r

Self-Study Course

~ MICROPROCESSO
SOFTWARE & HARDV

Workbook /Text

®

Self-Study Course

Course 525A:

MICROPROCESSOR
SOFTWARE & HARDWARE

Workbook/Text Volume |

' DEVELOPED & PUBLISHED BY:

INTEGRATED COMPUTER SYSTEMS
Course Development Division
© Copyright 1980

SENIOR AUTHOR:
Edward Dilingham, M.E, M.S.EE.

ASSISTED BY:

Dr. Daniel M. Forsyth
Dr. Rudolf Hirschmann
Mes. Ruth H. Savoie
Dr. David C. Collins

EDUCATION IS OUR BUSINESS™

Allmaterials © copyright 1980 by Integrated Computer Systems.
Not to be reproduced without prior written consent.

© Copyright 1980 by INTEGRATED COMPUTER SYSTEMS.
Alirights reserved.)
No part of this publication may be reproduced, stored In a refrleval system, or fransmitted in any form or
by any means, electronic, mechanical, photocopyling, recording or otherwlse, or franslated Into any
language, without the prior written permission of the publisher.

MICROPROCESSOR SOFTWARE & HARDWARE
Two Volumes
I1SBN O-89438-009-5
Volume
ISBN O-89438-O10-9
Volume i
ISBN O-89438-O11-7

TABLE OF CONTENTS

VOLUME 1

INSTRUCTIONS - SYSTEM SETUP AND TEST PROCEDURE

T RECEIVING INSPECTIONS
1.2 ASSEMBLY N
I.3 POWER CONNECTION
1.4 INITIAL TEST
I.5 KEYBOARD TEST
1.6 PROGRAM LOADING TEST
1.7 SINGLE STEP TEST
I.8 PROM CHECKSUM TEST
I.9 READ-WRITE MEMORY TEST
I1.10 SYSTEM EXPANSION

HARDWARE AND SOFTWARE FUNDAMENTALS

BASIC CONCEPTS
Definition of a Computer

Basic Software Concepts
The ICS Self-Study Microcomputer
Training Course

[P G T
L Y ® o [
b b ek ek b

B b=

The Representation of Numbers
The Decimal Number System
The Binary Number System
Binary Addition and Counting
Hexadecimal Representation
THE ORGANIZATION OF MEMORY
Memory Words

Memory Module

Memory Access

Varieties of Memory

STRUCTURE OF THE- CPU
Functional Units

The Execution of Instructions
Instruction Cycles

The Program Counter

The Instruction Register

The Accumulator

The Clock

N WD

W N -

Db bbb POOOWWWDNDNDDND N

OOk W

Basic Hardware Structure of a Computer

NUMBER SYSTEMS AND REPRESENTATIONS

e N B B D B e N
-0 U1 WA N

TABLE OF CONTENTS

ii

1.5 THE MTS MONITOR

1.5.1 Monitor Software

1.5.2 The MTS Keyboard and Display

1.5.3 Using the MTS

1.5.4 Inspecting Memory Contents

1.5.5 Changing Memory Contents

1.6 PREPARING A PROGRAM

1.6.1 Instructions to Be Used

1.6.2 Program Specification

1.6.3 Writing (Coding) the Program

1.6.4 Loading Your Program in the MTS

1.6.5 Verifying and Correcting the Stored Program
1.6.6 Executing Your Program

1.6.7 Instruction Execution: Detailed Examination
1.7 SUMMARY

TWO AND THREE BYTE INSTRUCTIONS

PROGRAM EXERCISE 2

The ADI Instruction

The STA Instruction
Instruction Execution Details
Writing the Program

Loading and Executing the Program
DATA STORAGE CONVENTIONS
PROGRAM EXERCISE 3

The LDA Instructions

The JMP Instruction

Writing the Program

SUMMARY OF INSTRUCTIONS
REVIEW OF COMMAND KEYS

O W =

« e o
LW N~

Ol 00 O CO DN =t mt pb ek et

MNONDNDNONDNONNDDNDNDDNDN

PROGRAM LOOPS

PROGRAM LOOPS AND FLOW CHARTS
The Monitor RUN Command

The Conditional Jump

Flow Charts

PROGRAMMED MONITOR ENTRY
ADDITION BY COUNTING

EXERCISE

SUMMARY

SUMMARY OF INSTRUCTIONS

« o e
e o o
WK —

LWWWwWwwWwwwww
L[]

QU GODN e

1-41
1-41
1-43
1-45
1-46
1-48
1-50
1-51
1-53
1-53
1-55
1-57
1-58
1-61
1-65

TABLE OF CONTENTS

THE OTHER REGISTERS AND MEMORY ADDRESSING 4-1
4.1 THE MOV INSTRUCTION 4-2
4,2 THE ADD INSTRUCTIONS 4-4
4,3 THE CARRY AND ZERO FLAGS 4-6
4.3.1 Carry 4-7
4,3.2 Multiple Precision - The ADC Instruction 4-11
4.3.3 Exercise 4-16
4,3.4 Subtraction - SUB and SBB 4-18
4,3.5 Review and Self Test 4-23
4.4 IMMEDIATE INSTRUCTIONS 4-25
4.4.1 Move Immediate Instruction (MVI r) 4-25
4.4.2 Immediate Arithmetic Instructions 4-28
4.4.3 Multiplication by Repetitive Addition 4-30
4.4.4 Multiplication - Exercise 4-34
4.4.5 Table of Instructions 4-36
4.5 CONDITIONAL JUMPS 4-40
4.6 TRANSFER NOTATION 4-43
4.6.1 Instruction Definitions 4-44
4.,6.2 Review and Self Test 4-48
4.7 THE MTS DISPLAY 4-53
4.7.1 Displaying a Bit Pattern 4-53
4,7.2 Display Digit Addresses 4-55
4.8 REGISTER PAIRS AND MEMORY ADDRESSING 4-57
4.8.1 The LDAX and STAX Instructions 4-59
4.8.2 Copy a List to Display - Exercise 4-63
4.8.3 Display of Eight Characters 4-67
4.8.4 Register Pair Loading - LXI 4-69
4.8.5 Register Pair Counting - INX, DCX 5-71
4.8.6 Delay Loops 4-73
4.8.7 Breakpoints 4-77
4.8.8 Review and Self Test 4-84
4.9 USE OF A MEMORY LOCATION AS A REGISTER 4-87
4.9.1 Memory Reference Instructions 4-88
4.9.2 Four Bye Addition Exercise 4-91
4.9.3 Counting in the Display - Exercise 4-95
4,10 INDIRECT ADDRESSING 4-96
4.10.1 Load and Store HL Direct 4-97
4.10.2 LHLD and SHLD - Example 4-99
4.10.3 Examining a Register Pair 4-103
4,10.4 Review and Self Test 4-106
4.11 COMPARISONS AND CONDITIONAL JUMPS 4-110
4.11.1 Comparison Instructions - CMP 4-111
4,.11.2 Compare Immediate Instruction - CPI 4-112
4.11.3 Moving Message - Exercise 4-113
4,11.4 List of Intructions 4-118
4.12 SENSOR CORRECTION EXERCISE, VERSION 1 4-125
4,12.1 Sensor Characteristics 4-126
4,12.2 Organizing the Data Structure 4-130
4,12.3 Organizing the Program 4-131
4,12.4 Testing Sensor Correction 4-136
4.12,.5 Review 4-139

iii

TABLE OF CONTENTS

iv

QRO NTIUI TG T U1 O Lr-C1 TR Y G On O
[] * * ') > . - ® - L] - [)) -)) . [] L] L - L]

4,13 MULTIPLE TABLES WITH A DIRECTORY
4.13.1 Directory to Data Structures
4.13.2 Organizing the Program

4.13.3 Testing Sensor Numbers

4.13.4 Using the Directory

4,13.5 Testing Multiple Sensor Correction
4.14 SUMMARY '

4.15 INSTRUCTION CHART

MEMORY AND CONTROL HARDWARE

SYSTEM CONTROLLER

Control Signals

Status Byte)

Decoded Control Signals

MTS System Controller Logic
Intel 8228 System Controller
MEMORY TECHNOLOGY

CHIP SELECT LOGIC

Memory Enabling

RAM Chip.Selection

ROM Chip Selection

Partial Decoding _
Alternative Memory Addresssing
DATA BUS CONNECTIONS

Tri-State Circuits:

Read-Write Control

DMA and Interrupts - Introduction
MEMORY SIGNALS AND TIMING
Machine States and Transitions
First State (T1)

Second State (T2) and Wait (TW)
States T3, T4 and T5

¢« o o o e s s o @
G WD - W=

OLON UTOTO D D D GO WO LW QO It bt bt et b pat
* ® .
LN =

W N -

'MODULES, SUBROUTINES AND THE STACK

PROGRAM MODULES

In-Line Programming

Creating Program Modules

Module Specification

SUBROUTINES.

Subroutine Entry and Return

Tracing Subroutine Entry and Return
CALL Execution

Return Instructionn

Subroutine Nesting"

[OROROYONONONONOWO X))
L L] .
(S

DD DD DO DD bt =t b e
B) L] * o L]
OV WO DN

4-140
4-141
4-142
4-145
4-148
4-153
4-157
4-158

! P
== QO OO0 UTWW

bt b = e e (O (O O O O O 00 00 00 00 OO UUUUUTPhWWWWWWWWWWWW

[oNe] o COOOCOOOs ¢ =

e e o L] * @]
B WN = = O 0010 U W N
- O

*» e o o o o
*® @ e @
L DY =

[N] L) e e o * o
L] . e B 9 .
bW —

® ©®© e & s & o o a2 o
e ® e o o o U'll-bw[\"—‘

J—t

[o20e)] [¢7} EOE RN RONORONO NN NG R N NN Fool -030)'03030}0)-03050303050303010)0)030)03030)03'030)0)'0)‘
O ~ OO WN —=

. ®
| Sy Y
o

TABLE - OF CONTENTS

SUBROUTINE SPECIFICATION

Program Development - Sensor Correctlon
Main Program 2
Input Subroutine

Conditional Calls .

