INCOTERNT°

SPD/DOS
~ DISKETTE OPERATING SYSTEM
| PROGRAMMER'S REFERENCE MANUAL

SPD/DOS
PROGRAMMER'S

REFERENCE MANUAL

ORDER NUMBER: MS-7178.0

DATE: AUGUST, 1975

PREFACE

SPD/DOS is a diskette resident operating system. This manual pro-
vides the necessary information for preparation of assembly language
programs which are intended to run under SPD/DOS. Knowledge of
_the general structure of SPD/DOS as documented in the SPD/DOS

Operator's Reference Manual is assumed.

This publication specifically documents SPD/DOS Version 6, and
should not be construed to precisely describe earlier versions.
It is the only SPD/DOS manual required for the SPD 10/20, SPD

10/24, SPD 10/25, and SPD 20/20.

It should be noted that the SPD 10/24 was especially designed for overseas
customers. This system is built and sold solely by a licensee, TRANSAC,

The SPD 10/24 is not available within the U. S, A,

Copyright ® 1974 by INCOTERM Corporation
Copyright ® 1975 by INCOTERM Corporation

The information i{n this manual is presented for informaticnal purposes
and is not intended or licensed to be used for the construction of equip-
ment. The information is believed to be ac¢curate, but-no responsibility
is assumed for inaccuracies or for consequences of using the informa-

tion,

Farther, INCOTERM Corporation makes no représentation that use of the
information in this manual will not infringe on existing or future patent
rights of INCOTERM or of others.

Ead

&

£

Table of Contents

SECTION I PROGRAM FORM AND EXECUTION

Introduction

Program Restrictions
Entry Conditions
Program Execution
Power Restart
Program Debugging

SECTION I SPD/DOS CONTROL INFORMATION

DBF&PTP -- Printer Type

DBF&DNL -- Display Size

DBF&TKP -- Current Track Positions
DBF&CSU -- Currently Selected Unit
DBF&SYS -- System Type

DBF&MEM -- Memory Size

DBF&MOD -- Command Mode

DBF&FUN -- Command Input Unit

DBF&FTR -- Command Input Track
DBF&FSC -- Command Input Sector
DBF&FOF -- Command Input Offset
DBF&OPT -- Option Bits

DBF&RTN -- Return Code

DBF&PNM -- Program Name

DBF&PUN -- Program Unit

DBF&PFT -- Program First Track
DBF&DER -- Display End Refresh Character
DBF&PLP -- Printer Lines/Page

DBF&PCL -- Printer Characters/Line
DBF&CCH - Card Reader Channel

DBF&PCH -- Printer Channel

DBF&TCH -- Tape Reader Channel
DBF&LOG -- Log Mode

DBF&MPP -- Multi-Printer Parameter Byte
DBF&KBT -~ Keyboard Type

DBF&NUN -- Number of Units

DBF&ENF -- Eject Fill Count

DBF&LNF -- Line Feed Fill Count
DBF&RNO -- Release Number

DBF&FSF -- Command Input Interlace Factor
Reserved Area

DBF&ICA -- Interprogram Communication Area
DBF&STR -- Overlay Segment Track Numbers
DBF&SSC -- Overlay Segment Sector Numbers
DBF&CMN -- Returned Command

1 H 1 1 1 1] 1 1

b
= = O DO 00000000 ~1I~UltO bbb wwWwwhhNn -

fui
O OO

NNNNNNNODNNDNNNNNNNDNDNNDNNNDNDNDDDDDDN
r

1
oy
s

2-11
2-11
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-14

Table of Contents
(cont'd)

SECTION III SYSTEM SUBROUTINES -- GENERAL DESCRIPTION 3-1

Physical Level Diskette Input/Output 3-1
Logical Level Diskette Input/Output 3-7
3-1
3-1

Diskette Buffer Access ~-10
Overlay Segment Management -11
Asynchronous Disk Input/Output 3-11
Parameter Field Scanning 3-12
Printer Output 3-12
Display Handling . 3-12
Keyboard Handling) 3-13
Commeand Source Input - 3-13
End of Execution 3-13
Utility Routines 3-14
SECTION IV SYSTEM SUBROUTINES -- CALLING SEQUENCES 4-1

D&BLMYV -- Block Move 4-1

D&CHEK -- Check Diskette Status 4-2

D&CLOS -- Close File 4-3

D&CLSS -~ Close Source File 4-5

D&CREA -- Create New File 4-7

D&CRES -~ Create Source File 4-10
D&DKRS -~ Diskette Reset 4-13
D&DSIN -- Display Initialize 4-14
D&DSPL -- Display) 4-15
D&ENTF -- Enter Foreground 4-16
D&EXCM -- Exit with Nucleus Command 4-17
D&EXIT -- Exit to Nucleus 4-18
D&KALM -- Sound Keyboard Alarm 4-19
D&KILIT -- Set Keyboard Lights 4-20
D&LINK -- Link to Segment 4-21
D&LNKS -- Link to Segment (small) 4-22
D&LOAD -- Load Segment 4-23
D&LOCF -- Locate File 4-24
D&LODS -~ Load Segment (small) 4-26
D&MRFB -- More Record from Buffer 4-27
D&MRTB -- Move Record to Buffer 4-28
D&OPEN -- Open Existing File . 4-29
D&OPSR -- Open Source File for Reading 4-31
D&OPSW -~ Open Source File for Writing 4-34

D& POWR -- Power Restart Routine 4-36

Table of Contents
{Cont'd)

D&PRNT -- Print Line

D&RDBF -- Read Buffer

D&RDSR -- Read Source Record
D&READ -- Read Sector

D&RKBD -- Read Keyboard

D&RKBR -- Read Keyboard Repeat Enable
D&RLCS -~ Read Line from Command Source
D&SBPR -- Set Buffer Pointer for Read
D&SBPW -- Set Buffer Pointer for Write
D&SCNC -- Scan Character

D&SCNF -~ Scan File Name

D&SCNI -- Scan Initilize

D&SCNL -~ Scan File Name and Label
D&VRFY -- Verify Sector

D&WAIT -- Set Disk Wait Routine
D&WRBEF -- Write Buffer

D&WRIN -- Write Initial Sector

D&WRIT -- Write Sector

D&WRSR -- Write Source Record

SECTION V DISKETTE FORMATS

Format of Nucleus Bootstrap and Code
Format of Label Record

Format of File Directory

Format of Saved Core Image

Format of Data Files

Format of Object Files

Format of Source Files

Format of Relocatable Files

Module Directory
Module -Preamble
External Symbol Dictionary
End of Module Preamble
Module Text
Word Specification (WS)
Byte Specification (BS}
One-Word (Word or Byte Class) Instructions
Immediate Class Instructions
Jump on Conditions Instructions

4-38
4-40
4-41
4-44
4-47
4-48
4-49
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-61
4-63
4-64
4-66
4-68

w
1
fa

1 1 1

b

oyttt
]
=D ON ON U1 W0

v ;
1
et
NN

5-13
5-13
5-13
5-14
5-15
5-15
5-15

Table of Contents

(cont'd)

Compare and Jump Instructions
Generic Instructions
Input-Output Instructions
Special Codes

End of Module Text

SECTION VI EXTERNAL FILE FORMATS

Data File on Cassette Tape
Header Block
Data Block
End of File Block
Object File on Cassette Tape
Bootstrap
Header Block
Data Block
Boot Mode Programs
Source File on Cassette Tape
Header Block
Text Blocks
Relocatable File on Cassette Tape
Header Block
Data Block
End of File Block
Data File on Magnetic Tape
Header Record
Data Records
- End of File Record
Object File on Magnetic Tape
Header Record
Text Records
Transfer Record
End of File Record
Boot Mode Programs
Source File on Magnetic Tape
Header Record
Source Records
End of File Record
Relocatable File on Magnetic Tape
Header Record
Data Records
End of File Record

RN ONO NN O ON
[2 B | 1 1 [}
Gl e b W NN D DY b e b

[R

1
EORRE RN . N N

1

3
= = D O B 0 O

Tt
- b
o000

[e AN =S« N~ o S~ o W« S N w A AR o L3 o LB < AN« Ao A
1

6-10
6-11
6-11
6-11
6-11

Table of Contents
(cont'd)

Data File on Paper Tape
Header Block
Data Blocks
End of File Block
Object File on Paper Tape
Header Block
Text Blocks
Transfer Block
Patch Format
Source File on Paper Tape
Header Block
Source Record Blocks
End of File Block
Relocatable File on Paper Tape
Header Block
Data Blocks
End of File Block
Data File on Punched Cards
Header Record
Data Records
End of File Record
Object File on Punched Cards
Bootstrap
Header Record
Text Records
Transfer Record
End of File Record
Patch Format
Boot Mode Programs
Source File on Punched Cards
Header Record -
Source Records
End of File Record
Relocatable File on Punched Cards
Header Record
Data Records
End of File Record

APPENDIX A A LIST OF OTHER USEFUL PUBLICATIONS

Figure 3-1.
Figure 3-2,
Figure 3-3,

Table 2-1.

List of Illustrations
(cont'd)

File Control Block (FCB)
File Description Block (FDB)
Source Control Block (SCB)

List of Tables

Letter Options on the SPD/DOS Program Load
Command Line

viii

¥

SECTION I

PROGRAM FORM AND EXECUTION

B

INTRODUCTION

L Programs to be run under control of SPD/DOS are written in assembly language.
See the ''SPD Symbolic Assembly Language Reference Manual!, MS-7215 for
general details of the syntax and semantics of this language. See also, the list
of other useful, related publications at Appendix A. Normally the source
program will be prepared using the SPD/DOS EDIT or UPDATE utilities and then
assembled to produce amexecutable object program using the SPD/DOS ASSEMBLE

and RASSEMBL utilities,

= PROGRAM RESTRICTIONS

Programs to be loaded by SPD/DOS must obey the following restrictions:
® (a) BQOOT mode programs cannot be loaded.
{b) No external memory can be specified (SIZE third parameter must not be
given).
{¢) Segment zero must not assemble data into the area X'0000' to X'00FF'.
(d) €ENFG 10 programs will load only if SPD/DOS is running on a 16/20.

(¢) CNFG 20 programs will load only if SPD/DOS is running on a 20/20 with

at least the memory specified by the first parameter of SIZE,

(fy CNFG 24 programs will load only if SPD/DOS is running on a 10/24
with at least the memory specified by the first parameter of SIZE.

(g} CNFG 25 programs will load only if SPD/DOS is running on a 10/25.

(h) CNFG 0 programs will load if SPD/DOS is running on any machine

with at least the memory specified by the first parameter of SIZE.,

Note that it is possible to load data into the auto-exec areas (but not
into the index register or cursor) but this practice is unadvisable if there
is any possibility that the program may have to be loaded using some

other device than the diskette.

ENTRY CONDITIONS

On completion of loading, control is passed to the entry point specified
on the END card (or the first assembled location if no entry point is

specified). The conditions at the point of entry are as follows:

(a) Interrupts are enabled but all devices are masked.

(b) The index régister (cur'sor) and accumulator contents are undefined.

(c) Me.rnory locations X'0000' - X'004D' contfain the parameter field,
starting with the initial non-blank character, as copied from the
SPD/DOS command which loalded the program and right filled with
blanks. If no parameter field was given, this area contains 78 blanks.

(d) The contents of all other memory locations not containing assembled

data (e.g., BSS areas) are undefined.

(e} The screen and cursor are disabled (10/20 or 10/24) or all screens
blanked and the cursor disabled (20/20 or 10/25).

(f) Positions X'83' - X'FF"' of the diskette controller buffer are
initialized with operating system control information as described
in a separate section.

(g) The diskette unit itself is not busy.

(h} (10/25 and 20/20 only) Screen zero selected and display format set
to 30 x 64,

(i) (10/24 only) Display setup as by IOR.

(j) - The keyboard lights are all off.

(k) {(20/20 only) If a printer is configured on a multi-printer controller,
ther. the appropriate unit is selected and setup with the correct

parameters.

PROGRAM EXECUTION

There are three possible modes for a program running under SPD/DOS.

(a) The program never returns to the DOS nucleus. A manual boot is
required to return.

(b} The program will make an abnormal return to the nucleus which will
cause complete reinitialization of the diskette buffer control informatic

(¢) The program will make a normal return to the nucleus signalling
successful or error completion. In this case the nucleus will

assume that the diskette buffer control information is valid.

In the first case, there are no restrictions whatsoever on the executing
program although it is desirable that any diskette input/output be per-
formed in 2 manner which is compatible with SPD/DOS formats and in
particular the nucleus bootstrap records on track zero of SPD/DOS
diskettes should not be destroyed. Nearly all existing programs for

the 10/20 and 20/20 should execute under SPD/DOS in this mode.

To execute an abnormal return to the nucleus (in effecf:, simulating a

manual boot), the program issues the following instruction:
CI0 7,7 bootstrap from diskette

The only restriction which applies to such a program is that location
X'94t (DBF&RTN) in the diskette buffer be unchanged from its entry

value of X'FF' when the bootstrap is issued.

A program which intends to make a normal return to the nucleus must
maintain the validity of the control information in positions X'83' - X'FF!
of the diskette buffer. This may be done by following the rule of never
changing any of these locations except indirectly through use of the
SPD/DOS system subroutines. Control is returned to the nucleus using

the D&EXIT system subroutine.

POWER RESTART

if the TPU is powered down, the information in the diskette controller

buffer, including the system control information, is lost, making return

1-4

to the nucleus impossible. Thus one possible convention is to make the
power restart location point to a TMP $ loop. This will cause the
terminal to come up ''dead! on a power restart and the operator can

restart with a manual boot.

It is also possible to keep a copy of the diskette buffer system control
information in core memory and restore it on a power restarf, thus

allowing automatic restart.

A third possibility is to set DBF&RTN to X'FF' and issue a CIO boot-
strap to the disk. A standard routine (D&POWR) is provided to achieve

this action.

Programs which never return to the nucleus may use the power restart

facility in any convenient manner.

PROGRAM DEBUGGING

Programs operating under SPD/DOS may use any of the standard inter-
active DEBUG packages available in the usual manner. In addition, the
ZAP utility provides an external debugging capability. A diSkk
bootstrap instruction (X'C977') issued from a program running under
SPD/DOS without setting DBF&RTN causes an abnormal return to the
nucleus which saves the core image for ZAP. Thus this instruction
can be used to provide a breakpoint capability as follows: Load the

the program using ZAP, Modify the breakpoint location to contain C977

and Jump to the program entry point.

1-5

If sufficient room is available, the D&POWR routine can be included in
a program. In this case, the B command in ZAP provides a more elegant
breakpoint facility which saves the contents of the (ACR) and ($X) before

issuing the bootstrap instruction.

SECTION II

SPD/DOS CONTROL INFORMATION

The SPD/DOS control information is stored in the diskette controller

buffer as described in this chapter. The DBF&XXX symbols are

i defined to have the appropriate buffer position value by the assemblers,
without having to define them exolicitly.
The parameter values which are described as "'set by CNFG' can be
modified by the CNFG utility. They are set by the nucleus from the
label record (track zero, sector four) of unit zero on a manual or
abnormal boot.
o Printer Type
Name: DBF&PTP
. Address: X'83!
Length: 1
Contents: The printer type as set by CNFG.
x101* = LP200, LP400
X!02' = P-100, P-165
X'03' = LP125, LP250, LP300
X104' = P-15
X'05! = Termiprinter
n X'FF' = No Printer
5

Display Size

Name: DBF&DNL

Address: X184!

Length: 1

Contents: Display number of lines set to 15 or 30 (X'OF! or X'1E') by

CNFG., Always 30 if not 10/20.

Current Track Positions

Name: DBF&TKP
Address: X'85!
Length: 3
Contents; Current track position for disk units 0,1, 2 respectively.
A value of zero forces recalibration. (Third byte for unit 2

currently unused, always zero.)
Currently Selected Unit

Name: DBF&CSU

Address: X'88!

