

~
FIFTH GENERATION
COMPUTER SYSTEMS 1992
Edited by
Institute for New Generation
Computer Technology (ICOT) _

Volume 1

Ohmsha, Ltd. lOS Press

FIFTH GENERATION COMPUTER SYSTEMS 1992

Copyright © 1992 by Institute for New Generation Computer Technology
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic, mechanical, recording or
otherwise, without the prior permission of the copyright owner.

ISBN 4-274-07724-1 (Ohmsha)
ISBN 90-5199-099-5 (lOS Press)

Library of Congress Catalog Card Number: 92-073166

Published and distributed in Japan by
Ohmsha, Ltd.
3-1 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101, Japan

Distributed in North America by
lOS Press, Inc.
Postal Drawer 10558, Burke, V A 22009-0558, U. S. A.

United Kingdom by
lOS Press
73 Lime Walk, Headington, Oxford OX3 7 AD, England

Europe and the rest of the world by
lOS Press
Van Diemenstraat 94, 1013 CN Amsterdam, Netherlands

Far East jointly by
Ohmsha, Ltd., lOS Press

Printed in Japan

FOREWORD

On behalf of the Organizing Committee, it is my great pleasure
to welcome you to the International Conference on Fifth Generation
Computer Systems 1992.

The Fifth Generation Computer Systems (FGCS) project was
started in 1982 by the initiative of the late Professor Tohru Moto
Oka with the purpose of making a revolutionary new type of com
puters oriented to knowledge processing in the 1990s. After complet
ing the initial and intermediate stages of research and development,
we are now at the final point of our ten-year project and are rapidly
approaching the completion of prototype Fifth Generation Com
puter Systems.

The research goals of the FGCS project were challenging, but
we expect to meet most of them. We have developed a new paradigm
of knowledge processing including the parallel logic language, KLl,
and the parallel inference machine, PIM.

When we look back upon these ten years, we can find many
research areas in knowledge processing related to this project, such
as logic programming, parallel processing, natural language process
ing, and machine learning. Furthermore, there emerged many new
applications of knowledge processing, such as legal reasoning and
genetic information processing.

I believe that this new world of information processing will
grow more and more in the future. When very large knowledge bases
including common sense knowledge come out in full scale and are
widely used, the knowledge processing paradigm will show its real
power and will give us great rewards. From now on, we can enjoy
fifth generation computer technology in many fields.

Following the same objective of creating such a new paradigm,
there has been intense international collaboration, such as joint
workshops with France, Italy, Sweden, the U.K., and the U.S.A., and
joint research with U.S.A. and Swedish institutes on parallel process
ing applications.

Against this background,ICOT hosts the International Confer
ence on Fifth Generation Computer Systems 1992 (FGCS'92). This
is the last in a series of FGCS conferences; previous conferences were
held in 1981, 1984 and 1988. The purpose of the conference is to
present the final results of the FGCS project, as well as to promote
the exchange of new ideas in the fields of knowledge processing,
logic programming, and parallel processing.

FGCS'92 will take place over five days. The first two days will
be devoted to the presentation of the latest results of the FGCS
project, and will include invited lectures by leading researchers. The

iii

IV

remaining three days will be devoted to technical sessions for invited
and submitted papers, the presentation of the results of detailed
research done at ICOT, and panel discussions.

Professor D. Bj¢rner from the United Nations University,
Professor l.A. Robinson from Syracuse University, and Professor
C.A.R. Hoare from Oxford University kindly accepted our offer to·
give invited lectures.

Professor R. Kowalski from Imperial College is the chairperson of
the plenary panel session on "A springboard for information proces
sing in the 21st century." Professor Hajime Karatsu from Tokai
University accepted our invitation to give a banquet speech.

During the conference, there will be demonstrations of the
research results from the ten-year FGCS project. The Parallel Infer
ence Machines and many kinds of parallel application programs will
be highlighted to show the feasibility of the machines.

I hope that this conference will be a nice place to present all of
the research results in this field up to this time, confirm the mile
stones, and propose a future direction for the research, development
and applications of the fifth generation computers through vigorous
discussions among attendees from all over the world. I hope all of
the attendees will return to their own countries with great expecta
tions in minds and feel that a new era of computer science has
opened in terms of fifth generation computer systems.

Moreover, I wish that the friendship and frank cooperation
among researchers from around the world, brewed in the process of
fifth generation computer systems research, will grow and widen so
that this small but strong relationship can help promote interna
tional collaboration for the brilliant future of mankind.

Hidehiko Tanaka
Conference Chairperson

FOREWORD

Esteemed guests, let me begin by welcoming you to the International Conference on
Fifth Generation Computer Systems, 1992. I am Hideaki Kumano. I am the Director
General of the Machinery and Information Industries Bureau of MIT!.

We have been promoting the Fifth Generation Computer Systems Project, with the
mission of international contributions to technological development by promoting the
research and development of information technology in the basic research phase and
distributing the achievements of that research worldwide. This international conference
is thus of great importance in making our achievements available to all. It is, therefore,
a great honor for me to be given the opportunity to make the keynote speech today.

1 Achievements of the Project

Since I took up my current post, I have had several opportunities to visit the project site.
This made a great impression on me since it proved to me that Japanese technology can
produce spectacular results in an area of highly advanced technology, covering the fields
of parallel inference machine hardware and its basic software such as operating systems
and programming languages; fields in which no one had any previous experience.

Furthermore, I caught a glimpse of the future use of fifth generation computer tech
nology when I saw the results of its application to genetics and law. I was especially
interested in the demonstration of the parallel legal inference system, since I have been
engaged in the enactment and operation of laws at MIT!. I now believe that the machines
using the concepts of fifth generation computers will find practical applications in the
enactment and operation of laws in the near future.

The research and development phase of our project will be completed by the end
of this fiscal year. We will evaluate all the results. The committee for development of
basic computer technology, comprised of distinguished members selected from a broad
spectrum of fields, will make a formal evaluation of the project. This evaluation will take
into account the opinions of those attending the conference, as well as the results of a
questionnaire completed by overseas experts in each field. Even before this evaluation,
however, I am convinced that the project has produced results that will have a great
impact on future computer technology.

2 Features of the Fifth Generation Computer Systems Project

I will explain how we set our goals and developed a scheme that would achieve these
high-level technological advances.

The commencement of the project coincided with the time when Japan was coming
to be recognized as a major economic and technological power in the world community.
Given these circumstances, the objectives of the project included not only the develop
Inent of original and creative technology, but also the making of valuable international

v

VI

contributions. In this regard, we selected a theme of "knowledge information process
ing", which would have a major impact on a wide area from technology through to the
economy. The project took as its research goal the development of a parallel inference
system, representing the paradigm of computer technology as applied to the theme.

The goal was particularly challenging at that time. I recalled the words of a partic
ipant at the first conference held in 1981. He commented that it was doubtful whether
Japanese researchers could succeed in such a project since we, at that time, had very
little experience in these fields.

However, despite the difficulties of the task ahead of us, we promoted the project
from the viewpoint of contributing to the international community through research. In
this regard, our endeavors in this area were targeted as pre-competitive technologies,
namely basic research. This meant that we would have to start from scratch, assembling
and training a group of researchers.

To achieve our goal of creating a paradigm of new computer technology, taking an
integrated approach starting from basic research, we settled on a research scheme after
exhaustive preliminary deliberations.

As part of its efforts to promote the dissemination of basic research results as inter
national public assets, the government of Japan, reflecting its firm commitment to this
area, decided to finance all research costs.

The Institute for New Generation Computer Technology (ICaT), the sponsor of this
conference, was established to act as a central research laboratory where brainpower
could be concentrated. Such an organization was considered essential to the development
of an integrated technology that could be applied to both hardware and software. The
Institute"s research laboratory, that actually conducted the project's research and devel
opment, was founded precisely ten years ago, today, on June 1 of 1982. A number of
highly qualified personnel, all of whom were excited by the ideal that the project pursued,
were recruited from the government and industry. Furthermore, various ad hoc groups
were formed to promote discussions among researchers in various fields, making Ie aT
the key center for research communication in this field.

The duration of the project was divided into three phases. Reviews were conducted
at the end of each phase, from the viewpoint of human resources and technological ad
vances, which made it possible to entrust various areas of the research. I believe that
this approach increased efficiency, and also allowed flexibility by eliminating redundant
areas of research.

We have also been heavily involved in international exchanges, with the aim of pro
moting international contributions. Currently, we are involved in five different interna
tional research collaboration projects. These include work in the theorem proving field
with the Australian National University (ANU), and research into constraint logic pro
gramming with the Swedish Institute of Computer Science (SICS). The results of these
two collaborations, on display in the demonstration hall, are excellent examples of what
research collaboration can achieve. We have also promoted international exchange by
holding international conferences and by hosting researchers from abroad at ICaT. And,
we have gone to great lengths to make public our project's achievements, including in-

termediate results.

3 Succession of the Project's Ideal

This project is regarded as being the prototype for all subsequent projects to be sponsored
by MITI.

It is largely due to the herculean efforts of the researchers, under the leadership of Dr.
Fuchi and other excellent research leaders, that have led to the revolutionary advances
being demonstrated at this conference.

In the light of these achievements, and with an eye to the future, I can now state
that there is no question of the need to make international contributions the basis of the
policies governing future technological development at MITI. This ideal will be passed
on to all subsequent research and development projects.

A case in point is the Real World Computing (RWC) project scheduled to start this
year. This project rests on a foundation of international cooperation. Indeed, the basic
plan, approved by a committee a few days ago, specifically reflects the international
exchange of opinions. The RWC project is a particularly challenging project that aims
to investigate the fundamental principles of human-like flexible information processing
and to implement it as a new information processing technology, taking full advantage
of advancing hardware technologies. We will not fail to make every effort to achieve the
project's objective~ for use as common assets for all mankind.

4 International Response

As I mentioned earlier, I believe that the Fifth Generation Computer System Project
has made valuable international contributions from its earliest stages. The project has
stimulated international interest and responses from its outset. The great number of
foreign participants present today illustrates this point.

Around the world, a number of projects received their initial impetus from our
project: these include the Strategic Computing Initiative in the U.S.A., the EC's Es
prit project, and the Alvey Project in the United Kingdom.

These projects were initially launched to compete with the Fifth Generation Com
puter Systems Project. Now, however, I strongly believe that since our ideal of inter
national contributions has come to be understood around the globe, together with the
realization that technology can not and should not be divided by borders, each project
is providing the stimulus for the others, and all are making major contributions to the
advancement of information processing technologies.

5 Free Access to the Project's Software

One of the great virtues of science, given an open environment, IS the collaboration
between researchers using a common base of technology.

VB

Vlll

Considering this, it would be impractical for one person or even one nation to attempt
to cover the whole range of technological research and development. Therefore, the
necessity of international cooperation is self-evident from the standpoint of advancing

the human race as a whole.
In this vein, MITI has decided to promote technology globalism in the fields of science

and technology, based on a concept of "international cooperative effort for creative ac
tivity and international exchange to maximize the total benefit of science and technology
to mankind." We call this concept "techno-globalism".

It is also important to establish an environment based on "techno-globalism", that
supports international collaboration in basic and original research as a resource to solve
problems common to all mankind as well as the dissemination of the resulting achieve
ments. This could be done through international cooperation.

To achieve this "techno-globalism" all countries should, as far as possible, allow free
and easy access to their domestic technologies. This kind of openness requires the volun
tary establishment of environments where anyone can access technological achievements
freely, rather than merely asking other countries for information. It is this kind of inter
national cooperation, with the efforts of both sides complementing each other, that can
best accelerate the advancement of technology.

We at MITI have examined our policies from the viewpoint of promoting international
technological advancement by using the technologies developed as part of this project,
the superbness of which- has encouraged us to set a new policy.

Our project's resources focused mainly on a variety of software, including parallel
operating systems and parallel logic programming languages. To date, the results of such
a national project, sponsored by the government, were available only for a fee and could
be used only under various conditions once they became the property of the government.
Therefore, generally speaking, although the results have been available to the public, in
principle, they have not been available to be used freely and widely.

As I mentioned earlier, in the push toward reaching the goal of promoting inter
national cooperation for technological advancement, Japan should take the initiative in
creating an environment where all technologies developed in this project can be accessed
easily. Now, I can formally announce that, concerning software copyrights in the research
and development phase which are not the property of the government, the Institute for
New Generation Computer Technology(ICOT), the owner of these copyrights of software
products is now preparing to enable their free and and open use without charge.

The adoption of this policy not only allows anyone free access to the software tech
nologies developed as part of the project, but also make it possible for interested parties
to inherit the results of our research, to further advance the technology. I sincerely hope
that our adopting this policy will maximize the utilization of researchers' abilities, and
promote the advancement of the technologies of knowledge information processing and
parallel processing, toward which all efforts have been concentrated during the project.

This means that our adopting this policy will not merely result in a one-way flow
of technologies from Japan, but enhance the benefit to all mankind of the technological
advancements brought on by a two-way flow of technology and the mutual benefits thus

obtained.
I should say that, from the outset of the Fifth Generation Computer Systems Project,

we decided make international contributions an important objective of the project. We
fashioned the project as the model for managing the MITI-sponsored research and devel
opment projects that were to follow. Now, as we near the completion of the project, we
have decided to adopt a policy of free access to the software to inspire further international
contributions to technological development.

I ask all of you to understand the message in this decision. I very much hope that the
world's researchers will make effective use of the technologies resulting from the project
and will devote themselves to further developing the technologies.

Finally, I'd like to close by expressing my heartfelt desire for this international con
ference to succeed in providing a productive forum for information exchange between
participants and to act as a springboard for further advancements.

Thank you very much for bearing with me.

Hideaki Kumano
Director General

Machinery and Information Industries Bureau
Ministry of International Trade and Industry (MITI)

ix

PREFACE

Ten years have passed since the FGCS project was launched
with the support of the Japanese government. As soon as the FGCS
project was announced it had a profound effect not only on com
puter scientists but also on the computer industry. Many countries
recognized the importance of the FGCS project and some of them
began their own similar national projects.

The FGCS project was initially planned as a ten-year project
and this final fourth FGCS conference, therefore, has a historical
meaning. For this reason the conference includes an ICOT session.
The first volume contains a plenary session and the ICOT session.
The plenary session is composed of many reports on the FGCS
project with three invited lectures and a panel discussion.

In the ICOT session, the logic-based approach and parallel
processing will be emphasized through concrete discussions. In
addition to these, many demonstration programs have been prepared
by ICOT at the conference site, the participants are invited to visit
and discuss these exhibitions. Through the ICOT session and the
exhibitions, the participants will understand clearly the aim and
results of the FGCS project and receive a solid image of FGCS.

The second volume is devoted to the technical session which
consists of three invited papers and technical papers submitted to this
conference. Due to the time and space limitation of the conference,
only 82 papers out of 256 submissions were selected by the program
committee after careful and long discussion of many of the high
quality papers submitted.

It is our hope that the conference program will prove to be both
worthwhile and enjoyable. As a program chairperson, it is my great
pleasure to acknowledge the support of a number of people. First of
all, I would like to give my sincere thanks to the program committee
members who put a lot of effort into making the program attractive.
lowe much to the three program vice-chairpersons, Professor
Makoto Amamiya, Dr. Shigeki Goto and Professor Fumio Mizogu
chi. Many ICOT members, including Dr. Kazunori Ueda, Ken
Satoh, Keiji Hirata, and Hideki Yasukawa have worked as key
persons to organize the program. Dr. Koichi Furukawa, in particu
lar, has played an indispensable role in overcoming many problems.
I would also like to thank the many referees from many countries
who replied quickly to the referees sheets.

Finally, I would like to thank the secretariat at ICOT, they
made fantastic efforts to carry out the administrative tasks efficiently.

Hozumi Tanaka
Program Chairperson

xi

CONFERENCE COMMITTEES

Steering Committee
Chairperson: Kazuhiro Fuchi
Members: Hideo Aiso

Setsuo Arikawa
Ken Hirose
Takayasu Ito
Hiroshi Kashiwagi
Hajime Karatsu
Makoto Nagao
Hiroki Nobukuni
Iwao Toda
Eiiti Wada

Conference Committee
Chairperson:
Vice-Chairperson:
Members:

Hidehiko Tanaka
Koichi Furukawa
Makoto Amamiya
Yuichiro Anzai
Shigeki Goto
Mitsuru Ishizuka
Kiyonori Konishi
Takashi Kurozumi
Fumio Mizoguchi
Kunio Murakami
Sukeyoshi Sakai
Masakazu Soga
Hozumi Tanaka
Shunichi Uchida
Kinko Yamamoto
Toshio Yokoi
Akinori Yonezawa
Toshitsugu Yuba

Program Committee
Chairperson: Hozumi Tanaka
Vice-Chairpersons: Makoto Amamiya

Shigeki Goto
Fumio Mizoguchi

Members: Koichi Furukawa
Kazunori Ueda
Ken Satoh
Keiji Hirata
Hideki Yasukawa
Hitoshi Aida
Yuichiro Anzai
Arvind
Ronald J. Brachman
John Conery
Doug DeGroot

Koichi Fukunaga
Jean-Luc Gaudiot
Atsuhiro Goto
Satoshi Goto
Seif Haridi
Ken'ichi Hagihara

ICOT
Keio Univ.
Kyushu Univ.
Waseda Univ.
Tohoku Univ.
ETL
Tokai Univ.
Kyoto Univ.
NTT Data
NTT
Univ. of Tokyo

Univ. of Tokyo _
ICOT
Kyushu Univ.
Keio Univ.
NTT
Univ. of Tokyo
NTT Data
ICOT
Science Univ. of Tokyo
Kanagawa Univ.
ICOT(Chairperson, Management Committee)
ICOT(Chairperson, Technology Committee)
Tokyo Institute of Technology
ICOT
JIPDEC
EDR
Univ. of Tokyo
ETL

Tokyo Institute of Technology
Kyushu Univ.
NTT
Science Univ. of Tokyo
ICOT
ICOT
ICOT
ICOT
ICOT
Univ. of Tokyo
Keio Univ.
MIT
AT&T
Univ. of Oregon
Texas Instruments

IBM Japan, Ltd.
Univ. of Southern California
NTT
NEC Corp.
SICS
Osaka Univ.

xiii

XlV

Makoto Haraguchi
Ryuzo Hasegawa
Hiromu Hayashi
Nobuyuki Ichiyoshi
Mitsuru Ishizuka
Tadashi Kanamori
Yukio Kaneda
Hirofumi Katsuno
Masaru Kitsuregawa
Shigenobu Kobayashi
Philip D. Laird
Catherine Lassez
Giorgio Levi
John W. Lloyd
Yuji Matsumoto
Dale Miller
Kuniaki Mukai
Hiroshi Motoda
Katsuto Nakajima
Ryohei Nakano
Kenji Nishida
Shojiro Nishio

. Stanley Peters
Ant6nio Porto
Teodor C. Przymusinski
Vijay Saraswat
Taisuke Sato
Masahiko Sato
Heinz Schweppe
Ehud Shapiro
Etsuya Shibayama
Kiyoshi Shibayama
Yoav Shoham
Leon Sterling
Mark E. Stickel
MamoruSugie
Akikazu Takeuchi
Kazuo Taki
Jiro Tanaka
Yuzuru Tanaka
Philip Treleaven
Sxun Tutiya
Shalom Tsur
D.H.D. Warren
Takahira Yamaguchi
Kazumasa Yokota
Minoru Yokota

Publicity Committee
Chairperson: Kinko Yamamoto
Vice-Chairperson: Kunio Murakami
Members: Akira Aiba

Yuichi Tanaka

Demonstration Committee

Tokyo Institute of Technology
ICOT
Fujitsu Laboratories
ICOT
Univ. of Tokyo
Mitsubishi Electric Corp.
Kobe Univ.
NTT
Univ. of Tokyo
Tokyo Institute of Technology
NASA
IBM T.J. Watson
Univ. di Pisa
Univ. of Bristol
Kyoto Univ.
Univ. of Pennsylvania
Keio Univ.
Hitachi Ltd.
Mitsubishi Electric Corp.
NTT
ETL
Osaka Univ .
CSLI, Stanford Univ.
Univ. Nova de Lisboa
Univ. of California at Riverside
Xerox PARC
ETL
Tohoku Univ.
Institut fOr Informatik
The Weizmann Institute of Science
Ryukoku Univ.
Kyoto Univ.
Stanford Univ.
Case Western Reserve Univ.
SRI International
Hitachi Ltd.
Sony CSL
ICOT
Fujitsu Laboratories
Hokkaido Univ.
University College, London
Chiba Univ.
MCC
Univ. of Bristol
Shizuoka Univ.
ICOT
NEC Corp.

JIPDEC
Kanagawa Univ.
ICOT
ICOT

Chairperson: Takashi Kurozumi ICOT
Vice-Chairperson: Shunichi Uchida ICOT

Abadi, Martin
A bramson, Harvey
Agha, Gul A.
Aiba, Akira
Aida, Hitoshi
Akama, Kiyoshi
Ali, Khayri A. M.
Alkalaj, Leon
Amamiya, Makoto
Amano, Hideharu
Amano, Shinya
America, Pierre
Anzai, Yuichiro
Aoyagi, Tatsuya
Apt, Krzysztof R.
Arikawa, Masatoshi
Arikawa, Setsuo
Arima, Jun
Arvind
Baba, Takanobu
Babaguchi, Noboru
Babb, Robert G., II
Bancilhon, Fran<;ois
Bansal, Arvind K.
Barklund, Jonas
Beaumont, Tony
Beeri, Catriel
Beldiceanu, Nicolas
Benhamou, Frederic R.
Bibel, Wolfgang
Bic, Lubomir
Biswas, Prasenjit
Blair, Howard A.
Boku, Taisuke
Bonnier, Staffan
Boose, John
Borning, Alan H.
Boutilier, Craig E.
Bowen, David
Brachman, Ronald J.
Bradfield, J. C.
Bratko, Ivan
Brazdil, Pavel
Briot, Jean-Pierre
Brogi, Antonio
Bruynooghe, Maurice

LIST OF REFEREES

Bry, Fran<;ois
Bubst, S. A.
Buntine, Wray L.
Carlsson, Mats
Chikayama, Takashi
Chong, Chin N yak
Chu, Lon-Chan
Ciepielewski, Andrzej
Clancey, William J.
Clark, Keith L.
Codish, Michael
Codognet, Christian
Conery, John
Consens, Mariano P.
Crawford, James M., Jr.
Culler, David E.
Dahl, Veronica
Davison, Andrew
de Bakker, Jaco W.
de Maindreville, Christophe
Debray, Saumya K.
Deen, S. M.
DeGroot, Doug
del Cerro, Luis Farinas
Demolombe, Robert
Denecker, Marc
Deransart, Pierre
Dincbas, Mehmet
Drabent, Wlodzimierz
Duncan, Timothy Jon
Dutra, Ines
Fahlman, Scott E.
Falaschi, Moreno
Faudemay, Pascal
Feigenbaum, Edward
Fitting, Melvin C.
Forbus, Kenneth D.
Fribourg, Laurent
Fujisaki, Tetsu
Fujita, Hiroshi
Fujita, Masayuki
Fukunaga, Koichi
Furukawa, Koichi
Gabbrielli, Maurizio
Gaines, Brian R.
Gardenfors, Peter

Gaudiot, Jean-Luc
Gazdar, Gerald
Gelfond, Michael
Gero, John S.
Giacobazzi, Roberto
Goebel, Randy G.
Goodwin, Scott D.
Goto, Atsuhiro
Goto, Satoshi
Goto, Shigeki
Grama, Ananth
Gregory, Steve
Gunji, Takao
Gupta, Anoop
Hagihara, Kenichi
Hagiya, Masami
Han, Jiawei
Hanks, -Steve
Hara, Hirotaka
Harada, Taku
Haraguchi, Makoto
Haridi, Seif
Harland, James
Hasegawa, Ryuzo
Hasida, K6iti
Hawley, David J.
Hayamizu, Satoru
Hayashi, Hiromu
Henry, Dana S.
Henschen, Lawrence J.
Herath, J ayantha
Hewitt, Carl E.
Hidaka, Yasuo
Higashida, Masanobu
Hiraga, Yuzuru
Hirata, Keiji
Hobbs, Jerry R.
Hogger, Christopher J.
Hong, Se June
Honiden, Shinichi
Hori, Koichi
Horita, Eiichi
Hori~chi, Kenji
Hsiang, Jieh
Iannucci, Robert A.
Ichikawa, Itaru

xv

XVI

Ichiyoshi, Nobuyuki
Ida, Tetsuo
Ikeuchi, Katsushi
Inoue, Katsumi
Ishida, Toru
Ishizuka, Mitsuru
Iwasaki, Yumi
I wayama, Makoto
Jaffar, Joxan
J ayaraman, Bharat
Kahn, Gilles
Kahn, Kenneth M.
Kakas, Antonios C.
Kameyama, Y ukiyoshi
Kanade, Takeo
Kanamori, Tadashi
Kaneda, Yukio
Kaneko, Hiroshi
Kanellakis, Paris
Kaplan, Ronald M.
Kasahara, Hironori
Katagiri, Yasuhiro
Katsuno, Hirofumi
Kautz, Henry A.
Kawada, TsutonlU
Kawamura, Tadashi
Kawano, Hiroshi
Keller, Robert
Kemp, D'avid
Kifer, Michael
Kim, Chinhyun
Kim, Hiecheol
Kim, WooYoung
Kimura, Yasunori
Kinoshita, Yoshiki
Kitsuregawa, Masaru
Kiyoki, Yasushi
Kluge, Werner E.
Kobayashi, Shigenobu
Kodratoff, Yves
Kohda, Youji
Koike, Hanpei
Komorowski, Jan
Konagaya, Akihiko
Kono, Shinji
Konolige, Kurt
Korsloot, Mark
Koseki, Yoshiyuki
Kraus, Sarit
Kumar, Vipin

K unen, Kenneth
Kunifuji, Susumu
Kurita, Shohei
K urokawa, Toshiaki
Kusalik, Anthony J.
Laird, Philip D.
Lassez, Catherine
Leblanc, Tom
Lescanne, Pierre
Leung, Ho-Fung
Levesque, Hector J.
Levi, Giorgio
Levy, J ean-J acques
Lieberman, Henry A.
Lindstrom, Gary
Lloyd, John W.
Lusk, Ewing L.
Lytinen, Steven L.
Maher, Michael J.
Makinouchi, Akifumi
Manthey, Rainer
Marek, Victor
Marriott, Kim
Martelli, Maurizio
Maruoka, Akira
Maruyama, Fumihiro
Maruyama, Tsutomu
Masunaga, Yoshifumi
Matsubara, Hitoshi
Matsuda, Hideo
Matsumoto, Yuji
Matsuoka, Satoshi
McCune, William, W.
Memmi, Daniel
Mendelzon, Alberto O.
Menju, Satoshi
Meseguer, Jose
Michalski, Richard S.
Michie, Donald
Miller, Dale A.
Millroth, Hakan
Minami, Toshiro
Minker, Jack
Miyake, Nobuhisa
1Iliyano, Satoru
Miyazaki, Nobuyoshi
Miyazaki, Toshihiko
Mizoguchi, Fumio
Mizoguchi, Riichiro
Mori, Tatsunori

Morishita, Shinichi
Morita, Yukihiro
Motoda, Hiroshi
Mowtesi, Dawilo
Mukai, K uniaki
Mukouchi, Yasuhito
Murakami, Kazuaki
Murakami, Masaki
M uraki, Kazunori
Muraoka, Yoichi
N adathur, Gopalan
Naganuma, Jiro
N agashima, Shigeo
Nakagawa, Hiroshi
Nakagawa, Takayuki
Nakajima, Katsuto
Nakamura, J unichi
Nakano, Miyuki
Nakano, Ryohei
Nakashima, Hideyuki
Nakashima, Hiroshi
Nakata, Toshiyuki
N akayatna, Masaya
N aqvi, Shamim A.
N atarajan, Venkat
Nikhil, Rishiyur, S.
Nilsson, J 0rgen Fischer
Nilsson, Martin
Nishida, Kenji
Nishida, Toyoaki
Nishikawa, Hiroaki
Nishio, Shojiro
Nitta, Izumi
Nitta, Katsumi
N oye, Jacques
N umao, Masayuki
N umaoka, Chisato
o 'Rorke, Paul V.
Ogura, Takeshi
o hki, Masaru
Ohmori, I{enji
Ohori, Atsushi
Ohsuga, Akihiko
Ohsuga, Setsuo
Ohwada, Hayato
Oka, Natsuki
Okumura, Manabu
Ono, Hiroakira
Ono, Satoshi
Overbeek, Ross A.

Oyanagi, Shigeru
Palamidessi, Catuscia
Panangaden, Prakash
Pearl, Judea
Pereira, Fernando C.
Pereira, LUIs MonIz
Petrie, Charles J.
Plaisted, David A.
Plumer, Lutz
Poole, David
Popowich, Fred P.
Porto, Antonio
Przymusinski, Teodor C.
Raina, Sanjay
Ramamohanarao, Kotagiri
Rao, Anand S.
Reddy, U day S.
Ringwood, Graem A.
Robinson, John Alan
Rojas, Raul
Rokusawa, Kazuaki
Rossi, Francesca
Rossi, Gianfranco
Russell, Stuart J.
Sadri, Fariba
Saint-Dizier, Patrick
Sakai, Hiroshi
Sakai, Ko
Sakai, Shuichi
Sakakibara, Yasubumi
Sakama, Chiaki
Sakurai, Akito
Sakurai, Takafumi
Sangiorgi, Davide
Santos Costa, Vltor
Saraswat, Vijay A.
Sargeant, John
Sato, Masahiko
Sato, Taisuke
Sato, Yosuke
Satoh, Ken
Schweppe, Heinz
Seki, Hirohisa
Seligman, Jerry M.
Sergot, Marek J.
Sestito, Sabrina
Shanahan, Murray
Shapiro, Ehud
Shibayama, Etsuya
Shibayama, Kiyoshi

Shibayama, Shigeki
Shimada, Kentaro
Shin, Dongwook
Shinohara, Takeshi
Shintani, Toramatsu
Shoham, Yoav
Simonis, Helmut
Sirai, Hidetosi
Smith, Jan Magnus
Smolka, Gert
Sterling, Leon S.
Stickel, Mark E.
Stolfo, Salvatore. J.
S ubrahmani an , V. S.
Sugano, Hiroyasu
Sugie, Mamoru
Sugiyama, Masahide
Sundararajan, Renga
Suwa, Masaki
Suzuki, Hiroyuki
Suzuki, Norihisa
Takagi, Toshihisa
Takahashi, Mitsuo
Takahashi, N aohisa
Takahashi, Y oshizo
Takayama, Yukihide
Takeda, Masayuki
Takeuchi, Akikazu
Takeuchi, Ikuo
Taki, Kazuo
Tarnai, Tetsuo
Tamura, N aoyuki
Tanaka, Hozumi
Tanaka, J iro
Tanaka, Katsumi
Tanaka, Yuzuru
Taniguchi, Rin-ichiro
Tatemura, Jun'ichi
Tatsuta, Makoto
Terano, Takao
Tick, Evan M.
Toda, Mitsuhiko
Togashi, Atsushi
Tojo, Satoshi
Tokunaga, Takenobu
Tomabechi, Hideto
Tomita, Shinji
Tomiyama, J;'etsuo
Touretzky, David S.
Toyama, Yoshihi to

Tsuda, Hiroshi
Tsur, Shalom
Tutiya, Syun
U chihira, N aoshi
U eda, Kazunori
Uehara, K uniaki
Ueno, Haruki

XVII

van de Riet, Reinder P.
van Emden, Maarten H.
Van Hentenryck, Pascal
Van Roy, Peter L.
Vanneschi, Marco
Wada, Koichi
Wah, Benjamin W.
Walinsky, Clifford
Walker, David
Waltz, David L.
Warren, David H. D.
Warren, David Scott
Watanabe, Takao
Watanabe, Takuo
Watanabe, Toshinori
",\iVatson, Ian
Watson, Paul
Weyhrauch, Richard W.
Wilk, Pau~ F.
Wolper, Pierre
Yamaguchi, Takahira
Yamamoto, Akihiro
Yamanaka, Kenjiroh
Yang, Rong
Yap, Roland
Yardeni, Eyal
Yasukawa, Hideki
Yokoo, Nlakoto
Yokota, Raruo
Yokota, Kazumasa
Yokota, Minoru
Yokoyama, Shoichi
Yonezaki, N aoki
Yonezawa, Akinori
Yoo, Namhoon
Yoon, Dae-Kyun
Yoshida, Hiroyuki
Yoshida, Kaoru
Yoshid~, Kenichi
Yoshida, N orihiko
Yoshikawa, Masatoshi
Zerubia, Josiane B.

XIX

CONTENTS OF VOLUME 1

PLENARY SESSIONS

Keynote Speech
Launching the New Era

Kazumro Fuchi 3

General Report on ICOT Research and Developnlent
Overview of the Ten Years of the FGCS Project

Takashi K urozurru
Summary of Basic Resear:ch Activities of the FGCS Project

Koichi Furukawa .
Summary of the Parallel Inference Machine and its Basic Software

Sh uni chi Uchida .

Report on ICOT Research Results
Parallel Inference Machine PIM

Kazuo Taki
Operating System PIMOS and Kernel Language KL1

Takashi Chikayama
Towards an Integrated Knowledge-Base Management System: Overview of R&D on
Databases and Knowledge-Bases in the FGCS Project

Kazumasa Yokota and Hideki Yasukawa .
Constraint Logic Programming System: CAL, GDCC and Their Constraint Solvers

Akira Aibaand Ryuzo Hasegawa
Parallel Theorem Provers and Their Applications

Ryuzo Hasegawa and Masayuki Fujita
Natural Language Processing Software

Yuichi Tanaka
Experimental Parallel Inference Software

Katsumi Nitta, Kazuo Taki and Nobuyuki Ichiyoshi

Invited Lect ures
Formalism vs. Conceptualism: Interfaces between Classical Software Development Techniques
and Knowledge Engineering

Dines Bj¢rner
The Role of Logic in Computer Science and Artificial Intelligence

J. A. Robinson . . .
Programs are Predicates

C. A. R. Hoare . ..

Panel Discussion! A Springboard for Information Processing in the 21st Century
PANEL: A Springboard for Information Processing in the 21st Century

Robert A. Kowalski (Chairman)
Finding the Best Route for Logic Programming

Herve Ga1laire
The Role of Logic Programming in the 21st Century

Ross Overbeek
Object-Based Versus Logic Programming

Peter Wegner ..
Concurrent Logic Programming as a Basis for Large-Scale Knowledge Information Processing

Koichi Furukawa

.. 9

.20

.33

.50

.73

.89

113

132

155

166

191

199

211

219

220

223

225

230

xx

Knowledge Information Processing in the 21st Century
Shunichi Uchida " ... 232

IeOT SESSIONS

"Parallel VLSI-CAD and KBM Systems
LSI-CAD Programs on Parallel Inference Machine

Hiroshi Date, Yukinori Matsumoto, Kouichi Kimura, Kazuo Taki, Hiroo Kato and
Masahiro Hoshi

Parallel Database Management System: Kappa-P
Moto Kawamura, Hiroyuki Sato, Kazutomo Naganuma and Kazumasa Yokota

Objects, Properties, and Modules in QUIXOTE:

Hideki Yasukawa, Hiroshi Tsuda and Kazumasa Yokota

Parallel Operating System, PIM OS
Resource Management Mechanism of PIMOS

Hiroshi Yashiro, Tetsuro Fujise, Takashi Chikayama, Masahiro Matsuo, Atsushi Hori

237

248

257

and K umiko vVada 269
The Design of the PIMOS File System

Fumihide Itoh, Takashi Chikayama, Takeshi Mori, Masaki Sat 0, Tatsuo Kato and
Tadashi Sato 278

ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems
Seiichi Aikawa, Mayumi Kamiko, Hideyuki Kubo, Fumiko Matsuzawa and
Takashi Chikayama . 286

Genetic Information Processing
Protein Sequence Analysis by Parallel Inference Machine

Masato Ishikawa, Masaki Hoshida, Makoto Hirosawa, Tomoyuki Toya, Kentaro Onizuka
and Katsumi Nitta ... 294

Folding Simulation using Temperature Parallel Simulated Annealing
Makoto Hirosawa, Richard J. Feldmann, David Rawn, Masato Ishikawa, Masaki Hoshida
and George Michaels ". 300

Toward a Human Genome Encyclopedia
Kaoru Yoshida, Cassandra Smith, Toni Kazic, George Michaels, Ron Taylor,
David Zawada, Ray Hagstrom and Ross Overbeek . 307

Integrated System for Protein Information Processing
Hidetoshi Tanaka".. 321

Constraint Logic Progralnming and Parallel Theorenl. Proving
Parallel Constraint Logic Programming Language GDCC and its Parallel Constraint Solvers

Satoshi Terasaki, David J. Hawley, Hiroyuki Sawada, Ken Satoh, Satoshi Menju,
Taro Kawagishi, Noboru Iwayama and Akira Aiba . 330

cu-Prolog for Constraint-Based Grammar
Hiroshi Tsuda .. 347

Model Generation Theorem Provers on a Parallel Inference Machine
Masayuki Fujita, Ryuzo Hasegawa, Miyuki Koshimura and Hiroshi Fujita

Natural Language Processing
On a Grammar Formalism, Knowledge Bases and Tools for Natural Language Processing in
Logic Programming

357

Hiroshi Sana and Fumiyo Fukumoto 376

xxi

Argument Text Generation System (Dulcinea)
Teruo Ikeda, Akira Kotani, Kaoru Hagiwara and Yukihiro Kubo 385

Situated Inference of Temporal Information
Satoshi Tojo and Hideki Yasukawa 395

A Parallel Cooperation Model for Natural Language Processing
Shigeichiro Yamasaki, Michiko Turuta, Ikuko Nagasawa and Kenji Sugiyama 405

Parallel Inference Machine (PIM)
Architecture and Implementation of PIM/p

Kouichi Kumon, Akira Asato, Susumu Arai, Tsuyoshi Shinogi, Akira Hattori,
Hiroyoshi Hatazawa and Kiyoshi Hirano . 414

Architecture and Implementation of PIM/m
Hiroshi Nakashima, Katsuto Nakajima, Seiichi Kondo, Yasutaka Takeda, Yu Inamura,
Satoshi Onishi and Kanae Masuda 425

Parallel and Distributed Implementation of Concurrent Logic Programming Language KLl
Keiji Hirata, Reki Yamamoto, Akira Imai, Hideo Kawai, Kiyoshi Hirano,
Tsuneyoshi Takagi, Kazuo Taki, Akihiko Nakase and Kazuaki Rokusawa 436

A uthor Index . i

xxiii

CONTENTS OF VOLUME 2

FOUNDATIONS

Reasoning about ProgralTIS
Logic Program Synthesis from First Order Logic Specifications

Tadashi Kawamura 463
Sound and Complete Partial Deduction with Unfolding Based on Well-Founded Measures

Bern Martens, Danny De Schreye and Maurice Bruynooghe 473
A Framework for Analyzing the Termination of Definite Logic Programs with respect to Call
Patterns

Danny De Schreye, Kristof Verschaetse and Maurice Bruynooghe 481
Automatic Verification of GHC-Programs: Termination

Lutz Pliimer ... 489

Analogy
Analogical Generalization

Takenao Ohkawa, Toshiaki Mori, Noboru Babaguchi and Yoshikazu Tezuka
Logical Structure of Analogy: Preliminary Report

Jun Arima

Abduction (1)
Consistency-Based and Abductive Diagnoses as Generalised Stable Models

." 497

.505

Chris Preist and Kave Eshghi 514
A Forward-Chaining Hypothetical Reasoner Based on Upside-Down Meta-Interpretation

Yoshihiko Ohta and Katsumi Inoue . 522
Logic Programming, Abduction and Probability

David Poole

Abduction (2)
Abduction in Logic Programming with Equality

P. T. Cox, E. Knill and T. Pietrzykowski
Hypothetico-Dedudive Reasoning

Chris Evans and Antonios C. Kakas .
Acyclic Disjunctive Logic Programs with Abductive Procedures as Proof Procedure

Phan Minh Dung

Semantics of Logic Programs
Adding Closed '\iVorld Assumptions to Well Founded Semantics

Luis Moniz Pereira, Jose J. Alferes and Joaquim N. Aparicio
Contributions to the Semantics of Open Logic Programs

A. Bossi, M. Gabbrielli, G. Levi and M. C. Meo
A Generalized Semantics for Constraint Logic Programs

Roberto Giacobazzi, Saumya K. Debray and Giorgio Levi
Extended Well-Founded Semantics for Paraconsistent Logic Programs

Chiaki Sakama .

Invited Paper
Formalizing Database Evolution in the Situation Calculus

530

539

546

.. 555

562

570

581

. 592

Raymond Reiter ... 600

xxiv

Machine Learning
Learning Missing Clauses by Inverse Resolution

Peter Idestam-Almquist .. 610
A Machine Discovery from Amino Acid Sequences by Decision Trees over Regular Patterns

Setsuo Arikawa, Satoru Kuhara, Satoru Miyano, Yasuhito Mukouchi, Ayumi Shinohara
and Takeshi Shinohara . " 618

Efficient Induction of Version Spaces through Constrained Language Shift
Claudio Carpineto . 626

Theorem Proving
Theorem Proving Engine and Strategy Description Language

Massimo Bruschi .. 634
ANew Algorithm for Subsumption Test

Byeong Man Kim, Sang Ho Lee, Seung Ryoul Maeng and Jung Wan Cho 643
On the Duality of Abduction and Model Generation

Marc Denecker and Danny De Schreye . 650

Functional Programming and Constructive Logic
Defining Concurrent Processes Constructively

Yukihide Takayama .. '. 658
Realizability Interpretation of Coinductive Definitions and Program Synthesis with Streams

Makoto Tatsuta .. 666
MLOG: A Strongly Typed Confluent Functional Language with Logical Variables

Vincent Poirriez ... 674
ANew Perspective on Integrating Functional and Logic Languages

John Darlington, Yi-ke Guo and Helen Pull ' 682

Telnporal Reasoning
A Mechanism for Reasoning about Time and Belief

Hideki Isozaki and Yoav Shoham
Dealing with Time Granularity in the Event Calculus

Angelo Montanari, Enrico Maim, Emanuele Ciapessoni and Elena Ratto

ARCHITECTURES & SOFTWARE

Hardware Architecture and Evaluation
UNIRED II: The High PerforII?-ance Inference Processor for the Parallel Inference Machine
PIE64

694

702

Kentaro Shimada, Hanpei Koike and Hidehiko Tanaka 715
Hardware Implementation of Dynamic Load Balancing in the Parallel Inference Machine
PIM/c

T. Nakagawa, N. Ido, T. Tarui, M. Asaie and M. Sugie 723
Evaluation of the EM-4 Highly Parallel Computer using a Game Tree Searching Problem

Yuetsu Kodama, Shuichi Sakai and Yoshinori Yamaguchi 731
OR-Parallel Speedups in a Knowledge Based System: on Muse and Aurora

Khayri A. M. Ali and Roland Karlsson . 739

Invited Paper
A Universal Parallel Computer Architecture

William J. Dally . .. 746

xxv

AND-Parallelisrn. and OR-Parallelism
An Automatic Translation Scheme from Prolog to the Andorra Kernel Language

Francisco Bueno and Manuel Hermenegildo 759
Recomputation based Implementations of And-Or Parallel Prolog

Gopal Gupta and Manuel V. Hermenegildo 770
Estimating the Inherent Parallelism in Prolog Programs

David C. Sebr and Laxmikant V. Kale 783

Implementation Techniques
Implementing Streams on Parallel Machines with Distributed Memory

Koicbi Konisbi, Tsutomu Maruyama, Akibiko Konagaya, Kaoru Yosbida and
Takasbi Cbikayama .. .

Message-Oriented Parallel Implementation of Moded Flat GHC
Kazunori Ueda and Masao Morita

Towards an Efficient Compile-Time Granularity Analysis Algorithm
X. Zbong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry and R. Sundararajan

Providing Iteration and Concurrency in Logic Programs through Bounded Quantifications
Jonas Barklund and Hakan Millrotb

Extension of Logic Programming
An Implementation for a Higher Level Logic Programming Language

Antbony S. K. Cbeng and Ross A. Paterson
Implementing Prolog Extensions: a Parallel Inference Machine

Jean-Marc Alliot, Andreas Herzig and Mamede Lima-Marques
Parallel Constraint Solving in Andorra-I

Steve Gregory and Rong Yang
A Parallel Execution of Functional Logic Language with Lazy Evaluation

Jong H. Nang, D. W. Sbin, S. R. Maeng and Jung W. Cbo

Task Scheduling and Load Analysis
Self-Organizing Task Scheduling for Parallel Execution of Logic Programs

Zbeng Lin
Asymptotic Load Balance of Distributed Hash Tables

Nobuyuki Icbiyosbi and Kouicbi Kimura

Concurrency
Constructing and Collapsing a Reflective Tower in Reflective Guarded Horn Clauses

Jiro Tanaka and Fumio Matono
CHARM: Concurrency and Hiding in an Abstract Rewriting Machine

Andrea Corradini, U go Montanari and Francesca Rossi
Less Abstract Semantics for Abstract Interpretation of FGHC Programs

Kenji Horiucbi

Databases and Distributed SystelTIS
Parallel Optimization and Execution of Large Join Queries

791

799

809

817

825

833

843

851

859

869

877

887

897

Eileen Tien Lin, Edward Omiecinski and Sudbakar Yalamancbili907
Towards an Efficient Evaluation of Recursive Aggregates in Deductive Databases

Alexandre Lefebvre 915
A Distributed Programming Environment based on Logic Tuple Spaces

Paolo Ciancarini and David Gelernter 926

XXVI

Programming EnvirOlU11.ent
Visualizing Parallel Logic Programs with VISTA

E. Tick
Concurrent Constraint Programs to Parse and Animate Pictures of Concurrent Constraint
Programs

... 934

Kenneth M. Kahn . 943
Logic Programs with Inheritance

Yaron Goldberg, William Silverman and Ehud Shapiro 951
Implementing a Process Oriented Debugger with Reflection and Program Transformation

Munenori Maeda .. 961

Prod uction Systel11.S
ANew Parallelization Method for Production Systems

E. Bahr, F. Barachini and H. Mistelberger . 969
Performance Evaluation of the Multiple Root Node Approach to the Rete Pattern Matcher
for Production Systems

Andrew Sohn and Jean-Luc Gaudiot 977

APPLICATIONS & SOCIAL IMPACTS

Constraint Logic Programn1.ing
Output in CLP(R)

Joxan Jaffar, Michael J. Maher, Peter J. Stuckey and Roland H. C. Yap
Adapting CLP(R) to Floating-Point Arithmetic

J. H. M. Lee and M. H. van Emden ..
Domain Independent Propagation

Thierry Le Provost and Mark Wallace
A Feature-Based Constraint System for Logic Programming with Entailment

Hassan Ai't-Kaci, Andreas Podelski and Gert Smolka

Qualitative Reasoning
Range Determination of Design Parameters by Qualitative Reasoning and its Application to
Electronic Circuits

.987

.996

1004

1012

Masaru Ohki, Eiji Oohira, Hiroshi Shinjo and Masahiro Abe 1022
Logical Implementation of Dynamical Models

Yoshiteru Ishida . 1030

Knowledge Representation
The CLASSIC Knowledge Representation System or, KL-ONE: The Next Generation

Ronald J. Brachman, Alexander Borgida, Deborah L. McGuinness, Peter F. Patel-
Schneider and Lori Alperin Resnick . 1036

Morphe: A Constraint-Based Object-Oriented Language Supporting Situated Knowledge
Shigeru Watari, Y,asuaki Honda and Mario Tokoro 1044

On the Evolution of Objects in a Logic Programming Framework
F. Nihan Kesim and Marek Sergot 1052

Panel Discussion: Future Direction of Next Generation Applications
The Panel on a Future Direction of New Generation Applications

Fumio Mizoguchi ... 1061
Knowledge Representation Theory Meets Reality: Some Brief Lessons from the CLASSIC
Experience

Ronald J. Brachman ... 1063

Reasoning with Constraints
Catherine Lassez

Developments in Inductive Logic Programming
Stephen A1 uggleton

Towards the General-Purpose Parallel Processing System
Kazuo Taki ..

Knowledge-Based SystelTIS
A Hybrid Reasoning System for Explaining Mistakes in Chinese Writing

XXVll

1066

1071

1074

Jacqueline Castaing .. 1076
Automatic Generation of a Domain Specific Inference Program for Building a Knowledge
Processing System

Takayasu I{asahara, Naoyuki Yamada, Yasuhiro Kobayashi, Katsuyuki Yoshino and
Kikuo Yoshimura .. 1084

Knowledge-Based Functional Testing for Large Software Systems
Uwe Nonnenmann and John K. Eddy 1091

A Diagnostic and Control Expert System Based on a Plant Model
Junzo Suzuki, Chiho Konuma, Mikito Iwamasa, Naomichi Sueda, Shigeru Mochiji and
Akimoto Kamiya ... 1099

Legal Reasoning
A Semiformal Metatheory for Fragmentary and Multilayered Knowledge as an Interactive
Metalogic Program

Andreas Hamfelt and Ake Hansson 1107
HELIC-II: A Legal Reasoning System on the Parallel Inference Machine

Katsumi Nitta, Yoshihisa Ohtake, Shigeru Maeda, Masayuki Ono, Hiroshi Ohsaki and
Kiyokazu Sakane ... 1115

Natural Language Processing
Chart Parsers as Proof Procedures for Fixed-Mode Logic Programs

David A. Rosenblueth
A Discourse Structure Analyzer for Japanese Text

I{. Sumita, K. Ono, T. Chino, T. Ukita and S. Amano
Dynamics of Symbol Systems: An Integrated Architecture of Cognition

Koiti Hasida

Knowledge Support Systems
Mental Ergonomics as Basis for New-Generation Computer Systems

M. H. van Emden ..
An Integrated Knowledge Support System

B. R. Gaines, M. Linster and M. L. G. Shaw
Modeling the Generational Infrastructure of Information Technology

B. R. Gaines

Parallel Applications
Co-HLEX: Co-operative Recursive LSI Layout Problem Solver on Japan's Fifth Generation
Parallel Inference Machine

Toshinori Watanabe and Keiko Komatsu
A Cooperative Logic Design Expert System on a Multiprocessor

Yoriko Minoda, Shuho Sawada, Yuka Takizawa, Fumihiro
Nobuaki I{awato

A Parallel Inductive Learning Algorithm for Adaptive Diagnosis
Yoichiro N akakulci, Yoshiyuki Koseki and Midori Tanaka

Maruyama and

1125

1133

1141

1149

1157

1165

.. 1173

1181

1190

xxviii

Parallel Logic Simulator based on Time Warp and its Evaluation
Yukinori lVlatsumoto and Kazuo Taki . 1198

Invited Paper
Applications of Machine Learning: Towards Knowledge Synthesis

Ivan Bratko 1207

A uthor Index . . . i

PLENARY SESSIONS

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 3

Launching the New Era

Kazuhiro Fuchi

Director, Research Center
Institute for New Generation Computer Technology (ICOT)

4-28, Iv1ita l-chome, Minato-ku, Tokyo 108, Japan

Thank you for coming to FGCS'92. As you know, we
have been conducting a ten-year research project on fifth
generation computer systems. Today is the tenth an
niversary of the founding of our research center, making
it exactly ten years since our project actually started.

The first objective of this international conference is to
show what we have accomplished in our research during
these ten years.

Another objective of this conference is to offer an op
portunity for researchers to present the results of ad
vanced research related to Fifth Generation Computer
Systems and to exchange ideas. A variety of innovative
studies, in addition to our own, are in progress in many
parts of the world, addressing the future of computers
and information processing technologies.

I constantly use the phrase "Parallel Inference" as the
keywords to simply and precisely describe the technolog
ical goal of this project. Our hypothesis is that parallel
inference technology will provide the core for those new
technologies in the future-technologies that will be able
to go beyond the framework of conventional computer
technologies.

During these ten years I have tried to explain this idea
whenever I have had the chance. One obvious reason why
I have repeated the same thing so many times is that
I wish its importance to be recognized by the public.
However, I have another, less obvious, reason.

When this project started, an exaggerated image of
the project was engendered, which seems to persist even
now. For example, some people believed that we were
trying, in this project, to solve in a mere ten years some
of the most difficult problems in the field of artificial in
telligence (AI), or to create a machine translation system
equipped with the same capabilities as humans.

In those days, we had to face criticism, based upon
that false image, that it \V,1.S a reckless project trying
to tackle impossible goals. Now we see criticism, from
inside and outside the country, that the project has failed
because it has been unable to realize those grand goals.

The reason why such an image was born appears to
have something to do with FGCS'Sl-a conference we
held one year before the project began. At that confer-

ence we discussed many different dreams and concepts.
The substance of those discussions was reported as sen
sational news all over the world.

A vision with such ambitious goals, however, can never
be materialized as a real project in its original form.
Even if a project is started in accordance with the origi
nal form, it cannot be managed and operated within the
framework of an effective research scheme. Actually, our
plans had become much more modest by the time the
project was launched.

For example, the development of application systems,
such as a machine translation system, was removed from
the list of goals. It is impossible to complete a highly
intelligent system in ten years. A preliminary stage is
required to enhance basic studies and to reform com
puter technology itself. We decided that we should focus
our efforts on these foundational tasks. Another rea
son is that, at that time in Japan, some private compa
nies had already begun to develop pragmatic, low-level
machine-translation systems independently and in com
petition with each other.

Most of the research topics related to pattern recog
nition were also eliminated, because a national project
called "Pattern Information Processing" had already
been conducted by the Ministry of International Trade
and Industry for ten years. We also found that the stage
of the research did not match our own.

We thus deliberately eliminated most research top
ics covered by Pattern Information Processing from the
scope of our FGCS project. However, those topics them
selves are very important and thus remain major topics
for research. They may become a main theme of another
national project of Japan in the future.

Does all this mean that FGCS'Sl was deceptive? I
do not think so. First, in those days, a pessimistic out
look predominated concerning the future development of
technological research. For example, there was a general
trend that research into artificial intelligence would be of
no practical use. In that sort of situation, there was con
siderable value in maintaining a positive attitude toward
the future of technological research-whether this meant
ten years or fifty. I believe that this was the very reason

4

why we received remarkable reactions, both positive and
negative, from the public.

The second reason is that the key concept of Parallel
Inference was presented in a clear-cut form at FGCS'Sl.
Let me show you a diagram (Figure 1). This diagram is
the one I used for my speech at FGCS'81, and is now a
sort of "ancient document." Its draft was completed in
1980, but I had come up with the basic idea four years
earlier. After discussing the concept with my colleagues
for four years, I finally completed this diagram.

Here, you can clearly see our concept that our goal
should be a "Parallel Inference Machine." We wanted
to create an inference machine, starting with study on
a variety of parallel architectures. For this purpose, re
search into a new language was necessary. We wanted to
develop a 5G-kernel language--what we now call KLl.
The diagram includes these hopes of ours.

The upper part of the diagram shows the research in
frastructure. A personal inference machine or worksta
tion for research purposes should be created, as well as a
chip for the machine. We expected that the chip would
be useful for our goal. The computer network should be
consolidated to support the infrastructure. The software
aspects are shown in the bottom part of the diagram.
Starting with the study on software engineering and AI,
we wanted to build a framework for high-level symbol
processing, which should be used to achieve our goal.
This is the concept I presented at the FGCS'81 confer
ence.

I would appreciate it if you would compare this di
agram with our plan and the results of the final stage
of this project, when Deputy Director Kurozumi shows
you them later. I would like you to compare the original
structure conceived 12 years ago and the present results
of the project so that you can appreciate what has been
accomplished and criticize what is lacking or what was
immature in the original idea.

Some people tend to make more of the conclusions
drawn by a committee than the concepts and beliefs of
an individual. It may sound a little bit beside point, but
I have heard that there is a proverb in the West that
goes, "The horse designed by a committee will turn out
to be a camel."

The preparatory committee for this project had a se
ries of enthusiastic discussions for three years before the
project's launching. I thought that they were doing an
exceptional job as a committee. Although the commit
tee's work was great, however, I must say that the plan
became a camel. It seems that their enthusiasm cre
ated some extra humps as well. Let me say in passing
that some people seem to adhere to those humps. I am
surprised that there is still such a so-called bureaucratic
view even among academic people and journalists.

This is not the first time I have expressed this opinion
of mine about the goal of the project. I have, at least
in Japanese, been declaring it in public for the past ten

years. I think I could have been discharged at any time
had my opinion been inappropriate.

As the person in charge of this project, I have pushed
forward with the lines of Parallel Inference based upon
my own beliefs. Although I have been criticized as still
being too ambitious, I have always been prepared to take
responsibility for that.

Since the project is a national project, it goes without
saying that it should not be controlled by one person. I
have had many discussions with a variety of people for
more than ten years. Fortunately, the idea of the project
has not remained just a personal belief but has become
a common belief shared by the many researchers and
research leaders involved in the project.

Assuming that this project has proved to be successful,
as I believe it has, this fact is probably the biggest reason
for its success. For a research project to be successful, it
needs to be favored by good external conditions. But the
most important thing is that the research group involved
has a common belief and a common will to reach its
goals. I have been very fortunate to be able to realize
and experience this over the past ten years.

So much for introductory remarks. I wish to outline, in
terms of Parallel Inference, the results of our work con
ducted over these ten years. I believe that the remarkable
feature of this project is that it focused upon one lan
guage and, based upon that language, experimented with
the development of hardware and software on a large
scale.

From the beginning, we envisaged that we would take
logic programming and give it a role as a link that con
nects highly parallel machine architecture and the prob
lems concerning applications and software. Our mission
was to find a programming language for Parallel Infer
ence.

A research group led by Deputy Director Furukawa
was responsible for this work. As a result of their ef
forts, Veda came up with a language model, GHC, at
the beginning of the intermediate stage of the project.
The two main precursors of it were Parlog and Concur
rent Prolog. He enhanced and simplified them to make
this model. Based upon GHC, Chikayama designed a
programming language called KL1.

KL1, a language derived from the logic programming
concept, provided a basis for the latter half of our
project. Thus, all of our research plans in the final stage
were integrated under a single language, KLl.

For example, we developed a hardware system, the
Multi-PSI, at the end of the intermediate stage, and
demonstrated it at FGCS'88. After the conference we
made copies and have used them as the infrastructure
for software research.

In the final stage, we made a few PIM prototypes, a
Parallel Inference Machine that has been one of our final
research goals on the hardware side. These prototypes
are being demonstrated at this conference.

5

(Year) 1 5 10

@ Network -----(optiC:5) ----

© Personal inference machine (Reducing to chips) }------------

~

v
(New software)

PROLOG machine + a

LISP)
APL
SMALL TALK
PS, etc

(comparable to large-scale)
machine currently used

~ (funct i~na 1)
log lC

programming

Intelligent programming environments

New language
,~,

" " ,~,
@

© Designing and prototype - building environments " " "
© Various machines (chip, module)

© Super machine ~ rendered intelligent

©

Parallel

Data flow machine

Associative

Databa se mach ine

Other ideas

Software --- Knowledge engineering

(Accumulation) ---------- -------- --

Software engineering (Basic theories)

Research for artificial intelligence

~G Core ~anguage

Problem solving

" " \\
,\
\\

\\

'~
(Inference

Programming

symbol manipulation

(

Planning

Theorem proving

Games

(

QA - language understanding
Knowledge base

Consultations

Fig_ Conceptional development diagram

T. Moto-oka (ed.): Fifth Generation Computer Systems (Proc. FGCS'81),
JIPDEC: North-Holland, 1982, p. 113

Each prototype has a different architecture in its in
terconnection network and so forth, and the architecture
itself is a subject of research. Viewed from the outside,
however, all of them are KL1 machines.

Division Chief Uchida and Laboratory Chief Taki will
show you details on PIM later. What I want to em
phasize here is that all of these prototypes are designed,
down to the level of internal chips, with the assumption
that KL1, a language that could be categorized as a very
high-level language, is a "machine language."

On the software side as well, our research topics were
integrated under the KL1 language. All the application
software, as well as the basic software such as operating
systems, were to be written in KL1.

We demonstrated an operating system called PIMOS
at FGCS'88, which was the first operating system soft
ware written in KL1. It was immature at that time, but
has been improved since then. The full-fledged version
of PIMOS now securely backs the demonstrations being
shown at this conference.

Details will later be given by Laboratory Chief
Chikayama, but I wish to emphasize that not only have
we succeeded in writing software as complicated and
huge as an operating system entirely in KL1, but we
have also proved through our own experience that KL1
is much more appropriate than conventional languages
for writing system software such as operating systems.

One of the major challenges in the final stage was to

6

demonstrate that KL1 is effective not only for basic soft
ware, such as operating systems and language implemen
tations, but also for a variety of applications. As Labo
ratory Chief Nitta will report later, we have been able to
demonstrate the effectiveness of KL1 for various appli
cations including LSI-CAD, genetic analysis, and legal
reasoning. These application systems address issues in
the real world and have a virtually practical scale. But,
again, what I wish to emphasize here is that the objec
tive of those developments has been to demonstrate the
effectiveness of Parallel Inference.

In fact, it was in the initial stage of our project that we
first tried the approach of developing a project around
one particular language. The technology was at the level
of sequential processing, and we adopted ESP, an ex
panded version of Prolog, as a basis.

Assuming that ESP could playa role of KLO, our ker
nel language for sequential processing, a Personal Se
quential Inference machine, called PSI, was designed as
hardware. We decided to use the PSI machine as a work
station for our research. Some 500 PSIs, including mod
ified versions, have so far been produced and used in the
project.

SIMPOS, the operating system designed for PSI, is
written solely in ESP. In those days, this was one of
the largest programs written in a logic programming lan
guage.

Up to the intermediate stage of the project, we used
PSI and SIMPOS as the infrastructure to conduct re
search on expert systems and natural language process
ing.

This kind of approach is indeed the dream of re
searchers, but some of you may be skeptical about our
approach. Our project, though conducted on a large
scale, is still considered basic research. Accordingly, it is
supposed to be conducted in a free, unrestrained atmo
sphere so as to bring about innovative results. Some of
you may wonder whether the policy of centering around
one particular language restrains the freedom and diver
sity of research.

But this policy is also based upon my, or our, philos
ophy. I believe that research is a process of "assuming
and verifying hypotheses." If this is true, the hypotheses
must be as pure and clear as possible. If not, you cannot
be sure of what you are trying to verify.

A practical system itself could include compromise or,
to put it differently, flexibility to accommodate various
needs. However, in a research project, the hypotheses
must be clear and verifiable. Compromises and the like
could be considered after basic research results have been
obtained. This has been my policy from the very begin
ning, and that is the reason why I took a rather contro
versial or provocative approach.

We had a strong belief that our hypothesis of focusing
on Parallel Inference and KL1 had sufficient scope for a
world of rich and free research. Even if the hypothesis

acted as a constraint, we believed that it would act as a
creative constraint.

I would be a liar if I was to say that there was no
resistance among our researchers when we decided upon
the above policy. KL1 and parallel processing were a
completely new world to everyone. It required a lot of
courage to plunge headlong into this new world. But
once the psychological barrier was overcome, the re
searchers set out to create new parallel programming
techniques one after another.

People may not feel like using new programming lan
guages such as KLl. Using established languages and
systems only, or a kind of conservatism, seems to be the
major trend today. In order to make a breakthrough into
the future, however, we need a challenging and adven
turing spirit. I think we have carried out our experiment
with such a spirit throughout the ten-year project.

Among the many other results we obtained in the fi
nal stage was a fast theorem-proving system, or a prover.
Details will be given in Laboratory Chief Hasegawa's re
port, but I think that this research will lead to the res
urrection of theorem-proving research.

Conventionally, research into theorem proving by com
puters has been criticized by many mathematicians who
insisted that only toy examples could be dealt with.
However, very recently, we were able to solve a problem
labelled by mathematicians as an 'open problem' using
our prover, as a result of collaborative research with Aus
tralian National University.

The applications of our prover is not limited to math
ematical theorem proving; it is also being used as the
inference engine of our legal reasoning system. Thus,
our prover is being used in the mathematics world on
one hand, and the legal world on the other.

The research on programming languages has not ended
with KLl. For example, a constraint logic programming
language called eDee has been developed as a higher
level language than KLl. We also have a language called
Quixote.

From the beginning of this project, I have advocated
the idea of integrating three types of languages-logic,
functional, and object-oriented-and of integrating the
worlds of programming and of databases. This idea has
been materialized in the Quixote language; it can be
called a deductive object-oriented database language.

Another language, CIL, was developed by Mukai in the
study of natural language processing. CIL is a semantics
representation language designed to be able to deal with
situation theory. Quixote incorporates CIL in a natural
form and therefore has the characteristics of a semantics
representation language. As a whole, it shows one possi
ble future form of knowledge representation languages.

More details on Quixote, along with the development
of a distributed parallel database management system,
Kappa-P, will be given by Laboratory Chief Yokota.

Thus far I have outlined, albeit briefly, the final results

of our ten-year project. Recalling what I envisaged ten
years ago and what I have dreamed and hoped would
materialize for 15 years, I believe that we have achieved
as much as or more than what I expected, and I am quite
satisfied.

Naturally, a national project is not performed for mere
self-satisfaction. The original goal of this project was to
create the core of next-generation computer technolo
gies. Various elemental technologies are needed for fu
ture computers and information processing. Although it
is impossible for this project alone to provide all of those
technologies, we are proud to be able to say that we have
created the core part, or at least provided an instance of
it.

The results of this project, however, cannot be com
mercialized as soon as the project is finished, which is
exactly why it was conducted as a national project. I
estimate that it takes us another five years, which could
be called a period for the "maturation of the technolo
gies", for our results to actually take root in society. I
had this prospect in mind when this project started ten
years ago, and have kept declaring it in public right up
until today. Now the project is nearing its end, but my
idea is still the same.

There is often a gap of ten or twenty years between the
basic research stage of a technology and the day it ap
pears in the business world. Good examples are UNIX,
C, and RISC, which has become popular in the current
trend toward downsizing. They appear to be up-to-date
in the business world, but research on them has been
conducted for many years. The frank opinions of the re
searchers involved will be that industry has finally caught
up with their research.

There is thus a substantial time lag between basic re
search and commercialization. Our project, from its very
outset, set an eye on technologies for the far distant fu
ture. Today, the movement toward parallel computers
is gaining momentum worldwide as a technology leading
into the future. However, skepticism was dominant ten
years ago. The situation was not very different even five
years ago. When we tried to shift our focus on parallel
processing after the initial stage of the project, there was
a strong opinion that a parallel computer was not possi
ble and that we should give it up and be happy with the
successful results obtained in the initial stage.

In spite of the skepticism about parallel computers
that still remains, the trend seems to be changing dras
tically. Thanks to consta,nt progress in semiconductor
technology, it is now becoming easier to connect five hun
dred, a thousand, or even more processor chips, as far as
hardware technology is concerned.

Currently, the parallel computers that most people are
interested in are supercomputers for scientific computa
tion. The ideas there tend to still be vague regarding the
software aspects. Nevertheless, a new age is dawning.

The software problem might not be too serious as long

7

as scientific computation deals only with simple, scaled
up matrix calculations, but it will certainly become se
rious in the future. Now suppose this problem has been
solved and we can nicely deal with all the aspects of
large-scale problems with complicated overall structures.
Then, we would have something like a general-purpose
capability that is not limited to scientific computation.
We might then be able to replace the mainframe com
puters we are using now.

The scenario mentioned above is one possibility lead
ing to a new type of mainframe computer in the future.
One could start by connecting a number of processor
chips and face enormous difficulties with parallel soft
ware.

However, he or she could alternatively start by con
sidering what technologies will be required in the future,
and I suspect that the answer should be the Parallel In
ference technology which we have been pursuing.

I am not going to press the above view upon you. How
ever, I anticipate that if anybody starts research without
knowing our ideas, or under a philosophy that he or she
believes is quite different from ours, after many twists
and turns that person will reach more or less the same
concept as ours-possibly with small differences such as
different terminology. In other words, my opinion is that
there are not so many different essential technologies.

It may be valuable for researchers to struggle through
a process of research independently from what has al
ready been done, finally to find that they have followed
the same course as somebody else. But a more efficient
approach would be to build upon what has been done in
this FGCS project and devote energy to moving forward
from that point. I believe the results of this project will
provide important insights for researchers who want to
pursue general-purpose parallel computers.

This project will be finished at the end of this year.
As for "maturation of the Parallel Inference technol
ogy", I think we will need a new form of research activ
ities. There is a concept called "distributed cooperative
computing" in the field of computation models. I ex
pect that, in a similar spirit, the seeds generated in this
project will spread both inside and outside the country
and sprout in many different parts of the world.

For this to be realized, the results of this project must
be freely accessible and available worldwide. In the soft
ware area, for example, this means that it is essential
to disclose all our accomplishments including the source
codes and to make them "international common public
assets."

MITI Minister Watanabe and the Director General of
the E1ureau announced the policy that the results of our
project could be utilized throughout the world. Enor
mous effort must have been made to formulate such a
policy. I find it very impressive.

We have tried to encourage international collabora
tion for ten years in this project. As a result, we have

8

enjoyed opportunities to exchange ideas with many re
searchers involved in advanced studies in various parts of
the world. They have given us much support and coop
eration, without which this project could not have been
completed.

In that regard, and also considering that this is a
Japanese national project that aims at making a contri
bution, though it may only be small, toward the future of
mankind, we believe that we are responsible for leaving
our research accomplishments as a legacy to future gen
erations and to the international community in a most
suitable form. This is now realized, and I believe it is an
important springboard for the future.

Although this project is about to end, the end is just
another starting point. The advancement of computers
and information processing technologies is closely related
to the future of human society. Social thought, ideolo
gies, and social systems that fail to recognize its signifi
cance will perish as we have seen in recent world history.
We must advance into a new age now. To launch a new
age, I fervently hope that the circle of those who share
our passion for a bright future will continue to expand.
Thank you.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 9

Overview of the Ten Years of the FGCS Project

Takashi Kurozumi

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Kurozumi @ icot.or.jp

Abstract
This paper introduces how the FGCS Project
started, its overall activities and the results of the
FGCS project. The FGCS Project was launched in
1982 after a three year preliminary study stage.
The basic framework of the fifth generation
computer is parallel processing and inference
processing based on logic programming. Fifth
generation computers were viewed as suitable for
the knowledge information processing needs of the
near future. ICOT was established to promote the
FGCS Project. This paper shows not only, ICOT's
efforts in promoting the FGCS project, but
relationship between ICOT and related
organizations as well. I, also, conjecture on the
parallel inference machines of the near future.

1 Preliminary Study Stage for
the FGCS Project

The circumstances prevailing during the
preliminary stage of the FGCS Project, from 1979 to
1981, can be summarized as follows.

. J apanese computer technologies had reached the
level of the most up-to-date overseas computer
technologies.

·A change of the role of the Japanese national
project for computer technologies was being
discussed whereby there would be a move away
from improvement of industrial competi ti veness by
catching up with the latest European computer
technologies and toward world-wide scientific
contribution through the risky development of
leading computer technologies.

In this situation, the Japanese Ministry of
International Trade and Industry (MIT!) started
study on a new project - the Fifth Generation
Computer Project. This term expressed MITI's will
to develop leading technologies that would progress
beyond the fourth generation computers due to

appear in the near future and which would
anticipate upcoming trends.

The Fifth Generation Computer Research
Committee and its subcommittee (Figure 1-1) were
established in 1979. It took until the end of 1981 to
decide on target technologies and a framework for
the project.

Figure 1-1 Organization of the Fifth Generation
Computer Committee

Well over one hundred meetings were held with a
similar number of committee members
participating. The following important near-future
computer technologies were discussed .

Inference computer technologies for knowledge
processing

Computer technologies to process large-scale
data bases and knowledge bases

High performance workstation technologies

Distributed functional computer technologies

Super-computer technologies for scientific
calculation

These computer technologies were investigated and
discussed from the standpoints of international
contribution by developing original Japanese
technologies, the important technologies in future,
social needs and conformance with Japanese
governmental policy for the national project.

Through these studies and discussions, the
committee decided on the objectives of the project by

10

the end of 1980, and continued future studies of
technical matters, social impact, and project
schemes.

The committee's proposals for the FGCS Project
are summarized as follows.

CD The concept of the Fifth Generation Computer:
To have parallel (non-Von Neumann)
processing and inference processing using
knowledge bases as basic mechanisms. In order
to have these mechanisms, the hardware and
software interface is to be a logic program
language (Figure 1-2) .

® The objectives of the FGCS project: To develop
these innovative computers, capable of
knowledge information processing and to
overcome the technical restrictions of
conventional computers.

OComputer for

Knowledge Information
Processing System (KIPS)

(Intelligent Assistant for
Human Activities)

OBasic Mechanisn of H/w & S/W....:;

*Logicallnference Processing

(based on Logic Programming)

*Highly Parallel Processing

Figure 1-2 Concept of the Fifth Generation
Computer

® The goals of the FGCS project: To research and
develop a set of hardware and software
technologies for FGCS, and to develop an FGCS
prototype system consisting of a thousand
element processors with inference execution
speeds of between 100M LIPS and 1G LIPS
(Logical Inferences Per Second).

® R&D period for the project: Estimated to be 10
years, divided into three stages.

3-year initial stage for R&D of basic
technologies

4-year intermediate stage for R&D of sub
systems

3-year final stage for R&D of total prototype
system

MITI decided to launch the Fifth Generation
Computer System (FGCS) project as a national
project for new information processing, and made
efforts to acquire a budget for the project.

At the same time, the international conference on
FGCS '81 was prepared and held in October 1981 to
announce these results and to hold discussions on

the topic with foreign researchers.

2 Overview of R&D Activities
and Results of the FGCS
Project

2.1 Stages and Budgeting in the FGCS
Project

The FGCS project was designed to investigate a
large number of unknown technologies that were
yet to be developed. Since this involved a number of
risky goals, the project was scheduled over a
relatively long period of ten years. This ten-year
period was divided into three stages.

- In the initial stage (fiscal 1982-1984), the
purpose of R&D was to develop the basic
computer technologies needed to achieve the
goal.

- In the intermediate stage (fiscal 1985-1988), the
purpose of R&D was to develop small to medium
subsystems.

- In the final stage (fiscal 1989-1992), the purpose
of R&D was to develop a total prototype system.
The final stage was initially planned to be three
years. After reexamination halfway through the
final stage, this stage was extended to four years
to allow evaluation and improvement of the total
system in fiscal year 1992. Consequently, the
total length of this project has been extended to
11 years.

(' .. 'i (I

trehmlnary: Initial Stage: Intermediate
: Study : 3 years:82- 84 : Stage
: Stage : (TOTAL:~8.3B): 4 years: 8S- 88

Final Stage
4 years: 89- 92

(3years total:~20.7B)
l:979-1981) .: (TOTAL: ~21.6B)

o R&D of BaSIC I 0 R&D of Experimental 0 R&D of Total 0 Total
Sth G. Computer I Small-to-Medium Scale (Prototype) Evaluation

Technology: Sub-system System
" Budaet 1982 1983 1984' 1985 1986 1987 1988' 1989 1990 1991 1992

(for each ¥400M ~2.7B ¥5.1B 1~4.7B ¥5.55B ~5.6B ¥5.7B I ¥6.5B ~7.0B ¥7.2B (¥3.6B)
fiscal SI.86M·, S12.6M S23.7M: S21.9M S34.5M', S35.0M S35.6M : S40.6M S43.7M SSI.4M"

year) fl.30M', f8.80M f'6.6M: £l5.3M £22.0M', f22.4M £22.8M : f26.0M f28.0M £lO.OM',

10- year initial plan
• R&D are carried out under the auspices of MITt.
(All budget (Total budgets:¥54,6B) are covered by MITt.)

" SI • ¥ 2'5, fl. ¥ 307 ('982-1985)
'2 S'. ¥ 160, £I- ¥ 250 ('986-'990)
'3 $1- ¥ 140, £, • ¥ 240 (,991-)

Figure 2-1 Budgets for the FGCS project

Each year the budget for the following years R&D
activities was decided. MITI made great efforts in
negotiating each year's budget with the Ministry of
Finance. The budgets for each year, which are all
covered by MITI, are shown in Figure 2-1. The total
budget for the 3-year initial stage was about 8
billion yen. For the 4-year intermediate stage, it
was about 22 billion yen. The total budget for 1989
to 1991 was around 21 billion yen. The budget for
1992 is estimated to be 3.6 billion yen.

Consequently, the total budget for the II-year
period of the project will be about 54 billion yen.

2.2 R&D subjects of each stage

At the beginning, it was considered that a detailed
R&D plan could not be decided in detail for a period
as long as ten years. The R&D goals and the means
to reach these goals were not decided in detail.
During the project, goals were sought and methods
decided by referring back to the initial plan at the
beginning of each stage.

The R&D subjects for each stage, shown in Figure
2-2, were decided by considering the framework and
conditions mentioned below.

We defined 3 groups of 9 R&D subjects at the
beginning of the initial stage by analyzing and
rearranging the 5 groups of 10 R&D subjects
proposed by the Fifth Generation Computer
Committee.

At the end of the initial stage, the basic research
themes of machine translation and speech, figure
and image processing were excluded from this
project. These were excluded because computer
vender efforts on these technologies were recognized
as having become very active.

In the middle of the intermediate stage, the task
of developing a large scale electronic dictionary was
transferred to EDR (Electronic Dictionary Research
Center), and development of CESP (Common ESP
system on UNIX) was started by AIR (AI language
Research Center).

The basic R&D framework for promoting this
project is to have common utilization of developed
software by unifying the software development
environment (especially by unifying programming
languages). By utilizing software development
systems and tools, the results of R&D can be
evaluated and improved. Of course, considering the
nature of this project, there is another reason
making it difficult or impossible to use commercial
products as a software development environment.

In each stage, the languages and the software·
development environment are unified as follows.

Initial stage: Prolog on DEC machine

Intermediate stage: ESP on PSI and SIMPOS

Final stage: KLI on Multi-PSI (or PIM) and
PIMOS (PSI machines are also used as pseudo
multi-PSI systems.) (Figure 2-6)

2.3 Overview of R&D Results of
Hardware System

Hardware system R&D was carried out by the
subjects listed listed below in each stage.

CD Initial stage

II

iscal < Initial Stage >< Intermediate Stage X Final Stage »
ear 119821 '83 I '84 19851 '861 '871 '88 19891 '90 I '911 '92

OBasic SIW System 8Basic SIW System • Expenm.entll l l'aral.lel

.5G Kernel Languages .5G Kernel Languages
Application System

.Problem Solving & .Problem Solving & .Knowledge
Inference SIWM Inference SIWM Programming S/w System

.K8 Management SIWM .K8 Management S/WM .Knowledge construction

.'ntelligent Interface .'ntelligent Interface & Utilization
SIWM(Software module) S/WM .Natural Language
.'ntelligent .'ntelli!i1ent Programming Interface

Programming S/WM .Experlmental Application .Problem Solving &
~stem for Basic SIW Programming(CLP.Prover)

OPiiot Model for .Development • Advanced Inference Method
Software Development Support System • Basic Software System
.SIM Hardware .Pilot Model for Parallel .Inference Control .SIM Software Software Development Module (PIMOS) .Network System lor

-Hardware System Development Support .K8 Management Modul

.PIM Functional .Hardware System
(KflMS: Kappa & Quixote)

Mechanism .Prototype Hardware .K8M Functional • Inference subsystem System Mechanism .k8 Subsystem

Figure 2-2 Transition of R&D subjects in each
stage

® Functional mechanism modules and
simulators for PIM (Parallel Inference
Machine) of the hardware system

® Functional mechanism modules and
simulators for KBM (Knowledge Base
Machine) of the hardware system

CD SIM (Sequential Inference Machine)
hardware of pilot model for software
development

@ Intermediate Stage

® Inference subsystem of the hardware system.

® Knowledge base subsystem of the hardware
system

CD Pilot model for parallel software development
of the development support system.

® Final Stage

® Prototype hardware system

Figure 2-3 Transition of R&D results of Hardware
System

The major R&D results on SIM were the PSI
(Personal Sequential Inference Machine) and CHI
(high performance back-end inference unit). In the
initial stage, PSI- I (CD CD) was developed as KLO
(Kernel Language Version 0) machine. PSI- I had

12

around 35 KLIPS (Logical Inference Per Second)
execution speed. Around 100 PSI- I machines were
used as main WSs (workstations) for the sequential
logic programming language, ESP, in the first half
of the intermediate stage. CHI- I (CD ©) showed
around 200 KLIPS execution speed by using WAM
instruction set and high-speed devices. In the
intermediate stage, PSI was redesigned as multi
PSI FEP (Front End Processor) and PSI- IT, and has
performance of around 330-400 KLIPS. CHI was
also redesigned as CHI- IT (® ©), with more than
400 KLIPS performance. PSI- IT machines were the
main WSs for ESP after the middle of the
intermediate stage, and were able to be used for
KLI by the last year of the intermediate stage. PSI
III was developed as a commercial product by a
computer company by using PIM/m CPU
technologies, with the permission of MITI, and by
using UNIX.

R&D on PIM continued throughout the project, as
follows.

In the initial stage, experimental PIM hardware
simulators and software simulators with 8 to 16
processors were trial-fabricated based on data
flow and reduction mechanisms (@®).

In the intermediate stage, we developed multi
PSI VI, which was to construct 6 PSI-Is, as the
first version of the KLI machine. The
performance of this machine was only several
KLIPS because of the KLI emulator (® ©). It
did, however, provide evaluation and experience
by developing a very small parallel as in KLl.
This meant that we could develop multi-PSI V2
wi th 64 PSI- IT CPU s connected by a mesh
network (® ®). The performance of each CPU
for KLI was around 150 KLIPS, and the average
performance of the full multi-PSI V2 was 5
MLIPS. This speed was enough to significantly
improved to encourage efforts to develop various
parallel KLI software programs including an
practical as.
After development of multi-PSI V2, we promote
the design (® ®) and trial-fabrication of PIM
experimental models (@®).

At present, we are completing development of
prototype hardware consisting of 3 large scale
PIM modules and 2 small scale experimental
PIM modules (@ ®). These PIM modules are
designed to be equally suited to the KLI
machine for inference and knowledge base
management, and to be able to be installed all
programs written by KLl. This is in spite of
their using different architecture.

The VPIM system is a KLl-b language processing
system which gives a common base for PIM
firmware for KLl-b developed on conventional
computers.

R&D on KBM continued until the end of the
intermediate stage. An experimental relational
data base machine (Delta) with 4 relational
algebraic engines was trial-fabricated in the initial
stage (CD ®). During the intermediate stage, a
deductive data base simulator was developed to use
PSIs with an accelerator for comparison and
searching. An experimental system was also
developed with multiple-multiple name spaces, by
using CHI. Lastly, a know ledge base hard ware
simulator with unification engines and multi-port
page memory was developed in this stage (® (li)).
We developed DB/KB management software, called
Kappa, on concurrent basic software themes. At the
beginning of the final stage, we thought that
adaptability of PIM with Kappa for the various
descri ption forms for the knowledge base was more
important than effectivity of KBM with special
mechanism for the specific KB forms. In other
words, we thought that deductive object-oriented
DB technologies was not yet matured to design
KBM as a part of the prototype system.

2.4 Overview of R&D Results of
Software Systems

The R&D of software systems was carried out by a
number of subjects listed below in each stage.

CD Initial stage

· Basic software

® 5G Kernel Languages

® Problem solving and inference software
module

CD Knowledge base management software
module

@ Intelligent interface software module

® Intelligent programming software module

CD SIM software of pilot model for development
support

® Basic software system in the intermediate stage

®-® (as in the initial stage)

CD Experimental application system for basic
software module

@ Final stage

· Basic software system

® Inference Control module

® KB management module

· Knowledge programming software

CD Problem solving and programming module

@ Natural language interface module

® Knowledge construction and utiljzation
module

CD Advanced problem solving inference method

® Experimental parallel application system

To make the R&D results easy to understand, I will
separate the results for languages, basic software,
knowledge programming and application software.

2.4.1 R&D results of Fifth Generation
Computer languages

As the first step in 5G language development, we
designed sequential logic programming languages
KLO and ESP (Extended Self-contained Prolog) and
developed these language processors (CD @). KLO,
designed for the PSI hardware system, is based on
Prolog. ESP has extended modular programming
functions to KLO and is designed to describe large
scale software such as SIMPOS and application
systems.

As a result of research on parallel logic
programming language, Guarded Horn Clauses, or
GHC, was proposed as the basic specification for
KLI (Kernel Language Version 1) (CD @). KLI was,
then, designed by adding various functions to KLI
such as a macro description (@@). KLI consists of a
machine level language (KLl-b (base)), a core
language (KLl-c) for writing parallel software and
pragma (KL1-p) to describe the division of parallel
processes. Parallel inference machines, multi-PSI
and PIM, are based on KLl-b. Various parallel
software, including PIMOS, is written in KLl-c and
KLl-p.

A'um is an object oriented language. The results
of developing the A'um experimental language
processor reflect improvements in KLI (@@, ®@).

To research higher level languages, several
languages were developed to aid description of
specific research fields. CIL (Complex
Indeterminate Language) is the extended language
of Prolog that describes meanings and situations for
natural language processing (CD @, @ @). CRL
(Complex Record Language) was developed as a
knowledge representation language to be used
internally for deductive databases on nested
relational DB software (@ ©). CAL (Contrainte
Avec Logique) is a sequential constraint logic
language for constraint programming (@(0).

Mandala was proposed as a knowledge
representation language for parallel processing, but
was not adopted because it lacks a parallel
processing environment and we had enough
experience with it in the initial stage (CD©).

Quixote is designed as a knowledge
representation language and knowledge-base
language for parallel processing based on the
results of evaluation by CIL and CRL. Quixote is
also a deductive object-oriented database language
and play the key role in KBMS. A language
processor is currently being developed for Quixote.
GDCC(Guarded Definite Clause with Constraints)

13

Figure 2-4 Transi tion of R&D of 5G Languages

is a parallel constraint logic language that processes
CAL results.

2.4.2 R&D Results of Basic Software (OS)

In the initial stage, we developed a preliminary
programming and operating system for PSI, called
SIMPOS, using ESP (CD ® CD). We contiJ;lued to
improve SIMPOS by adding functions
corresponding to evaluation results. We also took
into account the opinions of inside users who had
developed software for the PSI machine using
SIMPOS (@@CD).

Since no precedent parallel OS which is suited for
our aims had been developed anywhere in the world,
we started to study parallel OS using our
experiences of SIMPOS development in the initial
stage. A small experimental PIMOS was developed
on the multi-PSI VI system in the first half of the
intermediate stage (@(0). Then, the first version of
PIMOS was developed on the multi-PSI V2 system,
and was used by KLI users (@ (0). PIMOS
continued to be improved by the addition of
functions such as remote access, file access and
debugging support (®@).

The Program Development Support System was
also developed by the end of the intermediate stage
(@(0).

Figure 2-5 Transition of basic software R&D

14

Paragraph was developed as a parallel
programming support system for improving
concurrency and load distribution by the indication
results of parallel processing (@@).

In regard to DB/KB management software
Kaiser was developed as a experimental relationai
DB management software in the initial stage
(CD @). Then, Kappa- I and Kappa- II were
developed to provide the construction functions
required to build a large scale DB/KB that could be
used for natural language processing, theorem
proving and various expert systems (@ @). Kappa-
I and Kappa- II ,based on nested relational model

are aimed at the database engine of deductiv~
object-oriented DBMS.
. Recently, a parallel version of Kappa, Kappa-P,
I~ b~ing developed. Kappa-P can manage
dIstnbuted data bases stored on distributed disks in
PIM. (@ ®) Kappa-P and Quixote constitute the
KBMS.

2.4.3 R&D Results of Problem Solving and
Programming Technologies

Throughout this project, from the viewpoint of
similarity mathematical theorem proving and
program specification, we have been investigating
proving technologies. The CAP (Computer Aided
Proof) system was experimentally developed in the
initial stage (@ 0). TRS (Term Rewriting System)
and Metis were also developed to support specific
mathematical reasoning, that is, the inference
associated equals sign (@0).
An experimental program for program verification
and composition, Argus, was developed by the end of
the intermediate stage (CD 0 and @ 0). These
research themes concentrated on R&D into the
MGTP theorem prover in the final stage(@@).

Meta-programming technologies, partial
evaluation technologies and the learning
mechanism were investigated as basic research on
advanced problem solving and the inference method
(CD®, @®, @CD). .

2.4.4 R&D Results on Natural Language
Processing Technologies

Natural language processing tools such as BUP
(Bottom-Up Parser) and a miniature electronic
dictionary were experimentally developed in the
initial stage (CD @). These tools were extended
improved and arranged into LTB (Language Tooi
Box). LTB is a library of Japanese processing
software modules such as LAX (Lexical Analyzer),
SAX (Syntactic Analyzer), a text generator and
language data bases (@@), @@).

An experimental discourse understanding
system, DUALS, was implemented to investigate

context processing and semantic analysis using
these language processing tools (CD @),@ @). An
experimental argument system, called Dulcinia is
being implemented in the final stage (@@). '

2.4.5 R&D Results on Knowledge Utilization
Technologies and Experimental
Application Systems

In the intermediate stage we implemented
experimental knowledge utilization tools such as
APRICOT, based on hypothetical reasoning
technology, and Qupras, based on qualitative
reasoning technology (@ ©). At present, we are
investigating such inference mechanisms for expert
systems as assumption based reasoning and case
based reasoning, and implementing these as
knowledge utilization tools to be applied to the
experimental application system (@0).

As an application system, we developed, in
~rol~g, an. experimental CAD system for logic
cirCUlt deSIgn support and wiring support in the
initial stage. We also developed severaJ
experimental expert systems such as a CAD system
for layout and logic circuit design, a troubleshooting
system, a plant control system and a go-playing
system written in ESP (@CD, etc.).

Small to medium parallel programs written in
KLI were also developed to test and evaluate
parallel systems by the end of the intermediate
stage. These were improved for application to PIM
in the final stage. These programs are PAX (a
parallel semantics analyzer), Pentomino solver,
shortest path solver and Tsume-go.

We developed several experimental parallel
systems, implemented using KLI in the final stage,
such as LSI-CAD system (for logical simulation,
wire routing, block layout, logical circuit design),
¥enetic information processing system, legal
Inference system based on case based reasoning,
expert systems for troubleshooting, plant control
and go-playing (3g).

Some of these experimental systems were
developed from other earlier sequential systems in
the intermediate stage while others are new
application fields that started in the final stage.

2.5 Infrastructure of the FGCS
Project

As explained in 2.2, the main language used for
software implementation in the initial stage was
Prolog. In the intermediate stage, ESP was mainly
used, and in the final stage KLI was the principle
language.

Therefore, we used a Prolog processing system on
a conventional computer and terminals in the
initial stage. SIMPOS on PSI (I and II) was used
as the workbench for sequential programming in

for
Software

Development.
Simulation

&
Communication

Networks

LAN

Figure 2-6 Infrastructure for R&D

the intermediate stage. We are using PSI (II and
ill) as a workbench and remote terminals to parallel
machines (multi-PSIs and PIMs) for parallel
programming in the final stage. We have also used
conven tional machines for simulation to design PIM
and a communication (E-mail, etc.) system.

In regard to the computer network system, LAN
has been used as the in-house system, and LAN has
been connected to domestic and international
networks via gateway systems.

3 Promoting Organization of
the FGCS Project

ICOT was established in 1982 as a non-profit core
organization for promoting this project and it began
R&D work on fifth generation computers in June
1982, under the auspices of MIT I.

Establishment of ICOT was decided by considering
the following necessity and effectiveness of a
centralized core research center for promoting
originative R&D,

· R&D themes should be directed and selected by
powerful leadership, in consideration of hardware
and software integration, based on a unified
framework of fifth generation computers,
throughout the ten-year project period.

· It was necessary to develop and nurture
researchers working together because of the lack of
researchers in this research field.

· A core center was needed to exchange information
and to collaborate with other organizations and
outside researchers.

ICOT consists of a general affairs office and a
research center (Figure 3-1) .

The organization of the ICOT research center was
changed flexibly depending on the progress being
made. In the initial stage, the research center
consisted of a research planning department and
three research laboratories. The number of

Figure 3-1 ICOT Organization

Research
Department
and Research
Laboratories

Working Groups

15

laboratories was increased to five at the beginning
of the intermediate stage. These laboratories
became one research department and seven
laboratories in 1990.

Fiscal
Year

<:: Initia! Stage X Intermediate Stage Final StaJle ;>
119821 '83 L '84119851 '861 '871 '88119891 '90 '911 '921

IDirector

Dl!puty Director I Deputy Directors

H1st R.Lab. J 1st R.Lab. I Research Dep.

1st R.Lab. 2nd R.Lab.
2nd R.lab.

2nd R.Lab. 3rd R.Lab. I Jr R.Lao.

14th R.Lab. 4th R.Lab.
5th R.Lab.' H3rd R.Lab.

5th R.Lab. ~t h R.Lab.
*R.Lab.:Research Laboratory 7th R.Lab.

fL.fResearch P\anninq Department / Section

95 I 1 DD I 1 00 1 1 00 I

organization

The number of researchers at the ICOT research
center has increased yearly, from 40 in 1982 to 100
at the end of the intermediate stage.

All researchers at the ICOT research center have
been transferred from national research centers,
public organizations, and computer vendors, and the
like. To encourage young creative researchers and
promote originative R&D, the age of dispatched
researchers is limited to 35 years old. Because all
researchers are normally dispatched to the ICOT
research center for three to four years, ICOT had to
receive and nurture newly transferred researchers.
We must make considerable effort to continue to
consisten tly lead R&D in the fifth generation
computer field despite researcher rotation. This
rotation has meant that we were able to maintain a
staff of researchers in their 30's, and also could
easily change the structure of organization in the
ICOT research center.
In total, 184 researchers have been transferred to

16

the ICOT research center with an average transfer
period of 3 years and eight months (including
around half of the dispatched researchers who are
presently at ICOT).

The number of organizations which dispatched
researchers to IeOT also increased, from 11 to 19.
This increase in participating organizations was
caused by an expanding scheme of the supporting
companies, around 30 companies, to dispatch
researchers to ICOT midway through the
intermediate stage.

The themes each laboratory was responsible for
changed occasionally depending on the progress
being made.

Figure 3-3 shows the present assignment of
research themes to each research laboratory.

Research Planning => Research planning
Department & Section & management

(PIMOS)

=> ·Basic software (Kappa & Quixote)

=> ·Constraint logic programming software

=> ·Prover & its application

=> . Natural language interface software

=> ·Parallel application system
·Knowledge utilization software

(as of 1991)

Figure 3-3 ICOT research center organization

Every year we invited several visiting
researchers from abroad for several weeks at ICOT's
expense to discuss and to exchange opinion on
specific research themes with ICOT researchers. Up
to the present, we have invited 74 researchers from
12 countries in this program.

We also received six long-term (about one year
each) visiting researchers from foreign
governmental organizations based on
memorandums with the National Science
Foundation (NSF) in the United States, the
Institute National de Recherche en Informatique et
Automatiqeu (INRIA) in France, and the
Department of Trade and Industry (DTI) in the
United Kingdom (Figures 3-2 and 3-4).

Figure 3-4 shows the overall structure for
promoting this project. The entire cost for the R&D
activities of this project is supported by MITI based
on the entrust contract between MITI and ICOT.
Yearly and at the beginning of each stage we
negotiate our R&D plan with MIT!. MITI receives
advice of this R&D plan and evaluations of R&D
results and ICOT research activities from the FGCS
project advisory committee.

ICOT executes the core part of R&D and has
contracts with eight computer companies for

RESEARCH
Collaboration

.Domestic
ETL,MEL,EDR etc.

oOverseas
ANL,NIH,SICS,
ANU,LBL

Transfering
Research Staff

From
o Public

Organizations
(ETL,MEL,N'IT,JIPDEC)
.Computer

Companies (14)

Visiting Researchers
• Invited Researchers
• Dispatched Researchers

From NSF,INRIA,DTI

Programming &
Development work

o Computer
Companies (8)

Figure 3-4 Structure for promoting FGCS project

experimental production of hardware and
developmental software. Consequently, ICOT can
handle all R&D activities, including the
developmental work of computer companies towards
the goals of this project.
ICOT has set up committee and working groups to
discuss and to exchange opinions on overall plans
results and specific research themes with
researchers and research leaders from universities
and other research institutes. Of course,
construction and the themes of working groups are
changed depending on research progress. The
number of people in a working group is around 10 to
20 members, so the total number in the committee
and working groups is about 150 to 250 each year.

Another program for information exchange and
collaborative research activities and diffusion of
research results will be described in the. following
chapter.

4 Distribution of R&D Results
and International Exchange
Activities

Because this project is a national project in which
world-wide scientific contribution is very important,
we have made every effort to include our R&D ideas,
processes and project results when presenting ICOT
activities. We, also, collaborate with outside
researchers and other research organizations.

We believe these efforts have contributed to
progress in parallel and knowledge processing
computer technologies. I feel that the R&D efforts
in these fields have increased because of the
stimulative effect of this project. We hope that R&D
efforts will continue to increase through
distribution of this projects R&D results. I believe
that many outside researchers have also made
significant contributions to this project through

their discussions and information exchanges with
ICOT researchers.

ICOT

Research ~ Accepting Dispatched
collaboration Researchers(total :8)

(From NSF,INRIA,DTIl
-Domestic
ETl,EDRetc. Hosting
-Overseas Conferences
:~~:~~~,SICS & Workshops

-International Conference
on FGCS ('81 :84:88:92)

Co-sponser with U.S.(NSF),
France(lNRIA),Sweden & Italy

...-"--::,....:....,-:....-.:..:..::..:.:...:.:..::::.. U.K.(IED of DT\)
r::-~=;.:LL--'. -Domestic Conferences

Figure 4-1

We could, for example, produce GHC, a core
language of the parallel system, by discussion with
researchers working on Parlog and Concurrent
Prolog. We could, also, improve the performance of
the PSI system by introducing the W AM instruction
set proposed by Professor Warren.

We have several programs for distributing the
R&D results of this project, to exchange information
and to collaborate with researchers and
organizations.

CD One important way to present R&D activities
and results is publication and distribution of
ICOT journals and technical papers. We have
published and distributed quarterly journals,
which contain introductions of ICOT activities,
and technical papers to more than 600 locations
in 35 countries.

We have periodically published and sent more
than 1800 technical papers to around 30
overseas locations. We have sent TRs
(Technical Reports) and TMs (Technical
Memos) on request to foreign addresses. These
technical papers consist of more than 700 TRs
and 1100 TMs published since the beginning of
this project up to January 1992. A third of
these technical papers are written in English.

@ In the second program ICOT researchers
discuss research matters and exchange
information with outside researchers.

ICOT researchers have made more than 450
presentations at international conferences
and workshops, and at around 1800 domestic
conferences and workshops. They have
visited many foreign research organizations
to discuss specific research themes and to
explain ICOT activities.

17

Every year, we have welcomed around 150 to
300 foreign researchers and specialists in
other fields to exchange information with
them and explain ICOT activities to them.

As already described in the previous chapter,
we have so far invited 74 active researchers
from specific technical fields related to FGCS
technologies. We have also received six long
term visiting researchers dispatched from
foreign governmental organization based on
agreemen t. These visi ting researchers
conducted research at ICOT and published the
results of that research.

@ We sponsored the following symposiums and
workshops to disseminate and exchange
information on the R&D results and on ICOT
activities.

We hosted the International Conference on
FGCS'84 in November 1984. Around 1,100
persons participated and the R&D results of
the initial stage were presented. This
followed the International Conference on
FGCS'81, in which the FGCS project plan was
presented. We also hosted the International
Conference on FGCS'88 in November 1988.
1,600 persons participated in this
symposium, and we presented the R&D
results of the intermediate stage.

We have held
7 Japan-Sweden (or Japan-Swederi-Italy)
workshops since 1983 (co-sponsored with
institute or universities in Sweden and Italy),
4 Japan-France AI symposiums since 1986,
(co-sponsored with INRIA of France),
4 Japan-U.S. AI symposiums since 1987 (co
sponsored with NSF of U.S.A.), and
2 Japan-U.K. workshops since 1989 (co
sponsored with DTI of U.K.).

Participating researchers have become to
known each other well through presentations
and discussions during these symposiums and
workshops.

We have also hosted domestic symposiums on
this project and logic programming
conferences every year.

@) Because the entire R&D cost of this project has
been provided by the government such
intellectual property rights (IPR) as p~tents,
which are produced in this project, belong to the
Japanese government. These IPR are managed
by AIST (Agency of Industrial Science and
Technology). Any company wishing to produce
commercial products that use any of these IPR
must get permission to use them from AIST.
For example, PSI and SIMPOS have already
been commercialized by companies licensed by
AIST. The framework for managing IPR must

18

impartially utilize IPR acquired through this
project. That is, impartial permission to
domestic and foreign companies, and among
participating companies or others is possible
because of AIST.

@ Software tools developed in this project that are
not yet managed as IPR by AIST can be used by
other organizations for non-commercial aims.
These software tools are distributed by ICOT
according to the research tools permission
procedure. We, now, have more than 20
software tools, such as PIMOS, PDSS, Kappa-II,
the A'um system, LTB, the CAP system, the cu
prolog system and the TRS generator.
In other cases, we make the source codes of
some programs public by printing them in
technical papers.

® On specific research themes in the logic
programming field, we have collaborated with
organizations such as Argonne National
Laboratory (ANL), National Institute of Health
(NIH), Lawrence Berkeley Laboratory (LBL),
Swedish Institute of Computer Science (SICS)
and Australia National University (ANU).

5 Forecast of Some Aspects of
5GMachines

LSI technologies have advance in accordance with
past trends. Roughly speaking, the memory
capacity and the number of gates of a single chip
quadruple every three years. The number of boards
for the CPU of an inference machine was more than
ten for PSI- I , but only three for PSI- II and single
board for PIM.

The number of boards for 80M bytes memory was
16 for PSI- I , but only four for PSI- II and a single
forPIM(m).

Figure 5-1 shows the anticipated trend in board
numbers for one PE (processor element: CPU and
memory) and cost for one PE based on the actual
value of inference machines developed by this
project.

The trend shows that, by the year 2000, around
ten PEs will fit on one board, around 100 PEs will fit
in one desk side cabinet, and 500 to a 1,000 PEs will
fit in a large cabinet. This trend also shows that the
cost of one PE will halve every three years.

Figure 5-2 shows the performance trends of 5G
machines based on the actual performance of
inference machines developed by this project.

The sequential inference processing performance
for one PE quadrupled every three years. The
improvement in parallel inference processing
performance for one PE was not as large as it was
for sequential processing, because PIM performance
is estimated at around two and one half times that

~. - 'cosrii'p-E' -. ~
I(Relative Cost I
·:o.:".p':i.r~d. ,::,::i~~~I~? j

, 130KlIPSIPE
• (Parallel)

Several
MUPSlPE

10 ,...•. ..300.400.

3Jl00 (3. _. l (5e~L~~~~I)
~~!~~tiat) -·---e€)_._.

0.1

19§2

·16Mbits
DRAMMemory

-64Mbits
DRAM Memory

'256Mbit,
DRAM Memory

Figure 5-1 Size and cost trends of 5G machines

of multi-PSI. Furthermore, Figure 5-2 shows the
performance of one board for both sequential and
parallel processing, and the performance of a
conventional micro-processor with CISC and RISC
technology. In this figure, future improvements in
the performance of one PE are estimated to be
rather lower than a linear extension of past values
would indicate because of the uncertainty of
whether future technology will be able to elicit such
performance improvements. Performance for one
board is estimated at about 20 MLIPS, which is 100
times faster than PIM. Thus, a parallel machine
with a large cabinet size could have 1 GLIPS. These
parallel systems will have the processing speeds
needed for various knowledge processing
applications in the near future.

Performance
1 10
GIPS LIPS

100 1M
MIPS LIP

10 100
MIPS LIPS

1 10K
MIPS LIPS

Fiscal
Year

19§2 2000

Figure 5-2 Performance trends of 5G machines

Several parallel applications in this project, such as
CAD, theorem provers, genetic information
processing, natural language processing, and legal
reasoning are described in Chapter 2. These
applications are distributed in various fields and
aim at cultivating new parallel processing
application fields.

We believe that parallel machine applications
will be extended to various areas in industry and
society, because parallel technology will become

common for computers in the near future. Parallel
application fields will expand gradually according
to function expansion by the use of advanced
parallel processing and knowledge processing
technologies.

6 Final Remarks
I believe that we have shown the basic framework
of the fifth generation computer based on logic
programming to be more than mere hypothesis. By
the end of the initial stage, we had shown the fifth
generation computer to be viable and efficient
through the development of PSI, SIMPOS and
various experimental software systems written in
ESP and Prolog.

I believe that by the end of the intermediate
stage, we had shown the possibility of realizing the
fifth generation computer through the development
of a parallel logic programming software
environment which consisted of multi-PSI and
PIMOS.

And I hope you can see the possibility of an era of
parallel processing arriving in the near future by
looking at the prototype system and the R&D
results of the FGCS Project.

Acknowledgment
This project has been carried out through the efforts
of the researchers at ICOT, and with the support of
MITI and many others outside ofICOT. We wish to
extend our appreciation to them all for the direct
and indirect assistance and co-operation they have
provided.

References
[Motooka, et a11981] Proceedings of the Interna

tional Conference on Fifth Generation Computer
Systems, 1981, J1PDEC

[Kawanobe, et a11984] K.Kawanobe, et al. ICOT
Research and Development, Proceeding of the
International Conference on Fifth Generation
Computer Systems 1984, 1984, ICOT

[Kurozumi, et a11987] T.Kurozumi, et al. Fifth
Generation Computer Systems Project, 1987,
ICOTTM303

[Kurozumi, et a11988] T.Kurozumi, et al. ICOT Re
search and development, Proceedings of the
International Conference on Fifth Generation
Computer Systems 1988, 1988, ICOT

[Kurozumi, 1990] T.Kurozumi. Fifth Generation
Computer Systems Project-Outline of Plan and
Results, 1990, ICOT TM-996

19

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 20

Summary of Basic Research Activities of the FGCS Project

Koichi Furukawa

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

furukawa@icot.or.jp

Abstract

The Fifth Generation Computer Project was launched
in 1982, with the aim of developing parallel comput
ers dedicated to knowledge information processing. It
is commonly believed to be very difficult- to parallelize
knowledge processing based on symbolic computation.
We conjectured that logic programming technology would
solve this difficulty.

We conducted our project while stressing two seem
ingly different aspects of logic programming: one was
establishment of a new information technology, and the
other was pursuit of basic AI and software engineering
research.

In the former, we developed a concurrent logic pro
gramming language, GHC, and its extension for practical
parallel programming, KL1. The invention of GHCjKLl
enabled us to conduct parallel research on the develop
ment of software technology and parallel hardware ded
icated to the new language.

We also developed several constraint logic program
ming languages which are very promising as high level
languages for AI applications. Though most of them are
based on sequential Prolog technology, we are now in
tegrating constraint logic programming and concurrent
logic programming and developing an integrated Ian.,.
guage, GDCC.

In the latter, we investigated many fundamental AI
and software engineering problems including hypotheti
cal reasoning, analogical inference, knowledge represen
tation, theorem proving, partial evaluation and program
transformation.

As a result, we succeeded in showing that logic pro
gramming provides a very firm foundation for many as
pects of information processing: from advanced software
technology for AI and software engineering, through sys
tem programming and parallel programming, to parallel
architecture.

The research activities are continuing and latest as
well as earlier results strongly indicate the truth of our
conjecture and also the fact that our approach is appro
priate.

1 Introduction

In the Fifth Generation Computer Project, two main
research targets were pursued: knowledge information
processing and parallel processing. Logic programming
was adopted as a key technology for achieving both tar
gets simultaneously. At the beginning of the project, we
adopted Prolog as our vehicle to promote the entire re
search of the project. Since there were no systematic
research attempts based on Prolog before our project,
there were many things to do, including the development
of a suitabie workstation for the research, experimental
studies for developing a knowledge-based system in Pro
log and investigation into possible parallel architecture
for the language. We rapidly succeeded in promoting
research in many directions.

From this research, three achievements are worth not
ing. The first is the development of our own worksta
tion dedicated to ESP, Extended Self-contained Prolog.
We developed an operating system for the workstation
completely in ESP [Chikayama 88]. The second is the
application of partial evaluation to meta programming.
This enabled us to develop a compiler for a new program
ming language by simply describing an interpreter of the
language and then partially evaluating it. We applied
this technique to derive a bottom-up parser for context
free grammar given a bottom up interpreter for them. In
other words, partial evaluation made meta programming
useful in real applications. The third achievement was
the development of constraint logic programming lan
guages. We developed two constraint logic programming
languages: CIL and CAL. CIL is for natural language
processing and is based on the incomplete data struc
ture for representing "Complex Indeterminates" in sit
uation theory. It has the capability to represent struc
tured data like Minsky's frame and any relationship be
tween slots' values can be expressed using constraints.
CIL was used to develop a natural language understand
ing system called DUALS. Another constraint logic pro
gramming language, CAL, is for non-linear equations.
Its inference is done using the Buchberger algorithm for
computing the Grobner Basis which is a variant of the
Knuth-Bendix completion algorithm for a term rewriting

system.
We encountered one serious problem inherent to Pro

log: that was the lack of concurrency in the fundamental
framework of Prolog. We recognized the importance of
concurrency in developing parallel processing technolo
gies, and we began searching for alternative logic pro
gramming languages with the notion of concurrency.

We noticed the work by Keith Clark and Steve Gregory
on Relational Language [Clark Gregory 81] and Ehud
Shapiro on Concurrent Prolog [Shapiro 83]. These lan
guages have a common feature of committed choice
nondeterminism to introduce concurrency. We devoted
our efforts to investigating these languages carefully
and Ueda finally designed a new committed choice
logic programming language called GHC [Ueda 86a]
[UedaChikayama 90], which has simpler syntax than the
above two languages and still have similar expressiveness.
We recognized the importance of GHC and adopted it as
the core of our kernel language, KL1, in this project. The
introduction of KL1 made it possible to divide the entire
research project into two parts: the development of par
allel hardware dedicated to KL1 and the development of
software technology for the language. In this respect, the
invention of GHC is the most important achievement for
the success of the Fifth Generation Computer Systems
project.

Besides these language oriented researches, we per
formed many fundamental researches in the field of arti
ficial intelligence and software engineering based on logic
and logic programming. They include researches on non
monotonic reasoning, hypothetical reasoning, abduction,
induction, knowledge representation, theorem proving,
partial evaluation and program transformation. We ex
pected that these researches would become important
application fields for our parallel machines by the affinity
of these problems to logic programming and logic based
parallel processing. This is now happening.

In this article, we first describe our research efforts
in concurrent logic programming and in constraint logic
programming. Then, we discuss our recent research ac
tivities in the field of software engineering and artificial
intelligence. Finally, we conclude the paper by stating
the dirction of future research.

2 Concurrent Logic Program
ming

In this section, we pick up two important topics in
concurrent logic programming research in the project.
One is the design principles of our concurrent logic
programming language Flat GHC (FGHC) [Ueda 86a]
[UedaChikayama 90], on which the aspects of KL1 as
a concurrent language is based. The other is search
paradigms in FGHC. As discussed later, one drawback
of FGHC, viewing as a logic programming language, is

21

the lack of search capability inherent in Prolog. Since
the capability is related to the notion of completeness in
logic programming, recovery of the ability is essential.

2.1 Design Principles of FGHC

The most important feature of FGHC is that there is
only one syntactic extension to Prolog, called the com
mitment operator and represented by a vertical bar "I".
A commitment operator divides an entire clause into two
parts called the guard part (the left-hand side of the bar)
and the body part (the right-hand side). The guard of a
clause has two important roles: one is to specify a condi
tion for the clause to be selected for the succeeding com
putation, and the other is to specify the synchronization
condition. The general rule of synchronization in FGHC
is expressed as dataflow synchronization. This means
that computation is suspended until sufficient data for
the computation arrives. In the case of FGHC, guard
computation is suspended until the caller is sufficiently
instantiated to judge the guard condition. For· exam
ple, consider how a ticket vending machine works. After
receiving money, it has to wait until the user pushes a
button for the destination. This waiting is described as a
clause such that "if the user pushed the 160-yen button,
then issue a 160-yen ticket".

The important thing is that dataflow synchronization
can be realized by a simple rule governing head unifica
tion which occurs when a goal is executed and a corre
sponding FGHC clause is called: the information flow of
head unification must be one way, from the caller to the
callee. For example, consider a predicate representing
service at a front desk. Two clauses define the predi
cate: one is for during the day, when more customers are
expected, and another is for after-hours, when no more
customers are expected. The clauses have such defini
tions as:

serve ([First I Rest]) : - <extra-condition>
do_service(First) , serve(Rest).

serve([]) :- true I true.

Besides the serve process, there should be another pro
cess queue which makes a waiting queue for service. The
top level goal looks like:

?- queue(Xs), serve(Xs).

where "?-" is a prompt to the user at the terminal. Note
that the execution of this goal generates two processes,
queue and serve, which share a variable Xs. This shared
variable acts as a channel for data transfer from one pro
cess to the other. In the above example, we assume that
the queue process instantiates XS and the serve pro
cess reads the value. In other words, queue acts as a
generator of the value of XS and serve acts as the con
sumer. The process queue instantiates XS either to a

22

list of servees represented by [<first-servee>, <second
servee>, .. .] or to an empty list []. Before the instanti
ation, the value of Xs remains undefined.

Suppose Xs is undefined. Then, the head unification
invoked by the goal serve(Xs) suspends because the
equations Xs = [First I Rest] and Xs = [] cannot be
solved without instantiating Xs. But such instantiation
violates the rule of one-way unification. Note that the
term [First I Rest] in the head of serve means that
the clause expects a non-empty list to be given as the
value of the argument. Similarly, the term [] expects
an empty list to be given. Now, it is clear that the uni
directionality of information flow realizes dataflow syn
chronization.

This principle is very important in two aspects: one is
that the language provides a natural tool for expressing
concurrency, and the other is that the synchronization
mechanism is simple enough to realize very efficient par
allel implementation.

2.2 Search Paradigms in FGHC

There is one serious drawback to FGHC because of the
very nature of committed choice; that is, it no longer
has an automatic search capability, which is one of the
most important features of Prolog. Prolog achieves its
search capability by means of automatic backtracking.
However, since committed choice uniquely determines a
clause for succeeding computation of a goal, there is no
way of searching for alternative branches other than the
branch selected. The search capability is related to the
notion of completeness of the logic programming compu
tation procedure and the lack of the capability is very
serious in that respect.

One could imagine a seemingly trivial way of real
izing search capability by means of or-parallel search:
that is, to copy the current computational environment
which provides the binding information of all variables
that have appeared so far and to continue computations
for each alternative case in parallel. But this does not
work because copying non-ground terms is impossible in
FGHC. The reason why it is impossible is that FGHC
cannot guarantee when actual binding will occur and
there may be a moment when a variable observed at
some processor remains unchanged even after some goal
has instantiated it at a different processor.

One might ask why we did not adopt a Prolog-like
language as our kernel language for parallel computa
tion. There are two main reasons. One is that, as stated
above, Prolog does not have enough expressiveness for
concurrency, which we see as a key feature not only for
expressing concurrent algorithms but also for providing
a framework for the control of physical parallelism. The
other is that the execution mechanism of Prolog-like lan
guages with a search capability seemed too complicated
to develop efficient parallel implementations.

We tried to recover the search capability by devising
programming techniques while keeping the programming
language as simple as possible. We succeeded in invent
ing several programming methods for computing all so
lutions of a problem which effectively achieve the com
pleteness of logic programming. Three of them are listed
as follows:

(1) Continuation-based method [Ueda 86b]
(2) Layered stream method [OkumuraMatsumoto 87]
(3) Query compilation method [Furukawa 92]
In this paper, we pick up (1) and (3), which are

complementary to each other. The continuation-based
method is suitable for the efficient processing of rather
algorithmic problems. An example is to compute all ways
of partitioning a given list into two sublists by using
append. This method mimics the computation of OR
parallel Prolog using AND-parallelism of FGHC. AND
serial computation in Prolog is translated to continu
ation processing which remembers continuation points
in a stack. The intermediate results of computation are
passed from the preceding goals to the next goals through
the continuation stack kept as one of the arguments of
the FGHC goals. This method requires input/output
mode analysis before translating a Prolog program into
FGHC. This requirement makes the method impracti
cal for d~tabase applications because there are too many
possible input-output modes for each predicate.

The query compilation method solves this problem.
This method was first introduced by Fuchi [Fuchi 90]
when he developed a bottom-up theorem prover in KLl.
In his coding technique, the multiple binding problem is
avoided by reversing the role of the caller and the callee in
straightforward implementation of database query eval
uation. Instead of trying to find a record (represented
by a clause) which matches a given query pattern repre
sented by a goal, his method represents each query com
ponent with a compiled clause, represents a databasae

'with a data structure passed around by goals, and tries
to find a query component clause which matches a goal
representing a record and recurses the process for all po
tentially applicable records in the database1 . Since ev
ery record is a ground term, there is no variable in the
caller. Variable instantiation occurs when query com
ponent clauses are searched and an appropriate clause
representing a query component is found to match a
currently processed record. Note that, as a result of re
versing the representation of queries and databases from
straightforward representation, the information flow is
now from the caller (database) to the callee (a query
component). This inversion of information flow avoids
deadlock in query processing. Another important trick
is that each time a query clause is called, a fresh vari
able is created for each variable in the query component.
This mechanism is used for making a new environment

1 We need an auxiliary query clause which matches every record
after failing to match the record to all the real query clauses.

for each OR-parallel computation branch. These tricks
make it possible to use KLI variables to represent object
level variables in database queries and, therefore, we can
avoid different compilation of the entire database and
queries for each input/output mode of queries.

The new coding method stated above is very gen
eral and there are many applications which can be pro
grammed in this way. The only limitation of this ap
proach is that the database must be more instantiated
than queries. In bottom-up theorem proving, this re
quirement is referred to as the range-restrictedness of
each axiom. Range-restrictedness means that, after suc
cessfully finding ground model elements satisfying the
antecedent of an axiom, the new model element appear
ing as the consequent of the axiom must be ground.

This restriction seems very strong. Indeed, there are
problems in the theorem proving area which do not
satisfy the condition. We need a top-down theorem
prover for such problems. However, many real life prob
lems satisfy the range-restrictedness because they al
most always have finite concrete models. Such prob
lems include VLSI-CAD, circuit diagnosis, planning, and
scheduling. We are developing a parallel bottom-up
theorem prover called MGTP (Model Generation The
orem Prover) [FujitaHasegawa 91] based on SATCHMO
developed by Manthey and Bry [MantheyBry 88]. We
are investigating new applications to utilize the theorem
prover. We will give an example of computing abduction
using MGTP in Section 5.

3 Constraint
mlng

Logic Program-

We began our constraint logic programming research
almost at the beginning of our project, in relation to
the research on natural language processing. Mukai
[MukaiYasukawa 85] developed a language called CIL
(Complex Indeterminates Language) for the purpose of
developing a computational model of situation seman
tics. A complex indeterminate is a data structure allow
ing partially specified terms with indefinite arity. During
the design phase of the language, he encountered the idea
of freeze in Prolog II by Colmerauer [Colmerauer 86]. He
adopted freeze as a proper control structure for our CIL
language.

From the viewpoint of constraint satisfaction, CIL only
has a passive way of solving constraint, which means
that there is no active computation for solving con
straints such as constraint propagation or solving si
multaneous equations. Later, we began our research on
constraint logic programming involving active constraint
solving. The language we developed is called CAL. It
deals with non-linear equations as expressions to spec
ify constraints. Three events triggered the research: one
was our preceding efforts on developing a term rewrit-

23

ing system called METIS for a theorem prover of linear
algebra [OhsugaSakai 91]. Another event was our en
counter with Buchberger's algorithm for computing the
Grabner Basis for solving non-linear equations. Since the
algorithm is a variant of the Knuth-Bendix completion
algorithm for a term rewriting system, we were able to
develop the system easily from our experience of devel
oping METIS. The third event was the development of
the CLP(X) theory by Jaffar and Lassez which provides
a framework for constraint logic programming languages
[JaffarLassez 86].

There is further remarkable research on constraint
logic programming in the field of general symbol pro
cessing [Tsuda 92]. Tsuda developed a language called
cu-Prolog. In cu-Prolog, constraints are solved by means
of program transformation techniques called unfold/fold
transformation (these will be discussed in more detail
later in this paper, as an optimization technique in re
lation to software engineering). The unfold/fold pro
gram transformation is used here as a basic operation
for solving combinatorial constraints among terms. Each
time the transformation is performed, the program is
modified to a syntactically less constrained program.
Note that this basic operation is similar to term rewrit
ing, a basic operation in CAL. Both of these operations
try to rewrite programs to get certain canonical forms.
The idea of cu-Prolog was introduced by Hasida during
his work on dependency propagation and dynamical pro
gramming [Hasida 92]. They succeeded in showing that
context-free parsing, which is as efficient as chart parsing,
emerges as a result of dependency propagation during the
execution of a program given as a set of grammar rules
in cu-Prolog. Actually, there is no need to construct a
parser. cu-Prolog itself works as an efficient parser.

Hasida [Hasida 92] has been working on a fundamental
issue of artifici~l intelligence and cognitive science from
the aspect of a computational model. In his computa
tion model of dynamical programming, computation is
controlled by various kinds of potential energies associ
ated with each atomic constraint, clause, and unification.
Potential energy reflects the degree of constraint viola
tion and, therefore, the reduction of energy contributes
constraint resolution.

Constraint logic programming greatly enriched the
expressiveness of Prolog and is now providing a very
promising programming environment for applications by
extending the domain of Prolog to cover most AI prob
lems.

One big issue in our project is how to integrate con
straint logic programming with concurrent logic pro
gramming to obtain both expressiveness and efficiency.

This integration, however, is not easy to achieve be
cause (1) constraint logic programming focuses on a con
trol scheme for efficient execution specific to each con
straint solving scheme, and (2) constraint logic program
ming essentially includes a search paradigm which re-

24

quires some suitable support mechanism such as auto
matic backtracking.

It turns out that the first problem can be processed ef
ficiently, to some extent, in the concurrent logic program
ming scheme utilizing the data flow control method. We
developed an experimental concurrent constraint logic
programming language called GDCC (Guarded Defi
nite Clauses with Constraints), implemented in KL1
[HawleyAiba 91]. GDCC is based on an ask-tell mech
anism proposed by Maher [Maher 87], and extended by
Saraswat [Saraswat 89]. It extends the guard computa
tion mechanism from a simple one-way unification solv
ing problem to a more general provability check of con
ditions in the guard part under a given set of constraints
using the ask operation. For the body computation, con
straint literals appearing in the body part are added to
the constraint set using the tell operation. If the guard
conditions are not known to be provable because of a
lack of information in the constraints set, then compu
tation is suspended. If the conditions are disproved un
der the constraints set, then the guard computation fails.
Note that the provability check controls the order of con
straint solving execution. New constraints appearing in
the body of a clause are not included in the constraint
set until the guard conditions are known to be provable.

The second problem of realizing a search paradigm in a
concurrent constraint logic programming framework has
not been solved so far. One obvious way is to develop an
OR-parallel search mechanism which uses a full unifica
tion engine implemented using ground term representa
tion of logical variables [Koshimura et al. 91]. However,
the performance of the unifier is 10 to 100 times slower
than the built in unifier and, as such, it is not very practi
cal. Another possible solution is to adopt the new coding
technique introduced in the previous section. We expect
to be able to efficiently introduce the search paradigm by
applying the coding method. The paradigm is crucial if
parallel inference machines are to be made useful for the
numerous applications which require high levels of both
expressive and computational power.

4 Advanced Software Engineer
Ing

Software engineering aims at supporting software devel
opment in various dimensions; increase of software pro
ductivity, development of high quality software, pursuit
of easily maintainable software and so on. Logic pro
gramming has great potential for many dimensions in
software engineering. One obvious advantage of logic
programming is the affinity for correctness proof when
given specifications. Automatic debugging is a related
issue. Also, there is a high possibility of achieving auto
matic program synthesis from specifications by applying
proof techniques as well as from examples by applying

ind uetion. Program optimization is another promising
direction where logic programming works very well.

In this section, two topics are picked up: (1) meta
programming and its optimization by partial evaluation,
and (2) unfold/fold program transformation.

4.1 Meta Programming and Partial
Evaluation

We investigated meta programming technology as a ve
hicle for developing knowledge-based systems in a logic
programming framework inspired by Bowen and Kowal
ski's work [BowenKowalski 83]. It was a rather direct
way to realize a knowledge assimilation system using the
meta programming technique by regarding integrity con
straints as meta rules which must be satisfied by a knowl
edge base. One big problem of the approach was its inef
ficiency due to the meta interpretation overhead of each
object level program. We challenged the problem and
Takeuchi and Furukawa [Takeuchi Furukawa 86] made a
brealdhrough in the problem by applying the optimiza
tion technique of partial evaluation to meta programs.
We first derived an efficient compiled program for an ex
pert system with uncertainty computation given a meta
interpreter of rules with certainty factor. In this pro
gram, we succeeded in getting three times speedup over
the original program. Then, we tried a more non-trivial
problem of developing a meta interpreter of a bottom-up
parser and deriving an efficient compiled program given
the interpreter and a set of grammar' rules. We suc
ceeded in obtaining an object program known as BUP,
developed by Matsumoto [Matsumoto et al. 83]. The
importance of the BUP meta-interpreter is that it is not
a vanilla meta-interpreter, an obvious extension of the
Prolog interpreter in Prolog, because the control struc
ture is totally i::lifferent from Prolog's top-down control
structure.

After our first success of applying partial evaluation
techniques in meta programming, we began the devel
opment of a self-applicable partial evaluator. Fujita and
Furukawa [FujitaFurukawa 88] succeeded in developing a
simple self-applicable partial evaluator. We showed that
the partial evaluator itself was a meta interpreter very
similar to the following Prolog interpreter in Prolog:

solve(true) .
solve((A,B))
solve(A)

solve(A) , solve(B).
clause(A,B), solve(B).

where it is assumed that for each program clause,
H :- B, a unit clause, clause(H ,B), is asserted2 • A
goal, solve (G), simulates an immediate execution ofthe
subject goal, G, and obtains the same result.

This simple definition of a Prolog self-interpreter,
sol ve, suggests the following partial solver, psol ve.

2clauseC-,_) is available as a built-in procedure in the
DECsystem-lO Prolog system.

psolve(true,true).
psolve«A,B),(RA,RB))

psolve(A,RA), psolve(B,RB).
psolve(A,R) :-

clause(A,B), psolve(B,R).
psolve(A,A) :- '$suspend'(A).

The partial solver, psol ve (G ,R), partially solves a
given goal, G, returning the result, R. The result, R,
is called the residual goal(s) for the given goal, G. The
residual goal may be true when the given goal is totally
solved, otherwise it will be a conjunction of subgoals,
each of which is a goal, ~, suspended to be solved at
'$suspend' (~), for some reason. An auxiliary predi
cate, '$suspend' (P), is define-d for each goal pattern,
P, by the user.

Note that psolve is related to solve as:

solve(G) :- psolve(G,R), solve(R).

That is, a goal, G, succeeds if it is partially solved with
the residual goal, R, and R in turn succeeds (is totally
solved). The total solution for G is thus split into two
tasks: partial solution for G and total solution for the
residual goal, R.

We developed a self-applicable partial evaluator by
modifying the above psol ve program. The main modi
fication is the treatment of built-in predicates in Prolog
and those predicates used to define the partial evaluator
itself to make it self-applicable. We succeeded in apply
ing the partial evaluator to itself and generated a com
piler by partially evaluating the psol ve program with
respect to a given interpreter, using the identical psol ve_
We further succeeded in obtaining a compiler generator,
which generates different compilers given different inter
preters, by partially evaluating the psol ve program with
respect to itself, using itself.

Theoretically, it was known that self-application of
a partial evaluator generates compilers and a compiler
generator [Futamura 71]. There were many attempts
to realize self-applicable partial evaluators in the frame
work of functional languages for a long time, but no suc
cesses were reported until very recently [Jones et al. 85],
[Jones et al. 88], [GomardJones 89]. On the other hand,
we succeeded in developing a self-applicable partial eval
uator in a Prolog framework in a very short time and
also in a very elegant way. This proves some merits of
logic programming languages over functional program
ming languages, especially in its binding scheme based
on unification.

4.2 Unfold/Fold Program Transforma
tion

Program transformation provides a powerful method
ology for the development of software, especially the
derivation of efficient programs either from their formal

25

specification or from decralative but possibly inefficient
programs. Programs written in declarative form are of
ten inefficient under Prolog's standard left to right con
trol rule. Typical examples are found in programs based
on a generate and test paradigm. Seki and Furukawa
[SekiFurukawa 87] developed a program transformation
method based on unfolding and folding for such pro
grams. We will explain the idea in some detail. Let
gen_ test (L) be a predicate defined as follows:

gen_test(L) :- gen(L), test(L).

where L is a variable representing a list, gen(L) is a gen
erator of the list L, and test (L) is a tester for L. Assume
both gen and test are incremental and are defined as
follows:

gene []) .
gene [x IL])

test ([]) .

gen_element(X) , gen(L).

test([XIL]) :- test_element (X) , test(L).

Then, it is possible to fuse two processes gen and test
by applying unfold/fold transformation as follows:

gen_test([XIL]) :- gen([XIL]), test([XIL]).

unfold at gen and test

gen_test([XIL]) :- gen_element(X) , gen(L),
test_element (X) , test(L).

fold by gen_ test

gen_test([XIL]) :- gen_element(X) ,
test_element(X), gen_test(L).

If the tester is not incremental, the above unfold/fold
transformation does not work. One example is to test
that all elements in the list are different from each other.
In this case, the test predicate is defined as follows:

test ([]) .
test([XIL]) :- non_member(X,L), test(L).

non_member(_,[]).
non_member(X,[yIL]):

dif(X,Y), non_member(X,L).

where dif (X, Y) is a predicate judging that X is not equal
to Y. Note that this test predicate is not incremental be
cause a test for the first element X of the list requires the
information of the entire list. The solution we gave to
this problem was to replace the test predicate with an
equivalent predicate with incrementality. Such an equiv
alent program test' is obtained by adding an accumu
lator as an extra argument of the test predicate defined
as follows:

26

test' «(] ,_).
test'([XIL] ,Ace)

non_member(X,Acc), test'(L,[XIAcc]).

The relationship between test and test' is given by
the following theorem:

Theorem

test(L) = test'(L,[])

Now, the original gen_ test program becomes

gen_test(L) :- gen(L), test'(L,[]).

We need to introduce the following new predicate to per
form the unfold/fold transformation:

gen_test'(L,Acc) :- gen(L), test'(L.Acc).

By applying a similar transformation process as be
fore, we get the following fused recursive program of
gen_ test':

gen_test' «(] ,_).
gen_test'([XIL],Acc) :- gen_element(X),

non_member(X,Acc) , gen_test'(L,[XIAcc]).

By symbolically computing the two goals

?- teste [Xi, ... ,Xn]).

?- test' ([Xi, ... ,Xn]).

and comparing the results, one can find that the reorder
ing of pair-wise comparisons by the introduction of the
accumulator is analogous to the exchange of double sum
mation L,i!iL,j!! Xij = L,j!iL,iJI Xij. Therefore, we refer
to this property as structural commutativity.

One of the key problems of unfold/fold transformation
is the introduction of a new predicate such as gen_test'
in the last example. Kawamura [Kawamura 91] devel
oped a syntactic rule for finding suitable new predicates.
There were several attempts to find appropriate new
predicates using domain dependent heuristic knowledge,
such as append optimization by the introduction of dif
ference list representation. Kawamura's work provides
some general criteria for selecting candidates for new
predicates. His method first analyzes a given program
to be transformed and makes a list of patterns which
may possibly appear in the definition of new predicates.
This can be done by unfolding a given program and prop
erly generalizing all resulting patterns to represent them
with a finite number of distinct patterns while avoid
ing over-generalization. One obvious strategy to avoid
over-generalization is to perform least general general
ization by Plotkin [Plotkin 70]. Kawamura also intro
duced another strategy for suppressing unnecessary gen
eralization: a subset of clauses of which the head can be

unifiable to each pattern is associated with the pattern
and only those patterns having the same associated sub
set of clauses are generalized. Note that a goal pattern
is unfolded only by clauses belonging to the associated
subset. Therefore the suppression of over-generalization
also suppresses unnecessary expansion of clauses by un
necessary unfolding.

5 Logic-based AI Research

For a long time, deduction has played a central role in
research on logic and logic programming. Recently, two
other inferences, abduction and induction, received much
attention and much research has been done in these new
directions. These directions are related to fundamental
AI problems that are open-ended by their nature. They
include the frame problem, machine learning, distributed
problem solving, natural language understanding, com
mon sense reasoning, hypothetical reasoning and ana
logical reasoning. These problems require non-deductive
inference capabilities in order to solve them.

Historically, most AI research on these problems
adopted ad hoc heuristic methods reflecting problem
structures. There was a tendency to avoid a logic based
formal approach because of a common belief in the lim
itation of the formalism. However, the limitation of log
ical formalism comes only from the deductive aspect of
logic. Recently it has been widely recognized that ab
duction and induction based on logic provide a suitable
framework for such problems requiring open-endedness
in their formalism. There is much evidence to support
this observation.

• In natural language understanding, unification
grammar is playing an important role in integrat
ing syntax, semantics, and discourse understanding.

• In non-monotonic reasoning, logical formalism such
as circumscription and default reasoning and its
compilation to logic based programs are studied ex~
tensively.

• In machine learning, there are many results based
on logical frameworks such as the Model Inference
System, inverse resolution, and least general gener
alization.

• In analogical reasoning, analogy is naturally de
scribed in terms of a formal inference rule similar to
logical inference. The associated inference is deeply
related to abductive inference.

In the following, three topics related to these issues
are picked up: they are hypothetical reasoning, analogy,
and knowledge representation.

5.1 Hypothetical Reasoning

A logical framework of hypothetical reasoning was stud
ied by Poole et al. [Poole et al. 87]. They discussed the
relationship among hypothetical reasoning, default rea
soning and circumscription, and argued that hypotheti
cal reasoning is all that is needed because it is simply and
efficiently implemented and is powerful enough to imple
ment other forms of reasoning. Recently, the relation
ship of these formalisms was studied in more detail and
many attempts were made to translate non-monotonic
reasoning problems into equivalent logic programs with
negation as failure.

Another direction of research was the formulation of
abduction and its relationship' to negation as failure.
There was also a study of the model theory of a class
of logic programs, called general logic programs, allow
ing negation by failure in the definition of bodies in the
clausal form. By replacing negation-by-failure predicates
by corresponding abducible predicates which usually give
negative information, we can formalize negation by fail
ure in terms of abduction [EshghiKowalski 89]

A proper semantics of general logic programs is given
by stable model semantics [GelfondLifschitz 88]. It is a
natural extension of least fixpoint semantics. The differ
ence is that there is no Tp operator to compute the sta
ble model directly, because we need a complete model for
checking the truth value of the literal of negation by fail
ure in bottom-up fixpoint computation. Therefore, we
need to refer to the model in the definition of the model.
This introduces great difficulty in computing stable mod
els. The trivial way is to assume all possible models and
see whether the initial models are the least ones satisfy
ing the programs or not. This algorithm needs to search
for all possible subsets of atoms to be generated by the
programs and is not realistic at all.

Inoue [Inoue et ai. 92] developed a much more efficient
algorithm for computing all stable models of general logic
programs. Their algorithm is based on bottom-up model
generation method. Negation-by-failure literals are used
to introduce hypothetical models: ones which assume
the truth of the literals and the others which assume
that they are false. To express assumed literals, they in
troduce a modal operator. More precisely, they translate
each rule of the form:

to the following disjunctive clause which does not contain
any negation-by-failure literals:

AI+1 /\ ••• /\ Am -t

(NKAm+l /\ .. , /\ NKAn /\ AI) V KAm+l V ... V KAn.

The reason why we express the clause with the an
tecedent on the left hand side is that we intend to use
this clause in a bottom-up way; that is, from left to right.
In this expression, N KA means that we assume that A is

27

false, whereas, KA means that we assume that A is true.
Although K and N K are modal operators, we can treat
KA and N KA as new predicates independent from A by
adding the following constraints:

NKA, A -: for every atom A. (1)

N KA, KA -t for every atom A. (2)

By this translation, we obtain a set of clauses in first
order logic and therefore it is possible to compute all
possible models for the set using a first order bottom-up
theorem prover, MGTP, described in Section 2. After
computing all possible models for the set of clauses, we
need to select only those models M which satisfy the
following condition:

For every ground atom A, if KA E M, then A EM.
(3)

Note that this translation scheme defines a coding
method of original general logic programs which may
contain negation by failure in terms of pure first order
logic. Note also that the same technique can be applied
in computing abduction, which means to find possible
sets of hypotheses explaining the observation and not
contradicting given integrity constraints.

Satoh and Iwayama [SatohIwayama 92] independently
developed a top-down procedure for answering queries to
a general logic program with integrity constraints. They
modified an algorithm proposed by Eshghi and Kowalski
[EshghiKowalski 89] to correctly handle situations where
some proposition must hold in a model, like the require
ment of (3).

Iwayama and Satoh [IwayamaSatoh 91] developed a
mixed strategy combining bottom-up and top-down
strategies for computing the stable models of general
logic programs with constraints. The procedure is ba
sically bottom-up. The top-down computation is related
to the requirement of (3) and as soon as a hypothesis of
K A is asserted in some model, it tries to prove A by a
top-down expectation procedure.

The formalization of abductive reasoning has a wide
range of applications including computer aided design
and fault diagnosis. Our approach provides a uniform
scheme for representing such problems and solving them.
It also provides a way of utilizing our parallel inference
machine, PIM, for solving these complex AI problems.

5.2 Formal Approach to Analogy

Analogy is an important reasoning method in human
problem solving. Analogy is very helpful for solving
problems which are very difficult to solve by themselves.
Analogy guides the problem solving activities using the
knowledge of how to solve a similar problem. Another
aspect of analogy is to extract good guesses even when
there is not enough information to explain the answer.

There are three major problems to be solved in order
to mechanize analogical reasoning [Arima 92]:

28

• searching for an appropriate base of analogy with
respect to a given target,

• selecting important properties shared by a base and
a target, and

• selecting properties to be projected through an anal
ogy from a base to a target.

Though there was much work on mechanizing analogy,
most of this only partly addressed the issues listed above.
Arima [Arima 92] proposed an attempt to answer all the
issues at once. Before explaining his idea, we need some
preparations for defining teqIlinology.

Analogical reasoning is expressed as the following in
ference rule:

S(B) 1\ PCB)
SeT)
peT)

where T represents the target object, B the base object,
S the similarity property between T and B, and P the
projected property.

This inference rule expresses that if we assume an ob
ject T is similar to another object B in the sense that
they share a common property S then, if B has another
property P, we can analogically reason that T also has
the same property P. Note that the syntactic similarity
of this rule to modus ponens. If we generalize the ob
ject B to a universally quantified variable X and replace
the and connective to the implication connective, then
the first expression of the rule becomes SeX) :) P(X),
thereby the entire rule becomes modus ponens.

Arima [Arima 92] tried to link the analogical reason
ing to deductive reasoning by modifying the expression
S(B) 1\ PCB) to

'v'x.(J(x) 1\ Sex) :) P(x)), (4)

where J(x) is a hypothesis added to Sex) in order to
logically conclude P(x). If there exists such a J(x), then
the analogical reasoning becomes pure deductive reason
ing. For example, let us assume that there is a student
(StudentB) who belongs to an orchestra club and also
neglects study. If one happens to know that another
student (StudentT) belongs to the orchestra club, then
we tend to conclude that he also neglects study. The
reason why we derive such a conclusion is that we guess
that the orchestra club is very active and student mem
bers of this busy club tend to neglect study. This reason
is an example of the hypothesis mentioned above.

Arima analyzed the syntactic structure of the above
J(x) by carefully observing the analogical situation.
First, we need to find a proper parameter for the pred
icate J. Since it is dependent on not only an object
but also the similarity property and the projected prop
erty, we assume that J has the form of J(x,s,p), where s

and p represent the similarity property and the projected
property.

From the nature of analogy, we do not expect that
there is any direct relationship between the object x and
the projected property p. Therefore, the entire J(x,s,p)
can be divided into two parts:

J(x,s,p) = Jatt(s,p) 1\ Jobj(X,S), (5)

The first component, Jatt(s,p), corresponds to informa
tion extracted from a base. The reason why it does not
depend on x comes from the observation that informa
tion in the base of the analogy is independent from the
choice of an object x.

The second component, Jobj(X, s), corresponds to in
formation extracted from the similarity and therefore it
does not contain p as its parameter.

Example: Negligent Student

First, let us formally describe the hypothesis described
earlier to explain why an orchestra member is negligent
of study. It is expressed as follows:

'v'x,s,p.(Enthusiastic(x,s) 1\ BusyClub(s)
I\Obstructive_to(p, s) 1\ Member _of (x, s)

:) NegligenLof(x,p)) (6)

where x, s, and p are variables representing a person, a
club and some human activity, respectively. The mean
ing of each predicate is easy to understand and the
explanations are omitted. Since we know that both
StudentB and StudentT are members of an orchestra,
Members_of(X,s) corresponds to the similarity prop
erty Sex) in (4). On the other hand, since we want to rea
son the negligence of a student, the projected property
P(x) is NegligenLof(x,p). Therefore, the rest of the
expression ·in (6): Enthusiastic(x, s) 1\ BusyClub(s) 1\

Obstructive_to(p,s) corresponds to J(x,s,p). From the
syntactic feature of this expression, we can conclude that

JObj(X,S) = Enthusiastic(x,s),
Jatt(s,p) = BusyClub(s) 1\ Obstructive_to(p,s).

The reason why we need Jobj is that we are not al
ways aware of an important similarity like Enthusiastic.
Therefore, we need to infer an important hidden similar
ity from the given similarity such as Member _0 f. This
inference requires an extra effort in order to apply the
above framework of analogy.

The restriction on the syntactic structure of J(x,s,p)
is very important since it can be used to prune a search
space to access the right base case given the target. This
function is particularly important when we apply our
analogical inference framework to case based reasoning
systems.

5.3 Knowledge Representation

Knowledge representation is one of the central issues in
artificial intelligence research. Difficulty arises from the
fact that there has been no single knowledge representa
tion scheme for representing various kinds of know ledge
while still keeping the simplicity as well as the efficiency
of their utilization. Logic was one of the most promising
candidates but it was weak in representing structured
knowledge and the changing world. Our aim in devel
oping a knowledge representation framework based on
logic and logic programming is to solve both of these
problems. From the structural viewpoint, we developed
an extended relational database which can handle non
normal forms and its corresponding programming lan
guage, CRL [Yokota 88aJ. This representation allows
users to describe their databases in a structured way in
the logical framework [Yokota et al. 88b].

Recently, we proposed a new logic-based knowledge
representation language, Quixote [YasukawaYokota 90].
Quixote follows the ideas developed in CRL and CIL:
it inherits object-orientedness from the extended version
of CRL and partially specified terms from CIL. One of
the main characteristics of the object-oriented features
is the notion of object identity. In Quixote, not only
simple data atoms but also complex structures are can
didates for object identifiers [Morita 90J. Even circular
structures can be represented in Quixote. The non-well
founded set theory by Aczel [Aczel 88] was adopted to
characterize them as a mathematical foundation for such
objects, and unification on infinite trees [Colmerauer 82J
was adopted as an implementation method.

6 Conclusion

In this article, we summarized the basic research activi
ties of the FGCS project. We emphasized two different
directions of logic programming research. One followed
logic programming languages where constraint logic pro
gramming and concurrent logic programming were fo
cussed. The other followed basic research in artificial
intelligence and software engineering based on logic and
logic programming.

This project has been like solving a jigsaw puzzle. It
is like trying to discover the hidden picture in the puzzle
using logic and logic programming as clues. The research
problems to be solved were derived naturally from this
image. There were several difficult problems. For some
problems, we did not even have the right evaluation stan
dard for judging the results. The design of GHC is such
an example. Our entire picture of the project helped in
guiding our research in the right direction.

The picture is not completed yet. We need further
efforts to fill in the remaining spaces. One of the most
important parts to be added to this picture is the inte
gration of constraint logic programming and concurrent

29

logic programming. We mentioned our preliminary lan
guage/system, GDCC, but this is not yet matured. We
need a really useful language which can be efficientlly ex
ecuted on parallel hardware. Another research subject
to be pursued is the realization of a database in KLl.
We are actively constructing a parallel database but it
is still in the preliminary stages. We believe that there
is much affinity between databases and parallelism and
we expect a great deal of parallelism from database ap
plications. The third research subject to be pursued is
the parallel implementation of abduction and induction.
Recently, there has been much work on abduction and
induction based on logic and logic programming frame
works. They are expected to provide a foundation for
many research themes related to knowledge acquisition
and machine learning. Also, both abduction and induc
tion require extensive symbolic computation and, there
fore, fit very well with PIM architecture.

Although further research is needed to make our re
sults really useful in a wide range of large-scale applica
tions, we feel that our approach is in the right direction.

Acknowledgements

This paper reflects all the basic research activities in the
Fifth Generation Computer Systems project. The author
would like to express his thanks to all the researchers
in ICOT, as well as those in associated companies who
have been working on this project. He especially would
like to thank Akira Aiba, Jun Arima, Hiroshi Fujita,
K6iti Hasida, Katsumi Inoue, Noboru Iwayama, Tadashi
Kawamura, Ken Satoh, Hiroshi Tsuda, Kazunori Ueda,
Hideki Yasukawa and Kazumasa Yokota for their help in
greatly improving this work. Finally, he would like to
express his deepest thanks to Dr. Fuchi, the director of
ICOT, for providing the opportunity to write this paper.

References

[Arima 92] J. Arima, Logical Structure of Anal
ogy. In Proc. of the International Conf.
on Fifth Generation Computer Systems
1992, Tokyo, 1992.

[Aczel 88] P. Aczel, Non- Well Founded Set The
ory. CLSI Lecture Notes No. 14, 1988.

[Aiba et al. 88] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley,
and R. Hasegawa, Constraint Logic Pro
gramming Language CAL. In Pmc. of
the International Conf. on Fifth Gener
ation Computing Systems 1988, Tokyo,
1988.

[Bowen Kowalski 83] K. Bowen and R. Kowalski, Amal
gamating Language and Metalanguage

30

in Logic Programming. In Logic Pro
gramming, K. Clark and S. Tarnlund
(eds.), Academic Press, 1983.

[Clark Gregory 81] K. 1. Clark and S. Gregory, A Re
lational Language for Parallel Program
ming. In Proc. ACM Conf. on Func
tional Programming Languages and
Computer Architecture, ACM, 1981.

[Clark Gregory 86] K. L. Clark and S. Gregory, PAR
LOG: Parallel Programming in Logic.
Research Report DOC 84/4, Dept. of
Computing, Imperial College of Science
and Technology, London. Also in ACM.
Trans. Prog. Lang. Syst., Vol. 8, No.1,
1986.

[Chikayama 88] T. Chikayama, Programming in ESP -
Experiences with SIMPOS -, In Pro
gramming of Future Generation Com
puters, Fuchi and Nivat (eds.), North
Holland, 1988.

[Colmerauer 82] A. Colmerauer, Prolog and Infinite
Trees. In Logic Programming, K. L.
'Clark and S. A. Tarnlund (eds.), Aca
demic Press, 1982.

[Colmerauer 86] A. Colmerauer, Theoretical Model of
Prolog II. In Logic Programming and
Its Applications, M. Van Caneghem and
D. H. D. Warren (eds.), Albex Publish
ing Corp, 1986.

[FuchiFurukawa 87] K. Fuchi and K. Furukawa, The
Role of Logic Programming in the Fifth
Generation Computer Project. New
Generation Computing, Vol. 5, No.1,
Ohmsha-springer, 1987.

[EshghiKowalski 89] K. Eshghi and R.A. Kowalski, Ab
duction compared with negation by fail
ure, in: Proceedings of the Sixth Inter
national Conference on Logic Program
ming, Lisbon, Portugal, 1989.

[Fuchi 90] K. Fuchi, An Impression of 1(Ll Pro
gramming - from my experience with
writing parallel provers . -. In Proe.
of KLI Programming Workshop '90,
ICOT, 1990 (in Japanese).

[FujitaFurukawa 88] H. Fujita and K. Furukawa, A Self
Applicable Partial Evaluator and Its
Use in Incremental Compilation. New
Generation Computing, Vol. 6, Nos.2,3,
Ohmsha/Springer-Verlag, 1988.

[FujitaHasegawa 91] H. Fujita and R. Hasegawa, A
Model Generation Theorem Prover in
1(Ll Using a Ramified-Stack Algo
rithm. In Proc. of the Eighth Interna
tional Conference on Logic Program
ming, Paris, 1991.

[Furukawa 92] K. Furukawa, Logic Programming as
the Integrator of the Fifth Generation
Computer Systems Project, Communi
cation of the ACM, Vol. 35, No.3, 1992.

[Futamura 71] Y. Futamura, Partial Evaluation of
Computation Process: An Approach to
a Compiler-Compiler. Systems, Com
puters, Controls 2, 1971.

[GelfondLifschitz 88] M. Gelfond and V. Lifschitz, The
stable model semantics for logic pro
gramming, In Proceedings of the Fifth
International Conference and Sympo
sium on Logic Programming, Seattle,
WA,1988.

[GomardJones 89] C. K. Gomard and N. D. Jones, Com
piler Generation by Partial Evaluation:

[Hasida 92]

A Case Study. In Proc. of Information
Processing 89, G. X. Ritter (ed.), North
Holland, 1989.

K. Hasida, Dynamics of Symbol Sys
tems - An Integrated Architecture of
Cognition. In Proc. of the International
Conf. on Fifth Generation Computer
Systems 1992, Tokyo, 1992.

[HawleyAiba 9l] D. Hawley and A. Aiba, Guarded Defi
nite Clauses with Constraints - Prelim
inary Report. Technical Report TR-713,
ICOT, 1991.

[Inoue et al. 92] K. Inoue, M. Koshimura and R.
Hasegawa, Embedding Negation as Fail
ure into a Model Generation The
orem Prover. To appear in CADE-
11: The Eleventh International Confer
ence on A utomated Deduction, Saratoga
Springs, NY, June 1992.

[IwayamaSatoh 91] N. Iwayama and K. Satoh, A
Bottom-·up Procedure with Top-down
Expectation for General Logic Programs
with Integrity Constraints. ICOT Tech
nical Report TR-625, 1991.

[JaffarLassez 86] J. Jaffar and J-L. Lassez, Con
straint Logic Programming. Technical
Report, Department of Computer Sci
ence, Monash University, 1986.

[Jones et al. 85] N.D. Jones, P. Sestoft, and H.
S¢ndergaard, An Experiment in Partial
Evaluation: The Generation of a Com
piler Generator. In J-.P. Jouannaud
(ed.), Rewriting Techniques and Ap
plications, LNCS-202, Springer-Verlag,
pp.124-140, 1985.

[Jones et al. 88] N. D. Jones, P. Setstoft and H. Son
dergaard, MIX: a self-applicable partial
evaluator for experiments in compiler
generator,Journal of LISP and Symbolic
Computation, 1988. .

[Kawamura 91] T. Kawamura, Derivation of Efficient
Logic Programs by Synthesizing New
Predicates. Proc. of 1991 International
Logic Programming Symposium, pp.611
- 625, San Diego, 1991.

[Koshimura et al. 91] M. Koshimura, H. Fujita and R.

[Maher 87]

Hasegawa,
Utilities for Meta-Programming in KL1.
In Proc. of KLI Programming Work
shop'91, ICOT, 1991 (in Japanese).

M. J. Maher, Logic semantics for a class
of committed-choice programs. In Proc.
of the 4th Int. Conf. on Logic Program
ming, MIT Press, 1987.

rMantheyBry 88] R. Manthey and F. Bry, SATCHMO:
A Theorem Prover Implemented in Pro
log. In Proc. of CADE-88, Argonne, Illi
nois, 1988.

[Matsumoto et al. 83] Yuji Matsumoto, H. Tanaka, H.
Hirakawa, H. Miyoshi and H. Yasukawa,
BUP: A Bottom-up Parser Embedded
in Prolog, New Generation Computing,
Vol. 1, 1983.

[Morita et ai. 90] Y. Morita, H. Haniuda and K. Yokota,
Object Identity in Quixote. Technical
Report TR-601, ICOT, 1990.

[MukaiYasukawa 85] K. Mukai, and H. Yasukawa, Com
plex Indeterminates in Prolog and its
Application to Discourse Models. New
Generation Computing, Vol. 3, No.4,
1985.

[OhsugaSakai 91] A. Ohsuga and K. Sakai, Metis: A
Term Rewriting System Generator. In
Software Science and Engineering, 1.
Nakata and M. Hagiya (eds.), World
Scientific, 1991.

[OkumuraMatsumoto 87] Akira Okumura and Yuji
Matsumoto, Parallel Programming with

[Plotkin 70]

31

Layered Streams, In Proc. 1 987 In
ternational Symposium on Logic Pro
gramming, pp. 224-232, San Francisco,
September 1987.

G. D. Plotkin, A note on inductive gen
eralization. In B. Meltzer and D. Michie
(eds.), Machine Intelligence 5, 1970.

[Poole et al. 87] D. Poole, R. Goebel and R. Aleliunas,
Theorist: A logical Reasoning System
for Defaults and Diagnosis, N. Cercone
and G. McCalla (eds.),' The Knowledge
Frontier: Essays in the Representation
of Knowledge, Springer-Verlag, pp.331-
352 (1987).

[SakaiAiba 89] K. Sakai and A. Aiba, CAL: A Theoreti
cal Background of Constraint Logic Pro
gramming and its Applications. J. Sym
bolic Computation, Vo1.8, No.6, pp.589-
603, 1989.

[Saraswat 89] V. Saraswat, Concurrent Constraint
Programming Languages. PhD thesis,
Carnegie-Mellon University, Computer
Science Department, 1989.

[SatohIwayama 92] K. Satoh and N. Iwayama, A Cor
rect Top-down Proof Procedure for a
General Logic Program with Integrity
Constraints. In Proc. of the 3rd Interna
tional Workshop on Extensions of Logic
Programming, E. Lamma and P. Mello
(eds.), Facalta di Ingegneria, Universita
di Bologna, Italy, 1992.

[SekiFurukawa 87] H. Seki and K. Furukawa, Notes on
Transformation techniques for Gener
ate and Test Logic Programs. In Proc.
1987 Symposium on Logic Program
ming, iEEE Computer Society Press,
1987.

[Shapiro 83] E. Y. Shapiro, A Subset of Concurrent
Prolog and Its Interpreter. Tech. Report
TR-003, Institute for New Generation
Computer Technology, Tokyo, 1983.

[Sugimura' et al. 88] R. Sugimura, K. Hasida, K.
Akasaka, K. Hatano, Y. Kubo, T. Oku
nishi, and T. Takizuka, A Software En-

,vironment for Research into Discourse
Understanding Systems. In Proc. of the
International Conf. on Fifth Generation
Computing Systems 1988, Tokyo, 1988.

[TakeuchiFu'rukawa 86] A. Takeuchi and K. Furukawa,
Partial Evaluation of Prolog Programs

32

[Taki 88]

[Taki 89]

and Its Application to Meta Program
ming. In Proc. IFIP'86, North-Holland,
1986.

K. Taki, The Parallel Software Research
and Development Tool: Multi-PSI sys
tem. In Programming of Future Genera
tion Computers, K. Fuchi and M. Nivat
(eds.), North-Holland, 1988.

K. Taki, The FGCS Computing Ar
chitechlre. In Proc. IFIP'89, North
Holland, 1989.

[Tanaka Yoshioka 88] Y. Tanaka, and T. Yoshioka,
Overview of the Dictionary and Lexi
cal Knowledge Base Research. In Proc.
FGCS'88, Tokyo, 1988.

[Tsuda 92]

[Veda 86a]

[Veda 86b]

H. Tsuda, cu-Prolog for Constraint
based Grammar. In Proc. of the In
ternational Conf. on Fifth Generation
Computer Systems 1992, Tokyo, 1992.

K. Veda, Guarded Horn Clauses. In
Logic Programming '85, E. Wada (ed.),
Lectl.,lre Notes in Computer Science,
221, Springer-Verlag, 1986.

K. Veda, 1I1aking Exhaustive Search
Programs Deterministic. In Proc. of the
Third Int. Conf. on Logic Programming,
Springer-Verlag, 1986.

[VedaChikayama 90] K. Veda and T. Chikayama, De
sign of the J{ ernel Language for the Par
allel Inference 1I1achine. The Computer
Journal, Vol. 33, No.6, .pp. 494-500;
1990.

[Warren 83] D. H. D. Warren, An Abstract Prolog In
struction Set. Technical Note 304, Arti
ficial Intelligence Center, SRI, 1983.

[Yasukawa Yokota 90] H. Yasukawa and K .. Yokota, La
beled Graphs as Semantics of Objects.
Technical Report TR-600, ICOT, 1990.

[Yokota 88a] K. Yokota, Deductive Approach for
Nested Relations. In Programming of
Future Generation Computers II, K.
Fuchi and L. Kott (eds.), North
Holland, 1988.

[Yokota et al. 88b] K. Yokota, M. Kawamura and A.
Kanaegami, Overview of the Knowledge
Base Management System(KAPPA). In
Pt.()c. of the International Conf. on Fifth
Grmeration Computing Systems 1988,
Tokyo, 1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 33

Summary of the Parallel Inference Machine and
its Basic Software

Shunichi Uchida

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

uchida@icot.or.jp

Abstract

This paper aims at a concise introduction to the PIM
and its basic software, including the overall framework
of the project. Now an FGCS prototype system is under
development. Its core is called a parallel inference sys
tem which includes a parallel inference machine, PIM,
and its operating system, PIMOS. The PIM includes
five hardware modules containing about 1,000 element
processors in total. On the parallel inference system,
there is a knowledge base management system (KBMS).
The PIMOS and KBMS make a software layer called a
basic software of the prototype system. These systems
are already being run on the PIM. On these systems, a
higher-level software layer is being developed. It is called
a know ledge programming software. This is to be used
as a tool for more powerful inference and know ledge pro
cessing. It contains language processors for constraint
logic programming languages, parallel theorem provers
and natural language processing systems. Several experi
mental application programs are also being developed for
both general evaluation of the PIM and the exploration
of new application fields for knowledge processing. These
achievements with the PIM and its basic software easily
surpass the research targets set up at the beginning of
the project.

1 Introduction

Since the fifth generation computer systems project
(FGCS) was started in June, 1982, 10 years have passed,
and the project is approaching its goal. This project
assumed that "logic" was the theoretical backbone of
future knowledge information processing, and adapted
logic programming as the kernel programming language
of fifth generation computer systems. In addition to the
adaptation of logic programming, highly parallel process
ing for symbolic computation was considered indispens
able for implementing practical knowledge information
processing systems. Thus, the project aimed to create a
new computer technology combining knowledge process-

Knowledge Processing

Kernel of FGCS
l@@ij~1 !l/'iliarQl/'ilcQ

IJIsll/'il~ ~<9 11111111

l}(i'Ilo'WIGd~GMS<9

Knowledge and Symbol
Processing Applications
and
Parallel Evaluation and
Benchmark Programs

(Knowledge Programming
System

Parallel OS and KBMS

PIMOS
iQllJIbtO~9

KII~~II-P

Logic Programming
Language ~11;;:11

Parallel Inference Machine

PIM 1,000 PEs in total
(Multi-PSI System, 64 PEs)

Technical Framework Prototype System of FGCS

Figure 1: Framework of FGCS Project

ing with parallel processing using logic programming.

Now an FGCS prototype system is under develop
ment. This system integrates the major research achieve
ments of these 10 years so that they can be evaluated
and demonstrated. Its core is called a parallel infer
ence system which includes a parallel inference ma
chine, PIM, and its operating system, PIMOS. The PIM
includes five hardware modules containing about 1,000
element processors in total. It also includes a language
processor for a parallel logic language, KL 1.

On the parallel inference system, there is a
knowledge base management system (KBMS).
The KBMS includes a database management system
(DBMS), Kappa-P, as its lower layer. The KBMS
provides a knowledge representation language, Quixote,

34

based on the deductive (and) object-oriented database.
The PIMOS and KBMS make a software layer called a
basic software of the prototype system. These systems
are already being run on the PIM. The PIM and basic
software are now being used as a new research platform
for building experimental parallel application programs.
They are the most complete of their kind in the world.

On this platform, a higher-level software layer is being
developed. This is to be used as a tool for more power
ful inference and knowledge processing. It contains lan
guage processors for constraint logic programming lan
guages, parallel theorem provers, natural language pro
cessing systems, and so on. These software systems all
include the most advanced knowledge processing tech
niques, and are at the leading edge of advanced software
SCIence.

Several experimental application programs are also be
ing developed for both general evaluation of the PIM
and the exploration of new application fields for knowl
edge processing. These programs include a legal reason
ing system, genetic information processing systems, and
VLSI CAD systems. They are now operating on the
parallel inference system, and indicate that parallel pro
cessing of knowledge processing applications is very ef
fective in shortening processing time and in widening the
scope of applications. However, they also indicate that
more research should be made into parallel algorithms
and load balancing methods for symbol and knowledge
processing. These achievements with the PIM and its
basic software easily surpass the research targets set up
at the beginning of the project.

This paper aims at a concise introduction to the PIM
and its basic software, including the overall framework
of the project. This project is the first Japanese na
tional project that aimed at making a contribution to
world computer science and the promotion of interna
tional collaboration. We have published our research
achievements wherever possible, and distributed various
programs from time to time. Through these activities,
we have also been given much advice and help which
was very valuable in helping us to attain our research
targets. Thus, our achievements in the project are also
the results of our collaboration with world researchers on
logic programming, parallel processing and many related
fields.

2 Research Targets and Plan

2.1 Scope of R&D

The general target of the project is the development of
a new computer technology for knowledge information
processing.

Having "mathematical logic" as its theoretical back
bone, various research and development themes were es
tablished on software and hardware technologies focusing

on knowledge and symbol processing. These themes are
grouped into the following three categories:

2.1.1 Parallel inference system

The core portion of the project was the research and de
velopment of the parallel inference system which contains
the PIM, a KL1language processor, and the PIMOS. To
make the goal of the project clear, a FGCS prototype
system was considered a major target. This was to be
build by integrating many experimental hardware and
software components developed ar0und logic program
ming.

The prototype system was defined as a parallel infer
ence system which is intended to have about 1,000 ele
ment processors and attain more than 100M LIPS (Log
ical Inference Per Second) as its execution speed. It was
also intended to have a parallel operating system, PI
MOS, as part of the basic software which provides us
with an efficient parallel programming environment in
which we can easily develop various parallel application
programs for symbol and knowledge processing, and run
them efficiently.- Thus, this is regarded as the develop
ment of a super computer for symbol and knowledge pro
cessing.