Subroutine DISPLAYRESULT

Subroutine SEARCHDIRECTORY

Program Data Initialization

Subroutine TABLELOOKUP

Stubs for Subroutines

Register Pair Addition

Program Integration

REVIEW AND SELF TEST

ADDITIONAL EXERCISES

Clear Result Display

Store and Recover Table Address

Two Byte Table Addresses

Empty Sensor Numbers

USING THE STACK FOR DATA

Testing Stack Usage

Using the Stack Inside a Subroutine
Processor Status Word (PSW)

Exchange Instructions

TEST DRIVER FOR MULTIPLY-EXERCISE
STACK POINTER INSTRUCTIONS AND RULES
Instructions that Affect Only the

Stack Pointer

Stack Operation Rules

Monitor Usage of the Stack

The Growing Staqk ‘Problem

Review and Self Test

SUBROUTINE CLASSIFICATION

Global Subroutines

Local Subroutines

Re-Entrant Suroutines

Interrupt Service Routine

Subroutine Transparency

MONITOR SUBROUTINES

Monitor Keyboard Scan Subroutlne (SCAN)
Monitor Key Entry Subroutine (GETKY)
Monitor Data Byte Input Subroutine ‘(ENTBY)
Monitor Data Word Input Subroutine (ENTWD)
Monitor Display Digit Subroutine (DISPR)
Monitor Display Byte Subroutine -
DMEM, DBYTE, DBY2

Mon1tor Display Word Subroutlne -
DWORD DWD2

Monitor Subroutine CLRGT CLEAR, CLRLP
Monitor Subroutine DELAY, DELYA

6-29

- 8~29

6-33
6-36
6-51
6-61
6-64
6-67
6-73
6-75
6-78
6-83
6-84
6-88
6-97
6-97
6-98
6-98
6-99
6-100
6-104

-6-105

6-107
6-110

-6-116

6-116
6-119
6-120

-6-125

6-128
6-133
6-133
6-134
6-134
6-134
6-134
6-136
6-137
6-138
6-140
6-141

-6-142

6-144

6-146
6-147
6-148

TABLE OF CONTENTS

o

CONORURRAARRAR AR RDEPROWWRWWN R
Q

AND BIT MANIPULATION

ROTATE COMMANDS

Rotate Exercise

Rotate Instructions for Control Functions
If-Then-Else Construct

Arithmetic Substitutes for RAL
Logical Rotate

BINARY ENTRY AND DISPLAY EXERCISE
LOGIC FUNCTIONS

Complement (CMA)

AND (ANA)

Inclusive OR (ORA)

Exclusive OR (XRA)

Immediate Logic Functions

Set and Complement Carry

LOGIC FUNCTIONS EXERCISE

Data Byte and Bit Marker

Keyboard Functions

Register Assignments

Subroutines for Logic Functions Exercise
Main Program for Logic Functions Exercise
Stubs for COMMAND and FUNCTION
Logic Functions DISPLAY Subroutine
Logic Functions DATA Subroutine
Additional Specifications for DATA
Logic Functions COMMAND Subroutine
Subroutine FUNCTION

Exercising Logic Functioans

FLOW CONTROL TECHNIQUES

REVIEW AND ADDITIONAL EXERCISES
Traffic Control Exercise

Extended Traffic Control Exercises
Fire and Burglar Alarm

Model Railroad Simulator

UL O D

® ® 8 e ® © ® 8 e & o o
s ° 9 o @ e o v o o »
et et = (D 00O UV WM DO WN

N = O

INIPCENPURRRR PR PR PR PP ISR RNIRN PR RN PN PPN PN PR PN EN RN RCEN PR RCRN N o

[] * ® @
D W -

vi

TABLE OF CONTENTS

VOLUME 1II

INPUT/OUTPUT TECHNIQUES

ISOLATED INPUT/OUTPUT

I/0 Ports

Programmable I/0 Ports

Keyboard Input

Subroutine KYIN

Keyboard Display Exercise

Other 1/0 Interfaces

MEMORY MAPPED INPUT/OUTPUT
DIRECT MEMORY ACCESS

Repetitive Direct Memory Access
DMA Input and Output

I/0 INITIATION

Programmed I/0

Interrupt Driven I1/0

The MTS Interrupt System
INTERRUPT SERVICE ROUTINES
Preserving the Environment
Identifying the Source of the Interrupt
Vectored Interrupt Systems
Priority Interrupt Systems
Timed Interrupt Systems

USING INTERRUPTS WITH THE MTS
Interrupt Dispatch

Interrupt Service Routine Exercise
Interrupt Service Routine Test
Memory Change Breakpoints
Interrupt Service Operation
Combining Interrupt Service with
monitor Functions

External Interrupt

Interrupt Handling -Summary

DO WN -

N =

*
o O OO UION O B DR W WWN -

00 00 00 00 00 00 00 00 00 00 00 00 0o 0O 00 00 00 €0 00 Q0 00 GO QO 0000 -00 €O Qo 00 00
e @ [e o [. e [* o * o L]
* 9 [] e o [] [] L] e o L] -] []
U N = G WM = wWwN =

e o
00 =

DATA FORMAT

PARALLEL INPUT/OUTPUT
Paper Tape Reader Example

1

1.1

1.2 Computer to Computer Interface
2 SERIAL INPUT/OUTPUT
2
2
2

.1 Signal Coding
.2 Synchronous Communication
.3 Asynchronous Communication

OWOWYWWwWWW

TABLE OF CONTENTS

)
bt s e =] WO CO
g O

(lDtDLOQlD(DtO(D

<
Pube
[

TABLE OF CONTENTS

10

11

viii

SOOI DR ARWWWWW
WD

e o o o o
e e e
WN -

¢ o o
LW N

DOUVOWOWOVWOWYWOWOWOWOVWWYWOWYLWWWWWY
® ¢ o e o
Gk -~

BINARY

10.1
10.1.1
10.2
10.3
10.4
10.5
10.6
10.7
10.7.1
10.7.2
10.7.3
10.7.4

REVIEW

11.1
11.2
11.3
11.4
11.4.1
11.5
11.6
11.7
11.8
11.8.1
11.8.2
11.8.3

ASYNCHRONOUS TRANSMITTING AND RECEIVING
Serial Transmission Exercise

Character Data Pattern

Interrupt Service Routine

Main Program

ASYNCHRONQUS RECEIVING

Wait for Start Bit

Receive Data Bits

Receive Main: Loop '

MONITOR TAPE PROGRAMS AND SUBROUTINNES
Tape Recording Program

Tape Reading Program

Error Checking Character (LRC)

MONITOR SEND AND RECEIVE SUBROUTINES
SOTBT (0382)

Program Entry and Removal of Brekp01nts
Subroutine BKMEM (01D3)

Subroutine SINWS (03CF)
Transmit/Receive with Monitor Subrout1nes
CALCULATING DELAY TIMES

AND DECIMAL ARITHMETIC

BINARY ADDITION

Multiple Precision

FOUR BYTE ADDITION

BINARY SUBTRACTION

DECIMAL ADDITION AND SUBTRACTION
BINARY MULTIPLICATION

DECIMAL MULTIPLICATION

OTHER REPRESENTATIONS OF NUMBERS
Negative Binary Numbers

Change Sign, Add, Subtract Exercise
Signed Decimal Numbers
Fractional Numbers

DATA TRANSFER

COUNTING INSTRUCTIONS
ACCUMULATOR/CARRY INSTRUCTIONS
ARITHMETIC AND LOGICAL INSTRUCTIONS
The Flags

BRANCH INSTRUCTIONS
INPUT/OUTPUT

UNDEFINED INSTRUCTIONS

OTHER MICROPROCESSORS

NEC 808A and NEC B8080AF

INTEL 8085

Z1LOG Z-80

9-20
9-21
9-23
9-25
9-27
9-33
9-35
9-37
9+39
9-44
9-44
9-45
9-46
9-47
19-47
9-49
9-51
9-52
9-54
9-61

10-2

10-2

10-6

10-13
10-25
10-33
10-39
10-44
10-45
10-53
10-59
10-83

11-2
11-5

11-7

11-9

11-10
11-13
11-15
11-16
11-17
11-17
11-17
11-18

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

THE ICS MONITOR

BINARY/DECIMAL CONVERSIONS
CALCULATING TRIGONOMETRIC FUNCTIONS
THE S-100 ADAPTER CARD

AMTS SCHEMATICS

DIGITAL LOGIC

TABLE OF CONTENTS

ix

LIST OF ILLUSTRATIONS

FIGURE

I-1

Y Y N NG N N N N T N T N
11
=10 U A WK

|
[—y
jry

LIST OF ILLUSTRATIONS

VOLUME 1
TITLE
Read-Write Memory Test

MTS Board Layout
MTS Board Layout
MTS Board Layout

LDA Instruction Cycle
LDA Instruction Cycle (continued)
LDA Instruction Cycle (continued)
JMP Instruction Cycle
JMP Instruction Cycle (continued)

Conditional Jumps Flow Chart
Addition by Counting - Flow Chart
Addition by Counting - Program

Double Precision Addition

Double Precision Subtraction

MVI Instruction Cycle

Multiplication by Repetitive Addition
Bit Patterns for MTS Display

Instruction Cycle for STAX D Instruction
Hex Codes and Characters

Copy List to Display

Copy List to Display

Gradual Display with Clear

Four Byte Addition in Memory - Flow Chart
Four Byte Addition in Memory - Program
Counting in the Display