Length: 1

Contents: 0,1 for currently selected diskette unit zero or one (2 reserved

as possible future use value).

£

System Type

Name:

Address:
Length:

Contents:

DBF&SYS

X89!

1

10 (X'0A) for SPD 10/20
20 (X'14') for SPD 20/20
24 (X'18') for SPD 10/24

25 (X'19') for SPD 10/25

Memory Size

Name:

Address:
Length:

Contents:

DBF&MEM

X'8A!

X'0F! = 4K memory (SPD 10/20 or SPD 10/25)
X!'1F' = 8K memory (SPD 20/20 or 10/24)
X'3F' = 16K memory {SPD 20/20 or 10/24)

X'7F! = 32K memory (SPD 20/20)

Command Mode

Name:

Address:
Length:

Contents:

DBF &MOD

X'18B!

1C! {X'43") = command input from cards
'F! (X'46') = comrand input from diskette file
'K' (X'4B') = command input from keyboard

i (X154') = command input from paper tape

2-3

Command Input Unit

Name: DBF&FUN
Address: X!'8C!
Length: 1
Contents: (valid only if DBF&MOD = 'F!)
0,1 for command input file on unit zero, one

(2 reserved as possible future use value)

Command Input Track

Name: DBF&FTR
Address: X'8D!
Length: 1
Contents: (valid only if DBF&MOD = 'F')
Absolute track number of next record of command input file,

updated appropriately by system routine to read command line.

Command Input Sector

Name: DBF&FSC
Address: X18E'
Length: 1
Contents: (valid only if DBF&MOD = 'F')
Sector number of next record of command input file, updated

appropriately by system routine to read command line.

«

Command Input Offset

Name:
Address:
he Length:

Contents:

Option Bits

Name:

o Address:
Length:

~ Contents:

DBF &FOF

X18F!

1

(valid only if DBF&MOD = 'F''})

Offset within sector (zero origin) of next record of command

input file, updated appropriately by system routine to read

command line.

DBF&OPT

X'90'

"

26 Abits for the 26 possible letter options on the SPD/DOS

program load com.rné.nd line, on if on, else off. These bits

are arranged from left to right as shown by the following

table:

Table 2-1. Letter Options on the SPD/DOS Program Load Command Line

Letter Option Byte Option Bit
A DBF&OPT X180
B DBF&OPT X140
c DBF&OPT X120
D : DBF&OPT X110
E DBF&OPT X108
F DBF&OPT X104
G DBF&OPT X102
H DBF&OPT X101
1 DBF&OPT+1 X180
J DBF&OPT+1 X140
K DBF&OPT+1 X120
L DBF&OPT+1 X110
M DBF&OPT+1 X108
N DBF&OPT+1 X104
o) DBF&OPT+1 X102
P DBF&OPT+1 X101
Q DBF&OPT+2 X180
R DBF&OPT+2 X140
S DBF&OPT+2 X120
T DBF&OPT+2 Xr10t
u DBF&OPT+2 X108!
v DBF&OPT+2 X104

2-6

Letter

Table 2-1. (Cont'd)

Option Byte Option Bit
DBF&OPT+2 Xt02!
DBF&OPT+2 - Xtolt
DBF&OPT+3 X180
DBF&OPT+3 X'40!

The unused six bits in DBF&OPT+3 are always zero,

Return Code

Name:

Address:

Length:

Contents:

DBF&RTN

X194!

1

X'FF!' - initial value set by nucleus; signals abnormal return

X'FE! -

X100 -

01-99 -

Program Name

N ame:

Address:
Length:

Contents:

if still set on exit.

signal normal return with command in DBF&CMN as

set by D&EXCM.

normal return as set by system exit subroutine (DXEXIT)

error code as set by system exit subroutine (D&EXIT)

DBF &PNM

X*+g5!

2

First two characters of program name in ASCII code. Used

by nucleus to construct error code if DBF&RTN = 1-99 on exit.

2-7

Program Unit

Name: DBF&PUN

Address: X7t

Liength: 1

Contents: 0,1 for current program loaded from unit zero, one.

(2 reserved for possible future use value.)

Program First Track

Name: DBF&PFT

Address: X'98!

Liength: 1

Contents: Absolute track number of start of object file for currently

loaded program.

Display End Refresh Character

Name: DBF&DER

Address: Xrog

Length: 1

Contents: End refresh character, set to X'04! or X'74! by CNFG on SPD 10

or 10/24. Always X'01' otherwise (for SPD 20/20 or 10/25).

Printer Lines/Page

Name: DBF&PLP

Address: XI9A!
Length: 1

Contents: Number of lines per printer page as set by CNFG. Only

valid if printer present,

2-8

3

Printer Characters/Line

Name:

Address:
Liength:

Contents:

DBF&PCL
X'9B!
1

Number of characters per line as set by CNFG. Only valid

if printer present.

Card Reader Channel

Name:

Address:
Length:

Contents:

Name:

Address:
Length:

Contents:

DBF&CCH
X19C!

1

Channel number of system and reader as set by CNFG. Set to

X'FF! if no card reader present,

Printer Channel

DBF&PCH
X19D!
1

Channel number of system printer as set by CNFG. For a

multi-printer controller this is the unit number on the controller +

(X'80"). Set to X!'FF! if no printer configured.

2-9

Tape Reader Channel

Name: DBF&TCH
Address: X'9E!

Length: 1

Contents: Channel number of system paper tape reader as set by CNFG.

to X'FF! if no paper tape reader present.

Log Mode

Name: DBF&LOG

Address: X!'9F!

Length: 1

Contents: 'L! {X'4C') = log mode set by nucléus . I. command
'N' (X'4E') = no-log mode set by nucleus . N command

§ (X'00') = no-log mode set by manual boot

Multi-Printer Parameter Byte

Name: DBEF&MPP

Address: X'A0!

Length: 1

Contents: Multi-printer controller setup byte as set by CNFG. Only

valid if multi-printer is configured.

Keyboard Type

Name: DBF&KBT
Address: X'AL!
Length: 1
Contents: Keyboard type as set by CNFG.
| X'01' = upper case
X102! = upper/lower case

X'03' = upper/lower, with lower case to be converted to upper case

- Number of Units

Name: DBF&NUN
~ Address: XA
Length: 1

Contents: Numnber of disk units as set by CNFG (X'Ol' or X'OZ‘) (X'03'
reserved for possible future use value.)} - . - .

Eject Fill Count

Name: B DBF&ENF

'Ad'dre'ss:‘ X‘A3‘

Length: R | A

Use: ' Relevant only if DBF&P;I;P'z 5 (termiprinter}. Null fill

count used after page eject. Set by CNFG.

Line Feed Fill Count

Name:
Address:
Liength:

Use:

DBF & LNF

XrA4r

1

Relevant only if DBF&PTP = 5 (termiprinter). Null fill

count used after line feed. Set by CNFG.

Release Number

Name:
Address:
Liength:

Use:

DBF&RNO
X'AS5!
1

Release number of nucleus (X'06' = release 6).

Command Input Interlace Factor.

Name:
Address:

Length:

Contents:

Reserved Area

Name:
Address:
Length:

Contents:

DBF&FSF
X'A6!
1

SIF for current command file. Valid only if DBEF&MOD = 'F!

Nomne
X'AT
9

Always zero, reserved for future expansion of SPD/DOS

A

Interprogram Communication Area

Name:
Address:
Length:

Contents:

DBF &ICA

X'BO!

16

Set t;) zero by the nucleus on a manual boot or abnormal
‘return, otherwise, u.néhanged by the nuclus or any DOS
utilities. May be used to comrhunicat_e between applications

programs.

Overlay Segmeﬁt Prack Numbers

Name:
Address:
kLvength:’

Contents:

DBF&STR

Xco!

32 ”

Absolute track nﬁrnt;ers qf the starfin.g éeéi:or Io;ations of obJ;ect
text record's for the frirvs't 32 overlay segments, Entries

for segments not present are undefined.

Overlay Segment Sector Numbers

Name:
Address:
Length:

Contents:

DBF&és_c '

X'E0Y

32

Sector nmumbers of the starting sector locations of object text
records for the firs’t 32 overlay segments. Entﬁes 4for seéments)

not present are undefined.

Returned Command

Name:

Address:

Length:

Contents:

DBF&CMN

xrco!

64

Command t6 be executed by nucleus on return (DBF&RTN)
set to X'TE'), as set by the D&EXCM routine. Note that this
area overlays the DBF&STR and DBF&SSC areas, since it is

only set when their use is no longer necessary,

™

SECTION III

SYSTEM SUBROUTINES -- GENERAL DESCRIPTION

An important component of SPD/DOS is a comprehensive set of system
subroutines. These subroutines are provided in relocatable form for

inclusion in programs using the IN pseudo-operation.

Every routine has a name of the form D&XXXX, where XXXX are four
letters. Internal labels in each routine are of the form D&XXXXNN

where NN is one or two digits, thus minimizing the possibility of accidental
label duplication. All routines are intended fo be used in background mode
(interrupts enabled). This means that foreground (interrupt driven)

tasks may execute at the same time without being delayed. In addition,

all routines except D&ENTF, D&RLCS, D&RKBD and D&PRNT may be‘
used in foreground mode {interrupts disabled), but in this case interrupts will

be locked out for the duration of the call.

PHYSICAL LEVEL DISKETTE INPUT/OUTPUT

A set of routines is provided to perform diskette input/output on a sector
by sector (physical) level; This access method can be used with any type
of file, but its direct use in application prografns is normally 1imi£ed to
data files since object files are not usually read or written directly and
source files are normally accessed using the logical access (record by

record) method.

Actual input/output is controlled by means of a six byte control block

called a File Control Block (FCB) which has the format shown in Figure 3-1. "
FCB&TRK FCB&SEC -~
FCB&SIF FCB&UNI
FCB<R FCB&DIR

Figure 3-1. File Control Block (FCB)

The field names FCB&XXX are symbols whose value is equal to the
offset of the field (e.g., FCB&UNI = 3). These symbols are defined

automatically by the ASSEMBLE and RASSEMBL utilities.
The usage of the fields is as follows:

FCB&TRK Absolute track number (0—63)7of the next sector to be accessed.
FCB&SEC Sector number (0-31) of the next sector to be accessed.
Values)31 are truncated modulo 32.
FCB&SIF Sector interla;e facktor. If a file_is read sequentially, <the
question arises of the vorder ih which sectors should l;e read.
This is controlled by ghe sector interlace factor value. A value
of one leads to the sequence:
TRACK N SECTOR 0

TRACK N SECTOR 1
TRACK N SECTOR 2

TRACK N SECTOR 31
TRACK N+1 SECTOR 0
TRACK N+1 SECTOR 1

etc,

g

This sequence requires an entire revolution for each sector to be read.

An interlace factor of 5 gives rise to the following sequence:

TRACK N SECTOR 0
TRACK N SECTOR 5
TRACK N SECTOR 10
TRACK N SECTOR 15
TRACK N SECTOR 20
TRACK N SECTOR 25
TRACK N SECTOR 30
TRACK N SECTOR 3
TRACK N SECTOR 22
TRACK N SECTOR 27
TRACK N+1 SECTOR 0
TRACK N+1 SECTOR 5
etc.

Providing that processing for each sector can be completed in less than

11 milliseconds, then six sectors can be processed on each revolution.

In general, the interlace factor may be any odd value from 1 to 31. The
corresponding available processing time for each sector (to avoid exira

revolutions) is 1+5*SIF-15 msec.

If a file is to be accessed in a purely random manner, the interlace

factor is set to zero.

FCB&UNI The diskette unit number. This is currently restricted
to 0 or 1, but a value of 2 is reserved for possible future
use.

FCB<R Last track. The input/output routines will abort with an
end of file indication if the value in FCB&TRK exceeds

that in FCB<R.

FCB&DIR This byte is used to remember the location of a directory
entry when creating a file. It need not be examined, and
must not be modiﬁe(i directly by an application program,
except as described in D&CLOS. Its values as used by

current system routines are:

X'80' = File opened by D&OPEN or D&OPSR
X‘81'7= File opened by D&OPSW

(Sector number of '"created'! directory entry)
+(X'40' if second entry in sector)

+{X'20' if "OK" on close)

The four basic routines for input/output are:

D&READ read sector
D&VRFY verify sector
D&WRIN write initial sector

D&WRIT write sector 3.4

fe

0

Of these routines, D& WRIN is used only when reformatting a track and

thus would not, in general, be used directly in an applications program.

All actual input/output is performed using the data area (positions 3-130)
of the diskette buffer as a data transfer area. See the section on diskette

buffer access for a description of routines to read and write this buffer.

In order to initialize an FCB for use with these routines to read or write
a specific file, it is necessary to locate the file by accessing the file
directory. The D&OPEN routine is used to perform this function and
uses the file directory to initialize an FCB to point to the first sector

of a file.

To create a new file, the D&CREA routine is used. D&CREA will establish
a new file at the end of the file area in use. Initially, the whole remaining
area of the disk is made available. Following writing of the file,—a call to
D&CLOS completes the directory entry including the actual length of the

new file.

Both D&OPEN and D&CREA make use of a File Description Block {FDB), which

has the format shown in Figure 3-2, and which describes the file to be opéened

or created:

FDB&UNI FDB&TYP

FDB&FNM

FDB&LBL

Figure 3-2. File Description Block (FCB)

FDB&UNI The diskette unit number. This is currently restricted to

0 or 1, but a value of 2 is réserved for possible future use.

FDB&TYP The file type: 'D' Data File
'0! Object File
'R' Relocatable File
'$' Source File

FDB&FNM The 8 character file name, left justified, right blank filled.

For open calls, this name may be abbreviated with a

terminating X'FF!',

FDB&LBIL The 40 character file label. For a D&OPEN call, this is

set from the directory entry on return. For a D&CREA

call, it is set by the caller and then written to the directory.

£yl

These routines return with no action (error status set) if the diskette in questior
shows inoperable status, as will always occur following a.diskette reload. If
the user's application permits diskette reloads, two routines are provided to
handle this condition., D&DXRS resets the status without testing it. D&CHEK

resets the status and informs the caller how it was set on the call.

One further routine, D&LOCF provides the capability of finding the name, type

and label of a file given its starting track and unit number.

LOGICAL LEVEL DISKETTE INPUT/OUTPUT

The logical level diskette input/output routines provide for sequerntial
reading and writing of source files by logical records. They do not allow

for in-place updating, or random access,;or access to other types of files.

Input/output is controlled by means of fourteen byte block called a Source

Control Block (SCB) which has the format shown in Figure 3-3.

SCB&TRK SCB&SEC This is = mozel
File Control Block.
SCB&SIF SCB&UNI
SCB<R SCB&DIR
SCB&CTR SCB&LEN
SCB&BUF
SCB&BFP
SCB&REC

Figure 3-3. Source Control Block (SCB)

The field names SCB&XXX are symbols whose value is equal to the offset
of the field (e.g., SCB&BUF = 8), These symbols are defined by the

ASSEMBLE utility.
The usage of the fields is as follows:

SCB&TRK Absolute track number of next sector to be accessed
SCB&SEC Sector number of the next sector to be accessed
SCB&SIF Sector interlace factor

SCB&UNI Unit number

SCB<R Last track of file

SCB&DIR Directory flag byte

SCB&CTR Bytes remaining in buffer

SCB&LEN Logical record length

SCB&BUF Pointer to 128 byte work buffer

SCB&BFP Current location in work buffer

SCB&REC Pointer to logical record area

SCB&BUF must be set before the open or create call and never changed

under any circumstances.

The SCB&TRK, SCB&SEC, SCB&UNI, SCB<R, SCB&CTR and SCB&BFP
fields are set at open time and maintained automatically. They should not

be modified by the calling program.

