICIT statement,
-sT0RA1 con ro ,an -the compiler default-f-urt1re-gtvenlfame .

5.1.1 Integer Data

An item of integer data always comprises the exact
F:'--"~';"""'-

value. The value can be positive, negative, or zero.

5-1

Data and Specification Statements

5-2

5.1.1.1 Integer Constants

The forms of an unnamed integer constant are

[sign] diglet[diglet] ...

5.1.1.2 INTEGER Type Statement

An INTEGER type statement declares names to be of type INTEGER. Its syntax is

FORTRAN-86

FORTRAN-86 Data and Specification Statements

and each name is one of the forms

or

where var is the name of an integer constant, variable, function, or dummy pro-
cedure, array is an array name declarator section 5.4.1

5.1.2 Floating-Point Data

appJies
A lengtb

array, the
.;CQJIllJ)1iler assigns a

"STORAGE

An item of floating-point data represents a processor approximation to the value of
a floating-point number. Floating-point data values can be positive, negative, or
zero. T e mternet , .. representation, t e precIsion, range of fioatmg-pomt
values conforms tcllhe floating-point conventions ~ .by tbe IEEBProposed
Standard for Binary Floating-Point Arithmetic, Draft Qr more information on
floating-point' arithme,;tric, see the 8086 Eami/y ~'s ManualJ Numerics
Supplement, section S.3. .

FO'RTRAN-86 support1 three types of floating
PRECISION, and TE~PREAL. REAL dau. is _
numeric storage units in a ~uence d~ndi on
sQecification. DOUBLE PRECISION data is stored
storage units andTEMPREAL data in ten b fes.

Note that the internal representation 0 the REAL "-'tjpe is the same as that of
the DOl!,BLE PRECISION data type.

5.1.2.1 Floating-Point Constants

The basic form of a floating-point constant is

[sign]digit.digit[exponent]

where sign is an optional plus (+) or minus (-) sign, and digit.digit IS the Integer and
fractional part of the constant. Both the integer part and the fractional part are
strings of decimal digits. You can omit either of these parts but not both. You can
write a floating-point constant with more digits than the processor will use to
approximate the value of the constant. The compiler interprets a floating-point con
stant as a decimal number.

There are three floating-point exponent forms which correspond to the three
floating-point data types. The syntax is

letfer[sign]digit

5-3

Data and Specification Statements FORTRAN-86

5-4

5.1.2.2 REAL Type Statement

A REAL type statement declares names to be of type REAL. Its syntax is

name[, name] ...

!EfjiS~:mi1!~~~~!lland each name has the form

var

or

array[(d) U~~n

5.1.2.3 DOUBLE PRECISION Type Statement

The DOUBLE PRECISION type statement declares names to be of type DOUBLE
PRECISION. Its syntax is

DOUBLE PRECISION name[,name] ...

where each name is a constant name, variable name, function name, dummy pro
cedure name, array name, or array declarator(see section 5.4.1, "DIMENSION
Statement"). The compiler assigns a length of two four-byte numeric storage units
to each name.

FORTRAN-86 Data and Specification Statements

" -
t4.1C~la;res:; name's1to &eof tYPe'TEMiREAIf~ Its

5.1.3 Logical Data

5.1.3.1 Logical Constants

Table 5-3 shows the form and acceptable values of logical constants.

5.l.3.2 LOGICAL Type Statement

The LOGICAL type statement declares names to be of type LOGICAL. Its syntax is

LOG I CA L *NiJ name[,name]. ..

or

array[(d)] *~

where var is the name of a logical constant t variable t function t or dummy pro
cedur~, array is an array name, array(d) is an array declarator, (see section 5.4.1,
"DIMENSION Statement") n len IS tfie eng in ytes 0 tlie logIcal vanable on
:each logical array element. Tbe value len must be l~ 2, or 4.
l>~:t . - . :;: f;::~·F ~,.:; ," >m:

he length speCification imnlediately following the keyword L0GJCAL applies to
~ai:h item in the statementmnotb~ying its own length specification. A lel1gth
specification immediately f01l()wing wan item applies to that item ;Only .. For an array,
the length applies to each array element. If no length is specified, the compiler
assumes~~tbe default lepgth(s~ sectiens 5.2, U IMP'LICI~StateIlent" t &nd Il.~,.16.
uSTORAGE Control"). ~ .

5-5

Data and Specification Statements FORTRAN-86

5-6

5.1.4 Character Data

Character data are strings of ASCII characters. Each character in the string has a
character position numbered consecutively from left to right beginning with 1. The
blank character is valid and significant in character data.

5.1.4.1 Character Constants

A character constant has the following form

'CHARACTERS'

The apostrophe (') is not part of the character constant. Two consecutive
apostrophes (") represent a single apostrophe within the string. For example:

'MURPHY' 'S LAW'

The length of a character string is the number of characters in the string. Each pair
of consecutive apostrophes counts as one character. The length of a character con
stant must be greater than zero.

5.1.4.2 CHARACTER Type Statement

A CHARACTER type statement declares names to be of type CHARACTER. Its
syntax is

C H A RA C T E R[*len]name[, name] .. .

where len is any unsigned, non-zero, integer constant expression enclosed in paren
theses or an asterisk (*) enclosed in parentheses. Each name has one of the forms

var[*len]

or

afray[(d)][*Ien]

where var is a character variable, array is an array name, array(d) is an array
declarator (see section 5.4.1 DIMENSION Statement) and len is the number of
characters in the character variable, character array element, character constant
with a symbolic name, or character function.

The length specification immediately following the keyword CHARACTER applies
to each item in the statement not having its own length specificat~n. A length
specification immediately following an item is for that item only. For an array, the
length applies to each array element. If no length is specified, the compiler assumes
the standard default length for CHARACTER data, one byte, or that specified by
an IMPLICIT statement (see section 5.2).

5.1.
« §

p

OItTRAN-86 supports Hollerith d . See AD~ndix F for details.

FORTRAN-86 Data and Specification Statements

5.2 IMPLICIT Statement

The IMPLICIT statement defines the default type and length for symbolic names
which begin with the letter or letters specified. It overrides the standard FORTRAN
typing convention (see section 5.1). Any type statement or explicit type specification
in a FUNCTION statement can override an IMPLICIT statement.

The syntax of the IMPLICIT statement is

IMP LIe I T type (Iet[, let] ...) [type (Iet[, let] ...)] ...

The IMPLICIT statement applies only to the program unit in which it appears and
must precede all other specification statements in that unit. A program unit can have
more than one IMPLICIT statement but you can specify a particular letter no more
than once.

5.3 PARAMETER Statement

The PARAMETER statement gives constants symbolic names. Its syntax is

PARAMETER (name = exp I, ...]>

where name is a symbolic name and exp is a constant expression.

If the name is of type INTEGER, the corresponding expression must be of type
INTEGER. If the name is of type REAL, DOUBLE PRECISION, 0

PREAL must be a floating-point constant. If name is of type LOGICAL,
then exp must be a logical constant. If name is of type CHARACTER, exp must be
a character constant.

Any symbolic name of a constant that appears in an expression in a PARAMETER
statement must have been previously defined in the same or a different
PARAMETER statement.

If the symbolic name of a constant is not of default implied type or length, you must
also specify its type and length in either a type statement or an IMPLICIT statement

e ore It appears i1rTheP A~METER staremerrt--s-u tJs-e-querrr-statements, including
an IMPLICIT statement, cannot change the type or length.

A symbolic name in a PARAMETER statement may identify only the corre
sponding constant in that program unit.

5.4 Arrays

An array is a sequence of data elements. You can refer to the sequence as a whole or
to individual elements in the sequence.

5-7

Data and Specification Statements

5-8

An array name is the symbolic name of the entire array. An array element name is
the symbolic name of one member of the array. An array element name is an array
name qualified by one or more subscripts in parentheses. An array name not
qualified by a subscript identifies the entire array with the exception: in an
EQUIV ALENCE statement or CALL assignment list, the array name with no
subscript identifies the first element in the array.

You define an array by assigning a symbolic name to the array and specifying its
dimensions. This definition can occur in type statements (section 5.1), a COMMON
statement (section 5.5.2), or a DIMENSION statement.

5.4.1 DIMENSION Statement

The DIMENSION statement defines an array. Its syntax is

DIM ENS ION array (d) [, array (d)] ...

where each array(d) is an array declarator that has the form

array (s[, ...]>

where array is the symbolic name of the array and s is a dimension declarator. The
number of dimension declarators is the number of dimensions in the array. Each
dimension declarator indicates the number of elements of that dimension. The max
imum number of dimensions is seven.

The form of a dimension declarator is

[d1:]d2

where d1 is the lower dimension bound and d2 is the upper dimension bound. Both
upper and lower bounds are arithmetic expressions containing integer constants and
variables only. A dimension bound cannot contain a reference to either a function or
array element. The values of upper and lower bounds can be positive, negative, or
zero. However, the upper bound must be greater than or equal to the lower bound.
If you do not specify a lower bound, the default value is one.

5.4.2 Kinds of Array Declarators

An array declarator has three types: a constant, adjustable, or assumed-size array
declarator.

In a constant array declarator, each of the dimension bounds is an integer constant
or integer constant expression. For example:

ARRAY(3,3,-3:4)

In an adjustable array declarator, one or more of the dimension bounds is an
INTEGER variable or expression. For example:

ARRAY(3,2:MIDDLE,THIRD+8)

In an assumed-size array declarator, the upper bound of the last dimension is an
asterisk (*). For example:

ARRAY(3,MIDDLE,*)

FORTRAN-86

FORTRAN-86 Data and Specification Statements

You can use an array name as a dummy argument in a FUNCTION or
SUBROUTINE subprogram. An actual array declarator must be a constant array
declarator whereas dummy array declarators may be constant, adjustable, or
assumed-size. Like actual array declarators, dummy declarators are permitted in
DIMENSION or type statements, but unlike actuals, they cannot appear in
COMMON statements. Each variable name used in a dimension-bound expression
must also appear in-the subprogram's dummy argument list or in a COMMON
block in the subprogram. You can avoid this requirement in the last dimension by
using the asterisk (*) feature for the upper bound.

5.4.3 Properties of Arrays

The DIMENSION statement defines the following properties for arrays:

• The type of the array name

• The type of the array elements

• The length of the array elements

• The number of dimensions in the array

• The size of each dimension

• The total number of array elements

The number of dimensions equals the number of dimension declarators in the array
declarator. For example, the array

TABLE(-6:4,4)

has two dimensions.

The size of a dimension declarator is the value

d2 - d1 + 1

where d1 is the value of the lower dimension bound and d2 is the value of the upper
bound.

You can compute the size of an array as the product of the sizes of the dimensions
specified by the array declarator. For example:

ARRAY(3,-1:1,3)

has 27 elements. To determine the number of elements in an a~umed size array, do
the following:

• If the actual argument corresponding to the dummy array is an array name, the
size is that of the actual array.

• If the actual argument is an array element name with a subscript value of 'p' in
an array of size 'n', the size.of the dummy array is 'n+l-p.'

The compiler stores array elements sequentially. For example, in the following
sequence:

DIMENSION TABLE(3,3)
TABLE(3,1)=2.9
TABLE(2,3)=7.3

'2.9' is in the third storage location in the block whose low address is 'TABLE' and
'7.3' is in the eighth location.

5-9

Data and Specification Statements

5-10

(1,1)(2,1)2.9(1,2)(2,2)(3,2)(1,3)7.3(3,3)

To determine the total number of bytes in an array, multiply the number of elements
by the number of bytes occupied by each element.

5.4.4 Referencing Array Elements

You reference an array element by qualifying the array name with subscripts. For
example:

array (5[,5] .. .>

where array is the array name and 5 is the subscript. The number of subscripts must
equal the number of dimensions in the array declarator.

Each subscript must be an integer expression in the range lower bound~s~upper
bound. If the upper dimension bound is an asterisk (*), the value of the corre
sponding subscript must not exceed the effective upper bound of the corresponding
actual array. Table 5-4 shows how to calculate which element in the storage sequence
of array elements you are referencing.

Table 5-4. Subscript Reference

Dimension
n

Declarator

1 ([11:]u1)

2 ([11:]u1, [12:]u2)

3 (['1 :]ul'[12:]u2,
['3:]U3)

• •
• •
• •

7 ([11 :IU1 ,[12:]U2,
... , IT]U7)

where n = number of dimensions
I = value of lower bound
u = value of upper bound
s = subscript expre8sion

Subscript

81

(81,82)

(81,82,S3)

•
•
•

(Sl ,S2"" ,S7)

5.5 Character Substrings

Element
Referenced

81-11+1

(81-11+1)+
(82-12)*(u1-11 +1)

(Sl-11+1)+
(82-12)*(u1-11+1)
(83-13)*(u1-11 +1)*(u2 -12+1)

•
•
•

(81-11+1)+
(S2-12)*(u1-11 +1)
(S3-13)*(u1-11+1)*(u2-12+1)+
... +

(S7-17)*(u1-11+1)*(u2-12+1) ... *(u6-16+1)

A character substring is a contiguous portion of a CHARACTER variable. It is
identified by a substring name and can be assigned values and referenced.

FORTRAN-86

FORTRAN-86 Data and Specification Statements

5.5.1 Substring Specification

The syntax is:

v ([E11 : [E2l)
A (S [,S) ...) ([E1l : [E2l)

where V is a character variable name, A (S [,S] ...) is a character array element, and
Eland E2 are integer expressions called substring expressions.

The value El specifies the leftmost character position of the substring. The value E2
specifies the rightmost character position.- For example D(3:5) specifies the
characters in positions three through five of the character variable D, and M(3,8)
(2:4) specifies the characters in positions two through four of the character array ele
ment M(3,8).

The values of El and E2 must be such that:

1 <= E 1 <= E 2 <= len

where len equals the length of the character variable or array element. If omitted,
the default value of El is one and the default value of E2 is len. Both El and E2 may
be omitted: for example, V {:} is equal to V, and A{S [,S] ...) (:) is equal to
A(S [,S] ...). The length of a character substring is E2 -El + 1.

5.5.2 Substring Expressions

A substring expression may be any integer expression and it can contain array
element references and function references. Evaluation of a function must not alter
the value of any variable within the same substring specification.

5.6 Memory Definition

FORTRAN includes two statements that define memory areas: the
EQUIV ALENCE and COMMON statements.

5.6.1 EQUIVALENCE Statement

The EQUIVALENCE statement allows items in a program unit to share memory.
Entities listed in the EQUIVALENCE statement share the same starting address in
memory, even if they are of unequal length. Its syntax is

E QUI V ALE NeE (nlist> [, (nlist>] ...

where each nlist is a list of two or more variable names, array names, or array
element names. An array name not qualified by a subscript refers to the the first ele
ment of the array. You cannot use function names or dummy argument names in
this list.

Equivalenced items may be of different types. However, since the EQUIV ALENCE
statement implies no type conversion, it is not recommended.

The EQUIV ALENCE statement must not cause the same storage item to occur more
than once in a memory sequence. It cannot result in the splitting of a memory
sequence already defined.

5-11

Data and Specification Statements FORTRAN-86

5-12

5.6.2 COMMON Statement

The COMMON statement associates memory among the same and different pro
gram units, allowing common use of data and memory throughout an entire pro
gram. The COMMON statement defines common blocks that are either named or
unnamed (blank). Its syntax is

COMMON [I [name] I]nlist[[,] 1 [name] 1 nlist] ...

where each name is the optional name and nlist is a list of variable names, array
names or array declarators. You cannot use function names or dummy argument
names in this list.

In a COMMON statement, if you omit the first name, you can also omit the slashes
(II). For any other name you omit in the sequence, the slashes (II) must be present.

The same common name (or blank name) can appear in other COMMON
statements in the same program unit. The common block memory sequence consists
of the memory of all items listed in the COMMON statement(s) for that common
block name within a program unit, in the order of their appearance.

An EQUIVALENCE statement can extend a common block. When this happens,
the compiler adds memory beyond the highest location in the common block. An
EQUIV ALENCE statement cannot associate two different common blocks within a
program. Common blocks having the same name but defined in different program
units share the same starting address in memory.

A named COMMON block must be defined with the same length in every program
unit. Data statements in BLOCK DATA subprograms can initialize items only in
named common blocks.

5.7 SAVE Statement

The SAVE statement ensures that specified variables within a FUNCTION or
SUBROUTINE subprogram do not become undefined upon execution of a
RETURN or END statement. Its syntax is

S A VEl name 1 [, 1 name I] ...

where each name is the name of a common block enclosed in slashes, a variable
name, or an array name. Naming the common block in a SAVE statement saves all
items in that block. Only one reference to a specific item can occur in a single SAVE
statement. Local data names are not saved if the REENTRANT control is specified.

5.8 DATA Statement

The DATA statement gives the initial values of variables, arrays, and array
elements. DATA statements cannot initialize dummy arguments or functions.
DATA statements can initialize common memory only if the DATA statements are
part of a BLOCK DATA subprogram. Its syntax is

OAT A nlist I clist[, ...]

FORTRAN-86 Data and SPecification-Statements

where_ nlist is a list of variable names" array names, array element names and,
implied-DO lists, and elist has-the form

[r*]e[, [r*]e l ...

where e is any constant, r is a repeat sp'ecifier that is an
unsigned,. nonzero, integer constant, and r*e is equivalent to r successive
appearances of the constant e.

B'Oth nlisl and elist must have the same number of items since the lists correspond
one-to-one. If nlist contains an array name without a subscript, e/ist must have one
constant for each element in that array. All listed subscripts must be integer constant
expressions.

The type of any name in nlist must agree with_ the type of the corresponding constant
in clist '" nl
constant.

If a variable or array element in nlist has a specific length~ the length of its
corresponding Hollerith constant in elist must be less than or equal to that length. If
a length in elist is less than the corresponding length in nlis-t, the compiler pads the
constant on the right with blanks until they are equal.

You can initialize a variable or array element only once in a program. If an
EQUlV ALENCE statement associates two items, you can initialize onlY one of these
items.

5'.8.1 tm plied'-D:O in a DATA S-tatement

The form of the implied-DO list is

(dlist , i = ml' m2 [, m3 1)-

where dlist' is a list of array element names and implied-DO lists~ i is the implied-DO
variable, and mt , m2 , and m3 are integer constant express-ions.

The range of an implied-DO list is dlist. The iteration count and the values of the
implied-DO variable are established from m1, m2, and m3 exactly as for a DO loop
(see se.ction 8.3). When an implied,.DO list appears in a DATA statement, items in
dlist are specified once for each iteration of the list with the appropriate substitution
of values for any occurence of r. The presence of i in a DATA statement does not
affect the status of any other variable-with the same name in the same program unit.

5-.-9' tN'TRINSI:C State:m-ent

The INTRINSIC statement confirms that a symbolic name represents an intrinsic
-funGti.gn-and--allows the-use--o:f':"that.nalne-as.au-actual argumenLl.t£ symaUs

1M T R INS 1 C' nam·e[, name]. ..

where name is an intrinsic-function name. An intrinsic-function name' can appear
only once in. any INTRINSIC statement in a program unit. The same intFinsic
function name cannot appear in both an INTRINSIC statement and an
EXTERNAL statement in the same program unit.

The following intrinsic-function names cannot appear in INTRINSIC statem.ents:
type conversion functions-, lexical' relationship functions, and functions for choosing
the largest or smallest value.

5-13

Data and Specification Statements

5-14

5.10 EXTERNAL Statement

The EXTERNAL statement confirms that a symbolic name represents an external or
dummy procedure and allows that name to appear as an actual argument. Its syntax
is

EXTERNAL name[,name] ...

where name is the name of an external or dummy procedure.

If an intrinsic function name appears in an EXTERNAL statement, that name no
longer specifies an intrinsic function in the program unit but instead becomes the
name of an external procedure.

A symbolic name can appear only once in all the EXTERNAL statements in the pro
gram unit.

FORTRAN-86

CHAPTER 61
SUBPROGRAMS

A FORTRAN program consists of a main program and any number of sub
programs. This chapter describes the various kinds of subprograms: subroutines,
functions, and BLOCK OAT A subprograms.

6.1 Subroutines and Functions

Subroutines or functions organize programs into structures and enable multiple use
of commonly used program units. A subprogram is largely self-contained, accepting
arguments and, in the case of a function, returning a value to the invoking program
unit.

Any other program unit can invoke a subroutine or function, but it cannot invoke
itself unless compiled with the REENTRANT Control (see section 11.4.15).

Programs that are created separately must be linked together before execution. For
linking FORTRAN-86 procedures with procedures written in other programming
languages, see Appendix H.

Arguments

You use dummy arguments in an argument list when you define a subprogram. You
use actual arguments in a corresponding argument list when you reference that sub
program.

The actual arguments of subprograms must agree in order, number, type, and length
with their corresponding dummy arguments. A dummy argument can be a variable,
an array, a function, or a subroutine. The corresponding actual argument must be
an expression, array, function, or subroutine, respectively.

The symbolic name of a dummy argument cannot appear in an EQU IV ALENCE,
SAVE, INTRINSIC, OAT A, or COMMON statement.

All subscripts and expressions appearing in an actual argument list are evaiuated
before association of the actual and dummy arguments.

External and dummy procedures used as actual arguments must be defined in an
EXTERNAL statement (see section 5.9). Intrinsic functions used as actual
arguments must be defined in an INTRINSIC statement (see section 5.8). Statement
functions are not permitted as actual arguments.

T-h.ei..oUowingin.trinsic...fun.ctions mJ 1st noLhe--1lSeClas...actuaLar.guments.:_

MINO
AMINI
OMINI
AMINO
MINI
LGE
LGT
LLE
LLT

6-1

Subprograms

6-2

FORTRAN-86

6.1.'1 Subroutines

The first statement of any subroutine must be a SUBROUTINE statement (see sec
tion 4.2.3, "SUBROUTINE Statement"). A subroutine can contain any statement
except a FUNCTION, BLOCK DATA, or PROGRAM statement.

You reference a subroutine using a CALL statement (see section 8.5). After the
subroutine performs its operations, it returns control back to the point of call with a
RETURN or END statement (see section 8.6).

6.1.2 Func1ions

The six types of functions available in FORTRAN-86 are

• FUNCTION subprograms-User-defined subprograms that the compiler
identifies by their initial FUNCTION statements.

• Intrinsic functions-Predefined FORTRAN-86 functions which eliminate the
coding of common mathematical functions.

• single statements which you define as

6.1.2.1 FUNCTION Subprograms

A FUNCTION subprogram is an external procedure that the user defines which
returns a value. The first statement of a FUNCTION subprogram must be a
FUNCTION statement (see section 4.2.2). The FUNCTION subprogram can
contain any statement except a SUBROUTINE, BLOCK DATA, or PROGRAM
statement.

Subprograms

6-4

FORTRAN-86

Type-Conversion Functions

The intrinsic type-conversion functions take an argument of one type and return a
value of the type indicated by the particular function. The syntax is

name(arg)

where name is the generic or specific function name and arg is the value on which
the function will be performed. Type-conversion functions can have only one argu
ment. Table 6-1 lists all the type-conversion functions by both generic and specific
name with the acceptable types of their arguments and results.

Table 6-1. Type-Conversion Functions

Type
Generic Specific Category Function
Name Name Arguments Result

INT Type Convert to INTEGER
Conversion INTEGER INTEGER

INTEGER
tNillER

INT INTEGER
IFIX INTEGER

INTEGER
IDINT INTEGER

INTEGER

INT1 Type Convert to INTEGER*l
Conversion INTEGER*1 INTEGER*1

INTEGER*1
INTEGER*1
INTEGER*l
INTEGER*1
INTEGER*l

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER·2

~ INTEGER*2
INTEGER*2

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4

REAL Type
FLOAT Conversion

FLOAT

FLOAT

FLOAT

SNGL

FORTRAN-86

Table 6-1. Type-Conversion Functions (Cont'd.)

Type
Generic Specific Category Function Name Name Arguments Result

DBlE Type_ Convert to INTEGER DOUBLE
Conversion DOUBLE PRECISION

PRECISION - INTEGER· 1 DOUBLE
PRECISION tl

INTEGER*2 DOUBLE
PRECISION"

INTEGER"" DOUBLE
PRECISION

REAL *4 DOUBLE
PRECISION

REAL*8 DOUBLE
PRECISION

DOUBLE DOUBLE
PRECISION PRECISION
TEMPREAl DOUBLE

PRECISION
,~

iF
T

TREAL Type Convert to -INTEGER TEMPREAt
" Conversion TEMPREAl INTEGER*1 TEMPREAl

INTEGER*2 TEMPREAl
INTEGER·" TEMPREAl

" §
REAL'"4 TEMPREAl
REAl"8 TEMPREAl
DOUBLE TEMPREAL

.",'

PRECISION
TEMPREAL TEMPREAL

Type Convert CHAR
ICHAR Conversion to INTEGER CHARACTER INTEGER

CHAR Type Convert INTEGER CHARACTER
Conversion INTEGER to INTEGER·l CHARACTER

CHARACTER "INTEGER*2 CHARACTER
JNrEGER*4 CHARACTER

Each of the names INT ~ INTI INT2 and INT4 are generic names. Only the func
tion INT has specific names associated with it as well. The function IFIX takes a
REAL *4 argument and returns· an INTEGER value. The results of IFIX(arg) and
INT(arg) are the same. The function IDINT(arg) takes a DOUBLE PRECISION
argument and returns an INTEGER value. See table 6-1 for details.

For any real doubl~recision or tern ar ument, two possible-.r.esultLexist..-iL
I arg I < 1 ~ then INT(arg) = 0; if I arg I ~ 1, then INT(arg) is the integer whose
magnitude is the largest integer that does not exceed the magnitude of I arg I and
whose sign is the same as that of arg. For example:

INT(-12.8) =-12

The REAL Function

Subprograms

6-5

Subprograms

6-6

FLOAT. The results of REAL(arg) and FLOAT(arg) are the same. For a double
precision argument, ·you can use the specific name SNGL in place of REAL. See
table 6-1 for details.

For any integer, double-precision, or rgument, the result of a REAL(arg)
function has as much precision of the slgm lcant part of arg that REAL data can
contain.

The DBLE Function

The DBLE intrinsic function takes an argument of any type and returns a double
precision value.

FORTRAN-86

For any a-rgument, integer, real, or t the result of a DBLE(arg) function has
as much precision of the significant part of arg that DOUBLE PRECISION data
can contain.

The ICHAR and CHAR Functions

The function ICHAR provides a way to convert from characters to integers, based
on the position of the character in the ASCII collating sequence (See Appendix E,
"Character Set and Collating Sequence"). The first character in the collating
sequence corresponds to position 0 and the last to position n - 1, where n is the
number of characters in the collating sequence.

The value of ICHAR(arg) is an integer in the range 0 ~ ICHAR(arg) ~ n - 1, where
arg is an argument of type CHARACTER and length one. For example:

ICHAR('X') is 2SH

The function CHAR provides a way to convert integers to characters, based on the
ASCII collating sequence (see Appendix E.) The value of CHAR(arg) is the
character that appears in the arg position in the collating sequence. The argument
must be an integer expression whose value is in the range of 0 ~ arg ~ n - 1. For ex
ample:

CHAR(25H) is 'X'

Truncation and Rounding Functions

Truncation and rounding functions perform numeric conversions. Both types of
function take only one argument. See table 6-2 for details. The syntax is

name (arg)

where name is the intrinsic function name and arg is the value on which the function.
will be performed.

FORTRAN-86

Table 6-2. Truncation and Rounding Functions

Generic Specific
Name Name

AI NT
AINT
DINT
DINT

ANINT
ANINT
DNINT
DNINT

NINT
NINT

IDNINT
IDNINT

The AINT Function

Category

Truncation

Rounding

Rounding

Function

Truncate
Argument

Round to
Nearest
Whole Number

Round to
Nearest
Integer

Type

Arguments Results

The AINT function truncates an argument leaving a result that is the integer part of
the argument. For nd DOUBLE PRECISION arguments, you can use the
specific name DINT in place of AINT.

The ANINT Function

The ANINT function rounds an argument to the nearest whole number. For
DOUBLE PRECISION arguments, you can use the specific name

DNINT in place of ANINT. The following formulas apply:

ANINT(x)= AINT (x + .5), if x~O
AINT (x - .5), if x<O

The N INT Function

The NINT function rounds an argument to the nearest INTEGER. For
DOUBLE PRECISION arguments, you can use the specific name IDNINT in

place of NINT. The following formula applies:

NINT(x) = INT (ANINT(x»

Subprograms

6-7

Subprograms

6-8

FORTRAN-86

The RINT Function

INT function rounds an argument to the nearest or even whole number. For
or DOUBLE PRECISION arguments, you can use the specific name

DRINT in place of RINT. The following formula applies:

RINT(x) = AINT(x) if 1 AINT(x)= 1 x 1-.5 and is even
= ANINT(x) otherwise

The IRINT Function

The IRINT function rounds an argument to the nearest or even INTEGER. For
REAL *'8 or DOUBLE PRECISION arguments, you can use the specific name
IDRINT in place of IRINT. The following formula applies:

IRINT(x) = INT(RINT(x»

Remainder Functions

The remainder functions perform a division operation on two arguments and return
the remainder. See table 6-3 for details. The syntax is

name (arg1 , arg2)

where name is the intrinsic function name and arg1 and arg2 are the values on which
the function will be performed. The remainder functions will never incur a rounding
error. In addition, the result of a valid remainder operation is never an unnormal
number.

Table 6-3. Remainder Functions

Generic
Name

MOD

RMD

Specific
Name

AMOD
DMOD
DMOD

The MOD Function

Category

Remainder

Function

arg1-AINT
(arg11 arg2)
*arg2

arg1-RINT
(arg1/arg2)
"*arg2

The MOD function is equivalent to the operation

argI - AINT(argI/arg2)*arg2

Arguments

Type

Results

INTEGER
INTEGER * 1
INTEGER*'2
INTE~~R84
REAlS: 4 "
REAl*8
DOUBLE
PREClSlON
TEMPREAL

For REAL*4 arguments, you can use the specific name AMOD in place of MOD.
For REA.L *"S or DOUBLE PRECISION arguments, you can use the specific name
DMOD in place of MOD.

FORTRAN-86

TIiClJUaD Function

~b aJent t~:)~lAe operati~li
1$"

arg1 - RINT(argl/arg2)*arg2

:rEGE'ili~r8,ium~~ts, ~tg~~~~u'~,; the ;
F HAL *8 ar tDOUBlil!fi>REClS10N ar
D~D in place of RMD.

,--~---~~~~--~--------~~----,-----------

The ABS Function

The ABS function returns the absolute value of an argument. Its syntax is

ASS (arg)

where arg is the value on which the function will be performed. See table 6-4 for
details.

For INTEGER arguments, you can use the specific name lABS in place of ABS. For
R~~L*8 or DOUBLE PRECISION functions , you can use the symbolic name
DABS in place of ABS.

Table 6-4. Absolute Value, Sign Transfer, Positive Difference, and
Double Precision Product Functions

Type
Generic Specific Category Function

Name Name Arguments Results

ABS lABS Absolute Return
Value Absolute

Value

ABS
DABS
DABS

SIGN ISIGN Sign Transfer
Transfer Sign of

arg2 to arg1
sign(y,x)=

SIGN 1y1 ,x~O
DSIGN -1y1 ,x~O
DSIGN

DIM IDIM Positive Return
Difference arg1-arg2

if arg1 >arg2
elseO

DIM
DDIM
DDIM

DDIM

DPROD Double Multiply
Precision arg1 byarg2
Product

Subprograms

6-9

Subprograms

6-10

The SIGN Function

The SIGN function takes the sign of the second argument and transfers this sign to
the first argument. Specifically, it returns the value

I argJ I, if arg2 ~O

- I argJ I , if arg2 <0

The syntax is

SIGN (arg1 ,arg2)

where arg1 and arg2 are the values on which the function will be performed. See
table 6-4 for details.

For INTEGER arguments, you can use the specific name IS.IGN in place of SIGN.
For or DOUBLE PRECISION arguments, you can use the specific name
DSIGN in place of SIGN.

If the value of the first argument is zero, the result is zero.

The DIM Function

The DIM function returns the result of the operation arg1 - arg2 as long as this
result is positive. If the operation gives a negative result, the result of the function is
zero. Specific~lly, it returns the value

argJ - arg2, if argJ ~ arg2
otherwise, 0.0

If the result of the subtraction is negative, an underflow exception cannot occur.

The syntax is

DIM (arg1 ,arg2)

where arg1 and arg2 are the values on which the function will be performed. See
table 6-4 for details.

For INTEGER arguments, you can use the specific name IDIM in place of DIM.
For "%EXE or DOUBLE PRECISION arguments, you can use the specific name
DDIM in place of DIM.

The DPROD Function

The DPROD function takes two arguments of type REAL *4, mUltiplies them, and
returns a DOUBLE PRECISION result. Its syntax is

DPROD (arg1 ,arg2)

where arg1 and arg2 are the arguments on which the function will be performed. See
table 6-4 for details. DPROD is sensitive to the precision mode on the 8087 pro
cessor. You can use this function meaningfully only if the precision is set to 53 or 64
bits. DPROD provides no advantage over · the multiplication operation (*) in
FORTRAN-86.

FORTRAN-86

FORTRAN-86

Choosing the Largest or Smallest Value Functions

These functions evaluate a list of at least two arguments and choose the largest or
smallest value, depending upon the function. The syntax is

name (arg1,arg2 .. J

where name is the intrinsic function name and arg1, arg2, etc. are the arguments
from which it chooses. See table 6-5 for details.

Table 6-5. Choosing the Largest or Smallest Value Functions

Generic
Name

MAX

AMAXO

MIN

AMINO

Specific
Name

MAXO

AMAX1

DMAX1

MAX1

MINO

AMIN1

DMIN1

MIN1

The MAX Function

Category

Largest
Value

Largest
Value

Smallest
Value

Smallest
Value

Function

Choose
Largest
Value
in List

Choose
Largest
Value
in List

Choose
Smallest
Value
in List

Choose
Smallest
Value
in List

Type

Arguments Results

The MAX function evaluates a list of at least two arguments and chooses the largest
-value-:-Fer- INTE-G-ER- ar-guments,yeu-call-Use- thc--speGifit-name-MAXO ·n-plaGe- of
MAX. For REAL*4 arguments, you can use the specific name AMAXI in place of
MAX. For DOUBLE PRECISION arguments, you can use the specific name
DMAXI in place of MAX.

The AMAXO Function

The AMAXO function evaluates a list of at least two arguments and chooses the
largest value. The arguments can be only of type INTEGER or type REAL *4. For
REAL *4 arguments, you can use the specific name MAX 1 in place of AMAXO.

Subprograms

6-11

Subprograms

6-12

FORTRAN-86

The MIN Function

The MIN function evaluates a list of at least two arguments and chooses the smallest
value. For INTEGER arguments, you can use the specific name MINO in place of
MIN. For REAL *4 arguments, you can use the specific name AMIN 1 in place of
MIN. For DOUBLE PRECISION arguments, you can use the specific name
DMIN 1 in place of MIN.

The AMINO Function

The AMINO function evaluates a list of at least two arguments and chooses the
smallest value. The arguments can be only of type INTEGER or type REAL *4.

For REAL *4 arguments, you can use the specific name MIN 1 in place of AMINO.

The LEN and INDEX Functions

The LEN function returns the length of a character string. Its syntax is

LEN (arg)

where arg is the character string.

When the program executes the LEN function, the value of the argument need not
be defined.

The INDEX function determines whether a character string appears in a second
character string. It returns an INTEGER value representing the starting character
position of the first string in the second string if found; otherwise, a zero value is
returned. Its syntax is

I N 0 E X (arg1 , arg2)

where arg1 and arg2 are character strings.

See table 6-6 for details of both these functions.

Table 6-6. Length and Index Functions

Type
Generic Specific Category Function
Name Name Arguments Result

LEN Length Determine CHARACTER INTEGER
the Length
of Character
Entity

INDEX Index Return CHARACTER INTEGER
of Location of
Substring Substring

arg2 in
String arg1

FORTRAN-86

Arithmetic Functions

The arithmetic functions perform specific arithmetic functions. The syntax is

name (arg)

where name is the intrinsic function name and arg is the argument on which the
function will be performed. All expect and return floating-point values. See table 6-7
for details.

Table 6-7. Arithmetic Functions
--

Type
Generic Specific Category Function Name Name Arguments Results

SORT SORT Arithmetic Return REALC4 REAS~
DSORT Square BE:AI*S REAl *8
DSORT Root I- DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAI:. 1 -J;.u"~~AL __

EXP EXP Arithmetic Return e REALfiI REA~
DEXP Raised to f=aEl,"S -REAl"S
DEXP Power of DOUBLE DOUBLE

Argument ~ECISION PRE~~i1C:: TEM~BEAl- JEM J.~ L

LOG ALOG Arithmetic Return REAl_m R~A:W~
DLOG Natural REAL"8]lEA[-'8
DLOG Logarithm DOUBLE DOUBLE

PRECISION PRECIS10N
t= ttMeBEA(: _T ,-

LOG10 ALOG10 Arithmetic Return REAW~ REALm . _ _
DLOG10 Common I- S'EAL.*S ' REAV8
DLOG10 Logarithm DOUBLE DOUBLE

PRECISION PRECISION
TEMPREAl TEMPREAL

The SQRT Function

The SQRT function returns the square root of an argument. The argument must be
greater than or equal to zero.

For REAL*8 and DOUBLE PRECISION arguments, you can use the specific name
DSQRT in place of SQRT.

The EXP Function

The EXP function returns a value that is equal to e raised to the power of the
argument.

The LOG Function

The LOG function returns the natural logarithm of an argument. The argument
must be greater than or equal to zero.

For REAL*4 arguments, you can use the specific name ALOG in place of LOG. For
A *8 or DOUBLE PRECISION arguments, you can use the specific name

DLOG in place of LOG.

Subprograms

6-13

Subprograms

6-14

The OG 10 Function

The LOG 10 function returns the common logarithm of an argument. The argu
ment must be greater than zero.

or DOUBLE PRECISION arguments, you can use the specific name
of ALOGIO.

Trigonometic Functions

The trigonometric functions perform specified trigonometric functions. The syntax
is

name (arg)

where name is the intrinsic function name and arg is the value on which the function
will be performed. All expect and return floating-point values. See table 6-8 for
details.

Generic
Name

SIN

cos

TAN

ASIN

ACOS

ATAN

ATAN2

Specific
Name

DSIN
DSIN

DCOS
DCOS

DTAN
DTAN

DASIN
DASIN

DACOS
DACOS

DATAN
DATAN

DATAN2
DATAN2

Table 6-8. Trigonometric Functions

Category

Trigonometric

Trigonometric

Trigonometric

Trigonometric

Trigonometric

Trigonometric

Trigonometric

Function

Return
Sine

Return
Cosine

Return
Tangent

Return
Arcsine

Return
Arccosine

Return
Arctangent
with one
Argument

Return
Arctangent
with two
Arguments

Arguments

Type

Results

FORTRAN-86

FORTRAN-86

The SIN Function

The SIN function returns the sine of an argument. The absolute value of the argu
ment is not restricted to be less than 2PI. The range of the result is -1 ~ result ~ 1.

For AL* and DOUBLE PRECISION arguments, you can use the specific name
DSIN in place of SIN.

The COS Function

The COS function returns the cosine of an argument. The absolute value of the
argument is not restricted to be less than 2PI. The range of the result is -1 ~ result ~
1.

For REAL* and DOUBLE PRECISION arguments, you can use the specific name
DCOS in place of COS.

The TAN Function

The TAN function returns the tangent of an argument. The absolute value of the
argument is not restricted to be less than 2PI.

For itS L" and DOUBLE PRECISION arguments, you can use the specific name
DTAN in place of TAN.

The ASIN Function

The ASIN function returns the arcsine of an argument. The absolute value of the
argument must be ~ 1. The range of the result is -PI/2 ~ result ~ PI/2.

ForREAL or DOUBLE PRECISION arguments, you can use the specific name
DASIN in place of ASIN.

The ACOS Function

The ACOS function returns the arccosine of an argument. The absolute value of the
argument must be ~ I. The range of the result is 0 ~ result ~ PI.

For REAI. ·, or DOUBLE PRECISION arguments, you can use the specific nam-e
DACOS in placeoLACOs..

The AT AN Function

The AT AN function returns the arctangent of an argument. The range of the result
is -P1/2 ~ result ~ PI/2. If the value of the argument is positive, the result is
positive.

For ltB or DOUBLE PRECISION arguments, you can use the specific name
DATAN in place of ATAN.

Subprograms

6-15

Subprograms

6-16

FORTRAN-86

The AT AN2 Function

The AT AN2 function takes two arguments and returns the arctangent of those two
arguments. The range of the result is -PI ~ result ~ PI. Specifically, it performs the
operation

AT AN (arg2/argl) , if argJ > 0

SIN(PI - ATAN(I arg2/argJ I, arg2», if argJ < 0

SIN(PII2, arg2), if arg 1 = 0

For 'AL*S or DOUBLE PRECISION arguments, you can use the specific name
DATAN2 in place of ATAN2.

Hyperbolic Functions

These functions perform specified hyperbolic functions. The syntax is

name (arg)

where name is the intrinsic function name and arg is the value on which the function
will be performed. All expect and return floating-point values. See table 6-9 for
details.

Table 6-9. Hyperbolic Functions

Type
Generic Specific Category Function
Name Name Arguments Results

SINH Hyperbolic Return REAL*4 REAL*4
DSINH Hyperbolic :!B.fAl.*S " 'REAl*s I "'.
DSINH Sine DOUBLE DOUBLE

PRECISION PRECISION
IEMfSEAL -ktEM£.aJ;~

COSH Hyperbolic Return REAL*4 REAL*4
DCOSH Hyperbolic .BEAL·S c REAl..~8 Ji
DCOSH Cosine DOUBLE DOUBLE

PRECISION PRECISION
f_!EMJaBEA~~ -.. :AI 11lIT

TANH Hyperbolic Return REAL*4 REAL *4
DTANH Hyperboic ~aBfA~8: !'iti£0,n "wEieAI£#;8M --;,
DTANH Tangent DOUBLE DOUBLE

PRECISION PRECISION
-,,tEM!REAP' - tEMeBEAta

The SI~H Function

The SINH function returns the hyperbolic sine of an argument. For R l ';<8 or
DOUBLE PRECISION arguments, you can use the specific name DSINH in place
of SINH.

The COSH Function

The COSH function returns the hyperbolic cosine of an argument. For *8 or
DOUBLE PRECISION arguments, you can use the specific name DCOSH in place
of COSH.

FORTRAN-86

The TANH Function

The TANH function returns the hyperbolic tangent of an argument. For
DOUBLE PRECISION arguments, you can use the specific name DT AN
of TANH.

Lexical-Relationship Functions

The lexical-relationship functions take two CHARACTER arguments and depen
ding on the position of the arguments in the ASCII collating sequence (see Appendix
E), return a LOGICAL value. The syntax is

name (argl .arg2)

where name is the int 'nsic-function name and argl and arg2 are the CHARACTER
arguments on which the function will be performed. See table 6-10 for details.