Moving Message - Flow Chart

Moving Message - Program

Sensor Calibration Curves

Sensor Correction

Multiple Sensor Correction - Flow Chart
Correcting Multiple Sensors - Program

PAGE

(9209 IS e d) I LIS)
|
W=J OO LN+

1
= OO0 WM

]
[Ty S WO
W= O

G)O)CDO)CDG)O)O')G)O)O)CDO)O)

Q-q~1ﬂ4ﬁ~lﬂ-4ﬂ
©oo~N®OU b W+

LIST OF ILLUSTRATIONS

Microcomputer Training System Configuration

MTS System Controller
Memory Addressing

Internal Address Decoding in a Memory Device

Chip Select Logic
MTS Memory Addresses
Minimum Chip Select
Memory Access Timing

Modular Sensor Correction - Flow Chart
Do Nothing Program with Do Nothing Module
Do Nothing Program

Call Instructions

Call Instructions (continued)

Return Instruction

Return Instruction (continued)

Nested Subroutines

Nested Do Nothing Subroutines

Sensor Correction with Subroutines
Sensor Correction - MAIN

Test GETKY and DBY2

Sensor Correction = INPUT (not complete)
Sensor Correction - INPUT (complete)
Sensor Correction - NEXTSENSOR

Sensor Correction - DIRECTORY AND DATA
Sensor Correction - DISPLAYRESULT
Sensor Correction - SEARCHDIRECTORY
Sensor Correction - MAIN and INITIALIZE
Sensor Correction - TABLELOOKUP

Sensor Correction - MULTIPLY

Complete Sensor Correction Program

Test Driver for MULTIPLY

Test Driver Program

Test Driver for SHIFT Subroutines
SHIFT Subroutines

Left and Right Shift Program

Sixteen Bit logical Rotates

Binary Entry and Display Flow Diagram
Binary Entry and Display Program
Logic Functions - Main Program

Stubs for COMMAND and FUNCTION

Logic Functions DISPLAY Subroutine - Flow
Logic Functions - Subroutine DISPLAY
Logic Functions - Subroutine DATA
Logic Functions - Revised DATA

Logic Functions - Subroutine COMMAND
Logic Functions - Subroutine FUNCTION
Logic Functions - Self Test

Logic Functions with Dispatch Table
Traffic Control Program

Timer and Keyboard Scanner

5-2
5-8

7-87

LIST OF ILLUSTRATIONS-

LIST OF ILLUSTRATIONS

VOLUME 11

FIGURE TITLE

8-1 From INTEL Manual

8-2 Array of Input/Output Ports

8-3 Isolated Input/Output with the 8255
8-4 8255 Mode O Combinations

8-5 MTS 8255 and Key Input Scann1ng Circuit
8-6-- Subroutine KYIN

8-7 First test for KYIN

8-8 KPRG, KTST, KYIN with Debugging Features
8-9 KPRG, KTST, KYIN with Debugging Removed
8-10 Keyboard Display Program - Flow .Chart
8-11 Keyboard Display Program
8~-12 Keyboard Display Program
8-13 Typical I/0 Interfaces
8-14 Memory Mapped Input/Output with the 8255
8-15 Memory Mapped Display

8-16 DMA Circuit

8-17 DMA timing

8-18 Display Circuit

8-19 Keyboard Testing in the Monitor
8-20. Programmed Input/Output
8-21 Coding and Effect of RST Instructions
8-22: Interrupt Processing
8-23. Interrupt Processing (contlnued)
8-24 Interrupt Processing (continued)
8-25 (From INTEL Manual)

8-26 Restart Port with 8212

8-27 Vectored Restart Port

8-28 Vectored Interrupt Using Resistors

8-29 MTS Interrupt Circuit and Timing
8-30" Interrupt Service Exercise - Main

8-31 Interrupt Service Routine

8-32 Test for Interrupt Service

8-33 Interrupt Service Exercise

9-1 8255 Mode 1 Input
9-2 High Speed Paper Tape Reader Interface
9-3. 8255 Mode 2 - Bidirectional 1/0
9-4 Interprocessor Communication Using 8255
9-5 Logic and Timing for Shared Memory

9-6 Serial Data Transmit Interrupt Service Routine
9-7 Serial Transmit - Main

9-8 Serial Transmit - Data Entry

xii

9-2
9-4
9-8
9-10
9-12
9-24
9-286
9-29

9-9

9-10
9-11
9-12
9~-13
9-14
9-15
9-16
9-17
9-18

10-1.
10-2:
10-3

10-4"
10-5

10-6-
10-7

10-8 .
10-9 -

10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-=23
10-24

10=25
10-~26
10-27
10-28
10-29
10-30

LIST OF ILLUSTRATIONS

Transmit - Receive Data Entry

Wait for Start Bit

Receive Data Bits

Receive Main Loop

Transmit - Receive

Transmit/Receive with Monitor Subroutines
Transmit Interrupt Service with SOTBT
Transmit Main Loop with Breakpoint Entry
Receive Main Loop with SINWS

Instruction Timing

Main Programs for Four Byte Add and Display
Multi-Byte Add Subroutine

Main Program for 4 Byte Add and Dlsplay
Multi-Byte Addition Subroutine

Modify Main to Display Halt

Multi-Byte Subtract Suroutine

Main Program for 4 Byte Subtract
Display Halt

Multi-Byte Subtraction Subroutine
Program Modify Module

Modify Subroutine by Key Input
Multi-Byte Add/Subtract Subroutine
Modify Subroutine by Key Input

Modify Subroutine by Key Input (continued)
For Experiment with DAA

Binary Multiplication

Binary Multiply - Two Byte Product
Decimal Multiply Subroutine

Data Entry and Display for Decimal Multlply
Change Sign of Number

Change Sign by CMA, INR A

Binary and Decimal Arithmetic

Change Sign, Add, Subtract Exercise
Change Sign Exercise — Data Entry and
Command Interpretation

Command Execution

Change Sign Subroutine

Decimal Arithmetic

Two Byte Hundreds Complement

CHSIGN

SIGNMAG

9-32
9-34
9-36
9-38
9-40
9-53
9-55
9-56
-9-58
9-60

10-7

10-8

10-9

10-10
10-12
10-17
10-18
10-19
10-20
10-22
10-23
10-24
10-26
10-27
10-32
10-35
10-36
10-40
10-=41
10-47
10-50
10-54
10-565

10-56
10-57
10-58
10-65
10-75
10-=78
10-82

xiii.

MICROCOMPUTER TRAINING WORKBOOK

INSTRUCTIONS

SYSTEM SETUP AND TEST PROCEDURE

MICROCOMPUTER TRAINING SYSTEM SETUP AND TEST PROCEDURE

I.1 RECEIVING INSPECTION

Upon receipt of your Microcomputer Training System, unpack it and
inspect for any apparent shipping damage. If the equipment is
damaged, or if any of the items 1listed below is missing, telephone

Integrated Computer Systems for advice.

Items Supplied

MTS Circuit Board
Power Supply
Microcomputer Training Workbook

Pad of Coding Sheets

1.2 ASSEMBLY

Place the power supply on a table or desk with the sloping face
towards the user. Mount the computer to the power supply by placing
its 1lower edge on the table and its upper edge at the top of the
sloping surface of the power supply. Reach under the plastic cover
and push the +two black plastic devices into mounting holes on the

power supply.

INSTRUCTIONS, SETUP AND TEST

I.3 POWER CONNECTION

Plug the multiconductor cable from the power supply into the socket
at the upper left corner of the <circuit board. Plug the power cord

into a power outlet.

I.4 INITIAL TEST

Turn on the power switch at the back of the power supply. The numeric
display above the keyboard should show 8200 in the four left hand
digits. The next two digits should be blank, and the remaining
digits may contain any data. No further testing should be required
at this point, and the beginning user should now start reading the
course material. If any problems are encountered that appear to be
due to faulty hardware, it 1is recommended that the tests in the
following sections be performed before ‘calling Integrated Computer

Systems for advice.

INSTRUCTIONS, SETUP AND TEST

1.5 KEYBOARD TEST

Press the following keys in the sequence shown. The displays that
should appear are shown at the right. (?? indicates that the display

is unpredictable.)

MEM ' (8200, [_ %%
0 | (8200 {00
N
i _1_,’ (8200 [07
2 (8200 (12
3 8200, [___23
- 4 (8200 [39

Proceed through the remaining white keys, 5 through F. Note that B

is displayed as [::I to avoid confusion with 6, and D appears as

]

1-3

INSTRUCTIONS, SETUP AND TEST

1.6 PROGRAM LOADING TEST

woad this simple test program by pressing keys in the sequence given

below.

RST LT—"O(): L"_m- _‘?.'} l
N

MEM A F (82001 [__AF)

| ' |

NEXT 3 c | (8201] (__3C]
{ NEXT 3 7 820 | 37
.

MEM 8202° ([37)
L

|

MM (E201]) ‘(3¢
[.

RST {(8200] ([AF)
L

This program is used in the following test.

INSTRUCTIONS, SETUP AND TEST
1.7 SINGLE STEP TEST
‘Lpadvthe program given in the preceding section.

In the middle of the left side of the circuit board a red- handled
toggle switch projects slightly from under the plastic cover. Switch
if toward the bottom of the board, to the STEP position. Press the
following keys, and observe the display and the two red indicators

(LED's) just to the left of the numeric display.

RST L8200] (__AF]

STEP {8201 ([3C}

The LED indicator lé;p to the left of the display labeled ZERO should

be on. The other indicator (labeled CARRY) should be off.

(8202 [37)

Both indicators should now be off.

-

STEP | (8203, [c9]

‘The indicator labeled CARRY should be on.

RST | (8200] [C_AF]

This test has demonstrated that the single step function of the MTS
is operating correctly, and has also tested the Zero and Carry

indicators.