3-8

The SCB&SIF field is set to the system default (currently 11) by the create
routines. This value may be changed to any odd (non-zero) value following

the create call,

SCB&IL.EN, SCB&REC must be set before each call to read or write a
record, although they are not modified and can thus be left unchanged
after setting them once before the first call. The permitted range for

the record length is 1-255.

Files are opened for reading using the D&OPSR routine, following which,
calls to D&RDSR obtain successive records. D&CRES creates a new
source file to which records are written using D&WRSR. It is also
possible to rewrite an existing file by opening it with D&OPSW follo\yed

by D&WRSR calls, subject to the restraint that the new file must occupy

no more space than the original one (taking data compression into account).
The close routine D&CLSS must >be called after writing the last record to
empty buffers, write an end of file and, in the case of a created file,

complete the directory entry.

The create and open calls use a file description block (FDB) in a manner
analogous to that previously described for the physical level routines.
D&DXRS and D&CHEK may also be used on conjunction with the logical
level routines to provide control over inoperable status and diskette

reloads.

3-9

Note that source files are normally written with a standard interlace
factor of 11, but this should not be assumed on reading a source file.
Instead, the proper 3IF should be read and set from the directory (e.g.

by use of D&OPSR).

DISKETTE BUFFER ACCESS

A collection of routines is provided for acceséing the data and control
information in the diskette buffer. They handle details of delays and dummy

reads required by the hardware.

D&MRTB, D&MRFB allow transfer of the data area of the diskette buffer
(positions 3-130 or DBF&DTA-(DBF&DTA+127)) to and from a 128 byte area

in main memory.

D&SBPR sets the buffer pointer to a specified location and reads the character
at that location. Subsequent calls to D&RDBF provide the following characters

in sequence.

D&SBPW sets the buffer pointer so that subsequent calls to D&WRBTF write

data to successive locations in the buffer.

All system routines which reference the diskette buffer only return after
delaying long enough so that the buffer is not busy on exit. D&SBPR,
D&SBPW, D&RDBF, D&WRBF are the only routines which leave the buffer
pointer at a defined position, All other routines are considered to destroy-'

the buffer pointer value.

%

@

OVERLAY SEGMENT MANAGEMENT

A program running under SPD/DOS may contain up to 250 overlay segments
assembled using the SEG and ESEG operations, The D&LOAD routine loads
a specified segment into memory. D&LINK loads a specified segment and
transfers control to its entry point as specified on the ESEG line, or to

its first assembled location if no entry point is provided on the ESEG line.

The assembled data in a segment may load into any addresses including the
region X'0000!-X'00FF' normally forbidden to segment zero. Data must not
1oad into the cursor location ($X) or on top of the load or link routine and

routines used by it or on top of the load or link call itself.

D&LNKS and D&LODS are small versions of D&LINK and D&LOAD for use
where the number of overlay segments is 32 or fewer. Segment dictionary
entries for the first 32 segments are kept in random access memory (the

disk buffer) and thus the first 32 segments can be accessed faster than the

remaining ones when using the full size routines.

ASYNCHRONQUS DISK INPUT/OUTPUT

Normally all disk input/output subroutines complete the requested operation
before returning control. This is adequate in many applications, but more
sophisticated programs may require that disk operations be overlapped
with other computation. A routine D&WAIT is supplied which enables a
program to regain control during disk operations. It works in conjunction

with both physical and logical procedures as well as segment load calls,

3-11

PARAMETER FIELD SCANNING

A set of routines is provided for scanning out parameter fields or other
similar information. D&SCNI is the initialization routine which defines

the location and length of the field to be scanned. D&SCNC scans one
character from the field. D&SCNF and D&SCNL scan file name specifications

(without and with a label given respectively) and build corresponding FDB's.

PRINTER OUTPUT

SPD/DOS supports several different type; of printers. iThe D&PRNT
routine is provided to allow generation of printed output without knowing
what type of printer is attached. It may be used in application programs
to generate printed output, although it should be noted that its size is

much larger than would be required to drive a single known printer type.

DISPLAY HANDLING

Routines are provided for display handling to provide 10/20, 10/24, 10/25,
and 20/20 compatibility, These routines should normally only be used by
programs requiring this compatibility because otherwise they take up more

space than is necessary.

The display compatibility is obtained by always formatting low core in

30 x 64 10/20 style with end refresh characters (the end refresh character
being copied from DBF&DER). The call to D&DSPL copies this data to
screen memory in the case of the 10/25 and 20/20. No point plot mode

is available and the eighth bit should never be set. D&DSIN is provided

to allow the screen to be cleared (refresh disabled). On the 20/20 and

10/25, it is always screen zero which is referenced.

As

KEYBOARD HANDLING

The D&RKBD routine is provided to allow reading the keyboard in a
manner compatible with the 10/20, 10/24, 10/25 or 20/20. It should
normally only be used if such compatibility is required since it is much
larger than specific routines for one keyboard type. D&RKBR operates

in conjunction with this routine to provide automatic repeat capability.

D&KALM sounds the alarm on the keyboard if available. D&KLIT sets

the keyboard lights.

COMMAND SOURCE INPUT

The D&RLCS routine reads the next line of command input from the
current command source (keyboard, paper tape, cards, command disk
file). Since it is quite large, it should only be used if this generality

is required.

END OF EXECUTION

The D&EXIT routine provides for normal return to the nucleus signalling

either successful completion or returning an error code,

D&POWR provides a power restart routine which performs an abnormal
disk boot (i.e., one which reinitializes the DBF). D&POWR also provides

a breakpoint facility for use with the ZAP B and T commands.

D&EXCM provides an alternate method for returning to the nucleus
signalling successful completion. It has the ability to provide a command
for execution by the nucleus on return. This facility can be used for pro-

gram to program linkage.

UTILITY ROUTINES

Utility routines are provided which are used by other D&XXXX routines

for various purposes but which can also be used directly by an applicétions
program. D&BLMYV is used to move a contiguous block of data from one
region of memory to another. D&ENTF provides for synchronous execution

of foreground code.

SECTION IV

SYSTEM SUBROUTINES -- CALLING SEQUENCES

This section contains calling sequence details for all system subroutines.
The subroutines are arranged in alphabetical order for easy reference.

See Section III for general details by function.

D&BLMYV -- Block Move

D&BLMYV moves a contiguous series of bytes from one area in main

memory to another.

Call: JSR D&BLMYV call to move block
DAC from starting location of source
DAC to starting location of destination
Entry (ACR) number of bytes to move (1-255)
(3x%)) irrelevant
Exit: (ACR) last byte moved
($X) _points past last byte stored

NOTES: The move is one character at a time left to right and thus moving
a field to a location one character higher propogates the first character

throughout the field.

Routines Used: None

D&CHEK -- Check Diskette Status

D&CHEK tests and resets inoperable status on a specified diskette unit.

Call: JSR D&CHEK call to check status
Entry: (ACR) diskette unit number
($x) irrelevant
Exit: {ACR) status
($X) . unchanged
Status: 0) inoperable status not set on call
1 ‘ inoperable status set on call and has been reset
2 inoperable status set on call and

cannot be reset

NOTES: Status 1 indicates é. probable reload. The inoperable status is
raised as soon as the door is opened and is reset by this call. There is
no way of telling when the reload is complete except to perform a read
and see if it completes successfully. The application wlli dictate whether
files must be re-openéd or not.

Status 2 indicates a hardware fault has occurred (i.e., FAULT light on)
or that the disk unit is powered down.

Routines Used: None

D&CLOS - Close File

D&CLOS is used to close a file which was created with a prior call to

D&CREA.

It is typically called following a series of D&WRIT calls

which write the data to the new file. D&CLOS completes the directory

entry which was partially made by D&CREA. D&CLOS may also be

used with previously existing files opened with D&OPEN, but in this case

it has no effect.

Call:

Entry:

Exit:

JSR D&CLOS

DAC fcb

(ACR)

($X)

FCB FCB&TRK
FCB&SEC
FCB&SIF
FCB&UNL

FCB<R

FCB&DIR

(ACR)
($x)

FCB All Fields

call to close file

pointer to FCB

irrelevant

irrelevant

irrelevant

irrelevant

SIF (written to directory entry if created file)
unit for file

last track (written to directory entry if
created file)

value set by open or create gall (bit 7

set if open call, bit 5 = ""OK").

status
destroyed

unchanged

Status: 0 close successful
Al

1 search check writing directory
2 write check writing directory
3 unit inoperable

4 ' write protected

NOTES: FCB<R-is set to 63 by the D&CREA call. It should be reset
to its proper value just before the D&CLOS call., This arrangement allows
creating a file without knowing its size in advance, If the V option is set

in DBF&OPT, then the directory write is performed with a verify check.

If the DIR&:EPT fleld of the directory entry being completed indicates that
there is a duplicate file to be erased, the erase occurs at this time. |

If created file data is questionable due to write errors or inconsistencies
detected by the application, the directory status displayed may be set to

12 1 if bit 5 is turned off in FCB&DIR prior to calling D&CLOS. This is the

only bit in FCB&DIR which rnay be modified.

Routines Used: D&RDBF, D&READ, D&SBPR, D&SBPW, S&WRBF, D&WRIT

L

D&CLSS -- Close Source File

D&CLSS is used to close a source output file after writing all the records
with calls to D&WRSR. It empties the last buffer and writes a logical
end of file. In the case of a file which was created using D&CRES, it

also completes the directory entry.

D&CLSS may be used with input files opened with D&OPSR and read with

D&RDSR but has no effect in this case.

Call: JSR D&CLSS call to close source file
DAC scb pointer to SCB
Entry: (ACR) irrelevant
($X) irrelevant
SCB SCB&TRK track number of next sector to be written
SCB&SEC next sector to be written
SCB&SIF interlace factor
SCB&UNI unit number
SCB<R last track of file
'SCB&DIR as set by D&OPSR, D&OPSW or D&CRES
SCB&CTR bytes left in work buffer
SCB&LEN max length of record to be written
SCB&BUF pointer to 128 byte work buffer
SCB&BFP pointer to next location in work buffer
SCB&REC pointer to record to be written

Exit: (ACR) status

($X) destroyed
SCB All Fields destroyed
Status: 0 close successful
1 search check
2 write check
3 unit inoperable
4 » attempted write past end of file
5 write protected

If the DIR&EPT field of the directory entry being completed indicates

that there is a duplicate file to be erased, the erase occurs at this time.

If created file data is questionable due to write errors or inconsistencies
detected by thé spplication, the directory status displayed may be set
to ' ' if bit 5 is turned off in FDB&DIR prior to calling D&CLOS. This

is the only bit in FCB&DIR which may be modified.

Routines Used: D&WRSR, D&CLOS

Pt

&

D&CREA - Create New Flile

D&CREA is used to create a new file on an existing diskette. An FCB is
initialized for subsequent writes (D&WRIT) to the new file. A new directory
entry containing the file name and label is added to the end of the specified
directory but not completed. The completion of this entry occurs when the

file is closed {(D&CLOS).

Call: JSR D&CREA call to create file
DAC idb " pointer to FDB
DAC fcb) ‘ pointer to FCB
Entry: (ACR) "7 % irrelevant
($%) o v irrelevant
FDB FDB&UNI _ unit on which file is to be created
FD‘B&:TYI-D file £ype
FDB&FNM file name
FDE&LBL file lai)el
FCB All fields irrelévant '
Exit: ‘ (ACR) \ " status
($X) destroyed
FDB All fields unchanged
FCB FCB&TRK* first track of new file
FCB&SEC* zero
FCB&SIF* zero

Status:

6

FCB&UNI*

FCB<R*

FCB&DIR*

unit (from FDB&UNI)
63 {end of diskettei
(sector number of new directory entry)

+ (X'40' if second enfry in sector) + X'20!

create successful>

seér;h check reading‘ 01; ’writing directory
read or write check on directory

u.mt j.noper#ble

duplica.te fiie name

unit v;f';te protected . -

" file area fu]i. No room for new file

NOTES: If the E option is set-in DBF&OPT, then status 4 is not reported

if a duplicate file name is eli_cpunter.ed. Instead, an entry is made in

DIR&EPT of the new directory ehtry which éauses —thé-co'rrésponding

D&CLOS call to erase the pr'evlous _ﬁlye.b

If the file is never closed then the directory does not contain the new

entry.

Only one file may be created and written on one unit at a time. Thus,

a D&CLOS call must intervene between two calls to D&CREA for the

same unit,

£ 4

N

The FCB&SIF field should be set immediately following the D&CREA

call {before the first D&WRIT call) if a value other than zero is required.

If the V option is set in DBF&OPT, then the directory write operations

are performed with a verify check.

Fields marked with an asterisk (*) are set only if the create call is successful.

Otherwise they are unchanged.

Following the call to D&CREA, the FDB is no longer required and may

be overwritten.

Routines used: D&RDBF, D&READ, D&SBPR, D&SBPW, D&WRBF, D&WRIT

D&CRES -- Create Source File

D&CRES is used to create a new source file to which records are to be
written sequentially with subsequent calls to D&WRSR. The entire

remaining unused data aréa on the specified disk is available for output.

Call: JSR D&CRES call to create source file
DAC fdb pointer to FDB
DAC scb pointer to SCB
Entry: (ACR) irrelevant
($X) irrelevant
¥FDB FDB&UNI unit on which file is to be created
FDB&TYP set to 'S' (X'53")
FDB&FNM file name
FDB&LBL file label
SCB SCB&BUF pointer to 128 byte work buffer
Other fields irrelevant
Exit: (ACR) status
($X) destroyed
FDB All Fields unchanged

SCB SCB&TRK* first track of file

SCB&SEC* zZero
SCB&SIF* standard system default value (11)
SCB & UND* unit number
SCB<R* last track of file (=63)
SCB&DIR* directory byte
- X200

+ directory entry sector nurnber
+ X140' if in 2nd half of sector
SCB&CTR* 128 (X'80')
SCB&BF P* pointer to start of work buffer

Other fields unchanged

Status: 0 create successful
1 search check reading or writing directory
2 read or write check on directory
3 unit inoperable
4 _ duplicate file name
5 unit write protected
6 file area full. No room for new file.

NOTES: If the E option is set in DBF&OPT, then status 4 is not reported
if a duplicate file name is encountered. Instead, an entry is made in
DIR&EPT of the new directory enttry which causes the corresponding D&CLSS

call to erase the previous file.
If the file is never closed then the directory does not contain the new entry.

Only one file may be created and written on one unit at a time. Thus, a
D&CLSS call must intervene between a call to D&CRES and another create

call (D&CREA or D&CRES) for the same unit.

The FCB&SIF field should be set immediately following the D&CRES call
(before the first D&WRSR call) if a value other than the system default

is required.

If the V option is set in DBF&OPT, then the directory write operations

are performed with a verify check.

Following the call to D&CRES, the FDB is no longer required and may be

overwritten.

Routines Used: D&CREA

&

=

D&DKRS -~ Diskette Reset

D&DKRS issues a reset to a specified diskette unit and clears inoperable

(reloaded) status if it was set.

Call: JSR D&DKRS ‘call to reset diskette
Entry: {(ACR) diskette unit number
($X) irrelevent
Exit: (ACR) . unchanged
($X) - -unchanged

Routines Used: None

D&DSIN -- Display Initialize

D&DSIN is used to blank the display and disable the cursor.

Call: JSR D&DSIN call to blank display
Entry: (ACR) irrelevant

($X) irrelevant
Exit: (ACR) destroyed

($x) unchanged

NOTES: On the 10/25 and 20/20, all screens are blanked by this call.
Data in the TPU memory is unaffected. On the 10/25 and 20/20,

D&DSIN exits with 30 x 64 mode set and screen zero selected.

Routines Used: D&SBPR

G

D&DSPL -- Display

D&DSPL is used to display memory data on the display screen.

Call: JSR D&DSPL call to display
Entry: (ACR) ‘ irrelevant

($X) cursor, see notes
Exit: (ACR) destroyed

($x) unchanged

NOTES: Prior to the call, low core must be formatted with the display
data in 10/20 style with the last line terminated by two copies of the end

refresh character (DBF&DER).