Table 6-10. Lexical Relationship Functions

Type
Generic Specific Category Function
Name Name Arguments Results

LGE LGE Lexical Lexically CHARACTER LOGICAL
Relationship Greater

or Equal

lGT Lexical Lexically CHARACTER LOGICAL
Relationship Greater

LLE Lexical Lexically CHARACTER LOGICAL
Relationship Less or

Equal

LlT Lexical Lexically CHARACTER LOGICAL
Relationship Less

The LGE Function

The LGE function determines if the first argument is equal to, or greater than, the
other in the ASCII collating sequence. If the arguments have the same value or argl
follows arg2 in the collating sequence, the result is .TRUE .. If any other condition
exists, the result is .FALSE ..

The LGT Function

The rGT functIOn determines if ine first argument is greater than the other in the
ASCII collating sequence. If argl follows arg2 the result is .TRUE .. If any other
condition exists, then the result is .FALSE ..

The LLE Function

The LLE function determines if the first argument is equal to, or less than, the other
in the ASCII collating sequence. If the arguments h~ve the same value or arg2
follows argl in the collating sequence, the result is .TRUE .. If any other condition
exists, the result is .FALSE ..

Subprograms

6-17

Subprograms

6-18

The LL T Function

The LL T function determines if the first argument is less than the other in the ASCII
collating sequence. If arg2 follows argl the result is .TRUE .. If any other condition
exists, the result is .FALSE ..

FORTRAN-86

FORTRAN-86

STORE/LOAD 8087 Control Word

STeW87 and LDCW87 are used to change computation modes and exceptio
masks. {hey may also be us-ed separately to examine current settings or to :set alJ
options simultaneously. The following example changes the default "warning"
moc.te to "normalizing" mode for denormalized operands, and illustrates the use 0 ,
these intrinsics: to-

NlfGER*2 ICW87
CALL STCW87(ICW87)

CW87 = ICW8T .AND. 'FF7DH
ALL LDCW87 (ICW87)

'See figure 6-1 for an overview and explanation of the 8087 control word. Othe
control-word changes can be done in a simiIaimanner.

DEFAVLT SETTINGS FOR f~08""'I~
.7COttTROl WORD

Figure 6-J. 8087 COIltrol Word Wormat for FORTRAN-86

Subprograms

6-19

Subprograms

6-20

UCEPTJON FLAGS
.............. ~,..,.~--~ (1 = EXCEPTION HAS OCCURRED)

~ Vfl/REsrpR8c8081~tate

"'-------..-.-utmERFLOW

-------PRECISJON

;:;-,

AV81 and RST87 lransfer the state of the 8081 Num~tic »Data~Processor to and
rOm@memory""These functions are useful"foThpreserving the contextof tbe processoli
o~ r,Fntrancx, or ~(or dete[J1lining the "cause of a "floating-point "exception and
reco~ering from it. Both i~~rinsics <!pe~ate on a ,t\1-wol d bufter in p1emory. "The for
mat ~f the 8087 'state

W

informationp~es~ntin that 6uffec is defin~ in t.he 8087
um~ric Supplement. The foltowing' is: an '~:t3mple of fhese functions:'<,' "

';. , ~4~ ~ .{~ ~ +t

C H A JtA c:r ER *2 4#9 S T A ~ E
CAL q SAVB7(SlAT~)

'to'

where, num is an integ~ expression tRat*is lhe' inierrupt nurrtber'i ana name is the
name of the e~ternal pr~ceaure.

FORTRAN-86

FORTRAN-86

.
EXtEltilAl INTRPT .
CACl SETIRT(S, IITRPT)

an interrupt occurs, the hardware automatically disables further interruptsy

enables them again at termination of the procedure. ENABLE/DSABLE
inrr'Vl4'lfO the user with additional fle?Cibility bo!tl within ;and outside of interrupt

disables the 8086 interrupt mechanism (prevents interrupts
loocnrnnJg) until it is ENABLEd again.

*"

ENABLE

CALL ENABLE

ENABLE enables the 8086 interrupt mechanism.

NOTE
Do not use the interrupt procedures in any program lhat will run in an
iRMX 86 environment. Instead use the iRMX 86 system calls to set up inter-

. routines. .

6.1.2.5 Statement Functions

A statement function is a user-defined internal function that calculates a
mathematical value. All statement-function definitions must follow all specification
statements and must precede all executable statements. Its syntax is

name ([arg , [arg, ...]]) = exp

. where name is the symbolic name you give your statement function, each arg is a
dummy argument that becomes associated with an actual argument when the func
tion is referenced, and exp is an expression.

Subprograms

6-21

Subprograms

6-22

The statement-function name and its expression can be of different result types.
Table 6-12 shows the-implicit-type conversions of statement functions.

Table 6-12. Implicit Type Conversions in Statement Functions

Statement Function Type Type Conversion

INTEGER INTEGER INT(exp)
IFlT1:G Eft '1 J INT1(exp)

-¥ W1h- 1NT£GER*2,) , 'NT2{exp)
t; INTEGER*4 J,INT4(el!P)

REAL REAL REAL(exp)
REAL 4 REAL(exp)

'K * Rfi.6Jt .. & ';'! W t
®<DlJLt;{eXp)

'" %

DOUBLE DOUBLE DBLE(exp)
PRECISION PRECISION

,.
'" TEMPREAL TEMPREAL TREAL(exp)

!i '" .. &.) . '" ,.. ,

name (...) = exp

Each operand in the statement-function expression must be one of the following:

• One of the dummy arguments, arg

• A constant

• A variable reference

• An array-element reference

• An intrinsic-function reference

• A statement-function reference

• An external-function reference

• A dummy-procedure reference

The symbolic name of a statement function is local and cannot be a symbolic name
in any specification statement, except a type statement. You cannot use the name in
an EXTERNAL statement or as an actual argument.

The dummy argument list indicates the order, number and type of arguments for the
statement function. These dummy argument names have the scope of the statement
function only, and each name can appear only once in the dummy argument list.
The type of the dummy argument name is the same as it would be if you used it out
side the statement function.

You can use the dummy argument name to identify other dummy arguments of the
same type in other statement-function statements. You can also use it to identify a
variable of the same type within the same program unit, but they have no other rela
tionship.

You reference a statement function by specifying its symbolic name, with all
required actual arguments. For example:

DATA A,B,C/10.0,10.0,3.8/
FSUM(X)=A * (X**2) + B*X+C
TOTAL = 33.0 + FSUM(3.0)

In this example, FORTRAN substitutes the value '3.0' for every occurrence of 'X' in
the function definition. At the end of the operation, the value of 'TOTAL' is
'156.8.'

FORTRAN-86

FORTRAN-86

You can reference a statement function only in the program unit where you defined
it. A statement function in a FUNCTION subprogram cannot reference the name of
the subprogram. A reference to an external function in the expression of a statement
function must not cause a dummy argument of the statement function to become
undefined or redefined.

6.2 BLOCK DATA Subprograms

A BLOCK DATA subprogram initializes variables and array elements in named
COMMON blocks using DATA statements. The first statement of any BLOCK
DA T A subprogram must be a BLOCK DATA statement (see section 4.2.4). The last
statement must be the END statement. You can use only IMPLICIT, DIMENSION,
named COMMON, SAVE, EQUIVALENCE, DATA, and type statements in a
BLOCK DATA subprogram.

The name of a BLOCK DATA subprogram is optional. If you do name the sub
program, that name is global and cannot be the same as the name of any external
procedure, main program, COMMON block, or other BLOCK DATA subprogram.
You can have at most one unnamed BLOCK DATA subprogram per executable
prog~am.

Only variables appearing in named COMMON statements can appear in a
DIMENSION, EQUIVALENCE, DATA, SAVE, or type statement in a BLOCK
DA T A subprogram.

If you initialize a named COMMON block, you must list all the variables in that
block even if you are not initializing all of them. You can initialize variables in more
than on named COMMON block in a single BLOCK DATA subprogram, but you
cannot specify the same named COMMON block in more than one BLOCK DATA
subprogram.

Subprograms

6-23

CHAPTER 7
EXPRESSIONS

Expressions in FORTRAN consist of symbols, constants, and operators (including
parentheses) which perform specified operations. There are four types of expres
sions in FORTRAN:

• Arithmetic

• Relational

• Logical

• Character

7.1 Arithmetic Expressions

An arithmetic expression performs a numeric computation. The range and precision
of numeric values representable in FORTRAN restricts the range and precision of
the results.

Table 7 -1 lists the arithmetic operators and their meanings.

Table 7-1. Arithmetic Operators

Operator Meaning

** Exponentiation
I Division
* Multiplication
+ Unary or Binary Addition
- Unary or Binary Subtraction

The types of the operands in an arithmetic expression determine the type of the
result. An oQerand is of type INTEGER, REAL, DOUBLE PRECISION, or
TEMPREAL~ When a plus sign (+) or a minus sign (-) preceeds a single operand,
the type and length of the result are those of the operand. Table 7-2 shows the data
ty..pe and length of the result when an arithmetic operator joins a pair of operands.
The type rules are the same for all operators.

For mixed-mode arithmetic, FORTRAN converts both operands to the same type
(the type of the result) before doing the operation, except for an INTEGER expo
nent which is sometimes used for repeated multiplications (see table 7-3).

7-1

Expressions

7-2

FORTRAN-86

For example, FORTRAN computes the expression

INTEG1 + REAL4

as though you had written

TREAL(INTEG1) + TREAL(REAL4)

with a result of type TEMPREAL unless the result is an argument in a function or
subroutine reference. In that case, FORTRAN computes

REAL(TREAL(INTEG1) + TREAL(REAL4»

NOTE

When one INTEGER divides into another INTEGER, F-ORTRAN trun
cates the result towards zero. For example:

The value of 1/3 is 0
The value of 8/3 is 2
The value of -8/3 is -2

INTEGER division by zero always causes invocation of the current error handler
and cannot be masked. INTEGER overflow results in unsigned arithmetic modulo
2** (8*n), where n is the size in bytes of the expression result.

The following floating-point exceptions can occur during the evaluation of
arithmetic expressions:

• Division by zero

• Overflow

• Underflow

• Inexact result

• Invalid operation (including INTEGER overflow during conversion from
floating-point)

See section 15.3.6 for details on the causes and handling of these exceptions.

Table 7-2. Type and Length of Results of Arithmetic Exp-ressions (Addition,
Subtraction, Multiplication, Division and Exponentiation)

FORTRAN-86

Table 7-3. Evaluation Methods For Y··X

x y Evaluation
Method

INTEGER INTEGER y*y*y* ... [x times]
INTEGER REAL
(0< X < 64) DOUBLE PRECISION

'%1 r :..=~;

INTEGER REAL 2* *(x * Ig 2(y»
(X>64) DOUBLE PRECISION
REAL 1
DOUBLE PRECISION INTEGER, REAL

iWk'W' . l ;t.,-REAt}WW' L3f . ~'.tlw, DOUBLE PRECISION
""T (~I &fillF:JilllW

INTEGER REAL 1/(y"l x I)
(X<O) DOU BLEPRECISION If over- or underflow

occurs, or Y is unnormal
then (1/y) ** I x I

(1) If y is unnormal, then the first method (multiplication) is used.

(2) If y is negative, then x must be a whole number.

7.2 CharacterExpress:ions

A character expression results in a character string. This expression can be a single
characte.- operand (character constant, character variable, character array element,
{;haracter substring, or character function reference), mUltiple operands joined by
the character operator, or another character expression in parentheses. A character
expression always returns a value of type CHARACTER.

The only character operator is 'I I' representing concatenation.

The length of the result of a concatenation operation is the sum of the length of the
operands. For example, if the expression

'AB' II 'CDE'

appears, the result is the string

'ABCDE'

7;3 Relatio,nal Expressions

A relational expression compares two arithmetic or two character expressions and
returns a TRUE or FALSE value of type LOGICAL.

Table 7-4. Relational Operators

Operator Meaning

.LT. Less Than

.LE. Less Than or Equal To

.EO. Equal To

.NE. Not Equal To

.GT. Greater Than

.GE. Greater Than or Equal To

Expressions

7-3

Expressions

7-4

7.3.1 Arithmetic Relational Expressions

An arithmetic relational expression compares two arithmetic expressions and returns
a TRUE or FALSE value of type LOGICAL. Its syntax is

expl relop exp2

where expl and exp2 are arithmetic expressions (see section 7.1) and relop is any
relational operator.

If the operands are of different arithmetic types, they are converted to the same type
as that of an arithmetic expression with the same operands (see section 7.1).

e 0 a -~

ll. "FIoatia& Pokd T~U).
, Ow bat .P ALSE. for an 0

7.3.2 Character Relational Expressions

A character relational expression compares two character expressions and returns a
value of TRUE or FALSE of type LOGICAL. Its syntax is

expl re/op exp2

where expl and exp2 are character expressions and reJop is any relational operator.
The relative positions of expl and exp2 in the ~ collating sequence compared
from left to right determines the value of the result unless the operator is either
"equal to" CEQ.} or "not equal to" (.NE.). If the operators are of unequal length,
then FORTRAN extends the shorter operand to the right with blanks so that its
length equals the length of the longer operand before comparing.

7.4 Logical Expressions

A logical expression performs a logical computation and returns a value of TRUE or
FALSE of type LOGICAL. This expression can be a single logical operand (logical
constant, logical variable reference, logical array element, logical function
reference, or relational expression) or a combination of logical operands joined by
logical operators and parentheses. Table 7-5 shows the logical operators and their
meanings.

Table 7-5. Logical Operators

Operator Meaning .
. NOT. Logical negation
.AND. Logical Conjunction
.OR. Logical Inclusive Disjunction
.EaV. Logical Equivalence
.NEQV. Logical Nonequivalence

FORTRAN determines the value of a logical expression using the rules summarized
in tables 7-6 through 7-10.

FORTRAN-86

FORTRAN-86

A logical expression involving .NOT. has the opposite value as its operand as shown
in table 7-6.

Table 7-6. Value of a Logical Expression with .NOT .

OP1

. TRUE.

. FALSE.

. NOT.OP1

.FALSE .

.TRUE .

In a logical expression with .AND., the result is .TRUE. only if both operands are
.TRUE., as shown in table 7-7.

Table 7-7. Value of a Logical Expression with .AND.

OP1 OP2 OP1 .AND. OP2

. TRUE. .TRUE . .TRUE.

. TR~E. .FALSE . . FALSE.

.FALSE. .TRUE. . FALSE.

. FALSE. .FALSE . .FALSE.

In a logical expression with .OR., the result is .FALSE. only if both operands are
.FALSE., as shown in table 7-8.

Table 7-8. Value of a Logical Expression with .OR.

OP1 OP2 OP1.0R.OP2

.TRUE. .TRUE. .TRUE.

.TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE.

In a logical expression with .EQV., the result is .TRUE. only if both operands are
logically the same, as shown in table 7 -9.

Table 7-9. Value of a Logical Expression with .EQV.

OP1 OP2 OP1 .EQV. OP2

. TRUE. .TRUE . .TRUE.

. TRUE. .FALSE . .FALSE.

. FALSE. .TRUE . . FALSE.

. FALSE. .FALSE . .TRUE.

In a logical expression with .NEQV., the result is .TRUE. only if both operands are
logically different, as shown in table 7-10.

Table 7-10. Value of a Logical Expression with .NEQV.

OP1 OP2 OP1.NEQV.OP2

.TRUE. .TRUE. .FALSE .

. TRUE. .FALSE. .TRUE.

.FALSE. .TRUE. .TRUE.

.FALSE. .FALSE. .FALSE.

Expressions

7-5

Expressions

7-6

7.6 Precedence of Operators

FORTRAN generally evaluates operators of higher precedence before operators of
lower precedence. When two operators have equal precedence, FORTRAN
evaluates the leftmost one first.

The use of parentheses overrides the normal rules of precedence. The part of the
expression enclosed in parentheses, is evaluated first. With nested parentheses,
FORTRAN evaluates the innermost set first.

The following list shows the precedence of operators in decending order:

• Parenthesized expressions

• Concatenation: / /

• Exponentiation: **
• Multiplication or Division: *, /

• Addition or Subtraction (unary and binary): +,-
• Relational Operators: .LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

• Logical or n .NOT.

• Logical or ft .AND.

• Logical or .OR.

• Logical or .EQV .,.NEQV.

FORTRAN-86

FORTRAN-86

For example, FORTRAN interprets the expression

o .OR. A + B .GE. C

as though you had written

o .OR. «A + B) .GE. C)

The, only exception to the left-to-right rule is the case where two or more exponen
tiation terms occur together. For example:

A ** B ** C

In this case, the compiler interprets the expression from right to left as though you
had written

A ** (B**C)

warning mode, unnormat numbe-rs may appear as the"Tesutts'"of operations per
~lP'rm'eUg;on denormal ;numbet;s. 8in<te a denormal numbel1 resultsfrom u,uderflow in

hich more precision has oeen los~ than rounding can account ~ for, the unnormal
mber serves as a reminder that th~ precision loss has occurred. If an un normal or
normal number is aaded tt), or subtracted froQ1; anormalized~:number of g~eater

ute value, the result is normalized since the precision loss due to the denor-
alization is now within the range af rounding error.

& '

he following rules apply when at least one operand is not norm~lized, provided the
valid Operation exsel?tio~,#does n~J occur. They specifr whel,;l })ormalizatior; is . to

and the'tesultirrg exponent value if normalization °does Dot OCCUT. Rouiidlng
and ~the nandling of overflow and .ltnderfJow are performed after the assignments

Expressions

7-7

Expressions FORTRAN-86

7-8

FORTRAN-86

.i>':

Floating-Poin't Result: The NaN~. itself becomes the result and execution contmues
normaHy without signalling further errors. If both operands are NaNs, the .. J'laN
wlth the Iargef'magnitude is returned. Thus each NaN is propogated thTough llater
floating-point ca~culations until it is ultimately either ignored, or referenceo by
operations delivering non-floating-point results. "

-*,' ,~

,-": . ® ~ _ _.. _ .-- .~ , A c;!i~
'.t : On formatte<lf()~tput using anF, E~p, or G edit desqip19t, a

fleld'O{perio ~~ .)is written !oindicate an"undefined (NaN) result. The A,Z,1'or B
descriptor resuIts"in the ASCII, hexadecimal, or binary interpretation, respectively,
of the internairepresentation of the NaN. No error is signalled for output of a NaN.

, - I

LOGlCAL Result: By definitio{l,a NaN has no ordinal rank with respect tq, any
otber operand, ey~n itself. Tests fqI equality (.EQ.) and inequality (.NE.) are the
only FO~TRAN~relational operations for which results are defined (.FALSE", and
.TRUE., res;p ely) for u~orde doperand,s soprogram execution cont~nues
without erro yother operato elas an undefinea result ~when applied to ~aNs'
causing an iIi~ali(j ,operation ~rfor !v'Lbe masked resul tis always .F A LSE.

The arithmetic IF belongs to the latter category, with falling through to the next
statement being the only logically con"sistent masked response possible. '

INTEGER Resulf~ Since no internal "NaN representation exists for the INTEbER
data type" an .iJlv~1id-operation err.or.is normally signalled. The masked result is the
'highest magnit'lfde, negativ,c, integer fOT INTEGER*4 or INTEGER*,2';c~ An
INTEGER*} result is the value of an '~NTEGER*2 intermediate modl!lo 256. ,/'

Trapping NaN

A trapping NaN js an explicitly created NaN whose function is to signal an in~alid
operation exception (trap) whenever it is used . in a computation, comparison, or
conversion. Contrary to ordinary; ~aN's, which are tolerated during mostno.~ting

oint operations; trapping NaN's ' cause exceptions virtually every ' timek:th ' are
referenced. ill ~ , . ~ .,,%

If the invalid-operation exception is masked, trapping NaN's behave like ordinary
NaN's.

For mote information on trapping NaN's, see the 8086 Family User's Ma,nua/
Numerics Supplement. ·Note that, tbe ~087 hardware treats all NaN's as t "ping
N , . ,":i$.",;/f'" ,Y.' '" a s. ;.Jit"",'. ·, _____ """"""""""=".",.,.."""""''''~ __________ '''-'-_~._...:.~. __ .~ .. , ~,'''B

Expressions

7-9

CHAPTER 8
EXECUTABLE STATEMENTS

There are two categories of FORTRAN statements: nonexecutable and executable.
Nonexecutable statements define the characteristics or initial values of data', or
define program units. These statements are described in previous chapters .
Executable statements do calculations, control program execution, and read or write
data from external media. The executable statements for doing calculations and con
trolling program execution are described in this chapter. The I/O statements are
described in Chapter 9, "Input and Output".

8.1 Assignment Statements

Assignment statements give values to variables, arrays, or array elements. There are
three kinds of assignment statements:

• Arithmetic

• Logical

• Character

8.1.1 Arithmetic Assignment Statements

An arithmetic assignment statement resembles a conventional arithmetic formula.
Its syntax is

name = exp

where name is the name you give to a variable, array, or array element and exp is an
arithmetic expression. You read the '=' as 'is assigned the value' rather than 'is
equal to.' Therefore, the statement

I = I + 1

is correct in FORTRAN.

Execution of an arithmetic assignment statement causes FORTRAN to evaluate exp
according to the rules for arithmetic expressions (see table 7-2). It then converts the
result to the type of name and assigns it to name. Table 8-1 shows this process for
different FORTRAN-86 data types. In table 8-1, the functions in the
'CONVERSION' column are the generic type conversion functions described in sec
tion 6.1.2.2,-"Intrinsic Functions".

f--t-he-loogth- G.f-na.me-iS-l-Q·llier- t-.han-th.e-result __ oL exp., FO R T RAN co 0 yerts....J:he.
length of result to the length of name while preserving its value.

8-1

Executable Statements FORTRAN-86

8-2

Table 8-1. Type Conversions in Arithmetic Assignrnent Statements

INTEGER

REAL

DOUBLE
PHEGISION

Typeof
Target Variable

INTEG'ER
YWI, rnTEGE·~R~·t~t~~~·

INTEGEA*2
INTEGER*'4

REAL
REAL*4
REAL*S

DOUBLE
PRECISION

TEMPREAL

8.1.2 Character Assignm,ent Statements

Type Conversion

The character assignment statement assigns a character value to a character variable
or array element. Its syntax is

name = exp

where name is the name you give to a character variable or character array element
and exp is a character expression (see section 7.2).

The two sides of a character assignment statement can have different lengths. If
name is longer than the result of exp, FORTRAN pads the result on the right with
blanks. If name is shorter than the result of exp, FORTRAN truncates exp on the
right until-it fits into name.

8.1.3 Logical Assignment Statements

The logical assignment statement assigns the value .TRUE. or .FALSE. to a logical
variable or array element. Its syntax is

name = exp

where name is the name you give to a logical variable or logical array element and
exp is a logical expression (see section 7.4).

8.2 IF Statements

An IF statement transfers control from one part of the program to another under
certain specified conditions. It can also provide alternative actions for the program
to perform if these conditions are not met. There are three basic I F constructs:

• Block IF

• Logical IF

• Arithmetic IF

8.2.1 Block IF

A block IF construct is introduced by a block IF statement, and terminated by an
END IF statement. The intervening statements form the IF block, any number of
ELSE IF blocks, and at most one ELSE block, in that order. The first statement of

FORTRAN-86 Executable Statements

each of these blocks. must be IF, ELSE IF ~or ELSE statements, respectively; the
block is terminated by the next ELSE IF, ELSE, or END IF statement.

These blocks can be nested. For example, an IF block may contain another IF block,
which may contain anothe'f IF block, etc. These blocks can also be empty, meaning
that there need not be any executable statements between the first statement of a
block and its corresponding terminating statement.

You cannot transfer control into an IF, ELSE IF, or ELSE block from outside the
. IF block.

Figure 8-1 illustrates a possible nesting of IF, ELSE IF, and ELSE blocks.

IF· • •

IF BLOCK

ELSEI F···

IF'''~
: IF BLOCK ELSE IF BL

ENDIF

OCK

ELSE

IF • • • · ·
IF'''~
• IF IF
• BLOCK BLOCK

ENDIF

ELSE BLOCK

· · ENDIF

ENDIF

Figure 8-1. Nesting Levels of IF, ELSE IF, and ELSE BLOCKS 121570-6

8-3

Executable Statements

8-4

8.2.1.1 Block IF Statement

The block IF statement introduces an IF block and must be the first statement of
that block. Its syntax is

IF (exp) THE N

where exp is a logical expression(see section 7.4).

If the value of exp is true, FORTRAN executes the statements of the IF block. As
soon as an ELSE IF or ELSE statement on the same nesting level as the block IF is
encountered, control passes to the EN D IF statement of the block IF statement. If
exp is false, FORTRAN passes control to the first ELSE IF, ELSE, or END IF
statement on the same nesting level as the block IF statement.

Each block IF statement must have a corresponding END IF statement in the same
program unit.

8.2.1.2 ELSE IF Statement

The ELSE IF statement introduces an ELSE IF block and must be the first statement
in that block. Its syntax is

E L S ElF (exp) THE N

where exp is a logical expression.

If exp is true, execution continues with the first statement of the ELSE IF block. If
exp is false, FORTRAN passes control to the next ELSE IF, ELSE, or END IF
statement on the same nesting level as the ELSE IF statement.

An ELSE block must be immediately preceded by an IF or another ELSE IF block
of the same nesting level and is terminated by another ELSE IF, ELSE, or END IF
statement. No statement can reference the statement label of an ELSE IF statement.

8.2.1.3 ELSE Statement

An ELSE statement introduces an ELSE block. Its syntax is

ELSE

An ELSE block must be immediately preceded by an IF or ELSE IF block, and is
terminated by the END IF statement.

No statement can reference the statement label of an ELSE statement.

8.2.1.4 END IF Statement

The END IF statement terminates the last IF, ELSE IF, or ELSE block of a block IF
construct. Its syntax is

END IF

Each block IF statement must have a corresponding END IF statement.

FORTRAN-86

FORTRAN-86 Executable Statements

8.2.2 Logical IF Statement

The logical IF statement executes a statement in the program depending on the value
of a controlling expression. Its syntax is

IF (exp) stmt

where exp is a logical expression and stmt is any executable statement except a DO
or another IF statement.

If exp is true, FORTRAN executes stmt next. If it is false, FORTRAN executes the
statement following the logical IF and ignores stmt.

A function reference in the controlling logical expression can affect the operands in
stmt.

8.2.3 Arithmetic IF Statement

The arithmetic IF statement transfers control of the program to one of four possible
statements depending on the value of a controlling expression. Its syntax is

I F (exp) s1 , s2 , s3

where exp is any expression (see section 7.1) and s1, s2, and s3 are statement labels
of any executable statements in the same program unit as the arithmetic IF. The
same statement label can appear more than once in the same arithmetic IF
statement.

If the value of exp is less than zero, control passes to the first statement listed. If exp
equals zero, control passes to the second statement. If exp is greater than zero, con
trol passes to the third statement. If the result of exp is unordered (see Chapter 7),
control continues with the next executable statement following the arithmetic IF
statement.

8.3 DO Statement

Frequently, you will want to repeat a series of operations several times. Rather than
copy the statements that perform these operations many times, you can create a loop
that causes the program to perform the same statements over and over a specified
number of times. This is the concept of a DO loop. The DO statement introduces
and defines a DO loop. Its syntax is

DO stl[,]var = e1, e2f, e3]

where stl is the statement label of an executable statement that is the last statement
in the DO.loop, var is an integer variable that acts as the index value of tife DO loop,
and e1, e2, and e3 are integer expressions. In this format, e1 is the initial index
value, e2 is the loop termination value, and e3 is the optional loop incrementl decre
ment value. If you do not specify e3, the compiler assumes an increment of one. The
values of e1 and e2 may be such that no iterations are performed. (See section
11.4.3, DO/66 00/77 Controls for details.)

The last statement of a DO loop must not be an unconditional GO TO, assigned GO
TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or
DO statement. If the last statement of the DO loop is a logical IF statement, it can
contain any executable statement except a DO, block IF, ELSE IF, ELSE, END IF,
END, or another logical IF statement.

8-5

Executable Statements FORTRAN-86

8-6

DO loops can be nested. For example, a DO loop can contain another DO loop
which can contain another DO loop, etc. If a DO statement appears within the range
of another DO loop, the entire inner DO loop must be within the range of the outer
DO loop. DO loops can share the same last statement.

If a DO statement appears within an IF, ELSE IF, or ELSE block, the range of the
DO loop must be entirely within that block.

If a block IF statement is within the range of a DO loop, its corresponding EN 0 IF
statement must also be within the range of the DO loop.

You cannot transfer program control into a DO loop.

8.4 CONTINUE Statement

The CONTINUE statement has no effect on program execution. Execution simply
continues with the next executable statement. Its syntax is

CONTINUE

8.5 CALL Statement

The CALL statement invokes a subroutine. The main program or any subprogram
can reference a subroutine using the CALL statement. Its syntax is

CAL L name[qarg[, arg] ...])]

where name is the name of the subroutine and each arg is an actual argument. The
actual arguments in the CALL statement must agree in order, number, type, and
length with the corresponding dummy argument list of the referenced subroutine.
(See section 6.1 for a complete description of subroutines and arguments.)

8.6 RETURN Statement

The RETURN statement transfers control back to the calling program unit. Its
syntax is

RETURN

The RETURN statement may appear only in FUNCTION or SUBROUTINE sub
programs. These subprograms may have one or more RETURN statements, or none
at all. An EN 0 statement terminating such a program unit has the same effect as a
RETU RN statement.

When FORTRAN executes a RETURN statement in a FUNCTION subprogram, a
return value of the function must already have been defined.

When FORTRAN executes a RETURN statement, it terminates the association
between the dummy arguments of the procedure and the current actual arguments
(see section 6.1, "Subroutines and Functions").

FORTRAN-86 Executable Statements

8.7 ASSIGN Statement

The ASSIGN statement is the only way you can assign a statement label to a
symbolic name. A GO TO statement or a format identifier in an I/O statement can
then reference this symbolic name. To use the symbolic name in another context,
you must redefine it with an integer value in an arithmetic assignment statement. Its
syntax is

ASS I G N stl TO name

where stl is a statement label and name is an integer variable name. The statement
label must be the label. of an executable statement or a FORMAT statement in the
same program unit as the ASSIGN statement. You cannot declare name to be of
length INTEGER * 1.

8.8 GO TO Statements

The GO TO statements pass program control to another part of the program, either
conditionally or unconditionally. There are three GO TO statements:

Unconditional GO TO
Computed GO TO
Assigned GO TO

8.8.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to a specified statement. Its
syntax is

GO TO sfl

where stl is a statement label of an executable statement in the same program unit as
the GO TO statement.

8.8.2 Computed GO TO Statement

The computed GO TO statement branches to one of several executable statements
based on the value of a controlling expression. Its syntax is

GO TO(stl[,stl) ...)exp

where stl is the statement label of an executable statement in the same program unit
as the computed GO TO statement and exp is an integer expression.

The same statement label can appear more than once in the same computed GO TO
statement. If exp has a value in the range 1 ~ exp ~ n(where n is the number of
statement labels in the list), control passes to the statement that corresponds to this
value. If exp is outside of this range, execution continues with the statement follow
ing the GO TO and all the statement labels in the list are ignored.

8-7

Executable Statements FORTRAN-86

8-8

8.8.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to one of several executable
statements based on an integer variable name. You use it with the ASSIGN state
ment. Its syntax is

GOT 0 name[{stl[, stl] .. .>]

wh'ere name is an integer variable name and stl is the statement label of an
executable statement in the same program unit as the assigned GO TO statement.
Before the assigned GO TO statement can be executed, an ASSIGN statement in the
same program unit must have defined the variable name with the value of a state
ment label.

The same statement label may appear more than once in the statement. If the paren
thesized list of statement labels is present, the statement label assigned to name must
be one of the labels in the list.

8.9 Program Halt Statements

FORTRAN provides the following three statements for halting or terminating pro
gram execution:

• PAUSE

• STOP

• END

For details on the END statement, see section 4.3.

8.9.1 PAUSE Statement

The PAUSE statement suspends program execution and allows execution to con
tinue or terminate depending on an external signal. Its syntax is

PAUSE[msg]

where msg is either a string of not more than five digits or a character constant.
When the PAUSE statement is executed, a message in the form

***PROGRAM PAUSE. [msg]

is written to the file connected to Unit 6 (see section 14.5, "Preconnecting Files"),
and program execution is suspended. By entering anything starting with's' (either
upper or lower case) on Unit 5, the operator can cause execution of the program to
terminate; any other input causes execution to continue with the statement following
the PAUSE statement.

8.9.2 STOP Statement

The STOP statement terminates program execution from within a program. Its
syntax is

STOP [msg]

FORTRAN-86 Executable Statements

where msg is either a string of not more than five digits ot a character constant.
When the STOP statement is executed, a message in the form

***PROGRAM STOP. [msg]

is written to the file connected to Unit 6 (see section 14.5), and program execution is
terminated.

The STOP statement is intended as a means to terminate program execution
abnormally, that is, to inform the operator of a special program-detected condition
that makes further execution undesirable or impossible. For normal program ter
mination, execution of the END statement of the main program is preferred for
reasons of run-time efficiency.

8-9

CHAPTER 9
INPUT AND OUTPUT

FORTRAN input/output statements direct the transfer of data between the pro
cessor and some external unit or within the processor itself. There are two categories
of statements, file handling and data transfer. The file-handling statements connect
and disconnect, position, and mark the end of files. The data-transfer statements
supply the external or internal unit and the list of input or output variables including
any necessary formatting information. This chapter describes each of these
statements.

9.1 Records, Files and Units

9.1.1 Records

A record is a logically related set of values or characters. There are two types of
records, formatted and unformatted.

A formatted record is a sequence of ASCII printable characters. An unformatted
record is a sequence of values containing any desired combination of data types.
Only formatted and unformatted 110 statements, respectively, can read or write
these records.

9.1.2 Files

A file is a sequence of records. There are two kinds of files, extenial and internal.

9.1.2.1 External Files

An external file is stored on an external unit, such as a line printer or flexible disk.
You can access an external file in one of two ways, sequentially or directly.

A sequential-access file has the following characteristics:

• The file consists of a sequence of variable-length records.

• The records are all accessed in the same order as when they were created.

• The records are either all formatted or:all unformatted.

• You can read from or write to the files using only sequential-access 110
statements.

A direct-access file has the following characteristics:

• All the records have the same length.

• You can read from or write to the file in any order.

• The records are either all formatted or all unformatted.

• You can read from or write to the file using only direct-access 110 statements.

• Each record has a unique record number determined when the record was
created. You may not delete a record or change its number. You can rewrite an
existing record.

9-1

Input and Output

9-2

9.1.2.2 Internal files

An internal file is a character variable, character array, or character array element.
Using internal files, you can transfer and format data within processor memory.

An internal file has the following characteristics:

• Each record is a character variable or array element.

• The size of the file depends on the kinds of records in the file. If the file is a
character variable or array element, it is a single record whose length is that of
the variable or array element. If it is a character array, every record has the same
length as an array element in that array and the file has as many records as the
array has elements.

You cannot reference an internal file in a file-handling statement. You can use only
sequential-access, formatted 110 statements that do not specify list-directed
formatting.

9.1.3 Units

A unit is a logical way of referring to a file. A unit can be connected or disconnected.
All I/O statements, except OPEN and CLOSE, must reference a unit connected to a
file.

You can connect a file to a unit using the OPEN statement and disconnect the file
using the CLOSE statement. Depending on the operating environment, some units
may be preconnected and you can reference them in I/O statements without first
using an OPEN statement. A preconnected file becomes connected the first time an
110 statement references it.

For example, in the Series-III operating system environment, the console output
device and console input device are always preconnected for unit numbers 6 and 5
respectively, but you can override these defaults by preconnecting the units explicitly
(see section 14.5).

A unit cannot be connected to more than one file at a time and vice versa. The only
way to refer to a disconnected file is by naming it in an OPEN statement. Con
sequently, an unnamed file cannot be reconnected once it has been disconnected.

9.2 File-Handling Statements

FORTRAN provides five file-handling statements: OPEN, CLOSE, BACKSPACE,
REWIND, and ENDFILE. They are valid for external files only.

9.2.1 OPEN Statement

The OPEN statement can connect an existing file to a unit, create a preconnected
file, create a file and connect it to a unit, or change certain specifiers in an existing
file/unit connection. Its syntax is

OPE N (open-list)

FORTRAN-86

FORTRAN-86 Input and Output

where open-list is a list of specifiers s·eparated by commas. The list of specifiers is:

[UN IT=]unit
lOS TAT=stname
ERR =sll
F I LE=name
STATUS=stat
ACCESS=acc
FORM=fmat
R E C L =reclen
BLANK=blank

Unit specifier
I/O status specifier
Error specifier
File-name specifier
File-status specifier
Access-method specifier
Formatting specifier
Record-length specifier
Blank ifier

The unit specifier, unit, must be present. All of the other specifiers are optional ex
cept that if you connect a file for direct access, the record-length specifier must be
present. Some specifiers have default values. The following sections describe each of
the specifiers in detail.

9.2.1.1 Unit Specifier

The format of the unit specifier is

[UN IT =]unit

where unit is an integer value between 0 and 255 that identifies an external file. If
you omit the optional "UNIT =", unit must be the first item in open-list.

Examples:

OPEN(UNIT=3)
OPEN(4)

9.2.1.2 1/0 Status Specifier

The format of the I/O status specifier is

lOS TAT =stname

where stname is an integer variable or integer array-element name. The variable
must be either INTEGER*I or INTEGER*2.

If 1)0 error occurs, executing an 110 statement with this specifier causes stname to
be assigned a zero value. If an error does occur, stname is assigned an error message
number (see section 15.3, "Run-Time Errors").

Example:

OPEN(4,IOSTAT=ERRFLG)

9.2.1.3 Error Specifier

The format of the error specifier is

E R R=stl

where stl is the statement label of an executable statement in the same program unit
as the 110 statement.

9-3

Input and Output

9-4

If an error occurs during execution of the 110 statement, the following steps occur:

1. The 110 operation terminates.

2. The position of the file specified by the 110 statement becomes indeterminate.

3. If the 110 statement has an IOSTAT specifier, FORTRAN sets stname to
reflect the error condition.

4. Execution continues with the statement named by the ERR specifier. If you did
not specify ERR, a run-time error occurs.

Example:

OPEN(4,IOSTAT=ERRFLG,ERR=200)

9.2.1.4 File-Name Specifier

The format of the file-name specifier is

F I LE=name

where name is the name of the file expressed as a character constant enclosed in
quotation marks or a variable. It must be a valid file name for the operating environ
ment. If you omit FILE, the unit is connected to a scratch file (:WORK:) unless it
was previously associated with a specific file (i.e., in a preconnection). A filename
cannot be specified if STATUS = 'SCRATCH' is specified.

Example:

OPEN(UNIT=3,FILE='MYPROG.FIL')

9.2.1.5 File-Status Specifier

The format of the file-status specifier is

S TAT U S =stat

where stat is a character expression evaluating to 'OLD', 'NEW', 'SCRA TCH', or
'UNKNOWN'. If you omit the STATUS specifier, the default value is UNKNOWN.

If you specify OLD or NEW, the FILE specifier must also be present or the file must
be preconnected.

When you specify SCRA TCH, a temporary file is connected to the specified unit for
the duration of program execution or until you issue a CLOSE statement for the
same unit and then delete it. You cannot specify SCRA TCH with a named file.

If you specify UNKNOWN, the file status is environment-dependent. In the Series-Ill
environment, UNKNOWN is allowed only for a named file. In this case, it is
equivalent to OLD if the file exists and NEW if it does not.

Example:

OPEN(3,FILE='MVPROG.FIL ' ,STATUS='NEW ')

9.2.1.6 Access-Method Specifier

The format of the access-method specifier is

ACCESS=acc

FORTRAN-86

FORTRAN-86 Input and Output

where aee is a character expression evaluating to either 'SEQUENTIAL' or 'DIRECT'
(see section 9.1.2.1). If you omit the ACCESS specifier, the default is SEQUENTIAL.

If the file already exists, the specified access method must match the characteristics
of that file. For example, iRMX 86 physical files are by definition sequential files
and must be opened for sequential access only. New files are created with the
specified access method. If the access method is DIRECT, the record-length specifier
must be present in the specifier list.

Example:

OPEN{3,FILE='Kt~ROG' ,STATUS='NEW',
&ACCESS='SEQUENTIAL')

9.2.1.7 Formatting Specifier

The format of the formatting specifier is

F ORM=fmat

where fmat is a character expression evaluating to 'FORMATTED' or
'UNFORMATTED'. If you omit the FORM specifier, the default is UNFORMATTED
if you connect the file for direct access and FORMA TTED if you connect the file for
sequential access.

Example:

OPEN{3,FILE='MYPROG.FIL' ,STATUS='NEW',
&ACCESS='SEQUENTIAL' ,FORM='FORMATTED')

9.2.1.8 Record-Length Specifier

The format of the record-length specifier is

R E C L=reelen

where ree/en is a positive integer expression that evaluates to the length of each
record of the file being connected for direct access.

If you connect the file for formatted 110, reelen is the number of characters. If you
connect the file for unformatted 110, reelen is the number of bytes.

You must include the RECL specifier in the OPEN statement when you connect the
file for direct access.

Example:

OPEN(3,FILE='MYPROG.FIL' ,STATUS='NEW',
&ACCESS='DIRECT' ,FORM='FORMATTED',RECL=80)

9.2.1.9 Blank Specifier

The format of the blank specifier is

BLANK=blank

9-5

Input and Output

9-6

where blank is one of the character constants 'NULL' or ZERO'. If you omit the
BLANK specifier, the default value is NULL.

If you specify NULL, FORTRAN ·ignores all blanks in numeric formatted input
fields, except that a field of all blanks has the value zero. If you specify ZERO, all
blanks, except leading blanks, have the value zero.

You can use this specifier only for formatted 1/0.

Example:

OPEN(3,FILE='MYPROG.FIL' ,STATUS='NEW',
&FORM=lFORMATTED 1 ,BLANK=IZER0 1

)

9.2.1.11 Opening a Connected Unit

A unit is considered connected if it was referenced in a previous 110 statement
without an intervening CLOSE statement. You can specify an OPEN statement for
a unit already connected to a file.

If the file name specified by the OPEN statement is missing or is the same as that of
the connected file, the BLANK and CARRIAGE specifiers (and the RECL specifier
for sequential files) can differ from existing attributes, and result in changes to those
attributes.

If the file name specified by the OPEN statement is not the same as that of the con
nected file, FORTRAN disconnects the previous file as if a CLOSE statement,
without STATUS specifier, were issued and opens the new one with the new
attributes.

FORTRAN-86

FORTRAN-86 Input and Output

If a file is already connected to a unit, you cannot specify an OPEN statement con
necting that file to a different unit.