It was intended that overall research and development
activities would be concentrated so that the major re
search results could he integrated into a final prototype
system, step by step, over the timespan allotted to the
project.

2.1.2 KBMS and knowledge programming soft
ware

Themes in this category aimed to develop a basic soft
ware technology and theory for knowledge processing.

• Knowledge representation and knowledge base man
agement

• High-level problem solving and inference software

• N aturallanguage processing software

These research themes were intended to create new
theories and software technologies based on mathemat
ical logic to describe various knowledge fragments
which are parts of "natural" knowledge bases pro
duced in our social systems. We also intended to store
them in a computer system as components of "artifi
cial" knowledge bases so that they can be used to
build various intelligent systems.

To describe the knowledge fragments, a knowledge rep
resentation language has to be provided. It can be re
garded as a very high-level programming language exe
cu ted by a sophisticated inference mechanism which is
much cleverer than the parallel inference system. Nat
ural language processing research is intended to cover

35

lE~psrijm~rn~m~ #\p~~ij~~ij©)rn Sw~~~ms

Parallel VLSI-CAD Systems Legal Reasoning System
Genetic Information Processing Systems

Other parallel expert systems

---IK...;.;,rn©)_w~~~~ ~O'@oo~~ijrn~ __ ----..I_

(
Natural Language ~@ifilwIlO'~

Processing System_-=s~ ~/~ __ --..;"'--

Parallel OS, PIMOS
KL 1 Programming Env.

~-~---...-

Parallel KBMS/DBMS
Kappa-P + Quixote

PIM/i
PIM/c

PIM/m

PIMIk

Figure 2: Organization of Prototype System

research on knowledge representation methods and such
inference mechanisms, in addition to research on easy
to-use man-machine interface functions. Experimental
software building for some of these research themes was
done on the sequential inference machines because the
level of research was so basic that computational power
was not the major problem.

2.1.3 Benchmarking and evaluation systems

• Benchmarking software for the parallel inference
system

• Experimental parallel application software

To carry out research on an element technology in com
puter science, it is essential that an experimental soft
ware system is built. Typical example problems can then
be used to evaluate theories or methods invented in the
progress of the research.

To establish general methods and technologies for
knowledge processing, experimental systems should be
developed for typical problems which need to process
knowledge fragments as sets of rules and facts.

These problems can be taken from engineering sys
tems, including machine design and the diagnosis of ma
chine malfunction, or from social systems such as medical
care, government services, and company management.

Generally, the exploitation of computer technology for
knowledge processing is far behind that for scientific cal
culation. Recent expert systems and machine translation
systems are examples of the most advanced knowledge
processing systems. However, the numbers of rules and
facts in their knowledge bases are several hundreds on
average.

This scale of knowledge base may not be large enough
to evaluate the maximum power of parallel inference sys
tem having about 1,000 element processors. Thus, re
search and development on large-scale application sys
tems is necessary not only for knowledge processing re
search but also for the evaluation of the parallel infer
ence system. Such application systems should be widely
looked for in many new fields.

The scope of research and development in this project
is very wide, however, the parallel inference system is
central to the whole project. It is a very clear research
target. Software research and development should also
cover diverse areas in recent software technology. How
ever, it has "logic" as the common backbone.

It was also intended that major research achievements
should be integrated into one prototype system. This has
made it possible for us to organize all of our research and
development in a coherent way. At the beginning of the
project, only the parallel inference machine was defined
as a target which was described very clearly. The other
research targets described above were not planned at the

36

beginning of the project. They have been added in the
middle of the intermediate stage or at the final stage.

2.2 Overall R&D plan

After three years of study and discussions on determining
our major research fields and targets, the final research
and development plan was determined at the end of fiscal
1981 with the budget for the first fiscal year.

At that time, practical logic programming languages
had begun to be used in Europe mainly for natural lan
guage processing. The feasibility and potential of logic
languages had not been recognized by many computer
scientists. Thus, there was some concern that the level
of language was too high to describe an operating sys
tem, and that the overhead of executing logic programs
might be too large to use it for practical applications.
This implies that research on logic programming was in
its infancy.

Research on parallel architectures linked with high
level languages was also in its infancy. Research on
dataflow architectures was the most advanced at that
time. Some dataflow architecture was thought to have
the potential for knowledge and symbol processing. How
ever, its feasibility for practical applications had not yet
been evaluated.

Most of the element technologies necessary to build the
core of the parallel inference system were still in their in
fancy. We then tried to define a detailed research plan
step by step for the la-year project period. We divided
the la-year period into three stages, and defined the re
search to be done in each stage as follows:

• Initial stage (3 years) :
-Research on potential element technologies
-Development of research tools

• Intermediate stage (4 years)
-First selection of major element technologies for fi
nal targets
-Experimental building of medium-scale systems

• Final stage (3 years) :
-Second selection of major element technologies for
final targets
-Experimental building of a final full-scale system

At the beginning of the project, we made a detailed
research and development plan only for the initial stage.
We decided to make detailed plans for the intermediate
and final stages at the end of the stage before, so that
the plans would reflect the achievements of the previous
stage. The research budget and manpower were to be
decided depending on the achievements. It was likely
that the project would effectively be terminated at the
end of the initial stage or the intermediate stage.

3 Inference System in the Initial
Stage

3.1 Personal Sequential Inference Ma
chine (PSI-I)

To actually build the parallel inference system, especially
a productive parallel programming environment which is
now provided by PIMOS, we needed to develop various
element technologies step by step to obtain hardware and
software components. On the way toward this develop
ment, the most promising methods and technologies had
to be selected from among many alternatives, followed by
appropriate evaluation processes. To make this selection
reliable and successful, we tried to build experimental
systems which were as practical as possible.

In the initial stage, to evaluate the descriptive power
and execution speed of logic languages, a personal se
quential machine, PSI, was developed. This was a logic
programming workstation. This development was also
aimed at obtaining a common research tool for software
development. The PSI was intended to attain an execu
tion speed similar to DEClO Prolog running on a DEC20
system, which was the fastest logic programming system
in the world.

To begin with, a PSI machine language, KLO, was de
signed based on Prolog. Then a hardware system was de
signed for the KLO. We employed tag architecture for the
hardware system. Then we designed a system descrip
tion language, ESP, which is a logic language having a
class and inheritance mechanisms to make program mod
ules efficiently.[Chikayama 1984] ESP was used not only
to write the operating system for PSI, which is named
SIMPOS, but also to write many experimental software
systems for knowledge processing research.

The development of the PSI machine and SIMPOS was
successful. We were impressed by the very high software
productivity of the logic language. The execution speed
of the PSI was about 35K LIPS and exceeded its target.
However, we realized that we could improve its architec
ture by using the optimization capability of a compiler
more effectively. We produced about 100 PSI machines
to distribute as a common research tool. This version of
the PSI is called PSI-I.

In conjunction with the development of PSI-I and
SIMPOS, research on parallel logic languages was ac
tively pursued. In those days, pioneering efforts were
being made on parallel logic languages such as P AR
LOG and Concurrent Prolog. [Clark and Gregory 1984],
[Shapiro 1983] We learned much from this pioneering re
search, and aimed to obtain a simpler language more
suited for a machine language for a parallel inference ma
chine. Near the end of the initial stage, a new parallel
logic language, GHC was designed. [Ueda 1986]

37

Table 1: Development of Inference Systems

~QJl@I1ilUDtSlO Inference Tech.

'82-'84 I (Sequential Logic Programming J
Initial Il Languages, 1}:{1b® and ~®~

~tSlI1'@lOO@O Inference Tech.

Stage

I
(sequential_Inference Machme, (parallel Logic Programming J

..... 1tR PSI-I and SIMPOS, fa """ IWn <l
!'IIJM ~I}:{IbO~® f1®ij' ~Ib® • Languages ~1Xl~ and ~1.6 u

... · .. ··r · · .. · .. · .. · .. · ·· .. ··J· .. ·················· .. · .. ·
'85-'88 (New model of PSI, PSI-II, E Experimental Model of PIM,
Inter- ; ~ ~®I}:{IbO~® f1®ij' 1}:{1b® Multi-PSI System,
mediate ®IMlIbDIP>® I COOIP>~~ {J@)!l' ~Ib 'ij
Stage

Parallel OS, ~DIMl@® and Small
1=j:lW) ! Application Programs

"~~r" :· ~i~;;~: ::;~;:;·;; · · .. · .. · r .. ···~~i~~;ii::~:=;··:~~··· ·· ..
3.2 Effect of PSI development on the

research plan

The experience gained in the development of PSI-I and
SIMPOS heavily affected the planning of the intermedi
ate stage.

3.2.1 Efficiency in program production

One of the important questions related to logic language
was the feasibility of writing an operating system which
needs to describe fine detailed control mechanisms. An
other was its applicability to writing large-scale pro
grams. SIMPOS development gave us answers to these
questions. The SIMPOS has a multi-window-based user
interface, and consists of more than 100,000 ESP pro
gram lines. It was completed by a team of about 20
software researchers and engineers over about two years.
Most of the software engineers were not familiar with
logic languages at that time.

We found that logic languages have much higher
productivity and maintainability than conventional von
Neumann languages. This was obvious enough to con
vince us to describe a parallel operating system also in a
logic language.

3.2.2 Execution performance

The PSI-I hardware and firmware attained about 35K
LIPS. This execution speed was sufficient for most knowl
edge processing applications. The PSI had an 80 MB
main memory. It was a. very big memory compared to
mainframe computers at that time. We found that this
large memory and fast execution speed made a logic lan
guage a practical and highly productive tool for software

proto typing.
The implementation of the PSI-I hardware required

11 printed circuit boards. As the amount of hardware
became clear, we established that we could obtain an
element processor for a parallel machine if we used VLSI
chips for implementation.

For the KLO language processor which was imple
mented in the firmware, we estimated that better op
timization of object code made by the compiler would
greatly improve execution speed. (Later, this op
timization was made by introducing of the "WAM"
code.[Warren 1983])

The PSI-I and SIMPOS proved that logic languages
are a very practical and productive vehicle for complex
knowledge processing applications.

4 Inference Systems in the In
termediate Stage

4.1 A parallel inference system

4.1.1 Conceptual design of KL1 and PIJYIOS

The most important target in the intermediate stage was
a parallel implementation of a KL1 language processor,
and the development of a parallel operating system, PI
MOS.

The full version of GHC, was still too complex for the
machine implementation. A simpler version, FGHC,
was designed.[Chikayama and Kimura 1985] Finally, a
practical parallel logic language, KL1, was designed
based on FGHC.

The KL1 is a parallel language classified as an

38

AND-parallel logic programming language. Its lan
guage processor includes an automatic memory manage
ment mechanism and a dataflow process synchronization
mechanism. These mechanisms were considered essential
for writing and compiling large parallel programs. The
first problem was whether they could be implemented ef
ficiently. The second problem was what kind of firmware
and hardware support would be possible and effective.

In addition to problems in implementing the KLI lan
guage processor, the design of PIMOS created several im
portant problems. The role of PIMOS is different from
that of conventional operating systems. PIMOS does
not need to do primary process scheduling and mem
ory management because these tasks are performed by
the language processor. It still has to perform resource
management for main memory and element processors,
and control the execution of user programs. However, a
much more difficult role was added. It must allow a user
to divide a job into parallel processable processes and
distribute them to many element processors. Processor
loads must be well balanced to attain better execution
performance. In knowledge and symbol processing ap
plications, the dynamic structure of a program is not
regular. It is difficult to estimate the dynamic program
structure. It was desirable that PIMOS could offer some
support for efficient job division and load balancing prob
lems.

These problems in the language processor and the op
erating system were very new, and had not been studied
as practical software problems. To solve these problems,
we realized that we must have appropriate parallel hard
ware as a platform to carry out practical software exper
iments using a trial and error.

4.1.2 PSI-II and Multi-PSI system

In conjunction with the development of KLI and PI
MOS, we needed to extend our research and develop new
theories and software technologies for knowledge process
ing using logic programming. This research and develop
ment demanded improvement of PSI-I machines in such
aspects as performance, memory size, cabinet size, disk
capacity, and network connection.

We decided to develop a smaller and higher
performance model of PSI, to be called PSI-II. This
was intended to provide a better workstation for use as
a common tool and also to obtain an element processor
for the parallel hardware to be used as a platform for
parallel software development. This hardware was called
a multi-PSI system. It was regarded as a small-scale
experimental version of the PIM. As many PSI-II ma
chines were produced, we anticipated having very stable
element processors for the multi-PSI system.

The PSI-II used VLSI gate array chips for its CPU.
The size of the cabinet was about one sixth that of PSI-
1. Its execution speed was 330K LIPS, about 10 times
faster than that of PSI-I. This improvement was attained

mainly through employment of the better compiler opti
mization technique and improvement of its machine ar
chitecture. The main memory size was also expanded to
320 MB so that prototyping of large applications could
be done quickly.

In the intermediate stage, many experimental systems
were built on PSI-I and PSI-II systems for knowledge
processing research. These included small-to-medium
scale expert systems, a natural language discourse un
derstanding system, constraint logic programming sys
tems, a database management system, and so on. These
systems were all implemented in the ESP language using
about 300 PSI-II machines distributed to the researchers..
as their personal tools.

The development of the multi-PSI system was com
pleted in the spring of 1988. It consists of 64 element pro
cessors which are connected by an 8 by 8 mesh network.
One element processor is contained in three printed cir
cuit boards. Eight element processors are contained in
one cabinet. Each element processor has an 80 MB main
memory. Thus, a multi-PSI was to have about 5GB
memories in total. This hardware was very stable, as
we had expected. We produced 6 multi-PSI systems and
distributed them to main research sites.

4.1.3 KLI language processor and PIMOS

This was the first trial implementation of a distributed
language processor of a parallel logic language, and a
parallel operating system on real parallel hardware, used
as a practical tool for parallel knowledge processing ap
plications.

The KLI distributed language processor was an inte
gration of various complex functional modules such as a
distributed garbage collector for loosely-coupled memo
ries. The automatic process synchronization mechanism
based on the dataflow model was also difficult to imple
ment over the distributed element processors. Parts of
these mechanisms had to be implemented combined with
some PIMOS functions such as a dynamic on-demand
loader for object program codes. Other important func-

-tions related to the implementation of the language pro
cessor were support functions like system debugging, sys
tem diagnostic, and system maintenance functions.

In addition to these functions for the KLI language
processor, many PIMOS functions for resource manage
ment and execution control had to be designed and im
plemented step by step, with repeated partial module
building and evaluation.

This partial module building and evaluation was done
for core parts of the KLllanguage processor and PIMOS,
using not only KLI but also ESP and C languages. An
appropriate balance between the functions of the lan
guage processor and the functions of PIMOS was con
sidered. The language processor was implemented in a
PSI-II firmware for the first time. It worked as a pseudo
parallel simulator of KLl, and was used as a PIMOS

400KlIPS
(Sequential
LP.L.:KLO)

• Machine language: KLl-b

• Max. 64PEs and two FEPs (PSI-II) connected to LAN

• Architecture of PE:
- Microprogram control (64 bits/word)
- Machine cycle: 200ns, Reg.file: 64W
- Cache: 4 KW, set associative/write-back
- Data width: 40 bits/word
- Memory capacity: 16MW (80MB)

• Network:
- 2-dimensional mesh
- 5MB/s x 2 directions/ch with 2 FIFO buffers/ch
- Packet routing control function

39

Figure 3: Multi-PSI System: Main features and Appearance

development tool. It was eventually extended and trans
ported to the multi-PSI system.

In the development of PIMOS, the first partial mod
ule building was done using the C language in a Unix
environment. This system is a tiny subset of the KLI
language processor and PIMOS, and is called the PI
MOS Development Support System (PDSS). It is now
distributed and used for educational purposes. The
first version of PIMOS was released on the PSI-II with
the KLI firmware language processor. This is called a
pseudo multi-PSI system. It is currently used as a
personal programming environment for KLI programs.

With the KLI language processor fully implemented
in firmware, one element processor or a PSI-II attained
about 150 KLIPS for a KLI program. It is interesting
to compare this speed with that for a sequential ESP
program. As a PSI-II attains about 300 KLIPS for a
sequential ESP program, the overhead for KLI caused
by automatic process synchronization halves the execu
tion speed. This overhead is compensated for by effi
cient parallel processing. A full-scale multi-PSI system
of 64 element processors could attain 5 - 10 MLIPS. This
speed was considered sufficient for the building of exper
imental software for symbol and knowledge processing
applications. On this system, simple benchmarking pro
grams and applications such as puzzle programs, a natu
rallanguage parser and a Go-game program were quickly
developed. These programs and the multi-PSI sys
tem was demonstrated in FGCS'88.[Uchida et al. 1988]
These proved that KLI and PIMOS could be used as a

new platform for parallel software research.

4.2 Overall design of the parallel in-
ference system

4.2.1 Background of the design

The first question related to the design of the parallel
inference system was what kind of functions must be
provided for modeling and programming complex prob
lems, and for making them run on large-scale parallel
hardware.

When we started this project, research on parallel pro
cessing still tended to focus on hardware problems. The
major research and development interest was in SIMD
or MIMD type machines applied for picture processing
or large-scale scientific calculations. Those applications
were programmed in Fortran or C. Control of parallel
execution of those programs, such as job division and
load balancing, was performed by built-in programs or
prepared subroutine libraries, and could not be done by
ordinary users.

Those machines excluded most of the applications
which include irregular computations and require gen
eral parallel programming languages and environments.
This tendency still continues. Among these parallel ma
chines, some dataflow machines were exceptional and had
the potential to have functional languages and their gen
eral parallel programming environment.

We were confident that a general parallel programming

40

language and environment is indispensable for writing
parallel programs for large-scale symbol and knowledge
processing applications, and that they must provide such
functions as follows:

1. An automatic memory management mechanism for
distributed memories (parallel garbage collector)

2. An automatic process synchronization mechanism
based on a dataflow scheme

3. Various support mechanisms for attaining the best
job division and load balancing.

The first two are to be embedded in the language pro
cessor. The last is to be provided in a parallel operating
system. All of these answer the question of how to write
parallel programs and map them on parallel machines.

This mapping could be made fully automatic if we
limited our applications to very regular calculations and
processing. However, for the applications we intend, the
mapping process, which includes job division and load
balancing, should be done by programmers using the
functions of the language processor and operating sys
tem.

4.2.2 A general parallel programming environ-
ment

Above mechanisms for mapping should be implemented
in the following three layers:

1. A parallel hardware system consisting of element
processors and inter-connection network (PIM hard
ware)

2. A parallel language processor consisting of run-time
routines, built-in functions, compilers and so on
(KLI language processor)

3. A parallel operating system including a program
ming environment (PIMOS)

At the beginning of the intermediate stage, we tried to
determine the roles of the hardware, the language pro
cessor and the operating system. This was really the
start of development.

One idea was to aim at hardware with many functions
and using high density VLSI technology, as described in
early papers on dataflow machine research. It was a very
challenging approach. However, we thought it too risky
because changes to the logic circuits in VLSI chips would
have a long turn-around time even if the rapid advance of
VLSI technology was taken into account. Furthermore,
we thought it would be difficult to run hundreds of so
phisticated element processors for a few days to a few
weeks without any hardware faults.

Implementation of the language processor and the op
erating system was thought to be very difficult too. As

there were no prior examples, we could not make any re
liable quantitative estimation of the overhead caused by
these software systems. This implementation was there
fore considered risky too.

Finally, we decided not to make an element proces
sor too complex , so that our hardware engineers could
provide the software researchers with a large-scale hard
ware platform stable enough to make the largest-scale
software experiments in the world.

However, we ~ried to add cost-effective hardware sup
port for KLI to the element processor, in order to at
tain a higher execution speed. We employed tag archi
tecture to support the autom:atic memory management
mechanism as well as faster execution of KLI programs.
The automatic synchronization mechanism was to be im
plemented in firmware. The supports for job division
and load balancing were implemented partially by the
firmware as primitives of the KLI language, but they
were chiefly implemented by the operating system. In a
programming environment of the operating system, we
hoped to provide a semi-automatic load balancing mech
anism as an ultimate research goal.

PIMOS and KLI hide from users most of the archi
tectural details of the element processors and network
system of PIM hardware. A parallel prograII}. is modeled
and programmed depending on a parallel model of an
application problem and algorithms designed by a pro
grammer. The programmer has great freedom in divid
ing programs because a KLI program is basically con
structed from very fine-grain processes.

As a second step, the programmer can decide the
grouping of fine-grain processes in order to obtain an ap
propriate granularity as divided jobs, and then specify
how to dispatch them to element processors using a spe
cial notation called "pragma". This two step approach
in parallel programming makes it easy and productive.

We decided to implement the memory management
mechanism and the synchronization mechanism mainly
in the firmware. The job division and load balancing
mechanism was to be implemented in the software. We
decided not to implement uncertain mechanisms in the
hardware.

The role of the hardware system was to provide a sta
ble platform with enough element processors, execution
speed, memory capacity, number of disks and so on. The
demands made on the capacity of a cache and a main
memory were much larger than those of a general pur
pose microprocessor of that time. The employment of
tag architecture contributed to the simple implementa
tion of the memory management mechanism and also
increased the speed of KLI program execution.

5 R&D in the final stage

5.1 Planning of the final stage

At the end of the intermediate stage, an experimen
tal medium-scale parallel inference system consisting of
the multi-PSI system, the KL1 language processor, and
PIMOS was successfully completed. On this system,
several small application programs were developed and
run efficiently in parallel. This proved that symbol and
knowledge processing problems had sufficient parallelism
and could be written in KL1 efficiently. This success en
abled us to enter the final stage.

Based on research achievements and newly developed
tools produced in the intermediate stage, we made a de
tailed plan for the final stage. One general target was to
make a big jump from the hardware and software tech
nologies for the multi-PSI system to the ones for the
PIM, with hundreds of element processors. Another gen
eral target was to make a challenge for parallel processing
of large and ·complex knowledge processing applications
which had never been tackled anywhere in the world,
using KL1 and the PIM.

Through the research and development directed to
these targets, we expected that a better parallel pro
gramming methodology would be established for logic
programming. Furthermore, the development of large
and complex application programs would not only en
courage us to create new methods of building more in
telligent systems systematically but could also be used
as practical benchmarking programs for the parallel in
ference system. We intended to develop new techniques
and methodologies.

1. Efficient parallel software technology

(a) Parallel modeling and programming techniques
-Parallel programming paradigms
-Parallel algorithms

(b) Efficient mapping techniques of parallel pro
cesses to parallel processors
-Dynamic load balancing techniques
- Performance debugging support

2. New methodologies to build intelligent systems us
ing the power of the parallel inference system

(a) Development of a higher-level reasoning or in
ference engine and higher-level programming
languages

(b) Methodologies for knowledge representation
and knowledge base management (methodol
ogy for knowledge programming)

The research and development themes in the final stage
were set up as follows:

41

1. PIM hardware development

We intended to build several models with differ
ent architectures so that we could compare map
ping problems between the architectures and pro
gram models. The number of element processors for
all the modules was planned about 1,000.

2. The KL1 language processor for the PIM modules

We planned to develop new KLllanguage processors
which took the architectural differences on the PIM
modules into account.

3. Improvement and extension of PIMOS

We intended to develop an object-oriented language,
AYA, over KL1, a parallel file system, and extended
performance debugging tools for its programming
environment.

4. Parallel DBMS and KBMS

We planned to develop a parallel and distributed
database management system, using several disk
drives connected to PIM element processors, was in
tended to attain high throughput and consequently
a high information retrieval speed. As we had al
ready developed a data base management system,
Kappa-II, which employed a nested relational model
on the PSI machine, we decided to implement a par
allel version of Kappa- II. However, we redesiged its
implementation, employing the distributed database
model and using KL1. This parallel version is called
Kappa-P. We plan to develop a knowledge base man
agement system on the Kappa-P. This would be
based on the deductive object-oriented DB, having
a knowledge representation language, Quixote.

5. Research on knowledge programming software

We intended to continue various basic research ac
tivities to develop new theories, methodologies and
tools for building knowledge processing application
systems. These activities were grouped together as
research on knowledge programming software.

This included research themes such as a parallel
constraint logic programming language, mathemat
ical systems including theorem provers, natural lan
guage processing systems such as a grammar design
system, and an intelligent sentence generation sys
tem for man-machine interfacing.

6. Benchmarking and experimental parallel applica
tion systems

To evaluate the parallel inference system and the
various tools and methodologies developed in the
above themes, we decided to make more effort to

42

explore new applications of parallel knowledge pro
cessing. We began research into a legal expert sys
tem, a genetic information processing systems and
so on.

5.2 R&D results in the final stage

The actual research activities into the themes described
above differed according to characteristics. In the de
velopment of the parallel inference system, we focused
on the integration of PIM hardware and some software
components. In our research on knowledge programming
software, we continued basic research and experimental
software building to create new theories and develop par
allel software technologies for the future.

5.2.1 PIM hardware and KLI language proces
sor

A role of the PIM hardware was to provide software re
searchers with an advanced platform which would allow
large-scale software development for knowledge process
ing.

Another role was to obtain various evaluation data
in the architecture and hardware structure of the ele
ment processors and network systems. In particular, we
wanted to analyze the performance of large-scale parallel
programs on various architectures (machine instruction
sets) and hardware structures, so that hardware engi
neers could design more powerful and cost-effective par
allel hardware in the future.

In the conceptual design of the PIM hardware, we real
ized that there were many alternative designs for the ar
chitecture of an element processor and the structure of a
network system. For the architecture of an element pro
cessor, we could choose between a CISC type instruction
set implemented in firmware and a RISC type instruction
set. On the interconnection network, there were several
opinions, including a two dimensional mesh network like
the multi-PSI, a cross-bar switch, and a common bus and
coherent cache.

To design the best hardware, we needed to find out the
mapping relationships between program behavior and
the hardware architectures and structures. We had to
establish criteria for the design of the parallel hardware,
reflecting the algorithms and execution structures of ap
plication programs.

To gather the basic data we needed to obtain this de
sign criteria, we tried to categorize our design choices
into five groups and build five PIM modules. The main
features of these five modules are listed in Table 2. The
number of element processor required for each module
was determined depending on the main purpose of the
module. Large modules have 256 to 512 element proces
sors, and were intended to be used for software experi
ments. Small modules have 16 or 20 element processors

and were built for architectural experiments and evalua
tion.

All of these modules were designed to support KL1
and PIMOS, so that software researchers could run one
program on the different modules and compare and an
alyze the behaviors of parallel program execution.

A PIM/m module employed architecture similar to
the multi-PSI system. Thus, its KL1 language proces
sor could be developed by simply modifying and extend
ing that of the multi-PSI system. For other modules,
namely PIM/p, PIM/c, PIM/k, and PIM/i, the KL1
language processor had to be newly developed because
all of these modules have a cluster structure. In a clus
ter, four to eight element processors were tightly coupled
by a shared memory and a common bus with coherent
caches. While communication between element proces
sors is done through the common bus and shared mem
ory, communication between clusters is done via a packet
switching network. These four PIM modules have differ
ent machine instruction sets.

We intended to avoid the duplication of development
work for the KL11anguage processor. We used the KL1.
C language to write PIMOS and the usual application
programs. A KL1-C program is compiled into the KL1-
B language, which is similar to the "WAM" as shown
in Figure 5. We defined an additional layer between
the KL1-B language and the real machine- instruction.
This layer is called the virtual hardware layer. It has a
virtual machine instruction set called "PSL". The spec
ification of the KL1-B interpreter is described in PSL.
This specification is semi-automatically converted to a
real interpreter or runtime routines dedicated to each
PIM modules. The specification in PSL is called a vir
tual PIM processor (the VPIM processor for short) and
is common to four PIM modules.

PIM/p, PIM/m and PIM/c are intended to be used
for large software experiments; the other modules were
intended for architectural evaluations. We plan to pro
duce a PIM/p with 512 element processors, and a PIM/m
with 384 element processors. Now, at the beginning of
March 1992, a PIM/m of 256 processors has just started
to run a couple of benchmarking programs.

We aimed at a processing speed of more than 100
MLIPS for the PIM modules. The PIM/m with 256 pro
cessors will attain more than 100 MLIPS as its peak per
formance. However, for a practical application program,
this speed may be much reduced, depending on the char
acteristics of the application program and the program
ming technique. To obtain better performance, we must
attempt to augment the effect of compiler optimization
and to implement a better load balancing scheme. We
plan to run various benchmarking programs and exper
imental application programs to evaluate the gain and
loss of implemented hardware and software functions.

EXPERIMENTAL PARALLEL
APPLICATIONS PROGRAMS
• Parallel VLSI-CAD system
• Legal inference system
• Parallel Go playing system
• Natural language analysis

tool
• Genetic information

analysis tool

Software group
for functional demonstration and
parallel application
experiment

• Discourse processing system
- Contextual analysis
- Language knowledge base

• General-purpose Japanese
language pr ocessing system

• Paral~r natural language analysis
experimental system

. Parallel programming
support
- Visualization tool
(ParaGragh)

. Parallel expert system
- Logic design
- Equipment diagnosis

. Parallel software develop
ment support
- Parallel algorithm
- Intelligent programming

environment

. Constraint programming
- Parallel constraint

processing syste m
(GDCC)

. Automatic parallel
theorem-proving system
- MGTP prover

• Deduction/object-oriented DB
- Knowledge representation
language I Quixote

• Gene DB/KB application
experiment

Figure 4: Research Themes in the Final Stage

Table 2: Features of PIM modules

Item PIMlp PIMlc PIMlm PIMJj PIM/k

Machine instructions RISC-type + Horizontal Horizontal RISC-type RiSe-type
~roinstructions microinstructions microinstructions

Target cycle time 60nsec 65nsec 50nsec 100 nsec 100 nsec

LSI devices Standard cell Gate array Cell base Standard cell Custom

Process Technology .
(line width)

.0.96 pm O.Spm O.Spm 1.2 pm 1.2)1ITl

Machine configuration Multicluster Multicluster Two-dimensional Shared memory Two-level
connections (S PEs connections (S PEs mesh network connections parallel cache
linked to a shared + CC linked to a connections through a connections
rnemoryl;!'a shared memory) parallel cache
hypercu network in a crossbar network

Number of PEs connected 512 PEs 256 PEs 256 PEs 16 PEs 16 PEs

43

44

Kll Program

r- Compilation into an intennediate languge,
KLI-U (similar to WAM of Prolog).

rnlCI"C are many transfonnation methods

......... ~.~.1.~.~ .. ~.~.~.~........ I corresponding to hardware architectures.

Runtime Libraries, Specification
Microprograms, or::.... ••• • •• • • of KL 1-8
Object Codes Transformation Abstract Machine

....................................
Real Hardware

(PIM/p, PIM/m, PIM/c, PIM/i,
PIM/k, Multi-PSI)

Uirtual Hardware
(Shared-memory Multiprocessors
+ Loosely-coupled Network)

Figure 5: KLI Language Processor and VPIM

Multiple Hypercube Network

, , , , , , , , , , , , ,
, ••• , I ,

II I I I

Clustero -. ---------------- ----, Ouster{ cfusteris

• Machine language: KLl-b
• Architecture of PE and cluster

- RISC + HLlC(Microprogrammed)
- Machine cycle: 60ns, Reg.file: 40bits x 32W
- 4 stage pipeline for RISC inst.
- Internal Inst. Mem: 50 bits x 8 KW
- Cache: 64 KB, 256 column, 4 sets, 32B/block
- Protocol: Write-back, Invalidation
- Data width: 40 bits/word
- Shared Memory capacity: 256 MB

• Max. 512 PEs, 8 PE/cluster and 4 clusters/cabinet

• Network:
- Double hyper-cube (Max 6 dimensions)
- Max. 20MB/sec in each link

Figure 6: PIM model P: Main Features and Appearance of a Cabinet

45

• Machine language: KL1-b
• Architecture of PE:

- Microprogram control (64 bits/word x 32 KW)
- Data width: 40 bits/word
- Machine cycle: 60ns. Reg.file: 40 bits x 64W
- 5 stage pipeline
- Cache: 1 KW for Inst .. 4 KW for Data
- Memory capacity: 16MW x 40 bits (80 MB)

• Max. 256 PEs, 32 PE/cabinet

• Network:
- 2-dimensional mesh
- 4.2MB/s x 2 directions/ch

Figure 7: PIM model M: Main Features and Appearance of four Cabinets

5.2.2 Development of PIMOS

PIMOS was intended to be a standard parallel operating
system for large-scale parallel machines used in symbol
and knowledge processing. It was designed as an in
dependent, self-contained operating system with a pro
gramming environment suitable for KLl. Its functions
for resource management and execution control of user
programs were designed as independent from the archi
tectural details of the PIM hardware. They were imple
mented based on an almost completely non-centralized
management scheme so that the design could be ap
plied to a parallel machine with one million element
processors.[Chikayama 1992]

PIMOS is completely written in KLl. Its manage
ment and control mechanisms are implemented using a
"meta-call" primitive of KLl. The KL1 language pro
cessor has embedded an automatic memory management
mechanism and a dataflow synchronization mechanism.
The management and control mechanisms are then im
plemented over these two mechanisms.

The resource management function is used to manage
the memory resources and processor resources allocated
to user processes and input and output devices. The pro
gram execution control function is used to start and stop
user processes, control the order of execution following
priorities given to them, and protect system programs
from user program bugs like the usual sequential operat-

ing systems.
PIMOS supports multiple users, accesses via network

and so on. It also has an efficient KL1 programming en
vironment. This environment has some new tools for de
bugging parallel programs such as visualization programs
which show a programmer the status of load balancing in
graphical forms, and other monitoring and measurement
programs.

5.2.3 Knowledge base management system

The know ledge base management system consists of two
layers. The lower layer is a parallel database manage
ment system, Kappa-P. Kappa-P is a database manage
ment system based on a nested relational model. It is
more flexible than the usual relational database man
agement system in processing data of irregular sizes and
structures, such as natural language dictionaries and bi
ological databases.

The upper layer is a knowledge base manage
ment system based on a deductive object-oriented
database. [Yokota and Nishio 1989] This provides us
with a knowledge representation language, Quixote.
[Yokota and Yasukawa 1992] These upper and lower lay
ers are written in KL1 and are now operational on PI
MOS.

The development of the database layer, Kappa, was
started at the beginning of the intermediate stage.

46

Kappa aimed to manage the "natural databases" accu
mulated in society, such as natural language dictionaries.
It employed a nested relational model so that it could
easily handle data sets with irregular record sizes and
nested structures. Kappa is suitable not only for nat
ural language dictionaries but also for DNA databases,
rule databases such as legal data, contract conditions,
and other "natural databases" produced in our social
systems.

The first and second versions of Kappa were developed
on a PSI machine using the ESP language. The second
version was completed at the end of the intermediate
stage, and was called Kappa-II.[Yokota et al. 1988]

In the final stage, a parallel and distributed imple
mentation of Kappa was begun. It is written in KL1
and is called Kappa-P. Kappa-P is intended to use large
PIM main memories for implementing the main memory
database scheme, and to obtain very high throughput
rate for disk input and output by using many disks con
nected in parallel to element processors.

In conjunction with the development of Kappa-II and
Kappa-P, research on a knowledge representation lan
guage and a know ledge base management system was
conducted. After repeated experiments in design and im
plementation, a deductive object-oriented database was
employed in this research.

At this point the design of the knowledge represen
tation language, Quixote, was completed. Its language
processor, which is the knowledge base management sys
tem, is under development. This language processor is
being built over Kappa-P. Using Quixote, construction
of a knowledge base can then he made continuously from
a simple database. This will start with the accumulation
of passive fact data, then gradually add active rule data,
and will finally become a complete knowledge base.

The Quixote and Kappa-P system is a new knowl
edge base management system which has a high-level
knowledge representation language and the parallel and
distributed database management system as the base of
the language processor. The first versions of Kappa-P
and Quixote are now almost complete. It is interesting
to see how this big system operates and how much its
overhead will be.

5.2.4 Knowledge programming software

This software consists of various experimental programs
and tools built in theoretical research and development
into some element technologies for knowledge process
ing. Most of these programs and tools are written in
KLl. These could therefore be regarded as application
programs for the parallel inference system.

1. Constraint logic programming system

In the final stage, a parallel constraint logi~ pro
gramming language, GDCC, is being developed.

This language is a high-level logic language which
has a constraint solver as a part of its language
processor. The language processor is implemented
in KL1 and is intended to use parallel processing
to make its execution time faster. The GDCC
is evaluated by experimental application programs
such as a prograIIi for designing a simple handling
robot.[Aiba and Hasegawa 1992]

2. Theorem proving and program transformation

A model generation theorem prover, MGTP, is be
ing implemented in KLl. For this application, the
optimization of load balancing has been made suc
cessfully. The power of parallel processing is almost
proportional to the number of element processors
being used. This prover is being used as a rule
based reasoner for a legal reasoning system. It en-::'
abIes this system to use knowledge representation
based on first order logic, and to contribute to easy
knowledge programming.

3. N aturallanguage processing

Software tools and linguistic data bases are being
developed for use in implementing natural language
interfaces. The tools integrated into a library called
a Language Tool Box (LTB). The LTB includes nat
ural language parsers, a sentence generators, and the
linguistic databases and dictionaries including syn
tactic rules and so on.

5.2.5 Benchmarking and experimental parallel
application software

This software includes benchmarking programs for the
parallel inference system, and experimental parallel ap
plication programs which were built for developing paral
lel programming methodology, knowledge representation
techniques, higher-level inference mechanisms and so on.

In the final stage, we extended the application area
to include larger-scale symbol and knowledge processing
applications such as genetic information processing and
legal expert systems. This was in addition to engineering
applications such as VLSI-CAD systems and diagnostic
systems for electronic equipment. [Nitta 1992]

1. VLSI CAD programs

Several VLSI CAD programs are being developed
for use in logic simulation, routing, and placement.
This system is aimed at developing various parallel
algorithms and load balancing methods. As there
are sequential programS which have similar func
tions to these programs, we can compare the per
formance of the PIM against that of conventional
machines.

2. Genetic information processing programs

Sequence alignment programs for proteins and a
protein folding simulation program are being devel
oped. Research on an integrated database for bio
logical data is also being made using Kappa.

3. A legal reasoning system

This system infers possible judgments on a crime
using legal rules and past cases histories. It uses
the parallel theorem prover, MGTP, as a core of the
rule-based reasoner. This system is making full use
of important research results of this project, namely,
the PIM, PIMOS, MGTP and high-level inference
and knowledge representation techniques.

4. A Go game playing system

The search space of a Go game is too large to apply
any exhaustive search method. For a human player,
there are many text books to show typical position
sequences of putting stones which is called "Joseki"
patterns. This system has s~me of the Joseki pat
terns and some heuristic rules as its knowledge base
to win the game against a human player. It aims to
attain 5 to 10 "kyuu" level.

The applications we have described all employ symbol
and knowledge processing. The parallel programs have
been programmed in KLI in a short time. Particularly
for the CAD and sequence alignment programs, the pro
cessing speed has improved almost proportionally to the
number of element processors.

However, as we can see in the Go playing system,
which is a very sophisticated program, the power of the
parallel inference system can not always increase its in
telligence effectively. This implies that we cannot effec
tively transcribe "natural" knowledge bases written in
text books .on Go into data or rules in "artificial" knowl
edge base of the system which would make the system
" clever". We need to make more effort to find out a
better program structure and better algorithms to make
full use of the merit of parallel processing.

6 Evaluation of the parallel in
ference system

6.1 General purpose parallel program-
ming environment

The practical problems in symbol and knowledge pro
cessing applications have been written efficiently in KLl,
and solved quickly using a PIM which has several hun
dred element processors. Productivity of parallel soft
ware using in KLI has been proved to be much higher

47

than in any conventional language. This high productiv
ity is apparently a result of using the automatic mem
ory management mechanism and the automatic dataflow
synchronization mechanism.

Our method of specifying job division and load balanc
ing has been evaluated and proved successful. KLI pro
gramming takes a two-step approach. In the first step, a
programmer writes a program concentrating only on the
program algorithms and a model. When the program is
completed, the programmer adds the specifications for
job division and load balancing using a notation called
"pragma" as the second step. This separation makes the
programming work simple and productive.

The specification of the KLllanguage has been evalu
ated as practical and adequate for researchers. However,
we realize that application programmers need a simpler
and higher-level KLI language specification which is a
subset of KLI. In the future, several application-oriented
KLI language specifications should be provided, just as
the von Neumann language set has a variety of different
languages such as Fotran, Pascal and Cobol.

6.2 Evaluation of KL1 and PIMOS

The functions of PIMOS, some of which are implemented
as KLI functions, have been proved to be effective for
running and debugging user programs on parallel hard
ware. The resource management and execution mech
anisms in particular work as we had expected. For in
stance, priority control of user processes permits pro
grammers to use about 4,000 priority levels and enables
them to write various search algorithms and speculative
computations very easily. We are convinced that the
KLI and PIMOS will be the best practical example for
general purpose parallel operating systems in the future.

6.3 Evaluation of hardware support
for language functions

In designing of the PIM hardware and the KLllanguage
processor, we thought it more important to provide a us
able and stable platform which has a sufficient number of
element processor for parallel software experiments than
to build many dedicated functions into the element pro
cessor. Only the dedicated hardware support built in
the element processor was tag architecture. Instead, we
added more support for the interconnection between el
ement processors such as message routing hardware and
a coherent cache chip.

We did not embed complex hardware support, such as
a matching store of a dataflow machine, or a content
addressable memory. We thought it risky because an
implementation of the complex hardware would take a
long turn around time even by a very advanced VLSI
technology. We also considered that we should create a
new optimization technique for a compiler dedicated to

48

the embedded complex hardware support, and that this
would not easy too.

The completion of PIM hardware is now one year be
hind the original schedule, mainly because we had many
unexpected problems in the design of the random logic
circuits, and in submicron chip fabrication. If we had
employed a more complex design for the element pro
cessor, the PIM hardware would have been further from
completion.

6.3.1 Comparison of PIM hardware with com-
mercially available technology

Rapid advances have been made in RISe processors re
cently. Furthermore, a few MIMD parallel machines
which use a RISe processor as their element processor
have started to appear in the market. When we began
to design the PIM element processor, the performances
of both RISe and elSe processors were as low as a few
MIPS. At that time, a dedicated processor with tag ar
chitecture could attain a better performance. However,
now some RISe processors have attained more than 50
MIPS. It is interesting to evaluate these RISe processors
for KLI program execution speed.

We usually compare the execution speed of a PIM ele
ment processor to that of a general-purpose microproces
sor, regarding 1 LIPS as approximately equivalent to 100
IPS. This means that a 500 KLIPS PIM element proces
sor should be comparable to a 50 MIPS microprocessor.
However, the characteristics of KLI program execution
are very different from those of the usual benchmark pro
grams for general-purpose microprocessors.

The locality of memory access patterns for practical
KLI programs is lower than for standard programs. As
the length of the object codes for a RISe instruction
set has to be longer than a elSe or dedicated instruc
tion set processors, the cache miss ratio will be greater.
Then, simple comparison with the PIM element proces
sor and some recent RISe chips using announced peak
performance is not meaningful. Thus, the practical im
plementation of the KLllanguage processor on a typical
RISe processor is necessary.

Most of the MIMD machines currently on the market
lack a general parallel programming environment. The
porting of the KLI language processor may allow them
to employ new scientific applications as well as symbol
and knowledge processing applications.

In the future processor design, we believe that a gen
eral purpose microprocessor should have tag architecture
support as apart of its standard functions.

6.3.2 Evaluation of high-level programming
overhead

Parallel programming in KLI is very productive, espe
cially for large-scale and complex problems. The control

of job division and load balancing works well for hun
dreds of element processors. No conventional language
is so productive. However, if we compare the process
ing speed of a KLI program with that of a conventional
language program with similar functions within a single
element processor, we find that the KLI overhead is not
so small. This is a corrunon trade-off problem between
high-level programming and low-level programming.

One straightforward method of compensating is to
provide a simple subroutine call mechanism to link e
language programs to KLI programS. Another method
is to improve the optimization techniques of compilers.
This method is more elegant than the first. Further re
search on optimization technique should be undertaken.

7 Conclusion

It is obvious that a general-purpose parallel program
ming langu,age and environment is indispensable for solv
ing practical problems of knowledge and symbol process
ing. The straightforward extension of conventional von
Neumann languages will not allow the use of hundreds
of element processors except for regular scientific calcu
lations.

We anticipated the difficulties in efficient implemen
tation of the automatic memory management and syn
chronization mechanisms. However, this has been now
achieved. The productivity and maintainability of KLI is
much higher than we expected. This more than compen
sates for the overhead in high-level language program
ming.

Several experimental parallel application programs on
the parallel inference system have proved that most
large-scale knowledge processing applications contain po
tential parallelism. However, to make full use of this par
allelism, we need to have more parallel algorithms and
paradigms to actually program the applications.

The research and development targets of this FGeS
project have been achieved, especially as regards the par
allel inference system. We plan to distribute the KLI
language processor and PIMOS as free software or pub
lic domain software, expecting that they will be ported
to many MlMD machines, and will provide a research
platform for future knowledge processing technology.

Acknowledgment

The development of the FGeS prototype system was
conducfed jointly by many people at lCOT, cooperating
manufacturers, and many researchers in many countries.
The author would like to express my gratitude to all the
people who have given us much advise and help for more
than 10 years.

References

[Uchida 1987] S. Uchida. "Inference Machines in FGCS
Project", TR 278, ICOT, 1987.

[Uchida et al. 1988] S. Uchida, K. Taki, K. Nakajima, A.
Goto and T. Chikayama, "Research and Development
of The Parallel Inference System in The Intermedi
ate Stage of The project", Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Nov.28-Dec.2,
1988.

[Go to et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki, and A. Matsumoto. " Overview of the Paral
lel Inference Machine Architecture (PIM)", In Proc.
of the International Conference on Fifth Generation
Computing Systems 1988, Tokyo, Japan, November
1988.

[Taki 1992] K. Taki, "Parallel Inference Machine, PIM",
Proc. Int. Conf. on Fifth Generation Computer Sys
tems, Tokyo, Jul.1-5, 1992.

[Chikayama 1984] T. Chikayama, "Unique Features of
ESP", In Proc. Int. Conf. on Fifth Generation Com
puter Systems 1984, ICOT, 1984, pp. 292-298.

[Warren 1983] D.H.D. Warren, "An Abstract Prolog In
struction Set", Technical Note 309, Artificial Intelli
gence Center, SRI, 1983.

[Clark adn Gregory 1983] Keith L. Clark and Steve Gre
gory, "Parlog: A parallel logic programming lan
guage", Research Report TR-83-5, Imperial College,
March 1983.

[Clark and Gregory 1984] K. 1. Clark and S. Gregory,
"Notes on Systems Programming in PARLOG", In
Proc. Int. Conf. on Fifth Generation Computer Sys
tems 1984, ICOT;'1984, pp. 299-306.

[Shapiro 1983] E. Y. Shapiro, "A subset of Concurrent
Prolog and Its Interpreter", TR 003, ICOT, 1987.

[Ueda 1986] K. Ueda. Guarded Horn Clauses, "In Logic
Programming", '85, E. Wada (ed.), Lecture Notes in
Computer Science 221, Springer-Verlag, 1986, pp.168-
179.

[Ueda 1986] K. Ueda, "Introduction to Guarded Horn
Clauses", TR 209, ICOT, 1986-.

[Chikayama and Kimura 1985] T. Chikayama and Y.
Kimura, "Multiple Reference Management in Flat
GHC", In Proc. Fourth Int. Conf. on Logic Program
ming, MIT Press, 1987, pp. 276-293.

[Chikayama el al. 1988] T. Chikayama, H. Sato and T.
Miyazaki, "Overview of the Parallel Inference Ma
chine Operating System (PIMOS)" , In Proc. Int. Conf.

49

on Fifth Generation Computer Systems 1988, ICOT,
1988, pp. 230-251.

[Chikayama 1992] T. Chikayama, "Operating System
PIMOS and Kernel Language KL1", Proc. Int. Conf.
on Fifth Generation Computer Systems, Tokyo, Jul.1-
5, 1992.

[Uchida et al. 1988] S. Uchida, "The Research and De
velopment of Natural Language Processing Systems in
the Intermediate Stage of the FGCS Project", Proc.
Int. Conf. on Fifth Generation Computer Systems,
Tokyo, Nov.28-Dec.2, 1988.

[Yokota et al. 1988] K. Yokota, M. Kawamura, and A.
Kanaegami, "Overview of the Knowledge Base Man
agement System (KAPPA)", Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Nov.28-Dec.2,
1988.

[Yokota and Nishio 1989] K. Yokota and S. Nishio, "To
wards Integration of Deductive Databases and Object
Oriented Databases-A Limited Survey", Proc. Ad
vanced Database System Symposium, Kyoto, Dec.,
1989.

[Yokota and Yasukawa 1992] K.Yokota
and H. Yasukawa, "Towards an Integrated Knowledge
Base Management System", Proc. Int. Conf. on Fifth
Generation Computer Systems, Tokyo, Jul.1-5, 1992.

[Aiba and Hasegawa 1992] A. Aiba and R. Hasegawa,
"Constraint Logic Programming System", Proc. Int.
Conf. on Fifth Generation Computer Systems, Tokyo,
Jul.1-5, 1992.

[Nitta 1992] K. Nitta, K. Taki, and N. Ichiyoshi, "Devel
opment of Parallel Application Programs of the Paral
lel Inference Machine", Proc. Int. Conf. on Fifth Gen
eration Computer Systems, Tokyo, Jul.1-5, 1992.

PROCEEDINGS OF THE INTERNA nONAL CONFERENCE
ON FIFTH GENERA nON COMPUTER SYSTEMS 1992, 50
edited by ICOT. © ICOT, 1992

Parallel Inference Machine PIM

Kazuo Taki

First Research Laboratory
Institute for New Generation Computer Technology
4-28, Mita l-chome, Minato-ku', Tokyo 108, JAPAN

taki@icot.or.jp

Abstract

The parallel inference machine, PIM, is the prototype
hardware system in the Fifth Generation Computer Sys
tems (FGCS) project. The PIM system aims at estab
lishing the basic technologies for large-scale parallel ma
chine architecture, efficient kernel language implementa
tion and many aspects of parallel software, that must
be required for high performance knowledge information
processing in the 21st century. The PIM system also
supports an R&D environment for parallel software,
which must extract the full power of the PIM hardware.

The parallel inference machine PIM is a large-scale
parallel machine with a distributed memory structure.
The PIM is designed to execute a concurrent logic pro
gramming language very efficiently. The features of the
concurrent logic language, its implementation, and the
machine architecture are suitable not only for knowl
edge processing, but also for more general large prob
lems that arise dynamic and non-uniform computation.
Those problems have not been covered by commercial
parallel machines and their software systems targeting
scientific computation. The PIM system focuses on this
new domain of parallel processing.

There are two purposes to this paper. One is to report
an overview of the research and development of the PIM
hardware and its language system. The other is to clarify
and itemize the features anp advantages of the language,
its implementation and the hardware structure with the
view that the features are strong and indispensable for
efficient parallel processing of large problems with dy
namic and non-uniform computation.

1 Introduction

The Fifth Generation Computer Systems (FGCS)
project aims at establishing basic software and hardware
technologies that will be needed for high-performance
knowledge information processing in the 21st century.
The parallel inference machine PIM is the prototype
hardware system and offers gigantic computation power

Application (Interfaces)
Programs PIMOS

I
• Protocol

PIMOS

f- KL 1 Language == • KL 1

KL 1 Parallel
Implementation Machine

• Language
or

PIM Hardware Microprogram

Figure 1: Overview of the PIM System

to the knowledge information processing. The PIM sys
tem includes an efficient language implementation of
KL1, which is the kernel language and a unique inter
face between hardware and software.

Logic programming was chosen as the common basis of
research and development for the project. The primary
working hypothesis was as follows. "Many problems of
future computing, such as execution efficiency (of paral
lel processing), descriptive power of languages, software
productivity, etc., will be solved drammatically with the
total reconstruction of those technologies based on logic
programming.

Following the working hypothesis, R&D on the PIM
system started from scratch with the construction of
hardware, a system software, a language system, appli
cation software and programming paradigms, all based
on logic programming. Figure 1 gives an overview of the
system structure.

The kernel language KL1 was firstly designed for ef
ficient· concurrent programming and parallel execution
of knowledge processing prob.1ems. Then, R&D on the
PIM hardware with distributed-memory MIMD architec
ture and the KLI language implementation on it were
carried out, both aiming at efficient KLI execution in

parallel. A machine roughly with 1000 processors was
primarily targeted. Each of these processors was to be a
high-speed processor with hardware support for symbolic
processing. The PIM system also focused on realizing a
useful R&D environment for parallel software which
could extract the real computing power of the PIM. The
preparation of a good R&D environment was an im
portant project policy.

KL1 is a concurrent logic programming language pri
marily targeting knowledge processing. Since the lan
guage had to be a common basis for various types of
knowledge processing, it became a general-purpose con
current language suitable for symbolic processing, with
out shifting to a specific reasoning mechanism or a cer
tain knowledge representation paradigm.

Our R&D led to the language features of KL1 being
very suitable for covering the dynamic and non-uniform
large problems that are not covered by commercial par
allel computers and their software systems for scientific
computation. Most knowledge processing problems are
included in the problem domain of dynamic and non
uniform computation. The PIM hardware and the KL1
language implementation support the efficiency of the
language features. Thus, the PIM system covers this
new domain of parallel processing.

This paper focuses on two subjects. One is the R&D
report of the PIM hardware and the KL1language imple
mentation on it. The other is to clarify and itemize the
features and advantages of the language, its implementa
tion and the hardware structure with the view th?-t .the
features are strong and indispensable for efficient paral
lel processing of large problems with dynamic and non
uniform computation. Any parallel processing system
targeting this problem domain must consider those fea
tures.

Section 2 scans the R&D history of parallel process
ing systems in the FGCS project, with explanation of
some of the keywords. Section 3 characterizes the PIM
system. Many advantageous features of the language, its
parallel implementation and hardware structure are de
scribed with the view that the features are strong and
indispensable for efficient programming and execution of
the dynamic and non-uniform large problems. Section
4 presents the machine architecture of PIM. Five differ
ent models have been developed for both research use
and actual software development. Some hardware spec
ifications are also reported. Section 5 briefly describes
the language implementation methods and techniques,
to give a concrete image of several key features of the
KL1 implementation. Section 6 reports some measure
ments and evaluation mainly focusing on a low-cost im
plementation of small-grain concurrent processes and re
mote synchronization, which support the advantageous
features of KLl. Overall efficiency, as demonstrated by
a few benchmark programs, is shown, including the most
recent measurements on PIM/m. Then, section 7 con-

51

cludes this paper.
Several important research issues of parallel software

are reported in other papers: the parallel operating sys
tem PIMOS is reported in [Chikayama 1992] and the
load balancing techniques controlled by software are re
ported in [Nitta et al. 1992].

2 R&D History

This section shows the R&D history of parallel pro
cessing systems in the FGCS project. Important re
search items and products of the R&D are described
briefly, with explanations of several keywords. There
are related reports for further information [Uchida 1992]
[Uchida et al. 1988].

2.1 Start of the Mainstream of R&D

Mainstream of R&D of the parallel processing systems
started at the beginning of the intermediate stage of the
FGCS project, in 1985. Just before that time, a concur
rent logiclanguage GHC [Ueda 1986] had been designed,
which was chosen as the kernel language of the R&D.
Language features will be described in section 3.4.

Development of small hardware and software systems
was started based on the kernel language GHC as a hard
ware and software interface. The hardware system was
used as a testbed of parallel software research. Experi
ences and evaluation results was fed back to the next R
& D of larger hardware and software system, which was
the bootstrapping of R fj D.

It was started from development of the Multi-PSI
[Taki 1988]. Purpose of the hardware development was
not only the architectural research of a knowledge pro
cessing hardware, but also a preparation of a testbed for
efficient language implementation of the kernel language.
The Multi-PSI also focused to be a useful tool and envi
ronment of parallel software research and development.
That is, the hardware was not just an experimental ma
chine, but a reliable system being developed in short
period, with measurements and debugging facilities for
software development. After construction of the Multi
PSI/VI and /V2 with language implementations, various
parallel programs and technology and knowhow of par
allel software have been accumulated [Nitta et al. 1992]
[Chikayama 1992]. The systems have been used for the
advanced software development environment for the par
allel inference machines.

2.2 Multi-PSI/VI"

The first hardware was the Multi-PSI/VI [Taki 1988]
[Masuda et al. 1988], started in operation in spring
1986. The personal sequential inference machine PSI
[Taki et al. 1984] was used for processing elements. It
was a development result of the initial stage of the

52

project. Six PSI machines were connected by a mesh net
work, which supported so called wormhole routing. The
first distributed implementation of GHC was built on
it [Ichiyoshi et al. 1987]. (Distributed implementation
means a parallel implementation on a distributed mem
ory hardware). Execution speed was slow (IK LIPS =
logical inference per second) because an interpreter sys
tem was written in ESP (the system description language
of the PSI). However, basic algorithms and techniques of
distributed implementation of GHC was investigated in
it. Several small parallel programs were written and exe
cuted on it for evaluation, and primary experimentations
of load balancing were also carried out.

2.3 From GHC To KLl

Since GHC had only basic functions that the kernel
concurrent logic language had to support, language ex
tensions were needed for the next more practical sys
tem. Kernel language KLI was designed with considera
tions of execution efficiency, operating system supports,
and some built-in functions [Ueda and Chikayama 1990]
[Chikayama 1992]. An intermediate language KLI-B,
which was the target language of KLI compiler, was also
designed [Kimura and Chikayama 1987]. In the Multi
PSI/V2 and a PIM model, binary code of KLI-B is di
rectly interpreted by microprogram; that is, KLI-B is
machine language itself. In the other PIM models, KLl
B code is converted to lower-level machine instruction
sequences and executed by hardware.

2.4 Multi-PSI/V2

The second hardware system was the Multi-PSI/V2
[Takeda et al. 1988] [Nakajima 1992]' which was im
proved in performance and functions enough to be called
as the first experimental parallel inference machine. It
started in operation in 1988 and was demonstrated in
the FGCS '88 international conference.

The Multi-PSI/V2 included 64 processors, each
of which were equivalent to the CPU of PSI
II [Nakashima and Nakajima 1987], smaller and faster
model of the PSI. Processors were connected with two
dimensional mesh network with improved speed (lOM
Bytes/s, full duplex in each channel). KLI-B was the
machine language of the system, executed by micropro
gram. Almost all the runtime functions of KLI was
implemented in microprogram. The KLI implemen
tation was improved much in execution efficiency, re
ducing inter-processor communication messages, efficient
garbage collections, etc. compared with Multi-PSI/VI.
lt attained 130K LIPS (in KLI append) in single pro
cessor speed. Table 1 to 4 include specifications of the
Multi-PSI/V2. Since 1988, more than 15 systems, large
system with 64 processors and small with 32 or 16 pro
cessors, have been in operation for parallel software R &

D in ICOT and in cooperating companies.

A strong simulator of the Multi-PSI/V2 was also de
veloped for software development environment. It was
called the pseudo Multi-PSI, available on the Prolog
workstation, PSI-II. A very special feature was caused
by similarity of the PSI-II CPU and processing element
of the Multi-PSI/V2. Usually, PSI-II executed ESP lan
guage with dedicated microprogram. However, it loaded
KLI microprogram dynamically at the activation of the
simulator system. The simulator executed KLI programs
as similar speed as that of the Multi-PSI/V2 single pro
cessor. Since the PIMOS could be also executed on the
simulator, programmers could use the simulator as sim:
ilar environment as the real Multi-PSI/V2, except for
speedup with multiple processors and process schedul
ing. The pseudo Multi-PSI was the valuable system for
initial debugging of KL1 programs.

2.5 Software Oevelopment on the
Multi-PSI/V2

Parallel operating system PIMOS (the first version) and
four small application programs (benchmark programs)
[Ichiyoshi 1989] had been developed until FGCS'88.
Much efforts was paid in PIMOS development to real
ize a good environment of programming, debugging, ex
ecution and measurements of parallel programs. In the
development of small application programs, several im
portant research topics of parallel software were inves
tigated, such as concurrent algorithms with large con
currency without increase of complexity, programming
paradigms and techniques of efficient KLI programs, and
dynamic and static load balancing schemes for dynamic
and non-uniform computation.

The PIMOS has been improved in several versions,
and ported to the PIM until 1992. The small appli
cation programs, pentomino [Furuichi et al. 1990], best
path [Wada and Ichiyoshi 1990], PAX (natural language
parser) and tsume-go (a board game) were improved,
measured and analyzed until 1989. They are still used
as test and benchmark programs on the PIM.

These development gave observations that the KLI
system on the Multi-PSI/V2 with PIMOS has reached
sufficient performance level for practical usage, and has
realized sufficient functions for describing complex con
current programs and for experimentations of software
controlled load balancing.

Several large-scale parallel application programs have
been developed from late 1989 [Nitta et al. 1992] and
still continuing. Some of them have been ported to the
PIM.

2.6 Parallel Inference Machine PIM

2.6.1 Five PIM Models

Design of the parallel inference machine PIM was started
in concurrent with manufacturing of the Multi-PSI/V2.
Some research items in hardware architecture were omit
ted in the development of the Multi-PSI/V2, because of
short development time needed for starting the parallel
software development. So, PIM took a greedy R&D
plan, focusing both the architectural research and real
ization of software development environment.

The first trial to the novel architecture was the multi
ple clusters. A small number of tightly-coupled proces
sors with shared-memory formed a cluster. Many clus
ters were connected with high speed network to construct
the PIM system with several hundred processors. Bene
fits of the architecture will be discussed in section 3.7.

Many component technologies had to be developed
or improved to realize the new system, such as parallel
cache memory suitable for frequent inter-processor com
munications, high speed processors for symbolic process
ing, improvement of the network, etc. For R&D of
better component technologies and their combinations,
the development plan of five PIM models was made, so
that different component architecture and their combi
nations could be investigated with assigning independent
research topics or roll on each model.

Two models, PIM/p [Kumon et al. 1992] and PIM/ c
[Nakagawa et al. 1992], took the multi-cluster structure.
They include several hundreds processors, maximum 512
in PIM/p and 256 in PIM/ c. They were developed both
for the architectural research and software R&D. Each
investigated different network architecture and processor
structure.

The other two models, PIM/k [Sakai et al. 1991] and
PIM/i [Sato et al. 1992], were developed for the exper
imental use of intra-cluster architecture. Two-layered
coherent cache memory which enabled larger number of
processors in a cluster, broadcast-typed coherent cache
memory, and a processor with 1IW-type instruction set
were tested.

The other model, PIM/m [Nakashima et al. 1992], did
not take the multi-cluster structure, but focused the rigid
compatibility with the Multi-PSI/V2, having improved
processor speed and larger number of processors. The
maximum number of processors will be 256. The perfor
mance of a processor will be four to five times larger at
peek speed, and 1.5 to 2.5 times larger in average than
the Multi-PSI/V2. The processor was similar to the CPU
of PSI-UX, the most recent version of the PSI machine.
A simulator, pseudo-PIM/m, was also prepared like the
pseudo Multi-PSI. The PIM/m targeted the parallel soft
ware development machine mostly among the models.

Architecture and specifications of each model will be
reported in section 4.

Experimental implementations of some 1SIs of these

53

models have started in 1989. The final design was al
most fixed in 1990, and manufacturing of whole system
was proceeded with in 1991. From 1991 to spring 1992,
assembly and test of the five models have carried on.

2.6.2 Software Compatibility

K11 language is common among all the five PIM mod
els. Except for execution efficiency, any K11 programs
including PIMOS can run on the all models. Hardware
architecture is different between two groups, Multi-PSI
and PIM/m as the one, and the other PIM models as
the other. However, from programmers' view, abstract
architecture are designed similar as follows.

The load allocation to processors are fully controlled
by programs on the Multi-PSI and the PIM/m. It is
sometimes written by programmers directly, and some
times specified by load allocation libraries. Programmers
are often researchers of load balancing techniques. On
the other hand, load balancing in a cluster is completely
controlled by the K11 runtime system (not by KL1 pro
grams) among the PIM models with the multi-cluster
structure. That is, programmers does not have to think
of multiple processors in a cluster, but specify load allo
cation· to each cluster in their programs. It means that
a processor of the Multi-PSI or PIM/m corresponds to a
cluster of the PIM models with the multi-cluster struc
ture, which simplifies portation of KL1 programs.

2.7 KLI Implementation for PIM

KL1 system must be the first regular system in the world
which can execute large-scale parallel symbolic process
ing programs very efficiently. Execution mechanisms or
algorithms of KL1 language had been developed for dis
tributed memory architectures sufficiently on the Multi
PSI/V2. Some mechanisms and algorithms should be
expanded for the multi-cluster architecture of PIM. Ease
of porting the KL1 system to four different PIM mod
els was also considered in the language implementation
method. Only the PIM/m inherited the KL1 implemen
tation method directly from the Multi-PSI/V2.

To expand the execution mechanisms or algorithms
suitable for the multi-cluster architecture, several tech
nical topics were focused, such as avoiding data up
date contentions among processors in a cluster, auto
matic load balancing in a cluster, expansion of an inter
cluster message protocol applicable for the message out
stripping, parallel garbage collection in a cluster, etc.
[Hirata et al. 1992].

For easiness of porting the KL1 system to four differ
ent PIM models, a common specification of K11 system
"VPIM (virtual PIM)" was written in "C" -like descrip
tion language "PSL", targeting a common virtual hard
ware. VPIM was the executable specification of KL1 ex
ecution algorithms, which was translated to C language
and executed to examine the algorithms. VPIM has been

54

translated to lower-level machine languages or micropro
grams automatically or by hands according to each PIM
structure.

Preparation of the description language started in
1988. Study of efficient execution mechanisms and al
gorithms continued until 1991, then, VPIM was com
pleted. Porting the VPIM to four PIM models partially
started in autumn 1990, and continued to spring 1992.
Now, the KL1 system with PIMOS is available on each
PIM model. On the other hand, KL1 system on the
PIM/m, which was implemented in microprogram, was
made from conversion of Multi-PSI/V2 microprogram by
hands or partially in automatic translation. Prior to the
other PIM models, PIM/m started in operati6n with the
KL1 system and PIMOS in summer 1991.

2.8 Performance and System Evalua
tion

Measurements, analysis, and evaluation should be done
on various levels of the system shown below.

1. Hardware architecture and implementations

2. Execution mechanisms or algorithms of KL1 imple
mentation

3. Concurrent algorithms of applications (algorithms
for problem solving, independent from mapping)
and their implementations

4. Mapping (load allocation) algorithms

5. Total system performance of a certain application
program on a certain system

Various works have been
done on the Multi-PSI/V2. and 2 were reported in
[Masuda et al. 1988] and [Nakajima 1992]. 3 to 5 were
reported in [Nitta et al. 1992], [Furuichi et al. 1990],
[Ichiyoshi 1989] and [Wada and Ichiyoshi 1990].

Primary measurements have just started on each PIM
models. Some intermediate results are included in
[Nakashima et al. 1992] and [Kumon et at. 1992].

Total evaluation of the PIM system will be done in the
near future, however, some observations and discussions
are included in section 6.

3 Characterizing the PIM and
KLI system

PIM and KL1 system have many advantageous features
for very efficient parallel execution of large-scale knowl
edge processing which often shows very dynamic runtime
characteristics and non-uniform computation, much dif
ferent from numerical applications on vector processors
and SIMD machines.

This section clarifies the characteristics of the targeted
problem domain shortly, and describes the various ad
vantageous features of PIM and KL1 system, that are
dedicated for the efficient programming and processing
in the problem domain. They will give the total system
image and help to clarify the difference and similarity
of the system with other large-scale multiprocessors, re
cently available in the market.

3.1 Summary of Features

The total image of PIM and KL1 system are briefly
scanned as follows. Detailed features and their bene
fits, and reasons why they were chosen are presented in
the following sections.

Distributed memory MIMD machine:
Global structure of the PIM is the distributed mem
ory MIMD machine in which hundreds computation
nodes are connected by highspeed network. Scala
bility and ease of implementations are focused. Each
computation node includes single processor or sev
eral tightly-coupled processors, and large memory.
Processors are dedicated for efficient symbolic proc
cessing.

Logic programming language: The kernel language
KL1 is a concurrent logic programming language,
which is single language for system and application
descriptions. Language implementation and hard
ware design are based on the language specification.

KL1 is not a high-level knowledge representation
language nor a language for certain type of rea
soning, but a general-purpose language for concur
rent and parallel programming, especially suitable
for symbolic computations.

KL1 has many beneficial features to write parallel
programs in those application domains, described
below.

Application domain: Primary applications are large
scale knowledge processing and symbolic computa
tion. However, large numerical computation with
dynamic features, or with non-uniform data and
non-uniform computation (non-data-parallel com
putation) are also targeted.

Language implementation: One KL1 system is im
plemented on a distributed memory hardware,
which is not a collection of many KL1 systems
implemented on each processing node. A global
name space is supported for code, logical variables,
etc. Communication messages between computa
tion nodes are handled implicitly in KL1 system,
not by KL1 programs. An efficient implementation
for small-grain concurrent processes is taken.

These implementations focus to realize the benefi
cial features of KL1 language for the application do
mains described before.

Policy of load balancing: Load balancing between
computation nodes should be controlled by KL1 pro
grams, not by hardware nor by the language sys
tem automatically. Language system has to support
enough functions and efficiency for the experiments
of various loadbalancing schemes with software.

3.2 Basic Choices

(1) Logic programming: The first choice was to
adopt logic programming as the basis of the ker
nel language. The decision is mainly due to the
insights of ICOT founders, who expected that logic
programming was suitable for both knowledge pro
cessing and parallel processing. A history, from
vague expectations on logic programming to the
concrete design of the KL1 language, is explained
in [Chikayama 1992].

(2) Middle-out approach: A middle-out approach of
R&D was taken, placing the KL1 language as the
central layer. Based on the language specification,
design of the hardware and the language implemen
tation started downward, and writing the PIMOS
operating system and parallel" software started up
ward.

(3) MIMD machine: The other choices concerned
with basic hardware architecture.

Dataflow architecture before mid 1980 was con
sidered not providing enough performance against
hardware costs, according to observations for re
search results in initial stage of the project.

SIMD architecture seemed inefficient on applica
tions with dynamic characteristics or low data
parallelism that are often seen in knowledge pro
cessing.

MIMD architecture remained without major demer
its and was most attractive from the viewpoint of
ease of implementation with standard components.

(4) Distributed memory structure: Distributed
memory structure is suitable to construct very large
system, and easy to implement.

Recent large-scale shared memory machines with
directory-based cache coherency mechanisms claims
good scalability. However, when the block size
(the coherency management unit) is large, the inter
processor communication with frequent small data
transfer seems inefficient. KL1 programs require the
frequent small data transfer. When the block size

55

becomes small, large directory memory is needed,
which increases the hardware cost.

Single assignment languages need special memory
management such as dynamic memory allocation
and garbage collection. These management should
be done as locally as possible for the sake of effi
ciency. Local garbage collection requires separation
of local and global address spaces with some indirect
referencing mechanism or address translation, even
in a scalable shared memory architecture. Merits of
the low-cost communication in the shared memory
architecture decrease significantly for such the case.

These are the reasons to choose the distributed
memory structure.

3.3 Characterizing the Applications

(1) Characterization: Characteristics of knowledge
processing and symbolic computation are often
much different from those of numerical computation
on vector processors and SIMD machines. Prob
lem formalizations for those machines usually based
on data-parallelism, parallelism for regular compu
tation on uniform data.

However, the characteristics of knowledge and sym
bolic computations on parallel machines tend to
be very dynamic and non-uniform. Contents and
amount of computation vary dynamically depend
ing on time and space. For example, when a heuris
tic search problem is mapped on a parallel machine,
workload of each computation node changes dras
tically depending on expansion and pruning of the
search tree. Also, when a knowledge processing sys
tem is constructed from many heterogeneous 0 b
jects, each object arises non-uniform computation.
Computation loads of these problems are hardly es
timated before execution.

Some classes of large numerical computation with
out data-parallelism also show the dynamic and
non-uniform characteristics.

Those problems which has dynamism and non
uniformity of computation are called the dynamic
and non-uniform problems in this paper, implying
not only the know ledge processing and symbolic
computation but also the large numerical compu
tation without data-parallelism.

The dynamic and non-uniform problems tends to
include the programs with more complex program
structure than the dat-a-parallel problems.

(2) Requirements for the system: Most of the soft
ware systems on recent commercial MIMD ma
chines with hundreds of processors target the data
parallel computation, but they almost don't care
other paradigms.

56

The dynamic and non-uniform problems arise new
requirements mainly on software systems and a few
on hardware systems, which are listed below.

1. Descriptive power for complex concurrent pro-
grams

2. Easy to remove bugs

3. Ease of dynamic load balancing

4. Flexibility for changing the load allocation and
scheduling schemes to cope with difficulty on
estimating actual computation loads before ex
ecution

3.4 Characterizing the Language

This subsection itemizes several advantageous features of
1\.L1 that satisfy the requirements listed in the previous
section. Features and characteristics of the concurrent
logic programming language 1\.L1 are described in detail
in [Chikayama 1992].

The first three features have been in GRC, the basic
specifications of 1\.L1. These features make descriptive
power of the language large enough to write complex con
current programs. They are the features of concurrent
programming to describe logical concurrency, indepen
dent from mapping to actual processors.

(1) Dataflow synchronization: Communication and
synchronization between 1\.L1 processes are per
formed implicitly at all within a framework of usual
unification. It is based on the dataflow model. Im
plicitness is available even in a remote synchroniza
tion. The feature drastically reduces bugs of syn
chronization and communication compared with the
case of explicit description using separate primitives.
The single-assignment property of logic variables
supports the feature.

(2) Small-grain concurrent processes: The unit of
concurrent execution in 1\.L1 is each body goal of
clauses, which can be regarded as a process invoca
tion. 1\.L1 programs can thus involve a large a~ount
of concurrency implicitly.

(3) Indeterminacy: A goal (or process) can test and
wait for the instantiation of multiple variables con
currently. The first instantiation resumes the goal
execution, and when a clause is committed (selected
from clauses that succeed to execute guard goals),
the other wait conditions are thrown away. This
function is valuable to describe "non-rigid" process
ing within a framework of side-effect free language.
Speculative computation can be dealt with, and dy
namic load distribution can be also written.

The next features have been included in 1\.L1 as exten
sions to GRC. (4) was introduced to describe mapping

(load allocation) and scheduling. They are the features
for parallel programming to control actual parallelism
among processing nodes. (5) is prepared for operating
system supports. (6) is for the effici~ncy of practical
programs.

(4) Pragma: Pragma is a notation to specify goal allo
cation to processing nodes or specify execution pri
ority of goals. Pragma doesn't affect the semantics
of a program, but controls parallelism and efficiency
of actual parallel execution. Pragmas are usually at
tached to goals after making sure that the program
is correct anyway. It can be changed very easily_
because it is syntactically separated from the cor
rectness aspect of a program.

Pragma for load allocation: Goal allocation is
specified with a pragma, @node(X). X can be calcu
lated in programs. Coupled with (1) and (2), the
load allocation pragma can realize very flexible load
allocation. Also coupled with (3) and the pragma,
1\.L 1 can describe a dynamic load balancing program
within a framework of the pure logic programming
language without side-effect. Dynamic load balanc
ing programs are hard to be written in pure func
tional languages without indeterminacy.

Pragma for execution priority: Execution pri
ority is specified with a pragma, @priority(Y). More
than thousands priority levels are supported to con
trol goal scheduling in detail, without rigid ordering.

Combination of (3) and the priority pragma realizes
the efficient control of speculative computations.
Large number of priority levels can be utilized in
e.g. parallel heuristic search to expand good branch
of the search tree at first.

(5) Shoen function (meta-control for goal group) :
The shoen function is designed to handle a set of
goals as a task, a unit of execution and resource
management. It is mainly used in PIMOS. Start,
stop and abortion of tasks can be controlled. Limit
of resource consumption can be specified. When er
rors or exception conditions occur, the status are
frozen and reported outside the shoen.

(6) Functions for efficiency: 1\.L1 has several built
in functions or data types whose semantics is un
derstood within the framework of GRC but which
has been provided for the sake of efficiency. Those
functions hide demerits of side-effect free languages,
and also avoid an increase of computational com
plexity compared with sequeontial programs.

3.5 Characterizing the Language Im
plementation

Language features, just described in the previous section,
satisfy the requirements for a system by the dynamic and
non-umform problems discussed in section 3.3. Most of
special features of the language implementation focused
to enlarge those advantageous features of KLI language.

(1) Implicit communication:
Communication and synchronization among concur
rent processes are implicitly done by unifications on
shared logical variables. They are supported both
in a computation node and between nodes. It is es
pecially beneficial that a remote synchronization is
done implicitly as well as local.

A process (goal) can migrate between computation
nodes only being attached a pragma, @node(X).
When the process has reference pointers, remote ref
erences are generated implicitly between the compu
tation nodes. The remote references are used for the
remote synchronizations or communications.

These functions hide the distributed memory hard
ware from the "concurrent programming". That is,
programmers can design concurrent processes and
their communications, independent from their al
locations to a same computation node or different
nodes. Only the "parallel programming" with prag
mas, a design of load allocation and scheduling, has
to concern with hardware structure and network
topology.

Implementation features of those functions are sum
marized below, including the features for efficiency.

• Global name space on a distributed memory
hardware - in which implicit pointer manage
ment among computation nodes are supported
for logical variables, structured data and pro
gram code

• Implicit data transfer caused by unifications
and goal (process) migration

• Implicit message sending and receiving invoked
with data transfer and goal sending, including
message composition and decomposition

• Message protocols able to reduce the number
of messages, and also protocols applicable to
message outstripping

(2) Small-grain concurrent processes: Efficient im
plementation of small-grain concurrent processes are
realized, coupled with low-cost communications and
synchronizations among them.

Process scheduling with low-cost suspension and re
sumption, and priority management are supported.

57

Efficient implementation allows actual use of a lot
of small-grain processes to realize large concurrency.
A large number of processes also gives flexibility for
the mapping and load balancing.

Automatic load balancing in a cluster is also sup
ported. It is a process (goal) scheduling function in
a cluster implemented with priority management.
The feature hides multiprocessors in a cluster from
programmers. They do not have to think about
load allocation in a cluster, but only have to pre
pare enough concurrency.

(3) Memory management: These garbage collection
mechanisms are supported.

• Combination of incremental garbage collection
with subset of reference counting and stop-and
collect copying garbage collection

• Incremental releasing of remote reference
pointers between computation nodes with
weighted reference counting scheme

Dynamic memory management including garbage
collections looks essential both for symbolic process
ing and for parallel processii.g of the dynamic and
non-uniform problems. Because the single assign
ment feature, strongly needed for the problems, re
quires dynamic memory allocation and reclamation.

Efficiency of garbage collectors is one of key features
for practical language system of parallel symbolic
processing.

(4) Implementation of shoen function: Shoen rep
resents a group of goals (processes) as presented in
the previous subsection. Shoen mechanism is im
plemented not only in a computation node but also
among nodes. Namely, processes in a task can be
distributed among computation nodes, and still con
trolled all together with shoen functions.

(5) Built-in functions for efficiency: Several built
in functions and data types are implemented to keep
up with the efficiency of sequential languages.

(6) Including as kernel functions: Figure 2 shows
the relation of KLI implementat.ion and operating
system functions. KLI implementation includes so
called OS kernel functions such as memory manage
ment, process management and scheduling, commu
nication and synchronization, virtual single name
space, message composition and decomposition, etc.
While, PIMOS includes upper OS functions like pro
gramming environment and user interface.

The reason why the OS kernel functions are included
in the KLI implementation is that the implementa
tion needs to use those functions with as light cost
as possible. Cost of those functions affect the actual

58

Application
Programs

I PIMOS ~

- Load distribution libraries, etc.
- Utility programs (ego shell)
- Programming environment (ego complier, tracer,

performance analizer)
- Program code management
- User task management
- Resource management (eg. 10 resources)

= KL 1 Language ==
KL 1 Parallel
Implementation - Memory management

:--OS-K~-r~el--: ~
- Process management

: Functions :
- Communication, synchronization, and scheduling

L _______________ I Single name space on a distributed memory
system

PIM Hardware
- Network message composition and

decomposition

Figure 2: KLI Implementation and OS Functions

execution efficiency of the advantageous features of
KLI language, such as large number of small-grain
concurrent processes, implicit synchronization and
communication among them (even between remote
processes), indeterminacy, scheduling control with
large number of priority levels, process migration
specified with pragmas, etc. Those features are
indispensable for concurrent and parallel program
ming and efficient parallel execution of large-scale
symbolic computation with dynamic characteristics,
or large-scale non-data-parallel numerical computa
tions.

Considering a construction of ,similar purpose par
allel processing system on a standard operating sys
tem, interface level to the OS kernel may be too high
(or may arise too much overhead). Some reconstruc
tion of OS implementation layers might be needed
for the standard parallel operating systems for those
large-scale computation with dynamic characteris
tics.

needs strong locality of computation, for which some pro
grammers' help is important for better load balancing.

Language system has to support enough functions and
efficiency for the experiments of various load balancing
schemes by software.

Some load balancing schemes are prepared as utility
programs, available for application programmers.

3.7 Characterizing the Hardware Ar
chitecture

Features of PIM hardware architecture are listed below.
Some of them are specialized for symbolic processing and
large-scale parallel computation of dynamic problems,
and some of them are standard.

(1) Distributed memory MIMD machine:

3.6 Policy of Load Balancing

Target hardware is the large-scale MIMD machine
with distributed memory structure. Hundreds pro
cessing nodes are connected by highspeed network.
It was a basic choice of the R&D. The structure
was considered to have large scalability, to be mostly
easy for implementation, and to be suitable to sep
arate local garbage collections and global. Such <L basic policy has been taken that load balancing

between computation nodes should be completely con
trolled by KLI programs, not by hardware nor by lan
gua.ge system automatically. There are two reasons.

One is that KLI can describe load balancing programs
within usual logic programming features. Since many
research topics on load distribution have been remained
unsolved especially on dynamic problems, experiments
on software controlled load balancing is advantageous
in an aspect of flexibility. It does not include significant
overhead because the KLI language system realize a very
low-cost implementation.

The other is that distributed memory architecture

(2) Cluster structure: Eight processors, that are
tightly coupled with shared bus and shared mem
ory, form a cluster. Many clusters are connected
with highspeed network to form the total system.
Programmers deal with a cluster as a computation
node with large computation power and large mem
ory, since automatic load balancing is supported by
language system within a cluster.

Cluster is a substructure of the PIM, realizing a
low latency and high bandwidth connection between
processors. There are two major advantages of

the cluster structure. The first is its applicability
to those problems which have less locality, while
distributed memory architecture hardly processes
those problems efficiently. The second is higher ef
ficiency of memory usage compared with full dis
tributed memory systems with the same memory
size. A substructure with higher bandwidth inter
processor connection is effective to reduce needs of
memory size per processor, keeping the same effi
ciency of parallel processing. It affects the total sys
tem cost significantly.

A disadvantage is heterogeneous inter-processor
connections that increase the complexity of hard
ware implementations, however, the cluster with
tightly coupled processors will be a standard com
ponent in the near future.

(3) Large memory against processing power:
Non-uniform computation or dynamic computation
with wide variation of grain size require larger mem
ory to keep the processing efficiency, compared with
data-parallel computation. Because extra work is
needed to fill the idling time caused by irregular syn
chronization, which requires more working space in
a memory.

(4) Highspeed network: Highspeed network connec
tion between processing nodes has already become
standard. However, the ratio of network load and
processor load,caused by network communications,
is different from the case of numerical processing.
Management of virtual single name space usually
arises extra processor loads for each communica
tions, compared with the case of simple data trans
fer in numerical processing. It causes less needs to
network bandwidth against processing power.

On the other hand, parallel symbolic computation
with dynamic features often arises remote synchro
nizations with small data transfer. Response of
the network communication is more important than
bandwidth for such cases.

(5) Coherent cache memory: Each processor in a
cluster has coherent cache memory with write back
strategy. Basic technology is similar to the stan
dard coherent cache memory used in commercial
tightly coupled multiprocessors. However, the oc
currence of cache to cache data transfer, caused by
inter-processor communications, is larger than the
usual time sharing use of commercial multiproces
sors. Optimizations of cache commands and bus
protocols for such usage is important to reduce bus
traffic.

(6) Dedicated processors: Processors include special
features of tag handling, data type checking and
branching, and dereferencing pointers for efficient

4

59

KL1 execution. These features are useful not
only for symbolic processing, but also for an ef
ficient implementation of a single-assignment lan
guage needed for the parallel processing of the dy
namic and non-uniform problems.

The processors have dedicated instruction sets de
rived from the abstract instruction set KL1-B.

Pipelining and RISC-like instruction sets are also
used, that are standard techniques.

Machine
Hardware

Architecture and

Overall structure and features of the PIM system were
presented in the previous section. This section shows
the machine architecture, hardware implementations and
some technical data of each PIM models in detail.

4.1 Overview of Five PIM Models

Five PIM models have been developed, that have differ
ent architectures or different combinations of component
technologies, and have different rolls of R&D.

PIM/p : PIM/p is the largest PIM model which con
tains maximum 512 processors. PIM/p focuses both
architectural research and actual use in software R
&D.

PIM/p took the multi-cluster architecture shown in
Figure 3. Maximum 64 clusters can be connected.
Connection network took hypercube topology. Two
independent networks are connected to each clus
ters.

Each cluster contains eight processors connected
with a shared bus and shared memory. A proces
sor has coherent cache memory, a network interface
unit "NIU" , and an I/O device interface (SCSI bus)
[Kumon et al. 1992].

Processors in all PIM models have SCSI buses, which
are used to connect FEPs (Front End Processors) and
hard disks. The PSI-UX [Nakashima et al. 1992] is used
for the FEP, as an intelligent I/O device for human
machine interface.

PIM/m : PIM/m targets the software development
machine and rigid compatibility with the Multi
PSI/V2. 256 processors are connected with two
dimensional mesh network. The structure is
shown in Figure 4. 32 hard disks, which are
20GB in total, and many FEPs are connected
[Nakashima et al. 1992].

60

Double Hypercube Network

~, __ II ~
I I I

I I
I I I
I I I
I I I
I I I
I I I
I I I I

~ Cluster 1 ~Cluster ~
: :: 63:
I I I I
I I I I
I I I I
I I' I
I I I I

: : I 1

~--------~-r -r --~.
~u

Fig~lfe 3: Overview of PIM!p Architecture

16
r~----------~A~----------~,

Network

~
EP

PE
255

-- SCSI bus

16

Figure 4: Overview of PIM!m Architecture

PIM/c : PIM!c also takes the multi-cluster archi
tecture including 256 processors in total. A
cluster contains eight processors. 32 clusters
are connected with a crossbar switch network
[Nakagawa et al. 1992].

PIM/k : PIM!k focuses on architectural research
within a cluster. Hierarchical cache system has been
investigated to connect larger number of proces
sors in a cluster [Sakai et al. 1991]. Four processors
share a local bus and second cache. They form a
mini-cluster. Four mini-clusters are connected to a
shared memory-bus and shared memory (Figure 5).

PIM/i : PIM!i is also a research use system. LIW-type
instruction set and cache protocol with broadcasting
type has been investigated [Sato et al. 1992].

The global configuration of five PIMs are summarized
in table 1.

Specifications of components, that are processors, net
works, and cache systems, will be reported in the follow
ing subsections.

61

.
Mini-Cluster 0 ---I j--------- ~ ---------, .---- -----,

PEa PE1 PE2 PE3

~ Cache ~ Cache ~ Cach ~ Cach

I
I

I
I I

I
I
I Mini-I
I
I Cluster

1

I

I
I
I
I

I

Mini- l Mini-
Cluster l Cluster
213

I

I
I
I
I

1. ________ _

Shared Memory

Figure 5: Overview of PIM/k Architecture

Table 1: Global Configuration

Topology Number of Clusters Total Number of PEs Memory Size/Cluster
PIM/p hypercube x 2 64 512 256 MB
PIM/m mesh 256 256 80 MB
PIM/c crossbar 32 256 160 MB
PIM/k - 1 t 16 1 GB
PIM/i - 2 16 320 MB

I Multl-PSI/V2 II mesh 64 64 80 MB

(t : four mini-clusters included)

4.2 Processing Element

Since KL1 implementation requires frequent runtime
type checking, all CPUs of PIM models are designed as
the tagged-architecture similar to the Multi-PSI.

PIM/p, PIM/i and PIM/k have RISe-like instruction
set whereas PIM/m and PIM/c have CISC-like micro
programmable instruction set (Table 2). The former pro
cessors execute machine instructions which are at a level
still lower than KL1-B. The latter processors interpret
KL1-B code by horizontal micro program.

The CPU of PIM/p [Kumon et aI. 1992] has a unique
feature called macro-call [Shinogi et aI. 1988] instruc
tions for light-weight subroutthe calls. The instructions
enable the size of compiled user program codes to be kept
small and to reduce the overheads of subroutine calls. It
also has some more instructions dedicated to KL1 im
plementation, such as dereference instructions and MRB
[Chikayama and Kimura 1987] incremental garbage col
lection instructions. The CPU takes four-stage pipeline

structure.
The CPU of PIM/m [Nakashima et at. 1992] is a mi

croprogram controlled processor with five-stage pipelin
ing. The instruction set is KL1-B itself, which is binary
compatible with Multi-PSI/V2. Sophisticated data type
checking and the automatic dereference mechanism are
special features.

The CPU of PIM/i tries the LIW(long instruction
word)-type instruction set.

4.3 Network

Networks are summarized in table 3.
In PIM/p, each processor has a NI and four NIs are

connected to a router. The router works as a node in the
network. There are two hypercube networks to attain
large band width.

PIM/m has a two dimensional mesh network, similar
to the Multi-PSI. The networks of PIM/p and PIM/m
realize so-called the worm-hole routing.

62

Table 2: Specification of Processing Element

Instruction set eycle time LSI fabrication Line interval
PIM/p RISe + macro instruction 60 nsec t standard-cell 0.96ji,m

PIM/m elSe (micro programmable) 65 nsec standard-cell 0.8ji,m

PIM/c elSe (micro programmable) 50 nsec t gate-arrays 0.8ji,m

PIM/k RISe 100 nsec custom 1.2ji,m
PIM/i RISe 100 nsec t standard-cell 1.2flm

I MultI-PSI/V2 II elSe (mIcro programmable) I 200 nsec I gate-arrays 2.0 ji,m

(t are design specifications. They are under testing with longer cycle time.)

Table 3: Network

PEs in a cluster # Nls in a cluster Transfer Rate t
PIM/p 8 8 33 MB/sec t x2
PIM/m 1 1 8 MB/sec
PIM/c 8 1 40 MB/sec t
PIM/k 16 - -
PIM/i 8 1 -

I MultI-PSI/V2 II 1 1 110 MB/sec

(PE = processing element, NI = network interface)
0: per channel, full duplex t: design specifications)

PIM/ c has one special processor named cluster con
troller in each cluster. The cluster controller is connected
to a shared bus and works as a network interface to a
crossbar network. The cluster controller has overall re
sponsibility for network communications.

4.4 Cache System

Since KL1 programs arise asynchronous communica
tions among processors very frequently, shared bus traf
fic tends to become very heavy. To solve this prob
lem, an optimized coherent cache protocols were de
signed [Goto et al. 1989][Matsumoto et al. 1987], which
can keep the locality high and reduce the shared bus traf
fic [Nishida et al. 1990]. All PIMs have write-back type
coherent cache protocols (Table 4). Low cost locking
mechanisms are also supported with utilizing the cache
block status.

5 KLI Language Implementa
tion

KL1 language has many beneficial features to write ef
ficient concurrent and parallel programs of the dynamic
and non-uniform problems, which was explained iIi sec-

tion 3.4. The KL1 implementation is focused to realize
the execution efficiency of those language features. This
section looks at the language implementation methods
and techniques briefly, that correspond to the implemen
tation features presented in section 3.5. The purpose of
this section is to give a concrete image of several key fea
tures of the KL1 implementation. Detailed information
are presented in [Hirata et al. 1992] [Nakajima 1992].

5.1 Execution Model of KL1

For the help of getting the image, the execution model
of KL1 is shown briefly. KL1 program is made up of a
collection of clauses, whose form is:

H: -Gb·.·,Gm I Bl, .. ·,Bn .
'-...-' "-,.-'

guard part body part

where H is the head, Gi the guard goal, that are collec
tively call~d the guard part. The Bi are the body goals
and the vertical bar (I) is the commitment operator.

The guard part can be considered as a pattern match
and c~ndition tests. If there are alternative clauses, their
guard parts are tested sequentially. When a clause suc
ceeds the pattern match and the condition tests, the
clause commits. The caller goal is reduced to the body

63

Table 4: Specification of Cache System

Coherence Control Mapping Cache Size
Protocol # States t Instruction Data

PIM/p invalidation 4 4 way 64 KB
PIM/m - - direct-map 5 KB 20 KB
PIM/c invalidation 5 2 way 80 KB
PIM/k hierarchical 4 (1 st) direct-map 128 KB 256 KB

invalidation (2nd) 4 way 1 MB 4 MB
PIM/i broadcasting 6 direct-map 160 KB 160 KB

I MultI-PSI/V2 " - I dIrect-map 20 KB

(t does not include locking state.)

Processing Element

Current Goal

Suspension by
guard unification

@

Creation by
goal rewriting

~G ~G
@ @ Resump.tion-?y © ©

body umficatIon
Suspended Goals Ready Goals

Figure 6: Execution Model of KL1

goals of the committed clause. These body goals are ex
ecuted concurrently (AND-parallel). A KL1 clause can
be considered as a rewrite rule, which rewrites the caller
goal to the body goals.

An execution model of KL1 is shown in Figure 6.
There is a goal pool which holds the ready goals to be
rewritten. One of ready goals is taken from the goal pool
for the execution, which is the current goal. When there
is a clause, which matches the current goal and succeeds
the condition tests, the current goal is rewritten. The
rewritten goals are placed back to the goal pool.

Goals may have common variables, that are used for
the communication and synchronization. Let us assume
that there are two goals sharing a logical variable. A
body unification, produced in a goal rewriting, can in
stantiate the variable. Guard unifications, that appear in
a execution of the other goal, test the instantiated value
of the variable. This is the communication between the
goals. When the variable is not instantiated before the

guard unification, and no other clause can commit, the
current goal is suspended. Instantiation of the variable
resumes the suspended goal. This is the synchronization
[Ueda and Chikayama 1990J.

5.2 Supports for the Implicit Commu
nication

There are several important mechanisms that realize the
implicit communication between computation nodes.

Let us assume that there are two goals sharing a vari
able in a computation node. Each goal has a reference
to the variable. V,Then a goal is sent to the other compu
tation node, a remote reference has to be generated im
plicitly. The implicit communication between the goals
in the different nodes will be performed along with this
remote reference.

The important mechanisms are shown briefly.

5.2.1 Global Name Space

The implicit reference management across the computa
tion nodes are supported for logical variables, structured
data and program code. It is a support of the virtual
global name space on a distributed memory hardware.

The export/import tables realize the feature. The
export/import tables are the indirect reference tables
that separate the local address space in a computation
node and the global space for the remote references (Fig
ure 7). The remote reference (external reference) is iden
tified by the pair (A,e), where A is the node number
in which the referenced data resides, and e is the entry
number of the export table. Registration to the tables
are performed dynamically when a new remote reference
is made [Ichiyoshi et al. 1987J.

The entry number e does not change even when a lo
cal garbage collection occurs which moves the location
of the exported cell. When a duplicated exporta
tion/importation occurs, the same table entry num
ber is used (reducing a new registration to the table)

64

which eliminates useless data transfer between nodes
[Ichiyoshi et al. 1988J.

Export Table Import Table

Node A Node B

Figure 7: Export and Import Tables

5.2.2 Implicit Data Transfer

Data Transfer by Unifications: The implicit data
transfer between computation nodes is initiated by uni
fications.

A guard unification tries to test an instantiation of
a logical variable. When it is an external reference
(EX in Figure 7), a read request message, %read(X,
ReturnAddress), is sent to the node A. Where X is the
external reference (A,e), and ReturnAddress is a newly
created export table entry in the node B.

The goal execution, which initiated the guard unifica
tion, is suspended when no other clause can commit.

When the referenced cell has a concrete value
v, it is returned by the message, %answeLvalue(
ReturnAddress, V). The message resumes the sus
pended goal, which waits for the value V. If the refer
enced cell is not bound to a fixed value, the read request
is suspended until the variable is instantiated.

When a body unification tries to unify a remote cell
X with a term Y, a message %unify (X, Y) is sent to
the referenced cluster. When Y is an atomic data or a
structure, a simple data transfer occurs.

The unifications between two uninstantiated variables
in different clusters may make reference loops between
clusters. This problem can be solved by controlling the
direction of reference pointers [Ichiyoshi et al. 1988].

Lazy Transfer: When a structured data is transferred
between nodes, one-level transfer is performed. The com
ponents of a structure may be atomic data or nested
structures. The atomic data are copied and transferred
directly, while the nested structures are remained as
pointers and transferred as external references. This is
called the one-level transfer. The policy is that the data
transfer should be delayed as lazily as possible, until the
data is really needed for some operation.

Code Transfer: Program codes are handled as large
structured data. They are loaded on one cluster by a

loader program at first. Any KL1 goal hold the refer
ence to the corresponding code object. When a goal is
sent to a cluster and the cluster does not contain the cor
responding code object, the goal execution is suspended
and the code is dynamically transferred from the cluster
which is pointed by the external reference held in the
goal.

5.3 Small-Grain Concurrent Processes

5.3.1 Process Group Management

KLI goals can be considered as lightweight processes.
For the efficient parallel processing, a user task have
to include a lot of lightweight processes. It is needed
for the parallel operating system that a group of goals
(lightweight processes) can be handled all together as a
task. The shoen supports the meta control facilities of
execution control, resource management and status mon
itoring for the goal group.

Shoen and Foster Parent: Any goals have to belong
to a certain shoen. The foster-parent fp is a proxy shoen,
which is created in every computation nodes where the
goals of the shoen are executed. Each goal points their
foster-parent in the node, and test the request for meta
controls in a certain interval (e.g. in every goal reduc
tions). Figure 8 shows the relationship among shoens,
foster-parents and goals.

A shoen and a foster-parent keep their environments,
such as status, resources, and the number of goals.
Foster-parents reduce the communication between each
goal and their shoen, to avoid an access bottleneck at the
shoen.

Termination Detection: The termination detection
of a goal group is one of the difficult subjects in parallel
computation systems, especially when messages may be
in transit on the network. Even if all the foster parents
report their terminations, the shoen should not terminate
when there are goals in transit.

One of the solutions is the Weighted Throw Count
ing (WTC) scheme [Rokusawa et al. 1988], which is an
application of the Weighted Reference Counting (WRC)
scheme [Watson and Watson 1987].

5.3.2 Goal Scheduling

The goal scheduling, discussed here, is a different concept
with the goal group management by shoen. The goal
scheduling is the state transition management of each
goals, . among ready, execution, and suspension states.
Execution priority is also managed.

Basic Goal Scheduling Scheme: The ready goals in
a computation node are linked into a list forming a ready
goal-stack. In principle, a current goal is popped from the

I Sh~en L

cluster 0 cluster 1

shoen: shoen record
fp : foster-parent record

cluster 2

G: goal

Figure 8: Relationship of shoen and foster-parents

ready-goal-stack, then the goal rewriting is performed.
The rewritten goals are pushed to the ready-goal-stack,
which is the depth-first scheduling in a computation
node.

When any unification suspends, the goal is linked as
a suspended goal to the variable which caused the sus
pension. Here, the non-busy waiting method has been
adopted. That is, the suspended goal is not scheduled
until the variable will be instantiated. When a suspended
goal is resumed, it is linked to the ready-goal-stack again.

Execution priority of goals can be specified by
pragmas. The ready-goal-stack is managed with the pri
ority of goals.

Goal Distribution within a Cluster: An automatic
load balancing scheme is tried within a cluster. An indi
vidual ready-goal-stack is provided for the highest prior
ity goals in each processing element, to avoid conflicts of
access to the common goal-stack [Sato et al. 1987]. The
highest-priority goals are distributed to keep the proces
sor loads in good balance [Hirata et al. 1992].

Inter-cluster Goal Distribution: A body goal,
goal@node(CL), is thrown with a message %throw to a
node CL when the clause commits. The node (more pre
cisely, a certain processing element in the cluster CL),
that received the %throw message, links the goal to its
ready-goal-stack as well as to the foster-parent. If there
is no foster-parent, one will be created on the spot.

65

5.4 Memory Management

Memory management like dynamic memory allocation,
reclamation, and garbage collection are indispensable for
concurrent symbolic processing languages.

5.4.1 Incremental Garbage Collection by MRB

The MRB method is a subset of the reference counting
scheme which maintains one··bit information in pointers
indicating whether the pointed data object has multi
ple references to it or not [Chikayama and Kimura 1987]
[Inamura et al. 1988]. Garbage cells that have only a
single reference can be reclaimed incrementally.

The MRB is also useful to optimize the updating of
structured data. Structured data must be copied in prin
ciple when it is updated partially, because of the single
assignm~nt feature. However, it can be rewritten de
structively when the structure has only a single reference,
keeping a semantics of the single-assignment language.

5.4.2 Garbage Collection within a Cluster

Another garbage collection is implemented, which is per
formed locally within a cluster accompanied with the in
cremental garbage collection by MRB. Because the MRB
scheme leaves some garbages.

So-called stop and copy scheme is adopted basically.
The parallel mechanism has been investigated to collect
garbages by all processing elements in parallel in a cluster
[Imai and Tick 1991].

5.4.3 Inter-Cluster Garbage Collection by WEC

An incremental inter-cluster garbage collection scheme,
the weighted export counting (WEC) scheme is em
ployed [Ichiyoshi et al. 1988]. It is an application
of the weighted reference counting (WRC) scheme
[Watson and Watson 1987]. The scheme has several ad
vantages. One is the incremental garbage collection ca
pability with fewer message exchanges compared with
the full reference counting. The other is also a capabil
ity of reducing the messages for the case when a imported
data has to be exported again to the different clusters.

5.5 Abstract Instruction Set KLI-B

KL1-B is the abstract instruction set which is common
in PIM models. The role of KL1-B is similar to that of
WAM [Warren 1983]. An explanation of each KL1-B in
struction can be found in [Kimura and Chikayama 1987].

Most of the KL1 implementation schemes, presented
in previous sections, are realized as runtime routines that
are invoked by certain KL1-B instructions implicitly.

The KL1 compiler for PIM has two phases. The first
phase compiles a KL1 program into an KL1-B code. The
second phase translates the KL1-B code into a Rative
code, making a linkage with runtime routines.

66

6 Measurements
tion

and Evalua-

This section describes some measurements results and
evaluations for the parallel inference machines and the
language system. The measurements focused on a low
cost implementation of small-grain concurrent processes
and remote synchronization and communication. Mea
surements on a few benchmark programs are also re
ported, including the most recent measurements on
PIM/m.

6.1 Measurements and Evaluation on
the Multi-PSljV2

The KL1 language implementation includes so-called
OS kernel functions, as shown in section 3.5. Most of
the implementation features, that were presented in sec
tion 5, concern with the OS kernel functions. Efficient
implementations of these functions enable the actual use
of the beneficial features of KL1 language (presented in
section 3.4) to write efficient parallel programs of the dy
namic and non-uniform problems for large-scale parallel
machines.

The actual execution cost of some of these functions
have been measured on the Multi-PSI/V2. Goal schedul
ing cost within a computation node, communication
cost between nodes, and communication overhead in
benchmark programs are reported. Measurements re
sults shows the quite low-cost implementations.

Note that the Multi-PSI/V2 has a mesh structure with
64 processing elements (PEs). There are 64 computation
nodes each of which is one PE.

6.1.1 Goal Scheduling Cost in a Node

Goal scheduling and synchronization cost within
a processing element (PE) have been measured
[Onishi et al. 1990].

The enqueue and dequeue cost of a simplest goal
is 5.4 flS (27 micro-instruction steps). When a goal is
rewritten to several goals in a goal reduction, they are
pushed on the ready-goal-stack once (except for one goal
which can be executed directly). The enqueue and de
queue cost is the summation of the pushing and popping
cost of a goal to the ready-goal-stack. The enqueue and
dequeue cost can be considered as a part of the process
fork cost.

The single-suspension cost of a simple goal is 14
its (70 steps). When a goal is suspended waiting for a
variable instantiation, the goal is hooked to the variable
cell. When the variable is instantiated, the goal becomes
executable and is pushed on the ready-goal-stack. The
single-suspension cost is a summation of the hook, en
queue, and dequeue cost. The single-suspension cost can

be considered as the synchronization cost between pro
cesses in a processor.

The two-way multiple-suspension cost of a simple
goal is 28 flS (140 steps). A goal can wait for the vari
able instantiation of several different variables. The first
instantiation resumes the goal execution. If the instan
tiation causes a comitment of a clause, the other wait
ing conditions are thrown away. The two-way multiple
suspension is a case of two variables. The feature is a
combination of the indeterminacy and the synchroniza
tion. Cost increase from the single-suspension corre
sponds to the implementation cost of the indeterminacy.

These low-cost implementations encourage the actual
use of a lot of small-grain processes. These costs of the
goal scheduling also give a guideline for the lower bound
of process grain size for efficient execution wi thin a com
putation node.

6.1.2 Communication Cost Between Nodes

Cost of the communication primitives have been mea
sured on the Multi-PSI/V2
system [Nakajima and Ichiyoshi 1990]. A goal sending
to another PE (a remote call of a lightweight process) is
realized by %throw....goal message. Inter-PE reading of
values (used for remote synchronization and communi
cation) is realized by %read & %answeLvalue protocols.

Figure 9 shows the cost of handling those three mes
sages at both sending and receiving PE.

The
cost is broken down into three parts. Encode/decode
KL1 term, etc. is for encoding and decoding message
packets to/from internal representations of KL1 term. It
also includes the maintenance of the export/import ta
bles and the foster parent records (c.f. section 5). It is
the essential part of the message handling.

Basic message handling routine in Figure 9 cor
responds to the simple data conversion between 40-bit
tagged words and byte-serial messages. The routine in
cludes data transfer to/from the hardware buffer. The
cost can be potentially reduced by hardware supports.
Copy _RPKB stands for copying a message packet from the
hardware buffer to the software buffer. It is only exe
cuted when the hardware buffer tends to be full.

The network transfer speed is 0.2 fls/byte. It takes
below 1 flS to hop one network node. It means that the
message handling cost, just explained before, is dominant
in the communication cost.

Send_throw (a) shows the cost of sending a 65 byte
%throw_goal message containing a goal with three ar
guments. It takes 419 micro-instruction steps or 85 flS
(cycle time = 200 ns). Receive_throw (b) shows the cost
of receiving the same %throw_goal message and storing
it in a goal stack.

The bar graphs (c), (d), (e) and (f) describe the
cost of sending and receiving a %read message and

Send_throw (goal (atom,EXREF,EXREF)) [65 bytes 1

(a) ~~~~ I 85 Jlsec (419 steps)

130 Jlsec
(637 steps)

Send_read (EXREF) [14 bytes 1
(c) t\\,.'\] I 25 JlSec (117 steps)

Receive_read

(d)~ 35 JlSec (175 steps)

Send_answer_value ([atom I EXREF]) [24 bytes 1
(e) ~ '\01 42 ~lsec (208 steps)

Receive_answer _value

(f)~~ 80 Jlsec (397 steps)

o 20 40 60 80 100 120 140 (Jlsec)

EXREF External pointer

_ Copy_to_RPKB

[;SSj Basic message handling routine

c=:J Encode/decode KL 1 term, etc.

Figure 9: Message Handling Cost

Table 5: Message Frequency and Reductions

Pentomino (39.3 KRPS on 1 PE)
I Num of PEs I 4 PEs I 16 PEs I 64 PEs

execution time (sec) 54.63 14.62 4.35
total reductions (x 1000) 8,317. 8,332. 8,340.
reductions/sec (KRPS) 152.2 570.1 1,919.4
reductio.ns/msg 221. 108. 88.
msg bytes/sec (x 1000) 14.5 108.1 440.5

Bestpath (23.4 KRPS on 1 PE)
I Num of PEs I 4 PEs I 16 PEs 64 PEs

execution time (sec) 10.655 4.062 1.691
total reductions (x 1000) 987.7 1213.6 1,505.2
red uctions / sec (KRP S) 92.7 298.8 890.1
reductions/msg 21.9 11.7 6.2
msg bytes/sec (x1000) 114.0 692.5 3,854.3

(KRPS: Kilo Reductions Per Second)

Table 6: Single Processor Performance of PIM/m

benchmark condition PIM/m Multi-PSI/v2 Multi-PSI/v2
PIM/m

append 1,000 elements 1.63 msec 7.80 msec 4.8
best-path 90,000 nodes 142 sec 213 sec 1.5
pentomino 8 x 5 box 107 sec 240 sec 2.2
15-puzzle 5,885 K nodes 9,283 sec 21,660 sec 2.3

67

68

(0/0)
100

80

~ 60 -c
0
~ 40

20

60

0.
40

:J
-6
Q)
Q)
a.
(j) 20

4

20

16

Num of PEs

40

Num of PEs

Pentomino

32 64

60

(%)
100

80

Q)

~ 60 ..:.::
0
~ 40

20

Oldie
61 Cache miss
ail Msg handling
• Computing

60

0.
40

:J
-6
Q)
Q)
0.
(j) 20

20

16

Num of PEs

40

Num of PEs

Bestpath

Figure 10: Decomposition of Processor Time and Speed-up

Table 7: System Performance on Pentomino (8 x 5 box)

32

No. of PEs PIM/m Multi-PSI/v2 Multt-f':il/v2

PIM/m
Time Speedup Time Speedup

256 PE 1,124 ms 95-1=1
128 PE 1,290 ms 83.13
64 PE 2,162 ms 49.60 4,679 ms 51.20 2.16
32 PE 3,694 ms 29.03 8,278 ms 28.94 2.24
16 PE 6,910 ms 15.52 15,686 ms 15.27 2.27

1 PE 107,238 ms 1.00 239,545 ms 1.00 2.23

%answer_value message. cost of the remote synchronization.

64

60

Sending and receiving cost of the %throw_goal mes
sage, 215 itS (1056 steps) in total, can be considered as
the cost of a process fork to a different PE, or a remote
procedure call. Cost of the %read and %answeLvalue
messages, 182 f-LS (897 steps) in total, correspond to the

Comparing these value with the cost of local opera
tions in the previous section, the remote synchronization
takes around 10 times higher cost than local. 'Ihe remote
procedure call costs more but below 40 times of the local
process fork. These remote/local ratio seems low enough

69

Table 8: System Performance on Pentomino (10 x 6 box)

No. of PEs PIM/m
Time Speedup

256 PE 103,655 ms 234.29
128 PE 188,452 ms 128.87
64 PE 359.268 ms 67.60
32 PE 694,553 ms 34.96
16 PE 1,367,240 ms 17.76
1 PE 24,285,015 ms 1.00

to encourage the small-grain concurrent processing be
tween PEs. Measurements of the communication cost
give a guideline for the process grain size (communication
rate) to keep the communication overhead low. When a
process garin size decreases, becoming close to the com
munication cost, communication overhead increases sig
nificantly (close to 50% of CPU time).

6.1.3 Measurements on Benchmark Programs

Benchmark Programs: The followings are the two
benchmark programs used here.

• Pentomino: A program to find out all solutions of a
packing piece puzzle (Pentomino) by exploring the
whole OR tree. Two-level dynamic load balancing
is employed [Furuichi et al. 1990J.

• Bestpath: A 160 x 160 grid graph is given together
with non-negative edge costs. The program deter
mines the lowest cost path from a given vertex to
all vertices of the graph by performing a distribu ted
shortest path algorithm [Wada and Ichiyoshi 1990].
The vertices are represented by KLI' processes, and
they exchange shortest path information along the
edges. 25,600 small processes work cooperatively.

Message & Reduction Profile: Table 5 shows
the execution time, the reduction and message rates,
etc. [Nakajima and Ichiyoshi 1990J. Average time of one
reduction in a PE is an inverse of the KRPS value. 25
J1S (127 steps) in Pentomino, and 43 J1S (214 steps) in
Bestpath. They are almost the grain size of concurrent
processes in a PE. The message sending rates on 64 PEs
are: one message per 88 reductions in Pentomino, and
one per 6 reductions in Bestpath.

The average network traffic was re-
poted in [Nakajima and Ichiyoshi 1990], calculated from
these figures. Relative to the 10 Mbyte/s network chan
nel bandwidth, the average traffic on a channel is very
small: 0.08% (Pentomino) and 0.3% (Bestpath) of the
bandwidth.

Multi-PSI/v2 Mult, ·jJ::il/v2

PIM/m

Time Speedup

886,325 ms 2.47
1,729,430 ms 2.49

Communication Overhead: Profiling data of pro
cessor execution has been measured on the two bench
mark programs [Nakajima 1992J. The execution time is
broken down into the four categories in Figure 10: com
puting time (reduction operations), message handling
time, cache-miss penalty, and idling time. The average
of all PEs are shown in the bar graph. The 'resultant
speed-up is also shown with the ideal one.

Two-level dynamic load distribution is used in Pen
tomino. Several thousands small processes are dis
tributed to 64 PEs in 4.35 seconds adaptively. The graph
shows low communication overhead and good speedup.
The degradation of processor workrate in 64-PE execu
tion is mainly caused by the latency of load feeding to
PEs.

In Bestpath, 25,600 small processes are distributed
statically on 64 PEs. They exchange messages to per
form an distributed algorithm. The inter-PE commu
nication and the cache-miss penalty degrade the per
formance because of the high communication rate and
the large working set. As the number of PEs grows,
the grid graph is divided into smaller blocks to keep the
workrate high, and it makes the inter-PE communication
rate higher. Best path includs speculative computation,
which increases with the large number of PEs. It causes
lower speedup than a calculated value from the processor
workrate.

Measurements results in table 5 and Figure 10 show
the actual communication rate and communication over
head. Programmers can use relatively large commu
nication rate, one message per 6 reductions (measured
in Bestpath), with non-large CPU overhead of approxi
mately 15%. Considering a network load of 0.3% at that
time, it is observed that CPU load (15% at that time)
will limit the communication band width when commu
nication rate increases. The language implementation,
which supports the global name space on a distributed
memory hardware, tends to increase the CPU load con
cerned with network communication.

70

6.2 Preliminary Measurements on the
PIM

6.2.1 Single Processor Performance

Table 6.1 shows the single processor performance of
PIM/m for four benchmarks. The table also includes the
performance of Multi-PSI/V2 and the ratio of PIM/m
and Multi-PSI/V2 (M/P-speedup).

M/P-speedup is 1.5 to 2.3 in average. Programs with
large working set tends to show low M/P-speedup.

6.2.2 System Performance

Table 7,8 show the preliminary measurements of system
performance on PIM/m. The benchmark program is
Pentomino.

Speedup saturation in Table 7 is caused by small prob
lem size. Better speedup (234 folds speedup with 256
processors) was attained with larger problem in Table 8.
It is also surprising that the small problem (executed
in 1.1 second) show 95 folds speedup, which uses the
multi-level dynamic load distribution distributing sev
eral thousands of small processes. The facts shows an
efficient language implementation suitable to handle a
lot of small-grain processes with less overhead.

7 Conclusion

This paper described two subjects. One is an overview
of the research and development on the parallel inference
machine PIM and the language implementation of the
kernel language KL1, a concurrent logic programming
language.

The other is the clarification of the features and advan
tages of KL1 language; its parallel implementation, and
the hardware architecture from the viewpoint that the
features are suitabie and may be indispensable for effi
cient parallel processing of the dynamic and non-uniform
problems with large computation. Knowledge processing
is included in the problem domain. These problems have
not been covered by commercial parallel machines and
their software systems that target the scientific compu
tation. The PIM system focuses on this new domain of
parallel processing.

PIM is a distributed memory MIMD machine with a
global view, connecting a maximum of 512 processors.
It includes shared-memory substructures. Many compo
nent technologies have been developed that support effi
cient parallel processing on the target problem domain,
especially on symbolic processing.

KL1 language also has very strong features for efficient
programming and execution of the dynamic and non
uniform large problems. Major features are (1) small
grain concurrent processes, (2) implicit synchronization
and communication, (3) separati()n of concurrency de
sign and mapping (load allocation and scheduling), etc.

They support highly concurrent programming with com
plex structures and support large flexibility for load bal
ancing. The efficient language implementation made ac
tual use of the language features possible. The PIM and
KL1 system have realized a strong research and develop
ment environment for parallel software in that problem
domain.

Measurements and evaluations showed a very low
cost language implementation for handling small-grain
concurrent processes and their remote communications.
Good speedup by parallel processing on benchmark pro
grams was also reported. A lot of small-grain processes
were handled during this processing. These results prove
the efficiency and usefulness of the system to the dynamic
and non-uniform problems.

Further mea~urement and evaluation is continuing,
and the results of this will be reported soon. On the
other hand, many problems of parallel software remain
unsolved. Continuous research must be carried out to
construct the real technology of large-scale parallel pro
cessing for the dynamic and non-uniform problems in
cluding the knowledge information processing in the 21st
century. The parallel inference machine PIM and the
KL1 language system will be utilized as the best research
environment.

Acknow ledgment

The R&D of PIM system have been carried out by re
searchers in the first research laboratory and cooperat
ing companies, supported with valuable suggestions and
helps by members of the second, seventh and the other
ICOT laboratories and the PIM working group. The
author would like to thank all of these people for their
continuous efforts and cooperation.

References

[Chikayama and Kimura 1987] T. Chikayama and Y.
Kimura. Multiple Reference Management in Flat
GRC. In Proc. of the Fourth Int. Conf. on Logic Pro
gramming, 1987, pp.276-293.

[Chikayama 1992] T. Chikayama. Operating System PI
MaS and Kernel Language KLI. In Proc. of the Int.
Conf. on Fifth Generation Computer Systems, 1992.

[Furuichi et al. 1990] M. Furuichi, K. Taki and N.
Ichiyoshi. A multi-level load balancing scheme for or
parallel exhaustive search programs on the Multi-PSI.
In Proc. of PPoPP'90, pp.50-59, 1990.

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki and A. Matsumoto. Overview of the Parallel In
ference Machine Architecture (PIM). In Proc. of the

Int. Con/. on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988, pp.208-229.

[Goto et al. 1989] A. Goto, A. Matsumoto and E. Tick.
Design and Performance of a Coherent Cache for Par
allel Logic Programming Architectures. In Proceedings
of 16th A nnual International Symposium on Computer
Architecture, pages 25 - 33, Jerusalem, Israel, 1989.

[Hirata et al. 1992] K. Hirata, R. Yamamoto, A. Imai,
H. Kawai, K. Hirano, T. Takagi, K. Taki, A. Nakase
and K. Rokusawa. Parallel and Distributed Implemen
tation of Concurrent Logic Programming Language
KL1. In Proc. of the Int. Con/. on Fifth Generation
Computer Systems, 1992.

[Ichiyoshi et al. 1987] N. Ichiyoshi, T. Miyazaki and
K. Taki. A Distributed Implementation of Flat GHC
on the Multi-PSI. In Proceedings of Fourth Interna
tional Conference on Logic Programming, pages 257-
275, University of Melbourne, MIT Press, 1987.

[Ichiyoshi et al. 1988] N. Ichiyoshi, K. Rokusawa, K.
Nakajima and Y. Inamura. A New External Ref
erence Management and Distributed Unification for
KL1. New Generation Computing, Ohmsha Ltd. 1990,
pp.159-177.

[Ichiyoshi 1989] N. Ichiyoshi. Parallel logic program
ming on the Multi-PSI. ICOT Technical Report TR-
487, ICOT, 1989. (Presented at the Italian-Swedish
Japanese Workshop '90).

[Imai et at. 1991] A. Imai, K. Hirata and K. Taki. PIM
Architecture and Implementations. In Proc. of Fourth
Franco Japansese Symposium, ICOT, Rennes, France,
1991.

[Imai and Tick 1991] A. Imai and E. Tick. Evaluation
of Parallel Copying Garbage Collection on a Shared
Memory Multiprocessor. ICOT Technical Report, TR-
650, 1991. (To appear in IEEE Transactions on Paral
lel and Distributed Systems)

[Inamura et al. 1988] Y. Inamura, N. Ichiyoshi, K.
Rokusawa and K. Nakajima. Optimization Te
chiniques Using the MRB and Their Evaluation on the
Multi-PSI/V2. In Proc. of the North American Con/.
on Logic Programming, 1989, pp. 907-921 (also ICOT
Technical Report, TR-466, 1989).

[Kimura and Chikayama 1987] Y. Kimura
and T. Chika-yama. An Abstract KL1 Machine and
its Instruction Set. In Proc. of Symposium on Logic
PTogramming, 1987, pp.468-4 77.

[Kumon et al. 1992] K. Kumon, A. Asato, S. Arai, T.
Shinogi, A. Hattori, H. Hatazawa and K. Hirano. Ar
chitecture and Implementation of PIM/p. In Proc. of

71

the Int. Con/. on Fifth Generation Computer Systems,
1992.

[Masuda et al. 1988] Y. Masuda, Y. Ishizuka, Y.
Iwayama, K. taki and E. Sugino. Preliminary Eval
uation of the Connection Network for the Multi-PSI
System. In Proc. Europian Conference on A1,tificial In
telligence 1988 (ECAI-88), August 1988.

[Matsumoto et al. 1987] A. Matsumoto, T. Nakagawa,
M. Sato, K. Nishida and A. Goto. Locally Parallel
Cache Design Based on KL1 Memory Access Charac
teristics. ICOT Technical Report 327, 1987.

[Nakagawa et al. 1989] T. Nakagawa, A. Goto and T.
Chikayama. Slit-Check Feature to Speed Up Interpro
cessor Software Interruption Handling. In IPSJ SIG
RepoTts, 89- ARC-77 -3, 1989 (In Japanese).

[Nakagawa et al. 1992] T. Nakagawa, N. Ido, T. Tarui,
M. Asaie and M. Sugie. Hardware Implementation of
Dynamic Load Balancing in the Parallel Inference Ma
chine PIM/c. In Proc. of the Int. Conf. on Fifth Gen
eration Computer Systems, 1992.

[Nakajima et al. 1989] K. Nakajima, Y. Inamura, N.
Ichiyoshi, K. Rokusawa and T. Chikayama. Dis
tributed Implementation of KL1 on the Multi-PSIjV2.
In Proc. of the Sixth Int. Con/. on Logic Programming,
1989, pages 436-451.

[Nakajima and Ichiyoshi 1990] K. Nakajima and N.
Ichiyoshi. Evaluation of Inter-processor Communica
tion in the KL1 Implementation on the Multi-PSI. In
ICOT TR-531, 1990.

[Nakajima 1992] K. Nakajima. Distributed Implementa
tion of KL1 on the Multi-PSI. In Implementation of
Distributed Prolog, edited by P. Kacsuk and M. Wise,
John Wiley & Sons, Ltd., 1992.

[Nakashima and Nakajima 1987] H. Nakashima and K.
Nakajima. Hardware Architecture of the Sequential
Inference Machine: PSI-II. In Proceedings of 1987
Symposium on Logic Programming, Sept. 1987, pp
104-113.

[Nakashima et al. 1992] H. Nakashima, K. Nakajima, S.
Kondo, Y. Takeda, Y. Inamura, S. Onishi and K. Ma
suda. Architecture and Implementation of PIM/m. In
Proc. of the Int. Conf. on Fifth Generation Computer
Systems, 1992.

[Nishida et al. 1990] K. Nishida, Y. Kimura, A. Mat
sumoto and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architec
tures. In PTOC. of the Seventh Int. Con/. on Logic Pro
gramming, 1990, pages 83-95.

72

[Nitta et al. 1992J K. Nitta, K. Taki and N. Ichiyoshi.
Experimental Parallel Inference Software. In Proc. of
the Int. Conf. on Fifth Generation Computer Systems,
1992.

[Onishi et al. 1990] S. Onishi, Y. Matsumoto, K. Naka
jima and K.Taki. Evaluation of the KL1 Language Sys
tem on the Multi-PSI. In Proc. of Workshop on Par
allel Implementation of Languages for Symbolic Com
putation, July 30-31,1990, Oregon, USA. Also ICOT
TR-585.

[Rokusawa et al. 1988J K. Rokusawa, N. Ichiyoshi, T.
Chikayama and H. Nakashima. An Efficient Termi
nation Detection and Abortion Algorithm for Dis
tributed Processing Systems. In Proc. of the 1988
Int. Conf. on Parallel Processing, Vol. 1 Architecture,
1988,pp.18-22.

[Rokusawa and Ichiyoshi 1992J K. Rokusawa and N.
Ichiyoshi. A Scheme for State Change in a Distributed
Environment Using Weighted Throw Counting. In
Proc. of Sixth Int. Parallel Processing Symposium,
IEEE, 1992.

[Sato et al. 1987J M. Sato, A. Goto, et al. KL1 Execu
tion Model for PIM Cluster with Shared Memory. In
Proceedings of the Fourth International Conference on
Logic Programming, pages 338-355, 1987.

[Sato and Goto 1988] M. Sato and A. Goto. Evaluation
of the KL1 Parallel System on a Shared Memory Mul
tiprocessor. In Proc. of IFIP Working Conf. on Par
allel Processing, 1988, pp. 305-318.

[Sato et al. 1992J M. Sato, K. Takeda and T. Ohara. De
sign of the Parallel Inference Machine PIM/i Proces
sor. In Trans. of IPSJ, Vo1.33, No.3, 1992, pp. 278-287
(In Japanese).

[Shinogi et al. 1988J T. Shinogi, K. Kumon, A. Hattori,
A. Goto, Y. Kimura and T. Chikayama. Macro-call
Instruction for the Efficient KL1 Implementation on
PIM. In Proceedings of the International Conference
on Fifth Generation Computing Systems 1988, Tokyo,
Japan, pages 953-961, 1988.

[Takagi and Nakase 1991] T. Takagi and A. Nakase,
Evaluation of VPIM: A Distributed KL1 Implementa
tion - Focusing on Inter-cluster Operations -, In IPSJ
SIG Reports, 91-ARC-89-27, 1991 (In Japanese).

[Takeda et al. 1988] Y. Takeda, H. Nakashima, K. Ma
suda, T. Chikayama and K. Taki. A Load Balanc
ing Mechanism for Large Scale Multiprocessor Sys
tems and its Implementation. In Proceedings of the
International Conference on Fifth Generation Com
puter Systems, ICOT, Tokyo, 1988.

[Taki et al. 1984J K. Taki, M. Yokota, A. Yamamoto,
H. Nishikawa, S. Uchida, H. Nakashima and A. Mit
suishi. Hardware Design and Implementation of the
Personal Sequential Inference Machine (PSI). In Proc.
of the Int. Conf. on Fifth Generation 'Computer Sys
tems 1984, pp.398-409, Tokyo, Nov. 1984.

[Taki 1988] K. Taki. The Parallel Software Research and
Development Tool: Multi-PSI System. In Program
ming of Future Generation Computers, K.Fuchi and
M.Nivat (Editors), pages 411-426, Elsevier Science
Publishers B.V., North Holland, 1988.

[Uchida et al. 1988] S. Uchida, K. Taki, K. Nakajima,
A. Goto and T. Chikayama. Research and Develop
ment of the Parallel Inference System in the Interme
diate Stage of The FGCS Project. In Proc. of the Int.
Conf. on Fifth Generation Computer Systems '1988,
pp.16-36, Tokyo, Nov. 1988.

[Uchida 1992J S. Uchida. Summary of the Parallel In
ference Machine and its Basic Software. In Proc. of
the Int. Conf. on Fifth Generation Computer Systems,
1992.

[Ueda 1986] K. Ueda. Guarded Horn Clauses: A Parallel
Logic Programming Language with the Concept of a
Guard. ICOT Technical Report 208, 1986.

[Ueda and Chikayama 1990J K. Ueda and T. Chika
yama. Design of the Kernal Language for the Paral
lel Inference Machine. The Computer Journal, (33)6,
1990, pp.494-500.

[Wada and Ichiyoshi 1990] K. Wada and N. Ichiyoshi.
A study of mapping locally message exchanging al
gorithms on a loosely-coupled multiprocessor. ICOT
Technical Report TR-587, 1990.

[Warren 1983J D. H. D. Warren. An Abstract Prolog In
struction Set. Technical Note 309, Artificial Intelli
gence Center, SRI, 1983.

[Watson and Watson 1987J P. Watson and 1. Watson.
An Efficient Garbage Collection Scheme for Parallel
Computer Architectures. In Proc. of Parallel Architec
tures and Languages Europe, LNCS 259, Vol. II , 1987,
pp.432-443.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 73

Operating System PIMOS and Kernel Language KLI

Takashi Chikayama
Institute for New Generation Computer Technology

4-28, Mita l-chome, Minato-ku, Tokyo 108 Japan
chikayama@icot.or.jp

Abstract

The Fifth Generation Computer Systems (FGCS)
project is a national project of Japan, aiming at es
tablishing the basic technology required for high perfor
mance knowledge information processing systems. The
parallel inference system subproject is aiming at estab
lishing parallel processing hardware technology for mas
sive processing power and software technology for effec
tive utilization of such hardware in the knowledge infor
mation processing field. The basic software system is re
sponsible for providing a programming language suited
for describing knowledge information processing appli
cations software and providing a comfortable environ
ment for program execution and software development
on highly parallel computer systems.

A concurrent logic language with extensions to control
program execution on parallel hardware was designed as
the kernel language of the system. An operating sys
tem that provides a comfortable environment for parallel
application software development was designed and im
plemented in the kernel language. This paper gives an
overview of the research and development in this area in
the FGCS project.

1 Introduction

The fifth generation computer systems project is a na
tional project of Japan, aiming at establishing the basic
technology required for high-performance knowledge in
formation processing systems. The most important tech
nologies to be provided to attain the final objective of the
project are the following two.

• Problem solving methods for knowledge information
processing

• Processing power for implementation of the above
methods

The parallel inference system subproject is aiming at es
tablishing both hardware and software technologies for
the latter.

With the recent evolution of the hardware technology,
multiprocessor systems are expected to be advantageous

not only in absolute processing power but also in cost
effectiveness early in the next century. There seems to
be no other technology than multiprocessing to provide
the computational power required for high-performance
knowledge information processing systems.

The software technology for parallel processing, on the
other hand, is still quite premature. In particular, the
technology for building parallel software to solve com
plicated problems in the area of knowledge processing
is far from satisfactory yet. This, we think, is at least
partly due to the problems in the approach to the par
allel software technology conventionally taken, that is,
trying to augment already available sequential process
ing technologies. A new system of software technology
totally redesigned for parallel processing, including algo
rithms, programming languages and operating systems,
has to be established.

As the basis of this new technology, a concurrent logic
language with extensions to control program execution
on parallel hardware was designed as the kernel lan
guage of the system. An operating system that provides
a comfortable environment for parallel application soft
ware development was also designed and implemented
in the kernel language. This paper gives an overview of
the research and development in this area of the FGCS
project.

In the following sections, the design principles are de
scribed in section 2, the design of the kernel language
in section 3, that of the operating system in section4.
Experiences with the language and the operating system
are described in section 5. Direction of future work is
suggested in section 6, followed by concluding remarks.

2 Principles

2.1 Middle-Out Approach

When designing a computer system, two extreme ap
proaches can be considered. One is a top-down ap
proach, starting from problems to solve, gradually de
signing downwards to the level of computer architecture
or even to the level of electronic devices, seeking in each
level for a design most appropriate to implement higher
levels. The other is a bottom-up approach, starting from

74

a.vailable device technologies, seeking for the best use of
the lower level technology, finally finding an appropriate
application area.

Neither of the approaches, however, cannot be success
ful by itself. In the top-down approach, design in each
level requires insight into appropriate implementation of
all the lower level technologies. In the bottom-up ap
proach, design in each level requires insight into upper
levels, up to application areas appropriate for the chosen
design.

It is too difficult for anybody to have such insight for
the broad and rather vague target of a long-term project,
knowledge information processing. We thus decided to
take a middle-out approach of designing a certain inter
mediate level first and conduct research and development
towards two directions, upwards and downwards, simul
taneously. It is not easy, of course, to find an appropriate
intermediate level and to actually design that level. This,
however, seemed to be the only feasible approach for a
project like this one.

2.2 Kernel Language

The intermediate level we chose was the level of program
ming languages. Choosing this level has the following
merits.

• The programming language level is not too far away
from the both extreme ends of application software
and hardware implementation.

• Relatively rigorous specification in the programming
language level can be given more easily than in other
levels.

The programming language designed to be the starting
point of this middle-out approach is called the kernel
language [Ueda and Chikayama 1990].

At the time the project started in 1982,' language de
sign and implementation technology was still premature
to fix the design of the kernel language. Thus, the re
search started by investigating sequential systems first.
In the first stage (fiscal years of 1982-84) of the project, a
sequential kernel language based on Prolog, named ESP
[Chikayama 1984], was designed, which formed the basis
of the research and development in most of the research
efforts in the first stage and early in the intermediate
stage.

Design of the next version of the kernel language KL1
was started in the first stage simultaneously. Its pre
liminary design and implementation were done early in
the intermediate stage and a fuller implementation on
a experimental parallel computer system was completed
within the intermediate stage (1985-88). The language
has been used through the final stage (1989-) tor var
ious application research. In what follows, the kernel
language means this second generation kernel language,
KLl.

2.3 Logic Programming Principle

The logic programming ~dea gave the basis of the whole
project. The image of logic programming in the original
project plan seems to have been strongly. influenced by
a particular language Prolog. As the research proceeded
from sequential systems to parallel systems, we had cho
sen a concurrent logic programming approach. The prin
ciple of placing "logic" as the central design principle,
however, has been kept unchanged.

The principle of logic programming played a impor
tant role in selecting a particular design among many
candidates. In designing the kernel language, its sound
ness in the sense of mathematical logic has been acted as
a "canon", although we gave up pursuing completeness.!
Many proposals to extend the kernel language with at
tractive features were investigated but rejected because
of their unsoundness. On the other hand, features which
do not change the meaning of the programs when inter
preted as 10gical formulas were more freely added to the
language. They have only to do with execution efficiency
and nothing to do with the correctness of programs, and
were clearly discriminated from the core part of the lan
guage.

These principles based on logical interpretation of pro
grams have been quite helpful in keeping the language
design coherent and, in its consequence, its implementa
tion and its programming style coherent, as is described
further in detail below.

2.4 Target Architecture

A processor with performance comparable to a full-size
computer with reasonable amount of memory is now
available on a single circuit board. Recent evolution
of the hardware technology shows four-times increase in
density of circuitry every three years. Extrapolating this,
one hundred processors with reasonable amount of mem
ory are expected to reside in one chip early in the next
century. On the other hand, although the performance
of single processor is steadily being improved, it might
be very difficult to attain improvement by two orders of
magnitude within the same time period.

With larger circuitry made practical with higher den
sity, the design cost is beginning to dominate the total
cost of processors. The design repeatability in multi
processor systems will have great cost advantage over a
complicated processor occupying one whole chip or more,
even if the both systems had the same performance.
Early in the next" century, multiprocessor systems will
thus be advantageous, not only in absolute processing
power, but also in cost effectiveness even in small sys
tems such as palm-top or wrist watch type computers.

1 Soundness of a system means that any results obtained are
logical consequences of the given axiom set. Completeness, on the
other hand, means that all logical consequences can be obtained.

For application areas such as knowledge information
processing that need non-uniform computation, an ar
chitecture that allows flexible resource allocation is re
quired. For highly parallel systems, scalability of the
system architecture is critical. Having these in mind, we
chose a homogeneous MIMD architecture with loosely
coupled processors (or loosely-coupled clusters each with
several tightly coupled processors) as the target architec
ture of the software system.

2.5 Level of the Kernel Language

An ideal programming language should allow very high
level description with an implementation optimizing it to
the target architecture without any human help. How
ever, with the current technology, such a language is
nothing more than a dream. It is especially so when the
programs have to be optimized for execution on a large
scale loosely-coupled parallel computer systems where
communication delay is not negligible. The most dif
ficult part in the optimization will be where (on which
processor) to execute certain parts of computation and
when (in which order). Such a problem is known as the
mapping problem.

As long as problem solving techniques used are rel
atively simple, required computation can be easily told
beforehand making static mapping by compilers feasible.
For knowledge information processing requiring sophis
ticated problem solving methods, what to compute next
often depends on the result of the former steps of the
computation, making static optimization of computation
mapping impossible. Many research results have shown
that general-purpose automatic mapping algorithm is
hard to design and the selection of good mapping algo
rithms depends heavily on the problem solving method
used.

As know ledge information processing.is an area where
no single universal and efficient problem solving method
is known, providing one single mapping algorithm is not
appropriate. Providing many mapping algorithms that
cover all the known methods may still be insufficient; as
research in the area is still in an early stage, many novel
problem solving methods are expected to be proposed in
the near future. Thus, we set the level of the kernel lan
guage so that mapping of computation can be specified
in programs.

This decision of putting the responsibility of computa
tion mapping on programmers has the drawback of mak
ing programming a more complicated task. We, however,
regard this additional effort as unavoidable and essen
tial in establishing the technology for high performance
knowledge information systems. When a widely applica
ble mapping algorithm is established, it can be provided
to the application users as a program library. With the
kernel language capable of controlling program execu
tion, writing such a library should not be difficult.

75

2.6 Designing a New Language

It might have been possible to take an already existing
logic programming language as the basis of the kernel
language and extend it with several additional features
for concurrent execution. The logic programming lan
guage used most widely was (and still is) Prolog, which
was the primary candidate for such extensions.

There could be two ways to tailor Prolog to a language
for parallel systems. One method was to provide implicit
and automatic computation mapping, which was not
taken by the above-described reason. Another possible
way was to make concurrent execution explicitly spec
ified with additional language constructs. However, as
the base language Prolog was designed for sequential pro
cessing, concurrency specification would add some more
complexity to the language and making programs harder
to understand. More importantly, if sequential execu
tion should have made the default principle, it would
have been more difficult to reorganize programs for bet
ter mapping, as different mappings require different parts
of programs to run concurrently.

Another problem with such a language was pains in
specifying synchronization. In programming languages
in which synchronization is specified independent from
conditioning, problems arise when decisions on condi
tional execution are made on incomplete data. On phys
ically parallel hardware, finding such problems would be
come very painful because the same phenomenon is often
hard to reproduce. To solve this problem, synchroniza
tion and conditioning should not be made separate.

We decided that the kernel language should be de
signed from scratch so that concurrent execution could
be expressed in a natural way. The language should have
intrinsic concurrency: language constructs imply concur
rent execution in principle and sequencing is explicitly
described. Synchronization should be integrated with
conditioning in the language construct.

2.7 Designing aNew OperatingSystem

Even though the prototype parallel inference system is
an experimental system, an operating system that pro
vides a comfortable software development environment
was mandatory. One way to provide the required func
tionality might have been to port an already existing
operating system to the parallel inference machine.

All the operating systems available then (and probably
most of them even now) were designed originally for se
quential systems and augmented afterwards with certain
primitives for execution on parallel systems.

There were two major problems with such systems.
One was that the interface of the operating system with
the user programs was still based on sequencing. For
example, the user program is notified of completion of
requested service by the completion of execution of a pro-

76

cedure, supervisor call, in the user's thread of execution.
This is acceptable in systems where application software
is written in basically sequential languages. This, how
ever, would not go well with software written in the ker
nel language with intrinsic concurrency.

Another problem was that the management policies
of such operating systems were highly optimized for se
quential processing. In sequential systems or small-scale
parallel systems, centralization of all the management
information is usually the most robust and efficient pol
icy. This, however, is far from optimal for highly parallel
systems. If the management were centralized on one pro
cessor in a highly parallel system, that processor would
be responsible for too much management work and would
be the bottleneck of the whole system. Moreover, every
activity within the system would require communication
to and from that processor, resulting in communication
bottleneck.

We concluded that designing an operating system op
timized for highly parallel systems was also an unavoid
able and essential part of the technology for high per
formance knowledge information systems and decided
to design and implement a new operating system from
scratch. The user interface should be consistent with the
design of the kernellanguagej sequencing should not be a
part of the design of the interface. Distribution of man
agement was essential to avoid bottlenecks, which might
also affect the specification of the services provided by
the operating system.

3 Kernel Language: KL12

The kernel language KL1 has two layers. The basic layer
is defined by Guarded Horn Clauses (GHC), which is a
concurrent logic language for describing what computa
tion to perform for desired result, that is, for describing
correct programs. The description lays only those con
straints on mapping of computation which are required
to obtain the desired result. Based upon this layer is the
full KL1 language for describing how such computation
should actually be carried out with desired mapping of
computation, that is, for describing eJjicient programs.
This separation of correctness and efficiency issues or, in
other words, concurrency and parallelism, seems to play
an important role in bridging the gap between parallel
inference systems and knowledge information processing
in a coherent manner.

3.1 Concurrent Logic Language GHC

This section describes the design of a concurrent logic
language Guarded Horn Clauses, which forms the basis

2This section is a rewrite of an article co-authored with
Kazunori Ueda [Ueda and Chikayama 1990], except for the sub
section 3.3.

_---I Efficient Program. in KLll-----

Mapping of Computation

Communicating Concurrent Processes

Figure 1: Two Layers of the Kernel Language

of the kernel language KL1.

3.1.1 Concurrent Logic Languages

The design effort of the kernel language was started in
1982 with the start of the project by seeking for an ap
propriate framework of the language. As the concur
rent logic programming framework seemed to provide the
characteristics in our need, we investigated many lan
guages in the family as the basis of the kernel language,
including Relational Language [Clark and Gregory 1981],
Concurrent Prolog [Shapiro 1983] and PARLOG [Clark
and Gregory 1983]. This study led us to a design of a
new concurrent logic language, Guarded Horn Clauses
(GHC) at the end of 1984 [Ueda 1986].

GHC shares its basic framework with other concur
rent logic languages. Firstly, a GHC program is a set of
guarded clauses. Secondly, GHC features no don't-know
nondeterminism (built-in search capability) but features
don't-care nondeterminism, which allows description of
reactive systems. Reactive systems in concurrent logic
languages are based on the process interpretation of logic
[van Emden and de Lucena Filho 1982], in which a goal
(or a multiset of subgoals derived from it) is regarded
as a process and processes communicate by generating
and observing bindings (between shared logical variables
and their values). Like most concurrent logic languages,
all bindings are determinate in GHC, that is, they are
never revoked once published to other processes. The
determinacy of bindings is essential in reactive systems,
such as an operating system, because the bindings may
be used for interacting with the real outside world. The
lack of built-in search capability also allows programs to
specify the way of their execution in more detail, which

,Iso matches our principle of making programs specify
napping of computation.

~.1.2 Guarded Horn Clauses

What then is the relative merit of GHC over other con
::urrent logic languages? In our study of various concur
rent logic· languages, we focused on Concurrent Prolog,
which was the most expressive of them, and built its
prototype implementation [Miyazaki et al. 1985]. The
experience led us to clarify the definition of atomic op
erations of the language, which in turn led us to a new
language with simpler atomic operations.

As explained above, one important aspect of concur
rent logic languages is the determinacy of bindings. In
general, the execution of a concurrent logic program pro
ceeds using parallel input resolution [Veda 1988a] that
allows parallel execution of different goals, but under the
following rules to guarantee the determinacy of bindings:

(1) The guards (including the heads) of different clauses
called by a goal g can be executed concurrently, but
they cannot instantiate g.

(2) The goal g commits to one of the clauses whose
guards have succeeded.

(3) The body of a clause to which g has committed can
instantiate g. The bodies of clauses to which g has
not committed cannot instantiate g or the guards of
the clauses.

(4) A goal is said to succeed if it commits to some clause
and all its body goals succeed.

That is, before commitment, a goal can pursue two
or more clauses but without generating bindings. Af
ter commitment, it can generate bindings but only one
clause is left.

Another important aspect of concurrent logic lan
guages is how synchronization is achieved. In general,
synchronization is achieved by restricting information
flow caused by unification. Concurrent Prolog uses read
only annotations, and P ARLOG uses mode declarations
which are used for compiling the unification of input ar
guments into a sequence of one-way unification and test
unification primitives. However, in these languages, ad
ditional mechanisms are necessary to guarantee restric
tion (1) above.

The key idea of GHC is quite simple. It uses the re
striction (1) itself as a synchronization construct. That
is, any piece of unification which is invoked directly or
indirectly from the guard of a clause C and which would
instantiate the caller of C is suspended until it can be ex
ecuted without instantiating the caller. In other words,
GHC has integrated two notions: the determinacy of
bindings and synchronization.

77

A kernel language must provide a common framework
for people working on various aspects of the project in
cluding applications, implementation, and theory. Be
fore accepting GHC as the basis of our kernel language,
we had to convince ourselves that it satisfies the follow
ing conditions:

• It is expressive enough.

• It can eventually be implemented efficiently, possi
bly by appropriate subsetting.

• It is simple enough to be understood and used by
programmers. Also, it is simple enough for theoret
ical treatment.

We soon made sure that GHC was expressive enough
to write most concurrent algorithms that had been writ
ten in other concurrent logic languages, but that was
not enough. How to program search problems was also
important, because search problems are a specialty of or
dinary logic languages. So we have developed a couple of
methods for programming search problems [Veda 1987],
[Tamaki 1987], [Okumura and Matsumoto 1987].

For implementability, we quickly ascertained by rapid
prototyping that GHC can be implemented fairly ef
ficiently at least on sequential computers [Veda and
Chikayama 1985].

3.1.3 Flat GHC

For simplicity, we continued to study the properties of
GHC and looked for a simpler explanation of the lan
guage better suited to process interpretation. Now, our
interpretation is that a GHC process is an abstract entity
which observes and generates information (represented
in the form of bindings) and which is implemented by a
multiset of body goals. The behavior of each body goal
is defined by guarded clauses that can be regarded as
rewrite rules.

A problem with the original definition of GHC is that
guard goals do not fit well into this process interpreta
tion. We also felt, from a practical point of view, that
the expressive power of guard goals did not justify the
implementation effort even if it could be implemented
efficiently ..

These considerations led us to reduce GHC to a sub
set, Flat GHC. Guard goals of Flat GHC are auxiliary
conditions to be satisfied for applying the clause. The
sufficient conditions to be satisfied by a guard goal as
an auxiliary condition are that it is deterministic (that
is, whether it succeeds or not depends only on its argu
ments) and that it does not produce any bindings. This
restriction simplified the theoretical treatment consider
ably in the operational semantics [Ueda 1990] and pro
gram transformation rules [Ueda and Furukawa 1988].

To summarize, a Flat GHC program is a set of guarded
clauses that can be regarded as rewrite rules of goals.

78

The guard of a clause specifies what information should
be observed before applying the rewrite rule, and the
body specifies the multiset of goals replacing the original.
A bO,dy goal is either a unification goal of the form tl = t 2,

whose behavior is language-defined, or a non-unification
goal, whose behavior is user-defined. A unification body
goal generates information by unifying tl and t 2, and a
non-unification body goal represents the rest of the work
and will be reduced further.

3.1.4 Characteristics of GHC

The semantics of Flat GHC can be understood both alge
braically and logically. The algebraic one is the process
interpretation mentioned above. A logical characteriza
tion of communication and synchronization was given
by Maher [Maher 1987], showing that information com
municated by processes can be viewed as equality con
straints over terms.

Unlike Concurrent Prolog but like PARLOG, the pub
lication of bindings is not done atomically upon com
mitment of a non-unification goal but eventually after

commitment using a unification body goal that can run
in parallel with other goals. This means that commit
ment in GHC is a smaller and simpler operation than in
Concurrent Prolog. Moreover, in GHC, the information
generated by a unification body goal is not an atomic
entity but can be transmitted in smaller pieces, possi
bly with communication delay. We have found that this
liberal computational model of (Flat) GHC is expressive
enough to program cooperating concurrent processes and
leaves more freedom to implementation.

Another point to note is that GHC has included con
trol for the correct behavior of processes but excluded
any control for efficient execution. GHC has left the
latter to KL1 described below, in order to clearly dis
tinguish between the two notions. This contrasts with
PARLOG, which features sequential AND that can be
used for suppressing parallel execution of body goals. We
believe that it is important to learn that synchronization
based on information flow is sufficient for writing correct
concurrent programs.

Important topics on theoretical aspects of Flat GHC
include the relationship with other theoretical models of
concurrency such as CCS [Milner 1989] and theoretical
CSP [Hoare 1985]. Although concurrent logic languages
differ from CCS and CSP in their asynchronous commu
nication and dynamically reconfigurable processes, sim
ilar mathematical techniques can be used to formalize
them. We have not yet obtained a completely satisfac
tory formal semantics, but we are fairly confident that
Flat GHC is theoretically simple enough, while it can be
used for practical programming without any modifica
tion.

3.2 Practical Parallel Language KLI

As described above, we have designed a concurrent logic
language Flat GHC as the basis of the kernel language.
The descriptive power of the language, however, is not
sufficient when efficient program execution is our con
cern, which was the original motivation of parallel com
puters.

As Flat GHC programs do not say anything about
where (i.e., on which processor) the atomic operations
making up a computation should be performed, there
are many ways to distribute the operations over avail
able processors. As Flat GHC programs only specify the
partial ordering of atomic operations, there are many
possible total orderings conforming to it. To make sure
that the distribution and the ordering employed are not
far from optimal, we must be able to specify physical
details of execution to some extent.

We thus designed a parallel programming language
based on the concurrent programming language Flat
GHC, in which we can specify in certain detail how a
program should be executed. This section describes the
outline of this language, named KLl.

3.2.1 Mapping of Computation

Flat GHC programs implicitly express any potential par
allelism in the sense that no ordering between atomic op
erations exists except for those essential for correctness.
On real-world computer systems with a limited number
of processors and non-negligible cost of interprocessor
communication, faithful exploitation of this parallelism
will almost never show optimal efficiency. To achieve rea
sonable efficiency, control is required on when and where
each atomic operation should be performed. This control
is called mapping.

Mapping is often implicit in sequential systems. With
two possible methods to solve a problem, a good strategy
on a sequential system would be trying more efficient but
less reliable one first and trying less efficient but reliable
one second only when the first one fails. This may not
be the best for parallel systems, when the first method
will not require all the computational resource (such as
processors) for its execution. In such a case, the second
method should be tried in parallel with the first. This
computation mayor may not be required depending on
the result of the first method. Such computation is called
speculative [Burton 1985]. For efficiency, computation by
the second method should not interfere the execution of
the first by snatching required resources. This is effected
by giving priority to the first method over the second.
From this viewpoint, the original sequential algorithm
uses sequencing of two methods not for correctness but
for efficiency to implicitly specify priority.

Sometimes more sophisticated mapping is desirable.
Suppose that there are two methods to solve a problem
and that, although at least one is known to find a so-

Figure 2: Shoen Construct

lution efficiently, we cannot tell which beforehand. In
such a case, the best scheduling strategy may be to give
both methods approximately the same amount of com
putational resource. Resource management is thus an
important part of an algorithm in parallel computation.

In sequential computer systems and in parallel com
puter systems as extensions of conventional sequential
systems, operating systems are primarily responsible for
mapping. This is acceptable as far as application pro
grams are mostly sequential and the mapping strategy is
often specified by sequencing implicitly. In parallel sys
tems where explicit mapping operations are much more
frequently required, requesting each mapping operation
to the operating system would incur intolerable over
head.

3.2.2 Mapping Features of KLI

To solve this problem, we have introduced into KL1 the
following features, which are intended to be efficiently
implemented:

Shoen: Shoen3 represents a group of goals. This group
is used as the unit of execution control, namely the
initiation, the interruption, the resumption and the
abortion of execution. Exception handling and re
source consumption control mechanism are also pro
vided through this shoen construct. It has two com
munication streams as its interface: one directs from·
outside of the shoen, called control stream, for sending
messages to control execution in the shoen; the other,
called 1'eport stream, has the reverse direction for re
porting events internal to shoen. The shoe.n construct
is an extension of the metacall construct proposed by
Clark and Gregory [Clark and Gregory 1984].

Priority: A (body) goal of a KL1 program is the unit of
priority control. Each goal has an integer priority as
sociated with it. Each shoen keeps the maximum and·
the minimum priorities allowed for goals belonging to

3Shoen is a Japanese word corresponding to 'manor' in English.

79

it, and the priority of each goal is specified relative to
these. The language provides a large number of log
ical priority levels, which are translated to physically
available priority levels provided by each implementa
tion.

Processor specification: Each (body) goal may have
a processor specification, which designates the proces
sor (or a group of processors) on which to execute the
goal.

This straightforward mechanism provides the basis
of research in more sophisticated computation map
ping strategies. Actually, several automatic mapping
strategies have been developed for diverse problems,
and relatively universal ones are provided as libraries
[Furuichi et al. 1990].

One of the most notable characteristics of the KL1 lan
guage is that these priority and processor specifications
are separated from concurrency control. We call these
specifications pragmas. Pragmas are merely guidelines
for language implementations and may not be precisely
obeyed. The same is true of the controlling mechanism
of shoen; abortion of computation, for example, may not
happen immediately. This relaxation makes distributed
implementation much easier.

In many parallel programming languages, the specifi
cation of parallel execution is often mixed up with other
language' constructs, especially with constructs for con
currency control. A major revision is often required for
revising only the mapping of computation to improve
efficiency, which is liable to introduce new bugs.

Although pragmas are specified within the program
in KL1, they are clearly distinguished syntactically from
other language constructs. Pragmas will never change
the correctness of the programs,4 though the perfor
mance may change drastically. As it is not uncommon
that more than half of the effort to develop a program is
devoted to the design of appropriate mapping, it is most
advantageous that mapping specifications can be altered
without affecting correctness of the program.

3.2.3 Keeping up with Sequential Languages

What criterion is appropriate for comparing parallel al
gorithms? Assume that a parallel algorithm has sequen
tial execution time c(n) (n being the size of the prob
lem) and average potential parallelism p(n). Then the
total execution time by this algorithm on an ideal par
allel computer is given by c(n)jp(n). This means that
an algorithm with more sequential execution time but
with still more parallelism is considered to be a better
algorithm on an ideal parallel computer.

4To be precise, the priority specification may be used for guar
anteeing certain properties of diverging (i.e., autonomously non
terminating) programs.

80

This, however, does not hold when the potential par
allelism, which may vary over time, can exceed the phys
ically available parallelism. As physical parallelism is al
ways limited in the real world, a parallel algorithm with
sequential time complexity worse than a sequential al
gorithm will be beaten by that sequential algorithm for
sufficiently large n, no matter what p(n) is. To sum
marize, parallel languages must be able to express any
algorithms with the same sequential time complexity as
in sequential languages to be really useful.

Pure languages such as pure Lisp and pure Prolog can
not express certain kinds of efficient algorithm due to .
the lack of the notion of destructive assignment. GHC
also is a pure language with the same inherent problem.
To write efficient algorithms in these pure languages, we
must be able to somehow mimic the efficiency of array
operations in conventional languages.

For this reason, KL1 introduced a primitive for updat
ing an array element in constant time without disturbing
the single-assignment property of logical variables. The
primitive can be used as follows:

set_vector_element(Vect, Index,
Elem, NewElem, NewVect)

When an array Vect, an index value Index and a new el
ement value NewElem are given, the predicate binds Elem
to the value of the Index'th element of Vect, and New
Vect to a new array which is the same as Vect except
that the Index'th element is replaced by NewElem.

Because some other goals may still have references to
the old array Vect, a naive implementation might allo
cate a completely new array for NewVect and copy all but
one elements. However, when it is known that no goals
other than the above set_vector_element goal have ref
erences to Vect, there will be no problem in destructively
updating it. In the actual implementation of KL1, a sim
plified, efficient version of the reference counting scheme
[Chikayama and Kimura 1987] detects such a situation,
in which event the new array NewVect is obtained in con
stant time.

This means that any imperative sequential algorithm
can be rewritten in KL1 retaining the same. computa
tional complexity, as random access memory can always
be emulated using a single-reference array. Of course, al
lowing only one reference to a data structure can decrease
the possibility of parallel execution considerably. How
ever, this requirement of the computational complexity
becomes essential only after physically available paral
lelism is used up.

3.3 Higher-Level Languages

Although the kernel language KL1 allows relatively
higher level description of programs than imperative lan
guages, its description level is in the same level as Lisp,
which is still too low for certain application programs

in the area of knowledge information processing. This
section describes research on providing higher-level lan
guage constructs upon KLl.

3.3.1 Macro Expansion

A powerful macro expansion mechanism similar to the
one available in ESP [Kondoh and Chikayama 1988] is
designed and implemented. This macro allows not only
in-place expansions of macro invocations but also inser.;
tion of terms into the program in the levels of arguments,
goals or clauses. The following are possible using these
features.

• Simple in-place expansion

• Conditional compilation

• Functional notations including but not restricted to
arithmetical expressions

• Implicit arguments

A goal of Flat GHC programs has very short lifetime,
as it consists of only one reduction to its subgoals. To
realize a process with longer lifetime, a programming
style is used in which a goal recursively calls the same
predicate with almost the same arguments. This pro
gramming style is used almost everywhere in the oper
ating system and application programs. In such a pro
gramming style, the state of the process or any paths
to communicate with other processes (shared variables)
have to be passed as the arguments of the recursive goal.
This ensures higher modularity, but always describing
such arguments is too verbose, making it harder to un
derstand or to revise programs. The implicit argument
passing mechanism can be conveniently used to describe
processes in a more concise manner.

The macro expansion mechanism of KLI is so pow
erful that functions beyond mere syntactic sugaring can
be provided using its features. However, programmers
can freely choose any programming style allowed in KLl.
Although this is advantageous in certain cases, restric
tion on the usage of the language features is profitable
in making programs easier to understand and maintain.
We thus started designs of higher-level languages to be
compiled into KL1, which will be described in the fol
lowing sections.

3.3.2 A'UM

The programming style of KL1 most frequently used is to
describe a set of processes communicating through mes
sage streams [Shapiro and Takeuchi 1983]. Streams are
realized by gradually instantiating a list structure con
sisting of binary cells. Processes are realized using tail
recursion. A 'UM is a programming language designed
to describe such programs more directly than explicitly

writing such realization of message streams and processes
[Yoshida and Chikayama 1990].

A prototype implementation of the language was a
translator to KLl. As a thoroughly object-oriented lan
guage, every entity of the language A'UM, an integer
value for example, appears as a process. We could find
no other way than to actually implement them as pro
cesses in KLl. The choice then was whether to aban
don thorough object-orientationor to implement it dif- .
ferently, not as a part of the parallel inference system.
A 'UM took the latter choice and research on its more
direct implementation is ongoing [Konishi et al. 1992].
A prototype implementation is already operational on a
system of network-connected workstations. The former
approach was taken by another language with similar
objectives, called A YA, which is described in the next
section.

3.3.3 AYA

The design of the language A YA was initiated after we
decided to let A'UM seek for pure object-orientation
rather than pursue practical efficiency on the parallel
inference system [Susaki and Chikayama 1991].

The design objective of AYA is the same as the initial
motivation to design A 'UM, namely, providing a more
concise way to describe programs in object-oriented pro
gramming style of KLl. In design of AYA, a higher prior
ity is given to practical efficiency and freedom of descrip
tion than uniformity as an object-oriented languages.
Not all entities are "objects": integers will not respond
to "add" messages. Its design was mostly bottom-upi
most of the language features were chosen based on our
programming experiences in KLl.

Processes of AYA can have multiple streams to receive
messages, making it impossible to interpret one single
message stream to be representing an object. Commu
nication patterns besides streams such as asynchronous
interrupts are also allwoed.

A characteristic feature of AYA is the notion of scenes,
corresponding to the macroscopic context of a process.
A process can have many scenes to act in and its reaction
to messages from outside will depend on in which scene
it is currently acting.

Implementation effort of A YA is ongoing and a proto
type translator to KL1 is already operational.

4 Operating System: PIMOS

As described above, an operating system tuned to con
trol highly parallel programs effectively is vital for fully
exploiting the power of highly parallel computer sys
tems. The system should also be user-friendly and robust
enough for practical and extensive use in parallel soft
ware research. The Parallel Inference Machine Operat
ing System (PIMOS) was designed to fulfill the require-

81

ments and implemented in the kernel language. This
section describes the overall design of PIMOS.

4.1 Prior Works

The possibility and advantages of writing a complete op
erating system in a concurrent logic language were sug
gested by Shapiro [Shapiro 1986]. Based on this principle
but with much improvements in various aspects, several
experimental systems such as the Logix system [Hircsh
et al. 1987] and the Parlog Programming System (PPS)
[Foster 1987] were implemented.

PIMOS resembles PPS in many aspects. This resem
blance is partly due to the resemblance of the implemen
tation languages (KLl and PARLOG) and partly due to
frequent exchange of ideas among the two groups.

A notable difference between PIMOS and the other
above-mentioned systems lies in the underlying language
implementations and the way the system is used. PI
MOS is designed to be efficiently executed on a parallel
hardware to be practically used in the research and de
velopment of application software, while other systems
are built as experimental systems upon commercially
available systems. In other words, PIMOS shares with
other systems the objective of seeking for a novel method
of constructing an operating system in concurrent logic
language, but has an additional objective of providing
a comfortable and efficient environment for application
software development. This considerably affected vari
ous design trade-offs.

4.2 Objectives

In designing PIMOS, the following items were set as the
design objectives.

Robustness: As PIMOS is to be used on a stand-alone
parallel computer system, the robustness of the system
is more important than in systems build upon another
established system.

Internal Parallelism: The ultimate objective of PI
MaS is, as stated above, to provide features for fully
exploiting the power of parallel inference hardware.
Various computation required in such an operating
system should also be executed in parallel. Other
wise, the operating system will be the bottleneck of
the whole system.

High Locality: The target architecture has loosely
coupled processors where inter-processor communica
tion is much more costly compared with communica
tion within one processor. Thus, the amount of com
munication between processors should be kept as low
as possible.

Flexibility: As the hardware parameters are expected
to change, the system should have enough flexibility

82

to be tuned to the given parameters. When tuning by
changing parameters of the operating system becomes
insufficient non-trivial re-design of the system may be
required. Thus, a system on whose improvement is
easy is desirable.

4.3 Resource Management

Management of resources is the most fun~amen~al and
important role of an operating system. ThIs sectIOn de
scribes the design of the resource management mecha
nism of PIMOS. 5

4.3.1 What Resources to Manage

In conventional systems, memory management and pro
cess management are the most important tasks of oper
ating systems. As in other high-levellanguag~ for sym
bolic manipulation, KLI provides an automatIc memory
management feature including garbage collection. Thus,
basic memory management is by the language implemen
tation rather than PIMOS. As KLI provides implicit con
currency and data-flow synchronization, context switch
ing and scheduling are already supported by the lan
guage. Thus, PIMOS does not have to manage low-level
fine-grained processes, but controls larger-grained groups
of processes using the shoen feature of the kernel lan
guage.