The entry value of the cursor is in 10/20 style format:

Bits 15-12) zero (on 20/20 or 10/24)
Bits 11-6 line
Bits 5-0 character

The special cursor value of X'FFF' causes the cursor to be disabled on exit.

In the case of the 10/25 and 20/20, the proper format and screen must have
been preselected. This is normally achieved by a prior call to D&DSIN

in which case the screen used is screen zero.

Routines Used: None

D&ENTF -- Enter Foreground

D&ENTE allows for execution of foreground (interrupts disabled) code.
It establishes a temporary background hang loop for the auto-exec so
that I/O instructions can be issued in a straight-forward fashion.

Other active foreground tasks are held up but not otherwise affected.

Call: JSR D&ENTF enter foreground

{foreground code)

.

ENB re-enable to continue background

Entry: (ACR) irrelevant
($X) irrelevant

Exit: (ACR) unchanged on entry to foreground code
(3x) unchanged

NOTES: The ENB should be issued as quickly as possible to avoid

holding up other foreground tasks. I the foreground code NAK's to
background to wait for its device to accept or provide data, othef foreground
tasks are released to process interrupts; the dévice‘s ready interrupt

returns the processor to this foreground code.

Routines ised: None

2]

D&EXCM -- Exit with Nucleus Command

D&EXCM returns control to the nucleus signalling successful completion

and supplies a nucleus command to be executed immediately on return,
Command input resumes from the current command file following completion
of execution of the supplied command. Any valid nucleus command may

be submitted. Thus D&EXCM may be used to load another program,

switch command files, issue operator messages etc.

Call: JSR D&EXCM Exit issuing command
DAC line Pointer to command
Entry: (ACR) irrelevant
($X) irrelevant
Exit: exit is directly to the nucleus via a

normal disk boot.

NOTES: The command line may be up to 64 ASCII characters. ILines

shorter than 64 characters must be terminated by X'0D' (carriage return).

D&EXCM works by 'storlng the command in the DBF (at DBF&EXCM,
overlapping the overlay segment dictionary which is no longer required)

and setting the special value X'FE' in DBF&RTN.

Routines Used: D&SBPW, D&WRBF, D&EXIT

D&EXIT -- Exit to Nucleus

D&EXIT is used to execute a return to the nucleus.

Call: JMP D&EXIT jump to exit to nucleus
Entry: (ACR) return code
($X) irrelevant
Exit: Exit is directly to the nucleus via a

normal disk boot

NOTES: The return code is zero for a normal completion or 1-99 for an
error condifion. In the latter case, NUCLEUS will post error code XYDD
when XY is the first two characters of the program name (from DBF&PNM)

and DD is the (decimal) error code:

Routines Used: D&SBPW, D&WRBF

Fhs

D&KALM -- Sound Keyboard Alarm

D&KALM sounds the alarm on the operator keyboard (if available).

Call: JSR D&KALM
Entry: (ACR)

($xX)
Exits (ACR)

($X)

Routines Used: D&SBPR

irrelevant
irrelevant
destroyed

unchanged

D&KLIT -- Set Keyboard Lights

[
D&KLIT sets the lights on the operator keyboard.
Call: JSR D&KLIT]
Entry: (ACR) value to be set in lights
($X) irrelevant
Exit: (ACR) destroyed
($X) unchanged
Routines Used: D&SBPR
v
=
A

&

4-20

'y

D& LINK -- Link to Segment

D&LINK loads a specified overlay segment and links to its entry point.

Call: JSR D&LINK

Entry: (ACR)

($X)

Exit: (ACR)

($X)

Status: 1

call to link to segment

segment number (1-250)

irrelevant

error status

destroyed

search check reading object file

read check reading object file

object file unit inoperable

erroneous end of file indication (object

file format error)

NOTES: The segment number is the value of the symbol in the label

field of the corresponding SEG statement.

D&LINK returns only if the link is unsuccessful.

Routines Used: D&LOAD

D&LNKS -- Link to Segment (small)

D&LNKS loads a specified overlay segment and links to its entry point.

Call: JSR D&LNKS

Entry: (ACR)

(3%)

Exit: (ACR)

($X)

Status: . 1

NOTES: The segmént number is the value of the symbol in the label

field of the corresponding SEG statement.

D&LNKS returns only if the link is unsuccessful.

Routines Used: D&LODS

e

call to link to segment
e

segment number (1-32)

‘irrelevant

error status

destroyed

search check reading object file

read check reading object file

object file unit inoperable “

erroneous end of file indication (object

file format error) s
R 2
e

>

D&LOAD --Load Segment

D&LOAD loads a specified overlay segment.

Call:

Exif:

Status:

JSR D&LOAD
(ACR)

($X)

(ACR)

($X)

call to load segment
segment number (1-250)

irrelevant

status

assembled entry point if load successful

load successful

search check reading object file

read check reading object file

object file unit inoperable

erroneous end of fiie indication (object file

format error)

NOTES: The segmeit number is the value of the symbol in the label

field of the corresponding SEG statement.

Routines Used: D&READ, D&SBPR, D&RDBF

D& LOCF -- Locate File

D& LOCF is used to get the name and label of a file given its starting

track and unit number.

Call: JSR D&LOCE. 7 call to locate file
DAC fcb pointer to FDB
DAC fcb ‘ pointer to FCB
Entry: (ACR) i.r{eleva.nﬁ
$X) V irrelevant
FDB’ all fields . 'erélevant
FCB FCB&TRK starting track for file
FCB&UNI unit number
: Othér Fields 'erelevar}t
E;;it: ” (ACR) o ‘status
o ($X) i destroyed
FDB FDB&UNI* = unit from FCB
FDB&TYP* file type 4
FDB&FNM* file name
’FDB&LBL* - file iabel
FCB All Fiel(is unchanged
Status: 0 locate successful
1 search check reading directory
2 read check reading directory
3 unit inoperable réading directory
4 file not found

4-24

-

Ve

NOTES: The fields marked withan asteriskare only set if the locate is

successful.

Routines Used: D&SBPR, D&RDBF, D&READ

D&LODS -- Load Segment (small)

D&IODS loads a specified overlay segment.

Call: JSR D&LODS call to load segment
Entry: (ACR) segment number (1-32)
{($X) irrelevant
Exit: (ACR) status
($X) assembled entry point if load successful
Status: 0 load successful
1 search check reading object file
2 read check reading object file
3 object file unit inoperable
4 erroneous end of file indication (object

file format error)
NOTES: The segment number is the value of the symbol in the label

field of the corresponding SEG statement.

Routines Used: D&READ, D&SBPR, D&RDBF

=

>

D&MRFEFB -- More Record from Buffer

D&MRFB moves the 128 bytes of the data area of the DBF (positions 3 to

130 of DBF&DTA to DBF&DTA+127) to a specified location in main memory.,

Call: JSR D&MRFB call to move record from buffer
Entry: (ACR) irrelevant

($X) ' pointer to 128 byte area in main memory
Exit: (ACR) destroyed

($X) points past 128 byte area in memory

NOTES: All necessary delays are issued so that the buffer is not busy

on exit.

Routines Used: D&SBPR

D&MRTB ~-- Move Record to Buffer

D&MRTB moves 128 bytes from a specified location in main memory to

the data area of the DBF (positions 3 to 130 or DBF&DTA to DBF&DTA+127).

Call: JSR D&MRTB call to move record to buffer
Entry: (ACR) irrelevant

{($X) pointer to 128 byte area in main memory
Exit: (ACR) destroyed

($X) points past 128 byte area in memory

NOTES: All necessary delays are issued so that the buffer is not busy

on exit,

Routines Used: D&SBPW

E

D&OPEN -- Open Existing File

D&OPEN is used to search a directory for an existing file and initialize

a file control block for subsequent reads (D&READ) or writes (D& WRIN,

D&WRIT).

Call:

Entry:

Exit:

JSR D&OPEN
DAC idb

DAC fcb

(ACR)

($X)

FDB FDB&UNI
FDB&TYP

FDB&FNM

FDB&LBL

FCB All Fields

(ACR)

($X)

FDB FDB&UNI
FDB&TYP
FDB&FNM#

FDB&LBL*

call to open file
pointer to FDB

pointer to FCB

irrelevant

irrelevant

unif on which file is to be opened

file type ('S', 'O', 'R, or 'D")

file name or an abbreviatiofx terminated
by X'FF!

lrreieva.nt

irrelevant

status

destroyed
unchanged
unchanged
file name

file label

FCB FCB&TRK* first track of file

FCB&SECH* zero
FCB&SIF* SIF from directory
FCB&UNI* unit (from FDB&UNI)

FCB<R* last track of file

FCB&DIR* X'80' (non-created file)
Status: 0 open successful
1 search check reading directory
2 read check reading directory
3 unit inoperable reading directory
4 file not found

NOTES: If an abbreviation is sued for the file name, then the first file
whose name matches up to but not including, the X'FF! character is
opened and the exit value of FDB&FNM gives the actual name of the file

which was opened.

Fields marked with an asterisk are set only if the open is successful,

otherwise they are unchanged,

Following the call to D&OPEN, the FDB is no longer required and may be

overwritten,

Routines Used: D&RDBF, D&READ, D&SBPR

fo

D&OPSR -- Open Source File for Reading

D&OPSR opens an existing source file for sequential reading using sub-

sequent calls to D&RDSR.

W
«
Call:
Entry:
A3
Iy
Exit:
=

JSR
DAC

DAC

(ACR)
($xX)

¥DB

SCB

(ACR)

($X)

FDB

D&OPSR
fdb

scb

FDB&UNI
FDB&TYP

FDB&FNM

FDB&LBL

SCB&BUF

Other Flelds

FDB& UNI

FDB&TYP

FDB&FNM*

FDB&LBL*

call to open file
pointer to FDB

pointer to SCB

irrelevant

irrelevant

unit on which file is to be opened

set to 'S' (X'53')

file name or an abbreviation terminated
by X'FF!

irrelevant

pointer to 128 byte work buffer

irrelevant

status
destroyed
unchanged
unchanged
file name

file label

SCB SCB&TRK first track of file) Ed

SCB&SEC* ZeTro
SCB&SIF* SIF from directory i
SCB & UNI* unit number
SCB<R* last track of file
SCB&DIR* X80 (non—created'file, via D&OPSR)
SCB&CTR* Zero
Other fields unchanged
Status: 0 open successful
1 search check reading directory w
2 read checkvreading directory
3 unit inoperable reading directory #
4 file not found

NOTES: If an abbreviation is used for the file whose name matches up to,
but not including, the X'FF' character is opened and the exit value of

FDB&FNM gives the actual name of the file which was opened.

Fields marked with an asterisk are set only if the open is successful,

otherwise they are unchanged.

&

Following the call to D&OPSR, the FDB is ne loﬁger required and can

be overwritten.

Routines Used: D&OPEN

D&OPSW -- Open Source File for Writing

D&OPSW is used to open an existing file so that new information can be

sequentially written using subsequent calls to D&WRSR. The old information

is lost and the new data file must not exceed the original file allocation.

Call: JSR D&OPSW
DAC f{db
DAC sch
Entry: (ACR)
($%)

FDB FDB&UNIL
FDB&TYP

FDB&FNM

FDB&LBL
S5CB SCB&BUF

Other fields

Exit: (ACR)
($X)
FDB FDB&UNI
FDB&TYP
FDB&FNM*

FDB&LBL*

call to open file
pointer to FDB

pointer to SCB

irrelevant

irrelevant

unit on which file is to be opened

set to 18" (X*53')

file name or an abbreviation terminated

by X'FF!

irrelevant
pointer to 128 byte work buffer

irrelevant

status
destroyed
unchanged
unchanged
file name

file label

&

SCB SCB& TRK* first track of file

SCB&SEC* 2€ero
SCB&SLEF'* SIF from directory
SCB& UNI* unit number
SCB<R* last track of file
SCB&DIR* X'81' (non-created file, via D&OPSW)
SCB&CTR* 128 (X'80Y)
SCB&BFP* pointer to start of work buffer
Other fields unchanged
Status: 0 open successful
1 search check reading directory
2 read check reading directory
3 unit inoperable reading director‘y
4 file not found

NOTES: If an abbreviation is used for the file whose name matches up to,
but not including, the X'FF' character is opened and the exit value of

FDB&FNM gives the actual name of the file which was opened.

Fields marked with an asterisk are set only if the open is successful,

otherwise they are unchanged.

Following the call to D&OPSW, the FDB is no longer required and can be
overwritten.

Routines Used: D&OPEN

D&POWR -- Power Restart Routine

The inclusion of the D& POWR routine in a program provides a power restort

T
circult which causes an autormatic rebeoot from disk if the processing unit is
powered down and up agalir The boot is an abnormal type boot which saves
£
the core image and reinitializes the diskette buffer. In general, us described
previously, such a boot procedure i+ the only appropriate action on a power
ap since the disk buffer nformation is lost in this event.
D& FPOWR can also be called as a pseudo-subroutine as shown by the calling
sequence given below. In this case, D&POWR saves the accumulator and
index {cursor) register contents and then boots in the system. Since the boot
is abnormal, the core image is saved and the ZAP utility can be used to
2
analyze the 'breakpoint’’ which has occurred (see Opcrator's Reference Manual).
Call: JSR* $X-2 {or X{TFFCY) -
Entry: (ACR) value to be saved
($X) value to be saved
Exit: Exits is to nucleus via abnormal boot. |
|
NOTES: The '"call’” to D&POWR is automatic if the TPU is powered down |
and powered up again.
Programs including D& POWR must explicitly set the power restart linkage
?
by a sequence of the form:
ORG $X-2
ES
DAC D& POWR

The breakpoint call to D&POWR can be set with the B command of the ZAP
utility (see Operator's Reference Manual).

Other Routines Used: D&SBPW, D&WRBF

D& PRNT -- Print Line

Call: JSR D&PRNT call to print line
DAC line pointer to line
Entry: {ACR) irrelevant
($xX) irrelevant
Exit: (ACR) destroyed
($x) destroyed

NOTES: If the printer is not ready, D&PRNT just waits until it is readied.

If there is no printer configured, D&PRNT returns immediately with no

action. The data line presented to D&PRNT has the following format:

<space> [< shift>] < text>

<space> is X'0C!
X'0A'

X'o1!

<shift> is X'0E'

<text > is 1-132

<cr>

for form feed prior to print
for extra line feed prior to print

for normal single spacing

to get a heading line (large characters or double
spacing) omitted for a normal text line

ASCII characters in the range X'20' - X'5F',
Printers with less than 132 characters per line will
fold if necessary:. For correct operation with the
Termiprinter, the line length should not be less

than 35.

>

<er> is X'oD! to end the line

Routines Used: D&SBPR, D&ENTF

D&RDBF -- Read Buffer

D&RDBEF reads the byte of data at the current buffer position and advances the

buffer pointer.

Call: JSR D&RDBF call to read buffer
Entry: (ACR) irrelevant

($x) irrelevant
Exit: (ACR) byte read

($X) unchanged

NOTES: Either D&SBPR or D&RDBF must have been called previously with

no other intervening calls to system routines.

All necessary delays are issued so that the buffer is not busy on exit.

The pointer wraps in a circular manner from the end (255) to the start (0)

of the buffer.

Routines Used: None

{23

<

D&RDSR -- Read Source Record

D&RDSR reads a logical record from a source file previously opened with

a call to D&OPSR.