9.2.2 CLOSE Statement

The CLOSE statement disconnects a file from a unit. Its format is

C LOS E (close-list)

where close-list is the following list of specifiers separated by commas:

[U NIT =]unit
lOS TAT =stname
E RR=stl
S TAT U S =stat

Unit specifier
I/O status specifier
Error specifier
File disposition specifier

The unit specifier must be present. All other specifiers are optional, and you can
only specify them once.

The lOST AT and ERR specifiers have the same interpretations as for the OPEN
statement. (See sections 9.2.1.2 and 9.2.1.3.)

9.2.2.1 Unit Specifier

The unit specifier has the same interpretation as in the OPEN statement. However,
execution of the CLOSE statement containing this specifier need not occur in the
same program unit as its corresponding OPEN statement. If the specified file does
not exist, CLOSE has no effect.

Once a CLOSE statement disconnects a unit, it can be reconnected to the same file
or a different file within the same program. Similarly, once a CLOSE statement
disconnects a file, it can be reconnected to the same or a different unit, so long as the
file still exists.

Example:

CLOSE(3,IOSTAT=ERRFLG,ERR=100)

9.2.2.2 File-Disposition Specifier

The format of the file-disposition specifier is

S TAT US =stat

where stat is a character expression evaluating to 'KEEP' or 'DELETE'. If you omit
this specifier, the default value is DELETE for a file that previously had a status of
SCRA TCH, and KEEP otherwise. You cannot specify KEEP for a file opened with
SCRA TCH status.

If you specify KEEP for an existing file, the file continues to exist after FORTRAN
executes the CLOSE statement. KEEP has no other effect.

If you specify DELETE, the file ceases to exist after FOR TRAN executes the CLOSE
statement.

9-7

Input and Output

9-8

Following normal program termination, FORTRAN closes all connected units and
deletes all those designated as scratch files.

Example:

ClOSE(4,ERR=100,STATUS='KEEP')

9.2,3 BACKSPACE Statement

The BACKSPACE statement causes the file pointer to move to the start of the
preceding record. The file must be connected for sequential access. The possible for
mats are

B A C K SPA C Eunit
B A C K SPA C E (arg-lisf)

where unit is an integer expression between 0 and 255 that identifies an external unit
and arg-list is a list of arguments separated by commas. The following is a list of the
arguments:

[U NIT =]unit
lOST AT=stname
ERR=stl

External-unit specifier
I/O status specifier
Error specifier

The external-unit specifier must be present but the other specifiers are optional.

If the file has no preceding record, the BACKSPACE statement has no effect. If the
last 110 statement was a READ past the end-of file, the file is repositioned to the
end of the file.

You cannot backspace over a record written using list-directed formatting.

Backspacing a file that is connected but does not exist is prohibited. Do not use the
BACKSPACE statement t9 manipulate iRMX 86 physical files such as :CI:, :CO:,
line printers, or other such files. FORTRAN-86 returns run-time errors in these
cases.

Examples:

BACKSPACE 3
BACKSPACE(3,ERR=100)

9.2.4 REWIN 0 Statement

The REWIND statement causes the file pointer to move to the initial point of the
file. The file must be connected for sequential access. The possible formats are

REW I NO unit
R E WIN 0 (arg-list)

where unit is an integer expression between 0 and 255 that identifies an external unit
and arg-list is a list of arguments separated by commas. The arg-list for REWIND
and the arg-list for BACKSPACE are the same.

If the file is positioned at its initial point, the REWIND statement has no effect.

REWIND 3
REWIND(3,IOSTAT=ERRFLG)

FORTRAN-86

FORTRAN-86 Input and Output

9.2.5 ENDFllE Statement

The ENDFILE statement causes the preceding record to become the last record of
the file. No further data-transfer I/O statements can be executed without first
issuing a BACKSPACE or a REWIND statement. The file must be connected for
sequential access.

The possible formats are

END F I L E unit
END F I L E (arg-lisf)

where unit is an integer between 0 and 255 that identifies an external unit and arg-list
is a list of arguments. These arguments are the same as those for BACKSPACE and
REWIND.

Do not use the ENDFILE statement to manipulate iRMX 86 physical files such as
:CO:, :CI:, line printers, or other such files. FORTRAN-86 will return a run-time
error in such cases.

Examples:

ENDFILE 4
ENDFILE(4,ERR=100)

9.3 Data-Transfer I/O Statements

FORTRAN provides three data-transfer 1/0 statements: READ, WRITE, and
PRINT.

9.3.1 READ Statement

The READ statement reads data from a specified unit. Its formats are

REA D (etl-list> [in-list]
REA D f[, in-list]

where etl-list is a list of control information specifiers, in-list is a list of the variables
which are to receive the input data, and f is a format identifier, which is the same as
the FMT specifier in etl-list.

The control-information specifiers are:

[U NIT =]unit
[FMT=]f
R E C=reeno
lOS TAT =stname
E R R=stl
EN D=stl

Unit specifier
Format specifier
Record number specifier
I/O status specifier
Error specifier
End-of-file specifier

9.3.1.1 Control-Information List

The control-information list must contain a unit specifier. If you use the second
form of the READ statement, the unit is the default input unit.

e

The list can contain only one of each of the other specifiers.

The following sections describe the control list specifiers in detail.

9-9

Input and Output

9-10

Unit Specifier

The unit specifier has the form

[U NIT =]unit

where unit is an integer value between 0 and 255 that identifies an external unit, an
asterisk (*) to specify the default input unit, or an internal file. For internal files,
ctl- list must contain a format identifier but must not contain a record number
specifier.

If you omit 'UNIT=', unit must be the first item in ctl-list.

Example:

REAO(2)BILL,STAT

Format Specifier

If etl-list contains a format specifier, the READ statement is a formatted 110 state
ment. Otherwise, it is an unformatted 110 statement.

The format is

[FMT=]f

where f is one of the following:

• The label of a FORMAT statement in the same program unit as the READ
statement

• An integer variable assigned the label of a FORMAT statement in an ASSIGN
statement

• variable name, or character expression

• An asterisk (*) specifying list-directed formatting (section 9.4.2)

If you omit 'FMT=', the format specifier must be the second item in etl-list and you
must omit 'UNIT=' as well.

If you specify an asterisk (*) as f, etl-list cannot contain a record number specifier.
If the unit is an internal file, the format specifier must also be present, but cannot be
an asterisk (*).

Examples:

READ(2,25)BILL,STAT
25 FORMAT

READ 30,BILL,STAT
30 FORMAT

ASSIGN 45 TO HORN
READ(2, ORN)BILL

45 FORMAT

READ(2,*)BILL

FORTRAN-86

FORTRAN-86 Input and Output

Record-Number Specifier

If you connected the file for direct access, you must include the record-number
specifier in etl-list. Its format is

R E C=recno

where reeno is a positive integer expression whose value is the number of the record
to be read.

Examples:

REAO(3,REC=1S)
REAO(2,REC=J)

Input/Output Status Specifier

The I/O status specifier is essentially the same as for the OPEN statement (section
9.2.1.2). In addition, FORTRAN assigns the variable stname a negative value at
end-of-file.

Error Specifier

The error specifier has a similar interpretation as for the OPEN statement (section
9.2.1.3), with one difference: if the error is the result of an end-of-file condition, the
position of the file is defined as past the end-of-file marker; further 110 operations
except CLOSE, REWIND, or BACKSPACE are undefined.

End-Of-File Specifier

The format of the end-of-file specifier is

EN D=stl

where stl is the label of an executable statement in the same program unit as the
READ statement.

When FORTRAN detects an end-of-file during a READ operation, processing pro
cedes as for the error specifier except that execution continues with the statement
specified by END.

If you specify END, the file must be connected for sequential access.

Example:

READ(3,30,IOSTAT=STFLG,ERR=100,ENO=300)BILL,STAT

9.3.1.2 Input List

The input list, in-list, identifies the items to be read. An item in in-list must be a
variable name, array name, or array element name. If you list an array name,
FORTRAN reads the entire array in normal array element ordering sequence. You
cannot list the name of an assumed-size dummy array in the input list.

9-11

Input and Output FORTRAN-86

9-12

9.3.1.3 Implied-DO List

An implied-DO list embedded in the READ statement allows you to use a range of
subscripts for input list array elements. For example, FORTRAN can read some of
the items in an array without your specifying each individual array element. The for
mat of the implied-DO list is

(inlist, var=e1 , e2, e3)

w/here var,e1,e2 and e3 have the same interpretation as for the DO statement (sec
tion 8.3) and inlist is the list of input items described above. The list, in-Jist, may
contain additional implied-DO lists.

For READ statements, the DO variable var cannot appear as an item in in-list.

Example:

C READ TH~ ODD ELEMENTS IN THE ARRAY 'TABLE'
DIMENSION TABLE(60)
READ (2,20) (TABLE(N) ,N=1 ,59,2)

20 FORMAT

9.3.2 WRITE Statement

The WRITE statement outputs data to a specified unit. The format is

W R I T E (ct/-list) [out-list)

where ctl-list is a list of control-information specifiers and out-list is a list of the data
to be written. The control-information list is

[UNIT)unit
[FMT=)f
REC=recno
I OS T AT =stname
ERR=stl

U nit specifier
Format specifier
Record-number specifier
I/O status specifier
Error specifier

The control-list specifiers are analogous to those for READ (section 9.3.l.1). The
syntax of the output list, out-list, is similar to that of the in-list in the READ state
ment, including the implied-DO option (sections 9.3.l.2 and 9.3.l.3). In addition,
an output list item may be an expression of any data type.

Examples:

WRITE(6,120)BILL,STAT
120 FORMAT

WRITE(6,120,IOSTAT=ERRFLG,ERR=200)
&BILL+1,STAT+1

120 FORMAT

DIMENSION BILL(25),STAT(25)
C WRITE A DOUBLE COLUMN PRINTOUT OF THE
C FIRST ITEMS OF EACH ARRAY

WRITE(6,120) (BILL(H) ,STAT(H) ,H=1 ,10)
120 FORMAT(1X,A,5X,F4.3)

FORTRAN-86 Input and Output

9.3.3 PRINT Statement

The PRINT statement outputs formatted data to the default output unit. Its format
is

P R I NT t[, out-list]

where f is a format identifier and out-list is a list of the data to be written. The
format specifier f and out-list have the same meaning as in the WRITE statement.

Examples:

PRINT 50,BILL,HORN
50 FORMAT

ASSIGN 50 TO STAT
PRINT STAT,BILL,HORN

50 FORMAT

9.4 Formatted Data Transfer

The default for the FORM specifier in the OPEN statement is FORMATTED for
sequential-access files. During formatted data transfer, FORTRAN transfers data
with editing between the file and the 110 list. The editing is directed by some kind of
formatting specification. You can specify formats

• In FORMAT statements
• As values of character arrays, charac,ter variable,s, or other character

expressions

• As list-directed 110 (see section 9.4.2)

If the format specifier in a formatted 110 statement is an array or expression, its
value must be a valid format specification in its leftmost character or Hollerith posi
tions. Any data following the right parenthesis that ends the format specification
has no affect on the format specification itself.

9.4.1 FORMAT Statement

The form of the FORMAT statement is

where stl is a 1 to 5 digit statement label and flist is a format specification list whose
items are separated by commas. Each item in flist must be an edit descriptor or
another (imbedded) parenthesized flist.

You can specify a FORMAT statement with no flist only if the 110 list is also empty.

There are two kinds of edit descriptors, repeatable and nonrepeatable. You repeat
an edit descriptor by prefixing it with a nonzero, unsigned integer constant called a
repeat specification. A repeat specification may also be present for an imbedded
flist.

9-13

Input and Output

9-14

Both the format specification and its corresponding 110 list are scanned from left to
right. Each item in the 1I0-list corresponds to the next repeatable edit descriptor.
For example, if a repeatable edit descriptor is repeated five times, it corresponds to
five consecutive 110 list items. There is no corresponding 1I0-list item for
non repeatable edit descriptors which take effect whenever they are encountered.

If an embedded flist is preceded by a repeat specification, flist is scanned that many
times before continuing to the next format item.

If a format-specification list ends before the I/O list ends, it reverts to the beginning
of the last imbedded flist in the FORMAT statement including its repeat specifica
tion. If none is present, then it reverts to the beginning of the FORMAT statement.
Repeat specifications have the same effect as during the first pass through the for
mat specification list. A new record is begun each time format reversion occurs.

9.4.1.1 Repeatable Edit Descriptors

Each repeatable edit descriptor generally consists of a letter indicating the type of
data involved and a number indicating the size of the data field; additional informa
tion may specify how it will be divided. The repeatable edit descriptors are

where

Iw
Fw.d
Ew.d[Ee]
Dw.d
Gw.d[Ee]
Lw
A

I,F,E,D,
G,L, and A

w

d

e

Integer descriptor
Floating-point descriptor
Floating-point descriptor
Floating-point descriptor
Floating-point descriptor
Logical descriptor
Al hanumeric descri tor

indicate the external type of data being edited

is a nonzero, unsigned integer constant
representing the width of the entire external field

is an unsigned integer constant representing the
number of digits that follow the decimal point

is a nonzero, unsigned integer constant
representing the number of digits of the exponent

The I, F, 0, E, and G edit descriptors are used for numeric data. E and G editing
allows output of floating-point numbers in scientific notation.

The following remarks apply to the I, F, 0, E, and G edit descriptors.

• On input , leading blanks are not significant. Further blanks are treated
according to the setting of the non repeatable descriptors BN and BZ and the
value of the BLANK specifier in the OPEN statement.

• A decimal point in input data overrides the decimal-point location specified by a
descriptor. The input field may have more digits than are necessary for the value
of the data item to be approximated.

FORTRAN-86

FORTRAN-86 Input and Output

• On output, FORTRAN right-justifies values. If necessary, the compiler fills the
field with blanks on the left.

• On output, if the number of characters exceeds the field width w, or an
exponent has more than e digits, the entire field is filled with asterisks (**).

INTEGER Editing

An 1I0-list item matched with an lw edit descriptor must be of type INTEGER. The
integer constant read or written always consists of at least one digit.

Examples:

PRINT 20,INTNUM
20 FORMAT(IS)

READ(3,20)INTNM1,INTNM2,INTNM3
20 FORMAT(2IS,I4)

F Descriptor Editing

An 1I0-list item matched with an Fw.d descriptor must have a floating-point data
type. If the input to this descriptor contains no decimal point, FORTRAN interprets
the rightmost d digits of the string as the fractional part of the input value.

On input, an exponent consisting of a signed integer constant or the letter E fol
lowed by an optionally signed integer constant can follow the string of digits.

FORTRAN rounds output edited by the F descriptor to d fractional digits and can
modify it by an established scale factor. (See the description of the nonrepeatable
edit descriptor P.)

Examples:

READ(2,20)BILLN
20 FORMAT(FS.3)

DIMENSION TABLE(10)
PRINT 30,TABLE

30 FORMAT(S(fS.3,2X,FS.3»
C THE TABLE WILL PRINT IN TWO COLUMNS

E-and-I} Des-criptoT Editing

An I/O-list item matched with an Ew.d, Dw.d, or Ew.dEe descriptor must have a
floating-point data type. The exponent e has no effect on input data.

On output, the format of the output field for a scale factor of zero is

[sign][O).xlx2 ... xd exp

where sign is either a plus (+) or a minus (-) sign, xl ... xd are the d most significant
digits of the value after rounding, and exp is a decimal exponent having one of the
forms found in table 9-1.

9-15

Input and Output

9-16

The scale factor, k (see the description of the nonrepeatable edit descriptor P), con
trols decimal normalization. If -d < k < O~ the number written will have >exactly I k I
leading zeros and d- J k I significant digits following the decimal point. If 0 < k < d
+ 2, the number will have exactly k significant digits to the left of the decimal point
and d - k + 1 significant digits to the right of the decimal point. Other values of k are
illegal.

Examples:

REAO(2,20)RlNUMB
20 FORMAT(E4.2)

WRITE(6,110)ROUT
110 FORMAT(E15.5E6)

Table 9-1. Output Forms of Exponents For D and E Editing

Edit Magnitude Form of
Descriptor of Exponent (exp) exponent (y=digit)

Ew.d I exp I ~ 99 E± Y1 Y2
99 < I exp I ~ 999 ± Y1 Y2 Y3

EW.d Ee I exp I ~(10**e)-1 E±Y1 Y2···Ye

OW.d I exp I ~ 99 D± Y1 Y2
99< I exp I ~ 999 ± Y1 Y2 Y3

G Descriptor Editing

An 110 list item matched with a GW.d Or Gw.dEe must have a floating-point data
type.

On input, G descriptor editing is the same as F descriptor editing.

On output, editing depends on the magnitude of the value to be written. Let n be the
magnitude of the value. If n < 0.1 or n ~ 10**d, G editing is the same as E editing
with the current scale factor. If 0.1 ~ n < 10**d, the scale factor has no effect. Table
9-2 describes the editing in this case.

Table 9-2. G Editing for 0.1 ~ N < 10**d

Magnitude
of Equivalent Conversion

Data

0.1 ~ N <1 F(w-n).d, n(b)

1 ~ N < 10 F(w-n).(d-1), n(b)

• •
• • · ·

10**(d-2) ~ N < 10**(d-1) F(w-n).1, n(b)

10**(d-1) ~ N < 10**d F(w-n).O, n(b)

where n = 4 for Gw.d
e+2 for GW.d Ee

b = blank

FORTRAN-86

FORTRAN-86 Input and Output

LOGICAL Editing

An I/O-list item matched with an Lw descriptor must have a logical data type.

The input field includes optional blanks preceding an optional period followed by a
T (for TRUE) or F (for FALSE). These letters may be fonowed by additional
characters. For example, the logical constants .TRUE. and .FALSE. are acceptable
inputs.

The output field consists of the letters T and F based on the TRUE or FALSE value
of the internal data preceded by blanks, if necessary. to fill the output field.

Examples:

LOGICAL TRUTH
DIMENSION TRUTH(4)
REAO(3,50)TRUTH{1),TRUTH{4)

50 FORMATC2L6)

WRITE(6,80)TRUTH(1)
80 FORMATCL1)

Alphanumeric Editing

An I/O-list item matched with an A or Aw descriptor must have type
CHARACTER or be defined with Hollerith data. If you specify the field width, w,
the field consists of w characters. Otherwise, the number of characters in the field is
the length of the I/O-list item.

With Aw editing, if w >Iength, the following are equivalent:

Aw and (w - Jength)X,Alength

If w ~ length, then the data is transferred according to the rules for character
assignment.

The following illustrates Aw editing. In these examples, b indicates a blank.

A5 to CHARACTER *3: 'ABCDE' becomes 'CDE'
w>length

CHARACTER*3 to A5: 'ABC' becomes 'bbABC'

A3 to CHARACTER*5: 'ABC' becomes' ABCbb'
w<length

CHARACTER*5 to A3: 'ABCDE' becomes 'ABC'

umber-Base'Editing

heD and Z ,¢it d iptor~>. are F?:RTR~N-86 extensions which allow formatte
/0 of valueS'1xpres in terms ot~tbeir iluernal data "-'resentation. 'Bw specifie
hat the value represents a bit string consisting af w characters. each one '0', ·1', 0

lank. Zw indicates astring~Qf w cbaractercS consisting of the hexadecimal digits '0'
&-1-;. ®~; -;: _ ,,~W"w iff! . ,.. ,.' _' ' •

hrough 'F~ ,and blank. On tnput, blanks' are mterpreted accordmg to the curren
N/BZ edit descriptor, or the BLAN K specifier of the OPEN statement. On output,
lanks are inserted on the le~r if the '.field width w ,jsgreater tban the total number 0 .

inary or hexadecimal digits x"in the olitput-fist item.
ill

Further interpretatioh;: of BJ'*and e-formatted da~a depends on the correspondin '
IO-list item as shown in table 9-3. "1,

9-17

Input and Output

9-18

z

able 9=3. lltterpretaoon of B and Z Values
"~ ".'

teftmost bit: sign
nff)t a bits: J:lxponent
P,~t 23 bU~ signif~~nd

leftmost bit: sign
nejct 11 bits: exponent
neXt 52 bits; significand

leftmost bit: sign
next 15 bits:-exponent
neJet 1 bitl; rtOrmaJ bit
Reil 63 bitS: significand

9.4.1.2 N onrepeatable Edit Descriptors

The no.nrepeatable edit descripto.rs are

'clc2 ... cn'
nHclc2 ... cn
nX
I
kP
BN
BZ

c

n

k

Apostrophe Editing

Literal-string descripto.r
Ho.llerith-string descripto.r
Reco.rd-po.sitio.n co.ntro.l descripto.r
Record-terminatio.n descripto.r
Scale-facto.r descripto.r
Blank descripto.r
Blank descri to.r

~--~--~--~~~

is any ASCII character

is a no.nzero., unsigned integer
co.nstant

is an o.ptio.nally signed integer
co.nstant representing a scale
facto.r

indicate the

Yo.u use the apostro.phe edit descripto.r o.nly fo.r o.utput. It causes FORTRAN to.
write the characters enclo.sed in apo.strophes literally. To. indicate an apo.stro.phe
within the character field, sh.ow it as two. co.nsecutive apo.stro.phes.

The width o.f the field is the length o.f the character string.

FORTRAN-86

FORTRAN-86 Input and Output

Example:

WRITE{7,100)ITSTNO
100 FORMAT{'THIS IS TEST NUMBER' ,2X, 12)

H Descriptor Editing

The Hollerith edit descriptor is an alternate way to perform literal-string editing.
Like apostrophe editing, you can use it only for output. The n H descriptor causes
the compiler to write the n characters following the H.

Example:

WRITE{7,100)ITSTNO
100 FORMAT{1H1,19HTHIS IS TEST NUMBER,2X,12)
C FIRST H DESCRIPTOR CAUSES A SKIP TO A NEW PAGE

X Descriptor Editing

The n X descriptor indicates that the next edit descriptor applies to the character n
positions from the current record position. On output, FORTRAN inserts n blanks
into the output record. No blanks are output if there are no more items in the 110
list.

Example:

WRITE{7,100)ITSTNO
100 FORMAT{1X, 'THIS IS TEST NUMBER', 2X, 12)
C FIRST X DESCRIPTOR CAUSES SINGLE SPACING
C BY INSERTING A BLANK AS THE FIRST
C CHARACTER OF THE RECORD

Slash Editing

The slash (I) edit descriptor acts as an end-of-record indicator.

On input, FORTRAN skips the remainder of the current record. If the file is posi
tioned at the beginning of a record, FORTRAN skips the entire record.

On output, FORTRAN terminates the current record and begins a new record. You
can use the slash edit descriptor to write an empty record, a convenient way to pro
vide blank lines on printed output.

The comma that normally separates FORMAT list items is not required before or
after a slash.

Example:

WRITE{7,100)
100 FORMAT{1H1,' BILL AVERAGE'/)
C THIS SLASH CAUSES A BLANK LINE FOLLOWING
C THE HEADIN&S TO BE WRITTEN

WRITE{7,150)BILL,AVG
150 FORMAT{1X,A12,4X,F4.3)

9-19

Input and Output

9-20

Scale Factor (P) Editing

The k P descriptor establishes a scale factor, k, which applies to certain subsequent
floating-point descriptors until a new scale factor is specified. You can use it with
the F, 0, E, and G descriptors when editing floating-point numbers. If an F, D, E,
or G immediately follows the P, no intervening comma is necessary.

FORTRAN assumes a scale factor of zero at the beginning of an 110 statement.
Once the kP descriptor changes it, the new scale factor remains in effect until you
assign another scale factor or until the end of the 110 statement.

On input, the scale factor has no effect if there is an exponent in the F, 0, E, or G
input field. Otherwise, the effect is that the externally represented number equals the
internally represented number multiplied by 10** k. The same is true on output with
F editing.

On output with E or D editing, FORTRAN moves the decimal point k positions to
the right (left if negative) and reduces the exponent by k.

On output with G editing, FORTRAN suspends the effect of the scale factor as long
as the value is within the range of F editing. If not, the effect is the same as described
for E editing.

The output range of a significand printed in scientific notation is 0.1 to, but not
including, 1.0, with a scale factor of zero. Setting the scale factor to 1 P changes this
range to 1.0 to 10.0. Changing the scale factor is useful for very small or very large
E-edited numbers, but generally not for F-edited numbers. You should reset the
scale factor as necessary for subsequent floating-point items.

Table 9-4 illustrates the use of the scale factor with E editing on output.

Table 9-4. Floating-Point Editing for Output with the Scale-Factor
Edit Descriptor P

Real FS.2 E11.S 1PE10.4 Number

4.32 4.32 0.43200 E + 01 4.3200 E + 00

7255000.0 ****** 0.72550 E + 07 7.2550 E + 06

0.0065 0.01 0.65000 E - 02 6.5000 E - 03

BN and BZ Editing

You can use these two edit descriptors to specify the interpretation of blanks, other
than leading blanks, on input. If you specify BN, FORTRAN ignores all blanks,
except that it treats a field of all blanks as zero. If you specify BZ, FORTRAN treats
all blanks as zeros.

Unless you specify the BN or BZ descriptor, the BLANK specifier in the OPEN
statement determines the interpretation of blanks. Once BN or BZ has been
specified, the new specification remains in effect until changed again explicitly, or
until the end of the I/O statement.

FORTRAN-86

FORTRAN-86 Input and Output

Example:

REAO(2,50)INTNUM,FPNUM
50 FORMAT(BN,I5,5X,BZ,F7.4)

If the input values for this example are IbO and IbO.O, where b is a blank, then the
variables will contain 10 and 100.0, respectively.

Dollar

$) edit descriptor for interactive 110 through a console ter
nal cursor at the position immediately following the output

data j er than at the beginning of a new line. If the FORMAT
scanner encounters a dollar sign after processing the last output 1I0-list item, for
mat control terminates without positioning the file to the beginning of the next

Example:

PRINT25,BILL
25 FORMAT{A20,$)

9.4.2 List-Directed Formatting

List-directed formatting allows free-form formatted input and output. To specify
list-directed formatting, place an asterisk (*) in the format-specifier position of the
data-transfer statement's control list. No FO RMA T statement is necessary.

A list-directed file is an external file whose records contain values and value
separators. Each value can be

• A constant

• A null value

• A constant or null value prefixed by a repeat specifier in the form

r*c

or

r*

-w-here-r--i-s- an-tHlsigfteti-,---H6fl-rer6-tfl:t-eger-etlnstant-a-nci-c-is--a-vah:le:-T-h-e-f-orm-r-*-c
is equivalent to r occurances of the value c. The form r* is equivalent to r suc
cessive null values. Neither form can contain embedded blanks, except within
the value c.

A value separator can be

• A comma, optionally preceded or followed by blanks

• A slash, optionally preceded by blanks

• One or more blanks between two values or following the last value

9-21

Input and Output

9-22

9.4.2.1 List-Directed Input

Execution of a list-directed READ statement begins a new record and formats each
input value according to the type of the corresponding input-list item and the width,
W, of the value as follows:

Type of Input Item

CHARACTER*n

DOUBLE PRECISION

Equivalent Format
Descriptors

Aww~n

An, (w-n)X otherwise

Lw

/w

Fw.O

Fw.O

Fw.O

All values acceptable to these 'FORMAT specifications are acceptable for Iist
directed formatting with a few exceptions:

• Since blanks are treated as sep.arators, imbedded blanks are allowed .only within
character strings.

• An end-of-record specifier has the same effect as a blank except within a
character string, which is continued on the next record.

• An input LOGICAL value must contain neither commas nor slashes among the
optional characters following the Tor F.

• An input character value consists of a string of characters enclosed by an
apostrophe at each ,end.

You represent an apostrophe within the character constant by two consecutive
ap.ostrophes without intervening blanks or ertd .. of-record. You can continue a
character constant from the end of one record to the beginning of the next record.
Although in list-directed formatting an end-of-r,ecord normally has the effect of a
blank, that does not apply in this case. The characters blank, comma, and slash can
appear within character constants. FORTRAN transfers a character string left
justified, and blan:k fills or truncates them on the right if its width is not the same as
the width of the input-list item.

You can specify null values in one of two ways.

• By having no values between successive separators or preceding the first value
-separator

·By specifying the r* form

An end-of-record following a value, a comma, or another end-of-record, with or
without separating blanks, does not imply a ntillvalue.

A null value has no effect on the corresponding input-list item. The item retains its
previous value or remains undefined, depending on its status before the null value is
encountered.

If you use a slash as a value separator during execution of a list-directed input state
ment, execution of that input statement is terminated at that point. If there are addi
tional items in the input'list, they are treated as null values.

FORTRAN-86

FORTRAN-,86 Input and Output

9.4.2.2 List-Directed Output

Execution of a list-directed WRITE (or PRINT) statement begins a new record and
formats the value of each output-list item by type as follows :

Typ.e of Output Item

CHARACTER*n
LOGICAL*n

PR I NT *, C H -5 , C H 1 0 0 , L 1 , I , X

is equivalent to

PRINT 1~O CH5,CH100,iOG1,I,X

Equivalent Format
Descriptors,

A
L2

100 FORMAT<A,I,A,I,L2,113,1P,E25.15E4>

Only ,external units are allowed in data4ransfer statements involving unformatted
d.ata. The default .for the form specifier in the OPEN statement is UNFORMATTED
for direct-access files . FORTRAN transfers data without editing between the current
record of the connected file and items on the 110 list. Exactly one record is read or
written.

The number of items in an input 'list must ,not exceed the number of values in the
record. The .type of each value in the record must agree with the type of the
corresponding-input List item. The item and its value must also agree in length.

On output, if the .file is connected for direct access and the values in the 'output list
do not fill the record, the remainder of the record is undefined.

9-23

CHAPTER 10
EXAMPLES

This chapter gives example programs that illustrate FORTRAN-86 features. Each
program resides on a FORTRAN-86 software package product disk.

10.1 1/0 Examples

10.1.1 Program 1A (PROG1A.FTN)

The following example illustrates the use of direct access, unformatted I/O. The
program first writes the digits 1 through 10 into the file LIST on drive :Fl:. After
reading two distinct sections of that file, the program prints the digits 5 through 10
and 3 through 7 to the console.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-1 lists PROGIA.FTN.

PROGRAM PROG1A
OPEN (1,FILE=':F1:LIST',ACCESS='DIRECT',RECL=2)

DO 120 1=1,10
WRITE (1,REC=I) I

120 CONTINUE

C

DO 140 K=5,10
READ (1,REC=K) I

C SEQUENTIAL, FORMATTED 1/0 TO THE CONSOLE.
C

WRITE (6,130) I
130 FORMAT (12)
140 CONTINUE

C

DO 160 J=3,1
READ (1,REC=J) I

C SEQUENTIAL, FORMATTED 1/0 TO THE CONSOLE.
C

WRITE (6,150) I
150 FORMAT (12)
160 CONTINUE

END

Figure 10-1. PROG 1A.FTN-Direct Access, Unformatted I/O

10-1

Examples

C
C

10.1.2 Program 18 (PROG1B.FTN)

The following example illustrates the use of sequential access, formatted 110 with
the console. The program asks for two inputs: your name and your social security
number prompting you for the correct format.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-2 lists PROG1B.FTN.

PROGRAM PROG1B

CHARACTER.20 NAME
INTEGER.4 SSNUM

5 WRITE(6,10)
10 FORMAT('What is your name?'I,5x,'enter using A20 format ',$)

READ(5,20,ERR=70)NAME
20 FORMAT(A20)

WRITE(6,50)

FORTRAN-86

50 FORMAT('What is your social security number?'1,5x, 'enter as nnnnnnnnn
&$)

READ(5,60,ERR=70)SSNUM
60 FORMAT(I9)

GOTO 90

70 WRITE(6,80)
80 FORMAT('Incorrect input ••• please enter again'!!)

GOTO 5
90 CONTINUE

WRITE(6,100)NAHE,SSNUM
100 FORMAT('Name is: ',A20,1,'Social Security Number is: ',19)

END

Figure 10-2. PROG1B.FTN-Sequential Access, Formatted 1/0

10-2

FORTRAN-86

10.1.3 Program 1C (PROG1C.FTN)

The following example illustrates the use of list-directed liD with the console. The
program initially asks for two inputs: the first of one character, the second of six.
Each input must be a quoted string. The program then prompts for you to re-enter
your original input using an appropriate delimiter (a comma, a space, or a return).
An input of 'X' will terminate the program.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-3 lists PROGIC.FTN.

PROGRAM PROG1C
CHARACTER*l ANSl
CHARACTER*6 ANS2

Examples

10 WRITE(6,*) 'INPUT 1 CHARACTER - AN INPUT OF "X" WILL TERMINATE',
& 'THE PROGRAM'

READ(5,*) ANSl

IF (ANS1.EQ.'X') GO TO 20

WRITE(6,*) 'THE CHARACTER YOU CHOSE IS: ' ANSl

WRITE(6,*) 'INPUT 6 CHARACTERS'
READ(5,*) ANS2
WRITE(6,*) 'THE NEW CHARACTERS ARE: ' ANS2

WRITE(6,*) 'NOW INPUT BOTH CHARACTERS. REMEMBER TO USE A DELIMITER',
& 'BETWEEN EACH CHARACTER (IE., COMMA, SPACE, or RETURN)'

READ(5,*) ANS1,ANS2
WRITE(6,*) 'YOUR TWO INPUTS ARE " ANS1,', ',ANS2

GO TO 10

20 STOP
END

Figure 10-3. PROGIC.FTN-ListDirected 1/0

10-3

Examples

10.2 TEMPREAL Example

10.2.1 Program 2 (PROG2.FTN)

The following example illustrates the use of the TEMPREAL data type. This data
type is recommended for use as an intermediate result of double precision
arithmetic. The program asks for two real inputs prompting you for the correct
format. These inputs are used to fill an array with double precision values. Two
summations are calculated from this input: one double precision and one
TEMPREAL. The intermediate results are compared and their difference is printed
to the console.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-4 lists PROG2.FTN.

PROGRAM PROG2
DOUBLE PRECISION RARRAY,RTOTAL,RESULT,DPRES
TEMPREAL TMPRES
COMMON RTOTAL, RARRAY(500)

CALL GETDAT
DPRES = 0.0
TMPRES = 0.0

DO 10, I = 1,500
DPRES = DPRES + RARRAY(I)/RTOTAL
TMPRES = TMPRES + RARRAY(I)/RTOTAL

10 CONTINUE

100

200

10-4

RESULT = TMPRES

PRINT 100, RESULT, DPRES
FORHAT ('RESULT = " E26.20E2, I D-P RESULT =

RESULT = DPRES - RESULT

PRINT 200, RESULT
FORMAT ('DIFFERENCE =

END

E13.5E4)

Figure 10-4. PROG2.FTN-TEMPREAL

E26.20E2)

FORTRAN-86

FORTRAN-86 Examples

SUBROUTINE GETDAT

DOUBLE PRECISION RARRAY,RTOTAL,RVALUE,FACTOR
TEMPREAL TMPTOT
COMMON RTOTAL, RARRAY(500}

TMPTOT = 0_0

PRINT 100
100 FORMAT('ENTER STARTING VALUE BETWEEN 0.00 AND 4.00 IN F4.2 FORMAT')

READ 200, RVALUE
200 FORMAT(F4.2}

PRINT 300
300 FORMAT('ENTER MULTIPLICATIVE FACTOR BETWEEN 0.00 AND 4.00 IN F4.2 FORM-T'

READ 200, FACTOR

DO 10, I = 1, 500
RARRAY(I} = RVALUE
TMPTOT = TMPTOT + RVALUE
RVALUE = RVALUE • FACTOR

10 CONTINUE

RTOTAL = TMPTOT

END

Figure 10-4. PROG2.FTN-TEMP REAL (Cont'd.)

10-5

Examples

10-6

FORTRAN-86

10.3 $INTERRUPT Example

10.3.1 Program 3 (PROG3.FTN)

The following example illustrates the use of the $INTERRUPT control and the
SETINT intrinsic. This program initializes an 8253 interval timer on an
iSBC- 86/12A board to interrupt the host processor every ten milliseconds.

You must link this program with the run-time libraries listed in the system specific
appendix. Figure 10-5 lists PROG3.FTN.

C

PROGRAM PROG3

INTEGER-' CONTPT,CONTWD,CNTLOW,CNTHI,CNTREG
EXTERRAL TIMER

CALL SETINT (6,TIMER)

CONTPT = lOD6H
CORTWD = l030H
CALL OUTPUT (eONTPT,CONTWD)

CNTREG = lODOH
CNTLOW = lOCH
CNTHI = 1030H

C LOAD THE LOW ORDER COUNTER BYTE.
C

CALL OUTPUT (CNTREG,CNTLOW)
C
C LOAD THE HIGH ORDER COUNTER BYTE.
C

CALL OUTPUT (CNTREG,CNTHI)
C
C ALWAYS TRUE TEST TO CONTINUE INTERRUPTS FOREVER.
C

5 IF (1.NE.1) GO TO 10
GO TO 5

10 END

.INTERRUPT

SUBROUTINE TIMER
INTEGER-1 CNTREG,CNTLOW,CNTHI

CNTREG = lODOH
CNTLOW = lOCH
CNTRI = l030H

CALL OUTPUT (CNTREG,CNTLOW)
CALL OUTPUT (CNTREG,CNTHI)

RETURN
END

Figure 10-5. PROG3.FTN-$INTERRUPT Control

FORTRAN-86 Examples

10.4 $REENTRANT Example

10.4.1 Program 4 (PROG4.FTN)

The following example illustrates the use of the $REENTRANT control to write a
recursive procedure. This program solves the Towers of Hanoi problem. A descrip
tion of the problem is as follows:

There are three pegs labelled A, B, and C. Peg A holds a stack of discs
(number provided by operator). Pegs Band C have none. Each disc is of a
different size. The discs are ordered on Peg A by size, starting with the
largest on the bottom. The discs can be moved one at a time to any other
peg as long as no disc is placed on top of another disc that is smaller in size.
The object is to transfer the discs from Peg A to Peg C.

To execute this program, you must link it with the run-time libraries listed in the
system specific appendix. Figure 10-6 lists PROG4.FTN.

PROGRAM PROG4

WRITE(6,100)
100 FORMAT('How many disks are to be moved from peg A to pe~ B: ',$)

READ(5,200)NUM
200 FORMAT(I5)

CALL HANOI('A', 'B' J 'C' ,NUM)

END

$REENTRANT

SUBROUTINE HANOI(FROM,TO,BUFF,NUM)
CHARACTER*1 FROM,TO,BUFF

IF(NUM .EQ. 0) RETURN

CALL HANOI(FROM,BUFF,TO,NUM-1)

WRITE(6,100)FROM,TO
100 FORMAT('Move a disk from peg ',A,' to peg ',A)

CALL HANOI(BUFF,TO,FROH,NUM-l)

END

Figure 10-6. PROG4.FTN-$REENTRANT Control

10-7

Examples

10-8

10.5 Function Subprogram Example

10.5.1 Program 5 (PROG5.FTN)

The following example illustrates the use of a function subprogram by calculating
the area of a rectangle. The program asks you for two inputs: the height and the
width. Using these measurements, the program calculates the area and outputs the
result to the console.

To execute this program, link it with the ruIi-time libraries listed in the system
specific appendix. Figure 10-7 lists PROG5.FTN.

C

PROGRAM GEO
REAL-4 HEIGHT,WIDTH,ANSW,AREA
CHARACTER-1 MORE
EXTERNAL AREA

C INPUT THE DATA
C

5 WRITE(6,10)

C

READ(5,20)HEIGHT
WRITE(6,30)
READ(5,20)WIDTH

C INVOKE THE AREA FUNCTION
C

ANSW=AREA(HEIGHT,WIDTH)
C
C OUTPUT THE AREA AND CONTINUE
C

WRITE(6,40)ANSW
WRITE(6,50)
READ(5,60) MORE

IF(HORE.EQ.'Y'.OR.MORE.EQ.'y') GOTO 5
C
C FORMAT STATEMENTS
C

10 FORMAT(I/'Enter the height of the rectangle ',$)
20 FORHAT(F10.5)
30 FORMAT('Enter the width of the rectangle ',$)
40 FORMAT('The area of the rectangle is ',Fl0.5)
50 FORMAT('Continue with another input? (Y or N) ',$)
60 FORMAT(A1)

END

REAL FUNCTION AREA(X,Y)
REAL-4 X,Y

AREA=X-Y

RETURN
END

Figure 10-7. PROG5.FTN-Function Subprogram

FORTRAN-86

CHAPTER 11
COMPILER CONTROLS

Compiler controls manipulate FORTRAN-86 compiler features, such as whether a
listing will be produced or whether an object file will be generated during compila
tion. All controls have default values preset to their most common usage, so few
controls need to be specified for a typical compilation.

By default, the FORTRAN-86 compiler will produce two files:source.OBJ for the
object module with type records, and source.LST for the source listing including
error messages, where source is the filename (without extension) of the
FORTRAN-86 program text file.

11.1 Invoking the Compiler
The system specific appendix provides instructions and examples of compiler
invocation.

11.2 Kinds of Compiler Controls
Compiler controls fall into two main categories:

• Primary controls precede the first line of a program or module, or are part of
the command line that calls the FORTRAN-86 compiler. Some primary controls
can be specified only once. Certain controls are considered initial primary con
trols. They are PRINT/NOPRINT and OBJECT/NOOBJECT. They can be
specified only at the beginning of compilation (command line or before the first
module), but cannot be changed between modules. All other primary controls
can appear between modules.

• General controls are interspersed anywhere throughout your program source
code. Additionally, you can specify most general controls in the Series-III RUN
command line that calls the FORTRAN-86 compiler.

Table 11-1 lists the primary and general controls.

You can specify negation of most controls with the prefix NO. Table 11-2 shows the
compiler controls and their standard abbreviations. In this table, a plus sign (+)
after a control name signifies that you cannot negate the control.

Table 11-1. Types of Controls

Category Primary General
Controls Controls

Listing Content PRINT LIST
SYMBOLS CODE
XREF

Listing Format TITLE SUBTITLE
PAGEWIDTH EJECT
PAGELENGTH

Input Format 0066/0077 INCLUDE
STORAGE FREEFORM

Object File OBJECT INTERRUPT
ERRORLIMIT REENTRANT
DEBUG
TYPE OVERLAP

Control Status IGNORE

11-1

Compiler Controls

11-2

Table 11-2. Controls and Their Abbreviations

Control Abbreviation

CODE CO
DEBUG DB

+ 0066/0077 none
+ EJECT EJ

ERRORLIMIT EL
FREEFORM FF

+ IGNORE IN
+ INCLUDE IC
+ INTERRUPT IT

LIST LI
OBJECT OJ

+ PAGELENGTH PL
+ PAGEWIDTH PW

PRINT PR
+ REENTRANT RE
+ STORAGE SR
+ SUBTITLE ST

SYMBOLS SB
+ TITLE TT

XREF XR

11.3 Using Compiler Controls

Controls to the compiler govern the format, processing, and content of both the
input source file(s) and the output file(s). Certain controls override other controls
even if they are explicitly specified. This section describes the use of controls and
suggests which controls should be used during specific stages of program
development.

11.3. t Listing Device or File Selection

The PRINT control governs the selection of the file and device to receive printed
output. To generate a listing that includes error messages and the source listing, use
the PRINT control to specify the listing file, or allow the default PRINT control to
send the listing to source .LST.