I-5

INSTRUCTIONS, SETUP AND TEST

1.8 PROM CHECKSUM TEST

Set the red toggle switch to AUTO, and press the following keys in

sequence.

i i o f

| ADDR 0 0 MEM i |0000; [31

ADDR| |4 Lo .0 J BRK 0400] |BP.
: |

REG & |C 1 (8200) (C-017

'ADDR | |0 ER | | [_é (03731 (21,

N R R R

ROUN

The display will be blank for a brief period, and then it will show:

(o382) (C-0L

{0400] (BP.AA|

)

The valué“diSplayed at the right hand two digits is a check sum for
the content of the PROM memory. 1t should be AA for all versions of

the monitor. Check the monitor version number by:

ADDRl 0 2 i 8] 0 | (0280 27,
J

:
|
|
|
)

bt x o — 2

)
The number shown at the right indicates that your MTS is equipped

with monitor version 2.7.

1-6

INSTRUCTIONS, SETUP AND TEST

1.9 READ-WRITE MEMORY TEST

Load the program shown on the following page accordihg to the

foilowing procedure.

RST (8200 (27
7 ; ,

ADDR| |8 i o . o i o ! T8000) (77

MEM | |F 3 [8000 ;

S | e et

NEXT = |2 ‘ 1 (8001| (20

Continue with the NEXT followed Dby two hex keys from the column

headed CODE on the coding sheet until address 8015 has been loaded.

Review the program by

) 1 1 r
ADDR 8] 0 |0 {?] (8000 ! ([(F3]
; B e .__..___’[
NEXT (8oot! [__21]
NEXT (8002 (15

etc.

READ-WRITE MEMORY TEST

1

0

W|D

M

1

4
i

0

D]

M

M

N
0

M

N

M

R

L

M

MO |V

MO}V

C/IAIL | L

1

7

D

CODE .
F

8

B

A

0

0

00

0

(e o]

o)

00

co

@

0

[ee]

0

@

@

@

—

o

o

Ll

(@]

[ee]

1

[ee]

—

o

-—

(=]

o]

00

—

o

0

133HS ONIAQ0D

ANILSAS ONINIVHL H3LNdINODOHIIW

SWILSAS HILNdWOD dILVHOILNI

I-8

INSTRUCTIONS, SETUP AND TEST

Now run the program by:

won s o o | o | (em (o
f ! | e L : : :
[RUN (8800] [_FEJ

The program stops and displays a memory address at which it could not
write and read data. This is the next address beyond the memory
installed; 8800 if the MTS is equipped with 2048 bytes of memory.

Any other address indicates a memory failure.

After testing each byte the program restores the previous value, so

this test program may be run even when you have another program

loaded.

1-9

INSTRUCTIONS, SETUP AND TEST

1.10 SYSTEM EXPANSION
The Microcomputer Training System can be expanded in four ways:

a) An additional 2048 bytes of Read-Write memory can be plugged into
the circuit board, giving a total of 4K bytes of RAM. Purchase Intel
2114 (or equivalent) 1024 x 4 static RAM chips and insert them in the

empty sockets.

b) An additional 3K bytes of PROM can be plugged into the circuit
board for programs that you have developed and want to keep
permanently available. Also, by cutting and replacing some circuit
board traces it is possible to replace the 1K PROM chips with 2K PROM
chips, for a total PROM capacity of 8K bytes. Additional PROM
chips will Dbe offered by ICS in the future to provide additional

built-in programs. Contact ICS for details.

c) The 1ICS Interface Training System can be connected to the MTS
through a cable connector at the upper edge of the MTS circuit board.
This training system includes additional input/output ports, interval
timers, a power driver, digital/ analog/digital converter, and an
extensive training course workbook covering the use of these devices,

real time programming, interrupt handling, and closed loop control.

INSTRUCTIONS, SETUP AND TEST

d) The MTS can be connected to an 8S-100 system to givé access to a
full 64K memory, Teletype or CRT terminal, printer, floppy disc, and
other system devices. An interface cable and adapter board are
available from ICS to plug directly into the S-100 bus. Such a
system can support BASIC, FORTRAN, PLM and other high level

programming languages.

I-11

INSTRUCTIONS, SETUP AND TEST

This page intentionally left blank

I1-12

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 1

HARDWARE AND SOFTWARE FUNDAMENTALS

INTRODUCTION TO CHAPTER 1

This chapter serves as the foundation upon which subsequent chapters
are based. The basic structure of computer systems is described,
principles of the binary number system are developed, the functional
organization of memory and the central processing unit is introduced
and the execution of several computer instructions is presented in

some detail.

By writing and loading simple programs of your own, you will learn to
use the Microcomputer Training System keyboard and display. You will
observe first-hand the dynamics of program execution by watching,
step-by-step, the results of executing individual instructions on

your own computer.

If you are familiar with some of the topics covered here, skim but do
not skip the material. The basic concepts are related to the

structure and operation of the Microcomputer Training System.

After completing this chapter you will have a clear comprehension of
the basic fundamentals of computer hardware and software. Most
importantly, your knowledge will be rooted in hands-on usage of your

MTS computer system.

1-1

HARDWARE AND SOFTWARE FUNDAMENTALS
1.1 BASIC CONCEPTS
1.1.1 Definition of a Computer

A computer is an electronic system which performs arithmetic and
logical operations on data according to a sequence of instructions.
The system consists of both hardware (physical devices) and software

(sequences of instructions).

HARDWARE: The electromechanical components of a

computer system.

1.1.2 Basic Hardware Structure of a Computer

A computer has three principal hardware subsystems: a Central

Processing Unit (CPU), a memory, and Input/Output (I/0) devices.

CPU: The central processing unit, a set of elements
which perform the actual arithmetic and logical
operations. The CPU also provides the central

control function of the computer system.

MEMORY: A physical device in which data and
instructions are stored for subsequent

processing

HARDWARE AND SOFTWARE FUNDAMENTALS

1/0 DEVICES:

Electro-mechanical devices that provide
input of data and/or instructions to the
system and output of results. Usually
input devices are separate from output
devices, e.g., a keyboard for input and a
CRT display for output. Sometimes one
device can combine both functions, e.g.,
a Teletypewriter can be used to input

information and print output information.

These three subsystems

are interconnected such that each one can

communicate with the other two:

— CPU B

MEMORY -

Y

ﬂ I/0 DEVICES

HARDWARE AND SOFTWARE FUNDAMENTALS
The model for computer operation is as follows:

1. Insfructions are input via an INPUT DEVICE and
stored in MEMORY.

2. Data are 'input via an INPUT DEVICE and stored
in MEMORY.

3. The data are processed in a sequence and manner
specified by the instructions.

4. The results of the data processing are output via

an OUTPUT DEVICE.

In Figure 1-1, showing the layout of the MTS computer, the principal
subsystems have been identified: The CPU, Memory, and Keyboard and

Display. We will look at these in more detail later in the chapter.

SSINTEGIHATE

HARDWARE AND SOFTWARE FUNDAMENTALS

COVIPUTER SYSTEAVIS, INC.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR
HARDWARE

80B0A Microprocessor
and Control Logic

RAM MEMORY

2048 Bytes of RAM Memory for
Programs and Data. Expandable
On-Board to 4K Bytes.

- [ererreTeT T

AUDIO CASSETTE
INTERFACE

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

DMA

Direct Memory
Access (DMA)
Channel

PROM MEMORY
Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes. .
Expandable On-Board to 8K Bytes.

FREE AREA
Space for User's
Hardware Additions

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable 170 Device including Three 8-Bit Ports.

MTS Board Layout
Figure 1-1

KEYBOARD
On-Board Keyboard
with 25 Keys for
Program and Data
Entry.

HARDWARE AND SOFTWARE FUNDAMENTALS
1.1.3 Basic Software Concepts

The computer performs its functions under the control of a sequence
of instructions. As an illustration, consider usingta computer to
convert miles to kilometers using the approximation that there are
eight kilometers in five miles. The rule, as it might appear in a
textbook, would say "Multiply the number of miles by eight and divide
by five to obtain the answer in kilometers." The computer will need
more detailed instructions than this. First assuming that the
computer has been set up for the conversion by storing appropriate
instructions in memory, it will also require that data be stored in

memory. In this case the data are:

a. The number of miles to be converted.
b. The number 8.

c. The number 5.
Then, the sequence of operation might go as follows:

a. START.

b. Retrieve (miles) from memory.

c. Retrieve (8) from memory.

d. Multiply (miles) by (8).

e. Store result in memory under (temporary).

f. Retrieve (temporary) from memory when ready for next operation.
g. Retrieve (5) from memory.

h. Divide (temporary) by (5).

i. Store result in memory under (result).

Jje. Output/Display (result) and STOP

HARDWARE AND SOFTWARE FUNDAMENTALS

A sequence of instructions which performs such a calculation (or

computation) is called

a program.

PROGRAM :

A sequence of instructions which performs a
specific calculation, computation or set of

logical operations.

Programs may be specified which perform a vast and varied number

of

functions, including mathematical calculations, symbol mahipulation,

word processing and

the detailed control and sequencing of I/O

devices. A collection of such programs is referred to as software.

SOFTWARE:

1) A collection of programs which perform
many different functions; 2) The program

component of a computer system in general,

as distinguished from the hardware or

physical component.

HARDWARE AND SOFTWARE FUNDAMENTALS

This page intentionally left biank.

1-8

HARDWARE AND SOFTWARE FUNDAMENTALS

1.1.4 The ICS Self-Study Microcomputer Training Course

This course is designed to provide you with the basic knowledge and

practical experience which will give you the capability to:

-Specify and write programs for performing a wide

variety of different functions,
-Enter programs and data into the Training Computer.

-Verify that your programs operate correctly and,

when they do not, modify them until they do.

-~Learn design techniques by actually connecting

1/0 devices to the Training Computer and controlling

them with your own programs.