Call; JSR D&RDSR
DAC sch
Entry: (ACR)
($X)

SCB SCB&TRK
SCB&SEC
SCB&SIF
SCB&UNI
SCB<R

SCB&DIR

SCB&CTR
SCB&LEN
SCB&BUF
SCB&BFP

SCB&REC

Exit: (ACR)
($X)
SCB SCB&TRK

SCB&SEC

call to read source record

pointer to SCB

irrelevant

irrelevant

track number of next sector
sector number of next sector
interlace factor

unit number

last track of file

X:80!

byteé left m current sector
maximum record length (1-255)
pointer to 128 byte work buffer
pointer to next data byte in work buffer

pointer to area to store record read

status

pointer just past actual end of record

Updated as required, ready to read

SCB&CTR

SCB&BFP

Other fields

Status: 0

next record

unchanged

successful completion

search error

read error

unit inoperable

read past physical end of file (source
file format error)

logical end of file encountered
record truncated (extra characters

ignored)

NOTES: If a status of 1 or 2 is reported, the SCB is left ready to read a

s e e maim mem A o
Subsequegt recerd. One or more fecoras will have been lost.

A status of 5 will be signalled repeatedly once the end of file is reached.

The record is stored in the area pointed to be the SCB&REC field right padded

with blanks to the length given by SCB&LEN. The X'0D! which terminates the

record on the file in not transmitted.

X'0D' would have been placed if it had been stored allowing the caller to truncate

the fill blanks if desired.

However, $X is left pointing to where the

B

'

e

y

The only fields of the SCB which are set by the caller are SCB&LEN and

SCB&REC, all other fields are maintained automatically.

Routines Used: D&READ, D&MRFB, D&BLMV

D&READ -- Read Sector

D&READ reads a single sector of data into the data area of DBF. The

sector is specified by the fields of a supplied FCB. Typically, though not

necessarily, this FCB has been initialized by a prior call to D&OPEN and

the sector data read is from the file opened by the D&OPEN call. If the SIF

value in the FCB is non-zero, then the TRK and SEC fields are updated

following the call to point to the next logical sector.

Call:

Entry:

JSR

DAC

(ACR)
($x)

FCB

D&READ

fch

FCB&TRK

FCB&SEC

FCB&SIF

FCB&UNIL

FCB<R

FCB&DIR

call to read sector

pointer to FCB

irrelevant

irrelevant

track to be read

sector to be read

SIF to be used to update TRK, SEC
unit to be read

last track, used to check for end of file

irrelevant

%

Exit; (ACR) status

($%) destroyed

FCB FCB&TRK updated by FCB&SIF value
FCB&SEC updated by FCB&SIF value
Other fields unchanged

Status: 0 successful completion of read

1 search check

2 read check

3 unit inoperable

4 attempted read past end of file

NOTES: The read is attempted five times with recalibration before signalling

a read or search check.

FCB&TRK, FCB&SEC are updated by the SIF even if an error occurs.
The sync and address bytes in DBF are set by D&READ and need not be

set by the caller.

The data read occupies positions 3-130 (DBF&DTA to DBF&DTA+127) of the

DBF and may be acquired using D&SBPR, D&RDBF or D&MRFB.

D&READ may be used to read system tracks (0-2) by using 2 dummyFCB

with appropriate values.

For sequential reading of a file, the SIF is non-zero and the TRK and SEC

fields are updated automatically, For random access, SIF is zero and the

caller sets appropriate TRK and SEC values in the FCB prior to each

D&READ call,

The FCB& TRK value is an absolute track number. It is not relative to the

beginning of a file.

Routines Used; D&WRIT (No write ts performed; D&READ merges into

D&WRIT and shares command circuitry).

&

D&RKBD -- Read Keyboard

D&RKBD reads a character from the keyboard.

Call: JSR D&RKBD call to read keyboard
Entry: (ACR) irrelevant
($X) irrelevant
Exit: (ACR) code for key read
($%) unchanged

NOTES: The code returned is the natural keyboard encoding except that, on the

10/25 and 20/20 the space bar returns X'20' instead of X'01'.

Parity errors are intercepted and rereads issued as required.

On the 10/25 and 20/20, keyboard zero is the keyboard which is used.

Routines Used: D&SBPR, D&ENTF

D&RKBR -- Read Keyboard Repeat Enable

D&RKBR enables keyboard repeat for the last key read in a manner compatible

with the CIO repeat on the 10/20. It works on all models.

Call: JSR D&RKBR call to repeatkeyed character
Entry: (ACR) irrelevant

($X) irrelevant
Exit: (ACR) destroyed

($X) unchanged

NOTES: D&RKBR is called following a call to D&RKBD to enable repeat for
the character just read. Subsequent calls to D&RKBD will (periodically) return

the same character if the key is still held down.

D&RKBR modifies locations in D&RKBD which must therefore be loaded
at the time of the D&RKBR call and stay loaded as long as the repeat is

active.

Routines Used: D&SBPR, D&RKBD

4-48

D&RLCS -~ Read Line from Command Source

D&RLCS reads one record from the current command source.

Y
Call:
®
Entry:
Exit:
s
Status:
*
5

JSR D&RLCS

DAC subr
DAC bufr
(ACR)

($X)

call to read line from command source
pointer to keyboard subroutine

pointer to 80 char buffer

irrelevant

irrelevant

Subr (Keyboard subroutine) see below

Bufr

(ACR)

($X)

" bufr

all 80 chars irrelevant

status
destroyed
contains 80 character command line

right filled with blanks

command read successfully

search error reading command file

read error reading command file

unit inoperable reading command file
missing end of file on command file
normal end of file (paper tape or command

file})

4-49

NOTES: The status of 5 corresponds to an EOT or ETX punch on paper tape

or logical end of file on a command file,
Hopper empty on the card reader causes a wait for card loading.

.E is not recognized specially, Normally, the caller should test for and

recognize such a record as end of file.
On exit, the display is enabled and the cursor disabled.
The buffer is preblanked on initial entry to D&RLCS,

For proper keyboard mode operation, the buffer should be in the active
display area, with end refresh codes already setup (see D&DSPL).

The keyboard mode routine (subr) is called immediately following each
byte in keyboard mode. It tests for data in the buffer corresponding to
commands for which the end of line is not to be required and operates by
simply reta'ming control in these cases. For example, if pressing the
space bar lsk to have a special effect, as in the nucleus, the following

could be used:

subr DAC i entry point
LD CMLINE load list character
CIEQ v 1, special retain control if blank
IMPs subr else let D&RI:CS continue

h 3

The specified subroutine should return control when the disk operation

is complete (disk not busy). On return, the entry values of the accumulator
and index register (cursor) must be in effect. During the '"disk busy"
period, the use of system subroutines will either cause data transfer
errors or re-entrancy problems, so only non-SPD/DOS activity may take

place.

A typical example of a wait subroutine is:

SUBR DAC ok
ST SUBRA+1
STX SUBRX

LOOP (test for other non-DOS background activity)
JTACK D&DB, D&D, LOOP

LDX SUBRX Not Busy, restore $X
SUBRA LDI e Restore ACR
' JIMP* SUBR Disk completion return
SUBRX WORD il Temporary

Note that even a nucleus exit is forbidden during a disk busy period. That
is, jumps to D&EXIT and even break points (through D& POWR) could cause

a bad séétor to be written to disk. A valid nucleus exit could be coded: -

ABEND LDI error~-code
DSB make sure
JTACK D&DB, D&D, $ await non-busy
IMP D&EXIT Back to nucleus

This subroutine may destroy the (ACR) but normally leaves ($X) unchanged
if a return is made ($X points to the next buffer location). A dummy
routine (DAC #%, JMP* subr) must be supplied even if this feature is

not required.

Routines Used: D&DSPL, D&ENTF, DXREAD, D&RKBD, D&RKBR,

D&SBPR, D&SBPW, D&WRBF

&

D&SBPR -- Set Buffer Pointer for Read

D&SBPR sets the buffer pointer to a specified location and reads the byte
at this location. The buffer pointer is left positioned so that subsequent

calls to D&RDBF return the following data bytes in sequence.

Call: JSR D&SBPR call to set buffer pointer for read
Entry: (ACR) buffer location (0-255)

($X) irrelevant
Exit: (ACR) byte read

($X) unchanged

NOTES: All necessary delays are issued so that the buffer is not busy

on exit.

If D&SBPR is called with the ACR set to one less than a given location and
the returned value ignored, it gives the effect of setting the pointer without

reading.

The sequence LDI DBF&XXX, JSR D&SBPR is the usual method of accessing

system control information in the diskette buffer.

Routines Used: D&SBPW, D&RDBF

D&SBPW -- Set Buffer Pointer for Write

D&SBPW sets the buffer pointer so that subsequent calls to D&WRBF can

be used to write data to the DBF.

Call: JSR D&SBPW
Entry: (ACR)

(%)
Exit: (ACR)

($X)

call to set buffer pointer for write

buffer location (0-255) for first write

irrelevant

unchanged

unchanged

NOTES: All necessary delays are issued so that the buffer is not busy on

exit,

Routines Used: None

“°

D&SCNC ~- Scan Character

D&SCNC obtains the next character from the field being scanned and bumps

the scan pointer.

Call: JSR D&SCNC call to scan character
Entry: (ACR) irrelevant
($X) irrelevant
Exit: (ACR) character scanned
($%) unchanged

NOTES: If the pointer is past the end of the field, a blank is returned.
Calls to D&SCNC must be preceded by an earlier call to D&SCNI.
The location D&SCNCI contains the address of the next byte to be scanned.

D&SCNC3 contains a count of characters left in the field.

Routines Used: None

D&SCNF -- Scan File Name

D&SCNF is used to scan out a file name in standard SPD/DOS form (unit

name, currently selected unit is default if no unit specified). The file name

starts at the current scan location and must be terminated by comma or blank.

A File Description Block (FDB) is built as the result.

Call: JSR D&SCNF call to scan file name
DAC fdb pointer to FDB
Entry: (ACR) irrelevant
($xX) irrelevant
EDB all fields irrelevant
Exit: (ACR) status
($X) points to FDB&LBL field in FDB
FDB FDB&UNI unit
FDB&TYP unchanged
FDB&FNM file name
FDB&LBL unchanged
Status: 0 scan successful
1 syntax error in file name

NOTE: The call to D&SCNF must be preceded by an earlier call to D&SCNI.

The scan pointer is left set {on successful completion) so that the next call to

D&SCNC loads the terminating characters (blank or comma).

Routines Used: D&SBPR, D&SCNC

4-50

L.

%

D&SCNI -- Scan Initialize

D&SCNI is used to define the length and location of the field to be scanned.

Call: JSR D& SCNI
Entry: (ACR)

($x)
Exit: (ACR)

($x)

call to initialize scan

field length in bytes

address of first character of field

unchanged

unchanged

NOTES: Following the call to D&SCNI, the D&SCNC routine must remain

loaded until the field is completely scanned out.

Routines Used: D&SCNC

D&SCNL -- Scan File Name and Label

D&SCNF is used to scan out a file name followed by a comma followed by a

forty character label. A file Description Block (FDB) is built as a result.

Call: JSR D&SCNL call to scan file name
DAC f{fdb pointer to FDB
Entry: (ACR) irrelevant
($X) irrelevant
FDB all fields irrelevant
Exit: {ACR) status
($X) destroyed
¥FDB FDB&UNI unit
FDB&TYP unchanged
FDB&FNM file name
FDB&LBL file label
Status: 0 scan completed successfully
1 syntax error in file name/label

NOTES: The call to D&SCNL must be preceded by an earlier call to D&SCNI.

The scan pointer position is left undefined.

Routines Used: D&SCNC, D&SCNEF

4-58

L5

153

D& VRFY -- Verify Sector

D&VRFY verifies a single sector of data from the data area of DBF which

is preloaded by the caller.

The sector is specified by the fields of a supplied

FCB., Typically, though not necessarily, this FCB has been initialized by a

prior call to D&OPEN or D&CREA,

If the SIF value in the FCB is non-zero,

then the TRK and SEC fields are updated following a call to point to the next

logical sector.

Call:

-Entry:

Exit:

JSR.

DAC

(ACR)

($X)

FCB

(ACR)
($X)

FCB

D&WRIT

fcb

FCB&TRK
FCB&SEC
FCB&SIF

FCB&UNI
FCB<R

FCB&DIR

FCB&TRK
FCB&SEC

Other fields

call to write secfor

pointer to FCB

irrelevant

irrelevant

track to be vé_riﬂed

sector to be verified

SIF to be used to update TRK, SEC
unit nunr'xber'

last ’track,k used to check for{e‘nd of file

irrelevant

status

destroyed

updated by FCB&SIF value
updated by FCB&SIF value

unchanged

Status: 0 successful completion of write

1 search check

2 verify check

3 unit inoperable

4 attempted access past end of file

NOTES: The verify is attempted five times with recalibration before

signalling a verify or search check. .

The sync and address bytes in DBF are set by D&VRFY and need not be set

by the caller.

DBF&TRK, DBF&SEC are updated by SIF even if an error or verify check

occurs.

The data for the verify occupies positions 3-130 (DBF&DTA to DBF&DTA+127)

of the DBF and may be set using D&SBPW, D&WRBF or D&MRTB.

For routine verification of all writes, the V option may be set in DBF&OPT

in which case explicit D&VRFY calls are not required.

The FCB&TRK value is an absolute track number. It is not relative to the

beginning of a file.

Routines Used: D&WRIT (No write is performed; D& VRFY merges into
D&WRIT and shares command circuitry

4-60

5

D&WAIT ~- Set Disk Wait Routine

D& WAIT specifies the location of a subroutine to be used to test completion

of disk operations initiated by other system calls.

Call: JSR D& WAIT call to set wait routine
DAC subr entry point of subroutine
Entry: (ACR) irrelevant
($X) irrelevant
Exit: (ACR) : unchanged
($X) destroyed

NOTES: D& WAIT modifies a location in D&WRIT which must stay loaded

afte r the call.

" The specified subroutine shéui’d_ return control when the disk operation is
-complete (dlskr not busy). On return, the entry Yalues of the accurn’ulatorb

7 and index register (cﬁrsor) must' be in effect. bﬁi‘ing' the ”disk'busy" period,
the use of system subroutines will either cause data transfer errors or

i'e-enfrancy problems, so only non-SPD/DOS activity may take placé.

4-61

A typical example of a wait subroutine is:

SUBR DAC ki
ST SUBRA + 1
STX SUBR X

LOOP (test for other non-DOS background activity)

JTACK D&DB, D&D, LOOP loop while busy

LDX ' SUBR X not busy, restore $X
SUBRA LDI ok resume ACR

IMP* . SUBR disk completion return
SUBRX WORD i temporary

Note that even a nucleus exit is forbidden during a disk-busy period. That
is, jumps to D&EXIT and even breakpoints (through D&POWR) could cause

a bad sector to be written to disk. A valid nucleus exit could be coded:

ABEND .DI error-code
DSE make sure
JTACK D&DB, D&D, $ await non-busy

IMP D&EXIT Back to nucleus

Routines Used: D&WRIT no write is performed, D&WAIT modifies D&WRIT

and the read/write/verify routines exit to the supplied routines.

4-62

o

[

D&WRBF -- Write Buffer

D&WRBF writes a byte to the diskette buffer and advances the buffer pointer.

Call: JSR D&WRBF call to write buffer
Entry: (ACR) byte to be written
($X) irrelevant
Exit: (ACR) unchanged
($x) unchanged

NOTES: Either D&SBPW or D&WRBF must have been called previously with

no other intervening calls to system routines.
All necessary delays are issued so that the buffer is not busy on exit.

Routines Used: None

D&EWRIN -~ Write Initial Sector

D&WRIN writes a single sector of data from the data area of DBF which is
preloaded by the caller using a write initial instead of an ordinary write.
The sector is specified by the fields of a supplied FCB. Typically, though
not necessarily, this FCB has been initialized by a prior call to D&OPEN or
D&CREA. If the SIF value in the FCB is non-zero, then the TRK and SEC

fields are updated following a call to point to the next logical sector.