The NOPRINT control overrides all of the listing format controls described in
11.3.2, since it governs all printed output.

11.3.2 Controlling Listed Format and Content

If PRINT is active, the following controls govern the format and content 9f printed
output:

CODE/NOCODE
EJECT
LIST INOLIST
SUBTITLE('subtitle')
SYMBOLS/NOSYMBOLS
TITLE(' title')
XREF/NOXREF

The default values specify listing of the source program without the assembly code
listing (NOCODE), and without the symbol-table listing (NOSYMBOLS).

FORTRAN-86

FORTRAN-86 Compiler Controls

These default values assume the general case. If you need the assembly code listing
of portions of the source file~ use the CODE control. If you need to supress certain
portions of the source listing, use NOLIST. Note that the NOLIST control does not
override the CODE control.

The SYMBOLS control directs the compiler to produce a symbol-table listing as
described in section 11.4.18. NOSYMBOLS (the default) suppresses this action and
NOPRINT overrides SYMBOLS.

Although paging is automatic, you can force a page eject on any line using the
EJECT control. An EJECT in a control line is ignored if the control line occurs in
an area governed by the NOLIST control. TITLE and SUBTITLE controls specify
titles and subtitles in the listing. If NOLIST is in effect, the subtitle is saved until
listing resumes with the LIST control. The compiler ignores all of these controls if
NOPRINT is active.

11.3.3 Source Selection and Processing

The INCLUDE control governs the selection and processing of source files. There is
only one primary source file but you can include other source files in the compilation
by specifying them in INCLUDE controls.

The INCLUDE control must be the rightmost (last) control on a source control line.
If controls are to the right of the INCLUDE control on a control line, the compiler
issues a non-fatal error message and ignores the control.

11.3.4 Object Selection and C1)ntent

The following controls govern selection of the file to hold the object module, and
the content of the object module:

DEBUG/NODEBUG
INTERRUPT(proc[=nlL···])
OBJECT(file)/NOOBJECT

The OBJECT control selects a file to receive the object module. The default file
name has the same root name as the source file, with the extension OBJ. For
example, if PROG1.SRC is the source file, PROG1.0BJ becomes the object file.
NOOBJECT prevents the generation of an object module.

The INTERRUPT control enables you to compile specific procedures as interrupt
procedures. Interrupt handling is discussed in Appendix I.

The DEBUG control generates debug records in the object module that are used by
symbolic debuggers such as the ICE-86 emulator. The default value NODEBUG
suppresses the generation of debug records. NOOBJECT overrides DEBUG.

11.3.5 Use of Controls in Stages of Development

When you are compiling a program for the first time, use the default control settings
with the following exception:

• Use XREF to generate a symbol and cross reference listing to aid your initial
debugging effort.

11-3

Compiler Controls

11-4

As you develop and debug your program modules, you may use DEBUG to generate
debug records for symbolic debugging. Selected source statements can be main
tained in a separate file and included with the source file by using the INCLUDE
control.

For quick compiling and error reporting, you can maximize compilation speed by
using default settings for all controls, with the following exception:

• Use NOPRINT to suppress printed output.

When preparing programs to test with the ICE-86 or ICE-88 emulators, use the
CODE control to list the pseudo-assembly instructions and addresses.

Use the NOLIST control to save listing space by not listing portions of the source
code that are already debugged. To make your listing more readable, use EJECT,
TITLE, and SUBTITLE. You can direct the final listing to a specific output file
using the OBJECT control.

FORTRAN-86

FORTRAN-86 Compiler Controls

11.4 Control Definitions

11.4.1 CODE/NOCODE Controls

The CODE/NOCODE controls permit or prevent the listing of object code in
pseudo-assembly language.

Syntax: COO'E
NOCODE

Abbreviation: CO/NOCO

Default: N OCO D E

Type: General

Description:

The CODE control directs the compiler to produce a listing of the generated object
code in pseudo-assembly language (a form that resembles the 8086 assembly
language). This listing occurs only for portions of the source program where the
CODE control is active; listing stops when a NOCODE is encountered. The pseudo
assembly listing is appended to the source listing in the listing file created by the
PRINT control (see section 11.4.14, PRINT /NOPRINT).

The NOCODE control prevents the generation of this listing. If you specify neither
control, the default is NOCODE.

The CODE control cannot create printed output if the NOPRINT control is in
effect.

For an example of a listing in pseudo-assembly language, see Chapter l3.

11-5

Compiler Controls FORTRAN-86

11-6

11.4.2 DEBUGINODEBUG Controls

The DEBUG/NODEBUG controls generate debug records in the object module.

Syntax: DeBUG
NODE BUG

Abbreviation: D BINO D B

Default: NODEBUG

Type: Primary

Description:

If an object file has been requested, the DEBUG control specifies that the object
module will contain debug records. These records contain the name, data type, and
relative address of each symbol in the program, data type, and the statement number
and relative address of each source program statement. This information can later
be used for symbolic debugging of the source program using the ICE .. 86 emulator,
DEBUG 86, or PSCOPE.

The default·setting, NODEBUG, prevents generation of these records.

The compiler ignores the DEBUG control if the NOOBJECT control is in effect,
since the compiler will not generate an object module.

NOTE

Array subscript references for the debugger must be written in reverse
order. For example, in order to display the array element A(3,5) in the
FORTRAN-86 program, you must use A(5,3) when communicating with
the debugger. This is due to the reverse ordering of arrays in FORTRAN
compared to other high-level languages. Intel debuggers are designed to
support all high-level languages.

FORTRAN-86 Compiler Controls

11.4.3 0066/0077 Controls

The 0066/0077 controls specify that all DO-loops in a program must conform to
the ANSI 1966 or 1977 standard, respectively.

Syntax: 0066
0077

Abbreviation: none

Default: 0077

Type: Primary

Description:

0066 specifies that all DO-loops perform at least one iteration during execution,
conforming to the ANSI 1966 standard.

0077 permits zero iterations of DO-loops, which conforms to the ANSI 1977
standard.

11-7

Compiler Controls FORTRAN-86

11-8

11.4.4 EJECT Control

The EJECT control forces the start of a new page of printed output.

Syntax: EJECT[(number)]

Abbreviation: EJ

Default: paging as implied by the PAGELENGTH control

Type: General

Description:

The EJECT control terminates the printing of the current page and starts a new
page. The control line containing the EJECT control is the first line printed (follow
ing the page heading) on the new page.

If you do not use the EJECT control, a page eject will occur automatically as
specified by the PAGE LENGTH control.

The compiler ignores the EJECT control if the NOLIST or NOPRINT controls are
in effect, since the compiler will not produce any printed output.

The EJECT control does not apply to the CODE listing.

FORTRAN-86 Compiler Controls

11.4.5 ERRORLIMIT INOERRORLIMIT Controls

The ERRORLIMIT INOERRORLIMIT controls terminate compilation pre
maturely after detecting a specified number of errors.

Syntax: ERR 0 R LIM I T (number)
NOERRORLIMIT

Abbreviation: EL/NOEL

Default: NOERRORLIMIT

Type: Primary

Description:

The ERRORLIMIT control enables the user to specify the number of compiler
detected errors which will cause the compiler to cease compilation before a normal
termination. The result of early termination can be incomplete PRINT listings, and
all other compiler output will be deleted as if NOOBJECT were in effect.

The NOERRORLIMIT control allows compilation to continue until the end of the
program regardless of the number of errors the compiler encounters.

11-9

Compiler Controls FORTRAN-86

11-10

11.4.6 FREEFORM/NOFREEFORM Controls

The FREEFORM/NOFREEFORM controls permit or prevent entry of FORTRAN
statements in a non-standard input format. (See section 3.3. I, Line Format for a
description of the FORTRAN-86 standard line format.)

Syntax: F R E E FOR M
NOFREEFORM

Abbreviation: FF/NOFF

Default: NOFREEFORM

Type: General

Description:

Program statements after the FREEFORM control may begin in position 2 instead
of position 7. Statement labels, continuation indicators (only the ampersand (&»,
and comment indicators (both the asterisk (*) and the letter C) must begin in posi
tion 1. If a statement begins with any character except 'C', it may also start in
column 1.

NOFREEFORM causes the compiler to issue error messages for all lines not con
forming to the standard FORTRAN input format. Specifically, comment indicators
(asterisk (*) and the letter C) belong in position 1, statement labels in positions 1-5,
continuation line indicators in position 6, and statements in positions 7-72.

FORTRAN-86 Compiler Controls

11.4.7 IGNORE Control

The IGNORE control allows specified general· controls to be ignored by the
compiler.

Syntax: I GHOR E (contro/[, ... J>

Abbreviation: IN

Default: None

Type: Primary

Description:

The IGNORE control enables the user to specify certain general controls that will be
ignored during the current compilation. If not specified otherwise prior to the
appearance of the IGNORE control, the default settings for the specified controls
will apply.

11-11

Compiler Controls FORTRAN-86

11-12

11.4.8 INCLUDe Control

The INCLUDE control adds other source files as input to the compiler.

Syntax: INC L U 0 E (file)

Abbreviation: I C

Default: no included files

Type: General

Description:

When the compiler encounters the INCLUDE control in the source file, it reads
from the other source file, file, until it reaches the end of that file. Then the compiler
resumes reading the source lines that follow the INCLUDE control line in the
original source file.

The INCLUDE control must be the rightmost control in the control line or the only
control in that line.

The included file itself may contain INCLUDE controls, but the nesting of included
files cannot exceed five (six included files).

The compiler always forces an end-of-line before reading from an included file.

END statements within INCLUDE files are ignored.

Y our file must be a valid filename or an error will occur.

FORTRAN-86 Compiler Controls

11.4.9 INTERRUPT Control

The INTERRUPT control designates procedures as interrupt procedures.

Syntax: I NT ERR U P T

Abbreviation: IT

Default: None

Type: General

Description:

The INTERRUPT control allows you to specify procedures to be compiled as 8086
interrupt procedures.

Whatever procedure immediately follows the INTERRUPT control will be compiled
with special prologue and epilogue code sequences so that it may be used to process
interrupts during execution. In order for this to happen, however, you must
associate each of your INTERRUPT procedures with the number of the interrupt it
is designed to handle. This is done dynamically at run-time using the SETINT built
in procedure (see section 6.1.2.4).

11-13

Compiler Controls

11-14

11.4.10 liST INOllST Controls

The LIST INOLIST controls permit or prevent the listing of source lines.

Syntax: LIS T
NOLIST

Abbreviation: LIINOLI

Default: LIST

Type: General

Description:

The LIST control directs the compiler to begin or resume listing of the program with
the next source line.

The NOLIST control directs the compiler to stop listing the program until the next
occurrence, if any, of a LIST control.

When you. specify neither control, or when LIST is in effect, the compiler lists all
lines from the source file (or from a file read in with the INCLUDE control),
including control lines. When NOLIST is in effect, the compiler lists only source
lines associated with error messages.

The LIST control is ignored if the NOPRINT control is in effect.

The NOLIST control does affect the CODE control, which directs the compiler to
produce a separate listing of the generated object code.

FORTRAN-86

FORTRAN-86 Compiler Controls

11.4.11 OBJECT INOOBJECT Controls

The OBJECT INOOBJECT controls specify that an object module is to be created
and the file name for that object module or prevent the creation of an object
module.

Syntax: 0 B J E C T [(filename)]
NOOBJECT

Abbreviation: OJINOOJ

Default: OBJECT (source.OBJ)

Type: Primary

Description:

The OBJECT control directs the compiler to produce an object module. You can
optionally specify a file for this object module by providing a legal filename (with
optional device specifier) for file.

If you do not specify a file, or if you do not use the OBJECT control, the compiler
will still produce the object module and direct it to the same disk or device as the
source file, using filename source.OBJ (where source is the root name of the pro
gram text file).

The NOOBJECT control prevents the creation of an object module.

For details on the contents of the object modules, see Chapter 13, Compiler Output.

11-15

Compiler Controls

11-16

11.4.12 OVERLAP IN OOVERLAP Controls

The OVERLAP control enables porting of large programs to FORTRAN-86
without changes to the program logic.

Syn~: OVERLAP
NOOVERLAP

Abbreviation: OL/NOOL

Default: NOOVERLAP

Type: Module

Description:

The OVERLAP control allows compilation of subprograms where a dummy
variable or array element may be contained in more than one segment. OVERLAP
allows the program to invoke special out-of-line run-time procedures for every
reference to a dummy argument longer than one byte (except % VAL arguments).

Use this control only when the compiler requests it (compiler message F207), during
a compilation of a program that refers to the subprogram.

The control is necessary when one or more of the actual arguments passed to the
procedure has been allocated noncontiguous memory and requires special handling.
The OVERLAP control is most likely to be needed with very large COMMON
blocks, but also result from mixed-type EQUIVALENCE statements or odd-length
CHARACTER arrays exceeding 64K bytes in size. See the description of the com
piler message (F206) in Chapter 15 for alternative actions.

With the NOOVERLAP control, all dummy arguments are accessed directly from
in-line instructions.

FORTRAN-86

FOIlTRAN-86 Compiler Controls

11.4.13 PAGELENGTH Control

The P AGELENGTH control specifies the maximum number of lines to appear on
each page of the PRINT file.

Synmx: PAGELENGTH(n)

Abbreviation: PL

Default: P AGELENGTH(60)

Type: Primary

Description:

The P AGELENGTH control enables the user to specify the maximum number of
lines to appear on each page of the program listing. The minimum length is 5, which
includes the four lines of each page heading. The maximum acceptable value for
PAGE LENGTH is 255 lines per page.

11-17

Compiler Controls FORTRAN-86

11-18

11.4.14 PAGEWIDTH Control

The PAGEWIDTH control specifies the maximum number of characters to appear
on one line of the PRINT file.

Syntax: P AGE WID T H (n)

Abbreviation: PW

Default: PAGEWIDTH(120)

Type: Primary

Description:

The PAGEWIDTH control enables the user to specify the maximum number of
characters to appear on one line of the program listing. The minimum width is 60.
The maximum acceptable value for PAGEWIDTH is 132.

FORTRAN-86 Compiler Controls

11.4.15 PRINT INOPRINT Controls

The PRINT INOPRINT controls permit or prevent printed output, or select the
device or file to receive printed output.

Syntax: P R I NT [(filename)]
NOPRINT

Abbreviation: PR/NOPR

Default: PRINT(source.LSn

Type: Primary

Description:

The PRINT control directs the compiler to produce printer output (listings), and the
NOPRINT control stops the compiler from producing printed output. If you specify
neither control, the compiler will produce listings and put them in a file that has the
same name as the source input file, only with an LST extension. This new LST file
will be created on the same device used for the source file. For example, if your
source file is named progrm and it is on drive 1 (:FI:progrm), and you use neither
control, or use only the simple PRINT control (the default), the compiler will create
the listing as :FI :progrm .LST.

If you specify a PRINT control with a file in parentheses, the compiler will put the
listings in the file or device named by file, which must be a legal filename for a file or
device.

If you specify the NOPRINT control, the compiler will not produce listings-even if
-you specify other controls, such as LIST or CODE. If the NOPRINT control is in
effect, the compiler will not produce any printed output. In addition, if you specify
NOPRINT, error messages will not appear on the console.

11-19

Compiler Controls

11-20

11.4.16 REENTRANT Control

The REENTRANT control indicates that a particular SUBROUTINE or
FUNCTION can call itself.

Syntax: R E E N T RAN T

Abbreviation: RE

Default: none

Type: General

Description:

The REENTRANT control indicates that reentrant code be produced for the
specified FUNCTION or SUBROUTINE. That is, all local variables contained in
these subprograms will be dynamically allocated on the run- time stack and removed
at each RETURN statement.

FORTRAN-86

FORTRAN-86 Compiler Controls

11.4.17 STORAG E Control

The STORAGE control specifies default lengths, in bytes, applied to INTEGER
and/or LOGICAL data items.

Syntax: S TaR AGE (IN T E G E R *intlen[, La G I CAL *Ioglen])

or
S T a'R'A G E (La G I CAL *Ioglen[, IN T E G E R *intlen])

Abbreviation: SR

Default: STORAGE(lNTEGER *2,LOGICAL * 1)

Type: Primary

Description:

The STORAGE control permits the user to specify the default lengths, in bytes,
applicable to INTEGER and/or LOGICAL data items that are not explicitly implied
by FORTRAN-86 type-statements or constant specifications.

Each length specification (intlen or loglen, above) may be 1, 2, or 4.

NOTE

The ANSI 1977 allocation requirements for 'numeric storage units' imply
STORAGE(lNTEGER *4,LOGICAL *4).

11-21

Compiler Controls FORTRAN-86

11-22

11.4.18 SUBTITLE Control

The SUBTITLE control prints a subtitle on each page of printed output.

Syntax: SUB TIT L E (I text I)

Abbreviation: ST

Default: SUBTITLE(' ')

Type: General

Description:

The SUBTITLE control prints a subtitle on every page of printed output. To specify
a subtitle, supply a sequence of printable ASCII characters (a string) for text,
enclosed within single quotes.

The compiler places the subtitle text on the subtitle line of each page of listed output,
and truncates this subtitle on the right if necessary. You can specify a maximum
length of 60 characters, but a narrow pagewidth may restrict this number further.

When a SUBTITLE control appears before the first noncontrol line in the source
file, it puts the text on the first page and on all subsequent pages until the compiler
encounters another SUBTITLE control. A subsequent SUBTITLE control causes a
page eject, and the new text is put on the next page and on all following pages until
another SUBTITLE control appears in the source program.

If the NOLIST control is in effect, the compiler saves this text and this text appears
again as a subtitle when the listing resumes.

The SUBTITLE control does not apply to the CODE listing.

FORTRAN-86 Compiler Controls

11.4.19 SYMBOLS/NOSYMBOlS Controls

The SYMBOLS control provides a symbol-table listing of source program
identifiers.

Syntax: S YMBO lS
NOSYMBOlS

Abbreviation: SB/NOSB

Default: NOSYMBOLS

Type: Primary

Description:

The SYMBOLS control directs the compiler to produce a symbol-table listing of all
identifiers and labels in the source program. The compiler prints an entry for each
FORTRAN-86 constant, type, variable, argument, procedure, function, or label
that occurs in the source program, in alphabetical order. The compiler appends this
listing to the file that the PRINT control creates.

The NOSYMBOLS control prevents this symbol-table listing. The default setting is
NOSYMBOLS.

11·23

Compiler Controls

11-24

11.4.20 TITLE Control

The TITLE control prints a title on each page of printed output.

Syntax: TIT L E ('text')

Abbreviation: TT

Default: module name

Type: Primary

Description:

The TITLE control prints a title on every page of printed output. To specify a title,
supply a sequence of printable ASCII characters (a string) for text, enclosed within
single quotes.

The compiler places the title text on the title line of each page of listed output, and
truncates the title on the right, if necessary. You can specify a maximum length of 60

. characters, but a narrow pagewidth may restrict this number further.

FORTRAN-86

FORTRAN-86 Compiler Controls

11.4.21 TYPE/NOTYPE Controls

The control directs the compiler to include type records in the object modules. This
allows link-time parameter type checking.

Syntax: T Y P E
NOTYPE

Abbreviation: TY INOTY

Default: TYPE

Type: Primary

Description:

This TYPE records included in the object modules describe attributes of symbols
used in the source program, and are used later for type checking by the linker. Type
records provide a mechanism of promoting type compatibility between
subprograms.

The TYPE control also enables internal type checking among multiple external
procedure references.

The NOTYPE control prevents the inclusion of type records in the object module,
and suppresses internal type checking.

NOTE

The type checking mechanism produces warning messages that are intended
for convenience in debugging new programs. These messages may be
ignored if you have observed the ANSI programming rules.

In particular, a valid array argument can produce a type-checking warning
if the corresponding actual argument .is an array element, or an array with a
different dimension specification.

11-25

Compiler Controls

11-26

11.4.22 XREF/NOXREF Controls

The XREF INOXREF controls permit or prevent a symbol and cross reference
listing of source program identifiers. The XREF control is equivalent to the
SYMBOLS control.

Syntax: X REF
NOXREF

Abbreviation: XR/NOXR

Default: NOXREF

Type: Primary

Description:

The XREF control directs the complier to produce an alphabetical listing of all the
symbols defined in the program and their attributes cross-referenced with numbers
of all the source statements that reference them. The compiler appends this listing to
the file that the PRINT control creates. (See PRINT/NOPRINT, section 11.4.15).
XREF is ignored when NOPRINT is used.

The NOXREF control prevents this symbol-table listing. The default setting is
NOXREF.

FORTRAN-86

CHAPTER 121
COMPILER OPERATIO~

You create a FORTRAN-86 program by typing instructions into a file using a text
editor and submitting the file to the FORTRAN-86 compiler. The compiler accepts
the source code for processing. A single object file results from this compilation.
After the linker and locater process the object file, the code is considered executable
object code, implying that your FORTRAN-86 program can be run.

Chapter 1 of this manual leads you through a complete program development
sequence, and the system specific appendix explains compiler invocation.

12.1 Input Files

You supply the name of the FORTRAN-86 source program in the invocation line.
You can also include other source files by using the INCLUDE control, as described
in section 11.4.8. These files must be standard operating system files containing the
text of FORTRAN-86 statements.

The FORTRAN-86 compiler expects a source file consisting of a sequence of
program units, i.e., BLOCK DATA subprograms, FUNCTION subprograms,
SUBROUTINE subprograms, and/or a main program. The compiler processes each
program unit independently. Comment lines and compiler control lines may appear
anywhere in program units, but the compiler assumes that any comments found
after an END statement belong to the next program unit.

Ordinarily, program text lines must be in the standard ANSI FORTRAN 77 format:

• Positions 1 through 5 contain the statement number.

• Position 6 indicates statement continuation.

• Positions 7 through 72 consist of the actual FORTRAN statement.

The FREEFORM control (see section 11.4.6). permits you to write source code in a
more convenient format for terminal entry following these guidelines:

• If the statement has a label, position 1 must contain the label number.

• If the line is a continuation line, position I must contain an ampersand (&).

• If the line is a contto1line, position 1 must contain a dollar sign ($).

• Actual statements can begin in position 2, or in position 1 if the first character is
not 'C.'

Comment lines are the same in both formats; the first character must be either a 'C'
or an asterisk (*).

Once you have entered your source code into a text file, you can invoke the com
piler, as described earlier, to process your program.

12.2 Output Files
The compiler produces two output files, unless you use specific controls to suppress
them: the object file and the listing file.

The listing file, or PRINT file, contains a listing of the source program and any
other printed output generated by the compiler as specified by the listing selection
controls described in Chapter 11. The object file contains the actual code in object

12-1

Compiler Operation

12-2

module format. The system can execute the object file after you use the linking and
locating facilities described in Chapter 14. The compiler output files are described in
greater detail in Chapter 13.

The listing file and the object file, unless changed by the PRINT or OBJECT con
trols (see sections 11.4.14 and 11.4.11), have the same basic name as the source file,
with different extensions. The listing file has the extension LST and the object file
has the extension OBJ. The compiler creates both files if they do not exist, or
overwrites them if they do, on the same drive as the source file.

The system specific appendix provides examples,

12.3 Work Files

The compiler creates and uses work files during its operation and deletes them upon
the completion of compilation. These files are designated :WORK:, so they do not
conflict with your files. See Chapter 13, "Compiler Output", for more specific
information about FORTRAN-86 work files.

12.4 Compiler Messages

When you invoke the compiler, it displays the sign-on message

system FORTRAN-86 COMP I LER, Vx.y

where system is the operating system, x is the compiler version number, and y is the
change number within the version.

When a compilation is finished, the compiler terminates with the message

m TOTAL ERRORS DETECTED
n TOTAL WARNINGS DETECTED

END OF FORTRAN-86 COMPILATION

Chapter 15 lists all of the compiler errors.

FORTRAN-86

CHAPTER 13
COMPILER OUTPUT

During compilation, the compiler produces a listing of the source program and an
object module. Compiler controls can affect both the listing and object files. These
cOI}trols are described in detail in Chapter 11. This chapter discusses the contents of
these files.

13.1 Program Listing

Unless you specified the NOPRINT control (see section 11.4.14) , the program
listing file is either the file you defined with a PRINT control or the default listing
file.

The listing file contains, minimally, a "sign-on" preface, any syntactic error
messages, a compilation summary, and a sign-off message. You modify the listing
by specifying different controls. If the LIST control is active, the compiler produces
a program source listing. If the CODE control is active, a pseudo-assembly language
listing of the source code is also created. If the SYMBOLS control is active, the
listing file includes a listing of all symbols used in the program. NOLIST and
NOCODE supress these listings, respectively.

If the NOPRINT control is active, no listing file is produced. Any error messages
appear on the system console (:CO:).

Paging occurs automatically during the source and symbol-table listings, but you
can force a page eject using the EJECT or SUBTITLE controls. The following sec
tions describe each part of the listing file in detail.

13.1.1 Listing Preface

Each page of the listing file has a numbered page header identifying the compiler,
the subprogram currently being compiled, the date and time of the compilation, and
optionally, a title and subtitle. The compiler truncates the title and subtitle to 60
characters or less depending on the pagewidth setting. The page heading is followed
by two blank lines. The following is the FORTRAN-86 header:

system FORTRAN-86 COMP I LER title date/time PAGEnnn
filename subtitle modulename

where System is the name of the development system, title is the name you specified
in the TITLE control, subtitle is the name you specified in the SUBTITLE control,
date/time is the running date and the starting time supplied and changeable by the
operating system, filename is the name of your source program, modulename is the
name of your (sub)program, and nnn is the number of pages in the PRINT file.

13.1.2 Source Listing

The source listing includes the source code of the module being compiled, any errors
detected during compilation, and optional symbol-table and pseudo-assembly
listings.

13-1

Compiler Output FORTRAN-86

13-2

Source lines appear as they do in the FORTRAN-86 input file with the following
additions:

Positions 1-4 contain a statement number for each FORTRAN-86 statement. The
compiler associates each FORTRAN statement printed or not with a unique state
ment number, and prints it at the beginning of that statement. Error messages refer
to these statement numbers, not to statement labels coded as part of the
FORTRAN-86 program.

If an INCLUDE control inserted a line into the source code, an equal sign (=) and a
digit indicating the nesting level of the INCLUDE follow the statement number in
positions 5-6.

Position 7 contains a hyphen (-) if the compiler continued the line on another line
because of a PAGEWIDTH limitation.

The remainder of the listing line, beginning with position 8, contains the source code
as read (or added using the INCLUDE control) from the FORTRAN-86 text file.
However, any ASCII TAB characters are expanded to multiple blanks, as necessary,
to reach the next character position, which is a multiple of eight.

13.1.3 Symbol Listing

If you specified the SYMBOLS control, the compiler creates a listing with an entry
for each variable, array, function, subroutine and run-time procedure that appears
in the source program. These are in ASCII sequence by symbol name or statement
number you defined in the program. Each entry includes

• the source identifier (symbol)

• the kind (label, array, etc.)

• the data type (integer, logical, etc.)

• the length in bytes

• the scope (external, common, etc.)

• the address relative to the beginning of the segment

• the statement number of its declaration

Additionally, the compiler produces a separate listing of run-time procedures
referenced in the program. The run-time procedure listing provides helpful support
for identifying critical areas for reducing program size. Each procedure name has
one or more modules associated with it, all of which are required to fulfill the func
tion for which the first module was called. The user can identify these modules,
using the Run-Time Module Directory, and determine their sizes using the LINK86
map.

13.1.4 Pseudo-Assembly Language Listing

If you specified the CODE control, the compiler generates a pseudo-assembly
language equivalent of the compiler-generated object code. The list-formatting con
trols TITLE, PAGEWIDTH, and PAGELENGTH apply to the CODE listing as
well as to the source listing.

The pseudo-assembly listing for each program unit always begins on a new page. A
comment line with the statement number of the corresponding source statement will
head the code resulting from each source statement.

FORTRAN-86 Compiler Output

The code listing conforms to standard assembly-language format of six columns of
information, although not all six of these columns will necessarily apply to every line
of the listing. The columns of information are

• Relocatable location counter (hexadecimal notation)

• Resultant binary code (hexadecimal notation)

• Label field

• Symbolic operation code (mnemonic notation)

• Symbolic arguments

• Comment field

If you used the CODE control, the compiler generates the appropriate assembly
directives to declare local symbols and constants in the listing. An at-sign (@)
precedes compiler-generated labels, such as those which mark the beginning and
ending of a DO loop. A question mark (?) precedes source-program statement labels
to distinguish them from compiler-generated labels and numeric constants. Com
ments appearing on PUSH and POP instructions indicate the stack depth associated
with the stack reference.

Figure 13-1 shows a portion of the pseudo-assembly listing for a sample
FORTRAN-86 program, along with the source lines from which it was generated.

13.1.5 Error-Message Listing

Error messages for your compiled FORTRAN-86 program appear after the source
listing. The compiler controls PAGEWIDTH, PAGELENGTH, and TITLE apply
to the error-message listing as well.

The format for the error messages is as follows:

[STATEMENT n][, NEAR symbol], errortype m: message

where errortype is either ERROR or WARNING, m is the specific error or warning
number, n is the internal number of the statement containing the error, symbol is a
pointer to the location of the error within the statement, and message is the actual
error message (see Chapter 15, "Error Messages").

13.1.6 Compilation Summary

The compiler generates the following messages at the end of each program listing:

STORAGE REQUIREMENTS FOR MODULE modu~:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
II
I common name I

mmm ERR 0 R S D E T E C TED.
nnn WARNINGS DETECTED.
ENTRY POINT IS x.

xxxxH
xxxxH
xxxxH
xxxxH
xxxxH

[FLOATING POINT OPERATIONS WERE GENERATED.]
C OMP I LA T ION 0 F module status.

yyyyD
yyyyD
yyyyD
yyyyD
yyyyD

In this message, module is the name of the compiled module. The module size
appears in both hexadecimal, xxxx, and decimal, yyyy. The compiler differentiates

13-3

Compiler Output

13-4

between the number of errors, mmm, and the number of warnings, nnn, showing
both. The status of the compilation can be completed or aborted if the compiler
detected any errors.

13.1.7 Sign-off Message

The compiler prints the sign-off message, as described in section 12.5, at the end of
the listing.

13.2 Object Files

The FORTRAN-86 compiler outputs a file containing relocatable object modules.
By linking this file with the FORTRAN-86 run-time libraries and other relocatable
files, you can produce a single executable object module.

Each source file submitted to the compiler produces one object file. Each program
unit in the source file produces one object module in the object file. Object modules
have the same names as their respective program units. For a module of an unnamed
main program or BLOCK DATA subprogram, the compiler assigns the names,
@MAIN or @ BLOCKDA T A, respectively.

Each object module generated by the compiler will contain one each of the following
8086 segments:

• A CODE segment

• A DATA segment

• A STACK segment

The CODE segment is named programname _CODE, and the DATA segment,
programname _DATA. (Multiple DATA segments are named programname
_DATAn (where n=l, 2, ...). Each COMMON block is a separate segment named
@ commonname, with a single @ for blank COMMON.

Local arrays and COMMON blocks exceeding 64K bytes in size are allocated on
multiple, chained segments. The first such segment is named as described above;
each successive segment has the same name, but with the suffixes @OFLn (where
n= 1,2, ...).

The following class definitions appear for your convenience in case you want to
locate your program with absolute addresses:

• CODE - consisting of all CODE segments (including constants)

• DATA - consisting of all DATA segments

• STACK - consisting of the STACK segment

• COMMON - consisting of all COMMON segments

You specify generation of object files using the OBJECT control (see section
11.4.11). The compiler will not produce an object file if you specify the NOOBJECT
control.

13.3 Work Files

The compiler temporarily allocates work files and deletes them when they are no
longer needed or at the termination of the compilation. Up to six work files can be
allocated. The system specific appendix provides examples.

FORTRAN-86

FORTRAN-86 Compiler Output

FORTRAN-B6 COMPILER GENERATED CODE
:F1:PROG2.FTN

003F FA CLI
OOqO 2EBE163BOO MOV SS,CS:@@STACK$FRAME
OOq5 BCOQOO MOV SP,@@STACK$OFFSET
OOQa BBEC MOY BP,SP
004A 2EBE1E3DOO MOY DS,CS:@@DATA$FRAME
OOQF 9AOOOOOOOO CALL INITFP
0054 9AOOOOOOOO CALL TO_OO 1
0059 FB STI

STATEMENT # 5
005A 9AOOOOOOOO CALL GETDAT

STATEMENT I 6
005F 9BD9EE FLDZ 1
0062 9BDD1EOOOO FSTP DPRES 1
0061 9B WAIT
006B 9BD9EE FLDZ 1
006B 9BDB3E1200 FSTP TMPRES 1
0010 9B WAIT
0011 C10610000100 MOV I,1H

@@OOOOOO:
STATEMENT I 8

0011 8B061000 MOV AX,I
001B 81F8FQ01 CMP AX,lF4H
001F 1E03 JLE $+5H
0081 E93BOO JMP @@000001
0084 81DO XCHG DX,AX
0086 B80BOO MOV AX,BH
0089 F1EA IMUL DX
00813 2E8E063900 MOV ES,CS:@CONST+39H
0090 9B26DD060000 FLD ES:RTOTAL
0096 81DB XCHG BX,AX
0098 9B26DC3F FDIVR ES:RARRAY[BX-BH]; 1
009C 9BDDD1 FST @TOS+1H
009F 9BDC060000 FADD DPRES 1
00A4 9BDD1EOOOO FSTP DPRES 1
00A9 9B WAIT
OOAA 9BDB2E1200 FLD TMPRES 1
OOAF 9BDEC1 'F ADDP 1
00B2 9BDB3E1200 FSTP TMPRES
00B1 9B WAIT

? 10:
STATEMENT I 11

00B8 FF061000 INC I
OOBC E9B8FF JMP @@OOOOOO

@@000001:
STATEMENT II 12

OOBF 9BDB2E1200 FLD TMPRES 1
00C4 9BDD1E0800 FSTP RESULT 1
00C9 9B WAIT
OOCA OE PUSH CS
OOCB 01 POP ES
ooce 8D360000 LEA SI,?100
OODO B006 MOV AL,6H
00D2 9AOOOOOOOO CALL FO_112

STATEMENT If 13
00D1 9BDD060800 FLD RESULT 1
OODC 9AOOOOOOOO CALL FQ_320
o OE 1 9BDD060000 FLD DPRES 1

Figure 13-1. Sample Portion of a Code Listing

13-5

CHAPTER 14
LINKING, RELOCATING, AND

EXECUTING PROGRAMS

14.1 Introduction

Before you can execute your FORTRAN-86 program, you must link the object
modules and optionally locate them in memory. The compiled modules that make
up your final program need not be written in the same language. You can freely link
together programs written in FORTRAN-86, Pascal-86, PL/M-86 or assembly
language to make the most efficient use of language features. Additionally, some
built-in FORTRAN-86 functions reside in the run-time support libraries which you
must link with your object code before the program can be executed successfully.

Intel provides the utilities necessary for linking your program, locating it in
memory, and loading it for execution. These utilities are listed in the system specific
appendix.

The 8086-basep linker and locater are described in detail in the iAPX 86,88 Family
Utilities User's Guide. This guide also provides an overview of 8086 memory
addressing techniques, definitions of segments, classes, and groups, discussions of
segment, class, and group combining, and descriptions of how the locator binds
segments to addresses. The utilities guide also descibes the mechanics of loading and
executing programs and the maintenance of program libraries using the 8086 resi
dent library utility and the object-code print utility.

14.2 Memory Allocation

Each FORTRAN-86 compilation allocates the memory for the program unit in
several independent, relocatable segments. They are CODE, DATA, STACK, blank
COMMON, and named COMMON.

The CODE segment contains the executable object code for your FORTRAN-86
program. The compiler also places aU data constants in the CODE segment. Format
specifications from FORMAT statements are also in this segment.

The compiler allocates memory in DATA segments for all local variables and arrays,
except those in subprograms compiled while the REENTRANT control is active.
The compiler places temporary storage for intermediate values and copies of argu
ment addresses in the STACK segment.

The blank COMMON segment holds all variables and arrays in blank COMMON
blocks. For named COMMON blocks, the compiler allocates all variables and
arrays to separate COMMON segments corresponding to the names you supplied
for those COMMON blocks.

In addition to the FORTRAN-86 segments (CODE, DA T A, ST ACK, and
COMMON), the relocatable object module may contain other segments. These are
segments provided by the FORTRAN-86 run-time libraries and user modules
originally written in other languages.

14.3 Linking Object Modules

The 8086-based linker (LINK86) produces a single output module. While combining
modules, the linker adjusts all addresses to be relative to the beginning of the
segments in the new output module. The linker also searches libraries for modules

14-1

Linking, Relocating, and Executing Programs

14-2

that resolve external references in the modules being combined, and includes the new
modules in the output file. Throughout this process, the linker generates a link map,
and error messages for abnormal conditions.

The output module can be processed by the SOS6-based locater (LOC86), which
assigns absolute memory locations to the code in the object module. The output file
from the locater can be passed again to the linker (LINKS6) to be combined with
other modules into an expanded output module. The linked module may be executed
on the Series-III or iRMX S6 operating system without locating if the BIND control
is used.

14.3.1 Use of Libraries

A library is a file containing object modules. It is created and maintained by the
library utility, LIBS6. You use the libraries to build your programs by referring to
the object modules as external procedures in your programs and linking the libraries
to your programs.

The linker treats library files in a special manner. When you specify input modules
to the linker, the linker combines them while keeping track of all external references.
When a library file is included as input to the linker, the linker searches the library
for modules that satisfy these unresolved external references. This means that
libraries should be specified to the linker after the input primary modules. If a
module has an external reference to another module in the library, the linker
searches the library again to try to satisfy the reference. The process continues until
all external references are satisfied, or until the linker cannot find any more public
symbols to satisfy an external reference.

The library utility is. described in detail in the iAPX 86,88 Family Utilities User's
Guide (121616).

14.3.2 Run-Time Support Libraries

Intel supplies libraries that provide run-time support for FORTRAN-S6 modules.
The run-time support is divided into separate libraries so that you can link in the
appropriate libraries for your application. You do not have to maintain these
libraries using LIBS6, since they are already supplied as libraries.

A list of all run-time libraries follows:

CELS7.LIB and EH87.LIB are required to support floating-point and error
handling functions.

FS6RNO.LIB, F86RNl.LIB, and FS6RN2.LIB are required for any run-time
support. These libraries provide FORTRAN run-time support for 110, internal 110,
intrinsic functions, 32-bit integer arithmetic, character strings, and multiple segment
variables.

F86RN3.LIB and FS6RN4.LIB are the default logical record system libraries. For
more information see the Run-Time Support iAPX S6,S8 (121776).

RTNULL.LIB instead of FS6RN3.LIB and FS6RN4.LIB to resolve external
references when you do not use external 110 or if you intend to provide your own
logical record interface.

SOS7.LIB is required to support floating-point arithmetic with the SOS7 Numeric
Data Processor. When using the SOS7 Emulator use the ESOS7 and the module
E8087.LIB instead of the 8087.LIB. If you are not performing any floating-point
arithmetic, use 87NULL.LIB.

FORTRAN-86

FORTRAN-86 Linking, Relocating, and Executing Programs

LARGE.LIB is required to execute FORTRAN-86 programs in the Series III
environment when using F86RN3.LIB and F86RN4.LIB. Do not use LARGE.LIB if
you linked in RTNULL.LIB (for no run-time support), except when using your own
run-time support libraries that rely on the Universal Development System Interface
(UDI) or make UDI calls in the program.

URXLRG.LIB is required to execute FORTRAN-86 programs in an iRMX-86
environment. Do not use URXLRG.LIB if you linked in RTNULL.LIB (for no run
time support), except when using your own run-time support libraries that rely on
the UDI, or if your program makes UDI calls.

The LINK86 program uses a temporary file with the name LINK. TMP. The
program writes this temporary file on the same drive that you specified for
the output file. If you already have a file with the same name, LINK.TMP,
on that drive, the linker will destroy your file.

14.3.3 Linking with Non-FORTRAN Procedures

The relocatable object modules produced by the FORTRAN-86 compiler are com
patible with those generated by the Pascal-86 compiler, the PL/M-86 compiler, and
the 8086/8087/8088 Macro Assembler. You can link together modules written in
these iAPX 86,88 family languages. This feature allows you to use FORTRAN-86 to
code those segments of your application to which the features of FORTRAN-86 are
particularly well suited: multidimensional arrays, formatted and direct access 110,
floating-point arithmetic, andlor FORTRAN-86 intrinsic functions. Other facets of
your programming task can be written in another language with no loss of
compatibility.

Pascal-86 subprograms must be linked to the first two Pascal-86 run-time libraries
before linking to FORTRAN-86 object files, as follows:

lINK86 PASMOD.OBJ, P86RNO.lIB, P86RN1.LIB, &
TO PASMOD.LNK NOPUBLICS EXCEPT names

where names are those names that are referenced by the FORTRAN program.

PASMOD.LNK is then used in the FORTRAN-86 LINK86 command in the same
way as FORTRAN-86 object files.

A one-LINK-step alternative:

LINK86 FTNMOD.OBJ, CEL87.LIB, F86RNO.LIB, F86RN1.LIB, &
F86RN2.LIB, PASMOD.OBJ, P86RNO.LIB, P86RN1.LIB, &
F86RN3.LIB, F86RN4.lIB, 8087.LIB, et~

For more specific information about mixing FORTRAN-86 subprograms with
subprograms in other languages, see Appendix H of this manual.

14-3

Linking, Relocating, and Executing Programs FORTRAN-86

14-4

14.4 Locating Object Modules

The 8086-based locater (LOC86) binds locatable segments to absolute memory
addresses. The locater creates an absolute output module from a single input
module, generates a memory map that summarizes the results of address binding,
produces a symbol table that shows the addresses of certain symbols, detects any
errors that arise in the locating process, and filters locating information and
compiler-generated debugging information. The locating process is described in
detail in Chapter 3 of the iAPX 86,88 Family Utilities User"s Guide for 8086 .. Based
Development Systems.

The output module from the locater is a program that you can load and execute. The
system specific appendix provides examples.

The locator includes several controls that enable you to specify exactly where por
tions of your program will be located in memory. These controls can be specified as
part of the cqmmand syntax to the locater.' This section describes specific
considerations for locating FORTRAN-86 object modules.

The ORDER control allows you to dictate the sequence of segment types in memory.
The format of this control is

ORDER (segids)

where segids is some combination of the segment names CODE, DATA, /common
name/ (for a named COMMON), / / (for blank COMMON), and STACK. If you
do not specify the ORDER control, the system locates module segments sequentially
in memory in the following order: CODE, STACK, COMMON, and DATA; the
term COMMON means all COMMON segments in an arbitrary order.

The ORDER list can be partial; you need not list all module segments. In this case,
the locater takes all segments specified in the ORDER control in the order specified.
It takes the remaining segments in the default order, after the modules listed in the
ORDER control.