-Explore the many hardware/software interrelationships,
learn the cost-effective use of each, and design

complete systems of your own.

In the succeeding chapters of +this book you will be given, in
step-by-step fashion, a sound foundation in both software and
hardware techniques. You will progress from the simplified concepts
of this introduction to a thorough understanding of these techniques
as you '"learn By doing", implementing each new concept yourself on

your own computer.

1-9

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2 NUMBER SYSTEMS AND REPRESENTATIONS
1.2.1 The Representation of Numbers

Physical representation of a decimal number requires an element with
ten pbssible states, one for each of the decimal digits 0-9. Such a
representation is found, for example, in the cog wheels of mechanical
caléulators. Eiements with more than ten states are also common, for

ekample in clocks.

Anyone having experience in solid state devices used in electronic
circuits will know. that substantial variability of characteristics
exists for nominally identical devices. These characteristics are
also wusually a function of temperature. To stabilize such devices
and to hold tolerances tight enough to distinguish unambiguously
between multiple states would involve complex circuitry and would
reduce reliability} Fortunately, the solid state devices are ideally
suited for two-state operation in switching circuits, where an
ON-state and an OFF-state can be readily distinguished: Thus, in the
long run it is cheaper, simpler, and more reliable to work in terms
of two-valued states, which are often two voltage levels, but can be
- for example - positive or negative polarity of a magnetic element.
In all cases, however, the computer operates on these two states in
terms of logic TRUE and FALSE. This 1is equivalent to using a

two-state or binary number system in which TRUE = 1 and FALSE = 0.

BINARY NUMBER SYSTEM: A two-valued number system

using only the digits 0 and 1.

HARDWARE AND SOFTWARE FUNDAMENTALS

In most applications with which we will be concerned, the ON or HIGH
voltage level wi}l be equated to TRUE or 1, and the OFF or LOW
voltage level (usually near ground potential) will be equated to
FALSE or O. This constitutes a POSITIVE LOGIC SYSTEM. Sometimes a
NEGATIVE LOGIC SYSTEM is used, for ease of design in certain
applications. In the latter system ON or HIGH is equated to FALSE or
0, and OFF or LOW is equated to TRUE or 1. Unless otherwise stated,
we will use the POSITIVE LOGIC SYSTEM, which simply means that when
considering a binary system using only the digits O and 1, the

O-level is low and the l-level is HIGH.

To wunderstand the basic principles of computer operation, it is
essential to know something about digital logic and number systems.
If you need a review of the former, then please see Appendix F, "A
Primer on Digital Logic." We think you'll enjoy it. Now we will
turn our attention to number systems in general and binary numbers in

particular.

1-11

HARDWARE

AND SOFTWARE FUNDAMENTALS

1.2.2 The Decimal Number System

Consider

8192:

(1)
8000
100
920

2

8192

the following four ways of representing the decimal number

(2) (3) (4)
8 x 1000 8 x 10 x 10 x 10 8 x 10°
1 x 100 1 x 10 x 10 1 x 102
9 x 10 9 x 10 9 x 10!
2 x 1 2 x 1 2 x 100
8192 8192 8192

All of these representations are familiar. Column (1) indicates that

the number 8192 can be represented as the sum of four different

numbers.
can be
however,
product

symbols

Columns (2) - (4) go further by illustrating that 8192
represented as the sum of four products. Column (4),
exemplifies the basic principle of all number systems: each
can be obtained by multiplying a digit (in decimal the

0-9) times a base (in decimal the number 10) raised to a

power (see column 4 above).

DIGIT: One of the symbols used in a number system.

BASE: The number of different symbols used in a

number system.

POWER: The number of times that a base is multiplied

by itself to form a product.

HARDWARE AND SOFTWARE FUNDAMENTALS

The decimal number system has ten digits or symbols; therefore the

decimal number system has a base of ten, and in the example each
product 1is obtained by multiplying a digit times the base ten raised
to a power. The power to which the base is raised can be seen to be a
natural progression from the least significant digit (rightmost) to
the most significant (leftmost). The value of a base raised to a
power is thus a function of its position in a string of digits, where
position 1is counted from right to left starting with zero. In the
following table we call the quantity of a base raised to its
positional power a "multiplier'. This number is multiplied by a

digit to provide the final product:

POSITION 3 2 1 0
MULTI- 103 102 10t 10°
PLIER (1000) (100) (10) (1)
DIGIT 8 1 9 2
PRODUCT 8000 100 90 2

Tables such as the above can be used to express the magnitude of a
number in a system with any arbitrary base. The binary number system

will be considered next.

¥

1-13

HARDWARE AND SOFTWARE FUNDAMENTALS

1.2.3 The Binary Number System

The choice of base for a number system may be accidental or
deliberate. The decimal system doubtless became widespread because of
the ease of counting on ten fingers. Nonetheless, the Babylonians
used a base of sixty and the Mayans, a base of twenty. The binary
number system, which is most appropriate for computers, uses a base

of two, and the digits 0 and 1.

Consider the following binary number:

11011

Had we 1lived from birth with a binary number system, we would
immediately grasp 1its magnitude. As we have not, it is useful to

convert it to its decimal equivalent.

Knowing that binary numbers have a base of two, we can construct a
table similar to that for decimal numbers. The table converts binary

numbers to their decimal equivalent in the following fashion:

POS IT ION 4 3 2 1 0
MULTI- 24 93 22 ol 20
PLIER (16) (8) (4) (2) (1)
DIGIT 1 1 0 1 1
PRODUCT 16 8 0 2 1

1-14

HARDWARE AND SOFTWARE FUNDAMENTALS

Thus 11011 (binary) = (16 x 1) + (8 x 1) + (4 x0) + (2 x.1) +
(1 x1) = 27 (decimal). Larger tables may be constructed for

converting longer strings of binary numbers.

Looking at the table again, it can be seen that the multiplier of
each digit position 1is exactly twice the value of the position
preceding it. Using this property, it 1is easy to calculate the

products which are to be summed.

Conversion from decimal to binary could also be accomplished by using
a table, but it is easier to use a process called "remaindering".
Dividing an even decimal number by two will produce a quotient with a
remainder of zero; dividing an odd decimal number by two will produce
a quotient with a remainder of one. The remainders are used to

construct the binary number, in the following example for decimal 57:

Quotient Remainder

57/2 = 28 1 - position 01
28/2 = 14 0 1
14/2 = 7 0 2

7/2 = 3 1 3

3/72 =1 1 4

1/2 =0 1 2 l v v

1 1 1 0 0 1

Decimal 57 is the equivalent of binary 111001. We may check this by
writing down the products, counting from position: (1 x 1) + (2 x 0)

+ (4 x0)+ (8x1)+ (16 x1) + (32 x 1), which sum to 57.

"HARDWARE AND SOFTWARE FUNDAMENTALS

1.2.4 Binary Addition and Counting

The rules for binary addition are very simple:

0+0=0
0+1-=1
1 +0-=1
1 +1-=10

In performing the final addition, we would say to ourselves "One plus
one equals 2zero and carry one". The rule for carries in binary is
similar to that in decimal but much simpler, as there are only two
symbols to worry about instead of ten. In both systems, symbols
cycle (are successively incremented by 1) thru a digit position until
all have been used. The next higher position is then incremented and

the cycle is repeated.

The following addition tables illustrate counting rules for binary

and decimal numbers:

1-16

HARDWARE AND SOFTWARE FUNDAMENTALS

0+0-= 0 0+0= 0
0+ 1= 1 0+1= 1
1 +1-= 10 1 +1 = 2
10 + 1 = 11 2 +1= 3
11 + 1 = 100 3 +1= 4
100 + 1 = 101 4 +1= 5
101 + 1 = 110 5+ 1= 6
110 + 1 = 111 6 + 1= 17
111 + 1 = 1000 7+ 1= 8
1000 + 1 = 1001 8+1= 09
1001 + 1 = 1010 9 + 1 =10

The binary portion of this table provides a graphic illustration of
the relationship between a digit's position in a string and the
power to which the base is raised at that position. In the "zero"

position, note that that O0's and 1's cycle. In the '"one" position,
two O0's cycle with two 1's. In the "two" position, four O's will
cycle with four 1's. Each cycle is twice (base two) the length of
the previous cycle. For decimal numbers each cycle will be ten

times (base ten) the length of the previous cycle.

Subtraction, multiplication, division and the representation of
negative binary numbers will be discussed in a subsequent chapter,
but keep in mind that these operations are all derivatives of the

C\Qr'\\l ek
basic operation of addition - which in turn is dxixed from counting.

HARDWARE AND SOFTWARE FUNDAMENTALS

When using more than one number system, their representations can
often become confusing. To avoid this problem, a number may be

subséripted to indicate its base:

11 (three)

11lo (eleven)

In this manual whenever a number is not apparent from context, it

will be subscripted or labelled appropriately.

A number of nomenclature conventions are important to introduce at

this time: bit, string, bit position, most significant bit, and

least significant bit.

BIT: An abbreviation for binary digit.

BIT STRING: A sequence of bits.

BIT POSITION: The location of a bit in a bit string.

MOST SIGNIFICANT BIT: The leftmost bit of a bit string.

LEAST SIGNIFICANT BIT: The rightmost bit of a bit string.

1-18

HARDWARE AND SOFTWARE FUNDAMENTALS
1.2.5 Hexadecimal Representation

We have seen that binary numbers are ideally suited to machine
representation, and that they are easiiy added. Subtraction,
multiplication and division are also simple operations in binary.
There is in fact only one drawback to the use of biharyinumbers: they
are difficult to perceive and describe if there are more than a few

bits in a number. Consider, for example, the binary number:
1011000100001001

It is almost impossible to look at such a number and remember the
digit 1in each bit position. There needs to be a way of encoding and
naming such numbers so that they may be more easily comprehended;
while at the same time preserving the underlying binary notion. A
conventional arrangement is to separate the binary number into four

bit groups.