On the other hand, PIMOS has full responsibility on
the management of resources such as input and output
devices. In the lowest level, I/O devices are provided
as primitives of the kernel language to control physi
cal device interface. Thanks to the descriptive power
of the kernel language for reactive systems, such devices
have a disguise of an ordinary process in the kernel lan
guage level. Their functionality, however, is at a level :00
low for application programs. Like any other operatmg
systems, PIMOS virtualizes such devices, allowing ap
plication programs to control virtual devices with much
higher-level functionality.

These virtual devices are actually a process that con
verts higher-level requests from user tasks into lower
level requests that physical devices can understand. The
user tasks send their request messages to a stream con
nected to such a process. Thus, management of devices
is management of the communication streams connected
to them. Protection mechanisms are realized by insert
ing a filtering process to such streams, which examines
messages going through the stream and rejects any illegal
requests to the devices.

As mentioned above, process management by PIMOS
is through the shoen construct. PIMOS virtualizes shoen
also as a task with higher-level functionality for resource
management. Tasks are a virtual device with the func
tion of program execution with resource management

5More detailed description can be found in [Yashiro et al. 1992].

Centralized
Management

Random
Distribution

Hierarchical

Management

Figure 3: Distribution of Management Jobs

facility. They can be controlled from user programs
only through streams connected to it. The same protec
tion mechanism of inserting message filtering processes
is used here.

4.3.2 Hierarchical Resource Management

In most conventional operating systems, all the vital
management information is centralized to the kernel,
which is usually implemented as a single process. This
centralization policy makes it easy to keep the manage
ment information consistent.

In a highly parallel system, however, such centraliza
tion of management information would become problem
atic. Even if the overhead of the kernel is only one
percent, the processing speed of the kernel will be the
bottleneck of the system in a system with only one hun
dred processors. Moreover, all the management requests
will be targeted to the processor where the kernel pro
cess runs, resulting in a hot spot in the communication
mechanism. In an operating system for highly parallel
computer systems, management jobs also have to be dis
tributed.

Random distribution of management jobs, using hash
ing technique for example, would relieve the bottleneck
problem, but introduces a new proble~ of frequent c~m
munication, as the requests for operatmg system serVIces
arise everywhere without regard to where the service is
provided.

To avoid the bottleneck and frequent communication
at the same time, it is essential to distribute manage
ment jobs keeping the locality of information. PIMOS,
thus, adopted hierarchical resource management. policy.
User tasks and resources allocated by the operatmg sys
tem form a hierarchical structure. As the design prin
ciple leaves computation mapping to application pro
grams, processes of PIMOS responsible for management
jobs will be allocated where requests for services arise,
and those management processes also form a hierarchi
cal structure corresponding to the structure of user tasks,
called resource tree. This resource tree is the kernel of
PIMOS.

No centralization of resource management information
is made and no total ordering of resource allocation is

User Task Hierarchy
Physical Processors

Figure 4: Task and Management Hierarchies

tried. A management process, which is a node in the
resource tree, knows only of its parent and children. Al
location of a new resource is handled locally at one level
in the hierarchy without reporting it to upper levels nor
lower levels. When necessary, statistical summaries of
management information is exchanged in the resource
tree, but there is no single process that knows the state
of the whole system precisely. The state of the whole sys
tem can be investigated by traversing the tree structure,
but that would be costly and, because of the concurrent
activities in the system, obtained information might al
ready be obsolete when the the traversal completes. We
found this loose management policy works fine without
any problems.

4.3.3 Servers

All the services of PIMOS are provided by servers) which
correspond to virtualized devices. Servers are realized as
usual tasks to make the kernel compact and to enable
easy addition of services.

An application program (client) requiring a service (to
open a display window, for example) can ask for the ser
vice by requesting to the kernel with the name of the
service. The kernel will look for the named service in a
table it maintains and establishes a stream connection
between the server task and the client task, inserting a
filtering process for protection in the client task at the
same time. Once the connection is established, the kernel
will not look into messages passed through the stream;
the server is protected by the inserted filter rather than
a kernel process. When the service become no longer
needed, the client process normally closes the communi
cation stream. The remaining responsibility of the ker
nel is to notify the server of abnormal termination of the
client.

83

4.4 File System

Earlier versions of PIMOS operating on an experimental
model Multi-PSI [Takeda et al. 1990] left all the exter
nal input and output to its I/O front-end processor, PSI
[Nakashima 1987]. This was profitable in rapidly con
structing a software development environment for appli
cations research. For massive external storage, such as
disks, the imbalance of the low throughput communica
tion with the I/O front-end and high performance pro
cessing power of the parallel hardware, however, became
more apparent with PIM [Taki 1992].

We thus decided to connect disks more directly to pro
cessors of PIM for higher throughput and shorter delay.
To minimize hardware development effort, we adopted
SCSI (small computer standard interface) to interface
disks available in the market. Although single SCSI can
provide rather low throughput, PIM can have many of
them, providing required total throughput.

As the interface provides only low-level block I/O to
disks, we designed a file system to provide higher-level
interface to application programs. In designing the file
system, we took the following principles.

Distributed Cache: To lower interprocessor commu
nication frequency, each processor should have its own
cache of data in file. The cache mechanism should
provide "Unix semantics": When one process writes
into a file, the data should become available to other
processes immediately. This is a constraint severer
than in many distributed file systems where some de
lay is allowed [Levy and Silverschatz 1989], but it is
mandatory in a system like PIMOS, where processes
are usually cooperatively solving one problem. Thus,
a distributed and coherent caching mechanism was de
signed, which is similar to cache coherence mechanisms
provided by snoopy cache [Archibald and Bare 1986]
but allows delay of communication.

Robustness: As all the system components, including
the hardware, the operating system and the file sys
tem itself, are experimental and subject to damage
caused by bugs, sufficient backing up mechanism is re
quired to provide a comfortable software development
environment. Logging of information vital to the file
system and quick recovery mechanism using the logged
information were designed.

More detailed descripti9n of the file system can be found
in [Itoh et al. 1992].

4.5 Software Development Tools

Development of parallel software has many aspects dif
ferent from development of sequential software. PIMOS
provides various tools to support development of parallel
software, described in this section.

84

4.5.1 Program Code Management

Executable programs are provided as data objects of type
module by the kernel language and can be manipulated.
through language primitives by authorized software. Al
though the representation of executable programs differ
in each hardware models, a common interface to manip
ulate programs is provided by PIMOS to encapsulate the
differences.

Executable programs are stored in a database, which
is a virtual device realized by a server task. To maintain
the logical soundness of the specification, it is not de
sirable to introduce the notion of modification, not only
for usual data but also for programs which are also data.
Updating a program module does not mean modification
of an already existing program, which might be running
in parallel somewhere in the system; it merely means
updating of the correspondence of module names and
executable programs kept in the program database. The
existing processes that are executing the program will
not be affected by this update, except that, when the up
dated module is referenced by its name and the database
is searched for, a new version of it will be found. Mul
tiple versions of the same program can thus coexist in a
system. This not only keeps the semantics clean but also
allows efficient distributed implementation.

4.5.2 Debugging Tracer

The most frequently used tools in debugging programs
are tracers that allow programmers to look into the de
tails of program execution. PIMOS also provides a pro
gram tracer for this debugging purpose.

Execution of programs in a high level language form
. a hierarchical structure such as nested subroutine calls.
In case of subroutines in sequential languages, substruc
tures corresponding to subroutine invocations directly
correspond to a time interval, such as "during execution
of a subroutine." Tracing or not tracing that particular
substructure can be effected by switching tracing on and
off during that time interval. In concurrent languages,
such direct correspondence does not exist as many such
substructures are executed concurrently. If the number
of processes is limited, providing multiple windows, one
for each process, and switching tracing on each of them
might be a good idea. In case of KL1 programs, the
number of processes typically goes up to millions, much
more than tractable this way. The tracer of PIMOS also
provides a feature to direct the trace information to mul
tiple windows, but their role is only auxiliary.

The shoen construct of the kernel language is used to
control tracing, to obtain trace information and to con
trol execution of traced programs. Each goal executed in
a shoen can be marked as a traced goal. When the lan- .
guage implementation finds reduction of such a goal to
its subgoals, the newly created subgoals will be reported
from the report stream of the shoen as a message. The

tracer observing the stream presents the information to
the user and queries what to do with the goals, that is,
whether to simply execute them or execute them with
trace marks again. The goals can also be suspended for
a while to control their execution order.

The tracer also has interface with the deadlock de
tection mechanism provided by the KL1 implementation
[Inamura and Onishi 1990].

4.5.3 Performance Tuning

As stated above, a strong point of the kernel language
KL1 is that mapping of computation, both over proces
sors and over time, can be altered without affecting the
correctness of programs. Finding a mapping which real
izes efficient computation is one of the most important
research topics in application software research on the
parallel inference system.

However, conjecturing mapping only by statically an
alyzing programs is a very difficult task. In many cases,
actually running the programs and gathering statisti
cal information reveals many aspects of programs that
are easily overlooked. To help such experimentation, PI
MOS provides a tool for evaluating load distribution al
gorithms.

Profiling information of parallel programs has three
axes: what, when, and where. In sequential execution,
"where" is a constant and the "when" is not important,
since the execution order is strictly designated. Simple
profiling tools that can tell "what" (which part of the
program) took how much time will thus suffice. How
ever, all three axes are important when parallel execu
tion is our concern. The kernel language implementation
has the feature to provide three-dimensional statistics on
what (which part of the program, or, in a lower level,
whether usual computation, interprocessor communica
tion or garbage collection) is executed where (on which
processor) and when.

As it is not easy for a human to understand massive
raw data from hundreds of processors, a profiling tool
named ParaGraph is provided to analyze the data and
present it to the user graphically (Figure 5). The sys
tem provides displays from several different viewpoints,
making the analysis easier. The ParaGraph system is
described in more detail in [Aikawa 1992 et al.].

4.5.4 Virtual Machine

As all the communication between user programs and PI
MOS is initiated through the control and report streams
of shoens, a user program can emulate PIMOS by run
ning programs within a shoen and observing its interface
streams.

The same technique also can be used to debug PIMOS
itself by writing an emulator of the whole parallel com
puter system, a virtual machine. This facility provides
a way to debug PIMOS under the software environment

.,,::;::~.,

··:::::l~,

"!!!"l~:,
··"·"lC """,,---.
:'."o,,'i~.,

Figure 5: Sample Output of ParaGraph

provided by PIMOS itself. As the virtual machine is no
more than a usual task in PIMOS, the protection mech
anism of PIMOS prevents bugs of the debugged version
from propagating to the real PIMOS. Also, the profiling
system ParaGraph can be used for performance tuning
of PIMOS. This facility has been conveniently used in
debugging and tuning of the kernel of PIMOS.

5 Experiences

The first version of PIMOS was implemented on Multi
PSI [Takeda et al. 1990] in 1988 [Chikayama et al. 1988].
It has been revised with various enhancements and im
provements since, through experiences with research and
development of experimental software on many applica
tion areas. As the experiences with application software
are reported elsewhere (see [Nitta et al. 1991] for exam
pIe), this section mainly reports the experiences of the
development of PIMOS itself in the kernel language KLl.

5.1 Automatic Synchronization

The automatic data-flow synchronization mechanism of
KL1 assured portability of PIMOS to hardware systems
with different architectures.

The first version of PIMOS was developed in parallel
with the development of the experimental parallel infer
ence machine Multi-PSI. During its early development
phase when no physically parallel system running the
kernel language was available yet, a sequential imple
rnentation was used in the development. The schedul
ing of goals was fixed on the implementation. We could
not completely deny the possibility of any crucial syn
chronization problems in the system hidden by the fixed
scheduling of the emulator; that was our first experience
of actually writing a large-scale software in KLl.

85

PIMOS was ported to Multi-PSI when its KL1 im
plementation got ready. We found almost no synchro
nization problems there (except for a small number of
higher-level design problems) although the scheduling on
the real parallel machine is quite different from the em
ulator. We were certain that this should be the case,
but actually experiencing this made us more confident
of the great merit of writing a system in a language with
automatic data-flow synchronization.

In 1991, the first model of the parallel inference ma
chines, PIM/m and its KL1 implementation was made
available for software installation. After revising the
low-level I/O mechanism to fit the system to this new
platform, PIMOS began working almost immediately on
this system without revealing any problems. This was
not surprizing as the kernel language implementation on
the system used the identical scheduling policy as the
Multi-PSI system.

Later in the same year, the system was ported to an
emulator of PIM running on a commercially available
parallel processor. The emulator was primarily tor de
bugging the design of kernel language implementation
for models consisting of loosely-coupled clusters, each
of which has several processors sharing a memory bus.
The scheduling policy of this emulator was completely
different from Multi-PSI or PIM/m, as the language im
plementation distributes goals automatically among pro
cessors in a cluster. As we expected, and also to our
surprise, PIMOS ran without any problems in itself but
revealing some problems with the language implementa
tion in stead.

Currently (February 1992), the kernel language imple
mentation and PIMOS are being ported to other models
of PIM. We are now certain that there won't be any fun
damental problems in porting PIMOS to those models.

5.2 Fine-Grain Concurrency

It is true that most human algorithm designers are li
able to regard computation as a sequential process and
some extra effort is needed to think of many cooperat
ing processes for a single job. This fact is sometimes re
garded as against parallel processing, that designing par
allel computation is unnatural for human. The implicit
concurrency of the kernel language, however, resulted in
interesting phenomena.

Most algorithms in fact are designed having sequen
tial processing in mind or limited aspects of the par
allelism. Once a program for the algorithm is written
down in the kernel language, the program often shows
much more concurrency than the designer had in mind,
as the language reveals implicit fine-grain concurrency.
The designer can look into the program more objectively
and find different aspects of concurrency implied there.
Sometimes, the concurrency so found is a good candidate
for obtaining larger physical parallelism for increased ef-

86

ficiency. Mapping pragmas exploiting the concurrency
can then be added to the program to make it run with
higher parallelism and more efficiently. This should not
have been possible if the language had only larger-grain
concurrency.

5.3 Descriptive Power

Through the development of PIMOS, the descriptive
power of KL1 for both concurrency and parallelism was
proved to be sufficient.

The ability of describing reactive systems allowed the
language to provide primitives to control external I/O
devices in a coherent manner; external devices could
be modeled as an ordinary process without introduc
ing any extralogical features to the language. This al
lowed straightforward implementation of a virtual ma
chine, which helped the development considerably.

The shoen construct and the priority control mecha
nism of the kernel language provided sufficient function
ality required to control execution of various activities
in the system. For example, in case a user program ran
into an infinite loop, the following steps will enable in
terruption of such a program.

• As the device handlers are given higher priority than
user processes, an interrupt from the keyboard can
be sensed.

• As the command shell, which is a user task, lets jobs
under its control run in a priority lower than itself,
the shell can sense the interrupt.

• Using the shoen construct, the shell can stop the
task in an infinite loop.

5.4 Ease of Programming

Many programmers seem to have felt uneasiness with the
kernel language when the system first began utilized in
application software development. The largest source of
the problem seems to be in too much freedom of pro
gramming styles.

The bare kernel language allows multiple input/output
modes of logical variables; the same process can read or
write the same shared variable, depending on situations.
Although this is allowed in the language, it often in
troduces race conditions which become problematic only
with specific scheduling. Such a bug is hard to fix as trac
ing the execution or modifying the program to report in
formation for debugging may change the scheduling, hid
ing the problem away. Gradually, a programming style
has been established where I/O modes of logical vari
ables are statically fixed. This indicated the direction of
subsetting of the . language (see section 6).

Another problem was how to organize numerous con
current processes. Many styles have been tried and

the object-oriented programming style [Shapiro and
Takeuchi 1983] has been accepted as the de facto stan
dard. Many programming idioms have been estab
lished upon this object-oriented style through experi
ences [Chikayama 1991], which suggested the direction
of the design of higher level languages (see section 3.3).

Automatic data-flow synchronization wiped away low
level synchronization problems, allowing programmers to
concentrate on higher-level issues. With the program
ming style established and the software development en
vironment enhanced based on the experiences, describ
ing parallel software in the kernel language has now be
come not much more difficult than programming sequen
tial programs in other languages for symbolic processing,
such as Lisp.

The largest difficulty remaining is that of designing al
gorithms of computation mapping for efficient execution.
Separation of correctness and efficiency issues in the lan
guage design and the visual performance analysis tool
facilitated experimentations of mapping algorithms con
siderably, but still the task is not easy. Further research
in this direction seems mandatory.

6 Future Work

A problem with the current parallel inference system,
consisting of parallel inference machines, KL1 implemen
tations and PIMOS, is that the system runs only on
specially devised hardware. Although the system can
execute KL1 programs very efficiently, requiring special
hardware is a serious obstacle in sharing the environment
with researchers world-wide. A portable implementation
of the kernel language working on Unix systems is avail
able and was utilized in early sta,ges of software develop
ment, but, as it is implemented as an abstract machine
interpreter, its limited performance makes it inappropri
ate for serious experimental studies.

To solve the problem, research in subsetting the lan
guage to allow more concise and efficient implementa
tions has been conducted with promising preliminary re
sults [Ueda and Morita 1990]. A separate effort of im
plementing KL1 by translating to C also indicated that
reasonable performance can be obtained with very high
portability [Chikayama 1992]. These results indicate the
possibility of implementing the language on stock hard
ware efficiently for use in parallel software research. In
addition to such an implementation, PIMOS, especially
its software development environment, should also be
ported to stock hardware to provide common basis of
research and development of highly parallel knowledge
information processing systems.

7 Conclusion

An overview of the research and development of the basic
software for the parallel inference system of the FGCS
project is given.

The system aims at establishing the basis of software
technology for highly parallel computer systems. The re
search. and development adopted a middle-out approach
of designing a programming language first and then con
tinuing the design both upwards to the application soft
ware and downwards to the hardware architecture simul
taneously. The kernel language KLI and the operating
system PIMOS were designed and implemented.

The systems working on experimental parallel infer
ence hardware Multi-PSI and a model of parallel infer
ence machine PIM have been used in the research and
development of application software since 1988. Our ex
periences have proved that the kernel language is expres
sive enough for describing an operating system for paral
lel processing systems and various application software.
The features of the language that separated correctness
and efficiency issues, along with the programming envi
ronment provided by the operating system, made em
pirical research of parallel software much easier than in
conventional environments.

Further research in computation mapping is needed in
future. Development of an efficient and comfortable en
vironment on stock hardware is another important work
to be done.

Acknowledgements

The design and implementation of KLI and PIMOS for
the parallel are collaborative work of many researchers
too numerous to list here. The author would like to
thank Kazunori Ueda for his helpful comments on an
earlier version of this paper.

References

[Aikawa 1992 et al.] S. Aikawa, K. Mayumi, H. Kubo, F. Mat
suzawa and T. Chikayama. ParaGraph: A Graphical Tuning
Tool for Multiprocessor Systems. In Proc. Int. Con/. on Fifth
Generation Computer Systems 1992, ICOT, 1992:

[Archibald and Bare 1986] J. Archibald and J. L. Bare. Coher
ence Protocols: Evaluation Using a Multiprocessor Simulation
Model. In ACM Trans. on Computer System, Vol. 4, No.4
(1986), pp. 273-298.

[Burton 1985] F. W. Burton. Speculative Computation, Paral
lelism and Functional Programming. In IEEE Trans. Comput
ers, Vol. C-34, No. 12 (1985), pp. 1190-1193.

[Chikayama 1984] T. Chikayama. Unique Features of ESP. In
Proc. Int. Con/. on Fifth Generation Computer Systems 1984,
ICOT, 1984, pp. 292-298.

[Chikayama 1991] T. Chikayama. For KL1 Programming without
Tears. In Proc. J{Ll Programming Workshop '91,ICOT, 1991,
pp. 8-14. in Japanese.

87

[Chikayama 1992] T. Chikayama. A Portable and Reasonably Ef
ficient Implementation of KL1. To appear as an ICOT Tech.
Report, ICOT, 1992.

[Chikayama and Kimura 1987] T. Chikayama and Y. Kimura.
Multiple Reference Management in Flat GHC. In Proc. Fourth
Int. Con/. on Logic Programming, MIT Press, 1987, pp. 276-
293.

[Chikayama et al. 1988] T. Chikayama, H. Sato and T. Miyazaki.
Overview of the Parallel Inference Machine Operating System
(PIMOS). In Proc. Int. Con/. on Fifth Generation Computer
Systems 1988, ICOT, 1988, pp. 230-251.

[Clark and Gregory 1981] K. 1. Clark and S. Gregory. A Rela
tional Language for Parallel Programming. In Proc. A CM Con!
on Functional Programming Languages and Computer Architec
ture, ACM, 1981, pp. 171-178.

[Clark and Gregory 1983] K. L. Clark and S. Gregory. PAR
LOG: A Parallel Logic Programming Language. Research Re
port DOC 83/5, Dept. of Computing, Imperial College of Sci
ence and Technology, 1983.

[Clark and Gregory 1984] K. L. Clark and S. Gregory. Notes on
Systems Programming in PARLOG. In Proc. Int. Conf. on Fifth
Generation Computer Systems 1984, ICOT, 1984, pp. ~99-306.

[van Emden and de Lucena Filho 1982] M. H. van Emden and
G. J. de Lucena Filho. Predicate Logic as a Language for Par
allel Programming. In Logic Programming, K. L. Clark and
S. -A. Tarnlund (eds.), Academic Press, 1982, pp. 189-198.

[Foster 1987] I. Foster. Logic Operating Systems: Design Issues.
In Proc. Fourth Int. Con! on Logic Programming, J.-L. Lassez
(ed.), MIT Press, Vol. 2, 1987, pp. 910-926.

[Furuichi et al. 1990] M. Furuichi, K. Taki, N. Ichiyoshi. A
Multi-Level Load Balancing Scheme for OR-Parallel Exhaus
tive Search Programs on the Multi-PSI. In Proc. Second ACM
SIGPLAN Symp. on Principles and Practice of Parallel Pro
gramming, 1990, pp. 50-59.

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K. Taki, and
A. Matsumoto. Overview of the Parallel Inference Machine Ar
chitecture (PIM). In Proc. Int. Con! on Fifth Generation Com
puter Systems 1988, ICOT, 1988, pp. 208-229.

[Hircsh et al. 1987] M. Hircsh, W. Silverman and Ehud Shapiro.
Computation Control and Protection in the Logic System. In
Concurrent Prolog: Collected Papers, Ehud Shapiro (ed.), MIT
Press, Vol. 2, 1984, pp. 28-45.

[Hoare 1985] C. A. R. Hoare. Communicating Sequential Pro
cesses. Prentice-Hall, 1985.

[Inamura and Onishi 1990] Y. Inamura and S. Onishi. A Detec
tion Algorithm of Perpetual Suspension in KL1. In Proc. Sev
enth Int. Conf. on Logic Programming, MIT Press, 1990, pp. 18-
30.

~toh et al. 1992] F. Itoh, T. Chikayama, T. Mori, M. Sato,
T. Kato and T. Sato. The Design ofthe PIMOS File System. In
Proc. Int. Con! on Fifth Generation Computer Systems 1992,
ICOT, 1992.

[Kondoh and Chikayama 1988] S. Kondoh and T. Chikayama.
Macro Processing in Prolog. In Proc. Fifth Int. Conf. and Symp.
of Logic Programming, 1988, pp. 466-480.

[Konishi et al. 1992] K. Konishi, T. Maruyama, A. Konagaya,
K. Yoshida, T. Chikayama. Implementing Streams on Paral
lel Machines with Distributed Memory. In Proc. Int. Conf. on
Fifth Generation Computer Systems 1992, ICOT, 1992.

[Levy and Silverschatz 1989] E. Levy and Z. Silberschatz. Dis
tributed File Systems: Concepts and Examples. Tech. Report

88

TR-89-04, Dept. of Computer Science, The University of Texas
at Austin, 1989.

[Maher 1987] M. J. Maher. Logic Semantics for a Class of
Committed-Choice Programs. In Proc. Fourth Int. Con! on
Logic Programming, MIT Press, 1987, pp. 858-876.

[Milner 1989] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[Miyazaki et at. 1985] T. Miyazaki, A. Takeuchi and
T. Chikayama. A Sequential Implementation of Concurrent Pro
log Based on the Shallow Binding Scheme. In Proc. 1985 Symp.
on Logic Programming, IEEE, 1985, pp. 110-118.

[Nakashima 1987] H. Nakashima and K. Nakajima. Hardware Ar
chitecture of the Sequential Inference Machine PSI-II. In Proc.
1987 Symp. on Logic Programming, IEEE, 1987.

[Nitta et ai. 1991] K. Nitta, K. Taki and N. Ichiyoshi. Experi
mental Parallel Inference Software. In Proc. Int. Con! on Fifth
Generation Computer Systems 1992, ICOT, 1992.

[Okumura and Matsumoto 1987] A. Okumura and Y. Mat
sumoto. Parallel Programming with Layered Streams. In Proc.
1987 Symp. on Logic Programming, IEEE, 1987, pp. 224-231.

[Shapiro 1983] E. Y. Shapiro. A Subset of Concurrent Prolog and
Its Interpreter. Tech. Report TR-003, ICOT, 1983.

[Shapiro 1986] E. Y. Shapiro. Systems Programming in Concur
rent Prolog, In Logic Programming and its Applications, M. van
Canegham and D. H. D. Warren (eds.), 1986, Ablex Publishing
Co., 1986, pp. 50-74.

[Shapiro and Takeuchi 1983] E. Shapiro and A. Takeuchi. Object
oriented Programming in Concurrent Prolog. In New Genera
tion Computing, Vol. 1, No.1 (1983).

[Susaki and Chikayama 1991] K. Susaki and T. Chikayama. A
Process-Oriented Language AYA upon KL1. In Proc. J(L1
Programming Workshop '91, ICOT, 1991, pp. 117-125. in
Japanese.

[Takeda et al. 1990] Y. Takeda, H. Nakashima, K. Masuda,
T. Chikayama and K. Taki. A Load Balancing Mechanism for
Large Scale Multiprocessor Systems and its Implementation. In
New Generation Computing, Vol. 7, No.2 (1990), pp. 179-195.

[Taki 1992] K. Taki. Parallel Inference Machine PIM. In Proc.
Int. Con! on Fifth Generation Computer Systems 1992, ICOT,
1992.

[Tali 1992] K. Taki. Parallel Inference Machine PIM. In Proc.
Int. ConJ. on Fifth Generation Computer Systems 1992, ICOT,
1992.

[Tamaki 1987] H. Tamaki. Stream-Based Compilation of Ground
I/O Prolog into Committed-choice Languages. In Proc. Fourth
Int. Con! on Logic Programming, MIT Press, 1987, pp. 376-
393.

[Ueda 1986] K. Ueda. Guarded Horn Clauses. In Logic Program
ming '85, E. Wa.da (ed.), Lecture Notes in Computer Science
221, Springer-Verlag, 1986, pp. 168-179.

[Ueda. 1987] K. Ueda. Making Exhaustive Search Programs Deter
ministic. In New Generation Computing, Vol. 5, No.1 (1987),
pp.29-44.

[Ueda 1988a] K. Ueda. Guarded Horn Clauses: A Parallel Logic
Programming Language with the Concept of a Guard. In
Programming oj Future Generation Computers, M. Nivat. and
K. Fuchi (eds.), North-Holland, 1988, pp. 441-456.

[Ueda 1988b] K. Ueda. Theory and Practice of Concurrent Sys
tems. In Proc. Int. Con! on Fifth Generation Computer Sys
tems 1988, leOT, 1988, pp. 165-166.

[Ueda 1990] K. Ueda. Designing a Concurrent Programming Lan
guage. In Proc. InJoJapan'90, Information Processing Society
of Japan, 1990, pp. 87-94.

[Ueda and Chikayama 1985] K. Ueda and T. Chikayama. Concur
rent Prolog Compiler on Top of Prolog. In Proc. 1985 Symp.
on Logic Programming, IEEE, 1985, pp. 119-126.

[U eda and Chikayama 1990] K. U eda and T. Chikayama. Design
of the Kernel Language for the Parallel Inference Machine. In
The Computer Journal, Vol. 33, No.6 (1990) pp. 494-500.

[Ueda and Furukawa 1988J K. Ueda and K. Furukawa. Transfor
mation Rules for GHC Programs. In Proc. Int. Con! on Fifth
Generation Computer Systems 1988, ICOT, 1988, pp. 582-591.

[Ueda and Morita 1990] K. Ueda and M. Morita. A New Imple
mentation Technique for Flat GHC. In Proc. Seventh Int. Con!
on Logic Programming, MIT Press, 1990, pp. 3-17. A revised,
extended version to appear in New Generation Computing.

[Yashiro et al. 1992] H. Yashiro, T. Fujise, T. Chikayama,
M. Matsuo, A. Hori and K. Wada. Resource Management Mech
anism of PIMOS. In Proc. Int. Con! on Fifth Generation Com
puter Systems 1992, ICOT, 1992.

[Yoshida and Chikayama 1990] K. Yoshida and T. Chikayama.
A'UM: A Stream-Based Object-Oriented Language. In New
Generation Computing, Vol. 7, No.2 (1990), pp. 127-157.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 89

Towards an Integrated Knowledge-Base Management System
Overview of R&D on Databases and Knowledge-Bases in the FGCS Project

Kazumasa Yokota Hideki Yasukawa
Third Research Laboratory

Institute for New Generation Computer Technology (ICOT)

4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Tel: +81-3-3456-3069 Fax: +81-3-3456-1618

{kyokota,yasukawa}~icot.or.jp

Abstract

Knowledge representation languages and knowledge
bases play a key role in knowledge information pro
cessing systems. In order to support such systems, we
have developed a knowledge representation language,
QUIXOTe, a database management system, Kappa, as
the database engine, some applications on QUIXOTe

and Kappa, and two experimental systems for more
flexible control mechanisms.

"The whole system can be considered as under
the framework of deductive object-oriented databases
(DOODs) from a database point of view. On the other
hand, from the viewpoint of the ma.ny similarities be
tween database and natural language processing, it can
also be considered to support situated inference in the
sense of situation theory. Our applications have both
of these features: molecula.r biological databases and a
legal reasoning system, TRIAL, for DOOD and a tem
poral inference system for situated inference.

For efficient and flexible control mechanisms, we
have developed two systems: cu-Prolog based on un
fold/fold transformation of constraints and dynamical
programming based on the dynamics of constraint net
works.

In this paper, we give an overview of R&D ac
tivities for databases and knowledge-bases in the
FGCS project, which are aimed towards an integrated
knowledge-base management system.

1 Introduction

Since the Fifth Generation Computer System (FGCS)
project started in 1982, many knowledge information
processing systems have been designed and developed
as part of the R&D activities in the framework of logic
and parallelism. Such systems have various data and
knowledge, that is, expected to be processed efficiently
in the form of databases and knowledge-bases such as

electronic dictionaries, mathematical databases, molec
ular biological databases, and legal precedent databases
1. Representing and managing such large amounts of
data and knowledge for these systems has been a major
problem. Our activities on databases and knowledge
bases are also devoted to such data and knowledge
under logic paradigm.

Since the late seventies, many data models have been
proposed for extension of the relational model in or
der to overcome various disadvantages such as ineffi
cient representation and inadequate query capability.
Among their extensions, deductive databases attracted
many researchers not only in logic communities but
also in artificial intelligence communities, because of its
logic platform and strong inference capability. Many
efforts on deductive databases have defined the theoret
ical aspects of databases and have showed the powerful
capability of query processing. However, from an ap
plication point of view, the data modeling capability
is rather poor. This is mainly due to representation
based on first-order predicates, which inherits the dis
advantages of the relational model. On the other hand,
object-oriented databases have become popular among
extensions of the relational model for coping with 'new'
applications such as CAX databases and multi-media
databases. The flexibility and adaptability of object
orientation concepts should be examined also in the
context of deductive databases, even if object-oriented
databases have disadvantages such as poor formalism
and semantic ambiguity.

IThe boundary between databases and knowledge-bases is
unclear and their usage depends on context. Most database
communities prefer to use the term database even if databases
store a set of rules and have an inference capability such
as deduction and abduction: e.g., deductive databases, expert
databases, and self-organizable databases. In this paper, we
also use the term database according to this convention. The
term knowledge-base in our title shows our view that an ap
proach based on extensions of databases is a better way to
real knowledge-bases than based on conventional knowledge
bases used by expert systems.

90

As it is appropriate for advanced applications
to integrate their advantages, we proposed de
ductive (and) object-oriented databases (DO ODs)
[Yokota and Nishio 1989J 2 , where extensions of the
relational model (or deductive databases and object
oriented databases) are considered from three direc
tions: logic, data model, and computational model. The
DOOD can be said to be a framework for such exten
sions. On the other hand, considering the many simi
larities between DOODs and natural language process
ing, the framework is also appropriate for situated in
ference in natural language processing. Such an obser
vation leads us firmly towards an integrated knowledge
base management sy~tem over databases and knowl
edge representation languages.

In the FGCS project, we focus on DOODs as the
target of knowledge-base management systems, based
on the above observation, and have developed a
knowledge-base (or knowledge representation) language
QUIXOTe, its database engine Kappa, and their appli
cations. QUIXOTe is a DOOD language. Also, a DOOD
system based on QUIXOTe has been implemented. We
outline their features in Section 2. In order to process
a large amount of data efficiently in the DOOD system,
there should be a database engine at the lower layer.
The engine is called Kappa, the data model of which is
a ilested relational model as a subclass of DO ODs. For
more efficient processing, a parallel database manage
ment system, Kappa-P, has been implemented on par
allel inference machines. The data model and system
are described in Section 3. We are also developing some
applications on the DOOD system: a legal reasoning
system (TRIAL), a molecular biological database, and a
temporal inference system in natural language process
ing. An overview is given in Section 4. Together with
the above works, we are engaged in R&D on more flexi
ble control of logic programs: constraint transformation
and dynamical programming, which are expected to be
embedded in QUIXOTe. We explain these in Section
5. Their relationship is shown in Figure 1. Finally we
describe related works and future plans for further ex
tensions of our knowledge-base management system.

2 Knowledge Representation
Language (Q]JIXOTE)

Our approach to knowledge-bases follows the previ
ously mentioned deductive object-oriented databases
(DOOD). The language, called QUIxoTe, designed for
the objective has various features 3 : a constraint logic
programming language, a situated programming lan-

2International conferences were held in Kyoto and Mu
nich [Kim et al. 1990, Delohel et al. 1991] to work towards such
integration.

3See the details in [Yasukawa et al. 1992).

guage, object-oriented database programming language,
and a DOOD language, besides the features appearing
in Figure 1.

2.1 Basic Concepts

Consider the example[Yoshida 1991J in Figure 2 for the
genetic information processing system. In the figure,

object(ref('Patterson et a1.(1981)'),
1991/4/24,
[kind(paper) ,
authors(['D. Patterson',

'So Graw',
'C. Jones'
j),

title(,Demonstration by somatic cell genetics of
coordinate regulation of genes for two
enzymes of puring synthesis assigned to
human chromosome 21'),

journal(,Proc. Nat!. Acad. Sci. USA'),
volume(78),
pages (405-409) ,
year(1981)
j).

Figure 2: A Record (Term) in Prolog

the third argument of the term is peculiar: a tuple
(in the form of a list) consisting of pairs of a label
and its value. The author label has a set value, also,

. in the form of a list and some values might have a
more complex value (another tuple). User programs
must be responsible for such structure and unification
among these terms. The reason why such a structure
is necessary is that a record type (a scheme) cannot be
decided in advance. That is, we can get only partial
information for an object, because the object itself is
not stable, generally. Such characteristics qo not nec
essarily allow application of conventional normalization
in the relational model to the design. By introducing
an identity concept, such a record can be represented
in the form of a set of binary relations, each of which
has an identifier, however this is too inefficient in repre
sentation.

In QUDwTe, we introduce. the concepts of an object
identifier (oid) and a. property, both of which are based
on complex object constructors. The example in Figure
2 can be represented as in Figure 3 in QUIXOTe. In
the figure, the left hand side of "/" is an oid (called an
object term (o-term) in QUIXCJTe) and the right hand
side is the related properties. An object consists of an
oid and its properties, and can be written as a set of
attribute terms (a-terms) in QUIXOTe with the same
oid as follows:

91

Applications

Constraint
Transformation

cu-Prolog

Genome Databases for Genetic Information Processing
Legal Precedent Databases for Legal Reasoning
Dictionaries for Natural Language Processing
Semantic Representation in Natural Language

Dynamical
Programming

DP
Knowledge-Base Language
Knowledge Representation Language

QuIXOTE

t Y I Database
Kappa-II l Kappa-P

Figure 1: The Framework of a Knowledge-Base (DOOD) Management System of the FGCS Project

object[ref='Patterson et al (1981)']/
[date=1991/4/24,
kind=paper,
authors={'D. Patterson',

'So Graw',
'C. Jones'
},

title='Demonstration by somatic cell genetics of
coordinate regulation of genes for two
enzymes of puring synthesis assigned to
human chromosome 21',

journal='Proc. Nat!. Acad. Sci. USA',
volume=78,
pages=405-409,
year=1981

].

Figure 3: An Object in QUIXOT£

Such description is effective for processing partial in
formation. Attributes in an o-term are intrinsic for the
object:

where the right hand side, "[...]", of "/" is called
the attribution of 0[1 = c]. An attribute in an o-term
is called an intrinsic (or immutable) attribute and an
attribute appearing only in the attribution is called an
extrinsic (or mutable) attribute 4.

4We sometimes abuse the terms attribute and property. Al
though both an attribute and a property are, usually, a pair of a
label and a (possibly complex) value, an attribute is frequently
used in the context of record structure, while a property is fre-

Another problem is the expressive power of oids and
properties. First, along the style of logic programming,
an oid can be defined intensionally by a set of rules as
follows:

path[!rom=X,to=Y] ~ arc[jrom=X,to=Y].
path[jrom=X, to= Y] ~ arc[!rom=X, to= Z],

path[!rom = Z, to= Y].

In this program, path(Jrom = X, to = Y] is transitively
defined from a set of facts such as arc(Jrom = a, to = b]
and so on, and the oid is generated by instantiating X
and Y as the result of execution of the program. This
guarantees that an object can have a unique oid even if
the object is generated in different environments. Fur
thermore, in order to define a circular path, we must
introduce a tag and represent a, so-called, complex ob
ject with a set and a tuple constructor.

X@o[l=X] ¢:=} XI{X =o[l=X]}

o[l={a,···,b}] ¢:=} o[l=a]/\···/\o[l=b]

The first example shows that a variable X is an oid
with a constraint, X = 0[1 = X]. The second shows that
a set in an a-term can be decomposed into conjunction
of o-terms without a set constructor.

quently used in the context of object structure. In QUIXOTE, a
pair of a label and a value (or a triple of a label, an operator,
and a value) is called an attribltie, however, in t.he context of
inheritance, we use property inheritance as a convention. As
only extrinsic attributes are inherited in QUIXOT£, as men
tioned later, ext.rinsic attribut.es are simply called properties.
Furthermore, there is a case where an attribute means only a
label, as in an attribute-value pair, the meaning, however, is
usually clear in the context.

92

On the other hand, properties might be indefinite,
that is, only in the form of constraints. We introduce
the following operators between a label and a (set of)
value, and transform them into a set of constraints by
introducing dot notation:

ol[l=a] {=::? oll{o.l ~ a}

0/[1--+ a] {=::? oll{o.l ~ a}

ol[l~a] {=::? oll{o.l~a}

ol[l={a,· ··,b}] {=::? oll{o.l ~H {a,···, b}}

01[1--+ {a,·. ·,b}] {=::? oll{o.l ~H {a,···, b}}
ol[l~{a,· ·.,b}] {=::? oll{o.l ~H {a,···, b}}

The right hand side of "II" is a set of constraints
about properties, where ~H and ~H are a partial or
der generated by Hoare ordering defined by ~ and ~,
respectively, and ~H is the equivalence relation. If an
attribute of a label 1 is not specified for an object 0,

o is considered to have a property of 1 without any
constraint.

The semantics of oids is defined on a set of labeled
graphs as a subclass of hypersets[Aczel 1988]: an oid is
mapped to a labeled graph and an attribute is related
to a function on a set of labeled graphs. In this sense,
attributes can be considered methods to an object as in
F-logic[Kifer and Lausen 1989].

The reason for adopting a hyperset theory as the
semantic domain is to handle an infinite data structure.
The details can be found in [Yasukawa et al. 1992].

2.2 Subsumption Relation and Prop-
erty Inheritance

Given a partial order relation in a set of basic (non
structural) objects, we can constitute a lattice in a set
of ground object terms, the order of which is called
the subsumption relation ~. This is already used as
a relation for properties as constraints. According to
the relation, properties are inherited downward and/or
upward among objects. A general property inheritance
rule is as follows:

01 ~ 02 :) 01.l ~ 02. l

where intrinsic attributes are out of inheritance. Ac
cording to the rule, we can get the following:

01 ~ 02, 02 I I { 02· l ~ a} ===> od I { 01·l ~ a}

01 ~ 02, od I { 01. l ~ a} ===> 02 I I { 02.1 ~ a} .

01 ~ 02 ~ 03, odl{02.l ~ a} ===> odl{ol.l ~ a},

03 I I { 03· l ~ a}

where it can be noted that odl{02.l ~ a} is 02/[1--+ a]:
that is, property inheritance is constraint inheritance.
In complex o-terms, intrinsic attributes cause the ex
ception of property inheritance:

o[l = a] ~ 0, ol[l--+ b] ===> o[l = a]/[l = a]

Multiple inheritance is defined upward and downward
as the merging of constraints:

01 ~ 02, 01 ~ 03, 02/[l--+ a], 031 [1--+ b]
===> ol(l--+ meet(a, b)]

01 ~ 02, 01 ~ 03, 02/(l ~ a], 03/[l ~ b]
===> ol[l~join(a,b)]

where a set of constraints are reduced by the constraint
solver.

2.3 Program and Database

A module concept is introduced in order to classify
knowledge and handle (local) inconsistencies. Let m be
a module identifier (mid) (syntactically the same as an
o-term) and a be an a-term, then m: a is a proposition,
which means that m supports a. Given a mid m, an
a-term a, and propositions PI,··· ,Pn, a rule is defined
as follows:

m :: a ¢= Pb ... ,Pn.

which means that a module with a mid m has a rule
such that if PI,··· ,Pn hold, a holds in a module with
a mid m. If a mid is omitted in Pi, m is taken as
the default and if m is omitted, the rule is held in all
modules. a is called a head and PI,··· ,Pn is called a
body. As an a- term can be separated into an 0- term
and a set of constraints, the rule can be rewritten as
follows:

where a ~ oIICH, Pi ~ mi : oilCi , and CB = C1 U
... U Cn. CH is a head constraint and CB is a body
constraint. Their domain is a set of labeled graphs.
Note that constraints by a-terms in a body can be
included in CB. Compared with conventional constraint
logic programming, a head constraint is new.

A module is defined as a set of rules with the same
mid. We define the acyclic relation among modules, a
submodule relation. This. works for rule i';heritance as
follows:

ml ~s m2

m3 ~s m4 U (ms \ m6)

where ml inherits a set of rules in m2, and m3 in
herits a set ~f rules defined by set operations such as
m4 U (ms \ m6). Set operations such as intersection and
difference are syntactically evaluated. Even if a module
is parametric, that is, the mid is an o-term with vari
ables, the submodule relation can be defined. In order
to treat the exception of rule inheritance, each rule has
properties such as local and overriding: a local rule is
not inherited to other modules and an overriding rule
obstructs the inheritance of rules with the same head
from other modules.

A progmm or a database is defined as a set of rules
with definitions of subsumption and submodule rela
tions. Clearly, a program can be also considered as
a set of modules, where an object may have different
properties if it exists in different modules. Therefore,
we can classify a knowledge-base into different mod
ules and define a submodule relation among them. If
a submodule relation is not defined among two mod
ules, even transitively, an object with the same oid may
have different (or even inconsistent) properties in its
modules. The semantics of a program is defined on the
domain of pairs of labeled graphs corresponding to a
mid and an o-term. In this framework, we can clas
sify a large-scaled knowledge-base, which might have
inconsistencies, and store it in a QUIXOTe database.

2.4 Updating and Persistence

QUIXOTe has a concept of nested transaction and al
lows two kinds of database update:

1) incremental insert of a database when issuing a
query, and

2) dynamic insert and delete of o-terms and a-terms
during query processing.

We can issue a query with a new database to be added
to the existing database. 1) corresponds to the case.
For example, consider the following sequence of queries
to a database DE:

query sequence to DB
?- begin_transaction.
?- Q1 with DB1.

?- begin_transaction.
?- Q2 with DB2 .

?- abort_transaction.
?- Q3 with DB3 ·

?- Q4.
?- end_transaction.

equivalent query

¢::::} ?- Q1 to DBUDB1

¢::::} ?- Q1 to DBUDB1UDB3

¢::::} ?- Q1 to DBUDB1UDB3

After successful execution of the above sequence, DE is
changed to DE U DBI U DE3. Each DEi may have def
initions of a subsumption relation or a submodule rela
tion, which are merged into definitions of the existing
database, If necessary, the subsumption or submodule
hierarchy is reconstructed. By rolling back the transac
tion, such a mechanism can also be used as hypothesis
reasoning.

2) makes it possible to update an o-term or its (mu
table) properties during query processing, where trans
actions are located as subtransactions of a transaction
in 1). In order to guarantee the semantics of update,
so-called AND- and OR-parallel executions are inhib
ited. For example, the following is a simple rule for
updating an employees' salary:

pay[year= 1992, dept=X)j[raise= Y)
¢::begin_transactionj

employee[num=Z]/[dept=X,salary= W]j
-employee[num= Zl/[salary = W)j
+employee[num= Z)/[salary = N eW)j
end_transaction
II{N ew= W * Y}.

93

where "j" specifies sequential execution in order to sup
press AND-parallel execution, "+" means insert, and
"-" means delete.

Except for the objects to be deleted or rolled back
during query processing, all (extensional or intensional)
objects in a QUIXOT£ program are guaranteed to be
persistent. Such persistent objects are stored in the
underlying database management system (explained in
the next section) or a file system.

2.5 Query Processing and the System

QUIXOTe is basically a constraint logic programming
language with object-orientation features such as ob
ject identity, complex object, encapsulation, type hier
archy, and methods. However, this query processing is
different from conventional query processing because of
the existence of oids and head constraints. For exam
ple, consider the following program:

lot [num = X)/[prizel ~ a) ¢:: X ~ 2n.

lot[num=X)j[prize2~b) ¢:: X ~ 3n.

lot[num=X)j[prizel ~ c) ¢:: X ~ 5n.

where 2n is a type with a multiple of two. Given
a query ?-lot[num = 30)j[prizel = X,prize2 = YJ, the
answer is X ~ meet(a, c) and Y ~ b, that is,

lot[num=30)/[prizel ~ meet(a, c), prize2 ~ b).

First, because of the existence of oids, all rules which
possibly have the same oid must be evaluated and
merged if necessary. Therefore, in QUIXOTe, a query
is always processed in order to obtain all solutions.
Secondly, as a rule in QUIXOTe has two kinds of con
straints, a head constraint and a body constraint, each
of which consists of equations and inequations of dot
ted terms besides the variable environment, the deriva
tion process is different from conventional constraint
logic programming:

where ·Gi is a set of sub goals and Ci is a set of con
straints of the related variables. On the other hand,
in QUIXOTe, each node in the derivation sequence is
(G, A, C), where G is a set of subgoals, A is a set of
assumptions consisting of a body constraint of dot
ted terms, and C is a set of conclusions as a set
of constraints consisting of a head constraint and a
variable environment. Precisely speaking, the deriva
tion is not a sequence but a directed acyclic graph in

94

QUIXOTe, because some subsumption relation among
assumptions and constraints might force the two se
quences to merge: for example, (G,A,C) and (G,A,C')
are merged into (G, A, CUC'). Therefore, the derivation
is shown in Figure 4, where the environment to make

(Go, Ao, 0)
~ ...

.........

Figure 4: Derivation in QUIXOTe

it possible to merge two sequences is restricted: only
results by the, so-called, OR-parallel that includes rules
inherited by subsumption relation among rule heads
can be merged innermostly. The current implementa
tion of query processing in QUIXOTe is based on a
tabular method such as OLDT in order to obtain all
solutions. Sideways information passing is also imple
mented by considering not only binding information
but also property inheritance.

We list some features of the QUIXOTe system:

• A QUIXOTe program is stored in persistent stor
age in the form of both the 'source' code and
the 'object' code, each of which consists of four
parts: control information, subsumption relation,
submodule relation, and a set of rules. Persistence
is controlled by the persistence manager, which
switches where programs should be stored. A set
of rules in the 'object' code is optimized to sep
arate extensional and intensional databases as in
conventional deductive databases.

• When a user builds a huge database in QUIXOTe,

it can be written as a set of small databases in
dependently of a module concept. These can be
gathered into one database, that is, a database can
be reused in another database.

• vVhen a user utilizes data and knowledge III

QUIXOTe, multiple databases can be accessed si
multaneously through the QUIXOTe server, al
though the concurrency control of the current ver
sion of QUIXOTe is simply implemented.

• Users can use databases through their applica
tion programs in ESP [Chikayama 1984] or KLI
[Ueda and Chikayama 1990], and through the spe
cific window interface called Qmacs.

The environment is shown in Figure 5.
The first version of QUIXOTe was released in Decem

ber, 1991. A second version was released in April, 1992.
Both versions are written in KL1 and work on paral
lel inference machines (PIMs) [Goto et al. 1988] and its
operating system (PIMOS) [Chikayama et al. 1988}.

3 Advanced Database Manage
ment System (Kappa)

In order to process a large database in QUIXOTe effi
ciently, a database engine called Kappa has been devel
oped 5. In this section, we explain its features.

3.1 Nested Relation and QuIXOT£

The problem is which part of QUIXOTe should be sup
ported by a database engine because enriched represen
tation is a trade-off in efficient processing. vVe intend
for the database engine to be able to, also, play the
role of a practical database management system. Con
sidering the various data and knowledge in our knowl
edge information processing environment, we adopt an
extended nested relational model, which corresponds to
the class of an o-term without infinite structure in
QUIXOTe. The term "extended" means that it supports
a new data type such as Prolog term and provided
extensibility as the system architecture for various ap
plications. The reason why we adopt a nested relational
model is, not surprisingly, to achieve efficient represen
tation and efficient processing.

Intuitively, a nested relation is defined as a subset of
a Cartesian product of domains or other nested rela
tions:

NR ~ EI x··· x En
Ei .. - D 12NR

where D is a set of atomic values. That is, the relation
may have a hierarchical structure and a set of other re
lations as a value. This corresponds to the introduction
of tuple and set constructors. From the viewpoint of
syntactical and semantical restrictions, there are vari
ous subclasses. Extended relational algebra are defined
to each of these.

In Kappa's nested relation, a set constructor is used
only as an abbreviation of a set of normal relations as
follows:

{r[ll =a, /2= {bl ,"', bn }]}

{=:::::} {r[II = a, 12 = bl], ... ,r[ll = a, 12 = bn]}

5See the details in [Kawamura et al. 1992].

95

KLI Program

ESP Program

Qmacs

currently active

Applications
on PIM or FEP (PSI)

Figure 5: Environment of QUIXOTE

The operation of "=>" corresponds to an unnest oper
ation, while the opposite operation ("~") corresponds
to a nest or group-by operation, although "~" is not
necessarily congruent for application of nest or group
by operation sequences, That is, in Kappa, the seman
tics of a nested relation is the same as the corespond
ing relation without set constructors. The reason for
taking such semantics is to retain first order seman
tics for efficient processing and to remain compatible to
widely used relational databases. Given a nested tuple
nt, let the corresponding set of tuples without a set
constructor be nt. Let a nested relation be

NR= {ntl,···,ntn}
where nti= {til'···' tid for i = 1,···, n,

then the semantics of N R is
n

U nti = {tll ,···, t 1k,···, tnl ,···, tnk}.
i=l

Extended relational algebra to this nested relational
database is defined in Kappa and produces results ac
cording to the above semantics, which guarantees to
produce the same result to the corresponding relational
database, except for treatment of the label hierarchy.

A query can be formulated as a first order language,
we, generally, consider this in the form of a rule con
structed by nested tuples. As the relation among facts
in a database is conjunctive from a proof-theoretic
point of view, the semantics of a rule is clear according
t.o the above semantics. For example, the following rule

r[ll =X, 12 = {a, b, c}]

~ B, 1"[12 = Y, 13 = {d, e}, 13= Zl, B'.

can be transformed into the following set of rules with
out set constructors:

r[11=X,12=a]
~ B, r'[12 = Y, 13 = d, 13 = Zl, r'[12 = Y, 13 = e, 13 = Z], B'.

r[11=X,12=b]
~ B, r'[12 = Y, 13=d, 13= Z], r'[12 = Y, 13 =e, 13= Z], B'.

r[11=X,12=c]
~ B, r'[l2 = Y, l3= d, /3= Z], r'[12 = Y, 13 = e, l3= Z], B'.

That is, each rule can also be unnested. The point
of efficiently processing Kappa relations is to reduce
the number of unnest and nest operations: that is, to
process sets as directly as possible.

Under the semantics, query processing to nested rela
tions is different from conventional procedures in logic
programming. For example, consider a simple database
consisting of only one tuple:

r[lt = {a,b},12 = {b,c}].

For a query ?-r[ll = X, /2 = X], we can get X = {b},
that is, an intersection of {a, b} and {b, c}. That is,
a concept of unification should be extended. In order
to generalize such a procedure, we must introduce two
concepts into the procedural semantics[Yokota 1988]:

1) Residue Goals
Consider the following program and a query:

r[I=5'] ~ B.

?-r[l = 5].

If 5 n 5' is not an empty set during unification
between r[l = 5] and r[l = 5'], new subgoals are
to be r[l = 5 \ 5'], B. That is, a residue subgoal
r[l = 5 \ 5'] is generated if 51 \ 52 is not an empty
set, otherwise the unification fails. Note that there
might be residue subgoals if there are multiple set
values.

2) Binding as Constraint
Consider the following database and a query:

rl[l1=5d·

96

1'2[12 = S2]'
? -rd!l = X], 1'2 [12 = X].

Although we can get X = Sl by unification be
tween rdl1 = Xl and rdh = Sl] and a new subgoal
1'2[12 = SIl, the subsequent unification results in
r2[l2=SlnS2] and a residue subgoal r2[l2= Sl \S2]'
Such a procedure is wrong, because we should
have an answer X = Sl n S2. In order to avoid
this situation, the binding information is tempo
rary and plays the role of constraints to be re
tained:

rdl1 = X], 1'2[12 = X]
==? r2[l2 = X]II{X C Sd

==? II{X c Sl n Sd·

There remains one problem where the unique represen
tation of a nested relation is not necessarily decided in
the Kappa model, as already mentioned. In order to
decide a unique representation, each nested relation has
a sequence of labels to be nested in Kappa.

As the procedural semantics of extended relational
algebra in Kappa is defined by the above concepts, a
Kappa database does not necessarily have to be nor
malized also in the sense of nested relational models,
in principle. That is, it is unnecessary for users to be
conscious of the row nest structure.

Furthermore, nested relational model is well known
to reduce the number of relations in the case of multi
value dependency. Therefore, the Kappa model guar
antees more efficient processing by reducing the num
ber of tuples and relations, and more efficient repre
sentation by complex construction than the relational
model.

3.2 Features of Kappa System

The nested relational model in Kappa has been im
plemented. This consists of a sequential database
management system J(appa-II [Yokota et al. 1988] and
a parallel database management system J(appa-P
[Kawamura et al. 1992]. Kappa-II, written in ESP,
works on sequential inference machines (PSIs) and its
operating system (SIMPOS). Kappa-P, written in KL1,
works on parallel inference machines (PIMs) and its op
erating system (PIMOS). Although their architectures
are not necessarily the same because of environmental
differences, we explain their common features in this
subsection,

• Data Type
As Kappa aims at a database management system
(DBMS) in a knowledge information processing en
vironment, a new data type, term, is added. This

is because various data and knowledge are fre
quently represented in the form of terms. Unifica
tion and matching are added for their operations.
Although unification-based relational algebra can
emulate the derivation in logic programming, the
features are not supported in Kappa because the
algebra is not so efficient. Furthermore, Kappa dis
criminates one-byte character (ASCII) data from
two-byte character (JIS) data as data types. It
contributes to the compression of huge amounts of
data such as genetic sequence data.

• Command Interfaces
Kappa provides two kinds of command interface:
basic commands as the low level interface and ex
tended relational algebra as the high level inter
face. In many applications, the level of extended
relational algebra, which is expensive, is not al
ways necessary. In such applications, users can re
duce the processing cost by using basic commands.

In order to reduce the communication cost be
tween a DBMS and a user program, Kappa pro
vides user-definable commands, which can be exe
cuted in the same process of the Kappa kernel (in
Kappa-II) or the same node of each local DBMS
(in Kappa-P, to be described in the next subsec
tion).

The user-definable command facility helps users
design any command interface appropriate for
their application and makes their programs run
efficiently. Kappa's extended relational algebra is
implemented as parts of such commands although
it is a built-in interface.

• Practical Use
As already mentioned, Kappa aims, not only at
a database engine of QUIXOTE, but also at a
practical DBMS, which works independently of
QUIXOTE. To achieve this objective, there are
several extensions and facilities. First, new data
types, besides the data types mentioned above, are
introduced in order to store the environment un
der which applications work. There are list, bag,
and pool. They are not, however, supported fully
in extended relational algebra because of semantic
difficulties.

Kappa supports the same interface to such data
types as in SIMPOS or PIMOS.

In order to use Kappa databases from windows,
Kappa provides a user-friendly interface, like a
spreadsheet, which provides an ad hoc query fa
cility including update, a browsing facility with
various output formats and a customizing facility.

• Main A1emory Database
Frequently accessed data can be loaded and re-

tained in the main memory as a main memory
database. As such a main memory database was
designed only for efficient processing of temporary
relations without additional burdens in Kappa, the
current implementation does not support conven
tional mechanisms such as deferred update and
synchronization. In Kappa-P, data in a main
memory database are processed at least three
times more efficiently than in a secondary storage
database.

From an implementational point of view, there are
several points for efficient processing in Kappa. We
explain two of them:

• ID Structure and Set Operation
Each nested tuple has a unique tuple identifier
(ntid) in a relation, which is treated as an 'ob
ject' to be operated explicitly. Abstractly speak
ing, there are four kinds of 'object's, such as a
nested t1lple, an ntid, a set whose element is a
ntid, and a relation whose element is a nested
tuple. Their commands for transformation are ba
sically supported, as in Figure 6, although the set

nested tuple nested relation

Figure 6: 'Object's in Kappa and Basic Operations

is treated as a stream in Kappa-P. Most operations
are processed in the form of an ntid or a set.

In order to process a selection result, each subtu
pIe in a nested tuple also has a sub-ntid virtually.
Set operations (including unnest and nest opera
tion) are processed mainly in the form of a (sub
)ntid ·or a set without reading the corresponding
tuples.

• Storage Structure
A nested tuple, which consists of unnested tuples
in the semantics, is also considered as a set of
unnested tuples to be accessed together. So, a
nested tuple is compressed without decomposition
and stored on the same page, in principle, in the
secondary storage. For a huge tuple, such as a
genetic sequence, contiguous pages are used. In
order to access a tuple efficiently, there are two
considerations: how to locate the necessary tuple
efficiently, and how to extract the necessary at
tributes efficiently from the tuple. As in Figure 7,

Ip

97

Kappa is equipped with an efficient address trans
lation table between an ntid and a logical page
(ip), and between a logical page and a physical
page (pp). This table is used by the underlying
file system. For extraction purposes, each node of

Index

nested relatin
t

nested tuple

lp

ntid

Figure 7: Access Network for Secondary DBMS

a nested tuple has a local pointer and counters in
the compressed tuple, although there is a trade-off
in update operations' efficiency.

Each entry in an index reflects the nested struc
ture: that is, it contains any necessary sub-ntids.
The value in the entry can be the result of string
operations such as substring and concatenation
of the original values, or a result extracted by a
user's program.

3.3 Parallel Database Management
System (Kappa-P)

Kappa-P ha.s va.rious unique fea.tures as a parallel
DBMS. In this subsectio~, we give a brief overview
of them.

The overall configuration of Kappa- P is shown in
Figure 8. There are three components: an interface
(J/F) process, a server DBMS, and a local DBMS. An
IfF process, dynamically created by a user program,
mediates between a user program and (server or lo
cal) DBMSs by streams. A server DBMS has a global
map of the location of local DBMSs and makes a user's
stream connect directly to an appropriate local DBMS
(or multiple local DBMSs). In order to avoid a bottle
neck in communication, there might be many server
DBMSs with replicates global maps. A local DBMS can
be considered as a single nested relational DBMS, cor
responding to Kappa-II, where users' data is stored.

98

It;F rocessl

It;F roceSS2

IfF
Processk

(

(Server) DBMSm

Server) DBMS2

..................................•................... '"

----~~----- ,--~~------
Local
DBMSl

Local
DBMS2

Local
DBMSn

Figure 8: Configuration of Kappa-P

Users' data may be distributed (even horizontally par
titioned) or replicated into multiple local DBMSs. If
each local DBMS is put in a shared memory parallel
processor, called a cluster in PIM, each local DBMS
works in parallel. Multiple local DBMSs are located in
each node of distributed memory parallel machine, and,
together, behave like a distributed DBMS.

User's procedures using extended relational algebra
are transformed into procedures written in an interme
diate language, the syntax of which is similar to KLl,
by an interface process. During the transformation, the
interface process decides which local DBMS should be
the coordinator for the processing, if necessary. Each
procedure is sent to the corresponding local DBMS, and
processed there. Results are gathered in the coordina
tor and then processed.

Kappa-P is different from most parallel DBMS, in
that most users' applications also work in the same
parallel inference machine. If Kappa-P coordinates a
result from results obtained from local DBMSs, as in
conventional distributed DBMSs, even when such co
ordination is unnecessary, the advantages of parallel
processing are reduced. In order to avoid such a situ
ation, the related processes in a user's application can
be dispatched to the same node as the related local
DBMS as in Figure 9. This function contributes not
only to efficient processing but also to customization
of the cOlmnand interface besides the user-defined com
mand facility.

4 Applications

vVe are developing three applications on QUIXOTE and
Kappa, and give an overview of each research topic in
this section.

Figure 9: User's Process in Kappa Node

4.1 Molecular Biological Database

Genetic information processing systems are very impor
tant not only from scientific and engineering points of
view but also from a social point of view, as shown in
the Human Genome Project. Also, at ICOT, we are en
gaged in such systems from thr viewpoint of knowledge
information processing. In this subsection, we explain
such activities, mainly focusing on molecular biological
databases in QUIXOTE and Kappa 6.

4.1.1 Requirements for Molecular Biological
Databases

Although the main objective of genetic information
processing is to design proteins as the target and to
produce them, there remain too many technical diffi
culties presently. Considering the whole of proteins, we
are only just able to gather data and knowledge with
much noise.

In such data and knowledge there are varieties such
as sequences, structures, and functions of genes and
proteins, which are mutually related. A gene in the

6See the details in [Tanaka 1992].

genetic sequence (DNA) in the form of a double helix
is copied to a mRN A and translated into an amino
acid sequence, which becomes a part (or a whole) of a
protein. Such processes are called the Central Dogma
in biology. There might be different amino acids even
with the same functions of a protein. The size of a
unit of genetic sequence data ranges from a few charac
ters to around 200 thousand, and w111 become longer as
genome data is gradually analyzed fyrther. The size of
a human genome sequence equals about 3 billion char
acters. As there are too many unknown proteins, the
sequence data is fundamental for homology searching
by a pattern called a motif and for multiple alignment
a.mong sequences for prediction of the functions of un
known proteins from known ones.

There are some problems to be considered for molec
ular biological databases:

• how to store large values, such a.s sequences, and
process them efficiently,

• how to represent structure data and what opera
tions to apply them,

• how to represent functions of protein such as
chemical reactions, and

• how to represent their relations and link them.

From a database point of view, we should consider
some points in regard to the above data and knowl
edge:

• representation of complex data as in Figure 2,

• treatment of partial or noisy information in unsta
ble data,

• inference rules representing functions, as in the
above third item, and inference mechanisms, and

• representation of hierarchies such as biological con
cepts and molecular evolution.

After considering the above problems, we choose to
build such databases on a DOOD (QUIxoTE, conceptu
ally), while a large amount of simple data is stored in
Kappa-P and directly operated through an optimized
window interface, for efficient processing. As coop
eration with biologists is indispensable in this area,
we also implemented an environment to support them.
The overall configuration of the current implementation
is shown in Figure 10.

4.1.2 Molecular Biological Information 111

QuXXOT£ and Kappa

Here, we consider two kinds of data as examples: se
quence data and protein function data.

First, consider a DNA sequence. Such data does not
need inference rules, but needs a strong capability for
homology searching. In our system, such data is stored

Interface for Biologists

Molecular Biological
Applications

Kappa-P

99

Figure 10: Integrated System on QUIXOTE and Kappa

directly in Kappa, which supports the storage of much
data as is and creates indexes from the substrings ex
tracted from the original by a user program. Sequence
oriented commands for information retrieval, which use
such indexes, can be embedded into Kappa a.s user
defined commands. Furthermore, since the complex
record shown in Figure 3 is treated like a nested re
lation, the representation is also efficient. Kappa shows
its effectiveness as a practical DBMS.

Secondly, consider a chemical reaction of enzymes
and co-enzymes, whose scheme is as follows:

Sources + Co-enzymes
Enzymes

===}

Environments
Products

As an example of metabolic reaction, consider the
Krebs cycle in Figure 11. Chemical reactions in the
Krebs cycle are written as a set of facts in QUIXOTE as
in Figure 12. In the figure, 01 ~ 02/[' .. J means oIl[' .. J
and 01 ~ 02' In order to obtain a reaction chain (path)
from the above facts, we can write the following rules
in QUIXOTE:

reaction[jrom =X, to = YJ
¢: H! ~ reaction/[sources+ f-- X,

products+ f-- ZJ,
reaction[jrom=X, to= Y]
II{ {X, Y, Z} ~ reaction}.

reaction[jrom=X, to=X]
¢:II{X ~ reaction}.

Although there are a lot of difficulties in representing
such functions, QUIXOTE makes it possible to write
them down easily.

Another problem is how to integrate a Kappa
database with a QUIXOTE database. Although one of
the easiest ways is to embed the Kappa interface into
QUIXOTE, it costs more and might destroy a uniform
representation in QUIXOTE. A better way would be to
manage common oids both in Kappa and in QUIXOTE,

and guarantee the common object, however we have

100

pyruvate • acetyl-CoA

" oxyaloaceta" • ~trate
~ (8) (1) (2) ~

malate (2) Ie. is-aconitate
t(7) Krebs Cycle t

fumarate ~) (~(nsocitrate

succinate ~) (4Va-ketOglutarate

succinyl-CoA

ENZYMES
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

citrate synthase
aconitate
isocitrate dehydrogenase
a-ketoglutarate dehydrogenase complex
succinyl-CoA synthetase
succinate dehydrogenase
fumarase
malate dehydrogenas

Figure 11: Krebs Cycle in Metabolic Reaction

not implemented such a facility in Kappa. The current
implementation puts the burden of the uniformity on
the user, as in Figure 10.

4.2 Legal Reasoning System (TRIAL)

Recently, legal reasoning has attracted much attention
from researchers in artificial intelligence, with high ex
pectations for its big application. Some prototype sys
tems have been developed. We also developed such a
system as one of the applications of our DOOD system
7

4.2.1 Requirements for Legal Reasoning Sys
tems and TRIAL

First, we explain the features of legal reasoning. The
analytical legal reasoning process is considered as con
sisting of three steps: fact findings, statutory interpreta
tion, and statutory application.

Although fact findings is very important as the start
ing point, it is too difficult for current technologies. So,
we assume that new cases are already represented in
the appropriate form for our system. Statutory inter
pretation is one of the most interesting themes from an
artificial intelligence point of view. Our legal reasoning
system, TRIAL, focuses on statutory interpretation as
well as statutory application.

7See the details in [Yamamoto 1990], although the new ver
sion is revised as in this section.

krebs_cycle :: {{
krebsl r;;reaction/

[sources'" f- {acetylcoa, oxaloacetate} ,
products+ f- {citrate, coa},
enzymes f- citrate_synthase,
energy = -7.7].

krebs2 r;; reaction!
[sources-f f- citrate,
products+ f- {isocitrate, h2o},
enzymes f- aconitase].

krebs8 r;; reaction!
[sources-f f- malate,
products+ f- oxaloacetate,
enzymes f- malate_dehydrogenase,
energy = 7.1].

}}

Figure 12: Facts of Krebs Cycle in QUIXOTe

Although there are many approaches to statutory
interpretation, we take the following steps:

• analogy detection
Given a new case, similar precedents to the case
are retrieved from an existing precedent database.

• rule transformation
Precedents (interpretation rules) extracted by
analogy detection are abstracted until the new
case can be applied to them.

• deductive reasoning
Apply the new case in a deductive manner to
abstract interpretation rules transformed by rule
transformation. This step may include statutory
application because it is used in the same manner.

Among the steps, the strategy for analogy detection
is essential in legal reasoning for more efficient detec
tion of better precedents, which decides the quality of
the results of legal reasoning. As the primary objec
tive of TRIAL at the current stage is to investigate the
possibilities of QUIXOTe in the area and develop a pro
totype system, we focus only on a small target. That
is, to what extent should interpretation rules be ab
stl'acted for a new case, in order to get an answer with
a plausible explanation, but not for general abstraction
mechanism.

4.2.2 TRIAL on Legal Precedent Databases

All data and knowledge in TRIAL is described in
QUIXOTe. The system, written in KL1, is constructed
on QUIXOTE;. The overall architecture is shown in Fig
ure 13. In the figure, QUIXOTE; supports the functions
of rule transformation (Rule Transformer) and deduc
tive reasoning (Deductive Reasoner) as the native func
tions besides the database component, while TRIAL

Interface Component
...

~easoner Comp?nent
: : : ... :

: ~ j Rule j : :: ~ :

j ~ Transformer j
: :: :

QUIXOTe Database Component
j ~ (------

: .. :

Figure 13: Architecture of TRIAL

supports the function of analogy detection (Analogy
Detector) besides the interface component.

Consider a simplified example related to "karoshi"
(death from overwork) in order to discuss the analogy
detector. A new case, new-case, is as follows:

j'vfary, a driver, employed by a company, '(5)),
died from a heart-attack while taking a catnap
between jobs. Can this case be applied to the
worker's compensation law?

This is represented as a module new-case in QUIXOTe

as follows:

new-case:: {{new-casej[who=mary,
while = catnap,
result = heart-attack]; ;

rel[state = employee, emp=mary]
j[affil = org[name = "5"],

job----t driver]}}

where ";;" is a delimiter between rules. The module
is stored ill the new case database. Assume that there
are two abstract precedents 8 of job-causality and job
execution:

SIn this paper, we omit the rule transformation step and
assume that abstract interpretation rules are given.

101

casel :: judge[case=X]/[judge----t job-causality]
¢=rel[state= Y, emp= Z]/[cause=X]

II{X ~ parrn.case,
Y~parm.status,

Z ~parm.emp};;
case2 :: judge[case=X]/[judge----t job-execution]

¢= Xj[while = Y, result = Z],
Y~job

II{X ~ parm.case,
Y ~parm.while,
Z ~parm.result}.

Note that variables X, Y, and Z in both rules are
restricted by the properties of an object parm. That is,
they are already abstracted by parm and their abstract
level is controlled by parm's properties. Such precedents
are retrieved from the precedent database by analogy
detection and abstracted by rule transformation. We
must consider the labor'-law (in the statute database)
and a theory (in the theory database) as follows:

labor-law:: org[name=X]
/[1'esp----t c01npensation[obj = Y,

¢=judge[case----t case]
/[who= Y,

money = salary]]

result -t disease,
judge ----t insurance],

r'el[state= Z, emp= Y]
j[affil =org[name=Xjj.

theory:: Judge[case= X]/[judge----t insurance]
¢=judge[case = X]j[judge ----t job-causality],

judge[case= X]/[judge----t job-execution]
II{X ~ case}.

Furthermore, we must define the parm object as fol
lows:

parm :: parm/[case=case,
state = rel,
while = job,
result = disease,
emp = person].

In order to use parm for casel and case2, we define the
following submodule relation:

parm ~s casel U case2'

This information is dynamically defined during l'ule
transfol'mation. Furthermore, we must define the sub
sumption relation:

case ~ new-case
rel ~ employee
disease ~ heart-attack
job ~ catnap
person ~ mary
job-causality ~ znsurance
job-execution ~ znsurance

\02

Such definitions are stored in the dictionary in ad
vance.

Then, we can ask some questions with a hypothesis
to the above database:

1) If new-case inherits parm and theory, then what
kind of judgment can we get?

?-new-case : judge[case = new-case]j[judge =X]
if new-case ;;Js parm U theory.

we can get three answers:

• X = job-execution

• if new-case : judger case = new-case] has a
property judge ~ job-causality, then X ~
insurance

• if new-case : rel[state = employee, emp
mary] has a property cause = new-case, then
X ~ insurance

Two of these are answers with assumptions.

2) If new-case inherits labor-law and parm, then
what kind of responsibility should the organization
which Mary is affiliated to have?

?-new-case : org[name= "S"]j[resp=X]
if new-case ;;Js parm U labor-law.

we can get two answers:

• if new-case: judge[case = new-case] has a
property judge ~ job-causality, then X ~

compensation [obj =mary, money = salary]

• if new-case:rel[state=employee, emp=mary]
has a property cause = new-case, then X ~
compensation [obj = mary, money = salary]

For analogy detection, the parm object plays an es
sential role in determining how to abstract rules as in
casel and case2, what properties to be abstracted in
parm, and what values to be set in properties of parm.
In TRIAL, we have experimented with such abstrac
tion, that is, analogy detection, in QUIXOTE.

For the user interface of TRIAL, QUIXOTE returns
explanations (derivation graphs) with corresponding
answers, if necessary. The TRIAL interface shows this
graphically according to the user's request. By judging
an answer from the validity of the assumptions and
the corresponding explanation, the user can update the
database or change the abstraction strategy.

4.3 Temporal Inference

Temporal information plays an important role in nat
ural language processing. A time axis in natural lan
guage is, however, not homogeneous as in natural sci
ence but is relative to the events in rriind: shrunken
in parts and stretched in others. Furthermore, the rel
ativity is different depending on the observer's per
spective. This work aims to show the paradigm of an
inference system that merges temporal information ex
tracted from each lexical item and resolves any tempo
ral ambiguity that· a word may have 9.

4.3.1 Temporal Information in Natural Lan
guage

We can, frequently, make different expressions for the
same real situation. For example,

Don Quixote attacks a windmill.
Don Quixote attacked a windmill.
Don Quixote is attacking a windmill.

Such different expressions are related to tense and as
pects. How should we describe the relation between
them?

According to situation theory, we write a support re
lation between a situation s and an in/on (7 as follows:

s p (7.

For example, if one of the above examples is supported
in a situation s, it is written as follows:

s p~ attack, Don Quixote, windmill ~,

where attack is a relation, and "Don Quixote" and
windmill are parameters. However, strictly speaking,
as such a relation is cut out from a prespective P, we
should write it as follows:

s p (7 -¢::::? P(s' p (7').

Although we might nest perspectives on such a rela
tion, we assume some reflective property:

P(s' p (7') ===? P(s')P(p)P((7').

In order to consider how to represent P(s') and
P((7') from a temporal point of view, we introduce a
partial order relation among sets of time points. As
sume that a set of time points are partially ordered by
::S, then we can define ::St and ~ among sets TI and T2
as follows:

TI :5t T2 d~ Vt l E TI, Vt2 E T2. tl ::::; t2.

TI ~ T2 d.;j Vt1 E T1. tl E T2.

We omit the subscript t if there is no confusion.
In order to make tense and aspects clearer, we intro

duce the following concepts:

9See the details in [Tojo and Yasukawa 1992].

1) discrimination of an utterance situation u and a
described situation s, and

2) duration (a set of linear time points, decided by a
start point and an end point) of situations and an
infon. The duration of T is written as II Tilt.

We can see the relation among three durations of an
utterance situation, a described situation, and an infon
in Figure 14. If there is no confusion, we use a simple

Othe.utte~ance
SItuatIon

1 a mental time axi~
: mental time of a

<:=) : mental location of s
• : mental location of u

Figure 14: Relation of Three Durations

notation: SI :::; S2 instead of II SI lit:::; II s211t and SI ~ S2

instead of II Sll1t~1I s211t.
By the above definitions, we can define tense and

aspects when s F a as follows (P(F) is written as F):

s[s :::; u]
s[s J u]
s[s C u]
s[a:::; u]

F ~ past,a».
F ~ present, a » .
F ~ progressive, a » .
1= ~ perfect, a » .

where s is a described situation, u is an utterance
situation, and a is an infon. C in s[C] is a constraint,
which is intended to be a perspective. The above rules
are built-in rules (or axioms) for temporal inference in
QUIXOTE:.

4.3.2 Temporal Inference in QuIXOTE:

We define a rule for situated inference as follows:

where s, SI, •.. ,Sn are situations with perspectives.
This rule means that S F a if SI 1= aI, "', and
Sn 1= an' Such rules can be easily translated into a
subclass of QUIXOTE: by relating a situation with per
spectives to a module, an infon to an o-term, and
partial order among duration to subsumption relation.
However, there is one restriction: a constraint in a rule
head may not include subsumption relations between
o-terms, because such a relation might destroy a sub
sumption lattice.

A verbalized infon is represented as an o-term as
follows 10:

lOAn o-term T[/I = ol,···,ln = 02] can be abbreviated as
[II = 01,"', In = 02]'

inj[v_rel = [rel = R,
cls=CLS,
per=P],

args = Args],

103

where v_reI takes a verb relation and args takes the ar
guments. R is a verb, CLS is the classification, and P
is a temporal situation. For example, "John is running"
is written as follows:

inj[v_rel = [reI = run,
cIs = act2 ,

pers = [jov = ip,
pov = pres]],

args = [agt = john]].

That is, the agent is john, and the verb is run, which
is classified in act2 (in-progress state or res7.Litant
state), and the perspective is in-progress state as the
field of view (an oval in Figure 14) and present as the
point of view (. in Figure 14).

The discourse situation which supports such a ver
balized infon is represented as follows:

dsit[jov = ip, pov = pres, src = UJ,

where the first two arguments are the same as the
above infon's pers and the third argument is the utter
ance situation.

According to the translation, we show a small exam
ple, which makes it possible to reduce temporal ambi
guity in expression.

1) Given an expression exp = E, each morpheme is
processed in order to check the temporal informa
tion:

mi[7.l=U, exp=[], e=D,infon=Infon].
mi[u= U, exp= [ExpIR], e=D, infon= Infon]

¢.d_cont[exp=Exp, sit =D, infon = Infon,
mi[u=U, exp=R,e=D,infon=Infon].

Temporal information for each morpheme is in
tersected in D: that is, ambiguity is gradually
reduced.

2) Temporal information in a pair of a discourse sit
uation and a verbalized infon is defined by the
following rules:

104

d_cont[exp=Exp,
sit = dsit[Jov =Fov, pov= Pov, src= U]
infon = inf[v_rel = V _rel, args= Args]]

¢=diet : v[cls=CLS,rel=R,jorm=Exp]
II{V _rel= [rel=R, cls=CLS,pers= P]}

d_cont[exp = Exp,
sit = dsit[Jov= Fov, pov = Pov, src= U]
infon=inf[v_rel= V _rel, args= Args]]

¢=diet : auxv[asp=ASP, form= Exp],
map[cis=CLS, asp=ASP,fov=Fov]
II{V _rel= [rel= _, cis =CLS,pers= P],

P= [Jov=Fov,pov = _};;

d_cont [exp = Exp,
sit = dsit[J ov = Fov, pov = Pov, sre= U]
infon =inJ[v_rel = V _rel, args = ArgslJ

¢=dict : affix[pov = Pov, form=ru]
II{V _rei = [rel = _, cis = _, pers = P],

P = [Jov= _,pov=Pov]}

3) There is a module diet, where lexical information
is defined as follows:

diet:: {{
v[cis = aetI,rel = puLon, form =ki];;
v[cls = aet2 , rel = run, form =hashi];;
v[cls = aet3 , rei = understand, form =waka]; ;
auxv[asp = state, form =tei];;
affix[pov = pres,form =ru];;
affix[pov = past, form =ru]}}

where form has a value of Japanese expression.
Further, mapping of field of view is also defined as
a set of (global) facts as follows:

map[cls = aet1,asp = state,fov = {ip,tar,res}].
map[cis = aet2,asp = state,fov = {ip,res}].
map[cls = aet3, asp = state, f ov = {tar, res}].

If some Japanese expression is given in a query, the
corresponding temporal information is returned by the
above program.

5 Towards More Flexible Sys
tems

In order to extend a DOOD system, we take other
approaches for more flexible execution control, mainly
focusing on natural language applications as its exam
ples.

5.1 Constraint Thansformation

There are many natural language grammar theories:
transformational and constraint-base grammar such as
GB, unification-based and rule-based gra~ar such as
GPSG and LFG, and unification-based and constraint
based grammar such as HPSG and JPSG. Considering a

more general framework of grammar in logic program
ming, HPSG and JPSG are considered to be better,
because morphology, syntax, semantics, and pragmatics
are uniformly treated as constraints. From such a point
of view, we developed a new constraint logic program
ming (CLP) language, cu-Prolog, and implemented a
JPSG (Japanese Phrase Structure Grammar) parser in
it 11.

5.1.1 Constraints in Unification-Based Gram-
mar

First, consider various types of constraints III

constraint-based grammar:

• A disjunctive feature structure is used as a basic
information structure, defined like nested tuples or
complex objects as follows:

1) A feature structure is a tuple consisting of
pairs of a label and a value:
[h =Vl,"', In=vn].

2) A value is an atom, a feature structure, or a
set {fl,' .. ,fn} of feature structures.

• In JPSG, grammar rules a.re descri.bed in the form
of a binary tree as in Figure 15, each node of
which is a feature structure: in which a specific

dependenLdaughter "0 head_daughter H

Figure 15: Phrase Structure in JPSG

feature (attribute) decides whether D works as a
complement or as a modifier. Note that each gram
mar, called a structural principle, is expressed as
the constraints among three features, lvI, D, and
H, in the local phrase structure tree.

As shown in the above definition, feature structures
are very similar to the data structure in DOOD 12. VVe
will see some requirements of natural language process
ing for our DOOD system and develop applications_ on
the DOOD system.

llSee the details in [Tsuda 1992].
12This is one of the reason why we decided to 'design

QUIXOTE. See the appendix.

5.1.2 eu-Prolog

In order to process feature structures efficiently, we
have developed a new CLP called cu-Prolog. A rule is
defined as follows 13:

where H, B 1 , ••• ,Bn are atomic formulas, whose argu
ments can be in the form of feature structures and
e1 , •.• ,em are constraints in the form of an equation
among feature structures, variables, and atoms, or an
atomic formula defined by another set of rules. There
is a restriction for an atomic formula in constraints in
order to guarantee the congruence of constraint solving.
This can be statically checked. The semantic domain
is a set of relations of partially tagged trees, as in
CIL[Mukai 1988] and the constraint domain is also the
same.

The derivation in cu-Prolog is a sequence of a pair
(G, e) of a set of subgoals and a set of constraints, just
as in conventional CLP. Their differences are as follows:

• All arguments in predicates can be feature struc
tures, that is, unification between feature struc
tures is necessary.

• A computation rule does not select a rule which
does not contribute to constraint solving: in the
case of ({A} U G, e), A' ~ Bile', and AO = A'O,
the rule is not selected if a new constraint CO U e' 0
cannot be reduced.

• The constraint solver is based on unfold/fold
transformation, which produces new predicates dy
namically in a constraint part.

'Disjunction' in feature structures of cu-Prolog is
treated basically as 'conjunction', just as in an o-term
in QUIXOT£ and a nested term in Kappa (CRL). How
ever, due to the existence of a predicate, disjunction is
resolved (or unnested) by introducing new constraints
and facts:

H ~p([l={a,b}]) {::=} H ~ p([l=XDII{new-p(X)}.
new_p(a).
new_p(b).

That is, in cu-Prolog, disjunctive feature structures are
processed in OR-parallel, in order to avoid set unifica
tion as in CRL. Only by focusing on the point does
the efficiency seem to depend on whether we want to
obtain all solutions or not.

One of the distinguished features in cu-Prolog is dy
namic unfold/fold transformation during query process
ing, which contributes much to improving the efficiency
of query processing. Some examples of a JPSG parser

13 As we are following \'lith the syntax of QUIXOT£, the
following notation is different from eu-Prolog.

105

in cu-Prolog appear in [Tsuda 1992]. As predicate
based notation is not essential, language features in
cu-Prolog can be encoded into the specification of
QUIXOT£ and the constraint solver can also be em
bedded into the implementation of QUIXOT£ without
changing semantics.

5.2 Dynamical Programming

This work aims to extend a framework of constraint
throughout computer and cognitive sciences 14. In some
sense, the idea originates in the treatment of con
straints in cu-Prolog. Here, we describe an outline
of dynamical programming as a general framework of
treating constraints and an example in natural lan
guage processing.

5.2.1 Dynamics of Symbol Systems

As already mentioned in Section 2, partial informa
tion plays an essential role in knowledge information
processing systems. So, knowing how to deal with the
partiality will be essential for future symbol systems.
We employ a constraint system, which is independent
of information flow. In order to make the system com
putationally more tractable than conventional logic, it
postulates a dynamics of constraints, where the state of
the system is captured in terms of potential energy.

Consider the following program in the form of
clauses:

p(X) ~ r(X, Y),p(Y).
r(X, Y) ~ q(X).

Given a query ?-p(A),q(B), the rule-goal graph as used
in deductive databases emulates top-down evaluation
as in Figure 16. However, the graph presupposes a cer-

?-p(A), q(B)
t

p(X) ~ r(X, Y),p(Y)
+ t I

r(X, Y) ~ q(X)

Figure 16: Rule-Goal Graph

tain information flow such as top-down or bottom-up
evaluation. More generally, we consider it in the form
in Figure 17. where the lines represent (partial) equa
tions among variables, and differences between vari
ables are not written for simplicity. We call such a
graph a constraint network.

In this framework, computation proceeds by propa
gating constraints in a node (a variable or an atomic

14See the details in [Hasida 1992].

106

Figure 17: Constraint network

constraint) to others on the constraint network. In or
der to make such computation possible, we note the
dynamics of constraints, as outlined below:

1) An activation value is assigned to each atomic con
straint (an atomic formula or an equation). The
value is a real number between a and 1 and is
considered as the truth value of the constraint.

2) Based on activation values, normalization energy
is defined for each atomic constraint, deduction
eneT'!}y and abduction energy are defined for each
clause, and assimilation energy and completion en
ergy are defined for possible unifications. The po
tential eneT'!}y U is the sum of the above energies.

3) If the current state of a constraint is represented
in terms of a point x of Euclidean space, U de
fines a field of force F of the point x. F causes
spreading activation when F =f. O. A change of x is
propagated to neighboring parts of the constraint
network, in order to reduce U. In the long run, the
assignment of the activation values settles upon a
stable equilibrium satisfying F = O.

Symbolic computation is also controlled on the basis of
the same dynamics. This computational framework is
not restricted in the form of Horn clauses.

5.2.2 Integrated Architecture of Natural Lan-
guage Processing

In traditional natural language processing, the system
is typically a sequence of syntactic analysis, semantic
analysis, pragmatic analysis, extralinguistic inference,
generation planning, surface generation, and so on.
However, syntactic analysis does not necessarily pre
cede semantic and pragmatic comprehension, and gen
eration planning is entwined with surface generation.
Integrated architecture is expected to remedy such a
fixed information flow. Our dynamics of constraint is
appropriate for such an architecture.

Consider the following example:

Tom. took a telescope. He saw a girl with it.

'vVe assume that he and it are anaphoric with Tom
and the telescope, respectively. However, with it has
attachment ambiguity:

Tom has a telescope when he sees the girl, or
the girl has the telescope when Tom sees her.

Consider a set of facts:

(1)

(2)

(3)

take(tom, telescope).

have(tom, tel escope).

have(girl, telescope).

and an inference rule:

(4) have(X, Y) '¢: take(X, Y).

By constructing the constraint networks of (1),(2),(4)
and (1),(3),(4) as in Figure 18, we can see that there

/ .---..
{ take()} {takeT)}

{have(, I), -,take(,)} {have(L,)}),-,take(,

{have(, I)} {have(.,)}
./

Constraint Network of (2) Constraint Network of (3)

Figure 18: Constraint Networks of Alternatives

are two cycles (involving tom and telescope) in the left
network ((1), (2), and (4)), while there is only one cy
cle (girl) in the right network ((1), (3), and (4)). From
the viewpoint of potential energy, the former tends to
excite more strongly than the latter, in other words,
(2) is more plausible than (3).

Although, in natural language processing, resolution
of ambiguity is a key point, the traditional architecture
has not been promising, while our integrated architec
ture based on a dynamics of constraint network seems
to give more possibilities not only for such applications
but also for knowledge-base management systems.

6 Related Works

Our database and knowledge-base management system
in the framework of DOOD has many distinguished
features in concept, size, and varieties, in comparison
with other systems. The system aims not only to pro
pose a new paradigm but also to provide database and
knowledge- base facilities in practice for many knowl
edge information processing systems.

There are many works, related to DOOD con
cepts, for embedding object-oriented concepts into logic
programming. Although F-logic[Kifer and Lausen 1989]
has the richest concepts, the id-term for object identity
is based on predicate-based notation and properties are
insufficient from a constraint point of view. Further
more, it lacks update functions and a module concept.

QUIXOTE has many more functions than F-logic. Al
though, in some sense, QUIXOTE might be an over
specification language, users can select any subclass of
QUIXOTE. For example, if they use only a subclass of
object terms, they can only be conscious of the sub
language as a simple extension of Prolog.

As for nes ted relational models, there are
many works since the proposal in 1977, and
several models have been implemented: Verso
[Verso 1986], DASDBS [Schek and Weikum 1986], and
AIM-P [Dadam et al. 1986]. However, the semantics
of our model is different from theirs. As the (ex
tended) NF2 model of DASDBS and AIM-P has set
based (higher order) semantics~ it is very difficult to
extend the query capability efficiently, although the
semantics is intuitively familiar to the user. On the
other hand, as Verso is based on the universal relation
schema assumption, it guarantees efficient procedural
semantics. However, the semantics is intuitively unfa
miliar to the user: even if t tf. (JIT and t tf. (J2T for
a relation T, it might happen that t E (JIT U (J2T.
Compared with them, Kappa takes simple semantics,
as mentioned in Section 3. This semantics is retained in
o-terms in QUIXOTE and disjunctive feature structures
in cu-Prolog for efficient computation.

As for genetic information processing, researchers in
logic programming and deductive databases have be
gun to focus on this area as a promising application.
However, most of these works are devoted to query
capabilities such as transitive closure and prototyping
capabilities, while there are few works which focus on
data and knowledge representation. On the other hand,
QUIXOTE aims at both the above targets. As for legal
reasoning, there are many works based on logic pro
gramming and its extensions. Our work has not taken
their functions into consideration, but has reconsidered
them from a database point of view, especially by in
troducing a module concept.

7 Future Plans and Concluding
Remarks

We have left off some functions due to a shortage in
man power and implementation period. We are consid
ering further extensions through the experiences of our
activities, as mentioned in this paper.

First, as for QUIXOTE, we are considering the follow
ing improvements and extensions:

• Query transformation techniques such as sideways
information passing and partial evaluation are not
fully applied in the current implementation. Such
optimization techniques should be embedded. in
QUIXOTE, although constraint logic programming
needs different devices from conventional deductive

107

databases. Furthermore, for more efficient query
processing, flexible control mechanisms, such as in
cu-Prolog and dynamical programming, would be
embedded.

• For more convenience for description in
QUIXOTE, we consider meta-functions as HiLog
[Chen et al. 1989]:

tc(R)(X, Y) :- R(X, Y)
tc(R)(X, Y) :- tc(R)(X, Z), tc(R)(Z, Y)

In order to provide such a function, we must intro
duce new variables ranging over basic objects.

This idea is further extended to a platform lan
guage of QUIXOTE. For example, although we must
decide the order relation (such as Hoare, Smyth,
or Egli-Milner) among sets in order to introduce a
set concept, the decision seems to depend on the
applications. For more applications, such a relation
would best be defined by a platform language. The
current QUIXOTE would be a member of a family
defined in such a platform language.

• Communication among QUIXOTE databases plays
an important role not only for distributed
knowledge-bases but also to support persistent
view, persistent hypothesis, and local or private
databases. Furthermore, cooperative query pro
cessing among agents defined QUIXOTE is also con
sidered, although it closely depends on the ontol
ogy of object identity.

• In the current implementation, QUIXOTE objects
can also be defined in KLl. As it is difficult to
describe every phenomena in a single language,
as you know, all languages should support inter
faces to other languages. Thus, in QUIXOTE too, a
multi-language system would be expected.

• Although, in the framework of DOOD, we have
focused mainly on data modeling extensions, the
direction is not necessarily orthogonal from logical
extensions and computational modeling extensions:
set grouping can emulate negation as failure and
the procedural semantics of QUIXOTE can be de
fined under the framework of object-orientation.

However, from the viewpoint of artificial intelli
gence, non-monotonic reasoning and 'fuzzy' logic
should be further embedded, and, from the view
point of design engineering, other semantics such
as object-orientation, should also be given .

As for Kappa, we are considering the following im
provements and extensions:

• In comparison with other DBMSs by Wisconsin
Benchmark, the performance of Kappa can be fur
ther improved, especially in extended relational

108

algebra, by reducing inter-kernel communication
costs. This should be pursued separately from the
objective.

• It is planned for Kappa to be accessed not only
from sequential and parallel inference machines
but also from general purpose machines or work
stations. Furthermore, we should consider the
portability of the system and the adaptability for
an open system environment. One of the candi
dates is heterogeneous distributed DBMSs based
on a client-server model, although Kappa-P is al
ready a kind of distributed DBMS.

• In order to provide Kappa with more applications,
customizing facilities and service utilities should
be strengthened as well as increasing compatibility
with other DBMSs.

In order to make Kappa and QUIXOT& into an in
tegrated knowledge-base management system, further
extensions are necessary:

• QUIXOT& takes nested transaction logic, while
Kappa takes flat transaction logic. As a result,
QUIXOT& guarantees persistence only at the top
level transaction. In order to couple them more
tightly, Kappa should support nested transaction
logic.

• From the viewpoint of efficient processing, users
cannot use Kappa directly through QUIXOT&.

This, however, causes difficulty with object iden
ti ty, because Kappa does not have a concept of
object identity. A mechanism to allow Kappa and
QUIXOT& to share the sa.me object space should be
considered.

• Although Kappa-P is a naturally parallel DBMS,
current QUIXOT& is not necessarily familiar wi th
parallel processing, even though it is implemented
in 1\L1 and works in parallel. For more efficient
processing, we must investigate parallel processing
in Kappa and QUIXOT£..

We must develop bigger applications than those we
mentioned in this paper. Furthermore, we must in
crease the compatibility with the conventional systems:
for example, from Prolog to QUIXOT& and from the
relational model to our nested relational model.

We proposed a framework for DOOD, and are en
gaged in various R&D activities for databases and
knowledge-bases in the framework, as mentioned in this
paper. Though each theme does not necessarily origi
nate from the framework, our experiences indicate that
this direction is promising for many applications.

Acknowledgments

The authors have had much cooperation from all mem
bers of the third research laboratory of ICOT for each
topic. We especially wish to thank the following people
for their help in the specified topics: Hiroshi Tsuda for
QUIXOTe and cu-Prolog, Moto Kawamura and Kazu
tomo N aganuma for J(appa, Hidetoshi Tanaka and
Yuikihiro Abiru for Biological Databases, Nobuichiro
Yamamoto for TRIAL, Satoshi Tojo for Temporal In
ference, and Koiti Hasida for DP.

We are grateful to members of the DOOD (DBPL,
ETR, DDB&AI, NDB, IDB), STASS, and JPSG working
groups for stimulating discussions and useful comments
on our activities, and, not to mention, all members of
the related projects (see the appendix) for their imple
mentation efforts.

We would also like to acknowledge Kazuhiro Fuchi
and Shunichi Uchida without whose encouragement
QUIXOT& and Kappa would not have been imple
mented.

References

[Aczel 1988] P. Aczel, Non- Well Founded Set Theory,
CSLI Lecture notes No. 14, 1988.

[Chen et al. 1989] W. Chen, M. Kifer and D.S. Warren,
"HiLog as a Platform for Database Language",
Proc. the Second Int. Workshop on Database Pro
gramming Language, pp.121-135, Gleneden Beach,
Oregon, June, 1989.

[Chikaya.ma 1984] T. Chikayama, "Unique Features of
ESP", Proc. Int. Conf. on Fifth Generation Com
puter Systems, ICOT, Tokyo, Nov.6-9, 1984.

[Chikayama et al. 1988] T. Chikayama, H. Sato, and
T. Miyazaki, "Overview of the Parallel Inference
Machine Operating Sistem (PIMOS)", Proc. Int.
Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, Nov.28-Dec.2, 1988.

[Dadam et al. 1986] P. Dadam, et aI, "A DBMS Pro
totype to Support Extended NF2 Relations: An
Integrated View on Flat Tables and Hierarchies",
ACM SIGMOD Int. Conf. on Management of Data,
1986.

[Delobel et al. 1991J C. Delobel, M. Kifer, and Y. Ma
sunaga (eds.), Deductive and Object-Oriented
Databases, (Proc. 2nd Int. Conf. on Deductive and
Object-Oriented Databases (DOOD'91)), LNCS 566,
Springer, 1991.

[Goto et al. 1988] A. Goto et at., "Overview of the Par
allel Inference Machine Architecture (PIM)", Proc.

Int. Con/. on Fifth Generation Computer Systems,
Ie aT, Tokyo, Nov.28-Dec.2, 1988.

[Haniuda et aI. 1991] H. Haniuda, Y. Abiru, and
N. Miyazaki, "PHI: A Deductive Database Sys
tern", Proc. IEEE Pacific Rim Conf. on Commu
nication, Computers, and Signal Processing, May,
1991.

[Hasida 1992] K. Hasida, "Dynamics of Symbol Sys
tems - An Integrated Architecture of Cognition",
Proc. Int. Con/. on Fifth Generation Computer
Systems, IeOT, Tokyo, June 1-5, 1992.

[Kawamura et aI. 1992] M. Kawamura, H. Naganuma,
H. Sato, and K. Yokota, "Parallel Database Man
agement System J(appa-P", Proc. Int. Con/. on
Fifth Generation Compute1' Systems, IeOT, Tokyo,
June 1-5, 1992.

[Kifer and Lausen 1989] M. Kifer and G. Lausen, "F
Logic - A Higher Order Language for Reasoning
about Objects, Inheritance, and Schema", Proc.
ACM SIGMOD Int. Con/. on Management of Data,
pp.134-146, Portland, June, 1989.

[Kim et al. 1990] "V. Kim, J.-M. Nicolas, and S. Nishio
(eds.), Deductive and Object-Oriented Databases,
(Proc. 1st Int. Con/. on Deductive and Object
Oriented Databases (DOOD89)) , North-Holland,
1990.

[Miyazaki et al. 1989] N. Miyazaki, H. Haniuda,
K. Yokota, and H. Itoh, "A Framework for Query
Transformation", Journal of Information Process
ing, vol.l2, No.4, 1989.

[Mukai 1988] K. Mukai, "Partially Specified Term in
Logic Programming for Linguistic Analysis", Proc.
Int. Con/. on Fifth Generation Computer Systems,
IeOT, Tokyo, Nov.28-Dec.2, 1988.

[Schek and Weikum 1986] H.-J. Schek and G. Weikum,
"DASDBS: Concepts and Architecture of a
Database System for Advanced Applications",
Tech. Univ. of Darmstadt, Technical Report,
DVSI-1986-Tl, 1986.

[Tanaka 1992] H. Tanaka, "Integrated System for Pro
tein Information Processing", Proc. Int. Con/. on
Fifth Generation Computer Systems, IeOT, Tokyo,
June 1-5, 1992.

[Tojo and Yasukawa 1992] S. Tojo and H. Yasukawa,
"Situated Inference of Temporal Information",
Proc. Int. Con/. on Fifth Generation Computer
Systems, IeOT, Tokyo, June 1-5, 1992.

109

[Tsuda 1992] H. Tsuda, "cu-Prolog for Constraint
Based Grammar", Proc. Int. Con/. on Fifth Gen
eration Computer Systems, IeOT, Tokyo, June 1-
5, 1992.

[Ueda and Chikayama 1990]
K. Ueda and T. Chikayama, "Design of the Kernel
Language for thr Parallel Ingerence Machine", The
Computer Journal, vo1.33, no.6, 1990.

[Verso 1986] J. Verso, "VERSO: A Data Base Machine
Based on Non lNF Relations", INRIA Technical
Report, 523, 1986.

[Yamamoto 1990] N. Yamamoto, "TRIAL: a Legal
Reasoning System (Extended Abstract)", Joint
French-Japanese Workshop on Logic Programming,
Renne, France, July, 1991.

[Yasukawa et al. 1992] H. Yasukawa, H. Tsuda, and
K. Yokota, "Object, Properties, and Modules in
QUIXOT£", Proc. Int. Con/. on Fifth Generation
Computer Systems, IeOT, Tokyo, June 1-5, 1992.

[Yokota 1988] K. Yokota, "Deductive Approach for
Nested Relations", Programming of Future Gener
ation Computers II, eds. by K. Fuchi and L. Kott,
North-Holland, 1988.

[Yokota et al. 1988] K. Yokota, M. Kawamura, and
A. Kanaegami, "Overview of the Knowledge Base
Management System (KAPPA)", Proc. Int. Conf.
on Fifth Generation Computer Systems, IeOT,
Tokyo, Nov.28-Dec.2, 1988.

[Yokota and Nishio 1989] K. Yokota and S. Nishio,
"Towards Integration of Deductive Databases and
Object-Oriented Databases - A Limited Survey",
Proc. Advanced Database System Symposium, Ky
oto, Dec., 1989.

[Yoshida 1991] K. Yoshida, "The Design Principle of
the Human Chromosome 21 Mapping Knowledge
base (Version CSH91)", Inetrnal Technical Report
of Lawrence Berkley Laboratory, May, 1991.

110

Appendix

Notes on Projects for Database and
Knowledge-Base Management Systems

In this appendix, we describe an outline of projects on
database and knowledge-base management systems in
the FGCS project. A brief history is shown in Figure 19
15. Among these projects, Mitsubishi Electric Corp. has
cooperated in Kappa-I, Kappa-II, Kappa-P, DO-l, CIL,
and QUIXOTE projects, Oki Electric Industry Co., Ltd.
has cooperated in PHI (DO-c/» and QUIXOTE projects,
and Hitachi, Ltd. has cooperated in ETA (DO-7J) and
QUIXOTE projects.

a. Kappa Projects

In order to provide database facilities for knowledge
information processing systems, a Kappa 16 project be
gun in September, 1985 (near the beginning of the
intermediate stage of the FGCS project). The first tar
get was to build a database wi th electronic dictionar
ies including concept taxonomy for natural language
processing systems and a database for mathematical
knowledge for a proof checking system called CAP-LA.
The former database was particularly important: each
dictionary has a few hundred thousands entries, each
of which has a complex data structure. We consid
ered that the normal relational model could not cope
with such data and decided to adopt a nested rela
tional model. Furthermore, we decided to add a new
type term for handling mathematical knowledge. The
DBMS had to be written in ESP and work on PSI ma
chines and under the SIMPOS operating system. As
we were afraid of whether the system in ESP would
work efficiently or not, we decided on the semantics of
a nested relation and started to develop a prototype
system called Kappa-I. The system, consisting of 60
thousands lines in ESP, was completed in the spring
of 1987 and was shown to work efficiently for a large
amount of dictionary data. The project was completed
in August, 1987 after necessary measurement of the
processing performance.

After we obtained the prospect of efficient DBMS
on PSI machines, we started the next project, Kappa
II[Yokota et al. 1988J in April, 1987, which aims at a
practical DBMS based on the nested relational model.
Besides the objective of more efficient performance
than Kappa-I, several improvements were planned: a
main memory database facility, extended relational

15 At the initial stage of the FGCS project, there were other
projects for databases and knowledge-based: Delta and Kaiser,
however these were used for targets other than databases and
know ledge- bases.

16 A term Kappa stands for know/edge application oriented
gdvanced database management system.

algebra, user-definable command facility, and user
friendly window interface. The system, consisting of
180 thousand lines in ESP, works 10 times more effi
ciently in PSI-II machines than Kappa-I does in PSI-I.
The project was over in March, 1989 and the system
was widely released, not only for domestic organiza
tions but also for foreign ones, and mainly for genetic
information processing.

To handle larger amounts of data, a parallel
DBMS project called Kappa-P[Kawamura et al. 1992J
was started in February, 1989. The system is written
in KLl and works under an environment of PIM ma
chines and the PIMOS operating system. As each local
DBMS of Kappa-P works on a single processor with
almost the same efficiency as Kappa-II, the system is
expected to work on PIM more efficiently than Kappa
II, although their environments are different.

b. Deductive Database Projects

There were three projects for deductive databases.
First, in parallel with the development of Kappa,

we started a deductive database project called CRL
(complex record language) [Yokota 1988], which is a
logic programming language newly designed for treat
ing nested relations.

CRL is based on a subclass of complex objects con
structed by set and tuple constructors and with a mod
ule concept. The project started in the summer of 1988
and the system, called DO-l, was completed in Novem
ber, 1989. The system works on Kappa-II. The query
processing strategy is based on methods of generalized
magic sets and semi-naive evaluation. In it, rule inheri
tance among modules based on submodule relations are
dynamically evaluated.

Secondly, we started a project called PHI
[Haniuda et al. 1991] in the beginning of the interme
diate stage (April, 1985). This aimed at more efficient
query processing in traditional deductive databases
than other systems. The strategy is based on three
kinds of query transformation called Horn clause trans
formation (HCT)[Miyazaki et al. 1989J: HCT/P exe
cutes partial evaluation or unfolding, HCT IS propa
gates binding information without rule transformation,
and HCT/R transforms a set of rules in order to re
strict the search space and adds related new rules. The
HCT/R corresponds to the generalized magic set strat
egy. By combining these strategies, PHI aims at more
efficient query processing. The consequent project is
called DO-c/>, in which we aim at a deductive mecha
nism for complex objects.

Thirdly, we started a project called ETA in April,
1988, which aimed at knowledge-base systems based on
knowledge representation such as semantic networks.
One year later, the project turned towards extensions
of deductive databases and was called DO-7J.

III

~~1~9~8~5~+1~1~9~8~6~~~1~9~8~7 __ ~~1~9~8~8~+-~19~8~9~~~1~9~9~O __ ~~1~9~9~1~+-~1~92

(Kappa-r)~---..---....

~------------------~-r--~
'--~~-./

(PHI)r----------------~~ __ ~
~--------_H~~--~

elL QuIXOTE

EB
(Parallel) KIPS

(Natural Language, Mathematical Knowledge,
Biological Information, Legal Precedents, ...)

Figure 19: Brief History of Projects on Database and Knowledge-Base Management Systems

"DO" in the above projects stands for deductive and
object-oriented databases and is shown to adopt a con
cept of DOODs [Yokota and Nishio 1989] as its com
mon framework.

c. elL Project

A language called GIL (complex indeterminates lan
guage) was proposed in April, 1985 [Mukai 1988]. The
language aimed at semantic representation in natural
language processing and was used not only in the dis
course understanding system called DUALS, but also
for representing various linguistic information. The im
plementation of CIL was improved several times and
CIL was released to many researchers in natural lan
guage processing. The language is a kind of constraint
logic programming and closely relates to situation the
ory and semantics. The language is based on partially
specified terms, each of which is built by a tuple con
structor. A set constructor was introduced into par
tia.lly specified terms in another language cu-Prolog, as
mentioned in Section 5.1.

d. QuIXOTE Project

We tried to extend CRL not only for nested rela
tions but a.lso for DOODs, a.nd to extend CIL for
more efficient representation, such as the disjunctive
feature structure. After these efforts, we proposed
two new languages: Jllan, as an extension of CRL,
and QUINT, as an extension of CIL. While designing
their specifications, we found many similarities between
Jllan and QUINT, and between concepts in databases
and natural language processing, and decided to in
tegrate these languages. The integrated language is
QUIxoTf;[Yasukawa et ai. 1992] (with Spanish pronun-

ciation) 17. As the result of integration, QUIXOTE

has various features, as mentioned in this paper. The
QUIXOTE project was started in August, 1990. The first
version of QUIXOTE was released to restricted users in
December, 1991, and the second version was released
for more applications at the end of March, 1992. Both
versions are written in KLI and work on parallel infer
ence machines.

e. Working Groups on DOOD and
STASS

At the end of 1987, we started to consider integra
tion of logic and object-orientation concepts in the
database area. After discussions with many researchers,
we formed a working group for DOOD and started to
prepare a new international conference on deductive
and object-oriented databases 18. The working group
had four sub-working-groups in 1990: for database pro
gramming languages (DBPL), deductive databases and
artificial intelligence (DDB&AI), extended term repre
sentation (ETR), and biological databases (BioDB). In
1991, the working group was divided into intelligent
databases (IDB) and next generation databases (NDB).
In their periodic meetings 19, we discussed not only
problems of DOOD but also directions and problems

l70ur naming convention follows the DON series, such as
Don Juan and Don Quixote, where DON stands for "Deductive
Object-Oriented Nucleus".

l8Most of the preparation up until the first international
conference (DOOD89) was continued by Professor S. Nishio of
Osaka University.

19Their chairpersons are Yuzuru Tanaka of Hokkaido U. for
DOOD, Katsumi Tanaka of Kobe U. for DBPL, Chiaki Sakama
of ASTEM for DDB&AI and IDB, Shojiro Nishio of Osaka U.
for ETR, Akihiko Konagaya of NEC for BioDB, and Masatoshi
Yoshikawa of Kyoto Sangyo U. for NDB.

112

of next generation databases. These discussions con
tributed greatly to our DOOD system.

From another point of view, we formed a working
group (STS) 20 for situation theory and situation se
mantics in 1990. This also contributed to strengthening
other aspects of QUIXOTe and its applications.

20The chairperson is Hozumi Tanaka of Tokyo Institute of
Technology.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 113

CONSTRAINT LOGIC PROGRAMMING SYSTEM

CAL, (iDCC AND THEIR CONSTRAINT SOLVERS-

Akira Aiba and Ryuzo Hasegawa
Fourth Research Laboratory

Institute for New Generation Computer Technology
4-28, Mita l-chorne, Minato-ku, Tokyo 108, Japan

{aiba, hasegawa}@icot.or.jp

Abstract

This paper describes constraint logic programming lan
guages, CAL (Contrainte Avec Logique) and GDCC
(Guarded Definite Clauses with Constraints), developed
at lCOT.

CAL is a sequential constraint logic programming lan
guage with algebraic, Boolean, set, and linear constraint
solvers. GDCC is a parallel constraint logic programm
ing language with algebraic, Boolean, linear, and integer
parallel constraint solvers.

Since the algebraic constraint solver utilizes the Buch
berger algorithm, the solver may return answer con
straints including univariate nonlinear equations. The
algebraic solvers of both CAL and GDCC have the func
tions to approximate the real roots of univariate equa
tions to obtain all possible values of each variable. That
is, this function gives us the situation in which a cer
tain variable has more than one value. To deal with this
situation, CAL has a multiple environment handler, and
GDCC has a block structure.

We wrote several application programs in GDCC to
show the feasibility of the constraint logic programming
language.

1 Introduction

The Fifth Generation Computer System (FGCS) project
is a Japanese national project that started in 1982. The
aim of the project is to research and develop new com
puter technologies for knowledge and symbol processing
parallel computers.

The FGCS prototype system has three layers: the pro
totype hardware system, the basic software system, and
the knowledge programming environment. Parallel appli
cation software has been developed for these. The con
straint logic programming system is one of the systems
that form, together with the knowledge base construction
and the programming environment, the knowledge pro
gramming environment. In this paper, we describe the
overall research results of constraint logic programming

systems in lCOT.
The programming paradigm of constraint logic pro

gramming (CLP) was proposed by A. Colmerauer
[Colmerauer 1987] and J. Jaffar and J-L. Lassez [Jaffar
and Lassez 1987] as an extension of logic programming
by extending its computation domain. Jaffar and Lassez
showed that CLP possesses logical, functional, and opera
tional semantics which coincide with each other, in a way
similar to logic programming [van Emden and Kowalski
1976].

In 1986, we began to research and develop high-level
programming languages suitable for problem solving to
achieve our final goal, that is, developing efficient and
powerful parallel CLP languages on our parallel machine.

The descriptive power of a CLP language is strongly
depend on its constraint solver, because a constraint
solver determines the domain of problems which can
be handled by the CLP language. Almost all existing
CLP languages such as Prolog III [Colmerauer 1987] and
CLP(n) [Jaffar and Lassez 1987] has a constraint solver
for linear equations and linear inequalities.

Unlike the other CLP languages, we focused on nonlin
ear algebraic equation constraints to deal with problems
which are described in terms of nonlinear equations such
as handling robot problem. For the purpose, we selected
the Buchberger algorithm for a constraint solver of our
languages.

Besides of nonlinear algebraic equations, we were also
interested in writing Boolean constraints, set constraints,
linear constraints, and hierarchical constraints in our
framework. For Boolean constraints, we modify the
Buchberger algorithm to be able to handle Boolean
constraints, and later, we developed the algorithm for
Boolean constraints based on the Boolean unification.
For set constraints, we expand the algorithm for Boolean
constraints based on the Buchberger algorithm. We also
implemented the simplex method to deal with linear
equations and linear inequalities same as the other CLP
languages. Furthermore, we tried to handle hierarchical
constraints in our framework.

We developed two CLP language processors, first we
implemented a language processor for sequential CLP

114

language named CAL (Contrainte A vee Logique) on se
quential inference machine PSI, and later, we imple-

. mented a language processor for parallel CLP language
named GDCC (Guarded Definite Clauses with Con
straints), based on our experiments on extending CAL
processor by introducing various functions.

In Section 2, we briefly review CLP, and in Section 3,
we describe CAL. In Section 4, we describe GDCC, and in
Section 5, we describe various constraint solvers and their
parallelization. In Section 6, we introduce application
programs written in our languages.

2 eLP and the role of the con
straint solver

CAL and GDCC belong to the family of CLP languages.
The concept of CLP stems from the common desire for
easy programming. In fact, as claimed in the literature
[Jaffar and Lassez 1987, Sakai and Aiba 1989], the CLP
is a scheme of programming languages with the following
outstanding features:

• Natural declarative semantics.

• Clear operational semantics that coincide with the
declarative semantics.

Therefore, it gives the user a paradigm of declarative
(and thus, hopefully easy) programming and gives the
machine an effective mechanism for execution that coin
cide with the user's declaration.

For example, in Prolog (the most typical instance of
CLP), we can read and write programs in declarative
style like ". " if ... and ... ". The system execute these by
a series of operations with unification as its basic mech
amsm.

Almost every CLP language has a similar programm
ing style and a mechanism which plays the similar role to
the unification mechanism in Prolog, and the execution
of programs depends on the mechanism heavily. We call
such a mechanism the constraint solver of the language.

Usually, a CLP language aims at a particular field of
problems and its solver has special knowledge to solve
the problems. In the case of Prolog, the problems are
syntactic equalities between terms, that is, the unifica
tion. On the other hand, CAL and GDCC are tuned to
deal with the following:

• algebraic equations

• Boolean equations

• set inclusion and membership

• linear inequalities

These relations are called constraints.
In the CLP paradigm, a problem is expressed as con

straints on the objects in the problem. Therefore, an

often cited benefit of CLP is that "One does not need to
write an implementation but a specification." In other
words, all that a programmer should write in CLP is
constraints between the objects, but not how to find ob
jects satisfying the relation. To be more precise, such
constraints are described in the form of a logical combi
nation of formulas each of which expresses a basic unit
of the relation.

Though there are many others, the above benefit surely
expresses an important feature of CLP. Building an equa
tion is usually easier than solving it. Similarly, one may
be able to write down the relation between the objects
without knowing the method to find the appropriate val
ues of obJects which satisfy the relation.

An ideal CLP system should allow a programmer to
write any combination of any well-formed formulas. The
logic programming paradigm gives us a rich framework
for handling logical combinations of constraints. How
ever, we still need a powerful and flexible constraint
solver to handle each constraint. To discuss the func
tion of the constraint solver from a theoretical point of
view, the declarative semantics of CLP [Sakai and Aiba
1989] gives us several criteria. Assume that constraints
are given in the form of their conjunction. Then, the
following are the criteria.

(1) Can the solver decide whether a given constraint is
satisfiable?

(2) Given satisfiable constraints, is there any way for the
solver to express all the solutions in simplified form?

Prolog's constraint solver, the unification algorithm,
answers these criteria affirmatively and so do the solvers
in CAL and GDCC. In fact, they satisfy the following
stronger requirements almost perfectly:

(3) Given a set of constraints, can the solver compute
the simplest form (called the canonical form of the
constraints) in a certain sense?

However, these criteria may not be sufficient from an
applicational point of view. For example, we may some
times be asked the following:

(4) Given satisfiable constraints, can the solver find at
least one concrete solution?

Finding a concrete solution is a question usually in
dependent of the above and may be proved theoretically
impossible to answer. Therefore, we may need an ap
proximate solution to answer this partly. As discussed
later, we incorporated many of the constraint solvers and
functions into CAL and GDCC.

Another important feature of constraint solvers is their
incrementality. An incremental solver can be given a con
straint successively. It reduces each constraint as simple

as possible by the current set of constraints. Thus, an in
cremental solver finds the unsatisfiabilityof a set of con
straints as early as possible and makes Prolog-type back
tracking mechanism efficient. Fortunately, the solvers of
CAL and GDCC are fully incremental like unification.

3 CAL - Sequential CLP Lan
guage

This section summarizes the syntax of CAL. For a de
tailed description of CAL syntax, refer to the CAL User's
Manual [CAL Manual].

3.1 CAL language

The syntax of CAL is similar to that of Prolog, except
for its constraints. A CAL program features two types of
variables: logical variables denoted by a sequence of al
phanumeric characters starting with an uppercase letter
(as with Prolog variables), and constraint variables de
noted by a sequence of alphanumeric characters starting
with a lowercase letter. Constraint variables are global
variables, while logical variables are local variables within
the clauses in which they occur. This distinction is in
troduced to simplify incremental querying.

The following is an example CAL program that fea
tures algebraic constraints. This program derives a new
property for a triangle, the relation which holds among
the lengths of the three edges and the surface area, from
the three known properties.

:- public triangle/4.

surface_area(H,L,S) :- alg:L*H=2*S.
right(A,B,C) :- alg:A-2+B-2=C-2.
triangle(A,B,C,S) :-

alg:C=CA+CB,
right (CA,H,A),
right(CB,H,B),
surface_area(H,C,S) .

The first clause, "surface_area", expresses the for
mula for computing the surface area S from the height
H and the baseline length L. The second expresses the
Pythagorean theorem for a right-angled triangle. The
third asserts that every triangle can be divided into two
right-angled triangles. (See Figure 1.).

In the following query, heron, shows the name of the
file in which the CAL source program is defined.

?- alg:pre(s,10), heron:triangle(a,b,c,s).

This query asks for the general relationship between
the lengths of the three edges and the surface area.

CB CA
~.---------------C----------~~~

Figure 1: The third clause

115

The invocation of alg: pre (s , 10) defines the prece
dence of the variable s to be 10. Since the algebraic con
straint solver utilizes the Buchberger algorithm, order
ing among monomials is essential for computation. This
command changes the precedence of variables. Initially,
the precedences of all variables are assigned to O. There
fore, in this case, the precedence of variable s is raised.

To this query, the system responds with the following
equation 1:

s-2 = -1/16*b-4+1/8*a-2*b-2-1/16*a-4
+1/8*c-2*b-2+1/8*c-2*a-2-1/16*c-4.

This equation is, actually, a developed form of Heron's
formula.

'When we call the query

?- heron:triangle(3,4,5,s).

the CAL system returns the following answer:

If a variable has finitely many values in all its solutions,
there is a way of obtaining a univariate equation with the
variable in the Grabner base. Therefore, if we can add
a function that enables us to compute the approximate
values of the solutions of univariate equations, we can
approximate all possible value of the variable.

For this purpose, we implemented a method of approx
imating the real roots of univariate polynomials. In CAL,
all real roots of univariate polynomials are isolated by ob
taining a set of intervals, each of which contains one real
root. Then, each isolated real root is approximated by
the given precision.

For application programs, we wanted to use approxi
mate values to simplify other constraints. The general
method to do this is to input equations of variables and
their approximate values as constraints. For this pur
pose, we had to modify the original algorithm to compute
Grabner bases to accept approximate values.

vVhen we call the query

IThis equation represents the expression

116

User I Translator I Program, I
Query,

Translated Command Code

Inference Engine

Constraints ~ Canno nical Form

Constraint Solvers

Figure 2: Overall construction of CAL language proces
sor

?- alg:set_out_mode(float),
alg:set_error1(1!1000000),
alg:set_error2(1!100000000),
heron:triangle(3,4,5,s),
alg:get_result(eq,1,nonlin,R) ,
alg:find(R,S),
alg:constr(S).

we can obtain the answers s = -6.000000099 and s =
6.000000099, successively by backtrack.

The first line of the above, alg: set_out...mode, sets the
output mode to float. Without this, approximate values
are output as fractions.

The second line of the above, alg: seLerror1, spec
ifies the precision used to compare coefficients in the
computation of the Grabner base. The third line,
set_error2, specifies the precision used to approximate
real roots by the bisection method.

The essence of the above query is invocations of
alg:get_result/4, and alg:find/2. The fifth line,
alg : get_result, selects appropriate equations from the
Grabner base. In this case, univariate (specified by 1)
non-linear (specified by nonlin) equations (specified by
eq) are selected and unified to a variable R.

R is then passed to alg: find to approximate the real
roots of equations in R. Such real roots are obtained in
the variable S.

Then, S is again input as the constraint to reduce other
constraints in the Grabner base.

3.2 Configuration of CAL system

In this section, we will introduce the overall structure of
the CAL system.

The CAL language processor consists of a translator,
a inference engine, and constraint solvers. These subsys
tems are combined as shown in Figure 2.

The translator receives input from a user, and trans
lates it into ESP code. Thus, a CAL source program

1· alg:pre(s.1 0). heron:triangle(3. 4.5. s).
alg:geuesull(eq. 1. nonlin. R).alg:fmd(R,Sol). alg:con.rlr(Sol).

R-[s"2-36].
Sol-[s-real(·. [935.2054.5183.8764.3451. [3488.342.7523.6460.57])]

- Is - -6.000000099] .
• - ·6.000000099

?

R-[s"2-36].
Sol-[5-re81(+. [935. 2054. 5183. 8764. 345J. [3488. 342. 7523. 6460. 57J)J

- Is - 6.000000099] .
• - 6.000000099

Figure 3: CAL system windows

is translated into the corresponding ESP program by the
translator, which is executed by the inference engine. An
appropriate constraint solver is invoked every time the in
ference engine finds a constraint during execution.

The constraint solver adds the newly obtained con
straint to the set of current constraints, and computes
the canonical form of the new set.

At present, CAL offers the five constraint solvers dis
cussed in Section 1.

3.3 Context

. To deal with a situation in which a variable has more
than one value, as in the above example, we introduced
context and context tree.

A context is a set of constraints. A new context is
created whenever the set is changed. In CAL, contexts
are represented as nodes of a context tree. The root of
a context tree is called the root context. The user is
supposed to be in a certain context called the current
context.

A context tree is changed in the following cases:

1. Goal execution:
A new context is created as a child-node of the cur
rent context in the context tree.

2. Creation of a new set of constraints by requiring
other answers for a goal:
A new context is created as a sibling node of the
current context in the context tree.

3. Changing the precedence:
A new context is created as a child-node of the cur
rent context in the context tree.

In all cases, the newly created node represents the new
set of constraints and becomes the current context.

Several commands are provided to manipulate the con
text tree: These include a command to display the con
tents of a context, a command to set a context as the

current context, and a command to delete the sub-tree
of contexts from the context tree.

Figure 3 shows an example of the CAL processor win
dow.

4 GDCC Parallel CLP Pro-
gramming Language

There are two major levels to parallelizing CLP systems.
One is the execution of the Inference Engines and the
Constraint Solvers in p~ra.llel. The other is the execu
tion of a Constraint Solvers in parallel. There are sev
eral works on the parallelization of CLP systems: a pro
posal of ALPS [Maher 1987] introducing constraints into
committed-choice language, a report of some preliminary
experiments on integrating constraints into the PEPSys
parallel logic system [Van Hentenryck 1989], and a frame
work of concurrent constraint (cc) language for integrat
ing constraint programming with concurrent logic pro
gramming languages [Saraswat 1989].

The cc programming language paradigm models com
putation as the interaction among multiple cooperating
agents through the exchange of query and assertion mes
sages into a central store as shown in Figure 4.

In Figure 4, query information to the central store is
represented as Ask and assertion information is repre
sented as Tell.

This paradigm is embedded in a guarded (conditional)
reduction system, where the guards contain the queries
and assertions. Control is achieved by requiring that the
queries in a guard are true (entailed), and that the as
sertions are consistent (satisfiable), with respect to the
current state of the store. Thus, this paradigm has high
affinity with KL1 [Ueda and Chikayama 1990], our basic
parallel language.

c;>
" "

yP
@ Query

Ask
True or False

,..--......... --~-....

... Tell
Add constrain@

Answer
constraint

Figure 4: The ee language schema

GDCC (Guarded Definite Clauses with Constraints),
which satisfies two level parallelism, is a parallel CLP

117

language introducing the framework of ee. It is imple
mented in KL1 and is currently running on the Multi
PSI machine. GDCC includes most of KL1, since KL1
built-in predicates and unification can be regarded as a
distinguished domain called HERBRAND [Saraswat 1989].

GDCC contains Store, a central database to save the
canonical forms of constraints. Whenever the system
meets an Ask or Tell constraint, the system sends it to
the proper solver. Ask constraints are only allowed pas
sive constraints which can be solved without changing
the content of the Store. While in the Tell part, con
straints which may change the Store can be written. In
the GDCC program, only Ask constraints can be written
in guards. This is similar to the KL1 guard in which
active unification is inhibited.

GDCC supports multiple plug-in constraint solvers so
that the user can easily specify a proper solver for a do
mam.

In this section, we briefly explain the language syntax
of GDCC and its computa.tion model. Then, the outline
of the system is described. For further information about
the implementation and the language specification, refer
to [Terasaki et al. 1992].

4.1 GDCC language

A clause in GDCC has the following syntax:

Head: - Ask I Tell, Goal.

where, Head is a head part of a clause, "I" is a commit
operator, Goal is a sequence of predicate invocations, Ask
denotes Ask-constraints and invocations of KL1 built-in
guard predicates, and Tell means Tell-constraints.

A clause is entailed if and only if Ask is reduced to
true. Any clause with guards which cannot be reduced to
either true or false is suspended. The body part, the right
hand side of the commit operator, is evaluated if and
only if Ask is entailed. Clauses whose guards are reduced
true are called candidate clauses. A GDCC program fails
when either all candidate clauses are rejected or there is
a failure in evaluating Tell or Goals.

The next program is pony _and_man written in GDCC:

pony_and_man(Heads,Legs,Ponies,Men)
alg# Heads= Ponies + Men,
alg# Legs= 4*Ponies + 2*Men.

true I

where, true is an Ask constraint which is always reduced
as true. In the body, equations which begin with alg# are
Tell constraints. alg# indicates that the constraints are
solved by the algebraic solver. In a body part, not only
Tell constraints but normal KL1 predicates can be writ
ten as well. Bi-directionality in evaluation of constraints,
an important characteristic of CLP, is not spoiled by this
limitation. For example, the query
?- pony_and_man(5,14,Ponies,Men).

will return Ponies=2, and Men=3, and the query

118

?- pony_and_man(Heads,Legs,2,3).
will return Heads=5, and Legs=14, same as in CAL.

4.2 GDCC system

The GDCC system consists of the compiler, the shell, the
interface and the constraint solvers. The compiler trans
lates a GDCC source program into KL1 code. The shell
translates queries and provides rudimentary debugging
facili ties. The debugging facilities comprise the standard
KL1 trace and spy functions, together with solver-level
event logging. The shell also provides limited support
for incremental querying. The interface interacts with a
GDCC program (object code), sends body constraints to
a solver and checks guard constraints using results from
a solver.

Query

Solve guard constraints

GDCC sonrce

Figure 5: System Configuration of GDCC

The GDCC system is shown in Figure 5. The com
ponents are concurrent processes. Specifically, a GDCC
program and the constraint solvers may execute in paral
lel, synchronizing only when, and to the extent, necessary
at the program's guard constraints. That is, program
execution proceeds by selecting a clause, and attempt
ing to solve the guards of all its clauses in parallel. If
one guard succeeds, the evaluation of the other guards
is abandoned, and execution of the body can begin. In
parallel with execution of the body goals by the inference
engine, any constraints occurring in the body are passed
to the constraint solver as they are being produced by the
inference engine. This style of cooperation is very loosely
synchronized and more declarative than sequential CLP.

4.3 Block

In order to apply GDCC to problems such as handling
robot design problem [Sato and Aiba 1991], there were
two major issues: handling multiple environments and
synchronizing the inference engine with the constraint
solvers. For instance, when the solution X 2 = 2 is de
rived from the algebraic solver, it must be solved in more
detail using a function to compute the approximate real

roots in univariate equations. There are two constraint
sets in this example, one includes X = v'2 and the other
includes X = -v'2. In the CAL system, the system
selects one constraint set from these two and solves it,
then, the other is computed by backtracking (i. e. , a
system forces a failure). In committed-choice language
GDCC, however, we cannot use backtracking to handle
multiple environments. A similar problem occurs when a
meta operation to constraint sets is required such as when
computing a maximum value with respect to a given ob
jective function. Before executing a meta operation, all
target constraints must be sent to the solver. In a se
quential CLP, this can be controlled when this descrip
tion is written in a program. While in GDCC, we need
another kind of mechanism to specify a synchronization
point, since the sequence of clauses in a program does
not relate to the execution sequence.

Introducing local constraint sets, however, which are
independent to the global ones, can eliminate these prob
lems. Multiple environments are realized by considering
each multiple local constraint as one context. An infer
ence engine and constraint solvers can be synchronized
after evaluating a local constraint set.

Therefore, we introduced a mechanism called block to
describe the scope of a constraint set. vVe can solve a
certain goal sequence with respect to a local constraint
set in a block. To encapsulate failure in a block, the
shoen mechanism of PIMOS [Chikayama et al. 1988] is
used.

-5 Constraint Solvers and Paral
lelization

In this section, constraint solvers for both CAL and
GDCC are briefly described. First, we describe the alge
braic constraint solver for both CAL and GDCC. Then,
we describe two Boolean constraint solvers - one is a
solver utilizing the modified Buchberger algorithm and
the other is a solver utilizing the incremental Boolean
elimination algorithm. The former is for both CAL and
GDCC, while the later is for CAL alone. Third, an inte
ger constraint solver for GDCC is described, and fourth,
a hierarchical constraint solver for CAL and GDCC is
described. In the next subsection,a set constraint solver
for CAL is described. And in the last subsection, a pre
Hminary consideration on efficiency improvement of the
algebraic constraint solver by applying dependency anal
ysis of constraints.

All constraint solvers for CAL are written in ESP, and
those for GDCC are written in KL1.

5.1 Algebraic Constraint Solver

The constraint domain of the algebraic solver is multi
variate (non-linear) algebraic equations. The Buchberger

algorithm [Buchberger 1985] is a method to solve non
linear algebraic equations which have been widely used
in computer algebra over the past years.

Recently, several attempts have been made to paral
lelize the Buchberger algorithm, with generally disap
pointing results in absolute performance [Ponder 1990,
Senechaud 1990, Siegl 1990], except in shared-memory
machines [Vidal 1990, Clarke et al. 1990]. 'liVe parallelize
the Buchberger algorithm while laying emphasis on abso
lute performance and incrementality rather than on. de
ceptive parallel speedup. We have implemented several
versions and continue to improve the algorithm.

In this section, we outline both the sequential version
and the parallel version of the Buchberger algorithm.

5.1.1 Grabner base and Buchberger algorithm

Without loss of generality, we can assume that all poly
nomial equations are in the form of p = O. Let E =
{PI = 0, ... ,pn = O} be a system of polynomial equations.
Buchberger introduced the notion of a Grabner base and
devised an algorithm to compute the basis of a given set
of polynomials. A rough sketch of the algorithm is as
follows (see [Buchberger 1985] for a precise definition).

Let a certain ordering among monomials and a system
of polynomials be gi ven. An equation can be considered a
rewrite rule which rewrites the greatest monomial in the
equation to the polynomial consisting of the remaining
monomials. For example, if the ordering is Z > X >
B > A, a polynomial equation, Z - X + B = A, can be
considered to be the rewrite rule, Z -t X -B+A. A pair
of rewrite rules LI -t RI and L2 -t R2, of which LI and
L2 are not mutually prime, is called a critical pair, since
the least common multiple of their left-hand sides can
be rewritten in two different ways. The S-polynomial of
such a pair is defined as:

where lcm(L I , L2) represents the least common multi
plier of LI and L2 •

If further rewriting does not succeed in rewriting the
S-polynomial of a cri tical pair to zero, the pair is said to
be divergent and the S-polynomial is added to the sys
tem of equations. By repeating this procedure, we can
eventually obtain a confluent rewriting system. The con
fluent rewriting system thus obtained is called a Grabner
base of the original system of equations.

If a Grabner base does not have two rules, one of which
rewrites the other, the Grabner base is called reduced.
The reduced Grabner base can be considered a canonical
form of the given constraint set since it is unique with
respect to the given ordering of monomials. If all the
solutions of a equation f = ° are included in the solution
set of E, then f is rewritten to zero by the Grabner
base of E. On the contrary, if a set of polynomials E

119

has no solution, then the Grabner base of E includes
"1". Therefore, this algorithm has good properties for
deciding the satisfiability of a given constraint set.

5.1.2 Parallel Algorithm

The coarse-grained parallelism in the Buchberger algo
rithm, suitable for the distributed memory machine, is
the parallel rewriting of a set of polynomials. However,
since the convergence rate of the Buchberger algorithm
is very sensitive to the order in which polynomials are
converted into rules, implementation must carefully se
lect small polynomials at an early stage. We have imple
mented solvers in three different architectures; namely,
a pipeline, a distributed architecture, and a master-slave
architecture. We briefly mention here the master-slave
architecture since this solver has comparatively good per
formance.

Figure 6 shows the architecture.

New rule
(global minimum)

Load balance info.

Figure 6: Architecture of master-slave type solver

The set of polynomials E is physically partitioned with
each slave taking a different part. The initial rule set of
G(E) is duplic?-ted so that all slaves use the same rule
set. New polynomials are distributed to the slaves by the
master. The outline of the reduction cycle is as follows.

Each slave rewrites its own polynomials by the G(E),
selects the local minimum polynomial from them, and
sends its leading power product to the master. The mas
ter processor waits for reports from all the slaves, and se
lects the global minimum power products. The minimum
polynomial can be decided only after all slaves finish re
porting to the master. A polynomial, however, which is
not the minimum can be decided quickly. Thus, the not
minimum message is sent to slaves as soon as possible,
and the processors that receive the not-minimum mes
sage reduce polynomials by the old rule set while waiting
for a new rule. While the slave is receiving the minimum
message, the slave converts the polynomial into a new
rule and sends it to the master. The master sends the
new rule to all slaves except the owner. If more than one
candidate have equal power products, then all of these

120

candidates are converted to rules by slaves and they go
to final selection at the master.

Table 1 shows the results of the benchmark problems.
The problems are adopted from [Boege et al. 1986, Back
elin and Froberg 1991]. Refer to [Terasaki et ai. 1992]
for further details.

Table 1: Timing and speedup of the master-slave
arch.(unit:sec)

Processors
Problems 1 2 4 8 16
Katsura-4 8.90 7.00 5.83 6.53 9.26

1 1.27 1.53 1.36 0.96
Katsura-5 86.74 57.81 39.88 31.89 36.00

1 1.50 2.18 2.72 2.41
Cyc.5-roots 27.58 21.08 19.27 19.16 25.20

1 1.31 1.43 1.44 1.10
Cyc.6-roots 1430.18 863.62 433.73 333.25 323.38

1 1.66 3.30 4.29 4.42

5.2 Boolean Constraint Solver

There are several algorithms that solve Boolean con
straints, but we do not know so many that we can get
the canonical form of constraints, one that can calcu
late solu tions incrementally and that uses no parameter
variables. These criteria are important for using the al
gorithm as a constraint solver, as we described in Section
2. First, we implemented the Boolean Buchberger algo
rithm [Sato and Sakai 1988] for the CAL system, then
we tried to parallelize it for the GDCC system. This
algorithm satisfies all of these criteria. Moreover, we de
veloped another sequential algorithm named Incremental
Boolean elimination, that also satisfies all these criteria,
and we implemented it for the CAL system.

5.2.1 Constraint Solver by Buchberger Algo
rithm

We first developed a Boolean constraint solver based on
the modified Buchberger algorithm called the Boolean
Buchberger algorithm [Sato and Sakai 1988, Aiba et al.
1988]. Unlike the Buchberger algorithm, it works on the
Boolean ring instead of on the field of complex numbers.
It calculates the canonical form of Boolean constraints
called the Boolean Grabner base. The constraint solver
first transforms formulas including some Boolean opera
tors such as inclusive-or (V) and! or not (.) to expres
sions on the Boolean ring before applying the algorithm.

We parallelized the Boolean Buchberger algorithm in
KL1. First we analyzed the execution of the Boolean
Buchberger algorithm on CAL for some examples, then
we found the large parts that may be worth parallelizing,
rewriting formulas by applying rules. We also tried to
find parts in the algorithm which can be parallelized by
analyzing the algorithm itself. Then, we decided to adopt
a master-slave parallel execution model.

In a master-slave model, one master processor plays
the role of the controller and the other slave processors
become the reducers. The controller manages Boolean
equations, updates the temporary Grabner bases (GB)
stored in all slaves, makes S-polynomials and self-critical
pair polynomials, and distributes equations to the reduc
ers. Each reducer has a copy of GB and reduces equa
tions which come from the controller by GB, and returns
non-zero reduced equations to the controller. When the
controller becomes idle after distributing equations, the
controller plays the role of a reducer during the process
of reduction.

For the 6-queens problem, the speedup ratio of 16 pro
cessors to a single processor is 2.96. Because the parallel
execution part of the problem is 77.7% of whole execu
tion, the maximum speedup ratio is 4.48 in our model.
The difference is due to the task distribution overhead,
the update of GB in each reducer, and the imbalance of
distributed tasks.

Then, we improved our implementation so as not to
make redundant critical pairs. This improvement causes
the ratio of parallel executable parts to decrease, so the
improved version becomes faster than the origInal ver
sion, but the speedup ratio of 16 processors to a single
processor drop to 2.28.

For more details on the parallel algorithm and results,
refer to [Terasaki et al. 1992].

5.2.2 Constraint Solver by Incremental Boolean
Elimination Algorithm

Boolean unification and SL-resolution are well known
as Boolean constraint solving algorithms other than the
Boolean Buchberger algorithm. Boolean unification is
used in CHIP [Dincbas et ai. 1988] and SL-resolution
is used in Prolog III [Colmerauer 1987]. Boolean uni
fication itself is an efficient method. It becomes even
more efficient using the binary decision diagrams (BDD)
as data structures to represent Boolean formulas. Be
cause the solutions by Boolean unification include extra
variables introduced during execution, it cannot calcu
late any canonical form of the given constraints if we
execute it incrementally. For this reason, we developed
a new algorithm, Incremental Boolean elimination. As
with the Boolean unification, this algorithm is based on
Boole's elimination, but it introduces no extra variables,
and it can calculate a canonical form of the given Boolean
constraints.

We denote Boolean variables by x, y, z, ... , and
Boolean polynomials by A, B, C,. ... We represent all
Boolean formulas only by logical connectives and (x) and
exclusive-or (+). For example, we can represent Boolean
formulas F!\ G, F V G and -,F by F x G, F x G + F + G
and F + 1. We use the expression Fx=G to represent the
formula obtained by substituting all occurrences of vari
able x in formula F with formula G. We omit x symbols

as usual when there is no confusion. We assume that
there is a total order over variables.

We define the normal Boolean polynomials recursively
as follows.

1. The two constants 0, and 1 are normal.

2. If two normal Boolean polynomials A and B consist
of only variables smaller than x, then Ax + B is
normal, and we denote it by Ax EB B. We call A the
coefficient of x.

If variable x is at a maximum in formula F, then we can
transformF to the normal formula (Fx=o+Fx=l)XEBFx=o.
Hence we assume that all polynomials are normal.

Boole's elimination says that if a Boolean formula F
is 0, then Fx=o x Fx=l (= G) is also 0. Because G does
not include x, if F includes x, then G includes fewer
variables than F. Similarly we can get polynomials with
fewer variables gradually by Boole's eliminations.

Boolean unification unifies x with (Fx=o + Fx=l + 1)u +
Fx=o after eliminating variable x from formula F, where
u is a free extra variable. This unification means the
substitution x with (Fx=o+Fx=l +1)u+Fx=o, when a new
Boolean constraint with variable x is given, the result
of the substitution contains u instead of x. Therefore,
Boolean unification unifies u with a formula with another
extra variable.

Incremental Boolean elimination applies the following
reduction to every formula instead of transforming F = °
to x = (Fx=o + Fx=l + 1)u + Fx=o and unifying x with
(Fx=o + Fx=l + l)u + Fx=o. That is why the Incremental
Boolean elimination needs no extra variables.

Reduction A formula Cx (C ;j. 1) is reduced by the
formula Ax EB B = ° shown below. This reductlon tries
to reduce the coefficient of x to 1 if possible, otherwise it
tries to reduce it to the sma.llest formula possible.

Cx -1 X + BC + B
Cx -1 (A + 1)Cx + BC

(AC + A + C == 1)
(otherwise)

When a new Boolean constraint is given, the following
operation is executed, since Incremental Boolean elimi
nation does not execute unification.

Merge Operation Let Cx EB D = ° be a new con
straint, and suppose that we have a constraint AxEBB =
0. Then we make the merged constraint (AC + A + C)x EB
(BD + B + D) = ° the new solution. If the normal form
of AC D + BC + CD + D is not 0, we successively apply
the merge operation to it.

This operation is an expansion of Boole's elimination.
That is, if we have no constraint yet, we can consider A
and B as O. In this case, the merge operation is the same
as Boole's elimination.

121

Example Consider the following constraints. Exactly
one of five variables a, b, c, d, e (a < b < c < d < e) is l.

a 1\ b = 0, a 1\ c = 0, a 1\ d = 0, a 1\ e = 0, b 1\ c = 0,
b 1\ d = 0, b 1\ e = 0, c 1\ d = 0, c 1\ e = 0, d 1\ e = 0,
aVbVcVdVe=1

By Incremental Boolean elimination, we can obtain the
following canonical solution.

e

(c+b+a)xd

(b+a)xc

a x b

d+c+b+a+1

°
° °

The solution can be interpreted as follows. Because the
solution does not have an equation of the form A x a = B,
variable a is free. Because a x b = 0, if a = 1 then
the variable b is 0. Otherwise b is free. The discussion
continues and, finally, because e = d + c + b + a + 1, if a,
b, c, d are all 0, then variable e is 1. Otherwise e. is 0.

By assignment of ° or 1 to all variables in increasing
order of < under a solution by Boolean Incremental elim
ination, we can easily obtain any assignments that satisfy
the given constraints. Thus, by introducing an adequate
order to variables, we can obtain a favorite enumeration
of assignments satisfy the given constraints.

5.3 Integer Linear Constraint Solver

The constraint solver for the integer linear domain checks
the consistency of the given equalities and inequalities of
the rational coefficients, and, furthermore, gives the max
imum or minimum values of the objective linear func
tion under these constraint conditions. The purpose of
this constraint solver is to provide an efficient constraint
solver for the integer optimization domain by achieving
a computation speedup incorporating pa.rallel execution
into the search process.

The integer linea.r solver utilizes the rational linear
solver (parallellinea.r constraint solver) for the optimiza
tion procedure to obtain an evaluation of relaxed linear
problems created in the course of its solution. A rational
linear solver is realized by the simplex algorithm. We im
plemented the integer linear constraint solver for GDCC.

5.3.1 Integer Linear Programming and Branch
and Bound Method

In the following, we discuss a parallel search method
employed in this integer linear constraint solver. The
problem we are addressing is a mixed integer programm
ing problem, namely, to find the maximum or minimum
value of a given linear function under the integer linear
constraints.

The problem can be defined as follows: The problem is
to minimize the following objective function on variables

122

Xj which run on real numbers, and variables Yj which run
on integers:

n m

Z = L:Pi Xi + L:qi Yi

i=l i=l

under the linear constraint conditions:

where

and

n m

L: aij Xi + L: bij Yi 2: ej, for j = 1, ... ,1,
i=l i=l

n m

L:CijXi+ L:dijYi=/j, forj= 1, ... ,k,
i=l i=l

Xi E R, and Xi 2: 0, for i = 1, ... , n

Yi E Z, where li:S Yi :SUi,

Ij,Uj EZ, fori=I, ... ,m

The method we use is the Branch-and-Bound algo
rithm. Our algorithm checks in the first place the solu
tion of the original problem without requiring variables
Yi in the above to take integer value. We call this prob
lem a continuously relaxed problem. If the continuously
relaxed problem does not have an integer solution, then
we proceed by dividing the original problem into two sub
problems successively, producing a tree structured search
space.

Continuously relaxed problems can be solved by the
simplex algorithm, and if the original integer variables
have exact integer values, then it yields the solution to
the integer problem. Otherwise, we select an integer vari
able Ys which takes a non-integer value Ys for the solution
of continuously relaxed problems, and imposes two differ
ent interval constraints derived from neighboring integers
of the value Ys, Is -:5. Ys -:5. [Y3] and [Y3] + 1 -:5. Ys -:5. Us to the
already existing constraints, and obtains two child prob
lems (See Figure 7). Continuing this procedure, which
is called branching, we go on dividing the search space
to produce more constrained sub-problems. Eventually
this process leads to a sub-problem with the continuous
solution which is also the integer solution of the problem.
We can select the best integer solution from among those
found in the process.

While the above branching process only enumerates in
teger solutions, if we have a measure to guarantee that a
sub-problem cannot have a better solution compared to
the already obtained integer solution in terms of the op
timum value of the objective function, then we can skip
that su b-problem and only need to search the rest of the
nodes. Continuously relaxed problems give a measure for
this, since these relaxed problems always have better op
timum values for the objective function than the original
integer problems. Sub-problems whose continuously re
laxed problems have no better optimum than the integer

I: -:5. Ys -:5. [y:]
y:' = [y:]

[Y;]+l-:5.ys -:5. u ;
y:/1 = [y:]+l

'Figure 7: Branching of Nodes

solution obtained already cannot give a better optimum
value, which means it is unnecessary to search further
(bounding pro ced ure) .

We call these sub-problems obtained through the
branching process search nodes.

The following two important factors decide the order in
which the sequential search process goes through nodes
in the search space:

1. The priorities of sub-problems(nodes) in deciding
the next node on which the branching process works.

2. Selection of a variable out of the integer variables
with which the search space is divided.

It is preferable that the above selections are done in
such a way that the actual nodes searched in the process
of finding the optimal form as small a part of the total
search space as possible. vVe adopted one of the best
heuristics of this type from operations research as a basis
of our parallel algorithm([Benichou et ai. 1971]).

5.3.2 Parallelization of Branch-and-Bound
Method

As a parallelization of the Branch-and-Bound algorithm,
we distribute search nodes created through the branching
process to different processors, and let these processors
work on their own sub-problems following a sequential
search algorithm. Each sequential search process com
municates with other processes to transmit information
on the most recently found solutions and on pruning sub
nodes, thus making the search proceed over a network of
processors. We adopted one of the best search heuristics
used in sequential algorithms. Heuristics are used for
controlling the schedule of the order of sub-nodes to be
searched, in order to reduce the number of nodes needed
to get to the final result. Therefore, it is important in de
signing parallel versions of search algorithms to balance
the distributed load among processors, and to communi
cate information for pruning as fast as possible between
these processors.

We considered a parallel algorithm design derived from
the above sequential algorithm to be implemented on the
distributed memory parallel machine Multi-PSI.

Our parallel algorithm exploits the independence of
many sub-processes created through the branching pro
cedure in the sequential algorithm and distributes these
processes to different processors (see Figure 8). Schedul
ing of sub-problems is done by the use of the priority
control facility provided from the KL1 language (See[Oki
et ai. 1989]). The incumbent solutions are transferred
between processors as global data to be shared so that
each processor can update the current incumbent solu
tion as soon as possible.

o
o
o

~o~

EJEJ EJ
Figure 8: Generation of Parallel Processes

5.3.3 Experimental Results

We implemented the above parallel algorithm in the KL1
language and experimented with the job-shop scheduling
problem as an example of mixed-integer problems. Be
low are the results of computation speedups for a "4 job
3 machine" problem and the total number of searched
nodes to get to the solution.

Table 2: Speedup of the Integer Linear Constraint Solver

processors 2 4 8
speedup 1.0 1.5 1.9 2.3
number of nodes 242 248 395 490

The above table shows the increase of the number of
searched nodes as the number of processors grows. This
is for one reason because of the speculative computa
tion inherent in this type of parallel algorithm. Another
reason is that the communication latency produces un
necessary computation which could have been avoided if
incumbent solutions are communicated instantaneously
from the other processor and the unnecessary nodes are
pruned.

123

It is in this way that we get the problem in parallel
programming of how to reduce the growth in size of the
total search space when multi-processors are used com
pared with that traversed on one processor using sequen
tial algorithms.

5.4 Hierarchical Constraint Solver

5.4.1 Soft Constraints and Constraint Hierar
chies

We have proposed a logical foundation of soft constraints
in [Satoh 1990] by using a meta-language which expresses
interpretation ordering. The idea of formalizing soft con
straints is as follows. Let hard constraints be represented
in first-order formulas. Then an interpretation which sat
isfies all of these first-order formulas can be regarded as
a possible solution and soft constraints can be regarded
as an order over those interpretations because soft con
straints represent criteria applying to possible solutions
for choosing the most preferred solutions. We use a meta
language which represents a preference order directly.
This meta-language can be translated into a second-order
formula to provide a syntactical definition of the most
preferred solutions.

Although this framework is rigorous and declarative,
it is not computable in general because it is defined by a
second-order formula. Therefore, we have to restrict the
class of constraints so that these constraints are com
putable.

Therefore, we introduce the following restriction to
make the framework computable.

1. We fix the considered domain so that interpretations
of domain-dependent relations are fixed.

2. Soft and hard constraints consist of domain
dependent relations only.

If we accept this restriction, the soft constraints can
be expressed in a first-order formula. Moreover, there
is a relationship between the above restricted class of
soft constraints and hierarchical CLP languages (HCLP
languages) [Borning et ai. 1989, Satoh and Aiba 1990b],
as shown in [Satoh and Aiba 1990a].

HCLP language is a language augmenting CLP lan
guage with labeled constraints. An HCLP program con
sists of rules of the form:

h : - bb ... ,bn

where h is a predicate, and bI , ... , bn are predicate in
vocations or constraints or labeled constraints. Labeled
constraints are of the form:

label C
where C is a constraint in which only domain-dependent
functional symbols can be functional symbols and label
is a label which expresses the strength of the constraint
C.

As shown in [Satoh and Aiba 1990a], we can calculate
the most preferable solutions by constraint hierarchies

124

in the HCLP language. Based on this correspondence,
we have implemented an algorithm for solving constraint
hierarchy on the PSI machine with the following features.

1. There are no redundant calls of the constraint solver
for the same combination of constraints since it cal
culates reduced constraints in a bottom-up manner.

2. If an inconsistent combination of constraints is found
by calling the constraint solver, it is registered as a
nogood and is used for detecting further contradic
tion. Any extension of the combination will not be
processed so as to avoid unnecessary combinations.

3. Inconsistency is detected without a call of the con
straint solver if a processed combination subsumes a
registered nogood.

In [Borning et al. 1989], Borning et al. give an algo
rithm for the solving constraint hierarchy. However, it
uses backtracking to get an alternative solution and so
may redundantly call the constraint solver for the same
combination of constraints.

Our implemented language is called CHAL (Contrainte
Hierarchiques avec Logique) [Satoh and Aiba 1990b], and
is an extension of CAL.

5.4.2 Parallel Solver for Constraint Hierarchies

The algorithms we have implemented on the PSI machine
have the following parallelism.

1. Since we construct a consistent constraint set in a
bottom-up manner, the check for consistency for
each independent constraint set can be done in par
allel.

2. We can check if a constraint set is included in no
goods in parallel for each independent constraint set.

3. There is parallelism inside a domain-dependent con
straint solver.

4. We can check for answer redundancy in parallel.

Among these parallelisms, the first one is the most
coarse and the most suitable for implementation on the
Multi-PSI machine. So, we exploit the first parallelism.
Then, features of the parallel algorithm become the fol
lowing.

1. Each processor constructs a maximal consistent con
straint set from a given constraint set in a bottom-up
manner in parallel. However, oncea constraint set is
given, there is no distribution of tasks. So, we make
idle processors require some task from busy proces
sors and if a busy processor can divide its task, then
it sends the task to the idle processor.

2. By pre-evaluation of a parallel algorithm, we found
that the nogood subsumption check and the redun
dancy check have very large overheads. So, we do
not check nogood subsumptions and we check redun
dancy only at the last stage of execution.

Table 3: Performance of Parallel Hierarchical Constraint
Solver(unit: sec)

Processors
problems 1 2 4 8 16
Tele4 43 32 32 32 29

1 1.34 1.34 1.34 1.48
5queen 69 39 26 21 19

1 1.77 2.65 3.29 3.63
6queen 517 264 136 77 50

1 1.96 3.80 6.71 10.34

Table 3 shows the speedup ration for three examples.
Tele4 is to solve ambiguity in natural language phrases.
5queen arid 6queen are to solve the 5 queens and 6 queens
problem. We represent these problems in Boolean con
straints and use the Boolean Buchberger algorithm [Sato
and Sakai 1988, Sakai and Aiba 1989] to solve the con
straints.

According to Table 3, we obtain 1.34 speedup for Tele4,
3.63 speedup for 5queen, and 10.34 speedup for 6queen.
Although 6queen is a large problem for the Boolean
Buchberger algorithm and gives us the largest speedup,
the speedup saturates at around 16 processors. This ex
presses that the load is not well-distributed and we have
to look for a better load-balancing method in the future.

5.5 Set Constraint Solver

The set constraint solver handles any kind of constraint
presented in the following conjunction of predicates.

where each predicate Fi(X,X) is a predicate constructed
from predicate symbols E, ~, =J. and =, function symbols
n, U, and ."', element variables x, and set variables X,
and some symbols of constant elements.

For the above constraints, the solver gives the answer
of the form:

fl(X,X) = 0
hl(X) = 0

hm(x) = 0

where hl(X) = 0, ... , hm(x) = 0 give the necessary
and sufficient conditions for satisfying the constraints.
Moreover, for each solution for the element variables, the
system of whole equations instantiated by the solution
puts the original constraints into a normal form (i.e. a
solution).

For more detailed information on the constraint solver,
refer to [Sato et al. 1991].

Let us first consider the following example.

A"'nC"'nE'" 0
CUE ;2 B

CUE ;2 D

DnB'" ;2 A

A'" nB ~ D

AuB ;2 D

where the notation A'" denotes the complement of A.
Since a class of sets forms a Boolean algebra, this con

straint can be considered a Boolean constraint. Hence we
can solve this by computing its Boolean Grabner base:

D A+B

E*C E+C+l

o

We should note that there is neither an element vari
able nor a constant on elements in the above constraints.
Hence they can be expressed as Boolean equations with
variables A, B, C, D and E. This, however, does not nec
essarily hold in every constraint of sets.

Consider the following constraints with an additional
three predicates including elements.

A"'nC"'nE'" 0
CuE ;2 B

CUE ;2 D

DnB'" ;2 A

A'" nB ~ D

AUB ;2 D

(C' n {x}) U (E n {p}) Dn{x,p}

x rt. A

p rt. B

where x is an element variable and p is a constant symbol
of an element.

This can no longer be represented with the Boolean
equations as above. For example the last formula is ex
pressed as {p} * B = 0, where {p} is considered a coeffi
cient. In order to handle such general Boolean equations,
we extended the notion of Boolean Grabner bases [Sato
et al. 1991], which enabled us to implement the set con
straint solver.

For the above constraint, the solver gives the following
answer:

D

E*C

A*B

{x}*E*B

{p} * C * A

{p} * E

{x} * C

{x} * A

{p} * B

{p} * {x}

A+B

E+C+ 1

o
{x}*E+{x}*B+{x}

{p} * C + {p} * A + {p}

{p} * A

{x} * B

o
o
o

125

In this example, {p} * {x} = 0 is the satisfiability con
dition. This holds if and only if x i- p. In this case,
there are always A, B, C and D that satisfy the original
constraints. The normal form is:

D A+B

E*C

A*B

{x}*E*B

{p} * C * A

{p} * E

{x} * C

{x} * A

{p} * B

E+C+l

o
{x}*E+{x}*B+{x}

{p} * C + {p} * A + {p}
{p} *A

{x} * B
o
o

5.6 Dependency Analysis of Constraint
Set

From several experiments on writing application pro
grams, we can conclude that the powerful expressiveness
of these languages is a great aid to programming, since
all users have to do to describe a program is to define the
essential properties of the problem itself. That is, there
is no need to describe a method to solve the problem.

On the other hand, sometimes the generality and
power of constraint solvers turn out to be a drawback
for these languages. That is, in some cases, especially for
very powerful constraint solvers like the algebraic con
straint solver in CAL or GDCC, it is difficult to im
plement them efficiently because of their generalities, in
spite of great efforts.

As a subsystem of language processors, efficiency in
constraint solving is, of course, one of the major issues in
the implementation of those language processors [Mar
riott and Sondergaard 1990, Cohen 1990].

In general, for a certain constraint set, the efficiency of
constraint solving is strongly dependent on the order in
which constraints are input to a constraint solver. How
ever, in sequential CLF languages like CAL, this order is
determined by the position of constraints in a program,
because a constraint solver solves constraints accumu
lated by the inference engine that follows SLD-resolution.

In parallel eLF languages like GDCC, the order of con
straints input to a constraint solver is more important
than in sequential languages. Since an inference engine
and constraint solvers can run in parallel, the order of
constraints is not determined by their position in a pro
gram. Therefore, the execution time may vary according
to the order of constraints input to the constraint solver.

In CAL and GDCC, the computation of a Grabner
base is time-consuming and it is well known that the
Buchberger algorithm is doubly exponential in worst-case
complexity [Hofmann 1989]. Therefore, it is worthwhile
to rearrange the order of constraints to make the con
straint solver efficient.

126

We actually started research into the order of con
straints based on dependency analysis [Nagai 1991, Nagai
and Hasegawa 1991]. This analysis consisted of dataflow
analysis, constraint set collection, dependency analysis
on constraint sets, and determination of the ordering of
goals and the preference of variables.

To analyze dataflow, we use top-down analysis based
on SLD-refutation. For a given goal and a program, the
invocation of predicates starts from the goal without in
voking a constraint solver, and variable bindings and con
straints are collected.

In this analysis, constraints are described in terms of
graphical (bipartite graph) representation. An algebraic
structure of s set of constraints is extracted using DM
decomposition [Dulmage and Mendelsohn 1963], which
computes a block upper triangular matrix by canoni
cal reordering a matrix corresponding to the set of con
straints.

As a result of analysis, a set of constraints can be parti
tioned into relatively independent subsets of constraints.
These partitions are obtained so that the number of vari
ables shared among different blocks is as small as possi
ble. Besides this partition, shared variables among parti
tions and shared variables among constraints inside of a
block are also obtained. Based on these results, the order
of goals and the precedence of variables are determined.

'vVe show the results of this method for two geometric
theorem proving problems [Kapur and Mundy 1988, Kut
zler 1988]: one is the theorem that three perpendicular
bisectors of three edges of a triangle intersect at a point,
and the other is the, so-called, nine points circle theorem.
The former theorem can be represented by 5 constraints
with 8 variables and gives about 3.2 times improvement.
The latter theorem can be represented by 9 constraints
with 12 variables and gives about 276 times improvement.

6 CAL and GDCC Application
Systems

To show the feasibility of CAL and GDCC, we imple
mented several application systems. In this section,
two of these, the handling robot design support system
and the Voronoi diagram construction program, are de
scribed.

6.1 Handling Robot Design Support
System

The design process of a handling robot consists of a fun
damental structure design and a internal structure design
[Takano 1986]. The fundamental structure design deter
mines the framework of the robot, such as the degree of
freedom, number of joints, and arm length. The inter
nal structure design determines the internal details of the

robot, such as the mortar torque of each joint. The han
dling robot design support system mainly supports the
fundamental structure design.

Currently, the method to design a handling robot is as
follows:

1. First, the type of the robot, such as cartesian manip
ulator, cylindlical manipulator, or articulated ma
nipulator has to be decided according to the require
ments for the robot.

2. Then, a system of equations representing the rela
tion between the end effector and joints is deduced.
Then the system of equations is transformed to ob
tain the desired form of equations.

3. Next, a program to analyze the robot being designed
is coded by using an imperative programming lan
guage, such as Fortran or C.

4. By executing the program, the design is evaluated.
If the result is satisfactory, then the design process
terminates, otherwise, the whole process should be
repeated until the result satisfies the requirements.

By adopting the CLP paradigm to the design process
of a handling robot, through coding a CLP program rep
resenting the relation obtained in 2 in the above, the
transformation can be done by executing the program.
Thus, processes 2 and 3 can be supported by a computer.

6.1.1 Kinematics and Statics Program by Con-
straint Programming

Robot kinematics represents the relation between a posi
tion and the orientation of the end effector, the length of
each arm, and the rotation angle of each joint. We call a
position and an orientation of the end effector, hand pa
rameters, and we call the rest, joint parameters. Robot
statics represent the relation between joint parameters:
force working on the end-effector, and torque working on
each joint [Tohyama 1989]. These relations are essential
for analyzing and evaluating the structure of a handling
robot.

To make a program that handles handling robot struc
tures, we have to describe a program independent of its
fundamental structure. That is, kinematics and stat
ics programs are constructed to handle any structure of
robot by simply changing a query.

Actually, these programs receive a matrix which rep
resents the structure of a handling robot being designed
in terms of a Est of lists. By manipulating the struc
ture of this argument, any type of handling robot can be
handled by the one program.