14.5 Preconnecting Files

FORTRAN-86 110 statements operate on device units that are connected to files on
a one-to-one basis. A unit-to-file connection can be made when the file is opened (by
the OPEN statement) or by preconnecting the unit to the file at run-time.

In the Series-III run-time environment, FORTRAN .. 86 provides the following
default preconnections:

Unit

5
6

other

Device

console input
console output
system work file

The system specific appendix provides examples for overriding the default pre
connections. You can specify the UNIT load-time control at execution time. The
format of the UNIT control is

source (U NIT n = path)

FORTRAN-86 Linking, Relocating, and Executing Programs

where source is the name of your relocated object code, n is a number between 0 and
255, and path is an operating environment filename. Note the following examples:

PROGRM (UNIT4=:LP:) <cr>

PROGRM.LOC (UNIT1=:CI:,UNITO=:CO:)<cr>

The preconnection feature applies to FORTRAN-86 programs that have been
compiled, linked, and optionally located to run in your system.

When preconnecting a file, the string UNITn may not contain spaces; i.e., UNIT7,
not UNIT 7.

14.6 Executing Programs

Your linked (and relocated) program can now be loaded and executed. Your
program file could also be used as input to the DEBUG-86 debugger.

To run correctly, a program must be complete, i.e., it must contain all the modules
necessary to run. A program must contain modules from the run-time support
library described in section 14.3.2. The system specific appendix provides examples
of program execution.

14-5

CHAPTER 15
ERRORS AND WARNINGS

This chapter lists all the compiler and run-time error and warning messages. The
compiler makes a distinction between errors and warnings, since the latter produces
executable object code despite the diagnostic messages.

Operating system error messages can be found in the manuals listed in the system
specific appendix. LINK86, LOC86, LIB86, and OH86 error messages can be found
in the iAPX 86,88 Family Utilities User's Guide for 8086-Based Development
Systems.

15.1 Compiler Controls and the Error Listing

The compiler errors and warnings appear in the error message listing on the device
specified by the PRINT compiler control. If the NOPRINT control is active, the
compiler does not generate an error message listing. Specifying the LIST control
causes the compiler to produce a complete listing of the program code, including
statements associated with error messages. Using the NOLIST control, however,
causes the compiler to list only those statements where errors were detected.

Source program errors are usually not fatal. An error in your source code will be
logged in the error message listing and the compiler will continue to process your
source file, if possible. You can request that the compiler halt upon encountering
one or more errors using the ERRORLIMIT compiler control. See section 11.4.5 for
specifics about this option.

15.2 Compiler Error Messages

The FORTRAN-86 compiler can issue five kinds of error messages.

• FORTRAN-86 source program errors

• Compiler control errors

• Input/Output errors

• Insufficient memory errors

• Compiler failure errors

15.2.1 Error Format

A more detailed description of the error message listing format can be found in sec
tion 13.1.5 of the Compiler Output chapter. Errors and warnings within
FORTRAN-86 source code are printed in this listing in this format:

S TAT E MEN T n[, N EAR symbol], errortype m: message

where errortype is either error or a warning, m is the specific error or warning
number, n is the internal number of the statement containing the error, symbol is a
pointer to the location of the error within the statement, and message is the actual
error message.

The compiler summarizes source program error totals at the end of program listing
for each program unit, as described in section 13.1.6.

15-1

Errors and Warnings

15-2

15.2.2 Error Messages

The following lists the compiler error messages. Each line gives the number and
message for each error. If any message appears without a number, call your Intel
representative, since this indicates a compiler failure.

F 001 <element> NEE D E D N EAR <source text>

<element> is required to complete a valid FORTRAN-86 statement or con
trol. The rest of the statement is not compiled.

F002 INCORRECTLY PLACED PRIMARY CONTROL

F003 UNIMPLEMENTED GENERAL CONTROL

F004 UNIMPLEMENTED PRIMARY CONTROL

F005 INITIAL CONTROL CANNOT BE CHANGED

F006 PARSING TERMINATED BEFORE END OF STATEMENT

F007 UNSUPPORTED STATEMENT

F008 DUPLICATE LABEL

F009 STATEMENT ILLEGAL FOR BLOCK DATA

F010 STATEMENT OUT OF ORDER

F011 NAME ALREADY IN COMMON

F012 NAME CANNOT BE IN COMMON

F013 ARRAY NAME MUST HAVE DIMENSIONS

F014 ONLY DUMMY ARGUMENTS CAN HAVE VARIABLE DIMENSIONS

F015 NAME CANNOT BE AN ARRAY

F016 DUPLICATE DIMENSION SPECIFICATION

F017 NUMBER OF DIMENSIONS EXCEEDS SEVEN

F018 ONLY LAST DIMENSION CAN BE STAR

F019 LOWER BOUND CANNOT BE STAR

F020 NAME CANNOT BE INITIALIZED

F021 ILLEGAL NAME IN DATA EXPRESSION

F022 CONSTANT IN DATA EXPRESSION MUST BE INTEGER

F023 NAME IN CONSTANT LIST IS NOT A CONSTANT

F024 NAME ILLEGAL FOR MEMORY ASSOCIATION

FORTRAN-86

FORTRAN-86 Errors and Warnings

F 025 C ON S T AN T E X PRE S S I ON S 0 F T HIS 0 A TAT Y PEA R E NOT
SUPPORTED

F026 NAME CANNOT BE A SYMBOLIC tONSTANT

F027 DUPLICATE DEFINITION OF SYMBOLIC CONSTANT

F028 RIGHT SIDE OF CONSTANT EXPRESSION IS NOT CONSTANT
I

F029 DUPLICATE DEFINITION OF EXTERNAL PROCEDURE

F030 NAME CANNOT BE AN EXTERNAL PROCEDURE

F031 DUPLICATE DEFINITION OF INTRINSIC
PROCEDURE

F032 NAME CANNOT BE AN INTRINSIC PROCEDURE

F033 UNSUPPORTED STATEMENT

F034 ALTERNATE RETURN NOT SUPPORTED

F035 NAME IS ALREADY A DUMMY ARGUMENT

F036 NAME CANNOT BE A DUMMY ARGUMENT

F037 LABEL MISSING ON FORMAT STATEMENT

F038 STATEMENT-FUNCTION DUMMY ARGUMENT MUST BE
A NAME

F039 NAME ILLEGAL AS STATEMENT-FUNCTION
ARGUMENT

F040 DUPLICATE DUMMY ARGUMENT OF STATEMENT
FUNCTION

F041 STATEMENT-FUNCTION DUMMY ARGUMENT CANNOT
BE SUBSCRIPTED

F042 ILLEGAL ASSIGNMENT TARGET

F043 ILLEGAL USE OF NAME AS A fUNCTION

f044 ILLEGAL USE OF NAME AS A SUBROUTINE

F045 LENGTH EXPRESSION IS NOT AN INTEGER CONSTANT

F046 EXPRESSION IS NOT CONSTANT

F047 EXPRESSION IS NOT OF TYPE INTEGER

F048 ILLEGAL OPERATOR OR CONSTRUCT

F049 ALTERNATE RETURN IS NOT SUPPORTED

F050 MISSING TERMINATION FOR A DO OR BLOCK IF

F051 MISSING TERMINATION FOR A CONTAINED DO

15-3

Errors and Warnings

15-4

F052 MISSING ENDIF FOR A CONTAINED BLOCK IF

F054 ILLEGAL STATEMENT FOLLOWING LOGICAL IF

F05S NO MATCHING BLOCK IF

F056 ELSE OR ELSEIF FOLLOWING ELSE IS ILLEGAL

F057 DO VARIABLE IS NOT AN INTEGER VARIABLE

F058 END SPECIFIER ILLEGAL WITH WRITE OR DIRECT ACCESS

F059 UNFORMATTED INTERNAL 10 NOT ALLOWED

F060 DIRECT ACCESS NOT ALLOWED FOR INTERNAL OR LIST
10

F061 MISSING UNIT SPECIFIER

F062 MULlIPLE UNIT SPECIFIERS

F063 MULTIPLE FILE SPECIFIERS

F064 MULTIPLE RECORD SPECIFIERS

F065 MULTIPLE 10STAT SPECIFIERS

F066 MULTIPLE ERR SPECIFIERS

F067 MULTIPLE END SPECIFIERS

F068 INVALID STATUS SPECIFIER

F069 MULTIPLE FILE SPECIFIERS

F070 MULTIPLE RECL SPECIFIERS

F071 INVALID STATUS SPECIFIER

F072 MULTIPLE STATUS SPECIFIERS

F073 INVALID ACCESS SPECIFIER

F074 MULTIPLE ACCESS SPECIFIERS

F07S INVALID FORM SPECIFIER

F076 MULTIPLE FORM SPECIFIERS

F077 INVALID BLANK SPECIFIER

F078 MULTIPLE BLANK SPECIFIERS

F079 INVALID CARRIAGE SPECIFIER

F080 MULTIPLE CARRIAGE SPECIFIERS

F081 WRONG NUMBER OF ARGUMENTS

FORTRAN-86

FORTRAN-86 Errors and Warnings

F082 ARGUMENT MUST BE AN EXTERNAL PROCEDURE

F083 TWO-BYTE RESULT FIELD NEEDED

F084 DIMENSION VARIABLE NOT AN ARGUMENT OR IN COMMON

F085 FORMAT SPE!IFIER IS NOT A FORMAT LABEL

F086 FOUR-BYTE FIELD LENGTH REQUIRED

F087 TWO-BYTE FIELD LENGTH REQUIRED

F088 DATA TYPE INTEGER OR LOGICAL REQUIRED

F089 VARIABLE REFERENCE REQUIRED

F090 DATA TYPE INTEGER REQUIRED

F091 ARITHMETIC EXPRESSION REQUIRED

F092 DATA TYPE LOGICAL REQUIRED

F093 CHARACTER DATA TYPE REQUIRED

F094 ILLEGAL USE OF PROCEDURE NAME

F095 SUBSCRIPTS MISSING IN ARRAY REFERENCE

F096 SUBSTRING ALLOWED WITH TYPE CHARACTER ONLY

F097 INCORRECT NUMBER OF SUBSCRIPTS

F098 THIS PROCEDURE CANNOT BE USED AS AN ACTUAL ARGUMENT

F099 WRONG NUMBER OF ARGUMENTS

F100 INCOMPATIBLE DATA TYPE

F101 ARRAY SIZE IS UNKNOWN

F102 RIGHT SIDE IS NOT A CHARACTER EXPRESSION

F103 VARIABLE-LENGTH FUNCTION NOT ALLOWED

F104 VARIABLE-LENGTH CHARACTER STRING NOT ALLOWED

F105 LABEL IS NOT DEFINED AT AN EXECUTABLE STATEMENT

F106 SUBSTRING FOR NONCHARACTER VARIABLE IS IGNORED

F107 ILLEGAL SUBSTRING START IS ASSUMED 1

F108 SUBSTRING END CANNOT BE LESS THAN SUBSTRING START

F109 SUBSCRIPTS FOR NON-ARRAY IGNORED

F110 WRONG NUMBER OF SUBSCRIPTS-FIRST ELEMENT ASSUMED

F111 SUBSCRIPT VALUE IS LESS THAN LOW BOUND

15-5

Errors and Warnings

15-6

F112 SUBSCRIPT VALUE EXCeEDS UPPER BOUND

F113 VARIABLE DIMENSION NOT ALLOWED

F114 DUMMY ARGUMENTS ILLEGAL IN INTERRUPT PROCEDURE

F115 ONLY SUBROUTINES AND FUNCTIONS CAN BE REENTRANT

F116 INTERRUPT PROCEDURE MUST BE A SUBROUTINE

F118 BUILTIN OPERAND MUST BE IN tONTIGUOUS STORAGE

The 8087 built-in functions STSW87, LDCW87, STCW87, SAV87, and
RST87, do not accept operands in noncontiguous storage. This is because
they translate directly into their corresponding 8087 machine instructions.
See error F206 for a description of how to avoid this problem.

F119 THIS STATEMENT IS TOO COMPLEX

F120 ONLY INTEGER AND LOGICAL SUPPORTED FOR VALUE
ARGUMENTS

F121 UPPER BOUND IS LESS THAN LOWER BOUND

F122 DUPLICATE TYPE SPECIFICATION IGNORED

F151 END STATEMENT MISSING

F152 END STATEMENT IN INCLUDE IGNORED

F153 MAXIMUM PAGE LENGTH IS 255

F154 MINIMUM PAGE LENGTH IS 5

F155 MAXIMUM PAGEWIDTH IS 132

F156 MINIMUM PAGEWIDTH IS 60

F157 MORE DATA VARIABLES THAN DATA CONSTANTS

'F158 THIS STATEMENT IS TOO COMPLEX

F159 ATTEMPT TO DIVIDE BY 0

F160 OVERFLOW IN CONSTANT DIVISION

F161 THE LINE AT OR AFTER THIS STATEMENT IS TOO LONG

F162 TOO MANt CHARACTERS IN STATEMENT

F163 NONDIGIT IN STATEMENT-LABEL FIELD

F164 FIRST LINE OF A STATEMENT IS A CONTINUATION LINE

F165 MORE THAN 19 CONTINUATION LINES NOT SUPPORTED

F166 LABEL PRESENT ON CONTINUATION lINE--LINE IGNORED

F167 INVALID CHARACTER(S) IN SOURCE AT OR AFTER THIS
STATEMENT

FORTRAN-86

FORTRAN-86 Errors and Warnings

F168 CONTROL NEAR 'XXX' CANNOT BE NEGATED

F169 HOLLERITH STRING LONGER THAN 255--TRUNCATED ON RIGHT

F170 ZERO-LENGTH HOLLERITH STRING ILLEGAL

F171 STATEMENT ENDS BEFORE END OF HOLLERITH STRING

F17t TOO MANY NESTED INCLUDE LEVELS

F173 INTERRUPT NUMBER MUST BE BETWEEN 0 AND 255--LOW BYTE
USED

F174 UNKNOWN CONTROL IN SOURCE PROGRAM NEAR

F175 THE BLOCK CONTAINING THIS STATEMENT IS TOO COMPLEX

F176 INTRINSIC HAS INCORRECT NUMBER OF OPERANDS

F177 TYPES OF OPERANDS INCOMPATIBLE

F178 TYPE OF ARGUMENT INCOMPATIBLE WITH INTRINSIC

F179 MORE DATA CONSTANTS THAN DATA VARIABLES

F180 THIS STATEMENT IS TOO COMPLEX

F181 ASSIGN VARIABLE MUST BE AT LEAST TWO BYTES LONG

F182 TYPES OF OPERANDS INCOMPATIBLE WITH OPERATION

F183 PARAMETER TYPE MISMATCH WITH EARLIER INVOCATION OF
PROCEDURE

F191 SOURCE FILENAME MISSING

F192 UNKNOWN CONTROL IN COMMAND TAIL

F201 TOO MANY NAMES TO SORT

F202 EQUIVALENCE OF TWO ITEMS IN DIFFERENT COMMONS
IGNORED

F203 EQUIVALENCE OF AN ITEM AT TWO DIFFERENT LOCATIONS
IGNORED

F204 ATTEMPT TO EXTEND COMMON ON LEFT BY EQUIVALENCE
IGNORED

F205 EQUIVALENCE LIST WITH FEWER THAN TWO LEGAL ELEMENTS
IGNORED

F206 VARI~BLE OR ARRAY ELEMENT ALLOCATED NONCONTIGUOUS
STORAGE

A variable or array element in the program overlaps a 64K-byte segment
boundary and therefore must be accessed by an out-of-line run-time
procedure when referenced in an executable statement.

This message is not an error or a program restriction. It is issued as an aid to
users who want to optimize their program performance.

15-7

Errors and Warnings

15-8

Special out-of-line handling can be avoided by redefining certain memory
sequences so that no single variable or array element overlaps 64K-segment
boundaries. To do this:

1. Do not mix data lengths in a numeric/logical COMMON block that
exceeds 65,520 (or 64K-16) bytes in length.

2. When a local CHARACTER array exceeds 64K bytes in length, the
element length should divide 65,520 evenly. (65,520 = 24 x32 x5 x 7 x 13,
so an element length of any combination of these factors will avoid this
warning.)

3. If mixed data lengths, including odd-length CHARACTER types, are
necessary in a COMMON block that exceeds 65,520 bytes in length,
reorder the elements or add filler variables so that the 65,521 st
(131,041st, etc.) byte coincides with the first bytt of a variable or array
elerrient.

4. If the overlapping variable is the result of a mixed-length
EQUIVALENCE specification, change your program to avoid the need
for the mixed-length EQUIVALENCE specification.

F207 OVERLAP ACTUAL ARGUMENT--SPECIAL COMPILATION
REQUIRED.

A variable or array element that has been allocated noncontiguous storage
(or an array containing such an element) has been used as an actual argu
ment for a subroutine or function. Since variables in noncontiguous storage
require special handling by the compil~r, the subroutine or function
indicated must be compiled using the OVERLAP control.

As an alternative to the OVERLAP control, you may redefine the calling
program's actual arguments so that no single variable or array element
overlaps 64K-segment boundaries. For more information, see the
explanation of the compiler warning message F206.

F208 CONSTANT/VARIABLE TYPE MISMATCH IN A DATA
STATEMENT--ENTRIES IGNORED

F209 NONBLANK CHARACTERS FOLLOWING FORMAT SPECIFICATIONS
IGNORED

F210 FORMAT DOES NOT BEGIN WITH 1 (I

F211 INVALID OR MISSING DELIMITER--I,I, 'I', '.', OR ')1

NEEDED

F212 UNRECOGNIZABLE FORMAT EDIT DESCRIPTOR FOUND

F213 '-' NOT FOLLOWED BY AN INTEGER

F214 A NEGATIVE INTEGER IS ALLOWED ONLY WITH 'P'

F215 'B' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F216 'I' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F217 'I' REQUIRES A NONNEGATIVE INTEGER AFTER THE '.'

F218 'Z' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

FORTRAN-86

FORTRAN-86 Errors and Warnings

F219 fL' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F220 'Ff REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F221 'F' REQUIRES A '.' AFTER ITS WIDTH

F222 'F' REQUIRES A NONNEGATIVE INTEGER AFTER THE' ,

F223 'D' REQUIRES A '.' AFTER ITS WIDTH

F225 'D' REQUIRES A NONNEGATIVE INTEGER AFTER THE '.'

F226 'E' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F227 'E' REQUIRES A '.' AFTER ITS WIDTH

F228 'E' REQUIRES A NONNEGATIVE INTEGER AFTER THE '.'

F229 'E' REQUIRES A NONZERO POSITIVE INTEGER EXPONENT 'E'
FIELD

F230 'G' REQUIRES A NONZERO POSITIVE INTEGER WIDTH

F231 'G' REQUIRES A '.' AFTER ITS WIDTH

F232 'G' REQUIRES A NONNEGATIVE INTEGER AFTER THE '.'

F233 'G' REQUIRES A NONZERO POSITIVE INTEGER EXPONENT 'E'
FIELD

F234 A SIGNED INTEGER CONSTANT MUST PRECEDE 'P'

F235 A NONZERO POSITIVE INTEGER CONSTANT MUST PRECEDE 'X'

F236 A NONZERO POSITIVE INTEGER CONSTANT MUST PRECEDE 'H'

F237 CLOSING QUOTE MISSING FOR QUOTED STRING

F238 'H' FORMAT SPECIFIES MORE CHARACTERS THAN ARE
AVAILABLE

F239 DECIMAL PART LARGER THAN DESCRIPTOR FIELD WIDTH

F240 ILLEGAL OR UNPRINTABLE FORMAT DESCRIPTOR FOUND

F241 REPEAT NESTING EXCEEDS 3 LEVELS

F242 ILLEGAL CHARACTER IN A QUOTED STRING

F243 'P' FORMAT IS OUT OF RANGE

F244 MORE LEFT PARENTHESES THAN RIGHT

F245 INTEGER SPECIFIED IS OUT OF RANGE ALLOWED IN FORMAT
STATEMENTS

F246 THE DECIMAL PART OF AN 'I' IS GREATER THAN ITS WIDTH

F247 DECIMAL AND EXPONENT PARTS LARGER THAN DESCRIPTOR
FIELD WIDTH

15-9

Errors and Warnings FORTRAN-86

15-10

F251 TOO MANY PROCEDURE NAMES AND LABELS TO SORT

F252 MORE THAN 64K OF DATA OUTSIDE COMMON--64K USED

F253 CODE CROSSES 64K BOUNDARY AT OR AFTER THIS STATEMENT

F254 MORE THAN 64K OF CODE INCL. CONSTANTS--64K USED

F255 MORE THAN 64K OF STACK NEEDED--64K USED

F256 MORE THAN 64K OF PARAMETERS--64K USED

F257 ILLEGAL USE OF DATA STATEMENT IGNORED

F258 DATA CONSTANT EXCEEDS 255 BYTES

F259 TOO MANY ARGUMENTS FOR TYPE CHECKING

F261 TOO MANY ERRORS TO SORT

F271 CONSTANT CONTAINS AN ILLEGAL CHARACTER--BLANK
ASSUMED

F272 INTEGER CONSTANT WON'T FIT IN FOUR BYTES--TRUNCATED
ON LE FT

F273 LABEL IS GREATER THAN 99999--RIGHTMOST DIGITS
TRUNCATED

F274 NULL STRING IS ILLEGAL--' , ASSUMED

F275 QUOTED STRING LONGER THAN 255 CHARACTERS--TRUNCATED
ON RIGHT

F276 LABEL OF ZERO IS ILLEGAL

F277 NAME LONGER THAN 6 CHARACTERS--TRUNCATED ON RIGHT

F278 DIGIT STRING OF MORE THAN FIVE DIGITS IS ILLEGAL

F279 INCOMPATIBLE LENGTHS FOR SYMBOLIC AND ACTUAL
CONSTANT

F280 IMPLICIT RANGE INVALID--ONLY FIRST LETTER USED

F281 INCOMPATIBLE DATA TYPE AND LENGTH

F282 LETTER ALREADY GIVEN AN IMPLICIT TYPE

F283 SUBPROGRAM NAME IS ALREADY A SUBPROGRAM NAME

F284 SUBPROGRAM NAME IS ALREADY A COMMON NAME

F285 COMMON NAME IS ALREADY A SUBPROGRAM NAME

F286 LENGTH CANNOT BE STAR

F287 EXPLICIT LENGTH ILLEGAL--DEFAUlT USED

F288 NAME CANNOT BE CHARACTER*(*)--CHARACTER*1 USED

FORTRAN-86 Errors and Warnings

F289 THE TYPE OF THIS INTRIISIC FUNCTION IS CHANGED TO
ITS DEFAULT

F290 LENGTH SPECIFICATION EXCEEDS 64K--DEFAULT USED

F291 OVER 49 OVERFLOW SEGMENTS ALLOCATED

15.2.3 Compiler Control Error Messages

If the FORTRAN-86 compiler detects an error in a compiler control (whether in a
control line embedded in source code or in the compiler invocation line), the com
pilation may be halted. If this happens, the compiler issues an error message to both
the console and the list file. The form of the message is:

***FORTRAN COMPILATION TERMINATED.

15.2.4 Compiler Failure Error Messages

Fatal compiler failure errors are internal FORTRAN-86 compiler errors that should
never occur. If you encounter one of these errors, please report it to Intel Corpora
tion, 3065 Bowers Avenue, Santa Clara, California 95051, Attention: Software
Marketing Department.

The two errors falling into this category are:

208 COMPILER ERR~R: AN OPERAND HAS A DISALLOWED FORM
214 COMPILER ERROR: SOME OPERATOR CANNOT GET OPERANDS INTO

AN ACCEPTABLE FORM

15.3 Run-Time Errors

Certain Series-III operating system errors may occur that are documented in the
Intellec Series-III Microcomputer Development System Console Operating
Instructions. Run-time errors that are unique to the FORTRAN-86 run-time
support software are described in this section.

A masked floating-point run-time error can occur without stopping the program.
When a run-time error other than a masked floating-point error occurs, the system
stops running the program, prints a run-time exception message, and returns control
to the operating system.

There are three types of run-time exception messages: run-time system exceptions
(non-floating-point), floating point function exceptions (15.3.4), and floating-point
8087 exceptions (15.3.5).

Run-time system exception messages take the following form:

* * * R U N.-TIM E type EX C E P T I OK code
*** NEAR LOtATION hhhhH:hhhhH
*** JOB ABORTED.

15-11

Errors and Warnings

15-12

The type of the run-time exception can be one of the following types:

FORTRAN 110
110
OPERATING ENVIRONMENT
INTEGER ZERO DIVIDE
INTEGER OVERFLOW
RANGE
CHECK

For each type, the code is the hexadecimal exception code number for each message.
The hexadecimal locations hhhhH:hhhhH are the values in CS:IP after control
returns from the run-time system to the program. Each message is described in the
subsequent sections by type and by code number.

15.3.1 Input/Output Exceptions

If a FORTRAN-86 110 statement includes the ERR specifier in its control list, the
compiler transfers control to the statement designated by ERR when an error is
detected. The default error handler is not called in this case.

If you include the IOSTAT specifier in the control list of a FORTRAN-86 110 state
ment, I/O operations return a numerical code as well as the value of a symbol
designated by IOSTAT.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1200H

An invalid link sequence was specified for the run-time libraries.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1201H

Negative system error detected.

RUN-TIME FORTRAN 1/0 EXCEPTION: 120EH

Output list specifies more values than can fit into a direct access record.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1210H

An initial left parenthesis is required to define a format statement.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1211H

Invalid delimiter was found in a FORMAT statement (expecting",", "/", or ")").

RUN-TIME FORTRAN 1/0 EXCEPTION: 1212H

An unrecognizable edit descriptor was found in a FORMAT statement.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1213H

A nondigit followed a "-" in the FORMAT statement (note that "-P" must be
"-IP").

RUN-TIME FORTRAN 1/0 EXCEPTION: 1214H

Only P-format descriptor can follow a negative integer.

FORTRAN-86

FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN I/O EXCEPTION: 1215H

B-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1216H

I-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1217H

Iw .m-format descriptor must have a positive integer following the decimal point.

RUN-TIME FORTRAN I/O EXCEPTION: 1218H

Z-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXC~PTION: 1219H

L-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 121AH

F-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 121BH

F-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN I/O EXCEPTION: 121CH

F-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN I/O EXCEPTION: 121DH

D-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 121EH

D-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN I/O EXCEPTION: 121FH

D-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN I/O EXCEPTION: 1220H

E-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1221H

E-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1222H

E-format descriptor must have a nonnegative integer following the decimal point.

RUN-TIME FORTRAN I/O EXCEPTION: 1223H

E-format descriptor must have a positive integer following the E in the exponent
field.

15-13

Errors and Warnings

15-14

RUN-TIME FORTRAN I/O EXCEPTION: 1224H

G-format descriptor must be followed by a positive integer width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1225~

G-format descriptor must have a decimal point following the width field.

RUN-TIME FORTRAN I/O EXCEPTION: 1226H

G-format descriptor must have a nonnegative int~ger following the decimal point.

RUN-TIME FORTRAN I/O EXCEPTION: 1227H

G-format descriptor must have a positive integer following the E in the exponent
field.

RUN-TIME FORTRAN I/O EXCEPTION: 1228H

A signed integer constant must precede P-format descriptor.

RUN-TIME FORTRAN I/O EXCEPTION: 1229H

A positive integer constant must precede X-format descriptor.

RUN-TIME FORTRAN I/O EXCEPTION: 122AH

A positive integer constant must precede H-format descriptor.

RUN-TIME FORTRAN I/O EXCEPTION: 1231H

The closing quote for a quoted string is missing.

RUN-TIME FORTRAN I/O EXCEPTION: 1232H

H-format descriptor requires more characters than are available.

RUN-TIME FORTRAN I/O EXCEPTION: 1233H

The width field must be greater than or equal to the decimal field of a floating-point
edit descriptor (E, G, D).

RUN-TIME FORTRAN I/O EXCEPTION: 1234H

A character in the FORMAT statement was found to be outside the set of characters
allowed for format edit descriptors.

RUN-TIME FORTRAN I/O EXCEPTION: 1235H

The nesting of brackets in a FORMAT statement exceeds limit (3).

RUN-TIME FORTRAN I/O EXCEPTION: 1236H

An illegal character was found within a quoted string.

RUN-TIME FORTRAN I/O EXCEPTION: 1237H

The integer specified for P-format descriptor was out of range (-2** 15,2** 15-1).

FORTRAN-86

FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN I/O EXCEPTION: 1239H

Integer specified is out of range allowed by FORMAT statements.

RUN-TIME fORTRAN I/O EXCEPTION: 1238H

More left parentheses than right.

RUNrTIME FORTRAN I/O EXCEPTION: 123AH

Integer size greater than field width.

RUN-TIME FORTRAN I/O EXCEPTION: 1240H

H-format descriptor not allowed on input.

RUN-TIME FORTRAN I/O EXCEPTION: 1241H

A logical data item was expected on input.

RUN-TIME FORTRAN I/O EXCEPTION: 1242H

An integer data item was expected on input.

RUN-TIME FORTRAN I/O EXCEPTION: 1243H

A floating-point data item was expected on input.

RUN-TIME FORTRAN I/O EXCEPTION: 1244H

An invalid logical data field was found on input.

RUN-TIME FORTRAN I/O EXCEPTION: 1248H

An invalid hexadecimal data field was found on input.

RUN-TIME FORTRAN I/O EXCEPTION: 1249H

An invalid binary data field was found on input.

RUN-TIME FORTRAN I/O EXCEPTION: 124AH

A repeatable edit descriptor is missing, causing an infinite loop to occur in the pro
cessing of a repeated FORMAT statement.

RUN-TIME FORTRAN I/O EXCEPTION: 124BH

The scale of an input exponent is out of range.

RUN-TIME FORTRAN I/O EXCEPTION: 124CH

Quoted string input is invalid.

RUN-TIME FORTRAN I/O EXCEPTION: 1251H

End of file record was encountered with no END= specified.

RUN-TIME FORTRAN I/O EXCEPTION: 1252H

An attempt was made to read or write beyond end of record.

15-15

Errors and Warnings

15-16

RUN-TIME FORTRAN 1/0 EXCEPTION: 1254H

The data transfer mode is inconsistent with the file's FORM attribute.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1255H

The data transfer mode is inconsistent with the file's ACCESS attribute.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1256H

Syntax error in formatted binary or hexadecimal input field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1260H

Invalid delimiter in list directed input field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1261H

Syntax error in list directed alphanumeric input field.

RUN-TIME FORTRAN 1/0 EXCEPTIO~: 1262H

Syntax error in formatted/list directed logical input field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1263H

Syntax error in formatted/list directed floating-point input field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1264H

Syntax error in formatted/list directed integer input field.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1265H

Zero-valued repeat factor not allowed in list-directed input.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1270H

An attempt was made to append to an internal file.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1272H

The input data transfer conflicts with CARRIAGE= specifier.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1273H

The next 110 list element and repeatable edit descriptor do not match.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1274H

Invalid repeat specifier in FORMAT statement.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1275H

Expected repeatable edit descriptor is missing.

RUN-TIME FORTRAN 1/0 EXCEPTION: 1276H

Recursion error- Attempt was made to perform 110 on a file which is active on the
same unit.

FORTRAN-86

FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN 1/0 EXCEPTION: 1282H

Attempt to read or write past the ENDFILE record.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A1H

The string passed in the STATUS specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A2H

The string passed in the ACCESS specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A3H

The string passed in the FORM specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A4H

The string passed in the BLANK specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A5H

The string passed in the CARRIAGE specifier of an OPEN statement is illegal.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A6H

A FILE= specifier must be given in the OPEN statement when STATUS='NEW'.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A7H

A FILE= specifier must be given in the OPEN statement when STATUS='OLD'.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A8H

A FILE= specifier must not be given in the OPEN statement when
STATUS='SCRATCH' .

RUN-TIME FORTRAN 1/0 EXCEPTION: 12A9H

Of those attributes specified in the OPEN statement, only BLANK=,
CARRIAGE=, and/or RECL= can change for an existing file-unit connection.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12AAH

The integer value specified for RECL= in the OPEN statement must be positive.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12ABH

RECL= must not be specified in the OPEN statement when ACCESS='SEQUEN
TIAL' and FORM='UNFORMATTED'.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12ACH

RECL= must be specified in the OPEN statement when ACCESS='DIRECT'.

RUN-TIME FORTRAN 1/0 EXCEPTION: 12ADH

RECL= attribute of an existing connection must not be changed in the OPEN state
ment unless ACCESS='SEQUENTIAL' and FORM='FORMATTED' .

15-17

Errors and Warnings

15-18

RUN-TIME FORTRAN I/O EXCEPTION: 12AEH

BLANK= must not be specified in the OPEN statement for a new connection when
FORM='UNFORMATTED' .

RUN-TIME FORTRAN I/O EXCEPTION: 12AFH

BLANK= must not be specified in the OPEN statement for an existing connection
when FORM='UNFORMATTED' .

RUN-TIME FORTRAN I/O EXCEPTION: 12BOH

CARRIAGE= must not be specified in the OPEN statement for a new connection
when FORM='UNFORMATTED'.

RUN-TIME FORTRAN I/O EXCEPTION: 12B1H

CARRIAGE= must not be specified in the OPEN statement for an existing connec
tion when FORM='UNFORMATTED' .

RUN-TIME FORTRAN I/O EXCEPTION: 12B2H

The file-unit does not exist.

RUN-TIME FORTRAN I/O EXCEPTION: 12C1H

KEEP must not be specified for a file whose status prior to execution of the CLOSE
statement is SCRATCH.

RUN-TIME FORTRAN I/O EXCEPTION: 12C2H

The string passed in the STATUS specifier of a CLOSE statement is illegal.

RUN-TIME FORTRAN I/O EXCEPTION: 1201H

The external unit specified by a BACKSPACE statement was not connected.

RUN-TIME FORTRAN I/O EXCEPTION: 1202H

The external unit specified by a BACKSPACE statement was not connected for
sequential access.

RUN-TIME FORTRAN I/O EXCEPTION: 1203H

Backspacing over records written using list-directed formatting is illegal.

RUN-TIME FORTRAN I/O EXCEPTION: 12E1H

The. external unit specified by a REWIND statement was not connected.

RUN-TIME FORTRAN I/O EXCEPTION: 12E2H

The external unit specified by a REWIND statement was not connected for sequen
tial access.

RUN-TIME FORTRAN I/O EXCEPTION: 12F1H

The external unit specified by an ENDFILE statement was not connected.

FORTRAN-86

FORTRAN-86 Errors and Warnings

RUN-TIME FORTRAN I/O EXCEPTION: 12F2H

The external unit specified by an ENDFILE statement was not connected for
sequential access.

RUN-TIME I/O EXCEPTION: 9102H

The end of file was encountered when illegal.

RUN-TIME I/O EXCEPTION: 9103H

The integer field on input does not conform to the decimal signed integer syntax.

RUN-TIME I/O EXCEPTION: 9104H

The floating-point field on input does not conform to the run-time signed number
syntax.

RUN-TIME I/O EXCEPTION: 9105H

The integer field on formatted input defined a signed integer which could not fit into
the INTEGER *2 range.

RUN-TIME I/O EXCEPTION: 9106H

The integer field on formatted input defined a signed integer which could not fit into
the INTEGER *4 range.

RUN-TIME I/O EXCEPTION: 9107H

The floating-point field on formatted input defined a signed number whose
magnitude was too large to fit into the TEMPREAL range.

RUN-TIME I/O EXCEPTION: 9108H

The floating-point field on formatted input defined a signed number whose
magnitude was too small to fit into the TEMPREAL range.

RUN-TIME I/O EXCEPTION: 9109H

The integer field on formatted input defined a signed integer which could not fit into
INTEGER * 1 range.

15.3.2 Operating Environment Error

RUN-TIME EXCEPTION: 1500H

Configuration-exception. Call your local Intel representative.

RUN-TIME EXCEPTION: 1501H

Command line preconnection facility has detected invalid preconnection syntax.

RUN-TIME EXCEPTION: 1502H

An attempt was made to open a file which should have not already existed.

15-19

Errors and Warnings

15-20

RUN-TIME EXCEPTION: 1503H

Configuration error. File not open for write access.

RUN-TIME EXCEPTION: 1504H

Configuration error. File not open for read access.

RUN-TIME EXCEPTION: 1505H

More than six file's descriptors were requested from the RTNULL descriptor
allocator.

RUN-TIME EXCEPTION: 1506H

Unformatted sequential record is inconsistent.

RUN-TIME EXCEPTION: 1507H

Seek out or range - Attempt to seek when offset (i.e., rec_Ien * rec_num
> (2**31)-1).

RUN-TIME EXCEPTION: 1508H

DIRECT record length too large (maximum allowable: formatted, 65,503,
unformatted, 65,503).

15.3.3 Integer Exceptions

RUN-TIME INTEGER EXCEPTION: 8000H.

8-bit, 16-bit, or 32-bit signed integer zero divide.

RUN-TIME INTEGER EXCEPTION: 8001H

8-bit, 16-bit, or 32-bit signed integer overflow.

15.3.4 Range and Check Exceptions

RUN-TIME EXCEPTION: 8017H

Compiler generated check exception (e.g., stack overflow).

15.3.5 Floating-Point Function Exceptions

Floating-point function error messages take the following form:

* * * RUN - TIM E FLO A TIN G - POI NT function E X C E P T ION status
*** NEAR LOCATION hhhhhH
*** JOB ABORTED

FORTRAN-86

FORTRAN-86 Errors and Warnings

The function can be one of the following:

SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
ALOG
ALOGIO
INT
AINT
ANINT
NINT
RINT

IRINT
SINH
COSH
TANH
SQRT
DIM
EXP
MOD
RMD
SIGN
y**x
y**i
MIN
MAX

The status is the hexadecimal value of the 8087 STATUS register and the location
hhhhh is the 20-bit physical address of the location of the exception. The 8087
ST A TUS values are described in the 8086 Family User's Manual Numerics Supple
ment. General floating-point exceptions are discussed in the next section.

15.3.6 Floating-Point 8087 Exceptions

Floating-point error messages take the following form:

*** RUN-TIME 8087 EXCEPTION smtus
*** INSTR OPCODE op
*** MEMOP ADDRESS hhhhhH
*** NEAR LOCATION hhhhhH
*** JOB ABORTED.

The status is the hexadecimal value in the 8087 STATUS register. The op is the
hexadecimal value of the 8087 instruction ope ode register. The hhhhh H is a
hexadecimal 20-bit physical address. The 8087 registers are described in the 8086
Family User's Manual Numerics Supplement.

There are six possible 8087 floating-point, or exception conditions: invalid opera
tion, denormalized operand, zero divide, overflow, underflow, and precision. Not
all exceptions are errors.

This section first discusses the meaning of the six types of exceptions, what condi
tions cause them, and the actions performed when each exception occurs with the
corresponding exception controls unmasked. The 8086 Family User's Manual
Numerics Supplement discusses the unmasked case.

Section 7.6 contains explanations of rounding, denormalized and unnormalized
numbers, unnormalized arithmetic, infinity arithmetic, and NaNs. These dis
cussions should suffice for FORTRAN-86 users; however, if you are also writing
modules in other languages to interface with the 8087 chip or emulator, you may
wish to see the 8086 Family User's Manual Numerics Supplement for a fuller
explanation of some topics.

NOTE
FORTRAN-86 presets the 8087 compu,tation modes and exception masks
(explained in the 8086 Family User's Manual Numerics Supplement) to the
following recommended settings:

• The infinity arithmetic mode is projective.

• The rounding mode is round-to-near~st.

15-21

Errors and Warnings FORTRAN-86

15-22

• The precision mode for intermediate results is 64 bits of precision.

• The denormal arithmetic mode is warning mode.

• All 8087 exception conditions are masked except invalid operation,
which is unmasked. "

• The 8081 interrupt enable mask biUs zero (interrupt enabled).

You can change the computation modes and exception masks in a FORTRAN-86
program by using the 8087 control intrinsics (see section 6.1.2.3). The following dis
cussions assume that you have not changed any of these settings. If you use any of
the functions SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, EXP, ALOG,
ALOGI0, SINH, COSH, TANH, y**x, y**i, NINT, ANINT, MOD, or RMD you
must not unmask the precision error and the precision exception bit in the 8087
ST ATUS word is undefined after the operation is completed.

Invalid Operation

An invalid operation exception occurs when either an operand is invalid for the
specified operation, or the operation itself is invalid. This exception generally
"indicates a program error such as a reference to an uninitialized variable; so even if
you mask all other exceptions, it is recommended that you leave Invalid Operation
unmasked. An Invalid Operation exception is signalled when anyone of the follow
ing conditions occurs:

• One or more of the operands is a Trapping NaN.

• One or more of the operands in the computation sequence was unnormalized or
denormalized, and the result cannot be guaranteed because significant informa
tion was lost. (Not all operations on unnormalized or denormalized numbers
result in loss of significant information; those that do not will not signal Invalid
Operation.)

• Any of the following operations is attempted: infinity+infinity (in projective
mode), infinity-infinity, O.O*infinity, infinity*O.O, infinity/infinity, 0.0/0.0,
normal number/unnormalized number, normal number/denormalized number
(in warning mode).

• In INT, NINT, or IRINT, the operand is too large to fit into the INTEGER
format (INTEGER *2 and INTEGER *4 only).

• In comparisons using any of the relational operators, .LT., .LE., .GT., or
.GE., the two operands are "unordered".

The invalid operation is a "before" error, so that when unmasked, th~ original
operands are available to the exception handler.

-The following are specific cases that cause invalid operation exceptions:

• SQRT(x) where x is a negative number, a denormal number (in warning mode),
an unnormal number, or ± infinity (in projective mode).

• SIN(x), COS(x), TAN(x) where x is ± infinity, or I x I ~2-63 and x is an
unnormal number.

• ARCSIN(x), ARCCOS(x) where x is ± infinity, or I x I ~2-63 and unnormal
number, or I x 1>1.

• ARCTAN(x), EXP(x) I x I ~2-63 and an unnormal number.

• log (x), loglO(x) where x is a negative number, a denormal (in warning mode) or
unnormal number, or ± infinity (in projective mode).

• exp(x) where x is ± infinity (in projective mode), or I x I ~2-63 and x is an
unnormal number.

• SINH(x), COSH(x), TANH(x) where x is an un normal number and I x I ~2-63.

FORTRAN-86 Error~and Warnings

• ± infinity **x, 0**0, and x** ± infinity (all in projective mode).

• - infinity **x unless x is an INTEGER whole number, ± infinity **0, and 0**0
(all in affine mode).

• y**x where y is a negative number and x is not a whole number.

• y**; where; is a negative number, y is an unnormal number, and; cannot be
converted into a 32-bit integer.

• AMOD(y,x), RMD(y,x) where y is ± infinity and x is unnormal or denormal.

• ATAN2(y,x) where x and yare unnormal numbers and I ylx I >2-£!3, I x I = I
y I =0, or I x I = I y I = infinity.

• DIM(x,y) where x and yare infinite (in projective mode).