Call: JSR D&WRIN call to write sector
DAC fcb pointer to FCB
Entry: (ACR) irrelevant
($X) irrelevant
FCB FCB&TRK track to be written
FCB&SEC sector to be written
FCB&SIF SIF to be used to update TRK, SEC
FCB&UNI unit to be written
FCB<R last track, used to check for end of file
FCB&DIR irrelevant
Exit: (ACR) status
($X) destroyed
FCB FCB&TRK updated by FCB&SIF value
FCB&SEC updated by FCB&SIF value
Other fields unchanged

4-64

&

Status: 0 successful completion of write

1 search check

2 write check

3 unit inoperable

4 attempted write past end of file
5 write protected

NOTES: The write is attempted five times with recalibration before signalling

a write or search check,

The sync and address bytes in DBF are set by D&WRIT and need not be set

by the caller.

If the V option is set in DBF&OPT, the write initial is followed by a verify
initial to check that the data was written correctly. This takes an entire

extra revolution of the disk.
DBF&TRK and DBF&SEC are updated by SIF even if an error occurs.

The data to be written occupies positions 3-130 (DBF&DTA to DBF&DTA+127)

of the DBF and may be set using D&SBPW, D&WRBF or D&MRTB.

D&WRIN is usually only used for reformatting a track. Following SPD/DOS

conventions, the sector number should normally be zero.

The FCB&TRK value is an absolute track number., It is not relative to the

beginning of a file.

Routines Used: D&WRIT (A normal write does not occur; D& WRIN merges

into D& WRIT and shares command circuitry).

4-65

D&WRIT -- Write Sector

D&WRIT writes a single sector of data from the data area of DBF which is
preloaded by the caller. The sector is specified by the fields of a supplied
FCRB. Typically, though not necessarily, this FCB has been initialized by a
prior call to D&OPEN or D&CREA. If the SIF value in the FCB is non-zero,
then the TRK and SEC fields are updated following a call to point to the next

logical sector.

Call: JSR D&WRIT call to write sector
DAC fcb pointer to FCB
Entry: (ACR) irrelevant
($X) irrelevant
FCB FCB&TRK track to be written
FCB&SEC sector to be written
FCB&SIF SIF to be used to update TRK, SEC
FCB&UNI unit to be written
FCB<R last track, used to check for end of file
FCB&DIR irrelevant
Exit: (ACR) status
($x) destroyed
FCB FCB&TRK updated by FCB&SIF value
FCB&SEC updated by FCB&SIF value
Other fields unchanged

4-66

Status: 0 successful completion of write

1 search check

2 write check

3 unit inoperable

4 attempted write past end of file
5 write protected

NOTES: The write is attempted five times with recalibration before signalling

a write or search check.

The sync and address bytes in DBF are set by D&WRIT and need not be set

by the caller.

If the V option is set in DBF&OPT, the write is followed by a verify to check
that the data was written correctly. This takes an entire revolution of the

disk.
FCB&TRK, FCB&SEC are updated by SIF even if an error occurs.

The data to be written occupies positions 3-130 (DBF&DTA to DBF&DTA+127)

of the DBF and may be set using D&SBPW, D&WRBF or D&MRTB.

For sequential writing of a file, the SIF is non-zero and the TRK and SEC
fields are updated automatically. For random writing, SIF is zero and the
caller sets appropriate TRK and SEC values in the FCB prior to each D&WRIT

call.

The FCB&TRK value is an absolute track number. It is not relative to the

beginning of a file.

Routines Used: D&SBPR, D&SBPW, D&WRBF
4-67

& WRSR -- Write Source Record

&WRSR is used to write a source record to a file previously opened with

call to D&OPSW or created with a call to D&CRES.

all: JSR D&WRSR call to write source record
DAC scb pointer to SCB
ntry: (ACR) irrelevant
($X)) irrelevant
SCB SCB&TRK track number of next sector to be written
SCB&SEC next sector to be written
SCB&SIF interlace factor
SCB&UNI unit number
SCB&IL.TR last track of file (D&OPSW) or of disk (D&CRES)
SCB&DIR as set by D&OPSW or D&CRES
SCB&CTR bytes left in work buffer
SCB&LEN max length of record to be written
SCB&BUF pointer to 128 byte work buffer
SCB&BFP pointer to next location in work buffer
SCB&REC pointer to record to be written
ixit: (ACR) status
($X) irrelevant

SCB SCB&TRK
Updated ready to write

SCB&SEC

4-68

9

S

®

SCB&CTR
next record

SCB&BFP
Other fields unchanged
Status: 0 successful completion of write
1 search check
2 write check
3 unit inoperable
4 attempted write past end of file
5 write protected
NOTES: The record to be written is stored in the SCB&LEN bytes starting

at SCB&REC or it can be shorter than the max length given if it is terminated

by an X'0D'.

Since the source file format involves data compression, D&WRSR cannot be
used to update a source file in place.
No track reformatting will occur, even if a hard write error occurs on

sector zero of a track while SIF = 1.

Routines Used: D&WRIT, D&MRTB, D&BLMV, D&WRIN

4-69

SECTION V

DISKETTE FORMATS

This chapter contains sections describing the detailed format of files and

control information stored on SPD/DOS diskettes.

Format of Nucleus Bootstrap and Code

The nucleus bootstrap occupies sectors 0-3 of track 0. This bootstrap saves
the current core image on track two for a manual or abnormal return boot and
then loads in the nucleus code. The nucleus code itself is written with a sector

interlace factor of five starting with sector 8, skipping over sectors 0-4.

The nucleus bootstrap and code are assembled as part of the FORMAT utility,
whose source listing should be consulted for further details of the exact format

of track zero.

Format of L.abel Record

The label record is sector 4 of track 0. It has the following format:

Bytes 0-7 Diskette Serial Number. Eight ASCII characters.

Byte 8 Printer lines/page
Number.of lines per printed page
X!'FF' if no printer

Byte 9 Printer characters/line
Number of characters per printed line.
X'FF! if no printer

Byte 10 Printer type
X'01* LP200, LP400
Xt02' P-100, P-165
X'03' LP125, LP250, LP300
Xto4' P-15
Xt'05' Termiprinter
X'FF' No printer

Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

12

15

16

17

Printer channel/unit. Either the channel of number
of a parallel or async controller or the unit number
of the printer on the multi-printer controller +
X'80'. X'FF' if no printer.

Multi-printer setup byte.
X'FF if no multi-printer controller.

Number of disk units.
X'01' or X'02!

Keyboard type

X'01' Upper case

X'02' U/L

X'03' U/L, convert lower to upper case

Display number of lines

X'OF! (15) for 10/20 half screen display

X!'1E! (30) for 10/20 full screen display or 10/ 24
or 10/25 or 20/20.

End refresh character

X104' for 10/20 with X'04' end refresh code

X174' for 10/20 with X'74' end refresh code or 10/24
X'01* for 10/25 or 20/20

Card reader channel
Channel number of card reader
X'FF' if no card reader

Tape reader channel
Channel number of paper tape reader
X'FF! if no paper tape reader

The serial number is set when the disk is formatted. It can be changed

only by reformatting (possibly with the N option to avoid destruction of file

datal.

utility.

The configuration parameters may be modified by use of the CNFG

A S

it

&

Format of File Directory

The file directory is written on track one start ing with sector zero using a

sector interlace factor of five. FEach sector contains two 64 byte entries:

Track 1 Sector 0 Entries 1,2
Track 1 Sector 5 Entries 3,4
Track 1 Sector 10 Entries 5,6

The format of each 64 byte entry is as follows (the DIR&XXX names are offsets

defined in the standard symbols provided by ASSEMBLE).

Byte 0 (DIR&STA) X120t (4 1)
XI2ZAY (%)
XI3FT (12 1)
Byte 1 (DIR&TYP) X144' ('D")
X14F! ('O)
X152 (*RY)
X'53' ('S')

Bytes 2-9 (DIR&FNM)

Bytes 10-49 (DIR&LBL)

Byte 50 (DIR&FTR)

Byte 51 (DIR&SIF)

Byte 52 (DIR<R)

Bytes 53-63

Active entry
Deleted entry
Active entry, error status

Data File

Object File

Relocatable File

Source File

File name. Up to eight ASCII characters,
left justified, right blank filled.

Label. Forty ASCII characters.

First track. Starting track number
of file data.

Sector interlace factor.

Last track., Number of last track
containing data for this file.

Unused and undefined.

The end of the file directory is marked by an entry whose first byte is set

to X'00'. All subsequent entries also start with X'00'.

When a file is created, a partial entry is made with the following format:

Byte 0

Byte 1
Bytes 2-9
Bytes 10-49
Byte 56
Byte 51
Byte 52

Byte 53

(DIR&STA)
(DIR&TY P)
(DIR&FNM)
(DIR&LLBL,)
(DIR&FTR)
(DIR&SIF)
(DIR<R)

(DIR&EPT)

X100

File type ('D!, 'O','R', or 'S')
File name

File label

First track

Not set (undefined)

Not set (undefined)

Erase pointer

X'00' if no file to be erased when the file is

closed.

Else if there is a file to be erased on close:

Bit 7 set to 1.

Bit 6 set if directory entry is in second half
of sector.

Bits 5-0 sector number of directory entry of
file to be erased.

When the file is closed, this entry is modified to become a normal active

directory entry by setting the DIR&STA byte to blank and setting the

DIR&SIF and DIR<R bytes from the FCB. If bit seven of the DIR&EPT

byte is set, then the entry for the file pointed to by its remaining bits is

set to erased status.

If a file is never closed, then this partial entry

acts as a normal end of directory sentinal.

Format of Saved Core Image

Track two is used to save part of the core image when a manual boot or

abnormal nucleus return occurs.

The nucleus and all SPD/DOS utilities {except ASSEMBLE and RASSEMBL) use

on the core size): SPD/DOS always addresses top secotr as ifa 32K memory

a

were present . These 4K bytes are saved on track two starting at sector

zero using an interlace factor of five:

Track 2 Sector 0 Bytes X'0000' - X'007F"
Track 2 Sector 5 Bytes X'0080' - X'00FF!
Track 2 Sector 10 Bytes X'0100' - X'0L7F!

Track 2 Sector 7 Bytes X'0D80' - X'ODFF!
Track 2 Sector 12 Bytes X'xE00' - X'xETF!
Track 2 Sector 17 Bytes X'xE80' - X'xEFF'
Track 2 Sector 22 Bytes X'xF00' - X'xF7F!
Track 2 Sector 27 Bytes X'xF80' ~ X'xFFF!'

(x=0,1, 3,7, for 4K, 8K, 16K, 32K memory,

The ZAP utility maintains its virtual memory image in this same format.
Locationé X10EQ0' - X'xDFF' on an SPD 20/20 are maintained on core since
these core locations are not modified by the nupleus or other SPD/DOS
utilities, except ASSEMBLE and RASSEMBL which use all of available
memory and thus destroy part of the ZAP memory image on machines

with more than 4K bytes of storage.

T"ormat of Data Files

Data files consist of a contiguous set of tracks whose internal format is

completely under control of the applications program using the file and

not restricted in any way by the operating system.

Format of Object Files

Object files are wirtten in a sequential manner with a sector interlace

factor of five. In gereral, the sectors are considered to form a continuous

sequence of bytes and logical records are written without regard to sector

boundaries. However, the object text for each segment, including segment

zero, must start on a sector boundary, and fill bytes with value X'FF' are

used to ensure that this is the case.

The first four bytes of the object file are as follows:

Byte 0

CNFG X'00¢ CNFG 0
X10A! CNFG 10
X4 CNFG 20
X1g CNFG 24
X9 CNFG 25

The MSB of this byte is set for BOOT mode programs.

Byte 1

Byte 2

Byte 3

Number of overlay segments. X'00' for non-overlay programs.

Size X'0F! 4K
X'1E 8K
X'3F! 16K
X'TE! 32K

External Size. Most significant byte of the third operand of
the SIZE pseudo-op. X'00' if no external memory present
(SIZE third operand omitted), Note that programs with
external memory requirements cannot be loaded by the
SPD/DOS nucleus.

5-6

e

Following these four bytes are the entries in the segment location dictionary.

There is one entry for each overlay segment {no entries for an unscpmented

program). Each entry is two bytes long:

Byte C Track number of first sector containing load records for the
segment minus the track number of the start of the object

file (i.e., relative track number).

Byte 1 Sector number of first sector containing load records for the
segment.

There can be up to 250 entries corresponding to the maximum permitted
number of segments. Following the last entry X'FF' fill bytes are written
as required to fill to a sector boundary. Thus the segment location dictionary

occupies from 1-4 sectors depending on the number of overlay segments.

Following the segment location dictionary are text records with the following

format:
Byte 0 Segment number
Bytes 1-2 Initial load location
Byte 3 N = count of text bytes +1

Bytes 4-(N+2) Text data bytes

A count byte with a value of 1, followed by no data, is permissible for a

null record,

After all the load records for an overlay segment is a transfer record:

[o23
t
N

Byte O Segment number
Bytes 1-2 Transfer address

Byte 3 X' 00"

The text records for each overlay segment start on a sector boundary.
XI'FF' fill bytes being written as required. All text records for an
overlay segment are contiguous and followed by the segment transfer
record. The text records for the main segment (segment zero) may be
interspersed through the file or may be collected at the start of the

file, The former organization is the one output by the assembler. COPY
with the O and L options rearranges the file into the more efficient second

organization. Overlay segments need not necessarily appear in order.

The end of the object file is indicated by the occurrence of the last transfer
record (the number of transfer records is equal to the number of overlay
segments + 1). Remaining data to fill out the last track is undefined and

never read.

Note once more that the X'FF! fill bytes occur only to fill out the last
segment location dictionary sector and to place the start of text for each
overlay segment on a sector boundary. They must not appear anywhere

else.

&

Format of Source Files

Source files are written sequentially with an odd sector interlace factor
(normally eleven). Successive sectors are considered to form a continuous
stream of bytes and logical records are written without regard to sector

boundaries.

Each logical record is up to 255 characters long and consists of ASCII
graphic characters (X'20' - X'7F'), Records may be compressed on

the file by deleting trailing blanks and replacing strings of up to 63
embedded blanks by X'80' + (number of blanks). Strings of other
repeated characters (1-63 characters in length) may be replaced by a
byte with value (X'C'0'+ string length) followed by a single byte containing
the repeated character. Following the last character of the compressed

record, a carriage return (X'0D') marks the end of the record.

The end.of the source file is marked by the occurrence of EOT (X'04')
following the carriage return of the last record, The remaining contents
of this sector and of all sectors following to fill out the final track are

undefined and never read since the EOT terminates the file.

The characters X'01' and X'02' appearing in a source file will cause the
source input routines to return search check or read check status. This
is used to mark bad locations in source files which are copied or packed.

Such files are always marked with ? status in the file directory.

5-9

The data compression is performed automatically by the source output
routines. However, it is not compulsory and the source input routines
will correctly réad source records containing uncompressed data. The

code X'81' is a permissible replacement for a single blank.

<«

FORMAT OF RELOCATABLE FILES

A relocatable file is basically a sequential string of bytes which fills
consecutive sectors of the file at any non-zero interlace factor. The
standard value of this interlace factor as generated by the RASSEMBL

is 9., No assumption should be made about this value on reading a relocatable

file, the value should be obtained from the directory entry as usual.

MODULE DIRECTORY

The first part of the file is the module directory consisting of a series of
entries in the form: @
1-8bytes Module name. MSB of last character set on.

1 byte Relative track of start of module (i.e. track number of start
of module preamble minus track number of start of file).

1 byte Sector (0-31) of start of module preamble.

1 byte Offset (0-127) of start of module preamble within sector.

As indicated, th'e length of each entry is variable from 4-11 bytes, the

entries spilling over sector boundaries as required.

The end of the module directory is indicated by a dummy entry with a
name of X'FF'. This dummy entry correctly indicates the first unused
byte location in the file, and does not point to an actual preamble.

The preamble for the first module either immediately follows

this dummy entry or X'FF' fill bytes may intervene.