For example, the following query asks the kinematics
of a handling robot with three joints and three arms.

robot([[cos3, sin3, 0, 0, z3, 0, 0, 1J,
[cos2, sin2, x2, 0, 0, 1, 0, OJ,
[cos1, sin1, 0, 0, z1, 0, 0, 1JJ,

5, 0, 0, 1, 0, 0, 0, 1, 0,
px, py, pz, ax, ay, az, cx, cy, cz).

where the first argument represents the structure of the
handling robot, px, py, and pz represents a position, ax,
ay, az, ex, cy, and cz represents an orientation by defin
ing two unit vectors which are perpendicular to each
other. sin's and cos's represent the rotation angle of
each joint, and z3, x2, and z1 represent the length of
each arm. For this query, the program returns the fol
lowing answer.

cos1-2
cos2-2
cos3-2

1-sin1-2
1-sin2-2
1-sin3-2

px -5*cos2*sin3*sin1+z_3*sin2*sinl

py

pz
ax
ay
az
ex
ey
ez

+5*eos3*eos1+x_2*eos1
5*cos3*sin1+x 2*sinl
+5*eos1*cos2*sin3-z_3*eosl*sin2
5*sin3*sin2+z_1+z_3*eos2
-1*eos2*sin3*sin1+eos3*eos1
cos3*sin1+cosl*eos2*sin3
sin3*sin2
-1*eos1*sin3-eos3*eos2*sinl
-1*sin3*sin1+eos3*eos1*eos2
eos3*sin2

That is, the parameters of the position and the orien
tation are expressed in terms of the length of each arm
and the rotation angle of each joint.

Note that this kinematics program has the full features
of the CLP program. The problem of calculating hand
parameters from joint parameters is called forward kine
matics, and the converse is called inverse kinematics. vVe
can deal with both of them with the same program.

This program can be seen as a generator of programs
dealing with any handling robot which has a user de
signed fundamental structure.

Statics has the same features as the kinematics pro
gram described. That is, the program can deal with any
type of handling robot by simply changing its query.

6.1.2 Construction of Design Support System

The handling robot design support system should have
the following functions

1. to generate the constraint representing kinematics
and statics for any type of robot,

2. to solve forward and inverse kinematics,
3. to calculate the torque which works on each joint,

and
4. to evaluate manipulability.

The handling robot design support system consists of
the following three GDCC programs in order to realize
these functions,

Kinematics a kinematics program

127

Statics a statics program
Determinant a program to calculate the determinant

of a matrix

Kinematics and Statics are the programs we de
scribed above. A matrix to evaluate the manipulabil
ity of a handling robot, called a Jacobian matrix, is ob
tained from the Statics program. Determinant is used
to calculate the determinant of a Jacobian matrix. This
determinant is called the manipulability measure and it
expresses the manipulability of the robot quantitatively
[Yoshikawa 1984].

To obtain concrete answers, of course, the system
should utilize the GDCC ability to approximate the real
roots of univariate equations.

6.2 Constructing the Voronoi Diagram

We developed an application program which constructs
Voronoi Diagram written in GDCC.

By using the constraint paradigm, we can make a pro
gram without describing a complicated algorithm. A
Voronoi diagram can be constructed by using constraints
which describe only the properties or the definition of
the Voronoi diagram. This program can compute the
Voronoi polygon of each point in parallel.

6.2.1 Definition of the Voronoi Diagram

For a given finite set of points 5 in a plane, a Voronoi
diagram is a partition of the plane so that each region
of the partition is a set of points in the plane closer to
a point in 5 in the region than to any other points in 5
[Preparata and Shamos 1985].

In the simplest case, the distance between two points is
defined as the Euclidian distance. In this case, a Voronoi
diagram is defined as follows.

Given a set 5 of N points in the plane, for each point
Pi in 5, the Voronoi polygon denoted as V(Pi) is defined
by the following formula.

where d(P, Pi) is a Euclidian distance between P and Pi'
The Voronoi diagram is a partition so that each region

is the Voronoi polygon of each point (see Figure 9). The
vertices of the diagram are Voronoi vertices and its line
segments are Voronoi edges.

Voronoi diagrams are widely used in various applica
tion areas, such as physics, ecology and urbanology.

6.2.2 Detailed Design

The methods of constructing Voronoi diagrams are clas
sified into the following two categories:

1. The incremental method([Green and Sibson 1978]),
and

128

Figure 9: A Voronoi Diagram

2. The divide-and-conquer method([Shamos and Hoey
1975]).

However, the simplest approach to constructing a
Voronoi diagram is, of course, constructing its polygons
one at a time.

Given two points, Pi and Pj, a set of points closer to
Pi than to Pj is just a half-plane containing Pi that is
divided by the perpendicular bisector of PiPj. We name
this line H(Pi , Pj).

The Voronoi polygon of Pi can be obtained by the fol
lowing formula.

By using the linear constraint solver for GDCC, the
Voronoi polygon can be constructed by the following al
gorithm which utilizes the above method to obtain the
polygon directly.

E. +- {x ;::: 0, Y;::: 0, x:::; XMax, Y:::; YMax}
{loop a}
for i = 1 to n

C Fo +- lineaLconstraint..solver(E.)
for j = 1 to n

if(j i- i) then
Ej +- Y:::; (Pjx - P;x)/(Pjy - P;y) . x

+(P/y + plx - P;~ - P/x)/2 . (Pjy - p;y)2
CFj +- linear_constraint..solver(Ej U CFj_l)
Let {eql,eq2, ... ,eqd(0 ~ k:::; n) be
a set of equations obtained by changing
inequality symbols in C Fj to equation symbols.

{loop b}
for I = 1 to k

vertices := {}
m:= 1

end.

while (m =< k &
number of elements of vertices i- 2)
pp +- intersection(eql, eqm)
if pp satisfies the constraint set C F;

then vertices := {pp} U vertices
m:= m+ 1

add the line segment between vertices
to Voronoi edges.

In this algorithm, the first half computes the Voronoi
polygon for each point's Pi by obtaining all perpendicular
bisectors of segments between Pi and other points and
eliminating redundant ones. The second half computes
the Voronoi edges.

2This inequality represents a half plane divided by a perpendic
ular bisector of (Pi, Pj)

Table 4: Runtime and reductions

Processors Reductions
Points 1 2 4 8 15 (x 1000)

10 130 67 33 17 16 5804
1 1.936 3.944 7.377 7.844

20 890 447 241 123 88 42460
1 1.990 3.685 7.218 10.077

50 4391 2187 1102 566 336 210490
1 2.007 3.981 7.749 13.065

100 17287 8578 4305 2191 1263 830500
1 2.015 4.014 7.887 13.679

200 52360 26095 13028 6506 3500 2458420
1 2.006 4.018 8.047 14.959

400 220794 110208 54543 27316 14819 10161530
1 2.003 4.048 8.082 14.899

To realize the above algorithm on parallel processors,
each procedure for each i in loop a in the above is as
signed to a group of processes. That is, there are n
process groups. Each procedure for each l in the loop
b is assigned to a process in the same process group.
This means that each process group contain k processes.
These n x k processes are mapped onto multi-processor
machines.

6.2.3 Results

Table 4 shows the execution time and speedup for 10 to
400 points with 1 to 15 processors.

According to the results, we can conclude that, when
the number of points is large enough, we can obtain ef
ficiency which is almost in proportion to the number of
processors.

By using this algorithm, we can handle the problem of
constructing a Voronoi diagram in a very straight forward
manner. Actually, comparing the size of the programs,
this algorithm can be described in almost one third of
the size of the program that is used by the incremental
method.

7 Conclusion

In the FGCS project, we developed two CLP languages:
CAL, and GDCC to establish the knowledge programm
ing environment, and to write application programs. The
aim of our research is to construct a powerful high-level
programming language which is suitable for knowledge
processing. It is well known that constraints play an im
portant role in both knowledge representation and knowl
edge processing. That is, CLP is a promising candidate
as a high level programming language in this field.

Compared with other CLP languages such as CLP(R),
Prolog III, and CHIP, we can summarize the features of
CAL and GDCC as follows:

• CAL and GDCC can deal with nonlinear algebraic
constraints.

• In the algebraic constraint solver, the approximate
values of all possible real solutions can be computed,
if there are only finite number of solutions.

• CAL and GDCC have a multiple environment han
dler. Thus, even if there is more than one answer
constraints, users can manipulate them flexibly.

• Users can use multiple constraint solvers, and fur
thermore, users can define and implement their own
constraint solvers.

CAL and GDCC enable us to write possibly nonlinear
polynomial equations on complex numbers, relations on
truth values, relations -on sets and their elements, and
linear equations and linear inequalities on real numbers.

Since starting to write application programs for the al
gebraic constraint solver in the field of handling robot,
we have wanted to compute the real roots of univariate
nonlinear polynomials. We made this possible with CAL
by adding a function to approximate the real roots, and
we modified the Buchberger algorithm able to handle ap
proximation values.

Then, we faced the problem that a variable may have
more than one value. To handle this situation in the
framework of logic programming, we introduced a con
text tree in CAL. In GDCC, we introduced blocks into
the language specification. The block in GDCC not only
handle multiple values, but also localize the failure of
constraint solvers.

As for CAL, the following issues are still to be consid
ered:

1. Meta facilities:
Users cannot deal with a context tree from a pro
gram, that is, meta facilities in CAL are insufficient
to allow users to do all possible handling of answer
constraints themselves.

2. Partial evaluation of CAL programs:
Although we try to analyze constraint sets by adopt
ing dependency analysis, that work will be more ef
fective when combined with partial evaluation tech
nology or abstract interpretation.

3. More application programs:
We still have a few application programs in CAL. By
writing many application programs in various appli
cation field, we will have ideas to realize a more pow
erful CLP language. For this purpose, we are now
implementing CAL in a dialect of ESP, called Com
mon ESP, which can run on the UNIX operating
system to be able to use CAL in various machines.

As for GDCC, the following issues are still to be con
sidered:

1. Handling multiple contexts:
Although current GDCC has functionalities to han
dle multiple contexts, users have to express every
thing explicitly. Therefore, we can design high-level

129

tools to handle multiple contexts m GDCC's lan
guage specification.

2. More efficient constraint solvers:
We need to improve both the absolute performance
and the parallel speedup of the constraint solvers.

3. More application programs:
Since parallel CLP language is quite new language,
writing application programs may help us to make
it powerful and efficient.

Considering our experiences of using CAL and GDCC
and the above issues, we will refine the specification and
the implementation of GDCC.

These refinements and experiments on various applica
tion programs clarified the need for a sufficiently efficient
constraint logic programming system with high function
alities in the language facilities.

Acknowledgment

The research on the constraint logic programming sys
tem was carried out by researchers in the fourth research
laboratory in ICOT in tight cooperation with cooper
ating manufactures and members of the CLP working
group. Our gratitude is first due to those who have given
continuous encouragement and helpful comments. Above
all, we particularly thank Dr. K. Fuchi, the director of
the ICOT research center, Dr. K. Furukawa, a vice direc
tor of the ICOT research center, and Dr. M. Amamiya of
Kyushu University, the chairperson of the CLP working
group.

We would also like to thank a number of researchers
we contacted outside of ICOT, in particular, members
of the working group for their fruitful and enlightening
discussions and comments.

Special thanks go to all researchers in the fourth re
search laboratory: Dr. K. Sakai, Mr. T. Kawagishi, Mr.
K. Satoh, Mr. S. Sato, Dr. Y. Sato, Mr. N. Iwayama, Mr.
D. J. Hawley, who is now working at Compuflex Japan,
Mr. H. Sawada, Mr. S. Terasaki, Mr. S. Menju, and the
many researchers in the cooperating manufacturers.

References

[Aiba et al. 1988] A. Aiba, K. Sakai, Y. Sato, D. J. Haw
ley, and R. Hasegawa. Constraint Logic Programm
ing Language CAL. In Proceedings of the Inter
national Conference on Fifth Generation Computer
Systems 1988, November 1988.

[Backelin and Froberg 1991] J. Backelin and R. Froberg.
How we proved that there are exactly 924 cyclic
7-roots. In S. M. Watt, editor, Proceedings of IS
SAC'91. ACM, July 1991.

130

[Benichou et al. 1971] M. Benichou, L. M. Gauthier, P.
Girodet, G. Hentges, G. Ribiere, and O. Vincent.
Experiments in mixed-integer linear programming.
Nlathematical Programming, (1), 1971.

[Boege et al. 1986] W. Boege, R. Gebauer, and H. Kre
del. Some Examples for Solving Systems of Al
gebraic Equations by Calculating Grabner Bases.
Journal of Symbolic Computation, 2(1):83-98,1986.

[Borning et al. 1989] A. Borning, M. Maher, A. Martin
dale, and M. Wilson. Constraint Hierarchies and
Logic Programming. In Proceedings of the Interna
tional Conference on Logic Programming, 1989.

[Buchberger 1985] B. Buchberger. Grabner bases: An
Algorithmic Method in Polynomial Ideal Theory. In
N. Bose, editor, Multidimensional Systems Theory,
pages 184-232. D. Reidel Publ. Comp., Dordrecht,
1985.

[CAL Manual] Institute for New Generation Computer
Technology. Contrante Avec Logique version 2.12
User's manual. in preparation.

[Chikayama 1984] T. Chikayama. Unique Features of
ESP. In Proceedings of FGCS'84, pages 292-298,
1984.

[Chikayama et al. 1988] T. Chikayama, H. Sato, and
T. Miyazaki. Overview of Parallel Inference Ma
chine Operationg System (PIMOS). In International
Conference on Fifth Generation Computer Systems,
pages 230-251, 1988.

[Clarke et al. 1990] E. M. Clarke, D. E. Long, S.
Michaylov, S. A. Schwab, J. P. Vidal, and S. Kimura.
Parallel Symbolic Computation Algorithms. Tech
nical Report CMU-CS-90-182, Computer Science
Department, Carnegie Mellon University, October
1990.

[Cohen 1990] J. Cohen. Constraint logic programming
languages. Communications of the ACNI, 33(7), July
1990.

[Colmerauer 1987] A. Colmerauer. Opening the Prolog
III Universe: A new generation of Prolog promises
some powerful capabilities. BYTE, pages 177-182,
August 1987.

[Dincbas et al. 1988] M. Dincbas, P. Van Hentenryck, H.
Simonis, A. Aggoun, T. Graf, and F. Berthier. The
Constraint Logic Programming Language CHIP.
In Proceedings of the International Conference on
Fifth Generation Computer Systems 1988, Novem
ber 1988.

[Dulmage and Mendelsohn 1963] A. L. Dulmage and N.
S. Mendelsohn. Two algorithms for bipartite graphs.
Journal of SIAM, 11(1), March 1963.

[Green and Sibson 1978] P. J. Green and R. Sibson.
Computing Dirichlet Tessellation in the Plane. The
Computer Journal, 21, 1978.

[Hofmann 1989] C. M. Hoffmann. Grabner Bases .Tech
niques, chapter 7. Morgan Kaufmann Publishers,
Inc., 1989.

[Jaffar and Lassez 1987] J. Jaffar and J-L. Lassez. Con
straint Logic Programming. In 4th IEEE Symposium
on Logic Programming, 1987.

[Kapur and Mundy 1988] K. Kapur and J. L. Mundy.
Special volume on geometric reasoning. Artificial
Intelligence, 37(1-3), December 1988.

[Kutzler 1988] B. Kutzler. Algebraic Approaches to Au
tomated Geometry Theorem Proving. PhD thesis,
Research Institute for Symbolic Computation, Jo
hannes Kepler University, 1988.

[Lloyd 1984] J. W. Lloyd. Foundations of Logic Pro
gramming. Springer-Verlag~ 1984.

[Maher 1987] M. J. Maher. Logic Semantics for a Class
of Committed-choice Programs. In Proceedings of
the Fourth International Conference on Logic Pro
gramming, pages 858-876, Melbourne, May 1987.

[Marriott and Sondergaard 1990] K. Marriott and H.
Sondergaard. Analysis of constraint logic programs.
In Proc. of NACLP '90, 1990.

[Menju et al. 1991] S. Menju, K. Sakai, Y. Satoh, and A.
Aiba. A Study on Boolean Constraint Solvers. Tech
nical Report TM 1008, Institute for New Generation
Computer Technology, February 1991.

[Nagai 1991] Y. Nagai. Improvement of geometric theo
rem proving using dependency analysis of algebraic
constraint (in Japanese). In Proceedings of the 42nd
Annual Conference of Information Processing Soci
ety of Japan, 1991.

[Nagai and Hasegawa 1991] Y. Nagai and R. Hasegawa.
Structural analysis of the set of constraints for con
straint logic programs. Technical report TR-701,
ICOT, Tokyo, Japan, 1991.

lOki et al. 1989] H. Oki, K. Taki, S. Sei, and S. Furuichi.
Implementation and evaluation of parallel Tsumego
program on the Multi-PSI (in Japanese). In Pro
ceedings of the Joint Parallel Processing Symposium
(JSPP'89),1989.

[Ponder 1990] C. G. Ponder. Evaluation of 'Performance
Enhancements' in algebraic manipulation systems.
In J. Della Dora and J. Fitch, editors, Computer Al
gebra and Parallelism, pages 51-74. Academic Press,
1990.

[Preparata and Shamos 1985J F. P. Preparata and M. 1.
Shamos. Computational Geometry. Springer-Verlag,
1985.

[Sakai and Aiba 1989] K. Sakai and A. Aiba. CAL: A
Theoretical Background of Constraint Logic Pro
gramming and its Application. J01lmal of Symbolic
Computation, 8:589-603, 1989.

[Saraswat 1989J V. Saraswat. Concurrent Constraint
Programming Languages. PhD thesis, Carnegie
Mellon University, Computer Science Department,
January 1989.

[Sato and Aiba 1991] S. Sato and A. Aiba. An Appli
cation of CAL to Robotics. Technical Report TM
1032, Institute for New Generation Computer Tech
nology, February 1991.

[Sato and Sakai 1988] Y. Sato and K. Sakai. Boolean
Grabner Base, February 1988. LA-Symposium in
winter, RIMS, Kyoto University.

[Sato et al. 1991] Y. Sato, K. Sakai, and S. Menju. Solv
ing constraints over sets by Boolean Grabner bases
(in Japanese). In Proceedings of The Logic Pro
gramming Conference '91, September 1991.

[Satoh 1990] K. Satoh. Formalizing Soft Constraints by
Interpretation Ordering. In Proceedings of 9th Eu
ropean Conference on Artificial Intelligence, pages
585-590, 1990.

[Satoh and Aiba 1990a] K. Satoh and A. Aiba. Com
puting Soft Constraints by Hierarchical Constraint
Logic Programming. Technical Report TR-610,
ICOT, Tokyo, Japan, 1990.

[Satoh and Aiba 1990b] K. Satoh and A. Aiba. Hierar
chical Constraint Logic Language: CHAL. Technical
Report TR-592, ICOT, Tokyo, Japan, 1990.

[Senechaud 1990J P. Senechaud. Implementation of a
parallel algorithm to compute a Grabner basis on
Boolean polynomials. In J. Della Dora and J. Fi tch,
editors, Computer Algebra and Parallelism, pages
159-166. Academic Press, 1990.

[Shamos and Hoey 1975] M. 1. Shamos and D. Hoey.
Closest-point problems. In Sixteenth Annual IEEE
Symposium on Foundations of Computer Sceience,
1975.

131

[Siegl 1990J K. Siegl. Grabner Bases Computation in
STRAND: A Case Study for Concurrent Symbolic
Computation in Logic Programming Languages.
Master's thesis, CAMP-LINZ, November 1990.

[Takano 1986] M. Takano. Design of robot structure (in
Japanese). Journal of Japan Robot Society, 14(4),
1986.

[Terasaki et al. 1992J S. Terasaki, D. J. Hawley, H.
Sawada, K. Satoh, S. Menju, T. Kawagishi, N. Iwa
yama, and A. Aiba. Parallel Constraint Logic Pro
gramming Language GDCC and its Parallel Con
starint Solvers. In International Conference on Fifth
Generation Computer Systems, 1992.

[Tohyama 1989] S. Tohyama. Robotics for Machine En
gineer (in Japanese). Sougou Denshi Publishing
Corporation, 1989.

[Ueda and Chikayama 1990] K. Veda and T. Chika
yama. Design of the Kernel Language for the Paral
lel Inference Machine. The Computer Joumai, 33(6),
December 1990.

[Vidal 1990] J. P. Vidal.. The Computation of Grabner
bases on a shared memory multi-processor. Techni
cal Report CMU-CS-90-163, Computer Science De
partment, Carnegie Mellon University, August 1990.

[van Emden and Kowalski 1976] M. H. van Emden and
R. A. Kowalski. The Semantics of Predicate Logic
as a Programming Language. Journal of the ACJ'v1,
23(4), October 1976.

[Van Hentenryck 1989J P. Van Hentenryck. Parallel con
straint satisfaction in logic programming: Prelimi
ary results of chip with pepsys. In 6th International
Conference on Logic Programming, pages 165-180,
1989.

[Yoshikawa 1984] T. Yoshikawa. Measure of manipulata
bility of robot arm (in Japanese). Joumal of Japan
Robot Society, 12(1), 1984.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 132

Parallel Theorem Provers and Their Applications

Ryuzo Hasegawa and Masayuki Fujita

Fifth Research Laboratory
Institute for New Generation Computer Technology

4-28 Mita 1-chome, Minato-ku, Tokyo 108, Japan
{hasegawa, rnfujita}@icot.or.jp

Abstract

This paper describes the results of the research and de
velopment of automated reasoning systems(ARS) being
conducted by the Fifth Research Laboratory at ICOT.
The major result was the development of a parallel the
orem proving system MGTP (Model Generation The
orem Prover) in KL1 on a parallel inference machine,
PIM. Currently, we have two versions of MGTP. One is
MGTP IG, which is used for dealing with ground models.
The other is MGTP IN, used for dealing with non-ground
models. With MGTP IN, we have achieved a more
than one-hundred-fold speedup for condensed detach
ment problems on a PIM/m consisting of 128 PEs. Non
monotonic reasoning and program synthesis are taken
as promising and concrete application area for MGTP
provers. MGTP IG is actually used to develop legal rea
soning systems in ICOT's Seventh Research Laboratory.
Advanced inference and learning systems are studied for
expanding both reasoning power and application areas.
Parallel logic programming techniques and utility pro
grams such as 'meta-programming' are being developed
using KL1. The technologies developed are widely used
to develop applications on PIM.

1 Introduction

The final goal of the Fifth Generation Computer Sys
tems (FGCS) project was to realize a knowledge infor
mation processing system with intelligent user interfaces
and knowledge base systems on parallel inference ma
chines. A high performance and highly parallel inference
mechanism is one of the most important technologies to
come out of our pursuit of this goal.

The major goal of the Fifth Research Laboratory,
which is conducted as a subgoal of the problem-solving
programming module of FGCS, is to build very efficient
and highly parallel automated re?-soning systems (ARS)
as advanced inference systems on ~~Lrallel inference ma
chines (PIM), taking advantage of the KL1language and
PIMOS operating system. On ARS we intend to develop
application systems such as natural language processing,

Application

Parallel Theorem Proving

Figure 1: Goals of Automated Reasoning System Re
search at tCOT

intelligent knowledgebases, mathematical theorem prov
ing systems, and automated programming systems. Fur
thermore, we intend to give good feedback to the lan
guage and operating systems from KLI implementations
and experiments on parallel inference hardware in the
process of developing ARS.

We divided ARS research and development into the
following three goals (Figure 1):

(1) Developing Parallel Theorem Proving Technologies
on PIM
Developing very efficient parallel theorem provers on
PIM by squeezing the most out of the KL1language
is the major part of this task. We have concentrated
on the model generation method, whose inference
mechanism is based on hyper-resolution. We de
cided to develop two types of model generation the
orem provers to cover ground non-Horn problems
and non-ground Horn problems. To achieve maxi
mum performance on PIM, we have focused on the

technological issues below:

(a) Elimination of redundant computation
Eliminating redundant computation in the pro
cess of model generation with the least over
head is an important issue. Potential redun
dancy lies in conjunctive matching at hyper
resolution steps or in the case splitting of
ground non-Horn problems.

(b) Saving time and space by eliminating the over
generation of models
For the model generation method, which is
based on hyper-resolution as a bottom-up pro
cess, over generation of models is an essential
problem of time and space consumption. We
regard the model generation method as genera
tion and test procedures and have introduced a
controlling mechanism called Lazy Model Gen
eration.

(c) Finding PIM-fitting and scalable parallel archi
tecture
PIM is a low communication cost MIMD ma
chine. Our target is to find a parallel architec
ture for model generation provers, which draws
the maximum power from PIM. We focused
on OR parallel architecture to exploit paral
lelism in the case splitting of a ground non
Horn prover, MGTP /G, and on AND parallel
architecture to exploit parallelism in conjunc
tive matching and subsumption tests of a non
ground Horn prover, MGTP /N.

One of the most important aims of developing theL
rem provers in KLl is to draw the maximum advan
tage of parallel logic programming paradigms from
KLl. Programming techniques developed in build
ing theorem provers help to, or are commonly used
to, develop various applications, such as natural lan
guage processing systems and knowledge base sys
tems, on the PIM machines based on logic program
ming and its extension. We focused on developing
meta-programming technology in KLl as a concrete
base for this aim. We think it is very useful to de
velop broader problem solving applications on PIM
and to extend KLl to support them.

(2) Application
A model generation theorem prover has a general
reasoning power in various AI areas because it can
simulate the widely applied tableaux method effec
tively. Building an efficient analytic tableaux prover
for modal propositional logic on mod~l generation
theorem provers was the basic goal of this extension.
This approach could naturally be applied to abduc
tive reasoning in AI systems and logic programming
with negation as failure linked with broader practi
cal AI applications such as diagnosis.

133

We focused on automated programming as one of the
major application areas for theorem provers in the
non-Horn logic systems, in spite of difficulty. There
has been a long history of program synthesis from
specifications in formal logic. We aim to make a
first-order theorem prover that will act as a strong
support tool in this approach. We have set up three
different ways of program construction: realizabil
ity interpretation in the constructive mathematics
to generate functional programs, temporal proposi
tionallogic for protocol generation, and the Knuth
Bendix completion technique for interface design of
concurrent processes in Petri Net. We stressed the
experimental approach in order to make practical
evaluation.

• Advanced Inference and Learning
Theorem proving technologies themselves are rather
saturated in their basic mechanisms. In this sub
goal, extension of the basic mechanism from deduc
tive approach to analogical, inductive, and trans
formational approaches is the main research target.
Machine learning technologies on logic programs and
meta-usage of logic are the major technologies that
we decided to apply to this task.

By using analogical reasoning, we intended to for
mally simulate the intelligent guesswork that hu
mans naturally do, so that results could be obtained
even when deductive systems had no means to de
duce to obtain a solution because of incomplete in
formation or very long deductive steps.

Taking the computational complexity of inductive
reasoning into account, we elaborated the learning
theories of logic programs by means of predicate
invention and least-general generalization, both of
which are of central interest in machine learning.

In transformational approach, we used fold/unfold
transformation operations to generate new efficient
predicates in logic programming.

The following sections describe these three tasks of re
search on automated reasoning in ICOT's Fifth Research
Laboratory for the three years of the final stage of ICOT.

2 Parallel Theorem Proving
Technologies on PIM

In this section, we describe the MGTP provers which run
on Multi-PSI and PIM. We present the technical essence
of KLl programming techniques and algorithms that we
developed to improve the efficiency of MGTP.

134

2.1 Parallel Model Generation
Theorem Prover MGTP

The research on parallel theorem proving systems aims at
realizing highly parallel advanced inference mechanisms
that are indispensable in building intelligent knowledge
information systems. We started this research project on
parallel theorem provers about two and a half years ago.
The immediate goal of the project is to develop a parallel
automated reasoning system on the parallel inference ma
chine, PIM, based on KL1 and PIMOS technology. We
aim at applying this system to various fields such as in
telligent database systems, natural language processing,
and automated programming.

At the beginning, we set the following as the main
subjects.

• To develop very fast first-order parallel theorem
provers
As a first step for developing KL1-technology the
orem provers, we adopted the model generation
method on which SATCHMO is based as a main
proof mechanism. Then we implemented a model
generation based theorem prover called MGTP. Our
reason was that the model generation method is par
ticularly suited to KL1 programming as explained
later. Based on experiences with the development
of MGTP, we constructed a "TP development sup
port system" which provided us with useful facilities
such as a proof tracer and a visualizer to see the dy
namic behavior of the prover.

• To develop applications
Although a theorem prover for first-order logic has
the potential to cover most areas of AI, it has not
been so widely used as Prolog. One reason for
this is the inefficiency of the proof procedure and
the other is lack of useful applications. However,
through research on program synthesis from formal
specification[Hasegawa et at., 1990], circuit verifica
tion, and legal reasoning[Nitta et at., 1992], we be
came convinced that first-order theorem provers can
be effectively used in various areas. We are now de
veloping an automated program synthesis system,
a specification description system for exchange sys
tems, and abductive and non-monotonic reasoning
systems on MGTP.

• To develop KL1 programming techniques
Accumulating KL1 programming techniques
through the development of theorem provers is an
important issue. We first developed KL1 compil
ing techniques to translate given clauses to corre
sponding KL1 clauses, thereby achieving good per
formance for ground clause problems. We also devel
oped methods to parallelize MGTP by making full
use of logical variables and the stream data type of
KL1.

• To develop KL1 meta-programming technology
This is also an important issue in developing theo
rem provers. This issue is discussed in Section 2.1.2
Meta-Programming in KL1. We have implemented
basic meta-programming tools called Meta-Library
in KL1. The meta-library is a collection of KL1 pro
grams which offers routines such as full unification,
matching, and variable managements.

2.1.1 Theorem Prover in KL1 Language

Recent developments in logic programming have
made it possible to implement first-order theorem
provers efficiently. Typical examples are PTTP by
Stickel [Stickel 1988], and SATCHMO by Manthey and
Bry [Manthey and Bry 1988].

PTTP is a backward-reasoning prover based on the
model elimination method. It can deal with any first
order formula in Horn clause form without loss of com
pleteness and soundness.

SATCHMO is a forward-reasoning prover based on
the model generation method. It is essentially a hyper
resolution prover, and imposes a condition called range
restricted on a clause so that we can derive only ground
atoms from ground facts. SATCHMO is basically
a forward-reasoning prover but also allows backward
reasoning by employing Prolog over the Horn clauses.

The major advantage of these systems is because the
input clauses are represented with Prolog clauses and
most parts of deductions can be performed through nor
mal Prolog execution.

In addition to this method we considered the following
two alternative implementations of object-level variables
in KL1:

(1) representing object-level variables with KL1 ground
terms

(2) representing object-level variables with KL1 vari
ables

The first approach might be the right path in meta
programming where object- and meta-levels are sepa
rated strictly, thereby giving it dear semantics. However,
it forces us to write routines for unification, substitution,
renaming, and all the other intricate operations on vari
ables and environments. These routines would become
considerably larger and more complex than the main pro
gram, and introduce overhead to orders of magnitude.

In the second approach, however, most of operations
on variables and environments can be performed beside
the underlying system instead of running routines on top
of it. Hence, it enables a meta-programmer to save writ
ing tedious routines as well as gaining high efficiency.
Furthermore, one can also use Prolog var predicates to
write routines such as occurrence checks in order to make
built-in unification sound, if necessary. Strictly speak
ing, this approach may not be chosen since it makes the

distinction between object- and meta-level very ambigu
ous. However, from a viewpoint of program complexity
and efficiericy, the actual profit gained by the approach
is considerably large.

In KLl, however, the second approach is not always
possible, as in the Prolog case. This is because the se
mantics of KLI never allows us to use a predicate like
Prolog var. In addition, KLI built-in unification is not
the same as Prolog's counterpart, in that unification in
the guard part of a KLI clause is limited to one way and
a unification failure in the body part is regarded as a se
mantic error or exception rather than as a failure which
merely causes backtrack in Prolog. Nevertheless, we can
take the second approach to implement a theorem prover
where ground models are dealt with, by utilizing the fea
tures of KLI as much as possible.

Taking the above discussions into consideration, we
decided to develop both the MGTP IG and MGTP IN
provers so that we can use them effectively according to
the problem domain being dealt with.

The ground version, MGTP IG, aims to support finite
problem domains, which include most problems in a va
riety of fields, such as database processing and natural
language processing.

For ground model cases, the model generation method
makes it possible to use just matching, rather than full
unification, if the problem clauses satisfy the range
restrictedness condition 1.

This suggests that it is sufficient to use KLl's head
unification. Thus we can take the KLI variable approach
for representing object-level variables, thereby achieving
good performance.

The key points of KLI programming techniques devel
oped for MGTP IG are as follows: (Details are described
in the next section.)

• First, we translate a given set of clauses into a cor
responding set of KLI clauses. This translation is
quite simple.

• Second, we perform conjunctive matching of a literal
in a clause against a model element by using KLI
head unification.

• Third, at the head unification, we can automatically
obtain fresh variables for a different instance of the
literal used.

The non-ground version, MGTP IN, supports infinite
problem domains. Typical examples are mathematical
theorems, such as group theory and implicational calcu
lus.

For non-ground model cases, where full unification
with occurrence check is required, we are forced to fol
low the KL 1 ground terms approach. However, we do

1 A clause is said to be range-restricted if every variable in the
clause has at least one occurrence in its antecedent.

135

Problems Solutions Tools

Reduudancy
ramified StaCk] 1 in Conjunctive

Matching MERC KLI
programming

techniques

2 Unification! (Term IndeXing)
Subsumption

+
3 Irrelevant I (partial Falsify J

Clauses Relevancy Test
Firmware

Meta-
Coding

4 Programming (Meta-Library)
inKLl

5 Overgeneration [LaZY Model J +
of Models Generation

6 Parallelism PIM machine f OR P And J Non-Horn Ground Parallel Sequential

Horn (AND Parallel)

Figure 2: Major Problems and Technical Solutions

not necessarily have to maintain variable-binding pairs
as processes in KLl. We can maintain them by using
the vector facility supported by KLl, as is often used in
ordinary language processing systems. Experimental re
sults show that vector implementation is several hundred
times faster than process implementation.

In this case, however, we cannot use the programming
techniques developed for MGTP IG. Instead, we have to
use a conventional technique, that is, interpreting a given
set of clauses instead of compiling it into KLI clauses.

2.1.2 Key Technologies' to 'Improve Efficiency

\Ale developed several programming techniques in the
process of seeking ways to improve the efficiency of model
generation theorem provers. Figure 2 shows a list of the
problems which prevented good performance and the so
lutions we obtained. In the following sections we ou tline
the problems and their solutions.

Redundancy in Conjunctive Matching

To improve the performance of the model generation
provers, it is essential to avoid, as much as possible, re
dundant computation in conjunctive matching. Let us
consider a clause having two antecedent literals, and sup
pose we have a model candidate M at some stage i in the

136

proof process. To perform conjunctive matching of an an
tecedent literal in the clause against a model element, we
need to pick all possible pairs of atoms from M. Imagine
that we are to extend M with a model-extending atom
.6., which is in the consequent of the clause, but not in M.
Then in the next stage, we need to pick pairs of atoms
from M U.6.. The number of pairs amounts to:

CM U 6.)2 = M x MUM x 6. u.6. x M u.6. x .6..

However, doing this in a naive manner would introduce
redundancy. This is because M x M pairs were already
considered in the previous stage. Thus we must only
choose pairs which contain at least one .6..

(1) RAMS Method
The key point of the RAMS (Ramified Stack)
method is to retain in a literal instance stack the
intermediate results obtained in conjunctive match
ing. They are instances which are a result of
matching a literal against a model element. This
algorithm exactly computes a repeated combina
tion of .6.. and an atom picked from M without
duplication([Fujita and Hasegawa 1990]).

For non-Horn clause cases, the literal instance stack
expands a branch every time case splitting occurs,
and grows like a tree. This is how the RAMS name
was derived. Each branch of the tree represents a
different model candidate.

The ramified-stack method not only avoids redun
dancy in conjunctive matching but also enables us
to share a common model. However, it has one draw
back: it tends to require a lot of memory to retain
intermediate literal instances.

(2) MERC Method
The MERC (Multi-Entry Repeated Combination)
method([Hasegawa 1991]) tries to solve the above
problem in the RAMS method. This method does
not need a memory to retain intermediate results
obtained in the conjunctive matching. Instead, it
needs to prepare 2n - 1 clauses for the given clause
having n literals as its antecedent.

The outline of the MERC method is shown in Fig
ure 3. For a clause having three antecedent literals,
AI, A2 , A3 -+ C, we prepare seven clauses, each of
which corresponds to a repeated combination of 6.
and M, and perform the conjunctive matching us
ing the combination pattern. For example, a clause
corresponding to a combination pattern [M,.6., M]
first matches literal A2 against.6.. If the match
succeeds, the remaining literals, Al and A3 , are
matched against an element picked out of A1. Note
that each combination pattern includes at least one
.6., and that the [111,111, M] pattern is excluded.

Al

11

M

M

11

11

M

11

A2 A3

M M

11 M

M 11

11 M

M 11

11 11

11 11

* Forground,and Al,* A2'* A3
('* means not-unifiable)

Figure 3: Multiple-Entry Repeated Combination
(MERC) Method

There are some trade-off points between the RAMS
method and the MERC method. In the RAMS
method, every successful result of matching a literal
Ai against model elements is memorized so as not to
rematch the same literal against the same model el
ement. On the other hand, the MERC method does
not need such a memory to store the information of
partial matching. However, it still contains a redun
dant computation. For instance, in the computation
for [M,.6.,.6.] and [M, 6., M] patterns, the common
subpattern, [M,.6.], will be recomputed. The RAMS
method can remove this sort of redundancy.

Speeding up U nification/Subsumption

Almost all computation time is used in the unification
and subsumption tests in the MGTP. Term indexing is
a classical way and the only way to improve this process
to one-to-many unification/subsumption.: We used the
discrimination tree as the indexing structure.

Figure 4 shows the effect of Term Memory on a typical
problem on MGTP /G.

Optimal use of Disjunctive Clauses

Loveland et. al. [Wilson and, Loveland 1989] indi
cated that irrelevant use of disjunctive clauses in the
ground model generation prover rises useless case spli t
ting, thereby leads to serious redundant searches. Ar
bitrary selected disjunctive clauses in MGTP may lead
to a combinatorial explosion of redundant models. An
artificial yet suggestive example is shown in Figure 5.

In MGTP /G, we developed two methods to deal with
this problem. One method is to introduce upside-down

• Execution Time and
No. of Reductions(Instruction Unit of KL1)

(1) With TM. 784197 red / 14944 msec

(2) Without TM. 1629421 red /28174 msec

• The Most Dominant Operations

(1) With TM (The eight best predicates are
of TM operations)

Predicate Red
assocs /4 466990

term Type/ 'L 4jIY1

termNodes 14 39771
termNodes1/4 20338
bind Constant 15 20304

Others 193003
0 500,000

(2) Without TM(member predicate takes
the first rank)

Predicate ROd,
member I 3 1214048

c/O l/ts404
satisfyLiteral/9 133255
satlstyLlteral17 46_655.

do 17 270631
Uthers 29936 1

0 500,000 1,000,000

Figure 4: Speed up by Term Memory

false: -p(c, X, Y) (1)
false: -q(X, c, Y) (2)
false: -r(X, Y, c) (3)

s(a) (4)
s(b) (5)
s(c) (6)

s(X), s(Y), s(Z) -+

p(X,Y,Z);q(X,Y,Z);r(X,Y,Z) (7)

Figure 5: Example Problem to Relevancy Testing

meta-interpretation(UDMI)[Stickel 1991] into
MGTP /G. By using upside-down meta-interpretation,
the above problem was compiled into the bottom-up rules
in Figure 6.

Note that this is against the range restricted rule but
is safe with Prolog-unification.

The other method is to keep the positive disjunctive
clauses obtained by the process of reasoning. False checks
are made independently on each literal in the disjunc
tive model elements with unit models and if the check
succeeds then that literal is eliminated. The disjunc
tive models can be sorted by their length. This method
showed considerable speed-up for n-queens problems and
enumeration of finite algebra.

true -+ gp(c, X, Y).
gp(c, X, Y), p(c, X, Y) -+ false.

true -+ gq(X, c, Y).
gq(X, c, Y), q(X, c, Y) -+ false.

true -+ gr(X, Y, c).
gr(X, Y, c), r(X, Y, c) -+ false.

true -+ s(a)
true -+ s(b)
true -+ s(c)

s(X), s(Y), s(Z),
gp(X, Y, Z), gq(X, Y, Z), gr(X, Y, Z) -+

p(X,Y,Z);q(X,Y,Z);r(X,Y,Z)

(1 - 1)
(1 - 2)
(2 - 1)
(2 - 2)
(3 - 1)
(3 - 2)

(4)
(5)
(6)

(7)

Figure 6: Compiled code in UDMI

Meta-Programming in KLI

137

Developing fast meta-programs such as unification and
matching programs is very significant in making a prover
efficient. Most parts of proving processes are ~he ex
ecutions of such programs. The efficiency of a prover
depends on how efficient meta-programs are made.

In Prolog-Technology Theorem Provers such as PTTP
and SATCHMO, object-level variables2 are directly rep
resented by Prolog variables. With this representation,
most operations on variables and environments can be
performed beside the underlying system Prolog. This
means that we can gain high efficiency by using the func
tions supported by Prolog. Also, a programmer can use
the Prolog var predicate to write routines such as occur
rence checks in order to make built-in unification sound,
if such routines are necessary.

Unfortunately in KL1, we cannot use this kind of tech
nique. This is because:

1) the semantics of KL 1 never allow us to use a predi
cate like var,

2) KL1 built-in unification is not the same as its Prolog
coun terpart in that unification in the guard part of
a KL1 clause can only be one-way, and

3) a unification failure in the body part is regarded as
a program error or exception that cannot be back
tracked.

We should, therefore, treat an object-level variable as
constant data (ground term) rather than as a KLI vari
able. It forces us to write routines for unification, substi
tution, renaming, and all the other intricate operations of
variables and environments. These routines can become
extremely large and complex compared to the main pro
gram, and may make the overhead bigger.

To ease the programmer's burden, we developed .A1eta
Library. This is a collection of KL1 programs to sup
port meta-programming in KL1 [Koshimura et al., 1990].

2variables appearing in a set of given clauses

138

The meta-library includes facilities such as full unifica
tion with occurrence check, and variable management
rou tines. The performance of each program in the meta
library is relatively good. For example, unification pro
gram runs at 0.25 rv 1.25 times the speed of built-in uni
fication.

The major functions in meta-library are as follows.

unify(X,Y, Env,-NewEnv)
unify_oc(X,Y, Env,-NewEnv)
rnatch(Pattern,Terget, Env, -NewEnv)
oneway_unify(Pattern,Terget, Env,-NewEnv)
copy_terrn(X,-NewX, Env,-NewEnv)
shallow(X,Env, -NewNnv)
freeze(X,-FrozenX, Env)
rnelt(X,-MeltedX, Env)
create_env(-Env, Size)
fresh_var(Env, -VarAndNewEnv)
equal(X,Y, Env, -YN)
is_type(X,Env, -Type)
unbound(X, Env, -YN)
database (Request Stream)
get_object (KL1Terrn, -Object)
get_kll_term(Object, -KL1Term)

Over-Generation of Models

A more important issue with regard to the efficiency
of model generation based provers is reducing the total
amount of computation and memory space required in
proof processes.

Model-generation based provers must perform the fol
lowing three operations.

• create new model elements by applying the model
extension rule to the given clauses using a set of
model-extending atoms 6. and a model candidate
set M (model extension).

• make a subsumption test for a created atom to check
if it is subsumed by the set of atoms already being
created, usually by the current model candidate.

• make a false check to see if the unsubsumed model
element derives false by applying the model rejection
rule to the tester clauses (rejection test).

The problem with the model generation method is the
huge growth in the number of generated atoms and in
the computational cost in time and space, which is in
curred by the generation processes. This problem be
comes more critical when dealing with harder problems
which require deeper inferences (longer proofs), such as
Lukasiewicz problems.

To solve this problem, it is important to recognize that
proving processes are viewed as generation-and-test pro
cesses, and that generation should be performed only
when required by the test.

Table 1: Comparison of complexities (for unit tester
clause)

Algorithm T S G M
Basic pm2 f.lp 2m 4Ct p2 m 4 p3m 4

Full-test/Lazy pm'l. f.lm'l.Ct m'l. pm'l.

Lazy & Lookahead m'l. (ft/ p)mCt m/p m

t m is the number of elements in a model ca:ndidate when
false is detected in the basic algorithm.
t p is the survival rate of a generated atom, f.l is the rate of
successful conjunctive matchings (p ~ jt), and a(l ~ a ~ 2)
is the efficiency factor of a subsumption test.

For this we proposed a lazy model generation
algorithm[Hasegawa et ai., 1992] that can reduce the
amount of computation and space necessary for obtain
ing proofs.

Table 1 compares the complexities of the model gener
ation algorithms3 , where T(S/G) represents the number
of rejection tests (subsumption tests/model extensions),
and M represents the number of atoms stored.

From a simple analysis, it is estimated that the time
complexity of the model extension and subsumption test
decreasesfrom O(m4) in the algorithms without lazy con
trol to O(m) in the algorithms with lazy control. For
details, refer to [Hasegawa et ai., 1992].

Parallelizing MGTP

There are three major sources when parallelizing the
proving processes in the MGTP prover:' multiple model
candidates in a proof, multiple clauses to which model
generation rules are applied, and multiple literals in con
junctive matching.

Let us assume that the prime objective of using the
model generation method is to find a model as a solu
tion. There may be alternative solutions or models for
a given problem. We take it as OR-paralleli-sm to seek
these multiple solutions at the same time.

According to our assumption, multiple model candi
dates and multiple clauses are taken as sources for ex
ploiting OR-parallelism. On the other hand, multiple
literals are the source of AND-parallelism since all the lit
erals in a clause relate to a single solution, where shared
variables in the clause should have compatible values.

For ground non-Horn cases, it is sufficient to exploit
OR parallelism induced by case splitting. For Horn
clause cases, we have to exploit AND parallelism. The

3The basic algorithm taken by OTTER[McCune 1990) gener
ates a bunch of new atoms before completing rejection tests for
previously generated atoms. The full-test algorithm completes the
tests before the next generation cycie, but still generates a bunch of
atoms each time. Lookahead is an optimization method for testing
wider spaces than in Full-test/Lazy.

main source of AND parallelism is conjunctive matching.
Performing subsumption tests in parallel is also very ef
fective for Horn clause cases.

In the current MGTP, we have not yet considered the
non-ground and non-Horn cases.

(1) Parallelization of MGTP IG
With the current version of the MGTP IG, we have
only attempted to exploit OR parallelism on the
Multi-PSI machine.

(a) Processor allocation
The processor allocation methods that we
adopted achieve 'bounded-OR' parallelism in
the sense that OR-parallel forking in the prov
ing process is suppressed so as to meet re
stricted resource circumstances.

One way of doing this, called simple alloca
tion, is sketched as follows. We expand model
candidates starting with an empty model us
ing' a single master processor until the num
ber of candidates exceeds the number of avail
able processors, then distribute the remaining
tasks to slave processors. Each slave processor
explores the branches assigned without further
distributing tasks to any other processors. This
simple allocation scheme for task distribution
works fairly well since communication costs can
be minimized.

(b) Speed-up on Multi-PSI
One of the examples we used is the N-queens
problem given below.

C1 : true -t p(l, l)j p(l, 2)j ... j p(l, n).

Cn : true -t p(n,1)jp(n,2)j ... jp(n,n).

Cn+1 : p(Xl, Yl),p(X2 , 12),
unsaf e(X1' Yi, X 2 , 12)

-t false.

The first N clauses express every possible plac
ing of queens on an N by N chess board. The
last clause expresses the constraint that a pair
of queens must satisfy. So, the problem would
be solved when either one model (one solution)
or all the models (all solutions) are obtained
for the clause set. The performance has been
measured on an MGTP IG prover running on a
Multi-PSI using the simple allocation method
stated above.

The speedup obtained using up to 16 processors
are shown in Figure 7. For the 10-queens prob
lem, almost linear speedup is obtained as the
number of processors increases. The speedup

139

12 J.)j L.../·/ /
: : :: i .. // t ... ·····

10 11 i 1/~V :
t t i/)'/ __ l:~een

r4~-+-r-r~~+-..... ~y,:~~: ~-+~~~ ~~~
~ 8 ././: .:....-- 6queen

~) ,...y __ 4queen

./:

o 1 2 10 12 14 16

Numb.r of PEs

Figure 7: Speedup of MGTP IG on Multi-PSI
(N-queens)

rate is rather small for the 4-queens problem
only. This is probably because in such a small
problem, the constant amount of interpretation
overhead would dominate the proper tasks for
the proving process.

(2) Parallelization of MGTP IN
For MGTP IN, we have attempted to exploit AND
parallelism for Horn problems.

We have several choices when parallelizing model
generation based theorem provers:

1) proofs which change or remain unchanged ac
cording to the number of PEs used

2) model sharing (copying in a distributed mem
ory architecture) or model distribution, and

3) master-slave or master-less.

A proof changing prover may achieve super-linear
speedup while a proof unchanging prover can
achieve, at most, linear speedup.

The merit of model sharing is that time consuming
subsumption testing and conjunctive matching can
be performed at each PE independently with min
imal inter-PE communication. On the other hand,
the benefit of model distribution is that we can ob
tain memory scalability. The communication cost,
however, increases as the number of PEs increases,
since generated atoms need to flow to all PEs for
subsumption testing.

The master-slave configuration makes it easy to
build a parallel system by simply connecting a se
quential version of MGTP IN on a slave PE to the
master PE. However, it needs to be designed with
devices so as to minimize the load on the master

140

Table 2: Performance of MGTP /N (Th 5 and Th 7)

Problem 16 PEs 64 PEs
Time (sec) 41725.98 11056.12

Th5
Reductions 38070940 40759689
KRPS/PE 57.03 57.60

Speedup 1.00 3.77
Time (sec) 48629.93 13514.47

Th7
Reductions 31281211 37407531
KRPS/PE 40.20 43.25

Speedup 1.00 3.60

process. On the other hand, a master-less configu
ration, such as a ring connection, allows us to achieve
pipeline effects with better load balancing, whereas
it becomes harder to implement suitable control to
manage collaborative work among PEs.

Our policy in developing parallel theorem provers is
that we should distinguish between the speedup ef
fect caused by parallelization and the search-pruning
effect caused by strategies. In the proof chang
ing parallelization, changing the number of PEs is
merely betting, and may cause the strategy to be
changed badly even though it results in the finding
of a shorter proof.

Given the above, we implemented a proof unchang
ing version of MGTP /N in a master-slave configu
ration based on lazy model generation. In this sys
tem, generator and subsumption processes run in a
demand-driven mode, while tester processes run in a
data-driven mode. The main features of this system
are as follows:

1) Proof unchanging allows us to obtain greater
speedup as the number of PEs increases;

2) By utilizing the synchronization mechanism
supported by KL1, sequentiality in subsump
tion testing is minimized;

3) Since slave processes spontaneously obtain
tasks from the master and the size of each
task is well equalized, good load balancing is
achieved;

4) By utilizing the stream data type of KL1, de
mand driven control is easily and efficiently im
plemented.

By using the demand driven control, we can not
only suppress unnecessary model extensions and
subsumption tests but also maintain a high running
rate that is the key to achieving linear speedup.

Figure 8 displays the speedup ratio for con
densed detachment problems #3, #58, and #77,
taken from[McCune and Wos 1991], by running the

Speedup

16

14

12

10

8

6

4

2

0

---m- #3

--+-- #58
....... ;:;:; #77

ideal

2 4 6 8 10 12 14 16

No. of PEs

Figure 8: Speedup ratio

MGTP /N prover on Multi-PSI using 16PEs. The
execution times taken to solve these problems are
218, 12, and 37 seconds. As shown in the figure,
there is no saturation in performance up to 16 PEs
and greater speedup is obtained for the problems
which consume more time.

Table 2 shows the performance obtained by running
MGTP /N for Theorems 5 and 7 [Overbeek 1990],
which are also condensed detachment problems, on
Multi-PSI with 64 PEs. We did not use heuristics
such as sorting, but merely limited term size and
eliminated tautologies. Full unification is written in
KL1, which is thirty to one hundred times slower
than that written in C on SUN/3s and SPARCs.
Note that the average running rate per PE for 64
PEs is actually a little higher than that for 16 PEs.
With this and other results, we were able to obtain
almost linear speedup.

Recently we obtained a proof of Theorem 5 on
PIM/m with 127 PEs in 2870.62 sec and nearly 44
billion reductions (thus 120 KRPS/PE). Taking into
account the fact that the PIM/m CPU is about twice
as fast as that of Multi-PSI, we found that almost
linear speedup can be achieved, at least up to 128
PEs.

2.2 Reflection and Parallel
Meta-Programming System

Reflection is the capability to feel the current state of the
computation system or to dynamically modify it. The
form of reflection we are interested in is the comp'l.lta
tional reflection proposed by [Smith 1984]. We try to

incorporate meta-level computation and computational
reflection in logic programming language in a number of
directions.

As a foundation, a reflective sequential logic language
R-Prolog* has been proposed [Sugano 1990]. This lan
guage allows us to deal with syntactic and semantic ob
jects of the language itself legally by means of several
coding operators. The notion of computational reflec
tion is also incorporated, which allows computational
systems to recognize and modify their own computa
tional states. As a result, some of the extra-logical pred
icates in Prolog can be redefined in a consistent frame
work. We have also proposed a reflective parallel logic
programming language RGHC (Reflective Guarded Horn
Clauses) [Tanaka and Matono 1992]. In RGHC, a reflec
tive tower can be constructed and collapsed in a dynamic
manner, using reflective predicates. A prototype imple
mentation of RGHC has also been performed. It seems
that RGHC is unique in the simplicity of its implemen
tation of reflection. The meta-level computation can be
executed at the same speed as its object-level compu
tation. we also try to formalize distributed reflection,
which allows concurrent execution of both object level
and meta level computations [Sugano 1991]. The scope
of reflection is specified by grouping goals that share local
environments. This also models the eventual publication
of constraints.

We have also built up
several application systems based on meta-programming
and reflection. These are the experimental program
ming system ExReps [Tanaka 1991], the process oriented
GHC debugger [Maeda et al., 1990, Maeda 1992] and
the strategy management shell [Kohda and Maeda 91a,
Kohda and Maeda 1991b].

ExReps is an experimental programming environment
for parallel logic languages, where one can input pro
grams and execute goals. It consists of an abstract ma
chine layer and an execution system layer. Both lay
ers are constructed using meta-programming' techniques.
Various reflective operations are implemented in these
layers.

The process oriented GHC debugger provides high
level facilities, such as displaying processes and streams
in tree views. It can control a the behavior of a pro
cess by interactively blocking or editing its input stream
data. This makes it possible to trace and check program
execution from a programmer's point of view.

A strategy management shell takes charge of a
database of load-balancing strategies. When a user job
is input, the current leading strategy and several experi
mental alternative strategies for the job are searched for
in the database. Then the leading task and several ex
perimental tasks of the job are started. The shell can
evaluate the relative merits between the strategies, and
decides on the leading strategy for the next stage when
the tasks have terminated.

3 Applications
Reasoning

141

of Automated

ARS has a wider application area if connected with logic
programming and a formal approach to programming.
We extended MGTP to cover modal logic. This exten
sion has lead to abductive reasoning in AI systems and
logic programming with negation as failure linked with
broader practical applications such as fault diagnostics
and legal reasoning. We also focused on programming,
particularly parallel programs, as one of the major appli
cation area of formal logic systems in spite of difficulties.
There has been a long history of program synthesis from
specifications in formal logic. We are aiming to make
ARS, the foundational strength of this approach.

3.1 Propositional Modal Tableaux in
MGTP

MGTP's proof method and the tableaux proof
procedure[Smullyan 1968] are very close in computation
ally. Each rule of tableaux is represented by an input
clause for MGTP in a direct manner. In other words,
we can regard the input clauses for MGTP as a tableaux
implementation language, as Horn clauses are a program
ming language for Prolog.

MGTP tries to generate a model for a set of clauses in a
bottom-up manner. When MGTP successfully generates
a model, it is found to be satisfiable. Otherwise, it is
found to be unsatisfiable.

{
satisfiable

apply(MGTP, ASetOfClauses) = t' f' bl un sa zs za e

Since we regard MGTP as an inference system, a
propositional modal tableaux[Fitting 1983, Fitting 1988]
has been implemented in MGTP.

{
satisfiable

apply(MGT P, TableauxProver(Formula)) = t' f' bl unsa zs za e

In tableaux, a close condition is represented by a neg
ative clause, an input formula by a positive ~lause and
a decomposition rule by a mixed clause for MGTP in a
direct manner[Koshimura and Hasegawa 1991].

There are two levels in this prover. One is the MGTP
implementation level, the other is the tableaux imple
mentation level. The MGTP level is the inference sys
tem level at which we mainly examine speedup of infer
ence such as redundancy elimination and parallelization.
At the tableaux level, inference rules, which indicate the
property of a proof domain, are described. It follows
that we mainly examine the property of the proof do
main at the tableaux level. It is useful and helpful to
have these two levels, as we can separate the description
for the property of the domain from the description for
the inference system.

142

3.2 Abductive and N onmonotonic
Reasoning

Modeling sophisticated agents capable of reasoning with
incomplete information has been a major theme in AI.
This kind of reasoning is not only an advanced mech
anism for intelligent agents to cope with some particu
lar situations but an intrinsically necessary condition to
deal with commonsense reasoning. It has been agreed
that neither human beings nor computers can have all
the information relevant to mundane or everyday situa
tions. To function without complete information, intel
ligent agents should draw some unsound conclusions, or
augment theorems, by applying such methods as closed
world assumptions and default reasoning. This kind of
reasoning is nonmonotonic: it does not hold that the
more information we have, the more consequences we will
be aware of. Therefore, this inference has to anticipate
the possibility of later revisions of beliefs.

We treat reasoning with incomplete information as a
reasoning system with hypotheses, or hypothetical rea
soning [Inoue 1988], in which a set of conclusions may be
expanded by incorporating other hypotheses, unless they
are contradictory. In hypothetical reasoning, inference to
reach the best explanations, that is, computing hypothe
ses that can explain an observation, is called abduction.
The notion of explanation has been a fundamental con
cept for various AI problems such as diagnoses, synthesis,
design, and natural language understanding. We have in
vestigated methodologies of hypothetical reasoning from
various angles and have developed a number of abductive
and nonmonotonic reasoning systems.

Here, we shall present hypothetical reasoning sys
tems built upon the MGTP [Fujita and Hasegawa 1991J.
The basic idea of these systems is to translate formulas
with special properties, such as nonmonotonic provabil
ity (negation as failure) and consistency of ahductive ex
planations, into some formulas with a kind of modality
so that the MGTP can deal with them using classical
logic. The extra requirements for these special proper
ties are thus reduced to generate-and-test problems for
model candidates. These, can, then, be handled by the·
MGTP very efficiently through case-splitting of non-unit
consequences and rejection of inconsistent model candi
dates. In the following, we show how the MGTP can be
used for logic programs containing negation as failure,
and for abduction.

3.2.1 Logic Programs and Disjunctive
Databases with Negation as Failure

In recent theories of logic programming and deductive
databases, declarative semantics have been given to the
extensions of logic programs, where the negation-as
failure operator is considered to be a nonmonotonic
modal operator. In particular, logic programs or de-

ductive databases containing both negation as failure
(not) and classical negation (-.) can be used as a
powerful knowledge representation tool, whose appli
cations contain reasoning with incomplete knowledge
[Gelfond and Lifschitz 1991], default reasoning, and ab
duction [Inoue 1991aJ. However, for these extended
classes of logic programs, the top-down approach cannot
be used for computation because there is no local prop
erty in evaluating programs. For example, there has been
no top-down proof procedure which is sound with respect
to the stable model semantics for general logic programs.
We thus need bottom-up computation for correct evalu
ation of negation-as-failure formulas.

In [Inoue et al., 1992a], a bottom-up computation of
answer sets for any class offunction-free logic programs is
provided. These classes include the extended disjunctive
databases [Gelfond and Lifschitz 1991J, the proof proce
dure of which has not been found. In evaluating not P
in a bottom-up manner, it is necessary to interpret not P
with respect to a fixpoint of computation because, even
if P is not currently proved, P might be proved in sub
sequent inferences. We thus came up with a completely
different way of thinking for not. When we have to evalu
ate not P in a current model candidate we split the model
candidate in two: (1) the model candidate where P is as
sumed not to hold, and (2) the model candidate where it
is necessary that P holds. Each negation-as-failure for
mula not P is thus translated into negative and positive
literals with a modality expressing belief, i.e., "disbelieve
P" (written as -.KP) and "believe P" (written as KP).

Based on the above discussion, we translate any logic
program (with negation as failure) into a positive dis
junctive program (without negation as failure) of which
the MGTP can compute the minimal models. The fol
lowing is an example of the translation of general logic
programs. Let II be a general logic program consisting
of rules of the form:

Al (- A I+1 , ... , Am, not Am+1 , ••. , not An, (1)

where, n 2: m 2: I 2: 0, 1 2: I 2: 0, and each Ai is an atom.
Rules without heads are called integrity constraints and
are expressed by l = ° for the form (1). Each rule in II of
the form (1) is translated into the following MGTP rule:

A I+1, ..• , Am, -7 -.KAm +ll ···, -.KAn, All KAm +1 I ... I KAn·
(2)

For any MGTP rule of the form (2), if a model candidate
S' satisfies A I+1 , . .. , Am, then S' is split into n - m + I
(n 2: m 2: 0, ° ::; I ::; 1) model candidates. Pruning rules
with respect to "believed" or "disbelieved" literals are ex
pressed as the following integrity constraints. These are
dealt with by using object-level schemata on the MGTP.

-.KA, A-7

-.KA, KA-7

for every atom A

for every atom A

(3)

(4)

Given a general logic program II, we denote the set of
rules consisting of the two schemata (3) and (4) by tr(II),

and the MGTP rules obtained by replacing each rule (1)
of II by a rule (2). The MGTP then computes the fix
point of model candidates, denoted by M(tr(II)), which
is closed under the operations of the MGTP. Although
each model candidate in M(tr(II)) contains "believed"
atoms, we should confirm that every such atom is ac
tually derived from the program. This checking can be
done very easily by using the following constraint. Let
5' E M(tr(II)).

For every ground atom A, if K A E 5', then A E 5' .
(5)

Computation by using MGTP is sound and complete
with respect to the stable model semantics in the sense
that: 5 is an answer set (or stable model) of II if and
only if 5 is one of the atoms obtained by removing every
literal with the operator K from a model candidate 5' in
M(tr(II)) such that 5' satisfies condition (5).

Example: _ Suppose that the general logic program II
consists of the four rules:

R +- notR,
R +- Q,
P +- notQ,
Q +- not P.

These rules are translated to the following MGTP rules:

~ -,KR,R I KR,
Q~R,

~ -,KQ,P I KQ,
~ -,KP, Q I KP.

In this example, the first MGTP rule can be further re
duced to

~ KR.

if we prune the first disjunct by the schema (3). There
fore, the rule has computationally the same effect as the
integrity constraint:

+- notR.

This integrity constraint says that every answer set has
to contain R: namely, R should be derived. Now, it is
easy to see that M(tr(II)) = {51, 52, 53}' where 51 =
{KR,-,KQ,P,KP}, 52 = {KR,KQ,-,KP,Q,R}, and
53 = {KR, KQ, KP}. The only model candidate that
satisfies the condition (5) is 52, showing that {Q,R} is
the. unique stable model of II. Note that {P} is not
a stable model because 51 contains K R but does not
contain R.

In [Inoue et al., 1992a], a similar translation was also
given to extended disjunctive databases which contain
classical negation, negation as failure and disjunctions.
Our translation method not only provides a simple fix
point characterization of answer sets, but also is very

143

helpful for understanding under what conditions each
model is stable or unstable. The MGTP can find all
answer sets incrementally, without backtracking, and in
parallel. The proposed method is surprisingly simple and
does not increase the computational complexity of the
problem more than computation of the minimal models
of positive disjunctive programs. The procedure has been
implemented on top of the MGTP on a parallel inference
machine, and has been applied to a legal reasoning sys
tem.

3.2.2 Abduction

There are many proposals for a logical account of abduc
tion, whose purpose is to generate query explanations.
The definition we consider here is similar to that pro
posed in [Poole et al., 1987J. Let ~ be a set of formulas,
r a set of literals and G a closed formula. A set E of
ground instances of r is an explanation of G from (~, f)
if

1. ~ u E 1= G, and

2. ~ U E is consistent.

The computation of explanations of G from (~, r) can
be seen as an extension of proof-finding by introducing
a set of hypotheses from f that, if they could be proved
by preserving the consistency of the augmented theories,
would complete the proofs of G. Alternatively, abduc
tion can be characterized by a consequence-finding prob
lem [Inoue 1991b], in which some literals are allowed to
be hypothesized (or skipped) instead of proved, so that
new theorems consisting of only those skipped literals
are derived at the end of deductions instead of just de
riving the empty clause. In this sense, abduction can be
implemented by an extension of deduction, in particular
of a top-down, backward-chaining theorem-proving pro
cedure. For example, Theorist [Poole et al., 1987] and
SOL-resolution [Inoue 1991b] are extensions of the Model
Elimination procedure [Loveland 1978J.

However, there is nothing to prevent us from using
a bottom-up, forward-reasoning procedure to implement
abduction. In fact, we developed the abductive reason
ing system APRICOT /0 [Ohta and Inoue 1990], which
consists of a forward-chaining inference engine and the
ATMS [de Kleer 1986]. The ATMS is used to keep track
of the results of inference in order to avoid both repeated
proofs of subgoals and duplicate proofs among different
hypotheses deriving the same subgoals.

These two reasoning styles for abduction have both
merits and demerits, which are complementary to each
other. Top-down reasoning is directed to the given goal
but may result in redundant proofs. Bottom-up reason
ing eliminates redundancy but may prove subgoals unre
lated to the proof of the given goal. These facts suggest
that it is promising to simulate top-down reasoning using

144

a bottom-up reasoner, or to utilize cashed results in top
down reasoning. This upside-down meta-interpretation
[Bry 1990] approach has been attempted for abduction
in [Stickel 1991], and has been extended by incorporat
ing consistency checks in [Ohta and Inoue 1992].

We have already developed several parallel abductive
systems [Inoue et at., 1992b] using the the bottom-up
theorem prover MGTP. We outline four of them below.

1. MGTP+ATMS (Figure 9).

This is a parallel implementation of APRICOT /0
[Ohta and Inoue 1990] which utilizes the ATMS for
checking consistency. The MGTP is used as a
forward-chaining inference engine, and the ATMS
keeps a current set of beliefs M, in which each
ground atom is associated with some hypotheses.
For this architecture, we have developed an upside
down meta-interpretation method to incorporate the
top-down information [Ohta and Inoue 1992].

Parallelism is exploited by executing the parallel
ATMS. However, because there is only one chan
nel between the MGTP and the ATMS, the MGTP
often has to wait for the results of the ATMS. Thus,
the effect of parallel implementation is limited.

2. MGTP+MGTP (Figure 10).

This is a parallel version of the method described
in [Stickel 1991]. In addition, consistency is checked
by calling another M G TP (MGT P _2). In this sys
tem, each hypothesis H in f is represented by
fact(H, {H}), and each Horn clause in ~ of the
form:

Al A ... A An::) C,

is translated into an MGTP rule of the form:

n

fact(C, cc(U Ed),
i:::=+

where Ei is a set of hypotheses from f on which Ai
depends, and the function cc is defined as:

cc(E) = { ~I if ~ U E is consistent
if ~ U E is not consistent

A current set of beliefs M is kept in the form
of fact(A, E) representing a meta-statement that
L:; U E 1= A, but is stored in the inference engine
(!vI GT P _1) itself. Each time MGT P _1 derives a
new ground atom, the consistency of the combined
hypotheses is checked by MGT P-2.

The parallelism comes from calling multiple
MGT P -2's at one time. This system achieves more
speed-up than the MGTP+ATMS method. How
ever, since Jl.1GT P _1 is not parallelized, the effect of

parallelization depends heavily on how much consis
tency checking is being performed in parallel at one
time.

3. All Model Generation Method.

No matter how good the MGTP+MGTP method
might be, the system still consists of two differ
ent components. The possibilities for parallelization
therefore remain limited. In contrast, model gener
ation methods do not separate the inference engine
and consistency checking, but realize both functions
in a single MGTP. In such a method, the MGTP
is used not only as an inference engine but also as
a generate-and-test mechanism so that consistency
checks are automatically performed. For this pur
pose, we can utilize the extension and rejection of
model candidates supplied by the MGTP. Therefore,
multiple model candidates can be kept in distributed'
memories instead of keeping one global belief set
M, as done in the above two methods, thus great
amounts of parallelism can be obtained.

The all model generation method is the most direct
way to implement reasoning with hypotheses. For
each hypothesis H in f, we supply a rule of the form:

-7 H I..,KH, (6)

where ..,KH means that H is not assumed to be true
in the model. Namely, each hypothesis is assumed
either to hold or not to hold. Since this system may
generate 21r1 model candidates, the method is often
too explosive for several practical applications.

4. Skip Method.

To limit the number of generated model candidates
as much as possible, we can use a method to delay
the case-splitting of hypotheses. This approach is
similar to the processing of negation as failure with
the MGTP [Inoue et al., 1992a], introduced in the
previous subsection. That is, we do not supply any
rule of the form (6) for any hypothesis of f, but in
stead, we introduce hypotheses when they are nec
essary. When a clause in L:; contains negative occur
rences of abducible predicates HI," ., Hm (Hi E f,
m 2: 0) and is in the form:

Al A ... A Al A HI A ... A Hm ::) C , --..--
abducibles

we translate it into the following MGTP rule:

In this translation, each hypothesis in the premise
part is skipped instead of being resolved, and is
moved to the right-hand side. This operation is

145

Dependencies
ATMS

MGTP

Current Set of M
Beliefs

Model Generation Consistency Checks

Figure 9: MGTP+ATMS

MGTP_1
Hypotheses

MGTP_2

M Sat / Unsat
cc

Model Generation Consistency Checks

Figure 10: MGTP+MGTP

a counterpart to the Skip rule in the top-down
approach defined in [Inoue 1991b]. Just as in
schema (3) for negation as failure, a model candi
date containing both Hand -,KH is rejected by the
schema:

-,KH, H-t for every hypothesis H .

Some results of evaluation of these abductive systems
as applied to planning and design problems are described
in [Inoue et al., 1992b]. We are now improving their
performance for better parallelism. Although we need
to investigate further how to avoid possible combinato
rial explosion in model candidate construction for the
skip method, we conjecture that the skip method (or
some variant thereof) will be the most promising from
the viewpoint of parallelism. Also, the skip method
may be easily combined with negation as failure so that
knowledge bases can contain both abducible predicates
and negation-as-failure formulas as in the approach of
[Inoue 1991a].

3.3 Program Synthesis
by Realizability Interpretation

3.3.1 Program Synthesis by MGTP

We used Realizability Interpretation (an extension of
Curry-Howard Isomorphism) in the area of constructive
mathematics [Howard 1980], [Martin 1982] in order to
give an executable meaning to proofs obtained by effi
cient theorem provers.

Our approach for combining prover technologies and
Realizability Interpretation has the following advantages:

• This approach is prover independent and all provers
are possibly usable.

• Realizability Interpretation has a strong theoretical
background.

• Realizability Interpretation is general enough to
cover concurrent programs.

Two systems MGTP and PAPYRUS, developed in
ICOT, are used for the experiments on sorting algo
rithms in order to get practical insights into our ap
proach(Figure 11).

A model generation theorem prover (MGTP) imple
mented in KL1 runs on a parallel machine:Multi-PSI.
It searches for proofs of specification expressed as log
ical formulae. MGTP is a hyper-resolution based bot
tom up (infers from premises to goal) prover. Thanks
to KL1 programming technology, MGTP is simple but
works very efficiently if problems satisfy the range
restrictedness condition. The inference mechanism of
MGTP is similar to SATCHMO[Manthey and Bry 1988],
in principle. Hyper-resolution has an advantage for pro
gram synthesis in that the inference system is construc
tive. This means that no further restriction is needed to
avoid useless searching.

PAPYRUS (PArallel Program sYnthesis by Rea
soning Upon formal Systems) is a cooperative work
bench for formal logic. This system handles the
proof trees of user defined logic in Edinburgh Logical
Framework(LF)[Harper et al., 1987]. A typed lambda
term in LF represents a proof and a program can be
extracted from this term by lambda computation. This
system treats programs (functions) as the models of a log
ical formula by user defined Realizability Interpretation.
PAPYRUS is an integrated workbench for logic and pro
vides similar functions to PX[Hayashi and Nakano 1988],
Nuprl[Constable et aI., 1986], and Elf[Pfenning 1988].

We faced two major problems during research process:

• Program extraction from a proof in clausal form, and

146

PAPYRUS

~ Propositions I Subprograms , J--i Realizer ~rogram

Problem

s I I Equation

I Proposition

Goals

s I
I

ProofTrm

'" . MGTPprover ~I

•
I Demodulator

MGTP
-. Proof Tree } •
• Equality
• Reasoning

Figure 11: Pro.gram Synthesis by MGTP

• Incorporation of induction and equality.

The first problem relates to the fact that programs'
cannot be extracted from proofs obtained by using the
excluded middle, as done in classical logic. The rules for
transforming formulae into clausal form contains such a
prohibited process. This problem can be solved if the
program specification is given in clausal form because a
proof can be obtained from the clause set without us
ing the excluded middle. The second problem is that all
induction schemes are expressed as second-order propo
sitions. In order to handle this, second-order unification
will be needed, which still is impracticaL However, it
is possible to transform a second-order proposition to a
first-order proposition if the program domain is fixed.

Proof steps of equality have nothing to do with com
putation, provers can use efficient algorithms for equality
as an attached procedure.

3.3.2 A Logic System for Extr~cting Interactive
Processes

There has been some research
[Howard 1980, Martin 1982, Sato 1986] and
[Hayashi and Nakano 1988] into program synthesis from
constructive proofs. In this method, an interpretation of
formulas is defined, and the consistent proof of the for
mula can be translated into a program that satisfies the
interpretation. Therefore we can identify the formula as
the specification of the program, proof as programming,
and proof checking as program checking. Though this
method has many useful points, the definition of a pro
gram in this method is only ",\ TerI~ (function)". Thus
it is difficult to synthesize a program as a parallel process
by which computers can communicate with the outside
world.

We proposed a new logic fl, that is, a constructive
logic extended by introducing new operators fl and Q.
The operator fl is a fixpoint operator on formulae. We
can express the non-bounded repetition of inputs and
outputs with operators fl and Q. Further, we show a
method to synthesize a program as a parallel process like
CCS[Milner 1989] from proofs of logic fl. We also show
the proof of consistency of Logic fl and the validity of the
method to synthesize a program.

3.4 Application of Theorem
Proving to Specification of a
Switching System

We apply a theorem proving technique to the software
design of a switching system, whose specifications are
modeled by finite state diagrams.

The main points of this project are the following:

1) Specification description language Ack, based on a
transi tion system.

2) Graphical representation in Ack.

3) Ack interpreter by MGTP.

We introduce the protocol specification description
language, Ack. It is not necessary to describe all state
transitions concretely using Ack, because several state
transitions are deduced from one expression by means
of theorem proving. Therefore, we can get a complete
specification from an ambiguous one.

Ack is based on a transition 'system (8, So, A, T), where
8 is a set of state, So (E S) is an initial state, A is a set
of actions, and T(T ~ 8 x A x 8) is a set of transition
relations.

onhook(a)

........ ~
)idle(a)

..•....•.•.••. ;.

Figure 12: An example of Ack specification

Graphical representation in Ack consists of labeled cir
cles and arrows. A circle means a state and an arrow
means an action. Both have two colors: black and gray.
This means that when a gray colored state transition ex
ists a black colored state transition exists.

Textual phrase representation in Ack can be repre
sented by a first order predicate logic by the following.

VX3Y(A[X] --+ B[X, Y]).

where A[X] and B[X, Y] are conjunctions of the fol
lowing atomic formulas.

state(S) - S means a state.

trans(A, So, Sl) - An action A means a state So to a
state S1'

A[X] corresponds to grayed color state transitions and
B[X, Y] corresponds to black color state transitions.

The Ack interpreter is described by MGTP. This type
offormula is translated into an MGTP formula. A set of
models deduced from Ack specification formulae form a
complete state transition diagram.

Figure 12 shows an example of Ack specification.
Rule 1 of Figure 1 means the existence of an ac

tion sequence from an initial state idl e(a) such that
offhook(a) --+ dial(a,b) --+ offhook(b). This is rep
resented by the following formula.

--+ trans(offhook(a), idle(a), dt(a)),

trans(dial(a, b), dt(a), rbt(a)),

trans(ofihook(b), rbt(a), x(a, b)).

Rule 2 of Figure 1 means that the action offhook(a)
changes any state to idle(a). It is represented by the
following formula.

VS(state(S) 1\ state(idle(a))

--+trans(onhook(a), S, idle(a)))

Figure 13 shows an interpretation of the result of Fig
ure 12.

In this example, the following four transitions are au
tomatically generated.

147

Figure 13: An interpretation result of Ack specification

• action onhook(a) from idle(a) to idle(a).

• action onhook(a) from dt(a) to idle(a).

• action onhook(a) from rbt(a) to idle(a).

• action onhook(a) from x(a, b) to idle(a).

3.5 MENDELS ZONE: A Parallel Pro-
gram Development System

MENDELS ZONE is a software development system for
parallel programs. The target parallel programming lan
guage is MENDEL, which is a textual form of Petri Nets,
MENDEL is then translated into the concurrent logic
programming language KLI and executed on the Multi
PSI. MENDEL is regarded as a more user-friendly ver
sion of the language. MENDEL is convenient for the
programmer to use to design cooperating discrete event
systems.

MENDELS ZONE provides the following functions:

1) Data-flow diagram visualizer
[Honiden et al., 1991]

2) Term rewriting system:
Metis[Ohsuga et al., 90][Ohsuga et al., 91]

3) Petri Nets and temporal logic based programming en
vironment
[Uchihira et al., 90a][Uchihira et al., 90b]

For 1), we define the decomposition rule for data-flow
diagram and extract the MENDEL component from de
composed data-flow diagrams. A detailed specification
process from abstract specification is also defined by a
combination of data-flow diagrams and equational for
mulas.

For 2), Metis is a system to supply experimental envi
ronment for studying practical techniques for equational
reasoning. The policy of developing Metis is enabling
us to implement, test, and evaluate the latest techniques
for inference as rapidly and freely as possible. The ker
nel function of Metis is Knuth-Bendix (KB) completion
procedure. We adopt Metis as a tool for verifying the
MENDEL component. The MENDEL component can
be translated into a component of Petri Nets.

For 3), following sub-functions are provided:

148

1. Graphic editor

The designer constructs each component of Petri
Nets using the graphic editor, which provides cre
ation, deletion, and replacement. This editor also
supports expansion and reduction of Petri Nets.

2. Method editor

The method editor provides several functions spe
cific to Petri Nets. Using the method editor, the
designer describes methods (their conditions and ac
tions) in detail using KLl.

3. Component library

Reusable component are stored in the component
library. The library tool supports browsing and
searching for reusable components.

4. Verification and synthesis tool

Only the skeletons of Petri Nets structures are auto
matically retracted (slots and KL1 codes of methods
are ignored) since our verification and synthesis are
applicable to bounded net. The verification tools
verifies whether Petri Nets satisfy given temporal
logic constraints.

5. Program execution on Multi-PSI

4

The verified Petri Nets are translated into their tex
tual form (MENDEL programs). The MENDEL
programs are compiled into KL1 programs, which
can be executed on Multi-PSI. During execution, fir
ing methods are displayed on the graphic editor, and
values of tokens are displayed on the message win
dow. The designer can check visually that program
behaves to satisfy his expectation.

Advanced
Learning

Inference and

It is expected that we will, before long, face a software
crisis in which the necessary quantity of computer soft
,,\Tare cannot be provided even if we were all to engage in
software production. In order to avoid this crisis, it is
necessary for a computer system itself to produce soft
ware or new information adaptively in problem-solving.
The aim of the study on advanced inference and learning
is to explore the underlying mechanism for such a system.

In the current stage in which we have no absolute
approach to the goal, we have had to do exhaustive
searches. We have taken three different but co-operative
approaches: logical, computational and empirical In the
logical approach, analogical reasoning has been analyzed
formally and mechanisms for analogical reasoning have
been explored. In the computational approach, we have
studied inventing new predicates, which are one of the
lnost serious problems in learning logic programs. \Ale

have also investigated the application of minimally multi
ple generalization for constructive logic pograms learning.
In the empirical approach, we have studied automated
programming, especially, the logic program transforma
tion and synthesis method based on unfold/fold trans
formation which is a well-known technique for deriving
correct and efficient programs.

The following subsections briefly describe these studies
and their results.

4.1 Analogical Reasoning

Analogical reasoning is often said to be at the very core
of human problem-solving and has long been studied in
the field of artificial intelligence. We treat a general type
of analogy, described as follows: when two objects, B
(called the base) and T (called the target), share a prop
erty S (called the similarity), it is conjectured that T
satisfies another property P (called the projected prop
erty) which B satisfies as well.

In the study of analogy, the following have been central
problems:

1) Selection of an object as a base w.r.t a target.

2) Selection of pertinent properties for drawing analo
gies.

3) Selection of a property for projection w.r .. t. a certain
similarity.

Unfortunately, most previous works were only partially
successful in answering these questions, by proposing so
lu tions a priori.

Our objective is to clarify, as formally aspossible,the
general relationship between those analogical factors T,
B, S, and P under a given theory A. To find the relation
ship bvetween the analogical factors would answer these
problems once and for all. In [Arima 1992, Arima 1991],
we clarify such a relation and show a general solution.

When analyzing analogical reasoning formally based
on classical logic, the following are shown to be reason
able:

• Analogical reasoning is possible only if a certain form
of rule, called the analogy prime rule (APR), is a
ded ucti ve theorem of a given theory. If we let S (x) =
~(x,S) and P(x) = II(x,P), then the rule has the
following form:

v x, s, p. J a tt (S , p) 1\ Job j (X , S) 1\ ~ (X, S) ::) II (X , p) ,

where each of Jatt(s,p), Jobj(X,S), ~(x,s) and
II(x,p) are formulae in which no variable other than
its argument occurs freely.

• An analogical conclusion is derived from the APR,
together with two particular conjectures: one conjec
ture is Jatt(S, P) where, from the information about

the base case, E(B, S) (= S(B)) and II(B, P) (=
P(B)). The other is Jobj(T, S) where, from the in
formation about the target case, E(T, S)(= S(T)).

Also, a candidate based on abduction + deduction is
shown for a non-deductive inference system which can
yield both conjectures.

4.2 Machine Learning of Logic
Programs

Machine Learning is one of the most important themes
in the area of artificial intelligence. A learning ability is
necessary not only for processing and maintaining a large
amount of knowledge information but also for realizing
a user-friendly interface. We have studied the invention
of new predicates is one of the most serious problems in
learning logic programs. We have also investigated the
application of minimally multiple generalization to the
constructive learning of logic programs.

4.2.1 Predicate Invention

Shapiro's model inference gives a very important strat
egy for learning programs - an incremental hypothesis
search using contradiction backtracing. However, his
theory assumes that an initial hypothesis language with
enough predicates to describe a target model is given to
the learner. Furthermore, it is assumed that the teacher
knows the intended model of all the predicates. Since this
assumption is rather severe and restrictive, for the prac
tical applications of learning logic programs, it should be
removed. To construct a learning system without such
assumptions, we have to consider the problem of predi
cates invention.

Recently, several approaches to this challenging and
difficult problem have been pre
sented [Muggleton and Buntine 1988], and [Ling 1989].
However, most of them do not give sufficient analysis
on the computational complexity of the learning process,
which is where the hypothesis language is growing. We
discussed the problem as nonterminal invention in gram
matical inference. As is well known, any context-free
grammar can be expressed as a special form of the DCG
(definite clause grammar) logic program. Thus, nonter
mina.l invention in grammatical inference corresponds to
predicate invention.

We have proposed a polynomial time learning al
gorithm for the class of simple deterministic lan
guages based on nonterminal invention and contradic
tion backtracking[Ishizaka 1990]. Since the class of sim
ple deterministic languages strictly includes regular lan
guages, the result is a natural extension of our previous
work[Ishizaka 1989].

149

4.2.2 Minimally Multiple Generalization

Another important problem in learning logic programs
is to develop a constructive algorithm for learning.
Most learning by induction algorithms, such as Shapiro's
model inference system, are based on a search or enumer
ative method: While search and enumerative methods
are often very powerful, they are very expensive. A con
structive method is usually more efficient than a search
method.

In the constructive learning of logic programs, the no
tion of least generalization [Plotkin 1970] plays a central
role. Recently, Arimura proposed a notion of minimally
multiple generalization (mmg) [Arimura 1991], a natural
extension of least generalization. For example, the pair
of heads in a clause in a normal append program is one
head in the mmg for the Herbrand model of the program.
Thus, mmg can be applied to infer the heads of the tar
get program. Arimura has also given a polynomial time
algorithm to compute mmg.

We are now investigating an efficient constructive
learning method using mmg.

4.3 Logic Program Transformation
/ Synthesis

Automated programming is one important advanced in
ference problem. In researching
automatic program transformation and synthesis, the un
fold/fold transformation [Burstall and Darlington 1977,
Tamaki and Sato 1984] is a well-known program tech
nique to derive correct and efficient programs.

Though unfold/fold rules provide a very powerful
methodology for program development, the application
of those rules needs to be guided by strategies to obtain
efficient programs. In unfold/fold transformation, the ef
ficiency improvement is mainly the result of finding the
recursive definition of a predicate, by performing folding
steps. Introduction of auxiliary predicates often allows
folding steps. Thus, invention of new predicates is one of
the most important problems in program transformation.

On the other hand, unfold/fold transformation is often
utilized for logic program synthesis. In those studies, un
fold/fold rules are used to eliminate quantifiers by folding
to obtain definite clause programs from first order fornm
lae. However, in most of those studies, unfold/fold rules
were applied nondeterministically and general methods
to derive definite clauses were not known.

We have studied logic program transformation and
synthesis method based on unfold/fold transformation
and have obtained the following results.

(1) We investigated a strategy of logic program trans
formation based on unfold/fold
rules [Kawamura 1991]. New predicates synthesized
automatically to perform folding. We also extended

150

this method to incorporate goal replacement trans
formation [Tamaki and Sato 1984J.

(2) We showed a characterization of classes of first order
formulae from which definite clause programs can
be derived automatically [Kawamura 1992J. Those
formulae are described by Horn clauses extended
by universally quantified implicational formulae. A
synthesis procedure based on generalized unfold/fold
rules [Kanamori and Horiuchi 1987J is given, and
with some syntactic restrictions, those formulae suc
cessfully transformed into equivalent definite clause
programs.

5 Conclusion

We have overviewed research and -development of parallel
automated reasoning systems at ICOT. The constituent
research tasks of three main areas provided us with the
following very promising technological results.

(1) Parallel Theorem Prover and its implementa
tion techniques on PIM
We have presented two versions of a model
generation theorem prover MGTP implemented in
KL1: MGTP /G for ground models and MGTP /N
for non-ground models. We evaluated their perfor
mance on the distributed memory multi-processors
Multi-PSI and PIM.

Range-restricted problems require only matching
rather than full unification, and by making full use
of the language features of KL1, excellent efficiency
was achieved from MGTP /G.

To solve non-range-restricted problems by the model
generation method, however, MGTP /N is restricted
to Horn clause problems, using a set of KL1 meta
programming tools called the Meta-Library, to sup
port the full unification and the other functions for
variable management.

To improve the efficiency of the MGTP provers, we
developed RAMS and MERC methods that enable
us to avoid redundant computations in conjunctive
matching. We were able to obtain good performance
results by using these methods on PSI.

To ease severe time and space requirements in prov
ing hard mathematical theorems (such as condensed
detachment problems) by MGTP /N, we proposed
the lazy model generation method, which can de
crease the time and space complexity of the basic
algorithm by several orders of magnitude. Our re
sults show that significant saving in computation
and memory can be realized by using the lazy al
gOl'ithm.

For non-Horn ground problems, case splitting was
used as the basic seed of OR parallel MGTP /G.

This kind of problem is well-suited to MIMD ma
chine such as Multi-PSI, on which it is necessary
to make granularity as large as possible to mini
mize communication costs. We obt'ained an almost
linear speedup for the n-queens, pigeon hole, and
other problems on Multi-PSI, using a simple alloca
tion scheme for task distribution.

For Horn non-ground problems, on the other hand,
we had to exploit the AND parallelism inherent
to conjunctive matching and subsumption. We
found that good performance and scalability were
obtained by using the AND parallelization scheme
of MGTP/N.

In particular, our latest results, obtained with the
MGTP /N prover on PIM/m, showed linear speed
up on condensed detachment problems, at least up
to 128 PEs. The key technique is the lazy model gen
eration method, that avoids the unnecessary compu
tation and use of time and space while maintaining
a high running rate.

The full unification algorithm, written in KL1 and
used in MGTP /N, is one hundred times slower than
that written in C on SPARCs. We are considering
the incorporation of built-in firmware functions to
bridge this gap. But developing KL1 compilation
techniques for non-ground models, we believe, will
further contribute to parallel logic programming on
PIM.

Through the development of MGTP provers, we con
firmed that KL1 is a powerful tool for the rapid
prototyping of concurrent systems, and that paral
lel automated reasoning systems can be easily and
effectively built on the parallel inference machine,
PIM.

(2) Applications

The modal logic prover on MGTP /G realizes two ad
vantages. The first is that the redundancy elimina
tion and parallelization of MGTP /G directly endow
the prover with good performance. The second is
that direct representation of tableaux rules of modal
logic as hyper-resolution clauses are far more suited
to adding heuristics for performance. This prover
exhibited excellent benchmark results.

The basic idea of non-monotonic and abductive sys
tems on MGTP is to use the MGTP as an meta
interpreter for each system's special properties, such
as nonmonotonic provability (negation as failure)
and the consistency of abductive explanations, into
formulae having a kind of modality such that MGTP
can deal with them within classical logic. The ex
tra requirements for these special properties are thus
reduced to "generate-and-test" problems of model
candidates that can be efficiently handled by MGTP

through the case-splitting of non-unit consequences
and rejection of inconsistent model candidates.

We used MGTP for the application of program syn
thesis in two ways.

In one approach, we used Realizability Interpreta
tion(an extension of Curry-Howard Isomorphism),
an area of constructive mathematics, to give exe
cutable meaning to the proofs obtained by efficient
theorem provers.

Two systems, MGTP and PAPYRUS, both devel
oped in ICOT, were used for experiments on sort
ing algorithms to obtain practical insights into our
approach. We performed experiments on sorting
algorithms and Chinese Reminder problems and
succeeded in obtaining ML programs from MGTP
proofs.

To obtain parallel programs, we proposed a new logic
~l, that is a constructive logic extended by introduc
ing new operators ~ and q. Operator ~ is a fix
point operator on formulae. We can express the non
bounded repetition of inputs and outputs with op
erators ~ and q. Furthermore, we 'showed a method
of synthesizing "program" as a parallel process, like
CCS, from proofs of logic~. We also showed the
proof of consistency of Logic ~ and the validity of
the method to synthesize "program".

Our other approach to synthesize parallel programs
by MGTP is the use of temporal logic, in which spec
ifications are modeled by finite state diagrams, as
follows.

1) Specification description language Ack, based on
a transition system.

2) Graphical representation in Ack.

3) Ack interpreter by MGTP.

It is not necessary to describe all state transitions
concretely using Ack, because several state transi
tions are deduced from one expression by theorem
proving in temporal logic. Therefore, we can obtain
a complete specification from an ambiguous one.

Another approach is to use term rewriting sys
tems(Metis). MENDELS ZONE is a software de
velopment system for parallel programs. The target
parallel programming language is MENDEL, which
is a textual form of Petri Nets, that is translated into
the concurrent logic programming language KLI and
executed on Multi-PSI.

We defined the decomposition rules for data-flow di
agrams and subsequently extracted programs. Metis
provides an experimental environment for studying
practical techniques by equational reasoning, of im
plement, and test. The kernel function of Metis is

151

the Knuth-Bendix (KB) completion procedure. We
adopt Metis to verify the components of Petri Nets.

Only the skeletons of Petri Net structures are au
tomatically retracted (slots and the KLI codes of
methods are ignored) since our verification and syn
thesis are applicable to a bounded net. The verifi
cation tool verifies whether Petri Nets satisfy given
temporal logic constraints.

(3) Advanced Inference and Learning
To extend the reasoning power of AR systems, we
have taken logical, computational, and empirical ap
proaches.

In the logical approach, analogical reasoning, con
sidered to be at the very core of human problem
solving, has been analyzed formally and a mecha
nism for analogical reasoning has been explored. In
this approach, our objective was to clarify a gen
eral relationship between those analogical factors T,
B, Sand P under a given theory A, as formally
as possible. Determining the relationship between
the analogical factors would answer these problems
once and for all. We clarified the relationship and
formulated a general solution for them all.

In the computational approach, we studied the in
venting of new predicates, one of the most serious
problems in the learning of logic programs. We pro
posed a polynomial time learning algorithm for the
class of simple deterministic languages, based on
nonterminal invention and contradiction backtrac
ing. Since the class of simple deterministic languages
includes regular languages, the result is a natural
extension of our previous work. We have also inves
tigated the application of minimally multiple gener
alization to the constructive learning of logic pro
grams. Recently, Arimura proposed the notion of
minimally multiple generalization (mmg) . vVe are
now investigating an efficient constructive learning
method that uses mmg.

In the empirical approach, we have studied auto
mated programming, especially, the logic pTogram
transformation and synthesis method based on an
unfold/fold transformation, a well-known means of
deriving correct and efficient programs. We inves
tigated a strategy for logic program transformation
based on unfold/fold rules. New predicates are syn
thesized automatically to perform folding. We also
extended this method to incorporate a goal replace
ment transformation.

We also showed a characterization of the classes of
first order formulae, from which definite clause pro
grams can be derived automatically. These formulae
are described by Horn clauses, extended by univer
sally quantified implicational formulae. A synthe
sis procedure based on generalized unfold/fold rules

152

is given, and with some syntactic restrictions, these
formulae can be successfully transformed into equiv
alent definite clause programs.

These results contribute to the development of FGCS,
not only in AI applications, but also in the foundation of
the parallel logic programming that we regard as being
the kernel of FGCS.

Acknowledgment

The research on automated reasoning systems was car
ried out by the Fifth Research Laboratory at ICOT in
tight cooperation with five manufactures. Thanks are
firstly due to who have given support and helpful com
ments, including Dr. Kazuhiro Fuchi, the director of
ICOT, and Dr. Koichi Furukawa; the deputy director of
ICOT. Many fruitful discussions took place at the meet
ings of Working Groups: PTP, PAR, ANR, and ALT.
We would like to thank the chair persons and all other
members of the Working Groups. Special thanks go to
many people at the cooperating manufacturers in charge
of the joint research programs.

References

[Fuchi 1990J K. Fuchi, Impression on KL1 programming
- from my experience with writing parallel provers
-, in Proc. of KLl Programming Workshop '90,
pp.131-139, 1990 (in Japanese).

[Hasegawa et al., 1990J R. Hasegawa, H. Fujita and
M. Fujita, A Parallel Theorem Prover in KL1 and
Its Application to Program Synthesis, in Italy
Japan-Sweden Workshop '90, ICOT TR-588, 199B.

[Fujita and Hasegawa 1990J H. Fujita and R. Hasegawa,
A Model Generation Theorem Prover in KL1 Using
Ramified-Stack Algorithm, ICOT TR-606, 1990.

[Hasegawa 1991J R. Hasegawa, A Parallel Model Gen
eration Theorem Prover: MGTP and Further
Research Plan, in Proc. of the Joint American
Japanese Workshop on Theorem Proving, Argonne,
Illinois, 1991.

[Hasegawa et al., 1992J R. Hasegawa, M. Koshimura and
H. Fujita, Lazy Model Generation for Improv
ing the Efficiency of Forward Reasoning Theorem
Provers, ICOT TR-751, 1992.

[Koshimura et al., 1990J M. Koshimura, H. Fujita and
R. Hasegawa, Meta-Programming in KL1, ICOT
TR-623, 1990 (in Japanese).

[Manthey and Bry 1988J R. Manthey and F. Bry,
SATCHMO: a theorem prover implemented in Pro
log, in Proc. of CADE 88, Argonne, illinois, 1988.

[Nitta et al., 1992J K. Nitta, Y. Ohtake, S. Maeda,
M. Ono, H. Ohsa¥i and K. Sakane, HELIC-II: a
legal resoning system on the parallel inference ma
chine, in Proc. of FGCS'92, Tokyo, 1992.

[Stickel 1988J M.E. Stickel, A Prolog Technology Theo
rem Prover: Implementation by an Extended Pro
log Compiler, in Journal of Automated Reasoning
4 pp.353-380, 1988.

[McCune 1990J W.W. McCune, OTTER 2.0 Users
Guide, Argonne National Laboratory, 1990.

[McCune and Wos 1991] W.W. McCune and L. Wos, - .
Experiments in Automated Deduction with Con
densed Detachment, Argonne National Laboratory,
1991.

[Overbeek 1990J R. Overbeek, Challenge Problems, (pri
vate communication) 1990.

[Wilson and Loveland 1989] D. Wilson and D. Loveland,
Incorporating Relevancy Testing in SATCHMO,
Technical Report of CS(CS-1989-24), Duke Univer
sity, 1989.

[Fitting 1983] M. Fitting, Proof Methods for Modal and
Intuitionistic Logic, D.Reidel Publishing Co., Dor
drecht 1983.

[Fitting 1988] M. Fitting, "First-Order
Modal Tableaux", Journal of Automated Reason
ing, Vol.4, No.2, 1988.

[Koshimura and Hasegawa 1991]
M. Koshimura and R. Hasegawa, "Modal Propo
sitional Tableaux in a Model Generation Theorem
Prover" , In Proceedings of the Logic Programming
Conference '91, Tokyo, 1991 (in Japanese).

[Smullyan 1968] R.M. Smullyan, First-Order Logic, Vol
43 of Ergebnisse der Mathematik, Springer-Verlag,
Berlin, 1968.

[Arima 1991] J. Arima, A Logical Analysis of Relevance
in Analogy, in Proc. of Workshop on Algorithmic
Learning Theory ALT'91, Japanese Society for Ar
tificial Intelligence, 1991.

[Arima 1992] J. Arima, Logical Structure of Analogy, in
FGCS'92, Tokyo, 1992.

[Kohda and Maeda 91a] Y. Kohda and M. Maeda, Strat
egy Management Shell on a Parallel Machine, IIAS
RESEARCH Memorandum IIAS-RM-91-8E, Fu
jitsu, October 1991.

[Kohda and Maeda 1991b] Y. Kohda and M. Maeda,
Strategy Management Shell on a Parallel Machine,
in poster session of ILPS'91, San Diego, October
1991.

[Maeda et al., 1990] M. Maeda, H. Uoi, N. Tokura, Pro
cess and Stream Oriented Debugger for GHC pro
grams, Proceedings of Logic Programming Confer
ence 1990, pp.169-178, ICOT, July 1990.

[Maeda 1992] M. Maeda, Implementing a Process Ori
ented Debugger with Reflection and Program
Transformation, in Proc. of FGCS'92, Tokyo, 1992.

[Smith 1984] B.C. Smith, Reflection and Semantics in
Lisp, Conference Record of the 11th Annual ACM
Symposium on Principles of Programming Lan
guages, pp.23-35, ACM, January 1984.

[Sugano 1990] H. Sugano, Meta and Reflective Com
putation in Logic Programs and its Semantics,
Proceedings of the Second Workshop on Meta
Programming in Logic, Leuven, Belgium, pp.19-34,
April, 1990.

[Sugano 1991] H. Sugano, Modeling Group Reflection in
a Simple Concurrent Constraint Language, OOP
SLA '91 Workshop on Reflection and Metalevel Ar
chitectures in Object-Oriented Programming, 1991.

[Tanaka 1991] J. Tanaka, An Experimental Reflective
Programming System Written in GHC, Journal
of Information Processing, Vol.l4, No.1, pp.74-84,
1991.

[Tanaka and Matono 1992] J. Tanaka and F. Matono,
Constructing and Collapsing a Reflective Tower
in Reflective Guarded Horn Clauses, in Proc. of
FGCS'92, Tokyo, 1992.

[Arimura 1991] H. Arimura, T. Shinohara and S. Ot
suki, Polynomial time inference of unions of tree
pattern languages. In S. Arikawa, A. Maruoka,
and T. Sato, editors, Proc. ALT '91, pp. 105-114.
Ohmsha, 1991.

[Ishizaka 1989] H. Ishizaka, Inductive inference of regu
rar languages based on model inference. Interna
tional journal of Computer .fo/[athematics, 27:67-83,
1989.

[Ishizaka 1990] H. Ishizaka, Polynomial time learnability
of simple deterministic languages. Machine Learn
ing, 5(2):151-164, 1990.

[Ling 1989] X. Ling, Inventing theoretical terms in in
ductive learning of functions - search and con
structive methods. In Zbigniew W. Ras, editor,
lo.lethodologies for Intelligent Systems, 4, pp. 332-
341. North-Holland, October 1989.

[Muggleton and Buntine 1988] S. Muggleton
and W. Buntine, Machine invention of first-order
predicates by inverbng resolution. In Proc. 5th In
ternational Confe7'ence on lo.lachine Learning, pp.
339-352, 1988.

153

[Plotkin 1970] G.D. Plotkin, A note on inductive gener
alization. In B. Meltzer and D. Michie, editors, lo.la
chine Intelligence 5, pp. 153-163. Edinburgh Uni
versity Press, 1970.

[Burstall and Darlington 1977J R.M. Burstall
and J. Darlington, "A Transformation System for
Developing Recursive Programs", J.ACM, Vo1.24,
No.1, pp.44-67, 1977.

[Kanamori and Horiuchi 1987J T. Kanamori and K. Ho
riuchi, "Construction of Logic Programs Based
on Generalized Unfold/Fold Rules", Proc. of 4th
International Conference on Logic Programming,
pp.744-768, Melbourne, 1987.

[Kawamura 1991] T. Kawamura, "Derivation of Efficient
Logic Programs by Synthesizing New Predicates",
Proc. of 1991 International Logic Programming
Symposium, pp.611 - 625, San Diego, 1991.

[kawamura 1992J T. Kawamura, "Logic Program Syn
thesis from First Order Logic Specifications", to
appear in International Conference on Fifth Gen
eration Computer Systems 1992, Tokyo, 1992.

[Tamaki and Sato 1984] H. Tamaki and T. Sato, "Un
fold/Fold Transformation of Logic Programs",
Proc. of 2nd International Logic Programming
Conference, pp.127-138, Uppsala, 1984.

[Bry 1990] F. Bry, Query evaluation in recursive
databases: bottom-up and top-down reconciled.
Data & Knowledge Engineering, 5:289-312, 1990.

[de Kleer 1986] J. de Kleer, An assumption-based TMS.
Artificial Intelligence, 28:127-162, 1986.

[Fujita and Hasegawa 1991J H. Fujita and R. Hasegawa,
A model generation theorem prover in KLI us
ing a ramified-stack algorithm. In: Proceedings of
the Eighth International Conference on Logic Pro
gramming (Paris, France), pp. 535-54:8, MIT Press,
Cambridge, MA, 1991.

[Gelfond and Lifschitz 1991] M. Gelfond and V. Lifs
chitz, Classical negation in logic programs and dis
junctive databases. New Generation Computing,
9:365-385, 1991.

[Inoue 1988] K. Inoue, Problem solving with hypotheti
cal reasoning, in Proc. of FGCS'88, pp. 1275-1281,
Tokyo, 1988.

[Inoue 1991aJ K. Inoue, Extended logic programs with
default assumptions, in Proc. of the Eighth Inter
naUonal Conference on Logic Programming (Paris,
France), pp. 490-504, MIT Press, Cambridge, MA,
1991.

154

[Inoue 1991b] K. Inoue, Linear resolu-
tion for consequence-finding, To appear in: Ari
tijicial Intelligence, An earlier version appeared as:
Consequence-finding based on ordered linear reso
lution, in Proc. of IJCAI-91, pp. 158-164, Sydney,
Australia, 1991.

[Inoue et al., 1992a] K. Inoue, M. Koshimura and
R. Hasegawa, Embedding negation as failure into
a model generation theorem prover, To appear in
CADE 92, Saratoga Springs, NY, June 1992.

[Inoue et al., 1992b] K. Inoue, Y. Ohta, R. Hasegawa
and M. Nakashima, Hypothetical reasoning sys
tems on the MGTP, ICOT-TR 1992 (in Japanese).

[Loveland 1978] D.W. Loveland, Automated Theorem
Proving: A Logical Basis . . North-Holland, Ams
terdam, 1978.

[Ohta and Inoue 1990] Y. Ohta and K. Inoue, A
forward-chaining multiple context reasoner and its
application to logic design, in: Proceedings of the
Second IEEE International Conference on Tools for
A rt1ficial Intelligence, pp. 386-392, Herndon, VA,
1990.

[Ohta and Inoue 1992] Y. Ohta and K. Inoue, A
forward-chaining hypothetical reasoner based on
upside-down meta-interpretation, in Proc. of
FGCS'92, Tokyo, 1992.

[Poole et al., 1987J D. Poole, R. Goebel and R. Aleliu
nas, Theorist: a logical reasoning system for de
faults and diagnosis, In: Nick Cercone and Gordon
McCalla, editors, The Knowledge Frontier: Essays
in the Representation of Knowledge, pp. 331-352,
Springer-Verlag, New York, 1987.

[Stickel 1991J
M.E. Stickel, Upside-down meta-interpretation of
the model elimination theorem-proving procedure
for deduction and abd.uction, ICOT TR-664, 1991.

[Constable et al., 1986J R.1. Constable et aI, Implement
ing Mathematics with the Nuprt Proof Development
System) Prenticd-Hall, NJ, 1986.

[Hayashi and Nakano 1988J S. Hayashi and H. Nakano,
PX: A Computational Logic) MIT Press, Cam
bridge, 1988.

[Harper et at., 1987J R. Harper, F. Honsell and
G. Plotkin, A Framework for Defining Logics, in
Symposium on Logic in Computer Science, IEEE,
pp. 194-204, 1987.

[Pfenning 1988J F. Pfenning, Elf: A Language for Logic
Definition and Verified Meta-Programming, in

Fourth Annual Symposium on Logic in Computer
Science, IEEE, pp. 313-322, 1989.

[Takayama 1987J Y. Takayama, Writing-Programs as QJ
Proof and Compiling into Prolog Programs, in
Proc. of IEEE The Symposium on Logic Program
ming '87, pp. 278-287, 1987.

[Howard 1980] W.A. Howard, "The formulae-as-types
notion of construction" , in Essays on Combinatory
Logic, Lambda Calculus and Formalism, Academic
Press, pp.479-490, 1980.

[Martin 1982J P. Martin-Lof, "Constructive mathemat
ics and computer programming", in Logic, Method
ology, and Philosophy of Science VI, Cohen, 1.J. et
aI, eds., North-Holland, pp.153-179, 1982.

[Sato 1986] M. Sato, "QJ: A Constructive Logical Sys
tem with Types", France-Japan Artificial Intel
ligence and Computer Science Symposium 86,
Tokyo, 1986.

[Milner 1989] R. Milner, "Communication and Concur
rency", Prentice-Hall International, 1989.

[Honiden et al., 1990] S. Honiden et al., An Application
of Structural Modeling and Automated Reasoning
to Real-Time Systems Design, in The Journal of
Real-Time Systems, 1990.

[Honiden et at., 1991] S. Honiden et al., An Integra
tion Environment to Put Formal Specification into
Practical Use in Real-Time Systems, in Proc. 6th
IWSSD, 1991.

[Ohsuga et at., 91J A. Ohsuga et al., A Term Rewriting
System Generator, in Software Science and Engi
neering, World Scientific ,1991.

[Ohsuga et al., 90] A. Ohsuga et al., Complete E
unification based on an extension of the Knuth
Bendix Completion Procedure, in Pmc. of Work
shop on Word Equations and Related Topics, LNCS
572, 1990.

[Uchihira et al., 90aJ N. Uchihira et al., Synthesis of
Concurrent Programs: Automated Reasoning
Complements Software Reuse, in Proc. of 23th
HICSS, 1990.

[Uchihira et al., 90bJ N. Uchihira et al., Verification and
Synthesis of Concurrent Programs Using Petri Nets
and Temporal Logic, in Trans. IEICE, Vol. E73,
No. 12, 1990.

PROCEEDINGS OF THE INTERNA nONAL CONFERENCE
ON FIFTH GENERA nON COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 155

Natural Language Processing Software

Yuichi Tanaka

Sixth RE'sE'arch Laboratory
Institute for New Generation Computer Technology
4-28, Mita l-chome. Minato-ku. Tokyo 108. Japan

ytanaka@icot.or.jp

Abstruct

In the Fifth Generation Computer Systems project. the
goal of natural language processing (NLP) is to build an
intelligent user interface for the proto-type machine of
the Fifth Generation.

In the initial and intermediate stage of our project.
mathematical and linguistic theories of discourse under
standing was investigated and we built some experimen
tal systems for the theories. In the final stage. we have
built a system of general tools for NLP and, using them.
developed experiment.al systems for discourse processing.
based on the result and experience of the software devel
opment in the past two stages.

In the final stage, we have four themes of NLP research
and development.

The first theme, Language Knowledge-base, is a col
lection of basic knowledge for NLP including Japanese
grammar and Japanese dictionary. In the second theme,
Language Tool Box, we have developed several basic
tools especially for Japanese processing. Tools are: mor
phological and syntax analyzers, sentence generator. con
cordance system, and etc. These two themes form the
infrastructure of our NLP systems.

Experiment with discourse processing is the third and
main theme of our research. We have developed several
systems in this field including text generation, discourse
structure construction, and dialog systems.

The last theme is parallel processing. We have de
veloped an experimental system for cooperative paral
lel natural language processing in which morphological
analysis, syntax analysis, and semantic analysis are in
tegrated in a uniform process in a type inference frame
work.

1 Introduction

To establish an intelligent interface between machine and
human, it is necessary to research discourse processing.
In discourse processing we include not only discourse un~
derstanding where compter understands the contents of
utterances of human and infers the human's intention.

Parallel Natural Language Processing

Morphological, Syntactic, Semantic Analysis

based on Type Inference

Natural Language Interface

Discourse Processing Systems

Linguistic
Knowledge-base

Language
Tool Box

Figure 1: Overview of NLP Software

but also text generation by which more than one sen
tellCes expressing speaker's consistent assertion are pro
duced. We put this discourse processing research at the
center of our research and development activity. and also
develop some supporting tools and data as the infrastruc
ture.

Language Knowledge-base is a collection of basic
knowledge for natural language processing including
Japanese grammar and Japanese dictionary. We have
build a Japanese grammar in phrase structure grammar
based on unification grammar formalism. r ntil now.

156

there were no Japanese grammar with sufficient size for
practical use and usable by every researcher and devel
oper. The purposes of development of this grammar
are these two points. It is written in DCG (Definite
Clause Grammar) based on the exhaustive investigation
of Japanese language phenomena.

Also we have developed a .] apanese grammar based on
dependency grammar formalism. To reduce ambiguity
arisen during analysis. we introduced structural and lin
guistic constraints on dependency structure based on a
new concept 'rank' for each word and word pair.

Adding to the Japanese grammar. we have developed
a large-scale Japanese dictionary for morphological anal
ysis. It has about 1.50,000 entries including more than
40,000 proper nouns so that it can be used for morpho
logical analysis of newspaper articles. These grammar
and dictionary are described in section 2.

Language Tool Box is a collection of basic NLP tools
especially for Japanese processing. Input and output
modules for some experimental NLP systems we made so
far, mainly Japanese morphological analyzer. syntax an
alyzer and sentence generator. were useful for other NLP
applications. VVe have refined their user-interface. made
programs robust to unexpected inputs. and increased ef
ficiency to make them easier to apply to various applica.
tions.

Currently. not only input and output tools are in
cluded in this collection. but also supporting tools for
lexicographers and grammar writers such as concordance
system and grammar editor. The description of these
tools and their publication will be appeared in section :3.

Development of discourse processing systems is the
main theme of our research. vVe have collected rules
for language phnomena concerning discourse. and devel
oped several experimental systems in this field including
text generation, discourse structure construction. and di
alog systems. The text generation system produces one
or more paragraphs of text concerning to a given theme
based on its belief and judgement. rhe discourse struc
ture construction system uses discourse rules as a gram
mar to construct a tree-like discourse structure of a given
text. The experimental dialog systems handle user's in
tention. situation, and position to remove user's mis
understanding and to produce user friendly responces.
These system are described in section 4.

As parallel NLP experiment. we have developed a
small system for cooperative processing in which mor
phological analysis. syntax analysis. and semantic anal
ysis are amalgamated into a uniform process in a type
inference framework. This system. running on multi-PSI
machine. achieves about 12 speed up rate using :32 PEs.
Precise description of the system and the experiment will
be appeared in section .5.

The overview of the whole activity for these four
themes is shown in Figure 1.

2 Linguistic Knowledge-base

Language Knowledge-base is a collection of basic knowl
edge for natural language processing including Japanese
grammar and Japanese dictionary. We have build a
Japanese grammar in phrase structure grammar based
on unification grammar formalism. There has been no
set of standard Japanese grammar rules which people get
and handle easily and quickly. This is an obstacle for
researchers in Japanese language processing VI' ho try to
make experimental systems to prove 'some ideas or who
try to build application systems in various field. Our
Japanese grammar has been developed to overcome such
obstcles and designed as a standard in a sense that it
covers most of the general language phenomena and it is
written in a common form to various environment. DCG
(Definite Clause Grammar). Also we have developed a
Japanese grammar based on dependency grammar for
malism. Historically, there have been several Japanese
dependency grammar because it is recognized easier to
build a dependency grammar rules for Japanese because
of loose constraints on word order of Japanese language.
Vie introduced structural and linguistic constraints on
dependency structure in order to avoid structural am
biguity. These constraints are based on a new concept
'rank' for each word and word pair.

.\dding to the Japanese grammar. we have developed
a large-scale Japanese dictionary for morphological anal
ysis. It has about 150.000 entries including more than
-:1-0.000 proper nouns so that it can be used for morpho
logical analysis of newspaper articles.

The precise description of Language Knowledge-base
will be presented in [Sano and Fukumoto 92J submitted
to IeOT session of this conference.

2.1 Japanese Grammar

2.1.1 Localized Unification Grammar

Conventional Japanese grammar for computers are not
satisfactory to practical application because they lacked
formality. uniformity of precision and exhaustiveness
[Kuno and Shibatani 89J [Masuoka 89J [Nitta and Ma
suoka 89J.

Having made an exhaustive investigation, we collected
language phenomena and rules to explain those phenom
ena objectively expressed in a DCG style formal de
scription [Pereira 80J. This description is based on the
Unification Grammar formalism [Calder 89J [Carlson 89J
[Moens 89J. They covers most of the phenomena ap
pearing in contemporary written text [Sano 89J [Sano et
ai. 90J [Sano and Fukumoto 90J. We classified these
phenomena according to the complexity of correspond
ing surface expressions [Sano 91]. Grammar rules are
classified also according to their corresponding phnom
ena. The classification of phenomena (rules) is shown in
Table 1.

Table 1: Classification of Grammar Rules

level phenomena
1",2 single predicate
3",4 negation / aspect / honorification

5
subject+complement+predicate /
topicalization

6 passive / causative
7",8 modification (to nouns / to verbs)

9 particles (1) / coordination (2)
10", 11 compound sentence / condition

12
particles (2) / coordination (2) /
conjunction

The syntactic-semantic structure of sentence is shown
in Figure 2. In this figure, State-of-affairs (SOA) is the
minimum sub-structure of the whole structure. A SOA
has a predicate with some cases and optional comple
ments. Composition of one or more SOAs form a descrip
tion. The semantic contents of a sentence is a description
preceded by a Topic. And furthermore the semantics
of a sentence contains speaker's intention expressed by
.Modal.

According to this structure, rules of each level (Table 1)
are divided into several groups. Rules of outermost group
analyze speaker's intention through the expression at the
end of sentences. Rules of the second group analyze
topic-comment structure, that is a dependency relation
between a topicalized noun phrase marked by a particle
"wa" and the main predicate. And rules for analyzing
description, voice, etc. follow.

Topic +

Sentence

Contents

Description

SOA Relation

Pred
Nom
Temp
Loc

ComP1

+Modal

Figure 2: Syntactic-Semantic Structure of a Sentence

An Example of the rules for topic-comment structure

157

will be shown in Figure :3.

[{
SYN 1· } I 1 Cato(SYN 2. X 2 , topic(X2 , R~~l') REL2 . Fl. (X. Z)) ::}

Cat1(SYN 1.X1, REL1. F1, (X. Y)).
Cat'2(SYN'2.X2. REL2.F2 . (Y.Z)).

Figure 3: An Example of LUG Grammar Rules

2.1.2 Restricted Dependency Gramar

For .Japanese language. there has been many researche:;
on dependency grammar because there are no strong con
straints of word order in .J apanese [Kodama 87]. In these
researches. in order to determine whether a \-vord depends
on other. no globa.l informa.tion are used but that of onh'
these two words. However. this kind of local informatio~1
is not sufficient to recognize the structure of whole sen
tence including topic and ellipsis. Consequently. wrong
interpretation of a sentence are produced as a result of
dependency analysis [Sugimura and Fukumoto 89].

V.je introduced structural and linguistic constraints on
dependency structure in order to avoid this kind of struc
tural ambiguity. These constraints are described in terms
of rank for each word and word pair. Rank represents
strength of dependency between words which reflects
global information in a whole sentence [Fukumoto and
Sano 90]. Definition of ranks and their constraints are
described in [Sano and Fukumoto 92] in detail.

Figure 4 shows a structural ambiguity and its res
olution. For the sentence "Kare-ga yob'U-to dete-kita.
("When he called <PI, (/)2 appeared.)". on I." the interpre
tation (a) is adopted because an arc of rank a cannot
stretch over that of rank d.

a

a d

(a) Correct. (b) Wrong

Figure 4: Ambiguity Resolution in RDG Analysis

2.2 Japanese Dictionary

We have developed a concordance system as a tool in
Language Tool Box (LTB). To serve a huge amount of
text data for the concordance system, automatic mor
phological analysis is necessary. Our large-scale mor
phological Japanese dictionary has been designed to that
purpose.

This Japanese dictionary has about 1.50.000 entries in
cluding more than 40.000 proper nouns so that it can be
used for morphological analysis of newspaper articles.

158

2.3 Software Publication

Japanese grammar and Japanese dictionary stated above
will be distributed from ICOT. Japanese grammar ill
DCG form can be easily installed in any Prolog envi
ronment. Japanese dictionary will be distributed with
its access method and indexing program which produces
TRIE index file for the dictionary entries. Those dictio
nary programs are written in C.

3 Language Tool Box

Language Tool Box is a collection of basic. general
purpose NLP tools especially for Japanese processing.
In the initial and intermediate stage of this project. we
developed several experimental systems for discourse un
derstanding so far. As the result of the experiments.
the input and output modules for those systems. mainly
Japanese morphological analyzer. syntax analyzer and
sentence generator, were proved to be useful for other
~LP systems. Since then. we have refined their user
interface. made programs robust to unexpected inputs.
and increased efficiency to make them easier to apply to
various applications.

Currently. not only input and output tools are in
duded in this collection. but also supporting tools for
grammar writers and lexicographers such as concordance
system with complex key input. browsing / editing / ex
periment tools for Japanese grammar. and so on.

These software were not applicable for general ma
chines though they were designed general-purpose. be
cause they had been written in ESP. the user language
for Personal Sequential Inference Machine PSI. To solve
this problem, we transplanted some of these software to
CESP (Common ESP) language which was designed as a
similar programming language to ESP running on many
UNIX workstations.

3.1 Morphological Analysis Tools

Morphological analyzer LAX, located in the front end of
LTB, analyzes an unsegmented string of Japanese sen
tence into a sequence of words and composes seman
tics of each word from those of morphemes [Kubo et ai.
88J [Kubo 89J [Sugimura et al. 88J [Okumura and Mat
sumoto 87aJ [Okumura and Matsumoto 87bJ. It makes
use of connectivity matrix which originated from kana
kanji conversion [Aizawa and Ehara 73J. The morpheme
dictionary has a TRIE index [Nakajima and Sugimura
89J to improve search speed.

Since there will be, generally, more than one solution
for a input sentence in morphological analysis, the most
plausible solution is selected by the words minimizing
method [Yoshimura et ai. 82J. The morphology grammar
used in this system follows [Morioka 87J and [Sano et ai.
88J.

This system can be also used for developing and ex
tending morphology grammar and dictionary. User in
terface for that purpose has been deeply considered [Shi
raishi d al. 90] [Yoneda et al. 89J.

Configuration of the LAX system is shown in Figure ·5
in detail. Total system of this figure is implemented on
PSI machine in ESP (Extended Self-contained Prolog).
\Ve are now transplanting the system part by part in
CESP (Common ESP) to FNIX workstations.

,------ .. _ .. _--------- ----- .. -- _------- .. , , ,

i (------') ... (------') :
, Intermediate Dictionaries ,
\-- _-------- ------ _----------,

(Input)--+-1I..::=:====~t --+-11"::=:====~Ir---(Sem.)
Engint'

Figure .j: System Configuration of LAX

3.2 Syntax Analysis Tools

Basic algorithm of the syntax analyzer SAX, called AX
(Analyzer for syntaX), was first developed in a parallel
logic programming language PatIog as a parallel ana
lyzer, then transplanted in GHC [Ueda and Chikayama
90J into parallel analyzer PAX, and in Prolog and ESP
into sequencial analyzer SAX [Matsumoto and Sugimura
87] [Okumura and Matsumoto 87a].

The PAX system has been rewritten in KLI and serves
a practical syntax analyzer on Multi-PSI machines [Oku
mura and Matsumoto 87bJ [Satoh 90J. On the other
hand. SAX system runs on PSI machine (ESP version)
and UNIX worksta.tions (Sicstus-Prolog version; devel
oped at Kyoto University).

3.3 Grammar Writer's Workbench

We have cl.eveloped a tool for grammar writers. The tool,
named LINGUIST, has a simple all-in-one structure de
scribed in Fingure 6.

The purpose of this system is to help a grammar writer
in evaluation, tracing, and correction of his grammar
very easily.

The system has three tools: Generator, Accessor and
Debugger. The Generator is a BUP translator [Mat-

Levell

Grammar f41-t-.L..------i

Rules

Evaluation l.8==V
Sentences

Figure 6: Configuration of LINGUIST System

sumoto et al. 83a] [Matsumoto et al. 83b] itself which
reads a set of grammar rules written in DCG (Definite
Clause Grammar) [Pereira 80] and generates a syntax
parser. The resulting parser is a core of the system.

The Accessor is a tool for managing linguistic data
such as sentences for evaluation, result of analysis (in
ternal representation). One can inspect analysis result
with complicatedly nested structure (see section 2.1.1)
as a frame or as a graph using structural inspector of the
Accessor.

The Debugger contains screen tracer and source level
debugger, the former of which displays (partial) syntax
tree dynamically with a grammar rule used at that point,
and the lat~er provides correcting function to the source
grammar rules at run time.

The LINGUIST system is also transplanted in CESP
and, in this case, total system runs on UNIX machines.

3.4 CoacordaBCe Tool

When one begin to build a grammar or a dictionary, it is
indispensable to collect actual linguistic data from living
materials like literature, newspaper and documents.

Concordance or KWIC (Keyword in Context) system
is designed for this purpose. It stores large amount of
text data and provides searching function on it. When a
word or a combin~tion of words is put to the system, it
searches text database to retrieve sentences that contain
input word(s).

In our concordance system, not only word but also
variety of keyword specification are available as input.
One can specify compound keyword as

kl 11 k2 ... In-l kn

where ki denotes i-th keyword and Ii filler. Fillers, be
ing either definite length (0 or more) or wild card, spec-

159

ify number of words to be discarded between keywords.
Keyword can be one of the following or combination of
them:

- Surface form (kanji, inflected)
- Root form (kanji, uninflected)
- Reading (kana)
- Part of speech

- Inflection type
- Inflected form

One can thus specify a keyword like

{ POS/ verb,
Inflected_form/ rentai-ke i }.

This system was implemented in ESP on PSI machine
at first. then transplanted to ('ESP.

3.5 Other Tools

There are some more tools in LTB.
CIL is a variation of Prolog. It has frame-like data

types (PST; Partially Specified Term) and freeze control
structure. In the program segment

print (X?) ,

{name/ tanaka, agel 25} = {agel X},

when two PST's are unified, variable X i~ instantiated.
then the freezed term print(X?) is melted to print 25.

The sentence division tool is a one to divide long sen
tences into the combination of shorter ones to reduce
structural ambiguity. It is applied on LAX output.

The sentence generation tool [Ikeda et al. 88] gener
ates a Japanese sentence from a internal representation
of PST form: .

{relation/
{word/ tayo-1"u}

role/
{goal/

{comp/

modal/

{ modificand/
{word/ megumi},

{mood/ [inevitable]}}.

CIL is written in ESP, while other two tools were trans
planted to CESP.

3.6 Software Publication

Software tools introduced above will be distributed in
source codes from ICOT. Programs written in ('ESP can
be executed on several PNIX workstations. Access AIR
(AI Language Research Institute, Ltd.) for detail infor
mation of CESP language and how to obtain it.

160

Beliefs

Generat.ing Semantic
Contents of Argument.s

Linguistic Organization
with Argument
Strategy

FTS

Clause Level Organiza
tion of Orders and
Connections

Realizing Texts

Argument
Goal

Figure 7: Configuration of the Argument Text Genera
tion System

4 Discourse Processing Systems

In the exp~riments of discourse processing systems, we
have collected rules for language phnomena concerning
discourse, and developed several experimental systems in
this field including text generation, discourse structure
construction, and dialog systems.

The text generation system has a system's belief as a
knowledge-base, and produces one or more paragraphs
of text concerning to a given theme based on its belief
and judgement using rhetorical heuristics.

The discourse structure construction system uses rules
for classification of sentence types and of relationship
between sentences in a discourse to construct a tree-like
discourse structure of a given text.

4.1 Argument Text Generation

As described in the previous section, we have developed
sentence generation tool as one of the LTB tools. This
program generates single sentence from an internal rep
resentation which specifies many semantic and surface
attributes of the sentence precisely [Ikeda et al. 88J. As
a tooL it is not so convenient because the user must be
aware of internal representation and grammatical rules.

Moreover, main topic of sentence generation has:
shifted to paragraph or full text generation. And the
quality of generated sentences has raised higher so that
speaker's intention and position can be expressed [Toku
naga and Inui 91J. In order to realize such functions in
generation, planning text structure, semantic contents,
hearer's intention is important [Appelt 88J [Hovy 85J

[Hovy gOaJ.
Against this background. we developed a generation

system for argument text. This system generates a text
by which the system tries to pursuade the hearer in
a given argument. The configuration of the system is
shown in Figure 7. Detailed description of this system is
given in the paper [Ikeda et al. 92J in ICOT session of
this conference.

The system has his belief as a knowledge-base. It con
tains facts, rules and his judgement about world events.
If this judgement is substituted by another, remaining
facts and rules left unchanged, then the system draw a
different conclusion for the same object.

@)
presupposition

@'

Figure 8: An Example of a Text Structure

4.2 Discourse Structure Extraction

First step of discourse structure extraction is to classify
sentences in a context into several sentence types, such as
assertive, descriptive, interrogative, and etc. Then, using
these sentence types and relation between adjacent sen
tences, sentences will be gathered together into sentence
groups. At the same time, relation between groups will
be analyzed. Intergroup relationship contains: example,
extention, supplement, opposition, background, presup
p'osition, and etc. [Ichikawa 78J [Kinoshita et al. 89J
These groups can be regarded as paragraphs and para
graph segments [Fukumoto 90] [Shibata et al. 90] [Fuku
moto and Yasuhara 91J [Saitoh et al., 91] [Tanaka et al.
91J [Sakuma 88J [Tsujii 89] [Yamanashi 89].

Rules for classifying sentence types and those of ana
lyzing intergroup relationship are described in a formal
language, and will be published as a "context grammar."

Figure 8 is an example of a text structure of an edito
rial of Japanese newspaper with 16 sentences.

The experimental system on the Multi-PSI machine
will be demonstrated in this conference.

5 Parallel NLP Experiment

As parallel NLP experiment, we have developed a small
system for cooperative processing in which morphologi
cal analysis, syntax analysis. and semantic analysis are
amalgamated into a uniform process in a type inferenct>
framework.

Most of the conventional NLP systems have been
designed a collection of independently acting modules.
Processing in each module is hidden from the outer
world, and we use these modules as black-boxes. But
since parallel cooperative processing needs internal in
formation being exchanged between modules. we must
adopt other framework for parallel NLP.

One answer to this problem is to abstract processing
mechanism to merge all such processing as morphology,
syntax, semantics, and etc. Constraint transformation
proposed by Hasida [Hashida 91] is one of the candi
dates of this framework. We proposed a type inference
method [Martin-Lof 84] as another candidates. This type
inference mechanism is based on a typed record structure
[Sells 85] or a record structure of types similar to 'lb-term
[Alt-Kaci and Nasr 86], sorted feature structure [Smolka
88], QUIXOTE [Yasukawa and Yokota 90], order-sorted
logic [Schmidt-Schauss 89].

Morphological analysis and syntax analysis is per
formed by layered stream method [Matsumoto 86]. Roles
of process and communication are exchanged in compar
ison with the method used in PAX [Satoh 90].

This system, running on multi-PSI machine, using a
Japanese dictionary with 10,000 nouns, 1000 verbs, 700
concepts, and a Japanese grammar LUG [Sano 91] [Sano
and Fukumoto 92], achieves about 12 speed-up rate using
32 processing elements.

Figure 9 shows the relation between number of proces
sors (1 '" 32) and processing time in milli second for a
25-word long sentence.

Figure 10 shows the relation between reductions and
speed-up ratio for various evaluation sentences.

The detail of this system will be presented in the paper
[Yamasaki 92] submitted to this conference.

Acknowledgment

We wish to thank Dr. Kazuhiro Fuchi, director of Ie aT
Research Center, who gave us a chance to research nat
ural language processing, and also Dr. Shunichi Uchida.
Manager of Research Division, for his helpful advise on
the fundamental organization and direction of our re
search.

161

• morph+syn+sem
'1"1,* morph+syn

0-- syn
20

18

16

14
,g
Cii 12 ..
c.

10 =
'0
CD 8 CD
c.
(I)

6

4

2

O~~~~--~~~~~~~

Oe+O 2e+6 4e+6 6e+6 8e+6 1e+7

reductions

Figure 9: Performance of Experimental System (1)

,g
Cii ..
c.
=
'0
CD
CD
C.
(I)

• morph+syn+sem

-_.,,*... morph+syn

o syn

20

18

16

14

12

10

8

6

4

2

O~~-r-r~~--~r-~~~

Oe+O 2e+6 4e+6 6e+6 8e+6 1e+7

reductions

Figure 10: Performance of Experimental System (2)

162

References

[Abe et al. 91] H. Abe, T. Okunishi, H. Miyoshi, and
Y. Obuchi. A Sentence Division Method using Con
nectives. In Proc. of the 42nd Conference of Infor
mation Processing Society of Japan (in Japanese).
1991. pp. 13-15.

[Alt-Kaci and Nasr 86] H. Alt-Kaci and R. Nasr. LO
GIN: A Logic Programming Language with Built
in Inheritance, The Journal of Logic Programming,
Vol. 3, No.3, Oct. 1986.

[Aizawa and Ehara 73] T. Aizawa and T. Ehara. Kan.a
Kanji Conversion by Computer (in Japanese), NHK
Technical Research, Vol. 25, No.5, 1973.

[Appelt 85a] D. E. Appelt. Planning English Sentences,
Cambridge University Press, 1985.

[Appelt 85b] D. E. Appelt. Bidirectional Grammar and
the Design of Natural Language Generation Sys
tems, In Proc. TINLAP-B5, 1985.

[Appelt 87] D. E. Appelt. A Computational Model of
Referring, In Proc. IJCAI-B7, 1987. ,-

[Appelt 88] D. E. Appelt. Planning Natural Language
Referring Expressions. In David D. McDonald and
Leonard Bole (eds.) , Natural Language Generation
Systems. Springer-Verlag, 1988.

[Barwise and Perry 83] J. Barwise and J. Perry. Situa
tion and Attitudes, MIT Press, 1983.

[Brooks 86] R. A. Brooks. A Robust Layered Con
trol System for a Mobile Robot, IEEE Journal of
Robotics and Automation, Vol. Ra-2, No. 1. March,
1986.

[Calder 89] Jonathan Calder, Ewan Klein, Henk Zee
vat. Unification Categorial Grammar. In Proc. of the
Fourth Conference of. the European Chapter of the
ACL, Manchester, 1989.

[Carlson 89] Lauri Carlson. RUG: Regular Unification
Grammar. In Proc. of the Fourth Conference of the
European Chapter of the ACL, Manchester, 1989.

[Danlos 84] 1. Danlos. Conceptual and Linguistic De
cisions in Generation. In Proc. of the International
Conference on Computational Linguistics, 1984.

[De Smedt 90] K. J. M. J. De Smedt. Incremental Sen
tence Generation. NICI Technical Report, 90-01,
1990.

[Fujisaki 89] H. Fujisaki. Analysis of Intonation and its
Modelling in Japanese Language. Japanese Language
and Education of Japanese (in Japanese). Meiji
Shoin Publishing Co., 1989, pp. 266-297.

[Fukumoto and Sano 90] F. Fukumoto, H. Sano. Re
stricted Dependency Grammar and its Representa
tion. In Proc. The 41st Conference of Information
Processing Society of Japan (in Japanese), 1990.

[Fukumoto 90] J. Fukumoto. Context Structure Extrac
tion of Japanese Text based on Writer's Assertion. In
Research Report of SIG-NL, Information Processing
Society of Japan (in Japanese). 78-15, 1990.

[Fukumoto and Yasuhara 91] J. Fukumoto and H. Ya
suhara. Structural Analysis of Japanese Text. In Re
search Report of SIG-NL, Information Processing
Society of Japan (in Japanese). 85-11, 1991.

[Grosz and Sidner 85] B. Grosz and C. L. Sidner. The
structures of Discource Structure, Technical Report
CSL1, CSLI-85-39, 1985.

[Hashida 91] K. Hasida. Aspects of Integration in Natu
ral Language Processing, Computer Software, Japan
Society for Software Science and Technology, Vol. 8,
No.6. Nov. 1991.

[Hovy 85] E. H. Hovy. Integrating Text Planning and
Production in Generation. In the Proceedings of the
International Joint Conference on Artificial Intelli
gence. 1985.

[Hovy 87] E. H. Hovy. Interpretation in Generation. In
the Proceedings of 6th AAAI Conference. 1987.

[Hovy 88] E. H. Hovy. Generating Natural Language un
der Pragmatic Constraints. Lawrence Erlbaum As
sociates, Publishers, 1988.

[Hovy 90a] E. H. Hovy. Unresolved Issues in Paragraph
Planning. In Current Research in Natural Language
Generation. Academic Press, 1990.

[Hovy 90b] E. H. Hovy. Pragmatics and Natural Lan
guage Generation. Artificial Intelligence 43, 1990.
pp. 153-197.

[Ichikawa 78] T. Ichikawa. An Introduction to Japanese
Syntax fo·T' Teachers. Kyoiku Shuppan Publishing
Co., 1978.

[Ikeda et al. 88] T. Ikeda, K. Hatano, H. Fukushima and
S. Shigenaga. Generation Method in the Sentence
Generator of Language Tool Box (LTB). In Proc.
of the 5th Conference of Japan Society for Software
Science and Technology (in Japanese), 1988.

[Ikeda 91] T. Ikeda. Natural Language Generation Sys
tem based on the Hierarchy of Semantic Representa
tion (in Japanese). Computer Software, Japan So
ciety for Software Science and Technology, Vol. 8,
No.6, Nov. 1991.

[Ikeda et al. 92] T. Ikeda, A. Kotani, K. Hagiwara, Y.
Kubo. Argument Text Generation System (Dul
cinea). In Proc. of FGCS '92, ICOT, Jun. 1992.

[Katoh and Fukuchi 89] Y. Katoh and T. Fukuchi.
Tense, . Aspect and Mood (in Japanese). Japanese
Example Sentences and Problems for Foreigners 15.
Aratake Publishing Co., Tokyo. 1989.

[Kempen and Hoenkamp 87] G. Kempen and E. Hoen
kamp. An Incremental Procedural Grammar for' Sen
tence Formulation, Cognitive Science, Vol. 11. 1987.

[Kinoshita 81] S. Kinoshita. Writing Techniques in Sci
entific Field (in Japanese). Chuo-Kouron Publishing
Co., 1981. pp. 82-88.

[Kinoshita et al. 89] S. Kinoshita, K. Ono, T. Ukita
and M. Amano. Discourse Structure Extraction in
Japanese Text Understanding. In Symposium on
Discourse Understanding Model and its Application
(in Japanese), Information Processing Society of
Japan, 1989. pp. 125-136.

[Kodama 87] T. Kodama. Research on Dependency
Grammar (in Japanese). Kenkyu-sha, 1987. pp. 161-
194.

[Kubo et al. 88] Y. Kubo, M. Yoshizumi. H. Sano. K.
Akasaka and R. Sugimura. Development Environ
ment of the Morphological Analyzer LAX. In Proc.
of the 37th Conference of Information Processing So
ciety of Japan' (in Japanese). 1988. pp. 1078-1079.

[Kubo 89] Y. Kubo. Composition of Word Semantics
in Morphological Analyzer LAX. In Proc. of the
39th Conference of Information Processing Society
of Japan (in Japanese). 1989. pp. 598-599.

[Kuno and Shibatani 89] S. Kuno, K. Shibatani. New
Development in Japanese Linguistics (in Japanese).
Kuroshio Publishing Co., Tokyo, 1989.

[Littman and Allen 87] D. J. Littman and J. F. Allen.
A Plan Recognition Model for Subdialogues in Con

- versation, Cognitive Science 11, 1987. pp. 163-200.

[Mann and Thompson 86] W. C. Mann and S. A.
Thompson. Rhetorical Structure Theory: Descrip
tion and Construction of Text Structure. In P1'OC.

of the Third International Workshop on Text Gen
eration, 1986. In Dordrecht (ed.), Natural LanguagE
Generation: New Results in Artificial Intelligena,
Psychology, and Linguistics. Martinus Nijhoff Pub
lishers, 1987.

[Martin-Lof 84] P. Martin-Lof. Intuitionistic Type The
ory - Studies in Proof Thoery, Lecture Notes, 1984.

163

[Masuoka 89J T. Masuoka, Y. Takubo. Basic Japanese
Grammar (in Japanese). Kuroshio Publishing Co ..
Tokyo. 1989.

[Matsumoto et al. 83aJ Y. Matsumoto. M. Seino. H.
Tanaka. Bep Translator (in Japanese). Bulletin
of the Electrotechnical Laboratory. Vol. 47. No.8.
1983.

[Matsumoto et al. 83bJ Yuji Matsumoto, H. Tanaka. H.
Hirakawa. H. Miyoshi and H. Yasukawa. BUP: A
Bottom-up Parser Embedded in Prolog, New Gen
eration Computing, Vol. 1, 1983.

[Matsumoto 86J Y. Matsumoto. A Parallel Parsing Sys
tem for Natural Language Analysis, Proc. of 3rd 111.
ternatioanl Conference on Logic Programming, Lon
don, 1986. Lecture Notes in Computer Science 225.
pp. 396-409, 1986.

[Matsumoto and Sugimura 87J Y. Matsumoto and R.
Sugimura. A Parsing System based on Logic Pro
gramming. In Proceedings of the International Joint
Conference. of Artificial Intelligence. 1987.

[Matsumoto 90J Y. Matsumoto and A. Okumura. Pro
gramming Searching Problems in Parallel Logic Pro
gramming Languages - An Extentioll of Layered
Streams -. In Proc. of the I{L1 Programmil/.fj vVork
shop '.90 (in JapanesE). 1990.

[Maruyama and Suzuki 91] T. Maruyama and H. Suzu
ki. Cooperative Sentence Generation in Japanese Di
alog based on Simple Principles (in JapanEsE). In
Proc. of thE 8th Conferena of Nihon Ninchi Kagaku
Kai (in Japanese). 1991.

[McKeown 85aJ K. R. McKeown. Text Generation: Us
ing Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Cambridge Univer
sity Press. 1985.

[McKeown 85bJ K. R. McKeown. Discourse Strategies
for Generating N at ural-Language Text, A rtificial In
telligence 27, 1985. pp. 1-41.

[Meteer 90J M. V\". Meteer. The 'Generation Gap' - the
Problem of Expressibility in Text Planning. Techn.i
cal Report. BBN Systems and Technologies Corpo
ration. 1990.

[Minami 74J F. Minami. The Structure of Contemporary
Japanese Language (in Japanese). Taishu-kan Pub
lishing Co .. 197-1.

[Moens 89J Marc Moens. Jonathan Calder. Ewan Klein.
Mike Reape. Henk Zeevat. Expressing Generaliza
tions in Unification-based Grammar Formalisms. In
Proc. of the FO'urth Conference of the European
Chapter of the ACL, Manchester, 1989.

164

[Morioka 87] K. Morioka. Vocabulary Construction (in
Japanese). Meiji Shoin Publishing Co., 1987.

[Morita 89] Y. Morita. Dictionary of Basic Japanese (in
Japanese). Kadokawa Publishing Co., 1989.

[Morita and Matsuki 89] Y. Morita and Y. Matsuki.
Sentence Types of Japanese (in Japanese). ALK
Publishing Co., Tokyo. 1989.

[Nagano 86] K. Nagano. Japanese Syntax - a Gram
matical Study (in Japanese). Asakura Publishing
Co., 1986.

[Nakajima and Sugimura 89] A. Nakajima and R. Sug
imura. Japanese Morphological Analysis with TRIE
Dictionary and Graph Stack. In Proc. of the 39th
Conference of Information Processing Society of
Japan (in Japanese). 1989. pp. 589-590.

[Nitta and Masuoka 89] Y. Nitta and T. Masuoka (eds.),
Modality in Japanese (in Japanese). Kuroshio Pub
lishing Co., Tokyo. 1989.

[NLRI81] National Language Research Institute. De
monstratives in Japanese (in Japanese). Ministry
of Finance. 1981.

[NLRI82] National Language Research Institute. Parti
cles and Auxiliary Verbs of Japanese (in Japanese).
Shuei Publishing Co., Tokyo. 1982.

[NLRI 85] National Language Research Institute. Aspect
and Tense of Contemporary Japanese (in Japanese).
Shuei Publishing Co., Tokyo. 1985.

[NLRI89] National Language Research Institute. Rt
search and Education of DiscOUl'se (in Japanese).
Ministry of Finance. 1989.

[Nobukuni 89] Y. Nobukuni. Division Algorithm of Long
Sentence, In Proc. of the 39th Conference of In/or
mation Processing Society of Japan (in Japanese).
1989. p. 593.

[Okumura and Matsumoto 87a] A. Okumura and Y.
Matsumoto. Parallel Programming with Layered
Streams. In Proc. of the 1987 International Sympo
sium on Logic Programming. San Francisco, Septem
ber 1987. pp. 224-232 ..

[Okumura and Matsumoto 87b] A. Okumura and Y.
Matsumoto. Parallel Programming with Layered
Streams. In Proc. of the Logic Programming Con
ference '87 (in Japanese), 1987. pp. 223-232.

[Pereira 80] Fernando C. N. Pereira, David H. D. War
ren. Definite (!lause Grammars for Language Analy
sis -- A Survey of the Formalism and a Comparison
with Augmented Transition Networks, Artificial In
telligence. Vol. 13, No.3. 1980. pp. 231-278.

[Saitoh et al. 91] Y. Saitoh, M. Shibata and J. Fuku
moto. Analysis of Relationship of Adjoining Sen
tences for Context Structure Extraction. In Proc. of
the 43rd Conference of Information. Processing Soci
ety of Japan (in Japanese). 1991.

[Sakuma 88] M. Sakuma. Context and Paragraph.
Japanese Linguistics (in Japanese). Vol. 7, No.2.
1988. pp. 27-40.

[Sano et al. 88] H. Sano, K. A kas aka, Y. Kubo and R.
Sugimura. Morphological Analysis based on Word
Formation. In Proc. of the 36th Conference of Infol'":.
mation Processing Society of Japan (in Japanese),
1988.

[Sano 89] H. Sano. Hierarchical Analysis of Predicate us
ing Contextual Information. In Symposium on Di8-
course Understanding Model and ds Application (in
Japanese), Information Processing Society of Japan,
1989.

[Sano et ai. 90] H. Sano, F. Fukumoto, Y. Tanaka. Ex
planatory Description based Grammar - SFTB (in
Japanese), ICOT-Technical Memo, TM-0885, 1990.

[Sano and Fukumoto 90] H. Sano, F. Fukumoto. Local
ized Unification Grammar and its Representation. In
Proc. of the 41st Conference of Information Process
ing Society of Japan (in Japanese), 1990.

[Sano 91] H. Sano. User's Guide to SFTB (in Japanese),
ICOT, Sep. 1991.

[Sano and Fukumoto 92] H. Sano, F. Fukumoto. On a
Grammar Formalism, Knowledge Bases and Tools
for Natural Language Processing in Logic Program
ming. In Pmc. of FGCS '92. ICOT, Jun. 1992.

[Satoh 90] H. Satoh. Improvement of Parallel Syntax
Analyzer P~'\X. In Proc. of KL 1 Programming Jtl:'"ork
shop '90 (in Japanese), leOT, Tokyo, 1990.

[Schmidt-Schauss 89] M. Schmidt-SchauB. Computa
tional Aspects of an Order-Sorted Logic with Term
Declarations, Lecture Notes in Artificial Intelligence,
Springer-Verlag, 1989.

[Searl 69] J. R. Searl. An Essay in the Philosophy of Lan
guage, Cambridge University Press, 1969.

[Sells 85] P. Sells. Lectures on Contemporary Syntactic
Theories, CSLI Lecture Notes, No.3, 1985.

[Shibata et al. 90] M. Shibata, Y. Tanaka and J. Fuku
moto. Anaphora Phenomena in Newspaper Editori
als. In Proc. of the 40th Conference of Inj'07'mation
Processing Society of Japan (in Japanese), 1990.

[Shinnou and Suzuki 91] H. Shinnou and H. Suzuki. tTti
lization of Sound Information in Incremental Analy
sis. In Research Report of SIC-NL, Information Pro
cessing Society of Japan (in Japanese). 8.5-7. 1991.

[Shiraishi et al. 90] T. Shiraishi. Y. Kubo and M.
Yoshizumi. Format of Morpheme Dictionary and
Dictionary Improvement. In Proc. of the 41st COII

ference of Information Processing Society of Japan
(in Japanese), 1990. pp. 19:3-194.

[Smolka 88] G. Smolka. A Feature Logic with Subsorts.
IBM Deutschland, Stuttgart, Germany, LILOC Re
port, No. 33, May 1988.

[Sugimura et al. 88] R. Sugimura, K. Akasaka, Y. Kubo.
Y. Matsumoto and H. Sano. LAX - Morphologi
cal Analyzer in Logic Programming. In Proc. of tht
Logic Programming Conference '88 (in Japanese).
1988. pp. 213-222.

[Sugimura and Fukumoto 89] R. Sugimura. F. Fuku
moto. Dependency Analysis by Logic Grammar. In
Symposium on Discourse Fndtrstanding lVIodel and
its Application (in Japanest). Information Process
ing Society of Japan. 1989.

[Suzuki and Tsuchiya 90] H. Suzuki and S. Tsuchiya. In
cremental Interpretation of Japanese Ctterance. III
Proc. of the 7th Conference of Siholl .'linchi A-agaku
Kai (in Japanese). 1990. pp. 46-47.

[Tanaka et al. 91] Y. Tanaka. M. Shibata and J. Fuku
moto. Repetitive Occurrence Analysis of a v\lord in
Context Structure Analysis System. In P1'OC. of the
43rd Conference of Information Processing Society
of Japan (in Japanese). 1991.

[Teramura et al. 87] H. Teramura, Y. Suzuki. N. Noda
and M. Yazawa. Case Study in Japanese Crammar
(in Japanese). Outousha Publishing Co.. Tokyo.
1987.

[Tokunaga and Inui 91] T. Tokunaga and K. Inui. Sur
vey of" Natural Language Sentence Generation in
1980's. In Journal of Japanese Society for Artificial
Intelligence (in Japanese). Vol. 6. Nos. 3-.5. 1991.

[Tomita 87] M. Tomita. An Efficient Augmented Con
text Free Parsing Algorithm. Computational Lin
guistics 13, 1-2, 31-46. 1987.

[Tsujii 89] J. Tsujii. Context Processing. In Symposium
on Natural Language Processing (in Japanese). In
formation Processing Society of Japan. 1988. pp. 7.5-
87.

[Ueda and Chikayama 90] K. Ueda and T. Chikayama.
Design of the Kernel Language for the Parallel Infer
ence Machine. The Computer Journa1. Vol. 33. No.6.
Dec. 1990. pp. 494-.500.

165

[Yamanashi 86] M. Yamanashi. Speech Act (in
Japanese). Taishukan Publishting Co .. 1986.

[Yamanashi 89] M. Yamanashi. Discourse. Context and
Inference. III Symposium. 011 DiscoUl'st l'lIdf I'stand
ing .Hodtl ([lid its .-lpplicatioll (ill Japal/u;(). illfor
mation Processing Society of .Japan. 1989. pp. 1-1:2.

[Yamasaki 92] S. Yamasaki. A Parallel Cooperatiw' ~at-
ural Language Processing System Laputa. In
Proc. of FCC'S '9:2. ICOT . .Jun. 1992.

[Yasukawa and Yokota 90] H. Yasukawa and K. Yokota.
The Overview of a Knowledge Representation Lan
guage QUIXOTE. IeOT (draft), Oct. 21. 1990.

[Yoneda et al. 89] J. ·Yoneda. Y. Kubo. T. Shiraishi
and M. Yoshizumi. Interpreter and Debugging E11-
vironment of LAX. In Proc. of thE 3.9th Con/(:/'
enct of Information Processing Society of Japan (in
Japanese). 1989. pp. 596-.597.

[Yoshida and Hidaka 87] :vI. Yoshida a.nd S. Hiclaka.
Studifs on Documentation in Standard Japallf8f (in
Japallt8t).] 987.

[Yoshimura tf al. tl2] 1\.. \·oshimura. T. Hidaka and
~l. Yoshida. Ou LOllgest :\iarhillg :\1(-'1 hod clHd
vVord Millimizing Mt-'tllOd ill Japauese :\(ol'pholog
iral Allal~'sis. III RU;fo,.ch RtjJort of Sl(,'-.\L Illfor
matio11 Processiug Society of J apau (ill JUplll1 f.'<t).

:30-7. 19t1:2.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 166

Experimental Parallel Inference Software

Katsumi Nitta Kazuo Taki Nobuyuki Ichiyoshi

Seventh Research Laboratory
Institute for New Generation. Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

{ nitta,taki,ichiyoshi}@icot.or.jp

Abstract

As tools to develop large scale intelligent systems, ICOT
has developed parallel inference machines PIMs, a par
allellogic programming language KL1 and an operating
system PIMOS. In order to evaluate the appropriateness
of these tools to the development of practical intelligent
systems, we have developed four application programs in
KL1 - the LSI-CAD system, the Genome Analysis Sys
tem, the Legal Reasoning System and the Go Playing
Game System -, and cooperating manufacturers have
developed eight application programs. They cover a wide
range of knowledge processing techniques such as case
based reasoning, model-based reasoning, qualitative rea
soning and machine learning.

To obtain high performance from each application pro
gram, we have developed parallel programming tech
niques such as concurrent algorithms and load balanc
ing. Moreover, we analyzed the performance of parallel
programming technology theoretically. The result forms
good guidelines for the selection of parallel programming
techniques.

We introduce each application program and the results
of performance analysis, and discuss our experiences of
parallel programming.

1 Introduction

As tools to develop knowledge processing systems, ICOT
has developed an experimental parallel inference machine
Multi-PSI and five models of parallel inference machine
PIMs [Uchida et al. 1988] [Goto et al. 1988]. They are
MIMD machines on which user's programs written in the
parallel logic programming language KL1 can run in par
allel [Chikayama 1992]. As KL1 is based on the theory of
first order predicate logic, it is useful to represent human
knowledge naturally and to formalize inference processes
naturally. Therefore, we can develop large-scale intelli
gent systems easier by using PIMs and KLl. However, if
we develop KL1 programs naively, we cannot obtain high
performance because the performance can be affected by

sequential bottlenecks and various parallelization over
heads; Good parallel algorithms and load distribution
techniques have to be developed. Moreover, to develop
efficient parallel programs, we have to understand the
characteristics of the KL1 language and the architec
tures of Multi-PSI and PIMs (Figure 1). As these par
allel programming technologies are closely related, when
we develop KL1 programs, we have to choose suitable
techniques carefully. Therefore, we need guidelines for
selecting suitable parallel programming techniques and
for estimating the relation between data size, number
of processors, and performance. To get such guidelines,
in addition to developing application programs, we have
to conduct theoretical analysis of parallel programming
techniques.

(Parallel Problem Solving)

~ ~ (Concurrent Algorithm)

Theoretical ~ ~ Load Distribution
Analysis

~ ... ~ (KL 1 implementation)

~ Parallel Inference Machines

Figure 1: Parallel programming technologies

We have developed parallel application programs to
achieve the following goals.

• Evaluation of applicability of PIMs to developing
practical intelligent systems:

As PIMs solve problems efficiently by parallel infer
ence, developing large scale systems using them is
easier than using other computers. We wish to cul
tivate application fields and develop AI techniques
where PIMs are effectively used.

• Development of Parallel Programming Techniques:
By analyzing the behavior of application programs,
we can extract parallel programming techniques to
obtain high performance. A library of these tech
niques will help to develop new parallel programs.

In Section 2, we will give an overview of the research
activities of the seventh research laboratory of ICOT.
Section 3 presents application programs developed in
side ICOT, and Section 4 presents application programs
developed outside ICOT. In Section 5, the research ac
tivity in performance analysis is reported. In Section 6,
we summarize the experiences of parallel program devel
opment.

2 Research Activities

As we explained in the previous section, to develop intel
ligent systems on PIMs, we have to cover a wide range of
technologies from the knowledge of human experts to the
features of hardware. To manage the various researches
effectively, we organized the researchers of the seventh re
search laboratory into four Application Groups and one
Performance Analysis Group (Figure 2). The roles of
the Application Groups and the Performance Analysis
Group are to develop specific application programs, and
to gi ve guidelines on parallel programming techniques by
analyzing the behavior of KLl programs theoretically.

Following are the researches of the Application Groups.
To acquire knowledge from human experts effectively,
these groups established four working groups: parallel
IC CAD (PIC), genetic information processing (GIP),
advanced design system (ADS), and knowledge architec
ture (KAR).

• LSI-CAD System:
The LSI design process consists of several stages,
such as architecture design, function design, logic de
sign, micro program design, logic simulation and lay
out design. This group has developed the following
two systems.

- Logic Simulator

- LSI Layout Systems

• Genome Analysis System:
One of the most important targets of genome analy
sis is to interpret the meanings of protein sequences.
This group has developed the following systems.

- Protein Sequence Analysis System

167

- Protein Folding Simulation Program

- Protein Structure Analysis Program

• Legal Reasoning System:
The difficulty of legal reasoning stems from the am
biguity of legal concepts. To deal with ambiguous
concepts, this group has developed a legal reasoning
system with a rule-based engine and a case-based
engine.

• Go Playing Game System:
The game of go is a traditional Japanese board game.
This group has developed a parallel go playing game
system.

In the next section, we will present an overview of each
system.

Development of Application Programs

(LSI-CAD) (Genome Analysis)

(Legal Reasoning) (GO Playing Game)

! Specific Problem Solving

Performance Analysis

General Framework

Figure 2: Research groups

Besides the above application programs, cooperating
manufacturers have developed knowledge processing sys
tems in order to evaluate the appropriateness of PIMs to
these fields.

• Co-HLEX: Co-operative Recursive LSI Layout Prob
lem Solver
(hierarchical and cooperative problem solving)

• Cooperative Logic design Expert System on a Multi
Processor
(assumption-based reasoning, cooperative problem
solving)

• Case-based circuit design system
(case-based reasoning)

• High Level Synthesis by Parallel Rule-based Anneal
ing
(rule-based annealing)

• Design Supporting System based on Deep Reasoning
(qualitative reasoning)

168

• A Diagnostic and Control Expert System Based on
a Plant Model
(model-based reasoning, qualitative reasoning)

• Adaptive Model-based Diagnostic System (model
based reasoning, machine learning)

• Motif Extraction System
(genetic algorithm, machine learning)

These systems cover various knowledge processing sys
tems such as CAD systems, diagnosis systems, and con
trol systems. They are related to various AI tech
niques such as case-based reasoning, qualitative reason
ing, model based reasoning, and machine learning.

We will introduce these systems in Section 4.

3 Overview of Application Pro
grams (1)

3.1 Logic Simulator

3.1.1 Background

A logic simulator is used to verify not only the func
tions of designed circuits but also the timing of signal
propagation. Since logic simulation is one of the most
time-consuming stages in LSI design, faster simulators
are urgently needed. A parallel logic simulator is one
likely way of producing quick simulation.

Parallel logic simulation is treated as a typical applica
tion of parallel discrete event simulation (PDES). PDES
can be modeled so that several objects (state automata)
change their states by communicating with each other.
A message has the information of an event whose oc
currence time is stamped on the message (time-stamp).
Since messages should be received and evaluated in the
time-stamp order by their destination objects, the time
keeping mechanism is essential for efficient execution
of PDES. Several mechanisms have been proposed for
PDES time-keeping, however, each has its own peculiar
shortcomings.

We are targeting an efficient logic simulator on PIM,
which is a distributed memory MIMD machine. We
adopted the Time Warp mechanism (TW), which has
been considered to contain a heavy overhead - a roll
back process. In practice, however, TW has never been
evaluated in detail on MIMD machines. We expected
that TW would be a suitable logic simulator on large
scale MIMD machines with some devices that reduced
the rollback overhead. Thus, a local message scheduler,
an antimessage reduction mechanism, and a load distri
bution scheme were added to our system and evaluated.

3.1.2 Overview of Logic Simulator

The system simulates combinatorial circuits and sequen
tial circuits that have feedback loops. It handles three
values: Hi, Lo, and X (unknown). A different delay time
can be assigned to each gate (non-unit delay model).
Since this simulator handles gates only, flip-flops and
other functional blocks should be completely decom
posed into gates.

The Time Warp mechanism (TW) [Jefferson 1985] was
proposed by D. R. Jefferson. In PDES using TW, each
object usually acts according to received messages and
also records the history of messages and states, assuming
that messages arrive chronologically. But when a mes
sage arrives at an object out of time-stamp order, the ob
ject rewinds its history (this process is called rollback),
and makes adjustments as if the message had arrived in
correct time-stamp order. After rollback, ordinary com
putation is resumed. If there are messages which should
not have been sent, the object also sends antimessages
in order to cancel those messages.

Since TW contains its own peculiar overheads caused
by the rollback processes, some device for reducing the
overheads is needed for quick simulation. Furthermore,
inter-PE communication overheads must be reduced be
cause the simulator works on a distributed memory ma
chine such as PIM.

For these purposes, a load distribution scheme, a local
message scheduler, and an antimessage reduCtion mech
anism are included in our simulator. These are expected
to reduce the overheads described above and might pro
mote the efficient execution of the simulator.

Each device is outlined below.

• Cascading-Oriented Partitioning

We propose the Cascading-Oriented Partitioning strat
egy for partitioning circuits to attain high-quality load
distribution (Figure 3).

Figure 3: Cascading-Oriented Partitioning

This scheme provides adequate partitioning solutions
that satisfy these three requirements: load balancing,

Speedup

60

50

40

30

20

10

10

Ideal
513207
59234
55378
51494

20 30 40

Figure 4: Speedup

50 60

99K
(ev /sec)

No. of PEs

keeping inter-PE communication frequency low, and de
riving a lot of parallelism.

• Local Message Scheduler

During simulation, there are usually several messages
to be evaluated in a PE. When TW is used, the bigger
time-stamp a message has, the more likely the message is
to be rolled back. For this reason, appropriate message
scheduling in each PE is needed for reducing rollback
frequency.

• Antimessage Reduction

As long as messages are sent through the KL1 stream,
messages arrive at their receiver in the same order as
they are transmitted. In this environment, subsequent
antimessages can be reduced. We adopted this optimiza
tion, expecting that it would reduce the rollback cost.

3.1.3 Result

We executed several experimental simulations on the
Multi-PSI. Four sequential circuits, presented in IS
CAS'89, were simulated in our experiments.

Figure 4 shows the speedup figures when the circuits
were simulated using various numbers of PEs. The best
performance is also shown there. In the best case, very
good speedup of 48-fold was attained using 64 PEs. Ap
proximately 99K events/sec performance, fairly good for
a full-software logic simulator, was also attained. This
experiment revealed that the Time Warp mechanism
would be an efficient time-keeping mechanism.

In addition, we analyzed several factors which
possibly limited speedup. Details are reported in
[Matsumoto et al. 1992].

3.2 LSI Layout Systems

3.2.1 Background

The LSI layout consists of two stages. The first is
placement, which determines the physical position of the
circuit components. The next is routing, which finds

169

the paths between terminals of the circuit components.
These are the most time-consuming stages in LSI design.
Therefore high performance layout CAD systems lead to
a shorter LSI design period.

Our aim is to study concurrent algorithms and load
balancing methodologies through design and develop
ment of parallel layout programs. Also, we are targeting
the system to attain a high quality layout running on
Multi-PSI and PIM.

3.2.2 Overview of LSI Layout System

(1) Placement System Our placement system is im
plemented for the standard cell type LSI without any
macro blocks. The standard cells have uniform height
and variant widths. These cells are assigned into multiple
cell-blocks so as to minimize the chip area (strictly speak
ing, the totaI'estimated wire length). The cell placement
problem is a combinatorial optimization problem. As a
powerful technique to solve such problems, simulated an
nealing (SA) is well-known. In order to execute SA ef
ficiently, cooling schedules are important. In our place
ment system, the time-homogeneous parallel SA algo
rithm [Kimura et al. 1991], which constructs appropri
ate cooling schedules automatically, was adopted. Figure
5 shows an outline of this algorithm.