A group of four bits can represent one of 16 numbers ranging from
0000 to 1111, or from O to 15. What we need is a set of sixteen
symbols to represent each of the different numbers. We use the ten
numerals O0-9 and the six letters A-F, as indicated in the following

table. These correspond to the 16 ﬁhite keys on.the MTS keyboard.

HARDWARE AND SOFTWARE FUNDAMENTALS

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
o111 7 1111 F

Returning to the original sixteen bit example,

1011100010000 {1001

B| 1| o] o

it can be seen that this notation is much easier to read and
remember. The introduction of a sixteen-symbol convention to
represent groups of four binary digits is for the convenience of the

user only. It can be seen, however, that we have in fact introduced

a new number system with a base of 1610 , and which is called the

hexadecimal number system (abbreviated hex).

HEXADECIMAL NUMBER SYSTEM: A sixteen-valued number system

using the symbols 0 - 9, A - F.

1-20

HARDWARE AND SOFTWARE FUNDAMENTALS

While it 1is possible to add hex numbers and construct tables for
converting hex to decimal and decimal to hex, we will not consider
these operations in any detail. The use of hex notation will be
limited solely to the representation of four-bit groups of binary
numbers, and is used only to facilitate describing them. The use of
numbers such as 3016 . 82FF16 etec. will always be understood as a
simple encoding of binary numbers. For practice, convert the

following hexadecimal numbers to binary.

00
02 -
08
10 ‘
14 H
63
7A
9F
8200
83F8
023D

1-21

HARDWARE AND SOFTWARE FUNDAMENTALS
1.3 THE ORGANIZATION OF MEMORY

1.3.1 Memory Words

Data and instructions, represented as binary numbers, are stored in
the computer's memory. The fundamental units of memory are words,

each of which has a word size.

WORD: The basic unit of storage in a computer memory.

WORD SIZE: The number of bits contained in a word.

bit(N-1)ceveeeeses bit O A word with word size N.

The word size of memory varies with the size of the computer system.
Very large computers have word sizes from 32 to 64 Dbits.
Mini-computers typically have word sizes of 16 or 24 Dbits.
Micro-computers usually have a word size of 8 bits, which is the size
of the MTS memory word. One factor is common to most - the word size

is divisible by eight. This has led to the adoption of a special term

for a a string of 8 bits.

BYTE: An 8-bit word. More generally, an 8-bit string,

which can be part of a larger word.

10110101 A byte representing 181 decimal

or B5 hex.

1-22

HARDWARE AND SOFTWARE FUNDAMENTALS

Each word in a memory has a location which is identified by a memory

address.

MEMORY LOCATION: The position of a word in a memory.

MEMORY ADDRESS: A number specifying the exact location

of a memory word.

A memory's size is equal to the number of words in a

memory.

MEMORY SIZE: The total number of words

in a memory.

An address size is the number of bits used to

address.

specify a memory

ADDRESS SIZE: The total number of bits

used to specify a memory

which may be

address.

1-23

HARDWARE AND.SOFTWARE FUNDAMENTALS
1.3.2 Memory Module

At first glance it might appear that memory size and address size are
directly related. For example, a computer with an address size of
eight bits can address 256 words; with an address size of sixteen
bits, 65,536 words can Dbe addressed. However, the capability of
addressing words does not imply that the memory must contain that
many words. Most computers, in fact, have far fewer memory words
available than they are capable of addressing. This is possible
because memory is usually available in modules, with each module
containing a few hundred or a few thousand words. The same CPU can
thus be used in a variety of configurations, with the size of memory
used dictated by the application for which the system has been

designed.

MEMORY MODULE: A unit of memory containing a fixed number

of words.

Memory modules contain a number of words or bytes which is generally
expressed as some factor of the quantity 1024 = 210, This is such a
convenient unit for describing memory size that the number 1024 has
been given the symbol K. A memory module containing 4096 bytes is
referred to as a 4K memory; one with 512 bytes, a .5K memory. These

concepts may be illustrated by the diagram on the following page:

1-24

HARDWARE AND SOFTWARE FUNDAMENTALS

MEMORY MODULE 2 (2K)

Address 87FF16

e

add 8000
ress 16

MEMORY MODULE 1 (1K)

Address O03FF
16

L

Address 0

The diagram describes the memory structure of a system with a word
size of eight bits, an address size of sixteen bits (Why are sixteen
bits required?), and a memory size of 3K words. It is in fact the
memory structure of a minimum MTS compiter system. Two important
properties of memory organization are illustrated here. 1) Within a
memory module, addresses are numbered sequentially; 2) If two or
more modules are used, the first address of the second module is
independent of the last address of the first module (although for
ease of implementation it is usually some multiple of 1K). This
independence is made possible by the fact that the two modules are
"wired in"; the addrésses of aQailable words are determined by the

hardware of the system.

1-25

HARDWARE AND SOFTWARE FUNDAMENTALS

1.3.3 Memory Access

The process by means of which a request 1is made to access a memory
word is conceptually simple. The requestor (the CPU or, iﬁ some
instances, an 1/0 device) outputs the requested address on parallel
address lines, one line for each bit of the address. This signal is
interpreted by an address decoder, which then selects the single lead
which will access the desired memory word. The contents of the word

will then be made available on the data lines.

DECODER: A device containing a switching matrix which
responds to the pattern of a set of input
signals and outputs a signal determined by that

pattern. Usually the output takes the form of

activating a particular output line.

The diagram on the following page illustrates the process:

1-26

HARDWARE AND SOFTWARE FUNDAMENTALS

REQUESTER DECODER MEMORY
l o —
0 -
0 -
0 -
0 o
0 - — = = — — = — g
1 il T ——
1

[
0 — | RiR (CONTENTS=AF _)
0 — ' 16
0 _ DATA
g — LINES
— BUS
3 - (BUS)
0 - Vv
ADDRESS MEMORY
LINES SELECT
(BUS) LINES

- The memory select 1lines are essentially internal to the memory
itself. The address lines and data lines serve as the communication

channels between the CPU and its memories and 1/0 devices, and they

have special names: address bus and data bus.

to the address size of the system.

ADDRESS BUS: The set of lines carrying address information.

The number of lines in the bus will be equal

DATA BUS: The set of lines carrying data. The number of

lines will be equal to the word size of the

system.

1-27

HARDWARE AND SOFTWARE FUNDAMENTALS

1.3.4 Varieties of Memory

There are two types of memory in your MTS computer system: Random
Access Memory (RAM), which may be read or written, and Read Only
Memory (ROM), from which data may be read but not written into. To
read data from memory, the address bus 1s used to select a word whose
contents can then be read out onto the data bus. To write data into
memory, the address bus is used to select a word whose contents are
then changed to that which is being sent on the data bus. Reading

the contents of a word leaves the word unchanged.

RAM: Random Access Memory which may be both read and

written.

ROM: Read Only Memory which may be read but not written.

Read and write operations are illustrated in the following diagram:

1-28

HARDWARE AND SOFTWARE FUNDAMENTALS

RAM OR ROM MEMORY
Read operations put the

contents of a word onto the

" ADDRESS BUS "

V|

<<: DATA BUS 4D\§
o

RAM MEMORY ONLY

*——\./\/

information on the data bus
ADDRESS BUS WORD

into a word.
, N
DATA BUS h

In Figure 1-2 the RAM and ROM of your MTS system are indicated. There

data bus.

Write operations put the

are 2048 words of RAM and 1024 words of ROM. Your ROM contains
a set of programs called the MONITOR, designed to assist you in

learning the system. The functions of the MONITOR will be defined
step-by-step as you progress through this manual. The RAM will be
used to store the different programs which you will write yourself.
ROMs are used for programs which do not need to be changed, and are
protected against inadvertent modification. RAMs are wused for
program development (these programs can then be placed in a ROM, but
special equipment is required) and for storage of transient data in
actual applications. Some of the RAM in your MTS is required for use
by the MONITOR and is not available for user programs. This will be

discussed later.

1-29

HARDWARE AND SOFTWARE FUNDAMENTALS

ESINTEGATED COVIPU

ER SYSTEAVIS,INC.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR
HARDWARE"

8080A Microprocessor
and Control Logic

RAM MEMORY

2048 Bytes of RAM Memory for
Programs and Data. Expandable
On-Board to 4K Bytes. -

AUDIO CASSETTE
INTERFACE

Audio Cassette Interface and
Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

DMA
Direct Memory
Access (DMA)

- Channel

PROM MEMORY

Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes.
Expandable On-Board to 8K Bytes.

1-30.

FREE AREA

- Space for User's
Hardware Additions

KEYBOARD
On-Board Keyboard
with 25 Keys for
Program and Data
Entry.

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable I/0 Device Including Three 8-Bit Ports.

MTS Board Layout
Figure 1-2

HARDWARE- AND SOFTWARE FUNDAMENTALS

1.4 STRUCTURE OF THE CPU

On the first page of this chapter, the CPU was described as a set of
elements which perform the arithmetical and logical operations and
also serve as the central controlling elements of a computer system.
We will 1look at some of these operations in more detail,_but first
let us review the structure of the system including the data bus and

address bus:

<IL_ i DATA BUS
CPU MEMORY 1/0

ADDRESS BUS

The CPU wmay send or receive data along the data bus which is
bidirectional. The CPU sends memory addresses out on the address

bus, but does not receive from the address bus.
1.4.1 Functional Units

Internally, the CPU consists of three primary functional units. One
is concerned principally with addressing functions, selecting
addresses which will be sent out on the address bus. A seconq_unit
is concerned with interpreting and decoding the instructions. which
are stored in memory. The third is the Arithmetic and Logical Unit
(ALU), in which all arithmetic and logical functions are performed.