MODULE PREAMBLE

The preamble is a contiguous string of bytes of variable length starting
at the location indicated by the associated module directory entry. It -
has the following format.
Bytes 0-1 Highest (i.e. first unused) relocatable origin in module.
This is used to determine the location and load counter

values to be set following an IN pseudo-operation.

Bytes 2-3 Highest (i.e. first unused) TOP origin in module. X'0000'
if no TOP pseudo-operation appears in module.

Byte 4 CNFG setting of module.

Byte 5-N [External symbol dictionary.

Byte N+1 X'FF' terminator.

<A

External Symbol Dictionary

A contiguous series of bytes containing one entry for each XTN or DEF

pseudo-operation in the module source text, immediately following the w

five header bytes described above.

Either type of entry starts with the characters of the name, the MS bit of
the last character being set on. In the case of DEF ehtrles, a WS (see
section on word specifications) follows which specifies the defined value
of the symbol. An XTN entry is complete with the name (an examination

of the codes involved will indicate that this arrangement causes no am-

biguities).

k-
The order of DEF entries has no effect since the only function of these
entries is to make the appropriate entries in the symbol table of the ®

absolute assembly.

o

The order of the XTN entries is significant. The first entry is numbered
X'0001' and subsequent entries are assigned successively higher numbers.

References in the module text to external symbols use these numbers.

End of Module Preamble

The end of the external symbol dictionary and hence of the preamble is marked
by a single byte with value X'FF'. The module text either-follows immediately,

or after intervening X'FF' {ill bytes.

. MODULE TEXT

The ext for each module is a contiguous series of bytes in a special format

designed to minimize the sapce required for relocatable libraries,
First we define some special sequences which are used throughout.

Word Specification (WS)

A WSis a specification of a word value or address operand consisting of a
descriptor byte followed by a one or two byte value. The descriptor byte

has the following form:

11XLIBTT
X Normally set to 1. Set to 0 only for an indexed one word instruction
operand,
L Normally set to 0. Set to 1 only for a literal reference in a one

word instruction (value given is literal operand).

TT

Normally set to 0. Set to 1 if the WS represents an address operand
for an indirectly addressed instruction or pseudo-operation.

Set to 1 if the following value is two bytes. Set to 0 if the following
value is one byte (i.e. MS byte of value is X'00%).

Type of Value

00 Absolute value

01 Relocatable value

10 TOP value : -

11 External symbol reference (in this case the '"value" is the

external symbol number).

If a WS represents an operand of the form: external +_offse't, then the WS

is immediately followed by the sequence: X'F9' a a

where a a is the (two-byte) absolute offset to be added to the value of the external

reference.

Byte Specification (BS)

A BS séeclﬁes a byte value, as used, for example, in an immediate class

instruction. " The folléwing' possibilities exist:

()

(b)

For an external refe’fence, a BS has the same form as a WS.

Note that the descriptor byte has one of the two values X'E3' or X'E7'.

Absolﬁte byte values greater than or equal to X'E0' are represented
by X'FF' followed by the byte value.
Absolute byte values less than X'EOQ', the BS is simply the byte value

in question.

Lo

One-Word (Word or Byte Class) Instructions

The normal form consists of one byte containing the opcode followed by
a WS giving the operand address. The opcode byte has all addressing

bits off.

Immediate Class Instructions

Opcode byte + BS giving the byte operand.

Jump on Condition Instructions

Two bytes giving the opcode and second byte of the instruction followed

by a WS giving the jump operand.

An SKP instruction is represented as the word value X'8800' using the

special code X'F5' {see section on special codes).

Compare and Jump Instructions

One byte giving the opcode followed by BS giving the immediate byte operand

followed by WS giving the jump address operand.

Generic Instructions

Two bytes of the instruction.

Input-Output Instructions

The opcode byte is generated first followed by a BS specifying the functiong
code and a BS specifying the channel. In the cases of JFACK, JTACK,

a WS follows specifying the jump address.

Special Codes

X'01' text X'01' Generate text (0 or more bytes from TEXT, TXTS8,
LTX8, LTXT pseudo-operation). Note that the opcode
value X'01' never appears so no confusion arises.

X'Fl' BSS 1 (used for word alignment).

X'F2' a a BSS aa where aa is a two byte absolute value giving the count.
X'F3' BS Generate byte specified by BS once.

X'F4' a a BS Generate byte specified by BS number of times indicated

by two byte absolute value aa.
X'F5' WS Generate word specified by WS once.

X'F6' aa WS Generate word specified by WS number of times indicated
by two byte absolute value aa.

XFT! Switch from relocatable to TOP section or vice versa.‘
X'F9t WS Generate address constant WS (from DAC)
WS X'F9' a a The WS is of the form external and offset and a a is the

two byte absoluie offset value.

X'FF' a As a BS, generate the one byte absolute value a, which is
greater than or equal to X'EQ'.

End of Module Text

The module text is terminated by a single byte X'FF'. The preamble for
the next module, if any, either immediately follows or X'FF" fill bytes
may intervene. The bytes following the last byte of the last module text are

unreferenced and undefined.

SECTION VI

EXTERNAL FILE FORMATS

This section contains exact details of the external file formats supported
by the COPY utility. There is a sub-section for each device type for each
file type. Note that magnetic tape and punched card file formats are the same,

except for the hardware file mark (only on magnetic tape) and the bootstrap

(only on punched card objects).

DATA FILE ON CASSETTE TAPE

Header Block
2000 Leader bytes X'55¢

1 Sync byte X!77!

Byte 1 ‘Dt
Bytes 2-41 Label
Byte 42 Sector interlace factor

Data Block

There is one data block for each sector of information. Thus the number
of data blocks is a multiple of 32 since an integral number of tracks is
involved. The sectors are written in the logical order specified by the
sector interlace factor unless the interlace factor is zero, in which case

the sectors are written as though the interlace factor was 5,

30 Lieader bytes X'55'
1 Sync byte X'77!
Byte 1 X'FF!

Bytes 2-129 128 data bytes 6-1

End of File Block

Byte 1

Bytes 2-129

30 Leader bytes X'55!
1 Sync byte X'77!
X'00' (end of file flag)

All set to X'00!

OBJECT FILE ON CASSETTE TAPE

Bootstrap

For unsegmented programs, a bootstrap loader is written as the first

block. This loader requires the following operating sequence:

MANUAL

REWIND

BOOT
AUTO BOOT

On input, the bootstrap record is completely ignored.

Header Block

Byte 1
Bytes 2-41

Byte 42

Byte 43

30 or 2000 leader bytes X'55' (depending on whether a

loader is written)
1 sync byte X!'77!

IO!

"Label

Program CNFG, two hexadecimal digits,

00 = CNFG 0

0A = CNFG 10
14 = CNFG 20
18 = CNFG 24

19 = CNFG 25

Number of overlay setments.
00 for unsegmented program.

6-2

Two hexadecimal digits,

#

2

Byte 44 Program size MSB (i.e., minimum required memory),
Two hexadecimal digits (e.g., 1F=8K).

Byte 45 External size. Two hexadecimal digits, 00 if no external
memory present, else it is the most significant byte of
the third parameter to SIZE.

Data Block
30 leader bytes X'55¢
1 sync byte X'77

Bytes 1-512 512 bytes of text data

Text and transfer records are of variable length and are packed into 512

byte blocks as indicated above, spilling across block boundaries as required.

Text Record: Byte 1 ' Segment number

Bytes 2-3 . Initial load address)
Byte 3) Count of data bytes +1
Bytes 4-N .. . (N-3} data bytes

Transfer Record:

Byte 1 Segment number

Bytes 2-3 © Transfer address

Byte 4 X'oo!

The end of tape is implied by the occurrence of the last transfer record.
The number of transfer records is equal to the number of overlay segmehts
plug one (for the main segment). The final physical block is padded out to

512 bytes with X'FF! £ill codes.

The order of text and transfer records is subject to the following rules:

{a) All text records for an overlay segment (non-zero segment) must be
¢ontiguous and immediately followed by the corresponding transfer
record,

(b) The segment zero transfer record must appear after (but not necessarily
immediately after) the last segment zero text record,

(¢) Segment zero text records may thus be contiguous at the start of the
file or interspersed between overlay segment data in the natural
assembly-order. The COPY utility will always generate the first of

these formats when copying from an object file on diskette,

Boot Mode Programs

1f COPY is used to write a BOOT mode object program from diskette to
cassette tape, the outputis generated in standard bootstrap format. There

is no way to read a BOOT mode program from cassette tape onto diskette.

SOURCE FILE ON CASSETTE TAPE

Note: This format is compatible with the source format used by the J—1071,

J-102, J-103 and J-104 cassette editor and assembler programs.

Header Block
2000 leader bytes X'55!
.1 sync byte X'77!

Byte 1 S

Byte 2 : {colon)

u

Bytes 3-28

Byte 29

Text Blocks

Bytes 1-100

Bytes 1-N

Byte N+1

First 26 characters of label. On input this is padded with
blanks, on output the label is truncated to 26 characters.

X'FE'

30 leader bytes X'55¢
1 sync byte X'77!

100 data bytes

30 leader bytes X'55f
1 sync byte X'77!
N data bytes (N<100)

X'FE!

The short block format with the X'FE' may appear anywhere in the input,

but is only used for the last block on output.

The source records are written in variable length form terminated by

X'0D' (carriage return), packed into 100 byte blocks and spilling over block

boundaries as required.

Consecutive blanks in a source record may be {input)/are (output) replaced

by X'80' + count of blanks.

The end of file is marked by X'FF!' following the last carriage return.

RELOCATABLE FILE ON CASSETTE TAPE

Header Block
2000 Leader bytes X'55!

1 Sync byte X'77'

Byte 1 'R!

Bytes 2-41 Label

Byte 42 Sector interlace factor
Data Block

There is one data block for each sector of information. Thus the number
of data blocks is a multiple of 32 since an integral number of tracks is
involved. The sectors are written in the logical order specifie™ by the

sector interlace factor,

30 Leader bytes X'55¢
1 Sync byte X7
Byte 1 X'FF!

Bytes 2-129 128 data bytes

End of File Block

30 Leader bytes X'55'
1 Sync byte X!'77!
Byte 1 X'00' (end of file flag)

Bytes 2-129 All set to X'00!

o

DATA FILE ON MAGNETIC TAPE

Data files are written to magnetic tape in 80 character blocks, odd parity,

nine-track, ASCII code.

Header Record

Character 1 'D!

Characters 2-41 Label

Character 42 Sector interlace factor (hexadecimal value)
Characters 43-80 Blank

Data Records
Each data record is two blocks long and corresponds to a single sector of
information. The number of data blocks is thus always a multiple of 64
since there is an integral number of tracks. The order of data records
corresponds to the logical sector order as implied by the interlace factor
except when the interlace is zero in which case the records are written
as though an interlace of 5 was in use.
Block 1 Characters 1-2 Blanks
Characters 3-66 Data bytes 0-63 in hexadecimal punch code
Characters 67-80 Blanks
Block 2 Characters 1-2 Blanks

Characters 3-66 Data bytes 64-127
Characters 67-80 Blanks

End of File Record

Character 1 '.! {period)
Character 2 oy
Character 3 blank

Character 4-43 label
Character 44-80 blanks
Followed by hardware File~-Mark

6-7

OBJECT FILE ON MAGNETIC TAPE

Object files are written to magnetic tape in 80 character blocks, odd

parity, nine-track, ASCII code. There are no bootstrap récords.

Header Record
Character 1
Characters 2-41
Character 42

Characters 43-44

Characters 45-46
Characters 47-48
Characters 49-50

' Characters 51-78

Characters 79-80

Text Records
Characters 1-2

Characters 3-6

Characters 7-76

!OX
Label
Blank

Program confg., Two hexadecimal digits

00 = CNFG 0

0A = CNFG 10
14 = CNFEG 20
18 = CNFG 24
19 = CNFG 25

Number of overlay segments. Two hexadecimal digits,
00 for unsegmented program.

Program size MSB (i.e., minimum required memory).
Two hexadecimal digits {e.g., 1F=8K)

External size. Two hexadecimal digits, 00 if no external
memory present, else it is the most significant byte of
the third parameter to SIZE.

Blanks

Checksum. ©Ones complement (mod 255) sum of the four
byte values on the header line as two hexadecimal digits.

Segment number, two hexadecimal digits.

Starting load address for data on this record given as
four hexadecimal digits.

1-35 data bytes, each given as two hexadecimal digits.
If less than 35 bytes are present, blanks fill the unused
character positions.

K-

E

Characters 77-78 Blanks

Characters 79-80 Checksum. Two hexadecimal digits representing the ones-
complement (mod 255) sum of all hexadecimal data pre-
viously output on this record, previous text records
(including checksums) and header record. Thus the
checksum is cumulative and is reset only by a transfer

record.
Transfer Record
Characters 1-2 Segment number, two hexadecimal digits.
Characters 3-6 Transfer address, four hexadecimal digits.

Characters 7-78 Blanks
Characters 79-80 Checksum. As for text record. The checksum is reset
to zero for the start of the next record.

End of File Record

Character 1 ', " (period)
Character 2 B!
Character 3 Blank

Characters 4-43 Label (not required on input decks)
Characters 44-80 Blanks
Followed by Hardware File-Mark

The order of text and transfer records is subject to the following rules:

(a) All text records for an overlay segment (non-zero segment) number must be
contiguous and immediately followed by the corresponding transfer
record.

(b) The segment zero transfer record must appear after (but not necessarily
immediately after) the last segment zero text record.

{c) Segment zero text records may thus be contiguous at the start of the
file or interspersed between overlay segment data in the natural
assembly order. The COPY utility will always generate the first

of these forms when copying from an object file on diskette.

6-9

Boot Mode Programnis

BOOT mode programs are output to tape as they appear on disk (i.e.,
with a CNFG value whose MSB is set). They may be read back from tape

to disk in this form.

SOURCE FILE ON MAGNETIC TAPE

Source files are written to magnetic tape in 80 character blocks, odd

parity, nine-track, ASCII code.

Header Record

Character 1 : (ASCII colon)
Characters 2-41 Label
Characters 42-80 Blanks

On input to COPY, the header may be omitted in which case the label is

taken from characters 2-41 of the first source record.

Source Records

Characters 1-80 Source image data in ASCII punched code.

End of File Record

Character 1 ', ' (period)
Character 2 E
Character 3 Blank

optional
Characters 4-43 Label

Characters 44-80 Blanks
Followed by Hardware File-Mark

RELOCATABLE FILE ON MAGNETIC TAPE

Relocatable files are written to magnetic tape in 80 character blocks, odd

parity, nine-track, ASCII code.

Header Record

Character 1 'RY
Characters 2-41 Label
Character 42 Sector interlace factor (Hexadecimal value)

Characters 43-80 Blank

Data Records
Each data record is two blocks long and corresponds to a single sector of
information. The number of data blocks is thus always a multiple of 64
since there is an integral number of tracks:. The order of data records
corresponds to the 1ogica1 sector order as implied by the interlace factor.
Block 1 Characters 1-2 Blanks
Characters 3-66 Data bytes 0-63 in hexadecimal punch code
Characters 67-80 Blanks
Block 2 Characters 1-2 Blanks

Characters 3-66 Data bytes 64-127
Characters 67-80 Blanks

End of File Record

Character 1 '.! (period)
Character 2 VB!
Character 3 blank

Characters 4-43 label
Characters 44-80 blanks
Followed by Hardware File-Mark

DATA FILE ON PAPER TAPE

Header Block

All characters up to X'81' starting this record are ignored on inpﬁt.

Byte 1 X'81!

Byte 2 Sector interlace factor

Bytes 3-42 Label in ASCII code

Byte 43 Checksum. Ones-~complement (mod 255) sum of all data

in the header block including the X'81',

Data Blocks

There is one data block for each sector of tmformation. Thus the number

of data blocks is a multiple of 32 since an integral number of tracks is in-
volved. The sectors are written in the logical order specified by the sector
interlace factor unless the interlace factor ls zero, in which case the ;ecfors
are written as though the interlace was 5. Nulls or deletes (or any characters

other than X'82!' or X'83' may appear between blocks.