(2) Routing System Our routing system finds
paths based on the look-ahead line search algorithm
[Kitazawa 1985]. This algorithm provides high quality
solutions in a short execution time, however, it was orig
inally proposed with assumption of sequential execution.
We introduced a new programming style based on a con
current objects model in routing problems, and improved
the basic algorithm to make it suitable for parallel execu
tion. The concurrent objects model is expected to derive
parallelism 9f small grain size. We designed the concur
rent algorithm so that objects=processes corresponds to

T (temperature)
Tl Kl a cooling schedule for the

: K2 sequential simulated annealing

T4
T5

i K3

OL------------- t (time)

.ll parallelize

Tl ------ t on PEl
T2 !L ---! ! ! t on PE2
T3 !~--------l----! t on PE3
T4 f--....::.!_:::---=-!_:::--....::.!_L---,---""'"'''~!_ t on PE4
T5 '----L---::z:::==k=!~_-!"-L-------=-~. t on PES

! : a probabilistic exchange of solutions
f = 11k : frequency of exchanges

Figure 5: Time-homogeneous parallel simulated anneal
ing

170

master line.processes
r..

II ~ ~ V '" ~

--LU - // / - ~%I :lj 4)~ ~%-~:I
-- I-

C...! // /"/

~rA -...
Ir l-t-- .:::: :---

\:~
line· processes

Figure 6: Master line processes and line processes

"I 1111 III I III 1I11

1111 11111111 I III 111111 II

III 1111111111 1111

II I 1111 I II 111111111 I

III I II 1111 I 1111 III II

I I III III I I 1111111 I

Figure 7: Placement results

every line segment on a routing grid. As in Figure 6,
each process corresponds to each grid line (master line
process) and line segment (line process) on it. A mas
ter line process manages line processes on the same grid
line and passes messages between the line processes and
crossing line processes.

3.2.3 Result

(1) Placement System The MCNC benchmark data
consisting of 125 cells and 147 nets was chosen for our
measurements. In the initial placement, the value of en
ergy was 911520 (the lower bound of the chip area is
estimated as 1.372[mm2

]).

When we executed our program for 30 minutes using 64
processors, the final energy was 424478 (the lower bound
of the chip area is estimated as 0.615 [mm 2]).

Experimental results showed that final energy is re
duced by 56.0 percent in comparison to the initial energy.
Figure 7 shows the placement results.

(2) Routing We evaluate our router from the follow
ing three points of view using real LSI chip data. (1)
Data size vs. Speedup, (2) Parallelism vs. Wiring Rate,
(3) Comparison with a general purpose computer.

Figure 8 shows the system performance when the rout
ing program was executed using various numbers of PEs.
The size of DATA2 is larger than DATAL In the best
case, 24-fold speedup was attained using 64 PEs.

Speedup
25 r------------------------------------,

20

15

10

5

o L-__________________________________ ~

o 8 16 32
No. of PEs

Figure 8: Speedup

Other experimental
[Date et al. 1992].

results are reported

64

in

3.3 Protein Sequence Analysis Pro
grams

3.3.1 Background

A primary structure of protein is a linear chain of amino
acids. After a protein is created in the cell, it is folded
and forms a complex structure.

The similarity analysis of protein sequences by the use
of multiple alignment is an important technique for pre
dicting the function and higher order structure of pro
teins and for drawing phylogenetic trees of creatures. An
alignment is realized by lining the sequences with cor
responding characters (amino acids) directly above one
another as follows.

... YICSFADCGAAYNKNWKLQAHLC-KH .. .

... FPCKEEGCEKGFTSLHHLTRHFL-TH .. .

... FTCDSDFCDLRFTTKANMKKHFNRFH .. .

Until recently, multiple alignment was produced by hand
by biologists. However, with the increasing rate of de
termination of protein sequences, computer assistance in
multiple alignment is becoming indispensable.

It is well-known that once a similarity value between
amino acids is given, the multiple -alignment problem
can be solved theoretically by Dynamic Programming
(DP)[Needleman et ai. 1970]. An alignment algorithm
by DP method is the same as finding the shortest path
in a network constructed by input sequences (Figure 9).
N-way DP can align n sequences simultaneously and can
derive the optimal alignment of these sequences.

One problem with DP is the incredible computational
time it requires. N-way DP takes computational time in
the order of the n-th power of the sequence length. To
keep this expansioI!- of computational time manageable,
nearly all multiple alignment systems developed so far
employ 2-way DP as a base and combine the results of
2-way DP to produce multiple alignment [Barton 1990].

A D H E

ADHE ~H
AHIE ~ O-~~~~~

I

E

ADH-E
~ A-HIE

Figure 9: Alignment by 2-way DP

This class of alignment methods is good because of the
small computational time required, but this is not suf
ficient to produce an alignment of sequences when their
similarities are low.

3.3.2 Overview of Protein Sequence Analysis
Programs

To produce multiple alignments of high-quality with
small increases in computational time, we developed
several multiple alignment systems. MASCOT (Mul
tiple Alignment System developed by iCOT, see Fig
ure 10) is a multiple alignment system based on DP
[Hirosawa et al. 1991].

When protein sequences are given to MASCOT, MAS
COT, firstly, classifies them into several clusters based on
the similarities of sequences. Next, for each cluster, se
quences are aligned from the nearest tree sequences using
3-way DP. Then, each intra-cluster alignment is refined
by the simulated annealing method (Figure 5). Finally,
each intra-cluster alignment is merged into a single align
ment.

3.3.3 Result

Each module of MASCOT is described by the KL1 and is
executed on the Multi-PSI. Though MASCOT requires
more computation than conventional alignment systems
due to the use of 3-way DP, parallel execution by the par
allel inference machine [Ishikawa et al. 1991] can reduce
the total time. Figure 11 shows the speedup of 3-way DP
versus the number of processors used. 128 processors are
about 64 times faster than a single processor.

MASCOT can produce a biologically valuable result.
A resultant alignment shows clear consensus patterns in
core alignments and discernible patterns in the alignment
of each cluster. We think that this is a promising way to
compare these kinds of pattern information with known
motif information so that integrated information can be
useful for attachment-alignment and intra-cluster align
ment. We are now investigating how to use knowledge
engineering to realize such an extension of MASCOT.

171

64

Speedup

Number of processors

Figure 11: Speedup in 3-way dynamic programming

3.4 Folding Simulation Program

3.4.1 Background

Folding simulation simulates the process of protein for
mation from its stretched state to its native folded state
by computer. This research topic has held the interest
of biologists for a quarter of a century because while we
can determine the order of amino acids in a sequence of
protein extremely easily, it is very difficult to determine
the structure of a protein. X-ray crystallography and
NMR(N uclear Magnetic Resonance) can be used to de
termine structure. However, both require plenty of time
from months to a year.

One of the most frequently employed approxima
tion methods is lattice representation [Ueda et al. 1978]
[Skolnick and Kolinsky 1991], which restricts the posi
tion of amino acids in 3-dimensionallattice cells.

3.4.2 Overview of Folding Simulation Program

We applied time homogeneous parallel (temperature par
allel) simulated annealing (Figure 5) to the folding sim
ulation problem [Hirosawa et al. 1992]. Water-counting,
which uses lattice representation (Figure 12) and em
ploys only hydrophobic interaction, is introduced to for
mulate folding simulation as an optimization problem.
In lattice cells, any place where protein is not present
wiill be filled with water.

The energy to be minimized is expressed in the follow
ing formula.

The energy can be reduced both by increasing the
amount of water around the hydrophilic amino acid and
by reducing the amount of water around the hydrophobic
amino acid. The minimization of energy has the effect
of inviting hydrophobic amino acids toward the center

172

sequences
~ Cluster

Analysis

Intra-Cluster
Alignment

Intra-Cluster
Alignment

Intra-Cluster
Alignment

Inter-Cluster
Alignment

Evaluation
of

Alignment
Alignment

.J----------' __ _

...........................

r'"----Generation of Initial Alignment----. Refinement .of Align~enr

Generation
of

Core Alignment
~

Alignment
by

I 3-way DP I Attachment
Simulated Annealing

Figure 10: Multiple sequence alignment system: MASCOT

Figure 12: Representation of a section of protein: main
chains(shaded) and side chains(unshaded)

of the protein where there is less wq..ter and to oust hy
drophilic amino acids to the surface of the protein where
water is abundant. These effects serve to produce pro
tein that has a similar distribution of hydrophobic amino
acids and hydrophilic amino acids within the protein
structure.

3.4.3 Result

We selected flavodoxin, whose structure is known, as the
protein to be simulated. This protein is of a medium
size and has 138 amino acids. We ran the folding simu
lation program using temperature parallel SA on Multi
PSI using 20 processors over 10 days. This corresponds
to 30,000 cycles. We also ran the folding simulation pro
gram using simple parallel SA in 30,000 cycles, also with
20 processors.

o~--------------------------,

-10000

-20000

-30000
Energy

-40000

-50000

-60000 ~---'----r------r--...----.-----I
o 10000 20000 30000 40000

Steps

Figure 13: Energy history of folding simulation

We made the following observations from the energy.
history of simulation (Figure 13).

1. Two kinds of parallel SAs had better results within
a fixed time than sequential SA. This is simply the
effect of multiple processors.

2. Up to the middle stage of simulation, temperature
parallel SA is always better than simple parallel SA.
This is because temperature parallel SA can produce
optimal solutions at that time.

3. Two kinds of parallel SAs have almost the same final
energy value.

3.5 Protein Structure Analysis Pro-
grams

3.5.1 Background

One of the most important problems in the field of struc
tural biology and biophysics is protein structure predic
tion. Structural biologists have proposed many methods
to solve the structure prediction problem. Still, the ac
curacy of secondary structure prediction (i.e. to know
the local feature of a protein structure), which seems to
be the easiest part of protein structure prediction, is far
below the biological demand.

3.5.2 Overview of Protein structure analysis
programs

We plan to solve this difficult problem by a three-phase
strategy. In the first phase, we should develop a effective
method for representing the structure of protein. Sec
ondly, we are to analyze the statistical relation between
the representation and the sequence of a protein, and
to obtain a statistic prediction method. Finally, we are
planning to analyze ~hich part of the prediction is sta
tistically imprecise by logical consideration in order to
know the limits of the statistical prediction method. We
also plan to improve the prediction method by using log
ical knowledge gained from analysis. This plan should
ensure that the parallel inference machine is used effec
tively.

At the moment, we are in the first phase, and have
obtained a new way of representing the structure of pro
tein produced by multi-variate analysis (Figure 14). The
three dimensional distribution of the amino asid residues
which are serial in a protein sequence is easily character
ized by each standard deviation on the three main axes
of the distribution. This gives us the local coordinates
for analyzing the local structure.

3.5.3 Result

As the result, we found it possible to numerically repre
sent the local structure of protein, and we can recognize
its secondary structure from this new representation of
protein. This numerical representation, which seems to
be suitable for numerical operations such as regression
analysis, may be quantized into a symbolic representa
tion for logical or symbolic operations (Figure 15).

3.6 A Legal Reasoning System

3.6.1 Background

Legal knowledge consists of statutory laws and old cases.
As a statutory law is a set of legal rules, inference by a

173

Figure 14: Main axes of the distribution of amino acid
residues

8

6

4

2

o 03

·2
100 110 120 130 140 150 160 170 180 190 200

Figure 15: Spatial distribution of amino acids of protein
sequence

statutory law is realized as rule-based reasoning. How
ever, legal rules often contain legal predicates (legal con
cepts). Some legal concepts are ambiguous and their
strict meanings are not fixed until the rules are applied
to actual facts. To apply legal rules to actual facts, rule
interpretation and matching between legal concepts and
concrete facts are needed. To realize this, old cases are
often referenced and their explanations are reused. Con
sequently, legal reasoning can be modeled as a mixed
paradigm of rule-based reasoning and case-based reason
ing.

However, there are some difficulties in developing a
practical legal reasoning system. Firstly, as there are
many legal rules and many old cases, it takes a long time
to search for similar cases and to draw conclusions based
on them. Secondly, to manage several inference engines,
a complex mechanism to control inference is needed.

To solve these problems by parallel inference, we devel
oped a legal reasoning system, HELIC-II, on the parallel
inference machine.

174

3.6.2 Overview of the Legal Reasoning System

HELIC-II draws legal conclusions for a given case by
referencing a statutory law and old cases and outputing
them in the form of inference trees [Nitta et al. 1992].

HELIC-II consists of a rule-based engine and a case
based engine (Figure 16). The rule-based engine refers
to legal rules and draws legal consequences logically. The
case-based engine generates legal concepts from given
facts by referring to similar old cases.

Figure 16: Architecture of HELIC-II

Rule-based inference As there are many legal rules,
a fast rule-based engine is needed. Moreover, legal rules
sometimes have exceptional rules, the rule-based engine
has to be added some mechanism to handle nonmono
tonic reasoning.

The rule-based engine of HELIC-II is based on the par
allel theorem prover MGTP (Model Generation Theo
rem Prover) [Fujita et al. 1991]. Given a set of non-Horn
clauses, MGTP generates models which satisfy all input
clauses by parallel inference.

To use MGTP as a rule-based engine of legal rules, and
to obtain high performance by pipeline effect, we added
several extended functions to the original MGTP.

Case-based inference A judicial precedent (old case)
consists of arguments by both sides and the opinion of
judges and a final conclusion. We represent an old case
as a situation and some case rules.

A situation contains informations on the occurrences
of the case and represents a set of events/objects and
their temporal relations. Arguments by both sides are
represented as a set of case rules.

The function of the case-based engine is to generate le
gal concepts by referring to similar old cases. In the first
stage, the engine searches for similar cases from the case
base. Old cases are distributed to each processor(PE) of
the Multi PSI, and similarities between the new case and
old cases are evaluated in parallel. In the second stage,
similarities between case rules of selected cases and the
new case are measured using a Rete-like network (Figure
17), and new arg~ments are constructed.

new case

{cycle2.agent.bill}

two-input node

Figure 17: Rete-like network

3.6.3 Results

We observed that HELIC-II can solve several cases of the
Penal Code. Figure 18 shows the speedup in the second
stage of the case-based engine. We obtained more than
50-fold speedup using the 64PEs of the Multi-PSI.

tlme(sac.) speedup

1200 60

1000 50

600 40

600 30

400 . 20

200 10

00 10 20 30 40 50 60 70
0

number of processors

Figure 18: Performance of the case-based engine

3.7 Go Playing Game System "GOG"

3.7.1 Background

Go is a popular board game played traditionally in
Japan, China, and Korea. Go is played using black and
white stones and a 19 x 19 grid. The two players alter
nately place black and white stones on the grid intersec
tions. The goal is to gain more secure territories than
your opponent. It is a perfect information game.

Go has been a difficult game for computers to play.
There have been no go-playing programs that match the
ability of average human go-player. The difficulty of con
structing a go-playing program comes mainly from the
fact that (1) the branching factor of an average game tree
is too large for brute force searches to be feasible, and
(2) a simple and good board evaluation function does
not exist.

As a go-playing program requires basic AI techniques
such as searching, processing ambiguous patterns, ex
ceptional processing, and cooperative problem solving,
it is a suitable research subject for knowledge processing
technologies.

We are trying to build a strong go program using the
computing power of the parallel inference machines. We
are aiming at the strength of GOG (GO Generation)
with the ability of the, average human player.

3.7.2 Overview of GOG

GOG has the following three features.

1. It simulates the thinking mechanism of a human
player.

2. The large tasks are performed in parallel.

3. The new "flying corps" technique has been applied
to improve the strength of GOG considerably while
retaining its real-time response.

Simulating the Thinking Mechanism of a Human
Player The process in which the GOG system deter
mines its next moves comprises three stages (Figure 20).
When the system receives the enemy's move, it first rec
ognizes the board configuration. And then, it generates
many candidate moves. It rates those moves and selects
the one with the highest value as the next move.

• Board Recognition

The raw data of the board configuration is simply
the state of every board position, which is either (a)
vacant, (b) occupied by a white stone, or (c) occu
pied by a black stone. Just like a human player, the
system starts from the raw board data and succes
sively makes higher-level data structures - stones j

strings (a string is connected stones of the same
color), groups (strings of the same color that are close

Tasks for
parallel

execution

Candidate
Move

Generation

175

Next Mov
Decision

Figure 19: Outline of Process in The Parallel GOG

to each other), families (loosely connected groups),
etc. -, and then determines their attributes (poten
tial value, area of surrounded territory, etc.) in the
recognition phase.

• Candidate Move Generation

The system has candidate knowledge which gener
ates the coordinate and evaluation value of a can
didate move. To decide the next move, many can
didates are listed by executing tasks invoked from
candidate knowledge. GOG has 12 kinds of the
candidate knowledge (JOSEKI, Edge, DAME, In
vasion, Spheres' Contact Point, Capture/Escape,
Cut/connect, Enclose/Escape, etc.).

• Next Move Decision

The local adjustment for candidates rearranges
disharmonies between the different candidate knowl
edges. Then, the system sums the total proposed
values of candidates at each point on the board. The
system selects the one with the highest value as the
next move and plays it.

Parallel Processing In GOG, one of the processors
of the Multi-PSI serves as a manager processor, and the
rest act as worker processors. The next move decision
process is made on the manager processor, which also
distributes tasks to worker processors.

When the system receives the enemy's move, it rec
ognizes the board configuration and generates candidate
moves. In those processes, it picks up large tasks such as
local searches, which check whether a string to be cap
tured or not, and dispatches the worker processors. The
results are sent to the manager processor which, then,
decides the next move based on those results.

Flying Corps To improve the strength of the system
considerably while retaining its real-time response, we
proposed the concept of flying corps.

176

This idea is to find the tasks which are important but
don't have to be solved before the next move and to
make flying corps processes execute these tasks. The
system which incorporates the flying corps idea consists
of main corps processes and flying corps processes (Fig
ure'20). A flying corps process and a main corps process
are assigned to the same processor. Main corps processes
consist of a manager and workers and flying corps pro
cesses use the same manager and workers. Main corps
processes execute necessary tasks to operate by go rules
and tasks to maintain their strength.

Main corps processes have a higher priority than flying
corps processes. Flying corps processes notify task com
pletion to a flying corps manager process when the dis
patched task is completed (which may be several moves
after the initiation of the task). Whenever the main
corps tasks are finished, the manager process of main
corps will collect the results of finished tasks on flying
corps processes. With those results and the results by
main corps worker processes, the system decides on the
next move. The time to decide the next move depends
only on the main corps processes.

Flying corps processes execute these tasks indepen
dently from the immediate next move decision process
(in main corps processes). vVhen the opponent is think
ing of the next move, the flying corps processes keep on
running, vVhen a local situation, which caused tasks for
flying corps, will be changed by some later move, these
tasks are aborted.

PE 1

Figure 20: Configuration of System

3.7.3 Result

Table 1 shows the GOG's performance in parallel execu
tion. From these results, the parallel execution shortens
the processing time in go. The strength of GOG, includ
ing the flying corps idea, is now under evaluation.

We have been developing sequential GOG. The object
is to test the new algorithm ideas of recognition, candi
date knowledge, and next move decision. Last Novem-

Table 1: Speedup in Parallel Execution

1st of final match, 13th Kisei tournament

Stage 1 PE 4 PE 16 PE
30th move 1.0 3.3 5.1
90th move 1.0 3.4 5.3

180th move 1.0 3.7 7.5
...

15th of final match, 13th MelJll1 tournament I
Stage 1 PE 4 PE 16 PE

30th move 1.0 3.2 5.4
90th move 1.0 3.4 5.6

180th move 1.0 3.6 5.9

ber, the sequential GOG and seven other computer go
programs including last year's top five programs, par- '
ticipated in the tournament at the Game Playing Sys
tem Workshop. The result of our sequential GOG was
2 wins ane! 3 loses. It shows that GOG is a top-class
computer go-program. In human terms, the current sys
tem is stronger than an entry level human go player, but
considerably weaker than an average player.

4 Overview of Application Pro
grams (2)

4.1 Co-HLEX: Co-operative Recursive
LSI Layout Problem Solver

LSI layout is one of the greatest problems requiring mas
sive computation power. Also, the development and en
hancement of a layout system consumes huge amounts
of programmers labor. In the development of Co-HLEX,
the development of a parallel algorithm as well as the
possibility of more elegant program descriptions were in
vestigated. The classical divide and conquer algorithm
works well while subproblems correlate weakly. For LSI
layout, this is not so. Neighboring modules should have
abutting shapes and wires to avoid dead spaces. The
concurrent co-operation mechanism among processes of
fered by FGCS paradigm might be an effective means to
solve this problem.

An overview of Co-HLEX is given in Figure 21.
The problem-solving kernel is a quadtree-shaped pro

cess network called CMPN that generates a chip lay
out. Before layout generation, each node of CMPN con
tains circuit data including the module name, the module
property, a list of net names connecting this module to
others, 'and a list of sub-circuit names. After the lay
out is generated, layout data. are added to each node:
the template name (layoutframe) used to slice the node,
the enveloping rectangle size, the list of adopted wiring
pattern names for each net, etc.

Circuit Tree
Generation

Layout
Drawing

Layout
Verification

Circuit
Diagram
Ra-galMlration

Constraints
Process
Nama

Figure 21: Overview of Co-HLEX

A recursive algorithm called HRCTL (Hierarchical Re
cursive Concurrent Theorem) was developed. This algo
rithm performs the layout by the following steps.

Placement A placement message containing a list of
planned shape and planned peripheral connector
placements is sent to the top node of CMPN from
the co-ordination process. Then a set of recursive
placement actions is performed by CMPN processes.
In top-down processing, each non-terminal node is
sliced by using an appropriate layoutframe picked up
from the template library. Reaching the leaf node,
an appropriate layoutframe defining the cell geome
try is chosen. In bottom-up processing, the layouts
of lower level children are aggregated to form a par
ent layout.

Wiring Non-terminal power supply nets Vcc and Vee
are wired first, because they interfere with the wiring
of signal nets. Non-terminal signal nets are then
wired. Then, a set of recursive wiring actions is per
formed by CMPN. For each net of the non-terminal
node, the existence range (CERW) of all the periph
eral connectors of the net are first reduced, then
an appropriate wiring pattern is selected from the
wiring pattern list attached to the layoutframe cho
sen before. At each point where the chosen pattern
crosses the sub-slice border line, an induced connec..:
tor is introduced. This is used as a peripheral con
nector by the adjacent sub-slices in the subsequent

177

recursion. Recursion terminates at each leaf node,
with each CERW reduced to the magnitude of cell
height or width. Lastly, the nets in cells are wired
(SE-wiring, NW-wiring, and ND-wiring).

Layout experiments are conducted for bipolar-analog
circuits with approximately 1000 modules. The resulting
layout realized a compact module placement and wires
free of useless bends. By runtime wire abutment coop
eration, channel areas used by inter-module patch wires
were avoided. This was useful for chip area reduction.

Co-HLEX has a time complexity of roughly O(N),
where N is the number of modules in the circuit, as con
trasted to a time complexity of nearly O(N2) for tradi
tional layout systems.

The Co-HLEX program has 1,000 lines in KL1, while
traditional implementations typically have more than
100,000 lines of code. The recursive HRCTL algo
rithm and the modularized streamed-parallel computa
tion model of KL1 both contributed to the size reduction.

4.2 Cooperative Logic Design Expert
System on a Multiprocessor

One of the pressing problems of CAD systems is the lack
of a means to iterate the cycle of evaluation and redesign
until the design satisfies all constraints. Without it, it
would be impossible to design a quality circuit with the
desired characteristics (area and speed) by looking at the
design from a global point of view.

co-LODEX is a cooperative logic design expert sys
tem on a multiprocessor, based on an evaluation
redesign mechanism using assumption-based reasoning
[Maruyama 1988][Maruyama 1990]. In it, design alter
natives are considered as assumptions and constraint vi
olations are viewed as contradictions. Redesign is im
plemented as contradiction resolution. Justifications for
constraint violations, nogood justifications (NJs), play
a central role in the mechanism. co-LODEX divides
the whole circuit to be designed into subcircuits in ad
vance and designs each sub circuit on each processor to
exploit parallel processing. Global evaluation-redesign
takes place by processors exchanging design results or
NJs. NJs received from other agents help narrow down
the search space for an agent in the sense that new NJs
made from received NJs enable the agent to prune the
search space [Maruyama 1991]. That is the reason why
we claim that co-LODEX is cooperative.

co-LODEX inputs a behavioral specification written
in a hardware description language, a block diagram of
the datapath, and constraints on area and speed. Con
straints on area are expressed as inequalities in the gate
count, and constraints on speed are expressed as inequal
ities in the propagation delay. co-LODEX outputs a
CMOS standard call netlist that satisfies the constraints.

178

The resulting netlist can be input to an automatic place
and-route system for CMOS standard cells.

co-LODEX divides the whole circuit to be designed
into subcircuits. Each subcircuit is designed by a design
agent. Figure 22 shows the five sub circuits for a circuit
tha.t solves a second-order differential equation (DiffEQ)
and the agents in charge.

Figure 22: Sub-circuits and agents

Each design agent designs given functional blocks hi
erarchically using the top-down method. This method
keeps splitting functional blocks and sub blocks into sub
subblocks until all given blocks are implemented with
CMOS standard cells.

Then it counts the number of gates and estimates de
lays to evaluate the implemented circuit against con
straints on area and time. A design agent usually de
signs its sub circuit independently and in parallel with the
other design agents. However, since the design results
of the other agents are necessary for evaluation against
global constraints, design agents exchange their results
every time they design or redesign. A design agent re
designs when it detects a constraint violation for which
it is responsible.

co-LODEX was implemented on Multi-PSI in KLI
[Minoda 1992]. Experimental results show that co-·
LODEX can efficiently carry out global optimization.
Design agents correspond to processors on a one-to-one
basis. 'Ve had one extra processor for distributing the
functional blocks to other processors and making statis
tics. The relation between the number of design agents
(1 to 15) and the speedup for a circuit with high unifor
mity is shown in Figure 23.

4.3 Case-based circuit design system

Recently, much attention has been paid to case-based
reasoning (CBR) as a software technology for aquiring
large amounts of knowledge easily and utilizing it ef-

Speedup

18

16

14

12

10

.a. initial design

0- a change in consuainl
on delay time

.•• a change in consuainl

L..-~~"""""-'--'---'----I.---''--~~-'---'--'----' Agents
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 23: Relation between the number of agents and
speedup

ficiently. We have researched into a flexible and fast
CBR mechanism through upper-level digital circuit de
sign problems.

We suppose that novice designers, who have knowledge
about primitive circuits but lack experiences in design,
will use this system to solve application problems that
are a little beyond the basic level. This system con
structs block diagrams satisfying given specifications by
retrieving similar precedent circuits, then modifying and
combining them, based only on design cases and knowl
edge on primitive circuits.

This system features retrieving circuits whose func
tional structures are similar to the problem's and use
a Structure Mapping Engine (SME) [Falkenhainer 86] as
a case-retriever.

SME can extract cases structurally similar to the given
problem, if higher order relations in given structures are
the same between the case and the problem, even if the
lower relations and entities are not same. In this sys
tem, SME evaluates the similarity of functional hierar
chy trees. It, also, evaluates the descriptions of the cir
cuit block functions that represent the hierarchical rela
tions between the primary function and secondary func
tions that are necessary to realize the primary function.
Then, it retrieves the circuits which have the most simi
lar functions as a whole even though the details may be
different. For example, when designing a digital clock,
SME retrieves a similar circuit which counts the amount
of money from the case base, even if there is no digital
clock circuit.

Figure 24 shows the configuration of this system. We
describe the design process briefly below.

Firstly, Analyzer analyzes the input specs to create
functional hierarchy trees along the data flow and de
tailed specs for the given problem. Secondly, Retriever
retrieves the cases which have similar functional hierar
chy trees to the problems with SME. Thirdly, Adaptor
checks whether the detail specs are the same between

: Input

Index: functional hierarchy tree
for specs

detail specs

Similar Circuit Blocks

~~IBJ,im~fY&1 \i combine I
--~

C"'A-d-vi-so-r)

: Output

+
infonnation of
modification

store

Figure 24: Configuration of case-based circuit design sys
tem

the retrieved case and the problem. When different,
adaptor checks the possibility of modifying detail specs,
then combines the retrieved cases which have confirmed
adaptability to the given problem. In this phase, SME
also predicts design failures and recovers from them, and
those failure recoveries are reported via Advisor. Finally,
the system outputs block diagrams corresponding to the
combined cases. Users evaluate the output block dia
gram and, if it is suitable, the problem and the solution
are stored in the case base as a new case.

We confirmed that non-stereotyped circuits are actu
ally designed with this approach in mind; i.e. a digital
clock with the additional function of sensing temperature
can be an air-conditioner performance monitor.

Through experiments we also confirmed the effective
ness of the CBR method with SME. SME, however, has
very high running costs because of its structural match
ing process which includes the combination problem. For
this problem, we made SME programs parallel with the
multi-level load balancer, and, with the 64 PE of Multi
PSI, we obtained IO-fold speedup.

4.4 High Level Synthesis by Parallel
Rule-based Annealing

Figure 25 describes the process flow of High Level Syn
thesis (HLS). LSI behavior descriptions written in a

179

Pascal-like language (Paspec) are parsed and converted
to a schedule table. The schedule table describes when
each expression is executed and by which AL U. It cor
responds to a datapath circuit. The problem finding the
lowest cost configuration in the schedule table. The cost
is the sum of the chip area and the execution speed. It
is a typical combinatorial optimization problem (COP).

Behavior
Description

Datapath

a/ul aJu2 a/u3 aJu4

r919RR"~

Figure 25: the process flow of HLS

Parallel Rule-Based Annealing Simulated anneal
ing (SA) can be used to find a near global minimum in a
COP, but it requires a huge number of iterations. Heuris
tic algorithms are faster, but the solutions are prone to
capture in local minima. The rule-based annealing (RAJ
algorithm was developed, which has intermediate char
acteristics between the two. In each iteration step, the
RA algorithm generates candidates of the next schedule
table configuration by using not only random conversion
but conversions using heuristic rules. The rule is selected
probabilistically and the selection probability of the rule
alters the temperature changes. The higher the accep
tance rate of the candidate is, the higher the selection
probability of the rule.

A parallel RA algorithm was then designed. The sys
tem consists of one master processor and a number of

180

slave processors. Each processor runs the rule-based an
nealing independently at the same temperature, gener
ating different sequences of configurations. At the begin
ning of annealing at a temperature, the master proces
sor classifies the slave processors into a higher cost group
and a lower cost group based on the cost of configura
tion. The annealing process continues until there is little
difference in the cost distributions of the the two groups,
at which time the equilibrium state is considered to have
been reached. This contributes to the shortening of an
i1eaIing steps at high temperatures. At low temperatures,
configurations judged to be trapped in local minima are
a.bandoned and are replaced by better configurations in
ot.her processors.

The parallel RA algorithm was implemented on a
lVIulti-PSI with 16 processors. Figure 26 shows the ex
perimentaI results. The RA algorithm was 4 times faster
than the SA algorithm. The parallel RA was 8 times
faster t.han the sequential RA. The effectiveness of the
parallel RA algorithm was thus experimentally proven.

2700 ----~----~----~----~---- ---- --- -- -
: : : : A SA

2600
_ I:==g ___ ~ ____ ~ ____ 1 B -- RA

I I I I C -- Par a I I e I
I I I I D -- Par a I I e I

2S00

2400

Cos 1 2300

2100

2000

1000 2000 3000 4000 SOOO 6000 7000 SOOO 9000

Computation time (sec)

Figure 26: Experimental Result

4.5 Design Supporting System based
on Deep Reasoning

In design, there are many cases in which a designer does
not directly design a new device, but rather, changes
or improves an old device. Sometimes a designer only
changes the parameters of components in a device to
satisfy the requirements. The designer, in such cases,
knows the structure of the device, and needs to deter
mine the new values of the components. This is common
in electronic circuits. Desq (Design supporting system
based on qua.litative reasoning) determines valid ranges
of the design decisions using qualitative reasoning.

Desq uses an envisioning mechanism, which, by using
qualitative reasoning, determines all possible behaviors
of a system. However, the quaIitative reasoning of Desq

is different from ordinary qualitative reasoning, because
it can deal with quantities both qualitatively and quan
titatively. Accordingly, Desq may be able to determine
quantitative ranges, if parameters are gi"'en as quantita
tive values.

Initial data Knowledge base·

c. Structure J ~PhYsiCai rul:
and objects j
-_--~- Simultaneous

Behavior'- Input / inequalities

Reasonf· ~ ~ Internal

Olllli lPSlI

~~:~~!~ingl °4

Output

I>~sigp
paraweter
calculator

~ .:::

Ranges of
design

....... parameter~

mIL Muhi-lPSlI

Figure 27: System organization

The system organization of Desq is shown in Figure
27. Desq consists of three subsystems:

Behavior reasoner

This subsystem is based on a qualitative reasoning
system. Its model building reasoning part builds si
multaneous inequalities from initial data using defi
nitions of physical rules and objects. The simultane
ous inequalities are a model of a target system. The
envisioning part derives all possible behaviors.

Design parameter calculator

This subsystem calculates ranges of design parame
ters undefined in initial data.

Parallel constraint solver

This subsystem solves simultaneous inequalities. It is
written in KL1 and is executed on a parallel inference
machine.

Desq finds the valid ranges of design parameters as
follows:

(1) Perform envisioning with design parameters whose
values are undefined in initial data,

(2) Select preferable behaviors from possible behaviors
found by envisioning,

(3) Calculate the ra.nges of the design parameters that
give preferable behaviors.

As a.n experiment, Desq successfully determined the
valid range of resistance Rb in the DTL circuit in Figure
28.

5 V --1 -41 -+1,

Undefined parameter

Figure 28: DTL circuit

4.6 A Diagnostic and Control Expert
System Based on a Plant Model

Currently in the field of diagnosis and control of thermal
power plants, the trend in systems is that the more in-.
telligent and flexible they become, the more knowledge
they need. As for knowledge, conventional diagnostic
and control expert systems are based on heuristics stored
a priori in knowledge bases. So, they cannot deal with
unforeseen events when they occur in a plant. Unforeseen
events are abnormal situations which were not expected
when the plant was designed. To overcome this limi
tation, we have focused on model-based reasoning and
developed a diagnostic and control expert system based
on a plant model.

The system (Figure 29) consists of two subsystems: the
Shallow Inference Subsystem (SIS) and the Deep Infer
ence Subsystem (DIS).

The SIS is a conventional plant control systern based
on heuristics, namely shallow knowledge for plant con
trol. It selects and executes plant operations accord
ing to the heuristics stored in the knowledge base. The
Plant]I.;[onitor detects occurrences of unforeseen events,
and then activates the DIS. The DIS utilizes various
kinds of models to realize the thought processes of a
skilled human operator and to generate the knowledge
for plant control to deal with unforeseen events. It
consists of the following modules: the Diagnosor, the
Opemtion-Genemtor, the Precondition-Generator, a.nd
the Simulation- Verifier. The Diagnosor utilizes the
Qualitative Causal]I.;[odel for plant process parameters
to diagnose unforeseen events. The Operation-Generator

181

generates the operations that deal with these unfore
seen events. It utilizes the Device Model and the Op
eration Principle Model. The Precondition-Generator
generates the preconditions of each operation generated
by the Operation-Generator, and, as a result, generates
rule-based knowledge for plant control. The Simulation
Verifier predicts the plant behavior that will be ob
served ~hen the plant is operated according to the gener
ated knowledge. It utilizes the Dynamics Model, verifies
the knowledge using predicted plant behavior, and gives
feedback to the Operation-Generator, if necessary.

Figure 29: System Overview

The knowledge generated and verified by the DIS is
transmitted to the SIS. The SIS, then, executes the plant
operations accordingly, and, as a result, the unforeseen
events should be taken care of.

We have implemented the system on Multi-PSI. To re
alize a rich experimental environment, we have also im
plemented a plant simulator on a mini-computer. Both
computers are linked by a data transmission line. We
have incorporated both a device and a dynamics model
for each device of a thermal power plant (to a total of
78). We summarize the experimental results as follows.

• The DIS could generate plan control knowledge to
deal with unforeseen events.

• The SIS executed plant operators according to the
generated knowledge and could deal with unforeseen
events.

• We have demonstrated a fivefold improvement in rea
soning time by using Multi-PSI with 16 processor
elements.

182

4.7 Adaptive Model-Based Diagnostic
System

Though traditional rule-based diagnostic approaches
that use symptom-failure association rules have been
incorporated by many current diagnostic systems, they
lack robustness. This is because they cannot deal with
unexpected cases not covered by the rules in its Imowl
edge base. On the other hand, model-based diagnostic
systems that use the behavioral specification of a device
are more robust than rule-based expert systems. How
ever, in general, many tests are required to reach a con
clusive decision because they lack the heuristic knowl
edge which human experts usually utilize. In order to
solve this problem, a model-based diagnostic system has
been developed which is adaptable because of its ability
to learn from experience [Koseki et al. 1990].

This system consists of several modules as shown in
Figure 30. The knowledge base consists of design knowl
edge and experiential knowledge. The design knowledge
represents a correct model of the target device. It con
sists of a structural description which expresses compo
nent interconnections and a behavior description which
expresses the behavior of each component. The expe
riential knowledge is expressed as a failure probability
for each component. The diagnosis module utilizes those
two kinds of know ledge.

Test Pattern
Selector /
Generator

t
Symptom

Diagnosis
Module

Learning
Module

Test Test result Suspects

Figure :30: Structure of the System

F~gure :31 shows the diagnosis flow of the system. The
system keeps a set of suspected components as a suspect
list. It uses an eliminate-not-suspected strategy to reduce
the number of suspects in the suspect-list, by repeating
the test-and-eliminate cycle. It starts by getting an ini
tial symptom. A symptom is represented as a set of tar
get device input signals and an observed incorrect output
signal. It calculates an initial suspect-list from the given
initial symptoms. It performs model-based reasoning to
obtain a suspect-list using a correct design model and an
expected correct output signal. To obtain an expected
correct output signal for the given inputs, the system
ca.rries out simulation using the correct design model.

Figure 31: Diagnosis Flow

After obtaining the initial suspect-list, the system re
peats a test-and-eliminate cycle, while the number of sus
pects is greater than one and an effective test exists. A
set of tests is generated by the test pattern generator.
Among the generated tests, the most cost effective is
selected as the next test to be performed. The effective
ness is evaluated by using a minimum entropy technique
that utilizes the fault probability distribution. The se
lected test is suggested and fed into the target device.
By feeding the test into the target device, another set of
observations are obtained as a test result and are used
to eliminate the non-failure components.

Learning Mechanism The performance of the test
selection mechanism relies on the preciseness of the pre
sumed probability distribution of components. In order
to estimate an appropriate probability distribution from
a small amount of observation, the system acquires a pre
sumption tree using minimum description length(MDL)
criterion. A description length of a presumption tree
is defined as the sum of the code length and the log
likelihood of the model. Using the constructed presump
tion tree, the probability distribution of future events
can be presumed appropriately.

The algorithm is implemented in KL1 language on a
parallel inference machine, Multi-PSI. The experimental
results show that the 16 PE implementation is about 11
times as fast as the sequential one.

The performance of the adaptive diagnostic system (in
terms of the required number of tests) was also examined.
The target device was a packet exchange system and
its model was comprised of about 70 components. The
experimental results show that the number of required
tests can be reduced by about 40% on average by using
the learned know ledge.

4.8 Motif Extraction System

One of the important issues in genetic information pro
cessing is to find common patterns of sequences in
the same category which give functional/structural at
tributes to proteins. The patterns are called motifs, in
biological terms.

On Multi PSI, we have developed the motif extraction
system shown in Figure 32. In this, a motif is represented
by stochastic decision predicates and the optimal motif is
searched for by the genetic algorithm with the minimum
description lellgth(MDL) principle.

Protein DB

Motif
motif(S,cytochrome_c) with p

:- contain("C:XXCH",S).

means that if a given sequence contains
"CXXCH" it is cytochrome_c
with probability p.

Genetic Algorithm
with MDL Principle

Motif is represented by binary string.
Motif's fittness value is calculated using MDL principle.

Figure 32: Motif Extraction System

Stochastic Decision Predicate It is difficult to ex
press a motif as an exact symbolic pattern, so we employ
the stochastic decision predicate as follows.

motif(S,cytochrome_c) with 129/225
:- contain("CXXCH",S).

motif(S,others) with 8081/8084.

This example means that if S contains a subsequence
matched to "CXXCH", then S is cytochrome c with
probability ~;;, otherwise S is another protein with prob-
ability ~g~!.

183

Minimum Description Length Principle We em
ploy the minimum description length(MDL) principle
because it is effective in estimating a good probabilis
tic model for sample data, including uncertainty avoid
ing overfitting. The MDL principle suggests that the
best stochastic decision predicate minimizes the follow
ing value.

predicate description length + correctness de
scri ption length

The value of the predicate description length indicates
the predicate complexity(i.e. smaller values are better).
The value of the correctness description length indicates
the likelihood of the predicate(i.e. smaller values are bet
ter). Therefore, the MDL principle balances the trade-off
between the complexity of motif representation and the
likelihood of the predicate to sample data.

Genetic Algorithm The genetic algorithm is a prob
abilistic search algorithm which simulates the evolution
process. We adopt it to search for the optimal stochas
tic motif, because there is a combinatorially explosive
number of stochastic motifs and it takes enormous com
putation time to find the optimal stochastic motif by
exhaustive searches.

The following procedures are performed in order to
search for the optimal point of a given function fusing
the simple genetic algorithm.

1. Give a binary representation that ranges over the
domain of the function f

2. Create an initial population which consists of a set
of binary strings

3. Update the population repeatedly using selection,
crossover, and mutation operators

4. Pick up the best binary string in the population after
certain generations

We apply the simple genetic algorithm to search for
the optimal motif representation. Each motif is repre
sented by a 120-bit binary string, with each bit corre
sponding to one pattern (e.g. "CXXCH"). The 120-bit
binary string represents the predicate whose condition
part is the conjunction of the patterns containing the
corresponding bits.

Table 2 is the result of applying the motif extrac
tion system to Cytochrome c in the Protein Sequence
Database of the National Biomedical Research Fomida
tion. This table shows the extracted motifs and their
description lengths. CL is a description length of motif
complexity, PL is a description length of probabilities,
and DL is a description length of motif correctness.

184

Table 2: cytochrome c

Motif Compared Matched Correct
CXXCH 8309 225 129
others 8084 8084 8081

Description Length 286.894 (CL = 16.288, PL = 10.397,
DL = 260.209)

5 Performance Analysis of Par
allel Programs

5.1 Why Performance Analysis?

Along with the development of various application pro
grams, we have been conducting a study of the perfor
mance of parallel programs in a more general frame
work. The main concern is the performance of parallel
programs that solve large-scale knowledge information
processing problems on large-scale parallel inference ma
chines.

Parallel speedup comes from decomposing the whole
problem into a number of subproblems and solving them
in parallel. Ideally, a parallelized program would run
p times faster on p processors than on one processor.
There are, however, various overhead factors, such as
load imbalance, communication overhead, and (possible)
increases in the amount of computation. Knowledge pro
cessing type programs are "non-uniform" in (1) that the
number and size of subproblems are rarely predictable,
(2) that there can be random communication patterns
between the subproblems, and (3) that the amount of
total computation can depend on the execution order
of subproblems. This makes load balancing, communi
cation control, and scheduling important and nontriv
ial issues in designing parallel knowledge processing pro
grams.

The overhead factors could make the effective perfor
mance obtained by actually running those programs far
worse than the "peak performance" of the machine. The
performance gap may not be just a constant factor loss
(e.g., 30 % loss), but could widen as the number of
processors increases. In fact, in poorly designed par
allel programs, the effective-to-peak performance ratio
can approach zero as the number of processors increases
without limit.

If we could understand the behavior of the various
overhead factors, we would be able to evaluate paral
lel programs, identify the most serious bottlenecks, and
possibly, remove them. The ultimate goal is to push the
horizon of the applicability of large-scale parallel infer
ence machines into a wide variety of areas and problem
instances.

5.2 Early Experiences

As the first programs to run on the experimental
parallel inference machine Multi-PSI, ,four programs
were developed to solve relatively simple problems.
These were demonstrated at the FGCS'88 conference
[Ichiyoshi 1989]. They are:

Packing Piece Puzzle (Pentomino)

A rectangular box and a collection of pieces with var
ious shapes are given. The goal is to find all possible
ways to pack the pieces into the box. The puzzle
is often known as the Pentomino puzzle, when the
pieces are all made lip of 5 squares. The program
does a top-down OR-parallel all solution search.

Shortest Path Problem

Given a graph, where each edge has an associated
nonnegative cost, and a start node in the graph,
the problem is to find the lowest cost path from the
start node to every node in the graph (single-source
shortest path problem). The program performs a
distributed graph algorithm. We used square grid
graphs with randomly generated edge costs.

Natural Language Parser

The problem is to construct all possible parse
trees for an English sentence. The program is a
PAX parser [Matsumoto 1987], which is essentially
a bottom-up chart parsing algorithm. Processes rep
resent chart entries, and are connected by message
streams that reflect the data flow in the chart.

Tsumego Solver

A Tsumego problem is to the game of go what the
checkmate problem is to the game of chess. The
black stones surrounding the white stones try to cap
ture the latter by suffocating them, while the white
tries to survive. The problem is finding out the result
assuming that black and white do their best. The re
sult is (1) white is captured, (2) white survives, or
(3) there is a tie. The program does a parallel alpha
beta search.

In the Pentomino program, the parallelism comes from
concurrently searching different parts of the search tree.
Since disjoint subtrees can be searched totally indepen
dently, there is no communication between search sub
tasks or speculative computation. Thus, load balancing
is the key factor in parallel performance. In the first ver
sion, we implemented a dynamic load balancing mech
anism and attained over 40-fold speedup using 64 pro
cessors. The program starts in a processor called the
master, which expands the tree and generates search sub
tasks. Each of the worker processors requests the master
processor for a subtask in a demand-driven fashion (i.e.,

it requests a subtask when it becomes idle). Later im
provement of data structures and code tuning led to bet
ter sequential performance but lower parallel speedup. It
was found that the subtask generation throughput of the
master processor could not keep up with the subtask so
lution throughput ofthe worker processors. A multi-level
subtask a.llocation scheme was introduced, resulting in 50
fold speedup on 64 processors [Furuichi el al. 1990].

The load balancing mechanism was separated from the
program, and was released to other users as a utility.
Several programs have used it. One of them is a paral
lel iterative deepening A * program for solving the Fif
teen puzzle. Although the search tree is very unbal
anced because of pruning with a heuristic function, it at
tained over 100 fold speedup on a 128-processor PIM/m
[\i\Tada et al. 1992].

The shortest path program has a lot of inter-process
communication, but the communication is between
neighboring vertices. A mapping that respects the lo
cality of the original grid graph can keep the amount of
inter-]Jrocesso1' communication low. A simple mapping,
in which the square graph was divided into as many sub
graphs as there are processors, maximized locality. But
the parallel speedup was poor, because the computation
spread like a wavefront, making only some of the pro
cessors busy at any time during execution. By dividing
the graph into smaller pieces and mapping a number of
pieces from different parts of the graph, processor uti
lization was increased [Wada and Ichiyoshi 1990].

The natural language parser is a communication inten
sive program with a non-local communication pattern.
The first static mapping of processes showed very little
speedup. It was rewritten so that processes migrate to
where the necessary data reside to reduce inter-processor
communication. It almost halved the execution time
[Susaki et al. 1989].

The Tsumego program did parallel alpha- beta searches
up to the leaf nodes of the game tree. Sequential alpha
beta pruning can halve the effective branching factor of
the game tree in the best cases. Simply searching dif
ferent alternative moves in parallel loses much of this
pruning effect. In other words, the parallel version might
do a lot of redundant speculative computation. In the
Tsumego program, the search tasks of candidate moves
are given execution priorities according to the estimated
value'of the moves, so as to reduce the amount of spec
ulative computation lOki 1989].

Through the development of these programs, a num
ber of techniques were developed for balancing the load,
localizing communication, and reducing the amount of
speculative computation.

5.3 Scalability Analysis

A deeper understanding of various overheads in parallel
execution requires the construction of models and anal-

185

ysis of those models. The results form a robust core of
insight into parallel performance.

The focus of the research was the scalability of parallel
programs. Good parallel programs for utilizing large
scale parallel inference machines have performance that
scales, i.e., the performance increases in accordance with
the increase in the number of processors. For example,
two-level load balancing is more scalable than single-level
load balancing, because it can use more processors. But
deciding how scalable a program is requires some ana
lytical method.

As a measure of scalability, we chose the iso
efficiency Junction proposed by Kumar and Rao
[Kumar et al. 1988]. For a fixed problem instance, the
efficiency of a parallel algorithm (the speedup divided
by the number of processors) generally decreases as the
number of processors increases. The efficiency can often
be regained by increasing the problem size. The function
J(p) is defined as an isoefficiency function if the problem
size (identified with the sequential runtime) has to in
crease as J(p) to maintain a given constant efficiency E
as the number of processors p increases. An isoefficiency
function grows at least linearly as p increases (lest the
subtask size allocated to each processor approaches zero).
Due to various overheads, isoefficiency functions gener
ally have strictly more than linear growth in p. A slow
growth rate, such as p log p, in the isoefficiency function
would mean a desired efficiency can be obtained by run
ning a problem with a relatively small problem size. On
the other hand, a very rapid growth rate such as 2P would
indicate that only a very poor use of a large-scale parallel
computer would be possible by running a problem with
a realistic size.

On-demand load balancing was chosen first for analy
sis. Based on a probabilistic model and explicitly stated
assumptions on the nature of the problem, the isoeffi
ciency functions of single-level load balancing and multi
level load balancing were obtained. In a deterministic
case (all subtasks have the same running time), the iso
efficiency function for single-level load balancing is p2,
and that for two-level load balancing is p3/2. The de
pendence of the isoefficiency functions on the variation
in subtask sizes was also investigated, and it was found
that if the subtask size is distributed according to an
exponential distribution, a logp (respectively, (10gp)3/2)
factor is added to the isoefficiency function of single-level
(respectively, two-level) load balancing. The details are
found in [Kimura et al. 1991].

More recently, we studied the load balance of dis
tributed hash tables. A distributed hash table is a paral
lelization of a sequential hash table; the table is divided
into subtables of equal size, each one of which is allo
cated to each processor. A number of search operations
for the table can be processed concurrently, resulting in
increased throughput. The overhead comes mainly from
load imbalance and communication overhead. By allo-

186

cating an increasing number of buckets (= subtable size)
to each processor, the load is expected to be improved.
We set out to determine the necessary rate of increase of
subtable size to maintain a good load balance. A very
simple static load distribution model was defined and
analyzed, and the isoefficiency function (with regard to
load imbala.nce) was obtained [Ichiyoshi et al. 1992]. It
was found that a relatively moderate growth in subtable
size q (q = w((log p) 2)) is sufficient for the average load
to approach perfect balance. This means that the dis
tributed hash table is a data structure that can exploit
the computational power of highly parallel computers
with problems of a reasonable size.

5.4 Remaining Tasks

vVe have experimented with a few techniques for mak
ing better use of the computational power of large-scale
parallel computers. We have also conducted a scalabil
ity analysis for particular instances of both dynamic and
static load balancing. The analysis of various paralleliz
ing overheads and the determination of their asymptotic
characteristics gives insight into the nature of large-scale
parallel processing, and guides us in the design of pro
grams which run on large-scale parallel computers.

However, what we have done is a modest exploration of
the new world of large-scale parallel computation. The
analysis technique must be expanded to include commu
nication overheads and specula.tive computation. Now
that PIM machines with hundreds of processors have be
come operational, the results of asymptotic analysis can
be compared to experimental data and their applicability
ca.n be evalua.ted.

6 Summary of Parallel Applica
tion Programs

vVe have introduced overviews on parallel application
progra.ms and results of performance analysis. We will
summarize knowledge processing and parallel processing
using PIlVls/KL1.

(1) Knowledge Processing by PIM/KL1

vVe have developed parallel intelligent systems such
as CAD systems, diagnosis systems, control systems, a
ga.me system, and so on. Knowledge technologies used
in them are the newest, and these systems are valuable
from viewpoint of AI applications, too. Usually, as these
technologies need much computation time, it is impos
sible to solve large problems using sequential machines.
Therefore, these systems are appropriate to evaluate ef
fectiveness of parallel inference.

vVe have already been experienced in knowledge pro
cessing by sequentia.l logic programming languages.

Therefore, we have got accustomed to developing pro
grams in KL1 in a short time. Generally, to develop
parallel programs, programmers have to consider the
synchronization of each modules. This is troublesome
and often causes bugs. However, as KL1 has automated
mechanisms to synchronize inferences, we were able to
develop parallel programs in a relatively short period of
time as follows.

Program Size man*month
Logic Simulator 8k 3

Placement
(KL1) 4k 4
(ESPt) 8k 4

Routing 4.9 k 2
Alignment by 3-DP 7.5 k 4
Alignment by SA 3.7 k 2

Folding Simulation 13.7 k 5
Legal Reasoning
(Rule-based engine) 2.5 k 3
(Case-based engine) 2k 6

Go Playing Game 11k 10

t: An extended Prolog for system programming.

In those cases where the program didn't show high per
formance, we had to consider another process model in
regards to granularity of parallelism. Therefore, we have
to design the problem solution model in more detail than
when developing it on sequential machines.

(2) Two types of Process Programming

The programming style of KL1 is different from that of
sequential logic programming language. A typical pro
gramming style in KL1 is process programming. A pro
cess is an object which has internal states and procedures
to manipulate those internal states. Each process is con
nected to other processes by streams. Communication is
through these streams. A process structure can be eas
ily realized in KL1 and many problem solving techniques
can be modeled by process structures.

We observed that two types of KL1 process structure
are used in application programs.

1. Static process structure

The first type of process structure is a static one.
In this, a process structure for problem solving is
constructed, then, information is exchanged between
processes. The process structure doesn't change until
the given problem is solved. Most distributed algo
rithms have a static process structure. The majority
of application programs belong to this type.

For example, in the Logic Simulator, an electrical cir
cuit is divided into sub circuits and each sub circuit

is represented as a process (Figure 3). In the Protein
Sequence Analysis System, two protein sequences are
represented as a two dimensional network of KL1
processes (Figure 9). In the Legal Reasoning Sys
tem, the lefthand side of a case rule is represented
as a Rete-like network of KL1 processes (Figure 17).
In co-LODEX, design agents are statically mapped
onto processors (Figure 22).

2. Dynamic process structure

The second type of process structure is a dynamic
one. The process structure changes during com
putation. Typically, the toplevel process forks into
subprocesses, each subprocess forks into subsubpro
cesses, and so on (Figure 33). Usually, this pro
cess structure corresponds to a search tree. Appli
cation programs such as Pentomino, Fifteen Puzzle
and Tsumego belong to this type.

Figure 33: A search tree by a dynamic process structure

(3) New Paradigm for Parallel Algorithms

We developed new programming paradigms w.hile de
signing parallel programs. Some of the parallel algo
rithms are not just parallelizations of sequential algo
rithms, but have desirable properties not present in the
base algorithm.

In combinatorial optimization programs, a parallel
simulated annealing (SA) algorithm (used in the LSI cell
placement program and MASCOT), a parallel rule-based
annealing (RA) algorithm (used in the High Level Syn
thesis System), and a parallel genetic algorithm (GA)
(used in the Motif Extraction System) were designed.

The parallel SA algorithm is not just a parallel ver
sion of a sequential SA algorithm. By statically assign
ing tem.peratures to processors and allowing solutions to
move from processor to processor, the solutions compete
for lower temperature processors: a better solution has a
high possibility of moving to a lower temperature. Thus,
the programmer is freed from case-by-case tuning of tem
perature scheduling. The parallel SA algorithm is also
time-homogeneous, an important consequence of which
is it does not have the problem in sequential SA that the

187

. solution can be irreversibly trapped in a local minimum
at a low temperature.

In the parallel RA algorithm, the distribution of the so
lution costs are monitored, and used to the judge whether
or not the equilibrium state has been reached.

In the go-playing program, the flying corps idea suited
for real-time problem solving was introduced. The task
of the flying corps is to investigate the outcome of moves
that could result in a potentially large gain (such as cap
turing a large opponent group or invasion of a large op
ponent territory) or loss. The investigation of a possibil
ity may take much longer time than allowed in real-time
move making and cannot be done by the main corps.

(4) Performance by Parallel Inference

Some application programs exhibited high perfor
mance by parallel execution, such as up to 100-fold
speedup using 128 processors. Examples include the
logic simulator (LS) (Figure 4), the legal reasoning sys
tem (LR) (Figure 18), and MGTP which is a theo
rem prover developed by the fifth research laboratory
of ICOT[Fujita et al. 1991] [Hasegawa et al. 1992]. Un
derstandably, these are the cases where there is a lot
of parallelism and parallelization overheads are mini
mized. The logic simulator (LS), the legal reasoning
system (LR), and MGTP have high parallelism coming
from the data size (a large number of gates in the logic
simulator and a large number of case rules in the le
gal reasoning system) or problem space size (MGTP). A
good load balance was realized by static even data allo
cation (LS, LR), or by dynamic load allocation (MGTP).
Either communication locality was preserved by process
clustering (LS), or communication between independent
subtasks is small (rule set division in LR or OR-parallel
search in MGTP).

(5) Load Distribution Paradigm

In all our application programs, programs with a static
process structure used a static load distribution, while
programs with a dynamic process structure used semi
static or dynamic load distribution.

In a program with a static process structure, a good
load balance can usually be obtained by assigning
roughly the same number of processes to each processor.
To reduce the communication overhead, it is desirable
to respect the locality in the logical process structure.
Thus, we first divide the processes into clusters of pro
cesses that are close to each other. Then, the clusters
are mapped onto the processors. This direct cluster-to
processor mapping may not attain good load balance,
since, at a given point in computation, only part of the
process structure has a high level of computational ac
tivity. In such a case, it is better to divide the process

188

structure into smaller clusters and map a number of clus
ters that are far apart from each other on one processor.
This multiple mapping scheme is adopted in the short
est path program and the logic simulator. In the three
dimensional DP matching program, a succession of align
ment problems (sets of three protein sequences to align)
are fed into the machine and the alignment is performed
in a pipelined fashion, keeping most processors busy all
the time.

In a program with a dynamic process structure, newly
spawned processes can be allocated to processors with a
light computational load to balance the load. To main
tain low communication overhead, only a small num
ber of processes are selected as candidates of load dis
tribution. For example, in a tree search program, not
all search substasks but only those at certain depths
are chosen for interprocessor load allocation. The Pen
tomino puzzle solver, the Fifteen puzzle solver and the
Tsumego solver use this on-demand dynamic load bal
ancing scheme.

(6) Granularity of Parallelism

To obtain high performance by parallel processing, we
have to consider the granularity of parallelism. If the
size of each subtask is small, it is hard to obtain high
performance, because parallelization overheads such as
process switching and communication are serious. For
example, in the first version of the Logic Simulator, the
gates of the electrical circuit were represented as pro
cesses communicating with each other via streams. The
performance of this version was not high because the
task for each process was too small. The second ver
sion represented sub circuits as processes (Figure 3), and
succeeded in improving the performance. .

(7) Programming Environment

The.first programs to run on the Multi-PSI were devel
oped before the KL1 implementation on the machine had
been built. The user wrote and debugged a program on
the sequential PDSS (PIMOS development support sys
tem) on a standard hardware. The program was then
ported to the the Multi-PSI, with the addition of load
distribution pragmas. The only debugging facilities on
the Multi-PSI were those developed for debugging the
implementation itself, and it was not easy to debug ap
plication programs with those facilities. Gradually, the
PIMOS operating system [Chikayama 1992] added de
bugging facilities such as an interactive tracing/spying
facility, a static code checker that gives warnings on
single-occurrence variables which are often simply mis
spelled, and a deadlock reporting facility. The deadlock
reporting facility identifies perpetually suspended goals
and, instead of printing out all of them (possibly very
many), it displays only a goal that is most upstream in

the data flow. It has been extremely helpful in locating
the cause of a perpetual suspension (usually, the culprit
is a producer process failing to instantiate the variable
on which the reported goal is suspended).

Performance monitoring and gathering facility was
later added (and is still being enhanced) [Aikawa 1992].
Post-mortem display of processor utilization along the
time axis often clearly reveals that one processor is
being a' bottleneck at a particular phase of computa
tion. The breakdown of processor time (into comput
ing/ communicating/idling) can give' a hint on how the
process structure might be changed to remove the bot
tleneck.
. Sometimes knowledge of KL1 implementation is neces

sary to interpret the information provided by the facility
to tune (sequential as well as parallel) performance. A
similar situation exists in performance tuning of applica
tion programs on any computers, but the problem seems'
to be more serious in a parallel symbolic language like
KL1. How to bridge the gap between the programmer's
idea of KL1 and the underlying implementation remains
a problem in performance debugging/tuning.

7 Conclusion

We introduced overviews of parallel application pro
grams and research on performance analysis.

Application programs presented here contain interest
ing technologies from viewpoint of not only parallel pro
cessing but knowledge processing.

By developing various knowledge processing technolo
gies in KL1 and measuring their performance, we showed
that KL1 is a suitable language to realize parallel knowl
edge processing technologies and that they are executed
quickly on PIM. Therefore, PIM and KL1 are appropri
ate tools to develop large scale intelligent systems.

Moreover, we have developed many parallel program
ming techniques to obtain high performance. We were
able to observe their effects actually on the parallel in
ference machine. These experiences are summarized as
guidelines for developing larger application systems.

In addition to developing application programs, the
performance analysis group analyzed behaviors of par
allel programs in a general framework. The results of
performance analysis gave us useful information for se
lecting parallel programming techniques and for predict
ing their performance when the problem sizes are scaled
up.

The parallel inference performances presented in this
paper were measured on Multi-PSI or PIM/m. We need
to cOnipare and analyze the performances on different
PIMs as future works. We 'would also. like to develop
more utility programs which will help us to develop par
allel programs, such as a dynamic load balancer other
than the multi-level load balancer.

Acknowledgement

The research and development of parallel application
programs has been carried out by researchers of the sev
enth research laboratory and cooperating manufacturers
with suggestions by members of the PIC, GIP, ADS and
KAR working groups. We would like to acknowledge
them and their efforts. We also thank Kazuhiro Fuchi,
the director of ICOT, and Shunichi Uchida, the manager
of the research department.

References

[Aikawa 1992] S. Aikawa, K. Mayumi, H. Kubo, F. Mat
suzawa. ParaGraph: A Graphical Tuning Tool for
Multiprocessor Ssytems. In Proc. Int. Conf. on Fifth
Generation Computer Systems 1992, ICOT, Tokyo,
1992.

[Barton 1990] J. G. Barton, Protein Multiple Alignment
and Flexible Pattern Matching. In Methods in En
zymology, Vol.18S (1990), Academic Press, pp. 626-
645.

. [Chikayama 1992] Takashi Chikayama. KL1 and PI
MOS. In Proc. Int. Conf. on Fifth Generation Com
puter Systems 1992, ICOT, Tokyo, 1992.

[Date et al. 1992] H. Date, Y. Matsumoto, M. Hoshi, H.
Kato, K. Kimura and K. Taki. LSI-CAD Programs
on Parallel Inference Machine. In Proc. Int. Conf. on
Fifth Generation Computer Systems 1992, ICOT,
Tokyo, 1992.

[de Kleer 1986] J. de Kleer. An Assumption-Based
Truth Maintenance System, Artificial Intelligence
28, (1986), pp.127-162. .

[Doyle 1979] J. Doyle. A Truth Maintenance System. Ar
tificial Intelligence 24 (1986).

[Falkenhainer 86] B. Falkenhainer, K. D. Forbus, D.
Gentner. The Structure-Mapping Engine. In Proc.
Fifth National Conference on Arlifical Intelligence,
1986.

[Fujita et al. 1991] H. Fujita, et. al. A Model Generation
Therem Prover in KL1 Using a Ramified-Stack Al
gorithm. ICOT TR-606 1991.

[F~ui 1989] S. Fukui. Improvement of the Virtual Time
Algorithm. Transactions of Information Processing
Society of Japan, Vol. 30 , No.12 (1989), pp. 1547-
1554. (in Japanese)

[Furuichi el ai. 1990] M. Fu-
ruichi, K. Taki, and N. Ichiyoshi. A multi-level load
balancing scheme for or-parallel exhaustive search

189

programs on the Multi-PSI. In Proc. of PPoPP'90,
1990, pp. 50-59.

[Goto et al. 1988] Atsuhiro Goto et al. Overview of the
Parallel Inference Machine Architecture. In Proc.
Int. Conf. on Fifth Generation Computer Systems
1988, ICOT, Tokyo, 1988.

[Hasegawa et al. 1992] Hasegawa, R. et al. MGTP: A
Parallel Theorem Prover Based on Lazy Model Gen
eration. To appear in Proc. CADE' (System Ab
stract), 1992.

[Hirosawa et al. 1991]
Hirosawa, M., Hoshida, M., Ishikawa, M. and T.
Toya, T. Multiple Alignment System for Protein
Sequences employing 3-dimensional Dynamic Pro
gramming. In Proc. Genome Informatics Workshop
II, 1991 (in Japanese).

[Hirosawa et al. 1992] Hirosawa, H., Feldmann, R.J.,
Rawn, D., Ishikawa, M., Hoshida, M. and Micheals,
G. Folding simulation using Temperature parallel
Simulated Annealing. In Proc. Int. Conf. on Fifth
Generation Computer System 1992, ICOT, Tokyo,
1992.

[Ichiyoshi 1989] N. Ichiyoshi. Parallel logic programming
on the Multi-PSI. ICOT TR-487, 1989. (Presented
at the Italian-Swedish-Japanese Workshop '90).

[lchiyoshi et al. 1992] N. Ichiyoshi and K. Kimura.
Asymptotic load balance of distributed hash tables.
In Proc. Int. Conf. on Fifth Generation Computer
Systems 1992, 1992.

[Ishikawa et al. 1991] Ishikawa,M., Hoshida,M., Hiro
sawa,M., Toya,T., Onizuka,K. and Nitta,K. (1991a)
Protein Sequence Analysis by Parallel Inference Ma
chine. Information Processing Society of Japan, TR
FI-2S-2, (in Japanese).

[Jefferson 1985] D. R. Jefferson. Virtual Time. ACM
Transactions on Programming Languages and Sys
tems, Vol.7, No.3 (1985), pp. 404-425.

[Kimura et al.1991] K. Kimura and K. Taki. Time
homogeneous Parallel Annealing Algorithm. In
Proc. IMACS'91, 1991. pp. 827-828.

[Kimura et al. 1991] K. Kimura and N. Ichiyoshi. Proba
bilistic analysis of the optimal efficiency of the multi
level dynamic load balancing scheme. In Proc. Sixth
Distributed Memory Computing Conference, 1991,
pp. 145-152.

[Kitazawa 1985] H. Kitazawa. A Line Search Algorithm
with High Wireability For Custom VLSI Design, In
Proc. ISCAS'85, 1985. pp.1035-1038.

190

[Koseki et al. 1990] Koseki, Y., Nakakuki, Y., and
Tanaka, M., An adaptive model-Based diagnostic
system, In Proc. PRICAI'90, Vol. 1 (1990), pp. 104-
109.

[Kumar et al. 1988] V. Kumar, K. Ramesh, and V. N.
Rao. Parallel best-first search of state space graphs:
A summary of results. In Proc. AAAI-88, 1988, pp.
122-127.

[Maruyama 1988] F. Maruyama et al. co-LODEX: a co
operative expert system for logic design. In Proc.
Int. Conf. on Fifth Genemtion Computer Systems,
ICOT, Tokyo, 1988, pp.1299-1306.

[Maruyama 1990] F. Maruyama et al. Logic Design Sys
tem with Evaluation-Redesign Mechanism. Elec
tronics and Communications in Japan, Part III:
Fundamental Electronic Science, Vol. 73, No.5,
Scripta Technica, Inc. (1990).

[Maruyama 1991] F. Maruyama et al. Solving Combi
natorial Constraint Satisfaction and Optimization
Problems Using Sufficient Conditions for Constraint
Violation. In Proc. the Fourth Int. Symposium on
Artificial Intelligence, 1991.

[Matsumoto 1987] Y. Matsumoto. A parallel parsing
system for natural language analysis. In Proc.
Third International Conference on Logic Program
ming, Lecture1 Notes on Computer Science 225,
Springer-Verlag, 1987, pp. 396-409.

[Matsumoto et al. 1992] Y. Matsumoto and K. Taki.
Parallel logic Simulator based on Time Warp and
its Evaluation. In Proc. Int. Conf. on Fifth Genem
tion Computer Systems 1992, ICOT, Tokyo, 1992.

[Minoda 1992] Y. Minoda et al. A Cooperative Logic De
sign Expert System on a Multiprocessor. In Proc.
Int. Conf. on Fifth Genemtion Computer Systems
1992,ICOT,Tokyo, 1992.

[Nakakuki et al. 1990] Nakakuki, Y., Koseki, Y., and
Tanaka, M., Inductive learning in probabilistic do
main, In Proc. AAAI-90, Vol. 2 (1990), pp. 809-814.

[Needleman et al. 1970] Needleman,S.B. and
Wunsch,C.D. A General Method Applicable to the
Search for Similarities in the Amino Acid Sequences
of Two Proteins. J. of Mol. Bioi., 48 (1970), pp.
443-453.

[Nitta et al. 1992] K. Nitta et. al. HELIC-II: A Legal
Reasoning System on the Parallel Inference Ma
chine. In Proc. Int. Conf. on Fifth Generation Com
puter Systems 1992, ICOT, Tokyo, 1992.

lOki 1989] H. Oki, K. Taki, S. Sei, and M. Furuichi.
Implementation and evaluation of parallel Tsumego
program on the Multi-PSI. In Proc. the Joint Paral
lel Processing Symposium (JSPP'89), 1989, pp. 351-
357. (In Japanese).

[Skolnick and Kolinsky 1991] Skolnick, J. and Kolin
ski,A., Dynamic Monte Carlo Simulation of a New
Lattice Model of Globular Protein Folding, Struc
ture and Dynamics, Journal of Molecular Biology,
Vol.221, N02, pp.499-531.

[Susaki et al. 1989] K. Susaki, H. Sato, R. Sugimura,
K. Akasaka, K. Taki, S. Yamazaki, and N. Hirota.
Implementation and evaluation of parallel syntax
analyzer PAX on the Multi-PSI. In Proc. Joint Par
allel Processing Symposium (JSPP'89), 1989, pp.
342-350. (In Japanese).

[Uchida et al. 1988] Shunichi Uchida et al. Research and
Development of the Parallel Inference System in the
Intermediate Stage of the FGCS Project. In Proc.
Int. Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988.

[Ueda et al. 1978] Ueda, Y., Taketomi, H. and Go, N.
(1978) Studies on protein folding, unfolding and
fluctuations by computer simulation. A three dimen
sionallattice model of lysozyme. Bilpolymers Vol.17
pp.1531-1548.

[Wada and Ichiyoshi 1990] K. Wada and N. Ichiyoshi. A
study of mapping of locally message exchanging al
gorithms on a loosely-coupled multiprocessor. ICOT
TR-587, 1990.

[Wada et al. 1992]
M. Wada, K. Rokusawa, and N. Ichiyoshi. Paral
lelization of iterative deepening A * algorithm and
its implementation and performance measurement
on PIM/m. To appear in Joint Symposium on Par
allel Processing JSPP'92 (in Japanese).

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 191

Algorithmic & Knowledge Based Methods
Do they "Unify" ?

With some Programme Remarks for UNU/IIST*

Dines Bj0rner and J0rgen Fischer Nilssont

April 1992

Abstract

We examine two approaches to software application de
velopment. One is based on the conventional stepwise al
gorithmic approach typified by the imperative program
ming language (eg. PASCAL) tradition - but extends
it with mathematical techniques for requirements devel
opment. The other is the knowledge based systems ap
proach typified by the logic programming (eg. PROLOG)

tradition. We contrast techniques and we attempt to
find unifying issues and techniques. We propose a Most
"Grand" Unifier - in the form of a Partial Evaluator (ie.
Meta-interpreter - which establishes relations between
the two approaches.

The paper finally informs of the UNU /IIST, the
United Nations University's International Institute for
Software Technology. UNU /IIST shall serve especially
the developing world. We outline consequences of the
present analysis for the work of the UNU /IIST.

The Fifth Generation Computer
Project

When the first author was invited, in late February, to
read this paper at the plenum session of the Interna
tional Conference on Fifth Generation Computer Sys
tems it was expected that ... UNU /IIST strategies for
prompting research and development in the field of com
puter science, including issues of education, creativity
and international collaboration . .. and future prospects
of computer science . .. would be covered by this presen
tation.

*Invited paper for the Plenum Session of the International Con
ference on Fifth Generation Computer Systems, FGCS'92 ICOT,
Tokyo, Japan, June 1-5, 1992.

t Professor Dines Bj!llrner is Director of UNU JUST: United
Nations University's International Institute for Software Tech
nology, Apartado (Post office box) 517, Macau, e-mail:
unuiist%uealab%umacmr<Ohkucnt .hku.hk. J!Ilrgen Fischer Nils
son is Professor of Knowledge Based Systems at the Department
of Computer Science, Technical University of Denmark, DK-2800
Lyngby, Denmark, e-mail: jfn(Qid.dth.dk - from where Dines
Bj!llrner is on an extended leave of absence.

In accepting the kind invitation the following acknowl
edgement was expressed: the decision by MITI to start,
10 years ago, the 5th Generation Computer Project has
had enormous and very positive influence on world-wide
research, engineering and application of knowledge based
computing systems. Japan has thus, as an example,
made the world of computing dramatically more profes
sional and exciting.

The Japanese Fifth Generation Project has focused
specifically on what we here list as the second approach.

Structure of Paper

The paper is organised as follows. Section 1 presents an
overview of main characteristics of the two approaches.
Section 2 informally discusses algorithmic compiler and
interpreted versus knowledge based iplementations. Sec
tion 3 presents facets of the algorithmic approach, em
phasizing mathematical requirements development as a
phase prior to algorithmic software development. The
section brings a first comparison of the two approaches
surveyed in this paper. Section 4 compares Table
by-Table the algorithmic and the knowledge based ap
proaches. Section 5 then attempts to bring ideas on how
the approaches relate, ie. can be "unified" at some meta
level.

Section 6 surveys UNU /IIST.
Appendix A complements section 3's treatment of re

quirements development. We have not, in our compar
isons, in section 4, taken the additional, algorithmic re
quirements modelling facets covered in the appendix into
account - this is left to future analysis.

1 Algorithms and Knowledge
Based Systems

The "classical" approach to software development is
based on FORTRAN, ALGOL 60, PASCAL, and more re
cently also object oriented approaches such as C++. In
this style of programming one transforms some abstrac
tion of the problem domain, in several stages of develop-

192

ment, into compiled, execution time and storage space
efficient machine code.

References [3, 7, 5] represent the algorithmic approach.
The Knowledge Based Systems (KBS) approach -

here also referred to as the Knowledge Engineering (KE)
approach - is usually based on the LISP, and more re
cently on the logic programming (PROLOG) tradition of
programming. Here a programming paradigm is followed
in which one basically attempts to represent knowledge
about the problem domain in such a way that it is this
representation which forms the basis for execution time
computation.

References [9, 6, 8] are typical of the knowledge based
approach.

We here call the "classical" programming paradigm
for 'algorithmic' (and by A we mean Algorithmic Soft
ware Development), whilst the other style is referred to
as 'knowledge based' (and by IC we mean Knowledge En
gineering).

Section 4 contrasts the two styles of programming &
programs.

2 Complementing Approaches

General: In creating a database, in the A approach,
one oftentimes imperceptibly transform the knowledge
gained, when analysing the application, into some ef
ficient physical storage representation - thereby "com
piling" away those knowledge facets that might be useful
in heretofore unforeseen contexts.

In creating a knowledge base such generally adaptable
knowledge is preserved. Execution time is longer, but
the time it takes for humans to adapt to changing cir
cumstances and get it "running" is generally very short.

In either case (of information base creation) the re
quirements developer spends a long time analysing the
domain of interest. In the former case the knowledge
gained is specialised wrt. the specific, usually narrow,
foreseen application -- and hence most is lost wrt. to
unforeseen, future, related applications.

Take an example: One can write a software system
for the regulation (monitoring & control) of a railway
system domain, in either of three ways.

1: The Compiled Algorithmic Approach: C
In the first, using the A approach, knowledge about

the specifics of railways is hidden in the code of the pro
grams: in their compiled constants, and in the structure
of the code itself: in the specific composition of state
ments.

2: The Interpreted Algorithmic Approach: I
Alternatively one can choose to represent the railway

system component as a database: all the tracks, the

trains, the schedule, etc., are data structures, and com
putation proceeds through interpretation. The railway
system specific interpreter (I) is, however, general in
that it is the same one interpreter, written once, that
can be used to handle a wide variety of railway systems.
Execution is slower than in the former case, but one can
more easily introduce changes to the schedule, tracks,
trains, etc.

- Compiled and Interpreted Algorithmics: A
The compiled, first version represents a so-called par

tially evaluated version of the latter case. In either case,
the compiled code respectively the interpreter does not
reason about train regulation (based on logic), but, typ
ically arithmetically computes based on classical mathe
mati cal laws of kinematics and operations research. Thus
these laws are "baked" into the compiled code, respec
tively into the specific interpreter.

3: The Knowledge Based Approach: IC

Instead of either of these two approaches one could re
present these laws in logical form - in addition to, but in
the same form as the representation of the railway system
components. "Computation" now proceeds by means of
a general meta-interpreter, known as an inference ma
chine (M), the same for a broad range of such systems,
not only railway systems, but virtually "anything"!

Review: we shall review this example in section 5 -
where we shall use the calligraphic symbols: C,I, A, IC.

3 Algorithmic Software Devel
opment

The present section very briefly outlines development
techniques of the so-called 'algorithmic' approach, and
gives a more technical presentation of this approach. [3]
specifically addresses the issue of the algorithmic devel
opment of embedded, real-time systems.

Algorithmic development consists of two major phases:
requirements development and software development.

3.1 Requirements Development

Requirements development, in the algorithmic approach,
to us consists of three steps: the informal expression
(narration) of the problem, requirements modelling and
requirements capture. We will only illustrate a single
facet, out of several, of the requirmments modelling step.
Appendix A surveys other facets.

3.1.1 Narrative

The narrative serves the role of establishing the termi-
nology necessary to formulate expectations.

Example: The railway system has as base, atomic com-
ponents and component attributes namely those of week
days, hours, minutes, station identities, train identities,
velocity & acceleration, and track segments. The total
railway system component (the "grand state") is then
seen as composed from some composition of (some) time
components (colloquially referred to, somewhat ambigu-
ouslyas 'time'), a schedule, tracks and trains. The sched-
ule records train departure and arrival times between
listed stations. The tracks are modelled as a graph whose
nodes are stations and whose arcs are sequences of track
segments of distinct lengths. Trains have a position at a
station or at some track segment between two stations,
and trains have some kinematics: velocity and accelera-
tion. 0

3.1.2 Requirements Modelling

In requirements modelling we investigate mathematical
properties of the problem domain - and are "not at all
thinking on possible software"! This view of algorithmic
requirements development has yet to gain general accep
tance. We only look doser at one of several possible
modelling cocnerns.

- Base Model

The base model makes precise the intrinsic components
and their attributes. We express this model in VDM
([1, 2]).

The equations define pointed complete partial orders
(cpo's), ie. domains, of mathematical values: x denote
Cartesian product; AgB denotes the cpo of finite, partial
functions from A into B; and I denotes non-discriminate
union. Selectors, s-, also comment on the purpose of a
value component.

Next we tabularize some comparisons:

Representation A
Railway Schedule &c.

I A I Algorithmic Development Method

Domain Equation:
SCH=S-g(Sg(Tg(DgA)))

De-Curried:
SCH=(SxSx TxD)gA

versus

193

Figure 1: Base Model: A Domain Equations

1.0 rs:RS = Timex SCHx Gx TS System
2.0 sc:SCH = Sg(Sg(Tg(DgA))) Schedule
3.0 g:G = Sg(SgN 1 +) Tracks
4.0 ts:TS = Tg(LOCxKIN) Trains
5.0 10:LOC = S I (SXN1 xS) Location
6.0 k:KIN = Lx VxAD Geometry+Kinematics
7.0 ve:V = No x~max:N1 Velocity
8.0 ad:AD = INTGx~max:INTG Acceleration

9.0 Time = WeekxDayxHourxMin Time
10.0 Week = 1121 .. · 152 Week
11.0 Day = 0111 .. · 16 Weekday
12.0 Hour = 0121··. 123 Hour
13.0 Min = 0111 .. · 159 Minute
14.0 D,A Departure,Arri val

15.0 s:S = TOKEN Station
16.0 t:T = TOKEN Train
17.0 le:L = N1 Length

Representation JC
JC Knowledge Engineering
1 Schedule given as a 5-ary Predicate:

SCH(S,S, T,D,A)
with indicated argument types:

SxSx TxDxA --+BOOL

Functional constraints on arrivals could be
expressed Horn-dause-wise as an integrity
constraint:

error{) f- SCH(S1 ,S2, T,D,A')
& SCH(S1 ,S2, T,D,A")
&A'#A"

If the schedule is irregular SCH could be given as as a
collection of factual clauses: SCH(S1,s2,t,d,a).

If the schedule is 'fairly' regular SCH could be given
as clausal form rules of the principal form:

18.0 SCH(S1 ,S2, T,D,A) f-

.1 TRAINS(S1 ,S2, T,FST,ITV,LST,LAG),

.2 INTER VA LS(FS T, IT V, LST, D),

.3 A = LAG + D

where INTERVALS yields all the possible values for D
according to a regular schedule.

Factual clauses can, of course, be derived from this
rule form by means of partial deduction expanding the
INTERVALS predicate.

Discussion: The JC form is neutral and uncommitted
wrt. look-up demands: the five arguments are on par.
Contrast this with the A shown. It tends to favour look
up of A given the four other arguments. Access functions

194

for other look-up forms are tedious to specify and under
stand.

On the other hand the A form suggests an efficient
elaboration into an indexed representation favouring con
cise expression of for example stations.

The JC approach moreover naturally accomodates
a travel scheduling facility, which pieces connections
together and is expressed by a recursive predicate.
Rescheduling can then be expressed by way of meta
reasoning on scheduler rules. Deductive database tech
nology (see paper (2) of [6]) offers efficient implementa
tions of the rule based forms.

- Other Requirements Models

A number of other requirements models need be estab
lished before we have captured all there is needed to know
before a software specification can be made. We will not
detail these here, but refer, instead to [3] for references,
and just briefly name them.

The conceptual model extend~ the base model with
functions and behaviour models.

The physical model embeds the conceptual model in
some "reality": define interfaces to and between relevant
environment components, expresses safety criticality cri
teria, models dependability and computer/human & hu
man/ computer (ie. operator & user) interfaces.

Model execution (& simulation) can be used to vali
date models for which no closed mathematical structure
can be convincingly built.

Appendix A gives more details.

3.1.3 Requirements Capture

Based on the mathematical requirements models we can
now extract those parts for which it is being decided that
the software shall monitor and take control.

3.2 Software Development

We focus only on the algorithmic software development
stages outlined below:

Abstract Specification: Based on the requirements
capture an abstraction is made on functionalities
and behaviour of the software. The abstraction may
decide on process decomposition into a parallel and
distributed computing system.

Properties that relate to requirements models, but
which only transpire indirectly from the model
theoretic software abstraction are formally verified.

Design Refinement: Based on the abstract specifica
tion a sequence of steps now gradually introduce
concrete data structures and operations - for ex
ample with a view toward efficiency.

Coding: Finally code is manually or (semi) automati
cally derived for some (parallel and) imperative pro
gramming language.

3.3 Conclusions wrt. A
• All reasoning took place during requirements de

velopment and oftentimes in various encoded forms
(viz. the base model). Requirements capture 'con
verting' any such reasoning into further encodings
in preparation for software development.

• The requirements, and also the software specifica
tion, although not fully illustrated, are expressed
by logic formula over interpreted (that is model
theoretic) objects.

• The transition from conceptual to physical require
ments models, and the transitions from abstract
software specification via decreasingly abstract, in
creasingly concrete designs to code epitomizes step
wise design

• - with one of the main aims of all these refinement
steps being efficiency.

• The aim of implementation is typically arithmeti
cally oriented explicit state-changing computations.

• The issue of partial evaluation was inherent in our
discussion of section 2 and in our use of stepwise
refinement -

• - and compilation.

4 Comparative Analysis

We now compare the two appraches - in Tables 1-7.

Table 1 A
Formal Software Specification Aspects: Aims

I A I Algorithmic Development Method
1 Specification of I/O function in mathematical

sense to be implemented.
2 Use of such data structures as sets, Cartesian

products, tuples, maps.
3 Distinction between abstract specification and

concrete programming language.

versus

Table 1 JC
I Knowledge Engineering

1 Description and specification of real world rela-
tionships as assertions

2 Computation results understood as proofs cor-
responding to logical consequences of JC.

3 Dual view of logic as both specification and pro-
gramming language.

In A specification one may use logics at the specification
level versus as an object language in JC. In A we aim
at efficiency through specialisation of the application at
hand versus through general methods in JC.

Table 2 A
Formal Specification Aspects/Presumptions

I A I Algorithmic Development Method
1 Program =f. Specification
2 Specification refined in stages into Exe-

cutable Programs, Specifications not necessarily
Executable

3 Focus on implementing data structure specifica-
tion, for example Stacks, Queues, etc.

4 Finally: Compilation

versus

Table 2 lC
I Knowledge Engineering

1 Logic as Object laguage
Program and Specification often confused or
partially identified

2 Specification of Executable Specifications
= Declarative Programming

cf. Kowalski: Algorithms = Logic + Control
3 Focus on domain knowledge
4 Finally, efficiency through general methods such

as: Constraint Satisfaction and Intelligent Back-
tracking

In A we speak of computation, while in lC we speak of
deduction, or possibly induction or abduction.

IA

3

Table 3 A
Mathematical Form of Computed Object

Algorithmic Development Method

Functional Conception of Computation
Stepwise Refined and eventually algorithmitised
by means of imperative programming language
constructs, Operations on Data Objects
===?

Deterministic Compilation
A-Calculus reduction as Computational Basis
Specifications are often 'functional' (algebraic)

versus

Table 3 lC
lC Knowledge Engineering

3

Relational Conception of Computation
===?

Links with Relational Database,
Non-determinism ("Backtracking")

(Quasi) Parallellism
===?

Proof Rule Deduction (Resolution)
Unification as Computational Basis

Derivation of answers from Assertions (1=, f-)
===?

Deduction
Abduction (Cause Analysis)
Induction (Machine Learning)

Specifications often 'relational' structures
stressing (m : n) relationships.

195

In A development we stepwise refine by elaborating, at
development time, operations and data structures, ver
sus remaining faithful to the problem domain in lC, where
lC may refine by exception elaborations and terminology
concept model elaborations.

Table 4 A
Towards Computational Efficiency

I A Algorithmic Development Method
1 Stepwise Development (Refinement)

Specification ""'-'+ ••• ""'-'+ Programs
Informally or (semi)automatically
Stressing Data Abstraction and Applicative
Forms, Operations on sets (an an example) be-
come operations on lists.

2 Development of Iterative Formalisms from Re-
cursive ones

3 Paradigmatic Systems, Examples:
4 Compiler Development from Formal

Specification of Static & Dynamic Semantics

versus
Table 4lC

I Knowledge Engineering
1 Specifications are ideally executable

Efficiency ego by
Partial Deduction
Constraint Satisfaction Methods
Special Unification Methods

2 Initially uncommitted choice between Top-Down
(Backward) use of Rules (cf. Recursive Forms)
versus Bottom-Up (Forward) use of Rules (cf.
Iterative Forms)
Commitment through Meta-interpretation
choice

3 Paradigmatic Systems, Examples:
4 Deductive Databases = subset of Prolog's logic

in which true declarativity and termination (de-
cidability) is achievable.

To Table 5 one could add that surprisingly few logic pro
gramming systems offer recursively defined, compound
or structured types.

196

Table 5 A
(Data) Types

IA Algorithmic Development Method

1 Traditionally Types as Protection and choice of
representation, (for example: integer and float-
ing point)

2 Types as Structuring Mechanism:
Polymorphism
Abstract Data Types

versus

1

Table 5 JC
I Knowledge Engineering

Types viewed as classification of 'real world'
entities
===?

Terminological Logics (Concept Logics)
Syllogistic Forms
Order-sorted Logics

as Generalisation of Hierarchies

In A our units of specification are possibly non
determinate or under-specified functions versus rules and
facts in JC. The composition principle in A is functional
composition versus catenation of assertions and object
classification with multiple. inheritance - possibly in
cluding non-monotonicity.

Table 6 A
Descriptional Structuring Mechanisms

IA Algorithmic Development Method
1 Finely grained requirements models ([3]):

Base, Function, Behaviour; Environment & In-
terface, Safety Criticality, Dependability, CHI

2 Block Structures and Modules with
Encapsulation
Procedures

versus

Table 6 JC
I Knowledge Engineering

1 Database Conceptual Models and Schemes
Inheritance Classification Hierarchies
The Rule Clauses as 'self-contained' Units of
Specification

2 (Definite) Horn Clauses

Coping with Exceptions: An example: In our model
of a train departure & arrival schedule it was assumed
that it was based on some modularity, say, a weekly plan:
working days & week-ends. No exceptions were made.
We know that there are schedule changes during certain
holidays and seasons (to with: christmas, new year, na
tional memorial days, &c.). In the algorithmic approach
we can "fix" this either by 'extending' the schedule by
making it a composition of a regular schedule, as first
shown, with an exception schedule:

19.0
20.0
21.0
22.0

SCH = REG x EXC Schedule
REG = S,;rt{Snt{Tnt{DntA))) Regular
EXC = Time nt{T ntAttr) Exception
Attr Exception Attributes

or we may 'repair' the original schedule by completing
the orginal schedule so that it always spans a full year:

23.0 SCH = Time nt (Snt{Snt{Tnt{DntA))))

In the knowledge engineering approach, appealing to
techniques of non-monotonic logic, one is able to mod
ify the regular schedule by "overrriding" with the more
specific singularities, thus avoiding proliferation of ex
ceptions into the regular schemes.

Table 7 A
Domain Model Exceptions and Non-monotonicity

I A I Algorithmic Development Method

2 Exceptions handled by Explicit Enumeration of
Cases

versus
Table 7 JC

I Knowledge Engineering
1 "Negation as (finite) Failure"

(SLDNF-Resolution)
2 Distinction between f- ,A and Ii A.

5 Towards a Unified View

From the above comparisons and reflections concerning
the classical application programming approach (A) and
the knowledge based approach (JC) concludingly we dis
till the following points:

• The combining of methods from algorithmic and
knowledge based approaches calls for language pro
posals which merge functional, imperative and logic
programming paradigms, so as to overcome the
functional/ relational dichotomy.

At present it seems unclear whether the object
paradigm may assist in this merging or whether it
presents an independent third approach yet to find
its mathematical underpinnings .

• The declarative view of specifications/programs em
phasised persistently in the logic oriented JC ap
proach suggests promotion of research in abstract
interpretation, flow analysis, and partial evaluation
(partial deduction) in the interest of automating ef
ficient algorithmizations.

An important result in this direction are the deduc
tive data base systems, which represents an expe
dient unification of proper logical declarative lan
guages and rather efficient algorithmitisations.

Figure 2: Partial Evaluation

A

M 1'1

Cp Ie

5.1 A "Grand" Unifier

In section 2 we basically introduced the example now
very informally diagrammed in figure 2.

Legend

• A: algorithmic approach

• JC: knowledge engineering approach

• p: railway system program (to be compiled)

• c: railway system constant data structure (to be
interpreted)

• I: knowledge base facts which reflect the railway
system components

• 1': knowledge base rules which reflect laws of railway
systems

• C: compiler

• I: interpreter

• M: inference machine

• P: Partial Evaluator - a functional ([4]) which
must satisfy the following laws:

[Mh 1'1 = [Ih c = [ph = [[C]L' p]M

([Plc M 1',1) ~ (I,c)

[PlcId~p

Here [] denotes semantics brackets for languages L, L,
L' and (a machine lamguage) M - where typically L, L
and l' may be identical.

The laws express the following:

197

• From inference machine M and the rules and facts
1',1 partial evaluation P derives the interpreter I
and the constant data structure c

• From the interpreter I and the constant data struc
ture c partial evaluation P derives the compilable
program p

You may think of C, I, M and P being written in
the same language, typically LISP, and the representa
tions of p, d, l' and 1 being abstracted, for example as
S-expression's.

Nothing prevents 1 and c to be identically represented.
To find the un-typable functional P is a major re

search undertaking. To find efficient such partial eval
uators, that is: functionals which specialize efficient in
terpreters & data structures and efficient programs is an
even harder research problem. We think they are among
the most important tasks of theoretical computer sci
ence!

6 The UNU /IIST

6.1 Overview

6.1.1 Aims & Objectives

UNU /IIST aims at assisting the developing world in
meeting needs & strengthen capabilities in five activity
areas: (i) deployment of advanced software, (ii) software
technology management, (iii) development of own and
exportable software, (iv) university education curricu
lum development and (v) participation in international
research.

6.1.2 UNU /IIST Funding

UNU /IIST is the most recent Research & Training Cen
tre (RTC) of the UNU to be established. It formally
came into being on March 12th 1991, with the signing in
Macau of agreements between the UNU, the Governor of
Macau, and the governments of Portugal and the Peo
ple's Republic of China. It is basically financed by an ini
tial fund of US$20 million contributed to the UNU /IIST
Endowment Fund, and it is pledged that this capital fund
will be increased to US$30 million through contributions
from other sources.

6.2 Programme Activities

UNU /IIST Progamme Activities center around projects,
training, research, consultancy, dissemination and
events.

198-0

Projects: UNU jIIST intends to engage in feasibil
ity, demonstrator and technology transfer projects. All
projects develop software using advanced techniques and
are expected to last from 9 to 15 months. UNU jIIST
staff, visiting experts and project fellows will conduct
these Macau based projects, which are expected to be
externally funded.

- Feasibility projects formally, but experimentally
develop small, but difficult subsets of innovative software
applications - and may lead to follow-on demonstrator
projects. These projects may be prompted by, or lead
to research done at UNU jIIST or within the UNU jIIST
Organic Network.

- Demonstrator projects rigorously apply scal
able, state-of-the-art techniques to applications that can
serve as the basis for software development education
courses - and may lead to follow-on technology transfer
projects.

- Technology Transfer projects systematically de
velop core, prototype parts of planned products and shall
lead to detailed plans and technical directions, which are
then transferred to some developing world company for
concluding, full-scale development.

The developed software will range from reactive (real
time, embedded.) systems such as railway monitoring &
control, river monitoring & flood control or cargo & cus
toms clearance, via analytic systems such a traffic or
crop fertilization planning, disease monitoring or disas
ter management, to knowledge intensive systems such as
expert or knowledge based systems for decision support
or university administration & management information.

Training: Courses & Seminars: UNU jIIST offers
training through fellows participating in carefully super
vised projects and through courses & seminars.

UNU jIIST will conduct three kinds of courses for
training participants from the developing world.

Software usage: 2-4 week training - usually off
shore - courses will instruct software users and com
puter center operators to install & operate large scale
software systems, and to prepare data for and evaluate
results of their computations.

Software Technology Management: 2-4 week
awareness - usually off-shore - courses will expose
management in the intricasies of software technology
management - in how to procure software, put out ten
der or bid for the development of software, and manage

software development projects, software products and
computing facilities. Common aspects include quality
assurance, cost benefit & risk analysis, resource estima
tion, planning, allocation and scheduling, process mod
elling & simulation.

Development: 3 month education - Macau based -
courses will teach software developers to develop applica
tion specific requirements, abstract & concrete program,
and the engineering of large scale software systems: fit
for use & purpose, correct, fault tolerant & safety criti
cal, efficient, maintainable and portable. Subset educa
tion courses may be given - normally as off-shore - 2
week seminars.

Research: UNU jIIST will eventually embark on re
search in several areas. These include:

- Programming Methodology: We have focused
in our earlier section on the Programming of software,
where the objectives of programming were to insure
correctness with respect to requirements, and efficiency
&/or generality. UNU jIIST will initially research the
area of Duration Calculus - we refer to [5].

- Software Engineering: In order to insure con
formable, maintainable & portable software systems,
software engineering employs such subsidiary techniques
as ongoing - in the field - conformance testing, version
control and configuration management, change request
identification, monitoring & control, test case generation
& validation, requirements & design decision tracking,
and hypermedia supported documentation. UNU jIIST
would like, through research, to better understand com
putable aspects of these techniques and their integration
with programming.

- Requirements Development: Here we refer to
the need to investigate mathematical techniques for re
lating informal narratives to base, functional and behav
ioral models, for relating the various requirements mod
els and these to the requirements capture and stages of
software development: programming & engineering.

UNU jIIST will especially emphasize both algorithmic
and knowledge engineered requirements development.
For the former approach see also appendix A.

- Application Domain Modelling: Requirements
development, as above, need techniques. These are then
to be applied to specific domain modelling.

In order for clients to procure software and expect de
livery of what was intended, these customers must for
mulate their requirements relative to some 'normative'
application domain narrative - which is furthermore
supported by appropriate models.

In order for the software industry to be able to deliver
trustworthy software products it must similarly be able
to refer to, and rely on such 'standards' documents.

Consumers and producers must therefore undertake,
for example through their business & industry associ
ations, and most likely contracting private and public
research institutes, to establish and later maintain such
application area descriptions and models.

It is important that these descriptions and these mod
els stay clear of unncessary design decisions, and, when
un-avoidable, then to offer varieties of alternative such
decisions.

We foresee, in this way, the establishment, of applica
tion domain "standards" for banking, insurance, various
segments of transportation, similar varieties of produc
tion & manufacturing industries, &c. As it now is: ev
erybody is re-establishing, mostly inside their own head,
again and again, such understandings - and no progress
is made. In the end: we get no closer to obtaining trust
worthy systems!

We have often wondered about the almost total lack of
problem (or application) domain recordings of the kind
we here ask for.

The natural science fields of physics, chemistry, biol
ogy, etc. are doing exactly and basically only that! It is
about time we also do it, wherever possible for the man
made universes of administration, business and industry!

Given that such domain recordings were expressed in
either the Interpreted Algorithmic, or perhaps even bet
ter, but with less ease, in the Knowledge Based approach,
and given the universal existence of a reasonably efficient
partial evaluator P one can then very quickly, and at
little cost, specialize any application domain to a com
pilable and efficiently executable program.

At UNU /IIST we expect to combine algorithmic
requirements development and knowledge engineering
methods to obtain such application domain models.

UNU /IIST will do some of the above mentioned re
search in Macau, and co-operate with other researchers
around the globe. UNU /IIST will invite visiting experts
and developing world research fellows to take part in this
research. UNU /IIST is not presently expected to tackle
the problem of determining a proper partial evaluator P,
let alone further understanding the relations between the
A and the lC approaches to application development.

6.3 A UNU/IIST Organic Network

An Organic Network will be linked to UNU /IIST. It will
be an expanding circle of affiliated, co-operating software
technology development centres, university computation

198-1

science & engineering departments and research insti
tutes. The network will focus on the developing world,
but industrial world centres are expected to help secure
the objectives of the network.

Aims of the network are to strengthen the identity, sta
bility, quality and productivity, in developing world cen
tres, with respect to development projects, university ed
ucation and research in the areas covered by UNU /IIST.

Emphasis within the co-operation areas will be put
on formulation of professional accreditation criteria in
cluding university curriculum development, affinity of
software to its intended use - thereby helping to close
the gap between consumer and producer, and correct
ness of software with respect to requirements definitions
- thereby aiding the developing world in competitively
producing highest quality software.

7 Conclusion

We have compared two approaches to software develop
ment and we have outlined areas of contemporary re
search related to their 'unification'. We have also out
lined the UNU /IIST strategy for prompting R&D in the
area of software technology, including issues of education
and international collaboration. " and future prospects
of computer science - as requested by the FGCS '92
organizers.

Finally we are left with the issue ... of prompting
creativity. It is, of course, a crucial one; one that it
might be difficult to convincingly argue is being suffi
ciently catered for. But we believe it will: using formal
techniques supported by formally based tools, gets rid
of most of the "grubby" work of keeping track of "zil
lions" of details. The UNU /IIST will demonstrate these
techniques and tools to actual, and sometimes surprising
applications across a very wide span. We believe that
such Master Class tutoring will help foster the imagina
tion. Now the human mind takes care of the rest: the
creativity - we believe. That is: this is the best one
can do: after proper formal education attend 'Master
Classes' enabling the young researcher and developer to
look over the shoulders of experienced creators.

8 Acknowledgements

The refined view of requirements development, in the
special form presented here - and detailed in the ap
pendix, is due to collaborativ~ work with many col
leagues in the Basic Research Action (BRA-3104) PRO

CoS: (Provably Correct Systems) project of the Com
munity of the European Countries' (CEC's) European
Strategic Programme for Research in Information Tech
nology (ESPRIT).

198-2

References

[1] D. Bjj1jrner. Software Development. Volume I: Specifica
tion Principles - the VDM Approach. Lecture Notes,
Department of Computer Science, Technical University
of Denmark, 710 pages, 1992.

[2] D. Bjj1jrner. Software Development. Volume II: Design
Principles - the VDM Approach. Lecture Notes, De
partment of Computer Science, Technical University of
Denmark, 599 pages, Incomplete, 1992.

[3] D. Bjj1jrner. Trustworthy Computing Systems: The Pro
CoS Experience. In 14 'th ICSE: IntI. Conf. on Soft
ware Eng., Melbourne, Australia. ACM Press, May 11-15
1992.

[4] D. Bjj1jrner, A.P. Ershov, and N.D. Jones, editors. Partial
Evaluation and Mi;r,ed Computation, Gl. A vemres, Den
mark, October 1987 1988. IFIP TC2 Working Confer
ence, North-Holland Publ. Co., Amsterdam, The Nether
lands.

[5] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A
Calculus of Durations. Information Proc. Letters, 40(5),
1992.

[6] J. Cohen, J. A. Robinson, J. Grant, J. Minker, Koichi
Furukawa, and D. S. Warren. Special Section on Logic
Programming: (1) Logic and Logic Programming (JAR,
40-65)), (2) The Impact of Logic Programming on
Databases (JG&JM, 66-81), (3)Logic Programming as
the Integrator of the Fifth Generation Computer Systems
Project (KF, 82-92), (4) Memoing for Logic Program
ming (DSW, 93-112). Communications of the ACM,
35(3), March 1992.

[7] Anders P. Ravn et al., editor. The Pro CoS Project,
volume 5XX of Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, 1992.

[8] M. R. Genesereth and N. J. Nilsson. Logical Foundations
of Artificial Intelligence. Morgan Kauffmann, 1987.

[9] J. W. Lloyd, editor. Computational Logic; selected pa
pers: (1) R.A. Kowalski: Problems and promises of Com
putational Logic, (2) A. Colmerauer: An Introduction
to Prolog III, (3) K.R. Apt and D. Pedreschi: Studies in
pure Prolog: Termination, (4) F. Baader et al.: Concept
Logics. ESPRIT Basic Research Action. Springer-Verlag,
Heidelberg, Germany, 1990.

A Algorithmic
Modelling

Requirements

In the appendix we expand on the Algorithmic Require
ments Modelling mentioned brifly in the paper.

The text is an extract of [3].

IThe references pertaining to algorithmic development facets
are rather limited to the (above-mentioned) PRO CoS project.

A.I Development Parts

To us the phases, stages & steps of development inter
twine & iterate across two major phases:

1-3: Requirements Development

and:

4-6: Software Development.

These stages further decompose into stages:

1: Informal Problem Domain Description,

2: Problem Domain Modelling,

and:

3: Requirements Capture.

respecti vely:

4: Abstract Software Design Specification,

5: Steps of increasingly Concrete Software Designs,

and:

6: Executable Code.

Problem Domain Modelling (2) oftentimes consists of
several, possibly concurrently "performed" steps. For
embedded, real-time computing systems these steps in
clude steps 2.1-2.4 below:

2.1: base models,

2.2: functional laws,

2.3: behavioral laws, and

2.4: system architecture.

The above steps may additionally encompass considera
tions of:

2.5: safety criticality,

2.6: dependability,

2.7: performance,

2.8: CHC/CHI,

(computer human communication/interfaces)

and also be subject to:

2.9: model execution, ie. simulation.

Thus 'concerns' 2.5-2.8 apply to steps 2.1-2.4, while sim
ulation applies generally.

Each of the application domain modelling steps and
concerns usually addresses distinct customer expecta
tions (ie. client requirements (3)).

The iterative nature of development commonly dic
tates that stages (1-2-3-4) are interleaved, more specif
ically: that informal descriptions have to be enriched
in preparation for subsequent steps of problem domain

modelling, capture and software architecture specifica
tion.

In the actual development, before a clarified picture
can be given in terms of strict sequences of 1-2-3-4, we
find that all of the above numbered steps and stages
evolve in some manner that can perhaps best be de
scribed as a set of interacting co-routines.

Requirements capture (3) separates out from the var
ious problem domain models those facets the software is
expected to control.

A.2 Problem Domain Description

The purpose of developing an informal problem domain
description is threefold: (i) to help extract what the
problem is about from clients using some elicitation tech
niques, (ii) to make sure that the producer "also" under
stands the problem, and (iii) to serve, later, as part of
the user documentation.

A.2.1 Synopsis

The synopsis gives a title to the project and a brief state
ment of purpose - usually couched in esoteric terms
which, however, should lead the reader in the right di
rection.

A.2.2 Narrative

The narrative serves the role of establishing the termi
nology necessary to formulate expectations.

In any development project it is therefore important
to start by establishing a terminology with a taxonomy,
adhere to them, while critically reviewing and maintain
ing these. The narrative shall serve this point as well as
providing an anchor for all the subsequent mathemati
cal models. Their formal entities ("the x, y, z's of their
formulae") must be "isomorphically" related to terms of
the narrative.

For embedded, real-time computing systems it seems
that the narrative should focus on components and their
composition, attributes (component types and values),
events (involving components and attributes), proce
dures (sequences of events sometimes emphasizing val
ues), and invariants over components, values, events
- especially typically concurrent event sequences, and
hence procedures.

Formulating the narrative is an art: if not careful
the narrator may inadvertently make undesired and even
"hidden" design decisions.

We find that the narrative is best developed in steps
of increasing concretisation.

A.2.3 Expectations

General, met a- , expectations are that the system shall
reflect the components, exhibit the attributes, handle

198-3

the events, follow the procedures, and possess the in
variants. That is: state variables of the implementation
mirrors "more or less isomorphically" the problem do
main components, &c.

We 'believe', but this claim cannot yet be fully scien
tifically supported, that the above expectations also will
lead to adaptively maintainable systems.

If not already captured in the narrative 'Expectations'
capture desired (additional) properties.

A.3 Problem Domain Modelling

Problem domain modelling formalizes the narrative.
The purpose of application domain modelling is to se

cure a highest degree of confidence in one's understand
ing of the problem thereby insuring a best degree of affin
ity between the users' activity sphere and the software
to be developed.

The problem domain modelling of the narrative and
of these, and other, expectations, hence has as its first
objective to allow formalization of expectations, as its
second objective, to analyze feasibility of implied re
quirements, and, as its third objective, to synthesize
specific monitoring & control, optimization planning, de
pendability, performance and computing system opera
tor interfaces to problem domain, respectively computing
equipment.

A.3.1 Base Model M

Base modelling M2 was covered in subsection 3.1.2

A.3.2 Functional Laws

The purpose of establishing functional laws, F, is to ex
press what we might consider the most important func
tional facts of our problem domain, properties possessed
independently of our possible computerisation. Typi
cally, resulting software shall also possess these proper
ties in some transparently encoded form, Fsoft.

A.3.3 Behavioral Laws B

We shall use the term 'behavioral law' to cover a concept
wider than that covered by 'control law' .

By a 'control', or 'behavioral law', B, we mean a
(mathematically expressable) principle which governs
the possibly concurrent sequencing of events needed to
fulfill basic functional requirements. Typically behav
ioral laws maintain functional laws while adhering to
given procedures.

Etablishing behavioral laws amount to design deci
sions.

The purpose of identifying, among a set of alternatives,
and specifying behavioral laws is to decompose behavior

2This and subsequent calligraphic letters are local to this ap
pendix, that is: do not relate to those used elsewhere in the paper.

198-4

into two aspects: those controls to be performed overall
by the computing system under development and those,
detailed, controls to be done by other means - typically
using conventional control-theoretic means.

A.3.4 System Architecture Y

The purpose of establishing the 'sIstems architecture'
and its laws, y, is to record the phIsical components
needed to help obey the behavioral laws.

Choosing to express one (constituent) control principle
over another (viz.: Direct Digital Control (DDC), PID
(proportion, integration and differentiation), stochastic,
adaptive, etc.) for individual components, and choosing
one or more overall behavioral laws for sequencing opera
tional phases (within which the former, constituent con
trols dominate), not only represents a choice, but implies
insertion of new components into the problem domain.

These 'new' plus the 'old' components then represent
the Systems Architecture, the Design. The new com
ponents are typically AD IDA converters, clocks, sample
and hold amplifiers, digital step or point set controllers,
as well as other actuators and sensors. Their composi
tion, monitoring and control shall produce desired func
tional & behavioral requirements.

Thus the System Architecture is a final set of steps of
narrative, base model and other problem domain models,
which introduces the components particular to the com
puterisation. One should not forget here that software is
among the components.

A.3.S Safety Criticality C

The purpose of establishing and expressing safety criti
cality criteria, C is to deal with those requirements that
anticipate all the things that might go wrong while se
curing, given certain assumptions, that a minimum of
functionality & behavior is maintained in the event of
failures.

Thus safety predicates further constrain the functions
denoted by the state variables - typically the traces of
events that might occur.

A.3.6 Dependability

The purpose of dependability modelling is to calculate
statistical measures for failure rates and compare them
to requirements V. Dependability requirements express
probabilities of undesirable, but unavoidable behavior
being below certain (acceptable) limits.

To perform dependability analysis we must have data
on failure rates for non-software components.

Given a model that is believed to mirror proper as
sumptions one arrives at 'numbers' expressing total sys
tem failure rates in terms of a given system architecture.
If these are acceptable, the architectural design can be
approved. If they are not acceptable one must perform

a redesign. The models give some hints as to what may
constitute a proper, acceptable architecture.

Thus dependability requirements can usually be pro
posed, expressed, calculated and disposed of in this step
of requirements development.

A.3.7 Performance p

The purpose of performance modelling is to calculate
statistical measures for performance and compare them
to requirements P.

Again the modelling is based on the base model archi
tectures, at some level of abstraction. If the architectural
design leads to acceptable performance characteristica,
then the architecture can be approved, otherwise a re
design must take place.

Thus performance requirements can usually be pro
posed, expressed, calculated and, in principle, disposed
of in this step of requirements development. Subsequent
'test measurements' may then validate the design.

A.3.S CHC/CHI T

The purpose of Computer-Human Communication Inter
face (CHCjCHI) modelling, T, is to help design and val
idate interfaces between human operators and the com
puting system.

The idea is, however, that in a trustworthy design,
one must establish models that portray human interac
tion psychologically, under stress, linguistically, includ
ing noisy misunderstanding, &c. Validated such models
then contribute to the CHCjCHI requirements.

A.3.9 Model Execution

The purpose of simulation, ie. model execution, is to val
idate some of the models established in steps described
earlier, and especially to ascertain some of the parame
ters or properties of these models, such which cannot be
analytically justified, respectively calculated.

A.4 Requirements Capture n
The purpose of requirements capture, 'R, is to formally
record those formal properties that the software shall
possess - and is needed in order to secure affinity of
resulting computing system to the application.

From the above we get:

24.0 R ~ M 1\ F 1\ B 1\ Y 1\ C 1\ V 1\ P 1\ T

The V and P terms can usually be verified, we
conjecture3

, already at this stage wrt. the System Ar
chitecture (and its interface laws). Thus:

25.0 Y => V 1\ P

3This 'belief' is part of our future research plans.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 199

THE ROLE OF LOGIC IN COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE

J. A. Robinson

Syracuse University
New York 13244-2010, U.S.A.

ABSTRACT

The modern history of computing begins in the
1930s with the rigorous definition of computation
introduced by Godel, Church, Turing, and other
logicians. The first universal digital computer
was an abstract machine invented in 1936 by
Turing as part of his solution of a problem in the
foundations of mathematics. In the 1940s
Turing's logical abstraction became a reality.
Turing himself designed the ACE computer, and
another logician-mathematician, von Neumann,
headed the design teams which produced the
EDV AC and the lAS computers. Computer
science started in the 1950s as a discipline in its
own right. Logic has always been the foundation
of many of its branches: theory of computation,
logical design, formal syntax and semantics of
programming languages, compiler construction,
disci plined programming, program proving,
knowledge engineering, inductive learning,
database theory, expert systems, theorem proving,
logic programming and functional programming.
Programming languages such as LISP and
PROLOG are formal logics, slightly extended by
suitable data structures and a few imperative
constructs. Logic will always remain the principal
foundation of computer science, but in the quest
for artificial intelligence logic will be only one
partner in a large consortium of necessary
foundational disciplines, along with psychology,
neuroscience, neurocomputation, and natural
linguistics.

1 -LOGIC AND COMPUTING

I expect that digital computing machines will eventually
stimulate a considerable interest in symbolic logic. One could
communicate with these machines in any language provided
it was an exact language. In principle one should be able to
communicate in any symbolic logic. A. M. Turing, 1947

The computer is the offspring of logic and
technology. Its conception in the mid-1930s
occurred in the course of the researches of three
great logicians: Kurt Godel, Alonzo Church, and
Alan Turing, and its subsequent birth in the mid
1940s was largely due to Turing's practical genius
and to the vision and intellectual power of
another great logician-mathematician, John von
Neumann. Turing and von Neumann played
leading roles not only in the design and
construction of the first computers but also in
laying the general logical foundations for
understanding the computation process and for
developing computing formalisms.

Today, logic continues to be a fertile source of
abstract ideas for novel computer architectures:
inference machines, dataflow machines, database
machines, rewriting machines. It provides a
unified view of computer programming, (which
is essentially a logical task) and a systematic
framework for reasoning about programs. Logic
has been important in the theory and design of
high-level programming languages. Logical
formalisms are the immediate models for two
major logic programming language families:
Church's lambda ca1cul us for functional
programming languages such as LISP, ML, LUCID
and MIRANDA, and the Horn-dause-resolution
predicate calculus for relational programming
languages such as PROLOG, P ARLOG, and GHC.
Peter Landin noted over twenty years ago that
ALGOL-like languages, too, were merely
'syntactically sugared' only-slightly-augmented
versions of Church's lambda-calculus, and
recently, another logical formalism, Martin-Lof's
Intuitionistic Type Theory, has served (in, for
example, Constable's NUPRL) as a very-high
level programming language, a notable feature of
which is that a proof of a program's correctness is
an automatic accompaniment of the program
writing process.

200

To design, understand and explain computers and
programming languages; to compose and analyze
programs and reason correctly and cogently about
th.eir properties; these are to practice an abstract
logical art based upon (in H. A. Simon's apt
phrase) a 'science of the artificial' which studies
rational artifacts in abstraction from the
engineering details of their physical realization,
yet with an eye on their intrinsic efficiency. The
formal logician has had to become also an abstract
engineer.

1.1 LOGIC AND ARTIFICIAL INTELLIGENCE

Logic provides the vocabulary and many of the techniques
needed both for analyzing the processes of representation and
reasoning and for synthesizing machines that represent' and
reason. N.]. Nilsson, 1991

In artificial intelligence (AI) research, logic has
been used (for example, by McCarthy and Nilsson)
as a rational model for knowledge representation
and (for example by Plotkin and Muggleton) as a
guide for the organization of machine inductive
inference and learning. It has also been used (for
example by Wos, Bledsoe and Stickel)' as the
theoretical basis for powerful automated
deduction systems which have proved theorems
of interest to professional mathematicians.
Logic's roles in AI, however, have been more
controversial than its roles in the theory and
practice of computing. Until the difference (if
any) between natural intelligence and artificial
intelligence is better understood, and until more
experiments have tested the claims both of logic's
advocates and of logic's critics concerning its place
in AI research, the controversies will continue.

2 LOGIC AND THE ORIGIN OF THE COMPUTER.

Logic's dominant role in the' invention of the
modern computer is not widely appreciated. The
computer as we know it today was invented in
1936, an event triggered by an important logical
discovery announced by Kurt Godel in 1930.
Godel's discovery decisively affected the outcome
of the so-called Hilbert Program. Hilbert's goal
was to formalize all of mathematics and then give
positive answers to three questions a,bout the
resulting formal system: is it consistent? is it
complete? it is decidable? Godel found that no
sufficiently rich formal system of mathematics
can be both consistent and complete. In proving
this, Godel invented, and used, a high-level
symbolic programming language: the formalism
of primitive recursive functions. As part of his

proof, he composed an elegant modular
functional program (a set of connected definitions
of primitive recursive functions and predicates)
which constituted a detailed computational
presentation of the syntax of a formal system of
number theory, with special emphasis on its
inference rules and its notion of proof. This
computational aspect of his work was auxiliary to
his main result, but is enough to have established
Godel as the first serious programmer in the
modern sense. Godel's computational example
inspired Alan Turing a few years later, in 1936, to
find an explicit but abstract logical model not only
of the computing process, but also of the
computer itself. Using these as auxiliary
theoretical concepts, Turing disposed of the third
of Hilbert's questions by showing that the formal
system of mathematics is not decidable. Although
his original computer was only an abstract logical
concept, during the following decade (1937-1946)
Turing 'became a leader in the design,
construction and operation of the first real
computers.

The problem of answering Hilbert's third
question was known as the Decision Problem.
Turing interpreted it as the challenge either to
give an algorithm which correctly decides, for all
formal mathematical propositions A and B,
whether B is formally provable from A, or to
show that is there no such algorithm. Having
first clearly characterized what an algorithm is, he
found the answer: there is no such algorithm.

For our present purposes the vital part of Turing's
result is his characterization of what counts as an
algorithm. He based it on an analysis of what a
'computing agent' does when making a
calculation according to a systematic procedure.
He showed that, when boiled down to bare
essentials, the activity of such an agent is nothing
more than that of (as we would now say) a finite
state automaton which interacts, one at a time,
with the finite-state cells comprising an infinite
memory.

Turing's machines are plausible abstractions from
real computers, which, for Turing as for everyone
else in the mid-1930s, meant a person who
computes. The abstract Turing machine is an
idealized model of any possible computational
scheme such a human worker could carry out.
His great achievement was to show that some
Turing machines are 'universal' in that they can
exactly mimic the behavior of' any Turing
machine whatever. All that is needed is to place a

coded description of the given machine in the
universal machine's memory together with a
coded description of the given machine's initial
memory contents. How Turing made use of this
universal machine in answering Hilbert's third
question is not relevant to our purpose here. The
point is that his universal machines are the
abstract prototypes of today's stored program
general-purpose computers. The coded
descri ption of each particular machine is the
program which causes the universal machine to
act like that particular machine.

Abstract and purely logical as it is, Turing's work
had an obvious technological interpretation.
There is no need to build a separate machine for
each computing task. One need build only one
machine-a universal machine-and one can
make it perform any conceivable computing task
simply by writing a suitable program for it.
Indeed Turing himself set out to build a universal
machine.

He began his detailed planning in 1944, when he
was still fully engaged in the wartime British
code-breaking project at Bletchley Park, and when
the war ended in 1945 he moved to the National
Physical Laboratory to pursue his goal full time.
His real motive was already to investigate the
possibility of artificial intelligence, a possibility he
had frequently discussed at Bletchley Park with
Donald Michie, I. J. Good, and other colleagues.
He wanted, as he put it, to build a brain. By 1946
Turing completed his design for the ACE
computer, based on his abstract universal
machine. In designing the ACE, he was able to
draw on his expert knowledge of the sophisticated
new electronic digital technology which had been
used at Bletchley Park to build special-purpose
code-breaking machines (such as the Colossus).
In the event, the ACE would not be the first
physical universal machine, for there were others
who were after the same objective, and who beat
NPL to it. Turing's 1936 idea had started others
thinking. By 1945 there were several people
planning to build a universal machine. One of
these was John von Neumann.

Turing and von Neumann first met in 1935 when
Turing was an unknown 23-year-old Cambridge
graduate student. Von Neumann was already
famous for his work in many scientific fields,
including theoretical physics, logic and set theory,
and several other important branches of
mathematics. Ten years earlier, he had been one
of the leading logicians working on Hilbert's

201

Program, but after Godel's discovery he
suspended his specifically logical researches and
turned his attention to physics and to
mathematics proper. In 1930 he emigrated to
Princeton, where he remained for the rest of his
life.

Turing spent two years (from mid-1936 to mid-
1938) in Princeton, obtaining a doctorate under
Alonzo Church, who in 1936 had independently
solved the Decision Problem. Church's method
was quite different from Turing's and was not as
intuitively convincing. During his stay in
Princeton, Turing had many conversations with
von Neumann, who was enthusiastic about
Turing's work and offered him a job as his
research assistant. Turing turned it down in order
to resume his research career in Cambridge, but
his universal machine had already become an
important item in von Neumann's formidable
intellectual armory. Then came the war. Both
men were soon completely immersed in their
absorbing and demanding wartime scientific
work.

By 1943, von Neumann was deeply involved in
many projects, a recurrent theme of which was
his search for improved automatic aids to
computation. In late 1944 he became a consultant
to a University of Pennsylvania group, led by J. P.
Eckert and J. W. Mauchly, which was then
completing' the construction of the ENIAC
computer (which was programmable and
electronic, but not universal, and its programs
were not stored in the computer's memory).
Although he was too late to influence the design
of the ENIAC, von Neumann supervised the
design of the Eckert-Mauchly group's second
computer, the EDV AC. Most of his attention in
this period was, however, focussed on designing
and constructing his own much more powerful
machine in Princeton - the Institute for
Advanced Study (lAS) computer. The EDV AC
and the lAS machine both exemplified the so
called von Neumann architecture, a key feature of
which is the fact that instruction words are stored
along with data in the memory of the computer,
and are therefore modifiable just like data words,
from which they are not intrinsically
distinguished.

The lAS computer was a success. Many close
copies were eventually built in the 19505, both in
US government laboratories (the AVIDAC at
Argonne National Laboratory, the ILLIAC at the
University of Illinois, the JOHNIAC at the Rand

202

Corporation, the MANIAC at the Los Alamos
National Laboratory, the ORACLE at the Oak
Ridge National Laboratory, and the ORDV AC at
the Aberdeen Proving Grounds), and in foreign
laboratories (the BESK in Stockholm, the BESM in
Moscow, the DASK in Denmark, the PERM in
Munich, the SILLIAC in Sydney, the SMIL in
Lund, and the WEIZAC in Israel); and there were
at least two commercial versions of it (the IBM
701 and the International Telemeter
Corporation's TC-1).

The EDSAC, a British version of the EDV AC, was
running in Cambridge by June 1949, the result of
brilliantly fast construction work by M. V. Wilkes
following his attendance at a 1946 EDVAC course.
Turing's ACE project was, however, greatly
slowed down by a combination of British civil
service foot-dragging and his own lack of
administrative deviousness, not to mention his
growing preoccupation with AI. In May 1948
Turing resigned from NPL in frustration and
joined the small computer group at the
University of Manchester, whose small but
universal machine started useful operation the
very next month and thus became the world's
first working universal computer. All of Turing's
AI experiments, and all of his computational
work in developmental biology, took place on this
machine and its successors, built by others but
according to his own fundamental idea.

Von Neumann's style in expounding the design
and operation of EDV AC and the lAS machine
was to suppress engineering details and to work
in terms of an abstract logical description. He
discussed both its system architecture and the
principles of its programming entirely in such
abstract terms. We can today see that von
Neumann and Turing were right in following the
logical principle that precise e'ngineering details
are relatively unimportant in the essential
problems of computer design and programming
methodology. The ascendancy of logical
abstraction over concrete realization has ever
since been a guiding principle in computer
science, which has kept itself organizationally
almost entirely separate from electrical
engineering. The reason it has been able to do
this is that computation is primarily a logical
concept, and only secondarily an engineering one.
To compute is to engage in formal reasoning,
according to certain formal symbolic rules, and it
makes no logical difference how the formulas are
physically represented, or how the logical
transformations of them are physically realized.

Of course no one should underestimate the
enormous importance of the role of engineering
in the history of the computer. Turing and von
Neumann did not. They themselves had a deep
and quite expert interest in the very engineering
details from which they were abstracting, but they
knew that the logical role of computer science is
best played in a separate theater.

3 LOGIC AND PROGRAMMING

Since coding is not a static process of translation, but rather
the technique of providing a dynamic background to control
the automatic evolution of a meaning, it has to be viewed as a
logical problem and one that represents a new branch of
formal logics. J. von Neumann and H. Goldstine, 1947

Much emphasis was placed by both Turing and
von Neumann, in their discussions of
programming, on the two-dimensional notation
known as the flow-diagram. This quickly became
a standard logical tool of early programming, and
it can still be a useful device in formal reasoning
about computations. The later ideas of Hoare,
Dijkstra, Floyd, and others on the logical
principles of reasoning about programs were
anticipated by both Turing (in his 1949 lecture
Checking a Large Routine) and von Neumann (in
the 1947 Report Planning and Coding of Problems
for an Electronic Computing Instrument). They
stressed that programming has both a static and a
dynamic aspect. The static text of the program
itself is essentially an expression in some formal
system of logic: a syntactic structure whose
properties can be analyzed by logical methods
alone. The dynamic process of running the
program is part of the semantic meaning of this
static text.

3.1 AUTOMATIC PROGRAMMING

Turing's friend Christopher Strachey was an early
advocate, around 1950, of using the computer
itself to translate from high-level 'mathematical'
descriptions into low-level 'machine-language'
prescriptions. His idea was to try to liberate the
programmer from concern with 'how' to
compute so as to be able to concentrate on 'what'
to compute: in short, to think and write programs
in a more natural and human idiom. Ironically,
Turing himself was not much interested in this
idea, which he had already in 1947 pointed out as
an 'obvious' one. In fact, he seems to have had a
hacker's pride in his fluent machine-language
virtuosity. He was able to think directly and easily
in terms of bare bit patterns and of the

unorthodox number representations such as the
Manchester computer's reverse (i.e., low-order
digits first) base-32 notation for integers. In this
attitude, he was only the first among many who
have stayed aloof from higher-level
programming languages and higher-level
machine architectures, on the grounds that a real
professional must be aware of and work closer to
the actual realities of the machine. One senses
this attitude, for example, throughout Donald
Knuth's monumental treatise on the art of
computer programming.

It was not until the late 1950s (when FORTRAN
and LISP were introduced) that the precise
sequential details of how arithmetical and logical
expressions are scanned, parsed and evaluated
could routinely be ignored by most programmers
and left· to the com pu ter to work out. This
advance brought an immense simplification of
the programming task and a large increase in
programmer productivity. There soon followed
more ambitious language design projects such as
the international ALGOL project, and the theory
and practice of programming language design,
together with the supporting software technology
of interpreters and compilers, quickly became a
major topic in computer science. The formal
grammar used to define the syntax of ALGOL was
not initially accompanied by an equally formal
specification of its semantics; but this soon
followed. Christopher Strachey and Dana Scott
developed a formal 'denotational semantics' for
programs, based on a rigorous mathematical
interpretation of the previously uninterpreted,
purely syntactical, lambda calculus of Church. It
was, incidentally, a former student of Church,
John Kemeny, who devised the enormously
popular 'best-selling' programming language,
BASIC.

3.2 DESCRIPTIVE AND IMPERATIVE ASPECTS

There are two sharply-contrasting approaches to
programming and programming languages: the
descriptive approach and the imperative
approach.

The descriptive approach to programming
focusses on the static aspect of a computing plan,
namely on the denotative semantics of program
expressions. It tries to see the entire program as a
timeless mathematical specification which gives
the program's output as an explicit function of its
input (whence arises the term 'functional'
programming). This approach requires the

203

computer to do the work of constructing the
described output automatically from the given
input according to the given specifications,
without any explicit direction from the
programmer as to how to do it.

The imperative approach focusses on the dynamic
aspect of the computing plan, namely on its
operational semantics. An imperative program
specifies, step by step, what the computer is to do,
what its 'flow of control' is to be. In extreme
cases, the nature of the outputs of an imperative
program might be totally obscure. In such cases
one must (virtually or actually) run the program
in order to find out what it does, and try to guess
the missing functional description of the output
in terms of the input. Indeed it is necessary in
general to 'flag' a control-flow program with
comments and assertions, supplying this missing
information, in order to make it possible to make
sense of what the program is doing when it is
running.

Although a purely static, functional program is
relatively easy to understand and to prove correct,
in general one may have little or no idea of the
cost of running it, since that dynamic process is
deliberately kept out of sight. On the other hand,
although an operational program is relatively
difficult to understand and prove correct, its more
direct depiction of the actual process of
computation makes an assessment of its efficency
relatively straightforward. In practice, most
commonly-used high-level programming
languages-even LISP and PROLOG-have both
functional and operational features. Good
programming technique requires an
understanding of both. Programs written in such
languages are often neither wholly descriptive
nor wholly imperative. Most programming
experts, however, recommend caution and
parsimony in the use of imperative constructs.
Some even recommend complete abstention.
Dijkstra's now-classic Letter to the Editor (of the
Communications of the ACM), entitled 'GOTO
considered harmful' is one of the earliest and
best-known such injunctions.

These two kinds of programming were each
represented in pure form from the beginning:
Gadel's purely descriptive recursive function
formalism and Turing's purely imperative
notation for the state-transition programs of his
machines.

204

3.3 LOGIC AND PROGRAMMING LANGUAGES

In the late 1950s at MIT John McCarthy and his
group began to program their IBM 704 using
symbolic logic directly. Their system, LISP, is the
first major example of a logic programming
language intended for actual use on a computer.
It is essentially Church's lambda calculus,
augmented by a simple recursive data structure
(ordered pairs), the conditional expression, and an
imperative 'sequential construct' for specifying a
series of consecutive actions. In the early 1970s
Robert Kowalski in Edinburgh and Alain
Colmerauer in Marseille showed how to program
with another only-slightly-augmented system of
symbolic logic, namely - the Horn-clause
resolution form of the predicate calculus.
PROLOG is essentially this system of logic,
augmented by a sequentializing notion for lists of
goals and lists of clauses, a flow-of-control notion
consisting of a systematic depth-first, back-tracking
enumeration of all deductions permitted by the
logic, and a few imperative commands (such as
the 'cut'). PROLOG is implemented with great
elegance and efficiency using ingenious
techniques originated by David H. D. Warren. The
princi pal virtue of logic programming in either
LISP or PROLOG lies in the ease of writing
programs, their intelligibility, and their
amenability to metalinguistic reasoning. LISP and
PROLOG are usually taken as paradigms of two
distinct logic programming styles (functional
programming and relational programming)
which on closer examination turn out to be only
two examples of a single style (deductive
programming). The general idea of purely
descriptive deductive programming is to construe
computation as the systematic reduction of
expressions to a normal form. In the case of pure
LISP, this means essentially the persistent
application of reduction rules for processing
function calls (Church's beta-reduction rule), the
conditional expression, and the data-structuring
operations for ordered pairs. In the case of pure
PROLOG, it means essentially the persistent
application of the beta-reduction rule, the rule for
the distributing AND through OR, the rule for
eliminating existential quantifiers from
conjunctions of equations, and the rules for
simplifying expressions denoting sets. By
merging these two formalisms one obtains a
unified logical system in which both flavors of
programming are available both separately and in
combination with each other. My colleague
Ernest Sibert and I some years ago implemented

an experimental language based on this idea (we
called it LOGLISP). Currently we are working on
another one, called SUPER, which is meant to
illustrate how such reduction logics can be
implemented naturally on massively parallel
computers like the Connection Machine.

LISP, PROLOG and their cousins have thus
demonstrated the possibility, indeed the
practicality, of using systems of logic directly to
program computers. Logic programming is more
like the formulation of knowledge in a suitable
form to be used as the axioms of automatic
deductions by which the computer infers its
answers to the user's queries. In this sense this
style of programming is a bridge linking
computation in general to AI systems in
particular. Knowledge is kept deliberately apart
(in a 'knowledge base') from the mechanisms
which invoke and apply it. Robert Kowalski's
well-known equational aphorism 'algorithm =
logic + control ' neatly sums up the necessity to
pay attention to both descriptive and imperative
aspects of a program, while keeping them quite
separate from each other so that each aspect can be
modified as necessary in an intelligible and
disciplined way.

The classic split between procedural and
declarative knowledge again shows up here: some
of the variants of PROLOG (the stream-parallel,
commi tted -choice nondeterministic languages
such as ICOT's GHC) are openly concerned more
with the control of events, sequences and
con currencies than on the management of the
deduction of answers to queries. The uneasiness
caused by this split will remain until some way is
found of smoothly blending procedural with
declarative within a unified theory of
computation.

Nevertheless, with the' advent of logic
programming in the wide sense, computer science
has outgrown the idea that programs can only be
the kind of action-plans required by Turing-von
Neumann symbol-manipulating robots and their
modern descendants. The emphasis is (for the
programmer, but not yet for the machine
designer) now no longer entirely on controlling
the dynamic sequence of such a machine's
actions, but increasingly on the static syntax and
semantics of logical expressions, and on the
corresponding mathematical structure of the data
and other objects which are the denotations of the
expressions. It is interesting to speculate how
different the history of computing might have

been if in 1936 Turing had proposed a purely
descriptive abstract universal machine rather
than the purely imperative one that he actually
did propose; or if, for example, Church had done
so. We might well now have been talking of
'Church machines' instead of Turing machines.

We would be used to thinking of a Church
machine as an automaton whose states are the
expressions of some formal logic. Each of these
expressions denotes some entity, and there is a
semantic notion of equivalence among the
expressions: equivalence means denoting the
same entity. For example, the expressions

(23 + 4)/(13 -4), 1.3 + 1.7, Az. (2z + 1)1/2 (4)

are equivalent, because they all denote the
number three. A Church machine computation
is a sequence of its states, starting with some given
state and then continuing according to the
transition rules of the machine. If the sequence of
states eventually reaches a terminal state, and
(therefore) the computation stops, then that
terminal state (expression) is the output of the
machine for the initial state (expression) as input.
In general the machine computes, for a given
expression, another expression which is
equivalent to it and which is as simple as possible.
For example, the expression '3' is as simple as
possible, and is equivalent to each of the above
expressions, and so it would be the output of a
computation starting with any of the expressions
above. These simple-as-possible expressions are
said to be in 'normal form'. The 'program' which
determines the transitions of a Church machine
through its successive states is a set of 'rewriting'
rules together with a criterion for applying some
one of them to any expression. A rewriting rule is
given by two expressions, called the 'redex' and
the 'contractum' of the rule, and applying it to an
expression changes (rewrites) it to another
expression. The new expression is a copy of the
old one, except that the new expression contains
an occurrence of the contractum in place of one of
the occurrences of the redex.

If the initial state is (23 + 4) / (13 - 4) then the
transi tions are:

(23 + 4)/(13 - 4)
27/(13 -4)

27/9

becomes
becomes
becomes

27/(13 - 4),
27/9,
3.

Or if the initial state is AZ. (2z + 1)1/2 (4), then the
trans 1 tions are:

Az. (2z + 1)1/2 (4) becomes
«2 x 4) + 1)1/2 becomes

(8 + 1)1/2 becomes
91/2 becomes

«2 x 4) + 1)1/2
(8 + 1)1/2
91/2
3.

205

Most of us are trained in early life to act like a
simple purely arithmetical Church machine. We
all learn some form of numerical rewriting rules
in elementary school, and use them throughout
our lives (but of course Church's lambda notation
is not taught in elementary school, or indeed at
any time except when people later specialize in
logic or mathematics; but it ought to be). Since we
cannot literally store in our heads all of the
infinitely many redex-contractum pairs <23 + 4,
27>, <2+2, 4> etc., infinite sets of these pairs are
logically coded into simple finite algorithms.
Each algorithm (for addition, subtraction, and so
on) yields the contractum for any given redex of
its particular type. We hinted earlier that an
expression is in normal form if it is as simple as
possible. To be sure, that is a common way to
think of normal forms, and in many cases it fits
the facts. Actually to be in normal form is not
necessarily to be in as simple a form as possible.
What counts as a normal form will depend on
what the rewriting rules are. Normal form is a
relative notion: given a set of rewriting rules, an
expression in normal form is one which contains
no redex.

In designing a Church machine care must be
taken that no expression is the redex of more than
one rule. The machine must also be given a
criterion for deciding which rule to apply to an
expression which contains distinct redexes, and
also for deciding which occurrence of that rule's
redexes to replace, in case there are two or more of
them. A simple criterion is always to replace the
leftmost redex occurring in the expression.

A Church machine, then, is a machine whose
possible states are all the different expressions of
some formal logic and which, when started in
some state (i.e., when given some expression of
that logic) will 'try' to compute its normal form.
The computation mayor may not terminate: this
will depend on the rules and on the initial
expression. Some of the expressions for some
Church machines may have no normal form.
Since for all interesting formal logics there are
infinitely many expressions, a Church machine is
not a finite-state automaton; so in practice the
same provision must be made as in the case of the

206

Turing machines for adjoining as much external
memory as needed during a computation.

Church machines can also serve as a simple
model for parallel computation and parallel
architectures. One has only to provide a criterion
for replacing more than one redex at the same
time. In Church's lambda calculus one of the
rew~iting rules ('beta reduction') is the logical
verSIOn of executing a function call in a high
level programming language. Logic
programming languages based on Horn-clause
resolution can also be implemented as Church
machines, at least as far as their static aspects are
concerned.

In the early 1960s Peter Landin, then Christopher
Strachey's research assistant, undertook to
convince computer scientists that not merely
LISP, but also ALGOL, and indeed all past, present
and future programming languages are essentially
the abstract lambda calculus in one or another
concrete manifestation. One need add only an
abstract version of the 'state' of the computation
process and the concept of 'jump' or change of
state. Landin's abstract logical model combines
declarative programming with procedural
programming in an insightful and natural way.

Landin's thesis also had a computer-design aspect,
in the form of his elegant abstract logic machine
(the SECD machine) for executing lambda calculus
programs. The SECD m'achine language is the
lambda calculus itself: there is no question of
'compiling' programs into a lower-level language
(but more recently Peter Henderson has described
just such a lower-level SECD machine which
executes compiled LISP expressions). Landin's
SECD machine is a sophisticated Church machine
which uses stacks to keep track of the syntactic
structure of the expressions and of the location of
the leftmost redex.

We must conclude that the descriptive and
imperative views of computation are not
incompatible with each other. Certainly both are
necessary. There is no need for their mutual
antipathy. It arises only because enthusiastic
extremists on both sides sometimes claim that
computing and programming are 'nothing but'
the one or the other. The appropriate view is that
in all computations we can expect to find both
aspects, although in some cases one or the other
aspect will dominate and the other may be present
in only a minimal way. Even a pure functional
program can be viewed as an implicit 'evaluate

this expression and display the result' imperative
(as in LISP's classic read-eval-print cycle).

4 LOGIC AND ARTIFICIAL INTELLIGENCE

In AI a controversy sprang up in the late 1960s
over essentially this same issue. There was a
spirited and enlightening debate over whether
knowledge should be represented in procedural or
declarative form. The procedural view was
mainly associated with Marvin Minsky and his
MIT group, represented by Hewitt's PLANNER
system and Winograd's application of it to
support a rudimentary natural language capability
in his simple simulated robot SHRDLU. The
declarative view was associated with Stanford's
John McCarthy, and was represented by Green's
QA3 system and by Kowalski's advocacy of Horn
clauses as a logic-based deductive programming
language. Kowalski was able to make the strong
case that he did because of Colmerauer's
development of PROLOG as a practical logic
programming language. Eventually Kowalski
found an elegant way to end the debate, by
pointing out a procedural interpretation for the
ostensibly purely declarative Horn clause
sentences in logic programs.

There is an big epistemological and psychological
difference between simply describing a thing and
giving instructions for constructing it, which
corresponds to the difference between descriptive
and imperative programming. One cannot
always see how to construct the denotation of an
expression efficiently. For example, the meaning
of the descriptive expression

the smallest integer which is the sum of two cubes in two
different ways.

seems quite clear. We certainly understand the
expression, but those who don't already (probably
from reading of Hardy's famous visit to
Ramanujan in hospital) know that it denotes the
integer 1729 will have to do some work to figure it
out for themselves. It is easy to see that 1729 is the
sum of two cubes in two different ways if one is
shown the two equations

1729 = 13 + 123 1729 = 103 +93

but it needs at least a little work to find them
oneself. Then to see that 1729 is the smallest
integer with this property, one has to see
somehow that all smaller integers lack it, and this
means checking each one, either literally, or by
some clever shortcut. To find 1729, in the first

place, as the denotation of the expression, one has
to carry out the all of this work, in some form or
another. There are of course many different ways
to organize the task, some of which are much
more efficient than others, some of which are less
efficient, but more intelligible, than others. So to
write a general computer program which would
automatically and efficiently reduce the
expression

the smallest integer which is the sum of two cubes in two
different ways

to the expression '1729' and equally well handle
other similar expressions, is not at all a trivial
task.

4.1 AI AND PROGRAMMING

Automatic programming has never really been
that. It is no more than the automatic translation
of one program into another. So there must be
some kind of program (written by a human,
presumably) which starts off the chain of
translations. An assembler and a compiler both
do the same kind of thing: each accepts as input a
program written in one programming language
and delivers as output a program written in
another programming language, with the
assurance that the two programs are equivalent in
a suitable sense. The advantage of this technique
is of course that the source program is usually
more intelligible and easier to write than the
target program, and the target program is usually
more efficient than the source program because it
is typically written in a lower-level language,
closer to the realities of the machine which will
do the ultimate work. The advent of such
automatic translations opened up the design of
programming languages to express 'big' ideas in a
style 'more like mathematics' (as Christopher
Strachey put it). These big ideas are then
translated into smaller ideas more appropriate for
machine languages. Let us hope that one day we
can look back at all the paraphernalia of this
program-translation technology, which is so large
a part of today's computer science, and see that it
was only an interim technology. There is no law
of nature which says that machines and machine
languages are intrinsically low-level. We must
strive towards machines whose 'level' matches
our own.

Turing and von Neumann both made important
contributions to the beginnings of AI, although
Turing's contribution is the better known. His
1950 essay Computin~ Machinery and Intelli~ence

207

is surely the most quoted single item in the entire
literature of AI, if only because it is the original
source of the so-called Turing Test. The recent
revival of interest in artificial neural models for
AI applications recalls von Neumann's deep
interest in computational neuroscience, a field he
richly developed in his later years and which was
absorbing all his prodigious intellectual energy
during his final illness. When he died in early
1957 he left behind an uncompleted manuscript
which was posthumously published as the book
The Computer and the Brain.

4.2 LOGIC AND PSYCHOLOGY IN AI

If a machine is to be able to learn something, it must first be
able to be told it. John McCarthy, 1957

I do not mean to say that there is anything wrong with logic; I
only object to the assumption that ordinary reasoning is
largely based on it. M. L. Minsky, 1985

AI has from the beginning been the arena for an
uneasy coexistence between logic and psychology
as its leading themes, as epitomized in the
contrasting approaches to AI of John McCarthy
and Marvin Minsky. McCarthy has maintained
since 1957 that AI will come only when we learn
how to write programs (as he put it) which have
common sense and which can take advice. His
putative AI system is a (presumably) very large
knowledge base made up of declarative sentences
written in some suitable logic (until quite recently
he has taken this to be the first order predicate
calculus), equipped with an inference engine
which can automatically deduce logical
consequences of this knowledge. Many well
known AI problems and ideas have arisen in
pursuing this approach: the Frame Problem,
Nonmonotonic Reasoning, the Combinatorial
Explosion, and so on.

This approach demands a lot of work to be done
on the epistemological problem of declara ti vel y
representing knowledge and on the logical
problem of designing suitable inference engines.
Today the latter field is one of the flourishing
special subfields of AI. Mechanical theorem
proving and automated deduction have always
been a source of interesting and hard problems.
After over three decades of trying, we now ha ve
well-understood methods of systematic deduction
which are of considerable use in practical
applications.

208

Minsky maintains that humans rarely use. logic in
their actual thinking and problem solving, but
adds that logic is not a good basis even for
artificial problem solving-that computer
programs based solely on Mc<:arthy'~ lo~ical
deductive knowledge-base paradigm wIll fall to
displa y intelligence because of their inevi~able
computational inefficiencies; that the pre~hcate
calculus is not adequate for the representation of
most knowledge; and that the exponential
complexity of predicate calculus proof procedures
will always severely limit what inferences are
possible.

Because it claims little or nothing, the view can
hardly be refuted that humans undoubtedly ar~ in
some sense (biological) machines whose design,
though largely hidden from us at present and
obviously exceedingly complicated, calls for some
finite arrangement of material components all
built ultimately out of 'mere' atoms and
molecules and obeying the laws of physics and
chemistry. So there is an abstract design whic~,
when physically implemented, produces (m
ourselves, and the animals) intelligence.
Intelligent machines can, then, b~ built. Indee~,
they can, and do routinely, bUild. and repa?r
themselves, given a suitable enVIronment In
which to do so. Nature has already achieved NI
natural intelligence. Its many manifestations
serve the AI research community as existence
proofs that intelligence can occur in physical
systems. Nature has already solved all the AI
problems, by sophisticated schemes only a very
few of which have yet been understood.

4.3 THE STRONG AI THESIS

According to Strong AI, the computer is not merely a t.ool in
the study of the mind; rather, the approprIately
programmed computer really is a mind, in. the sense. that
computers given the right programs can be hterally saId to
understand and have other cognitive states.

,. R. Searle, 1980

Turing believed, indeed was the first to propound,
the Strong AI thesis that artificial intelligence can
be achieved simply by appropriate programming
of his universal computer. Turing's Test is
simply a detection device, waiting for intelligence
to occur in machines: if a machine is one day
programmed to carryon fluent and intelligent
seeming conversations, will we not, argued
Turing, have to agree that this intelligence, or at
least this apparent intelligence, is a property of the
program? What is the difference between

apparent intelligence, and intelligence itself? The
Strong AI thesis is also implicit in Mc<:~r~hy's
long-pursued project to reconstruct artifiCially
something like human intelligence by
implementing a suitable formal system. Thus the
Turing Test might (on McCarthy's view)
eventually be passed by a deductive kn?wle.d~e
base, containing a suitable repertory of hngUIStIC
and other everyday human knowledge, and an
efficient and sophisticated inference engine. The
system would certainly have to have. a mastery of
(both speaking and understanding). ~atural .
language. Also it would have to exhibit to a
sufficent degree the phenomenon of 'learning' so
as to be capable of augmenting and improving its
knowledge base to keep it up-to-date both in t~e
small (for example in dialog management) and In

the large (for example in keeping up wi.th ~~e
news and staying abreast of advances In SCientifiC
knowledge). In a recent vigorous defense of the
Strong AI thesis, Lenat and Feigenbaum argued
that if enough knowledge of the right kind is
encoded in the system it will be able to 'take off'
and autonomously acquire more through reading
books and newspapers, watching TV, taking
courses, and talking to people.

It is not the least of the attractions of the.Strong AI
thesis is that it is empirically testable. We shall
know if someone succeeds in building a system of
this kind: that indeed is what Turing's Test is for.

4.4 EXPERT SYSTEMS

Expert systems are limited-scale attempted
practical applications of McCarthy's idea. Some of
them (such as the Digital Equipment
Corporation's system for c~nfiguring. ': AX
computing systems, and the highly speclahzed
medical diagnosis systems, such as MYCIN) have
been quite useful in limited contexts, but there
have not been as many of them as the more
enthusiastic proponents of the idea might have
wished. The well-known book by Feigenbaum &
McCorduck on the Fifth Generation Project was a
spirited attempt to stir up enthusiasm for Expert
Systems and Knowledge Engineering in the
United States by portraying ICOT's mission as a
Japanese bid for leadership in this field.

There has indeed been much activity in devising
specialized systems of applied logic whose axioms
collectively represent a body of expert knowledge
for some field (such as certain diseases, their
symptoms and treatments) and whose deductions
represent the process of solving problems posed

about that field (such as the problem of
diagnosing the probable cause of given observed
symptoms in a patient). This, and other, attempts
to apply logical methods to problems which call
for inference-making, have led to an extensive
campaign of reassessment of the basic classicial
logics as suitable tools for such a purpose. New,
nonclassical logics have been proposed (fuzzy
logic, probabilistic logic, temporal logic, various
modal logics, logics of belief, logics for causal
reationships, and so on) along with systematic
methodologies for deploying them (truth
maintenance, circumscription, non-monotonic
reasoning, and so on). In the process, the notion
of what is a logic has been stretched and modified
in many different ways, and the current picture is
one of busy experimentation with new ideas.

4.5 LOGIC AND NEUROCOMPUTATION

Von Neumann's view of AI was a 'logico-neural'
version of the Strong AI thesis, and he acted on it
with typical vigor and scientific virtuosity. He
sought to for'malize, in an abstract model, aspects
of the actual structure and function of the brain
and nervous system. In this he was consciously
extending and improving the pioneer work of
McCullogh and Pitts, who had described their
model as 'a logical calculus immanent in nervous
activity'. Here again, it was logic which served as
at least an approximate model for a serious attack
on an ostensibly nonlogical problem.

Von Neumann's logical study of self
reproduction as an abstract computational
phenomenon was not so much an AI
investigation as an essay in quasi-biological
information processing. It was certainly a
triumph of abstract logical formalization of an
undeniably computational process. The self
reproduction method evolved by Nature, using
the double helix structure of paired
complementary coding sequences found in the
DNA molecule, is a marvellous solution of the
formal problem of self-reproduction. Von
Neumann was not aware of the details of
Nature's solution when he worked out his own
logical, abstract version of it as a purely theoretical
construction, shortly before Crick and Watson
unravelled the structure of the DNA molecule in
1953. Turing, too, was working at the time of his
death on another, closely-related problem of
theoretical biology-morphogenesis-in which
one must try to account theoretically for the
unfolding of complex living structural
organizations under the control of the programs

209

coded in the genes. This is not exactly an AI
problem. One cannot help wondering whether
Turing may have been disappointed, at the end of
his life, with his lack of progress towards realizing
AI. If one excludes some necessary philosophical
clarifications and preliminary methodological
discussions, nothing had been achieved beyond
his invention of the computer itself.

The empirical goal of finding out how the human
mind actually works, and the theoretical goal of
reproducing its essential features in a machine,
are not much closer in the early 1990s than they
were in the early 1950s. After forty years of hard
work we have 'merely' produced some splendid
tools and thoroughly explored plenty of blind
alleys. We should not be surprised, or even
disappointed. The problem is a very hard one.
The same thing can be said about the search for
controlled thermonuclear fusion, or for a cancer
cure. Our present picture of the human mind is
summed up in Minsky's recent book The Society
of Mind, which offers a plausible general view of
the mind's architecture, based on clues from the
physiology of the human brain and nervous
system, the computational patterns found useful
for the organization of complex semantic
information-processing systems, and the sort of
insightful interpretation of observed human
adult- and child-behavior which Freud and Piaget
pioneered. Logic is given little or no role to play
in Minsky's view of the mind.

Minsky rightly emphasizes (as logicians have long
insisted) that the proper role of logic is in the
context of justification rather than in the context
of discovery. Newell, Simon and Shaw's 1956
well known propositional calculus theorem
proving program, the Logic Theorist, illustrates
this distinction admirably. The Logic Theorist is a
discovery simulator. The goal of their experiment
was to make their program discover a proof (of a
given propositional formula) by 'heuristic'
means, reminiscent (they supposed) of the way a
human would attack the same problem. As an
algorithmic theorem-prover (one whose goal is to
show formally, by any means, and presumably as
efficiently as possible, that a given propositional
formula is a theorem) their program performed
nothing like as well as the best nonheuristic
algorithms. The logician Hao Wang soon (1959)
rather sharply pointed this out, but it seems that
the psychologcial moti v a tion of their
investigation had eluded him (as indeed it has
many others). They had themselves very much
muddled the issue by contrasting their heuristic

210

theorem-proving method with the ridiculously
inefficient, purely fictional, 'logical' one of
enumerating all possible proofs in lexicographical
order and waiting for the first one to turn up with
the desired proposition as its conclusion. This
presumably was a rhetorical flourish which got
out of control. It strongly suggested that they
believed it is more efficient to seek proofs
heuristically, as in their program, than
algorithmically with a guarantee of success.
Indeed in the exuberance of their comparison they
provocatively coined the wicked but amusing
epithet 'British Museum algorithm' for this
lexicogaphic-enumeration-of-all-proofs method
the intended sting in the epithet being that just as,
given enough time, a systematic lexicographical
enumeration of a.11 possible texts will eventually
succeed in listing any given text in the vast British
Museum Library, so a logician, given enough
time, will eventually succeed in proving any
given provable proposition by proceeding along
similar lines. Their implicit thesis was that a
proof-finding algorithm which is guaranteed to
succeed for any provable input is necessarily
unintelligent. This may well be so: but that is not
the same as saying that it is necessarily inefficient.

Interestingly enough, something like this thesis
was anticipated by Turing in his 1947 lecture
before the London Mathematical Society:

... if a machine is expected to be infallible, it cannot also be
intelligent. There are several mathematical theorems which
say almost exactly that.

5 CONCLUSION

Logic's abstract conceptual gift of the universal
computer has needed to be changed remarkably
little since 1936. Until very recently, all universal
computers have been realizations of the same
abstraction. Minor modifications and
improvements have been made, the most striking
one being internal memories organized into
addressable cells, designed to be randomly
accessible, rather than merely sequentially
searchable (although external memories remain
essentially sequential, requiring search). Other
improvements consist largely of building into the
finite hardware some of the functions which
would otherwise have to be carried out by
software (although in the recent RISC
architectures this trend has actually been
reversed). For over fifty years, successive models
of the basic machine have been 'merely' faster,
cheaper, physically smaller copies of the same
device. In the past, then, computer science has

pursued an essentially logical quest: to explore the
Turing-von Neumann machine's unbounded
possibilities. The technological ,challenge, of
continuing to improve its physical realizations,
has been largely left to the electrical engineers,
who have performed miracles.

In the future, we must hope that the logician and
the engineer will find it possible and natural to
work more closely together to devise new kinds of
higher-level computing machines which, by
making programming easier and more natural,
will help to bring artificial intelligence closer.
That future has been under way for at least the
past decade. Today we are already beginning to
explore the possibilities of, for example, the
Connection Machine, various kinds of neural
network machines, and massively parallel
machines for logical knowledge-processing.

It is this future that the bold and imaginative
Fifth Generation Project has been all about.
Japan's ten-year-Iong ICOT-based effort has
stimulated (and indeed challenged) many other
technologically advanced countries to undertake
ambitious logic-based research projects in
computer science. As a result of ICOT's
international leadership and example, the
computing world has been reminded not only of
how central the role of logic has been in the past,
as generation has followed generation in the
modern history of computing, but also of how
important a part it will surely play in the
generations yet to come.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
O~ FIFTH GENERATION COMPUTER SYSTEMS 1992,
edIted by ICOT. © ICOT, 1992 21 I

PROGRAMS ARE PREDICATES

C.A.R. Hoare

Programming Research Group,
Oxford University Computing Laboratory,

11 Keble Road, Oxford, OXl 3QD, England.

Abstract

Requirements to be met by a new engineering product
can be captured most directly by a logical predicate de
scribing all its desired and permitted behaviours. The
behaviour of a complex product can be described as
the logical composition of predicates describing the be
haviour of its simpler components. If the composition
logically implies the original requirement, then the de
sign will meet its specification. This implication can be
mathematically proved before starting the implementa
tion of the components. The same method can be re
peated on the design of the components, until they are
small enough to be directly implement able.

A programming language can be defined as a re
stricted subset of predicate notation, ensuring that the
described behaviour may be efficiently realised by a com
bination of computer software and hardware. The re
strictive notations give rise to a specialised mathemati
cal theory, which is expressed as a collection of algebraic
laws useful in the transformation and optimisation of de
signs. Non-determinism contributes both to reusability
of design and to efficiency of implementation.

This philosophy is illustrated by application to hard
ware design, to procedural programs and to PROLOG.
It is shown that the procedural reading of logic programs
as predicates is different from the declarative reading,
but just as logical.

1 Inspiration

It is a great honour for me to address this conference
which celebrates the completion of the Fifth Generation
Computer Systems project in Tokyo. I add my own
congratulations to those of your many admirers and fol
lowers for the great advances and many achievements
made by those who worked on the project. The project
started with ambitious and noble goals, aiming not only
at radical advances in Computer Technology, but also
at the direction of that technology to the wider use and
benefit of mankind. Many challenges remain; but the
goal is one that inspires the best work of scientists and
engineers throughout the ages.

For my part, I have been most inspired by the phi
losophy with which this project approaches the daunt
ing task of writing programs for the new generation of
computers and their users. I have long shared the view
that the programming task should always begin with
a clear and simple statement of requirements and ob
jectives, which can be formalised as a specification of
the purposes which the program is required to meet.
Such specifications are predicates, with variables stand
ing for values of direct or indirect observations that can
be made of the behaviour of the program, including both
questions and answers, input and output, stimulus and
response. A predicate describes, in a neutral symmetric
fashion, all permitted values which those variables may
take when the program is executed. The over-riding
requirement on a specification is clarity, achieved by a
notation of the highest possible modularity and expres
sive power. If a specification does not obviously describe
what is wanted, there is a grave danger that it describes
what is not wanted; it can be difficult, expensive, and
anyway mathematically impossible to check against this
risk.

A minimum requirement on a specification language
is that it should include in full generality the elementary
connectives of Boolean Algebra: conjunction, disjunc
tion, and negation - simple and, or, and not. Conjunc
tion is needed to connect requirements, both of which
must be met, for example,

• it must control pressure and temperature.

Disjunction is needed to allow tolerances in implemen
tation

• it may deviate from optimum by one or two de
grees.

And negation is needed for even more important reasons

• it must not explode!

As a consequence, it is possible to write a specification
like

PV -,p

which is always true, and so describes every possible
observation of every possible product. Such a tolerant

212

specification is easy to satisfy, even by a program that
gets into an infinite loop. In fact, such infinite failure
will be treated as so serious that the tautologously true
specification is the only one that it satisfies.

Another inspiring insight which I share with the Fifth
Generation project is that programs too are predicates.
When given an appropriate reading, a program describes
all possible observations of its behaviour under execu
tion, all possible answers that it can give to any possible
question. This insight is one of the most convincing jus
tifications for the selection of logic programming as the
basic paradigm for the Fifth Generation project. But I
believe that the insight is much more general, and can be
applied to programs expressed in other languages, and
indeed to engineering products described in any mean
ingful design notation whatsoever. It gives rise to a gen
eral philosophy of engineering, which I shall illustrate
briefly in this talk by application to hardware design,
to conventional sequential programs, and even to the
procedural interpretation of PROLOG programs.

But it would be wholly invalid to claim that all pred
icates can be read as programs. Consider a simple but
dramatic counter-example, the contradictory predicate

P & -,p

which is always false. No computer program (or any
thing else) can ever produce an answer which has a prop
erty P as well as its negation. So this predicate is not
a program, and no processor could translate it into one
which gives an answer with this self-contradictory prop
erty. Any theory which ascribes to an implement able
program a behaviour which is known to be unimple
mentable must itself be incorrect.

A programming language can therefore be identified
with only a subset of the predicates of predicate calcu
lus; each predicate in this subset is a precise description
of all possible behaviours of some program expressible
in the language. The subset is designed to exclude con
tradictions and all other unimplementable predicates;
and the notations of the language are carefully restricted
to maintain this exclusion. For example, predicates in
PROLOG are restricted to those which are definable by
Horn clauses; and in conventional languages, the restric
tions are even more severe. In principle, these gross re
strictions in expressive power make a programming lan
guage less suitable as a notation for describing require
ments in a modular fashion at an appropriately high
level of abstraction.

The gap between a specification language and a pro
gramming language is one that must be bridged by the
skill of the programmer. Given specification S, the task
is to find a program P which satisfies it, in the sense that
every possible observation of every possible behaviour of
the program P will be among the behaviours described
by (and therefore permitted by) the specification S. In

logic, this can be assured with mathematical certainty
by a proof of the simple implication

f- P =? S.

A simple explanation of what it means for a program
to meet its specification is one of the main reasons for
interpreting both programs 'and specifications within the
predicate calculus.

Now we can explain the necessity of excluding the
contradictory predicate false from a programming nota
tion. It is a theorem of elementary logic that

f- false =? S,

so false enjoys the miraculous property of satisfying ev
ery specification whatsoever. Such miracles do not exist;
which is fortunate, because if they did we would never
need anything else, certainly not programs nor program
ming languages nor computers nor fifth generation com
puter projects.

2 Examples

A very simple example of this philosophy is taken from
the realm of procedural programming. Here the most
important observable values are those which are ob
served before the program starts and those which are
observed after the program is finished. Let us use the
variable x to denote the initial value and let x' be the
final value of an integer variable, the only one that need
concern us now. Let the specification say that the value
of the variable must be increased

S = (x' > x)

Let the program add one to x

P = (x:= x + 1)

The behavioural reading of this program as a predicate
describing its effect is

P = (x' = x + 1)

i.e., the final value of x is one more than its initial value.
Every observation of the behaviour of P in any pos

sible initial state x will satisfy this predicate. Conse
quently the Validity of the implication

i.e., f- x' = x + 1 =? x' > x

will ensure that P correctly meets its specification. So
does the program

x:=x+7,

but not
x:= 2 xx.

To illustrate the generality of my philosophy, my
next examples will be drawn from the design of combina
tional hardware circuits. These can also be interpreted
as predicates. A conventional and-gate with two input
wires named a and b and a single output wire named x

is described by a simple equation

x = a A b.

The values of the three free variables are observed as
voltages on the named wires at the end of a particular
cycle of operation. At that time, the voltage on the
output wire x is the lesser of the voltages on the input
wires a and b. Similarly, an or-gate can be described by
a different predicate with different wires

d = y V c,

i.e., the voltage on d is the greater of those on y and c.
A simple wire is a device that maintains the same volt
age at each of its ends, for example

x = y.

Now consider an .assembly of two components op
erating in parallel, for example the and-gate together
with the or-gate. The two predicates describing the two
components have no variables in common; this reflects
the fact that there is absolutely no connection between
them. Consequently, their simultaneous joint behaviour
consists solely of their two independent behaviours, and
is correctly described by just the conjunction of the pred
icates describing their separate behaviours

(x=aAb) & (d=yVc)

This simple example is a convincing illustration of the
principle that parallel composition of components is noth
ing but conjunction of their predicates, at least in the
case when there is no possibility of interaction between
them.

The principle often remains valid when the compo
nents are connected by variables which they share. For
example, the wire which connects x with y can be added
to the circuit, giving a triple conjunction

(x = a A b) & (x = y) & (d = (y V c)).

This still accurately describes the behaviour of the whole
assembly. The predicate is mathematically equivalent to

(d = (a A b) V c) & (x = y = (a A b)).

When components are connected together in this
way by the sharing of variable names (x and y), the val
ues of the shared variables are usually of no concern or

213

interest to the user of the product, and even the option
of observing them is removed by enclosure, as it were, in
a black box. The variables therefore need to be hidden
or removed or abstracted from the predicate describing
the observable behaviour of the assembly; and the stan
dard way of eliminating free variables in the predicate
calculus is by quantification.