In some cases, an 8087 invalid exception is raised for valid operations. When not
masked (default), the run-time system intercepts the exception before the error
handler is invoked and caus~s program execution to continue normally. These cases
are:

• Any otherwise valid arithmetic or conversion operation involving a
non-Trapping NaN.

• A comparison between two unordered operands, neither one a Trapping NaN,
using the relational operators .EQ. and .NE. See section 7.7 for descriptions of
NaN's and unordere.d relations.

If the invalid exception is masked at the time of the operation, then the same results
occur, but the exception flag is undefined.

Denormalized Operand

This exception arises when one or more of the operands is a denormalized number.
It can occur if a masked underflow exception has occurred in a previous operation.
I t is never an error.

The unmasked denormalized exception implements "normalizing mode"
arithmetic. The run-time system intercepts these exceptions and takes action as
described in section 7.7.

Zero Divide

In a division operation, if the divisor is a normal zero and the dividend is a finite
nonzero number, then the zero divide exception occurs. If this exception is masked,
the result is infinity. If unmasked, an error occurs and the original operands are
available to the exception handler.

Zero divide occurs when an infinity is introduced by an operation that does not
overflow. Infinity is the exact answer of the zero divide. The following specific cases
result in operation exceptions:

• LOG(O)

• LOG 10(0)

• O**x, where x is negative

• 0**;, where; is negative

Overflow

If a rounded result is finite but its exponent is too large to represent in the result
floating-point format, the overflow exception occurs. If this exception is masked, an
overflow yields infinity, and the precision exception also occurs.

15-23

Errors and Warnings

15-24

For the operations EXP, SINH, COSH, y**x, and y**i, overflow is a "before"
error. Consequently, when it is unmasked, the original operands are available to the
exception handler.

For the operations "+", "-", "*", "I", and DIM, overflow is an "after" error.
Consequently, when it is unmasked, a result with a wrapped exponent is available to
the exception handler.

Underflow

The underflow exception occurs when either of the following conditions arises:

• A rounded result has too small an exponent to be represented in the result
floating-point format without normalizing.

• An intermediate product or quotient, where neither operand. is a normal zero, is
indistinguishable from a normal zero. (This cannot occur with normalized
operands.)

.
If the Underflow exception is masked, the result is a correctly rounded denormalized
number or zero.

For the operations y**x and y**i, underflow is a "before" error. Consequently,
when it is unmasked, the original operands are available to the exception handler.

For the operations "+", "-", "*", "I", DIM, ATAN(y,x), AMOD, and RMD,
underflow is an "after" error. Consequently, when it is unmasked, a result with a
wrapped exponent is available to the exception handler.

Precision

If the correctly rounded result of an operation is not the same as the unrounded
value, the precision exception occurs. If this eKception is masked, no special action is
performed; the correctly rounded result is delivered.

FORTRAN-86

APPENDIX A
DIFFERENCES BETWEEN FORTRAN-86
AND OTHER VERSIONS OF FORTRAN

This appendix lists the differences between FORTRAN-86 and other versions of
FORTRAN. Specifically, the appendix describes the:

• Features of FORTRAN-86 that are not part of the American National
Standards Institute (ANSI) FORTRAN 77

• Deviations from the ANS-1978 Standard

• Features of FORTRAN-86 that are different from FORTRAN-80

The number that appears after each feature listed in sections A.l and A.3 refers to
the section or chapter of this manual where the feature is described.

A.1 Extensions to FORTRAN 77

• Binary-, octal-, and hexadecimal-based INTEGER constants. (5.1.1)

• INTEGER values with storage-unit lengths of 1 and 2 bytes. (5.1.1)

• TheTEMPREAL data type. (5.1.2)

• A REAL*8 data type that is equivalent to the DOUBLE PRECISION data type.
(5.1.2.2)

• LOGICAL values with storage unit lengths of 1 and 2 bytes. (5.1.3)

• Values of different types and lengths within the same storage sequence. (5.10.1)

• 8087 intrinsics. (6.1.2.3)

• The intrinsic functions INTI, INT2, INT4, RINT, IRINT, IDRINT, and
TREAL. (6.1.2.2)

• The RMD intrinsic function. (6.1.2.2)

• The 070 VAL function. (6.1.2.6)

• Bitwise Boolean operations. (7.5)

• Implicit length extensions for INTEGER, REAL, or LOGICAL expressions in
assignment statements. (8.1.1)

• A format descriptor to suppress a carriage return on a terminal output device at
the end of a record. (9.4.1.2)

• Port-II0 intrinsics for byte and word values. (6.1.1.1)

• The Band Z edit descriptors in the FORMAT statement. (9.4.1.1)

• The CARRIAGE specifier and the RECL specifier for sequential, formatted
access in an OPEN statement. (9)

• Hollerith format specifications in INTEGER, REAL, LOGICAL, and
DOUBLE PRECISION arrays. Hollerith data-type constants. (Appendix F)

A.2 Deviations from the ANS-1978 Standard

• COMPLEX data type, operations, and intrinsic functions are not supported.

• The ENTRY and alternate return features are not supported.

• The FORMAT edit descriptors T, TR, TL, S, SS, SP, Iw.m, and colon are not
supported.

• The INQUIRE statement is not supported.

A-I

Differences Between FORTRAN-86 and Other Versions

• REAL and DOUBLE PRECISION control expressions for DO and
computed GO TO are not supported.

• The PARAMETER statement is restricted to simple constants of any data
type, or expressions of type INTEGER. Conversions between INTEGER and
floating-point constants are not supported.

• IOSTAT variables must be Of type INTEGER*2.

FORTRAN-86

• Negative zeroes may appear on formatted floating-point output. This is an .

A-2

IEEE floating-point feature.

• The FORTRAN-86 source line size is not limited to 72 characters; up to 132
source characters per line are accepted by the compiler. This feature is designed
to simplify program entry using a video terminal.

• The DATA statement may not imply conversion between INTEGER and
floating-point constants.

A.3 Differences Between FORTRAN-80
and FORTRAN-S6

• DATA statements can appear anywhere after the specification statements.
(2.2.1)

• The DOUBLE PRECISION data type. (5.1.2.3)

• The TEMP REAL data type. (5.1.2.4)

• CHARACTER data-type functions and substrings. (5.4)

• The PARAMETER statement. (5.3)

• Lower and upper bounds for array dimensions. (5.4.1)

• Generic intrinsic-function names. (6.1.2.2)

• The intrinsic functions INTI, INT2, INT3, RINT, IRINT, IDRINT, RMD, and
TREAL. (6.1.2.2)

• Statement functions. (6.1.2.4)

• The 070 VAL function. (6.1.2.6)

• The 0 and G edit descriptors. (9.4.1.1)

• Port 110 intrinsics for byte and word values. (6.1.1.1)

• 8087 intrinsics (6.1.2.3)

• New execution-environment interfaces. (Appendix I)

• Changed OPEN-statement semantics. (9.2.1)

• Revised error messages. (15)

APPENDIX B
PROCESSOR-DEPEN DENT

FEATURES OF FORTRAN-8S

The following FORTRAN-86 features are dependent on the 8086, 8087, and 8088
microprocessors on which FORTRAN-86 programs run. Following each entry is a
chapter or section reference where the feature is described in this manual.

• Equivalence of upper- and lower-case letters in the character set. (3.2.2)

• Values of different types and lengths within the same storage sequence. (5.10.1)

• Port-II0 intrinsics for byte and word values. (6.1.1.1)

• Interrupt procedures with the INTERRUPT control. (11.4.9)

• The 070 VAL function. (6.1.2.6)

• 8087 control intrinsics. (6.1.2.3)

• Reentrant subprograms with the REENTRANT control. (11.4.15)

• Unit preconnection. (14.5)

• The size and structure of storage allocation for variables. (Appendix G)

B-1

APPENDIX C
COMPILER CAPACITY

This appendix lists the limits imposed on FORTRAN-86 programs by either
FORTRAN-86 or its environment.

• The compiler accepts up to 19 continuation lines.

• An INTEGER * 1 value must be within the range -128 to + 127 .

• An INTEGER *2 value must be within the range -32,768 to +32,767.

• An INTEGER*4 value must be within the range -2,147,483,648 to
+2,147,483,647.

• A REAL value must have magnitude approximately in the range 11.2 * 10(-38) 1
to 1 3.4 * 10(38) I .

• A DOUBLE PRECISION value must have magnitude approximately in the
range 13.4 * 10(-308) 1 to 11.8 * 10(308)1 .

• A TEMP REAL value must have the magnitude approximately in the range 13.4
* 10(-4932) 1 to 11.2 * 10(4932) 1 .

• INTEGER operations addition, subtraction, multiplication, division, and
exponentiation are performed modulo 256 for two INTEGER * 1 values, modulo
65,536 for two INTEGER*2 values and modulo 4,294,967,296 otherwise.

• The compiler performs INTEGER assignment modulo 256, modulo 65,536, or
modulo 4,294,967,296 if the target variable has the data type INTEGER*I,
INTEGER *2, or INTEGER *4, respectively.

• Subscript values are taken modulo 65,536 for arrays declared to be less than
65,536 bytes in length; otherwise modulo 4,294,967,296 applies.

C-l

APPENDIX D I
LANGUAGE SUMMAR~

This appendix summarizes the FORTRAN-86 statements, and special punctuation
symbols.

0.1 Statement Summary

ASSIGN Statement

Syntax: ASS I GN stl TO name

Function: Assign a statement label stl to an integer variable name

Category: Executable

Assignment Statement

Syntax: name = exp

Function: Assign the value of an expression exp to a variable name

Type: Arithmetic, Logical, Character

Category: Executable

BACKSP ACE Statement

Syntax:

Function:

Category:

BACKSPACE unit
B A C K SPA C E arg-list

Position file connected to unit before preceding record where unit is
the unit specifier and arg-list is

[UN I T=)unit
lOS TAT =stname
ERR=stl

unit specifier
110 status specifier
error specifier

BACKSPACE is for sequential files only.

Executable

BLOCK DATA Statement

Syntax: B L 0 C K 0 A T A [name]

Function: Identify and optionally name a BLOCK DATA subprogram.

Category: Nonexecutable

0-1

Language Summary

D-2

CALL Statement

Syntax: CAL L name[<{arg[,arg] ...]}]

Function: Call the subroutine, name with actual argument(s) arg.

Category.: Executable

CHARACTER Statement

Syntax: C HARA C T ER[*len]name[*lenH ,name[*Ien]] ...

Function: Specify name and len for character type variable or array.

Category: Nonexecutable, specification, type

CLOSE Statement

Syntax:

Function:

Category:

C L 05 E (close-list)

Close the file described by close-list, where close-Jist is

[UN I T=]unit
105 TAT=stname
E RR=stl
5 TAT U 5 =stat

Executable

unit specifier
110 status specifier
error specifier
file disposition specifier

Comment Line

Syntax:

Function:

Category:

The character 'C' or asterisk (*) in position 1; any other characters in
positions 2-72.

Program documentation

Nonexecutable

COMMON Statement

Syntax:

Function:

Category:

COM MO N [/ name] /]nlist[[,) / name / nlist) ...

Name and define the contents of COMMON block(s), name. If name
is not specified, a blank COMMON is defined.

Nonexecutable, specification

CONTINUE Statement

Syntax:

Function:

CONTINUE

No effect unless this is the terminal statement of a DO loop; then
action depends on the DO variable.

FORTRAN-86

FORTRAN-86 Language Summary

DATA Statement

Syntax: OAT A nlistlclist ...

Function: Assign values in clistto the items in nlist.

Category: Nonexecutable

DIMENSION Statement

Syntax: DIM ENS ION array (d) [, array (d)] ...

Function: Name array(s) and define dimension(s) d.

Category: Nonexecutable, specification

DO Statement

Syntax: DO st/[,]var=e1 , e2[, e3]

Function: Define the beginning of DO loop and set up loop counters where

stl label of last (executable) statement in DO loop
var DO loop index variable
e1 initial loop index value
e2 loop termination value
e3 loop increment! decrement value

Category: Executable

DOUBLE PRECISION Statement

Syntax: DOUB LE PREC I S I ON name[,name] ...

Function: Specify name(s) for a double precision type variable or array.

Category: Nonexecutable, specification, type

ELSE Statement

Syntax: ELSE

Function: Provides alternate execution path from IF or ELSE IF.

Category: Executable, block IF

ELSE IF Statement

Syntax: E l S ElF (exp) THE N

Function: Continue execution if expression exp is TRUE.

Category: Executable, Block IF

D-3

Language Summary

D-4

END Statement

Syntax:

Function:

Category:

END

Terminate main program; return from subprogram; mark end of
program unit.

Executable

END IF Statement

Syntax: END IF

Function: Mark end of IF block; continue execution.

Category: Executable, block IF

ENDFILE Statement

Syntax:

Function:

Category:

END F I L E unit
END F I L E (arg-list>

Write end-of-file record on file connected to unit where unit is the unit
specifier and arg-Iist is

[UN IT=]unit
lOS T AT=stname
ERR=stl

unit specifier
110 status specifier
error specifier

ENDFILE is for sequential files only.

Executable

EQUIV ALENCE Statement

Syntax: E QU I VA LEN C E Cnlist> [, (nlist>] ...

Function: Allow entries in nlist to share the same storage area.

Category: Nonexecutable, specification

EXTERNAL Statement

Syntax:

Function:

Category:

EXTERNAL name[,name] ...

Allows the name of an external! dummy procedure name to be used as
an actual argument.

Nonexecutable, specification

FORTRAN-86

FORTRAN-86 Language Summary

FORMAT Statement

Syntax:

Function:

Iw
Fw.d
Ew.d[Ee]
Dw.d
Gw.d[Ee]
Lw
A[w]
Bw
Zw

Category:

stl FORMAT C[flist»

Specifies the format of formatted 110 data where flist includes the
following repeatable and nonrepeatable edit descriptors

Repeatable

integer
real
real
real
real
logical
alphanumeric
binary
hexadecimal

Nonexecutable

'string'
nHstring
nX
/
kP
BN
BZ
$

Nonrepeatable

literal
Hollerith
record position
record termination
scale factor
blank
blank
altern a te-record
termination

FUNCTION Statement

Syntax:

Function:

Category:

[type] FUN CT I ON name ([arg[,arg] ...])

Name the FUNCTION subprogram and define its type and dummy
argument(s).

Nonexecutable

GO TO Statements

Syntax:

Function:

Category:

GO TO stl
GOT 0 (stl[, stl] ...) exp
GOT 0 name [(stl[, Sf/] •..)]

Transfer control to statement labelled 5t1 or ASSIGNED to variable
name. The first branches unconditionally; the second branches based
on the value of the integer expression exp; the third branches uncondi
tionally, but statement label corresponding to name must be included
in list.

Executable

IF Statements

Syntax:

Function:

IF (exp)51 ,52,53
IF (exp) stmt
I F (exp) THE N

Transfer control to a specified statement or perform specified
action(s) based on the value of the expression exp. In the first format,
exp is an arithmetic expression and 51, 52, and 53 are statement
labels; control passes to:

sl if exp<O
s2 if exp=O
s3 if exp>O

D-5

Language Summary

D-6

Category:

In the second format, the statement stmt is executed if the logical
expression is TRUE. Third format introduces IF block; statements
following IF-THEN are executed if logical expression is TRUE.

Executable

IMPLICIT Statement

Syntax:

Function:

Category:

IMP lIe IT n t y p e (let[Jet] ...) ...

Define implicit typing for variable names whose first letter is let or in
the range let-let.

Nonexecutable, specification

INTEGER Statement

Syntax: IN T E G E R [*Ien]name[*Ien][name[*Ien]] ...

Function: Define name to be of type integer with length len.

Category: Nonexecutable, specification, type

INTRINSIC Statement

Syntax: I NT R INS I C name [, name] ...

Function: Allow intrinsic function(s) to be used as actual argument(s).

Category: Nonexecutable, specification

LOGICAL Statement

Syntax: lOG I CAL[*Ien]name[*Ien][, name[*Ien n ...
Function: Define name to be of type logical with length len

Category: Nonexecutable, specification, type

OPEN Statement

Syntax:

Function:

OPE N (open-list)

Open the specified file with open-list consisting of the following:

[UNIT=]unit
lOS TAT =stname
ERR =stl
F I lE=fname
S TAT U S =stat
ACe E S S =acc
FORM=fmat
R E C l=reclen
BlANK=blnk
CAR R I AGE =car

unit specifier
110 status specifier
error specifier
filename specifier
file status specifier
access method specifier
formatting specifier
record length specifier
blank specifier
carriage control specifier

FORTRAN-86

FORTRAN-86 Language Summary

Category: Executable

PAUSE Statement

Syntax:

Function:

Category:

PAUS E[msg]

Halt program execution; resume under control of external signal; msg
is 1-5 digits or a character constant.

Executable

PARAMETER Statement

Syntax: PARAMET ER (name=exp ...)

Function: Assigns a name to a constant expression exp.

Category: Nonexecutable, specification

PRINT Statement

Syntax: P R I NT f[, outlist]

Function: Output items in outlist to preconnected unit in format specified by f.

Category: Executable

PROGRAM Statement

Syntax:

Function:

Category:

PROGRAM name

Optionally name main-program unit. If missing, the compiler will
assign @ MAIN as the program name.

Nonexecutable

READ Statement

Syntax:

Function:

Category:

REA 0 (etl-list) [inlist)
REA 0 f[, inlist)

Input items in in lis t as directed by specified controls in etl-list

[UNIT=]unit
[FMT=]f
R E C=reeno
lOS TAT =stname
ERR =stl
END=stl

unit specifier
format specifier
record number specifier
I/O status specifier
error specifier
end-of-file specifier

Second format is for preconnected units; f is the format specifier.

Executable

D-7

Language Summary

D-8

REAL Statement

Syntax: REA L[*Ien]name[*Ien][, name[*Ienll ...

Function: Define name to be of type real with length len.

Category: Nonexecutable, specification, type

RETURN Statement

Syntax: RETURN

Function: Return from FUNCTION or SUBROUTINE subprogram.

Category: Executable

REWIND Statement

Syntax:

Function:

Category:

REWIND unit
R E WIN 0 (arg-Iist)

Reposition file connected to unit at its initial point with arg-Iist
including:

[UN IT=]unit
lOS TAT =stname
E R R=stl

unit specifier
110 status specifier
error sp~cifier

REWIND is for sequential files only.

Executable

SAVE Statement

Syntax: S A V E name [, name] . ..

Function: Save data in name on return from subprogram.

Category: Nonexecutable, specification

. Statement Function Statement

Syntax: name <[arg[,arg] ...]} =exp

Function:, Define function name

Category: Nonexecutable

STOP Statement

Syntax: STOP[msg]

Function: Terminate program execution, with optional message, msg.

Category: Executable

FORTRAN-86

FORTRAN-86 Language Summary

SUBROUTINE Statement

Syntax:

Function:

Category:

SUB ROU TIN E name[([arg[,arg] ... J>]

Define SUBROUTINE subprogram name with dummy argument(s)
argo

Nonexecutable

TEMP REAL Statement

Syntax: TEMPREA L name[,name] ...

Function: Define name to be of type tempreal.

Category: Nonexecutable, specification, type

WRITE Statement

Syntax:

Function:

W R I T E (ct/-Iist) [outlist]

Output items in outlist as directed by controls in ctl-Iist induding

[UN I T=]unit
[FMT=]f
REC=recno
lOS TAT =stname
ERR =stl

unit specifier
format specifier
record number specifier
110 status specifier
error specifier

0.2 Symbol Summary

Table D-l lists the arithmetic operators and their meanings.

Table D-l. Arithmetic Operators

Operator Meaning

** Exponentiation
/ Division
* Multiplication
+ Addition
- Subtraction

Table D-2lists the relational operators and their meanings.

Table D-2. Relational Operators

Operator Meaning

.LT. Less Than

.LE. Less than or Equal To

.EQ. Equal To

.NE . Not Equal To

. OT. Greater Than

.OE. Greater Than or Equal To

D-9

Language Summary FORTRAN-86

Table D-3 lists the logical operators and their meanings.

Table D-3. Logical Operators

Operator Meaning

.NOT. Logical Negation

.AND. Logical Conjunction

.OR. Logical Inclusive Disjunction

.EQV. Logical Equivalence

.NEQV. Logical Nonequivalence

D-lO

ASCII HEX FORTRAN-86
CHARACTER CHARACTER

NUL 00 no
SOH 01 no
STX 02 no
ETX 03 no
EaT 04 no
ENQ 05 no
ACK 06 no
BEL 07 no
BS 08 no
HT 09 no
LF OA no
VT 08 no
FF OC no
CR 00 no
SO OE no
SI OF no
OLE 10 no
OCI 11 no
OC2 12 no
OC3 13 no
OC4 14 no
NAK 15 no
SYN 16 no
ETB 17 no
CAN 18 no
EM 19 no
SUB 1A no
ESC 18 no
FS 1C no
GS 10 no
RS 1E no
US 1F no
space 20 yes
! 21 no
II 22 no
23 yes
$ 24 yes
% 25 no
& 26 no
I 27 yes
(28 yes
) 29 yes
* 2A yes
+ 2B yes
, 2C yes
- 20 yes

i
2E yes
2F yes

0 30 yes
1 31 yes
2 32 yes
3 33 yes
4 34 yes
5 35 yes
6 36 yes
7 37 yes
8 38 yes
9 39 yes
: 3A yes
; 3B no
< 3C no
= 3D yes
> 3E no
? 3F no

APPENDIX E
CHARACTER SET AND

COLLATING SEQUENCE

ASCII HEX FORTRAN-86
CHARACTER CHARACTER

@ 40 no
A 41 yes
B 42 yes
C 43 yes
0 44 yes
E 45 yes
F 46 yes
G 47 yes
H 48 yes
I 49 yes
J 4A yes
K 4B yes
L 4C yes
M 40 yes
N 4E yes
0 4F yes
P 50 yes
Q 51 yes
R 52 yes
S 53 yes
T 54 yes
U 55 yes
V 56 yes
W 57 yes
X 58 yes
Y 59 yes
Z 5A yes
[58 no
\ 5C no
] 50 no

" (t) 5E no
\"

5F yes
60 no

a 61 yes
b 62 yes
C 63 yes
d 64 yes
e 65 yes
f 66 yes
9 67 yes
h 68 yes
; 69 yes

t 6A yes
68 yes

l 6C yes
m 60 yes
n 6E yes
0 6F yes
p 70 yes
q 71 yes
r 72 yes
S 73 yes
t 74 yes
U 75 yes
v 76 yes
w 77 yes
X 78 yes
y 79 yes
z 7A yes
{ 78 no
I 7C no
} 70 no
~ 7E no

DEL 7F no

E-l

APPENDIX F I
HOLLERITH DATA TYPE

This appendix describes the Hollerith data type that is a carryover from FORTRAN
66. The character data type provides better processing capability but the Hollerith
type has been retained for compatability.

F.1 Hollerith as a Data Type

Although Hollerith is a data type, a symbolic name cannot be of type Hollerith. You
identify Hollerith data (other than Hollerith constants) using an INTEGER,
floating-point (REAL, DOUBLE PRECISION, TEMPREAL), or LOGICAL type
name. You cannot use type CHARACTER.

You can define INTEGER, floating-point or LOGICAL items with a Hollerith
value using either DA TA or READ statements. Equivalenced items become
associated with that Hollerith value also. When this definition occurs, the defined
item loses its INTEGER, floating-point, or LOGICAL characteristic.

F.2 Hollerith Constants

The format of a Hollerith constant is

nHh1h2 ... hn

where n is a nonzero, unsigned, integer constant and h is any representable
character. Blanks are significant in the character string following the H.

Hollerith constants can appear only in DATA statements and in the argument list of
CALL statements.

F .2.1 Hollerith Constants in DATA Statements

A Hollerith constant may appear in the clist of a DATA statement. The corre
sponding argument in nlist must be type INTEGER, floating-point, or LOGICAL.

For an argument of type INTEGER, floating-point or LOGICAL, the number of
characters n in the corresponding Hollerith constant must be less than or equal to g
(where g is the length of the argument in bytes). If n is less than g, the compiler
initializes the argument with the n Hollerith characters extended on the right with
g-n blank characters.

Each Hollerith character initializes exactly one variable or array element.

F .2.2 Hollerith Constants in CALL Statements

An actual argument in a CALL statement can be a Hollerith constant, as long as the
corresponding dummy argument has type INTEGER, floating-point, or LOGICAL.
This is an exception to the rule that actual and dummy arguments must agree in
type. The length of the dummy argument, however, must agree with the length of
the actual argument.

F-I

Hollerith Data Type

F-2

·F.3 Hollerith Format Specification

A format specification can be an array name of type INTEGER, floating-point, or
LOGICAL. In this case, the leftmost characters of the specified entity must contain
Hollerith data constituting a legal format specification. Blank characters may
precede the format specification and data may follow the right parenthesis ending
the specification with no affect.

A Hollerith format specification must not contain an apostrophe edit descriptor or
an H edit descriptor.

F.4 'A' Editing of Hollerith Data

You can use the Aw edit descriptor with Hollerith data if the corresponding I/O list
item has type INTEGER, floating-point, or LOGICAL.

Editing is the same as for Aw editing of character data, except that n is the maximum
number of characters that the system can store in the list item.

FORTRAN-86

APPENDIX G
RUN-TIME DATA REPRESENTATIONS

The FORTRAN-86 compiler determines the amount of storage needed at run time
for each data type, and the run-time support software allocates the storage when you
execute the FORTRAN program. This appendix describes the storage necessary for
each data type.

G.1 Storage Units

There are two types of storage units: numeric storage units and character storage
units. A numeric storage unit is one, two, four, or ten bytes depending on the length
of the specified data type. The standard length is four bytes. A character storage
unit is always one byte. A storage sequence is a consecutive series of either numeric
storage units or character storage units depending on the type of the data.

G.2 Data Types

FORTRAN-86 supports six types of data: INTEGER, REAL, DOUBLE
PRECISION, TEMPREAL, CHARACTER, and LOGICAL. Table G-I
summarizes the storage necessary for each data type.

Table G-l. Summary of Storage Units

Number Length
Data Type of of Bytes

Units Unit

INTEGER*1 1 1 byte 1
INTEGER*2 1 2 bytes 2
INTEGER*4 1 4 bytes 4

REAL*4 1 4 bytes 4
REAL*8 2 4 bytes 8

DOUBLE 2 4 bytes 8
PRECISION

TEMPREAL 1 10 bytes 10

LOGICAL*1 1 1 byte 1
LOCIGAL*2 1 2 bytes 2
LOGICAL*4 1 4 bytes 4

CHARACTER*n n 1 byte n
(O~n~256)

G-l

APPENDIX H
LINKING TO SUBPROGRAMS

WRITTEN IN OTHER LANGUAGES

This appendix describes the calling conventions used by iAPX 86,88 family
languages. These calling conventions are standardized so that a program written in
FORTRAN-86 can communicate with procedures, subroutines, and subprograms
written in other iAPX 86,88 family languages.

NOTE
The information contained in this appendix is dependent on current
implementations of the FORTRAN-86, PL/M-86, and Pascal-86 compilers.
As such, it is subject to change with any new version of one of these com
pilers. Programmers using this appendix are urged to carefully document
assumptions based on this information to enable upgrading to new versions
as they are released, if necessary. Any changes will be reflected in the
respective language user's guides.

As a FORTRAN-86 programmer linking PL/M-86 or Pascal-86 procedures with
FORTRAN-86, you need to know the PL/M-86 and Pascal-86 data types that match
FORTRAN-86 data types and the order and number of arguments to supply for the
PL/M-86 or Pascal-86 parameters, described in section H.2. You must also know
how to link subprograms, as described in Chapter 14.

PL/M-86 and Pascal-86 procedures linking with FORTRAN-86 procedures must be
compiled under the LARGE model of segmentation.

As a FORTRAN-86 programmer calling 8086/8087/8088 Macro Assembly
Language subroutines, you need to know the calling conventions of the stack and
register usage and the corresponding data types, described in this appendix, in order
to write an assembly language subroutine that can pick up the data your
FORTRAN-86 program passes to it. The same information is necessary for a macro
assembly language programmer calling FORTRAN-86 subprograms. Refer to the
8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based Develop
ment Systems, Appendix B, for more information about linking to the macro
assembly language programs and for examples of linking such programs to
PL/M-86 programs.

H.1 Introduction

A FORTRAN-86 program consists of a main program and any number of sub
programs. Not all of these program units have to be written in FORTRAN-86. You
can choose the appropriate language for each subprogram as long as you link the
subprograms properly with LINK86, the 8086-based linker. Since the iAPX 86,88
family languages follow the same calling conventions, control will pass to a sub
program called correctly. However, the called subprogram may not be able to deal
intelligently with the data passed to it, because different languages treat data struc
tures differently.

NOTE
Subprogram is a term used in FORTRAN-86 referring to both subroutines
and functions. Procedure is the term used in both Pascal-86 and PL/M-86.
The assembly language term is subroutine. In this appendix, the word sub
program denotes any entity written in any iAPX 86,88 language that can
call a FORTRAN-86 subroutine or function, or be called from a
FORTRAN-86 subprogram.

H-I

Linking to Subprograms Written in Other Languages

H-2

If you want to link your FORTRAN-86 application with a subprogram written in
Pascal-86 or PL/M-86, section H.2 should be sufficient for your needs. However, if
your main program is written in PL/M-86, you must also know how to initialize the
FORTRAN-86 run-time environment described in section H.5.

Writing assembly-language subprograms to be called from FORTRAN-86 programs
requires an understanding of this entire appendix.

H.2 Calling Sequence

The calling convention for the invocation of a subprogram is essentially the same for
FORTRAN-86, Pascal-86, and PL/M-86 (LARGE model of segmentation), for
most equivalent argument types. The arguments are pushed on the 8086 or 8087
stack in left-to-right order, and then the subprogram is invoked with an 8086
inter segment call instruction. If the subprogram is a function, the returned value is
delivered in predefined 8086 registers, on the top of the 8087 stack, or via an addi
tional reference parameter on the 8086 stl\ck, depending on the value's data type.

You can see the pseudo-assembly listing of this sequence if you specify the CODE
control when compiling a FORTRAN-86 program that contains a reference to an
external subroutine or function.

The called subprogram has the responsibility of saving certain 8086 registers and
restoring them before returning to the caller. The subprogram also removes the
arguments from the stack. A pseudo-assembly listing (CODE control) of a
FORTRAN-86 SUBROUTINE or FUNCTION will illustrate these instruction
sequences, which are similar to those generated for Pascal-86 and PL/M-86
subprograms.

H ~2.1 Arguments

There are two methods of passing arguments to other subprograms: by value and by
reference. The first method, by value, passes the actual value of the argument to the
subprogram. With the second method, by reference, the address of the argument is
passed to the subprogram, and the called subprogram must use the address to locate
the data associated with the argument. The called program must know which
method is being used for each argument.

In FORTRAN-86, arguments for subprograms are passed by reference on the 8086
stack. PL/M-86 subprograms linking with FORTRAN-86 must use long (double
word) pointers to pass or accept arguments. Pascal-86 arguments must-be specified
as VAR parameters when communicating with standard FORTRAN-86
su bprograms.

FORTRAN-86 provides the nonstandard 070 VAL function (see section 6.2.1.7)
that creates or accepts a value argument for certain simple data types. While the
070 VAL method is useful for linking with existing non-FORTRAN subprograms, the
reference method is standard and strongly recommended to ensure software
portablilty.

In the following sections, arguments are assumed to be passed by reference unless
otherwise qualified. Pointers are always long (double words).

FORTRAN-86

FORTRAN-86 Linking to Subprograms Written in Other Languages

H .2.2 Returned Values

The methods of returning values from function subprograms is consistent across
FORTRAN-86, PL/M-86, and Pascal-86 for all supported data types. The
following rules apply:

1. All floating-point data types are returned on the top of the 8087 stack.

2. A character string (FORTRAN only) is returned via a CHARACTER argument
for the target location provided by the calling program. The calling sequence is
the same as that of a SUBROUTINE call with the target string location specified
as the first argument (see section H.2.3.4). The calling subprogram determines
the length of the returned string.

3. All other data types allowable as returned values are returned in 8086 registers
depending on their length: I-byte values in AL, 2-byte values in AX, and 4-byte
values in DXI AX.

H .2.3 Data Types

Data-type compatibility between FORTRAN-86 and PL/M-86 or Pascal-86 varies
considerably due to the characteristics of these languages and their implementation.
ASM-86, having the weakest typing of all, can be considered to be fully compatible
with FORTRAN-86 as long as FORTRAN-86 data-type conventions are followed.

H.2.3.1 Floating-Point Data Types

FORTRAN-86's REAL*4 is identical to REAL in both PL/M-86 and Pascal-86.
REAL *8, DOUBLE PRECISION, and TEMP REAL are supported in Pascal-86 but
not in PL/M-86. Floating-point values in ASM-86 must have data formats as
defined by the 8086,87 Family User's Guide Numerics Supplement. In addition,
FORTRAN-86 distinguishes Trapping NaN's from nontrapping NaN's by the most
significant bit of the significand.

Use of the 0J0 V AL function with floating-point variables is not supported.

H.2.3.2 Integer Data Types
INTEGER *2 in FORTRAN-86 is equivalent to INTEGER in both PL/M-86 and
Pascal-86, and INTEGER * 1 is compatible with Pascal-86 and with PL/M-86's
BYTE sub range (-128 ... 127) for positive values that are less than 128. INTEGER *4
is supported by Pascal-86 but not PL/M-86. INTEGER*4 is compatible with the
PL/M-86 DWORD for positive values, and LONGINT for Pascal-86. ASM-86 sub
programs can support all FORTRAN INTEGER types when only signed operations
are used.

Any FORTRAN INTEGER type may be passed by value on the 8086 stack using the
070 V AL function.

INTEGER data types used in bitwise boolean operations are compatible with
Pascal-86's SET type, if the field lengths and bit sequences are carefully observed.
See the Pascal-86 User's Guide for implementaion details.

H-3

Linking to Subprograms Written in Other Languages

H-4

H.2.3.3 Logical Data Types

With FORTRAN's LOGICAL data types, only the least significant bit is relevent (0
for .FALSE., 1 for .TRUE.), and the remaining bits are undefined. LOGICAL*l in
FORTRAN-86 is the same as PL/M-86's BYTE data type used in boolean
expressions. While Pascal-86's BOOLEAN type is fully acceptable to a
FORTRAN-86 subprogram as a 'LOGICAL*1 dummy argument or returned value,
the reverse is not supported.

The problem of passing or returning a LOGICAL * 1 value to a Pascal-86 sub
program is that Pascal-86 requires all high-order bits to be zero (see table H-I),
whereas these bits are unpredictable in FORTRAN-86. Use of INTEGER*1 contain
ing the integer 0 (.FALSE.) or 1 (.TRUE.) is a way to bypass this restriction.

All FORTRAN-86 LOGICAL data types may be passed using the 070 V AL function,
except that LOGICAL *4 must not be used with % VAL when linking with either
PL/M-86 or Pascal-86.

Table H-l. FORTRAN-86 Data Types and Their Equivalents in Pascal-86,
PL/M-86, and ASM-86

FORTRAN-86 Pascal-86 PL/M-86 ASM-86

REAL*4 REAL REAL 00(8087
single precision

REAL*80r OQ(8087
DOUBLE PRECISION double precision)

TEMP REAL OT(8087
extended precision)

INTEGER*1 [0 ... 127] BYTE (1) DB (signed)

INTEGER*2 INTEGER INTEGER OW (signed)

INTEGER*4 00 (signed)

LOGICAL*1 BOOLEAN (2) BYTE (2) DB (2)

LOGICAL*2 OW (2)

LOGICAL*4 00(2)

CHARACTER* n {array [1 ... n] of CHAR, {BYTE (n), {DB nOUP,
INTEGER} (2) INTEGER} (3) word} (3)

(1) For values 0 through 127 only.

(2) Only rightmost significant bit; Remaining bits are undefined, except for Pascal-86, which
requires them to be zero.

(3) See section H.2.3.4

H.2.3.4 Character Data Types

FORTRAN-86 character-string arguments and returned values are passed in a
unique manner that is not directly supported by PL/M-86 or Pascal-86. Familiarity
with FORTRAN-86 conventions, however, will enable you to pass or accept
character strings to or from FORTRAN-86 subprograms.

A FORTRAN-86 character-string argument has two components: the address of the
string and its length. For each CHARACTER argument, a word containing the
string length is placed (by value) immediately after the corresponding string address

FORTRAN-86

FORTRAN-86 Linking to Subprograms Written in Other Languages

on the 8086 stack. Note that this description also applies to the argument inserted by
the compiler to receive the returned value of a CHARACTER function (see section
H.2.2). In both cases, the calling subprogram specifies the string length.

All FORTRAN arguments of type CHARACTER[*n] are passed in the
same manner. CHARACTER*l is not the same as PL/M-86's BYTE or
Pascal-86's CHAR.

Example:

A FORTRAN function is defined as follows:

CHARACTER*8 FUNCTION CHFUN(A)
CHARACTER*(*)A

A PL/M-86 program can invoke this function using the following procedure
declaration:

CHFUN: PROCEDURE (RES,RLEN,ARG,ALEN)EXTERNAL;
DECLARE (RES,ARG) POINTER;
DECLARE (RLEN,ALEN) INTEGER;
END;

In this example. the character strings pointed to by RES and ARG are BYTE arrays
whose lengths are specified by the caller in RLEN and ALEN, respectively. Note
that any string lengths defined in the function for arguments and returned values are
ignored.

Use of 070 VAL with character strings is not supported in FORTRAN-86.

H.2.3.S Arrays and Structures as Arguments

FORTRAN-86 array arguments are fully compatible with those of PL/M-86 and
Pascal-86, as long as the component data types are compatible. The argument con
sists of a long pointer (two words) on the 8086 stack. FORTRAN-86 has no structure
or record data type except for LARGE ARRAY support.

NOTE

For multidimensional arrays, FORTRAN dimensions are specified in
reverse sequence from those of Pascal-86 and PL/M-86.

Use of the 070 VAL function is not supported for arrays.

H.2.3.6 Procedures as Arguments
Procedure- arguments are fully compatible between FORTRAN-86 and PL/M'-86
(LARGE model). They are passed by reference using a long pointer (two words) on
the 8086 stack. Use of the 070 VAL function is not supported.

Procedure arguments cannot be passed between Pascal-86 and FORTRAN-86.

H-5

Linking to Subprograms Written in Other Languages

H-6-

H .2.4 Further Lin kage Considerations

FORTRAN-86 subprograms always assume that the 8087 stack is completely empty
on entry to the subprogram. On return it will contain at most one value: the returned
value, if floating-point, on the top of the stack. PL/M-86 programs must not call
FORTRAN-86 functions within floating-point expressions or parameter lists, since
PL/M-86 does not conform to this convention.

H.3 Register Usage

A FORTRAN-86 subprogram assumes that all 8086 and 8087 registers and flags are
volatile and need not be saved/restored before returning, except for the following:

• SS stack-segment register (never changed)

• CS code-segment register (restored by RETURN)

• DS data-segment register (saved on entry, restored on return)

• BP stack-base pointer (saved on entry, restored on return)

• SP top-of-stack pointer (restored, and arguments deleted, on return)

The 8087 stack is assumed to be completely empty on entry, and will contain at most
one value on return (the returned value if floating-point).

Assembly-language subprograms called by FOR TRAN-86 programs are expected to
conform to these FORTRAN-86 conventions. It is recommended that you compile
sample FORTRAN-86 subprograms with the CODE control as an illustration before
writing your ASM-86 subprogram.

H.4 Stack Usage

Each 8086 stack position holds one word. Arguments passed by reference normally
take two words, the segment address and offset. Character arguments require a third
word to pass the length (value). Arguments passed by value take one, two, four, or
five words, depending on the data length. One-byte arguments have an undefined
high-order byte.

Figure H-l ~hows the 8086 stack layout for a FORTRAN-86 subprogram.

All the elements past the return address are pushed on the stack by the called pro
gram, and need to be saved only when they are changed by the called subprogram.
The arguments are removed on return using the RET n instruction. See the
8086/8087/8088 Macro Assembler Operating Instructions for 8086-Based Develop
ment Systems for further details of stack management.

H.S Initialization of the FORTRAN-S6
Run-Time Environment

If your application program consists of a main program written in PL/M-86 or
ASM-86 and one or more subprograms written in FORTRAN-86, you must explic
itly initialize FORTRAN-86's run-time environment. FOR TRAN-86 and Pascal-86
share the same environment.

Compiling a sample FORTRAN program using the CODE control illustrates this
initialization.

FORTRAN-86

FORTRAN-86 Linking to Subprograms Written in Other Languages

HIGH ADDRESS

POINTERO~
RETURN TO -

STACK , ---I-____ ~--------... }

CALLER FIRST ARGUMENT (BY REFERENCE)

"LENGTH FOR CHARACTER
ARGUMENTS ONLY

SEGMENT ADDRESS
OFFSET

LENGTH*

~------------I
SEGMENT ADDRESS

OFFSET

--~--.. ----------~ STACK
POINTER ON
SUBPROGRAM
ENTRY

STACK
POINTER
DURING
SUBPROGRAM
EXECUTION

LOW AODRESS

SEGMENT ADDRESS

SEGMENT ADDRESS

} LAST ARGUMENT (BY REFERENCE)

} RETURN ADDRESS (CS: OFFSET)

OLD DATA SEGMENT (OS)

OLD STACK BASE (BP)

}

LOCAL VARIABLES (REENTRANT ONLY)
& TEMPORARY STORAGE

} TEMPORARY STORAGE

NOTE: REFERENCE ARGUMENTS CAN BE REPLACED BY ACTUAL VALUES WHEN USING
%VAL FUNCTION.

Figure H-l. 8086 Stack Layout During Execution of a FORTRAN-86
Subprogram 121570-7

Each main program must execute the following two instructions before invocation
of any FORTRAN-86 subprogram:

CALL INITFP
CALL TQ_001

Execution of your program is terminated using:

The procedure TQ_OOI initializes global I/O tables and error-handling facilities for
both FORTRAN-86 and Pascal-86. If called more than once during program execu
tion, TQ_OOI will normally destroy the previous status of the I/O system. TQ_999
closes FORTRAN-86 and Pascal-86 files, and halts execution of the program.

INITFP initializes the floating-point environment. If your application does not per
form any floating-point operations, you should still include this call to allow for
future changes. See section 14.2.2 for a description of the libraries that resolve these
external references, and instructions on how to configure your object programs at
link time.

Figure H-2lists a sample ASM-86 program that calls FORTRAN-86 subprograms.

H-7

Linking to Subprograms Written in Other Languages FORTRAN-86

8086/8087/8088 MACRO ASSEMBLER ASME! 09/01/80 PAGE

SERIES-III 808618087/8088 MACRO ASSEMBLER '1.0 ASSEMBLY OF MODULE ASME!
OBJECT MODULE PLACED IN :Fl:ASHEX.OBJ
INVOCATION LINE CONTROLS: PRINT(:Fl:ASMEX.LS~) OBJECT(:Fl:ASHEI.OBJ)

Loe OBJ

0000
0002
00011
0008
oooe
0010

0012
00111

0000 ??