Byte I X1ga!
Bytes - 2-129 128 bytes of data, full 8 bit ASCII code.
Byte 130 . Checksum. Ones-complement (mod 255) sum of all data

in the block including the X'82'.

End of File Block

Byte 1 X183!

I

OBJECT FILE ON PAPER TAPE

Note: This format is compatible with output generated by the H716 assembler

system.

Header Block

All characters up to the X'81' starting this record are ignored on input,

including any bootstrap record,

Byte 1 X181t
Byte 2 Program CNFG
X'00' = CNFG 0
X'0A'= CNFG 10
X'14" = CNFG 20
X'18' = CNFG 24
X'19' = CNFG 25
Byte 3 Number of overlay segments. X'00' for unsegmented program.
Byte 4 Program size.
Byte 5 Program size MSB (i.e., minimum required memory). Two

hexadecimal digits (e.g., 1F=8K).

Byte 6 External size. Two hexadecimal digits, 00 if no external
memory present, else it is the most significant byte of the
third parameter to SIZE.

Bytes 7-46 File label. This may be less than forty characters long,
in which case the label is filled out with blanks. On input
the parity (MS) bit is stripped off.

Byte 47 X'9D' IGS to terminate label
Byte 48 X'00!
Byte 49 Checksum. Ones complement (mod 255) sum of all bytes in

block including the X'81°'.

Text Blocks

Nulls or deletes may appear between blocks.

Byte 1 X182!

Byte 2 Segment number

Bytes 3-4 Initial load address for text in this record

Bytes 5-N Text data, see below

Byte N+1 X9D!

Byte N+2 X'00!

Byte N+3 Checksum. Ones complement (mod 255) sum of all bytes

in block including the X'82'). .

The text is in 8-bit ASCII code excepf that the following subsequence is

used for strings of duplicated characters.

Byte 1 X'9D?
Byte 2 Duplication count {hon-zero)
‘Byte 3 Character to be duplicated

To prevent confusion, the X'9D' character itself in text always appears as

byte 3 of a duplication subsequence (with a duplication count of one if necéssary);

Transfer Block

Byte 1 - X183t
Byte 2 Segment number
Bytes 3-4 Transfer address

I3

Byte 5 X'9D!

Byte 6 X'1o0!

Byte 7 Checksum. Ones complement (mod 255) sum of first six
bytes in block.

The end of tape is implied by the occurrence of the lést transfer block.

The number of transfer blocks is equal to the number of overlay segments

plus one (for the main segment).
The order of text and transfer blocks is subjrct to the following rules:

(a) All text blocks for an overlay segment (non-zero segment) must be
contiguous and immediately followed by the corresponding transfer
block.

(b) The segment zero transfer block must appear after (but not necessarily
immediately after) the last segment zero text block.

(¢) Segment zero text blocks may thus be contiguous at the start of the file
or interspersed between overlay segment blocks in the natural assembly

order.

Patch Format

Patch records are inserted in the tape to replace the existing transfer block
for the segment to be patched. All data in patch mode is ASCII letters or
digits or carriage returns with the parity bit ignored. A1l other characters

are ignored and may be used for layout purposes.

6-15

The letter P, if read when byte 1 of a block was being serached, causes

patch mode to be entered. Text patch records are then entered as follows:

Characters 1-4 load address as four hexadecimal digits
Characters 5-6 First data byte (two hexadecimal digits)
Characters 7-8 Second data byte

Characters
(2N+3)-(2N+4) N'th data byte
Character 2N+t5 Carriage return

Following the last text patch record is the transfer patch record.
Characters 1-4 Transfer address as four hexadecimal digits

Character 5 Letter S

Note that the segment number is not given. It is assumed to be the same
as the current segment number. Thus patches can only appear following at

least one normal format text block for the segment to be patched.

SOURCE FILE ON PAPER TAPE

Note that all nulls, deletes and line feeds on a source tape are ignored.

Header Block
Byte 1 S
Bytes 2-41 Label (if less than 40 characters, filled out with blanks)

Byte 42 Carriage return

On input to COPY, the header may be omitted, in which case the label is
taken from characters 2-41 of the first source fecord, filled out with blanks

if necessary.
6-16

&

o

Source Record Blocks

Bytes 1-N I1-N ASCII characters, parity bit ignored

Byte N+l Carriage return

Deleted Source Record Blocks

Bytes 1-N 1-N ASCIH characters
Byte N+1 ASCII Back Arrow (X'5F! (r X'DF')
Byte N+2 Carriage Return

End of File Block

Byte 1 . {period)
Byte 2 E
Byte 3-N Option character data

or

Byte 1 X'03" or X'83' (ETX)
or

Byte 1 X'04' or X'84' (EOT)

RELOCATABLE FILE ON PAPER TAPE

Header Block

All characters up to the X'81' starting this record are ignored on input.

Fr
Byte 1 X'81!
Byte 2 Sector interlace factor
Bytes 3-42 Label in ASCII code
Byte 43 Checksum. Ones-complement (mod 255) sum of all data
in the header block including the X'81!
Data Blocks
There is one data block for each sector of information. Thus the number
of data blocks is a multiple of 32 since an integral number of tracks is in-
volved. The sectors are written in the logical order specified by the sector &
interlace factor. Nulls or deletes (or any characters other than X'82' or
X'83' may appear between blocks. o
Byte 1 X182t
Bytes 2-129 128 bytes of data, full 8 bit ASCII code.
Byte 130 Checksum. Ones-complement (mod 255) sum of all data
in the block including the X'82!. :
End of File Block
Byte 1 X183
%
@y

s

&

DATA FILE ON PUNCHED CARDS

Header Record

Column 1
Columns 2-41
Column 42
Columns 43-80

Data Records

ID(

Laabel
Sector interlace factor (hexadecimal value)
Blank

Each data record is two cards long and corresponds to a single sector of

information. The number of data cards is thus always a multiple of 64 since

there is an integral number of tracks. The order of data records corresponds

to the logical sector order as implied by the interlace factor except when the

of 5 in use.

Card 1

Card 2

End of File Record

Column 1
Column 2
Column 3
Column 4-43
Columns 44-80

‘interlace is zero in which case the records are written as though an interlace

Columns 1-2 Blanks
Columns 3-66 Data bytes 0-63 in hexadecimal punch code
Columns 67-80 Blanks
Columns 1-2 Blanks
Columns 3-66 Data bytes 64-127
Columns 67-80 Blanks
. ! (period)
|El
Blank
Label (not required on input decks)
Blanks

OBJECT FILE ON PUNCHED CARDS

Bootstrap

The bootstrap punched on output for unsegmented programis consists of seven

cards in boot load format with the last card filled out with end boot codes

(zeros). On input, any bootstrap loader cards are ignored providing that

the last one is completely filled out with zeros.

Header Record
Column 1
Columns 2-41
Column 42

Columns 43-44

Columns 45-46

Columns 47-48

Columns 49-50

Columns 51-78

Columns 79-80

Text Records
Columns 1-2

Columns 3-6

lol
Label
Blank

Program CNFG. Two hexadecimal digits.

00 = CNFG 0

0A = CNFG 10

14 = CNFG 20

18 = CNFG 24

19 = CNFG 25
Number of overlay segments. Two hexadecimal digits,
00 for unsegmented program.

Program size MSB (i.e., minimum required memory).
Two hexadecimal digits (e.g., 1F=8K).

External size. Two hexadecimal digits, 00 if no external
memory present, else it is the most significant byte of
the third parameter to SIZE,

Blanks

Checksum. Ones complement (mod 255) sum of the four
byte values on the header line as two hexadecimal.

Segment number, two hexadecimal digits.

Starting load address for data on this record,
given as four hexadecimal digits.

6-20

Fad

Columns 7-76 1-35 data bytes, each given as two hexadecimal digits.
If less than 35 bytes are present, blanks fill the unused
columns.

Columns 77-78 Blanks

Columns 79-80 Checksum. Two hexadecimal digits representing the ones-
complement (mod 255) sum of all hexadecimal data pre-
viously output on this card, previous text cards (in-
cluding checksums) and header card. Thus the checksum
is cumulative and is reset only by a transfer record.

Transfer Record

Columns 1-2 Segment number, two hexadecimal digits.

Columns 3-6 Transfer address, four hexadecimal digits,

Colurmns 7-78 Blanks

Columns 79-80 Checksum. As for text record. The checksum is reset

to zero for the start of the next record.

End of File Record

Column 1 '.! {period)

Column 2 E!

Column 3 Blank

Columns 4-43 Label (not réqui.red on input decks)

Columns 44-80 Blanks

The order of text and trznsfer records is subject to the following rules:

(a) All text records for an overlay segment (non-zero segment) must be

contiguous and immediately followed by the corresponding transfer record.

{b) The segment zero transfer record must appear after (but not necess‘arily
immediately after) the last segment zero text record.

(c) Segment zero text records may thus be contiguous at the start of the
deck or intérspersed between overlay segment data in the natural assembly-
order. The COPY utility will always generate the first of these forms

when copying from an object file on diskette.

Patch Format

An object deck may be patched by hand as follows:

(1) AN patch cards are in standard text format except that columns 79-80
are left blank.

(2) Patch cards raust immediately precede the transfer record of the segment
to be patched.

(3) The transfer record of any patched segment must be recopied (possibly

modifying the transfer address) with columns 79-80 blank.

The bootstrap loader will correctly load unsegmented programs in this
manner. Object decks to be read onto disk using COPY may have patches

applied to any segment.

Boot Mode Programs

If COPY is used to punch a BOOT maode object program from diskette, the
output is generated in standard boot load format. There is no way to read

a BOOT mods prograrn from carids onto diskette,

%,

el

o

SOURCE FILE ON PUNCHED CARDS

Header Record
Column 1 : {ASCII colon)
Columns 2-41 Label

Columns 42-80 Blanks

On input to COPY, the header may be omitted, in which case the label is

taken from columns 2-41 of the first source record.

Source Records

Columns 1-80 Source image data in ASCII punched code.

End of File Record

Column 1 '.! (period)

Column 2 E

Column 3. Blank

Columns 4-43 Label (not required on input decks)

Columns 44-80 Blanks

6-23

RELOCATABLE FILE ON PUNCHED CARDS

Header Record

Column 1 YR
Columns 2-41 Label
Column 42 Sector interlace factor (hexadecimal value)

Columns 43-80 Blank

Data Records

Fach data record is two cards long and corresponds to a single sector of

information. The number of data cards is thus always a multiple of £4 since

there is an integral number of tracks.

to the logical sector order as implied by the interlace factor.

Card 1 Columns: 1-2
Columns 3-66
Columns 67-80

Card 2 Columns 1-2

Columns 3-66
Columns 67-80

End of File Record

Column 1 ',! (period)
Column 2 VB!
Column 3 Blank

Blanks)
Data bytes 0-63 in hexadecimal punch code
Blanks

Blanks
Data bytes 64-127
Blanks

Column 4-43 Label (not required on input decks)

Columns 44-80 Blanks

The order of data records corresponds

LL]

14

L5

&

L

APPENDIX A

LIST OF OTHER USEFUL PUBLICATIONS

TITLE

PUBLICATIONS
PUBLICATIONS CATALOG -~ SECOND EDITION
SPD/DOS MANUALS
SPD D-~250 DISKETTE REFERENCE MANUAL
SPD/DOS DISKETTE OPERATING SYSTEM OPERATORS REF. MAN.
SPD/DOS DISKETTE QPERATING SYSTEM PROGRAMMERS REF,
ASSEMBLER MANUAL :
SPD SYMBOLIC ASSEMBLY LANGUAGE REFERENCE MANUAL
SPD 10/20 MANUALS ’
SPD 10/20 INTELLIGENT TERMINAL SYSTEM DESCRIPTION
SPD 10/20 PROGRAMMERS REFERENCE MANUAL
SPD 10/25 MANUALS . -
SPD 10/25 INTELLIGENT TERMINAL SYSTEM DESCRIPTION

SPD 10/25 INTELLIGENT TERMINAL SYSTEM PROGRAMMERS REF.
SPD 20/20 MANUALS

SPD 20/20 MULTI STATION DISPLAY PROGRAMMERS REFERENCE

SPD 20/20 MULTI STATION DISPLAY SYSTEM DESCRIPTION

SPD 20/20 MULTI-STATION DISPLAY SYSTEM OPERATORS MAN.
sPD 320/325

SPD. 320/325 VIDEO TERMINAL SYSTEM DESCRIPTION

SPD 320 VIDEO TERMINAL SYSTEM IBM 3270 COMP. "PLUS" B.
COMMUNICATIONS MANUALS

COMMUNICATION CONTROLLER REFERENCE MANUAL

INCOTERM DATA COMMUNICATIONS MANUAL
CONTROLLERS

REMOTE LOAD CONTROLLER REFERENCE MANUAL

CYCLIC CHECK CONTROLLER REFERENCE MANUAL (with adden.)

COMMUNICATION CONTROLLER REFERENCE MANUAL
CYCLIC CHECK .

CYCLIC CHECK CONTROLLER REFERENCE MANUAL (with adden)
DATA ENTRY : . :

INCOFORM SOURCE DATA ENTRY SYSTEM DESCRIPTION MANUAL

INCOFORM SOURCE DATA ENTRY SYSTEM DESCRIPTION BROCHURE

INCOFORM SOURCE DATA ENTRY SYSTEM OPERATORS MANUAL
INCOFORM FORMS GENERATION OPERATORS MANUAL
PERIPHERAL.EQUIPMENT MANUALS
PRINTER i
SPD P-100 PRINTER REFERENCE MANUAL
SPD P-165/SPD P~165B PRINTERS REFERENCE MANUAL
Punch ’
SPD PRP-45/200 PRINTING READER PUNCH OPERATORS MANUAL
SPD PRP=-45/200 PRINTING READER PUNCH PRODUCT BULLETIN
TAPE)
MAGNETIC TAPE UNITS REFERENCE MANUAL
SPD=-MT TAPE UNITS PRODUCT BULLETIN
SPD~T TAPE CASSETTE PRODUCT BULLETIN

A-1

ORDER
NUMBER

MS-7159

M§=-7143
MS~7177
MS~-7178

MS~7215

MS-7145
MS-7110

MS~7199

MS=-7217

MS=7144
MS-7165
MS-7190

MS~-7158
MS-7172

Ms§-7152
Cs~015

MS-7121
MS~7122
MS=7152

MS=-7122

MS§~-7205
MS-

MS-~-7208
M5-7209

MS=-~7123
M5-7218

MS~=7154
MS-7204

MS-7153
MS~7162
M5-7201

3

&4

VAXJO DATA SYSTEM AB

Distributor for Incoterm i Sverige, Norge, Finland och Danmark

VAXJIO

Adress: Box 3034, Smedjegatan 37, 350 03 VAXJO
Telefon: 0470/10070

Telex: 52 138

HELS INGBORG
Adress: Landskronavigen 23, 252 32 HELSINGBORG
Telefon: 042/14 94 30

MALMO
Adress: Sddergatan 12, 211 34 MALMO
Telefon: 040/724 50

STOCKHOLM
Adress: Skeppargatan 8, .114 52 STOCKHOLM
Telefon: 08/14 22 35

CORONADATA AB
Adress: Box 5143, Avigen 18, 402 23 GOTEBORG
Telefon: 031/20 03 80

CORONADATA A/S
Adress: Park Alle 296, DK - 2600 GLOSTRUP
Telefon: (02) 45 88 22

CORONADATA 0OY

Adress: Notstigen 4 C, SF - 00330 HELSINGFORS 33
Telefom: @ = 48 87 22

CORONADATA A/S

Adress: Torggatan 7, OSLO 1
Telefon: 2 - 33 42 60

LANPRODUKTER, Vixjs 1976