In the case of engineering designs, existential quan
tification is the right choice. It is necessary that there
exist an observable value for the hidden variable; but no
one cares exactly what value it is. A formal justification
is as follows. Let S be the specification for the program
P, and let x be the variable to be hidden in P. Clearly,
one could never wish to hide a variable which is men
tioned in the specification, so clearly x will not occur
free in S. Now the designer's original proof obligation
without hiding is

~ P =} S;

and the proof obligation after hiding is

~ (jx.P) =} S.

By the predicate calculus, since x does not occur in S,
these two proof obligations are the same.

But often quantification simplifies, as in our hard
ware example, where the formula

jx, y. x = a A b & y = x & d = y V c,

reduces to just
d = (a A b) V c.

This mentions only the visible external wires of the cir
cuit, and probably expresses the intended specification
of the little assembly.

Unfortunately, not all conjunctions of predicates lead
to implement able designs. Consider for example the
conjunction of a negation circuit (y = -,x) with the
wire (y = x), connecting its output back to its input. In
practice, this assembly leads to something like an electri
cal short circuit, which is completely useless - or even
worse than useless, because it will prevent proper oper
ation of any other circuit in its vicinity. So there is no
specification (other than the trivial specification true)
which a short-circuited design can reasonably satisfy.
But in our oversimplified theory, the predicted effect is
exactly the opposite. The predicate describing the be
haviour of the circuit is a self-contradiction, equivalent
to false, which is necessarily unimplementable.

One common solution to the problem is to place care
ful restrictions on the ways in which components can be
combined in parallel by conjunction. For example, in
combinational circuit design, it is usual to make a rigid
distinction between input wires (like a or c) and output
wires (like x or d). When two circuits are combined,
the output wires of the first of them are allowed to be
connected to the input wires of the second, but never

214

the other way round. This restriction is the very one
that turns a parallel composition into one of its least in
teresting special cases, namely sequential composition.
This means that the computation of the outputs of the
second component has to be delayed until completion of
the computation of the outputs of the first component.

Another solution is to introduce sufficient new val
ues and variables into the theory to ensure that one can
describe all possible ways in which an actual product
or assembly can go wrong. In the example of circuits,
this requires at least a three-valued logic: in addition
to high voltage and low voltage, we introduce an ad
ditional value (written 1-, and pronounced "bottom"),
which is observed on a wire that is connected simulta
neously both to high voltage and to low voltage, i.e., a
short circuit. We define the result of any operation on 1-
to give the answer 1-. Now we can solve the problem of
the circuit with feedback, specified by the conjunction

x = -'y & y = x

In three-valued logic, this is no longer a falsehood: in
fact it correctly implies that both the wires x and yare
short circuited

x = y = 1-.

The moral of this example is that predicates describing
the behaviour of a design must also be capable of de
scribing all the ways in which the design may go wrong.
It is only a theory which correctly models the possibility
of error that can offer any assistance in avoiding it.

If parallelism is conjunction of predicates, disjunc
tion is equally simply explained as introducing non-deter
minism into specifications, designs and implementations.
If P and Q are predicates, their disjunction (P V Q) de
scribes a product that may behave as P or as Q, but does
not determine which it shall be. Consequently, you can
not control or predict the result. If you want (P V Q) to
satisfy a specification S, it is necessary (and sufficient)
to prove both that P satisfies S and that Q satisfies S.
This is exactly the defining principl~ of disjunction in the
predicate calculus: it is the least upper bound of the im
plication ordering. This single principle encapsulates all
you will ever need to know about the traditionally vexa
tious topic of non-determinism. For example, it follows
from this principle that non-deterministic specifications
are in general easier to implement, because they offer a
range of options; but non-deterministic implementations
are more difficult to use, because they meet only weaker
specifications.

Apart from conjunction (which can under certain re
strictions be implemented by parallelism), and disjunc
tion (which permits non-deterministic implementation),
the remaining important operator of the predicate cal
culus is negation. What does that correspond to in pro
gramming? The answer is: nothing! Arguments about
computahility show that it can never be implemented,

because the complement of a recursively enumerable set
is not in general recursively enumerable. A common
sense argument is equally persuasive. It would certainly
be nice and easy to write a program that causes an ex
plosion in the process which it is supposed to control.
It would be nice to get a computer to execute the nega
tion of this program, and so ensure that the explosion
never occurs. Unfortunately and obviously this is im
possible. Negation is obviously the right way to spec
ify the absence of explosion, but it cannot be used in
implementation. That is one of the main reasons why
implementation is in principle more difficult than speci
fication. Of course, negation can be used in certain parts
of programs, for example, in Boolean expressions: but it
can never be used to negate the program as a whole. We
will see later that PROLOG negation is very different
from the kind of Boolean negation used in specifications.

The most important feature of a programming lan- .
guage is recursion. It is only recursion (or iteration,
which is a special case) that permits a program to be
shorter than its execution trace. The behaviour of a pro
gram defined recursively can most simply be described
by using recursion in the definition of the correspond
ing predicate. Let P(X) be some predicate containing
occurrences of a predicate variable X. Then X can be
defined recursively by an equation stating that X is a
fixed point of P

X ~ P(X).

But this definition is meaningful only if the equation
has a solution; this is guaranteed by the famous Tarski
theorem, provided that P(X) is a monotonic function of
the predicate variable X. Fortunately, this fact is guar
anteed in any programming language which avoids non
monotonic operators like negation. If there is more than
one solution to the defining equation, we need to specify
which one we want; and the answer is that we want the
weakest solution, the one that is easiest to implement.
(Technically, I have assumed that the predicate calculus
is a complete lattice: to achieve this I need to embed it
into set theory in the obvious way .)

The most characteristic feature of computer pro
grams in almost any language is sequential composition.
If P and Q are programs, the notation (P,Q) stands for
a program which starts like P; but when P terminates,
it applies Q to the results produced by P. In a con
ventional programming language, this is easily defined
in predicate notation as relational composition, using
conjunction followed by hiding in exactly the same way
as our earlier combinational circuit. Let x stand for an
observation of the initial state of all variables of a pro
gram, and let x' stand for the final state. Either or both
of these may take the special value 1-, standing for non
termination or infinite failure, which is one of the worst
ways in which a program can go wrong. Each program
is a predicate P(x,x') or Q(x,x'), describing a relation

between the initial state x and the final state x'. For
example, there is an identity program II (a null opera
tion), which terminates without making any change to
its initial state. But it can do this only if it starts in a
proper state, which is not already failed

II ~f (X =I ..L => x' = X).

Sequential composition of P and Q in a conventional
language means that the initial state of Q is the same
as the final state produced by P; however the value of
this intermediate state passed from P to Q is hidden
by existential quantification, so that the only remaining
observable variables are the initial state of P and the
final state of Q. More formally, the composition (P, Q)
is a predicate with two free variables (x and x') which
is defined in terms of P and Q, each of which are also
predicates with two free variables

(P, Q)(x, x') ~f 3y. P(x, y) & Q(y, x').

Care must be taken in the definition of the program
ming language to ensure that sequential composition
never becomes self-contradictory. A sufficient condition
to achieve this is that when either x or x' take the failure
value ..L, then the behaviour of the program is entirely
unpredictable: anything whatsoever may happen. The
condition may be formalised by the statement that for
all predicates P which represent a program

\lx'.P(..L, x')

and
\Ix. P(x,..L) => \lx'.P(X, x').

The imposition of this condition does complicate the
theory, and it requires the theorist to prove that all pro
grams expressible in the notations of the programming
language will satisfy it. For example, the null operation
II satisfies it; and for any two predicates P and Q which
satisfy the condition, so does their sequential composi
tion (P, Q), and their disjunction P V Q, and even their
conjunction (P " Q), provided that they have no vari
ables in common. As a consequence any program writ
ten only in these restricted notations will always satisfy
the required conditions. Such programs can therefore
never be equivalent to false, which certainly does not
satisfy these conditions.

The only reason for undertaking all this work is to
enable us to reason correctly about the properties of
programs and the languages in which they are written.
The simplest method of reasoning is by symbolic calcu
lation using algebraic equations which have been proved
correct in the theory. For example, to compose the null
operation II before or after a program P does not change
P. Algebraically this is expressed in a law stating that
II is the unit of sequential composition

(P, IT) = P = (IT, P).

215

Also, composition is associative; to follow the pair of
operations (P, Q) by R is the same as following P by
the pair of operations (Q, R)

((P,Q),R) = (P, (Q,R)).

3 PROLOG

In its procedural reading, a PROLOG program also has
an initial state and a result; and its behaviour can be
described by a predicate defining the relation between
these two. Of course this is quite different from the
predicate associated with the logical reading. It will
be more complicated and perhaps less attractive; but
it will have the advantage of accurately describing the
behaviour of a computer executing the program, while
retaining the possibility of reasoning logically about its
consequences.

The initial state of a PROLOG program is a sub
stitution, which allocates to each relevant variable a
symbolic expression standing for the most general form
of value which that variable is known to take. Such
a substitution is generally called O. The result 0' of a
PROLOG program differs from that of a conventional
language. It is not a single substitution, but rather a
sequence of answer substitutions, which may be deliv
ered one after the other on request.. For example, the
familiar PROLOG program

append (X, Y, Z)

may be started in the state

Z = [1,2].

It will then produce on demand a sequence of three an
swer states

X
X
X

[], Y
[1], Y
[1,2], Y

[1,2]
[2]
[].

Infinite failure is modelled as before by the special
state ..L; when it occurs, it is always the last answer in
the sequence. Finite failure is represented by the empty
sequence []; and the program NO is defined as one that
always fails in this way

NO(O,O') d:1 (0 =I ..L => Of = []).

The program that gives an affirmative answer is the pro
gram YES; but the answer it gives is no more than what
is known already, packaged as a sequence with only one
element

Y ES(O, 0') ~f (0 = .L => 0' = [0]).

216

A guard in PROLOG is a Boolean condition b applied
to the initial state () to give the answer YES or NO

b((), e') ~ e' = [e] & (M)
V e' = [] & (oM).

Examples of such conditions are VAR and NONVAR.
The effect of the PROLOG or(P; Q) is obtained by

just appending the sequence of answers provided by the
second operand Q to the sequence provided by the first
operand P; and each operand starts in the same initial
state

(P; Q)((), ()') ~f :lX, Y. P((), X) & Q((), Y)

& append(X, Y, e).

The definition of append is the same as usual, except for
an additional clause which makes the result of infinite
failure unpredictable

append ([.1], Y, Z)

append ([], Y, Y)

append ([XIX s], Y, [XIZs])
:- append (Xs,Y,Zs).

In all good mathematical theories, every definition
should be followed by a collection of theorems, describ
ing useful properties of the newly defined concept. Since
NO gives no answer, its addition to a list of answers sup
ply by P can make no difference, so NO is the unit of
PROLOG semicolon

NO;P = P = P;NO.

Similarly, the associative property of appending lifts to
the composition of programs

(P; Q); R = P; (Q; R).

The PROLOG conjunction is very similar to sequen
tial composition, modified systematically to deal with a
sequence of results instead of a single one. Each result
of the sequence X produced by the first argument P is
taken as an initial state for an activation of the second
argument Q; and all the sequences produced by Q are
concatenated together to. give the overall result of the
composition

where

(P, Q)(e, e') ~f :lX, Y. pee, X)

each ([], [])

& each (X, Y)
& con cat (Y, ()')

each ([XIXs], [YIY s])
'- Q(X, Y) & each (Xs, Ys)

and

concat ([], [])

con cat ([XIXs]' Z)
:- append (X, Y, Z) & concat(X s, Y)

The idea is much simpler than its formal definition;
its simplicity is revealed by the algebraic laws which can
be derived from it. Like composition in a conventional
language, it is associative and has a unit YES

P, (Q,R) = (P, Q),R

(YES,P) = P = (P,YES).

But if the first argument fails finitely, so does its com
position with anything else

(NO,P) = NO.

However (P, NO) is unequal to NO, because P may fail
infinitely; the converse law therefore has to be weakened
to an implication

NO => (P,NO).

Finally, sequential composition distributes leftward
through PROLOG disjunction

((P; Q), R) = (P, R); (Q, R).

But the complementary law of rightward distribution
certainly does not hold. For example, let P always pro
duce answer 1 and let Q always produce answer 2. When
R produces many answers, (R, (P; Q)) produces answers

1,2,1,2, ...

whereas (R, P); (R, Q) produces

1,1,1, ... ,2,2,2

Many of our algebraic laws describe the ways in which
PROLOG disjunction and conjunction are similar to
their logical reading in a Boolean algebra; and the ab
sence of expected laws also shows clearly where the tra
ditionallogical reading diverges from the procedural one.
It is the logical properties of the procedural reading that
we are exploring now.

The acid test of our procedural semantics for PRO
LOG is its ability to deal with the non-logical features
like the cut (!), which I will treat in a slightly simpli
fied form. A program that has been cut can produce
at most one result, namely the first result that it would
have produced anyway

P!((), ()') ~f :lX. pee, X) & trunc (X, ()').

The truncation operation preserves both infinite and fi
nite failure; and otherwise selects the first element of a
sequence

trunc ([1-], Y)
trunc ([], [])

trunc ([XIX s], [Xl).

A program that already produces at most one result
is unchanged when cut again

P!!=P!

If only one result is wanted from a composite program,
then in many cases only one result is needed from its
components

(P; Q)! = (P!; Q!)!

(P, Q)! = (P, Q!)!

Finally, YES and NO are unaffected by cutting

YES! = YES, NO! = NO.

PROLOG negation is no more problematic than the
cut. It turns a negative answer into a positive one, a
non-negative answer into a negative one, and preserves
infinite failure

where

rv P((}, 0') *! 3Y. P((}, Y) & neg (Y,O')

neg ([1-], Z)
neg ([], [OJ)
neg([XIXs],[l).

The laws governing PROLOG negation of truth val
ues are the same as those for Boolean negation

rv YES = NO and rv NO = YES.

The classical law of double negation has to be weakened
to intuitionistic triple negation

rvrvrv P = rv P.

Since a negated program gives at most one answer, cut
ting it makes no difference

Finally, there is an astonishing analogue of one of the
familiar laws of de Morgan

rv (P; Q) = (rv P, rv Q).

The right hand side is obviously much more efficient to
compute, so this law could be very effective in optimi
sation. The dual law, however, does not hold.

217

A striking difference between PROLOG negation and
Boolean negation is expressed in the law that the nega
tion of an infinitely failing program also leads to infinite
failure

rv true = true.

This states that true is a fixed point of negation; since
it is the weakest of all predicates, there can be no fixed
point weaker than it

(J.LX. rv X) = true.

This correctly predicts that a program which just calls
its own negation recursively will fail to terminate.

That concludes my simple account of the basic struc
tures of PROLOG. They are all deterministic in the
sense that (in the absence of infinite failure) for any
given initial substitution (), there is exactly one answer
sequence ()' that can be produced by the program. But
the great advantage of reading programs as predicates is
the simple way in which non-determinism can be intro
duced. For example, many researchers have proposed to
improve the sequential or of PROLOG. One improve
ment is to make it commute like true disjunction, and
another is to allow parallel execution of both operands,
with arbitrary interleaving of their two results. These
two advantages can be achieved by the definition

(PIIQ)(O,(}') *! 3X, Y. P(O,X) & Q(O, Y)
& inter (X, Y, 0')

where the definition of interleaving is tedious but routine

inter ([1-], Y, Z) inter (X, [1-], Z)
inter ([], Y, Y) inter (X, [], X)
inter ([XIXs]' Y, [XIZ] :- inter (Xs, Y, Z)
inter (X, [YIY s], [YIZ]) :- inter (X, Y s, Z).

Because appending is just a special case of interleav
ing, we know

append(X, Y, Z) =} inter (X, Y, Z).

Consequently, sequential or is just a special case of par
allel or, and is always a valid implementation of it

(P; Q) =} (PIIQ).

The left hand side of the implication is more determin
istic than the right; it is easier to predict and to control;
it meets every specification which the right hand side
also meets, and maybe more. In short, sequential or
is in all ways and in all circumstances better than the
parallel or - in all ways except one: it may be slower
to implement on a parallel machine. In principle non
determinism is demonic; it never makes programming
easier, and its only possible advantage is an increase in
performance. However, in many cases (including this
one) non-determinism also simplifies specifications and

218

designs, and facilitates reasoning about them at higher
levels of abstraction.

My final example is yet another kind of disjunction,
one that is characteristic of a commit operation in a
constraint language. The answers given are those of
exactly one of the two alternatives, the selection being
usually non-deterministic: the only exception is in the
case when one of the operands fails finitely, in which
case the other one is selected. So the only case when the
answer is empty is when both operands give an empty
answer

(P ~ Q) ~f ((0' = []) & P & Q)
V ((0' # []) & (P V Q))

V P(O, -1.) V Q(O, -1.).

(The last two clauses are needed to satisfy the special
con di tions described earlier). The definition is almost
identical to that of the alternative command in Commu
nicating Sequential Processes, from which I have taken
the notation. It permits an implementation which starts
executing both P and Q in parallel, and selects the one
which first comes up with an answer. If the first ele
ments of P and Q are guards, this gives the effect of flat
Guarded Horn Clauses.

4 Conclusion

In all branches of applied mathematics and engineer
ing, solutions have to be expressed in notations more
restricted than those in which the original problems were
formulated, and those in which the solutions are calcu
lated or proved correct. Indeed, that is the very nature
of the problem of solving problems. For example, if the
problem is

• Find the GCD of 3 and 4

a perfectly correct answer is the trivially easy one

• the GCD of 3 and 4;

but this does not satisfy the implicit requirement that
the answer be expressed in a much more restricted no
tation, namely that of numerals.

The proponents of PROLOG have found an extremely
ingenious technique to smooth (or maybe obscure) the
sharpness of the distinction between notations used for
specification and those used for implementation. They
actually use the same PROLOG notation for both pur
poses, by simply giving it two different meanings: a
declarative meaning for purposes of specification, and
a procedural meaning for purposes of execution. In the
case of each particular program the programmer's task
is to ensure that these two readings are consistent. Per
haps my investigation of the logical properties of the

procedural reading will assist in this task, or at least
explain why it is such a difficult one.

Clearly, the task would be simpler in a language in
which the logical and procedural readings are even closer
than they are in PROLOG. This ideal has inspired many
excellent proposals in the development of logic and con
straint languages. The symmetric parallel version of
disjunction is a good example. A successful result of
this research is still an engineering compromise between
the expressive power needed for simple and perspicuous
specification, and operational orientation towards the
technology needed for cost-effective implementation.

Such a compromise will (I hope) be acceptable and
useful, as PROLOG already is, in a wide range of cir
cumstances and applications. In the remaining cases, I
would like to maintain as far as possible the inspiration
of the Fifth Generation Computing project, and the ben
efits of a logical approach to programming. To achieve
this, I would give greater freedom of expression to those
engaged in formalisation of the specification of require
ments, and greater freedom of choice to those engaged
in the design of efficiently implementable programming
languages. This can be achieved only by recognition of
the essential dichotomy of the languages used for these
two purposes. The dichotomy can be resolved by embed
ding both languages in the same mathematical theory,
and using logical implication to establish correctness.

But what I have described is only the beginning,
nothing more than a vague pointer to a whole new di
rection and method of research into programming lan
guages and programming methodology. If any of my
audience is looking for a challenge to inspire the next
ten years of research, may I suggest this one? If you
respond to the challenge, the programming languages
of the future will not only permit efficient parallel and
even non-deterministic implementations; they will also
help the analyst more simply to capture and formalise
the requirements of clients and customers; and then help
the programmer by systematic design methods to exer
cise inventive skills in meeting those requirements with
high reliability and low cost. I hope I have explained
to all of you why I think this is important and exciting.
Thank you again for this opportunity to do so.

Acknowledgements

I am grateful to Mike Spivey, He Jifeng, Robin Milner,
John Lloyd, and Alan Bundy for assistance in prepara
tion of this address.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
O~ FIFTH GENERATION COMPUTER SYSTEMS 1992,
edIted by ICOT. © ICOT, 1992 219

PANEL:
A Springboard for Information Processing in the 21st Century

Chairman: Robert A. Kowalski

Imperial College of Science, Technology and Medicine
Department of Computing, 180 Queen's Gate, London SW7 2BZ, England

rak@doc.ic.ac.uk

In general terms, the question to be addressed
by the panel is simply whether the Fifth
Generation technologies, developed at ICOT and
other centres throughout the world, will lead the
development of information processing in the
next century.

Considered in isolation, the most characteristic
of these technolOgies are:

• knowledge information processing
applications,

• concurrent and constraint logic
programming languages, and

• parallel computer architectures.

But it is the integration of these technologies,
using logic programming to implement
applications, and using multiple instruction,
multiple data (MIMD) parallelism to implement
logic programming, which is the most
distinguishing characteristic of the Fifth
Generation Project.

To assess the future prospects of the Fifth
Generation technologies, we need to consider the
alternatives. Might multi-media,
communications, or data process'ing, for example,
be more characteristic than artificial intelligence of
the applications of the future? Might object
orientation be more characteristic of the languages;
and sequential, SIMD, MISD, or massively parallel
connectionist computers be more typical of the
computer architectures?

Certainly many of these technologies have been
flourishing during the last few years. Old
applications still seem to dominate computing, at
the expense of new Artificial Intelligence
applications. Object-orientation has emerged as an
alternative language paradigm, apparently better
suited than logic programming for upgrading
existing imperative software. Both conventional
and radically new connectionist architectures have
made rapid progress, while effective MIMD
architectures are only now beginning to appear.

But it may be wrong to think of these
alternatives as competitors to the Fifth Generation
technologies. Advanced database and data
processing systems increasingly use Artificial
Intelligence techniques for knowledge
representation and reasoning. Increasingly many
database and programming language systems have
begun to combine features of object-orientation
and logic programming. At the level of computer
architectures too, there seems to be a growing
consensus that connectionism complements
symbolic processing, in the same way that sub
symbolic human perception complements higher
level human reasoning.

But, because it provides the crucial link
between applications and computer architectures,
it is with the future of computer languages that we
must be most concerned.

The history of computer languages can be
viewed as a slow, but steady evolution away from
languages that reflect the structure and behaviour
of machines to languages that more directly
support human modes of communication. It is
relevant to the prospects of logic programming in
computing, therefore, that logic programming has
begun to have a great influence, in recent years, on
models of human languages and human
reasoning outside computing. This influence
includes contributions to the development of logic
itself, to the development of "logic grammars" in
computational linguistics, to the modelling of
common sense and non-monotonic reasoning in
cognitive science, and to the formalisation of legal
language and legal reasoning. Thus, if computer
languages in the future continue to become more
like human languages, as they have in the past,
then the future of logic programming in
computing, and the future impact of the Fifth
Generation technologies in general, must be
assured.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 220

Finding the Best Route for Logic Programming

Herve Oallaire
OSI

25 Bd de l' Amiral Bruix, 75782 Paris Cedex 16 France
gaUaire@ gsi.fr

Abstract

The panel chainnan has asked us to deal with two questions
relating Logic Programming (LP) to computing. They have
to do with whether LP is appropriate (the most
appropriate?) as a springboard for computing as a whole in
the 21st century, or whether it is so only for aspects
(characteristics) of computing. I do not think that there is a
definite answer to these questions until one discusses the
perspective from which they are asked or from which their
answer is to be given. In summary, we can be very positive
that LP will play an important role, but only if it migrates
into other leading environments.

1 Which Perspective To Look From

We are asked to talk about directions for the future, for
research as well as for development. Clearly, for me, there
will not be a Yes/No answer to the questions debated on
this panel. I don't shy away, but at the same time there are
too many real questions behind the ones we are asked to
address. Thus, I will pick the one aspects I am mostly
connected to: research on deductive databases and constraint
languages, experience in commercial applications
development and in building architectures for such
commercial developments. Whether these different
perspectives lead to a coherent picture is questionable.

If I ask the question relative to computing as a whole, I
can ask it from the perspective of a researcher, from that of
a manufacturer, from that of a buyer of such systems and
ask whether LP is the pervasive paradigm that will be the
underlying foundation of computing as a whole from each
of these perspectives.

If I ask the question relative to the characteristics of
computing, I can look at computing from the perspective of
an end-user, of an application developer (in fact from many
such applications, e.g. scientific, business, CAD, decision
support, teaching, office support, ...), of a system
developer, of a language developer, of an architecture
engineer, of a tool developer (again there are many such
tools, e.g. software engineering, application analyst, etc). I

can even look at it from the perspective of research in each
of the domains related to the perspectives just listed, for
example a researcher in user interface systems, a researcher
in software engineering, in database languages, in
knowledge representation, etc.

But the picture is even more complicated than it appears
here; indeed I can now add a further dimension to the idea
of perspective elaborated upon here. Namely I can ask
whether LP is to be seen as the "real thing" or whether it is
to be an abstract model essentially. For example, ask
whether it is a good encompassing model for all research
aspects of computing, for some of them (the perspectives),
whether it is a good abstract model for computations, for
infonnation systems, for business models, even if they do
not appear in this fonn to their users, this being asked for
each type of computation carried out in a computing system.

Looking at these questions is to study whether LP should
be the basis of the view of the world as manipulated at each
or some of the following levels: user's level, at system
level, at application designer level, at research level, ... or
whether it should only be a model of it, i.e. a model in
which they basic problems of the world (at that level) are
studied, and that the two would match only in some
occasions.

2 Global Perspective

I think we have to recognise that the world is defini tely
never going to be a one level world (ie providing in
hardware a direct implementation of the world view);
second that the world view will be made of multiple views;
third we have to' accept that different views will need
different tools to study a version of a problem at that level;
and fourth that it may be appropriate to use abstractions to
get the appropriate knowledge into play. Consequently,
neither LP nor any other paradigm will be the underlying
foundation for computing; it is very appropriate however,
for each paradigm to ask what its limits are. This is what
has been my understanding of most projects around LP in
the past ten to fifteen years; trying several angles, pushing
to the limits. Developing hardware for example is one such
worthwhile effort.

3 Model and Research Perspective

As a model of computing, from a research perspective, LP
will continue to develop as the major candidate for giving a
"coherent" view of the world, a seamless integration of the
different needs of a computing system for which it has
given good models. To come to examples, I believe that LP
has made major contributions in the following areas:
rule-based programming, with particularly results on
deductive databases, on problem solving and AI, specific
logics for time and belief, sol utions to problems dealing
with negation, to those dealing with constraint
programming and to those dealing with concurrent
programming. It will continue to do so for quite some time.
In some cases it will achieve a dominant position; in others
it will not, even if it remains a useful formalism. In the
directions of research at ECRC, we have not attempted to
get such a unified framework, even though we have tried to
use whatever was understood in one area of research into
the others (eg, constraints and parallelism, constraints and
negation, ..). LP will not achieve the status of being the
unique encompassing model adopted by everyone. Indeed,
there are theoretical reasons that have to do with equivalence
results and the human intelligence which makes it very
unlikely that a given formalism will be accepted as the
unique formalism to study. Further, there is the fact that the
more we study, the more likely it is that we have to invent
formalisms at the right level of abstraction for the problems
at hand. Mapping this to existing formalisms is often
possible but cumbersome. This has the side advantage that
formalisms evolve as they target new abstractions; LP has
followed that path.

4 Commercial Perspective

As a tool for computing in general, from a business or
manufacturer's point of view LP has not achieved the status
that we believed it would. Logic has found, at best, some
niches where it can be seen as a potential commercial player
(there are many Prolog programs embedded in several
CASE tools for example, natural language tools are another
example). When it comes to the industrial or commercial
world things are not so different from those in the academic
or research world: the resistance to new ideas is strong too,
although for different reasons. Research results being very
often unconc1usive when it comes to their actual relevance
or benefits in practical terms, only little risk is taken. Fads
play an important role in that world where technical matters
are secondary to financial or management matters; the object
technology is a fad, but fortunately it is more than that and
will bring real benefits to those adopting it. We have not
explained LP in terms as easy to understand as done in the
object world (modularity, encapsulation in particular). The

221

need to keep the continuity with the so-called legacy
applications is perhaps even stronger than fads. To
propose a new computing paradigm to affect the daily work
of any of the professionals (whether they develop new code
or use it) is a very risky task. C++ is a C based language;
we have no equivalent to a Cobol based logic language.
And still, c++ is not a pure object oriented language. The
reason why the entity-relationship modeling technique (and
research) is successful in the business place is that it has
been seen as an extension of the current practices (Cobol,
relational) not as a rupture with them. SQL is still far from
incorporating extensions that LP can already provide but
has not well explained: where are the industrial examples of
the recursive rules expressed in LP? what is the benefit
(cost, performance, ...) of stating business rules this way
as opposed to programming; and without recursion, or with
limited deductive capabilities, relational systems do without
logic or just borrow from it; isn't logic too powerful a
formalism for many cases? LP, just like AI based
technology, has not been presented as an extension of
existing engines; rather it has been seen as alternatives to
existing solutions, not well integrated with them; it has
suffered, like AI from that situation. Are there then new
areas where LP can take a major share of the solution
space? In the area of constraint languages, there is no true
market yet for any such language; and the need for
integration to the existing environments is of a rather
different nature; it may be sufficient to provide interfaces
rather than integration. A not to be overlooked problem,
however is that when it is embedded in logic, constraint
programming needs a complex engine, that of logic; when it
is embedded in C, even if it is less powerful or if it takes
more to develop it (hiding its logical basis in some sense), it
will appear less risky to the industrial partners who will use
or build it.

5 More Efforts Needed

Let me mention three areas where success can be reached,
given the current results, but where more efforts are
needed. Constraint based packages for different business
domains, such as transportation, job shop scheduling,
personnel assignment, etc will be winners in a competitive
world; but pay attention to less ambitious solutions in more
traditional languages. Case tools and repositories will use
heavily logic based tools, particularly the deductive database
technology, when we combine it with the object based
technology for what each is good at. Third and perhaps
more importantly, there is a big challenge to be won. My
appreciation of computing evolution is as follows: there will
be new paradigms in terms of "how to get work done by a
computer"; this will revolve around some simple notions:
applications and systems will be packaged as objects and
run as distributed object systems, communicating through
messages and events; forerunners of these technologies can

222

already be seen on the desktop (not as distributed tools),
such as AppleEvents, OLE and VisualBasic, etc and also in
new operating systems or layers just above them (e.g.
Chorus, CORBA, NewVave, etc). Applications will be
written in whatever formalism is most appropriate for the
task they have to solve, provided they offer the right
interface to the communication mechanism; these
mechanisms will become standardised. I believe that
concurrent and constraint logic languages have a very
important role to play in expressing how to combine
existing applications (objects, modules). If LP had indeed.
the role of a conductor for distributed and parallel
applications, it would be very exciting; it is possible.
Following a very similar analysis, I think that LP rules,
particularly when they are declaratively used, are what's
needed I to express business rules relating and coordinating
business objects as perceived by designers and users. To
demonstrate these ideas, more people, knowledgeable in LP
need to work on industrial strength products, packaging LP
and its extensions and not selling raw engines; then there
will be more industrial interest in logic, which in the longer
term will trigger and guarantee adequate research levels.
This is what I have always argued was needed to be done as
a follow up of ECRC research, but I have not argued
convincingly. This is what is being done with much
enthusiasm by start ups around Prolog, by others around
constraint languages, e.g. CHIP; this is what is being
started by BULL on such a deductive and object oriented
system. Much more risk taking is needed.

6 Conclusion

From the above discussion the reader may be left with a
somewhat mixed impression as to the future of our field;
this is certainly not the intent. The future is bright, provided
we understand where it lies. LP will hold its rank in the
research as well as in the professional worlds. The major
efforts that the 1980's have seen in this domain have played
an essential role in preparing this future. The Japanese
results, as well as the results obtained in Europe and in the
USA, are significant in terms of research and of potential
industrial impact. The major efforts, particularly the most
systematic one, namely the Fifth Generation Project, may
have had goals either too ambitious or not thoroughly
understood by many. If we understand where to act, then
there is a commercial future for logic. At any rate, research
remains a necessity in this area.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 223

The Role of Logic Programming in the 21st Century

Ross Overbeek

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, Illinois 60439

overbeek@mcs

1 The Changing Role

Logic programming currently plays a relatively minor role
in scientific problem-solving. Whether this role will in
crease in the twenty-first century hinges on one question:
When will there be a large and growing number of ap
plications for which the best available software is based
on logic programming? It is not enough that there ex
ist a few small, peripheral applications successfully based
on logic programming; the virtues of logic programming
must be substantial enough to translate into superior ap
plications programs.

1.1 Applications

Applications based on logic programming are starting to
emerge in three distinct contexts:

1. Applications based on the expressi ve power of logic
programming in the dialects that support back
tracking and the use of constraints. These applica
tions frequently center on small, but highly struc
tured databases and benefit dramatically from the
ability to develop prototypes rapidly.

2. Parallel applications in which the expressive power
of the software environment is the key issue. These
applications arise from issues of real-time control.
As soon as the performance adequately supports
the necessary response, the simplicity and elegance
of the solution become most important. In this con
text, dialects of committed-choice logic program
ming have made valuable contributions.

3. Parallel applications in which performance is the
dominant issue. In these applications, successful
solutions have been developed in which the upper
levels of the algorithm are all implemented in a
committed-choice dialect, and the lower layers in
C or Fortran.

What is striking about these three contexts is that they
have not been successfully addressed within a unified
framework. Indeed, we are still far from achieving such
a framework.

1.2 Unification of Viewpoints

Will a successful unification based on logic programming
and parallelism emerge as a dominant technology? Two
distinct answers to this question arise:

No, the use of logic programming will expand within
the distinct application areas that are emerging. Logic
programming will play an expanding role in the area
of information processing (based on complex databases),
which will see explosive growth in the Unix/C, worksta
tion, mass software, and networking markets. On the
other hand, logic programming will play quite a different
role in the context of parallel computation. While an in
tegration of the two roles is theoretically achievable, in
practice it will not occur.

Yes, a single technology will be adopted that is ca
pable of reducing complexity. Developing such a tech
nology is an extremely difficult task, and it is doubt
ful that integration could have proceeded substantially
faster. Now, however, the fundamental insights required
to achieve an integration are beginning to occur. The
computational framework of the twenty-first century-a
framework dominated by advanced automation, parallel
applications, and distributed processing-must be based
on a technology that allows simple software solutions.

I do not consider these viewpoints to be essentially
contradictory; there is an element of truth in each. It
seems clear to me that the development and adoption
of an integrated solution must be guided by attempts to
solve demanding applications requirements. In the short
run, this will mean attempts to build systems upon ex
isting, proven technology. The successful development of
a unified computational framework based on logic pro
gramming will almost certainly not occur unless there
is a short-term effort that develops successful a.pplica
tions for the current computing market. However, the
complex automation applications that will characterize
the next century simply cannot be adequately addressed
from within a computational framework that fails to solve
the needs of both distributed computation and knowledge
information processing.

The continued development of logic programming will
require a serious effort to produce new solutions to sig-

224

nificant applications-solutions that are better than any
existing solutions. The logic programming community
has viewed its central goal as the development of an
elegant computational paradigm, along with a demon
stration that such a paradigm could be realized. Rel
atively few individuals have taken seriously the task of
demonstrating the superiority of the new technology in
the context of applications development. It is now time
to change this situation. The logic programming com
munity must form relationships with the very best re
searchers in important application areas, and learn what
is required to produce superior software in these areas.

2 My Own Experiences

Let me speak briefly about my own experiences in work
ing on computational problems associated with the anal
ysis of biological genomes. Certainly, the advances in
molecular biology are leading to a wonderful opportu
nity for mankind. In particular, computer scientists can
make a significant contribution to our understanding of
the fundamental processes that sustain life. Molecular bi
ology has also provided a framework for investigating the
utility of technologies like logic programming and parallel
processing.

I believe that the first successful integrated databases
to support investigations of genomic data will be based
on logic programming. The reason is that logic program
ming offers the ability to do rapid prototyping, to inte
grate database access with computation, and to handle
complex data. Other approaches simply lack the capa
bilities required to develop successful genomic databases.
Current work in Europe, Japan, and America on databases
to maintain sequence data, mapping data, and metabolic
data all convince me that the best systems will emerge
from those groups who base their efforts on logic pro
gramming.

Now let me move to a second area-parallel process
ing. Only a very limited set of applications really requires
the use of parallel processing; however, some of these ap
plications are of major importance. As an example, let
me cite a project in which I was involved. Our group at
Argonne participated in a successful collaboration with
Gary Olsen, a biologist at the University of Illinois, and
with Hideo Matsuda of Kobe University. Vve were able to
create a tool for inferring phylogenetic trees using a maxi
mum likelihood algorithm, and to produce trees that were
30-40 times more complex than any reported in the lit
erature. This work was done using the Intel Touchstone
DELTA System, a massively parallel system containing
540 i860 nodes.

For a number of reasons, our original code was devel
oped in C. We created a successful tool that exhibited the
required performance on both uniprocessors and larger

parallel systems. We find ourselves limited, however, be
cause of load-balancing problems, which are difficult to
address properly in the context of the tools we chose.

We are now rewriting the code using bilingual pro
gramming, with the upper levels coded in PCN (a la.n
guage deriving much of its basic structure from committed
choice logic programming languages) and its lower levels
in C. This app~oach will provide a framework for ad
dressing the parallel processing issues in the most suit
able manner, while allowing us to optimize the critical
lower-level floating-point computations. This experience
seems typical to me, and I believe that future systems
will evolve to support this programming paradigm.

3 Summary

Balance between the short-term view and the longer
range issues relating to an adequate integration is neces
sary to achieve success for logic programming. The need
to create an environment to support distributed applica
tions will grow dramatically during the 1990s. Exactly
when a solution will emerge is still in doubt; however, it
does seem likely that such an environment will become a
fundamental technology in the early twenty-first century.
Whether logic programming plays a central role will de
pend critically on efforts in Japan, Europe, and America
during this decade. If these efforts are not successful, less
elegant solutions will become adopted and entrenched.

This issue represents both a grand challenge and a
grand opportunity. Which approach will dominate in

. the next century has not yet been determined; only the
significance of developing the appropriate technology is
completely clear.

Acknowledgments

This work was supported in part by the Applied Mathe
matical Sciences subprogram of the Office of Energy Re
search, U.S. Department of Energy, under Contract 'AT-
31-109-Eng-38.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 225

Object-Based Versus Logic Programming

Peter Wegner

Brown University, Box 1910, Providence, RI. 02912

pw@cs.brown.edu

Abstract: This position paper argues that mainstream applica
tion programming in the 21st century will be object-based rather
than logic-based for the following reasons. 1) Object-based pro
grams model application domains more directly than logic pro
gmms. 2) Object-based programs have a more flexible program
structure than logic programs. 3) Logic programs can be intract
able, in part because the satisfiability problem is NP-complete.
4) Soundness limits the granularity of thinking while complete
ness limits its scope. 5) Inductive, abductive, probabilistic, and
nonmonotonic reasoning sacrifice the certainty of deduction for
greater heuristic effectiveness. 6) Extensions to deductive logic
like nonmonotonic or probabilistic reasoning are better realized
in a general computing environment than as extensions to logic
programming languages. 7) Object-based systems are open in
the sense of being both reactive and extensible, while logic pro
grams are not reactive and have limited extensibility. 8) The
don't-know nondeterminism of Prolog precludes reactiveness,
while the don't-care nondeterminism of concurrent logic pro
grams makes them nonlogical.

1. Modeling Power and Computability

Object-based programs model application domains more
directly than logic programs. Computability is an inadequate
measure of modeling capability sfnce all programming
languages are equivalent in their computing power. A finer
(more discriminating) measure, called "modeling power", is
proposed that is closely related to "expressive power", but sin
gles out modeling as the specific form 'of expressiveness being
studied. Features of object-based programming that contribute
to its modeling power include:

• assignment and object identity

Objects have an identity that persists when their state
changes. Objects with a mutable state capture the dynamically
changing properties of real-world objects more directly than
mathematical predicates of logic programs.

• data abstraction by information hiding

Objects specify the abstract properties of data by applicable
operations without commitment to a data representation. Data
abstraction is a more relevant form of abstraction for modeling
than logical abstraction.

• messages and communication

Messages model communication among objects more
effectively than logic variables. The mathematical behavior of
individual objects can be captured by algebras or automoata, but
communication and synchronization protocols actually used in
practical object-based and concurrent systems have no neat
mathematical models.

These features are singled out because they cannot be
easily expressed by logic programs. Shapiro [Shl] defines the
comparative expressive power (modeling power) of two
languages in terms of the difficulty of mapping programs of one
language into the other. Language Ll is said to be more expres
sive than language L2 if programs of L2 can be easily mapped
into those ofLI but the reverse mapping is difficult (according to
a complexity metric for language mappings).

The specification of comparative expressive power in terms
of mappings between languages is not entirely satisfactory. For
example, mapping assembly languages into problem-oriented
languages is difficult because of lack of design rather than qual
ity of design. However, when applied to two well-structured
language classes like object-based and logic languages this
approach does appear promising.

Since logic programs have a procedural interpretation with
goal atoms as procedure calls and logic variables as shared com
munication channels, logic programming can be viewed as a spe
cial (reductive) style of procedure-oriented programming.
Though language features like nondeterminism, logic variables,
and partially instantiated structures are not directly modeled, the
basic structure of logic programs is procedural. In contrast,
object-oriented programs in Smalltalk or C++ do not have a
direct interpretation as logic programs, since objects and classes
cannot be easily modeled. Computational objects that describe
behavior by collections of operations sharing a hidden state can
not be easily mapped into logic program counterparts.

2. Limitations of Inference and Nondeterministic Control

All deduction follows from the principle that if an element
belongs to a set then it belongs to any superset. The Aristotelian
syllogism "All humans are mortal, Socrates is human, therefore
Socrates is mortal" infers that Socrates belongs to the superset
of mortals from the fact that he belongs to the subset of humans.
This problem can be specified in Prolog as follows:

Prolog clause: mortal(x) f- human(x).
Prolog fact: human(Socrates).
Prolog goal: mortal(Socrates).

The clause "mortal(x) f- human(x)", which specifies that
the set of mortals is a superset of the set of humans, allows the
goal "mortal(Socrates)" to be proved from the fact
"human(Socrates)" .

A Prolog clause of the form "P(x) lfQ(x)" asserts that the
. set of facts or objects satisfying Q is a subset of those satisfying
P, being equivalent to the assertion "For all x, Q(x) implies
P(x)". A Prolog goal G(x) is true if there are facts in the data-

226

base that satisfy G by virtue of the set/subset relations implied
by- the clauses of the Prolog program. Prolog resolution and
unification allows the subset of all database facts satisfying G to
be found by set/subset inference.

Inferences of the form ltset(x) if subset(x)" are surprisingly
powerful, permitting all of mathematics to be expressed in terms
of set theory. But the exclusive use of "set if subset" inference
for computation and/or thinking is unduly constraining, since
both computation and thinking go beyond mere classification.
Thinking includes heuristic mechanisms like generalization and
free association that go beyond deduction.

Nondeterminism is another powerful computation mechan
ism that limits the expressive power of logic programs. Prolog
nondeterminically searches the complete goal tree for solutions
that satisfy the goal. In a Prolog program with a predicate P
appearing in the clause head of N clauses "P(Ai) ~ Bi" , a goal
peA) triggers nondeterministic execution of those bodies Bi for
which A unifies with Ai. This execution rule can be specified by
a choice statement of the form:

choice (Ai/Bi, A2/B2, ... , AN/BN) endchoice
nondeterministically execute the bodies Bi of all clauses for

which the clause head P(Ai} unifies with the goal peA).

Bodies Bi are guarded by patterns Ai that must unify with
A for Bi to qualify for execution. This form of nondeterminism
is called don't-know nondeterminism because the programmer
need not predict which inference paths lead to successful infer
ence of the goal. Prolog programs explore all alternatives until a
successful inference path is found and report failure only if no
inference path allows the goal to be inferred.

The order in which nondeterministic alternatives are
explored is determined by the system rather than by the user,
though the user can influence execution order by the order of
listing alternatives. Depth-first search may cause unnecessary
nonterminating computation, while breadth-first search avoids
this problem but is usually less efficient. Prolog provides
mechanisms like the cut which allows search mechanism's to be
tampered with. This extra flexibility undermines the logical pur
ity of Prolog programs.

Sequential implementation of don't-know nondeterminism
requires backtracking from failed inference paths so that the
effects of failed computations become unobservable. Since pro-

. grams cannot commit to an observable output until a proof is
complete, don't-know nondeterminism cannot be used as a com
putational model for reactive systems that respond to external
stimuli and produce incremental output [Sb2].

3. Intactability and Satis6ability

Certain well-formulated problems like the halting problem
for Turing machines are noncomputable. Practical computability
~s further restricted by the requirement of tractability. A problem
IS tractable if its computation time grows no worse than polyno
mially with its size and intractable if its computation time grows
at least exponentially.

The class P of problems computable in polynomial time by
a deterministic Turing machine is tractable, while the class NP
of problems computable in polynomial time by a nondeterminis
tic Turing machine has solutions checkable in polynomial time
though it may take an exponential time to find them [GJ]. The
question whether P = NP is open, but the current belief is that
NP contains inherently intractable problems, like the
satisfiability problem, that are not in P.

The satisfiability problem is NP-complete; a polynomial
time algorithm for satisfiability would allow all problems in NP
to be solved in polynomial time. The fundamental problem of
theorem proving, that of finding whether a goal can be satisfied,
is therefore intractable unless it turns out that P = NP.

The fact that satisfiability is intractable is not unacceptable
especially when compared to the fact that computability is unde
cidable. But in practice exponential blowup arises more fre
quently in logic programming than undecidability arises in tradi
tional programming. Sometimes the intractability is inherent in
the sense that there is no tractable algorithm that solves the prob
lem. But in many cases more careful analysis can yield a tract
able algorithm. Consider for example the sorting problem which
can be declaratively specified as the problem of finding an
ordered permutation.

sort(x} :- permutation(x}, ordered(x}.

Direct execution of this specification requires n-factorial
steps to sort n elements, while more careful anlysis yields algo
rithms like quicksort that require only n logn steps. High-level
specifications of a problem by logic programs can lead to com
binatorially intractable algorithms for problems that are com
binatorially tractable when more carefully analyzed.

The complexity of logic problem solving is often combina
torially unacceptable even when problems do have a solution.
The intractability of the satisfiability problem causes some prob
lems in artificial intelligence to become intractable when blindly
reduced to logic, and provides a practical reason for being cau
tiousin the use of logic for problem solving.

4. Soundness, Completeness and Heuristic Reasoning

Soundness assures the semantic accuracy of inference,
requiring all provable assertions to be true, while completeness
guarantees inference power, requiring all true assertions to be
provable. However, soundness strongly constrains the granular
itv of thinking, while completeness restricts its semantic scope.

Sound reasoning cannot yield new knowledge; it can only
make implicit knowledge explicit. Uncovering implicit
knowledge may require creativity, for example when finding
whether P = NP or Fermat's last theorem. But such creativity
generally requires insights and constructions that go beyond
deductive reasoning. The design and construction of software
may likewise be viewed as uncovering implicit knowledge by
creative processes that transcend deduction. The demonstration
that a given solution is correct may be formally specified by
"sound" reasoning, but the process of finding the solution is
generally not deductive.

Human problem solvers generally make use of heuristics
that sacrifice soundness to increase the effectiveness of problem
solving. McCarthy suggested supplementing formal systems by
a heuristic advice taker as early as 1960 [OR], but this idea has
not yet been successfully implemented, presumably because the
mechanisms of heuristic problem solving are too difficult to
automate.

Heuristics that sacrifice soundness to gain inference power
include inductive, abductive, and probabilistic forms of reason
ing. Induction from a finite set of observations to a general law
is central to empirical reasoning but is not deductively sound.
Hume's demonstration that induction could not be justified by
"pure reason" sent shock waves through nineteenth and twen
tieth century philosophy.

Abductive explanation of effects by their potential causes
is another heuristic that sacrifices soundness to permit plausible

though uncertain conclusions. Choice of the most probable
explanation from a set of potential explanations is yet another
form of unsound heuristic inference. Inductive, abductive, and
probabilistic reasoning have an empirical justification that
sacrifices certainty in the interests of common sense.

Completeness limits thinking in a qualitatively different
mann~r from soundness. Completeness constrains reasoning by
commItment to a predefined (closed) domain of discourse. The
requirement that all true assertions be provable requires a closed
notion of truth that was shown by Godel to be inadequate for
handling naturally occurring open mathematical domains like
that of arithmetic. In guaranteeing the semantic adequacy of a
set of axioms and rules of inference, completeness limits their
semanti~ expressive~ess, making difficult any extension to cap
ture a ncher semantIcs or refinement to capture more detailed
semantic properties. Logic programs cannot easily be extended
to handle nonformalized, and possibly nonformalizable,
knowledge outside specific formalized domains.

The notion of completeness for theories differs from that
for logic; a theory is complete if it is sufficiently strong to deter
mine the truth or falsity of all its primitive assertions. That is, if
every ground atom of the theory is either true or false. Theories
about observable domains are generally inductive or abductive
generalizations from incomplete data that may be logically com
pleted by uncertain assumptions about the truth or falsity of
unobserved and as yet unproved ground atoms (facts) in the
domain. For example, the closed-world assumption [GN]
assumes that every fact not provable from the axioms is false.
Such premature commitment to the falsity of nonprovable
ground assertions may have to be revoked when new facts
become known, thereby making reasoning based on the closed
world assumption nonmonotonic.

Nonmonotonic reasoning is a fundamental extension that
transforms logic into a more powerful reasoning mechanism.
But there is a sense in which nonmonotonic reasoning violates
the foundations of logic and may therefore be viewed as nonlogi
cal. The benefits of extending logic to nonmonotonic reasoning
must be weighed against the alternative of completely abandon
ing formal reasoning and adopting more empirical prinCiples of
problem solving, like those of object-oriented programming.
Attempts to generalize logic to nonmonotonic or heuristic rea
soning, while intellectually interesting, may be pragmatically
inappropriate as a means of increasing the power of human or
computer problem solving. Such extensions to deductive logic
are better realized in a general computing environment than as
extensions to logic programming languages.

Both complete logics and complete theories require an
early commitment to a closed domain of discourse. While the
closed-world assumption yields a different form of closedness
than that of logical completeness or closed application programs,
there is a sense in which these forms of being closed are related.
In the next section the term open system is examined to charac
terize this notion as precisely as possible.

5. Open Systems

A system is said to be an open system if its behavior can
easily be modified and enhanced, either by interaction of the sys
tem with the environment or by programmer modification.

1. A reactive (interactive) system that can accept input from its
environment to modify its behavior is an open system.
2. An extensible system whose functionality and/or number of
components can be easily extended is an open system.

227

Our definition includes systems that are reactive or extensi
b~e or both, reflecting the fact that a system can be open in many
dIfferent ways. Extensibility can be intrinsic by interactive sys
tem evolution or extrinsic by programmer modification. Intrin
sic extensibility accords better with biological evolution and
:-vith human leami.ng and development, but extrinsic extensibility
IS the more practIcal approach to software evolution. The fol
lowing characterization of openness explicitly focuses on this
distinction:

1. A system that can extend itself by interaction with its environ
ment is an open system.
2. A system that can be extended by' programmer modification
(usually because of its modularity) is an open system.

Since extrinsic extensibility is extremely important from
the point of view of cost-effective life-cycle management, it is
viewed as sufficient to qualify a system as being open. While
either one of these properties is sufficient to qualify a system as
being open, the most flexible open systems are open in both
these senses.

Object-oriented systems are open systems in both the first
and second senses. Objects are reactive server modules that
accept messages from their environment and return a result.
Systems of objects can be statically extended by modifying the
behavior of already defined objects or by introducing new
objects. Classes facilitate the abstract definition of behavior
shared among a collection of objects, while inheritance allows
new behavior to be defined incrementally in terms of how it
modifies already defined behavior. Classes have the open/closed
property [Me]; they are open when used by subclasses for
behavior extension by inheritance, but are closed when used by
objects to execute messages. The idea of open/closed subsys
tems that are both open for clients wishing to extend them and
closed for clients wishing to execute them needs to be further
explored.

Logic languages exhibiting don't-know nondeterminism
are not open in the first sense, while soundness and completeness
restrict extensibility in the second sense. To realize reactive
openness concurrent logic languages abandon don't-know non
determinism in favor of don't-care nondeterminism, sacrificing
logical completeness.

Prolog programs can easily be extended by adding clauses
and facts so they may be viewed as open in the second sense.
But logical extension is very different from object-based extensi
bility by modifying and adding objects and classes. Because
object-based languages directly model their domain of discourse,
object-based extensibility generally reflects incremental exten
sions that arise in practice more directly than logical extension.

6. Don't-Care Nondeterminism

Don't-care nondeterminism is explicitly used in concurrent
languages to provide selective flexibility at entry points to
modules. It is also a key implicit control mechanism for realiz
ing selective flexibility in sequential object-based languages.
Access to an object with operations opJ, op2, ... , opN is con
trolled by an implicit nondetermnistic select statement of the
form:

select (op1, op2, ... ,opN) endselect

Execution in a sequential object-based system is deter
ministic from the viewpoint of the system as a whole, but is non-

228

deterministic from the viewpoint of each object considered as an
isolated system. The object does not know which operation will
be executed next, and must be prepared to select the next execut
able operation on the basis of pattern matching with an incoming
message. Since no backtracking can occur, the nondeterminism
is don't care (committed choice) nondeterminism.

Concurrent porgramming languages like CSP and Ada
have explicit don't care nondeterminism realized by guarded
commands with guards Gi whose truth causes the associated
body Bi to become a candidate for nondeterministic execution:

select (GIIIBI, G211B2, ... ,GNlIBN) endselect

The keyword select is used in place of the keyword choice
to denote selective don't care nondeterminism. while guards are
separated from bodies by II in place of I.

Guarded commands, originally developed by Dijkstra,
govern the selection of alternative operations at entry points of
concurrently executable tasks. For example, concurrent access
to a buffer with an APPEND operation executable when the
buffer is not full and a REMOVE operation executable when the
buffer is not empty can be specified as follows:

select (notjullIlAPPEND, notemptyliREMOVE) endselect

Monitors support unguarded don't-care nondeterminism at
the module interface. Selection between APPEND and
REMOVE operations of a buffer implemented by a monitor has
the following implicit select statement:

select (APPEND, REMOVE) endselect

The monitor operations wait and signal on internal monitor
queues notfull and notempty play the role of guards. Monitors
decouple guard conditions from nondeterministic choice, gaining
extra flexibility by associating guards with access to resources
rather than with module entry.

Consider a: concurrent logic program with a predicate P
appearing in the head of N clauses of the form "P(Ai) ~
GiIIBi". A goal P(A) triggers nondeterministic execution of
those bodies Bi for which A unifies with Ai and the guards Gi
are satisfied. This execution rule can be specified by a select
statement of the form:

select ((AI ;GI)IIBI, (A2;G2)IIB2, ... , (AN;GN)IIBN) endselect
Bi is a candidate jor execution if A unifies with Ai and Gi is

satisfied

Since no backtracking can occur once execution has com
mitted to a particular select alternative, the nodeterminism is
don't-care nondeterminism. However, don't care nondetermin
ism in concurrent logic languages is less flexible than in object
based languages because data abstraction and object-based mes
sage communication is not supported.

Don't-care nondeterminism is useful in realizing reactive
flexibility, but is neither necessary nor sufficient for concurrent
systems. Concurrent nonreactive systems for very fast computa
tions are commonplace, while sequential object-based systems
are reactive but not nonconcurrent. Reactiveness and con
currency are orthogonal properties of computing systems.
Don't-care nondeterminism is primarily concerned with enhanc
ing reactive flexibility and is not strictly necessary for con
currency.

Nondeterministic selection is relatively complex because it
combines merging of incoming messages from multiple sources
with selection among alternative next actions by pattern match
ing. The essential nondeterminism in concurrent systems arises
from uncertainty about the arrival order (or processing order) of
incoming messages and is modeled by implicit nondeterministic
merging of streams rather than by explicit selection. For exam
ple, the nondeterministic behavior of a bank account with
$100.00 when two clients each attempt to withdraw $75.00
depends not on selective don't-care nondeterminism but simply
on the arrival order of messages from clients.

7. Are Concurrent Logic Programs Nonlogical?

Don't-care nondeterminism serves to realize reactive com
putations and also to keep the number of nondeterministic alter
natives explored to a manageable size. But it may cause prema
ture commitment to an inference path not containing a solution
at the expense of paths that possibly contain solutions. Don't
care nondeterminism is nonmonotonic since adding a rule may
have the effect of preventing commitment to an already existing
rule. Logic programs employing don't-care nondeterminism are
incomplete in the sense that they may fail to prove true asser
tions that would have been derivable by don't-know nondeter
minism from the same set of clauses. It becomes the responsibil
ity of the programmer to make sure that programs do not yield
different results for different orders of don't-care commitment.

Under don't-care nondeterminism the result of a computa
tion from a set of clauses depends on the order of don't-care
commitment. This weakens the claim that concurrent logic
languages are logical, reducing them to the status of ordinary
programming languages. Clauses lose the status of inference
rules, becoming mere computation rules. As hinted at in [Co],
don't care nondeterminism takes the L out of LP, reducing logic
programming to programming. The committed-choice inference
paradigm loses the status of a proof technique and becomes a

computational heuristic whose rules impose a rigid structure on
both conceptualization and computation.

Don't-know nondeterminism provides a computational
model for logical inference, while don't-care nondeterminism
models incremental, reactive computation, but sacrifices logical
inference. Reactive systems are open systems in the sense that
they may react to stimuli from the environment by returning
results and changing their internal state. Objects are a prime
example of reactive systems, responding interactively to mes
sages they receive. The inability of don't-know nondeterminism
to handle reactiveness is a serious weakness of both logic pro
grams and deductive reasoning. The fundamental reason for this
is the inability of inference systems to commit themselves to
incremental output.

While pure logic programming is incompatible with reac
tiveness it is definitely compatible with concurrency. The com
ponents of logical, expressions may be concurrently evaluated.
Universal. and existential quantification, which is simply
transfinite conjunction and disjunction, can be approximated by
concurrent evaluation of components. Reactiveness is orthogo
nal to concurrency in the sense that concurrent nonreactive sys
tems for very fast computations are commonplace, while sequen
tial object-based systems are reactive but not nonconcurrent.
However, reactive responsiveness is as important in large appli
cations as concurrency. The identification of reactiveness and
concurrency as independent goals of system design marks a step
forward in our understanding of system requirements.

The process interpretation of concurrent logic programs
views goal atoms as processes and logic variables as streams.

The set of goals at any given point in the computation becomes a
dynamic network of processes that may be reconfigured during
every goal-reduction step. Every concu~ent lo~ic progr~ h~s a
process interpretation, but concurrent obJect-onented appl~catIon
programs cannot be directly mapped into concurrent 10~IC pro
grams. Thus concurrent logic programs are less expressIVe t?an
object-oriented programs in the sense of [Sh1]. LogIcal
processes have no local state; they are atom~c predic~tes ~hose
granularity cannot be adapted to the granulanty of o?Jects m th.e
application domain. Concurrent logic progra"!s ~lve up theIr
claim to be logical without gaining the commurucatlon and com
putation flexibility of traditional concurrent languages.

8. Are Multiparadigm Logic/Object Systems Possible?

Can the object-based and logic programming paradigms be
combined to capture both the decomposition and abstraction
power of objects and the reasoning power of logic? Experience
suggests that logic is not by itself a sufficient mech~ism for
problem solving and that combining logical and nonl?glcal para
digms of problem solving is far harder than one mIght expect.
Logic plays a greater role in verifying the correctness of

programs than in their development and evolution. Finding a
solution to a problem is less tractable than verifying the correct
ness or adequacy of an already given solution. For example,
solutions of problems in NP can be verified in polynomial time
but appear to require exponential time to find. Verification and
validation is generally performed separately after a program (or
physical engineering structure) has been constructed.

The logic and object paradigms have different conceptual
and computational models. Logic programs have a clausal infer
ence structure for reasoning about facts in a database, while
object-based programs compute by message passing among
heterogeneous, loosely-coupled software components. Logical
reasoning is top-down (from goals to subgoals), while object
based design is bottom-up (from objects of the domain).
Object-based programs lend themselves to development and evo
lution by incremental program changes that directly correspond
to incremental changes of the modeled world. Inference rules
provide less scope for incremental descriptive evolution, since
rules for reasoning are not as amenable to change as object
descriptions.

ICOT's choice of logic programming as the vehicle for
future computing contrasts with the US Department of Defense's
choice of Ada. Because Ada was designed in the 1970s, when
the technology of concurrent and distributed software com
ponents was still in a primitive state, it has design flaws in its
module architecture. But its goals are squarely in the object
oriented tradition of model building based on abstraction.

During the past 15 years we have accumulated much
experience in designing object-oriented, distributed, and
knowledge-based systems. The international computing com
munity may well be ready for a major attempt to synthesize this
experience in developing a standard architecture for distributed,
intelligent problem solving in the 21st century. Such an archi
tecture would be closer to the object-oriented than to the logic
programming tradition.

Next-generation computing architectures should try to syn
thesize the logic and object-oriented traditions, creating a mul
tiparadigm environment to support the cooperative use of both
abstraction and inference paradigms. For example, an object's
operations could in principle be implemented as logic programs,
though the use of Prolog as an implementation language for
object interfaces presents some technological problems. Perhaps
technological progress in the 21st century will resolve these
problems so that multi paradigm environments can be developed

229

facilitating the cooperative application of both abstraction and
inference paradigms.

Problem solving is a social process that involves coopera
tion among people, especially for large projects with a long life
cycle. Decomposition of a problem into object abstractions is
important both for cooperative software development and for
incremental maintenance and enhancement. While object
oriented problem representation is not uniformly optimal for all
problems, it does provide a robust framework for cooperative
incremental software evolution for a much larger class of prob
lems than logical representation.

The early optimism that artificial intelligence could be
realized by a general problem solver gave way in the 1960s to an
appreciation of the importance of domain-dependent knowledge
representation. The debate concerning declarative versus pro
cedural knowledge representation was resolved in the 1970s in
favor of predicate calculus declarative representation. AI text
books of the 1980s [CM, ON] advocate the predicate calculus as
a universal framework for knowledge representation, with
domain-dependent behavior modeled by nonlogical predicate
symbols satisfying nonlogical axioms.

The logic and network approaches to AI have competed for
research funds since the 1950s [Or], with the logic-based symbol
system hypothesis dominating in the 1960s and 1970s and distri
buted pattern matching and connectionist learning networks stag
ing a comeback in the late 1980s [RM]. The idea that intelli
gence evolves through learning is an appealing alternative to the
view that intelligence is determined by logic, but attempts to
realize nontrivial intelligence by learning have proved combina
torially intractable. Distributed artificial intelligence research
[BO] and Minsky's The Society of Mind [Min], view problem
solving as a cooperative activity among distributed agents very
much in the spirit of object-oriented programming. Ascribing
mental qualities like beliefs, intentions, and consciousness to
agents is likewise compatible with the object-oriented approach.

9. References
[BG] A. H. Bond and L. Gasser, Readings in Distributed
Artificial Intelligence, Morgan-Kaufman 1988.
[Co] J. Cohen, Introductory remarks for the special CACM issue
on logic programming, CACM, March 1992
[CM] E. Chamiak and D. McDermott, Introduction to Artificial
Intelligence, Addison-Wesley 1984
[GJ] M. R. Garey and D. S. Johnson, Computers and Intractabil
ity: A Guide to the Theory of NP-Complete ness, Freeman 1978.
[ON] M. R. Oenesereth and N. 1. Nilson, Logical Foundations of
Artificial Intelligence, Morgan-Kaufmann 1987.
[Or] The Artificial Intelligence Debate, Editor Stephen Oraubard,
MIT Press 1988
[Me] Bertrand Meyer, Object-Oriented Software Construction,
Prentice-Hall Intemational1988.
[Min] Marvin Minsky, The Society of Mind, Simon and Schuster,
1987
[RM] D. E. Rumelhart and 1. L. McLelland, Parallel Distributed
Processes, MIT Press 1986.
[Shl] E. Shapiro, Separating Concurrent Languages with
Categories of Language Embeddings, TR CS91-05, Weizmann
Institute, March 1991
[Sh2] E. Shapiro, The Family of Concurrent Programming
Languages, Computing Surveys, September 1989

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE.
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 230

Concurrent Logic Programming as a Basis for Large-scale
Knowledge Information Processing

Koichi Furukawa

Institute for New Generation Computer Technology
4-28, Mita l-chome, Minato-ku, Tokyo 108, Japan

furukawa@icot.or.jp

1 The Future of Information
Processing

As the Fifth Generation Computer Systems project
claims, the information processing field is pursuing
know ledge information processing.

Since the amount of information being produced is
increasing rapidly, there is a growing need to extract
useful information from this information. The most im
portant and promising technologies for information ex
traction are knowledge acquisition and machine learn
ing. They include such activities as classification of in
formation, rule acquisition from law data and summary
generation from documents. For such activities, heavy
symbolic computation and parallel symbolic processing
are essential.

Combinatorial problems are another source of appli
cations requiring heavy symbolic computation. Human
genome analysis and the inversion problems are examples
of these problems. For example, in diagnosis, it is quite
easy to forecast the symptoms given the disease. How
ever, to identify the disease from the given symptoms is
usually not so easy. We need to guess the disease from
the symptom and to verify the truth of that guess by fur
ther observation of the system. If the system is linear,
then the inversion problem is simply to compute the ma
trix inverse. But, in general, there is no straightforward
way to solve the inversion problem. There may be many
candidates for any guess and this becomes even worse
when we take multiple faults into account. Note that ab
ductive reasoning, one of the most important reasoning
processes for open-ended problems, is also characterized
as a general inversion formalism against deduction.

Cooperative problem solving (or distributed AI) is an
other important direction for future information process
ing. Like human society, one feasible way of dealing with
large-scale problems is for a number of experts to coop
erate. To exchange ideas between experts, mutual un
derstanding is essential, for which we need complicated
hypothetical reasoning to fill the gaps in terminology be
tween them.

These three examples show the need for heavy con
current information processing in the field of knowledge
information processing in the future.

2 The Role of Logic Program
ming

Logic programming provides a basic tool for representing
and solving many non-trivial artificial intelligence prob
lems.

1. As a knowledge representation tool, it can express
situations without being limited to a closed world,
as was believed until recently. The negation by fail
ure rule makes it possible to express an open-ended
world, which is essential for representing common
sense and dealing with non-monotonic reasoning.
Recently, a model theory for dealing with general
logic programs which contains negation-by-failure
literals in the body of clauses has been studied. The
theory, called stable model semantics, associates a
set of feasible models, natural extensions of least
models, to each general logic program.

2. As an inference engine, logic programming provides
a natural mechanism for computing search problems
by automatic backtracking or by an OR-parallel
search mechanism. Recent research results show the
possibility of combining top-down and bottom-up
strategies for searching.

3. As a syntactic tool for non-deductive inference, logic
programming provides a formal and elegant formal
ism. Abduction, induction and analogy can be natu
rally formalized in terms of logic and logic program
ming. Inoue et al. [Inoue et al. 92] showed that
abductive reasoning problems can be compiled into
proof problems of first order logic. This means that
non-deductive inference problems can be translated
into deductive inference problems. Since abduction
is a formalization of a kind of inversion problems,

this provides a straightforward way to solve such
problems.

There was a common belief that logic and logic pro
gramming had severe restrictions as tools for complex
AI problems that require open endedness. However, re
cent research results shows they are expressive enough
to represent and solve such problems.

3 The Role of Concurrent Logic
Programming

Concurrent logic programming is a derivative of logic
programming and is good for expressing concurrency
and executing in parallel. From a computational
viewpoint, concurrent logic programming only supports
AND-parallelism, which is essential for describing con
current and cooperative activities.

The reason why we adopted concurrent logic program
ming as our kernel language in the FGCS· project is
that we wanted simplicity in the design for our machine
language for parallel processors. Since concurrent logic
programming languages support only AND-parallelism,
they are simpler than those languages which support
both AND- and OR-parallelism.

We succeeded in writing many useful and complex ap
plication programs in KLl, the extension of our concur
rent logic programming language, FGHC, for practical
parallel programming. These include a logic simulator
and a router for VLSI-CAD, and a sequence alignment
program in genome analysis. These experimental stud
ies show the potential of our language and its parallel
execution technology.

The missing computational scheme in concurrent logic
programming is OR-parallelism. It comes from the very
fundamental nature of concurrent logic programming
language, that is, the committed choice mechanism. OR
parallelism plays an essential role in many AI problems
because of the requirement for searching. A great deal of
effort has been made to achieve OR-parallel searching in
concurrent logic programming by devising programming
techniques. We developed three methods for different ap
plications: a continuation-based method for algorithmic
problems, a layered stream method for parallel parsing,
and a query compilation method for database problems.
These three methods cover many realistic applications.
Therefore, we have almost developed OR-parallelism suc
cessfully. This means that there is a possibility of build
ing parallel deductive databases in concurrent logic pro
gramming.

One of the most significant achievements using the
query compilation method is a bottom-up theorem
prover, MGTP [FujitaHasegawa 91]. This is based on
the SATCHMO prover by [Manthey 88]. MGTP is a very
efficient theorem prover which utilizes the full power of

231

KLI in a natural way by performing only one way unifi
cation. SATCHMO has a restriction in the problems it
can efficiently solve: range-restrictedness [Furukawa 92].
However, most real life problems satisfy this condition
and, therefore, it is very practical.

We succeeded in computing abduction, which was
translated to a theorem proving problem in first order
logic, by using MGTP. We succeeded in solving a very
important class of inversion problems in parallel on our
parallel inference machine, PIM.

4 Conclusion

Concurrrent logic programming gained· its expressive
power for concurrency at the sacrifice of Prolog's search
capability. By devising programming techniques we have
finally almost recovered the lost search capability. This
means that we now have a very expressive parallel pro
gramming language for a wide range of applications.

As an example, we have shown that the technique en
abled realization of an efficient parallel theorem prover,
MGTP. We have also shown success in deductively solv
ing an important class of inversion problems, formulated
by abduction, by the theorem prover.

Our research results indicate that our concurrent logic
programming and parallel processing based technologies
have great potential for solving many complex future AI
problems.

References

[FujitaHasegawa 91] H. Fujita and R. Hasegawa, A
Model Generation Theorem Prover in
KL1 Using a Ramified-Stack Algo
rithm. In Proc. of the Eighth Interna
tional Conference on Logic Program
ming, Paris, 1991.

[Furukawa 92] K. Furukawa, Summary of Basic Re
search Activities of the FGCS Project.
In Proc. of FGCS92, Tokyo, 1992.

[Inoue et al. 92] K. Inoue, M. Koshimura and R.
Hasegawa, Embedding Negation as Fail
ure into a Model Generation The
orem Prover. To appear in CAD-
11: The Eleventh International Confer
ence on A utomated Deduction, Saratoga
Springs, NY, June 1992.

[Manthey 88] R. Manthey and F. Bry, SATCHMO: A
Theorem Prover Implemented in Prolog.
In Proc. of CADE-88, Argonne, illinois,
1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 232

Knowledge Information Processing in the 21st Century

Shunichi Uchida

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

uchida@icot.or.jp

1 A New Research Platform

Here in the last decade of the 20th century, the beginning
of the 21st century is close enough for us to be able to
forecast the kind of changes that will happen to new
computer technologies and in the market and to predict
what kind of research fields will be the most important.

I would like to try to forecast what will happen to
parallel processing and knowledge information process
ing (KIP) based on my experience in the FGeS project.

It is quite certain that the following two events will
happen;

1. Large-scale parallel hardware will be used for large
scale problem solving.

2. Symbolic processing and knowledge information
processing applications will be extended greatly.

However, it is not so obvious whether these two events
will be effectively combined or will remain separate. The
key technology is new software technology to enable us to
efficiently produce large and complex parallel programs,
especially for symbolic and knowledge processing appli
cations. If this parallel software technology is provided
with large-scale parallel hardware, a very large change
will happen in the market in the 21st century. I think
that the FGeS project has developed the kernel of this
key technology and shown that these two events will
surely be combined.

In the FGCS project, we proposed the hypothesis that
a logic programming language family would be superior
to any other language families in exploiting new soft
ware technology and applications, especially for symbolic
and knowledge information processing. The first step in
proving this hypothesis was to show that the above two
events can be smoothly combined by logic programming.
We decided to design and implement a logic language on
large-scale parallel hardware. .

In designing and implementing this logic language, the
most important problem was to find an efficient method
to realize the following two very complex mechanisms;

1. An automatic process synchronization mechanism
based on a dataflow model

2. An automatic memory management mechanism in
cluding an efficient garbage collection method for
distributed memories

These mechanisms greatly reduce the burden of par
allel programming and are indispensable for implement-·
ing not only a parallel logic language but also any other
high-level language including functional language such
as a paralfel version of LISP.

We have developed a parallel logic language, KLl, its
language processor and programming environment, and
a parallel operating systems, PIMOS. These are now im
plemented on parallel inference machine hardware, PIM
hardware, which connects up to 512 processing elements.
We have also developed a parallel DBMS called Kappa
P on the PIMOS. We call all of these software systems
FGeS basic software.

Through the development of experimental parallel ap
plication systems using this basic software, we have al
ready experienced that we can efficiently produce paral
lel programs which make full use of the power of parallel
hardware.

This basic software is now available only on PIM hard
ware which has some hardware support to make KLI
programs run faster such as tag handling support or a
large capacity main memory. However, recently, it has
been announced that many interesting parallel hardware
systems are to appear in the market as high-end super
computers aiming at large-scale scientific calculations.
Some of them have an MIMD architecture and employ a
RISe type general purpose microprocessor as their pro
cessing element.

It is certain that the performance and memory capac
ity of these processing elements will increase in the next
few years. At that stage, it will be possible to imple
ment the FGeS basic software on this MIMD parallel
hardware and obtain reasonable performance for sym
bolic and knowledge processing applications. If this is
implemented, this parallel hardware will have a high
level parallel logic programming environment combined
with a conventional programming environment.

This new environment should provide us with a power
ful and widely-usable common platform to exploit knowl
edge information processing technology.

2 KIP R&D in the 21st Century

2.1 Knowledge representation and
knowledge base management

The first step to proving the hypothesis that the logic
language family is the most suitable for knowledge infor
mation processing is to obtain a new platform for further
research into knowledge information processing. For this
step, a low-level logic language, namely, KLI was devel
oped.

The second step is to show that a logic language will
exploit new software technology to handle databases and
natural knowledge bases. The key technology in this step
will be knowledge representation and knowledge base
management technology.

Using a logic language as the basis for knowledge rep
resentation, it should be a natural consequence that the
knowledge representation language has the capability of
performing logical deduction.

Users of the language will consider this capability de
sirable for describing knowledge fragments, such as vari
ous rules in our social systems and constraints in various
machine design. The users may also want the language
to have been an object-oriented modeling capability and
a relational database ·capability, as built-in functions.

Currently, we do not have good criteria to combine and
harmonize these important concepts and models to real
ize a language having these rich fu~ctions for knowledge
representation.

The richness of these language capabilities will always
impose a heavy overhead on its language processor. The
language processor in this case is a higher-level inference
engine built over a database management system. It
is interesting to see how much the processing power of
parallel hardware will compensate for this overhead.

In the FGCS project, we developed a database man
agement system, Kappa-II based on the nested relational
model. It was implemented on a sequential inference ma
chine, PSI, for the first time. Now, its parallel version,
Kappa-P written in KLl, has been built on the PIM
hardware. Over Kappa-P, we have designed a knowledge
representation language, Quixote and a KBMS based on
the deductive and object-oriented model. Its first imple
mentation has been completed and is now under evalu
ation. Quixote is one of the high-level logic languages
developed over KLl. These evaluation results should
provide very interesting data for forecasting database re
search at the beginning of the 21st century.

Another high-level logic language developed in the
FGCS project is a parallel constraint logic programming
language, GDCC. GDCC has a constraint solver in its
language processor which can be regarded as an infer
ence engine dedicated to algebraic problem solving.

Another kind of inference engine is a parallel theorem
prover for first order logic which is called a model gen-

233

eration theorem prover, MGTP. This prover is now used
as the kernel of a rule-based reasoner in a law expert sys
tem, also known as the legal reasoning system, Hellic-II.

These logic languages and inference engines will be
further developed during this decade. They will be im
plemented on large-scale parallel hardware and will be
used as important components to organize a new plat
form to build a knowledge programming environment in
the first decade of the 21st century.

2.2 Knowledge programming and
knowledge acquisition

The third step to proving the hypothesis is to show that a
knowledge programming environment based on logic pro
gramming will efficiently work to build knowledge bases,
namely, the contents of a KBMS.

Knowledge programming is a programming effort to
translate knowledge fragments into internal knowledge
descriptions that are kept and used in a KBMS.

This process may be regarded as a conversion or com
piling process from "natural" knowledge descriptions,
which exist in our society for us to work with, into "arti
ficial" knowledge descriptions, which can be kept in the
KBMS and used efficiently by application systems such
as expert systems. If this process is done almost au
tomatically by some software with a powerful inference
engine and knowledge base, it is called "knowledge ac
quisition". Some people may call it "learning".

In human society, we have many "natural" knowledge
bases such as legal rules and cases, medical care records,
design rules and constraints, equipment manuals, lan
guage dictionaries, various business documents and rules
and strategies for game playing. They are too abstract
and too context-dependent for us to translate them into
"artificial" knowledge descriptions.

In the FGCS project, we developed several experimen
tal expert systems such as a natural language processing
system, a legal reasoning system, and a Go playing sys
tem. We have learned much about the problems of how
to code or program a "natural" knowledge base, how to
structure knowledge fragments to be able to use them in
application programs, and so on.

We have also learned that there is a big gap between
the level of "natural" knowledge descriptions and that
of the "artificial" knowledge descriptions which current
software technology can handle. We were forced to real
ize again that "natural" knowledge bases have been built
not for computers but for human beings. The existence
of this large gap means that current computer technol
ogy is not intelligent enough to accept such knowledge
bases.

It is obvious that more research effort is needed to
build much more powerful inference engines that will
provide us with much higher-level logical reasoning func
tions based on formal and informal models such as CBR,

234

ATMS and inductive inference. In parallel with this
effort, we have to find some new methods of prepro
cessing "natural" knowledge descriptions to obtain more
well-ordered forms and structures for "artificial" knowl
edge bases. For example, we have to create new theo
ries or smodeling techniques to explicitly define context
dependent information hidden behind "natural" knowl
edge descriptions. The situation theory will be one of
these theories.

It is interesting to see how these powerful inference
engines will relate to knowledge representation language
and knowledge structuring methods. Another interesting
question will be to what extent the power of larger-scale
parallel hardware and parallel software technology will
make these higher-level inference functions practical for
real applications.

It is certain that research into knowledge information
processing will continue to advance in the 21st century,
opening many new research fields as it advances and leav
ing a large growing market behind it.

leOT SESSIONS

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 237

LSI-CAD Programs on Parallel Inference Machine

Hiroshi Datet

Kazuo Takit
Yukinori Matsumotot

Hiroo Kato+
Koichi Kimurat

Masahiro Hoshi+

tInstitute for New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108, Japan

{date, yumatumo, kokimura, taki}@icot.or.jp

+Japan Information Processing Development Center
3-5-8, Shibakouen, Minato-ku, Tokyo 105, Japan

{j-kato, hoshi}@icot21.icot.or.jp

Abstract

This paper presents three kinds of parallel LSI-CAD sys
tems developed in ICOT and describes their experimen
tal results on a parallel inference machine. These systems
are routing, placement and logic simulation. All of them
are implemented in KL1, a concurrent logic language,
and executed on the Multi-PSI, a distributed memory
machine with 64 processors.

We regard our parallel inference machines as high per
formance general purpose machines. We show program
ming techniques to derive high performance on parallel
inference machines. The common objectives of these sys
tems are, firstly, to provide speedup by extracting major
parallelism, and, secondly, to show the applicability of
our hardware and language system to practical applica
tions. For this reason, our systems are evaluated using
real LSI chip data.

The key features are, in the routing system, concurrent
object modeling of routing problems to realize a lot of con
currency; in the placement system, time-homogeneous
parallel simulated annealing to optimize placement re
sults; and in the logic simulation system, the Time Warp
mechanism as a time-keeping mechanism for simulations.

Experimental results of these systems show that these
techniques are effective for parallel execution on large
scale MIMD machines with distributed memory struc
ture, like the parallel inference machines.

1 Introduction

A parallel computer system PIM (the Parallel Inference
Machine), one of the goals of the Japanese Fifth Gen
eration Computer Systems project, has been completed,
and its evaluation is starting. PIM has been developed
mainly to target high performance knowledge informa
tion processing. Since most problems in this domain are
of an extremely large size, exploiting the whole power of

parallel machines is important. In practice, however, it
is not easy to derive their maximum power because of
the non-uniformity of computation, that is dynamically
changing parallel computation depending on time and
space.

In order to move programs efficiently on PIM, the fol
lowing are important. First is to adopt good concurrent
algorithms. Second is to design programs based on pro
gramming paradigms to realize high parallelism. And
last is to use effective load distribution techniques in
cluding processor mapping. We aimed at gaining experi
ences with these techniques through large-scale practical
application experiments on PIM.

PIM is an inference machine, however, its applicability
should not be limited to knowledge information process
ing. From the viewpoint that PIM is a high performance
general purpose machine, we chose LSI-CAD as one of
the application fields.

Nowadays, LSI-CAD is indispensable for LSI design.
The integration of the LSI chip has increased exponen
tially in proportion to the progress of the semiconductor
process technology. The quality of LSIs depend on the
performance of LSI-CAD tools. Therefore, higher per
formance is required. Besides, the flexibility of the tools
must be kept for a variety of demands. Using hardware
accelerators is one possible way of obtaining faster tools,
however, it usually results in a sacrifice of flexibility. A
likely alternative is to para.llelize software tools. This
certainly satisfies the above two requirements: making
the tools faster and keeping their flexibility.

We focused on three stages of LSI-CAD; logic simu
lation) placement and routing, which are currently the
most time-consuming in LSI design. Each system has
following features.

The routing system finds paths based on the lookahead
line search algorithm [Kitazawa 1985]. This algorithm
provides high quality solutions, however, it was originally
proposed with the assumption of sequential execution.
We introduced a new implementation method of parallel

238

router based on the concurrent objects model, and im
proved the basic algorithm to make it suitable for paral
lel execution. The concurrent objects model is expected
to derive a lot of parallelism among small granular pro
cesses. We investigated the description complexity and
overhead of our routing programs. Also its performance
(real speed, speedup and wiring rate) was evaluated in
comparison with a sequential router on general purpose
computer using real LSI chip data.

The cell placement problem is a combinatorial opti
mization problem. Simulated annealing (SA) is a power
ful algorithm to solve such problems. Cooling schedules
are important for efficient execution of SA. In our place
ment system, the time-homogeneous parallel SA algo
rithm [Kimura et aI. 1991] was adopted. This algorithm
constructs appropriate cooling schedules automatically.
We evaluated quality of solutions in our system using
MCNC benchmark data.

Logic simulation is an application of discrete event
simulation. The key to its efficient execution in par
allel is keeping the time correctness without large over
heads. We adopted the Time Warp mechanism (TW)
as the time-keeping mechanism. TW has been consid
ered to contain large rollback overheads, however, it has
not been evaluated in detail yet. We not only improved
the rollback process but also added some devices so that
TW would become an efficient time-keeping mechanism.
Cascading-Oriented Partitioning strategy for partition
ing circuits are also proposed to attain good load distri
bution. We evaluated our system on speedup and real
speed (events/sec) as compared with the systems that
had other time-keeping mechanisms (Conservative and
Time Wheel) using ISCAS89 benchmark data.

These systems were implemented in KL1 [Chikayama
et aI. 1988, Ueda et aI. 1990], a concurrent logic lan
guage, and have been experimented with on the Multi
PSI/V2 [Nakajima et a1.1989, Taki 1988], a prototype of
PIM.

This paper is organized as follows: The routing system
is described in Section 2. A routing algorithm based on
the concurrent objects model and its implementation is
presented in detail. Section 3 explains the placement sys
tem. The time-homogeneous SA algorithm is introduced
and optimization in the implementation is explained.
Section 4 overviews the logic simulator and reports on
its evaluation. Our conclusion is given in Section 5.

2 Routing System

2.1 Background

There have been many trials to realize high speed and
good quality router systems with parallel processing.
These trials can be classified into two areas. One is the
hardware engine which executes the specified routing al
gorithm efficiently [Kawamura et al. 1990, Nair et aI.
1982, Suzuki et al. 1986]. The other is concurrent rout-

Object-oriented Modeling Problem I
+Concurrent Algorithm V
(Distributed Algorithm) ~

Process Structure~

(Logical concurrency) V Grouping

(Physical parallelism)

PEn: Processors

Figure 1: Program design paradigm based on the con
current objects model

ing programs implemented on general purpose parallel
machines [Brouwer 1990, Olukotun et aI. 1987, Rose
1988, Watanabe et aI. 1987, Won et aI. 1987]. The
former approach can realize very high speeds, while the
latter can provide large flexibility. We took the latter
approach to realize both high speed and a flexible router
system, targetting very large MIMD computers.

In general, a lot of parallelism is needed to feed a
large MIMD computer. So, we propose a. completely
new parallel routing method, based on a small granual
concurrent objects model. The routing method was im
plemented on the distributed memory machine, Multi
PSI, with a logic programming langu'age KL1. We made
preliminary evaluations of the new router, from the view
points of (1) data size vs. efficiency, (2) wiring rate vs.
parallelism, and (3) comparison of execution speed with
general purpose computers.

This section contains the following. A programming
paradigm based on the concurrent objects model, a
router program with an explanation of concurrent algo
rithms and implementation, problems in parallelization,
and preliminary measurements and evaluation results.

2.2 Programming Paradigm

Formalizing a problem based on the concurrent objects
model is one of the most prospective ways to embed par
allelism in a given problem.

This section describes our methodology to design par
allel programs from problem formalization to parallel ex
ecution. We also show coding samples in the KL1 lan
guage.

Figure 1 shows the flow of parallel program design.
Firstly, a given problem is formalized based on the con
current objects model. That is, many objects make a
solution cooperatively, by exchanging messages. At the
same time, a concurrent algorithm is designed upon the

ConcurrenCObject ([Message_1 I Rest J. Interior state variables. Stream variable) :-

true I
Process correspond to Message_1. Output of Message to other objects
Renew of Interior state variables. ~
Stream variable = [Message I New Stream variableJ.

ConcurrenCObject (Rest. New Interior state variables. New Stream variable).

Concurrent_Object ([Message_21 Rest J. Interior state variables. Stream variable) : -

Figure 2: Implementation of a concurrent object in KLI

model. Sometimes, the algorithm is a distributed algo
rithm. Through this design phase, the activities of the
objects corresponding to messages are defined.

Then, each object is implemented as a KLI process.
Process connection topology is decided based on input
data. Usually, a much larger number of processes is
needed than the number of processors to get good load
balance. Logical concurrency (the possibility of parallel
processing) is designed through this flow.

Secondly, the processes, which exch~ge me~sages fre
quently, are grouped to increase communication locally.
When each process has a large computational amount
(large granularity) and a low communication rate, this
phase can be omitted.

Then, the groups are assigned to processors and exe
cuted. This is called mapping. Physical parallelism is re
alized in this phase. The KLI language system allows in
dependent descriptions of the problem solving part (log
ical concurrency) and the mapping part (physical par
allelism) of a program. Performance tuning of parallel
processing can be done only by changing the mapping
part, not by changing the problem-solving algorithm.

The KLI language is quite suitable for describing
concurrent objects. Processes representing the objects
are written in the self recursive call of the KLI lan
guage. These processes can communicate with each other
through the message streams. Figure 2 shows a coding
sample of an object. The functions of an object are de
fined with a set of clauses. Each clause corresponds to a
message which the object receives.

2.3 Router Program

We used the lookahead line search method [Kitazawa
1985] as a basic algorithm. Then we reconstructed the
algorithm for highly parallel execution, taking the con
current objects model as a basic design framework.

2.3.1 Basic algorithm

The lookahead line search method is one of the line
search algorithms coupled with lookahead operation. It
is, if you like, a sort of hill-climbing algorithm, looking
for a good route. The algorithm, also, has two features.
One is to escape from the local optimum point with the

239

master line.processes --1-0 ..,V '" '// v/v
r/~ ~V
r/~ ~/

r. 71 // //

l11 ;t1 -...... 111" I-- -'-r--
\::;

line·processes

Figure 3: Master line processes and line processes

help of the Inhibited Expected Point (IEP) flag. The
other is backtracking to retrace bad routes and to retry
searching. The algorithm guarantees connection between
a start point and a target point when paths exist between
them.

2.3.2 Concurrent routing algorithm

In KL1 programming, an execution unit is a process cor
responding to an object. Since the line search algorithm
decides a route, line by line, we designed the concur
rent algorithm so that objects=processes corresponds to
every line segment on a routing grid. Line processes ex
change messages with each other to look for a good route.
Each line process maintains the corresponding line's sta
tus and, at the same time, the execution entity of the
search.

As Figure 3 shows, each process corresponds to each
grid line (master line process) and line segment (line pro
cess) on it. A master line process manages line processes
on the same grid line and passes messages between the
line processes and crossing line processes.

The routing procedure of one net is almost the same
as that of the basic algorithm, except that the procedure
is broken down into a sequence of messages and their
operations are executed among processes. Computing
the best expected point is done as follows. The expected
point is the closest location to a goal on a line segment.
The distance to the goal is used for a cost function in the
hill climbing method.

When a line process receives a routing request message
with information of a goal point, it changes its status to
"under searching". Then, it sends request messages for
calculation of expected points to line processes that cross
it (Figure 4).

Thus computation of the expected point is executed
concurrently on each line process that receives the re
quest message.

After the computation .,results are returned to the
searching line process, it aggregates those results and
determines the best expected point.

When the best expected point is determined, the
searching line is connected to the crossing line that in
cludes the best expected point. The searching line pro
cess splits into an occupied part and a free part, and

240

••• : a line process executing expected points

-: a line process searching routing paths

'/ /. T

~C::% 'ijV
S ~~ ~~
v: f7j VV/ V/V

tL rJ

(a) Parallel execution of expected points

(termination condition)
expected point - target point

1 V/' VV V T

lJ vij ~/.
s /.~ ~/.
r; f/l '/ '/

fL ~

(c) Termination condition of parallel
execution of expected points

o : an expected point

EI: a connected path

[connect expected point
I "

'11 /. '/

l~ v::% ~V
s /.~ ~~
1/ t71 rv/v v/rv
k:: ?J

T

(b) Connection of routing path

II /. '// U

~ ~~ ~ r.;: T

S tJ~ V;t/
V' 7J v'/ V/.V

tL tLl

(d)Completion of routing

Figure 4: Parallel execution of expected points

the status is maintained. Then, the next routing request
message is sent to the connected crossing line.

Messages are sequenced at the entrance of each pro
cess. Only one message can be handled at any time in a
process. No problems of exclusive access to an object or
locking/unlocking objects arise with this scheme.

In our algorithm, two types of parallelism are embed
ded. One is concurrent computation in the lookahead
operation and the other is concurrent routing of differ
ent nets.

2.4 Problems in Parallel Execution

When we parallelize the lookahead line search method,
three problems arise. The first is deadlock, the second
is conflict among routing nets and the last is memory
overflow for communicating between processors.

2.4.1 Avoidance of deadlock

When two or more nets are searched concurrently, dead
lock may occur. Figure 5 shows an example. When line
processes that intersect orthogonally send request mes
sages to compute the expected point to each other at
the same time, computation will not occur. This is be
cause they cannot carry out the next messages until the
execution of present messages terminates.

If it is guaranteed that execution of a message termi
nates within a fixed period, deadlock can be avoided. To

requesting execution of an expected point to each other

Figure 5: Example of deadlock

satisfy this condition, we made the following modifica
tion.

Firstly, messages are grouped into group A and group
B. B-type messages are guaranteed to terminate execu
tion within a fixed period. A-type messages are not guar
anteed to terminate, that is, some synchronization with
other processes is needed before terminating message ex
ecution.

We modify the operations of A-type messages as fol
lows. Each process executing an A-type message ob
serves all messages arriving successively. When an A
type message is found, it is left in a message queue, that
is no operations are performed. When a B-type message
is found, it is processed immediately before termination
of the currently executing A-type message. For this pro
cessing of B-type messages, a temporary pr·ocess status
that differs from the sequential algorithm is needed. By
applying this modification, deadlock can be avoided.

In our router, the routing request messages are A-type,
and the request messages of computing expected points
are B-type.

2.4.2 Conflict among nets

When concurrent routing of multiple nets is done, differ
ent nets may conflict on the same line segment. In this
situation, message sequencing works well and the first
message to arrive (corresponding to net A) occupies the
segment. The second message to arrive (net B) fails to
complete a route, and backtracks.

However, net A may backtrack afterwards and may
release the line segment. In this case, net B does not visit
the line segment anymore and the line segment may be
left unused. This fact causes lower quality routes (longer
paths) or a lower wiring rate (more unconnected nets).

To avoid those degradations in routing quality, the
scheduling of the order in which nets start routing is im
portant and may limit concurrency by eliminating the
number of nets routed concurrently. However, paral
lelism can be affected by these controls. Relations be
tween wiring rates and parallelism are studied in the ex
periments.

PEO PE1

o :distributer process

o :master line process

PE2----'--PE3

Figure 6: Improved process structure

2.4.3 Overflow of memory for communication
among processors

When we implement the concurrent program using KLl,
two kinds of memory are necessary. One is the memory
for representing processes. The other is the memory for
communication paths among processors.

In our routing program, the process structure shown in
Figure 3 was implemented. Each master line processes,
which mediates between line processes, must communi
cate all orthogonal master line processes. Therefore the
number of communication paths is increasing for large
scale data. Experimental results show that the maxi
mum grid size of chip data to be treated by this routing
program is about 500 x 500. This size is too small for
applying practical data.

In order to solve this problem, we improved the pro
cess structure, as in Figure 6. Each distributer process
controls communication among processors.

2.5 Measurements and Evaluation

We evaluate our router from the following three points
of view. (1) Data size vs. Speedup, (2) Parallelism
vs. Wiring Rate, and (3) Comparison with a general
purpose computer. The program was executed on a
MIMD machine with distributed memory and 64 pro
cessors, the Multi-PSI. Two types of real LSI data were
used. The features of these data are shown in Table 1.
Terminals to be connected are distributed uniformly in
DATAl. Meanwhile, terminals are concentrated locally
in DATA2. DATA3 is large-scale data.

Table 1: Testing data

Data DATAl I DATA2 DATA3

Grid size 262xl06 322x389 2746 x3643
of nets 136 71 556

Presented by Hitachi Ltd. NTT Co. NTT Co.

Speedup
25r-----------------------------~24

20

15

10

5

2x4
2x2
1x2
1 x 1

... : •••••.••••••••• 0 •• '.' ••• , ••• ,···,·,·,·,·,···,···,

o ~----------------------------~
24 8 16 32 64

of PEs

Figure 7: Data size vs. speedup

2.5.1 Data size vs. speedup

241

Generally, when data size increases, the number of pro
cesses increase too and more parallelism can be expected.
Higher parallelism can lead to greater efficiency or larger
speedup with a fixed number of processors. We measured
the relationship between the size of data and speedup.

In this experiment, we used data copying DATAl.
Here we measured four cases (1 xl, 1 x2, 2x2, and 2x4).
Figure 7 shows the result of measurement. This graph
shows that the larger the size of data, the higher the
speedup. It also shows 24-fold speedup with 64 proces
sors for 2 x4 data it does not look saturated yet. We
have to investigate the limit of speedup with increasing
data size.

2.5.2 Wiring rate vs. parallelism

Parallel routing of multiple nets may cause a degradation
in wiring rate. We measured the relation between wiring
rate and parallelism for DATAl and DATA2, as shown
in Figure 8. The two vertical axes show execution time
and wiring rate. The horizontal axis shows the num
ber of nets routed concurrently. Parallelism is propor
tional to this. When equal to one, parallelism only arises
from parallellookahead operations. It was observed that
terminal-distributed data shows good wirability, even if
parallelism is high, when the terminal-concentrated data
is poor. Concentrated terminals tend to cause a lot more
net confliction.

2.5.3 Comparison with a general purpose com-
puter

The execution time of DATA2 with a single processor
was measured as 111 seconds. From Figure 8, speedup
caused only by lookahead operation is calculated as 4.9.

The execution time of our system was compared with
a general purpose computer, the IBM 3090/400, which
is a 15 MIPS machine. The sequential lookahead line
search router on the IBM machine was developed by Dr.
Kitazawa. (NTT Co.) before our work wa.s conducted.
Table 2 shows the performance of the routers.

242

Execution time(sec.) Wiring rate(%)
30~--~--~~~~~~~~~~~~~~100

Ij
I
~

25 1\

20

15

10

\
"

Wiring rate (DATAl)

\
'\ Wiring rate (DAT A2)

\ " ... ~, ~,..,. , ,
, 72%
... ",,®

Execution time (DATA2) 7 sec.

99%

90

80

70

8 sec.

o 00
o ~ ro 100 1~

of nets

Figure 8: Wiring rate vs. parallelism

Two cases of the Multi-PSI measurements (with
64PEs) are included in the table. One routed all nets
concurrently and the other routed each net one after an
other. The former case shows the better execution time
but worse wiring rate. The latter case accomplished the
perfect wiring rate but worse execution time for DATA2.
We expect to realize both good execution time and good
wiring rate by controlling the number of nets wired con
currently and changing the wiring order. (In fact, on
DATA2, W:100 % and E:16 sec. under the number of
nets wired concurrently is equal to 2.)

The evaluation for large data (DATA3) has just
started. The wiring rate in the table is still insufficient
but it will be improved as mentioned just above.

Table 2: Comparison of performance

Data\Machines IBM Multi-PSI Multi-PSI
3090/400 (64PEs) t (64PEs) t

DATA2 E 7.45 7.0 20.0
W 100 72 100

DATA3 E 405.0 360.0 N.A.
W 100 90 N.A. ..

E:executlOll time (Sec.),W:wmng rate(%)
t concurrent wiring of all nets
t sequential wiring of each net

Multi-PSI
(lPE)

111.0
100

N.A.
N.A.

The execution time of the router on the Multi-PSI can
be considered almost comparable with that on an IBM
machine. When our router is ported to PIM machines,
the next model to the Multi-PSI, the execution time will
be reduced to 1/10 to 1/20 in execution with 256 to 512
processors.

The performance of the bare hardware of a Multi-PSI
processor is 2 to 3 MIPS. And the efficiency of parallel
processing (speedup/number of processors) is 25% for
the case of Multi-PSI(64PEs) with concurrent wiring of
all nets on DATA2. So, bare hardware performance with
64 processors is expected to be 32 to 48 MIPS (2 to 3

x 64 x 0.25). While, the actual performance is com
parable with the 15MIPS machine. The degradation of
actual performance must be caused by the implementa
tion overhead of the object-oriented pr,ogram and KL1
language.

2.6 Discussions

We presented a new routing method based on the concur
rent objects model, which can include very large concur
rency and is suitable for very large parallel computers.
The program was implemented on a distributed memory
machine with 64 processors. Preliminary evaluation was
then done with actual LSI data.

The experimental results showed that the larger the
data size, the higher the efficiency attained by a maxi
mum of 24-fold speedup with 64 processors against sin
gle processor execution. The speedup curve did not look
significantly saturated, that is, more speedup can be ex
pected with more data.

In experiments on parallelism and the wiring rate, a
good wiring rate with large parallelism was attained for
data in which terminals are distributed uniformly. How
ever, for data with concentrated terminals, the wiring
rate became significantly worse, due to the increase in
parallelism. We must improve the wiring rate in the lat
ter case.

The actual performance of our router system was com
pared with an almost identical router on a high-end gen
eral purpose computer (IBM3090/400, 15 MIPS). Re
sults showed that the speed of both systems was com
parable. Based on a rough comparison of bare hard
ware speeds, the implementation overheads of the par
allel object-oriented program and our language are es
timated as 100 to 200% in total, against the sequential
FORTRAN program on the IBM machine.

3 Placement System

3.1 Background

Cell placement is the initial stage of the LSI layout design
process. After the functional and logical designs of the
circuit are completed, the physical positions of the circuit
components are determined so as to route all electrical
connections between cells in a minimum area without
violating any physical constraints. Heuristics for evalu
ating the quality of a placement usually promote one or
more of the following: minimum estimated wire length,
an even distribution of wires around the chip, minimum
layout area, and regular layout shape.

The cell placement problem is well-known as a difficult
combinatorial optimization problem. In other words, it
is not feasible for obtaining the optimum placement of
a circuit with practical size because it takes excessively
amounts of CPU time. So efficient techniques to get
nearly optimum placement must be employed in practice.

3.2 Simulated Annealing

Approximate methods are used to solve the combinato
rial optimization problem. One such method is called
iterative improvement. In this algorithm, the initial so
lution is generated, and, then, modified repeatedly to try
to improve it. In each iteration, if the modified solution
is better than the previous one, the modified solution
becomes the new solution.

The process of altering the solution continues until we
can make no more improvement, thus yielding the final
solution. The problem with this algorithm is that it can
be trapped at a local optimum in a solution space.

The Simulated Annealing(SA) algorithm [Kirkpatrick
et al. 1983] is proposed to solve this problem. It proba
bilistically accepts a new solution even if the new solution
may be worse temporarily. Its acceptance probability is
calculated according to the change in the estimated cost
value of the solution and the parameter "temperature".
The cost function is often referred to as "energy". In
this way, it is possible to search for the global optimum
without being trapped by local optima.

The details of this algorithm are as follows.
It is constructed from two criteria, the inner loop cri

terion and the stopping criterion. At first, the initial
solution and initial temperature are given. In the in
ner loop criterion, new' solu tions are generated iteratively
and each solution is evaluated to decide whether it is ac
ceptable. The units of iteration which are constructed
by generating and estimating the new solution are called
"step". In each stage of the inner loop criterion, the
temperature parameter is fixed. In the stopping crite
rion, after a sufficient number of iterations are performed
in the inner loop, the temperature is decreased gradually
according to a given set of temperatures called the "cool
ing schedule". The stopping criteria are satisfied when
the energy no longer changes.

One of the most difficult things in SA is finding an ap
propriate cooling schedule, which largely depends on the
given problem. If the cooling schedules are not adequate,
satisfiable solutions will never be obtained.

3.3 Parallel Simulated Annealing

A new parallel simulated algorithm(PSA) is proposed
to solve the cooling schedule problem [Kimura et al.
1991]. The most important characteristic of this algo
rithm is that it constructs the cooling schedule automat
ically from the given set of the temperatures. The basic
idea is to use parallelism in temperature, to perform SA
processes concurrently at various temperatures instead of
sequentially reducing the temperature. So it is schedule
less or time-homogeneous in the sense that there are no
time-dependent control parameters.

After executing a fixed number of annealing steps, the
solutions between the adjacent temperatures are proba~
bilistically exchanged as follows. When the fixed number
of annealing steps is denoted by k, 1/ k is called the "fre-

243

quency". When the energy of the solution at a higher
temperature is lower than that at a lower temperature
the solutions between these temperatures are exchanged
unconditionally. Otherwise they are exchanged accord
ing to a probability that is determined by differences in
their energies and temperatures [Kimura et al. 1991].

In PSA, even if a solution is trapped at a local optimum
at a certain temperature, it is still possible to search for
global optima because another new solution can be sup
plied from a higher temperature. So a nearly optimum
solution will finally be found at the lowest temperature.

3.4 Outline of the System

Our experimental placement system employs the PSA
algorithm. It is constructed on Multi-PSI, an MIMD
machine, and the KL1 language is used to implement
the system [Chikayama et al. 1988]. The intention is to
provide a satisfiable solution in a feasible time. It is also
applied to placement problems to examine the efficiency
of the PSA algorithm.

The object of this system is the standard cell LSI
without any macro blocks. The standard cells have uni
form height and variant widths. These cells are arranged
in multiple cell-blocks so as to minimize the chip area.
Namely, it decides the location of each cell so as to mini
mize the total estimated wire length, which approximates
the total routing length.

3.5 Implementation

3.5.1 Initial placement and new solution gener
ation

The initial cell positions are determined randomly. In
our placement system, SA processes are split into two
temperature regions. The number of temperatures in the
two regions should be specified by the user. Usually one
or more temperatures are necessary for the lower region.

In the higher temperature region, there are two ways to
generate a new solution. One way is to move a randomly
selected cell to a random destination. The other way is
to exchange the position between two randomly selected
cells.

In the lower temperature region, generating a new so
lution is done by exchanging two arbitrary adjacent cells
within a cell-block.

Moreover the range-limiter window is introduced
[Sechen et al. 1985]. The range-limiter window restricts
the. ranges for moving and exchanging cells. The lower
the temperature becomes, the smaller the size of the win
dow becomes. It suppresses the generation of new solu
tions that are unlikely to be accepted.

3.5.2 Estimation of a new solution

The energy of a solution is the sum of the three values
listed below [Sechen et al. 1985].

244

• estimated wire length

• the cell overlap penalty

• the block length penalty

The estimated wire length approximates the routing
lengths between the cells. The estimated wire length of
a single net is the half-perimeter length of the minimum
bounding box which encloses all of the pins comprising
the net.

The cell overlap penalty estimates the overlap between
cells. In the higher temperature region, we permit over
lap between cells because the cost of recalculating the
estimated wire length for a new solution can be reduced.
If overlap were not permitted, the overlap incurred by
moving or exchanging cells would have to be removed
by shifting many cells. As a result, the estimated wire
length would have to be recalculated with respect to all
of the nets connected to these shifted cells. In the lower
temperature region, cells are never overlap, a new solu
tion can be re-estimated only by calculating the change
in total estimated wire length, because the two penalties
don't change in this case.

The block length penalty estimates the difference be
tween ideal and real block length. It is desirable to have
cell blocks of a uniform length.

When the solutions are exchanged between the two
temperature regions, the overlap between cells in the
higher temperature region is removed as the solution is
passed to the lower one.

3.5.3 Load distribution and solution exchange
between adjacent temperatures

In PSA, each SA process is assigned to a separate proces
sor, because executions at each temperature are highly
independent and the amount of execution is nearly equal.

When we try to implement the exchange mechanism
of the solutions, the natural way may be to exchange the
solutions between the processors. But, when an MIMD
machine like Multi-PSI is used, the exchange of large
placement data between processors incurs a large com
munication overhead. So, solutions exchange between
adjacent temperatures should be done by exchanging
temperature values between processors.

Processors with adjacent temperatures hold a common
variable and use this for communication. This is called
a "stream" in KL1 [Chikayama et al. 1988] and is real
ized by an endless 'list'. These streams are also swapped
between processors when the solutions between adjacent
temperatures are exchanged.

3.5.4 Performance monitoring subsystem

The monitor displays the energy value of each SA process
in real- time. It is useful to overview the entire state of
the system performance. This energy graph is updated

Table 3: Number of temperatures .vs. quality of solution

. when adjacent temperatures are exchanged. As it dis
plays the exchange in energy value in real time, it helps
us to decide when to stop the execution. After several
short time executions, we can decide the number of tem
peratures·in the two regions and the highest temperature
from the dispersion of the energy graph.

The monitoring subsystem is constructed on a Front
End Process so that it does not incur an overhead in
SA process execution. It is also possible to roll back the
energy graph while SA processes are being executed.

3.6 Experimental Results and Discus-
sions

The MCNC benchmark data [MCNC 1990], consisting
of 125 cells and 147 nets, was chosen for our measure
ments. In the initial placement, the value of energy was
911520 and a lower bound of the chip area was estimated
as 1.372[mm2].

The PSA was executed in 20,000 inner loops, with ex
changes every hundred inner loops. 64 processors can
be used on Multi-PSI. The number of temperatures is
63, the highest temperature is 10,000, the lowest is 20
and other temperatures are determined proportionally.
5 temperatures are assigned to the lower temperature
region. The lower bound of the area of the final solu
tion is estimated as 0.615 [mm2

], reduced by 56.0 % in
comparison to the initial solution. The execution time
was about 30 minutes and the final energy was 424478.
Table 3 shows the system performance of the relation
between the number of temperatures and quality of so
lutions. When the number of temperatures is 32, 16 or
8, with the other conditions the same, the lower bounds
of the final chip are estimated as shown in Table 3.

When the number of temperatures is 63, the cooling
schedules adopted by the final solution were as follows.
The initial temperature was 3823, the highest temper
ature in the process was 4487, and the number of tem
peratures the solution passed was 53. We observed that
10 solutions out of the initial 63 had been disposed of at
the lowest temperature. This indicates that the mecha
nism of the automatic cooling schedules actually worked
as intended.

When the number of temperatures is 8, the results
are even worse. If the dispersions in energy for each
temperature are too far from each other, the chance of
exchange gets small. So the automatic cooling schedules
will not work as intended. As a result, th·e algorithm can
not get out of the local optimum.

To get an effective cooling schedule, it is necessary to

find the appropriate value of the highest temperature so
that it can reach the disorder state. It is also necessary
to adjust the number of temperatures according to the
size of the problem.

A's a future work, we are planning to study the mech
anism for deciding the initial temperatures assigned to
each processor from the energy dispersion of the solu
tions.

From the viewpoint of system performance, more
speed-up and improvement in the ability to treat larger
amounts of benchmark data are needed as the next step.

4 Logic Simulator

4.1 Background

The logic simulator is used in order to verify not only the
functions of designed circuits but also the timing of signal
propagation. Parallel logic simulation is treated as a
typical application of Parallel Discrete Event Simulation
(PDES). PDES can be modeled so that several objects
(state automata) change their states by communicating
with each other. A message has information on the event
whose occurrence time is stamped on the message (time
stamp). In logic simulation, an object corresponds to a
gate and an event means the change of the signal value.

In PDES, the time-keeping mechanism is essential for
efficient execution. The mechanisms broadly fall into
three categories: synchronous mechanisms, conservative
mechanisms and optimistic mechanisms. Their peculiar
shortcomings are widely known; the synchronous mech
anisms require global synchronization, the conservative
mechanisms often deadlock and the optimistic mecha
nisms need rollback.

We are targeting an efficient logic simulator on PIM,
which is a distributed memory MIMD machine. We
adopted an optimistic mechanism, the Time Warp mech
anism (TW), whose rollback process has been considered
to be heavy. In practice, however, TW has neither been
evaluated in detail nor compared with other mechanisms
on MIMD machines.

We expected that TW would be suitable for logic sim
ulator on large-scale MIMD machines with some devices
that reduced the rollback overhead. Thus a local mes
sage scheduler, an antimessage reduction mechanism and
a load distribution scheme were added to our system and
evaluated. Furthermore, we made two other simulators
using different time-keeping mechanisms and compared
the mechanisms with TW.

4.2 Time Warp Mechanism

The Time Warp mechanism[Jefferson 1985] was proposed
by D. R. Jefferson. InPDES using TW, each object usu
ally acts according to received messages and also records
the history of messages and states, assuming that mes
sages arrive chronologically. But when a message arrives

245

at an object out of time-stamp order, the object rewinds
its history (this process is called rollback), and makes
adjustments as if the message had arrived in the correct
time-stamp order. After rollback, ordinary computation
is resumed. If there are messages which should not have
been sent, the object also sends antimessages in order to
cancel those messages.

4.3 System Specification

The system simulates combinatorial circuits and sequen
tial circuits that have feedback loops. It handles three
values: Hi, Lo, and X (unknown). A different delay time
can be assigned to each gate (non-unit delay model).
Since this simulator only treats gates, flip-flops and other
functional blocks should be completely decomposed into
gates.

4.4 Implementation

Since TW contains its peculiar overheads caused by the
rollback processes, some devices for reducing overheads
are needed for quick simulation. Furthermore, inter-PE
communication overheads must be reduced because the
simulator works on a distributed memory machine such
as PIM.

For these purposes, a load distribution scheme, a local
message scheduler and an antimessage reduction mecha
nism are included in our simulator. These are expected
to reduce the overheads described above and might pro
mote efficient execution of the simulator.

Each device is outlined below. Details are presented
in [Matsumoto et al. 1992].

• Cascading-Oriented Partitioning

We propose the "Cascading-Oriented Partitioning"
strategy for partitioning circuits to attain high-quality
load distribution.

This scheme provides adequate partitioning solutions
that satisfy these three requirements: load balancing,
keeping inter-PE communication frequency low and de
riving a lot of parallelism.

• Local Message Scheduler

During simulation, there are usually several messages
to be evaluated in a PE. When the Time Warp mecha
nism is used, the bigger the time-stamp a message has,
the more likely the message is to be rolled back. For
this reason, appropriate message scheduling in each PE
is n'eeded for reducing rollback frequency.

• Antimessage Reduction

As long as messages are sent through the KL1 stream,
messages arrive at their receiver in the same order as
they are transmitted. In this environment, subsequent
antimessages can be reduced. We adopted this optimiza
tion, expecting that it would reduce the rollback cost.

246

Speedup

60

50

40

30

20

10

10

Ideal
s13207
s9234
s5378
s1494

20 30 40

Figure 9: Speedup

4.5 Measurements

9K
ev /sec)

50 60
No. of PEs

We executed several experimental simulations on the
Multi-PSI. Four sequential circuits, presented in IS
CAS'89, were simulated in our experiments.

Figure 9 shows the system performance when the cir
cuits were simulated using various numbers of PEs. The
best performance is also shown there. In the best case,
very good speedup of 48-fold was attained using 64 PEs.
Approximately 99K events/sec performance, fairly good
for a full-software logic simulator, was also attained.

4.6 Comparison between Time-keep-
ing Mechanisms

For the purpose of comparing the Time Warp mechanism
with others on the same machine, we made a further two
simulators; one uses the synchronous mechanism and the
other uses the conservative mechanism.

In the synchronous mechanism, only messages with
the same time-stamp can be evaluated simultaneously.
Therefore, a time wheel residing in each PE must syn
chronize globally at every tick. On the other hand,
the problem of deadlock should be resolved [Misra
1986, Soule et al. 1989] in conservative mechanisms. Our
simulator basically uses null messages to avoid deadlock.
A mechanism for reducing unnecessary null messages is
also added in order to improve performance.

Figure 10 compares system performance when circuit
s13207 was simulated under the same conditions (load
distribution, input vectors, etc.).

The synchronous mechanism showed good perfor
mance using comparatively few PEs, however, the per
formance peaked at 16 PEs. Global synchronization at
every tick apparently limits performance.

The conservative mechanism indicated good speedup
but poor performance: using 64 PEs, only about 1.7 k
events/sec performance was obtained. We measured the
number of null messages generated during the simulation
and found that the number of null messages was 40 times
as many as that of actual events! That definitely was the
cause of the poor performance.

Performance

100000

80000

60000

40000

20000

Time Warp
Conservative
Time Wheel

10 20 30 40 50 60
No. of PEs

Figure 10: Performance Comparison (events/sec)

This comparison substantiates that the Time Warp
mechanism provides the most efficient simulation of the
three mechanisms on distributed memory machines such
as the Multi-PSI.

5 Concluding Remarks

This paper presented ICOT-developed parallel systems
for routing, placement and logic simulation, and reported
on their evaluation.

In the routing system, the router program was de
signed based on the concurrent objects model and con
gruent with the KLI description was introduced. As a
result, appreciably good speedup was attained and the
quality of the solutions was high especially for large-scale
data.

The parallel placement system is based on time
homogeneous SA, which realizes an automatic cool
ing schedule. The remarkable point of this system is
that parallelization was applied not for the purpose of
speedup, but to obtain high quality solutions.

The parallel logic simulator simply targeted quick exe
cution. Absolutely good speedup was attained. The ex
perimental results for three kinds of time-keeping mech
anisms revealed that the Time Warp mechanism was
the most efficient time-keeping mechanism on distributed
memory machines.

These three systems are positive examples which sup
port that PIM possesses high applicability to various
practical problem domains as a general purpose paral
lel machine .. Besides them, we are currently developing
a hybrid layout system in which routing and placement
are performed concurrently, improving interim solutions
incrementally. These experiments, including the hybrid
layout system, are just the preliminary experiments in
the coming epoch of parallel machines, but they must be
one of the most important and fundamental experiences
for the future.

Acknowledgement

Valuable advice and suggestions were given by the mem
bers of PIC-WG, a working group in ICOT, during
discussion of parallel LSI-CAD. The authors gratefully
thank them. Data for the evaluation of our systems were
recommended and given by NTT Co., Hitachi Ltd. and
Fujitsu Ltd. We also thank these companies.

References

[Brouwer 1990] R. J. Brouwer and P. Banerjee. PHIG
URE : A Parallel Hierarchical Global Router. In Proc.
27th Design Automation Conj., 1990. pp. 650-653.

[Chikayama et al. 1988] T. Chikayama, H. Sato and T.
Miyazaki. Overview of the parallel inference machine
operating system (PIMOS). In Pmceedings of Inter
national Conference on Fifth Generation Computer
Systems, ICOT, Tokyo, 1988. pp. 230-251.

[Fukui 1989] S. Fukui. Improvement of the Virtual Time
Algorithm. Transactions of Informa.tion Processing
Society of Japan, Vol.30, No.12 (1989), pp. 1547-
1554. (in Japanese)

[Jefferson 1985] D. R. Jefferson. Virtual Time. ACM
Transactions on Programming Languages and Sys
tems, Vo1.7, No.3 (1985), pp. 404-425.

[Kawamura et al. 1990] K. Kawamura, T. Shindo, H.
Miwatari and Y. Ohki. Touch and Cross Router. In
Proc. IEEE ICCAD90, 1990. pp. 56-59.

[Kimura et al. 1991] K. Kimura and K. Taki. Time
homogeneous Parallel Annealing Algorithm. In Proc.
IMACS'91, 1991. pp. 827-828.

[Kirkpatrick et al. 1983] S. Kirkpatrick, C. D. Gellat
and M. P. Vecci. Optimization by Simulated Anneal
ing, Science, Vo1.220, No.4598, 1983. pp. 671-681.

[Kitazawa 1985] H. Kitazawa. A Line Search Algorithm
with High Wireability For Custom VLSI Design, In
Pmc. ISCAS'85, 1985. pp. 1035-1038.

[Matsumoto et al. 1992] Y. Matsumoto and K. Taki.
Parallel logic Simulator based on Time Warp and its
Evaluation. In Proc. Int. Conj. on Fifth Generation
Computer Systems, ICOT, Tokyo, 1992.

[MCNC 1990] P1'OC. International TiVorkshop Layout
Synthesis '90 Research Triangle Park, North Car
oEna, USA, May 8-11, 1990.

[Misra 1986] J. Misra. Distributed Discrete-Event Sim
ulation. ACM Computing Surveys, Vol. IS, No.1
(1986), pp. 39-64.

247

[Nair et al. 1982] R. Nair, S. J. Hong, S. Liles and R.
Villani. Global Wiring on a Wire Routing Machine.
In Pmc. 19th Design Automation Conj.l 1982. pp.
224-231.

[Nakajima et al.1989] K. Nakajima, Y. Inamura, N.
Ichiyoshi, K. Rokusawa and T. Chikayama. Dis
tributed Implementation of KLI on the Multi
PSIjV2, In Proc. 6th Int. Conj. on Logic Program
ming, 1989. pp. 436-45l.

[Olukotun et al. 1987] O. A. Olukotun and T. N. Mudge.
A Preliminary Investigation into Parallel Routing on
a Hypercube Computer, In Proc. 24th Design A u
tomation Con!, 1987. pp. 814-S20.

[Rose 1988] J. Rose. Locusroute: A Parallel Global
Router for Standard Cells, In Proc. 25th Design A u
tomation Con!, 1988. pp. 189-195.

[Sechen et al. 1985] C. Sechen and A. Sangiovanni
Vincentelli. The TimberWolf Placement and Rout
ing Package, IEEE Journal of Solid-State Circuits,
Vol.SC-20, No.2, (1985), pp. 510-522.

[Soule et al. 1989] L. Soule and A. Gupta. Analysis of
Parallelism and Deadlock in Distributed-Time Logic
Simulation. Stanford University Technical Report,
CSL-TR-89-378 (1989).

[Suzuki et al. 1986] K. Suzuki, Y. Matsunaga, M.
Tachibana and T. Ohtsuki. A Hardware Maze Router
with Application to Interactive Rip-up and Reroute.
IEEE Trans. on CAD, Vol.CAD-5, No.4, (1986), pp.
466-476.

[Taki 1988] K. Taki. The parallel software research and
development tool: Multi-PSI system, Programming of
Future Generation Computers, pp. 411-426, North
Holland, 1988.

[Ueda et al. 1990] K. Ueda, T. Chikayama. Design of the
Kernel Language for the Parallel Inference Machine.
The Computer Journal, Vol.33 , No.6, (1990), pp. 494-

'500.

[Watanabe et al. 1987] T. Watanabe, H. Kitazawa, Y.
Sugiyama. A Parallel Adaptable Routing Algorithm
and its Implementation on a Two-Dimensional Array
Processor. IEEE Trans. on CAD, Vol.CAD-6, No.2,
(1987), pp. 241-250.

[Won et a1. 1987] Y. Won, S. Sahni and Y. El-Ziq. A
Hardware Accelerator for Maze Routing. In Proc.
24th Design Automation Conj., 1987. pp. SOO-806.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 248

Parallel Database Management System: Kappa-P

Moto Kawamura Hiroyuki Sato t
Kazutomo N aganuma Kazumasa Yokota

Institute for New Generation Computer Technology (ICOT)
21F. Mita-Kokusai Bldg., 1-4-28 Mita, Minat'o-ku, Tokyo 108, Japan

e-mail: {kawamura, naganuma, kyokota }@icot.or.jp Tel: +81-3-3456-3069 Fax: +81-3-3456-1618

t Mitsubishi Electric Corporation
Computer & Information Systems Laboratory

5-1-1 Of una, Kamakura, Kanagawa 247, Japan
e-mail: hiroyuki@isl.melco.co.jp Tel: +81-467-46-3665 Fax: +81-467-44-9269

Abstract

A parallel database management system (DBMS) called
K appa-P has been developed in order to provide ef
ficient database management facilities fQr knowledge
information processing applications in the Japanese
FGeS project. The data model of Kappa-P is based
on a nested relational model for treating complex data
structures, and has some new data types. Kappa-P has
features of both a parallel DBMS on a tightly-coupled
multiprocessor and a distributed DBMS on a loosely
coupled multiprocessor. In this paper, we describe the
overview of Kappa-P.

1 Introduction

In the Japanese FGeS (Fifth Generation Computer
System) project, many knowledge information process
ing systems (KIPSs) have been designed and developed
under the framework of logic and parallelism. Among
them, R&D of databases and knowledge-bases[14] aims
at an integrated know ledge-base management sys
tem (KBMS) under a framework of deductive object
oriented databases (DOODs). Kappa 1 is a database
management system (DBMS) located in the lower layer
and is also a name of the project. The objective is to
provide database management facilities for many KIPSs
and support efficient processing of the FGCS prototype
system as the database engine. In the Kappa project,
we have developed a sequential DBMS, Kappa-II and a
parallel DBMS, Kappa-P. Both systems adopt a nested
relational model.

Kappa-II, which is a research result of the intermedi
ate stage, is written in ESP, and works on sequential
inference machines PSI and its operating system SIM
pas. The system showed us that our approaches based

l,Knowledge Application-Oriented Advanced Database Man
agement System

on the nested relational model are sufficient for KBMSs
and KIPSs, and has been used as the DBMS on PSI
machines by various KIPSs, for instance natural lan
guage processing systems with electronic dictionaries,
proof checking systems with mathematical knowledge,
and genetic information processing systems with molec
ular biological data.

A parallel DBMS project called Kappa-P[7] was ini
tiated at the beginning of the final stage. Kappa-P is
based on Kappa-II from a logical point of view, and its
configuration and query processing have been extended
for the parallel environment. Kappa-Pis written in
K11 and works on the environment of PIM machines
and their operating system PIMOS. The smallest con
figuration of Kappa-P is almost the same as Kappa-II.
Compared both systems on the same machine, Kappa
P works with almost the same efficiency as Kappa-II.
Kappa-P is expected to work on PIM more efficiently
than Kappa-II, as their environments are different.

We describe the design policies in Section 2 and
the features in Section 3. We -explain the features of
Kappa's nested relational model that are different from
others in Section 4. Then, we describe an overview
of the Kappa-P system: data placement in Section 5,
management of global information in Section 6, query
processing in Section 7, and implementation issues of
element DBMSs in Section 8.

2 Design Policies

There are various data and knowledge with complex
data structure in our environment. For example, molec
ular biological data treated by genetic information
processing systems includes various kinds of informa
tion and huge amounts of sequence data. The Gen
Bank/HGIR database[3] has a collection of nucleic
acids sequences, the physical mapping data, and re
lated bibliographic information. Amount of data has

been increasing exponentially. Furthermore, the length
of values is extremely variable. For example, the
length of sequence data ranges from a few characters
to 200,000 characters and becomes longer for genome
data. Conventional relational model is not sufficient for
efficient data representation and efficient query process
ing. Since the data is increasing rapidly, more process
ing power and more secondary memory will be required
to manage it. Such situations require us to have a data
model which can efficiently treat complex structured
data and huge amount of data.

Parallel processing enables us to improve through
put, availability, and reliability. PIM-p is a hybrid
MIMD multi-processor machine which has two as
pects, a tight1y-coupl~d multi-processor with a shared
memory, called a cluster, and a loosely-coupled multi
processor connected by communication networks. Disks
can be connected to each cluster directly. The archi
tecture can be that of typical PIMs. Both applications
and Kappa-P are executed on the same machine. Both
KBMSs and KIPSs need a lot of processing power to
improve their response, so Kappa-P should be designed
to improve the throughput. The system should use re
sources effectively, and be adapted for the environment.

For the above requirements, the system is designed
as follows:

• In order to treat complex structured data ef
ficiently, a nested relational model is adopted.
The model is nearly the same as Kappa-II's data
model, which shows us efficient handling of com
plex structured data. New data types and new
indexed attributes should be added to handle huge
amounts of data efficiently.

• The system should use system resources effectively
to improve throughput. System resources are pro
cessing elements, shared memories, disks, and com
munication networks.

The system should use hybrid multi
processors effectively.

Main memory database facilities should be
provided for effective utilization of (shared)
main memories. Because the data structure of
the nested relation with variable occurrences
and strings is complex, such a structure can
be handled more efficiently on main memory
than secondary memory.

The system should provide parallel disk ac
cess to reduce disk access overheads.

The system should actively control communi
cation among clusters in order to reduce 'com
munication overheads in query processing.

249

• The system should be adapted for the en
vironment. Though Kappa-P may be similar
to database machines[l], the difference between
Kappa-P and database machines is that both ap
plications and a DBMS work together on the same
machine.

The system should provide functions to re
duce communication overheads between appli
cations and the system, because they work
together on the same machine. The functions
execute part of applications at clusters which
produce input data.

- The system should provide a mechanism to
process some queries in an application, be
cause internal processing of an application is
parallel, and some queries can occur in paral
lel.

The system uses the PIMOS file system, a
part of which is designed for Kappa-P. The
file system provides efficient access to large
files, mirrored disks, and the sync mechanism
for each file.

3 Features

According to the policies mentioned in the previous
section, Kappa-P has been implemented. The system
has the following features:

• Nested Relational Model

Already mentioned, conventional relational model is
not appropriate in our environment. In order to treat
complex structured data efficiently, a nested relational
model is adopted. The nested relational model with a
set constructor and hierarchical attributes can repre
sent complex data naturally, and can avoid unnecessary
division of relations. The model is nearly the same as
Kappa-II's data model, which shows us efficient han
dling of complex structured data. Because Kappa-P is
also the database engine for the KBMS of the FGCS
project, the semantics of nested relations matches the
knowledge representation language, QUIxoT£[lO] of the
KBMS.

Term is added as a data type to store various knowl
edge. The character code of the PIM machine is based
on 2-byte code, but the code wastes secondary memory
space. In order to store a huge amount of data, such as
a genome database in the near future, new data types
and new indexed attributes are added.

• Configuration

The configuration of Kappa-P corresponds to the
architecture of the PIM machine, and distinguishes

250

inter-cluster parallelism from intra-cluster parallelism.
Kappa-P is constructed of a collection of element
DBMSs located in clusters. These element DBMSs co
operate to process each other's queries.

Figure 1 shows the overall configuration of Kappa
P. The global map of relations is managed by some
element DBMSs called server DENISs. Sever DBMSs
manage not only global map but also ordinary rela
tions. Element DBMSs, with the exception of server
DBMSs, are called local DBMSs. Interface processes are
created to mediate application programs and Kappa-P,
and receive queries as messages.

Figure 1: Configuration

• Data Placement

The placement of relations also corresponds to par
allelism: inter element DBMS placement and intra ele
ment DBMS placement.

In order to use inter-cluster parallelism, relations can
be located in some element DBMSs. The simple case
is the distribution of relations like distributed DBMSs.
When a relation needs a lot of processing power and
higher bandwidth of disk access, the relation can be
declustered as a horizontally partitioned relation and
can be located in some element DBMSs. When a rela
tion is frequently accessed in any query, some repljcas
of the relation can be made and can be located in some

element DBMSs. However, in the current implementa
tion, the replicated relation can be used for the global
map only, that is, for server DBMSs.

Relations can be located in main memory or sec
ondary memory in an element DBMS. Relations in
main memory are temporary relations with no corre
spondent data in secondary memory. This means rela
tion dis.tribution in an element DBMS. A quasi main
memory database, which guarantees to reflect those
modifications to secondary memory, contains a rela
tion in secondary memory and a replica of the relation
in main memory.

• Query Processing

There are two kinds of commands for query process
ing: primitive commands and 1(QL, a query language
based on extended relational algebra. Primitive com
mands are the lowest operations for relations, and can
treat relations efficiently. The KQ1 is syntactically like
K11. New operations can be defined temporarily in a
query.

A query in KQ1 is translated into sub-queries in in
termediate operations for extended relational algebra,
and is submitted to relevant element DBMSs. A query
in primitive commands is submitted to relevant ele
ment DBMSs. The query is processed as a distributed
transaction among relevant element DBMSs, and is fin
ished under the control of two phase commitment pro
tocol.

• Parallel Processing

Parallel processing of Kappa-P corresponds to the
architecture of the PIM machine: inter-cluster paral
lelism among element DBMSs and intra-cluster paral
lelism in an element DBMS. The trade-off is processing
power and communication overheads.

There are two kinds of parallel processing depend
ing on data placement. Distribution of relations and
horizontal partition of relations give us inter-cluster
paralleljsm. In this case, a query is translated into
sub-queries for some element DBMSs. Replication of
a relation decentralizes access to the relation and im
proves availability.

• Compatibility to Kappa-II

The PIM machine is used via PSI machines acting
as front-end processors. In order to use programs de
veloped on PSI machines, such as terminal interfaces or
application programs on Kappa-II, Kappa-P provides
a program interface compatible to Kappa-II's primitive
commands.

4 Nested Relational Model

A nested relational model is well known to reduce the
number of relations in the case of multi-value depen
dency and to represent complex data structures more
naturally than conventional relational model. However,
there have been some nested relational models[8, 9, 2]
since the proposal in 1978[6]. That is, even if they are
syntactically the same, their semantics are not neces
sarily the same. In Kappa, one of the major problems
is which semantics is appropriate for the many appli
cations in our environment. Another problem is which
part of QUIXOTe should be supported by Kappa as
a database engine because enriched representation is
a trade-off in efficient processing. In this section, we
explain the semantics of the Kappa model.

Intuitively, a nested relation is defined as a subset of
a Cartesian product of domains or other nested rela
tions:

NR ~ El x··· x En
Ei .. - D 12NR

where D is a set of atomic values 2. That is, the re
lation may have a hierarchical structure and a set of
other relations as a value. It corresponds to introducing
tuple and set constructors as in complex objects. Cor
responding to syntactical and semantical restrictions,
there are various subclasses, in each of which extended
relational algebra is defined.

In Kappa's nested relation, a set constructor is used
only as an abbreviation for a set of normal relations as
follows:

{r[ll = a, 12 = {bI, ... , bn }]}

¢:} {r[ll = a, 12 = bd,· .. , r[ll = a, 12 = bn]}

The operation of ":::}" corresponds to an unnest op
eration, while "¢::" corresponds to a nest or group-by
operation. "¢::", however, is not necessarily congruent
for the application sequence of nest or group-by oper
ations. That is, in Kappa, the semantics of a nested
relation is the same as the corresponding relation with
out set constructors. The reason why we take such
semantics is to retain the first order semantics for effi
cient processing and to remain compatible with widely
used relational model. Let a nested relation

NR= {ntl,···,nt n }

where nti = {til'···' tid for i = 1,···, n,

then the semantics of N R is {tIl'···' tlk,···, tn },· .. ,

tnk}. Extended relational algebra to this nested re
lational database is defined in Kappa and produces

2The term "atomic" does not carry its usual meaning. For
example, when an atomic value has a type term, the equality
must be based on unification or matching.

251

results according to the above semantics, which guar
antees to produce the same result to the corresponding
relational database, except treatment of attribute hier
archy.

As a relation among facts in a database is conjunc
tive from a proof-theoretic point of view, we consider a
query as the first order language: that is, in the form
of rules. The semantics of a rule constructed by nested
tuples with the above semantics is rather simple. For
example, the following rule

r[ll =X, 12 = {a, b, e}]
¢:: B, r'[13 = Y, 14 = {d, e}, 15 = Z], B'.

can be transformed into the following set of rules with
out set constructors:

r[ll= X, h = a] ¢::

B, r'[13 =.Y, 14 = d, 15 = Z], r'[13 = Y, 14 = e, 15 = Z], B'.
r[l1=X,12=b] ¢::

B, r'[13 = Y,14 = d, 15 = Z], r'[13 = Y, 14 = e, 15 = Z], B'.
r[11=X,12=e] ¢::

B, r'[13= Y, 14 = d, 15 = Z], r'[13= Y,14 = e, 15 = Z], B'.

That is, each rule can also be unnested into a set of
rules without a set constructor. The point of efficient
processing of Kappa relations is how to reduce the
number of unnest and nest operations, that is, how to
process sets directly.

Under the semantics, query processing to nested re
lations is different from conventional procedures. For
example, consider a simple database consisting of only
one tuple:

r[ll = {a,b},12 = {b,e}].

For a query ?-r[ll = X,12 = X], we can get X = {b},
that is, an intersection of {a, b} and {b, e}. That is,
a concept of unification should be extended. In order
to generalize such a procedure, we must introduce two
concepts into the procedural semantics[ll]:

1) Residue Goals
Consider the following program and a query:

r[I=S'] ¢:: B.

?-r[l=S].

If S n S' is not an empty set during unification
between r[l = S] and r[l = S'], new subgoals are
r[l = S \ S'], B. That is, a residue subgoal r[1 =
S \ S'] is generated if Sl \ S2 is not an empty set.
Otherwise, the unification fails. Note that there
might be residue subgoals if there are multiple set
values.

2) Binding as Constraint
Consider the following database and a query:

rl[ll=Sl].

r2[12 = S2].

?-rl[ll =XJ, r2[12 =X].

252

Although we can get X = 51 by u~ification be
tween rd11 = X] and r1[11 = 51] and a new subgoal
r2[12 = 51], the succeeding unification results in
r2[12 = 51 n 52] and a residue subgoal r2[12 = 51 \ 52]'
Such a procedure is wrong, because we should
have an answer X = 51 n 52' In order to avoid
such a situation, the binding information is tem
porary and plays the role of the constraints to be
retained.

The procedural semantics of extended relational alge
bra is defined based on the above concepts. According
to the semantics, a Kappa database is allowed not nec
essarily to be normalized also in the sense of nested
relational model, in principle: that is, it is unnecessary
for users to be conscious of row nest structure. On the
other hand, in order to develop deductive databases on
Kappa, a logic programming language, called CRL [11]
is developped on the semantics and is further extended
in QUIXOTE [10].

There remains one problem such that unique repre
sentation of a nested relation is not necessarily decided
in the Kappa model, as already mentioned. In order to
decide a unique representation, each nested relation has
a sequence of attributes to be nested in Kappa.

Consider some examples of differences among some
models. First, assume a relation r consisting of two
tuples:

{r[ll = a,12 = {b,c}l,
r[ll = a,l2 = {c,d}]}

By applying a row-nest operation on 12 to R, we get
two possible relations:

{r[ll = a, 12 = {b, c, d}]}
{r[ll = a, 12 = {{b, c}, {c, d}}]}

According to the semantics of Kappa and Verso[9], we
get the first relation, while, according to one of DAS
DBS[8] and AIM-P[2l, we get the second.

Secondly, consider another relation r' consisting of
only one tuple:

By applying selection operations Cf12=b1 and CfI3=Cl' we
get the following two relations, respectively:

{r'[ll = a,l2 = b1,13 = {C1,C2}]}
{r'[ll = a, 12 = {b1, bd, l3 = C1]}

If we apply a union operation to the above two rela
tions, we get two possible relations. According to the
semantics of Verso, we get the following (original) rela
tion:

That is, although the combination of 11 = a, 12 = b2,
and 13 = C2 is not selected after two selections, it comes
back to life in the result of the union. On the other
hand, according to the semantics of Kappa, we have
one of the following:

{r'[ll = a, 12 = b1 , 13 = {Cll cd],
r'[ll = a,12 = b2,13 = C1]}, or

{r'[ll = a, 12 = {b1, b2}, 13 = C1l,
r'[h = a, 12 = b1 , 13 = C2]}

Which relation is selected depends on nested sequence
defined in the schema.

According to the above semantics, the Kappa model
guarantees more efficient processing by reducing the
number of tuples and relations, and more efficient rep
resentation by the complex construction than relational
model.

5 Data Placement

In order to obtain larger processing power using inter
cluster parallelism, relations should be located in differ
ent element DBMSs. Kappa-P provides three kinds of
data placement: distribution, horizontal partition, and
replication.

• Distribution

Distribution of relations is a simple case like dis
tributed DBMSs. When relations are distributed in
some element DBMSs, larger processing power can be
obtained, but communication overheads may be gener
ated at the same time. A database designer should be
responsiple for distribution of relations, because how to
distribute relations relates to relationships among rela
tions and kinds of typical queries to the database. In
typical queries, strongly related relations should be in
the same element DBMS, and loosely related relations
might be in different element DBMSs.

A query to access these relations is divided into sub
queries for some element D BMSs by an interface pro
cess (Figure 1), and each sub-query is processed as a
distributed transaction.

• Horizontal Partition

A horizontally partitioned relation is a kind of
declustered relation. It is logically one relation, but
consists of some sub-relations containing distributed
tuples according to some declustering criteria. A hori
zontally partitioned relation is effective when the rela
tion needs a lot of processing power and higher band
width of disk access. For example, it is effective in a
case of a molecular biological database which includes
sequence data which requires homology search by a

pattern called motif. A database designer is also re
sponsible for horizontal partition of relations, because
horizontal partition does not always guarantees efficient
processing if it does not satisfy declustering criteria.

A query to access horizontally partitioned relations is
converted into sub-queries to access each sub-relation.
Each sub-query is processed in parallel in a different
clusters with sub-relations. Especially, when the query
is a unary operation or a binary operation suitable
for the declustering criteria, each sub-query can be
processed independently and communication overheads
among clusters can be disregarded. In other cases, as
communication overheads among clusters can't be dis
regarded and it is necessary to convert the queries to
reduce the overheads.

• Replication

Replication of a relation in some element DBMSs
enables us to decentralize to access the relation, and
to improve availability. Only the global map held in
server DBMSs is replicated with a voting protocol in
the current implementation of Kappa-P. The replica
tion avoids centralizing access for server DBMSs, and
even if some server DBMSs would stop, server facilities
can work on.

6 Management of Global Infor
mation

Metadata of Kappa-P is divided into two kind of infor
mation: global information and local information. The
global information consists of logical information, such
as the database name and relation names, and physical
information about element DBMSs, such as start-up in
formation, current status, and stream to communicate.
The local information also consists of logical informa
tion, such as the local database name and schema, and
physical information, such as file names and physical
structures of relations. Each element DBMS manages
local information, and server DBMSs manage global in
formation in addition ordinary relations~ The role of
server DBMSs is management of global information,
especially, management of relation names for query
processing and establishment of communication path
between an interface process and element DBMSs.

• Management of Relation Names

It is necessary to guarantee the uniqueness of rela
tion names. The simplest way is that a relation name
forces to contain the relevant element DBMS name.
Such a name is not suitable for Kappa-P, because
Kappa-P treat logically one database. Server DBMSs
manage relation names centrally, and provide location
independent relation names. The information consists

253

of a relation name and an element DBMS name in
which the relation exists. This information is referred
in order to find relevant element DBMSs from relation
names at the beginning of query processing. When a
relation is created, a message to register the relation
name information is sent from the transaction. When
a relation is deleted, a message to erase the relation
name information is sent from the transaction.

Global information is replicated in order to decen
tralize ascesses to server DBMSs. Replication of the
information is implemented by using a voting protocol.
In order to access server DBMSs, a distributed transac
tion uses two phase commitment protocol.

• Management of Physical Information

Server DBMSs manage physical information, such as
start-up information, current status, and stream to
communicate. Sever DBMSs watch the state of ele
ment DBMSs. At the beginning of query processing, a
server DBMS connects an interface process to relevant
element DBMSs.

7 Query Processing

7.1 Query Language

There are two kinds of language for query processing:
KQL, a query language based on extended relational
algebra, and primitive commands. A query in both
primitive commands and KQL is in the form of a mes
sage to an interface process, and the result is returned
through the tuple stream which dose not have cursors
as SQL.

• KQL(Kappa Query Language)

KQL is syntactically similar to KLI. Operations of
extended relational algebra are written like predicates,
and new operations can be defined temporarily, which
take relations only as their arguments. Figure 2 shows
a query in KQL.

• Primitive Commands

Primitive commands are the lowest operation for
nested relations and a collection of unary operators
for a nested relation. Figure 3 shows an example in
primitive commands.

7.2 Query Processing

A query in KQL is processed in the following steps.

• Query Translation

254

go(Result: :resultl, Temp: :result2) :- true I
selection(table2, "(from = "icot"), Temp),
difference(tablel, tablel, ErnptyTable),
transitive_closure(tablel, ErnptyTable,

tablel , Result).

transitive_closure(Delta, In, R, Out) :
empty (Delta) I
In = Out.

transitive_closure(Delta, In, R, Out) :- true
joinCIn, In, "(to = from), Inl),
projectionCInl, {, 1. from' , '2.to'},

In2: : {from, to}),
union(In2, R, Nextln),
difference(Nextln, In, Delta),
transitive_closure(Delta, Nextln, R, Out).

Figure .2: Query in KQL

ifp:create(pc, off, IFP, StatusO),
IFP = [open([] , Statusl),

begin_ transaction([table1(read)] ,0 ,Status2) ,
create_format(tablel, "(*), FMT, Status3),
read_record(tablel,FMT,rid,TupleStrearnO,S4)

I IFP1] ,
TupleStrearnO = [Bufferl I TupleStrearnl] ,

'1.'1. Bufferl = [Tuple1, ... TupleN]
TupleStrearnl = [Buffer2 I TupleStrearn2],

'1.'1. Buffer2 = [Tuple2l, ... Tuple2N]

IFPl = [end_transaction(Status5),
close(Status6)] .

Figure 3: Primitive Commands

A query in KQL is translated into sub-queries, which
is called intermediate operations (shortly, operations in
the following procedures) for extended relational alge
bra, by an interface process of Kappa-P.

1) Get relation names by parsing a query, and get lo
cation information of the relations from randomly
selected server DBMSs.

2) Get schemata and supplementary information of
the relations from relevant element DBMSs. In
case of horizontally partitioned relations and
quasi main memory relations, information of sub
relations is assembled into one. Supplementary in
formation is followings:

• List of indexed attributes
The algorithm of query processing is depen
dent on whether an attribute is indexed or
not.

• Uniqueness of attribute value
The algorithm is dependent on whether an
attribute value is unique or not.

• Kinds of attribute values and the number of
attribute values

The information is used to estimate amounts
of intermediate results, and reduce communi
cation costs .

• The number of tuples and the. average size of
tuples
The information is also used to estimate
amounts of intermediate results.

3) Replace an operation for a horizontally partitioned
relation with some operations for sub-relations and
add merge operations. In case of a quasi main
memory relation, replace an update operation with
operations both the secondary memory relation
and the temporary relation. Replace a non-update
operation with an operation for the temporary re
lation.

4) The executing order of operation in the query is
extracted from the query, and operations to con
trol executing order are embedding in the query.
Since the query can include update operations, it
is impossible to control the data flow graph only.

5) Using basic optimization techniques by supplemen
tary information of relations, the query is trans
lated, and an algorithm for processing extended re
lational algebra is determined. In this phase, some
execution plans are produced.

6) According to the location information of relations,
the candidates are divided into sub-sequences
to minimize the communication costs estimated
by the supplementary information. Sub-sequences
with the least communication cost are chosen, and
operations to transfer tuples are embedded in the
su b-sequences.

7) Each sub-sequence is translated into KLI program
with procedures calling intermediate operations.

• Query Execution

Each sub-sequence is sent to the related element
DBMS, and processed. Each sub-sequence is executed
as a distributed transaction with two phase commit
ment protocol. Although processing in an element
DBMS is based on tuple streams, data in other element
DBMSs are accessed via transfer operations embedded
in the query translation phase.

7.3 User Process in Element DBMS

Because both Kappa-P and application programs work
together on the same machine, the system cannot
only provide higher communication bandwidth between
them, but can also reduce communication overheads
between them by allocating them in the same cluster.

In primitive commands, a tuple filter are taken as
the argument of a read operation. The read operation
invocates the filter in the same cluster in which a re
lation exists. If the relation is horizontally partitioned,
filters for each sub-relation is invocated, and the out
puts of all filters are merged into one.

In KQL, a filter is specified as one of the new opera
tions.

8 Element DBMS

An element DBMS contains full database management
facilities, and accepts intermediate operations for ex
tended relational algebra and primitive commands. We
are not concerned with communication overheads in el
ement DBMSs. Kappa-P uses parallel processing on a
shared memory only, but doesn't use parallel opera
tions for secondary memory in element DBMSs, in the
current implementation.

• Parallel Processing by Tuple Stream

Stream programming is a very typical programming
style in KLI. In general, a query can be expressed as
a graph, which consists of some nodes corresponding
to the operations and arcs corresponding to relation
ships among operations. In KLl, the graph corresponds
to the processing structure of the query. The nodes
become processes, and arcs become streams through
which tuples are sent. In KLl, the number of tuples
in the streams does not only depend on the amount of
intermediate results, but also the number of processes
to be scheduled. So, it is very important to control the
number of tuples, and to drive the streams on demand
with double buffering.

Figure 4 shows an example for parallel processing by
tuple stream: Table 3 = 1r[a,b)Table 1 N Table 2.

• Parallel Processing of Primitive Commands

Primitive commands process various operations in
parallel for nested relations, for instance, operations
set for and index operations of temporary relations.

A set is a collection of tuple identifiers, and is ob
tained by restriction operations. In order to parallelize
set operations, a set is partitioned according to the
range of tuple identifiers.

Index structure of temporary relations is T-tree[5],
which is more sufficient in main memory than B-tree.
Range retrieval operations, we are processed in paral
lel. In general, leaf nodes are connected in order like
B+ -tree to trace succeeding leaf node directory. In our
experiments, such a structure can't work efficiently in
KLI. Range retrieving on a tree, whose leaf nodes are
connected, is done following steps: finding the mini
mum value of the range, and then, tracing through the

255

EJ

Figure 4: Parallel Processing by Tuple Stream

connection until the maximum value is found .. These
steps are almost processed sequentially. Assuming that
H is the height of the tree, and R is the number of leaf
nodes between the range, the number of comparison of
values is H + R. On the other hand, range retrieving
on a tree whose leaf nodes are not connected is done
following steps: finding a minimum value of the range,
finding a maximum value of the range, and collecting
values between them. These steps are almost processed
in parallel. The number of comparison is 2H. The
latter has advantages about parallelism, wide range re
trieving, and efficient implementation in KLl.

• Main Memory Database Facilities

Each cluster of PIM has hundreds of mega bytes
of main memory. In order to use such a large mem
ory effectively, Kappa-P provides temporary relations
and quasi main memory database facilities. Because tu
ples of nested relations with variable occurrences and
strings are complex, such a structure can be handled
more efficiently in main memory than in secondary
memory.

Temporary relations exist only in main memory hav
ing no correspondent data in secondary memory, so
modifications to the temporary relations are not re
flected to secondary memory. But, temporary relations
are useful for application programs which create many
intermediate relations such as deductive databases. The
temporary relations have the same interface as sec
ondary memory relations.

A quasi main memory database, which guarantees to
reflect those modifications to secondary memory, is not
a pure main memory database, but parallel process
ing enables the quasi main memory database to work
with nearly the same throughput as a main memory
database. A quasi main memory relation is a kind of

256

replicated relations consisting of a pair of a secondary
memory relation and a temporary relation. Kappa-P
guarantees that both relations have the same logical
structure, such as tuples, indexed attributes, and the
same tuple identifiers, even if the relation is updated.
Operations except for update operations can be exe
cuted by the temporary relation, because the tempo
rary relation is processed faster than the secondary
memory relation. Update operations should be exe
cuted by relations in parallel and asynchronously, and
synchronization is achieved by two phase commitment
protocol, which guarantees the equivalence of their con
tents.

9 Conclusions

In this paper, we described a parallel DBMS Kappa-P.
In order to provide KBMSs and KIPSs with efficient

database management facilities, the system adopts a
nested relational model, and is designed to use parallel
resources efficiently by using various parallel process
ing. The smallest configuration of Kappa-P is almost
the same as Kappa-II. Compared both systems on the
same machine, Kappa-P works with almost same effi
ciency as Kappa-II. Kappa-P is expected to work on
PIM more efficiently than Kappa-I. We will make var
ious experiments for efficient utilization of parallel re
sources, and show that the system provides KBMSs
and KIPSs with efficient database management facili
ties in the FGCS prototype system.

Acknowledgment

The Kappa project has had many important contri
butions in addition to the listed authors. The mem
bers of biological databases of the third research lab
oratory: Hidetoshi Tanaka and Yukihiko Abiru, the
users of Kappa-II, and Kaoru Yoshida of LBL have
shown us many suggestions for improvements. We'
thank Hideki Yasukawa of the third research labora
tory for useful suggestions. The authors are grateful to
Kazuhiro Fuchi and Shunichi Uchida for encouraging
the projects.

References

[IJ D. J. DeWitt and J. Gray, "Parallel Database Sys
tems: The Future of Database Processing or a
Passing Fad 7", SIGMOD RECORD, Vol.l9, No.4,
Dec.,1990.

[2J P. Dadam, et aI, "A DBMS Prototype to Sup
port Extended NF2 Relations: An Integrated View
on Flat Tables and Hierarchies", Proc. SIGMOD,
1986.

[3] "GenBank/HGIR Technical Manual", LA-UR 88-
3038, Group T-I0, MS-K710, Los Alamos National
Laboratory, 1988.

[4J M. Kawamura and H. Sato, "Query Process
ing for Parallel Database Management System",
Proc. J(Ll Programming Workshop '91, 1991. (in
Japanese)

[5J T. J. Lehman and M. J. Carey, "A Study of Index
Structures for Main Memory Database Manage
ment Systems", Proc. VLDB, 1986.

[6J A. Makinouchi, "A Consideration on Normal Form
of Not-Necessarily-Normalized Relation in the Re
lational Data Model", Proc. VLDB, 1977.

[7J H. Sato and M. Kawamura, "Towards a Paral
lel Database Management System (Extended Ab
stract)", Proc. Joint American-Japanese Workshop
on Parallel J(nowledge Systems and Logic Pro
gramming, Tokyo, Sep. 18-20, 1990.

[8] H.-J. Schek and G. Weikum, "DASDBS: Concepts
and Architecture of a Database System for Ad
vanced Applications", Tech. Univ. of Darmstadt!
TR, DVSI-1986-Tl, 1986.

[9J J. Verso, "VERSO: A Data Base Machine Based
on Non INF Relations", INRIA-TR, 523, 1986.

[10J H. Yasukawa, H. Tsuda, and K. Yokota, "Ob
ject, Properties, and Modules in QUIXOTE", Proc.
FGCS'92, Tokyo, June 1-5, 1992.

[l1J K. Yokota, "Deductive Approach for Nested Re
lations", Programming of Future Generation Com
puters II, eds. by K. Fuchi and L. Kott, North
Holland, 1988.

[12J K. Yokota, M. Kawamura, and A. Kanaegami,
"Overview of the Knowledge Base Management
System (KAPPA)", Proc. FGCS'88, Tokyo, Nov.28-
Dec.2, 1988.

[13J K. Yokota and S. Nishio, "Towards Integra
tion of Deductive Databases and Object-Oriented
Databases - A Limited Survey", Proc. Advanced
Database System Symposium, Kyoto, Dec., 1989.

[14J K. Yokota and H. Yasukawa, "Towards an Inte
grated Knowledge-Base Management System -
Overview of R&D for Databases and Knowledge
Bases in the FGCS project", Proc. FGCS!92,
Tokyo, June 1-5, 1992.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
O~ FIFTH GENERATION COMPUTER SYSTEMS 1992,
edIted by ICOT. © ICOT, 1992 257

Objects, Properties, and Modules in QUIXOTE

Hideki Yas ukaw a , Hiroshi Tsuda, and Kazumasa Yokota

Institute for New Generation Computer Technology (ICOT)
21F. Mita-Kokusai Bldg., 1-4-28 Mita, Minato-ku, Tokyo 108, JAPAN

e-mail: yasukawa@icot.or.jp.tsuda@icot.or.jp.kyokota@icot.or.jp

Abstract

This paper describes a knowledge representation lan
guage QUIXOTE. QUIXOTE: is designed and developed
at ICOT to support wide range of applications in the
Japanese FGCS project.

QUIXOTE: is basically a deductive system equipped
with the facilities for representing various kinds of knowl
edge, and for classifying knowledge.

In QUIXOTE: , basic notions for representing concepts
and knowledge are objects and their properties. Objects
are represented by extended terms called object terms,
and their properties are represented by subsumption con
straints over the domain of object terms.

Another distinguished feature of QUIXOTe is its con
cept of modules. Modules play an important role in
classifying knowledge, modularizing a program or a
database, assumption-based reasoning, and so on.

In this paper, the concepts of objects, properties, and
modules are presented. vVe also present how modules
work with objects and their properties.

1 Introduction

Logic programming is a powerful paradigm for knowl
edge information processing systems from the view
point of knowledge representation, inference, advanced
databases, and so on.

QUI XOTE: is designed and developed to support this
wide range of applications in the Japanese FGCS project.
Briefly speaking, it is a constraint logic programming
language, a knowledge representation language, and a
deductive object-oriented database language.

In QUIXOTe, basic notions for representing concepts
and knowledge are objects and their properties. An ob
ject in QUIXOTE: is represented by an extended term
called an object teTm, and its properties are defined as a
set of subs7.1mption constraints.

Another distinguished feature of QUIXOTe is its con
cept of mod1tles. A module corresponds to a part of the
world (situation) or the local database. In QUIXOTE,

its module concepts play an important role in classify
ing knowledge, modularizing a program or a database,

assumption-based reasoning, and so on.
In this paper, concepts of objects, properties, and

modules are presented. We also present how modules
work with objects and their properties, for example, in
classifying or modularizing them.

Other features of QUIXOTe and the formalism appear
in other papers[20, 12, 21].

Section 2 shows how objects and their proper.ties are
treated in a simple version of QUIXOTE:. Section 3 shows
how complex objects are introduced in QUIXOTe, and
how they are used to deal with exceptions in prop
erty inheritance. Section 4 describes deductive rules
in QUIXOT£, and the overview of deductive aspects of
QUIXOTE:. Section 5 describes module concepts with
some examples. Section 6 describes the facilities for re
lating modules, especially to import or to export rules
among modules. Section 7 describes queries in QUIXOTE:,

which provides the facilities to deal with modifications of
a program, or assumption-based reasoning. Finally, Sec
tion 8 describes a brief comparison with related works.

2 A simple system of objects
and their properties

Object-oriented features are very useful for applying
logic programming to 'real' applications. QUIXOTE: is
designed as a logic programming language with features
such as: object identity, complex objects, encapsulation,
inheritance, and methods, which are also appropriate for
deductive object-oriented databases and situation theo
retic approaches to natural language processing systems.

An object is a key feature in QUIXOTE: to represent
concepts and know ledge. In knowledge representation
applications, it is important to identify an object or to
distinguish two objects, as in the case of object-oriented
languages.

Object identity is the basic notion for identifying ob
jects.

QUIXOTE: precisely defines object identity, where ex
tended terms are used as object identifiers. In this sense,
extended terms in QUIXOTe are called object terms.

In this section, the simplified treatment of objects and
their properties are presented. That is, the case of every

258

object term is atomic. In the next section, the system
of object terms is extended to non-atomic and complex
cases, including the non-well-founded (circular) case.

2.1 Basic Objects

At the first approximation, we assume that each object
has a unique atomic symbol as its identifier.

The important thing, here, is that objects are related
to each other. There are some relations to be considered,
such as is_a-relations, parLofrelations, and so forth. In
QUIXCJTE, subsumption relations among objects are used
to relate objects.

A set BO of atomic symbols called basic objects is as
sumed. BO is partially ordered by the subsumption re
lation (written ~), and (BO,~, T,.1) is a lattice with T
as its maximum element and .1 as its minimum element.

A basic object is used as an object identifier (an object
term) in this simple setting.

An example of the lattice is

BO* = ({animal,mammal,human,dog},~, T,..L)

where the following holds:

mammal ~ animal,

h1lman ~ mammal,

dog ~ mammal.

2.2 Attribute Terms and
Terms

Dotted

In addition to the basic objects, we assume a subset L of
BO, called labels. Labels are used to define the attributes
of objects.

An attribute of the object 0 is represented by the triple
(0, I, v) where I is a label and v is an object. Thefollowing
example shows that John has the attribute of his age
being 20: (john, age, 20).

A property of an object is represented by a set of
the pairs of a label and its value, that is, a set of
attributes. Thus, John's having a property of be
ing 20 years old and being a male is represented by
{(john, age, 20), (john, sex, mal e)}.

Formally, a label I is interpreted as a function:

[I] : BO ---7 BO.

The syntactic construct for representing an object and
its properties is the attribute term. An attribute term is
of the form:

where 0 is an object term, Ii's are labels, and Vi'S are
objects. The syntactic entity [II = VI, ... , In = VnJ is
called the attribution of the object term o. It specifies a

property of the object. In what follows, we say that °
has the attributes [ll = Vb' •. , In = vnJ when there is no
confusion.

For example, the following is an attribute term repre
senting that John has the property of being 20 years old
and being a male:

john/rage = 20, sex = maleJ.

Notice that an object identifier and its property (attri
bution) are separated by"/".

It is useful to regard an attribute of an object as a
concept. For example, John's age can be seen as a con
cept. In QUIXOTE, this kind of concept is represented by
dotted terms . . A dotted term is defined as a pair of an
object term and a label, and has the following form:

0.1

where ° is an object term and l is a label.
For example, John's age is represented by the following

dot ted term:

john.age = 20.

A dotted term is treated as a global variable ranging over
the domain of object terms, and interpreted as an object
term. The following holds for dotted terms:

01 = 02 =? 01. l = 02.1

o.l = ol,o.l = 02 =? 01 = 02

O.ll = 01 =? 0.ll.l2 = 01. l2.

2.3 Properties as Subsumption Con
straints

It is often the case that an object has certain attribute
while its value is not fully specified.

john/rage ---7 positive_integerJ

The above attribute term represents that John has the
property of his age being subsumed by positive integer.
In this case, John's age is not specified but constrained
as being subsumed by positivejnteger.

Constraints in the simplified QUIXOTE are subsump
tion constraints over basic objects. As mentioned in 2.1,
the domain of basic objects is a lattice under the sub
sumption relation. Thus, the rules of subsumption con
straints are simply defined as follows:

• x = x,

• if x = y then y = x,

• if x = y and y = z then x = z,

• x ~ x,

• if x ~ y and y ~ z then x ~ z,

• if x = y and x ~ z then y ~ z,

• if x = y and z ~ x then z ~ y,

• if x ~ y and y ~ x then x = y,

• if x ~ y and x ~ z then x ~ (y t z), and

• if y ~ x and z ~ x then (y i z) ~ x

where (x t y) is the infimum (meet) and (x i y) is the
supremum (join). Note'that x = y is equivalent to the
conjunction of x ~ y and y ~ x, that is, the following
holds:

de!
X = Y == X ~ Y /\ X ~ y.

A set of subsumption constraints is solvable if and only
if it does not contain a = b for two distinct basic objects
a and b with respect to the above rules[20].

The aforementioned attribute term is defined as a pair
of the basic object john and a subsumption constraint
john.age ~ positive_integer. Such a pair can also be
written as:

john/I{john.age ~ positive_integer}.

This is just the opposite of the description of the at
tribute term shown above.

The general form of an attribute term is as follows:

where 0Pi E {=,~, f-}.

For each label not explicitly specified, we assume that
its value is constrained, that is, subsumed by T. This
assumption states that the property of an object can be
partially specified.

In addition to the subsumption constraints over basic
objects, the subsumption constraints over sets of basic
objects are also used in QUIXOTE. For example, the fol
lowing attribute term represents that both cooking and
walking are John's hobbies:

john/[hobby f- {cooking, walking}],

that is, the dotted term john.hobby is a set subsuming
the set {cooking, walking}.

The subsumption relation ~H over the domain of sets
of basic objects is defined as Hoare-ordering over ~
ordering as follows:

It should be noted that the domain of sets of basic objects
is classified by the equivalence relation defined by the
Hoare-ordering. In QUIXOTE, any set is interpreted as

259

the representative element of the equivalence class that
is defined by the following rule:

[s] d,;j {x E s I --,:Jy E s X i= y /\ x ~ Y }.

Under this definition, ~wordering becomes a partial or
dering, and can be used as an equivalence relation.

For example, the following holds:

[{I, integer, "abc", string}]

= {integer, string},

provided that 1 ~ integer and "abc" ~ string.

2.4 Property Inheritance

It is natural to ·assume that properties are inherited from
object terms with respect to ~-ordering. Consider the
following example:

swallow ~ bird.

birdJ[canfly ~ yes].

Since swallow is a kind of (subsumes) bird and bird has
the attribute [can fly -t yes], swallow has the same at
tribute by default.

The rule for inheritance of properties between objects
IS:

Definition 1 (Rule for inheritance)

01 ~ 02 => 01. / ~ 02.1.

If 01 ~ 02 holds, then the following holds according to
this rule:

• if 02 has the attribute [1 -t 0'], then 01 also has the
same attribute,

• if 01 has the attribute [l f- 0'], then 02 also has the
same attribute.

Notice that the attribute [1 = 0'] is the conjunction of
[1 ~ 0'] and [1 f- 0'].

As mentioned before, an attribute term consists of an
object term and a set of subsumption constraints, thus,
property inheritance can be considered as constraint in
heritance.