These units are able to communicate with each other over an internal

1-31

HARDWARE AND SOFTWARE FUNDAMENTALS

data bus, which is the fourth functional component of the CPU. The

following diagram schematically outlines this organization:

(internal data bus) ':> DATA BUS V}
! ARITHMETIC AND LOGIC
UNIT

INSTRUCTION UNIT

VRV

|
/

J
AN

ADDRESSING UNIT | > ADDRESS BUS :>

CPU ORGANIZATION

1-32

HARDWARE AND SOFTWARE FUNDAMENTALS

The internal data bus is illustrated here only to indicate that there
is a physical pathway between the various internal units of the CPU.
The term data bus will always refer to the main (external) data bus,

to avoid confusion.

Each of the internal units of the CPU has one or more registers, one
or two byte storage elements which are similar to memory locations
but which are used for temporary storage, for holding the results of
a calculation, or for other dynamic purposes. The nature and
function of each register will be described as its use is first

encountered.

REGISTER: A one or two byte storage location used by
the CPU for temporary storage or other dynamic

purposes.

1.4.2 The Execution of Instructions

A computer is a system which performs operations on data according to
a sequence of instructions called a program. A program is created by
a user (programmer) to cause the computer to fulfill a particular
task. An instruction is the smallest element of the program that
conveys a complete meaning; it is similar to (and often represented
by) a command in human language such as ADD B to A. To be stored in

the computer's memory and handled by 1its electronic circuits, the

1-33

HARDWARE AND SOFTWARE FUNDAMENTALS

instruction must be represented as a binary number. This
representation is called a code, and a program in binary code ready

for use by the computer is said to be in machine language.

INSTRUCTION: The smallest element of a computer
language that directs the computer

to perform a specific operation.

Each execution of an instruction will perform one small step in the
calculation or process which the program is designed to accomplish.
In turn, the execution of each instruction is broken up into a number

of steps which are performed one after another.
1.4.3 Instruction Cycles

The program will be stored in memory; therefore the execution of each
instruction will have to start with the transfer of an instruction
from memory to one of the registers of the CPU. Then the inst;uction
will be decoded (interpreted) and the operations specified will be
carried out. The total time taken to fetch and execute an instruction

is called an instruction cycle. The 1length of an instruction cycle

varies considerably, depending upon the operations which must be
performed. Every instruction cycle, however, begins with an

instruction fetch.

HARDWARE AND SOFTWARE FUNDAMENTALS

INSTRUCTION CYCLE: The total time taken to fetch and.

execute an instruction.

The basic sequence of events during an instruction cycle is:

FETCH INSTRUCTION FROM MEMORY

DECODE INSTRUCTION

EXECUTE SPECIFIED OPERATIONS

1.4.4 The Program Counter

To fetch an instruction from memory requires a memory address. The
address from which an instruction is to be fetched is always
contained 1in a CPU register called the Program Counter (PC). There
are two strong implications in this statement: there must be a way
to initialize the PC with the address of the first instruction in a
program, and there must be a way to modify the PC after each
instruction cycle so that it will contain the proper address for the

next instruction to be fetched.

-1-35

HARDWARE AND SOFTWARE FUNDAMENTALS

PROGRAM COUNTER: A register in the CPU which contains
the address of the next instruction

to be fetched.

Use of the PC is illustrated velow:

CPU MEMORY
b-/\/\./j
ADDRESS BUS i_"“'B Word Containing
Next Instruction

1-36

HARDWARE AND SOFTWARE FUNDAMENTALS

1,4.5 The Instruction Register

When a memory word has been selected by the PC, its contents will be
gated onto the data bus and placed in a CPU register called the

Instruction Register (I1).

INSTRUCTION REGISTER: A register in the CPU containing

the instruction currently being

executed.
CPU MEMORY
‘\ - r_—-\/“/
{ (internal bus) >< DATA BUS >
S
PC |15 ~ T T T 7.

~ ‘(;__’//" ADDRESS BUS 7 -7 o | Word Containing
Next Instruction

L/\—/_\

After the 1instruction has been loaded in I it is fed to the

instruction decoder. The instruction decoder 1looks at a pattern of

input binary signals and outputs a pattern of signals which will
sequence and control all of the steps required to execute the

instruction.

1-37

HARDWARE AND SOFTWARE FUNDAMENTALS

DECODER

“l;ii‘;lé;l%" Control and Sequencing

Signals

1.4.6 The Accumulator

The program counter is one of the registers contained in the
addressing wunit. The instruction register is in the instruction
unit. The final register which we will define at this point is

called the Accumulator (A), an eight bit register in the arithmetic

and logic wunit. It is the register most actively used by programs
because it contains the results of most arithmetic and logical

instructions executed by the system.

1.4.7 The Clock

The computer operates in a sequential fashion, a step at a time.
There must be no confusion or overlapping. Signals must be available
on the appropriate lines at the right time. Many circuits are
involved, each with inherent delays. Although the delays are short,

on the order of nanoseconds, it does take time to access a particular

device, e.g. memory, and get the response to the location required.

1-38

HARDWARE AND SOFTWARE FUNDAMENTALS

These delays ultimately limit the speed of operation of the computer.
To ensure that each step is carried out in an orderly fashion, the
process 1is controlled by a clock. It outputs a series of regularly
spaced pulses that time all computer eyents. The clock frequency

must be high enough to ensure rapid processing.

The wupper frequency limit is set Dby the inherent device delays. If
the frequency is too high, confusion will result because required
signals will not appear in time for a particular operation. In the
MTS system, there is an 8224 clock generator that uses an 8801 clock
generator crystal specifically selected for the MTS 8080A
microprocessor. The crystal frequency is 18.432 MHz (+0.005%). This
is counted down by a factor of 9, to produce pulses af intervals of
488 nanoseconds. Thus the time for a single step in the MTS system
is 488nS. Since a complete instruction may comprise about ten steps
or clock periods, on the average, we arrive at an average time for an

INSTRUCTION to be implemented of about 5 microseconds.

We will shortly begin active use of the Microcomputer Training
System, but before doing so the system monitor provided with the MTS

must be described briefly.

HARDWARE AND SOFTWARE FUNDAMENTALS

This page intentionally left blank.

1-40

HARDWARE AND SOFTWARE FUNDAMENTALS
1.5 THE MTS MONITOR

1.5.1 Monitor Software

The Microcomputer Training System has a CPU, memory (2K of RAM, 1K of
ROM) and two 1/0 devices, a keyboard and a display (see Figure 1-3).
In addition to its hardware, the MTS also has a set 0f programs which
are stored in read-only memory. This built-in software allows you to
load your own programs into the RAM memory, and to control and
observe the execution of your programs. This observation function is
called '"monitoring", and the built-in programs in ROM memory are

collectively called the Monitor.

MONITOR: A set of programs stored in Read Only

Memory, which provide ‘for:

a) Loading programs into RAM

b) Controlling and observing the
execution of programs

c) Receiving data from the keyboard

d) Displaying data in the eight digit

display

While the monitor provides these facilities to enable you to use the
MTS immediately, in later chapters you will learn to write programs

for controlling the keyboard and display yourself.

1-41

INTEGIRATED COVIPUTER SYSTEAVIS, INC.,

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR RAM MEMORY AUDIO CASSETTE DISPLAY
HARDWARE 2048 Bytes of RAM Memory for INTERFACE On-Board 8-Digit
B0BOA Microprocessor Programs arldkgata- Expandable Audio Cassette Interface and LED Display
and Control Logic On-Board to 4K Bytes. Associated Softwars for Easy

Program Storage and Retrieval

L) @ ;e]
.) ‘ @ A
2l] "o 9., 2

DMA PROM MEMORY FREE AREA KEYBOARD

Direct Memory Eraseable PROM Memory Space for User's On-Board Keyboard

Access (DMA) (containing the Educational Monitor Hardware Additions with 25 Keys for

Channel Program) - 1024 Bytes. Program and Data
Expandable On-Board to 8K Bytes. Entry.

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable 17O Device Including Three 8-Bit Ports.

MTS Board Layout
1-42 Figure 1-3

HARDWARE AND SOFTWARE FUNDAMENTALS
1.5.2 The MTS Keyboard and Display

The MTS keyboard and display are shown in Figure 1-3. The display,
located in the upper-right corner of the MTS, consists of two sets of
four characters each. The characters are formed by sets of
light-emitting diodes (LEDs). In each character position, there are

eight LED elements arranged in the following fashion:

By activatihg one or more of the LEDs in a character position a

character is formed, for example "A":

We will use initially a character set consisting of 0-9, A-F, and R.
With a seven segment display, however, there are several ambiguities.
The ten decimal digits are easily created, but "B" would be the same

as '"8", and "b" the same as '"6". Also "D" would be the same as "0"

and "R" the same as "A".

HARDWARE AND SOFTWARE FUNDAMENTALS

These characters are, therefore, represented by:

The keyboard is a five by five array. The upper row and right column
of this array are command keys, each of which requests the monitor to
perform a particular function. The remaining keys constitute the hex
characters 0-9, A-F. For the moment we will ignore the alpha

characters which appear on the 1, 2, 8 and 9 keys.
Using the keyboard and display, you will be able to:

-Inspect the contents of a memory word
-Change the contents of a memory word
-Inspect the contents of the program counter (PC)

-Change the contents of the program counter

-Inspect the contents of a register (e.g. A)
-Change the contents of a register
-Execute an instruction contained in a memory word

-Execute a program contained in memory

1-44

HARDWARE AND SOFTWARE FUNDAMENTALS

1.5.3 Using the MTS

When you wuse the monitor to control and observe execution of your
programs you will be able to display and alter the content of the
registers and program counter. Since the monitor is a program
running in the same computer that you are using, it uses the program
counter and registers itself. The information displayed has actually
been stored in memory by the monitor; only when you press STEP or RUN
is this information actually placed in +the program counter and
registers. When we refer to the program counter or to a register in
this text we will generally be speaking of the values applicable to

your program.