H-8

LINE

1
2
3

-5
6
7
8
9

10
11
12
13 1_

15
16
17
18
19
20
21
22
23 2_
25
26
27
28
29
30
31
32
33
3-
35
36
37
38
39
_0 +1
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

+1

SOURCE

NAME ASHEX
,
jThis progra~ demonstrates procedure linkage to FORTRAN-86,
jfocusing on the parameter paesin~ conventions.
,
jThis procedure takes four arguments for four parameters:
ia character variable, an integer*2 value, an integer (or logical)
jvariable, and an integer function.
jThey are pushed onto the stack in that order.
jThey must be popped at exit (with RET instruction).
,
;The prologue code saves BP, and points BP to the
jstructure defined below. After prologue executes,
jstack looks like this:

high memory

I (segment) I)
----PARH1-------}
I (offset) I)--->argument A
----PARH1-------)
I (size) I)

PlRH2 l---->argument B

I (segment) I}
----PARH3-------}--->argument C
I (offset) I}

I (segment) I}
----PARM_-------}--->argument FUMC
I (offset) I}

I old DS
---------------- leaved in prologue
I old BP
---------------- <---SP, BP point to here

,
$EJECT
jThe required structure definition is:

DSA STRUe

OLD_BP DW ? iPrologue code saves BP here.
OLD_DS DW ? ;Prologue code saves DS here.
RETURN DD ? jA dOUble word for FAR procedures.
PARH. DD ? ;Pointer to code of FUNC function ..
PARM3 DD ? ;Pointer to integer or logical variable.
PARH2 DW ? ;A FORTRAN-86 Integer*2 value.

; (parameter passing with UAL is not recommended)
LEN DW ? iA FORTRAN-86 Integer*2 variable. (Length)
PARM 1 DD ? (POinter to integer or logical value) ..

DSA ENDS

jlnside the subprogram, value arguments are accessed simply
jby using a structure reference, with BP as the base, and the
jappropriate field name as the qualifierj example: [BP].PARM3.
,
iNOTE: The structure fields for the arguments are declared in

reverse order in which they were pushed, due to the fact
that the 8086 stack grows towards low memory.

jThe saved value of BP and the return address must be declared
jin the structure, since these two items are pushed between the
jarguments and the spot pointed to by BP.

SUBPRG_DATA SEGMENT
A_LOCAL DB
SUBPRG_DATA ENDS

?
inot combinable
ilocal variables go here

Figure H-2. Sample ASM-86 Program

FORTRAN-86

8086/8087/8088 MACRO ASS~MBLER

LOC ,OBJ LINE

7Ii
75
76
77
78
79
80
81
82
83

0000 8_
0000 lE 85
0001 55 86
0002 8BEC 87
OOO!! B8---- R 88
0007 8ED8 89

90
91
92
93

0009 FF5C08 9-
95

OOOC 8b llE12 96
OOOF C_5E 14 97
0012 268A07 98
0015 8B5610 99
0018 C_5EOC 100
001B 268A1F 101

102
001E 5D 103
001F lF 10_
0020 CA1000 105

106
107
108
109
110

Linking to Subprograms Written in Other Languages

ASMEI 09/01/80 PAGE

SOURCE

SUBPRG_CODE SEGMENT ;not combinable

;SUBPRG does nothing except call the function PARM" and access
;the first three argu.ents. The prologue
;code saves BP, and then copies SP to BP, allowing the value
;arguments to be picked up conveniently with the BP register.

SUBPRG

PUBLIC
ASSOME
PROC
POSH
POSH
HOY
MOY
MOY

SUBPRG
CS:SUBPRG_CODE,
FAR
DS
BP
BP,SP
AI, SUBPRG_DATA
DS,AX

DS:SUBPRG_DATA

;Prologue code, preserve DS.
jPreserve BP for FORTRAN-86.

jAddress local data seg.
jwith DS.

jCall the function argument PARM4. Result is in the register(s).
;1 byte => AL, 2 byte => AX, 4 byte => DX:AX.

CALL

MOY
LES
MOV
HOY
LES
MOY

POP
POP
RET

SUBPRG ENDP
SUBPRG_CODE ENDS

END

[S1].PARM4

CX,[BP).LEN
BX,[BP).PARMl
AL,ES:[BX)
OX,(BP).PARM2
BX,[BP].PARM3
BL,ES:{BX]

jlndirect call to PARM4.

jLength of PARHl is at BP.12h.
;Ptr. to P~RMl is at BP.14h.
jFirst byte of PARH1.
JPARM2 is at BP+l0h.
jPtr. to PARH3 Is at BP+OCh.
jAssu~e PA~M1 is 1 byte (or 2 or 4).

BP
DS
16 ;Return and pop 16 parameter bytes.

2

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure H-2. Sample ASM-86 Program (Cont'd.)

H-9

APPENDIX I
RUN-TIME INTERFACE

This appendix describes the run-time system supporting FORTRAN-86. It also
describes how to run your application object code on your target system and run
time interrupt processing.

1.1 Run-Time Support Overview

The run-time libraries map language-dependent operations into the operating system
format. Figure 1-1 shows how your application program exists in your system with
the run-time libraries.

APPLICATION PROGRAM OBJECT CODE

RUN-TIME LIBRARIES I
OPERATING SYSTEM I
HARDWARE

121570-8

Figure 1-1. Application Program and Run-Time Libraries in User System

1.1.1 Application Object Code Independence

In order to allow your application program developed in an Intel operating system
environment to run in your 8086-based target system without modification, a
Universal Development System Interface (UOI) has been provided. UOI is the
specification for handshaking between programs (including run-time libraries) and
operating systems. The specification includes calling conventions and data types that
are defined as the primitives described in the Run-Time Support Manual for
iAPX 86,88 Applications.

You must provide a library, using the UDI specification, that sits between the
application (including run-time libraries) and the operating system as in figure 1-2.

APPLICATION PROGRAM OBJECT CODE

_~~:~~~:~ ____ J ____
UDI

SPECIFICATION
UDILIBRARY

OPERATING SYSTEM

HARDWARE

Figure 1-2. Use of UDI Library 121570-9

1-1

Run-Time Interface FORTRAN-86

1-2

APPLICATION PROGRAM OBJECT CODE

~ ~U~-~I~E~~~~I~S ____ J _____
UDI/SERIES-III OPERATING

UDI SYSTEM LIBRARY

SPECIFICATION LARGE.LlB

SERIES-I\I OPERATING SYSTEM

SERIES-I\I HARDWARE

Figure 1-3. UDI Libraries in Series III Development 121570-10

APPLICATION PROGRAM OBJECT CODE

UDI R~:::~~~~~~~ ___ j _________
SPECIFICATION iRMX86

OPERATING SYSTEM LIBRARY

URX LRG.LlB

iRMX 86 OPERATING SYSTEM

8086-BASED
TARGET SYSTEM

Figure 1-4. UDI Libraries with iRMX 86 Operating System 121570-11

Figure 1-3 shows the Series-III Development System UDI Libraries. Figure 1-4 shows
the iRMX 86 UDI Libraries.

Note that both the run-time libraries and the application object code may make UDI
calls to the Series-III operating system.

When you move your application from one operating system to another, link your
application program and run-time libraries to the UDI libraries to support the
operating system.

If you provide your own 8086-based operating system, you must write your own
UDI library for your operating system.

1.1.2 Low End Application

It is also possible to use a logical record interface instead of UDI for device drivers
or simple operating systems as shown in figure 1-6. (See section 1.3 for details.)

FORTRAN-86 Run-Time Interface

1.2 Run-Time Libraries

There are two types of run-time libraries: I/O and numeric support.

1.2.1 1/0 Run-Time Libraries

The FORTRAN-86 I/O Run-Time Libraries have the format F86RNx.LIB and
include:

FS6RNO.LIB
FS6RNl.LIB
FS6RN2.LIB

F86RN3.LIB
F86RN4.LIB

Formatting and I/O Libraries

Default Logical Record
System Libraries

1.2.2 N umerics Run-Time Libraries

The numerics libraries support the S087 (80S7. LIB) or the 8087 Emulator
(ESOS7.LIB). Common functions for high-level numerics processing are contained
in a separate library, CEL.LIB. In addition, S7ERH.LIB handles 8087 exceptions.

1.2.3 Summary

Figure 1-5 shows the run-time libraries and how they interface to the operating
system and hardware.

APPLICATION PROGRAM OBJECT COOE

NUMERICS
F86RNx.LIB RUN·TIME

LIBRARIES:

UOI --------- --SPECIFICATION
UOI LIBRARIES 8087.LlB OR

Ea087.LlB
CEL.LlB

O.S. 87ERH.LlB

8086·BASED TARGET SYSTEM EMULATOR OR
8087

Figure 1-5. I/O and Numerics Run-Time Libraries in System 121570-12.

1.3 Logical Record Interface

For information on Logical Record Interface, see the Run-Time Support for
iAPX 86, 88, 121776.

1-3

Run-Time Interface

1-4

1.4 Run-Time Interrupt Processing

The discussion in this section does not apply to programs that run in an iRMX 86
environment. To implement run-time interrupt processing on an iRMX 86-based
system, your programs must invoke iRMX 86 system calls. Refer to the iRMX 86
Nucleus Reference Manual for more information.

There are two interrupt pins on the 8086 processor: the "non-maskable interrupt"
pin (NMI) and the "maskable interrupt" pin (INTR). The "non-maskable inter
rupt" cannot be ignored by the processor, whereas the "maskable interrupt" can be
enabled or disabled.

Each "maskable interrupt" has an interrupt number that designates the type of
interrupt. Interrupt numbers range from 0 to 255. Interrupt number 0 is reserved for
integer divide by zero errors. Interrupt numbers 1 through 3 are reserved for single
stepping, "non-maskable interrupts," and the INT instruction, respectively. Inter
rupt number 4 is reserved for integer overflow, and integer number 5 is reserved for
compiler range checks. The run-time system uses interrupts 16 through 31. Interrupt
number 16 is reserved for emulated real arithmetic exceptions, and interrupt number
17 is reserved for other compiler checks. For interrupts reserved for the Series-III
system, see the Inte!lec Series III Microcomputer Development System
Programmer's Reference Manual.

You can use any other interrupt numbers for your own procedures. However, if you
are overriding the default procedures associated with a specific number, you must
use that number for you procedure.

An interrupt occurs when the CPU receives a signal on its "maskable interrupt" pin
from some peripheral device. The CPU only responds, however, if interrupts are
enabled. The "main program prologue" (code inserted by the compiler at the
beginning of the main program) enables interrupts.

If interrupts are enabled, the following actions take place:

1. The CPU issues an "acknowledge interrupt" signal and waits for the
interrupting device to send an interrupt number.

2. The CPU flag registers are placed on the stack (occupying two bytes of stack
storage).

3. Interrupts are disabled by clearing the IF flag.

4. Single stepping is disabled by clearing the TF flag.

5. The CPU activates the interrupt procedure corresponding to the interrupt
number sent by the interrupting device.

You can specify FORTRAN-86 procedures as interrupt procedures using the
INTERRUPT control (11.4.10). You can assign an interrupt number to each inter
rupt procedure using the SETINT built-in procedure (Chapter 6). These interrupt
numbers form an interrupt vector, that is, an absolutely-located array of entries
beginning at location O. Thus, the nth entry is at location j- times n, and contains the
address of the interrupt procedure associated with interrupt number n. Each entry is
a four-byte val)le containing a segment address and an offset.

The CPU uses the interrupt vector entry to make a long indirect call to activate the
appropriate procedure. At this point, the current code segment address (CS register
contents) and instruction offset (lP register contents) are saved on the stack.

If an interrupt procedure terminates normally, the interrupt mechanism and
registers are reset to the condition that existed prior to the activation of the
procedure.

Figure 1-6 shows the stack layout at the point where the procedure is activated.

FORTRAN-86

FORTRAN-86 Run-Time Interface

HIGHER
LOCATIONS

~ffi I ul-
«z
I-=>
(1)0

U

LOWER
LOCATIONS

FLAG REG.CONTENTS

RETURN SEGMENT ADDRESS

RETURN OFFSET

-

} 2 B YTES

} PR RE
PR

ESENT
GARDLESSOF
OGRAM SIZE

STACK POINTER

121570-14

Figure 1-6. S086 Stack Layout When Interrupt Procedure Gains Control

1.4.1 Interrupt Procedure Preface and
Epilogue

At the beginning of each interrupt procedure, before the usual procedure prologue
inserted by the compiler, the compiler inserts an interrupt procedure preface that
performs the following actions:

1. Push the ES register contents onto the stack.

2. Push the DS register contents onto the stack.

3. Load the DS register with a new data segment address taken from the current
code segment (i.e., the segment containing the interrupt procedure).

4. Push the AX register contents onto the stack.

5. Push the ex register contents onto the stack.

6. Push the DX register contents onto the stack.

7. Push the BX register contents onto the stack.

S. Push the SI register contents onto the stack.

9. Push the DI register contents onto the stack.

Figure 1-7 shows the stack layout at the point where the procedure prologue starts.

HIGHER
LOCATIONS

a::
w
I
z
=>
o
u
~
u
«
l
II)

LOWER
LOCATIONS

FLAG REG. CONTENTS

RETURN SEGMENT ADDRESS

RETURN OFFSET

ES REG. CONTENTS
OS REG. CONTENTS
AX REG. CONTENTS
CX REG. CONTENTS
DX REG. CONTENTS
BX REG. CONTENTS
SI REG. CONTENTS
DI REG. CONTENTS

........

} 2 BY TES

} PRE REG
SENT
ARDLESSOF
GRAM SIZE PRO

>-~F U STATE
ORMATION

STACK POINTER

Figure 1-7. SOS6 Stack Layout After Interrupt Procedure Preface and Before
Procedure Prologue 121570-15

1-5

Run-Time Interface FORTRAN-86

1-6

10. Perform a call to transfer control to the normal procedure prologue.

Figure 1-8 shows the stack layout after the procedure prologue is executed and the
code compiled when the interrupt procedure body starts executing.

When the interrupt procedure body finishes, a RET instruction returns execution to
the interrupt procedure epilogue, which continues with the following steps.

11. Pop the stack into the DI register.

12. Pop the stack into the SI register.

13. Pop the stack into the BX register.

14. Pop the stack into the DX register.

15. Pop the stack into the ex register.

16. Pop the stack into the AX register.

17. Pop the stack into the DS register.

FLAG REG. CONTENTS

RETURN SEGMENT ADDRESS

RETURN OFFSET

OLD ES REG. CONTENTS

OLD OS REG. CONTENTS

OLD AX REG. CONTENTS

OLD CX REG. CONTENTS

OLD DX REG. CONTENTS

OLD BX REG. CONTENTS

OLD SI REG. CONTENTS

OLD DI REG. CONTENTS

OLD STACK MARKER (BP REG.)

DISPLAY (1)

LOCAL VARIABLES · · ·
THIS SPACE MAYBE USED

DURING PROCEDURE EXECUTION · · · I

"-----

}2B YTES

} CUR

SPATENTRY

SP WILL CHANGe
DURING PROCEDURE
EXECUTION

BP

RENT BPVALUE

SPAFTERINTERRUPT
PROCEDURE
PROLOGUE

121570-16

Figure 1-8. 8086 Stack Layout During Execution of Interrupt Procedure Body

FORTRAN-86 Run-Time Interface

18. Pop the stack into the ES register.

19. Execute an IRET instruction to return from the interrupt procedure. This
restores the IP, CS, and flag register contents from the stack.

At this point the stack is restored to the state it was in before the interrupt occurred,
and processing continues normally.

The INTERRUPT compiler control allows you to associate an interrupt number
with an interrupt procedure during compile-time. However, you can declare pro
cedures as interrupt procedures without associating them to interrupt numbers
creating the interrupt vector at a later time.

Similarly, you can have a library of interrupt procedures that are not yet associated
with an interrupt vector. You can then link any program to these procedures with a
separately created interrupt vector.

NOTE

An interrupt procedure that uses any of the intrinsic functions EXP,
ALOG, SIN, COS, TAN, ARCSIN, ARCCOS, or ARCTAN (functions in
the CEL.LIB run-time library) must allocate 50 bytes of 8086 stack space
for each level of recursion.

1.4.2 Interrupt Handling for Real Arithmetic
Errors

The run-time system (8087 emulator or 8087 processor interface libraries) use inter
rupt 16 for real arithmetic error handling. If you are using the emulator, you must
reserve interrupt 16 for that purpose. If you are using the 8087 processor, you must
connect either (1) the 8087 processor to the 8086 interrupt 16, or (2) the 8087 pro
cessor to some other interrupt, then link in an assembly language routine to redirect
the interrupts from the 8087.

If you are connecting the 8087 processor to an interrupt other than 16, assemble an
8086/8087/8088 assembly language routine like the one given in figure 1-9, and link
it in with your program and the interface libraries. The routine in figure 1-9 may be
used if the 8087 processor is wired to interrupt 7.

You may modify the routine in figure 1-9 for interrupt n (n must be greater than or
equal to 4) simply by changing the SEGMENT and ORG directives. Calculate the
operands for ORG and SEGMENT by first calculating the location of the

INT 7 SEG

INT 7 SEG

CONVERT PROC S
CONVERT-PROC

CONVERT PROC
CONVERT-PROC S

SEGMENT
ORG
DO
ENDS

SEGMENT
PROC
INT
IRET
ENDDP
ENDS

AT 1H
OCH
CONVERT PROC

FAR
16

Figure 1-9. Routine to Redirect Interrupts

1-7

Run-Time Interface

1-8

CONVERT_PROC procedure (4*nH), and then using the rightmost hexadecimal
digit for the OR.O operand and the rest of the hexadecimal digits for the SEGMENT
operand.

Since the routine in figure 1-9 does not call any external modules, its position in the
LINK86 argument list does not matter. Assuming that your compiled
FORTRAN-86 program is called MYMODl.OBJ, and the assembled routine to
redirect interrupts is called INT7 .OBJ, you could use the following LINK86
invocation on a Series III development system:

Since the 8087 processor activates the real arithmetic interrupt number when a real
arithmetic exception occurs, you can override the default exception handler by pro
viding your own interrupt procedure for the real arithmetic interrupt number. The
8087 exception conditions are described in Chapter 15.

NOTE
The 8087 processor and emulator handle exceptions in the same manner.
However, an 8086/8087 implementation may include some external inter
rupt masking device such as an 8259A. In this case, the emulator cannot
simulate the function of the 8259A. When using the 8087 emulator~ if an
exception that is not masked on the emulated 8087 occurs, and the 8086
interrupt is enabled, a real arithmetic interrupt (interrupt 16) will occur
after the emulation of any 8087 instruction. In other words, the 8087
emulator assumes that the 8259A interrupts are enabled.

FORTRAN-86

APPENDIX J
ADDITIONAL INFORMATION FOR

SERIES III OPER:ATIN'G SYSTEM USERS

This appendix contains information that is specific to the InteUec Series III
Microcomputer Development System. It covers the following areas:

• Program development environment

• Compiler invocation and file usage

• Sample link, locate, and execute operations

• Examples of FORTRAN-86 compiler invocation with a Series III system

• Interrupt handling on the Series III

• Related publications

This appendix assumes that you have an Series III system up and running, and that
you have a suitable copy of the FORTRAN-86 compiler. Chapter I of this manual
leads you through a complete program development sequence using a sample
FORTRAN program supplied with the compiler. Details on the operating system
environment are provided in the Intellec Series III Microcomputer Development
System Console Operating Instructions (121609).

J.1 Program Development Environment

To run the FORTRAN-86 Compiler in the Series III system, you must have the
following hardware and software:

• Intellec Series III development system

• Intellec Series III operating system (RUN command)

• 192K of RAM memory (standard with the Series III system)

• At least one storage device. (The product is delivered on a flexible disk;
therefore the installation of the compiler always requires a single- or
double-density disk drive.)

A system with a printer is recommended for producing hard-copy output listings.
This system may be separate from the system used to compile programs.

J.2 Compiler Installation

Compiler installation is described in Chapter 1 of this book.

J.3 Program Disk Contents

The Series III FORTRAN-86 software package includes one double density and one
single density disk. Each of these disks contains the following files:

FORT86.86
F86RNO.LIB
F86RNl.LIB
F86RN2.LIB
F86RN3.LIB
F86RN4.LIB

RTNULL.LIB
CEL87.LIB
EH87.LIB
8087.LIB
87NULL.LIB

1-1

Additional Information for Series III Operating System Users FORTRAN-86

J-2

The file named FORTS6 contains the FORTRAN-S6 compiler. The files
F86RNO.LIB, F86RNI.LIB, FS6RN2.LIB, FS6RN3.LIB, F86RN4.LIB,
RTNULL.LIB, S087.LIB, CEL87.LIB, EH87.LIB, and 87NULL.LIB contain the
run-time support libraries and modules. The remaining programs with the extension
.FTN are example programs described in Chapter 10 of this manual and section J.8
of this appendix.

J.4 Compiler Operation

The FORTRAN-S6 compiler is a program that translates your FORTRAN
instructions into object code modules that can be linked and located for execution.

You create a FORTRAN program by typing instructions into a file using the
CREDIT text editor, and submitting the file to the FORTRAN-S6 compiler. The file
you submit is called a source file, and the file containing the compiled program is
called an object file. (The content of the object file is also known as object code.) In
FORTRAN-86 you can compile parts of a program, and each separate compilation
is known as an object module.

The following discussions assume that you have a Series III system up and funning,
and that you have a suitable copy of the FORTRAN-86 compiler. Chapter 1 of this
manual leads you through a complete program development sequence using a sam
ple FORTRAN program supplied with the compiler. Details on the operating system
environment are provided in the Intellec Series III Microcomputer Development
System Console Operating Instructions.

J.4.1 Invoking the Compiler

Invoke the FORTRAN-86 compiler with the RUN command. The RUN command
loads and executes any program specifically in the 8086 environment for the
Series III system. The following is a sample compiler invocation:

RUN FORT86 PROG1 .SRC XREF<cr>

The name FORT86 is the name of the compiler as supplied, without the extension
(i.e., the full name is FORT86.86, but you don't supply the .S6 extension in the
invocation line). PROGl.SRC is the name of the source file that contains the
FORTRAN instructions. XREF is a primary control that tells the compiler to
generate a cross-reference listing of source program identifiers (XREF is described
in Chapter 11). The XREF control, like all other compiler controls, is optional for
the invocation line.

The above example assumes that the compiler and the source program PROG 1.SRC
reside on drive 0 (:FO:). If PROGI.SRC is on drive I, the invocation line is:

RUN FORT86 : F1: PROG1. SRC XREF<:r>

The invocation line takes this general form:

RUN [:Fd:]FORT86 [:Fd:]source TO [controls]

where

• RUN is the name of the command to execute the compiler.

• :Fd: specifies which directory FORT86.86 and/or source resides in, if not in
directory :FO:. The source file does not have to be in the same directory as the
compiler. .

• FORTS6 is the name you use for the compiler FORT86.86.

FORTRAN-86 Additional Information for Series III Operating System Users

• source is the name of the source file containing the FORTRAN program.

• controls are optional primary or general compiler controls described in
Chapter 11. You can have many controls in the invocation line with a space
between each control, and you can extend the invocation line by using the
ampersand (&) as a continuation character to replace a space.

• <cr> stands for use of the RETURN key on the keyboard.

The following are some examples:

RUN :F1:FORT86 :F1:MYPRCG PRINTC:LP:) TITLEC:TEST24:)<cr>

In this example, both FORT86.86 and MYPROG are on drive 1. PRINT and TITLE
are compiler controls.

RUN FORT86 :F1 :KLUDGE.SRC NOPRINT<cr>

In this example, FORT86.86 is on drive 0, but KLUDGE.SRC, the source program,
is on drive 1. NOPRINT is a compiler control that prevents all printed output
(except error messages) usually generated by the compiler.

NOTE

The RUN command assigns the extension 86 to the filename it executes, if it
is specified without an extension. You must specify the filename's extension
if it is not 86. If you specify a filename that has no extension, specify a
period (.) after the name in the RUN invocation line. For example, if you
rename FORT86.86 to COMPIL, include a period after the name COMPIL
(Le., COMPIL.) when you invoke it using RUN. If you choose a new name
with a new extension, specify both the new name and the new extension on
the RUN invocation line.

J.4.2 Files Used by the Compiler

J .4.2.1 Input Files

You supply the FORTRAN source program name for source in the invocation line
(see the previous section). You can also include other source files by using the
INCLUDE control, as described in Chapter 11. These files must be standard ISIS
files containing text of FORTRAN instructions.

J .4.2.2 Output Files

By default, the compiler produces two output files, unless you use specific controls
to suppress or redirect them: the listing file and the object file. Also by default, error
messages appear in the listing file.

The listing file (sometimes called the PRINT file) contains a listing of the source pro
gram, plus any other printed output generated by the compiler as specified by the
listing selection controls described in Chapter 11. The object file (sometimes called
the object code file or object module) contains the actual code in object module for
mat, which can eventually be executed (after you use the linking and locating
facilities described in Chapter 14. These files are described in more detail in
Chapter 13.

The listing file and the object file have the same name as the source file, except that
the listing file has the extension LST, and the object file has the extension OBJ. The
files are created if they do not exist, or overwritten if they do exist, and they appear
in the same directory as the source file. You can optionally change the names and! or
directories for the listing and object files by using the PRINT and OBJECT
controls, respectively (described in Chapter 11).

J-3

Additional Information for Series III Operating System Users

For example, if you invoke the compiler using the line:

RUN FORT86 :F1 :MYPROG<cr>

the compiler creates (or overwrites) the file MYPROG.LST in directory 1 to contain
the listing, and the file MYPROG.OBJ in directory 1 to contain the object module.

You can optionally direct certain sections of printed output to files other than the
default listing file described above. In addition to using the PRINT control to
specify another file as the listing file, you can specify a different file to receive error
messages by using the ERRORPRINT control. Chapter II gives details on the use of
these controls.

J .4.2.3 Work Files

The compiler creates and uses work files during its operation, and deletes them at
the completion of compilation. These files are designated :WORK: files and they
cannot conflict with your files.

The Series III operating system provides a mechanism to select the directory where
work files can be temporarily stored. The default directory is directory 1 (:FI :), but
you can select another' directory using the RUN WORK command, as in this
example:

RUN WORK :FO:<cr>

This example selects directory :FO: as the directory to hold work files.

J .4.3 Compiler Messages

When you invoke the compiler, it displays the sign-on message:

SERIES-III FORTRAN-86 COMPILER, V~y

where

x is the version number of the compiler

y is the change number within the version.

When a compilation is finished, the compiler terminates with the message:

m TOTAL ERRORS DETECTED
n TOTAL WARNINGS DETECTED

where

m is the total number of errors detected.

n is the total number of warnings detected.

J .4.3.1 Insufficient Memory Error Messages
The compiler issues a warning message when the compiler dictionary overflows onto
external memory. Along with this warning, the compiler indicates the point where
the overflow occurred:

FORTRAN-86

DICTIONARY OVERFLOW ONTO WORK FILE WHILE PROCESSING SYMBOL symbol

Additional information will appear in the PRINT file.

J-4

FORTRAN-86 Additional Information for Series III Operating System Users

J.5 Linking, Locating, and Execution on the Series III

The linker (LINKS6) links object modules and outputs a file. The locator (LOCS6)
assigns absolute addresses to modules to locate them in actual memory. The loader
(RUN) loads and executes the final program. Additionally, the LIBS6 utility enables
you to create and maintain your own library file of compiled (or translated) object
modules for use with other programs.

The following is a list of the software provided for building executable
FORTRAN-S6 programs with a Series III development system:

FORTS6.S6 - the FORTRAN-S6 compiler

FS6RNO.LIB, FS6RNI.LIB, FS6RN2.LIB, FS6RN3.LIB, FS6RN4.LIB, and
RTNULL.LIB - the run-time support libraries

LARGE.LIB - the Series III operating system interface library

CELS7.LIB - the floating-point intrinsic function library

EHS7.LIB - the floating-point exception handler library

S087.LIB - the SOS7 numeric processor extension (NPX) interface library

ESOS7, and the ESOS7.LIB - the S087 Emulator and interface library

87NULL.LIB - the support library that resolves floating-point references if no
floating point arithmetic is used

LINKS6, CREFS6.S6, LOCS6, LIBS6, and OHS6.86 - the S086-based utilities

J .5.1 Sample Link Operations

The following link operation takes two object modules, MYMODl.OBJ and
MYMOD2.0BJ, links them together, then links in the FORTRAN run-time libraries
to form the output module MYPROG.86. To extend the LINK86 command to the
next line without transmitting the command, type the ampersand (&) character
before the RETURN key, and continue typing the command on the next line (do not
type the ampersand character between letters of a filename). The continued line will
start with an angle bracket (».

The linker first reads MYMODl.OBJ and MYMOD2.0BJ for external references
and resolves those references. Then, the linker attempts to resolve any more external
references in the modules by looking at the public symbols in the libraries
FS6RNO.LIB, FS6RNI.LIB, F86RN2.LIB, FS6RN3.LIB, FS6RN4.LIB,
87NULL.LIB, and LARGE.LIB. Use the S7NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG .S6. This module can
be loaded and executed on the Series III.

1-5

Additional Information for Series III Operating System Users

1-6

When the modules MYMODI.OBJ and MYMOD2.0BJ do perform real arithmetic,
link them with the SOS7 Numeric Data Processor or the SOS7 Emulator. The LINKS6
command when using the emulator is:

To support real arithetic when using the 80S7, replace E80S7 and ESOS7.LIB with
80S7.LIB. EHS7.LIB provides exceptions handling support for the 80S7 Numeric
Data Processor or its emulator. This is the link sequence that should be used in a
full-featured operating system. The BIND option used with LINKS6 provides an
output file that is ready to be executed (if the operating system has an L TL loader).

J .5.2 Examples

The following examples show how to execute FORTRAN-86 programs in different
environments.

1. To execute a FORTRAN-86 program in a bare machine (or minimal operating
system) environment link in the run-time libraries F86RNO.LIB, FS6RN I.LIB,
and FS6RN2.LIB. If the program requires numerics support and you are using
the 8087 microprocessor, the link command is

>
>

In this example, string and 32-bit integer operations are fully supported.
FORTRAN input/output is not supported; if used, LINK86 will generate an
UNRESOLVED EXTERNALS warning.

When an 8087 exception occurs during program execution, RTNULL.LIB halts
execution without an error message. Since there are no external references
between RTNULL.LIB and EHS7.LIB, the 8087 exception handler will never be
invoked. Consequently, do not use RTNULL.LIB when S087 exceptions are
expected.

Note that the BIND option was not used. In this environment the programs will
usually be located using LOC86 and burned into ROM, or loaded with a simple
absolute loader.

3. This example links a program using only internal 110.

4. This example links a program that does internal 110 and floating-point
arithmetic with 8087 emulator support.

J .5.3 Sample Locate Operations

The following is a sample locate operation using the default settings for controls:

RUN LOC86 SAMP L.1 . LN K<c r>

FORTRAN-86

FORTRAN-86 Additional Information for Series III Operating System Users

This sample locate operation binds the logical segments of SAMPL1.LNK to
addresses beginning at 00200H (H is for hexadecimal), the default. The output
module is called SAMPL1 (the root name of the input module without the LNK
extension). Unless you specify a TO clause, the output module (the absolutely
located program) will always have the same root name as the input module.

The following is a sample locate operation using the ORDER and ADDRESSES
controls:

In the invocation line, you can use the ampersand character (&) to continue a long
line without executing it.

This sample locate operation collected together the logical segments by class names
in the order specified in the ORDER control. The locater then assigned addresses as
specified in the ADDRESSES control to the logical segments collected into the
CODE and STACK classes. The DATA class received its address assignment from
the default algorithm.

J .5.4 Executing Programs

The output module from the locater can be loaded and executed in the 8086 environ
ment by using the Series III RUN command. Position-independent (PIC) and load
time locatable (L TL) modules produced by LINK86 with the BIND option can also
be loaded and executed by the RUN command. These modules could also be used as
input to the DEBUG-86 debugger or a similar debugging tool.

To run correctly, a program must be complete, i.e., it must contain all modules
necessary to run. For example, in order to run in the Series III 8086 environment
with run-time support, a program must contain modules from the run-time support
libraries. To run in a foreign environment, you must supply your own run-time
support and follow the guidelines in Chapter 14 and Appendixes Hand K.

To run a complete program in the Series III 8087 environment, simply use the RUN
command. In the example below, both the RUN program and the SAMPLI pro
gram are in directory :FO:. To refer to any program ih a different directory, specify
the directory in the format :Fd:.

RUN SAMPL1.<cr>

Note that in the example, SAMPLI appears with a period at the end. This period
tells the RUN command not to look for an .86 extension. If the program were
named "SAMPL1.86", you would not put a period at the end:

RUN SAMPL1<cr>

If your program's name has an extension other than .86, you must specify the exten
sion with the name. If its name has an .86 extension, you need not specify it. If its
name has no extension, you must specify the final period.

NOTE

If you use the BIND option with LINK86 on a module that is ready to be
processed by the RUN loader, and you do not specify its name in a TO
clause, the linker will use the root name (and device) of the first file
specified as input, but will not append the LNK extension.

. J-7

Additional Information for Series III Operating System Users

1-8

J.6 Series III - Specific Compiler Controls

This appendix includes a fold-out page for system-specific examples of most of the
FORTRAN-86 compiler controls. This page is designed to be opened out and used in
conjunction with the corresponding text in Chapter 10.

J.7 Interrupt Handling on the Series III

The Intellec Series III maps the eight Multibus interrupt lines (INTO through INT7)
onto interrupt vector entries numbered 56 through 63; therefore, your application
may not use these for software interrupts. Interrupt vector entries available for user
software include 64 through 183. Refer to the Inte/lec Series III Microcomputer
Development System Programmer's Reference Manual for details.

J.7.1 8087 Support

You may incorporate an 8087 Numeric Data Processor in your Series III by install
ing the iSBC 337 Multimodule Numeric Data Processor. Refer to the iSBC 337
Multimodule Numeric Data Processor Hardware Reference Manual (142887) for
more information. You must also incorporate in your application a software
procedure that helps handle 8087 interrupts.

When the iSBC 337 Multimodule NDP is installed in a Series III, the interrupt out
put of the 8087 (lNT) is connected to the IR7 pin of the 8259A Programmable Inter
rupt Controller, which associates the 8087 interrupt with interrupt type number 63.
The run-time system, however, expects the 8087 interrupt to arrive at interrupt
number 16. To translate from interrupt 63 to interrupt 16, you must link to your
applications programs an interrupt procedure such as the one shown in figure J -1.

If necessary, the run-time system writes, at entry 16 of the system interrupt vector,
the address of the interrupt procedure that is to process 8087 interrupts. To find the
location of that interrupt procedure, the run-time system calls a procedure of the
form

TQ$WHERES$TRAP87:
PROCEDURE (handLerptrptr) WORD REENTRANT PUBLIC;
DECLARE handLerptrptr POINTER;

END;

The parameter handlerptrptr points to a four-byte area where
TQ$WHERES$TRAP87 stores a long pointer. This pointer contains the address of
the procedure that handles the 8087 interrupts. If TQ$WHERES$TRAP87 returns a
zero handlerptrptr is undefined.

The WORD returned by TQ$WHERES$TRAP87 contains either the value 16,
which is the number of the interrupt vector entry associated with the 8087, or zero,
which indicates that the operating system has already set up an interrupt procedure
for handling 8087 interrupts.

The default version of TQ$WHERES$TRAP87 in the run-time libraries returns a
value of zero. However, the Series III Operating System does not initialize the inter
rupt vector for 8087 interrupt handling. You must supply a version of
TQ$WHERES$TRAP87 (similar to that in J.l) that associates interrupt 16 with an
8087 interrupt procedure.

FORTRAN-86

FORTRAN-86 Additional Information for Series III Operating System Users

SERIES-III FORTRAN-S6, V2.0

Source File: :F1:S1II87.SRC
Object File: :F1 :SIIIS7 .OBJ
Controls Specified: <none>.

STHT LINE NESTING
1 1 a a

2 20
3 21
4 22

24
25

28

30

9 32
9 33

10 34
11 35
12 36

13 38
14 39
15 40

16 48

16 50

17 52
18 53
19 54

20 56

21 62

22 66
23 67

Summary Information:

PROCEDURE
TQVHEIIESTRAPS7
HY8087TRAP
-CONST III CODE-

Total

67 Lines Read.
o Errors Detected.

SOURCE TEXT: :F1 :SIIIS7 .SRC
(. In order to use the 80S7 with the Series-III, you must supply
an interrupt handler to field the hardware interrupt generated
by the SOS7 -> S259A. On the Series-III board, the iSBC-337
multi-module connects the S087 interrupt to level 7 on the on-board
8259A. The Series-III initialization sequence maps the S259A
interrupts to interrupt numbers 56 to 63, so level 7 is at
interrupt 63.

An interrupt handler for level 63 is supplied which clears the
8259A to allow it to accept subsequent S087 interrupts, and
also enables the SOS6 interrupt mask disabled (by the hardware) at
entry to the interrupt handler. This combination must be done before
invoking the "common" numeric trap handler (common to both the
hardware S087 and the software emulator), SO that the trap
handler can use the S087. Otherwise, if an 80S7 exception occurred
in the trap handler, the processor would hang up; since
either the 8259A or the S086 would hold the 8087 interrupt pending. *)

MODULE HYSIIISOS7CONFIG;
PUBLIC MYSIII8087CONFIG;

TYPE ARBPTR = AINTEGER; (* Actually a pointer to the trap routine. *)
FUNCTION TQVheresTrap87(VAR TrapHandlerAddress: ARBPTR): VORD;

PUBLIC UTS;
$INTERRUPT CTQ TRAP87)

PROCEDURE TQ_TRAPS7;

PRIVATE HYSIII80S7CONFIG;

$INTERRUPT(Hy8087Trap=63)
PROCEDURE Hy8087Trap;
BEGIN

OUTBYT (OCOH, 20H); (* Send End Of Interrupt to 8259A .)
EnableInterrupts; (* Allow S086 interrupts to be accepted .•)
Causelnterrupt(16); (* Transfer to "common" 80S7 trap handler *)

END;

FUNCTION TQVheresTrapS7(VAR TrapHandlerAddress: ARBPTR): VORD;
TYPE Interrupts = (IRO, IR1, lR2, IR3, IR4, IR5, IR6, IR7);

VAR

BEGIN

(* Define a SET containing 8 elements, one for each interrupt
level on the 8259A. Pascal-86 will map this set to a byte,
with elements mapped to bits right-to-Ieft in the
byte. This allows us to use SET operations
to enable level 7, where the 8087 is attached on the
SBC 86/12A board .•)

InterruptHask: SET OF Interrupts;

c· Clear the leftmost bit CIR7), to enable level 7 ••)
DisableInterrupts;
INBYT(OC2H, InterruptHask);
OUTBYTCOC2H, InterruptHask • [IRO •• IR6]);
EnableInterrupts;

(* Set up interrupt level 16 as the 80S7 interrupt handler.
This is done in this routine, with the Setlnterrupt procedure,
so that we don't have to pass back the address of TQ Trap87,
since this is difficult to do in Pascal. *) -

SetlnterruptC16, TQ_Trap87);

C· Return value indicates to the run-time system which interrUpt
table entry must be initialized. If set to zero, this indicates
that no entry is to be initialized ••)

TQVheresTrap87 := 0;
END;

OFFSET
0024H
OOOOH

CODE SIZE
003FH 63D
0024H 360
OOOOH 00

DATA SIZE STACK SIZE
0014H 200
0026H 3SD

0063H 99D OOOOH OD 003AH 580

43' Utilization of Hemory.

Figure J -1. Series III 8087 Interrupt Initialization

1-9

Additional Information for Series III Operating System Users

1-10

Intel provides an interrupt procedure (with the PUBLIC identifier TQ_ TRAP87)
that fields 8087 interrupts and calls the current exception handler. You may use the
address of TQ_ TRAP87 in your own version of TQ$WHERES$TRAP87. Link
your version of TQ$WHERES$TRAP87 before the run-time libraries, so that the
linker fetches your version in place of the default version. Figure 1-1 shows an exam
ple of a TQ$WHERES$TRAP87 procedure written in Pascal-86 that uses the
address of TQ_ TRAP87.

This procedure is supplied as SIl187.0Bl on the release diskette. To use it, you must
link it in before the run-tim~ libraries. For example:

>
>

RUN LINK86 MYMOD1.0BJ, MYMOD2.0BJ, SIII87.0BJ, & <cr>
F86RNO.LIB, F86RN1. LIB, F86RN2.LIB, F86RN3.LIB, & <cr>
F86RN4.LIB, 8087.LIB, LARGE. LIB to MYPROG.86 BIND <cr>

NOTE
1 he Series III Operating System is designed for use by a single operator and
supports neither reentrancy nor multitasking.

J.8 Related Publications

Below is a list of other Intel publications you are likely to need to use
FORTRAN-86. Most of them describe related Intel products. The manual order
number for each publication is given immediately following the title.

For a list of non-Intel publications that may be useful to you, see the Bibliography at
the end of this manual.

FORTRAN-86 Pocket Reference, 121571

A companion to this manual, providing summary information for quick
reference.

A Guide to the Intellec Series III Microcomputer Development System, 121632

A guide to the use of the Series III and associated tools as a total development
solution for your iAPX 86 and iAPX 88 microcomputer applications. This
tutorial manual takes you through hands-on sessions with the Series III
operating system, the CREDIT text editor, the FORTRAN-86 compiler, the
iAPX 86, 88 Family Utilities, the DEBUG-86 applications debugger, and the
ICE-86A In-Circuit Emulator.

Intellec Series III Microcomputer Development System Product Overview,
121575

A summary description of the set of manuals that describe the Intellec Series III
development system and its supporting hardware and software. This brief
manual includes a description of each manual related to the Series III, plus a
glossary of terms used in the manuals.

Intellec Series III Microcomputer Development System Console Operating
Instructions, 121609

Intellec Series III Microcomputer Development System Pocket Reference,
121610

Instructions for using the console features of the Series III, including the
DEBUG-86 applications debugger. The Console Operating Instructions pro
vides complete instructions, and the Pocket Reference gives a summary of this
information.

FORTRAN-86

FORTRAN-86 Additional Information for Series III Operating System Users

Intellec Series III Microcomputer Development System Programmer's
Reference Manual, 121618

Instructions for calling system routines from user programs for both
microprocessor environments, MCS-80/85 and iAPX 86, in the Series III.

ISIS-II CREDIT CR T-Based Text Editor User's Guide, 9800902
CREDIT CRT-Based Text Editor Pocket Reference, 9800903

Instructions for using CREDIT, the CRT-based text editor supplied with the
Series III. The User's Guide provides complete operating instructions, and the
Pocket Reference summarizes this information for quick reference.

iAPX 86,88 Family Utilities User's Guide, 121616
iAPX 86,88 Family Utilities Pocket Reference, 121669

Instructions for using the 8087-based utility programs LINK86, LIB86, LOC86,
CREF86, and OH86 in 8086-based development environments to prepare com
piled or assembled programs for execution. The User's Guide provides complete
operating instructions, and the Pocket Reference summarizes this information
for quick reference.