3 Complex Objects

The simplified approach shown in the previous section
lacks the capability to represent the complex objects re
quired in actual applications, such as trees, graphs, pro
teins, chemical reactions, and so forth.

A complex object has certain "structures" intrinsic to
its nature. Knowledge representation languages must be
able to represent such complex structures, that is, the
object identifiers in QUIXOT£ language.

Thus, it is important to give a facility for introducing
complex object terms into QUIXOTE.

260

3.1 Intrinsic vs. Extrinsic Properties

The approach adopted in QUIXOTE is a natural extension
of the simplified language given in the previous section.

An object has the property, that is, a set of attributes,
which are intrinsic to identifying that object. Thus, the
properties of an object are separated into two, the intrin
sic property and the other extrinsic properties. Similarly,
the attributes of an object are divided into two, intrin
sic attributes and extrinsic attributes. In QUIXOTE, the
intrinsic attributes are included in the object term repre
sentation but not in the attribution of an attribute term
representation.

For example, the concept of red apple is represented
by the following complex object term:

apple[color = red].

Notice the difference between this object term and the
attribute term apple/[color = red]. The latter represents
the concept of apple with the attribute [color = red] as
its extrinsic property.

Let 0 be a basic object, 11, 12, . .. be labels, and
0b 02, . .. be object terms.

• Every basic object is an object term.

• A term 0[11 = 01, 12 = 02, . ..] is an object term if it
contains only one value specification for each label.

• A term is an object term only if it can be shown to
be an object term by the above definition.

For an object term 0[11 = 01, 12 = 02, ... J, 0 is called
the principal object and [11 = 01,l2 = 02, ...] is called
the intrinsic pmperty specification. The intrinsic prop
erty specification of an object term is the set of intrinsic
attributes of the object term, and interpreted as the in
dexed set of object terms indexed by the labels. Thus,
an object term is interpreted as the pair of its principal
object 0 and the indexed set s, and is written as:

(0, s).

Let EO = {human,20,30,int,male,female}, 20 ~
int,30 ~ int, L = {age, sex}. The following terms are
object terms in QUI,YO'U:

human,

human[age = 20, sex = male].

These two object terms are interpreted as (human, {})
and (human, {(age,20), (sex,male)}).

The object term T[ll = Vb ...] is described as [11
V1, ..•] for convenience.

By the definition· of complex object terms, the follow
ing holds:

For example, human[age = 20].age = 20 holds.
It is possible to have object terms containing variables

ranging over ground object terms as follows:

human

human[age = X, sex = Y].

3.2 Extended Subsumption Relation

Given the subsumption relations ~ among basic objects,
the relations can be extended into subsumption relations
among complex object terms. The extended subsump
tion relations preserve the ordering on basic objects, and
also constitute a lattice.

The precise definition of a extended subsumption re
lation is given in [20], intuitive understanding will suffice
at this point. Intuitively, 01 ~ 02 (we say 02 subsumes
01) holds between two complex object terms 01 and 02 if
and only if:

(1) the principal object of 02 subsumes the principal
object of 01,

(2) 01 has more labels than 02, and

(3) the value of each label of 02 subsumes the value of
each label of 01.

For example, the following holds:

human[age = 20, sex = male]

~ animal[age = integer],

because the principal object of animal[age = integer]
(animal) subsumes the principal object of human[age =
20, sex = male] (human), the object term human[age =
20, sex = male] has more labels than animal[age =
integer], and 20 ~ integer holds.

Similarly,

human[age = 20] ~ animal[age = int]

holds, but human[age = 20] and human[sex = male]
cannot be compared with respect to ~-ordering over
complex object terms.

In such extended subsumption relations over object
terms, the object term T is the largest among all the
object terms. In QUIXOTE, the object term ...L is the
smallest of all, that is, ...L is used as the representative
element ofthe class of object terms that are smaller than
...L 1.

The semantic domain of object terms is a set of labeled
graphs, a subclass of hypersets with urelement[2, 13].

1 From the definition of object terms and subsumption relation
over them, it is possible to have an object term of the form:

The reason such a domain is adopted is to allow object
terms with infinite structure. Subsumption relations cor
respond to hereditary subset relations[2] on that domain.

The rules for extended subsumption constraints are
those listed in 2.3 plus the following:

• if (Ol,Sl) ~ (02,S2) then 01 ~ 02 and for each
(l, V2) E S2 there exists (l, VI) such that VI ~ V2,

• if (Ol,Sl) = (02,S2), then 01 = 02 and for each
(l, vd E Sl there exists (l, V2) E S2 such that VI = V2

(the symmetric condition follows).

These two rules correspond to the simulation and bisimu
lation relations in [2, 13], where the bisimulation relation
is an equivalence relation.

3.3 Exception on Property Inheritance

By introducing complex object terms in terms of
intrinsic-extdnsic distinction, it becomes possible to de
fine the notion of exceptions on the inheritance of prop
erties in a clear way.

Intuitively, the intrinsic property of an object is the
property that distinguishes that object from others, and
such properties should not be inherited.

In addition to the rule for property inheritance given
in 2.4, the rule for exception is defined as follows:

Definition 2 (Rule for exception)
The intrinsic attributes of an object term override the
attribution inherited from the other object terms) and any
of the intrinsic attributes is not inherited to the other
object terms.

In sum, the intrinsic attributes are out of the scope of
property inheritance.

For example, consider the attribute of the object term
bird[canfly -+ no] with respect to the following database
definition:

bird/[canfly = yes],

bird[canfly = no].

The object term bird[canfly = no] inherits the attribute
[canfly -+ yes], by the rule for inheritance. However,
bird[canfly = no] contains the intrinsic specification on
the label canfly. Thus, bird[canfly = no] has the at
tribute [canfly -+ no] as its property by the rule for
exception.

Thus, given in Section 3.1, the following holds even if
property inheritance occurs:

261

4 Deductive Rules

It is important for know ledge representation languages to
provide facilities for certain types of inferences, namely,
deductive inference.

The deductive system of QUIXOTe is defined by deduc
tive rules (rules, for short) .

4.1 Rules in QuIXOTE

First, a literal (atomic formula) of QUIXOTe is defined
to be an object term or an attribute term.

The rules of QUIXOTe are defined as follows:

(1) a literal H,

(2) H ~ B ll ... , Bn where H, B 1 , .• . , Bn are literals.

H is called the head and the "B1 , . .. ,Bn" is called the
body of the rule.

Rules of the form (1) are sometimes called unit rules
or facts2

•

Rules of the form (2) are called non-unit rules.
A fact H is shorthand for the non-unit rule whose body

is empty, that is, the rule H ~. When there is no con
fusion non-unit clauses are simply called rules.

A database or a program is defined as a finite set of
rules.

A fact specifies the existence of an object and its prop
erty. The following is an example of facts:

john; ;

john/rage = 20];;

The former fact specifies that the literal john holds (or
is true), that is, the database has the object john as its
member. In addition to that, the latter specifies that
john has the property of [age = 20]. .

The informal meaning of the rule H ~ B 1 , •.• ,Bn IS

as usual, that is, if B 1 , ..• ,Bn holds then H holds.
As mentioned in Section 2.3, properties are interpreted

as subsumption constraints. Thus, a rule is defined as a
triple (H, B, C) of the object term H in its head, the. set
of object terms B in its body, and the set of constramts
C. The elements of B are called subgoals. Thus, any rule
can be represented by the following form:

H~BIIC.

This form of rule is called constraint-based form.
It is possible to associate constraints, other than those

corresponding to attributes, with a rule as follows:

john/[daughter f- {X}] ~

X/[Jather = john] II {X ~ female}.

2 Sometimes, a fact is defined to be a unit-rule having a non
parametric object term as its head. In that case, ~he set of fa~ts
corresponds to an extensional database in conventlOnal deductIve
databases.

262

Precisely speaking, the set of constraints C of a rule
is classified into two, the constraints in the head of the
rule (head constraints) and the constraints in the body
(body constraints). For example, the rule

O/[ll = 01, l2 = 02] -¢=

p/[l3 = 03], q/[l4 = 04]

has {O.ll = 01, 0.l2 = 02} as its head constraints, and
{P.l3 = 03, q.l4 = 04} as its body constraints.

In the context of object-oriented languages, the at
tributes in the head of a rule correspond to the methods,
and the body of the rul~ corresponds to their implemen
tation, as in F-logic[8].

4.2 Derivations and Answers

Compared to the usual notion of the derivation of goals
and answers in logic programming languages like Prolog,
two points must be explained in the case of QUIXOTE.

The first point is the role of object terms as object
identifiers. The value of an attribute of an object must
be unique, since the label of the attribute is interpreted
as a function.

The second point is the fact that the attributes of an
object can be partially specified and they are interpreted
as subsumption constraints.

Consider the following database:

Example 1

o[l = X]/[ll -+ a, l2 = b] -¢= X II {X ~ e}i i

o[l = Xl/[ll -+ d,13 = e] -¢= X II {X ~ f}i i

Pi i,

where both p ~ c and p ~ f hold.

In this case, 0[1 = p]/[ll -+ a,12 = b] holds by the first
rule and o[l = pJ/[t1 -+ d, t3 = eJ holds by the second rule.
Thus, by combining these two, the object term o[l = p]
gains [/1 -+ (a 1 d), 12 = b, l3 = eJ as its attribute.

This process is done by merging the attributes of the
derived subgoals equivalent to each other.

The merging pro~ess becomes complicated if we take
into account the partiality of the attributes of an object.

Consider the following example:

Example 2

0/[/1 -+ aJ -¢= P/[l2 -+ bJ;;

o/[ll -+ e] -¢= p/[l2 -+ dJ;;

p;; .

The subgoal p of the first rule holds with attribute [l2 -+

bJ, which is not defined in the database. This is because
the fact Pi; in the example does not specify the value
of its I-attribute. Similarly, the subgoal p of the second
rule holds with [12 -+ dJ. If these two attributes are

inconsistent, the two rules cannot be applied together,
that is, the derivations given by the two rules must not
be merged.

Definition 3 (Derivation of a goal)
A derivation of a goal Go by a program is defined as the 5-
tuple (G, R, 8, HC, BC) of a sequence G (= Go, G1 , ...)

of goals) a sequence R (= R 1, ...) of the renaming vari
ants of the rules) a sequence 8 (= 01 , ...) of most general
unifiers3) the two sets of constraints HC and BC of all
the head constraints and all the body constraints of the
rules in p) such that each GH1 is derived from Gi and
Ri+1 using OHlJ and (HC U BC)8 is solvable.

Definition 4 (Assumed constraint set)
The assumed, constraint set of a derivation D (=
(G, P, 8, HC, BC)) is defined as the set of all constraints
in BC that are not satisfied by HC with respect to the
substitution 8.

The assumed constraint set of a derivation is the set of
attributes of objects which are assumed to derive the
goal. This is because some attributes of objects in a
database are partially defined.

Each derivation has its own derivation context defined
as the consequence relation (t-c) between its assumed
constraint set and its head constraints. A derivation con
text A t-c B of a goal represents that the goal is derived
by assuming A, and as a consequence, B holds.

The notion of a refutation is defined similarly as usual:
a derivation that has the empty goal as the last element
in its sequence.

In Example 2, the two refutations of the goal 0 have
the following derivation contexts, :

p.l2 ~ b t-c o.h ~ a,

p.12 ~ d t-c o.h ~ c.

To deal with the merging of attributes discussed above,
a goal must be merged into the other refutation of the
same goal if the derivation contexts of the two refuta
tions have some relation to each other, that is, if the
assumed constraint set of one refutation holds in the as
sumed constraint set of another refutation. This means
that the condition holds in a weaker assumption also
holds in a stronger assumption.

For example, in Example 2, if b ~ d holds, then the
second refutation is merged into the first one. As a con
sequence, a new refutation is given instead of the first
refutation, whose derivation context is as follows:

p.l2 ~ b t-c 0.11 ~ (a 1 e).

Moreover, if b ~ d and e ~ a, then the context of both
refutations becomes:

3The most general unifier of two object terms is defined simi
larly to the usual one, except for the definition of terms.

This means that the first derivation is absorbed to the
second with respect to the merge, because (a 1 c) = c
holds.

After merging all possible pairs of refutations, the no
tion of an answer to a query is defined as follows:

Definition 5 (Answer)
An answer to the query is defined as a pair of the answer
substitution and the derivation context of a refutation.

Thus, the following two answers are given to the query
?-o/[l = Xl to the dat~base shown in Example 2:

(0, p.12 ~ b r-c o.h ~ a),
(O,p.12 ~ d r-c 0.11 ~ c),

if no condition is given among a, b, c , and d.
The QUIXOT£ interpreter returns all answers at once,

that is, it employs the top-down breadth-first search
strategy.

-5 Modules in QUIXOTE

In this section, a module concept is introduced into
QUIXOT£.

5.1 Need for Modules in Deductive
System

The goal of kriowledge representation is to provide a facil
ity for reasoning about a problem by using given knowl
edge in the way that ordinary people do: we call this
everyday-reasoning, or human-reasoning.

Such reasoning systems can be defined as the pair
(R, A) of a set of deductive rules and an algorithm for
extracting all consequences from the rules. "

For simplicity, fix A, and think of R as the knowledge
in a reasoning system.

• R is neith~r consistent nor complete, even though
its fragments may be consistent in themselves,

• reasoning is situation-dependent, i.e., some frag
ment of R is relevant or meaningful in a certain
situation,

• reasoning usually requires some assumptions.

One way to deal with such an aspect of reasoning is to
associate an index to each literal and each rule in R.

Indexes can be used:

(1) to define a fragment of rules (a chunk of know ledge)
which can be used in a certain situation, and

(2) to clarify which assumption (set of rules) is used.

263

(1) defines our conception of a module as a set of rules
with the same index. Thus, if we regard an index as
the identifier for a context or a situation, the set of rules
can be seen as the chunk of knowledge relevant for that
context or situation.

As the result of introducing indexes, each literal has
come to have the form:

m:A

where m is an index called module identifier, and A is an
object" term or an attribute term.

Hence, the usual consequence relation between formu
las should be replaced by:

Intuitively, this means that A holds in m with reference
to parts ml, ... , mi of the database. In obtaining the
answer, the 'choice of parts of the database can be seen
as the assumptions.

In QUIXOT£, an object term is used as a module iden
tifier. The use of object terms as module identifiers en
ables the user to treat modules as objects, and provides
meta-like programming facilities.

5.2 Rules with Module Identifiers

Corresponding to the constraint-based form of a rule
given in Section 4, a modularized rule has the following
form:

mo :: 00 ¢= m1 : 0b ... ,mn : On II C

where 00,01,"" On are object terms, mo, m1,' .. , mn are
module identifiers, and C is a set of constraints4 •

This rule specifies the following two things:

(1) this rule is in (or is accessible from) the module with
a module identifier mo, and

(2) if each subgoal mi : 0i holds with respect to a vari
able assignment and constraints C then mo : 00

holds.

Generally, the modules and their rules are defined as
follows:

where rb' .. ,7'm are rules. Note that it is possible for
modules to be nested.

Thus, it is easy to have a set of rules in a module as the
set of all rules with the module identifier of that module.

4Precisely, this form represents the rule

00 <= ml : 01,"" mn : On II C

with index mo.

264

The set of rules in the module with m as its identifier is
written as Ems. In general, a module identifier may be
a parametric object term, that is, an object term with
variables in its description. The variables appeared in
a rule are interpreted as universally quantified, thus the
parametric module identifiers which are equivalent with
respect to variable renaming are regarded as the same.

In QUIXOTe, it is assumed that each module is consis
tent. It is an important feature of modules to represent
inconsistent knowledge where inconsistency arises from
differences in situations or context. For example, con
sider the situation of John's believing that Mary is 20
years old, when she is actually 21 years old. The follow
ing database shows the treatment of such a problem:

johns_belief :: mary/rage = 20];;

reaLworld :: maryj[age = 21];;

In this case, the database is consistent as a whole unless
the two modules are related to each other.

The following example shows the use of parametric
module identifiers to describe so-called generic modules.
A parametric module identifier can be used to pass pa
rameters to the rules in the module.

Example 3 (Generic Module)

sorter[cmp = ej :: {
sort[l = 0, sorted = [], cmp = e];;
sort[l = [AIX]' sorted = Y, cmp = ej ¢=

split[l = [AIX]' base = A, cmp = e, II = L 1 , 12 = L 2 j,
sort [1 = L 1 , sorted = Yl, cmp = (7],
sort[1 = L2 , sorted = 1'2, cmp = e],
list: append[ll = Y1 , 12 = 1'2, I = Y]; ;

... }j j

less_than :: {

compare[arg1 = A, arg2 = B, res = yes] II
{A < B}j j

compare[arg1 = A, arg2 = B, res = no]

{B < A}}; j

Module sorter[cmp = e) has the definition of a quick
sorting procedure which uses the argument G as the com
parator, and module less_than has the definition of a
comparator, where the relation < is used as the con
straint relation for comparing two objects.

In processing the query:

?-sorter[cmp = less_than] :

sort[I = L, sorted = R, cmp = G],

5 Precisely, Em should· be defined as the set of rules that are
properly in m. Taking rule inheritance into account, the set of
rules in a module is the union of the proper set and sets of rules
imported from the other modules.

the module identifier less_than is passed to the rules in
the sorting module, and used to compare two elements of
list L. It is possible to give module identifiers other than
it for using different comparator in the sorting procedure.

The next example shows the treatment of state tran
sitions by using modules to represent states.

Example 4 (State Transition)

m.:: {

a/ron = nil]; ; b/[on := a]; ;
c/[on = nil]; ; d/[on = c]}; ;

sc[sit = M,op = move[obj = A, fr = B, to = eJ] :: {
G/[on = A] ¢=

M : Aj[on = nil],

M: B/[on = A],

/vI: G/[on = nil];;

B/[on = nil] ¢=

M : A/[on = nil],

M: B/[on = A],

M: G/[on = nil];;

A/ [on = nil] ¢=

M : A/[on = nil],
M: Bj[on = AJ,

Ai: G/[on = nil]};;

In the initial state m, block a is on top of block b, and
block c is on top of block d. move[obj = A, fr = B, to =
e] represents the operation of moving A from the top of
B to the top of G.

Module sc[sit = M,op = OP] defines how the state of
M is changed by operation OP. At the same time, the
module identifier shows the history of state transitions.

For example, the following answers are obtained:

?-sc[sit = m,op = move[obj = a, fr = b, to = c]] :
X/ron = a].

Answer :X = c.

In this case, the module that represents the state after
an operation is not included in the given program, it
is possible to create new modules by adding a program
to a query (Section 7) and by issuing a create_module
command.

Concerning modifications made by the sequence of
queries
and create_module commands, QUIXOTe employs trans
action logic with special commands, begin_transaction,
end_transaction, and abort-transaction. If some mod
ules are created in one transaction, they are incremen
tally added to the program unless the transaction ends
with abort-transaction.

6 Relating Modules

It is important to relate some modules in defining the
database and when reasoning.

Two ways of relating modules should be consid
ered, that is, referring to other modules and import
ing/ exporting rules from other modules.

As shown above, a rule of QUIXOT£ has a subgoal of
the form m : A in its body. This sub goal specifies the
external reference to the module with m as its identifier.
In such a case, module m can be seen as encapsulated,
because no rule is imported to it.

6.1 Simple Submodule Relationship

Sometimes, it is useful to define databases by providing
a facility to import/export among modules as in typical
object-oriented languages.

In QUIXOTf, importing/exporting rules are done by
rule inheritance defined in terms of the binary relation
~s over modules called the submodule relation. The sub
module relation is similar to the subsituation relation in
PROSIT[15]6. Basically, rule inheritance is defined as
follows:

Definition 6 (Rule Inheritance)
If ml ~s m2 then module ml inherits all the rules of m2J
that is} all the rules in m2 are exported to mI.

Under this definition, the set of rules of ml is ~ml U ~m2'
The right hand side of ~s in a submodule defini

tion may be a formula of module identifiers with set
theoretical union, intersection, or difference. For exam
ple, if we have

ml :: {rn, ... , rli},

m2:: {r21, .. ·,r2j},

{ m2 , m3} :: {r31, ... , r3k} ,

ml ~s m2 - m3

then ml has the set of rules

Taking the rule inherita.nce into account, a special
module identifier selfis also introduced as in most object
oriented programming languages. For example, consider
the following:

ml :: 0 =? 01 II C.

The subgoal 01 is interpreted as self: 01' In this context,
self is evaluated as mI' If m ~s ml, then m ras the
rule m :: 0 =? 01 \I C, and self is evaluated as m in this
case.

6Considering a module as a class, ml ~s m2 means that m2 is
a super-class of mI.

265

6.2 Controlling Rule Inheritance

To treat various rule inheritance phenomena, two or
thogonal modes, local and overriding, are introduced into
QUIXOT£. Each rule may have these modes, which con
trol how each rule is inherited according to submodule
relations.

If a rule is local, then it is not inherited to other mod
ules. An overriding rule overrides the other rules inher
ited from other modules, that is, the inheritance of some
rules is canceled.

There are several possibilities on what rules are to be
canceled by an overriding rule. Currently, the inheri
tance of a rule is canceled if its head has object terms
with the same principal object and its labels are same as
the one of the head of overriding rule. This is similar to
the 'retract' predicate of Prolog.

Each rule has an inheritance mode. The value of the
inheritance mode is (0), (l), or (01), if explicitly speci
fied. (0) means 'overriding, (I) means 'local', and (ol)
means 'local and overriding'. If a rule has no inheritance
mode, the rule is regarded as having 'non-local and no
overriding' by default.

Consider the following example.

Example 5 (Exception by Inheritance Mode)

bird ::. canfly/[pol = yes];;

penguin :: (01) canfly/[pol = no];;

super _penguin:: { ... }; ;

bird ~s penguin ~s super _penguin; ;

The inheritance of the rule of the module bird is canceled
in the module penguin by its 'overriding' rule, whereas
the module super _penguin gains canfly/[pol = yes], be
cause the rule in bird is inherited to it.

By introducing local and overriding modes for rule in
heritance, it is possible to relate subsumption and sub
module relations closely as follows:

penguin ~ bird ~ penguin ~s bird,

w here rules in ml should be overridden.

6.3 Links between two Modules

Sometimes, a facility for representing changes of state is
required as shown in the example in Section 5.2.

The relation between the two states before and after
an operation is represented by a special form of object
terms. However, simpler and more sophisticated treat
ment may be required for general treatment of state tran
sitions or changes of states. The problem is how to relate
modules and objects.

Another kind of relations called links are provided as
follows:

266

where ml and m2 are module identifiers, and 01 and 02

are object identifiers. L is called the name of a link rela
tion. Notice that link relations are defined over module
identifiers and object terms. The former links are called
module-links and the latter links are called object-links.

The links defined above obeys the following rule:

This rule shows how module-links and object-links co
laborate. According to this rule, a pair of a module
link definition and an object-link definition can be trans
formed as follows:

The following is an example of link usage:

mdagt = a] tU~Ck mdagt = a]

to_the_righLof[obj = b]1U~Ck to_theJefLof[obj =b].

This example means that b is to the right of an agent a

in a module ml, while b is to the left of a in m2 after a'
turns back.

By traversing the used links, one can keep track of
the stages of reasoning. This feature is especially impor
tant in assumption-based reasoning and plan-goal based
reasoning.

Most of the links appeared in semantic networks can
be represented by labels in an attribute term, while some
of the links accompanying inference are represented by
the pairs of a module-link and an object-link.

7 Programs and Queries

As mentioned before, a database or a program is defined
as a finite set of rules. More precisely, some additional in
formation is associated with the definition of a database
or a program.

A definition of a QUIXOTE program concept is defined
as a 4-tuple (E, MH, OH, R) of the environment part E
of the definition of macros and information on program
libraries, the module part MH of the definition of the
submodule relation, the object part OH of the definition
of the lattice of basic objects, and a set of rules R7. The
following is an example of a program definition.

&b_pgm; ;

&b_env; ; ... ; ; &e_env; ;

&b_oq); ;

&subsum; ; bird ~ penguin, ... ; ;

&e_obj; ;

&b_mod; ;

7Precisely, MH contains the definition of module-links, and 0 H

contains the definition of object-links.

&submod; ; penguin ~s bird, . .. ; ;

&e_mod; ;

&b_rule; ;

bird :: canfly/[pol = yes];;

penguin :: color[arg = black_white]; ; ... ; ;

&e_rule; ;

&e_pgm.

A query is defined as a pair (A, P) of a set of attribute
terms A and a program definition P (=(E, M H, OH, R)).

The purpose of this query is to find the answer to A
in the context of adding P. Thus, a query (A, P) to a
program P' (=(E',MH,OH,R')) is the same as a query
(A, []) to a program (EUE',MHUMH, OHUOH,RUR').

To deal with the modification of the program, a new
transaction begins just before a query is processed and
ends just after the process is terminated. QUIXOTE: trans
actions can pe nested, and the user can specify whether
the modifications or updates done in each transaction
are valid for successive processes or not.

This feature of adding a program fragment in a query
extends the ability of the assumption-based reasoning in
QUIXOTE:, as shown in the following query, to the pro
gram above.

?-super_penguin : canfly/[pol = X];;

&b_pgm; ;

&b_mod; ; &submod; ;

penguin> -supe1'_penguin; ;

&e_mod; ;

&b_rule; ;

penguin :: (ol)canfly/[pol = no];;

&e_rule; ;

&e_pgm.

8 Related Works

8.1 Objects and Properties

Beginning with Ait-Kaci's work on 1/J-terms, there are a
number of significant works on the formalization com
plex terms and feature structures [16, 13, 1, 3, 4]. For
malization of the object terms and attribute terms of
QUIXOTE: is closely related to and influenced by those
works, especially the work done by Mukai on CIL [14]
and CLP(AFA) [13].

Compared to those works, the unique point of
QUIXOTE: is its treatment of object identity that plays
an important role in introducing object-orientedness into
definite clause constraint languages.

As for object-orientation, Kifer's F-logic is closely re
lated to QUIXOTE:, although the treatment of object iden
tity and property inheritance is quite different. In F
logic, object identity is not defined over complex terms

but over normal first-order terms. The approach taken
in QUIXOTe is more fine-grained than that of F-Iogic.

8.2 Modules

As module concepts are very important in knowledge
representation as well as programming, several related
works have been done [9, 10, 11, 15]. First, a brief com
parison of the language features of these works is pre
sented.

From the viewpoint of knowledge representation, mod
ularization corresponds to the classification of knowl
edge. In such sense, the flexibility to relate modules
is important. QUIXOTe provides a number of ways to
do this, for example, by specifying the nesting of mod
ules. QUIXOTe supports multiple module nesting by al
lowing set-theoretical operators to relate modules, which
are also used for the exception handling, while other lan
guages do not mention to it.

QUIXOTe also provides a facility for dealing with
exceptions on exporting/importing rules by using the
combination of modes associated with each rule (lo
cal and overriding). This covers the features described
in [9, 10, 11].

Furthermore, as in most object-oriented languages,
QUIXOTe introduces the special module identifier self
which can be seen as a meta-level variable and plays an
important role in rule inheritance, while other languages
do not.

On the contrary, other languages have introduced the
notion of side-effects mainly to make computation ef
ficient. This is because the others are essentially de
signed as programming languages. This feature, includ
ing database updates, will be enhanced in the next ver
sion of QUIXOTe.

Concerning the semantics of modules and reasoning
with modularized formulas, Gabbay [6] proposes a proof
theoretic framework for extending normal deductive sys
tems called the Labeled Deductive System (LDS). In
LDS, each formula is labeled, in the form of t : A, where
t is a symbol called label and A is a logical formula. The
consequence relation is replaced by:

tt : At, ... , tn : An f- s : B.

In his concatenation logic, the following inference rule is
the key to relating labeled formulas:

s : a, t : a J b f- (t + s) : b.

This means that b is obtained by using s first and then
by using t. The label (t + s) indicates the order of label
use. This corresponds to the notion of links in QUIXOTe,

as expla.ined in Section 6.3.
It is worthwhile investigating the relationship between

LDS and QUIXOTe, namely, to give a proof theory for
QUIXOTe. This is work to be done in the future.

267

9 Concluding Remarks

Version 1.0 of QUIXOTe, written in KL1 (designed by
ICOT as a parallel language for parallel inference ma
chines PIM), has been completed. It has been used
for several application systems, such as legal reason
ing systems[19], natural language processing systems[18],
and molecular biological databases[17]. Through those
experiences, the usefulness of the features of QUIXOTe

are being examined.
We are now working with the new version of QUIXOTe

for more efficient representation and processing. In the
new version, the following features are introduced:

1) Relation ~etween Subsumption and Submodule
This feature is discussed briefly at the end of Sec
tion 6.2.

2) Updates
In Sections 5.2 and 6.3, we show a simple exam
ple of state transition. However, such problems are
closely related to updates of databases or pr~grams.
Currently, only facts can be added or deleted. In
the next version, the facility for adding or deleting
non-unit clauses will be provided. The point is how
to deal with those updates in a parallel processing
environment without causing semantic problems.

3) Meta-Rule
Meta-rules are useful both in programming lan
guages and knowledge representation languages.
They provide a facility to describe schemata to de
fine generic procedures or knowledge.

For example, in HiLog[5], the following general tran
sitive closure rule can be written:

tc(R)(X, Y): -R(X, Y).

tc(R)(X, Y): -tc(R)(X, Z), tc(R)(Z, Y).

In QUIXOTe, new variables corresponding to the
principal objects of object terms would be intro
duced to support such a function.

Acknow ledgement

We would like to express our gratitude to the members
of the third laboratory of ICOT, and the members of the
QUIXOTe project for their discussions and cooperation.

We are grateful to the members of the working groups
of ICOT, STS (Situation Theory and Semantics) and
NDB (New-generation DataBases) and IDB (Intelligent
DataBases), for their stimulative discussions and useful
comments.

We also would like to thank Dr. Kazuhiro Fuchi, Dr.
Koichi Furukawa, and Dr. Shunichi Uchida of ICOT for·
their continuop.s encouragement.

268

References

[1] S. Abiteboul and S. Grumbach, "COL: A Logic-
Based language for Complex Objects", Proc.
EDBT, in LNCS, 303, Springer, 1988

[2] P. Aczel, Non- Well-Founded Set Theory, CSLI Lec
ture Notes No. 14, 1988.

[3] F. Bancilhon and S. Khoshahian, "A Calculus for
Complex Objects", Proc. ACM PODS, 1985

[4J W. Chen and D. S. Warren, "Abductive Reason
ing with Structured Data", Proc. the North Ameri
can Conference on Logic Programming, pp.851-867,
Cleveland (Oct., 1989).

[5] W. Chen, M. Kifer, and D. S. Warren, "HiLog as a
Platform for Database Language", Proc. the Second
International Workshop on Database Programming
Language, Gleneden Beach, Oregon, 1989.

[6] D. Gabbay, "Labeled Deductive Systems, Part 1",
CIS-Bericht-90-22, CIS, Universitat Munchen, Feb.,
1991.

[7] M. H6hfeld and G. Smolka, "Definite Relations
Over Constraint Languages",. LILOG report 53,
IBM Deutschland, Stuttgart, Germany, Oct., 1988.

[8] M. Kifer, G. Lausen, and J. vVu, "Logical Foun
dations for Object-Oriented and Frame-Based Lan
guages", Technical Report 90/14 (revised), June,
1990.

[9] D. Miller, "A Theory of Modules for Logic Pro
gramming", The International Symposium on Logic
Programming, 1986.

[10] 1. Monterio and A. Porto, "Contextual Logic Pro
gramming", The International Conference on Logic
Programming, 1989.

[11] L. Monterio and A. Porto, "A Transformational
View of Inheritance in Programming", The Inter
national Conference on Logic Programming, 1990.

[12] Y. Morita, H. Haniuda, and K. Yokota, "Object
Identity in Qun:oT£", Proc. SIGDES and SIGAl
of IPS], Oct., 1990.

[13] K. Mukai, "CLP(AFA): Coinductive semantics of
horn clauses with compact constraints", In J. Bar
wise, G. Plotkin, and J.M. Gawron, editors, Situa
tion Theory and Its Applications) volztme II. CSLI
Publications, Stanford University, 1991.

[14] K. Mukai, "Constraint Logic Programming and the
Unification of Information", PhD thesis, Depart
ment of Computer Science, Faculty of Engineering,
Tokyo Institute of Technology, 1991.

[15] H. Nakashima, H. Suzuki, P-K. Halvorsen, S. Pe
ters, "Towards a Computational Interpretation of
Situation Theory", The International Conference
on Fifth Generation Computer Systems, 1988.

[16] G. Smolka, "Feature logic with subsorts", Technical
Report LILOG Report 33, IWBS, IBM Deutschland
GMBH, W. Germany, 1989.

[17] H. Tanaka, "Protein Function Database as a Deduc
tive and Object-Oriented Database", The Second
International Conference on Database and Expert
System Applications, Berlin, Apr., 1991.

[18] S. Tojo and H. Yasukawa, "Temporal Situations and
the Verbalization of Information", The Third Inter
national Workshop on Situation Theory and Appli
cations (STAS), Oiso, Nov., 1991.

[19] N. Yamamoto, "TRIAL: a Legal Reasoning System
(Extended Abstract)", France-Japan Joint Work
shop, Renne, France, July, 1991.

[20J H. Yasukawa and K. Yokota, "Labeled Graphs as
Semantics of Objects", Proc. SIGDBS and SIGAl
of IPS], Oct., 1990.

[21] K. Yokota and H. Yasukawa, "QUIXOTE: an Adven
ture on the Way to DOOD (Draft)", Workshop on
Object-Oriented Computing'91, Hakone, Mar., 1991.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992

269

Resource Management Mechanism of PIMOS

Hiroshi Y ASHIRO*t, Tetsuro FU JISE~, Takashi CHIKA YAMA t ,
Masahiro MATSUO~, Atsushi HORn and Kumiko WADAt

t Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku, Tokyo 108, Japan

+ Mitsubishi Research Institute, Inc.
1-8-1 Shimomeguro, Meguro-ku, Tokyo 153, Japan

Abstract

The parallel inference machine operating system (PI
MOS) is an operating system for the parallel inference
systems developed in the Japanese Fifth Generation
Computer Systems project. PIMOS is written in a con
current logic language KL1, which adds numerous ex
tensions to its base language, Guarded Horn Clauses, for
efficient meta-level execution control of programs. Using
such features, PIMOS is designed to be an efficient, ro
bust and flexible operating system. This paper describes
the resource management mechanism of PIMOS, which
is characterized by its unique communication mechanism
and hierarchical management policy.

Hierarchical management of user tasks in a distributed
fashion is mandatory in highly parallel systems so that
the management overhead of the operating system can
also be distributed to the processors running in parallel.
The meta-level execution control structure called shoen
is provided by the KL1 language and is us~d for provid~
ing such hierarchical management in a natural fashion.

In concurrent logic languages, message streams imple
mented by shared logical variables are frequently uti
lized the media of interprocess communication. PIMOS,
based on this programming style, provides multiplexed
streams with flexible control for communication between
user programs and the operating system.

1 Introduction

In the Fifth Generation Computer Systems project of
Japan, the parallel inference machines, PIMs, have been
developed to provide the computational power required
for high performance knowledge information systems
[Goto et al. 1988, Taki 1992].

The parallel inference machine operating system, PI
MOS [Chikayama et al. 1988], was designed to control
highly parallel programs efficiently on PIMs and pro
vide a comfortable software development environment
for concurrent logic language KLl.

PIMOS was first developed on an experimental
model of 'parallel inference machine, called Multi-PSI

* EMAIL: yashiro~icot.or.jp

[Nakajima et al. 1989], consisting of up to 64 process
ing elements connected via a two-dimensional mesh net
work. The system was first developed in 1988 and has
been used since then to research and develop various ex
perimental parallel application software. Later, the sys
tem was ported to several models of parallel inference
machines with considerable improvements in various as-
pects. .

1.1 Shoen Mechanism

The language in which PIMOS and all the application
programs are written is called KLl. KL1 is a con
current logic language based on Guarded Horn Clauses
[Ueda 1986] with subsetting for efficient execution and
extensions for making it possible to describe the full op
erating system in it.

The greatest benefit of using a concurrent logic lan
guage in writing parallel systems is the implicit con
currency and data-flow synchronization features. With
these features, one of the most difficult parts of paral
lel programming, synchronization, becomes automatic,
making software development much easier than in con
ventional programming languages with explicit synchro
nization.

An important addition by the KLI language to regu
lar concurrent logic languages is its meta-level execution
control construct named shoen. Shoen enables the en
capsulation of exceptional events and the description of
explicit execution control over a group of parallel compu
tational activities. The execution unit of KL1 programs
is a preposition called a goal, which will eventually be
proven by the axiom set given as the program. This
proof process is the execution process of the programs,
as it is with any other logic programming languages. As
the proof process can proceed concurrently for each goal,
the goals are fine-grained parallel processes.

As no backtracking feature is provided in concurrent
logic languages, all the goals in the system form one
logical conjunction. Thus, if no structuring mechanism
is available, failure in a user's goal means failure of the
whole system. The shoen mechanism provides a way
of grouping goals, isolating such failure to a particular

270

group of goals. Such a group is called a shoen.1

A shoen can be initiated by invoking the following
primitive.

execute(Code, Argv, MinPrio, MaxPrio,
ExcepMask, Control, -Report)

The arguments Code and Argv represent the code and
arguments of the initial goal of the shoen. This goal is
reduced to simpler goals during the execution (or proof)
process, and all such descendant goals will belong to this
shoen.

A shoen has a pair of streams named the control
stream and the report stream, which are represented here
by the two arguments Control and Report respectively.
The control stream is used to send commands to control
the gross execution of the goals belonging to the shoen,
such as starting, stopping, resuming or aborting them
as a group. Exceptional events internal to the shoen,
such as failure, deadlock; exception such as arithmetical
overflow, or termination of computation are reported by
the messages received from the report stream (Figure 1).

Shoen

Control
Stream

II

v

Report
Stream

1't-

8 80
o~
~

Figure 1: Shoen

The two arguments MinPrio and MaxPrio specify the
priority range of the goals belonging to the shoen. PI
MaS does not try to control scheduling of each fine
grained parallel process, but controls them as a group
using the control stream and this priority mechanism.

Shoen can be nested by arbitrary levels. Stopping a
shoen, for example, will make all the children or grand
children shoen inside it. The argument ExcepMask is
used to determine which kinds of exceptional events
should be reported to this particular level of the hier
archical structure of the shoen.

PIMOS supervises user programs using this shoen
mechanism. The exception reporting mechanism is used
to first establish the communication path from the user
programs to PIMOS. An exceptional event to be re
ported can be intentionally generated using the following
primitive.

raise(Tag, Data, Info)

IThe shoen mechanism is an extension of the meta-call con
struct of Par log [Foster 1988] and can be considered to be a
language-embedded version' of the meta-interpreters seen in sys
tems based on Concurrent Prolog [Shapiro 1984]

The argument Tag specifies the kind of event gener
ated by this primitive. This, along with the mask speci
fied when the shoen is created, determines at which level
in the shoen hierarchy this event should be processed.

The two arguments Data and Info are passed as de
tailed information of the event. The Data argument can
be any data, instantiated, uninstantiated or partly in
stantiated, while the Info argument has to be instan
tiated before the event is generated. The above primi
tive will be suspended until this argument is completely
instantiated to be a ground term without any logical
variables.

By monitoring the report stream, PIMOS can receive
the requests from the user as messages coming from the
stream in the following format.

exception(Kind, Eventlnfo, -NewCode,
-NewArgV)

The Kind argument indicates the kind of exceptional
event. In this case, the fact that the event was inten
tionally generated can be recognized.

The Eventlnfo argument is more detailed information
of the event. In the above case, the Data and Info argu
ments of the raise primitive will be combined together
through this argument.

The NewCode and NewArgV arguments specify an al
ternative goal to be executed in the object level in place
of the goal that generated the event. PIMOS utilizes
such a goal for inserting a protection filter, which will
be described later.

1.2 Resources

In conventional systems, memory management and pro
cess management are two of the most important tasks of
the operating system. In the case of PIMOS, as the un
derlying language implementation of KL1 provides prim
itives for those fundamental resources, PIMOS do not
have to be concerned with such low-level management.

KL1 provides automatic memory management feature
including garbage collection, as is the case with Lisp
or Prolog. Thus, basic memory management is auto
matic in the language implementation. KL1 provides
implicit concurrency and data-flow synchronization, con
text switching or scheduling is already supported by the
language. Thus, PIMOS does not deal with low-level
fine-grained process management, but controls larger
grained groups of processes using the priority system
provided by the language.

As memory and process are managed in the KL1
language implementation level, we call them language
defined resources. On the other hand, other higher
level resources, such as virtual I/O devices, are more
directly controlled by PIMOS. We call them OS-defined
resources. In what follows, we will concentrate on the
management of such OS-defined resources.

2 Communication Mechanism

The basic principles of the communication mechanism
are described in this section. This lays the basis for the
foundation of the PIMOS resource management mecha
nism.

2.1 Stream Communication

In a parallel environment, efficient management of vari
ous resources becomes much more difficult than in a se
quential environment. When data in a particular mem
ory area should not be overwritten while being processed
by the operating system, the operating system can sim
ply suspend the execution of user programs in a sequen
tial system. In a highly parallel environment, this will
seriously spoil the merit of fine-grained parallelism, as
all the user processes sharing the memory space must be
stopped irrespective of whether they actually have any
possibility of changing the data.

A frequently used programming technique in concur
rent logic languages is the object-oriented programming
style [Shapiro and Takeuchi 1983]. In this style, a pro
cess (actually a goal which becomes perpetual by recur
sively calling itself) can have internal data which can
not be accessed from outside and shared data containing
variables which can be used for interprocess communica
tion. Interprocess communication is effected by gradu
ally instantiating the data shared between processes. In
stantiation corresponds to sending data and observing it
corresponds to receiving the data. When the shared data
is instantiated gradually to a list structure of messages,
the structure can be considered to be a communication
stream. PIMOS also utilizes this technique for commu
nication between the user programs and the operating
system.

For example, reading a character string from the key
board can be effected by a program shown in Figure 2
(after establishing a communication path by generating
an exceptional event as explained in a previous section).
The user sends a message getb/2, that requests the read
ing of N characters. When PIMOS receives the message,
it reads N characters from the keyboard to the variable
KBDString (readFromKBD/2). Then, the user receives
the String instantiated to KBDString. As the cdr of
the list, ReqT, will be a new shared variable after this
operation, it can be used for successive such communi
cation.

2.2 Protection Mechanism

In a system based on a concurrent logic language, many
of the problems that might arise in a conventional oper
ating system will never be a problem. As the communi
cation path between the user programs and the system
programs can be restricted to shared logical variables,
there is no way for user programs to overwrite the mem
ory area used by the system programs.

?- pimos(Req), user(Req).

user(Req) :
true I

Req = [getb(N, String) I ReqT],

pimos([getb(N,String)IReqT]):-
true I

readFromKbd(N,KBDString),
KBDString=String,
pimos(ReqT).

271

Figure 2: An example of interprocess communication
between user and PIMOS

With the simple mechanism described above, how
ever, intentional or accidental error in user programs
may cause system failure in the following ways.

Multiple Writer Problem When both the system
and user programs write different values to the same
variable, a unification failure may occur. In a con
current language like KL1, unifications by PIMOS
and the user may be executed concurrently. Thus,
this contradiction may cause PIMOS to fail if it tries
to instantiate the variable later.

Forsaken Reader Problem The user program may
fail to instantiate the arguments of the message sent
to PIMOS, in which case PIMOS may wait forever
for it to be instantiated.

To solve problems, a filtering process called the protec
tion filter is inserted in the stream between PIMOS and
the user program. This filter is inserted in the object
level (within the user's shoen) using the above described
NewCode and NewArgV arguments of the exception re
porting message. To solve the forsaken reader problem,
the filter will :{lot send a message to PIMOS until its
arguments are properly instantiated. To solve the mul
tiple writer problem, the filter will not unify the result
from the operating system with the variable supplied by
the user until it is properly instantiated by the operating
system (Figure 3).

In the actual implementation, such filtering programs
are automatically generated from the message protocol.
definitions.

2.3 Asynchronous Communication

Stream communication is simple, yet powerful enough
for simple applications, but it does not provide sufficient
flexibility and efficiency at the same time when control
ling various I/O devices.

As communication delay is a crucial factor in dis
tributed processing, it is desirable to send messages in a

272

filter([get(C)IUser],DS):-
true I

as = [get(C)IOS1],
wait_and_unify(Cl,C),
filter(User,OSl).

wait_and_unify(OSV,UserV)
wait(OSV) I

UserY = OSV.

Figure 3: An example of the protection filter

pipelined manner for better throughput. To allow this,
it is desirable to allow messages to be sent before being
sure that they are really needed and to allow them to be
canceled if they are found to be unnecessary afterwards.
If only one communication stream is available between
the operating system and the user, this cancellation is
not possible (Figure 4).

user
process

Figure 4: Blocked stream

device
driver

To solve the problem, PIMOS provides another com
munication path for emergencies. We call the path abort
line. This communication path is implemented as a sim
ple shared variable. Instantiation of this variable notifies
cancellation of commands already sent to the stream.

Another problem is that, with only one communica
tion stream from the user to the operating system, there
is no way for the devices to send asynchronous infor
mation to the users. To solve this, besides the above
mentioned two communication paths, a communication
path in the reverse direction called the attention line is
provided (see Figure 5).

stream I
I) ~ornmany~)

device user
process driver

abolt

- attention

Figure 5: Asynchronous communication with a device

These two "lines" are one-time communication paths

in their nature. After they are used, new paths can
be established by sending the reset message described
below through the main communication stream.

2.4 Multiplexing Communication Paths

It is sometimes mandatory to share some (virtual) re
sources among several processes. A typical example is
with the terminal device shared among processes run
ning under a shell. In such cases, only one process should
be able to use the device at a time, but quick switching
among processes (when a process is suspended by a ter
minal interrupt, for example) is essential for comfortable
operation. On the other hand, the pipelining of I/O
request messages is mandatory for better throughput.
With only the mechanism of the "abort" and "atten
tion" lines mentioned above, the aborted requests will
merely disappear. This does not provide more flexible
control, such as suspending a process and resuming it
afterwards.

PIMOS provides the following I/O messages to solve
the problem.

resetCResult): The variable Result is instantiated
to a term normal(-Abort, Attention, ID). The
arguments Abort and Attention correspond to
new abort and attention lines. An identifier for
a sequence of commands subsequently sent on this
stream is returned in the argument ID.

resend(ID, AStatus): When I/O request messages are
aborted using the abort line, the device drivers re
member the aborted messages associated with the
identifier. The resend command tells the device
driver to retry the aborted messages associated with
ID.

cancel(ID, AStatus): This cancel message tells the
device driver to forget about the aborted messages
associated with ID.

Suppose that a certain device, such as a window de
vice, is shared by two user processes, A and B. Each user
process has one communication path to the device. The
communication paths connected from the user processes
are merged to a "switch" process, which has another
communication path connected to a "control" process
(Figure 6(a)).

The control process is usually a part of a program such
as a command interpreter shell that lets two or more
programs share one display window. When a program
running under the shell is suspended by an interruption,
there may remain 1/ a messages that have been already
sent from the interrupted program to the device driver
but have not been processed yet. In such a case, the con
trol process suspends the processing through the abor
tion line and sends a reset message to the device through

the switch process (Figure 6(b)). The suspended mes
sages are kept in the device driver with 1D. If the pro
gram resumes communication with the device, the con
trol process commands the switch process to send a re
send message with ID as its argument to make it resume
the suspended 110 requests.

(a) switch for multiplexing streams

abort reset,resend
Process A

ID = 1 ID = 1
reset, resend abort

Process B
ID = 2

Example: --- : connected communication path
. .. . disconnected communication path

(b) commands between the switch and the device driver

Figure 6: Multiplexing streams

3 Resource Management Mechanism

All the devices provided by PIMOS have the stream in
terface described above, with attention and abort lines
when required. Thus, management of resources in PI
MOS is management of these communication paths.
This section describes the mechanism of the manage
ment by PIMOS.

The following are the keywords to understand the
mechanism.

Task: Tasks are the units of management of user pro
grams. A task consists of an arbitrary number of
goals (fine-grained processes) corresponding to a
shoen in the language level, and forming a hierar
chical structure.

General Request Device: The general request device
is the top level service agent. This is the stream user
programs can obtain directly from PIMOS. Request
streams to all other devices are obtained by sending
messages to this device.

273

Standard I/O Device: A task is associated with its
standard 110 devices. Standard 110 devices are
aliases of some devices they are associated with.
The correspondence is specified when the task is
generated. The resource sharing mechanism de
scribed above is attached to these tasks.

Server: 1/0 subsystems of PIMOS are actually pro
vided by corresponding tasks called servers. They
are made relatively independent of the kernel of PI
MOS, making the modularity of the system better.
The file subsystem is typical of such servers.

3.1 Resource Management Hierarchy

As mentioned above, tasks are the unit of management
of user programs. All communication paths from user
program to PIMOS are associated with certain tasks.
Resources obtained by requests through such paths are
also associated with the tasks.

Tasks are implemented using the shoen mecha~ism of
KLl. A task is a shoen with its supervisor process inside
the PIMOS kernel. The kernel controls the utilization
of resources within the task.

Tasks are handled just like ordinary 110 devices. A
task handler is a device handler whose corresponding
device happens to be a shoen. Tasks are unique in that
they may have children resources. As its consequence, a
task can have tasks as its children resources forming a
nested structure. Corresponding to this, task handlers
and other resource controlling processes inside PIMOS
also form a hierarchical structure, called the resource
tree. This resource tree is the kernel of resource man
agement by PIMOS.

One layer of the resource tree is represented by the
task handler and device monitors corresponding to its
children resources connected by streams in a loop struc
ture (Figure 7). Device monitor processes are common
with all kinds of devices. Associated with each device
monitor is a device handler, which depends on the cate
gory of the device. Device monitors and device handlers
are dynamically created when a new virtual device is
created and inserted in the loop structure.

The device handlers can be classified as follows.

Task Handler: A task handler corresponds to a shoen.
As described above, usual shoens whose control and
report streams are directly connected to their cre
ator. Those streams of shoens corresponding to a
task are connected to the task handler. The creator
of the task (user programs) can only control and
observe the behavior of tasks indirectly through re
quests to PIMOS.

General Request Handler: General request devices
are the primary devices provided by PIMOS.
Through them, information on the task itself is ob-

274

Figure 7: Resource tree

tained and various other devices (including children
tasks) can be created.

Standard 110 Handler: Standard I/O devices are
aliases corresponding to some other device. They
provide the resource sharing mechanism described
above.

Server Device Handler: Server devices are the most
common form of virtual devices provided by PI
MOS. The device handlers watch the status of the
client task and notify its termination to the server
task.

3.2 Providing Services

To minimize the "kernel" of PIMOS, the kernel provides
its fundamental resource management mechanism only.
Other services, such as virtual devices such as files or
windows, are provided by tasks called "servers".

Figure 8 shows an overview of the management hier
archy of PIMOS. The basic I/O system (BIOS) provides

the low-level I/O, but it does not provide the protec
tion mechanism. To protect the system, basic I/O ser
vice is provided only for the kernel. The kernel provides
the above-described resource tree, which provides the
resource management mechanism for tasks. Tasks here
include both user program tasks and server tasks.

As described above, communication between the user
programs and PIMOS can be established using the raise
primitive. However, this mechanism only establishes a
path to the kernel (the resource tree) and not to a server
task.

The communication path between a client task and a
server task can be established as follows (see Figure 9,
also).

1. To start the service, servers register their service to
the service table kept in the kernel of PIMOS. The
table associates service names to a stream to the
corresponding server. The code for the stream filter
for protecting the server from clients' malfunction
is also registered in the table.

Task

Figure 8: An overview of the management hierarchy

2. The client task establishes a communication path
to the PIMOS kernel and requests a service by its
name.

3. The kernel searches for the name in the service ta
ble, and if a matching service is found, connects the
client and the server, inserting a protection filter
process inside the client.

Although the above written order is typical, The order
of 1 and 2 is not essential. Requests made prior to reg
istration of the service will simply be suspended.

In step 3, PIMOS inserts a device monitor and a de
vice handler corresponding to the server device. The
device handler watches for termination of the client task
and notifies it to the server (Figure 10) for finalizing the
service provided.

This separation of the kernel and the servers in PI
MOS allows flexible configuration of the system and as
sures system robustness. Failures in a server will not be
fatal to the system; the services provided by the server
will become unavailable, but the kernel of the system
not to be affected.

Table 1 lists standard services in the most recent ver
sion of PIMOS (Version 3.2). Each of these services is
implemented using the above client/server mechanism.
Various other servers, such as database servers, can be
added easily and canonically to these standard servers.

Table 1: Standard service in PIMOS(Version 3.2)
Name I Service

atom Database of atom identifiers and their
unique printable names.

file File and directory service.
module Database of executable program codes.
socket Internet socket service.
timer Timer service.
user Database of user authentication information.

window Display window service.

275

3.3 Standard I/O

PIMOS provides a management mechanism for sharing
resources, which enables the sharing of resource streams
between a parent task and its children tasks (and sub
sequent children tasks). When a task is generated nor
mally, standard 110 devices of the parent task are in
herited to the child task. Multiplexing of the request
bstream is implemented as described previously.

Standard 110 devices are not a usual device but a kind
of alias of the device it is associated with. Since the pro
tection mechanism of PIMOS, a messages filtering pro
cess, has to know the message protocol of the stream,
the message protocol for the standard 110 device is re
stricted to a common subset of 110 device protocols.

3.4 Low Level I/O

In the lowest level, PIMOS supports SCSI (Small Com
puter Standard Interface) for device control. Each op
eration to the SCSI bus is provided as a built-in predi
cate by the KL1 language implementation. For example,
a primitive for sending a device command through the
SCSI bus is as follows.

scsi_command(SCSI, Unit, LUN, Command,
Length, Direction, Data, DataP,
ANewData, A TransferredLength,
AID, AResult, ANewSCSI)

The argument SCSI should be an object representing
the state of the SCSI bus interface device at a certain
moment. NewSCSI, on the other hand, represents the
state of the device after sending the command. This is
instantiated only after completing the operation and the
value will be used in the next operation, which will be
suspended until it is instantiated. The proper ordering
of operations is thus maintained.

The Unit and LUN arguments designate a specific de
vice connected to the SCSI bus. Arguments Command
and Direction are used to control communication on
the SCSI bus. The argument ID is used for command
abortion, whose mechanism is similar to one described
previously.

Since the KL1 processor needs garbage collection, real
time programming in KL1 is basically impossible. On
the other hand, physical operations on SCSI require real
time response. The above primitive only reserves the
operation and actual operation will be done eventually,
with lower level real-time routines. Explicit buffers are
used to synchronize the activities of their lower level
routines with KL1 programs. Other arguments, Data,
DataP, NewData, TransferredLength are used to spec
ify such buffers.

276

I PIMOS I
Tasks I (2) request

....
~===Client Task

name service

file

Server Task===1==
(3) insertion of
protection filter

~~~ 

Figure 9: Communication between client and server (1 ) 

~~====Serv~TMk======~ 

Figure 10: Communication between client and server(2) 



3.5 Virtual Machine 

As all the communication between the user programs 
and PIMOS is initiated through the control and report 
streams of the shoen which implements the user task, a 
user program can emulate PIMOS and make application 
programs run under its supervision. This is useful for 
debugging application programs. 

The same technique can also be used to debug PIMOS 
itself by writing a BIOS emulator, as all the other parts 
of PIMOS communicate with BIOS through paths es
tablished using the shoen mechanism. Figure 11 depicts 
an actual implementation of a virtual machine on PI
MOS. As the virtual machine is a usual task in PIMOS, 
the protection mechanism of PIMOS prevents failures 
in the version of PIMOS being debugged on the virtual 
machine from being propagated to the real PIMOS. This 
facility has been conveniently used in debugging the ker
nel of PIMOS. 

Physical machine 

Virtual machine 
(task) 

BIOS simulator 

Kemel(resource tree) 

BIOS 

Figure 11: Virtual machine on PIMOS 

4 Conclusion 

The resource management scheme used in PIMOS based 
on the concurrent logic language KLI is described. It 
depends heavily on the meta-level control mechanism 
called shoen provided by the language for efficient hier
archical resource management. 

PIMOS itself has a hierarchical structure, consisting 
of a kernel and server tasks. This structure enables a 
flexible system configuration and reinforces the robust
ness of the system. 

The system consisting of parallel inference machines 
(Multi-PSI and recently PIM) and earlier versions of PI
MOS has been heavily used in research and development 

277 

of experimental parallel application software for about 
three and a half years already, proving the feasibility 
and practicality of implementing an operating system in 
concurrent logic languages. 

Acknowledgement 

Many of researchers of ICOT and other related research 
groups. Too numerous to be listed here, participated 
in the design and implementation of the operating sys
tem itself and development tools. We would also like 
to express our thanks to Dr. S. Uchida, the manager 
of the research center of ICOT, and Dr. K. Fuchi, the 
director of the ICOT research center, for their valuable 
suggestions and encouragement. 

References 

[Chikayama et al. 1988] T. Chikayama, H. Sato and 
T. Miyazaki. Overview of the Parallel Inference Ma
chine Operating System (PIMOS). In Proceedings 
of the International Conference on Fifth Generation 
Computer Systems, ICOT, Tokyo, 1988, pp.230-251. 

[Foster 1988] 1. Foster. Parlog as a Systems Program
ming Language. Ph. D. Thesis, Imperial College, Lon
don, 1988. 

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, 
K. Taki and A. Matsumoto. Overview of the Parallel 
Inference Machine Architecture (PIM). In Proceedings 
of the International Conference on Fifth Generation 
Computer Systems, ICOT, Tokyo, 1988, pp.208-229. 

[Nakajima et al. 1989] K. Nakajima, Y. Inamura, 
N. Ichiyoshi, K. Rokusawa and T. Chikayama. 
Distributed Implementation of KLI on the Multi
PSIjV2. In Proceedings of the Sixth International 
Conference on Logic Programming, 1989, pp.436-451. 

[Shapiro and Takeuchi 1983] E. Shapiro and 
A. Takeuchi. Object Oriented Programming in Con
current Prolog. In New Generation Computing, VoLl, 
No.l(1983), pp.25-48. 

[Shapiro 1984] E. Shapiro. Systems Programming in 
Concurrent Prolog. In Proceedings of the 11th A CM 
Symposium on Principles of Programming Languages, 
1984. 

[Taki 1992] K. Taki. Parallel inference machine PIM. In 
Proceedings of the International Conference on Fifth 
Generation Computer Systems, ICOT, Tokyo, 1992. 

[Ueda 1986] K. Ueda. Guarded Horn Clauses: A Paral
lel Logic Programming Language with the Concept of 
a Guard. Technical Report TR-208, ICOT, 1986. 



PROCEEDINGS OF THE INTERNATIONAL CONFERENCE 
ON FIFTH GENERATION COMPUTER SYSTEMS 1992, 
edited by ICOT. © ICOT, 1992 278 

The Design of the PIMOS File System 

F'umihide ITOH Takashi CHIKAYAMA Takeshi MO RI Masaki SATO 
Institute for New Generation Computer Technology 
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan 

Tatsuo KATO Tadashi SATO 
Mitsubishi Electric Computer Systems (Tokyo) Corporation 

87-1, Kawakami-cho, Totsuka-ku, Yokohama 244, Japan 

Abstract 

This paper describes the design and implementation of 
the PIMOS file system. The file system was designed for 
loosely-coupled multiprocessor systems, where caching is 
essential for reducing not only disk accesses but also for 
communication between processors. To provide applica
tions with flexible load distribution, the caching scheme 
has to support consistency semantics under which mod
ifications of a shared file immediately become visible on 
other processors. Two different caching schemes, one for 
data files and the other for directories, have been de
signed. This is necessary because they have different 
access patterns. Logging the modifications of directories 
and other essential information secures the consistency 
of the file system in case of system failure. Multiple log 
areas reduce the time required to write logs. Buddy di
vision of blocks enables released blocks to be collected 
efficiently. Hierarchically organized free block maps con
trol buddy division. 

The file system has been implemented on PIM. 

1 Introduction 

PIMOS [Chikayama et al. 1988] has been developed by 
the Fifth Generation Computer Systems project of Japan 
as the operating system for PIM [Goto 1989] as a part 
of the parallel inference system for knowledge informa
tion processing. PIMOS has a file system which was 
designed to realize a robust file system optimized for 
loosely-coupled multiprocessor systems like PIM. This 
paper describes the design and implementation of this 
file system. 

The file system for the parallel inference system should 
provide a bandwidth broad enough to support knowl
edge information processing application software running 
on high performance parallel computers. To allow flex
ible load distribution, the semantics it provides should 
be location-independent. That is, the contents of files 
should look the same to the program regardless of the 
processor it is running on. 

File systems on external 110 systems poorly meet re
quests from multiprocessors, due to limited communi
cation bandwidths. We, thus, constructed an internal 
file system on disks incorporated into multiprocessor sys
tems. Distributed file systems are similar to our file sys
tem in that shared files are accessed from processors con
nected via a network, with some communication delay. 
However, the communication bandwidth of the network 
is much broader in our case. Also, processes using files 
are normally cooperate rather than compete. These con
siderations affect the design. 

We have clarified functions essential to file systems for 
loosely-coupled multiprocessor systems, and then con
sidered how to implement them. Although the system is 
an experimental one, we included the essential features 
of practical file systems in our design, such as disk ac
cess optimization. The system has been implemented 

. as a part of PIMOS, in concurrent logic language KL1 
[Ueda and Chikayama 1990]. 

2 Design Principles 

In order to draw parallelism from loosely-coupled multi
processor systems, centralizing loads to a small number 
of server processors with disks should be· avoided. 

The cost of communications between processors is 
more expensive in loosely-coupled multiprocessor sys
tems than in tightly-coupled ones, and the cost of disk 
accessing is still more expensive than that of commu
nication. Thus, both disk accessing and interprocessor 
communication should be reduced. This necessitates dis
tributed caching. 

Data cached in memory may be lost upon system fail
ure. For dat,a files, the loss is limited to files being mod
ified at the time of the failure. Loss in a modified direc
tory, however, may cause inconsistency in the file system, 
such as a deleted, nonexistent file still being registered 
in a directory, The loss may spread to files under the di
rectory, even though they were not accessed at the time 
of the failure. Consequently, the file system needs pro-



tection against failure to preserve its consistency. 
Disk access optimization is one of the primary features 

of practical file systems. Most of the overheads in disk 
accesses are seeks, so a reduction in seek cost, i.e., the 
number of seeks and per-seek cost, is required. 

3 Design Overview 

We allowed multiple servers to distribute the loads of 
file accesses. A caching mechanism was incorporated to 
reduce disk accesses and communication among proces
sors. A logging mechanism secures the consistency of the 
file system against system failure. A disk area manage
ment scheme similar to that of conventional file systems 
reduces the seek time for disk accessing. An overview of 
these features is described in this section. 

3.1 Multiple Servers 

In order to draw parallelism from multiprocessor sys
tems, load centralization should be avoided. File sys
tems have inherent centralization in that a disk can be 
accessed only by a processor connected to it. Multiple 
disks connected to multiple processors with a server run
ning on each relaxes centralization and make the system 
scalable. 

A processor with disks can run a server, but the pro
cessor is not dedicated to it. The server processors also 
operate as clients when their disks are not accessed, pro
viding better utilization of computational resources on 
multiprocessor systems. 

3.2 Caching Mechanism 

In order to reduce disk accessing and interprocessor com
munication, data files and directories are cached onto all 
processors that access them. 

3.2.1 Caching of Data Files 

Consistency semantics for caches of the same data on 
different processors has been realized. The execution of 
an application program on a multiprocessor system is 
distributed among processors. The strategies of distri
bution are diverse and depend upon the application. In 
order to distribute computation flexibly, file access result 
must be identical no matter which processor accesses the 
file. In other words, modification by another processor 
has to be visible immediately. 

This kind of consistency semantics is called Unix se
mantics [Levy and Silberschatz 1989] in distributed file 
systems. It was originally introduced to maintain soft
ware compatibility between distributed and conventional 
uniprocessor Unix systems. For the same reason, Unix 
semantics are indispensable to a file system for multipro
cessor systems. 

279 

There is no problem in sharing a file when all the shar
ers merely read the file. When a file is shared in write 
mode, the simplest way to support Unix semantics is to 
omit caching and centralize all accesses to the file on the 
server. This method is reasonable in the environments 
where shared files are rarely modified. On multiprocessor 
systems, where processors solve problems cooperatively, 
modifying shared files is quite common, since distribut
ing the computational load between processors, including 
file accessing, is essential for efficient execution. 

Consequently, a caching mechanism is designed in 
which a shared file can be cached even if it can be mod
ified and Unix semantics are preserved. 

3.2.2 Caching of Directories 

In order to identify a file, the file path name is analyzed 
using directory information. The caching of directories 
along with the caching of data files can be used to avoid 
the centralization of loads to server processors and reduce 
communication with those processors. 

Accessing directories is quite different from accessing 
to data files. Data files are read and written by users, 
and the contents of files are no concern of the file system. 
On the other hand, the contents of directories form a 
vital part of the file system. Thus, a different caching 
mechanism for directory information was designed. 

3.3 Logging Mechanism 

Modifications of directories and other information vital 
for the file system are immediately logged on disk. Mod
ifications are made to data files much more often, and 
writing all modifications immediately to a disk decreases 
performance severely. Instead, we provide a mechanism 
which explicitly specifies the synchronization of a partic
ular file. 

Simply writing to a disk immediately does not assure 
the consistency of the file system. For example, if the 
system fails while moving a file from one directory to 
another, the file may be registered in either both or none 
of the directories, depending on the internal movement 
algorithm. This inconsistency can be avoided by two
phase modification. First, any modification is written 
as a log to an area other than the original. Second, the 
original is modified when logging is complete. 

If the system fails before the completion of the log
ging, the corresponding modification is canceled. If the 
system fails after completion of the logging but before 
the modification of the original, the original is modified 
using the log in a recovery procedure, validating the cor
responding modification. In either case, the consistency 
of the file system is preserved. The system may fail while 
a log is being written, leaving an incomplete log. In or
der to detect this, we introduced a flag to indicate the 
end of a log that corresponds to an atomic modification 



280 

transaction. 
The completion of logging can be regarded as comple

tion of the modification. The original may be modified 
at any time before the log is overwritten. This means 
that logging does not slow down response time. Rather, 
it improves response time. For example, when a file is 
moved, two directories have to be modified. The modifi
cation of the two originals may need two seeks. Writing 
the log needs only one seek. Moreover, we use multi
ple log areas and write the log to the area closest to the 
current disk head position to reduce the seek time. 

A log contains the disk block image after modifica
tion. Because the block corresponding to a more recent 
modification overrides the older modifications, only the 
newest constituent must be copied to the original. The 
more times the same information is modified, the less 
times the original is modified. Frequent modification of 
the same information, which is known to be the case in 
empirical studies [Ousterhout et al. 1985], minimizes the 
throughput decline caused by extra writing for logging. 

Each log area is used circularly, overwriting the oldest 
log with a new log. In order to reduce disk accessing, 
the modifications of the original should be postponed as 
long as possible, that is, until immediately before the 
corresponding log is overwritten. To detect the logical 
tail of a log area, namely the last complete log, each 
log block has a number, named a log generation, which 
counts the incidences of overwriting the log area. 

The multiplicity of log areas has caused a new prob
lem to arise: how can the newest block be determined 
after a system failure. If there is only one log area, the 
newest log block is the closest one to the logical tail of 
the log area, and the log blocks are always newer than or 
as new as the corresponding original block. However log 
blocks in different areas do not show the order in which 
they were written. If the newest log block is overwrit
ten after it is copied to the original block, the original 
block is newer than the remaining log blocks. We have 
solved this problem by attaching a number, named a 
block generation, to the log blocks and to the original 
blocks. The block generation counts incidences of modi
fying the block. 

3.4 Disk Area Management 

To reduce the number of seeks, the unit of area alloca
tion to files should be made larger. Larger blocks cause 
lower storage utilization, as a whole large block must be 
allocated even for small files. Our solution is to provide 
two or more sizes of blocks and to allocate smaller blocks 
to small files. 

To reduce the time per seek, a whole disk is divided 
into cylinder groups, and blocks of one file are allocated 
in the same cylinder group as much as is possible. The 
log areas mentioned in the previous subsection are placed 
in each cylinder group. 

These methods are commonly used in conventional file 
systems. A unique feature of the PIMOS file system is 
buddy division of a large block into small blocks, which 
reduces disk block fragmentation. 

4 Implementation 

4.1 Multiple Servers 

The whole file system consists of logiCal volumes, each of 
which corresponds to one file system of Unix. A logical 
volume can occupy the whole or a part of a physical disk 
volume. The processor connected to the disk becomes 
the server of files and directories in the logical volume. 
Logging and disk area management in the volume is also 
the responsibility of the server. 

4.2 Data File Caching Mechanism 

4.2.1 Overview 

To realize Unix semantics with reasonable efficiency on 
loosely-coupled multiprocessor systems, we decided to 
stress the performance of exclusive or read-only cases, 
and tried to minimize disk accesses and interprocessor 
communication in such cases. 

The unit of caching is a block, which is also the unit of 
disk 1/0. This simplifies management and makes caches 
on server processors unnecessary. A processor where 
caches are made is called a client, as in distributed file 
systems. Each client makes caches from all the servers to
gether and swaps cached blocks by the least recently used 
(LRU) principle. Unix semantics is safeguarded by mod
ifying the cache after excluding caching on other clients. 

The caching mechanism is similar to that for coher
ent cache memory [Archibald and Baer 1986]. While 
a coherent memory caching scheme depends on a syn
chronous bus, our platform, a loosely-coupled multipro
cessor system, provides only asynchronous message com
munication. This means that we must consider message 
overlaps. 

A ~lient classifies each cached block into five perma
nent states, according to the number of sharers and 
the necessity of writing back to the disk. In addition, 
there are three more temporary states. In the tempo
rary states, the client is awaiting a response from the 
server to its request. 

A server does not know the exact state of cached 
blocks, but only knows which clients are caching the 
blocks., Requests for data, replies to the requests, and 
other notifications needed for coherence are always trans
ferred between the server and clients, rather than directly 
between clients. Cached data itself may be transferred 
directly between clients. 



4.2.2 Cache States 

The principle for keeping cache coherence is simple: al
lowing modification by a client only when the block is 
cached by no other client. To realize this, "shared" and 
"exclusive" cache states are defined. Permanent cached 
block states can be as follows: 

Invalid (I) means that the client does not have the 
cache. 

Exclusive-clean (EC) means that the client and no 
other clients have the unmodified cache. 

Exclusive-modified (EM) means that the client and 
no other clients have the modified cache. 

Shared-modified (SM) means that the client has the 
modified cache, and some other clients mayor may 
not have cache for the same block. 

Shared-unconcerned (SU) means that the client has 
the cache but does not know whether it was mod
ified, and some other clients mayor may not have 
cache for the same block. 

Temporary cached block states can be as follows: 

Waiting-data (WD) means that the client does not 
have and is waiting for the data to cache, and that 
the data can be shared with other clients. 

Waiting-exclusive-data (WED) means that the 
client does not have and is waiting for the data 
to cache, and that the data cannot be shared with 
other clients, as the client is going to modify it. 

Waiting-exclusion (WE) means that the client al
ready has the cache and is waiting for the invali
dation of caches on all other clients. In other words, 
the client is waiting to become exclusive. 

4.2.3 State Transition by Client Request 

A request from a user to a client is either to read or to 
write some blocks. Another operation needed for a cache 
block is swap-out, i.e., to write the data back to the disk 
forcibly by LRU. This request or operation is accepted 
only in permanent states, and is suspended in temporary 
states as the client is still processing the previous request. 

The state transition for a request to read is shown in 
Figure 1 (a). If the state is I, the client requests the data 
to the server, changes its state to WD, and waits. After 
a while, the server reports the pointer to the data and the 
state to change to. The pointer points to another client 
when it already has the data, or to the server when the 
server read the data from the disk because no clients 
have the data. The client reads the data, lets the user 
read it, and changes to EC, SM, or SU according to 

281 

the report. If the state was originally EC, EM, SM, 
or SU, the client simply lets the user read the available 
data and stays in the same states. 

The state transition for a request to write is shown in 
Figure l(b). If the state is I, the client requests exclusive 
data to the server, changes to WED, and waits. After a 
while, the server reports the pointer. The client reads the 
data, lets the user modify it, and changes to EM. If the 
state was originally EC or EM, the client lets the user 
modify the data immediately, and changes to or stays 
in EM. If the state was SM or SU, the client requests 
the server to invalidate caches in other clients, changes to 
WE, and waits. Then, if the server reports completion of 
the invalidation, the client lets the user modify the data 
and changes to EM. Another client may also request the 
invalidation simultaneously, and its request may reach 
the server earlier. In this case, the server requests the 
invalidation of the cache, and the client abandons the 
cache and changes to WED. Eventually, after the server 
receives the request to invalidate from the client, the 
pointer to the data is reported. 

The state transition for swap-out is shown in Fig
ure 1 ( c ). The client reports the swap-out to the server, 
and changes to I. If the state is EM or SM, the pointer 
to the data is also reported at the same time. The server 
reads the data and writes it back to the disk when it 
cannot make any other client EM or SM. If the state 
is EC or SU, writing the data back to the disk is not 
required, as the data is either the same as that on the 
disk or is cached by some other client. 

4.2.4 State Transition by Server Request 

A request from the server to a client is either to share, 
to yield, to invalidate or to synchronize the cache. It is 
accepted not only in permanent states but also in tem
porary states. 

A request to share is caused by a request to read by 
another client. The state transition for this is shown in 
Figure 2(a). If the state is EC or SU, the client reports 
the pointer to the data and indicates that the requesting 
client should change to SUo In each case, the state of the 
requested client after replying is SU. If the state is EM 
or SM, there is a question of which client should take 
responsibility for writing back the data. In the current 
design, the requesting client takes it. Consequently, the 
requested client reports the pointer to the data and in
dicates that the requesting client should change to SM. 
The requested client becomes SUo 

A client may receive a request to share in state I, if 
swap-out overlaps with the request. In this case, the 
server knows of the absence of the data when it receives 
the swap-out. The client consequently ignores the re
quest. Moreover, the client will possibly receive the re
quest while awaiting data after swapping it out in WD 
or WED. The client can also ignore the request. Fur-



282 

(a) Read (b) Write (c) Swap out 

Figure 1: State transition diagrams by a request to the client 

(a) Share (b) Yield or invalidate ( c) Synchronize 

Figure 2: State transition diagrams by a request from the server 

thermore, the client can receive the request in WE if 
the request to invalidate other caches overlaps with the 
request. In this case, the client, while waiting in WE, 
reports the pointer to the data and indicates that the 
requesting client should change to state SUo Completion 
of the invalidation will be reported, after the request of 
invalidation is received by the server. 

The actions of a client for requests to yield and to 
invalidate are the same, except when the pointer to the 
data is reported. State transition is shown in Figure 2(b). 
If the state is EC, EM, SM or SU, the client reports the 
pointer to the data or simply abandons the cache, and 
changes to I. The client can receive the requests in I, 
WD, or WED and ignore them, for the same reason as 
when a request to share is received. If the state is WE, 
the client reports the pointer or abandons the cache, and 
changes to WED, as described in the case of a request 
to write to the client. 

On a request to synchronize, the server requests a 

client to send the data and write it back to the disk. 
State transition is shown in Figure 2( c). If the state is 
EM or SM, the client reports the pointer to the data 
and changes to EC from EM, or SU from SM. If the 
state is EC or SU, the client reports that writing back 
is unnecessary. If the state is I, WD, or WED, the 
swap-out has overlapped with the request. The client 
may ignore the request because the server will receive 
the swap-out message with or without the pointer to the 
data. If the state is WE, the client reports the pointer, 
while awaiting completion of the invalidation in WE. 

The temporary states enable message overlaps to be 
dealt with efficiently. 

4.3 Directory Caching Mechanism 

Most accesses to directories are to analyze file path 
names. In order to analyze a file path name on a client, 
directory information is cached. The unit of caching is 



one member of a directory. Each client swaps caches 
by LRU. The server maintains information on the direc
tories and members that clients cache. The server also 
caches the disk block images of cached directories, and 
when a member is added or removed, it modifies the im
ages and writes them to the disk as a log. 

When a file path name is analyzed on a client, the 
members on the path are cached to the client one after 
another. If the same members appear on subsequent 
path name analyses, the cached information is used. 
When a member is added to a directory, the member is 
added to caches after the addition is logged by the server. 
These operations require communication only between 
the client and the server. 

vVhen a mem.ber is removed, the removal is notified to 
the server. The server requests the invalidation of the 
cache to all the clients caching the member. After the 
server has received acknowledgement of invalidation from 
all the clients, the server writes a log, thus completing 
the removal. Although this removal may take time, it is 
not expected to affect the total throughput of directory 
caching because frequently updated members of directo
ries are not likely to be cached by clients other than the 
one that modifies them. 

Information about access permission is also necessary 
for analyzing path names. Therefore, it is cached in the 
same way as directory information. 

4.4 Logging Mechanism 

4.4.1 Log Header 

In order to manage logging, each block in the logs and the 
originals has a header consisting of the following items. 
Except for block generation, the information has no rel
evance in the original. 

Block identifier shows the corresponding original 
block. It consists of a file identifier and a block 
offset in the file. 

Log generation counts the number of times a log area 
is used. 

Atomic modification end is a flag which shows the 
last block of a log corresponding to an atomic mod
ification. 

Block generation counts the number of times a block 
has been modified in order to identify the newest 
block among logs and the original. 

Because the size of a header is limited, the maximum 
size of numbers allowed in the log generation and block 
generation items are limited. However, as we will discuss, 
three log generations, at most, can exist in a log area at 
anyone time. This means that the cyclic use of three or 
slightly more generations is sufficient. Limited numbers 

283 

Lo 

a I. • • ,I 2n -1 
n 

a I I •• I f+-. -------+1. 2n - 1 
n 

Figure 3: Distribution of block generations 

for block generations can also be used cyclically. This 
assures that the newest block is always spotted in the 
following way. 

Suppose that 2n numbers, from a to 2n - 1, are used 
for block generation. Block generation starts from 0, in
creases by 1 until 2n - 1 is reached, and returns to o. 
We have introduced the following control: if the abso
lute value of the difference between the block generation 
of the log block to be written next, LN , and that of the 
oldest existent block, Lo , is equal to n, the oldest block, 
whether it is in a log or is the original, is invalidated 
before the next log is written. Distribution of block gen
eration under this control is shown in Figure 3. As is 
shown, the invariant condition is that LN - Lo < n if 
LN > Lo , and Lo - LN > n if Lo > LN· 

Consequently, after a failure, the newest block is spot
ted as follows. The distribution of block generations dic
tates that either all of the generations are in a range 
narrower than n or that the distribution has a gap wider 
than n. In the former case, the newest block is the one 
which has the largest generation. In the latter case, it is 
the one which has the largest number in the group below 
the gap. 

In practice, the invalidation of the oldest block occurs 
rarely. Our current implementation allocates 24 bits for 
block generation. Invalidation occurs only if there are 
223 = 8,388,608 modifications to the same block and, in 
addition, if the oldest block happens not to have been 
overwritten by modifications. However, even one modifi
cation every ten milliseconds during one whole day barely 
amounts to 100 x 60 x 60 x 24 = 8,640, 000. 

4.4.2 Logging Procedure 

While the file system is in operation, logs are written as 
follows: 

1. Create after-modification images of a set of blocks. 
Set block identifiers and block generations. Line up 
the blocks and set an atomic modification end flag 
to the log header in the last block. 



284 

2. Choose the log area in the cylinder group where the 
disk heads currently reside. Set log generations to 
the log headers. Write the log, the sequence of the 
blocks, to the log area. 

3. Report the completion of logging. 

4. Make room in the log area for the subsequent writ
ing. In other words, if the newest blocks are in the 
part where the next log to the area will be written, 
copy them to the corresponding original blocks. 

5. Invalidate the oldest blocks if necessary, i.e., if there 
are blocks whose next modifications will require 
them to be invalidated. Invalidation is performed 
by setting a null block identifier to the log header. 

Making room and invalidating can be done at any time 
before the next log is written. It should be done imme
diately after logging to get the best response at the next 
logging. The size of the room is made to be the maximum 
size of a log corresponding to an atomic modification, or 
slightly more. 

When a logical volume is dismounted, all the newest 
blocks are written to the corresponding originals. 

The following tables in memory are used to control 
logging: 

Log area table maintains the next log position and the 
log generation in each log area. 

Log record table maintains the block identifier corre
sponding to each position in the log areas. 

Log block table maintains, for every block that has at 
least one log, the position and the block generation 
of each log, and the block generation of the original. 

4.4.3 Recovery Procedure 

After a system failure, the tables for log management are 
recovered as follows: 

1. Find out decreasing points in log generation in each 
log area. 

2. Choose the first of the decreasing points as the ten
tative logical tail of each log area. 

3. Find out the real logical tail of each log area by re
jecting the incomplete log from the tentative logical 
tail. 

4. Decide the logical head of each log area and recover 
the tables from valid log blocks. 

Decreasing points in log generation show that the log 
blocks were logged last before system failure or were be
ing logged at the time of the system failure. There may 
be more than one decreasing point if an intelligent disk 

(1) 1111111 ~.~ 1111111111111 ~.~ ~ 
(2) 1111111 ~.~ 111 &0 I Jo I 0 I ~,~ 10 10 101 

(3) ~ ~.~ 1111111111111 ~.= ru& 
(1) One generation 

(3) Tree generations 

-U- : Tentative tail 

(2) Two generations 

1 : Other decrease 

Figure 4: Distribution of log generations 

drive changes the order of writing of physical blocks to 
promote efficiency. In this case, there is also one less in
creasing point than the number of decreasing points, and 
the decreasing and increasing points are distributed in 
the range of one atomic log. Taking into account the cir
cular use of a log area, the log generation of the physical 
first block is usually one larger than that of the physical 
last block. If the two generations are equal, the physical 
tail of a log area is one of the decreasing points in log 
generation. Examples of the distribution of log genera
tions are shown in Figure 4. There can be one, two, or 
three log generations in a log area. 

If there is only one decreasing point in log generation, 
it becomes the tentative logical tail. If there are two or 
more decreasing points, the first one is selected as the 
tentative logical tail. The real logical tail is immediately 
after the last block with an atomic modification end flag 
before the tentative logical tail. Two tails are identical 
if the block immediately before the tentative logical tail 
has the flag. 

The logical head is a certain number of blocks away 
from the real logical tail. The number of blocks corre
sponds to the room made for the next log writing. Valid 
log blocks consist of the blocks between the logical head 
and the real logical tail. After the tables are recovered, 
the file system can start operation. 

4.5 Disk Area Management 

To manage the buddy division of large blocks, we use 
a hierarchy of free block maps in memory as shown in 
Figure 5. Each free block is registered as free in only 
one map. We also maintain the number of free blocks 
registered in each map. 

When a free block of a certain size is required and 
the map of that size has enough free blocks, the map is 
searched. If it does not have enough free blocks to make 



Hierarchy of maps in memory 

(1) Blocks (2) Half blocks 

(3) Quarter blocks (minimum size) 

(1) 1'---_0_-'--_1 _-'----_0_-'--_0 ------' 

(2) 1 0 o o o o o o 1 

On mounting 11 -1J, On dismounting 

An original map on a disk 

0: Used 1: Free 

Figure 5: Hierarchy of free block maps 

the search efficiently, the map for blocks of twice the size 
is searched. This continues until the map of the largest 
block size is reached. 

When a block is released and the buddy of the block 
is free, the two blocks are united and become one free 
block of twice the size. Otherwise, the released block 
alone becomes free. 

The hierarchy of maps is unfolded from the free block 
map on a disk whose unit is the smallest block when the 
logical volume is mounted. It is folded into the origi
nal map and saved on the disk when the volume is dis
mounted. 

We use the two-step allocation method common to 
conventional file systems. In the free block map of the 
largest block size in memory, only some of the free blocks 
are registered as free. Another map of the largest block 
size is made and written to the disk where, in addition to 
the original used blocks, the free blocks registered as free 
in memory are registered as used. In this way, the map 
ensures that the blocks registered as free on it are free, 
though those registered as used are not necessarily used. 
Consequently, the file system can start up after a system 
failure, using the map of the largest block size on the 
disk, without a time-consuming scavenging operation. 

When free blocks in memory become scarce, some are 
added to the map in memory, and the map entries on 
the disk corresponding to those blocks are changed to 
"used" . Conversely, when free blocks in memory be
come surplus, some are removed from the map in mem
ory, and the map entries on the disk corresponding to 
those blocks are changed to "free". The scarcity and the 
surplus are judged based on threshold numbers of free 
blocks in memory. 

285 

5 Conclusion 

The design and implementation of the PIMOS file system 
has been described. A multiplicity of servers distributes 
the file system loads to them and draws out scalability 
from multiprocessor systems. The caching mechanism, 
which guarantees Unix semantics, enables applications, 
including file' accessing, to be executed in parallel easily. 
The logging mechanism secures the consistency of the file 
system against system failure. The buddy division of free 
blocks suppresses fragmentation without much overhead. 

We are already implementing the file system on PIM. 
The tuning of parameters and the evaluations of the file 
system are to be done in the future. 

Acknow ledgement 

We would like to thank Mr. Masakazu Furuichi at Mitsubishi 
Electric Corporation and Mr. Hiroshi Yashiro at ICOT for 
their intensive discussions. We would also like to express 
our thanks to Dr. Shunichi Uchida, the manager of the re
search department, and Dr. Kazuhiro Fuchi, the director of 
the research center, both at ICOT, for their suggestions and 
encouragement. 

References 

[Archibald and Baer 1986] J. Archibald and J. 1. Baer. 
Cache Coherence Protocols: Evaluation Using a Multipro
cessor Simulation Model. ACM Transactions on Computer 
Systems, Vol. 4, No.4 (1986), pp. 273-298. 

[Chikayama et al. 1988] T. Chikayama, H. Sato and T. 
Miyazaki. Overview of the Parallel Inference Machine Op
erating System (PIMOS). In Proc. Int. Conf. on Fifth Gen
eration Computer Systems, ICOT, Tokyo, 1988, pp. 230-
251. 

[Goto 1989] A. Goto. Research and Development of the Par
allel Inference Machine in FGCS Project. In M. Reeve and 
S. E. Zenith (Eds.), Parallel Processing and Artificial In
telligence, Wiley, Chichester, 1989, pp. 65-96. 

[Levy and Silberschatz 1989] E. Levy and A. Silberschatz. 
Distributed File Systems: Concepts and Examples. TR-
89-04, Department of Computer Sciences, The University 
of Texas at Austin, Austin, 1989. 

[Ousterhout et al. 1985] J. K. Ousterhout, H. D. Costa, D. 
Harrison, J. A. Kunze, M. Kupfer and J. G. Thompson. 
A Trace-Driven Analysis for the UNIX 4.2 BSD File Sys
tem. In Proc. 10th ACM Symposium on Operating Sys
tems Principles, ACM, New York, 1985, pp. 15-24. 

[Ueda and Chikayama 1990] K. Ueda and T. Chikayama. 
Design of the Kernel Language for the Parallel Inference 
Machine. The Computer Journal, Vol. 33, No.6 (1990), 
pp. 494-500. 



PROCEEDINGS OF THE INTERNATIONAL CONFERENCE 
ON FIFTH GENERATION COMPUTER SYSTEMS 1992, 
edited by ICOT. © ICOT, 1992 286 

ParaGraph: A Graphical Tuning Tool for Multiprocessor Systems 

Seiichi Aikawa 
Hideyuki Kubo 

Mayumi Kamiko 
Fumiko Matsuzawa 

Takashi Chikayama 
Institute for New Generation 

Computer Technology 

4-28, Mita 1-chome, Minato-ku, 

Tokyo 108, Japan 

Abstract 

Fujitsu Limited 

1015, Kamiodanaka N akahara-ku, 

Kawasaki 211, Japan 

Distributing computational load to many processor is a 
critical issue for efficient program execution on multi
processor systems. Naive even distribution of load, how
ever, tends to increase communication overhead consid
erably, which must also be minimized for efficient exe
cution. It is almost impossible to achieve optimal load 
distribution automatically. It is especially so on scalable 
loosely-coupled multiprocessor systems, since the com
munication cost is relatively high. Finding a good load 
distribution algorithm is one of the most important re
search topics for parallel processing. 

Tools for evaluating load distribution algorithms are 
very useful for this kind of research. This paper de
scribes a system called ParaGraph that gathers period
ical statistics of the computational and communication 
load of each processor during program execution, in both 
the higher level of programming language and lower level 
of implementation, and presents them graphically to the 
user. 

1 Introduction 

In the Japanese Fifth Generation Computer Systems 
Project, parallel inference systems have been developed 
for promoting parallel software research and develop
ment. The system adopts a concurrent logic program
ming language KL1 [Ueda 90] as the kernel and consists 
of a parallel inference Illachine, PIM [Goto 88] and its 
operating system, PIMOS [Chikayama 88]. 

For efficient program execution, the computational 
load must be appropriately distributed to each proces
sor. On scalable loosely-coupled multiprocessor systems, 
load balancing. and minimization of communication over
head are essential, but become more difficult compared 
to tightly-coupled systems as communication costs in
crease. Although many load distribution algorithms have 
been developed [Furuichi 89, Kimura 89], none have been 
sufficient to execute every program effectively. Finding 
a good load distribution algorithm is one of the most 
important research topics for parallel processing. 

Tools for evaluating load distribution algorithms are 
very useful for this kind of research. The objective of 
the ParaGraph system is to help programmers design and 
evaluate load distribution algorithms on loosely-coupled 
multiprocessor systems. ParaGraph gathers profiling in
formation during program execution on the parallel in
ference machine, PIM, and displays it graphically. 

Many performance displays have been devised for spe
cial purpose, processor utilization, communication, and 
program execution[Malony 90, Heath 91]1. Profiling in
formation can be viewed as having three axes: what, 
when, and where. We have designed graphical views 
based on three axes to display every kind of information 
with the same form. We also have designed graphical 
views to be easy to compare the profiling information. 
This is because bottlenecks are often determined by com
paring with the contents of the information relatively in 
overall execution. 

In Section 2, how load distribution can be described 
in KL1 on PIM are described. Section 3 describes the 
implementation of the ParaGraph system and graphical 
representation of program execution, and Section 4 dis
cusses how useful graphical displays are to detect perfor
mance bottlenecks with examples of various programs. 
Section 5 concludes the paper. 

2 Load Distribution Algorithms 

2.1 Load distribution in KL1 

The parallel inference machine runs a concurrent 
logic programming language called KL1 [Ueda 90, 
Chikayama 88, Ichiyoshi 89]. A KL1 program consists 
of a collection of guarded Horn clauses of the form: 

where H, Gi, and Bi are atomic formulas. H is called 
the head, Gi, the guard goals, and Bi the body goals. 
The guard part consists of the head and the guard goals 
and the body consists of body goals. They are separated 

l[Heath 91J describes a tool having the same name as our sys
tem, but they are quite different. 



by the commitment operator(I). A collection of guarded 
Horn clauses whose heads have the same predicate sym
bol P and the same arity N, define a procedure P with 
arity N. This is denoted as PIN. 

The guard goals wait for instantiations to variables 
(synchronization) and test them. When the guard part 
of one or more clauses succeed, one of those clauses 
is selected and its body goals are called. These body 
goals communicate with each other through their com
mon variables. If variables are not ready for testing in 
the guard part because the value has not been computed 
yet, testing is suspended. 

In addition to the above basic mechanism, there is a 
mapping facility. The mapping facility includes load dis
tribution specification2 • The programmer can annotate 
the program by attaching pragmas to the body goals to 
specify a processor (specified by Goal@node( Proc) ). The 
programmer must tell the KL1 implementation which 
goals to execute on which processors. 

next_queen(N,I,J,B,R,D,BL):- J>o, D=O I 
BL = {BLO,BL1}, 
R = {RO,Ri}, 
BLO = [get(Proc)IBL2], 
try_ext(N,I,J,B,RO,D,BL2)~node(Proc), 

next_queen(N,I,-(J-l),B,Rl,D,BL1). 

Figure 1: A sample KL1 program 

Figure 1 shows a part of a KL1 program. If the goal 
next_queen/7 is commit'ted to this clause, its body goals 
are called. The goal try_ext/7 has a processor specifi
cation, and it is to be executed on processor number 
"Proc". This processor number can be dynamically com
puted. 

2.2 Design Issues 

Load balancing derives maximum performance by effi
ciently utilizing the processing power of the entire sys
tem. This is done by partitioning a program into mutu
ally independent or almost independent tasks, and dis
tributing tasks to processors. Many load balancing stud
ies have been devised, but they are tightly coupled to 
particular applications. Therefore, programmers have to 
build load distribution algorithms for their own applica
tions. 

To distribute the computational load efficiently, the 
programmer should keep in mind the following points. 
Since load distribution is implemented by using goals, 
the programmer should understand the execution behav
ior of each goal. When goals are executed on a loosely
coupled multiprocessor, the programmer should investi-

2The other mapping facility is priority specification to specify 
what priority the goal should be executed. 

287 

gate the load on individual processors and the commu
nication overhead between processors. 

For evaluating load distribution algorithms, tools must 
provide many graphic displays for the programmer to 
understand the computational and communication load 
of each processor in both the higher program and lower 
implementation levels. No single display and no single 
profiling level can provide the full information needed to 
detect performance bottlenecks. 

3 System Overview 

3.1 Gathering Information 

To statistically profile large-scale program execution, 
KL1 implementation provides information gathering fa
cilities, processor profiling and shoen profiling. KL1 im
plementation provides these facilities as language prim
itives, to minimize the undesirable influence to the exe
cution behavior of programs. These facilities have been 
implemented at the firmware level. The profiling facili
ties are summarized as follows. 

• Processor profiling 
Profiles the low-level behavior of the processor, such 
as how much CPU time went to the various basic 
operations required for program execution. 

• Shoen profiling 
Profiles the higher-level behavior of the processor, 
such as how many times each piece of the program 
was executed. 

To minimize the perturbation, the gathered profiling in
formation resides in each processor's local memory dur
ing program execution, and after execution, ParaGraph 
collects and displays this information graphically. 

Since profiling information is automatically produced 
by the KL1 implementation, programmers do not have 
to modify the application programs. 

3.1.1 Processor Profiling 

The basic low-level activities can be categorized into 
computation, communication, garbage collection, and 
idling. Computation means normal program execution 
such as goal's reductions and suspensions, communica
tion means sending and receiving inter-processor mes
sages, garbage collection means itself, and finally, idling 
means doing nothing. 

The processor profiling facility measures how much 
time went to each category for each processor. Such in
formation can be periodically gathered to show gradual 
changes of behavior. The profiling facility can also mea
sure frequencies of sending and receiving various kinds 
of interprocessor messages [Nakajima 90]. 



288 

• A throw_goal message transfers a KLI goal with a 
throw goal pragma to a specified processor. 

• A read message requests for some value from the 
remote processor when a clause selection condition 
requires it. 

• An answer_value message replies to a read message 
when the request value becomes available. 

• A unify message requests body unification (giving a 
value to a variable). 

3.1.2 Shoen Profiling 

"Shoen" [Chikayama 88P is a mechanism provided in 
KLI for grouping goals and controlling their execution 
in a meta-level. The shoen mechanism can be considered 
to be an interpreter for the KLI language. It also pro
vides profiling facility at a higher level than processor 
profiling. Processor profiling gathers a number of im
portant statistics from many aspects that help analyzing 
performance bottlenecks, but it provides no information 
on where in the program is the root of such a behavior. 

To correlate execution behavior with a portion of the 
program, shoen profiling measures how many times goals 
associated with each predicate are reduced or suspended 
(due to unavailability of data required for reduction). 
Transition of behavior can be observed by periodically 
gathering the information. 

3.2 Graphic Displays 

The profiling information can be viewed as having three 
axes: what, when, and where. In sequential execution, 
"where" is a constant and the "when" aspect is not im
portant, since the execution order is strictly designated. 
Therefore, simple tools like gprof provided with UNIX4 

suffice. However, all three axes are important when par
allel execution is concerned. 

If such massive information is not presented carefully, 
the user might be more confused than informed. There
fore, ParaGraph provides a variety of graphic displays. 
We named each representation using the terms "What," 
"When," and "Where." The term "What" is the visu
alization target corresponding to the type of profiling 
information such as low-level processor behavior, higher
level processor behavior, and interprocessor message fre
quencies. The term "When" indicates time expressed by 
an integer that is a cycle number. The term "Where" 
indicates the processor' number and is expressed by an 
integer. 

Figure 2 shows the graphic displays of ParaGraph. 
These displays are execution behavior of all solution 
search program of N queen problem. 

3The word "shoen" is a Japanese word that means "manor". 
4UNIX is a trademark of AT&T Bell Laboratories 

Every type of profiling informa.tion can be easily dis
pla.yed with the views described below with a. menu
oriented user interface such as the bottom-right window 
in Figure 2. If the window size is too, small to displa.y 
everything in detail, coarser display a.ggregating several 
cycles or several processors together is possible to see 
the overall beha.vior at a glance. Scrolling on the verti
cal a.nd horizontal directions are also possible if details 
are to be examined. It is also possible to displa.y only 
selected "Wha.t" items. 

3.2.1 A WhatxWhen View 

There a.re two kinds of views in terms of "Wha.t" and 
"When" items. One is a. Wha.t x When view which shows 
the behavior of each "What" item during execution. A 
gra.ph is displayed of a "Wha.t" item in order of the total 
volume. The x axis is the cycle numbers, and the y 
axis is the rate of processor utilization, the number of 
messages, and the number of reductions or suspensions 
corresponding to the type of profiling information. Since 
every graph is drawn with the same scale on the vertical 
axis, it is easy to compare with "Wha.t" items. 

The other is an overall What x When view which shows 
the behavior of all "What" items during execution. Each 
"What" item is stacked in the same graph and displayed 
as a line. The y axis represents the average rate of pro
cessor utilization, the total number of messages, and the 
total number of reductions and suspensions 'correspond
ing to the type of profiling informa.tion. 

These views are helpful for example, if a progra.m has 
sequential bottlenecks such as tight synchroniza.tion. In 
this case, the number of goal reductions will be down at 
some portion during program execution. Such a. problem 
will be detected easily by observing program execution. 

The top-left window in Figure 2 shows received mes
sage frequencies on all processors with What x When 
view. In this window, four kinds of received message fre
quencies are displayed on each gra.ph. These messages 
are displayed in order of the total number of received 
messages. The other messages are displa.yed by scrolling 
vertically. 

From this, we know that each received message fre
quency on all processors is less than 6,500 times/an inter
val (an interval is 2 second). As this program is divided 
almost mutually independent subtasks, communication 
message frequency is very low. 

3.2.2 A When x Where View 

A When x Where view shows the behaviors of aJl "What" 
items on each processor. Each processor is displayed with 
various color patterns that indicate volume. The rela.
tionship between color patterns and volume are shown 
in the bottom right corner. The darker the pattern, the 
busier the processor. Volume means the rate of processor 
utilization, the number. of messages, and the number of 



" .... ~ ."-
4000 

2000 

o r •• ~ 5 7 T 

"::~, 
a ... n ••• "_ .... .,lu. 5 7 

:~T 
uni+~ 5 7 

3: 2.01~ 2000 

o~ 

~~~~~--~~=~~7T 

I:·.:~.::.~:::.::~.~:::.~:. ~1lI ~m~
so ... 1.

x:lc cle
~: 1 noel.

289

DGC

o receive

rnmm send

III compute

Figure 2: Sample graphic displays: a What x When view (top-left window), an overall What x Where view (top-right
window), and a When x Where view (bottom-left window) and a menu-oriented user interface (bottom-left window)

reductions or suspensions that correspond to the type of
profiling information. It's also possible to display only
selected "What" items instead of all of them.

The bottom-left window in Figure 2 is a When x Where
view. The x axis is the cycle number, and the y axis is
the processor number. This view displays the execution
behavior of all goals on a 32-processor machine. The
color patterns indicate the number of reductions. The
relationship between the number of reductions and color
pattern is displayed on the bottom right corner.

From this, we know that the work load on each pro
cessor was well balanced, and this program was executed
about 50,000 reductions/an interval on each processor at
each moment in time.

3.2.3 A WhatxWhere View

There are two kinds of views in terms of "What" and
"Where" items. One is a WhatxWhere view which
shows the load balance of each "What" item on each
processor. A bar chart is displayed of a "What" item in
order of total volume. The x axis represents the proces-

sor numbers, the y axis represents the rate of processor
utilization, the number of messages, and the number of
reductions or suspensions that correspond to the type
of the profiling information. All bar charts are drawn
with the same scale on the vertical axis, so it is easy to
compare with the volume of each "What" item.

The other is an overall What x Where view which
shows the load balances of all "What" items on each
processor. Each "What" item is stacked in the same bar
chart and displayed by a certain color pattern. The y
axis represents the average rate of processor utilization,
the total number of messages, and the number of total
reductions or suspensions that correspond to the type
of profiling information. The relationship between each
category and color pattern was displayed on the top-right
corner.

The top-right window in Figure 2 shows the low-level
behavior of the processor with an overall What x Where
view. In this window, each categories of low-level behav
ior is displayed with several color pattern.

From this, the average of computation took more than
80% of total execution time, and the average of commu-

290

nication on each processor was less than 5%. Thus, this
view shows most of the processors run fully, and this
example program was executed very efficiently on each
processor.

4 Examples

This section discusses which views to use to view various
performance bottlenecks. For efficient program execu
tion on multiprocessor systems, the following phases are
usually repeated until a solution is reached: 1) a program
is partitioned into subtasks, 2) the subtask is mapped to
each processor dynamically, and 3) each processor runs
subtasks while communicating with each other.

Various problems are often encountered when execut
ing a program on multiprocessor systems. We will show
how graphic displays in both the higher program and
lower implementation levels are helpful with performance
problems.

4.1 Uneven Partitioning

When the granularity between subtasks is very differ
ent, it is useful to observe the low-level processor be
havior with a WhenxWhere view and the higher-level
processor behavior with a What x Where view. From the
When x Where view, we will find which processors run
fully and which are idle. From the WhatxWhere view,
we will determine which goals caused the load imbal
ances.

The left window in Figure 3 shows the low-level be
haviors on each processor with a When x Where view,
while the right window in Figure 3 shows the higher-level
behaviors of the same processors with a What x Where
view on a 16-processor·machine. An example program
is a logic design expert system which generates a circuit
based on a behavior specification. The strategy of paral
lel execution is that first, the system divides a behavior
specification into sub-specifications, next designs subcir
cuits based on the sub-specifications on each processor,
and finally gathers partial results together and combines
them.

The When x Where view suggests that processors
around No. 11 run fully, but most of the other processors
were idle. The What x Where indicates the top six goals
were mainly executed on processor No. II.

From this, we know that very complicated tasks are
allocated to processor No. 11, that is, uneven partition
ing of behavior specification must cause a bottleneck in
performance.

4.2 Load Imbalance

If a mapping algorithm has problems such as allocating
subtasks to the same processor, it is useful to observe

low-level behavior of the processor with a When x Where
view and higher-level behavior with a WhatxWhere
view. From the WhenxWhere view, we see which pro
cessors are running fully and which are idle, and from
the What x Where view, we see the load balance of each
goal. Using both views, we can determine how to dis
tribute the goals that are imbalanced to each processor.

The bottom-left window of Figure 4 shows low-level
behavior of the processor with a WhenxWhere view,
the top-left window and the top-right window show the
higher-level behavior of the processor with an overall
What x Where view, a What x Where view respectively.

An example program is a part of the theorem prover·
which evaluates whether an input formula is a tautology.
The strategy consists of 2 steps: 1) convert an input
formula to clause form (i.e, conjunctive normal form), 2)
evaluate its clause form and determine whether it is a
tautology.

The step 1 is executed in parallel as follows. First,
main task partitions an input formula into subformu
las. Second, it generates subtasks to convert subclause
forms, and finally, distributes subtasks to many proces
sors dynamically. These steps are repeated recursively
until subformulas are converted to subclause forms. The
step 2 is executed in sequential on processor No. O.

The When x Where view of the bottom-left window in
Figure 4 suggests that only certain processors (processor
No. 6-15 and No. 23-31) run fully and that. the others
were mostly idle. The overall When x Where view of the
top-left window also suggests that most of the goals were
executed on certain processors and the number of reduc
tion of top five goals were higher than the other goals.

We can check the load of each goal on each processor
from the What x Where view of the top-right window in
Fugure 4. These goals were executed on certain proces
sors and were the cause of the load imbalances. From
this, we have to change its mapping algorithm to be flat
ten the shape, to use all processors efficiently.

4.3 Large Communication Overhead

When subtasks are not mutually independent and must
communicate with each other closely, the program is less
efficient because of communication overhead. In this
case, the low-level behavior ofthe processor with an over
all What x Where view and frequencies of sending and
receiving messages with a What x Where view are help
ful. From the overall What x Where view, we will learn
how much time has been consumed on message handling
for each processor, while the WhatxWhere view shows
us what kind of messages each processor has sent or re
ceived.

Figure 5 displays an execution behavior of an improved
version of the program described in Section 4.2. The left
window shows the load balances of all goals on a 32-
processor machine with an overall WhatxWhen view.

0<-:
-

I

1<:

~~H+~I+I-I++H+H+H+t++H+t++H+tf:H.: .cale

LUillL1..LU;:;Ll...U-'L.1.LLLLLLLLLLL.LLLLLl...L.1-U-LL..L.L.'-"-"" ~; f ~~~!.

o yori: : c_al terna
add/6

o pimos: : hasher:
hashO/4

S pimos: : keyed_ba
do_get_i f _any_

l1li yori:: c_al terna
add_FBVa I ue/4

• subtract

• yori:: agent_add
sub/6

o unify

o pimos:: keyed_ba
keyed_bag/6

IillllD p imos: : keyed_ba
rehash_each_en

l1li pimos:: hasher:
hash/3

291

Figure 3: The low-level processor behavior (left window) and execution behavior of goals (right window)

This view shows that the work load on each processor was
balanced in overall execution, but was not efficient be
cause oflarge communication overhead. It will be proved
from low-level behavior of the processor with an overall
What X Where view shown in the right window.

The right window of Figure 5 suggests the load average
on each processor was about 80 - 85%, but the average
of computation on each processor was about 20%. Most
of the processing power was consumed sending and re
ceiving message handli~g time more than 60% of total
execution time.

Figure 6 shows the same program execution as Fig
ure 5. The left window shows the receiving and sending
message handling time rate with What X Where view, the
right window shows the frequencies of four received inter
processor messages with a What x When view.

The left window of Figure 6 shows the message han
dling time on each processor at each moment in time was
almost equally, the right window shows that the read
message was received about 180,000 times, answeLvalue
message was about 165,000 times, unify message was
100,000 times, and throw ~oal message was about 64,000
times per interval on all processors. The tasks gen
erated in this program communicated with each other
closely among processors as compared with the result of
N queen's message frequencies (see the top-left window
of Figure 2).

'From this, we know that as work loads are distributed
more and more, it becomes easier to balance work loads
on each processor, but communication overhead also in
creases and performance is thus lowered. As a result, we
have to redesign or improve how to divide into subtasks.
Because the generated subtasks that were not mutually
independent, and it caused such a problem we mentioned
above.

5 Conclusion

We developed the ParaGraph system on parallel infer
ence machines to provide graphic displays of processor
utilization, interprocessor communication, and execution
behavior of parallel programs. Experiments with various
programs have indicated that graphic displays are help
ful in dividing work loads evenly and determining where
the bottlenecks are on multiprocessor systems.

We released a version last year as a tuning tool of
PIMOS, but have experienced some problems. In the
future, we will improve the system considering the fol
lowing points.

First, real-time performance visualization tools are
needed. Although displaying execution behavior in real
time perturbs the program being monitored, it is useful
not only in early tuning but also in debugging such as
detecting deadlock status and infinite loops. To develop
such a tool, low overhead instrumentation techniques and
new displays that programmers would not be pressed to
understand appearing in real-time must be devised.

Second, tools which can visualize the portion of the
performance bottlenecks directly are needed. Massively
parallel machines that have thousands of processors and
programs for long runs produce a large amount of pro
filing information, but it is difficult to process or dis
play for simple expansion of our system because of a
vast quantity of information. To solve such problems,
analysis techniques indicating bottlenecks directly will
be needed. We will study automatic analysis techniques
and graphical displays of its result (we call this bottle
neck visualization). One such approach is critical path
analysis, which identifies the path through the program
that consumed the most time [Miller 90].

292

o me: : bmtp_depthl
after_rewrite

Ome:: bmtp_depth
before_rewri te

liliI!Iunify

.. me: : bmtp_depthl
ru)e/3

• me: : bmtp_depth
after_rewrit

• others

":~'::l ;
L.,·o -~""'~.~t •• r"_r-•• -rlt~._~ar~.I''''''25''''--'-~-:::30=31 Nod.

'''''''~ --"00E5~ _

~o"'-'-'~~.~.:-'-: b~.tP~_.c.P"""th"""1:b~.fC""'or-._r-•• ~rl"!',,""'_ar~9/S!5 3031 Node

3:'2002r~ ___ o ~~ ..
~ l!uniffJ 25· 3031 Noale

4: 333'3~~o~_~"'_,o'71 •• I::b •. t •• _.".P~th~1:T'"",,!u,~./1I!III3 "~2-5Im.-30~31

Figure 4: Low-level processor behavior (bottom-left window), the load balances of all goals (top-left window), and the
load of each goal (top-right)

6 Acknowledgments

We thank K. Nakao and T. Kakuta who helped us to
develop this tool, and all the researchers of ICOT and
other companies who tested our tool.

References

[Ueda 90] K. Ueda and T. Chikayama, "Design of the
Kernel Language for the Parallel Inference Ma
chine," The Computer Journal, December 1990.

[Goto 88] A. Goto, M. Sato, K. Nakajima, K. Taki, and
A. Matsumoto, "Overview of the Parallel Inference
Machine (PIM) arc'hitecture," In Proceedings of the
International Conference on Fifth Generation Com
puter Systems, pages 208-229, 1988.

[Chikayama 88] T. Chikayama,
H. Sato, and T. Miyazaki, "Overview of the Paral
lel Inference Machine Operating System (PIMOS),"
In Proceedings of the International Conference on

Fifth Generation Computer Systems, pages 230-251,
1988.

[Furuichi 89] M. Furuichi, K. Taki, N. Ichiyoshi, "A
Multi-Level Load Balancing Scheme for OR-Parallel
Exhaustive Search Program on the Multi-PSI,"
ICOT TR-526, 1989.

[Kimura 89] K. Kimura, and N. Ichiyoshi, "Probabilis
tic Analysis of the Optimal Efficiency of the M ulti
Level Dynamic Load Balancing Scheme," In Pro
ceedings of the Sixth Distributed Memory Comput
ing Conference, 1989.

[Heath 91] M. T. Heath, and J. A. Etheridge, "Visual
izing the Performance of Parallel Programs," IEEE
Software, pages 29-39, September 1991.

[Malony 90] A. D. Malony, n. A. Reed, D. C. Rudolph,
"Integrating Performance Data Collection, Analy
sis, and Visualization," Addison-Wesley Publishing
Company, pages 73-97, 1990.

~
o me: : bmtp_depth: I

after_rewrite_ ~
[] me: : bmtp_depth: i

before_rewrite
l1li unify I,

ii!
• me: : bmtp_depth: III

rule/3 I

• m:; !::~~;~~r:;~ ~,
• others !I

293

DGC

EI receive

l1li send

• compute

Figure 5: The ~oad balances of goals (left window) and low-level processor behavior (right window)

1
100
.0
00

,.,.,.,, ;~
..... 30 ~g

o
soa.le

x: 1 o~ol.
~: 1 notl.

1.00E5 "'''y
o

':.'.50~

so&le x: 1 o~ol.

Figure 6: Low-level processor behavior about message handling (left window) and message frequencies (right window)

[Ichiyoshi 89] N. Ichiyoshi, "Research Issues in Paral
lel Knowledge Information Processing," ICOT TM-
0822, November 1989.

[Nakajima 89] K. Nakajima, Y. Inamura, N. Ichiyoshi,
T. Chikayama, and H. Nakashima, "Distributed Im
plementation of KL1 on the Multi-PSI/V2," In Pro
ceedings of the Sixth International Conference on
Logic Programming, 1989.

[Nakajima 90] K. Nakajima, and N. Ichiyoshi, "Evalua
tion of Inter-processor Communication in the KLI
Implementation on the Multi-PSI," ICOT TR-531,
1990.

[Miller 90] B. P. Miller, M. Clark, J. Hollingsworth,
S. Kierstead, S. Lim, and T. Torzewski, "IPS-2:
The Second Generation of a Parallel Program Mea
surement System," IEEE Trans. Parallel and Dis
tributed Systems Vol. 1 No.2, pages 206-217, April
1990.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 294

PROTEIN SEQUENCE ANALYSIS
BY

PARALLEL INFERENCE MACHINE

MASATO ISHIKAWA, MASAKI HOSHIDA, MAKOTO HIROSAWA,

TOMOYUKI TOYA, KENTARO ONIZUKA AND KATSUMI NITTA

Institute for New Generation Computer Technology
4-28, Mita I-chame, Minato-ku, Tokyo 108, Japan

ishikawa@icot.or.jp

Abstract

We have developed a multiple alignment system for
protein sequence analysis. The system works on a par
allel inference machine PIM. The merits of PIM bring
prominent features to the multiple alignment system.
The system consists of two major components: a par
allel iterative aligner and an intelligent refiner. The
aligner uses a parallel iterative search for aligning pro
tein sequences. The search algorithm is the Berger
Munson algorithm with its parallel extension. Our
implementation shows that the algorithm extended in
parallel can rapidly produce better solutions than the
original Berger-Munson algorithm, The refiner uses
condition-action rules for refining multiple sequence
alignments given by the aligner. The rules help to
extract motif patterns from ambiguous alignment pat
terns.

1 Introduction

Molecular biology and genetic technology have been
advancing at an astonishing rate in recent years. Ma
jor activities in these fields are closely related to DNA
and protein. This is because a set of DNA molecules in
a cell contain the genetic information for the complete
design of the living organism. This information is em
bodied as protein to build up the body and to keep its
mechanisms alive. Each piece of genetic information,
represented by a sequence of nucleic acids, is translated
into a sequence of amino acids to form protein. As the
method to determine DNA or protein sequences has
progressed to its current state, the amount of known
sequence data has grown rapidly. For example, Gen
bank, one of the most widely distributed databases,
contains information on more than sixty million nu-

cleotides. The growing number of genetic sequences in
databases inevitably makes the field of genetic informa
tion processing one of the most important application
areas for computer science.

The fundamental technique for analyzing genetic se
quence data by computer is to examine similarities
among sequences. This usually requires large amounts
of computation to find the similarities, since there are
a lot of sequences in the database to be examined. The
computational problem can be partly solved with par
allel implementation. There have been some exper
iments with parallel sequence analysis [Iyengar 1988].
Another approach to. the problem is to furnish the anal
ysis program with biological know-how as heuristics.
Many consider that logic programming languages are
a profitable way of implementing heuristics. Parallel
sequence analysis with a logic programming language
has been tried [Butler et al. 1990].

We have developed a multiple alignment system for
protein sequence analysis. The system has been im
plemented on a parallel inference machine PIM using
a parallel logic programming language KLl. The aim
of this paper is to show PIM's availability in the field
of genetic information processing. The organization of
the rest of this paper is as follows. In Section 2, we
briefly explain our 'application problems. We present
our multiple sequence alignment system in Section 3.
Then, the results of experiments and comparison with
other methods are discussed in Section 4. Finally, con
clusions are given in Section 5.

2 Protein sequence analysis

As described above, the genetic information, stored in
DNA, is translated into sequences of amino acids. A
chain of amino acids folds to become protein in water.

The structure of the protein depends on the sequence
itself, that is, the same sequence will form the same
structure. The function of the protein is chiefly deter
mined by its structure, because proteins whose shapes
are complementary can interact with each other.

Every protein is made up of twenty kinds of amino
acids which are distinguished by twenty different code
letters. A protein has about two hundred amino acids
on average and is represented by a linear sequence of
code letters. Because every amino acid has its own
properties of volume, hydrophobicity, polarity and so
on, the order of the amino acids in the protein sequence
gives structure and function of the protein.

The protein sequence determination technique has
been so established that more than twenty thousand
sequences have been specified by the letters; this num
ber is growing day by day. The structures of proteins
are also being solved. Methods such as X-ray crys
tallography reveal how the linear chain of amino acids
fold together. But this takes so many months to solve
that only three hundred protein structures have been
determined so far.

An important way of discovering new genetic infor- .
mation is inferring the unknown structure of a protein
from its sequence. We do this by analyzing the se
quence of amino acids, because, fortunately, proteins
that have similar sequences have similar structures.
Multiple sequence alignment is one of the most typi
cal methods of sequence similarity analysis. The align
ment of several protein sequences can- provide valuable
information for researching the function or structure of
proteins, especially if one of the aligned proteins has
been well characterized.

Let us show an example of multiple sequence align
ment. The next set of sequences represents four parts
of different protein sequences. Each letter in the se
quences means an amino acid. For instance, GDVEK
stands for a row of Glycine, Aspartic acid, Valine, Glu
tamic acid and Lysine.

GDVEKGKIFIMKCSQCHTVEKGGKHKTGPNLHGLFG
ASFAEAPAGTTGAKIFKTKCAQCHTVKGHKQGNGLFG
PYAPGDEKKGASLFKTAQCHTVEKGGANKVGPNLHGVFG
PPKARAPLPPGDAARGEKLRAAQCHTANQGGANGVGYGLVG

A good multiple sequence alignment for the given se
quences is as follows:

~---------GDVEKG-KIFIMKCSQCHTVEKGGKHKTGPNLHGLFG
--ASFAEAPAG--TTGAKIFKTKCAQCHTV-KG--HKQG---NGLFG
------PYAPGDEKKGASLFKT--AQCHTVEKGGANKVGPNLHGVFG
PPKARAPLPPGDAARGEKL---RAAQCHTANQGGANGVG---YGLVG

* * **** * * * *

Each sequence is shifted by gap insertion-dash char
acters. Each column of the resultant alignment has the
same or similar amino acids. An identical pattern such

295

as QCHT is considered to be an important site called a
sequence motif, or simply a motif, because an impor
tant protein sequence site has been conservative along
with evolutional cycles between mutation and natural
selection. Multiple sequence alignment is useful not
only for inferring the structure and function of pro
teins but also for drawing a phylogenetic tree along
the evolutional histories of the creatures.

AD HE
AHIE

A D H E

ADH-E
c::> A-HIE

Figure 1: Pairwise dynamic programming

Computers partly solve the problem of multiple se
quence alignment automatically, instead of relying on
the hands and eyes of experts. The results obtained
by computers, however, have not been as satisfac
tory as those by human experts. That is because
multiple sequence alignment is one of the most time
and space consuming problems. The dynamic pro
gramming algorithm [Needleman and Wunsch 1970,
Smith and Waterman 1981,
Goad and Kanehisa 1982], theoretically, provides an
optimal solution according to a given evaluation score.
This, however, requires memory space for an N
dimensional array (where N is the number of se
quences) and calculation time for the N -th power of
the sequence length. Though a method was pro
posed to cut unnecessary computation in the dynamic
programming algorithm [Carrillo and Lipman 1988], it
still needs too much computation to solve any prac
tical alignment problem. A number of heuristic algo
rithms for multiple alignment problems have been de
vised [Barton 1990, Johnson and Doolittle 1986] in or
der to obtain approximate solutions within a practical
time. Most of these algorithms are based on pairwise
dynamic programming.

Figure 1 shows the algorithm of dynamic program
ming applied to a tiny pairwise alignment. The algo
rithm searches the best path in the figurative network
from the top left node to the bottom right node min
imizing the total cost of arrows. Each cost indicated
on an arrow reflects the similarities between the char
acters being compared. The best path corresponds to
the optimal alignment; each arrow in the path corre
sponds to each column in the alignment. Vertical and

296

--PNPRI-SA--
ARNyKIPLT---
--KFGIP-N---
--MFNIP-REQA-
--TL GA-T----

..

~3:~

t:"u%j b:j

PNPRI SA
ARNYKIPLT-

Q-+O-M~~~~~~-+n-~~~~

10 ~ G"l U---~IoQ-~~-U---+1:)~~~a--.'O

G"lHH

>tUtU

IlzJ

110

>1
Il:"f

2

Q-+O-M~~~~~~~n-~~~~

Figure 2: Iterative strategy of Berger-Munson algorithm

horizontal arrows indicate the insertion of gaps.

3 Multiple alignment system

We have developed a multiple alignment system for
protein sequence analysis on PIM. The system con
sists of two components: a parallel iterative aligner
and an intelligent refiner. The aligner uses a paral-.
leI iterative search for aligning protein sequences. The
refiner uses condition-action rules for refining multiple
sequence alignments given by the aligner.

3.1 Parallel iterative aligner

The search algorithm in the iterative aligner is the
Berger-Munson algorithm extended in parallel. The
B-M algorithm [Berger and Munson 1991] is based on
the same pairwise dynamic programming method as
conventional heuristic algorithms for multiple sequence
alignment. The algorithm, however, features a novel
randomized iterative strategy so as to generate a high
score multiple alignment.

Figure 2 illustrates the iterative strategy, whose pro
cedure is as follows: the initially aligned sequences are
randomly divided into two groups (step 1). By fixing
the alignment of sequence members within each group
we can optimize the alignment between the groups, us-

ing the pairwise dynamic programming method (step
2). The resultant alignment, in turn, is the start
ing point for the next alignment of a different pair of
groups (step 3). Each iteration that improves the align
ment between two sequence groups will also improve
the global alignment.

Though the B-M algorithm often results in a much
better multiple alignment than those obtained by con
ventional algorithms, its randomized iteration needs
more than a few hours to solve multiple alignment of
a practical scale. When a parallel machine is avail
able, the iterative strategy extended in a parallel way
is fairly helpful for reducing execution time. The B-M
algorithm extended in parallel is as follows: a1l2n-l-1
possible partitions of n aligned sequences are respec
tively evaluated by the pairwise dynamic programming
method. In each iteration, the evaluation is executed
in parallel and the alignment which has the best score
is selected as the starting point for the next iteration.

3.2 Intelligent refiner

Aligning multiple protein sequences requires biologi
cal know-how, since the alignment score is not suffi
cient to evaluate them. The intelligent refiner holds
dozens of condition-action rules that reflect the biolog
ical know-how for refinement. Part of the biological
know-how has been obtained by interviewing human

297

1000~------------------------~

bad

o·
Score

good

(a) Original 8-M algorithm

(b) Parallel 8-M algorithm

(c) Tree-based algorithm

-1000+-~--~~--~~--~~~~~

o 40 80

Cycles

120 1 60

Figure 3: Comparing alignment score histories

experts. Another part of it corresponds to the infor
mation contained in a motif database PROS IT E.

Let us explain an example of the condition-action
rule, which features a well-known motif pattern called
Zinc Finger. Zinc Finger is characterized by two sep
arated Cs, Cysteines, and two separated Hs, Histidines.
The condition part of the rule checks whether an align
ment has the half-aligned motif pattern of Zinc Finger
or not, and if it finds the weak motif pattern, it tries,
in its action part, to enhance the weak pattern to make
it strong (see Figure 4). Every condition-action rule is
represented with a parallel logic programming language
KLl.

4 Experimental results

Our multiple sequence alignment system works on
PIM/m, a MIMD-type parallel machine equipped with
up to 256 processing elements (PEs). We have inves
tigated the performance of our system by testing the
two components separately.

4.1 Parallel iterative aligner

The B-M algorithm enables us to gradually improve
global multiple alignment. Improvement is evaluated
by the alignment score. We have defined the alignment
score as follows. The alignment score is a total sum-

mation oJ the similarity scores of every pair of aligned
sequences, each of which is derived by summing up the
similarity values of every ch~racter pair in the column.
Each similarity value is given by the odds matrix. A
gap penalty corresponding to each row of gaps in the
two sequences is added to the similarity score.

We use P AM250 [Dayhoff et al. 1978] as the odds
matrix, each value of which is a logarithm of the muta
tion probability of a character pair; zero is the neutral
value. We have reversed the sign of each value of the
matrix to assimilate the habit of optimization prob
lems. So the most similar character pair, W VS. W, gives
the lowest value, -17, and the least similar pair, W VS.

C, gives the highest value, 8.
The gap penalty imposed on a row of k gaps is a

linear relation: a + bk where a and b are parameters.
We set a = 4 and b = 1 as default values. The lin
ear relation is feasible and popular for alignment done
by the dynamic programming algorithm [Gotoh 1982].
Character pairs gap VS. gap and outside gap VS. any
character are ignored; they are assigned the neutral
value zero.

We have implemented three algorithms for compari
son analysis: the original B-M algorithm, the B-M al
gorithm extended in parallel and the tree-based algo
rithm. The tree-based algorithm [Barton 1990] is one
of the most typical and conventional methods for mul
tiple sequence alignment. Figure 3 compares the histo
ries of the alignment scores obtained by the algorithms.

298

(l)Before:
------------ILD---FHE-KLLHPGIQKT---TKLF--GET---yyFPNSQLLIQNIINECSICNLAKTEHRNTDM--P-TKTT
------------LLD---F-----LHQLTHLSFSKMKALLERSHSPyyMLNRDRTL-KNITETCKAC--AQVNASKSAVKQG-TR--
LTDALLIT---PVLQ---LSP-AELHSFTHCG---QTAL--TLQ----GATTTEA--SNILRSCHAC---RGGNPQHQMPRGHI--
------VADSQATFQAyPLREAKDLHTALHIG---PRAL--SKA---CNISMQQA--REVVQTCPHC------NSAPALEAG-VN--
------------ISD--PIHEATQAHTLHHLN---AHTL--RLL---yKITREQA--RDIVKACKQC---VVATPVPHL--G-VN--
------------ILT--ALESAQESHALHHQN---AAAL--RFQ---FHITREQA--REIVKLCPNC---PDWGSAPQL--G-VN--
(score = -781) * * *

(2)After:
------------ILD---F------HEKLLHPGIQKTTKLF-GET---yyFPNSQLLIQNIINECSICNLAKTEHRNTDM--P-TKTT
------------LLD---F-----LHQ-LTHLSFSKMKALLERSHSPyyMLNRDRTL-KNITETCKAC--AQVNASKSAVKQG-TR--
LTDALLIT---PVLQ---LSP-AELHS-FTHCG---QTAL--TLQ----GATTTEA--SNILRSCHAC---RGGNPQHQMPRGHI--
------VADSQATFQAyPLREAKDLHT-ALHIG---PRAL--SKA---CNISMQQA--REVVQTCPHC------NSAPALEAG-VN--
------------ISD--PIHEATQAHT-LHHLN---AHTL--RLL---yKITREQA--RDIVKACKQC---VVATPVPHL--G-VN--
------------ILT--ALESAQESHA-LHHQN---AAAL--RFQ---FHITREQA--REIVKLCPNC---PDWGSAPQL--G-VN--
(score = -762) * * * * *

Figure 4: Application of intelligent refiner

Every algorithm solves the same small alignment prob
lem which consists of seven sequences with eighty code
letters each. The initial state of the alignment problem
has no gaps inside the sequences.

(a) Original B-M algorithm: The randomized iter
ative strategy executed by a single PE is applied to the
alignment problem. Each iteration cycle takes twenty
eight seconds on average.. We set thirty-two as the
convergence condition; execution stops, if no variation
of alignment score is found during thirty-two iteration
cycles. Three runs with distinct sequences of random
numbers give converged alignment scores: -752, -779
and -851.

(b) Parallel B-M algorithm: The best-choice itera
tive strategy executed by sixty-three PEs is applied to
the alignment problem. In each iteration, sixty-three
possible partitions of aligned sequeI:J.ces are distributed
to the PEs so that they can be evaluated at the same
time. Each iteration cycle takes thirty seconds on av
erage. The execution stops if no variation of alignment
score is found. The final alignment, which is obtained
at the fourteenth cycle with score -851, is the same
alignment as one of the three obtained in (a).

(c) Tree-based algorithm: The tree-based algo
rithm is a conventional method to rapidly produce a
practical multiple alignment. The algorithm aligns se
quences one after another by pairwise dynamic pro-·
gramming. The order in which sequences are aligned
depends on the tree-like representation that was previ
ously determined by analyzing the distance of similar
ity of every pair in the sequences. Our implementation
of the algorithm solves the problem in eighty seconds.

The alignment score of the solution, -617, is indicated
by a horizontal line.

We made the following observations from these re
sults.

1. The parallel B-M algorithm (b) solves alignment
problems about ten times faster than the original
B-M algorithm (a).

2. The original B-M algorithm (a) gives different
alignments depending on the sequence of random
numbers, whereas the parallel B-M algorithm (b)
gives a constant alignment that often has a better
score than obtained by (a).

3. (a) and (b) show that either ofthe B-M algorithms
gives a much better alignment than the conven
tional tree-based algorithm (c).

Thus, the parallel B-M algorithm can constantly gen
erate high-score alignments in a small number of cycles.
And PIM can execute the algorithm in a practical time.

4.2 Intelligent refiner

The refiner holds dozens of condition-action rules and
checks a given alignment with the condition parts in
parallel. If some condition parts match the alignment,
the action parts paired with the condition parts are ex
ecuted so as to produce candidates for a refined align
ment. After evaluation of the candidates, some of them
are displayed as refined alignments. Let us show an ex
ample of the refinement.

Figure 4 (1) shows an alignment which contains a
weak Zinc-Finger motif pattern. Cs are aligned com
pletely in two columns, but Hs are not aligned com
pletely in two columns; Q exists among identical Hs in

a column. (* indicates a completely aligned column
and ~ indicates an almost completely aligned column.)
Application of the intelligent refiner to the alignment
produces Figure 4 (2).

The condition-action rule described in Section 3 has
worked on the refinement process. The Zinc-Finger mo
tif pattern is brought into full relief in the refined align
ment. Although it has a score that is slightly worse
than the previous alignment, it is a valuable alignment
from a biological point of view.

Thus, the intelligent refiner helps to extract motifs
from ambiguous alignment patterns and to produce bi
ologically valuable alignments. Constructing the intel
ligent refiner on PIM is a profitable way, since KL1,
a logic programming language on PIM, is suitable for
representing such biological know-how.

5 Conclusions

We have developed a multiple sequence alignment sys
tem on PIM. The parallel iterative aligner of this sys
tem with the extended Berger-Munson algorithm can
constantly generate better alignments than conven
tional methods in a practical time. The intelligent
refiner of this system uses condition-action rules for
refining alignments given by the aligner. The rules re
flecting biological know-how help us to extract motif
patterns from ambiguous alignment patterns. These
results show that PIM is fairly available in the field of
genetic information processing.

The extended algorithm searches all 2n - 1 - 1 possi
bilities in parallel and selects the best one. There is a
problem because the number of possibilities increases
exponentially as the number of sequences grows. Some
practical alignment problems with more than twenty
sequences have about a million possibilities. In those
cases, preprocessing with cluster analysis is useful for
reducing the possibilities without reducing the quality
ofthe resultant alignment. The cluster analysis divides
given sequences into a few groups based on similari
ties between sequences; similar sequences gather in the
same groups.

One of our future works is to represent complex bio
logical know-how as a combination of simple condition
action rules.

Acknowledgments

We gratefully acknowledge Osamu Gotoh for calling
our attention to the B-M algorithm. We would also
like to thank Naoyuki Iwabe and Kei-ichi Kuma for
providing us with the biological know-how to refine

299

alignments.

References

[Barton 1990] J. G. Barton. Protein multiple sequence
alignment and flexible pattern matching. In R. F.
Doolittle (ed), Methods in Enzymology Vol. 183,
Academic Press, 1990. pp.403-428.

[Berger and Munson 1991] M. P. Berger and P. J.
Munson. A novel randomized iterative strategy for
aligning multiple protein sequences. Computer Ap
plications in the Biosciences, 7, 1991. pp.479-484.

[Butler et al. 1990] Butler, Foster, Karonis, Olson,
Overbeek, Pfiunger, Price and Tuecke. Aligning Ge
netic Sequences. Strand: New Concepts in Parallel
Programming, Prentice-Hall, 1990, pp.253-271.

[Carrillo and Lipman 1988] H. Carrillo and D. Lip
man. The multiple sequence alignment problem in
biology. SIAM J. Appl. Math., 48, 1988, pp.1073-
1082.

[Dayhoff et al. 1978] M. O. Dayhoff, R. M. Schwartz
and B. C. Orcutt. A model of evolutionary change
in proteins. In M. O. Dayhoff (ed), Atlas of Protein
Sequence and Structure Vol.5, Supp1.3, Nat. Biomed.
Res. Found., Washington, D. C., 1978, pp.345-352.

[Goad and Kanehisa 1982] W. B. Goad and M. 1.
Kanehisa. Pattern recognition in nucleic acid se
quences. 1. A general method for finding local ho
mologies and symmetries. Nucleic Acids Res., 10,
1982, pp.247-263.

[Gotoh 1982] O. Gotoh. An improved algorithm for
matching biological sequences. J. Mol. BioI., 162,
1982, pp.705-708.

[Iyengar 1988] A. K. Iyengar. Parallel DNA Sequence
Analysis. MIT/LCS/TR-428, 1988.

[Johnson and Doolittle 1986] M. S. Johnson and R. F.
Doolittle. A method for the simultaneous alignment
of three or more amino acids sequences. J. of Mol.
Evol., 23, 1986, pp.267-278.

[Needleman and Wunsch 1970] S. B. Needleman and
C. D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequences of
two proteins. J. of Mol. BioI., 48, 1970, pp.443-453.

[Smith and Waterman 1981] T. F. Smith and M. F.
Waterman. Identification of common molecular sub
sequences. J. of Mol. Biol., 147, 1981, pp.195-197.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 300

Folding Simulation
using

Temperature Parallel Simulated Annealing

Makoto Hirosawa,* Richard.J.Feldmann,t David Rawn,+
Masato Ishikawa,* Masaki Hoshida,*

George Michealst

hirosawa@icot.or.jp

Abstract

We applied temperature parallel simulated annealing to

the biological problem of folding simulation. Water

counting is introduced to formulate folding simulation

as an optimization problem. Nobody has ever solved

the folding simulation problem. We cannot obtain bi

ologically significant consequences either. However,

from the viewpoint of the evaluation value of the fold

ing simulation, we observed the effectiveness of parallel

computing.

1 Introduction

Folding simulation uses a computer to simulate the pro

cess of protein formation from its stretched state to its

native folded state. This research topic has held the

interest of biologists for a quarter of a century and has

never been solved. No researche has been able to reach

the native folded state by folding simulation. Three of

the authors(Feldmann, Rawn and Micheals) have been

interested in formulation for protein folding. They in

troduced the water-counting model, which requires so

lution by computer.

Meanwhile, the other three the authors (Hirosawa,

Ishikawa and Hoshida) have studied the applica

tion of Multi-PSI [Nakajima et al. 1989J parallel in

ference machine to biological problems. A first at

tempt was made to the problem of multiple align

ment [Ishikawa et al. 1991J using temperature parallel

simulated annealing [Kumura and Taki 1990]. It was

*Institute for New Generation Computer Technology(ICOT)
tNational Institutes of Health
~Towson University

so successful that other biological applications were

sought.

As the requirements of both partners matched, we

combined efforts to conduct collaborative research.

The purpose of this research was to investigate the

applicability of the optimization algorithm, tempera

ture parallel simulated annealing, to folding simulation

and to evaluate the effectiveness of the water-counting

model.

The concept of folding simulation is explained in the

second section and the water-counting model and its

computational formulation are introduced in the third

section. Then, temperature parallel simulated anneal

ing is explained in the fourth section. Finally, the sim

ulation results are shown in the fifth section.

2 What is folding simulc~.tion?

2.1 Biological background of folding
simulation

Proteins are biological substances and they are essen

tial to the existence of all creatures, from humans to the

AIDS virus. A protein is a linear chai of amino acids.

It consists of 20 kinds of amino acids. The structure of

protein is determined by the order of the amino acids

in the sequence. The structure of protein is closely re

lated to its function. Therefore, it is very important to

know the structure of the protein.

Even now, it is very difficult to determine the

structure of a protein. X-ray crystallography and

NMR(Nuclear Magnetic Resonance) can be used to de

termine structure. But the former method can only be

utilized when crystalization of protein is succeessful,

and this crystalization is very difficult to do. The lat

ter method can be adopted when the size of the protein

is small. Both require plenty of time from months to a

year.

On the other hand, we can determine the order of

amino acids in the sequence of protein extremely easier

than we can determine a structure of a protein. A

technique for determining the sequence of a protein has

been established. That is· why folding simulation is

important and necessary.

Folding simulation simulates, by computer, the pro

cess of protein formation from its stretched state to its

native folded state. Before simulation starts, informa

tion on the order of the amino acids is provided.

2.2 Folding simulation as an opti
mization problem

Folding simulation is a research topic that has fasci

nated hundreds of theoretical bio-chemists for a quar

ter of a century. The molecular dynamic method is,

theoretically, able to solve folding simulation problem.

The method precisely simulates the movement of each

atom driven by kinetic forces. However, it requires such

huge amounts of computational time that actual fold

ing simulation problems cannot be solved (it can sim

ulate pico-second movements of a protein whereas the

whole folding process takes a few seconds or more).

To make the computational time tractable, we have to

seek effective approximation methods.

In each approximation method, abstract represen

tation (e.g. the amino-acid ball which represents all

atoms in an amino acid as a single ball) and the limited

structure state (e.g. limited location or angle) are of

ten introduced. We can regard such an approximation

method as combinatorial optimization, because each

discrete state is evaluated by a properly-defined po

tential energy to be minimized and effective transition

between states is devised.

One of the most frequently employed approximation

methods is lattice representation [Ueda et aI. 1978]

[Skolnick and Kolinsky 1991], which restricts the posi

tion of amino acids in 3-dimensional lattice cells. Al

though the lattice representation can remarkably re

duce computational time for folding simulation, no sig

nificant result had been produced until recently. That

301

is partly because the lattice formulation might not be

good enough to simulate the folding process, and partly

because the computational power required might have

still been too big.

The work by Skolnick and his co-researchers is the

first research that did not poorly reproduce the native

structure of protein by the folding simulation. How

ever, the parameterization he employed to reproduce

the native structure has drawn criticism.

3 Computational Formulation
of Folding Simulation

We introduced a water-counting model to approximate

folding simulation concisely and to formulate folding

simulation as an optimization problem based on the

model. The water-counting model employs a lattice

representation for protein and water.

3.1 Concept of water-counting model

Coming back to basic biological knowledge, we have

sought a simulation method that requires the most

minimal parameterization possible. Then, we found

the water-counting model as a biological model.

In 1958, I.M. Klotz recognized that the folded

structure of a protein depends upon its interaction

with water [Koltz 1958]. At about the same time,

W.Kauzmann showed that the hydrophobic effect pro

vides the principle driving force for protein folding

[Kaumann 1959].

Hydrophobicity is a measure that represents the de

gree to which amino acids don't favor water. Amino

acids that favor water are called hydrophilic amino

acids, and those that don't are called hydrophobic

amino acids. Hydrophobic force is caused by the above

tendency of amino acids. Since many biologists today,

if not all, still recognize hydrophobic force as a primary

force, we simplified folding simulation by employing hy

drophobic force without using any other kind of force.

Next, we investigated the origin of hydrophobic

force. We concluded that !he binding and detaching

of water to and from amino acids produces hydropho

bic force. We can interpret the global minimum energy

of protein in terms of the number of water molecules

bound to proteins. Because the energy is calculated by

the number of water molecules around amino acid, we

302

coined it the water-counting model.

3.2 Representation of Protein

We will describe a way to represent protein on a 3-

dimensional lattice. In lattice celis, any place protein

is not present, water will fill.

As described earlier, proteins are linear chains of
amino acids. Each amino acids is composed of two
parts, namely, a main chain and a side chain. Main
chains form the backbone of protein. Side chains of

amino acids determine the properties of the amino acid.

The main chain of an amino acid serves to connect
adjacent amino acid. The relative location between two
adjacent amino acids is like the move that a knight in
chess makes, but on a 3-dimensionallattice (Figure 1),
(±3, ±1, ±1). Every main chain .of amino acid occupies

27 (= 33) lattice cells.

Figure 1: Representation of a part of protein: main
chains(shaded) and side chains(unshaded)

Each of the twenty kinds of amino acids has different
side chains (Table 1). For example, their volume (the

number of lattice cells occupied) and hydrophobicity

[Janin 1979] differ.

3.3 Evaluation of State

The energy of states are evaluated in the following for
mula.

E(Ener9Y) =
L~dechain"(Water Countm - 1) x HydrophobicitYm

Water Countm =
Number of adjacent cell" (of "ide chain) occupied by other amino acid"

The number of adjacent cell" of the "ide chain

In the first formulas, the terms from hydrophobic

amino acids are negative and those from hydrophilic'
amino acid are positive. The more the absolute value

Amino acid A C D E F G H
Hydrophobicity 0.3 0.9 -0.6 -0.7 0.5 0.3 -0.1

Volume 12 16 20 32 52 0 40

Amino acid I K L M N P Q
Hydrophobicity 0.7 -1.8 0.5 0.4 '-0.5 -0.3 -0.7

Volume 48 60 48 40 28 28 40

Amino acid R S T V W Y
Hydrophobicity -1.4 -0.1 -0.2 0.6 0.3 -0.4

Volume 68 16 28 36 68 56

Table 1: Characteristics of amino acid side chains: each
letter signifies one of 20 amino acids, for example, E
signifies glutamic acid.

of the hydrophobicity of an amino acid is, the greater

its contribution to the energy is.

The energy can be reduced both by increasing the

amount of water around the hydrophilic amino acid

and by reducing the amount of water around the hy

drophobic amino acid. The minimization of energy has

the effect of inviting hydrophobic amino acids toward
the center of the protein where there is less water and

to oust hydrophilic amino acids to the surface of the

protein where water is abundant.

3.4 Transition between States

As a transition from one state to another, we introduce

two classes of transition. One is rotational transition

and the other is translational transition (Figure 2).

Rotational transition is the move that proteins prob

ably take in actual folding processes. We first focus

on one amino acids and select which side of the pro

tein to rotate (in the figure, the right side is selected).

Then, by regarding a connection line between the fo
cused amino acid and its adjacent amino acid (in the

figure, the adjacent amino is on the left) as an fixed

axis, the selected side of the protein is rotated.

Translational transition is the moving of proteins
that is done for computational convenience. As with

rotational transition, one amino acid is focused on and

the side to move is selected. Then, the adjacent amino
acid of the selected protein is moved and other amino

acids on the selected side are moved translationally.

(the direction to translate is specified by the move of

the adjacent ~ino acid).

After a new state is created by the transition se-

lected, a collision check is executed. If, in the next

possible state, there is no multiply occupancy of any

lattice cell by different parts of the protein, this state

is acceptable. Otherwise, the state is discarded and

new transitions are tested until some that is accepted

is found.

_ ---o: ~ N 0
0

.. 0

/'~~
t t

focused amino acid focused amino acid

Figure 2: Rotational transition (left) and Translational
transition (right)

4 Temperature Parallel Simu
lated Annealing

In the proceeding section, we formulated folding simu

lation as the problem to search for the minimum energy

in a solution space. We employed temperature parallel

simulated annealing as an algorithm to find a global op

timal solution. Temperature parallel simulated anneal

ing is an algorithm that can circumvent a scheduling

problem of simulated annealing (SA), by introducing

the concept of parallelism in temperature.

In this section, SA is explained firstly, then temper

ature parallel SA is introduced.

4.1 SA

SA is a stochastic algorithm used to solve complex com

binatorial optimization problems [Kirkpatrick 1983]. It

searches for a global optimal solution in a solution

space without being captured in local optima.

SA simulates the annealing process of physical sys

tems using a parameter, temperature, and an evalua

tion value, eneT'!]y. At high temperatures, the search

point in the solution space jumps out of local energy

minimum. At low temperatures, the point falls to the

nearest local energy minimum.

An outline of the SA algorithm is as follows. Given

an arbitrary initial solution Xo, the algorithm generates

a sequence of solutions {xn}n=O,1,2, ... iteratively, finally

outputting Xn for a large enough value of n. In each

303

iteration, the current solution Xn is randomly modified

to get a candidate x~ for the next solution, and the

variation of the energy llE = E(x~) - E(xn) is calcu

lated to evaluate the candidate. When llE :S 0, the

modification is good enough to accept the candidate:

X n+l = x~. When llE > 0, the candidate is accepted

with probability p = exp(-llE /Tn), but rejected oth

erwise: X n+l = X n, where {Tn}n=O,l, ... is a cooling sched

ule (a sequence of temperatures decreasing with n).

Because solution Xn is distributed according to the

Boltzmann distribution at temperature T, the distri

bution converges to the lowest energy state (optimal

solution) as the temperature decreases to zero (Figure

3). Thus, one might expect SA to be capable of provid

ing the optimal solution, in principle. It is well-known

that the cooling schedule has great influence on SA per

formance. This is where the cooling schedule problem

arIses.

T (temperature)

K1

1 K2 ~! _~K-=3_--:
i K4
~

T1
T2
T3
T4
Ts
oL..------------ t (time)

.JJ. parallelize

t on PE1
t on PE2
t on PE3
t on PE4
t on PE5

Figure 3: Ordinary SA and temperature parallel SA

4.2 Temperature Parallel SA

The basic idea behind the algorithm is to use paral

lelism in temperature [Kumura and Taki 1990], to per

form annealing processes concurrently at various tem

peratures. The algorithm automatically constructs an

appropriate cooling schedule from a given set of tem

peratures (Figure 3). Hence, it partly solves the cooling

schedule problem.

304

The outline of the algorithm is as follows. Each

processor maintains one solution and performs the an

nealing process concurrently at a constant tempera

ture that differs between processors. After every k
annealing steps, each pair of processors with adjacent

temperatures performs a probabilistic exchange of so

lutions. Let p(T, E, T', E') denote the probability of

the exchange between two solutions: one with energy

E at temperature T and the other with energy E' at

temperature T'. This is defined as follows:

{
I if 6.T·6.E < °

p(T, E, T', E') = exp(_ 6.~foE) otherwise

where 6.T = T - T', 6.E = E - E'.

The probability has been defined such that solutions

with lower energy tend to be at lower temperatures.

Hence, the solution at the lowest temperature is ex

pected to be the best solution so far. The cooling

schedule is invisibly embedded in the parallel execu

tion.

The temperature parallel algorithm has advantages

other than the dispensability of the cooling schedule.

We can stop the execution at any time and examine

whether a satisfactory solution has already been ob

tained.

The algorithm of temperature parallel SA is imple

mented as a tool kit. When we want to solve some

problem using temperature parallel SA, if we use the

tool kit, all we have to do is to write a program that

just corresponds to the problem.

5 Experiment and Discussion

We selected flavodoxin, whose structure is known, as

the protein to simulated. This protein is of a medium

size and has 138 amino acids. We ran the folding simu

lation program using temperature parallel SA on Multi

PSI using 20 processors over 10 days. This corresponds

to 30,000 cycles. We also ran the folding simulation

program using simple parallel SA in 30,000 cycles, also

with 20 processors.

The simple parallel SA is a naive combination of se

quential SAs: every available processor has one solution

and anneals it sequentially using a distinct sequence of

ra,ndom numbers. All resulta,nt solutions are compared

with each other and the best one, the one with the

minimum energy value, is selected as a solution for the

algorithm.

5.1 Experimental result

The minimum energy versus the cycles of simulation

of those two algorithms is plotted in FigA. In the fig

ure, the result using sequential SA, ordinary SA, is also

plotted. Its energy is the average of energy obtained

by sequential SAs in the simple parallel SA.

ow------------------------------.

-10000

-20000

-30000
Energy

-40000

-50000

-60000 +----.---r--......--r----....---r---.----!

o 10000 20000 300pO 40000

Steps

Figure 4: Energy history of folding simulation

One of the structure of flavodoxin produced by the

program is shown in Figure 5. Unfortunately, its struc

ture is not similar to the structure of real flavodoxin.

However, a favorable tendency ,where hydrophobic

amino acids are inside the structure while hydrophilic

amino acids are outside the structure, was observed.

5.2 Discussion

The effectiveness of the water-counting model will be

evaluated first, then the effectiveness of the tempera

ture parallel SA as an optimization method for practi

cal problems will be evaluated.

The structure of the flavodoxin produced was not

similar to its real structure. However, this doesn't nec

essarily indicate a defect in the water-counting model.

We, instead, think that the result is due to insufficiency

of transitions we introduced.

The rough structure of protein, especially that of

small protein, can be reproduced by global transition

Figure 5: Result structure of folding simulation (flavo
doxin)

that is like rotational transition and translational tran

sition. There is little collision among amino acids in the

path from the stretched state to the roughly formed

structure. However, a fine protein 'structure is rarely

reproduced by global transitions alone due to the col

lisions.

We think that the local transition modes that can

avoid collision should be incorporated to reproduce

the native structure with collision check. We are

planning to introduce a local transition, kink mode

[Skolnick and Kolinsky 1991]. We think that the nec

essary mode of transition must be incorporated before

we can evaluate the effectiveness of the water-counting

model.

Next, we evaluate the effectiveness of temperature

parallel SA as an optimization method by using Figure

4. Readers who are familiar with SA should consult

Appendix.

We made the following observations from this energy

profile in consideration of the above points.

1. Two kinds of parallel SAs made better results

within a fixed time than sequential SA~ This is

simply the effect of multiple processors.

2. Up to the middle stage of simulation, temperature

parallel SA is always better than simple parallel

SA. This is because temperature parallel SA can

produce optimal solutions as that time.

3. Two kinds of parallel SAs have almost the same

final energy value.

305

Figure 4 shows the tendency for energy of all meth

ods to be minimized further after the completion of a

specified cycle of simulation. Only simulation by tem

perature parallel SA can be resumed without reschedul

ing. Because two kinds of parallel SAs are almost the

same, we think that temperature parall~l SA is more

advantageous than simple parallel SA.

Simulated annealing is most effective when states

generated at higher temperatures can cover nearly all

the solution space. In the case of folding simulation,

this is hard to do it. We are now engaged in trying

to restrict the solution space of simulated annealing

by knowledge and/or heuristics to the extent that the

solution space can be covered by simulated annealing.

6 Summary

We studied folding simulation as an application of par

allel simulated annealing. This program was written

in KL1 and was executed on the parallel inference ma

chine Multi-PSI. As the biological model the water

counting model that uses lattice representation and

only hydrophobic interaction between amino acids was

selected.

The structure of flavodoxin produced by program is

not appropriate from a biological point of view. This

suggests that the program requires further improve

ments. The kink mode of transition is one candidate

to incorporate.

However, the insight was gained from the point view

of computer science, namely evaluation of temperature

parallel simulated annealing. The result using tem

perature parallel SA had almost the same final energy

value (which is much better than that obtained by se

quential SA) as the result using simple parallel SA.

In consideration of the dispensability of rescheduling

when further optimization is necessary, temperature

parallel SA was proved to be advantageous.

The other thing we learnt was that a module that

restricts the solution space of folding simulation is re

quired. We think knowledge engineering must be em

ployed to do this, and also that KL1 is suitable for use.

Acknowledgment

The authors would like to especially thank Y. Totoki of

IMS for his programming and experimentation with the

306

folding simulation. Without his endeavors which were

conducted through what should have been his winter

vacation, this paper couldn't have been written. We

would also like to thank Kouichi Kimura, the founder

of temperature parallel SA, for valuable discussions.

We also thank Dr. Uchida and Dr. Nitta for their

support in this international collaboration.

References

[Kumura and Taki 1990] Kimura, K. and Taki, K.

(1990) Time-homogeneous parallel annealing algo

rithm. Proc. Compo Appl. Aifath. (IMACS'91j, 13,

827-828.

[Nakajima et al. 1989] Nakajima, K., Inamura, Y.,
Ichiyoshi, N., Rokusawa, K. and Chikayama, T.

(1989) Distributed implementation of KLI on the

Multi-PSIjV2. Proc. 6th Int. Conf. on Logic Pro

gramming.

[Ishikawa et al. 1991] Ishikawa, M., Hoshida, M., Hiro

sawa, M., Toya, T., Onizuka, K. and Nitta, K. (1991)

Protein Sequence Analysis by Parallel Inference Ma

chine. Information Processing Society of Japan, TR
FI-23-2, (in Japanese).

[Gierasch and King 1990] Gierasch, L.M and King,

J(ed) (1990) Protein folding. American association

for the advance of science.

[Skolnick and Kolinsky 1991] Skolnick, J. and Kolin

ski, A. (1991) Dynamic Monte Carlo Simulation of

a New Lattice Model of Globular Protein Folding,

Structure and Dynamics. Journal of Moleculer Biol

ogy Vol. 221 no.2, 499-531.

[Ueda et al. 1978] Ueda, Y., Taketomi, H. and Go, N.

(1978). Studies on protein folding, unfolding and

fluctuations by computer simulation. A three dimen

sionallattice model of lysozyme. Bilpolymers Vol.11

1531-1548.

[Koltz 1958] Koltz,I.M. (1958) Science Vol.128, 825-

[Kaumann 1959] Kauzmann (1959) Advances in Pro

tein Chemistry, Vol. 14 , no .1.

[Janin 1979] Janin, J. (1979) Surface and side volumes

in globular proteins. Nature(Londonj Vol. 211, 491-

492.

[Kirkpatrick 1983] Kirkpatrick, S., Gelatt, C.D. and

Vecci, M.P. (1983) Optimization by simulated an

nealing. Science, vol. 220, no.4598.

Appendix

Readers should pay attention to the following possibil

ity when they discuss the result of Figure 4.

1. The two energy histories obtained by the two par

allel SA algorithms might include the influence of

statistical fluctuation, because each parallel algo

rithm was experienced only once. The sequential

algorithm, however, was done twenty times and

each point in the history represents the average

energy value.

2. All SA procedures may be quick quenched in

stead of annealed, because the number of steps at

each temperature, 1500, would be relatively small

against the size of the solution space. If so, tem

perature parallel SA is disadvantageous for obtain

ing good energy in a short time, because not all

processors in temperature parallel SA will neces

sarily do quick quenching; some processors may

often do real annealing.

3. All SA proceduresy may not reach any minima in

the solution space, because every decline in energy

history is not sufficiently saturated.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 307

Toward a Human Genome Encyclopedia
Kaoru Yoshida 11, Cassandra Smith 2,

Toni Kazic 3, George Michaels 4, Ron Taylor 4,

David Zawada 5, Ray Hagstrom 6, Ross Overbeek 6

1 Division of Cell and Molecular Biology, Lawrence Berkeley Laboratory, Berkeley, CA 94720, U.S.A.

2 Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, U.S.A.

3 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, U.S.A.

4Division of Computer Research and Technolgy, National Institutes of Health, Bethesda, MD 20894, U.S.A.

5 Advanced Computer Applications Center, Argonne National Laboratory, Argonne, IL 60439-4832, U.S.A.

6Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne, IL 60439-4832, U.S.A.

Abstract

Aiming at building a human genome encyclopedia, a hu
man genome mapping database system, Lucy, is being
developed. Taking chromosome 21 as the first testbed,
more than forty maps of different kinds have been ex
tracted from publications, and several public and local
genome databases have been integrated into the sys
tem. To our knowledge, Lucy is one of the first systems
that have ever succeeded in genome database integra
tion. The success owes .to the following key design strate
gies: (1) A sequential logic programming language, Pro
log, has been used so that the database construction and
query management could rely on the internal database
facility of Prolog. (2) An object-oriented data repre
sentation has been employed, so that any kind of data
could be manipulated in the same manner. (3) A mini
language, map expression, has been designed, which en
ables map representation in a relative-addressing manner
and also linkage of one map to another. These strategies
are applicable for building a genome mapping database
not only on human chromosome 21 but also beyond chro
mosomes and beyond species.

1 Introduction

1.1 Why Biological Applications?

The fact that only four DNA bases (adenine, thymidine,
guanine, and cytosine - symbolically represented as A,
T, C and G respectively) encode most of the informa
tion on current life and its history is fascinating from
th~ viewpoint of computer science. More interesting is
that many biological reactions are due to the property
that A and T make a complementary pair as well as G
and C do. Genome analysis is potentially a large applica
tion area for symbolic computation. As biological exper
imental methodology develops, more gene information is
accumulated and analysed. This holds especially true
for such large scale models as the human genome whose
total genome size reaches a few billion of bases. Since

NIH (National Institute of Health) and DOE (U.S. De
partment of Energy) embarked a joint national research
initiative [30, 31], human genome projects have been ini
tiated in many other countries and research activities are
being expanded and accelerated day by day [89, 65, 83].
To proceed efficiently in the ever accelarating climate of
current biological research, strong support and feedback
from computer-aided analysis is mandatory [74, 53, 39].

1.2 What is a Physical Mapping Pro
cess?

Genome mapping is similar to geographical mapping.
The genome mapping is now akin to the early times of
geography. First of all, it is not known yet exactly how
big the genome is. Continents, countries, states, cities
and streets work as geographical markers which give po
sitional information, addresses, on the earth. As well,
continental-level landmarks with location-specific infor
mation such as a single copy DNA sequence (i.e., se
quences that occur only once in the genome) [70] have
been discovered here and there on the genome; frag
mentary maps around these landmarks are being drawn,
some of which are being glued one to another. Fur
thermore, as there are geographical maps and time-zone
maps, there are different kinds of genome maps, roughly
categorized into two kinds: physical maps giving physical
distances (i.e., the number of bases lying) between the
markers and genetic maps giving recombination frequen
cies between the markers. This section introduces what
is genome physical mapping. It should help in under
standing the genomic data which will be involved in the
genome mapping databases described in later sections.
For more details, consult [90].

Chop, Identify and Assemble. Figure 1 shows
how physical mapping is done. In general, a genome is
too large to be directly sequenced2 with the current se
quencing technology. For example, the total size of hu-

2 DNA sequencing means experimentally reading a DNA se
quence consisting of A, T, C, G bases.

308

man chromosome 21, the shortest human chromosome, is
thought to be 50 to 65 Mb (mega bases), while the max
imum length of DNA read per day is about 500 bases,
including reading error corrections, and the cost of se
quencing is about one dollar per base [44, 9]. If the
chromosome 21 were read in a serial manner, it would
take 250 years. Hence, first of all, the chromosome has
to be excized into pieces (called fragments), which are
small enough for further analysis, such as a 20-30 Kb
(kilo bases) to a 2-3 Mb (step (1)). The excision is done
by a physical method (e.g. by irradiation [27]) or by
a chemical method (e.g. by digestion with restriction
enzymes3

) (step (3)). Then, the DNA fragments are to
be assembled to the original chromosome. For the as
sembling, there are a variety of methods, depending on
(a) whether or not the DNA fragments may overlap, (b)
how the overlap and adj acency of the DNA fragments
are detected, and (c) whether each step of experiment is
attempted against an individual fragment or to a group
of fragments at a time.

A Conventional Physical Mapping Method.
Figure 1 shows a conventional mapping method which
deals with non-overlapping restriction fragments. This
method starts with chemical digestion using a restric
tion enzyme. The restriction fragments are sorted in
size (by the electrophoresis method (step (4)) and as
signed to an approximate region through hybridization4

•

Each fragment is hybridized to a variety of cell lines5
•

As each cell line covers a different region, the pattern
of hybridization signals against different cell lines deter
mines which region the target fragment resides (step (2)).
Next, hybridization is attempted against probes within
that region. With a positive hybridization signal on with
a probe, the fragment is determined to lie around the ad
dress of the probe (step (5)).

A clone containing a specific restriction site is called a
linking clone. A linking clone is split at the restriction
site and then each half is hybridized to complete digests6 •

As the two halves are known to be ·next to each other,
complete digests fished by the halves of a linking clone
are found to be adjacent. Thus, linking clones introduce

3 Restriction enzymes recognize some specific DNA pattern of
four to a dozen of bases and cut a double-stranded DNA at some
specific position in the pattern.

4A double stranded DNA is formed if each strand contains a
complementary sequence to the other. Hybridization is an attempt
to make a double-stranded DNA or an RNA-DNA hybrid using
this property. By labelling a probe (i.e. the counterpart) with an
isotope or a dye, by means of autoradiograph or florescence one
can detect if the probe has hybridized to the target or not.

5 Cell lines are DNA segments which are generated by deleting.
a portion of chromosomes or by translocating between different
chromosomes.

6 Complete digests are restriction fragments obtained when the
restriction enzymes react to completion, Le., everyone ofthe target
sites is cut. In contrast, partial digests are those which contain
some fraction of the target sites uncut.

the notion of adjacency that works as a strict constraint
in linear-ordering restriction fragments.

As a result of hybridization against a number of
probes, fragments are eventually given a linear order
(step (6)). The process (3) thru (6) is repeated until
a map with the desired precision is obtained.

ANew Physical Mapping Method. A new
method, called clone contig assembly, is shown in Fig
ure 2. This method uses clones of overlapping fragments
of almost the same size determined by the cloning vec
tor. By determining overlapping pairs of clones, walking
is attempted from one clone to another. The resulting
walking path forms an island of contiguous clones, that
is called a contig. This method has variations depending
on how the overlaps are detected (e.g., whether based
on the restriction digest pattern of each clone or based
on hybridization signals [54]). Furthermore, the over
lap detection can be attempted against a group of clones
at a time, in common. The feasibility of extracting the
maximum amount of information in every step of bio
logical experiment and the potential for automation are
attracting much attention to these contig assembly meth
ods [29]. In addition, given a set of overlapping clones,
the variation of length and overlaps of clones gives a sta
tisticallimit on the number of independent islands which
can be constructed from the clones [69,26,52]. It should
be noted that this method can be carried out, vigorously
relying on statistical and computational analysis [14,37].

In summary, the physical mapping process consists of
the three steps: (1) excising the whole DNA into pieces,
(2) characterizing every piece through hybridization or
digestion, and (3) assembling the pieces. While steps (1)
and (2) are' done through biological experiments, step
(3) is a probablistic combinatorial problem. In order to
solve this problem, information retrieval from a variety
of genome databases is required together with powerful
computational tools.

1.3 Mapping Data and Mapping
Knowledge

Section 1.2 introduced the physical mapping process
from the viewpoint. of biological experiments. The re
sulting data are published in the form of inventories as
shown in Tables 1 and 2.

Identification and Adjacency. Table 1 gives a re
lation between hybridization probes and restriction frag
ments 'obtained by digesting cell line WAY -17 with re
striction enzyme NotI [88]. For instance, row 1 implies
that clone 2310 which is a representative of locus D21S3
hybridizes to a 2200Kb complete digest and to two par
tial digests: a 2200Kb fragment and a 2600Kb fragment.