When power is turned on, the monitor will set the content of your PC
to 8200, which is in RAM memory, and display this number in the left
four digits of the display panel. The content of location 8200 will
be displayed in the rightmost two digits. The monitor will then wait
for you to depress one of the keys on the keyboard. Initially, the
content of 8200 will be undefined; the contents of RAM memory are not
preserved when power is turned off, and will be random when power is
turned on. For convenience in writing, therefore, whenever a number
is wundefined we shall represent it with question marks. When power

is turned on, your display will read:

(8200]) | 2?)

Remember, the display will not actually contain question marks; it
will simply be a number which the author of this manual cannot

predict!

1-45

HARDWARE AND SOFTWARE FUNDAMENTALS

1.5.4 Inspecting Memory Contents

Having turned on the MTS,

take

one of the blank coding sheets

provided. Note the columns labeled ADDRESS and CODE. Enter 8200 in

the first column, and its content

(the two rightmost digits) in the

second column. We will now continue to examine the contents of the

first ten words of memory.

command key labeled

NEXT

The display should now

read:

Write 8201 in the first

Press NEXT again,

col umn

and write

To look at the content of 8201, press the

(203 (=7

, and its content 1in the second.

down the address (8202) and its

content. Continue in this fashion until the display reads 8209.

should now know the contents of the

in whafever random condition they may be.

The command key RST

(for

You

first ten words of your memory,

RESTART) has the same effect as

turning power on: the user's PC will be set to 8200, memory address

8200 will appear in

the

left £

our digits of the display and the

content of 8200 will be displayed in the rightmost two digits.

you have made an error,

1-46

press

RST

and start over.

If

HARDWARE AND SOFTWARE FUNDAMENTALS

This page intentionally left blank.

1-47

HARDWARE AND SOFTWARE FUNDAMENTALS
1.5.5 Changing Memory Contents

We will now consider changing the contents of a memory word. Press

RST . The display will read: (8200] [2?]

Now press key 1 . The display will show Err . The monitor
demands a command before it will accept hexadecimal data, because

otherwise it does not know what was intended. By pressing the MEM
(for MEMORY) key, you command the monitor to accept data from the

keyboard and store it at the memory location whose address is

displayed. Press MEM , then hex key 1 ; the display will
read:
8200 .01

Notice the decimal point to the left of the memory content. This
indicates that data can be entered to memory. I1f it is not on, the

monitor will not accept the data.

Press hex key 2 ; the display will read:

(8200} [C.12)

Press hex key 3 ; the display will read:

(8200] [_.23)

Each time a hex key is pressed, the right digit is shifted to the
left, displacing whatever was there, and the new digit is entered in
the rightmost position. Remember, a memory word can store only two
hex characters (one byte). The monitor will allow you to preés as
many hex keys as you desire, but only the last two will be stbred.
This capability allows you to correct keying errors without the

necessity of pressing another command key. To see what all of the

1-48

HARDWARE AND SOFTWARE FUNDAMENTALS

hex characters look like on the display, continue pressing the keys

until you have seen the entire set. Finally, press hex keys 0

and 1 so that the display reads:

[8200) .01

Now press NEXT followed by hex keys 2 and 3 . The

display will read:
(8201) (23]

Pressing NEXT allows you to enter data in consecutive memory

addresses, provided that MEM has already been pressed. The decimal

point reminds you that MEM has been pressed.

NEXT increments by one the address displayed. After the first time
you press MEM, pressing MEM again will decrement the address by one
and display the memory content. This makes it easy to back up and
correct an error. Try incrementing and decrementing the address with

NEXT and MEM.

HARDWARE AND SOFTWARE FUNDAMENTALS
1.6 PREPARING A PROGRAM

You are now ready to prepare your first simple program. First, we
will define the instructions which will be used. Next we will write
the program down on paper. ‘Then the program will be entered at the
keyboard and verified. Finally, the program wi}l be executed one
instruction at a time, and the sequence of operations within the

system will be detailed for each instruction.

Instruction codes are one-byte, 8-bit binary words represented by two
hex characters. Neither the binary word nor its hex equivalent has
an intrinsic meaning, so for each instruction a short two, three or
four character mnemonic has been assigned. The mnemonic 1is a
shorthand representation of the meaning or functional description of

the instruction.

1-50-

HARDWARE AND SOFTWARE FUNDAMENTALS

1.6.1 Instructions to be Used

The first instruction we will use is defined as follows:

BINARY CODE: 00000000

HEX CODE: 00

MNEMONIC: NOP

MEANING: No Operation. This is an instruction

which does nothing at all. Its execution
has no effect on any memory location or

CPU register.

The chief purpose of NOP is to leave a space open in case you have to
fix something - like leaving a spare pin on the edge connector of a
printed circuit board. This instruction appears in the instruction
set of almost every computer on the market, from huge IBM
installations to microprocessors such as the one in your MTS. It is
in effect a non-instruction; when a pattern of all zeroes is

presented to the instruction decoder, no operation is specified.

Register A (the Accumulator) is the most important register in the
CPU from the programmer's point of view, and there are a number of
instructions which manipulate 1its contents. It is 1logical to
consider next an instruction which sets the contents of Register A to

Zero.

1-51

HARDWARE AND SOFTWARE FUNDAMENTALS

BINARY CODE: 10101111

HEX CODE: AF

MNEMONIC: XRA A

MEANING: Clear the contents of
Register A (set to zero)

The mnemonic for this instruction will appear a bit strange. This is
actually one of a set of logical instructions operating on the A
register. The full significance of the mnemonic will become apparent
when the other instructions are considered. The third instruction
which will be wused in your first program is one which increments

(adds one) to the contents of the A register.

BINARY CODE: 00111100

HEX CODE: 3C

MNEMONIC: INR A

MEANING: Increment Register A (add one

to the contents of Register A)

With these three instructions, you can write a program which
initializes Register A with a vélue of zero and then successively
adds one to A until it éontains a specified value. Although a very
simple routine, it will introduce and clarify some of the basic

concepts of instruction and program execution.

HARDWARE AND SOFTWARE FUNDAMENTALS

1.6.2 Program Specification

Writing a program is a very structured exercise, and from the
beginning you are urged to be methodical and precise about it. All

programs should originate in a program specification, a written

definition of what the program should accomplish. The specification

for your first program is:

"Write a program which begins with a "no operation" code, then sets
Register A to an initial value of zero and then, by successive

increments of one, ends with the number seven in Register A."
1,6.3 Writing (Coding) the Program

The next step is to write the program down on paper, using the same
notation which was used when you inspected the contents of the first
ten locations of your memory. An important addition to that format,
however, will be a column for comments. Programming mnemonics are so
terse that simply looking at a sequence of hex codes or mnemonics
will not convey the function, goal or intent of the program.
Comments are used to convey this information. Writing a program is
often called '"coding'", as it is a translation from a natural language

to computer code.

Your first program, written in the recommended format, should look

like Figure 1-4

1-53

Choan ol toe A
Cocint 2 7

CZﬁochzt Z%_ <>’_

Program and Exercise #1

CODE

A D. D R

QN g

Q| WA Q] & U Y ¢

QU 22| = 222
<PX[H[RSNHES
Qlw[olololkolkolulo B

NN RN IR IR

Ol ||]| O|INOlo|g|lon|o|l0|lW|lw|[o|lrcr|ln]|m]agav]jo|N|olo|d|la|lo|la|lw|luw]o|=|~]|lm| <
NNNNNVNTENN
RRTIRRIRINRIRIR

o [On OJ Pu GJ © ©

133HS ODNI1A0D WILSAS ONINIVHL H31LNdINODOHDINW SINFLSAS HILNdINOD AI1LVHDIINI

Figure 1-4

1-54

HARDWARE AND SOFTWARE FUNDAMENTALS

Remember, comments are used so that you will be able to look at a
program you wrote weeks or months ago and understand what it is your
program is doing. Even more important, when you are working as part
of -a team, they help someone else understand what your program is

doing.
1.6.4 Loading Your Program in the MTS

Now that your program is committed to paper, it is time to load it in

the MTS memory. First, initialize the system by pressing RST s

which will establish the first entry point at 8200. The Scenario

should be as follows:

RST (8200])] [??]

Set in write mode to enter data:

MEM L8200]) .27

Enter first instruction:

0 0 L8200] .00

1-55

HARDWARE AND SOFTWARE FUNDAMENTALS

Advance to next instruction:

Enter second instruction.

Advance to next memory address.

1-56

NEXT

NEXT

NEXT

NEXT

NEXT

|8201| . ??
[8201| . AF)
[8202] « 3C
{ §203| l .77

203 . 3C
8204 (.27

(8204 [.30

205] .27
205 . 3C

HARDWARE AND SOFTWARE FUNDAMENTALS

NEXT (82060 (77
3 c (8207 (39
NEXT (8208 (77
3 c (8204 [.38

Your program has now been entered in memory.
1.6.5 Verifying and Correcting the Stored Program

Now that you have loaded your program, it will be helpful to you to
verify 1it. It 1is easy to make a mistake at the keyboard, and the
computer 1is absolutely intolerant of mistakes in the sense that it

will do exactly what you tell it to do.

To be sure that your entries are correct, press RST and then,

using the NEXT command, check the the contents of memory

against your written coding sheet. If you detect an incorrect code

in a word, it can be easily corrected, e.g.

NEXT 8205 ([_3DJ

The entry at 8205 should have been 3C. To correct it,

MEM 3 C

Corrects the error.

NEXT L8206] [.3C]

HARDWARE AND SOFTWARE FUNDAMENTALS

Inspect the next memory byte, then continue.

When you are satisfied that the program is correct according to your

coding sheet, you are ready to execute the program.
1.6.6 Executing Your Program

To exe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>