ASM86 Language Reference Manual, 121703
ASM86 Macro Assembler Operating Instructions, 121628
ASM86 Macro Assembler Pocket Reference, 121674

Instructions for using the ASM86 in 8086-based development environments.
The Language Reference Manual gives a complete description of the assembly
language; the Operating Instructions gives complete instructions for operating
the assembler; and the Pocket Reference provides summary information for
quick reference. You need these publications if you are coding some of your
routines in assembly language.

PLIM-86 User's Guide, 121636
PLIM-86 Pocket Reference, 121662
Pascal-86 User's Guide, 121540
Pascal-86 Pocket Reference, 121541

Instructions for using the PL/M and Pascal-86 languages and compilers in
iAPX 86-based development environments. The User's Guide gives a complete
description of the language and compiler (or translator), and the Pocket
Reference provides summary information for quick reference. You need these
publications if you are coding some of your programs in PL/M-86 or Pascal-86.

PSCOPE High-Level Program Debugger User's Guide, 121790

Instructions for using PSCOPE, the symbolic debugger for high-level language
programs. The User's Guide provides complete operating instructions.

ICE-86A In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800714
ICE-86A Pocket Reference, 9800838
ICE-88 In-Circuit Emulator Operating Instructions for ISIS-II Users, 9800949
ICE-88 Pocket Reference, 9800950

Instructions for using the ICE-86A and ICE-88 In-Circuit Emulators for hardware
and software development. The Operating Instructions manuals give complete user
descriptions of the In-Circuit Emulators, and the Pocket Reference guides provide
summary information for quick reference. You need the corresponding publications
if you are using the ICE-86A or ICE-88 emulator.

1-11

Additional Information for Series III Operating System Users

J-12

The iAPX 86,88 User's Manual, 210201-001

This manual contains general reference information, application notes, and data
sheets describing the 8086, 8087, 8088, and 8089 microprocessors and their use.

Extensive discussions of hardware and development software (including PL/M-86,
assembly language, LINK86, and LOC86), plus numerous examples of system
designs and programs, are included.

8087 Support Library Reference Manual, 121725

This manual contains specific information on the 8087 support libraries that are
available. It includes full descriptions of the DCON87.LIB, eEL87.LIB, and
EH87.LIB, as well as a discussion of the IEEE math standard.

Run-Time Support Manual for iAPX 86,88 Applications, 121776

This manual describes in detail the run-time interface needed to run programs on the
iAPX 86,88 family of microprocessors. It includes a description of the run-time
libraries required by high-level language compilers, the concepts behind Intel's
various operating system environments, the specifications for Intel's Universal
Development Interface (UDI), and the definition of the Logical Record Interface
(LRI).

FORTRAN-86

FORTRAN-86
Additional Information for Series III Operating System Users

10.1 1/0 Examples

Example 10.1.1 Program 1A (PROG1A.FTN)

Link the program to the libraries 87NULL.LIB and LARGE. LIB.

Example 10.1.2 Program 1 B (PROG1 B.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

Example 10.1.3 Program 1C (PROG1C.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

10.2 TEMPREAL Example

Example 10.2.1 Program 2 (PROG2.FTN)

Link the program to the libraries CEL87.LIB. EH87.LIB. LARGE. LIB. and either
8087.LIB or E8087 and E8087.LIB.

10.3 $INTERRUPT Example

Example 10.3.1 Program 3 (PROG3.FTN)

Link the program to the libraries 87NULL.LIB and LARGE.LIB.

10.4 $REENTRANT Example

Example 10.4.1 Program 4 (PROG4.FTN)

Link the program to the libraries-87NULL.LIB and LARGE.LIB.

10.5 Function Subprogram Example

Example 10.S.1 Program 5 (PROGS.FTN)

Link the program to the libraries eEL87.LIB, EH87.LIB, LARGE.LIB, and either
8087.LIB or E8087 and E8087.LIB.

J-13/1-14

• C)

APPENDIX K
ADDITIONAL INFORMATION FOR

iRMX™ 86 OPERATING SYSTEM USERS

This appendix contains information that is specific to the iRMX 86 Operating
System. It covers the following areas:

• Program development environment

• Compiler invocation and file usage

• Sample link, locate, and execute operations

• Examples of FORTRAN-86 compiler invocation with an iRMX 86-based system

• Related publications

This appendix assumes that you have an iRMX 86-based system up and running,
and that you have a suitable copy of the FORTRAN-86 compiler. Chapter 1 of this
manual leads you through a complete program development sequence using a sam
ple FORTRAN program supplied with the compiler. Details on the operating system
environment are provided in the iRMX 86 Human Interface Reference Manual.

K.1 Program Development Environment

To run the FORTRAN-86 compiler in the iRMX 86-based system, you must have
the following hardware and software:

• The iRMX 86 Human Interface (and other iRMX 86 layers necessary to support
the Human Interface)

• At least 153K of free space (RAM memory over the operating system
requirements)

• At least one mass storage device. (The product is delivered on a flexible disk;
therefore, the installation of the compiler always requires a single- or
double-density disk drive.)

A system with a printer is recommended for producing hard-copy output listings.
This system may be separate from the system used to compile programs.

K.2 Compiler Installation

Compiler installation is described in Chapter 1 of this book.

K.3 Program Disk Contents

The iRMX 86 FORTRAN-86 software package includes one double density and one
single densjty disk. Each of these disks contains the following files:

FORT86
F86RNO.LIB
F86RNl.LIB
F86RN2.LIB
F86RN3.LIB
F86RN4.LIB

RTNULL.LIB
CEL87.LIB
EH87.LIB
8087.LIB
87NULL.LIB

The file named FORT86 contains the FORTRAN-86 compiler. The files
F86RNO.LIB, F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB,
RTNULL.LIB, 8087.LIB, CEL87.LIB, EH87.LIB, and 87NULL.LIB contain the

K-l

Additional Information for iRMX 86 Operating System Users

K-2

run-time support libraries and modules. The remaining programs with the extension
.FTN are example programs described in Chapter 10 of this manual and section K.8
of this appendix.

K.4 Compiler Operation

The FORTRAN-86 compiler is a program that translates your FORTRAN instruc
tions into object modules that can be linked and located for execution.

To create a FORTRAN program, type the instructions into a file using a text editor,
and submit the file to the FORTRAN-86 compiler. The original file is called a source
file, and the file containing the compiled program is called an object file. (The con
tent of the object file is also known as object code.) In FORTRAN-86 you can
compile parts of a program: each separate compilation is known as an object
module.

K.4.1 Invoking the Compiler on an iRMX 86-Based System

The command line to invoke the FORTRAN-86 compiler on an iRMX 86-based
system is /

\

-dir FOR T 8 6 dir source-program-name controls < c r>

where

- is the prompt

dir is the pathname of the directory that contains the compiler

FORT86 is the name of the compiler as supplied by Intel

dir is the pathname of the directory that contains the source file

source-program-name is the name of the source file that contains the
FO R TRAN source program

controls are optional primary or general compiler controls described in
Chapter 11. When using more than one control in the invocation line, use a
space between each control.

Also, the line can be extended by using the ampersand (&) as a continuation
character to replace a space.

<cr> represents the RETURN key on the keyboard

The following is a sample invocation:

FORT86 PROGRM.FTN SYMBOLS <:r>

where

PROGRM.FTN is the name of the source file that contains the FORTRAN
source program.

SYMBOLS is a compiler control that tells the compiler to generate a symbol
table listing of source-program identifiers in addition to the object module and
listing file.

FORTRAN-86

FORTRAN-86 Additional Information for iRMX 86 Operating System Users

The preceding sample invocation line assumes that both the compiler and the source
program reside in the default directory (:$:). You can specify different devices and
different directories, however, by prefixing the compiler name and the source file
name with additional path name components.

In the following example, the compiler resides on a device whose logical name is
:FDI:, and the source file resides on the default device in a subdirectory of the
:PROG: directory.

: FD1 :FORT86 :PROG: FTNPROGS/PROGRM.F86 SYMBOLS <cr>

Refer to the iRMX 86 Human Interface Reference Manual for more information
about the iRMX 86 file naming conventions.

K.4.2 Files Used by the Compiler

The compiler uses three kinds of files: input files, output files and work files.

K.4.2.1 Input Files

You supply the FORTRAN source program name for the source in the invocation
line previously listed. To include other source files uses the INCLUDE control, as
described in Chapter II. These files must be standard files containing the text of
FORTRAN instructions.

K.4.2.2 Output Files

Unless specific controls are used to suppress the files, the compiler produces two
output files: the object file and the listing file.

The object file contains the actual code in object module format. The system can
execute the object file after the linking and locating operations are completed (see
Chapter 14).

The listing file, or PRINT file, contains a listing of the source program and any
other printed output generated by the compiler. (The listing selection controls are
described in Chapter II.)

The listing file and the object file unless changed by the PRINT or OBJECT controls
have the same file name as the source file, but with a different extension. The listing
file has the extension LST and the object file has the extension OBJ.

If the files do not exist, the compiler creates the files - flname.LST and
flname.OBJ. If files with these names do exist and they are in the same directory as
the source file, the compiler overwrites them.

For example, if you invoke the compiler on an iRMX 86-based system with the
command

FORT86 :PROG:FTNPROGS/PROGRM <cr>

the compiler places the listing in a file with the pathname
:PROG:FTNPROGS/PROGRM.LST. It places the object module in a file with
path name :PROG:FTNPROGS/PROGRM.OBJ.

The compiler output files are described in greater detail in Chapter 13.

K-3

Additional Information for iRMX 86 Operating System Users

K-4

K.4.2.3 Work Files

The compiler creates and uses work files during its operation and deletes them upon
the completion of compilation.

During configuration of the iRMX 86 Operating System, you can select a location
for compiler work files. To do this, assign the logical name :WORK: to a device or
to a directory on a device. The compiler automatically creates its work files within
the :WORK: directory.

The :WORK: directory is the default in iRMX 86-based systems.

See Chapter 13, "Compiler Output," for more information.

K.4.3 Compiler Messages

The sign-on message for the FORTRAN-86 compiler is

iRMX 86 FORTRAN COMPILER, VLY

where

x is the version number of the compiler.

Y is the change number within the version.

When a compilation is finished, the compiler terminates with the message

m TOTAL ERRORS DETECTED

n TOTAL WARNINGS DETECTED

where

m is the total number of errors detected.

n is the total number of warnings detected.

Other iRMX 86 error messages can be found in the iRMX 86 Human Interface
Reference Manual.

K.S Linking, Locating, and Executing in an
iRMX 86-Based Environment

The linker (LINK86) links object modules and outputs a file. The locator (LOC86)
assigns absolute addresses to modules to locate them in actual memory. The
operating system loads and executes the final program. Additionally, the LIB86
utility enables you to create and maintain your own library file of compiled (or
translated) object modules for use with other programs.

A list of the software provided for building executable FORTRAN-86 programs
follows:

FORT86 - the FORT-RAN-86 compiler

F86RNO.LIB, F86RN I.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB, and
RTNULL.LIB - the run-time support libraries

FORTRAN-86

FORTRAN-86 Additional Information for iRMX 86 Operating System Users

CEL87 .LIB - the floating-point intrinsic function library

EH87 .LIB - the floating-point error handler

8087.LIB - the 8087 numeric processor extension (NPX) interface library

87NULL.LIB - the support library that resolves references if no 8087 processor is
used

URXLRG.LIB - the Universal Development Interface (UDI) library

LINK86, CREF86, LOC86, LIB86, and OH86 - the 8086-based utilities

K.5.1 Sample Link Operations

The following link operation takes two object modules, MYMODl.OBJ and
MYMOD2.0BJ, links them together, then links in the FORTRAN run-time libraries
to form the output module MYPROG.86. To extend the LINK86 command to the
next line without transmitting the command, type the ampersand (&) continuation
character before the RETURN key, and continue typing the command on the next
line. The continued line will start with two asterisks (**).

The linker first reads MYMODl.OBJ and MYMOD2.0BJ for external references
and resolves those references. Then the linker attem.pts to resolve any other external
references in the modules by looking at the public symbols in the libraries
F86RNO.LIB, F86RNl.LIB, F86RN2.LIB, F86RN3.LIB, F86RN4.LIB,
87NULL.LIB, and URXLRG.LIB. Use the 87NULL.LIB when the modules do not
perform real arithmetic. The final output module is MYPROG.86. This module can
be loaded and executed in the iRMX 86 environment.

When the modules MYMODI.OBJ and MYMOD2.0BJ do perform real arithmetic,
link them with the 8087 Numeric Data Processor libraries. The LINK86 command is

K.5.2 Examples

PI +. L87.LIB, F86RNO.LI8, &
18, F86RN4.LIB, & <c r >

The following examples show how to execute FORTRAN-86 programs in different
environments:

1. To execute a FORTRAN-86 program in a full-featured operating system
environment, link in all of the FORTRAN-86 run-time support libraries. If the
application also requires support for floating-point arithmetic, link in the
appropriate numerics libraries. For example, the link sequence for the 8087
microprocessor is

By using the BIND option with LINK86, the output file is ready to be executed,
assuming that the operating system has an L TL loader.

K-5

Additional Information for iRMX 86 Operating System Users FORTRAN-86

K-6

2. To execute a FORTRAN-86 program and produce code for a bare machine (or
minimal operating system) environment link in the run-time libraries
F86RNO.LIB, F86RNl.LIB, and F86RN2.LIB. If the program requires
numerics support and you are using the 8087 chip, the link command is

In this example, string and 32-bit integer operations are fully supported.
FORTRAN input/output is not supported; if used, LINK86 will generate an
UNRESOLVED EXTERNALS warning.

When linking in numerics support and an 8087 exception occurs, RTNULL.LIB
will simply execute a HL T instruction. Since there are no external references
between RTNULL.LIB and EH87.LIB, the exception handler will never be
called. Consequently, it should not be included in the link sequence.

Note that the BIND option was not used. In this environment the programs will
usually be located and burned into ROM, or loaded with a simple absolute
loader.

3. This example links a program using internal I/O only.

*
OG.OBJ, F86R
, RTNULL. LIB, • IB, F86RN1.LIB

NULL.LIB, TO M

4. This example does only internal 110 and floating point arithmetic.

LINK86 MYPROG.OBJ, CEL8?LIB, F86RNO.LIB, F86R~1 .~IB, F86RN2.LIB, &
* R"NULL.LIB, 87ERH.LIB, E808?, E8087.LIB TO MYPRGS.86 BIND <cr>

K.6 Locating Object Modules

Chapter 14 discusses object module location. To locate, load, and execute a module
in an iRMX 86 environment, you must reserve memory during the iRMX 86 con
figuration process. If the memory is not reserved, the operating system will assign
the memory to other tasks as dynamic memory.

The following is a sample locate operation using the default settings for controls:

LOC86 SAMPL1.LNK<cr>

This sample locate operation binds the logical segments of SAMPLl.LNK to
addresses beginning at the default 00200H (hexadecimal). The output module is
called SAMPLI (the root name of the input module without the LNK extension).
Unless specified with a TO clause, the output module (the absolutely located
program) will always have the same root name as the input module.

The following sample operation locates a program using the ORDER and
ADDRESSES control:

In the invocation line, use the ampersand character (&) to continue a long line
without executing it.

FORTRAN-86 Additional Information foriRMX 86 Operating System Users

This sample locate operation collected the logical segments by class names in the
order specified in the ORDER control. The locator then assigned addresses specified
in the ADDRESSES control to the logical segments collected into the CODE and
STACK classes. The DATA class received its address assignment for the default
algorithm.

K.7 Preconnecting Files

When running a program on an iRMX 86-based system you can also use the UNIT
control to override the default preconnections. The format of the UNIT control in
an iRMX 86-based system is

source (UNITn = path)

where

source is the pathname of your relocated object code.

n is a number between 0 and 255.

path is a logical name or pathname for a file or device.

Chapter 14 discusses preconnecting files in more detail.

K.8 Executing Programs in an iRMX 86 Environment

To execute a complete program in an iRMX 86 environment, enter the pathname of
the program file. For example, the following command locates and executes a file
namedPROG:

PROG.86<cr>

Since the iRMX 86 Operating System searches several directories for files to execute,
PROG could reside in the default directory (:$:), the program directory (:PROG:),
or some other directory. The directories searched and the order of search are
\RMX 86 configuration parameters. However, if you are unsure, enter the complete
pathname. For example, the following command:

:PROG:PROGRM

loads and executes the file PROGRM residing in the :PROG: directory.

K.9 iRMX-86 - Specific Examples

The last page of this appendix (the fold-out) lists the run-time libraries needed to
execute the examples found in Chapter 10 on an iRMX 86-based system.

K.10 Related Publications

For information on the iRMX 86 operating system, see the following manuals:

iRMX 86 Human Interface Reference Manual, 9803202

iRMX 86 Nucleus Reference Manual, 9803122

EDIT Reference Manual, 143587

K-7

FORTRAN-86 Additional Information for iRMX Operating System Users

10. 1 I/O Examples

Example 10.1. 1 Program 1 A (PROG 1 J~.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

Example 10.1.2 Program 18 (PROG1B.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

Example 10.1.3. Program 1C (PROG1C.FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

10.2 TEMPREAL Example

Example 10.2.1 Program 2 (PROG2.F'TN)

Link the program to the libraries CEL87.LIB, EH87.LIB, 8087.LIB, and LRG.LIB.

10.3 $INTERRUPT Example

Example 10.3.1 Program 3 (PROG3.FTN)

Do not execute this program on an iRMX 86 Operating System. The iRMX 86
Operating System implements its own form of interrupt processing. All programs
that run in an iRMX 86 e~nvironment must use iRMX 86 system calls to set up
interrupt processing routines.

10.4 $REEN'TRANlr Example

Example 10.4. 1 Program 4 (PROG4"FTN)

Link the program to the libraries 87NULL.LIB and LRG.LIB.

10.5 Function Subprogram Exa,mple

Example 10.5.1 Program 5 (PROG5.IFTN)

Link the program to the libraries CEL87.LIB, EH87.LIB, 8087.LIB, and LRG.LIB.

K-9/K-IO

070 VAL function, 6-23, H-2, H-5
8087 control intrinsics, 6-18
8087 control word, 6-18
8087.LIB, 14-2, 14-3, J-l, K-l
8087 status word format, 6-18
87EH.LIB, 14-2, 14-3, J-l, K-l
87NULL.LIB, 14-2, 14-3, J-l, K-l

ABS, 6-9
absolute value, 6-9
access method specifier, 9-4, 9-5
ACOS, 6-14, 6-15
actual argument, 6-1, 6-21, 7-1, 8-6
actual array declarator, 5-9
addition, 7-1
A descriptor, 9-17
adjustable array declarator, 5-8
AINT,6-7
ALOG,6-13
ALOG 10, 6-14
alphanumeric editing, 9-17
alternate record termination descriptor, 9-18
AMAXO, 6-1, 6-11
AMAXl, 6-1, 6-11
AMINO, 6-1, 6-11, 6-12
AMINI, 6-1, 6-11
AMOD,6-8
.AND., 7-4
ANINT,6-7
ANSI FORTRAN 77,1-1
ANS 1978 standard, A-I, A-2
apostrophe edit descriptor, 9-18
apostrophe editing, 9-18
arccosine, 6-15
arcsine, 6-15
arctangent, 6-15
argument, 6-1, H-2
arithmetic assignment statement, 2-1, 8-1
arithmetic expressions, 7-1 thru 7-3
arithmetic functions, 6-13
arithmetic IF statement, 2-1, 8-5
arithmetic operators, 7-1, D-9
arithmetic relational expressions, 7-4
array, 5-7 thru 5-10, H-5
array declarator, 5-8, 5-9
array element, 5-9, 5-10
array element name, 5-10
array name, 5-8
array properties, 5-9
ASCII character set, 5-6
ASCII collating sequence, 6-6, 6-17, 7-4, 13-2, E-l
ASIN, 6-14, 6-15
ASSIGN statement, 2-1,8-7,9-10, D-l
assigned GO TO statement, 2-1, 8-8
assignment statements, 8-1, D-l
assumed-size array declarator, 5-8
ATAN, 6-14,6-15
ATAN2, 6-14,6-16
Aw descriptor, 9-14, 9-17

INDEX I

BACKSPACE statement, 2-1, 9-8, 0-1
base specifier, 5-2
B descriptor, 9-14, 9-17
binary base specifier, 5-2 ,
bitwise Boolean operations, 7-i, 7-6
blank common block, 5-12
blank descriptor, 9-18
blank specifier, 9-3, 9-14,9-17,9-20
BLOCK DATA statement, 2-1, 2-2,4-2, D-l
BLOCK DATA subprogram, 2-1,5-12,6-23, 12-1
block IF, 8-2
block IF statement, 2-1, 8-4
BN editing, 9-20
Bw descriptor, 9-14
BZ editing, 9-20

CALL statement, 2-1, 6-2,8-6, D-2
calling conventions, H-l, H-2
calling sequence, H-2 thru H-6
carriage control specifier, 9-3, 9-6,9-21
CEL.LIB, 14-2, 14-3, J-l, K-l
CHAR, 6-5, 6-6
character assignment statement, 2-1, 8-2
character constants, 5-6
character data, 5-6, H-4, H-5
CHARACTER data type, 4-1
character expressions, 7-1, 7-3
character relational expressions,7-4
character set, 3-1, E-l
CHARACTER statement, 2-2, 5-6, D-2
character storage unit, 0-1
character substring, 5-10, 5-11
check exceptions, 15-20
choosing largest or smallest value functions, 5-13,6-11
CLOSE statement, 2-1, 9-7, D-2
COOE control, 11-3 thru 11-5, 13-1, 13-2
comments, 4-1, 12-1,0-2
common block, 5-12, 6-23
common logarithm, 6-14
COMMON statement, 2-2, 5-8, 5-12,6-1,6-23,0-2
compilation summary, 13-1, 13-3, 13-4
compiler capacity, C-l
compiler controls, 1-1, 11-1, 11-2
compiler error messages, 15-1 thru 15-11
compiler failure error messages, 15-11
compiler installation, 1-3, J-l, K-l
compiler invocation, J-2, J-3, K-2, K-3
compiler messages, 12-2
compiler output, 13-1
computed GO TO statement, 2-1, 8-7
concatenation, 7-3
connected unit, 9-2, 9-6, 9-7
console input device, 9-2
console output device, 9-2

Index-l

Index

constant array declarator, 5-8
constants, 3-1
continuation line, 3-2
CONTINUE statement, 2-1, 8-6, D-2
control abbreviations, 11-2
control status controls, 11-1
COS, 6-14, 6-15
COSH, 6-16
cosine, 6-15

DABS, 6-9
DACOS, 6-14, 6-15
DASIN, 6-14, 6-15
data length, 5-1
DATA statement, 2-2, 5-12, 5-13,6-1, 6-22, 0-3
data transfer statements, 9-23
data transfer 110 statements, 9-9
data types, 5-1, H-3 thru H-6
DATAN, 6-14, 6-15
DATAN2, 6-14, 6-16
DBLE, 6-5, 6-6
DCOS, 6-14, 6-15
DCOSH,6-16
D descriptor editing, 9-15
DDIM, 6-9,6-10
DEBUG control, 11-4, 11-6
decimal base specifier, 5-2
default data length, 11-21
default typing convention, 5-1, 5-7
denormalized numbers, 7-7
denormalized operand, 15-23
device drivers, 1-2, 1-3, 1-2
DEXP,6-13
DIM, 6-9, 6-10
dimension declarator, 5-8
dimension declarator size, 5-9
DIMENSION statement, 2-2, 5-8, 6-23, D-3
DINT,6-7
direct access file, 9-1
disconnected unit, 9-2
division, 7-1
division by zero, 7-2
DLOG,6-13
DLOG1O, 6-13,6-14
DMAXl, 6-1, 6-11
DMINl, 6-1,6-11,6-12
DMOD,6-8
DNINT,6-7
D066 control, 11-7
D077 control, 11-7
DO loop, 8-5, 11-7
DO statement, 2-1, 8-5, D-3
dollar sign editing, 9-21
DOUBLE PRECISION data type, 4-1, 5-3
double-precision product, 6-9,6-10
DOUBLE PRECISION statement, 2-2, 5-4, D-3
DPROO, 6-9, 6-10
DQRT,6-13
DRINT,6-7

Index-2

DRMO,6-8
DSIGN,6-9
DSIN, 6-14,6-15
DSINH,6-16
DSQRT,6-13
DTAN, 6-14, 6-15
DTANH,6-16

FORTRAN-86

dummy argument, 3-2,4-1,5-9,6-1,6-21,8-6
Dw.d descriptor, 9-14, 9-15

E8087,1-3
E8087.LIB, 1-3, 14-2
E descriptor editing, 9-15
edit descriptor, 9-13
EJECT control, 11-4, 11-8, 13-1
ELSE statement, 2-1, 8-4, D-3
ELSE IF statement, 2-1,8-4, D-3
END IF statement, 2-1, 8-4, D-4
ENDFILE statement, 2-1, 9-9, D-4
end-of -file specifier, 9-9, 9-11
END statement, 2-1,4-2, D-4
.EQ., 7-3
EQUIVALENCE statement, 2-2, 5-8, 5-11,5-12,6-1, 6-22,

D-4
.EQV., 7-4
error format, 15-1
error message listing, 13-3
error specifier, 9-3, 9-4, 9-7, 9-9, 9-11, 9-12
ERRORLIMIT control, 11-9
Ew .d -descriptor, 9-15, 9-17
Ew.dEe descriptor, 9-14, 9-15
examples, 10-1
executable statements, 2-1, 8-1
EXP, 6-13
exponentiation, 7-1
expressions, 7-1
external files, 9-1, 9-21
external procedure, 2-1
EXTERNAL statement, 2-2, 5-14, D-4
external unit specifier, 9-8

F86RNO.LIB, 14-2, 14-3, J-l, K-l
F86RNl.LIB, 14-2, 14-3, J-l, K-l
F86RN2.LIB, 14-2, 14-3, J-l, K-l
F86RN3.LIB, 14-2, 14-3, J-l, K-l
F86RN4.LIB, 14-2, 14-3, J-l, K-l
F descriptor editing, 9-15
file, 9-1
file handling statements, 9-2 thtu 9-9
file disposition specifier, 9-7 .
file name specifier, 9-3, 9-4
file pointer: 9-8
file preconnection, 14-4, 14-5
file status specifier, 9-3, 9-4
FLOAT, 6-1, 6-4
floating-point 8087 exceptions, 15-20, 15-21
floating-point constants, 5-3
floating-point data, 5-3, H-3
floating-point error handler, 1-5, K-5
floating-point exceptions, 7-2
floating-point exponent, 5-3

FORTRAN-86

floating-point function exceptions, 15-20, 15-21
floating-point value ranges, 5-4
format identifier, 9-13
format specifier, 9-9, 9-10, 9-12
FORMAT statement, 2-2, 9-10, 9-13, D-5
formatted data transfer, 9-13
formatted record, 9-1
formatting specifier, 9-3, 9-5
FORT86.86, 14-2, 14-3, J-2, K-2
FORTRAN 77 extensions, A-I
FORTRAN-80, A-I
FREEFORM control, 3-3, 11-10, 12-1
freeform input, 9-21
freeform output, 9-21
function, 6-1, 6-2, 8-6, 11-20
FUNCTION statement, 2-1, 2-2, 4-1, D-5
FUNCTION subprogram, 2-1,5-12,6-2, 12-1
Fw.d descriptor, 9-14, 9-15

G descriptor editing, 9-16
.GE., 7-3
general controls, 11-2, 11-11
generic name, 6-3
global data, 4-2
global symbolic name, 3-2
GOTO statements, 8-7, D-5
.GT., 7-3
Gw.d descriptor, 9-16
Gw.d[Ee] descriptor, 9-14,9-16

H descriptor editing, 9-19
hardware environment, 1-2
headings, 4-1
hexadecimal base specifier, 5-2
Hollerith constants, F-l
Hollerith data, 5-6
Hollerith data type, F-l
Hollerith edit descriptor, 9-19
Hollerith format specification, F-2
Hollerith string descriptor, 9-18
hyperbolic cosine, 6-16
hyperbolic functions, 6-16, 6-17
hyperbolic sine, 6-16
hyperbolic tangent, 6-17

lABS, 6-9
ICHAR, 6-1, 6-5, 6-6
IDIM, 6-9, 6-10
IDINT,6-4
IDNINT, 6-7
IDRINT, 6-7
IF statements, 8-2, D-5
IFIX, 6-1, 6-4
IGNORE control, 11-11
IMPLICIT statement, 2-2,5-1,5-7,6-23, D-6
implicit type conversions, 6-22
implied-DO, 5-13, 9-12
INDEX, 6-12
INCLUDE control, 11-3, 11-12, 13-2
index value of a DO loop, 8-5
inexact result, 7-2
infinity arithmetic, 7-8
initial line, 3-3
initial primary controls, 11-1
INPUT,6-2

input and output statements, 9-1
input files, 12-1
input format controls, 11-2
INT, 6-1, 6-4,6-5
INTI, 6-1, 6-4,6-5
INT2, 6-1, 6-4, 6-5
INT4, 6-1, 6-4, 6-5
integer constants, 5-2
integer data, 5-1
INTEGER data type, 4-1, H-3
INTEGER editing, 9-15
integer exceptions, 15-20
INTEGER overflow, 7-2
INTEGER statement, 2-2, 5-2, D-6
integer value ranges, 5-2
internal file, 9-2
INTERRUPT control, 5-12, 6-20, 6-21, 11-3, 11-13
interrupt number, 6-20
interrupt procedure, 11-13

epilogue, 1-5
preface, 1-5

intrinsic function, 5-13, 6-1, 6-3
intrinsic function library, J-5, K-5
intrinsic function reference, 6-3
INTRINSIC statement, 2-2,5-13,6-1, D-6
intrinsic subroutine, 6-2
invalid operation, 15-22, 15-23
invocation line, J-2, K-2
INW, 6-2
I/O exceptions, 15-3
I/O run-time libraries, 1-3
1/ 0 status specifier, 9-7 thru 9-9, 9-11, 9-12
IRINT, 6-7, 6-8
IRMD,6-8
iRMX 86, K-l
ISIGN, 6-9,6-10
Iw descriptor, 9-14, 9-15

keyword, 3-2

language elements, 3-1
language summary, D-l
LARGE.LIB, 14-3
LDCW87, 6-18
.LE., 7-3
LEN,6-12
length specification, 5-3
lexical relationship functions, 5-13, 6-17
lexically less, 6-17
lexically less or equal, 6-17
lexically greater, 6-17
lexically greater or equal, 6-17
LGE, 6-1, 6-17
LGT, 6-1, 6-17
LIB86,1-2
libraries, 14-2
line, 3-3
line format, 3-2, 11-10, 12-2
LINK86, 1-1, 1-2, 14-1, 14-2
link invocation, 14-1
linking conventions, J-6, K-6
LIST control, 11-2, 11-14, 13-1
list directed formatting, 9-21
list directed input, 9-22
list directed output, 9-23

Index

Index-3

Index

listing content controls, 11-2
listing file, 12-1
listing format controls, 11-2
listing preface, 13-1
literal string descriptor, 9-18
LLE, 6-1, 6-17
LLT, 6-1, 6-17,6-18
load 8087 control word, 6-19
local symbolic name, 3-2
LOC86,1-2
locate invocation, J-6, K-6
locating object modules, J-6, K-6
LOG,6-13
LOGlO, 6-13,6-14
logical assignment statement, 2-1, 8-2
logical conjunction, 7-4
logical data, 5-5
logical data types, H-4
LOGICAL data type, 4-1
logical data values, 5-5
LOGICAL editing, 9-17
logical equivalence, 7-4
logical IF statement, 8-5
logical expressions, 7-1, 7-4
logical IF statement, 2-1
logical inclusive disjunction, 7-4
logical negation, 7-4
logical nonequivalence, 7-4
logical operators, 7-4
logical record interface (LRI), 1-3
LOGICAL statement, 2-2, 5-5,0-6
loop increment! decrement value, 8-5
loop termination value, 8-5
lower dimension bound, 5-9
.LT., 7-3
Lw descriptor, 9-14, 9-17

main program, 2-1,4-1, 12-1
MAX, 6-1,6-11
MAXO, 6-1, 6-11
MAXI, 6-1,6-11
memory allocation, 14-1
memory definition, 5-10
MIN, 6-1, 6-11, 6-12
MINO, 6-1,6-11,6-12
MINI, 6-1, 6-11, 6-12
mixed-mode arithmetic, 7-1
multiplication, 7-1
MOD, 6-8

named common block, 5-12
NaN,7-8
natural logarithm, 6-13
.NE., 7-3
.NEQV., 7-4
nesting of 00,8-6
nesting of IF, 8-3
nesting of INCLUDE, 11-12
NINT,6-7
NOCODE control, 11-3, 11-5, 13-1
NODE BUG control, 11-4, 11-6
NOERRORLIMIT control, 11-9
NOFREEFORM control, l1-lO
nonexecutable statements, 2-1, 2-2
NOLIST control, 11-2, 11-14, 13-1

Index-4

nonrepeatable edit descriptor, 9-13, 9-18
NOOBJECT control, 11-1, 11-15
NOOVERLAP control, 11-16
NOPRINT control, 11-1, 11-2, 11-9, 13-1
normalized numbers, 7-7
NOSYMBOLS control, 11-23
.NOT.,7-4
not a number, 7-8
NOTYPE control, 11-25
NOXREF control, 11-3, 11-26
null value, 9-21, 9-22
number-base editing, 9-17
numeric storage unit, 5-1, 5-3 thru 5-5, G-l
numerics run-time libraries, 1-3
n X descriptor, 9-19

FORTRAN-86

OBJECT control, 11-1 thru 11-4, 11-15, 12-2
object files, 12-2, 13-4
object file controls, 11-1
object module, 11-15, 13-1
octal base specifier, 5-2
OH86,1-2
OPEN statement, 2-1, 9-2, D-6
operator precedence, 7-6
.OR.,7-4
OUTPUT, 6-2
output files, 12-1
output listing, 1-1
OUTW,6-2
overflow, 7-1, 15-23, 15-24
OVERLAP control, 11-16, 15-7

P AGELENGTH control, 11-17, 13-2
P AGEWIDTH control, 11-18, 13-2
PARAMETER statement, 2-2, 5-7, 0-7
pass by reference, H-2
pass by value, H-2
PAUSE statement, 2-1, 8-8, D-7
P editing, 9-20
positive difference, 6-9
precedence of operators, 7-6
precision, 15-24
preconnected file, 9-2
primary controls, 11-1
PRINT control, 11-1, 11-3, 11-19, 12-2, 13-1
PRINT file, 12-2
PRINT statement, 2-1, 9-13, 9-23, D-7
procedure, 2-1, H-5
processor dependent features, B-1
PROG1A.FTN,10-1
PROG1B.FTN, 10-2
PROG1C.FTN,1O-3
PROG2.FTN,10-4
PROG3.FTN,10-6
PROG4.FTN, 10-7
PROG5.FTN,IO-8
program development process, 1-3
program halt statements, 8-8
program listing, 13-1
PROGRAM statement, 2-1, 2-2, 4-1, 0-7
program structure, 2-1
program unit, 2-1, 12-2
pseudo-assembly language listing, 11-5, 13-1, 13-2

FORTRAN-86

range exceptions, 15-20
READ statement, 2-1, 9-9, 9-22, D-7
REAL data type, 4-1, 5-3
REAL function, 6-1,6-4,6-5
REAL statement, 2-2, 5-4, D-8
record, 9-1
record length specifier, 9-3,9-5
record number specifier, 9-9,9-11,9-12
record position control descriptor, 9-18
record termination description, 9-18
REENTRANT control, 5-12, 6-1, 11-20
referencing array elements, 5-10
register usage, H-6
relational expressions, 7-1, 7-3
relational operators, D-9
remainder functions, 6-8
repeat specifier, 5-12, 9-21
repeatable edit descriptor, 9-13, 9-14
reserved word, 3-2
restore 8087 state, 6-20
RETURN statement, 2-1, 5-11, 8-6, 11-20, D-8
Revision history, iii
REWIND statement, 2-2, 9-8, D-8
RINT, 6-7, 6-8
RMD, 6-8, 6-9
RMX-86, K-l
rounding, 7-7
rounding functions, 6-6
RST87, 6-18
RTNULL.LIB, 14-2, 14-3, J-l, K-l
RUN command, J-2, K-2
run-time data representations, G-l
Run-Time Environment, 1-3
run-time exception handling, 1-4
run-time errors, 15-11
run-time initialization, H-6
run-time interface, 1-1
run-time interrupt processing, 1-4
Run-Time Support Libraries, 1-1, 14-2, 14-3
Run-Time System, 1-1

sample programs, 10-1
SAV87,6-18
save 8087 state, 6-20, 6-21
SAVE statement, 2-2, 5-12,6-1,6-23, D-8
scale factor, 9-16, 9-18
scale factor descriptor, 9-18
scale factor editing, 9-20
scratch files, 9-7
sequential access file, 9-1
Series III, J-l
SETINT, 6-20, 6-21, 11-13,1-4
SIGN, 6-9, 6-10
sign-off message, 12-2, 13-1, 13-4
sign-on message, 12-2
sign-on preface, 13-1
sign transfer, 6-9
SIN, 6-14, 6-15
sine, 6-15
SINH,6-16
slash editing, 9-19
SNGL, 6-1,6-4
software environment, 1-2
source listing, 13-1
specific name, 6-3
SQRT,6-13

square root, 6-13
stack usage, H-6
standard line format, 11-10
standards, deviation, A-I
statement elements, 3-1

Index

statement-function statement, 2-2, 6-1, 6-21 thru 6-23, D-8
statement label, 3-2
statement number, 13-2
statement order, 2-2
STC87,6-18
STOP statement, 2-1, 8-8, D-8
STORAGE control, 11-21
storage unit, G-l
store 8087 control word, 6-19
store 8087 status word, 6-20
structures, H-5
STSW87, 6-18
subprogram, 2-1, 4-1 , 6-1
subroutine, 6-1, 6-2, 8-6, 11-20
SUBROUTINE statement, 2-1,2-2,4-2,6-2, D-9
SUBROUTINE subprogram, 2-1, 5-12, 12-2
subscript, 5-8, 5-10, 11-6
substring, characters, 5-10, 5-11
SUBTITLE control, 11-2, 11-4, 11-22, 13-1
subtraction, 7-1
symbol listing, 1-1
symbolic debugging, 11-6
symbolic name, 3-2, 5-7, 8-7
symbol table listing, 11-4, 11-23, 11-26, 13-1, 13-2
SYMBOLS control, 11-3, 11-4, 11-23, 13-1, 13-2
syntactic error messages, 13-1, 15-2

TAN, 6-14
tangent, 6-14
TANH, 6-16
TEMPREAL data type, 4-1, 5-3
TEMP REAL statement, 2-2, 5-5, D-9
TITLE control, 11-3, 11-4, 11-24, 13-2
trapping NaN, 7-9
TREAL, 6-1, 6-5, 6-6
trigonometric functions, 6-14
truncation functions, 6-6
TYPE control, 11-25
type conversion functions, 5-13,6-4
type statement, 5-1, 6-22

unconditional GOTO statement, 2-1, 8-7
underflow, 7-1, 15-24
unformatted data transfer, 9-23
unformatted record, 9-1
unit, 9-1, 9-2
unit specifier, 9-3, 9-7,9-9,9-10,9-12
universal development system interface (UDI), 1-1
universal record interface (URI), 1-2
unnamed common block, 5-12
unnormalized numbers, 7-7
unordered relation, 7-8
upper dimension bound, 5-8
URXLRG.LIB,I-2

value separator, 9-21

warning mode, 7-7
work files, 12-2, ·13-4
WRITE statement, 2-1,9-12,9-23, D-9

Index-5

Index

X descriptor editing, 9-19
XREF control, 11-3, 11-26

Z descriptor, 9-17
zero divide, 15-23
Zw,9-14

Index-6

FORTRAN-86

REQUEST FOR READER'S COMMENTS

FORTRAN-S6 User's Guide
121750-002

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

,-----,----,----------

---,_. __ .. -", , .. ,.,.'"---------_ .. _--,,

.-_ ... _--", .. , ",---------,-_ .. _ .. , .•.. , .• - ... -...... -.,------,--._,--_ .. ,' ------

4. Did you have any difficulty understanding descriptions or wording? Where?

---,---,--_. __ .. '._--_.-,_.,_ .. _-... -,-,'.'.,.,,,,,-, _ .. , .. '._., _---.'_ ... _----_._" _ •.. ,."_." .. "._"_ .. _" .. ,,.,.,,._,-•.. _---.'---_.,---"., .. _-- ------
._-_._----,----"._,-_ ... ". __ ._,----,----" .. ,."."." , .. _ .. ", .. "" _ ... " .. " ... ,,,,, ,, .. ,, .•. ,, ,,-.. '._." _ .. _-, .. ,._, " .• _'.-... ,._-_. __ .• , _ .. " .. -........ "." ""._,_ .. _,., " ... -....... " .. " " .. _--._ .. ---" ,." .. ,.,., ...• ".,,, ... ,, .. ,," •.. _ .. __ .. _----

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating) _ .. , ___ ,. ___ ,_, .. _, ,., .. _ .. _ ,." .. ,., ,._ _

NAME .. ,"" .. "., _, __ .. " "_.""_"" "., ... ".,""" .. ,,, .. ,, " .. ".,"""",, ", ... " ,." " '," , .. "' ... ,, ,,"" .. ,.,

TITLE ". __ . __ .. __ '_"_"'.".'.""'".""""_"""'_"."''''.''''''''''''''", " " ... "." , ..

COMPANY NAME/DEPARTMENT

ADDRESS
CITY ,,,.,,.,,,,,,,,,,,,,,,.,,,.,,,,.,,.,,,,.,,,,,,,,,,.,,,,,,,, .. ,,,,,,,,,,,,, ... ,,.,,,,.,,""" .. '''''''''''' ",,,.,,,,

Please check here If you require a written reply. 0

DATE " , ..

.".,., "., ... "" .. ,., " , "_.""-.... _ ... "",, .. _,, "" ", .. ,."."" ... , .. ,,,.,,.,,, ... ,.,,, ,, ,, , ,,, .. -.. " .. _, .. _ , .. _ __ _.," .. ". "".""_._ ... ""--,,,, ,,----

STATE

(COUNTRY)

ZIP CODe ... ___ .. ___ _

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	03-01
	03-02
	03-03
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	12-01
	12-02
	13-01
	13-02
	13-03
	13-04
	13-05
	14-01
	14-02
	14-03
	14-04
	14-05
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	A-01
	A-02
	B-01
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	E-01
	F-01
	F-02
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	H-09
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	J-09
	J-10
	J-11
	J-12
	J-13
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-09
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	replyB
	xBack