Section 1.2 introduced linking clones with the notion
of adjacency. HMG141 and HMG14s are the two halves

(I)

terge. DNA •• quente
(3)

EMclllon
'e.g.dlgutlon)

Noll digestion

DNA frogments

(4)

Frectlonetlon
le.g.electroPhoresls)

"II~ .) (2) IFlr jmuuml ' LII ~ ~:~~~:~::'
·Im mu uuuu.... .. ~:~ I ':;.:;.~:~';.;:

about '

linking ·'dJ.t.ncy- :
clon.s ,,0

~;;:;:> _____ ! (5)

WJJ II ~illjliU i;;~~:"·::::·::
Figure 1: A process of restriction map construction

(I) Ilr,l' DNR .. quI.CI (2) 'ortloIDlg .. "o. (3) croning In "ector

~ -+ iruf... -+ OO~=:i::::~
YAC _ 150· 500 IC.b O
P1 _,OO·l20KtI

~II~~"""~=="~~
(4) contlg assembly

(a) Hybridization Signal

IargeIclone

I ATTGCCATAAT I
1IIIIIIIIIq

I TAACGG'l'ATT_

probe

(b) Restriction Site Pattern

,.53=
== ---

Figure 2: A process of contig assembly

309

Table 1: Restriction fragments and hybridization probes

Probe N otl restriction fragments
locus/gene clone

1 D21S3 231C 2200,2600
2 HMG14 HMG14l 75
3 HMG14 HMG14s 300,360,560,630
4 6-40-3 300,360,530,1000
5 D13s 300,2100,2900
6 D13l 75,1800
7 *D21S101 JG373 1800,2100,2300,2600
8 *D21S15 pGSE8 2000,2400,2700
9 LA1711 1800

10 LAI71s 750,2100,2350
11 *D21S51 SF93 750,1200,1800,2050,2300
12 *D21S53 512-16P 750
13 *D21S39 SF13A 750

: :

of linking clone HMGI4. Hence, the 75Kb fragment hy
bridized to HMG141 must be next to the 300Kb fragment
hybridized to HMGI4s. Similarly, for a pair of D13s and
D131, the 300Kb fragment and the 75Kb fragment must
be adjacent; for another pair of LAI711 and LAI71s, the
1800Kb fragment and the 800Kb fragment must be ad
jacent. The 300Kb fragments in rows 3 to 5 can be in
terpreted to be identical, assuming that the 360Kb frag
ment (in rows 3 and 4) be a partial digest containing
the 300Kb and the 75Kb fragments and also assuming
that the 2100Kb fragment (in rows 4 and 5) be a partial
digest containing the 300Kb and 1800Kb fragments.

Thus, given a relationship of restriction fragments and
hybridization probes, each restriction fragment is iden
tified using strict constraints such as linking clones and
also using its neighborhood information such as a pattern
of partial digests.

Confirming Information. In Table 1, the 750Kb
fragments in rows 10 to 13 seem to be identical. Also,
the ordering of loci D21S101 (row 7) and D21S15 (row 8)
is not evident in this table, nor the ordering among loci
D21S51, D21S53 and D21S39.

Table 2 shows a relationship of multiple kinds of re
striction fragments (of a different cell line, CHG3) and
hybridization probes [17] around the same region as Ta
ble 1. With an assumption that the NotI restriction sites
be rather conserved in different cell lines and considering
of 10-20% errors in size, the 750Kb fragment in Table 1
can'be interpreted to correspond to the 700Kb fragment
in rows 4 to 6 in Table 2. The identification of the 750Kb
fragments in Table 1 is confirmed by the same set of
MluI digests «200Kb, 1250Kb and 1400Kb) and NruI
digests (600Kb and 2000Kb) found around the 700Kb
fragment in Table 2. As for the ordering of loci D21S101
and D21S15, the 1600Kb MluI fragment in rows 1 and
2 connects])21S101 with D21S3 and the 1400Kb MluI

310

Table 2: Multiple digests

Probe Restriction fragments
locus/gene clone Notl Mlul Nrul

1 D21S3 pPW231 700,1800 700,1600 600
2 D21S101 JG373 1400 1000,1600 1400,2000
3 D21S15 E8 1400 1250,1400 1400,2000
4 D21S39 SF13A 700 <200,1250,1400 600,2000
5 MxA/B 700 <200,1250,1400 600,2000
6 D21S51 SF93 700 <200,700,1400 500
: : : : : :

fragment in rows 3 to 6 connects D21S15 with D21S39.
In general, mapping data contain a non-trivial impre

cision which clouds their interpretation. Interpretation
for a set of mapping data becomes less ambiguous with
additional information. It is obviously efficacious to ac
cumulate data until a convincing interpretation is ac
quired.

1.4 Genome Mapping Databases

Public Databases and Laboratory Notebooks.
The constantly growing population of genome databases
[80] contains precious few mapping databases even con
sidering different species, such as mouse [47], Caenorhab
ditis elegance [32] and Eschericia coli [6]. As for hu
man, GDB (Genome Data Base) [40] is the only pub
lic mapping database. It contains information about
genes, loci (landmarks), clones, contacts and maps. As
for maps, consensus maps are collected each of which
contains merely the consensus order of loci, without in
formation on physical/genetic distance between loci yet
[75].

Laboratory data that are primary or secondary level
of experimental data including image films will someday
be available in so-called laboratory notebook databases
which are now under development [54, 68, 4, 58]. Espe
cially for the contig assembly mapping method for which
a computer analysis environment is essential, system de
velopment efforts are intensive and have been applied for
mapping chromosomes X, 16 and 19 [54, 23, 66].

What seems to be missing in genome databases is a
continuous link between public databases and labora
tory notebook databases. There is a strong need to com
pare laboratory mapping efforts against those reported
in publications and public databases.

Implementations, Interfaces and Integrations.
In terms of implementation strategies, most genome
databases, including the above, have been implemented
using relational database management systems which are
based on a normal form (or fiat) relational model [24].
Also these databases provide a query language (usually
SQL) interface for programmers and an interactive win-

dow interface for end users, both of which rather di
rectly reflect the underlying implementation. Program
mers and users must be knowledgable about implemen
tation issues, such as how each relational table is linked
to others.

A high level interface is also required for easily shar
ing and exchanging data between different databases.
Among leading database integration efforts, Genlnfo
[71, 60] is notable. Three databases: Genbank (DNA se
quence database), PIR (protein sequence database) and
MEDLINE (medical/biological literature database) are
converted into the form of an object-oriented data rep
resentation language, ASN .17 [72], so that data can be
easily exchanged among the databases. ASN.l has also
been applied to the construction of a metabolic com
pound database [49].

In summary, various kinds of information are involved
in the genome mapping process. The integration of dif
ferent databases is a key issue in proceeding further bio
logical research.

1.5 Goal and Strategies

Many queries issued in the physical mapping process are
imprecise, e.g., "Get all information around this locus",
and "What are the consensus and differences around this
locus in all collected maps?" To address these queries,
all related information must first be collected from pub
lications and various databases into a map in which all
available information is woven at every location of hu
man genome, i.e. a human genome encyclopedia. Then,
using this encyclopedic map, a genomic grammar [81]
will interface to the user.

The construction of a human genome database system,
LucY', has started. Taking chromosome 21 as the first
test bed, more than forty maps of different types have
been collected from publications, and several public and
local databases have been int~grated into the system.
Currently, the system is ready to answer rather general
queries such as shown above. To our knowledge, this is
the first integrated physical mapping database that has
ever been implemented.

The key design features which have enabled the pro
totyping of Lucy are:

• logic programming,

• object-oriented data representation and query inter
face,

• map representation language.

The following sections will describe each of these fea
tures in detail.

7 Abstract Syntax Notation 1, ISO 8824.
8The name is derived from the nickname given to the first fossile

of hominid [48]. The motto herein is "For any question on human,
ask Lucy".

2 Representation of Genome In
formation

2.1 Exploitation of Logic Program
ming Featuers

Lucy has been implemented in a sequencial logic pro
gramming language, Prolog, for its following features:

1. Database Facility and Inference Mechanism:
Its internal database facility and inference mecha
nism enable validation of biological data and rules
as knowledge immediately when they are expressed
as Prolog predicates (programs). Even if they were
expressed as Prolog terms (data) as second order
predicates, the inference mechanism could be im
plemented rather easily in Prolog.

2. Declarative Expresssion and Set Operations:
Its declarative expression and (built-in) search util
ities (e.g., built-in set operations such as setof and
bagof) minimize the amount of programming effort
for knowledge representation and database retrieval.

3. Recursive Queries: Its capability of handling re
cursive programming and recursive data structures
enables a straightfoward implementation of recur
sive queries that are hard to be implemented with
normal form relational databases and conventional
query languages such as SQL [28].

4. Foreign Language Interface: It is necessary to
have a foreign language interface (which is provided
in several Prolog implementations) to other conven
tional but efficient languages, such as C and Fortran,
in order to import and develop the computationally
intensive sequence analysis and statistical mapping
tools.

5. Portability: Lucy should be developed as a real
system to be used for biological analysis. The sta
bility and po~tability of the system are the first pri
ority.

2.2 Object-Oriented
and Interface

Representation

The hybridization results shown in Tables 1 and 2 in
Section 1.3 could be represented as Prolog facts of a flat
reiational form as follows:

311

'/.---
'/. table2(Locus, Clone, flotldigests, !Uuldigests, flruldigests).
'/,---

table2(>D21S3', 'pPW231', [700,1800], [700,1600], [600]).
table2('D21S101', 'JG373, [1400], [1000,1600], [1400,2000]).
table2('D21S15', 'E8', [1400], [1250,1400], [1400,2000]).

Then, for every element involved in these tables, such
as loci, clones and enzymes, information collected from
publications and public databases was stored similarly in
a flat relational form. Obviously, as the number and vari
ety of relations increased, it will be accordingly difficult
to program and maintain the database in this format,
and to remember the exact form of each relation.

Another burden handling various different tables be
comes obvious when encoding mapping rules. For ex
ample, the following program defines the notion of ad
jacency introduced with linking clones, namely that two
restriction fragments are adjacent if one fragment is hy
bridized to one half linking clone and the other fragment
to the other half linking clone and if the restriction frag
ments are both complete digests:

is_adj acent_ to (FragmentA, FragmentB)
is_half_linking_clone(HalfLinkingCloneP, LinkingClone),
is_half_linking_clone (HalfLinkingCloneQ, LinkingClone),
HalfLinkingCloneP \= HalfLinkingCloneQ,
is_hybridized_to (HalfLinkingCloneP, FragmentA, Enzyme),
is_hybridized_ to (HalfLinkingCloneQ, FragmentB, Enzyme),
FragmentA \= FragmentB,
is_coMplete_digest (FragmentA) ,
is_coMplete_digest (FragmentB) .

Here troublesome is that if hybridization results were
stored in various forms, predicate is_hybridized_ to/3
would have to be defined for each kind of digests in each
different table, as follows:

is_hybridized_to(Probe, Fragment, 'BotI')
tablel C, Probe, BotIFragments),
member (Fragment , BotIFragments).

is_hybridized_ to (Probe, Fragment, 'BotI')
table2C, Probe, flotIFragments, _, _),
member (Fragment , flotIFragments).

is_hybridized_ to (Probe, Fragment, '!UuI') :
table2 <-, Probe, _, MluIFragments, _),
member (Fragment , MluIFragments).

is_hybridized_to(Probe, Fragment, 'BruI') :
table2 C, Probe, _, _, flruIFragments),
member (Fragment , flruIFragments).

where member(X, Y) is a built-in predicate which suc
ceeds if X is a member of Y.

To relieve these difficulties, an object-oriented data
representation has been adopted in Lucy. The hybridiza
tion relationship between a fragment and probes has
been embedded as an attribute of the fragment.

'/,--- 2.2 .1 Principle
'/, tablet(Locus, Clone, BotIdigests).
'/.---

tablel(>D21S3', '231C', [2200,2600]).
tablel (>HMG14, , 'HMG14l, [75]).
tablet('HMG14', 'HMG14s, [300,360,560,630]).

First of all, we recognize that any kind of datum is an
object composed of attributes and represented as a Pro
log fact, obj ect/2, consisting of a functor, obj ect, and
two arguments, as follows:

312

object(Objld, Attributes).

where

• Obj Id is an object identifier which is unique in the
entire system and is formed of a class and a local
identifier unique within the class;

• Attributes is a set of attributes which constitute
the object. The internal representation of attributes
is encapsulated in the variable, Attributes.

Next, we construct general interface methods which
allow retrieval of information from an object without
knowing how that object is internally represented as fol
lows:

• class(Objld, Class) returns the class of the ob
ject.

• id(Objld, LocalId) returns the local identifier of
the object.

• attribute(Obj Id, Attribute) returns an at
tribute composed of an attribute name and an at
tribute value.

2.2.2 Examples

Starting with a restriction fragment, let us consider sev
eral objects related with this fragment and see what
kinds of information are associated with them. Note
that, in this paper, the attributes are represented in the
form of a list merely for ease of explanation; a different
data structure, more efficient in space and access, is used
in the real implementation.

1. Restriction Fragment: This defines the 750Kb
NotI fragment appearing in rows 10 to 13 in Table 1,
that has been digested from cell line WAV-17 with re
striction enzyme NotI. This fragment was hybridized
to four probes: LA171s, SF93, 512-16P and SF13A.
This information was obtaipined in an experiment
done by Denan Wang, April 1991, and appears in a
literature, Saito et al (1991).

object ('LUCY : fragment ' ('Denan1991 :WAV-17 /NotI/750#2'),
[input_date (1991/4/24),
digested_from(cell_line('WAV-17'»,
digested_by(restriction_enzyme('NotI'»,
probes([half_linking('LA171s') ,clone(>SF93'),

clone(>512-16P') ,clone(>SF13a')]),
size('ltb' (750»,
source(ref('Denan Wang (April 1991)'».
references([ref(>Saito et al (1991) ')])

]) .

2. Probe: One of the probes, SF93, was offerred
by Cox, and registerred in a local clone logbook,
Plasmid Book, with a local name, CLS3048. It has
an EcoRI site at one end and a SalI site at the other
end and is cloned in a pUC1S vector, and is resi.stant
to ampicillin.

object('PB:clone' ('SF93').
[input_date (1991/8/8) •
symbol ('SF93').
information_source (db('PB/ver.89-11-8'».
if_confirmed(yes) •
l.ab_number ('CLS : cl.one ' (, CLS3048' » •
vithin([locus ('D21S51') .region('21q22')]).
size('ltb' (2 .1».
clone_sites ([restriction_site('EcoRI').

restriction_site ('Sal!')]) ,
vector(vector('pUC18'».
vector_size ('ltb' (2.7».
ant ibiotic (amp) •
source ('PB: contact' ('Cox'»

]).

3. Locus/Gene: Clone SF93 is a representative of
locus D21S51 whose information is found in public
database G DB.

object('GDB : locus ' ('D21S51').
[input_date (1991/7/5) •
informat ion_source (db (, GDB/ver .1 .0'» •
sources(['GDB:source'('ltorenberg et al (1987)').

'GDB:source'('Burmeister et al (1990) ,)]).
probes (['GDB :probe' ('SF-93')]).
symbol ('D21S51').
full_name (' DIA Segment. single copy probe SF-93').
Ilithin([region('21q22 .3')]).
locus_type('DIA').
if_cloned(yes) •
assignment_modes (['GDB: assigrunent..mode' ('I') •

. 'GDB:assignment_mode' ('S'»)).
certainty(con:firmed) •
report (include) •
create_date('Apr 171990 1:20:46:000AK'),
modify_date('lov 25 1990 2:01:29:460Pl!'),
approved_date ('Sep 8 1990 11 :06: 13 : 320Pll')]) .

4. Contact: The person simply referred to as Cox in
the Plasmid Book is David R. Cox whose detailed
information is found also in public database GDB.

object(>PB: contact' ('Cox') • Attributes) :
object(contact('David R. Cox'), Attributes).

object (>GDB: contact' ('David R. Cox'),
[input_date (1991/7/5) ,
information_source (db('GDB/ver.l.0'»,
'GDB: idx' (>GDB : contact ' (1148»,
symbol(>David R. Cox').
contact_address(['Univ. of California at San Francisco'.

'Dept. of Pediatrics/Psych/Biochem',
'505 Parnassus Ave .• Box 0106').

city_address('San Francisco'),
state_address('CA'),
post_code('94143'),
country_name ('USA'),
email_address(.rjbflcanctr.mc . dUke .edu'),
phone_number ('1-(415) 476-4212'),
'FAX_number' ('1-(415) 476-9843')

]).

5. Literature: The mapping effort concerning the
above restriction fragment and clones was presented
in the literature, Saito et al (1991), as follows:

object('LUCY:reference'('Saito et al (1991)'),
[input_date (1991/4/24) ,
kind(paper) •
authors(['Akihiko Saito'. 'Jose P. Abado',

'Denan Vang', 'Kisao Ohki',
'Charl.es R. Cantor', 'Cassandra L. Smith']),

titl.e('Construction ~d Characterization of a lotI
Linking Library of Human Chromosome 21'),

journal ('Genomics') •
vol.ume(10) •
year(1991)

]).

Thus, not only biological data but also personal infor
mation and literature references are all represented in an
object-oriented manner.

2.2.3 Restricting Classifications

Many biological terms have been introduced so far, such
as chromosome, locus, gene, probe, clone and restric
tion fragment, but each of them represents just a piece
of DNA. For example, when a restriction fragment is
cloned, it is called a clone. When it is used for hybridiza
tion and gives information as a landmark, it is called a
probe. The more biological experiments are applied to
an object, the more names and attributes are given to
it. Also a set of constraints over attributes forms a new
category (or class). For example, when a clone is se
quenced and found to contain some restriction site in it,
it is called a linking clone; if the restriction site is an
NotI, then it is called an NotI linking clone.

object (linking_clone (Id) , Attributes) :
object(clone(Id), Attributes),
find_attribute (Attributes, categories (Categories» ,
is_member (linking_clone , Categories).

object ('lotI_linking_clone' (Id), Attributes) :-
object (linking(Id), Attributes),
find_attribute (Attributes,

linking_site(restriction_enzyme('lotI '») .

As a principle, objects may have no class when they
are created. Classification is made as more attributes
are accumulated and properties are found through later
experiements.

2.2.4 Broading Classifications

The information sources constituting Lucy cover more
than forty maps collected from publications and several
different kinds of public and local biological databases,
as shown in Figure 3.

In general, in integrating databases, mainly two kinds
of strategies are considered: (1) one is to distill the source
databases and unite them into a single database, and (2)
the other is to preserve the original form of the source
database and provide a bridging interface over them.

Similar biological experiments are being done in par
allel at different places. As a result, similar data are
accumulated in different databases or even in a single
database independently. Also, each datum stored in a
version of a database might be corrected or changed
through later experiments and reported in a later ver
sion of the database. In integrating a genome database,
preserving the redundancy and inconsistency of data is
a substantial effort.

As a result, the second integration strategy taken in
Lucy keeps track of the redundancy and inconsistency.
The following program provides a bridging interface to
bundle clones which are stored in various sources. Any
clone can be referred to with a class name, clone, while

Collected maps

Lucy
(chromosome 21 only)

Integrated Databases

::::l

HGM10.5
Iiio.

GDB1.0
Iiio.

Genbank 68.0
Iiio.

DTCS89 ...
REBASE 91.07 -

_ Plasmid Book (local) J

lOCi,
genes,
clones,
contacts,
literatures

aequenca •• le.tures,
literatures

transcrlptionconlrol
sequenees,leatures.
literatures

t.strictlonenzyme
recognition patterns,
methylation sites,
literatures

313

Figure 3: Information sources on chromosome 21, inte
grated in Lucy

their original class name is preceeded with the database
name, such as PB: clone. It preserves its origin as an
additional attribute, self (Obj)

object (clone(Id) , Attributes) :-
member(Class, ['GDB:probe', 'PB:clone', 'CLS:clone',

'LA: clone', 'LL: clone', 'YZ: clone' ,
'Saltalti:clone', 'LUCY: clone']) ,

object_id(Obj, Class, Id),
object(Obj, AttributesO),
add_attribute(AttributesO, self(Obj), Attributes).
) .

In summary, the notion of class introduced in Lucy
is loose unlike such a stringent notion as "class-as
template" which is-'widely adopted in object-oriented
programming languages [41, 78, 91].

3 Constructing a Global Map
from Fragmentary Maps

In order to understand mapping information in a visual
form, a general graphic interface, GenoGraphics [95,43],
has been hooked up to the Lucy database system.

As shown in Figure 3, those maps collected in Lucy
have a variety of range and scaling unit. Some maps
cover q-telomeric regions, some do centromeric regions,
and many others do some specific region (or island) such
as locus D21S13 that is concerned with the Alzheimer
disease. Also physical maps are measured their coordi
nates in Kb (kilo base), genetic maps are in cM (centi
Morgans), and cytognetic maps are in ratio (%).

For the moment, even the total genome size of chro
mosome 21 is not precisely determined. If every object
in maps measured in percentage were specified with an

314

absolute coordinate, the coordinate would have to be
modified every time the total genome size is corrected
through later experiments. Similarly, the exact position
of the D21S13 locus is not fixed, either. Every time a
more precise position were determined for locus D21S13,
the coordinates of all maps around the locus would have
to be changed.

3.1 Map Expression

First of all, objects in each fragmentary map should be
addressed in a local coordinate system within the map,
so that the specification of coordinates of objects does
not need to be modified in the event that their island
floats around. Namely, a relative addressing coordinate
system is required. Next, for those fragmentary maps as
sociated with some landmark, when the landmark moves
around, they should follow without modification in their
coordinate system.

In Lucy, a map representation language called an map
e:cpression has been introduced, which allows a map to be
represented in a local coordinate system and in a relative
addressing manner, and to be linked to another with an
anchoring mechanism. The syntax of a map expression
is defined as follows:

<MapExp> ::= <Obj>
, : =, <MapExp> I <MapExp> '=:'
<MapExp> ': <, <MapExp> I <MapExp> '<:' <MapExp>
, [' <MapExp> , '" , <MapExp> ']'

1. Relative Addressing: Two notions are associ
ated with a map expression: one is the current po
sition and the other is the current direction.

(a) Linear-Ordering
Expressions A : < B and A <: B mean, in com
mon, that A is left of B; additionaly, the former
means that B is evaluated after A is done, while
the latter does that A is evaluated after B is
done.

(b) Changing the Current Evaluation Direc
tion
Expression: = A means to put the left bound of
A at the current position and proceed the eval
uation rightward, while expressin A =: means
to put the right bound of A at the current po
sition and proceed the evaluation leftward.

(c) Multi-Pinning
Expression [A, BJ <: C means that A is left
of C as well as B is left of C.

2. Anchoring: Objects constituting a map expres
sion include positions and anchors (positions asso
ciated with labels). A label is globally accessible
beyond a map expression so that it connects one
map expression with another.

[H <: I, A, := G I <: B <: C <: -500 <: #L 1 <: D <: E <: -300 <: F =: qter

-500

G

gap L1 gap

Map P

Link

w

MapQ

Figure 4: Map expressions

(a) Memorizing an Anchor
Expression #L : < B means to memorize the
left bound of B under the label L.

(b) Referring to an Anchor
Expression A <: ?L means to refer to an an
chor labelled with L to take it as the right
bound of A.

Figure 4 illustrates an example of expressing two frag
mentary maps, P and Q, which are linked up at the mid
dle. Map P starts with the q-telomere which is followed
by fragment F, a 300Kb gap, fragment E, fragment D, a
500Kb gap, fragment C and fragment B. At the left bound
of fragment B, three other fragmentary maps start: one
map proceeds pinning leftward on fragment I and then
on fragment H, one map goes leftward from fragment A,

and the other map goes rightward from fragment G. The
position of the left bound of fragment D is labelled L1
to be an anchor for map Q. Map Q contains two frag
mentary maps starting with the anchor labelled L1. One
map proceeds pinning with Y and then X leftward from
the anchor, and the .other does with Z and then W right
ward from the anchor.

Figures 5, 6 and 7 show those maps represented in map
expressions, using GenoGraphics.

Figure 5: this is an NotI restriction map around the q
telomere region of chromosome 21, some of whose data
have been introduced in Table 1. Notl fragments and
sites are shown in light green; gray lines denote hy
bridization signals between fragments and probes. Thus
an interpretation of biological' data is visualized to help
understanding and verifying the mapping process.

Figure 6: in [34], regions are defined based on break
points (bounds) of various cell lines. The map of regions

315

n

r-__ ~-~=-~ ____ ~Y~'iM~iM~i!=&~-~~t.,~;_:·_"'_"'_""_'_"_"'_'5'_"'_"'_' ____ W_I]_~__,IJ: [- '-~~~~~~:~If~'"-t;l; ,ji ~~.:i
1111:~,=~~-::-= __ ._=-= ___ ~"~!,~_~=~_;n _ ~"~ ___ mj~~ II'

, : aw .. ,,,,,..; ... 1

.... f----:";-~-_1HIL---++---!;I-.:-;---.:,---.;.:..---:..m---;..~~.;........j1rl11 :- Ji$!$.mMW
! T~ __ ~ ~:~'

I l __ ._______ -. .. .-...... _,~.,.l .. oIi:l

I----'---';'----+---+--fl-~-\-J--.-+-,-+_I+II: I=:=___-=:=--=~_~~~---~~_:.~
i L __ ---._. --. - . ._------- .. _----------._----_ .. _---
r-- -"'~'-"'---"-'~-~~''''''' t _ __ ~-=-~=--==---________ . __ ~: ____ " i~'

_~---,-------Hi------jh-------j!--------jhll,--+---+1i~--H: I~~· __ ~~: __ ::" __ ;;,~:,-;::;~'<;~==~~~_=.~il

Figure 5: Visualizing a restriction map with hybridiza
tion signals

3 rr
'J~O 11)Q)Cj~1

~'Ir---------------------- ---f---:
II III III I I I I I +-+-1+-11 I ••••• '

---a~h·MM!t."_~_tr.~.'l.~"'.('.{

Figure 6: Gardiner's region map generated from a cell
line panel

Figure 7: Three maps around locus D21S13

(labelled Gar90) is expressed with the breakpoints of the
cell line panel (labelled bkpt st) as anchors. For exam
ple, region A 7 is formed with the left bound of cell line
1 ; 21 and the left bound of cell line ACEM- 2.

Figure 7: three restriction maps, labelled IchS13,
CoxS13 and Raf91, are those around the D21S13 locus
whose position is given in the chromosome 21 physical
anchor map (labelled 21phy), scaled in percentage.

4 Inquiry to Lucy

This section presents the current status of queries Lucy
can currently handle.

Concering the map visualized in Figure 5, the mapping
effort started with the q-telomere and reached around lo
cus D21S17 where a 1300Kb NotI fragment was pinned
down. The following queries are issued to retrieve in
formation related with this region so that the mapping
effort can be advanced toward the centromere.

1. Regarding locus D21S17, its regional information is
retrieved.

I ?- get_attributes Clocus<'D21S17'), [sel:f(S», llithin(Rs)]),
print_object (Rs-S), :fail.

Object Id:
- ([region(21q22 .1-q22. 2)], GDB: locus(D21S17»

Object Id:
-([region(21q21. 2-qter)], KGlUO. 5 :locus(D21S17)

Object Id:
- ([gardiner_region(B1), region(21q22. 3)], LUCY :locus (D21S17»

316

The region recorded in GDB is narrower than the
one in HGMIO.5 which is the predecessor of GDB.
Also the D21S17 locus is assigned to region B1 In

Gardiner's map shown in Figure 6.

2. Then, objects which occur left of D21S17 in all maps
on which D21S17 occurs are retrieved.

I ?- setof(Obj-MID, 05·(occurs_on(map(MID), locus(>D21S17'»,
ordered_obj ects_on_map (map (MID) , Os),
left_to(Obj, locus('D21S17'), Os)),

OMs) ,
keymerge(OMs, KOMs) , !,
member(OM, KOMs) , print_object (OM), fail.

Object Id:
-(clone (pGSH8), [chr21_Denan1991_physical_around_21q22 .3])

Object Id:
- (gardiner_region(Bl), [chr21_Gardiner1990])

Object Id:
-(locus(D21S58), [chr21_Burmeister1991_RH, chr21_Petersen1991
_female_meiosis, chr21_Petersen1991_maleJlleiosis, chr21_Tanzi
1988_female, chr21_Tanzi1988_male, chr21_ Tanzi1988_sex_averag
ed, chr21_physical_anchors])

Object Id:
-(locus (D21S82), [chr21_Warren1989_female_meiosis, chr21_Warr
en1989_male_meiosis])

Beside clone pGSH8 and region B1, loci D21S58 and
D21S82 are reported.

3. For the D21S58 locus, its regional information is re
trieved.

I ?- get_attributes (locus ('D21S58'), [self(S), llithin(Rs)]),
print_object(Rs-S), fail.

Object Id:
-([region(21q22 .1-q22 .2)], GDB :locus(D21S58»

Object Id:
-([region(21q21)], HGM10. 5 :locus (D21S58»

Object Id:
- ([gardiner_region(D4)], LUCY: locus (D21S58»

Although the answers from GDB and HGMIO.5 con
flict, the locus is assigned to region D4 in Gardiner's
map, which is to the left of region B1.

4. In order to grasp what more loci reside further left,
all loci not only in region D4 but also in every D
region are retrieved.

?- setof(R-Id, Rs·(get_attribute (locus (Id) , llithin(Rs»,
member(gardiner_region(R), Rs),
substring(R, "D")),

RIs) ,
keymerge(RIs, KRIs) , !,
member(KRI, KRIs) , print_object (KRI) , fail.

Object Id:
-(Dl, [D21S54])

Object Id:
- (D2, [D21S93])

Object Id:
- (D3, [D21S63, SOD1])

Object Id:
-(D4, [D21S58, D21S65])

5. Finally, detailed information about locus D21S58 is
retrived.

- ? print·object(locus(,D21S58'».

Ca.tegories:
[1] locus

Input Date:
1991/8/5

Investiga.tors:
[1] contact(P. C. Watkins)

Object Id:
locus(D21S58)

Probes:
[1] clone(524.5P)

References:
[1] Katheleen Ga.rdiner, Michel Horisberger, Ja.n Kra.us, Umadev
i Tantravahi, Julie Korenberg, Veena. Rao, Shyam Reddy, Da.vid
Pa.Uerson, "Ana.lysis of huma.n chromosome 21: correla.don of p
hysica.l a.nd cytogenetic ma.ps; gene a.nd CpG isla.nd distributio
ns", The EMBO Jounal, 9, 25.34, 1990

[2] Michael B. Petersen, Susan A. Slaugenhaupt, John G. Lewis
I Andrew C. Wa.rren, Aravinda. Cha.kra.va.rti, Stylianos Antonarak
is, "A Genetic Linkage Map of 27 Markers on Human Chromosom 2
I", Genomics, 9, 407.419, 1991

Self:
LUCY:locus(D21S58)

Within:
[1] gardinerregion(D4)

[GDB/ver.1.0] Approved date:
Sep 8 1990 10:57:11:140PM

[GDB/ver.1.0] Assignment modes:
[1] somatic cell hybrids

[GDB/ver.1.0] Certainty:
confirmed

[GDB/ver.1.0] Create date:
Jun 18 1989 9:42:08:000AM

[GDB/ver.1.0] Full name:
DNA Segment, single copy probe pPW524-5P

[GDB/ver.1.0] GDB:idx:
GDB:locus(8242)

[GDB/ver.1.0] If cloned:
yes

[GDB/ver.1.0] Information source:
db(GDB/ver.1.0)

[GDB/ver.1.0] Input Date:
1991/7/5

IGDB/ver.1.0] Locus type:
DNA

[GDB/ver.1.0] Modify date:
Nov 25 1990 2:01:47:640PM

[GDB/ver.1.0] Polymorphism type:
polymorphic

[GDB/ver.1.0] Probes:
[1] GDB:probe(pPW524.5P)

[GDB/ver.1.0] Report:
include

[GDB/ver.1.0] Self:
GDB:locus(D21S58)

[GDB/ver.1.0] Sources:
[1] P. C. Watkins, R. E. Tanzi, J. Roy, N. Stuart, P. Stanisl
ovitis, J. F. Gusella, "A cosmid clone genetic linkage ma.p of
chromosome 21 and localization of the brea.st cancer estrogen

·inducible (BCEI) gene.", Cytogenet Cell Genet, 46, 712, 1987

[2] M. Van Keuren, H. Drabkin, P. Watkins, J. Gusella, D. Pat
terson, "Regional ma.pping of DNA sequences to chromosome 21."
, Cytogenet Cell Genet, 40, 768.769, 1985

[3] P. C. Watkins, P. A. Watkins, N. Hoffman, P. Stanisloviti
s, "Isolation of single-copy probes detecting DNA polymorphis
ms from a. cosmid libra.ry of chromosome 21.", Cytogenet Cell G
enet, 40, 773· 774, 1985

[4] M. L. Van Keuren, P. C. Watkins, H. A. Drabkin, E. W. Jab
5, J. F. Gusella, D. Pa.tterson, "Regional localization of DNA
sequences on chromosome 21 using somatic cell hybrids.", Am

J Hum Genet, 38, 793-804, Jun 1986

[5] M. Burmeister, S. Kim, R. Price, T. de La.nge, U. Tantrava
hi, R. M. Myers, D. R. Cox, "A map of the long arm of huma.n c
hromosome 21 constructed by ra.dia.tion hybrid mapping a.nd puIs
ed-field gel electrophoresis", Genomics, In Press, ??, 1990

[GDB/ver.1.0] Symbol:
D21S58

[GDB/ver.1.0] Within:
[1] region(21q22.1.q22.2)

[HGMI0.,] # of copies:
single

[HGMI0.,] Assignmenl mode.:
[I] somatic cell hybrids

[HGMI0.,] Calegories:
[1] locus

[HGMI0.5] Cerlainly:
provisiona.l

[HGMI0.S] Information source:
db(HGMI0.5)

[HGMI0.5] Inpul Dale:
1991/3/27

[HGMI0.S] Probes:
[I] clone(pPWS24.SP)

[HGMI0.S] References:
[I] ref(Walkins et al (HGM8))

[2] P. C. Watkins, R. E. Tanzi, K. T. Gibbons, J. V. Tricoti,
G. Landes, R. Eddy, T. B. Shows, J. F. Gusella, "Isola.tion 0

f polymorphic DNA segments from huma.n chromosome 21.", Nuclei
c Acid:; Res, 13, 6075·88, Sep 1985

[3] M. L. Van Keuren, P. C. Watkins, H. A. Drabkin, E. W. Jab
5, J. F. Gusella., D. Pa.tterson, "Regiona.l loca.liza.tion of DNA
sequences on chromosome 21 using soma.tic cell hybrids." I Am

J Hum Genet, 38, 793.804, Jun 1986

[4] ref(Nakai el at (HGM9))

[HGMI0.'] Self:
HGMI0.5:locus(D21S,8)

[HGMI0.'] Within:
[I] region(21q21)

Information are reported from publications, GDB
and HGM10.5 in that order.

5 Concluding Remarks

Promoted by requirements in variOl~s application areas as
well as in biology, steady progress in database technology
has been made in the last few years [82].

Since the normal-form (lNF or flat) relational model
[24] was proposed, practice over the years has pointed out
its inefficiency in data access and its verbosity in inquiry
[25, 28]. The source of both problems is the primitive
data structure, the flat relation. In genome databases
implemented upon normal form relational database sys
tems, these problems are cast in relief, since the volume
and variety of involved data are large and growing. In
fact, the number of tables constituting a genome map
ping database is apt to be quite large (e.g., 68 tables
in LLNL Genome Database [4] and over 100 tables in
GDB).

The present work could be regarded as one of the first
to have successfully integrated public and local genome
databases. The success greatly reflects the application
of an object-oriented data representation and logic pro
gramming features, which should be the preliminary
steps toward object-oriented databases [5, 36, 3, 7, 33,
85, 19] and deductive databases respectively. Through
an experience with Lucy, it should be reasonable to con
clude that these database technologies will contribute to
the development and practice of genome databases.

Object-Oriented Database Technology. Since
the notion of object-orientation [41] was invented in the

317

field of programming languages, it has been widely dis
seminated over the past ten years [78, 91]. The heart
of object-orientation, that is encapsulating the internal
details of an object, is important for the implementation
and retrieval of various kinds of data involved in genome
databases. Lucy has only adopted an object-oriented
data representation. Other ramparts have not been con
structed yet: neither object-specific methods nor class
inheritance. They will be future work.

Since the object-orientation was introduced to Lucy,
some cases have been found where the framework does
not fit naturally but where a nested (N F2: non-first nor
mal form) relational model [38, 1, 76] would. Here is an
example. Given a table of linking clones, an entry for
LAl71 has been represented as follows:

------+---------+------------------------+-----------------
of occurrences I cloned fragments

name I region I KluI BssHII SacII I large small
------+---------+------------------------+-----------------
LA171 I 21q22.3 I 3 3.0 2.1
LA179 I 21cen I 0 3 1.1 0.96

I I
------+---------+------------------------+-----------------

object ('LA: clone' ('LA171'),
[input_date(1991/2/11) ,
categories([linking_clone]),
Ilithin([region('21q22 .3')]),
cloning_ vector (].ambda) ,
linking_site (restriction_enzyme ('lotI'» ,
digested_from(genomic_DIA(human» ,
digested_bye [restict ion_enzyme (, KcoRI ')]),
contains ([times (restrictio]Lenzyme ('KluI'), 1),

times (restriction_enzyme('BssHII'), 2),
times (restriction_enzyme ('SacI!'), 3)]),

parts (['LA: clone' ('LA171l'), 'LA: clone' ('LA171s')]),
references([ref('Saito et el (1991) ')])

]).

obj ect <'LA: clone' <'LA1711') ,
[input_date(1991/3/30) ,
categories ([half_Iinking_clone]) ,
linking_site (restriction_enzyme ('lotI'» ,
size('Kb'(3.0»

]).

object <'LA: clone' <'LA171s') ,
[input_date(1991/3/30) ,
categories([half_l inking_clone]) ,
size<'Kb' (2 .1»

J).

As shown in Table 1, LA1711 and LA171s are those half
linking clones which hybridized to fragments, 1800Kb
and 750Kb, respectively. When these half linking clones
were identified as objects, their sizes, 3.0Kb and 2.1Kb,
were encapsulated in these objects. In contrast, consider
the number of occurrences of restriction sites. It is ques
tionable that an object should be created for the number
of occurrences, such as once, twice or three times. Be
ing part of an attribute, contains, the occurrences are
stored as a nested relation of the form, tirnes/2. For the
third and forth columns in the example above, their re
lational structures are similar, but the meanings of their
data imply different implementations. Further studies
will be necessary to clarify this problem.

318

Deductive Database Technology. The necessity of
loading an inference mechanism into a database system
has been claimed in knowledge-intensive applications [16,
56, 63, 84].

Because most biological knowledge is symbolic rules on
the four characters of DNA, there is a potential require
iment for rule processing capability. A couple of genome
database systems are being developed abreast of Lucy,
exploiting logic programming facilities [42, 73, 6, 45]. In
Lucy, the inference capability is being used mainly for
query management. Few pieces of biological rules have
been implemented.

References
[lJ S. Abiteboul and N. Bidoit. Non first normal form relations

to represent hierarchically organized data. In Proceedings of
the Third ACM SIGACT-SIGMOD Symposium on Princi
ples of Database Systems, pp.191-200, Waterloo, April 1984.

[2J Serge Abiteboul and Paris C. Kanellakis. Object Identity
as a Query Language Primitive. In Proceedings of the 1989
ACM-SIGMOD Conference on Management of Data, Port
land, OR, May 1989.

[3J R. Agrawal and N. H. Gehani. ODE (Object Database and
Environment): The Language and the Data Model. In Pro
ceedings of the 1989 ACM-SIGMOD Conference on Manage
ment of Data, Portland, OR, May 1989.

[4J L. K. Ashworth, T. Slezak, M. Yeh, E. Branscomb and A.
V. Carrano. Making the LLNL Genome Database 'Biolo
gist Friendly'. DOE Human Genome Program Contractor
Grantee Workshop, Santa Fe, NM, February 17-20 1991.

[5J M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D.
Maier, S. Zdonik. The Object-Oriented Database System
Manifesto. In Proceedings of the First International Confer
ence on Deductive and Object-Oriented Databases, Kyoto,
1989.

[6J A. Baehr, G. Dunham, A. Ginsburg, R. Hagstrom, D. Joerg,
T. Kazic, H. Matsuda, G. Michaels, R. Overbeek, K. Rudd,
C. Smith, R. Taylor, K. Yoshida and D. Zawada. An In
tegrated Database t() Support Research on Esherichia coli.
Technical Report, Argonne National Laboratory, October
1991.

[7J J. Banerjee, II.-T. Chou, J. Garza, W. Kim, D. Woelk, N.
Ballou and H. J. Kim. Data model issues for object-oriented
applications. ACM TOIS, Jan 1987.

[8) F. Bancilhon and S. N. Khoshafian. A calculus of complex
objects. In Proceedings of the ACM SIGACT-SIGMOD
SIGART Symposium on Principles of Database Systems,
pp.53-59, March 1986.

[9J Bart Barrell. DNA sequencing: present limitations and
prospects for the future. FASEB Journal, 5:40-45, 1991.

[10J B. J. Billings, C. 1. Smith and C. R. Cantor. New techniques
for physical mapping of the human genome. FASEB Journal,
5:28-34 (1991).

[l1J D. G. Bobrow and T. Winograd. An overview of KRL, a
knowledge representation language. Cognitive Science, 1:3-
46, 1977.

[12J R. J. Brachman and J. Schmolze. An overview of the KL
ONE knowledge representation system. Cognitive Science,
9(2):171-216, April-June 1985.

[13J R. J. Brachman, A. Borgida, D. 1. McGuinness, and 1. A.
Resnick. The CLASSIC knowledge representation system,
or, KL-ONE: The next generation. Workshop on Formal
Aspects of Semantic Networks, Santa Catalina Island, CA,
February 1989.

[14J E. Branscomb, T. Slezak, R. Pae, D. Galas, A. V. Carrano
and M. Waterman. Optimizing restriction fragment finger
printing methods for ordering large genomic libraries. Ge
nomics, 8: 351-66 (1990).

[15J Ivan Bratko. Prolog: programming for artificial interlligence.
Second Edition, Addison Wesley, 1990.

[16J Bruce G. Buchanan and Edward H. Shortliffe. Rule-Based
Expert Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project. Reading, Addison-Wesley,
1984. -

[17J Margit Burmeister, Suwon Kim, E. Roydon Price, Titia de
Lange, Umadevi Tantravahi, Richard M. Myers, and David
R. Cox. A Map of the Distal Regin of the Long Arm of
Human Chromosome 21 Constructed by Radiation Hybrid
Mapping and Pulsed-Field Gel Electophoresis. Genomics,
9:19-30,199l.

[18J Paul Butterworth, Allen Otis and Jacob Stein. The Gem
Stone object database management system. Communication
of the ACM, Vo1.34, No.10, pp.64-77, October 1991.

[19J Michael J. Carey, David J. DeWitt and Scott L. Vanden
berg. A Data Model and Query Language for EXODUS. In
Proceedings of the 1988 ACM-SIGMOD Conference on Man
agement of Data, Chicago, IL, June 1988.

[20J A. V. Carrano. Estalishing the order of human chromosome
specific DNA fragments. Basic Life Science, 46: 37-49 (1988).

[21J A. V. Carrano, J. Lamerdin, 1. K. Ashworth, B. Watkins,
E. Branscomb, T. Slezak, M. Raff, P. J. de Jong, D. Keith,
L. McBride. A high-resolution, fluorescence-based semiauto
mated method for DNA fingerprinting. Genomics,4: 129-36
(1989).

[22J A. V. Carrano, P. J. de Jong, E. Branscomb, T. Slezak and B.
W. Watkins. Constructing chromosome- and region-specific
cosmid maps of the human genome. Genome, 31: 1059-65,
(1989).

[23J M. J. Cinkosky and J. W. Fickett. SIGMA: Software for In
tegrated Genome Map Assembly. Proc. of the 11 th Interna
tional Human Gene Mapping Workshop (HGMll) , London,
August 18-22, 1991.

[24J E. F. Codd, A Relational Model of Data for Large Shared
Data Banks. Communication of ACM, 13:6, 1970.

[25J E. F. Codd. The Relational Model for Database Manage
ment, Version 2. Addison Wesley, 1990.

[26J A. Coulson, J. Sulston, S. Brenner and J. Karn. Toward a
physical Map of the genome of the nematode, Caenorhabdi
tis elegans. Proc. Natl. Acad. ci. USA, 83: 7821-7825,1986.

(27) David R. Cox, Margit Burmeister, E. Roydon Price,
Suwan Kim, Richard M. Myers. Radiation Hybrid Map
ping: A Somatic Cell Genetic Method for Constructing
High-Resolution of Mammalian Chromosomes. Science, 250:
245-250, 1990.

[28J C. J. Date. An Introduction to Database Systems, Volume
I, Fifth Edition, Reading, Addison Wesley, 1990.

[29J Kay E. Davies and Shirley M. Tilghman, editors. Genome
Analysis Volume 1: Genetic and Physical Mapping. Cold
Spring Harbor Laboratory Press, 1990.

[30] Human Genome 1989-90 Program Report. DOEjER-0446P,
U.S. Department of Energy, March 1990.

[31] Understanding Our Genetic Inheritance, The U.S. Human
Genome Project: The First Five Years FY 1991-1995.
DOEjER-0452P, U.S. Department of Energy.

[32] R. Durbin, S. Dear, T. Gleeson, P. Green, L. Hillier, C. Lee,
R. Staden and J. Thierry-Mieg. Software for the C. Elegans
Genome Project. Genome Mapping and Sequencing Meeting,
Cold Spring Harbor Laboratory, NY, May 8-12 1991.

[33] D. Fishman et al. Iris: An object-oriented database manage
ment system. ACM TOIS, Vol.5, No.1, pp.48-69, January
1986.

[34] Katheleen Gardiner, Michel Hoisberger, J an Kraus,
Umadevi Tantravahi, Julie Korenberg, Venna Rao, Shyam
Reddy and David Patterson. Analysis of human chromosome
21: coorrelation of physical and cytogenetic maps; gene and
CpG island distributions. The EMBO Journal, vol.9, no.1,
pp.25-34, 1990.

[35] D. Garza, J. W. Ajioka, D. T. Burke and D. L. Hartl. Map
ping the Drosophila genome with yeast artificial chromo
somes. Science, 246: 641-6 (1989).

[36] O. Deux et al. The O2 system. Communication of the ACM,
Vo1.34, No.10, pp.34-48, October 1991.

[37] J. W. Fickett, M. J. Cinkosky, D. Sorensen and C. Burks.
Integrated Maps: A Model and Supporting Tools. Proc.
of the 11 th International Human Gene Mapping Workshop
(HGM11), London, August 18-22,1991.

[38] P. Fisher and S. Thomas. Operators for non-first-normal
form relations. In Proceedings of the 7th International Com
puter Software Applications Conference, Chicago, November
1983.

[39] Karen A. Frenkel. The Human Genome Project and Infor
matics. Communication of ACM, Vo1.34, No.11, 40-51, 1991.

[40] GDB and OMIM Quick Guide (Version 4.0). GDBjOMIM
User Support, The William H. Welch Medical Library, Bal
timor·e, July 1991.

[41] Adele Goldberg and David Robson. Smalltalk-80: The Lan
guage and Its Implementation. Addison-Wesley, 1983.

[42] P. M. D. Gray and R. J. Lucas, editors. Prolog and
Databases: implementations and new directions. Ellis Hor
wood, series in Artificial Intelligence, 1988.

[43] Ray Hagstrom. GenoGraphics. International Chromosome
21 Workshop, Denver, CO, April 10-11, 1991.

[44] 1. Hood, R. Kaiser, B. Koop and T. Hunkapiller. Large
Scale DNA Sequencing. DOE Human Genome Program
Contractor-Grantee Workshop, Santa Fe, NM, February 17-
20 1991.

[45] Toni Kazic and Shalom Tsur. Building a Metabolic Func
tion Knowledgebase System. Workshop on Biological Ap
plications in Logic Programming, ILPS'92, San Diego, CA,
November 1991.

[46] Y. Kohara, K. Akiyama and K. Isono. The Physical Map of
the Whole E.coli Chromosome: Application of a New Strat
egy for Rapid Analysis and Sorting of a Lrge Genomic Li
brary. Cell, 50: 495-508, 1987.

[47] M. Kosowsky, C. Blake, D. Bradt, J. Eppig, P. Grant, L.
Mobraaten, J. Nadeau, J. Ormsby, A. Reiner, S. Rockwood,
J. Saffer, T. Snell and M. Vollmer. Integration and Graphical
Display of Genomic Data: The Encycolopedia of the Mouse
Genome. Genome Mapping and Sequencing Meeting, Cold
Spring Harbor Laboratory, NY, May 8-12 1991.

319

[48] Donald Johanson and Maitland Edey. Lucy: The Beginnings
of Human Kind. Simon & Schuster, 1981.

[49] Peter Karp. A Knowledge Base of the Chemical Com
pounds of Intermediary Metabolism. unpublished, SRI In
ternational, September 1991.

[50] G. Kiernan, C. de Maindreville and E. Simon. Making De
ductive Database a Practical Technology: a step forward.
In Proceedings of the 1990 ACM-SIGMOD Conference on
Management of Data, Atlaritic City, NJ, May 1990.

[51] Charles Lamb, Gordon Landis, Jack Orenstein, Dan Wein
reb. The ObjectStore database system. Communication of
the ACM, Vol.34, No.10, pp.50-63, October 1991.

[52] Eric S. Lander and Michael S. Waterman. Genomic Mapping
by Fingerprinting Random Clones: A Methematical Analy
sis. Genomics, 2:231-239, 1988.

[53] Eric S. Lander, Robert Langridge and Damian M. Saccocio.
Mapping and Interpreting Biological Information. Commu
nication of ACM, Vol.34, No.ll, 32-39, 1991.

[54] Hans Lehrach, Radoje Drmanac, Jorg Hoheisel, Zoia Larin,
Greg Lennon, Anthony P. Monaco, Dean Nizetic, Gun
ther Zehetner and Annemarie Poustka. Hybridization Fin
gerprinting in Genome Mapping and Sequencing. Genome
Analysis Volume 1: Genetic and Physical Mapping, pp.39-
81, Cold Spring Harbor Laboratory Press, 1990.

[55] A. J. Link and M. V. Olson. Physical map of the Saccar
omyces cerevisia genome at 1l0-kilobase resolution. Genet
ics, 127: 681-98 (1991).

[56] Douglas B. Lenat and R. V. Guha. The Evolution of CycL,
The Cyc Representation Language. SIGART Bulletin, Vol.
2, No.3, ACM Press, June 1991.

[57] Douglas B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Addison-Wesley, 1990.

[58] S. Lewis, W. Johnston, V. Markowitz, J. McCarthy, F.
Olken and M. Zorn. The Chromosome Inforamtion System.
DOE Human Genome Program Contractor-Grantee Work
shop, Santa Fe, NM, February 17-20 1991.

[59] Y. Lien. Hierarchical schemata for relational databases.
ACM Transactions on Database Systems, Vol.6, No.1, pp.48-
69, March 1981.

[60] David Lipman and James Ostel. Entrez: Sequences. In Pro
ceedings of the 11th International Human Gene Mapping
Workshop (HGM11), London, August 18-22, 1991.

[61] Joseph Locker and Gregory Buzard. A dictionary of tran
scription control sequences. DNA Sequence - Journal of
DNA Sequencing and Mapping, VoLl, pp.3-11, 1990.

[62] Lohman et al. Extensions to Starburst: objects, types, func
tions and rules. Communication of the ACM, Vol. 34, No.10,
pp.94-109, October 1991.

[63] D. R. McCarthy and U. Dayal. The architecture of an ac
tive database management system. In Proceedings of ACM
SIGMOD 89, pp.215-224, Portland OR, May 1989.

[64] A. Makinouchi. A consideration on normal form of not
neceissarily-normalized relation in the relational data model.
In Proceedings of the Third International Conference on
Very Large Databases, pp.447-453, Tokyo, October 1977.

[65] Victor A. Mckusick. Current trends in mapping human
genes. FASEB Journal, 5: 12-20, 1991.

320

[66] H. W. Mohrenweiser, K. M. Tynan, E. W. Branscomb, P.
J. de Jong, A. Olsen, B. Trask and A. V. Carrano. Devel
opment of an integrated genetic functional physical map of
human chromosome 19. In Proceedings of the 11th Interna
tional Human Gene Mapping Workshop (HGMll), London,
August 18-22, 1991.

[67] Fumio Mizoguchi. Knowledge Representation and Knowl
egdge Programming. (in Japanese) Computer Software, Vol.
8, No.4, JSSS, July 1991.

[68] D. Nelson and J. W. Fickett. An Electronic Laboratory Note
book for Data Management in Physical Mapping. DOE Hu
man Genome Program Contractor-Grantee Workshop, Santa
Fe, NM, February 17-20 1991.

[69] M. V. Olson, J. E. Dutchik, M. Y. Graham, G. M. Brodeur,
C. Helms, M. Frank, M. MacCollin, R. Scheinman and T.
Frand. Random-clone strategy for genomic restriction map
ping in yeast. Proc. Natl. Acad. Sci. USA, 83: 7826-7830,
1986.

[70] Marnard Olson, Leroy Hood, Charles Cantor and David Bot
stein. A Common Language for Physical Mapping of the Hu
man Genome. Science, 245: 28-29, September 1989.

[71] James Ostel. Genlnfo Backbone Database Overview (Ver
sion 1.0). Technical Report, NLM, NIH, Bethesda, MD, June
1990.

[72] GenInfo ASN.1 Syntax: Sequences (Version 0.50). Technical
Report, NCBI, NLM, NIH, Bethesda, MD, National Insti
tutes of Health, MD, 1991.

[73] Norman W. Paton and Peter M. D. Gray. An object-oriented
database for strage and analysis of protein structure data.
In Reading [42].

[74] Mark L. Pearson and Dieter Soll, The Human Genome
Project: a paradigm for information management in the life
sciences. FASEB Journal, 5: 35-39, 1991.

[75] Peter PearSOll. The Genome Data Base. Proc. of the 11th
International Human Gene Mapping Workshop (HGMll) ,
London, August 18-22,1991.

[76] Mark A. Roth and Henry F. Korth. The Design of -,lNF Re
lational Databases into Nested Normal Forma. In Proceed
ings of the 1987 ACM-SIGMOD Conference on Management
of Data, pp.143-159, San Francisco, May 1987.

[77] Akihiko Saito, Jose P. Abado, Denan Wang, Misao Ohki,
Charles R. Cantor and Cassandra L. Smith. Construction
and Characterization of a Not! Linking Lbrary of Human
Chromosome 21. Genomics, 10, 1991.

[78] John H. Saunders. A Survey of Object-Oriented Program
ming Languages. In Journal of Object-Oriented Program
ming, VoLl, No.6, SIGS Publications, March/April 1989.

[79] H. Scheck and P. Postor. Data structures for an integrated
data base management and information retrieval system. In
Proceedings of the Eighth International Conference on Very
Large Datbases, pp.197-207, Mexico City, September 1982.

[80] "Genome Databases." Science, 254: 201-7 (1991).

[81] David B. Searls. The Computational Linguistics of Biologi
cal Sequences. Technical Report CAIT-KSA-901O, Center for
Advanced Information Technology, UNISYS, PA, September
1990.

[82] Avi Silberschatz, Michael Stonebraker, Jeff Ullman (editors
ofthe specicial issues on next-generation database systems).
Database Systems: Achievements and Opportunities. Com
munication of the ACM, Vol.34, No.IO, pp.1l0-120, October
1991.

[83] J. C. Stephens, M. 1. Cavanaugh, M. I. Gradie, M. 1. Mador
and K. K. Kidd. Mapping the human genome: current sta
tus. Science, 250: 237-44 (1990).

[84] Michael Stonebraker et al. On rules, proc~dures, caching and
views. In Proceedings of the 1990 ACM-SIGMOD Confer
ence on Management of Data, Atlantic City, NJ, June 1990.

[85] Michael Stonebraker and Greg Kemnitz. The POSTGRES
next-generation database management system. Communica
tion of the ACM, Vo1.34, No.10, pp.78-92, October 1991.

[86] J. Claiborne Stephens, Mark L. Cavanaugh, Margaret I.
Gradie, Martin 1. Mador and Kenneth K. Kidd. Mapping
the Human Genome: Current Status. Science, 250: 237-250,
1991.

[87] Shunichi Uchida and Kaoru Yoshida. The Fifth Generation
Computer Technology and Biological Sequencing. In Pro
ceedings of Workshop on Advanced Computer Technologies
and Biological Sequencing, Argonne National Laboratory,
pp.28-36, November 1988.

[88] Denan Wang, Hong Fang, Charles R. Cantor and Cassan
dra L. Smith. A Contiguous Not! Restriction Map of Band
q22.3 of Human Chromosome 21. to appear in Proceedings
of National Accademy of Science U.S.A., 1992.

[89] James Dewey Watson and Robert Mullan Cook-Deegan. Ori
gins of the human genome project. FASEB Journal, 5: 8-11,
1991.

[90] James D. Watson, John Tooze, and David T. Kurtz. Recom
binant DNA - A Short Course -. Scintific American Books
NY,1983. '

[91] Kaoru Yoshida. A'UM: A Stream-Based Concurrent Object
Oriented Programming Lanugage. Ph.D thesis! Keio Univer
sity, Japan, March 1990.

[92] Kaoru Yoshida, Cassandra L. Smith, Charles R. Cantor and
Ross Overbeek, How will logic programming benefit genome
analysis? DOE Human Genome Program Con tractor
Grantee Workshop, Santa Fe, NM, February 17-20 1991.

[93] Kaoru Yoshida, Ross Overbeek, David Zawada, Charles R.
Cantor and Cassandra L. Smith. Prototyping a Mapping
Database of Chromosome 21. Genome Mapping and Se
quencing Meeting, Cold Spring Harbor Laboratory, NY, May
8-12 1991.

[94] Kaoru Yoshida and Cassandra Smith. Key Features in Build
ing a Physical Mapping Database System - Through an Ex
perience of Developing a Human Chromosome 21 Mapping
Knowledge Base System -. The International Conference on
the Human Genome (Human Genome III), San Diego, CA,
October 21-23, 1991.

[95] David Zawada. GenoGraphics for Open Windows - v1.1 al
pha. Technical Report, Argonne National Laboratory, Au
gust 1991. (GenoGraphics is available via. anonymous FTP
from info.mcs.anl.gov (140.332.20.2),

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 321

Integrated System for Protein Information Processing

Hidetoshi Tanaka

Institute for New Generation Computer Technology (ICOT)

1-4-28, Mita, Minato-ku, Tokyo 108 Japan

htanaka@icot.or .jp

Abstract

This paper describes requirements for databases and
DBMS in protein information processing, and an experi
ment on a privately integrated protein knowledge base.
We consider an integrated DBMS-KRL system for an in
tegrated protein KB-DB.

In order to clarify unknown functions of proteins via
empirical approaches, existing public' databases should
be integrated as part of a private knowledge base, which
can proceed biological knowledge discovery. And DBMS
KRL system should support represent ability, parallel pro
cessing, information retrieval, advanced query process
ing, and quality management techniques for protein in
formation.

DBMS Kappa-P and KRL QU'IXOT£, both designed at
leOT, perform a useful role in processing protein infor
mation. Kappa-P is for efficiency by its parallel process
ing and extensibility, while QU'IXOT£ is for advanced
query processing and quality management, by its repre
sentational flexibility of object identification and mod
ule.

1 Introduction

Molecular biological information processing is increasing
in importance, as biological laboratories are improving
in their computational environments and biological data
are augmenting far more faster than biologists' under
standing. To speed up converting such data into bio
logical knowledge, biological database should help biolo
gists by providing conveniences in storing, browsing, and
query processing.

Molecular biological databases have two categories:
public databases and private databases. Public
databases have hundreds of Mbytes of various data: se
quence, structure, functions, and other indispensable
auxiliary information of DNA, RNA, and protein.

There are variation in their sizes and data structures.
As for the sizes, PIR Release 30 (1991) has the proteins
of 1 residue through to 6048 residues. GenBank Release
70 (1991) has the regions (loci) of the DNA sequences of

3 bases through to 229354 bases. As for the data struc
tures, for example, the feature descriptions of proteins or
loci require multiple nested structures. A protein often
consists of plural amino acid sequences. A sequence of
eucaryote is often coded in several separate DNA regions
(exons) with separate expression regulatory region. The
structure of regulatory regions is so unclear that we can
only describe them as nested patterns of DNAs.

Public databases are maintained under international
cooperation or specific volunteers, and provide most
molecular biological data freely. Although the amount
of data is increasing rapidly, recent dynamic improve
ments of machine environments allow biologists to store
such data in their own small systems, and to use them
as part of value-added private databases.

Such environments also allow them to create a
database including their own experimental results, make
cross-references between public and private databases,
add customized query processing facilities, and try to
conduct knowledge discovery by extracting rules from
data.

In this paper, we focus on such privately integrated
databases which are developed as part of the molecu
lar biological information processing system of the FGCS
project.

As an example, we are building an integrated protein
knowledge base in the framework of deductive object ori
ented database (DOOD), which consists of a knowledge
representation language (KRL) QU'IXOT£ and a DBMS
Kappa-P. The reason why we choose protein informa
tion is due to their moderate amount for storage and
study. As biological applications are very new, we had
to check the appropriateness of the system and request
to add several facilities to it.

We have developed Kappa-P and QU'IXOT£ on a par
allel inference machine PIM. Kappa-P employs a nested
relational model, and has a facility of extensible DBMS,
which appears to be suitable for parallel processing and
sequence retrieval.

QU'IXOT£ is based on a concept of DOOD. It provides
a capability of advanced query processing, rich concepts
such as module, identification, subsumption relation, and
flexibility in describing knowledge.

322

This paper describes two types of system integration.
One is database integration of protein information. The
other is DB-KB (database and knowledge base) integra
tion in Kappa-P + QUIXOTE. These are shown in Sec
tion 6.

We describe the requirements for databases and DBMSs
in Section 2. Overviews of the protein databases we are
focusing on are described in Section 3. The suitability of
Kappa-P and QUIXOTE as ingredients of our integrated
know ledge base system is discussed in Sections 4 and 5.

2 Requirements for Biological
Database Systems

2.1 Requirements for Databases

Most of the biologists' requirements for existing molecu
lar biological databases are concentrated into the prob
lem: it is difficult to access several databases at once.
It is because the differences between the databases: the
attributes' meanings, the values' variations, and their re
lations, must be understood beforehand.

Such requirements are solved by integrating them.
There are three approaches to database integration.

Standardization

Standardization is the most fundamental integration. It
provides the simplest environment for the wide use of
databases.

CODATA (Committee on Data for Science and Tech
nology) in ICSU (International Council of Scientific
Unions) proposed standardization of attributes to realize
the virtual integrated database [JIPID 90]. The schema
of every public database should be a subset of the vir
tual schema. NLM (National Library of Medicine) pro
vides GenInfo Backbone Database [NCBI 90]. Accord
ing to [NCBI 90], it is built as a standardized primary
database, which is assumed to be a basis for secondary,
value-added databases for the specialized interests of dif
ferent biologists.

Determining a standard, however, is expensive. It is
almo'lt impossible to make the widest virtual schema that
covers all attributes of protein information. We should
accumulate experiences in creating and using most pri
vate databases as before. Moreover, both standardiza
tions started so recently that they have not so widely
distributed yet.

Integrated User Interface

Making an integrated user interface is the fastest way
of getting an integrated environment. It generally pro
vides not only query processing facilities but also visual
browsing facilities, which are quite attractive and useful

for biologists. It used to need a lot of cost, however, to
. remake an interface when a new database is to be added.

GeneWorks1 and Entrez2 provide integrated environ
ments to enable access to existing DNA,/ amino acid se
quence databases, although they are packaged for brows
ing only, from a PC or Mac. They are not for adding new
applications or new databases.

S. Smith et al. (Harvard U.) are developing an en
vironment for genetic data analysis (GDE3) which will
help access several databases at once by providing data
exchange tools between representative databases. The
first version is based on a multiple alignment editor and
allows tools for sequence analysis to be included in the
system. It can reduce efforts for the interface remak
ing by rich widgets. It has also just started and further
improvement is expected.

Integrated Knowledge Base

The integrated knowledge base is our approach. It con
sists of two stages: to represent all facts in one lan
guage, and to supplement the rules necessary to get and
use the facts (see Fig. 1). The former corresponds to
standardization, and realizes a syntactically integrated
database. Not only existing public databases but also
private databases are integrated. In order to provide an
useful integrated database system, efficient DBMS which
allows to store and to access complex data easily.

The latter stage converts a database into a knowledge
base, by accumulating supplementary knowledge, which
are rules or facts recognized by biologists themselves. It
seems almost impossible to define common operations
to all knowledge just as relational algebra to relational
database. Thus, new concepts had better be introduced
to the mechanism, so that each (or a cluster of) knowl
edge can have intrinsic methods. DOOD is a promising
concept for the mechanism.

2.2 Requirements for DBMS

Among the requirements for databases we can find ones
for DBMS or data models which require improvement in
retrieval and identification. Traditional ways are not so
appropriate for some molecular biological applications,
e.g., sequence retrieval and quality management.

Information Retrieval

DBMS is expected to support the facilities of information
retrieval for the sequences of DNA, RNA, and amino acids.
It is partly because a concept of DBMS is rather wider for
biologists than traditional one for database researchers.

lIntelliGenetics, Inc., Mountain View, CA
2N ational Institute of Health, Bethesda, MD
3Genetic Data Environment

Knowledge Base Integration

accumulation of supplementary knowledge
advanced query processing

knowledge base customization
= by DOOD

Syntactical Integration

"standardization" of public databases
integration of public & private databases

= by DBMS

Figure 1: Integrated Knowledge Base of Proteins

Although sequence retrieval is like full text search,
there are some differences in the search criteria: similar
ity search via dynamic programming (DP) or other algo
rithms (ex. BLAST[Altshul et al. 90]), with given simi
larities between characters (namely, amino acids).

"Keyword" extraction from the sequence is far more
difficult than from the text. In order to process large se
quences, they should be preprocessed by an information
retrieval technique, as strings are preprocessed to make
an alphabetical index. Keyword extraction corresponds
to such preprocessing.

However, we should consider first, what word is in DNA

or amino acid sequences. A gene is a sentence, and a DNA

is a character. Thus, a word .might be a specific DNA

pattern closely related to some function, which is not so
clear at present. An amino acid sequence is a sentence,
and an amino acid is a character. So, a word may be
a structural block or a functional block, either of which
is represented as an amino acids' pattern including some
varieties. Determining and extracting "keywords" is one
of the big problems in biology.

At present, the sequences should be regarded as char
acter strings, and not as paragraphs or sentences which
consists of words. Moreover, we have to consider the
following features of the sequences.

• DNA and RNA sequences consists of only four char
acters.

• Proteins mostly consist of 20 characters, but there
are some exceptions.

• Similarity between the characters are defined.

Identification Facilities

DBMS is required to provide rich identification facili
ties. In treating molecular biological data, we should
consider at least two kinds of errors: experimental er
rors and identification errors. Experimental errors are

323

inevitable in molecular biological databases. It is neces
sary to repeat experiments to reduce them. In reading
DNA sequences, for example, the same region should be
repeatedly read to verify the result. In such case, Gen
Bank is useful in reducing efforts of verifying. though it
has sequences with various qualities. It contains many
staff-reviewed sequences with many references, while it
also contains a lot of sequences each of which has been
just registered by a researcher.

Identification errors possibly occur in this verification
process. It is not so clear whether we can get the se
quence of the same region because of slightly different
repeating regions, or natural errors such as diseases or
mutations.

Representation of relations between proteins and func
tions are more ambiguous than relations between loci and
DNA sequences in the example above. We should always
consider identification errors in both proteins and func
tions. As experimental facts are accumulated, for exam
ple, "cytochromes transfer electrons" may turn into rela
tions such as "cytochromes and ubiquinone transfer elec
trons" (protein identification is relaxed) or "cytochromes
transfer electrons to generate energy" (function identifi
cation is detailed).

A concept of object identity is important in such cases.
Results including experimental errors should be treated
as different objects to store them avoiding integrity prob
lems, whereas they should be treated as an object when
we ask the "verified" result. Furthermore, identifiers
should be so flexible that we can change them with as
few difficulties as possible.

3 Protein Databases

In Section 2, general issues on molecular biological
databases and DBMS are shown. This section focuses
on protein databases and overviews the reasons for using
existing public databases, as well as their general use, in
order to consider the necessity of an integrated knowl
edge base.

3.1 Public Protein Databases

Protein information includes amino acid sequences, 3D
structures, and functions. Protein functions include
thermodynamic, chemical, and organic functions of total
or partial proteins. In addition, there is important auxil
iary· information such as the authors, titles, and journals
of the references relating to the data, source organisms,
and experimental conditions.

Public protein databases have been trying to cover all
protein information: amino acid sequences (PIR, Swiss
Prot), structures (PDB), partial patterns (ProSite), en
zyme functions, and restricted enzymes (REBASE). All
databases contain the auxiliary information mentioned

324

above.
The amount of information contained for each area is

shown in Table 1. It seems possible that whole databases
can be held privately in order to catalyze a change in
their use: from databases accepting biological applica
tions to knowledge bases including public databases and
processing advanced biological queries.

Table 1: Public Protein Databases

I database I release II entries I size

PIR 30.0 (9/91) 33,989 9,697,617 residues
Swiss-Prot 18.0 (5/91) 20,772 6,792,034 residues
PDB (7/91) 688 153 Mbytes
ProSite 7.0 (5/91) 508 1 Mbytes
REBASE (1/92) 1975 16 Mbytes

3.2 Purposes of Protein Databases

The final goal of using protein databases is to pre
dict the unknown functions of a protein. Biologists
gather enough of a known relations between functions
and proteins to predict the unknown functions of a
known/unknown protein as accurately as possible.

Its subgoals are important for molecular biology:

• Understanding ofthe relation between protein struc
ture and function

Most of protein functions are due to their structure.
Structure might be predicted from their amino acid
sequences, by molecular dynamics or several kinds
of empirical approaches.

• Prediction of the 3D structure from the amino acid
sequence

Theoretically, most of protein 3D structures are cal
culated by molecular dynamics. It costs, however,
enormous time to compute at present. Thus various
empirical approaches have been tried, and would be
tried.

The sequence similarity search, especially for extrac
tion of common sequence patterns or similar regions
(which are often called 'consensus sequences' in molecu
lar biology) is a first step of empirical approaches. How
to represent and how to use biological knowledge to pre
dict unknown structures or unknown functions are other
early problems.

3.3 General Use of Protein Databases

Similarity Search

Most traditional uses of protein databases are supported
by traditional DBMS, except for similarity searches in the
sequence database. Biologists ask the database to get a
set of proteins whose name is, for example, "cytochrome
c", or proteins which are found in "E.Coli." This type
of retrieval is supported by the traditional DBMS.

They often want to examine such a ,set of sequences to
discover a description of the similarity of a certain pro
tein set, such as the existence of consensus sequences.
They use multiple alignment [Ishikawa et al. 92] after
they get all sequences they want. In this case, we con
sider interaction between application and database in

. rather higher level (see Section 6).
Another important use is similarity search. They

search for amino acid sequences in the database that are
similar to the unknown sequence they have. The un
known sequence may be a fragment or a whole sequence.
The former is motif search, which is regarded as text
content search, while the latter is homology search.

Biologists want to get accurate results in these searches
and examination. Because the accuracy affects the qual
ity of function prediction and structure prediction. They
would like to retrieve the several of the best sequences of
similar functions in the database.

In order to improve recall and precision ratios in
protein similarity search, plenty of biologists' empirical
knowledge and experimental results are indispensable.
In addition to them, two problems have to be solved:
finding an efficient algorithm for the homology and mo
tif searches, and speeding up basic retrieval. The former
needs the cooperation of biologists and computer scien
tists, whereas the latter could be devised independently
by computer scientists, for some basic operations might
be taken from techniques of the partial string match in
the text database.

Data management

Data management, such as designing schema, storing
data, and checking integrity, are owing to great efforts of
the staffs of public databases.

Recently, schema of existing public databases are grad
ually standardized (as shown in Section 2), however,
each existing database still employs independent naming
rules using alphanumeric symbols such as 'P08478'(PIR),
'AMD1$XENLA'(Swiss-Prot), and '1.14.17.3'(Enzyme
DB). Biologists are annoyed by updating cross-references
among public databases and private ones.

As fot storing, public databases accept an electronic
form of registration to reduce staffs' efforts for quick
storing. The U.S. National Institute of Health pro
poses a standard format for data exchanging (ASN.l
[NCBI 90]), which simplifies registration procedures and

is useful in gathering them into personal systems.
In order to distribute recent data as quickly as pos

sible, PIR distributes less verified data for biologists.
Thus, it reduces staffs' efforts for quick checking. When
such data are used, verification process is owing to the
biologists who would like to use them. PIR has three
kinds of indications by their verification level: ' Anno
tated and Classified', 'Preliminary', and 'Unverified'. It
is obvious that such indications are not enough for biol
ogists' private data management.

Cooperation with biologists is indispensable in settling
how to identify data with their quality and make cross
reference data, although some management can be inde
pendently devised for advanced uses.

4 Kappa-P: An Extensible Par
allel DBMS

We use Kappa-P as an ingredient in our integrated sys
tem. Kappa-P provides several facilities suitable for pro
tein information. The efficiency of the nested relational
model of Kappa is shown in [Yokota et al. 89], where effi
cient usage of storage and flexibility of schema evolution
are described. In this section, we . show the effectiveness
of Kappa-P as an extensible DBMS for protein informa
tion processing and how to embed information retrieval
facilities into Kappa-P.

4.1 Parallel DBMS

As the sequence search is executed exhaustively on a full
sequence, its parallel processing is obviously effective.
Fig. 2 shows the cofiguration of our system.

Kappa
Sequential DBMS

KappaP
Parallel/Distributed DBMS

Figure 2: Configuration of Kappa-P

The aim of the extensibility of Kappa (sequential
DBMS) is to reduce interaction with applications, and

325

to customize the command interface for each applica
tion. The modules of an application which frequently
use Kappa commands are included in Kappa system so
that the number of communication among processes on
the left-hand side of Fig. 2 decreases.

Beside these facilities, another kind of extensibility
must be considered in a parallel system. Parallel DBMS
Kappa-P consists of server DBMS and local DBMS, where
server DBMS has a global map of local DBMSs and co
ordinates local DBMSs to deal with users' request, while
locai DBMS holds users' data [Kawamura et al. 92]. In
our environment, most applications work on the same
PIM with Kappa-P. So, if the server DBMS merges all
the answers from local DBMSs into one answer, the effec
tiveness of parallel processing is reduced.

In order to avoid such a situation, the user defined
commands, for example, DP or BLAST, are thrown to
every local DBMS, and they play a role of filter from
local databases to their server. The filters select data
satisfying the given conditions, and send them to the
server processor.

It is obviously efficient to throw application procedures
to every local DBMS. The extensibility in Kappa con
tributes to efficient parallel processing of sequence search
as in Fig. 2.

4.2 Information Retrieval

Extensible DBMS is also suitable for supporting informa
tion retrieval, obviously because it allows to customize
command interface for applications. Sequence similarity
searches, which correspond to full text searches, are im
plemented easily as "Application Commands (AC)" in
Fig. 2.

We have developed a character-pair based index sys
tem, especially for motif search. This kind of index sys
tem is also implemented as application commands, while
indexes are held in each local DBMS. Thus, the number
of communications between local and server DBMS de
creases.

Motif dictionary such as the public database ProSite
could also be used as another useful index for sequence
similarity searches. Extensible DBMS is so flexible that
when such an improved index is developed it could be
easily added in the system.

5 QUIXOTE: A Deductive Object
Oriented Database

We use QUIXOT£ as another ingredient in our system.
Though advanced query processing is available by any
logic programming language, facilities of QUIXOT£ are
more suitable to represent protein information, especially
protein functions [Tanaka 91].

326

In this section we focus on its representation facili
ties in data management: schema flexibility and powerful
identification.

5.1 Objects and Modules of quixote

Object Identifier

Objects in QUIXOTE are represented by extended terms
called object terms [Yasukawa et al. 92]. An object term
is of the following form:

0[11 = VI, ... ,ln = vn]

where 0 is called the head of the object term, li is a label,
and Vi is the value of the li of the object term.

The labels and their values of an object term represent
the properties of the object which are intrinsic to identify
it. In such sense, object terms playa role of object iden
tifiers. An object may have properties other than those
specified in its object term. To represent such properties
(extrinsic properties) of an object, special form of term
representation called an attribute term is used:

o[h = Vb"" ln = Vn]j[l~ = v~, ... , l~ = v~].

This attribute term represents that the object identified
by the object term 0[11 = Vb'" , ln = vn] has properties
[l~ = v~, ... , l'm = v'm] . It is important to distinguish
intrinsic properties with extrinsic ones.

Simplified examples are shown in Fig. 3. (1) and (2)
describe the same object and their attribute terms con
tradict each other, while (1') and (2') represent different
objects.

object_head [011 ovl, 012 ov2, ... J /
[all avl, a12 av2, ... J

(1) fact [labell =vlJ / [labe12=v2J .
(2) fact [labell=vlJ / [labe12=v3J .

(1') fact [labell=vl, labe12=v2J .
(2') fact [labell=vl, labe12=v3J .

Figure 3: Examples of QUIXOTE objects

Such representation of protein information is quite use
ful, for only the attributes whose values are determined
can be used for identification. It is also useful in repeat
ing local integrity checking, as data set would not stop
increasing in amount.

Module

Modules in QUIXOTE help object management. Simpli
fied examples are shown in Fig. 4.

(1) modulel · . obj ect1.

(2) module2 >- modulel.
(3) module2 · . {{ object2. object3. }}

(4) module3 >- modulel.
(5) module3 · . object3.

Figure 4: Examples of QUIXOTE modules

"obj ectl is an object in modulel" is represented as
(1). (3) is an abbreviation form. (2) represents an order
between modules specifying that module2 inherits all the
objects from modulel, and (4) represents another inher
itance. Therefore, module2 has objectl, object2, and
object3, whereas module3 has objectl and object3.

Although obj ect3 is in both module2 and module3,
it may have different properties in each module, because
any relations between module2 and module3 is not de
fined. We can give different properties to the same object
in different modules. Thus, we can use different modules
to avoid database inconsistency when we get different
results by different experiments.

5.2 Identifiers of Proteins

Requirements

Since it is impossible to give the clearest identifier in
stantly, identification requires that the following be sat
isfied.

(1) Subsumption relation

An identifier sometimes has to be generalized or spe
cialized. For example, the sentence "cytochromes
have a certain feature" sometimes has to be recon
sidered as "cytochromes and hemoglobins have a
certain feature" or "cytochrome c has a certain fea
ture." It seems rare to misidentify completely dif
ferent objects. Most erroneous identifiers have to
change only their abstraction level, and need not to
be altered completely.

(2) Flexibility

In the process of determining the clearest identifier,
we feel it useful if DBMS accepts tentative identifiers
which can be specialized or generalized at anytime.
We could use trial and error to determine the proper
identifier.

(3) Module

To distinguish tentative identifiers from fixed ones,
or experimental results from derived ones, a facility
for making modules is required. It allows local in
tegrity to be checked within the module, and for the

global uniqueness of the labels of the identifiers to
be ignored.

Flexibility along Subsumption Relation

Proteins need identification transition along sub sump
tion relation, as shown above. Fig. 5 is an example of
how they are represented in QUIXOTE:.

(fact1) cytochrome[lifename= E.Coli] /
[feature featX] .

(fact2) cytochrome[type= c] /
[feature featX] .

(hyp1) cytochrome / [feature = featX] .

(cf.1)

(cf.2)

cytochrome (
cytochrome (
cytochrome (

E.Coli. _. featX)
_. c. featX)

[lifename(E.Coli).type(c)].
featX)

(hyp2) protein[name={cytochrome.hemoglobin}] /
[feature = featX].

Figure 5: Proteins as objects in QUIXOTE:

Provided that there is a feature named 'featX'. As
experiments are repeated, the identifier of the protein
whose feature is 'featX' may be changed.

QUIXOTE: expressions (fact 1) and (fact2) are ex
amples of the identification of experimental results.
(fact1) mentions nothing about the (fact2) attribute
"type" , and vice versa.

In the relational data model or Prolog, it is neces
sary to redesign the attributes of tables or arguments
of facts to reflect such schema changes, since attributes
have to be fixed. This is shown in (cf .1). In Prolog,
we can reflect them by using lists as shown in (cf. 2)
[Yoshida et aI. 91]. However, it is necessary to support
a particular unifier for the list, and users must manage
the meaning of the list (e.g., connected by 'and' or 'or')
carefully. QUIXOTE: allows set concepts with particular
semantics to avoid such mismatches.

When we consider what sort of protein has 'featX' and
get (fact1) and (fact2), we can easily think of a hy
pothesis (hyp1). We can also get this hypothesis by
QUIXOTE: , using object lattice of subsumption relation.

Moreover, if we give some relations among 'cy
tochrome' , 'hemoglobin', and 'protein', another hypoth
esis such as (hyp2) is available.

Modules for Data Management

Objects of experimental results, verified results, and pub
lic databases have to be distinguished by modules, to be
checked by different integrity checking methods.

327

Fig. 6 shows an example of verification process. Upper
modules inherit all facts and rules of their lower modules.
'PIR', 'Swiss-Prot', and 'Experimental Results' are
modules each of which allows local integrity checking. If
identifiers are conflicted between these modules, they can
be settled at their upper module.

'Sequence' has some rules and cross-references be
tween PIR and Swiss-Prot so that it can select and re
ply a specific set of protein sequences contained in these
public databases. 'Integrated' has some rules to verify
experimental results by merging the selected sequences
from public databases. It also has cross-references be
tween public databases and experimental results (but
they are ignored in Fig. 6 to simplify the example).

Integrated

erified_sequence[id=protA]

I verify by merging I

Experimental
Results

sequence
[id=protA]

PIR Swiss-Prot

sequence
[id=A08478]

sequence
[id=AMD1$XENLA]

Figure 6: Modules for Verification Process

6 An Integrated System for an
Integrated Knowledge Base

This section shows a system integration and a DB-KB

integration, as to their configuration and their uses.
We are considering two kinds of integration: Kappa

P and QUIXOTE: (DBMS and KRL), and existing public
databases and biological knowledge (DB and KB).

6.1 Configurations of Integration

DBMS and KRL

There are three interactions in the integrated system of a
database management system Kappa-P and a knowledge
representation language QUIX"OT£ (see Fig. 7).

(1) Interactions between Kappa-P and QUIXOTE:

All facts (non-temporal objects) in QUIXOTE: are
stored in Kappa-P, and Kappa-P activates necessary
objects as the result of retrieval.

328

Molecular Biological
Applications

(3)

Figure 7: Integrated System of Kappa-P and Quixote

(2) Applications and QUIXOTE

The followings are supported or will be provided (are
under development).

• advanced query processing facility (inference)

As QUIXOTE is an extension of Prolog, it pro
vides more flexible and powerful query process
ing facility.

• a standard of the molecular biological data

New databases and new rules (knowledge) are
easily available by supporting ASN.1.

• graphical user interfaces

Ad-hoc uses are quite important for biologists.
The system should support ad-hoc queries,
with graphical user-friendly interfaces. Kappa
supports user interfaces for the nested relation
and for PIR on X-window.

• class libraries for biological use

This would include sequence retrieval and data
management (see Sections 4 and 5).

(3) Applications and Kappa-P

The system should support direct access to
databases for simple queries. It currently supports
a graphical user interface to access amino acid se
quences and some libraries to maintain biological
data.

Protein Databases and Knowledge Bases

There are many public protein databases (see Section 3).
We are holding several databases including such public
ones as those shown at the bottom of Fig. 8.

An oval represents a module of rules and facts, while
a rectangle represents a Kappa-P database. Modules in
the upper two levels are mostly rules in QUIXOTE, while
ones at the bottom are mostly facts in Kappa-P. The user
may ask the top-level module any queries.

It can also be integrated with private databases and
customized to be a private knowledge base. An example
of such integration and customization is shown in Fig. 6.

Integrated Knowledge Base

Figure 8: Integrated Knowledge Base of Proteins

6.2 Use of the System

Application of Sequence Analysis

Ishikawa et al. (leOT) have developed a parallel
processing algorithm of protein multiple alignment
[Ishikawa et al. 92]. When the multiple alignment sys
tem and the knowledge base are connected, and a new
multiple alignment algorithm using motifs is developed,
it becomes an integrated application and knowledge base
system. This is expected to enable automatic motif ex
traction and motif accumulation.

Advanced Query Processing

The query processing facilities of QUIXOTE realize a
data pool of experimental results with query processing.
They act as a prototype database or knowledge base for
the experiment, which accumulates queries and shows
the tendency of its usage in the integrated environment.

Graphical User Interface

The system has an user interface which allows it to
use both an advanced query processing interface to
QUIXOTE and a browsing and query-by-example inter
face for Kappa-P. The query interface provides or will
provide facilities of displaying examples of queries, or
graphs of answers such as the relations of objects given
by a recursive query.

The browsing interface also provides or will provide
graphical displaying facilities. We have developed a vi
sual feature exhibition of sequences of both GenBank
and PIR.

7 Conclusion

The requirements of molecular biology, especially protein
engineering, which is a brand-new DBMSjKRL field were
overviewed. Biological applications are now shown to be
stimulating for DBMS and KRL, which are required to
have various functions: information retrieval, deduction,

identification, module concepts, extensibility, and paral
lel processing.

Such facilities of DBMSjKRL had better be requested
by (computer-)biologists. It is important to cooperate
with them to conduct further research.

A private knowledge base including various existing
public databases will proceed biological knowledge dis
covery. Although we have not mentioned in this paper,
distributed DBMS is also necessary in case databases and
knowledge bases exceed the personal system capacity.
We think DOOD with extensible DBMS also play an im
portant role, but it will be considered in future.

Acknow ledgments

The au thor wishes to thank Kazumasa Yokota, Hideki
Yasukawa, Moto Kawamura and other people in the
QUIXOTE project and Kappa-P project for their valu
able comments on earlier versions of this paper. The
author also wishes to thank the people on the computer
biology mailing list for their suggestions from the view
point of biology.

References

[Altshul et al. 90] Altshul, S.F., Gish, W., Miller, W.,
Myers, E.W. and Lipman, D.J.: "Basic Local Align
ment Search Tool", J. Mol. BioI. 215, pp.403-410,
(1990).

[Ishikawa et al. 92] Ishikawa, M., Hoshida, M., Hirosawa,
M., Toya, T., Onizuka, K. and Nitta, K.: "Protein
Sequence Analysis by Parallel Inference Machine"
FGGS 92, (Jun 1992).

[JIPID 90] PIR-International (JIPID): PIR Newsletter,
No.3 (June 1990).

[Kawamura et al. 92] Kawamura, M., Sato, H., Na
ganuma, K. and Yokota, K.: "Parallel Database
Management System: Kappa-P" FGGS 92, (Jun
1992).

[NCBI 90] NCBI: "GenInfo Backbone Database", Ver
sion 1.59, Draft (Apr 1990).

[Tanaka 91] Tanaka, H.: "Protein Function Database
as a Deductive and Object-Oriented Database",
Database and Expert Systems Applications, Springer
Verlag, pp.481-486 (Aug 1991).

[Yasukawa et ai. 92] Yasukawa, H., Tsuda H. and
Yokota, K.: "Objects, Properties, and Mod'Iles in
Quixote", FGGS 92, (Jun 1992).

[Yokota et al. 89] Yokota, K. and Tanaka, H.: "Gen
Bank in Nested Relation", Joint Japanese-American

329

Workshop on Future Trends in Logic Programming
(Oct 1989).

[Yoshidaet ai. 91] Yoshida, K., Overbeek, R., Zawada,
D., Cantor, C.R. and Smith, C.L.: "Prototyping a
Mapping Database of Chromosome 21", Proceedings
of Genome Mapping & Sequencing Meeting, Cold
Spring Harbor Laboratory, (1991).

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 330

Parallel Constraint Logic Programming Language GDCC
and its Parallel Constraint Solvers

Satoshi Terasaki, David J. Hawley; Hiroyuki Sawada, Ker: Sat~h,
Satoshi Menju, Taro Kawagishi, Noboru Iwayama and Alora Alba

Institute for New Generation Computer Technology
4-28, Mita 1-chorne, Minato-ku, Tokyo 108, Japan

Abstract
Parallelization of a constraint logic programming (CLP)
language can be considered at two major levels; the ex
ecution of an inference engine and a solver in parallel,
and the execution of a solver in .parallel. GDCC is a
parallel CLP language that satisfies this two level paral
lelism. It is implemented in KL1 and is currently running
on the Multi-PSI, a loosely coupled distributed memory
parallel machine. GDCC has multiple solvers and a block
mechanism that enables meta-operation to a constraint
set. Currently there are three solvers: an algebraic solver
for nonlinear algebraic equations using the Buchberger
algorithm, a boolean solver for boolean equations using
the Boolean Buchberger algorithm, and a linear integer
solver for mixed integer programming. The Buchberger
algorithm is a basic technology for symbolic algebra, and
several attempts at its parallelization have appeared in
the recent literature, with some good results for shared
memory machines. The algorithm we present is designed
for the distributed memory machine, but nevertheless
shows consistently good performance and speedups for
a number of standard benchmarks from the literature.

1 Introduction

Constraint logic programming (CLP) is an extension of
logic programming that introduces a facility to write and
solve constraints in a certain domain, where constraints
are relations among objects. The CLP paradigm was
proposed by Colmeraure[Colmerauer 87], and Jaffar and
Lassez[J affar and Lassez 87]. A similar paradigm (or lan
guages) was proposed by the ECRC group [Dincbas et al.
88]. A sequential CLP language CAL (Contrainte avec
Logique) was also developed at ICOT[Aiba et al. 88].

The CLP paradigm is a powerful programming
methodology that allows users to specify what (declar
ative knowledge) without specifying how (procedural

*Current office:: Compuflex Japan Inc. 12-4, Kasuya 4-chome,
Setagaya-ku, Tokyo 157 Japan

knowledge). This abstraction allows programs to be more
concise and more expressive. Unfortunately, the general
ity of constraint programs brings with it a higher compu
tational cost. Parallelization is an effective way of mak
ing CLP systems efficient. There are two major levels of
parallelizing CLP systems. One is the execution of an
inference engine and constraint solvers in parallel. The
other is the execution of a constraint solver in parallel.

Several works have been published on extending this
work from the sequential to the concurrent frame. Among
them are a proposal of ALPS [Maher 87] that introduces
constraints into committed-choice language, a report on
some preliminary experiments in integrating constraints
into the PEPSys parallel logic system[Hentenryck 89],
and a framework for a concurrent constraint (cc) lan
guage to integrate constraint programming with concur
rent logic programming languages[Saraswat 89].

GDCC[Hawley 91b], Guarded Definite Clauses with
Constraints, that satisfies two level parallelism, is a
parallel CLP language that introduces the framework
of cc into a committed-choice language KL1 [Ueda and
Chikayama 90], and is currently running on the Mult.i
PSI, a loosely coupled distributed memory parallel logIC
machine. GDCC has multiple solvers to enable a user
to easily specify a proper solver for a domain: they are
an algebraic solver, a boolean solver and a linear integer
solver. The incremental evaluation facility is very im
portant to CLP language solvers. That is, a solver must
consider cases where constraints are dynamically added
to it during execution, not only those cases where all are
given statically prior to execution.

The algebraic solver is used to solve non-linear alge
braic equations, and can be applied to fields such as com
putational geometries and handling robot design prob
lems[S. Sato and Aiba 90]. The solver uses the Buch
berger algorithm [Buchberger 83, Buchberger 85] that
is a method of solving multi-variate polynomial equa
tions. This algorithm is widely used in computer alge
bra and also fits reasonably well into the CLP scheme
sin~e it is incremental and (almost) satisfaction-complete
as shown in [Aiba et al. 88, Sakai and Aiba 89]. Re-

cently, there have been several attempts made to par
allelize the Buchberger algorithm, with generally dis
appointing results[Ponder 90, Senechaud 90], except for
shared-memory machines[Vida190, Clarke et al. 90]. An
interesting parallel logic programming approach imple
mented in Strand881 on Transputers was reported by
Siegl[Siegl 90], with good speedups on the small examples
shown, but absolute performance was only fair. We paral
lelize the Buchberger algorithm, emphasizing on absolute
performance and increment ability rather than deceptive
parallel speedups.

The boolean solver is used to solve boolean equations
and can be applied to a wide range of applications such
as logic circuit design. It uses the Boolean Buchberger
algorithm [Yo Sato and Sakai 88]. It is different from the
original Buchberger algorithm in load-balance of the in
ternal processes, although they are basically similar. We
implemented the parallel version of this algorithm, based
on behavior analyses, using some example problems.

The target problems for the linear integer solver are
combinatorial optimization . problems such as scheduling
problems, that obtain the minimum (or maximum) value
with respect to an objective function in a discrete value
domain under a certain constraint set. There are many
kinds of formalization to solve the optimization problem,
among them an integer programming that can be widely
used for various problems. Integer programming still of
fers many methods of increasing search speed depend
ing on the structures of problems, even if we focus on
solving strictly optimized solutions only. The Branch
and-Bound method can apply to wide extent of problems
independently to problem structures. We developed a
parallel Branch-and-Bound algorithm, aiming to imple
ment a high-speed constraint solver for large problems,
and to perform experiments for describing parallel search
problem in KLI.

The rest of this paper is organized as follows. We first
mention the GDCC language and its system, and describe
its parallel constraint solvers. Then, program examples
in GDCC are shown using simple problems.

2 Parallel eLP Language

We will present a brief summary of the basic con
cepts of cc[Saraswat 89]. The cc programming language
paradigm models computation as the interaction of mul
tiple cooperating agents through the exchange of infor
mation via querying and asserting the information into
a (consistent) global database of constraints called the
store. Constraints occurring in program text are classi
fied by whether they are querying or asserting informa
tion, into the Ask and Tell constraints as shown in Figure
1.

lStrand88 is similar to 1(L1, although somewhat less powerful
in that it does not support full unification.

331

Q Query Add constrain~

~ True or False Answer \!:!!)
'--.,..,...----.""- constraint

Figure 1: The cc language schema

This paradigm is embedded in a guarded (conditional)
reduction system, where guards contain the Ask and Tell.
Control is achieved by requiring that the Ask constraints
in a guard are true (entailed), and that the Tell con~
straints are consistent (satisfiable), with respect to the
current state of the store. Thus, this paradigm has a
high affinity with KL1. .

2.1 GDCp Language

GDCC is a member of the cc language family, although
it does not support Tell in a guard part. The GDCC lan
guage includes most of KLI as a subset; KLI builtin pred
icates and unification can be regarded as the constraints
of distinguished domain HERBRAND[Saraswat 89].

Now we define the logical semantics of GDCC as fol
lows. S is a finite set of sorts, including the distinguished
sort HERBRAND, F a set of function symbols, C a set of
constraint symbols, P a set of predicate symbols, and V
a set of variables. A sort i.s assigned to each variable
and function symbol. A finite sequence of sorts, called
a signature, is assigned to each function, predicate and
constraint symbol. We define the following notations.

• We write v : s if variable v has sort s,

• f : S1 S 2··· Sn -7 S if functor f has signature
S1S2 ••. Sn and sort s, and

• p: S1S2 ... Sn if predicate or constraint symbols p has
signature S1S2 ... Sn.

We require that terms be well-sorted, according to the
standard inductive definitions. An atomic constraint is
a well-sorted term of the form C(t1' t2, . .. , t n) where c is
a constraint symbol, and a constraint is a set of atomic
constraints. Let 2::: be the many-sorted vocabulary F U
CuP. A constraint system is a tuple (2:::, 6., V, C), where
6. is a class of 2::: structures. We define the following
meta-variables: c ranges over constraints and g,h range
over atoms. We can now define the four relations entails,
accepts, rejects, and suspends. Let Xg be the variables in
constraints c and C/.

332

Definition 2.1.1 c entails Cl ~ 61= (VXg)(c => Cl)

Definition 2.1.2 c accepts c[~f 6 1= (3)(c A Cl)

Definition 2.1.3 c rejects Cl ~ 6 1= (VXg)(c => -,cd

Note that the property entails is strictly stronger than
accepts, and that accepts and rejects are complementary.

Definition 2.1.4 c suspends Cl

~ C accepts Cl A -, (c entails Cl).

A GDCC program is comprised of clauses that are de
fined as tuples (head, ask, tell, body), where "head" is a
term having unique variables as arguments, "body" is a
set of terms, "ask" is said to be Ask constraint, and "tell"
is said to be Tell constraint. The "head" is the head part
of the KLI clause, "ask" corresponds to the guard part2

,

and "tell" and "body" are the body part.
A clause (h, a, c, b) is a candidate for goal 9 in the pres

ence of store s if sAg = h entails a. A goal g commits to
candidate clause (h, a, c, b), by adding t u c to the store
s, and replacing 9 with b. A goal fails if the all candidate
clauses are rejected. The determination of entailment for
multiple clauses and commitment for multiple goals can
be done in parallel.

Below is a program of pony _and_man written in GD CC.

pony_and_man(Heads,Legs,Ponies,Men)
alg# Heads= Ponies + Men,
alg# Legs= 4*Ponies + 2*Men.

true I

VVhere, pony_and_man(Heads,Legs,Ponies,Men) is
the head of the clause, "I" is the commit operator, true
is an Ask constraint, equations that begin with alg# are
Tell constraints. alg# indicates that the constraints are
solved by the algebraic solver. In a body part, not only
Tell constraints, but normal KLI methods can also be
written. In a guard part, we can only. write read-only
constraints that never change the content of the store, i:(1
the same way as the KLI guard where active unification
that binds a new value/structure to an undefined variable
is inhibited.

But, bi-directionality in the evaluation of constraints,
the important characteristic of CLP, is not spoiled by this
limitation. For example, the query

?- pony_and_rnan(5,14,Ponies,Men).

will return Ponies=2, Men=3. Thus, we can evaluate a
constraint bi-directionally as Tell constraints have no lim
itations like Ask.

2.2 GDCC System

The GDCC system supports multiple plug-in constraint
solvers with a standard stream-based interface, so that
users can add new domains and solvers.

Query

Solve guard constraints

Gncc source

Figure 2: System Construction

The system is shown in Figure 2. The components are
concurrent processes.

Specifically, a GDCC program and the constraint
solvers may execute in parallel, "synchronizing" only and
to the extent necessary, at the program's guard con
straints.

The GDCC system consists of:

(i) Compiler
Translates a GDCC source program into KLI code.

(ii) Shell
Translates queries and provides rudimentary debugging
facilities. The debugging facilities comprise the stan
dard KLI trace and spy functions, together with solver
level event logging. The shell also provides limited sup
port for incremental querying, in the form of inter-query
variable and constraint persistence.

(iii) Interface
Interacts with a GDCC program (object code), sends
body constraints to a solver and checks guard con
straints using the results from a solver.

(iv) Constraint Solvers
Interact with the interface module and evaluate body
constraints.

The decision of entailment using a constraint solver is
described in each solver's section, as it differs from each
algorithm adopted by a solver.

2.3 Block

A handling robot design support system [So Sato and
Aiba 90] has been used as an experimental application
of our CLP systems for a few years. In applying GDCC
to this problem, two problems arose. These were the
handling of multiple contexts and the synchronization be
tween an inference engine and solvers.

2"ask" contains constraints in the HERBRAND domain, that is,
it includes the normal guards in KLl.

To clarify the backgrounds to these problems, we ex
plain the handling of multiple contexts in sequential CLP
language CAL. CAL has a function to compute approxi
mated real roots in univariate non-linear equations. For
instance, it can obtain values X = ±.J2 from X 2 = 2.
Using this facility, the handling robot design support sys
tem can solve a givE;n problem in detail. In this ex
ample, there are two constraint sets, one that includes
X = .J2, and another that includes X = -.J2. CAL
selects one constraint set from these two and solves it.
Then the other is computed by backtracking (i.e., the
system forces a failure). In other words, CAL handles
these two contexts one- by-one, not simultaneously. In
committed-choice language GDCC, however, we cannot
use backtracking to handle multiple contexts. There are
same problems in implementing hierarchical CLP lan
guage[K. Satoh and Aiba 90, K. Satoh 90b] in GDCC.

The ether problem is the synchronization between an
inference engine and solvers. It is necessary to describe to
the timing and the target constraints to execute a func
tion to find approximated real roots. In a sequential CLP,
it is possible to control where this description is written
in a program. While in GDCC, we need another kind of
mechanism to specify a synchronization point, as a clause
sequence in a program does not relate to the execution
sequence. A similar situation occurs when a meta oper
ation to constraint sets is required, such as computing a
maximum value with respect to a given objective func
tion.

Constraint sets in GDCC are basically treated as
global. Introducing local constraint sets, however, in
dependence of the global ones, can eliminate these prob
lems. Multiple contexts are realized by considering each
local constraint as one context. An inference engine and
solvers can be synchronized at the end point of the eval
uation of a local constraint set.

Therefore, we introduced a mechanism, called block, to
describe the scope of a constraint set. We can solve a
certain goal sequence with respect to a local constraint
set. The block is represented in a program by a,builtin
predicate call, as follows.

call(Goals) using Solver-Package for Domain
initial Input-Con giving Output-Con

Constraints in goal sequence Goals are computed in
a local constraint set. "using Solver-Package for Do
main" denotes the use of Solver-Package for Domain in
this block. "initial Input-Con" specifies the initial con
straint set. "giving Output-Con" indicates that the re
sult of computing in the block is Output-Con.

Both local variables and global variables can be used
in a block where the local variables are only valid within
the block and the global ones are valid even outside the
block. Local variables are specified by the builtin predi
cate alloc/2 that assigns variables to a block. Variables
that are not allocated in a block are assumed to be global.

Top level block

GDCCShell /

KLl/PIMOS ri::-:
Listener ~.- .-.

".

Create process ------~

Access streams ~
Constraints sets -~

Child block

Figure 3: Implementation of block in GDCC

333

A block is executed by evaluating Goals with respect to
Input-Con. The result of Output-Con is a local constraint
set, that is, it is never merged with the global ones unless
specified explicitly by a user.

Let us consider the next program.

test:- true I
alloc(200,A) ,
alg#A=-1,
call(alg#A=1
call(alg#A=O

initial nil giving CO,
initial nil giving C1.

This program returns the constraint set {A = I} as CO
and the constraint set {A = a} as C1.

The block mechanism is implemented by the three
modules shown in Figure 3; an inference engine(block),
a block handler and constraint solvers. To encapsu
late failure in a block, the shoen mechanism of PI
MOS[Chikayama et al. 88] is used. The block handler
creates a block process, sends constraints from a block to
a constraint solver, and goals to other processors. Each
GDCC goal has a stream connecting to the block handler
to which the goal belongs.

3 Parallel Constraint Solvers

3.1 Algebraic Solver

3.1.1 Domain of Constraint

A constraint system that is the target domain of the al
gebraic solver is generally called a nonlinear algebraic
polynomial equation. According to the definitions in Sec
tion 2.1, this can be formalized as the constraint system
(~= FuCUP,6, V,C), where:

S {A}
F {x : AA -+ A, + : AA -+ A} U {fraction :-+ A}

334

c {=}
P {string starting with a lowercase letter}

V {string starting with an uppercase letter}

6. axioms of complex numbers

with the structure

D(A)
D(x)

D(+)
D(fraction)

set of all algebraic numbers

multiplication

addition

rational number it denotes

3.1.2 Grabner Basis and Buchberger Algorithm

Below is a brief introduction to some notation and def
initions needed to explain Grabner bases and the Buch
berger algorithm. Then, the sequential version of the
Buchberger algorithm, on which the parallel version is
based, is presented.

Definition 3.1.1 (Power product, monomial)
Power product is a product comprised of nonzero and fi
nite number of variables, that is,

X1X2 ... Xn (n 2 0, each Xi are variable).
Monomial is a product of a coefficient (Erational number)
and a power product.

A power product that contains no variable is written
as "1".

Definition 3~1.2 (Admissible order) An ordering -<
is admissible when it satisfies the next properties. For all
power products p, q, r,

(i) 1 -< p, and

(ii) p -< q =? pr -< qr.

Examples of admissible ordering that are often used in
the Buchberger algorithm are total degree lexicographic
ordering and total degree reverse lexicographic ordering~
Let us represent the power product X~l X~2 ... x~n by the
vector (aI, 0:'2, ... , O:'n), where the variables are arranged
in lexicographic order. We define the total degree lexico
graphic order -<dl as follows.

(0:'1,0:'2, ... ,O:'n) -<dl (/31,/32,'" ,/3n)
n n

{:? I: O:'i < I: /3i, or,
i=l i=l

n n

{:? I: O:'i = I: /3i, 3i ai < /3i, aj = /3j (j < i).
i=l i=l

That is, the order -<dl determines a greater monomial
by comparing the vector elements in lexicographic order,
when the total degree is the same between the two mono
mials. On the other hand, the total degree reverse lexico
graphic order -<drl is defined by:

(0:'1,0:'2,' .. ,O:'n) -<drl (/31, /32,' .. , /3n)

n n

{:? L: O:'i < L: /3;, or,
;=1 i=l

n n

{:? (L: O:'i, -O:'n, .. ·, -0:'2) -<dl (L: /3i, -/32, ... ,-/32)
;=1 i=l

When the total degree of two monomials is equal, this
order compares the subtotal degree by removing the last
elements from both vectors.

Let Lt(f) denote the maximal monomial of a poly
nomial f with respect to a certain admissible ordering,
and Rest(f) mean the remaining monomials of f. Let
the power product and coefficient of Lt(f) be Lp(f) and
LC(f) respectively.

For each polynomial f (= Lc(f)Lp(f) + Rest(f), we
. define a rewriting rule =? f over polynomials as follows.

Definition 3.1.3 (Rewriting) g =? f h, if a monomial
of a polynomial p is a multiple of Lp(f) then the mono
mial is replaced with -~~uy), and the result of calculation
by the replacement is h. For a finite set of polynomials G,
g =?a h if 3f E G and g =? f h.

Definition 3.1.4 (Irreducible) The irreducible form
of a polynomial g w.r.t. =?a is the polynomial which
cannot be rewritten by =?a any more after applying the
rewriting rule set G finitely many (or zero) times. The
irreducible form of g is denoted by g la.

Let R[Xb .. " xm] be a polynomial ring in n variable of
Xl, ... ,Xm over the rational number field, and f1,· .. , fn
be elements of it. A polynomial ideal I generated by
f1' ... ,fn is a polynomial set defined by the following.

. Definition 3.1.5 (Polynomial ideal)

(i) I =f. ¢, f,g E I=} f-g E I (property of modules)

(ii) f E I =} h . f E I for any h E R[X1' ... , xm]

With no loss of generality, we can assume that all poly
nomial equations are in the form f = O. Let E = 0 be a
system of polynomial equations {f1 = 0, ... ,fn = O}. The
following close relation between the solutions of E = 0
and the elements of I(E) of the ideal generated by E is
well known.

Theorem 3.1.1 (Hilbert zero point theorem)
Let f be a polynomial. Every solution of E = 0 is also
a solution of f = 0, iff there exists a natural number s
such that r E I(E).

Corollary 3.1.1 E has no solution iff 1 E I(E).

Thus, the problem of solving given polynomial equa
tions is reduced to that of deciding whether a polynomial
belongs to the ideal. Buchberger introduced the notion
of Grabner bases, and devised an algorithm to determine
the membership relations of a polynomial and to the ideal
[Buchberger 83, Buchberger 85].

Let there be an admissible ordering among monomials
and let a system of polynomial equations E = 0 be given.

A rough sketch of the algorithm is as follows. In the
system of E, each equation can be considered as being a
rewriting rule as defined in Definition 3.1.3. When the left
hand sides Lp(Jl) and Lp(J2) of two rewrite rules fl and
h are not mutually prime, the least common multiple of
their left hand sides can be rewritten in two different ways
according to these two rules. The pair resulting from this
rewriting is called a critical pair. If further rewriting does
not succeed in converging a critical pair, the pair is said
to be divergent. To get a confluent rewriting system,
equations made from such critical pairs, S-polynomials,
are added to the system of equations. By repeating this
procedure, we can eventually obtain a confluent rewrit
ing rule set. This confluent rewriting rule set is called a
Grabner basis of E.

Definition 3;1.6 (Grabner basis [Buchberger 83])
The Grabner basis G(E) is a finite set that satisfies the
following properties.

(i) X(E) = X(G(E))

(ii) For all f, g) f -g E X(E) iff f la= g la)
especially) f E X(E) iff f la= 0) and)

(iii) G is reduced if every element of the basis is irre
ducible w. r. t. all the others.

From Theorem 3.1.1, the reduced G(E) can be re
garded as being the canonical form of the solution of
E = 0, because the reduced Grabner basis with respect
to a given admissible ordering is unique. Moreover, when
E = 0 does not have a solution, {I} E G(E) is deduced
from Corollary 3.1.1.

Definition 3.1.7 (Critical pair, S-polynomial)
If two rewriting rules iI, h are not mutually prime) that
is Lp(Jl) and Lp(h) have a' greatest common divisor
other than 1) the pair fl, h is called the critical pair) and
the polynomial made from this critical pair in the follow
ing way:

L (f)lcm(Jl,f2) . f - L (f) lcm(Jl,f2) . f
c 2 Lp(iI) 1 c 1 Lp(J2) 2

is called S-polynomial and denoted by SpOly(Jl,h).
where) lcm(Jl,fz) is the least common multiple of Lp(fl)
and Lp(f2).

Figure 4 shows the sequential version of the Buchberger
algorithm. E denotes the input polynomial equation set,
and R is the output Grabner basis. Line (4) indicates the
rewriting process using R. Lines (7), (8) and (9) are the
subsumption test in which the old rule set is updated by
the newly generated rule. If the left hand side of an old
rule is rewritten by the new rule, the rewritten rule goes
back to equation set F. Line (12) is the S-polynomial
generation.

(1) input F:= E, R:= 0
(2) while F =I 0
(3) choose f E F
(4) F:= F - {f}, f':= f lR
(5) if f' =I 0 then
(6) for every pER
(7) if Lt(p) => f' It(p')

335

(8) then F:=FU {It(p')+Rest(p)}, R:=R- {p}
(9) else R:= (R- {p}) U {Lt(p)+Rest(pHRU{fl}}
(10) endif
(11) end for
(12) F := F U Spoly(J', R)t, R:= R U {f'}
(13) endif
(14) endwhile
(15) output R (R is G(E»

t: Spoly(J', R) is to be generated by S-polynomials between
polynomial f' and all elements in rule set R.

Figure 4: Sequential Buchberger algorithm

3.1.3 Satisfiability, Entailment

Based on the above results, we could determine satisfia
bility by using the Buchberger algorithm to incorporate
the polynomial into the Grabner bases as per Corollary
3.1.1. But the method of Definition 3.1.6(ii) is incom
plete in terms of deciding entailment, since the relation
between the solutions and the ideal described in Theo
rem 3.1.1 is incomplete. For example, the Grabner ba
sis of {X2 = O} is {X2 -+ O}, and rewriting using this
Grabner basis cannot show that X = 0 is entailed. There
are several approaches solving the entailment problem:

(a) Use the Grabner basis of the radical of the gener
ated ideal, X, i.e. {plpn E X}. Although it is the
oretically computable, efficient implementation is
not possible.

(b) As a negation of p = 0, add pet. to the Grabner
basis and use the Buchberger algorithm, where
et. is a new variable. Iff 1 is included in the new
Grabner basis, p= 0 is held in the old Grabner ba
sis. This has the unfortunate side-effect of chang
ing the Grabner basis.

(c) Find n such that pn is rewritten to 0 by the
Grabner basis of the generated ideal. Since n is
bounded[Cangilia et a!. 88], this is a complete de
cision procedure. The bound, however, is very
large.

When there are a lot of resources to compute, and no
more computation can be done, according to the method
described in (c) we may adopt the incremental solution of
repeatedly raising p from a small positive integer power
and rewriting it by the Grabner basis. On the other hand,
the total efficiency of the system is greatly affected by the

336

computation time in deciding entailment. Therefore, we
determine the entailment by rewriting using a Grabner
basis from the view point of efficiency, even though this
method is incomplete. This decision procedure runs on
the interface module parallel with the solver execution,
as shown in Figure 2. Whenever a new rule is generated,
the solver sends the new rule to the interface module via a
communication stream. The interface determines entail
ment while storing (intermediate) rules to a self database.
The interface updates the database by itself whenever a
new rule from the solver arrives. It can also handle con
straints such as inequalities in the guard parts, if they
can be solved by passive evaluation.

3.1.4 Parallel Algebraic Solver

There are two main sources of parallelism in the Buch
berger algorithm, the parallel rewriting of a set of poly
nomials, and the parallel testing for stibsumption of a
new rule against the other rules. Since the latter is
inexpensive, we should concentrate on parallelizing the
coarse-grained reduction component for the distributed
memory machine. However, since the convergence rate of
the Buchberger algorithm is very sensitive to the order
in which polynomials are converted into rules, an imple
mentation must be careful to select "small" polynomials
early.

Three different architectures have been implemented;
namely, a pipeline, a distributed, and a master-slave ar
chitecture. The distributed architecture was already re
ported in [Hawley 91a, Hawley 91b], however, it has been
greatly refined since then. The master-slave architecture
also offers comparatively good performance. Thus, we
touch on the distributed and master-slave architectures
in the following sections.

Distributed architecture

The key idea underlying the distributed architecture is
that of sorting a distributed set of polynomials. Each
processor contains a complete set of rewriting rules and
polynomials, and a load-distribution function w that logi
cally partitions the polynomials by specifying which pro
cessor "owns" which polynomials. The position in the
output rule sequence of each polynomial is calculated by
its owning processor, based on an associated key (the
leading power product), identical in every processor, and
which does not change during reduction. A polynomial
is output once it becomes the smallest remaining. The
S-polynomials and subsumptions are calculated indepen
dently by each processor, so that the processors' sets of
polynomials stay synchronized. As a background task,
each processor rewrites the polynomials it owns, starting
with those lowest in the sorted order. Termination of the
algorithm is detected independently by each engine, when
the input equation stream is closed, and when there are
no polynomials remaining to be rewritten.

Legend

= Multi-writer stream

c:=::J Not owned
1::::::::::::::::::::1 Owned

Input Eqns

Figure 5: Architecture of distributed type solver

Figure 5 shows the architecture. The central data
structures in the implementation are two work item lists:
the global list and the local list. The global list, that
contains all polynomials including both owned and not
owned polynomials, is used to decide the order in which
a processor can output a new rule based on the keys of
polynomials. On the other hand, the local list consists
of owned polynomials only. Items in the local list are
rearranged by each processor to maintain increasing key
order, whenever an owned polynomial is rewritten.

There will be a situation where, when a processor is
busy rewriting polynomials, another processor outputs a
new rule. In such a case, any processor that receives
a new rule must quit the current task as soon as pos
sible to check subsumption and to update the old rule
set. Continuing tasks while using the old rule set with
out interruption increases the number of useless tasks.
To manage such interruption and resumption of rewrit
ing, the complete execution of one piece of work is bro
ken down into a three-stage pipeline; first polynomials
are rewritten until the leading power products can be re
duced no further, they are fully reduced, and thirdly the
coefficients are reduced by taking the greatest common
divisor among all coefficients of a polynomial. Based on
this breakdown, we pipeline the execution of the entire
list, giving us.maximum overlap between communication
and local computation.

Table 1 shows the results of benchmark problems to
show the performance of this parallel algorithm, the
benchmark problems are adopted from [Boege et al.
86, Backelin and Froberg91]. The monomial ordering is
degree reverse lexicographic, and low level bignum (mul-

Table 1: Timing (sec) and speedup obtained with dis
tributed architecture

Number of processors
Problems 1 2 4 8 16
Katsura-4 9.86 7.48 5.34 4.82 5.94

1 1.32 1.85 2.05 1.66
Katsura-5 94.89 62.43 48.20 39.95 40.52

1 1.52 1.97 2.38 2.34
Cyc5-roots 37.24 33.33 20.02 22.52 29.73

1 1.12 1.86 1.65 1.25
Cyc6-roots 1268.96 1396.37 1555.58 817.07 3266.68

1 0.909 0.816 1.55 0.388

tiple precision integer) support on PIMOS is used for co
efficient calculation. The method of detecting unneces
sary S-polynomials proposed by [Gebauer and Moller 88]
is implemented. Examples and their variable ordering are
shown below.

Katsura-4: (Uo < UI < U2 < U3 < U4)

U6 - uo + 2ul + 2ui + 2U§ + 2Ul = 0
2UOUI + 2UIU2 + 2U2U3 + 2U3U4 - UI = 0

2UOU2 + 2Ul + 2UIU3 + 2U2U4 - U2 = 0
2UoU3 + 2UIU2 + 2UIU4 - U3 = 0

Uo + 2UI + 2U2 + 2U3 + 2U4 - 1 = 0

Katsura-5: (Uo < UI < U2 < U3 < U4 < Us)

U6 - uo + 2Ul + 2ui + 2U§ + 2ul + 2Ug = 0

2UoUI + 2UIU2 + 2U2U3 + 2U3U4 + 2U4US - UI = 0

2UOU2 + 2Ul + 2UIU3 + 2U2U4 + 2U3US - U2 = 0

2UOU3 + 2UIU2 + 2UIU4+ 2U2US - U3 = 0

2UOU4 + 2UIU3 + 2UIU5 + U? - U4 = 0

Uo + 2UI + 2U2 + 2U3 + 2U4 + 2Us - 1 = 0

Cyclic 5-roots: (Xl < X 2 < X3 < X 4 < X 5)

Xl +X2+X3+X4+X5 = 0

X IX 2 + X 2X 3 + X 3X 4 + X 4X s + XSXI = 0

X IX 2X 3 + X 2X 3X 4 + X 3X 4X S + X 4X SX 1 + X SX 1X 2 = 0
X1X2X3X4 + X 2X 3X4X S

+X3X 4X 5X 1 + X4XSX 1X 2 + X SX 1X 2X 3 = 0

XIX2X3X4X5 = 1

Cyclic 6-roots: (Xl < X 2 < X3 < X 4 < Xs < X 6)

Xl + X 2 + X3 + X 4 + Xs + X6 = 0

X I X 2 + X 2X 3 + X 3X 4 + X4XS + XSX6 + X 6X I = 0
, X 1X 2X3 + X 2X 3X4 + X 3X 4X S

+X4X 5X 6 + XSX6Xl + X 6X 1 X 2 = 0

X 1X 2X 3X 4 + X 2X 3X 4X S + X3 X 4XSX6
+X4XSX6X l + X 5X 6X 1X 2 + X 6X 1X 2X 3 = 0

XtX2X3X4XS + X2X3X4XSX6 + X3X4X5X6Xl

+X4X5X6XIX2 + XSX6XIX2X3 + X6XIX2X3X4 = 0
XtX2X3X4X5X6 = 1

Sometimes parallel execution is slower than sequential
execution. Moreover a serious draw back occurs in the
case of "cyclic 6-roots". The reasons are; first, redun
dant tasks increase in parallel since updating a rule set,

337

generating S-polynomials and detecting unnecessary S
polynomials are overlapped with every processor, second,
the selection criteria of the next new rule is only a rough
approximation as the keys of not owned polynomials are
never updated during rewriting.

Master-slave architecture

In the distributed architecture, if the keys of other poly
nomials are updated according to their rewriting such
that the global smallest polynomial can be found, then
much communication between the processors is required.
One simple way of avoiding such communication overhead
is to have each processor output the local minimum poly
nomial and another processor decide the global minimum
among them. Our third trial, therefore, is the master
slave architecture shown in Figure 6.

Figure 6: Architecture of master-slave type solver

The set of polynomials E is physically partitioned and
each slave has a different part of them. The initial rule
set of G(E) is duplicated and assigned to all slaves. New
input polynomials are distributed to the slaves by the
master. The reduction cycle proceeds as follows.

Each slave rewrites its own polynomials by the G(E),
selects the local minimum polynomial from them, and
sends its leading power product to the master. The mas
ter processor awaits reports from all the slaves, and se
lects the global minimum power product. The minimum
polynomial can be decided only after all the slaves have
reported to the master. Those that are not minimums
can be decided quickly, however. Thus, the not-minimum
message is sent to the slaves as soon as possible, and- the
processors receive the not-minimum message reduce poly
nomial by the old rule set while waiting for a new rule.
On one hand, the slave that receives the minimum mes
sage converts the polynomial into a new rule and sends
it to the master, the master sends the new rule to all the
slaves except the owner. If several candidates are equal
power products, all candidates are converted to rules by
owner slaves and they go to final selection by the master.

To make load balance during rewriting, each slave re
ports the number of polynomials it owns, piggybacked

338

onto leading power product information. The master
sorts these numbers into increasing order and decides the
order in which to distribute S-polynomials. After ap
plying the unnecessary S-polynomial criterion, each slave
generates the S-polynomials it should own corresponding
to the order decided by the master. Subsumption test
and rule update are done independently by each slave.

Table 2 lists the results of the benchmark problems.
The monomial ordering, bignum support and variable or
dering are same as for the distributed architecture. Both
absolute performance and speedup are improved com
pared with the distributed architecture. Speedup appears
to become saturated at 4 or 8 processors except for "cyclic
6-roots". However, these problems are too small to ob
tain a good speedup because it takes about half a minute
until all the processors become fully operational as the
unnecessary S-polynomial criterion works well.

Table 2: Timing and speedup of the master-slave archi
tecture

Number of processors
Problems 1 2 4 8 16
Katsura-4 (sec) 8.90 7.00 5.83 6.53 9.26

1 1.27 1.53 1.36 0.96
Katsura-5 (sec) 86.74 57.81 39.88 31.89 36.00

1 1.50 2.18 2.72 2.41
Cyc.5-roots (sec) 27.58 21.08 19.27 19.16 25.20

1 1.31 1.43 1.44 1.10
Cyc.6-roots (sec) 1430.18 863.62 433.73 333.25 323.38

1 1.66 3.30 4.29 4.42

3.2 Boolean Constraint Solver

An algorithm called the Boolean Buchberger algorithm
[Yo Sato and Sakai 88] has been proposed for boolean
constraints. Boolean constraints are handled differently
from algebraic constraints in the following points.

(i) Multiplication and addition are logical-and and
exclusive-or, respectively, in boolean constraints.

(ii) Coefficients are boolean values, that is, 1 and O.
So, a monomial is a product of variables.

(iii) The power of a variable is equal to the variable
itself (xn = X). So, a monomial is actually a product
of distinct variables.

From the property (iii), the theorem of a boolean poly
nomial that corresponds to Theorem 3.1.1 is as follows.

Theorem 3.2.1 (Zero point theorem) Let f be a
boolean polynomial. Every solution of E = 0 is also a
solution of f=O, iff f E I(E).

Therefore, the relation between an ideal and solution
and the relation between a solution and a Grabner basis is
complete in a boolean polynomial. Thus, entailment can
be decided by rewriting a guard constraint by a Grabner
basis.

The Boolean Buchberger algorithm differs from the (al
gebraic) Buchberger algorithm in the following points.
That is, we have to consider self-critical pairs as well as
critical pairs, where a self-critical pair polynomial (SC
polynomial) of boolean polynomial f is defined as X f + f
for every variable X of Lp(J). As shown (ii) above,
the coefficient calculation in the boolean solver is much
cheaper than the algebraic solver, while self-critical pairs
have to be considered. Thus, the load-balance of this al
gorithm is completely different from that of the algebraic
solver.

3.2.1 Analysis of Sequential Algorithm and Par
allel Architecture

The sequential Boolean Buchberger algorithm is shown
in Figure 7. Here EQlist is a list of input boolean con
straints and GB is a Boolean Grabner basis. Numbers
(1) to (6) indicate the step number of the algorithm.

From Figure 7 we can see that the following are possible
for parallel execution;

(i) polynomial rewriting in step 6,

(ii) monomial rewriting (lower granularity of (i)),

(iii) subsumption test in step 4,

(iv) SC-polynomial generation in step 5, and

(v) S-polynomial generation in step 5.

Since there is a communication overhead in the dis
tributed memory machine, we have to exploit the most
coarse-grained parallelism. To design a parallel execution
model, we measured the execution time in each step in
Figure 7 using two kinds of example program. One is
a logic circuit problem for a counter circuit that counts
the number of l's in a three-bit input and outputs the
results as a binary code. The other is the n-queens prob
lem where 4 queens have 80 equations with 16 variables, 5
queens have 165 equations with 25 variables, and 6 queens
have 296 equations with 36 variables. The time ratio for
each step is shown in Table 3.

Table 3: Time ratio of each step (%)

Step number
Problem 1 2 3 4 5 6 Total(sec)
4queens 25.8 3.2 8,4 17.3 25.4 19.0 1.8
5queens 6.4 3.4 22.3 3.7 14.5 50.4 53.5
6queens 1.0 1.5 15.0 2.0 2.6 77.7 2240.0 --
circuit 2.1 4.2 8.2 3.3 8.0 74.0 70.7

input EQlist, GB
EQlist := {p E EQlist I p 1GB# O}

while EQlist # 0

(1) choose e E {p E EQlist I Lp(p) = q}
{

q:= min{Lp(p) I p E EQlist}

EQlist := EQlist - {e}
(2) r = e 1GB, RWlist := 0

for every p E GB
if Lp(p) =>r pi

then GB:= GB - {p}
RWlist := RWlist U {pi + Rest(p)}

(3) else GB:= (GB - {p})

(5)

(6)

endif
endfor
GB:=GBU{r}

U {Lp(p) + Rest(p) 1GBu{r}}

for every p E EQlist
if Lp(p) =>r pi

then EQlist := EQlist - {p}

endif
endfor

RWlist := RWlist U {pi + Rest(p)}

RWlist := RWlist U SCpoly(r)t U Spoly(r, GB)
while RWlist # 0

choose p E RWlist
RWlist := RWlist - {p}
ifp # 0

then if Lp(p) =>GB pi
then RWlist := RT¥list U {pi + Rest(p)}
else EQlist := EQlist U {p}

endif
endif

endwhile
endwhile

output GB

t : SCpoly(r) indicates the set of all self-crirical pair
polynomials for r.

Figure 7: Booelan Buchberger algorithm

We can consider another parallel execution model by
modifying the algorithm. Although Figure 7 shows all
the reducible polynomials lumped together and rewritten
in step 6, this reduction may be distributed to steps 3,
4 and 5. Moreover, reduction may be done in each step
independently. Let steps 3', 4' and 5' denote the modified
steps 3, 4 and 5. If execution times of steps 3', 4' and 5'
are balanced after applying the modification to the algo
rithm, this model is also a good parallel execution model.
However, as shown in Table 4, the times are not balanced.
So, we can discard this possibility of parallelization.

From the above analysis, it becomes clear that step
6 is the largest part of the execution, the other parts
being small. Therefore, we can determine the master
slave parallel execution model to make the best use of

339

Table 4: Time ratio in modified algorithm (%)

Step number
Problem 3' 4' 5'
4queens 12.1 23.5 36.4
5 queens 24.7 11.2 54.0
6 queens 15.5 39.9 41.9
circuit 8.2 33.5 51.7

Update Info Update Info
Reducible EQs ~ ~ Reducible EQs

~ Reduced EQs ~

• • •

Figure 8: Parallel execution model

parallelism in step 6, as shown in Figure 8.
The. controller (master) is in charge of step 1 to step

5 in the algorithm and the other reducers (slaves) reduce
polynomials by G B. The message from the controller to
the reducers consists of update information for G Band
the polynomials to be rewritten. After receiving the mes
sage, the reducer first updates its current GB according
to the update information, rewrites the polynomials from
the controller, and finally sends the results of the reduc
tion to the controller. As the controller becomes idle after
sending the message, the controller also acts as a reducer
during the reduction process. The number of polynomi
als sent to each reducer is kept as equal as possible to
balance the loads for each processor.

3.2.2 Implementation and Evaluation

Having implemented the above parallel execution model
in KL1, the following improvement was made.

Improvement 1 We can remove redundant equations
from EQlisi, produced by deleting rules in step 3,
prior to their distribution. Although this removal
can be done in each reducer, the distributed tasks
may not be well balanced since the removal of tasks
is much less involved than reduction.

Improvement 2 We can distinguish rules of the form
"x = A" ("A" is variable) from other rules since
these rules express assignments only and we need not
consider SC-polynomials nor S-polynomials for these
rules. These rules are stored differently in the con
troller and, if a new equation is input, we first apply
these assignments in the controller to the equation.

340

By this application, reducers do not have to store
such rules and the time needed to generate an SC
polynomial and S-polynomial can be saved.

Improvement 3 If the right hand side (RHS) of a rule
is 0, then no SC-polynomial can be produced. If
both RHSs of two rules are 0, then an S-polynomial
cannot be produced. Therefore, the RHS of a rule is
checked first. This technique is also effective for the
sequential version.

Table 5 lists the execution times and the improvement
ratio for the 6 queens. problem.

Table 5: Timing and improvement ratio

Number of PEs 1 2 4 8 16
Original version (sec) 3735 2400 1745 1539 1262

Improved version (sec) 2489 1706 1223 1142 1092

Improvement ratlO(%) 66.6 71.1 70.1 74.2 86.5

Let a purely sequential part in the parallel execution
model be a and its parallel executable part be b. Then,
we can approximate the execution time for n PEs as
(a+b)/n. By calculating a and bfrom the data, we obtain
a = 1130, b = 2590 for the original version, and a = 930,
b = 1540 for the improved version. This means that the
parallel executable part constitutes 70% to the entire ex
ecution for the original version and 62% for the improved
version. Since we parallelized the sequential algorithm
to obtain the original version, 70% is a satisfactory ratio
for parallel execution since this ratio is very near to the
upper bound value calculated from the analysis of the se
quential algorithm. The difference is caused by the task
distribution overhead. In the improved version, the ra
tio of the parallel executable part is decreased because of
the increase in the number of controller tasks. However,
this result is encouraging since the overall performance is
improved.

3.3 Integer Linear Constraint Solver

The constraint solver for the integer linear domain checks
the consistency of the given equalities and inequalities of
rational coefficients, and gives the maximum or minimum
values of the objective linear function under these con
straint conditions. The integer linear solver utilizes the
rational linear solver for the optimization procedure to
obtain the evaluation of relaxed linear problems created
as part of the solution. A rational linear solver is realized
by the simplex algorithm. The purpose of this constraint
solver is to provide a fast solver for the integer optimiza
tion domain by achieving a computation speedup by in
corporating the search process into a parallel program.

These solvers can determine satisfiability and entail
ment. Satisfiability can be easily checked by the simplex

algorithm. Entailment is equivalent to negation failure
with respect to a constraint set.

In the following we discuss the parallel search method
employed in this integer linear constraint solver. The
problem we are addressing is a mixed integer program
ming problem, to find a maximum or minimum value of
a given linear function under integer linear constraints.
The method we use is the Branch-and-Bound algorithm.

The Branch-and-Bound algorithms proceed by dividing
the original problem into two child problems successively,
prod ucing a tree-structured search space. If a certain
node gives an actual integer solution (that is not neces
sarily optimal), and if other search nodes are guaranteed
to have lower objective function values than that solution,
then the latter nodes need not be searched. In this way,
this method prunes sub-nodes through the search space
to effectively cut down computation costs, but those costs
still become quite high for large-scale problems, since the
costs increase in an exponentially with the size of the
problem.

As a parallelization of the Branch-and-Bound algo
rithm, we distribute the search nodes created through the
branching process to different processors, and let these
processors work on their own sub-problems sequentially.
Each sequential search process communicates with other
processes to prune the search nodes. Many search al
gorithms utilize heuristics to control the schedule of the
order of the sub-nodes to be searched, thus reducing the
number of nodes needed to obtain the final result. There
fore it is important, in parallel search algorithms, to bal
ance the distributed load among processors, and to com
municate information for pruning as quickly as possible
between these processors. We adopted one of the best
search heuristics used in sequential algorithms.

3.3.1 Formulation of Problems

We consider the following mixed-integer linear optimiza
tion problems.

Problem - ILP
Minimize the following objective function of real variables
x j and integer variables Yj,

n

Z = 2: PiXi + 2: qiYi
i=l i=l

under the linear constraint conditions:
n m

2: aijXj + 2: bijYj 2: ej for 1 S:.j S:.l
i=l i=l
n m

2: CijXj + 2: dijYj = Ii for 1 S:.j S:. k
i=l i=l

where

Xi E R and Xi 2: 0 for 1 S:. is:. n
YiEZ where lis:'Yis:'ui and li,uiEZ for 1S:.iS:.m

aij, bij , Cij, dij , ei, fi are real constants.

In practical situations integer variables Yj often take only
0,1, but here we consider the general case.

3.3.2 Sequential Branch-and-Bound Algorithm

As a preparation to solve the above mixed-integer lin
ear problems I LP, we consider the continuously-relaxed
problem LP.

Problem - LP
Minimize the following ob jective function of real variables
Xj,Yj,

n m

Z = I: PiXi + I: qiYi
i=l i=l

under the linear constraint conditions:

n m

I: aijXj + ~ bijyj ~ ej for 1 S;j S; 1
i=l i=l
n m

I: CijXj + I: dijYj = Ii for 1 S;j 5: k
i=l i=l

where

Xi E R and Xi ~ 0 for 1 S; i 5: n

Yi E R where Ii S; Yi S; Ui and li, Ui E Z for 1 S; i S; m
aij, bij , Cij, d ij , ei, Ii are real constants.

LP can be solved by the simplex algorithm. If the
values of original integer variables are exact integers, then
it also gives the solution of ILP. Otherwise, we take a
non-integer value Ys for the solution of LP, and impose
two new interval constraints Ys, Is S; Ys S; [ys] and [ys] + 1 S;
Ys S; Us, where Ys is an integer variable, and obtain two
child problems (Figure 9). Continuing this procedure,
called branching, we continue to divide the search space
to produce more constrained sub-problems as we proceed
deeper into the tree structured search space. Eventually
this process leads to a sub-problem having a continuous
solution that is also an integer solution to the problem.
Also we can select the best integer solution from those
found in the process.

z: ::; Ys ::; [ii:J
ii:' = W:J

W:J+l::; Ys::; u:
ii:" = W:J + 1

Figure 9: Branching of nodes

341

While the above branching process can only enumer
ate integer solutions, if we have a means of guaranteeing
that a sub-problem cannot have a better solution than
the already obtained integer solutions in terms of the op
timum value of the objective function, then we can skip
these sub-problems and need only search for the remain
ing nodes. For mixed-integer linear problems we can use
the solutions for continuously relaxed problems as a crite
rion for pruning. Continuously relaxed problems always
have a better optimum value for the objective function
than the original integer problems. Sub-problems whose
continuously relaxed problems have no better optimum
than the already obtained integer solution cannot give a
better optimum value, hence it becomes unnecessary to
search further (bounding procedure).

Branch-and-Bound methods repeat branching and
bounding in this way to obtain the final optimum. These
sub-problems obtained through the branching process de
note search nodes.

Sequential algorithm

Step 0 Initial setting
Let ILPo mean the original problem ILP, and N
mean the set of search nodes. Set N to {ILPo },

and solve a continuously relaxed problem LPo ' If an
integer solution is obtained go to Step5. Otherwise
set the incumbent solution z to (X) and go to Step1.

Step 1 Selecting branching no de
If N = 0, then go to Step5.

If N =I- 0, then select the next branching node I LPk

out of N following the heuristics, and go to Step2.

Step 2 Selecting branching variable and branch
Select the integer variable Ys to be used for the

branching process to work on I LPk according to the
heuristics, and branch with respect to it. Let the re
sulting two nodes be ILPk " ILPk "

Go to Step3.

Step 3 Continuously relax two nodes
Solve two continuously relaxed problems LPk, and

LPk " by the simplex algorithm. Go to Step4.

Step 4 Fathom two children nodes
If relaxed problem LPk , does not have a solution,

or gives a solution Zk' that is no better than the in
cumbent solution, in other words Zk' > z, then stop
searching (bounding operation).

If the point (x k
', f/J to achieve a solution Zk' has inte

ger value y and moreover gives a better solution than
the incumbent solution obtained so far, in other words
Zk' < Z, then let z = Zk', X = xk' and fJ = yk' (revision
of the incumbent).

342

If (Xk
', i/) is not an integer solution and gives a bet

ter optimum value than the incumbent, then add this
node, N:= N U {I LPk,} (Addition of a node).

Do the same thing to I LPk", and go to Step1.

Step 5 End step
If Z i 00, then let the incumbent (x, y) be the opti

mum solution.

If Z = 00, then problem I LP has no solution.

3.3.3 Heuristics for Branching

The following two factors determine the schedule of the
order in which the sequential search process goes through
the nodes in the search space:

1. The priorities of sub-problems(nodes) to decide the
next node on which the branching process operates.

2. Selection of a variable out of the integer variables
with which the search space is divided.

It is preferable that the above selections are done in such a
way that the actual nodes, searched in the process of find
ing the optimal, form as small a part as possible within
the total search space. We adopted one of the best heuris
tics of this type from operations research as a basis of our
parallel algorithm([Benichou et al. 71]).

Selection of sub-problems
We use a combination of depth-first strategy and best
first strategy(w.r.t. heuristic function). In each branch
ing process, what is called the pseudo-costs Pup(j),
Pdown(j) of integer variables Yj are computed. These are
the increase ratios of the optimum value of the continu
ously relaxed problem with regard to those integer vari
ables. In the next heuristic function h(I LPk) of the node
is calculated:
h(I LPk) = Zk + Lj~l min{pup(j)(l- fJ,Pdown(j)!i},
!i = YJ - [YJ]'
Suppose the node I LPk is divided into I LPk , and
ILPk".

n-I. When at least one of these two nodes is not yet ter
minated, select the one having a better(i.e., smaller)
heuristic value h(I LP) as the next branching node
(depth-first).

n-ii. When both have terminated,

a. if no incumbent solution has yet been found,
select the latest node to which branching has
been done (depth-first).

b. if an incumbent solution has already been
found, select the node having the best heuristic
function value (best-first).

Selection of the branching variable
To select the branching variable when trying to branch
at the node I LPk ,

v-i. If no incumbent solution is found, select the vari
able yj from those integer variables that do not take
exact integer values in (xk, f/), and which gives the
greatest difference between the two increases in the
heuristic value, namely the one to attain
maxj{lpup(j)(1- fj) - Pdown(j)!i Ii !inon-integer}

v-ii. If an incumbent solution is found, select the variable
yj out of those integer variables that do not take
exact integer values in (xk, f/), and which gives the
maximum of the minimum value of the left and right
side heuristic values, namely that to attain
maxj{min{pup(j)(l-!i),Pdown(j)fii finon-integer}

3.3.4 Parallel Branch-and-Bound Method

The parallel algorithm derived from the above sequential
algorithm is implemented on Multi-PSI. Our parallel al
gorithm exploits the independence of many sub-processes
created through branching in the sequential algorithm,
distributing these processes to different processors. What
is necessary here is that the search space is divided as
evenly as possible among processors to achieve good load
balance, and that the pruning operation is performed by
all the processors simultaneously. Also, incumbent solu
tions found in each processor need to be communicated
between processors. The details of the parallel algorithm
is described in the following.

Load balancing
One parent processor works on the sequential algorithm
up to a certain depth d of the search tree. It then creates
2d child nodes and distributes them to other processors as
shown in Figure 10. These search nodes are allocated to
different processors cyclically, where each of the proces
sors works on these sub-problems sequentially. Therefore,
load balancing is static in this case.

Distribution is done only at a certain depth of the
search tree, to prevent the granularity of a node from
being too small and to decrease the communication costs.

Heuristics for pruning
Each processor has a share of a certain number of sub
problems assigned, and works on these nodes with the
same heuristics of branching node selection and branch
ing variable selection as those of the sequential case. For
the node selection heuristics, we use the priority control
facility of KL1, to assign priorities to the search nodes
on which the best-first strategy with the heuristic func
tion can depend. (See lOki et al. 89] for details of this
technique.) /'

Figure 10: Generation of parallel processes

Transfer of global data
While the search space is distributed among different pro
cessors, if the information to prune nodes is not communi
cated well among them, then the processor has to work on
unnecessary nodes, and the overall work becomes larger
compared with the sequential version. This causes a re
duction in the computation speed.

Therefore, incumbent solutions are transferred between
processors to be shared so that each processor can update
the current incumbent 'solution as soon as possible (Fig
ure 11). This is realized by assigning a higher priority to
the goal responsible for data transfer in the program.

o Parent node

Downt tup

o Node ILPk

Down~pl~p2
o Down2 0 Child node

Figure 11: Report stream between nodes

3.3.5 Experimental Results

We implemented the above parallel algorithm in KLl,
and experimented with job-shop scheduling problem. Ta
ble 6 shows. a result of computation speedups for a 4job-
3machine problem and the total number of searched
nodes to get to the solution.

The situation often occurs where a processor visits an
unnecessary node before the processor receives pruning
information. This is because communication takes a time,
and certainly cannot be instantaneous, in a distributed
memory machine. Table 6 shows a case where this actu
ally happens.

343

Table 6: Speedup

Processors 1 2 4 8
Speedup 1.0 1.5 1.9 2.3
N umber of nodes 242 248 395 490

One of the problems in parallel search algorithms is
how to decrease the growth of the size of the total search
space compared with the sequential search algorithms.

4 GDCC Program Examples

Example 1 : integer programming

The following program is a simplified version of the in
teger programming used to find the integer solution that
gives the minimum (or maximum) value of an objective
function under given constraints. This program shows
the basic structure of the Branch-and-Bound method.

module pseudo_integer_programming.
public integer_pro/3.

integer_pro(X,Y,Z):- true
call ((simplexIX>=5,

simplexIX+2*Y>=-3,
simplexIX+Y-Z<=5)) initial nil giving Co,

take_min(Co).

take_min(Co):- true
cal1(simplexlmin(X+Y,Ans)) initial Co giving Coi,
(Ans={minusinfinite,_} -> error;
otherwise;
Ans={_, [X=ValX!_]} -> check(ValX,Co)).

check(ValX,Co):- kli!integer(ValX)
solve_another_variables(Co).

otherwise.
check(ValX,Co):- true!

floor(ValX, SupX, InfX) ,
call (simplexIX=<Inf X) initial Co giving Coi,
take_min(Co1) ,
call(simplexIX>=SupX) initial Co giving Co2,
take_min(Co2).

The block in the clause integer _pro solves a set of
constraints. The block in the clause take..min finds the
minimum value of the given objective function. If the
minimum value exists (not -00), check is called. In
clause check, if the value of X, that gives the minimum
value of the objective function is not an integer, two new
constraints are added in order to the X become integer
(for instance, if X = 3.4 then X >= 4 and X <= :3), and
the minimum values with respect to the new constraints
are solved again. Method k11! integer decides whether
the value X is an integer. Where, kl1! indicates KLI

344

method calling, a KL1 method is called from the GDCC
program using this notation.

Synchronization between the inference engine and the
solver to get the minimum value is achieved by the blocks
in integer _pro and take...Jllin. Multiple contexts are
shown by t~e two blocks of check.

Example 2 : geometric problem

Next, we show how to use a function to find the approx
imated roots of uni-variate equations and how to handle
multiple contexts using an example which is also used in
[Aiba et al. 88].

:- module heron.
:- public tri/4, testl/4, test2/4.

tri(A,B,C,S) :- true I
alloc(10,CA,CB,H),
alg#C=CA+CB,
alg#CA**2+H**2=A**2,
alg#CB**2+H**2=B**2,
alg#H*C=2*S.

testl(A,B,C,S) :- true I
call(tri(A,B,C,S)) initial nil giving GB,
output1(GB). 1. output to a window screen

test2(A,B,C,S) :- true
call(tri(A,B,C,S) initial nil giving GB,
Err= 1/100000000,
kll!find:find(GB,Err,1 ,SubGB,UniEqs,UniSols),
kl1!find:sol(SubGB,UniSols,Err,l,FGB),
check (FGB , S).

check([], _) :- true I true.
check([FGBIFGBs], S) :- true

call(check_ask(S,Ans)) initial FGB giving Sol,
check_sub(Ans, Sol, FGBs, S).

check_sub (true , Sol, FGBs, S) :- true
output (Sol) , 1. output to a 'window screen
check (FGBs, S).

check_sub (false , _, FGBs, S) check (FGBs, S).

check_ask(S, Ans)
check_ask(S, Ans)

alg.S > 0 I Ans = true.
alg.S =< 0 I Ans = false.

Figure 12 shows the meaning of the constraints set con
tained in clause tri, where ** in equations indicates a
power operation. CA,CB,H are local variables, A, B, C
represents the three edges of a triangle, and S is its area.
alloc(PreJ VarlJ. "J YarN) is a declaration to give prece
dence Pre to variables Vari""J YarN. A monomial in:.
eluding a variable that has the highest Pre is the highest
monomial, that is the precedence of variables is stronger
than the degree in comparison.

If the goal,

CA CB

Figure 12: A triangle and its parameters

?- alloc(0,A,B,C),alloc(5,S),
heron:testl(A,B,C,S).

is given, in which all parameters are free, this program
outputs a Grabner basis consisting of seven rules. Among
them is the following rule that contains only A, B, C and '
s.

S**2= -1/16*C**4+1/8*C**2*B**2+1/8*C**2*A**2
-1/16*B**4+1/8*B**2*A**2-1/16*A**4.

This is equivalent to Heron's formula. Of course, this
program can be executed by a goal with concrete param
eters. For example, when the goal,

?- alloc(5,S), heron:testl(3,4,5,S).

is given, the program produces S**2= 36.

However, the Buchberger algorithm cannot extract dis
crete values from this equation, as shown in section
3.1.2. Method test2 approximates the real roots from
a Grobner basis, if the basis contains uni-variate equa
tions. If the goal

?- alloc(5,S), heron:test2(3,4,5,S)

is given, first the constraint set is solved to obtain
Grobner basis GB using the call predicate, then uni
variate equations are extracted from GB using the method
find:

kll!find:find(GB,Err,l,SubGB,UniEqs,UniSols).

Where, UniSols contains the all combinations of solu
tions with precision Err, UniEqs is a set of the uni-variate
equations extracted from Grobner basis GB, and SubGB is
the basis remaining after removing the uni-variate equa
tions. The next method sol obtains a new Grobner ba
sis FGB by asserting the combinations of approximated
solutions UniSols into SubGB. It is necessary to modify
the Buchberger algorithm to handle approximated solu
tions, as explained in [Aiba et al. 91]. FGB contains plural
Grobner bases in list format, and these bases are filtered
by the method check, which checks whether S> 0 is
satisfied at the guard of the sub-block check_ask.

5 Conclusion

GDCC is an instance of the cc language and satisfies two
levels of parallelism: the execution of an inference engine
and solvers in parallel, and the execution of a solver in
parallel. A characteristic of a cc language is that it is
more declarative than sequential CLP languages, since
the guard part is the only synchronization point between
an inference engine and solvers. GDCC inherits this char
acteristic and, moreover, it has a block mechanism to
synchronize meta-operations with constraints.

In the latest (master-slave) version of the parallel al
gebraic solver, the parallel execution of "cyclic 6-roots"
with 16 processors is 4.42 times faster than execution with
a single processor. With the boolean solver, parallel exe
cution of the 6 queens problem with 16 processor is 2.28
times faster than with a single processor. We also show
the realiza.tion of fast parallel search for mixed integer
programming using the Branch-and-Bound algorithm.

The following items are yet to be studied. As shown
in the program examples, current users must describe ev
erything explicitly to handle multiple contexts. Thus,
support faculties and utilities to handle multiple contexts
are required. We will also improve the parallel constraint
solvers to obtain both good absolute performance and
better parallel speedup. The algebraic solver requires
parallel speedup. The boolean solver needs to increase
the parallel executable parts of its algorithm. The lin
ear integer solver has to improve the ratio of pruning in
parallel execution. Through these refinements and ex
periments using the handling robot design system, we
can realize a parallel CLP language system that has high
functionality in both its language facilities and perfor
mance.

{) Acknowledgments

We would like to thank Professor Makoto Amamiya at
Kyushu University and the members of the CLP working
group for their discussions and suggestions. We would
also like to thank Dr. Fuchi, Director of the ICOT Re
search Center, and Dr. Hasegawa, Chief of the Fourth and
Fifth Laboratory, for their encouragement and support in
this work.

References

[Aiba et al. 88] A. Aiba, K. Sakai, Y. Sato, D. Hawley
and R. Hasegawa. Constraint Logic Programming
Language CAL. In International Conference on Fifth
Generation Computer Systems, pages 263-276, 1988.

[Aiba et al. 91] A. Aiba, S. Sato, S. Terasaki, M. Sakata
and K. Machida. CAL: A Constraint Logic Program
ming Langua.ge - Its Enhancement for Application

345

to Handling Robots -. Technical Report TR-729,
Institute for New Generation Computer Technology,
1991.

[Backelin and Froberg 91] J. Backelin and R. Froberg.
How we proved that there are exactly 924 cyclic 7-
roots. In S. M. Watt, editor, Proc. ISSAC'91 pages
103-111, ACM, July 1991.

[Benichou et al. 71] M. Benichou, L. M. Gauthier,
,P. Girodet, G. Hentges, G. Ribiere and O. Vincent.
Experiments in Mixed-Integer Linear Programming.
In Mathematical Programming 1 pages 76-94. 1971.

[Boege et al. 86] W. Boege, R. Gebauer and H. Kredel.
Some Examples for Solving Systems of Algebraic
Equations by Calculating Groebner Bases. Symbolic
Computation, 2(1):83-98, 1986.

[Buchberger 83] B. Buchberger. Grobner bases:An Algo
rithmic Method in Polynomial Ideal Theory. Techni
cal report, CAMP-LINZ, 1983.

[Buchberger 85] B. Buchberger. Grabner bases:An Al
gorithmic Method in Polynomial Ideal Theory. In
N. K. Bose, editor, Multidimensional Systems The
ory, pages 184-232. D. Reidel Publishing Company,
1985.

[Cangilia et ai. 88] L. Caniglia, A. Galligo and J. Heintz.
Some new effectivity bounds in computational geom
etry. In Applied Algebra, Algebraic Alg01'ithms and
Error-CorrEcting Codes - 6th International Confer
ence, pages 131-151. Springer-Verlag, 1988. Lecture
Notes in Computer Science 357.

[Chikayama et al. 88] T. Chikayama, H. Sato and
T. Miyazaki. Overview of Parallel Inference Ma
chine Operationg System (PIMOS). In International
Conference on Fifth Generation Compute1' Systems,
pages 230-251, 1988.

[Clarke et ai. 90] E. M. Clarke, D. E. Long, S. Michaylov,
S. A. S.chwab, J. P. Vidal, and S. Kimura. Par
allel Symbolic Computation Algorithms. Technical
Report CMU-CS-90-182, Computer Science Depart
ment, Carnegie Mellon University, October 1990.

[Colmerauer 87] A. Colmerauer. Opening the Prolog III
Universe: A new generation of Prolog promises some
powerful capabilities. BYTE, pages 177-182, August
1987.

[Dincbas et al. 88] M. Dincbas, P. Van Hentenryck. H. Si
monis, A. Aggoun, T. Graf and F. Bert heir . The
Constraint Logic Programming Language CHIP. In
International Conference on Fifth Generation Com
puter Systems, pages 693-702, 1988.

346

[Gebauer and Maller 88] R. Gebauer and H. M. Maller.
On an installation of Buchberger's algorithm. Sym
bolic Computation, 6:275-286, 1988.

[Hawley 91a] D. J. Hawley. A Buchberger Algorithm
for Distributed Memory Multi-Processors. In The
first International Conference of the A usirian Cen
ter' for Parallel Computation, Salzburg, September,
1991. Also in Technical Report TR-677 Institute for
New Generation Computer Technology, 1991.

[Hawley 91b] D. J. Hawley. The Concurrent Constraint
Language GDCC and Its Parallel Constraint Solver.
Technical Report TR-713 Institute for New Genera
tion Computer Technology, 1991.

[Hentenryck 89] P. Van Hentenryck. Parallel Constraint
Satisfaction in Logic Programming: Prelimiary Re
sults of CHIP within PEPSys. In 6th International
Conference on Logic Programming, pages 165-180,
1989.

[Jaffar and Lassez 87] J. Jaffar and J-L. Lassez. Con
straint Logic Programming. In 4th IEEE Symposium
on Logic Programming, 1987.

[Li 86] G.-J. Li and W. W. Benjamin. Coping
with Anomalies in Parallel Branch-and-Bound Algo
rithms, IEEE Trans. on Computers, 35(6): 568-,573,
June 1986.

[Maher 87] M. J. Maher. Logic Semantics for a Class of
Committed-choice Programs. In Proceedings of the
Fourth International Conference on Logic Program
ming, pages 858-876, Melbourne, May 1987.

lOki et al. 89] H. Oki, K. Taki, S. Sei, and M. Fu
ruichi. Implementation and evaluation of paral
lel Tsumego program on the Multi-PSI. In Pro
ceedings of the Joint Parallel Processing Symposium
(JSSP'89), pages 351-357, 1989. (In Japanese).

[Ponder 90] C. G. Ponder. Evaluation of 'Performance
Enhancements' in algebraic manipulation systems. In
J. D. Dora and J. Fitch, editors, Computer Algebra
and Parallelism, pages 51-74, Academic Press, 1990.

[Quinn 90] M. J. Quinn. Analysis and Implementation of
Branch-and-Bound Algorithms on a Hypercube Mul
tiprocessor. IEEE Trans. on Computers, 39(3):384-
387, March 1990.

[Sakai and Aiba 89] K. Sakai and A. Aiba. CAL: A The
oritical Background of Constraint Logic Program
ming and its Applications. Symbolic Computation,
8(6):589-603, 1989.

[Saraswat 89] V. Saraswat. Concurrent Constraint Pro
gramming Languages. PhD thesis, Carnegie-Mellon

University, Computer Science Department, January
1989.

[K. Satoh and Aiba 90] K. Satoh and A. Aiba. Hierar
chical Constraint Logic Language: CHAL. Technical
Report TR-592, Institute for New Generation Com
puter Technology, 1990.

[K. Satoh 90b] K. Satoh. Computing Soft Constraints by
Hierarchical Constraint Logic Programming. Tech
nical Report TR-610, Institute for New Generation
Computer Technology, 1990.

[So Sato and Aiba 90] S. Sato and A. Aiba. An Appli
cation of CAL to Robotics. Technical Memorandum
TM-1032, Institute for New Generation Computer
Technology, 1990.

[Y. Sato and Sakai 88] Y. Sato and K. Sakai. Boolean
Grabner Base, February 1988. LA-Symposium in
winter, RIMS, Kyoto University.

[Senechaud· 90] P. Senechaud. Implementation of a Par
allel Algorithm to Compute a Grabner Basis on
Boolean Polynomials. In J. D. Dora and J. Fitch, ed
itors, Computer Algebra and Parallelism, pages 159-
166. Academic Press, 1990.

[Siegl 90] K. Siegl. Grabner Bases Computation in
STRAND: A Case Study for Concurrent Symbolic
Computation in Logic Programming Languages.
Master's thesis, CAMP-LINZ, November 1990.

[Takeda et al. 88] Y. Takeda, H. Nakashima, K. Masuda,
T. Chikayama and K. Taki. A load balancing mech
anism for large scale multiprocessor systems and
its implementation. In International Conference on
Fifth Generation Computer Systems, pages 978-986,
1988.

[Ueda and Chikayama 90] K. Ueda and T. Chikayama.
Design of the Kernel Language for the Parallel In
ference Machine. Computer Journal, 33(6):494-500,
December 1990.

[Vidal 90] J. P. Vidal. The Computation of Grabner
Bases on a Shared Memory Multi-:-processor. Techni
cal Report CM'U-CS-90-163, Computer Science De
partment. Carnegie Mellon University, August 1990.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 347

cu-Prolog for Constraint-Based Grammar

Hiroshi TSCDA
Institute for New Generation Computer Technology (leOT)

1-4-28 Mita, NIinato-ku. Tokyo 108. Japan
E-mail: tsudaiQ!icot.or.jp

Abstract

cu-Prolog is a constraint logic programming (CLP) lan
guage appropriate for natural language processing such
as a Japanese parser based on JPSG. Compared to
other CLP languages, cu-Prolog has several unique
features. Most CLP languages take algebraic equa.
tions or inequations as constraints. cu-Prolog, on the
other hand, takes the Prolog atomic formulas of user
defined predicates. cu-Prolog, thus. c,an describe sym
bolic and combinatorial constraints that are required
for constraint-based natural language grammar descrip
tion. As a constraint solver. cu-Prolog uses unfold/fold
transformation dynamically with some heuristics,

JPSG (Japanese Phrase Structure Grammar) is a
constraint-based and unification-based Japanese gram
mar formalism beging developed by the PSG-working
group at ICOT. Like HPSG (Head-driven PhrasE"
Structure Grammar), JPSG is a phrase structure \vhose
nodes are feature structures. Its grammar description is
mainly formalized by local constraints in phrase struc
tures.

This paper outlines cu-Prolog and its application to
the disjunctive feature structure and JPSG parser.

1 Introduction

Two aspects are considered to classify contemporar:v
natural language grammatical theories[Carpenter ft al.
91]. Firstly, They must be classified according to
whether they have transformation operations among
different structure levels.

One current version of transformational gramma,. is
GB (Government and Binding) theory[Chomsky 81]. So
called unification-based grammars[Shieber 86]. such as
GPSG (Generalized Phrase Structure Grammar). LFG
(Lexical Functional Grammar). HPSG (Head-driwn
Phrase Structure Grammar) [Pollard and Sag 87]. and
JPSG (Japanese Phrase Structure Grammar)[Gunji
86] are categorized as non-transformational gramrna;s.
Unification-based grammar is a phrase structure gram
mar whose nodes are feature structures. It uses uni
fication as its basic operation. In this respect, it is

congenial to logic programming.
Secondly, classification must be made as to whether

a language's grammar description is rule-based or
constraint-based1

. GPSG and LFG fall into the for
mer category. The latter includes GB theory. HPSG.
and JPSG. From the viewpoint of procedural compu
tation. rule-based approaches are better. However. by
constraint-based approaches. more general and richer
grammar formalisms are possible because morphology.
syntax. semantics. and pragmatics are all uniformly
treated as constraints. Also. the most important fea
ture of constraints. the declarative grammar descrip
tion. allows various information £lovvs during process
ing.

Consiclf'1' t he programming languages used t.o imple
ment tlwse grammatical theories. For rule- based gram
mars. many approaches have beell attempted. such as
Fl~G[I\.ay 8!5] and PATR-Il[Shieber 86]. As yet. how
ever. no leading work has been done on constraint
based gramrnars.

Our constraint logic programming language (,1l

Prolog [Tsuda et al. 89b. Tsuda et al. 89a] aims to
provide an implementation framework for constraint
based gram.mars. "('nlike most eLP languages. cu
Prolog takes the Prolog atomic formulas of user-defined
predicates as constraints.

cu-Prolog originated from the technique of cOr/
strained unification (or conditioned unifi:cat iOIl [Hasida
and Sirai 86]) - a unification between t\ovo constrained
Prolog patterns. The basic component of ClI- Prolog is a
Constrained Horn Clausf (CHe) that adds constraints
in terms of user-defined Prolog preclica tes to Hom
clauses. Their domain is suitahle for symbolic ami com
binatorial linguistic const raints. The COllst raint solver
of ell-Prolog uses the unfold/fold [Tamaki alld Sato ~'n]
transformation d~'namicalh' with certaiu lwurist ies.

This paper illustrates

• the outline of Cll-Prolog.

• treatment of disjunctive feature structures with
PST(Partially Specified Term) [Mukai 88] ill cu
Prolog. and

lConstraint-based approaches are also called tnformatioll
based or principle-baSEd approaches.

348

• the JPSG parser as its most successful application.

2 Linguistic Constructions

As an introduction, this section explains the various
types of linguistic constraints in constraint-based gram
mar formalisms.

2.1 Disjwlctive Feature Structure

Unification-based grammars utilize feature structures as
basic information structures. A feature structure con
sists of a set of pairs of labels and their values. In (1),
pos and sc are called features and their values are n
and a singleton set < [pos = p] >.

[
pos = n 1
sc = ([pos = p])

(1)

Morphological, syntactic, semantic, and pragmatic in
formation are all uniformly stored in a feature struc
ture.

Moreover, nat ural language descriptions essentially
require some framework to handle ambiguities such as
polysemic words, homonyms, and so on. Disjunctive
feature structures are widely used to handle disjunc
tions in feature structures[Kay 85]. Disjunctive feature
structures consist of the following two types.

Value disjunction A value disjunction specifies the
alternative values of a single feature. The following
example states that the value of the pos feature
is n or v, and the value of the sc feature is <>
(empty set) or < [pos = p] >.

General disjunction A general disjunction specifies
alternative groups of ·multiple features. In the fol
lowing structure, sem = love(X, Y) is commo"n,
and the rest is ambiguous.

! tpos = n] l
pos = v
vform = vs

Be = ([pos = p 1) 1
(3)

sem = love(X, Y)

One serious problem in treating disjunctive fea
ture structures is the computational complexity of
their unification problem because it is essentially NP
complete[Kasper and Rounds 86]. Some practically ef
ficient algorithms to deal with disjunctions have been
studied by [Kasper 87] and [Eisele and Dorre 88].

2.2 Structural Principles

Unification-based grammars are phrase structures
whose nodes are feature structures. Their grammar de
scriptions consist of both phrase structure rules and
local constraints in a phrase structure. In current
unification-based grammars, such as HPSG and JPSG,
phrase structure rules become very general and gram
mars are mainly described with a set of local con
straints called structural principles.

JPSG has only one phrase structure rule, as follows.

M

~
D H

M, D and H are the mother, the dependent daughter,
and the head daughter respectively. This phrase struc
ture is applicable to both the complementation struc
ture and adjunction structure of Japanese2

• In com
plementation structures, D acts as a complement. In
adjunction structures, D works as a modifier.

Structural principles are relations between the fea
tures of three nodes (M, D and H) in a local tree~
In the following, we explain some features and their
constraints.

mod: The mod feature specifies the function of D in a
phrase structure. When the value is +,.D works as
a modifier, and when -, it works as a complement.

head features: Features such as pos, gr, case, and
infl are called head features. These conform to the
following head feature principle.

The value of a head feature of M unifies
with that of H.

subcat features: Features subcai and adjacent are
called subcat features. They take a set of feature
structures that specify adjacent categories such as
complements, and nouns. The subcat feature prin
ciple is

In the complementation struct ure, the
value of a subcat feature of M unifies
with that of H minus D. In the ad
junction structure, the value of a subcat
feature of M unifies with that of H.

sem: The sem feature specifies semantic information.

In the complementation struCture, the
sem value of M unifies with that of
H. In the adjunction structure, the sem
value of 1\.1 unifies with that of D.

2For example, "Ken-ga aisuru (Ken loves)" is the comple
mentation structure, and "ooki-na yama (big mountain)" is the
adjunction structure.

Below
runs)."

IS the analysis for "Ken-ga hashiru (Ken

[

pos = p 1
gr =ga
sem = ken

6
Ken-ga

[

pos = v 1
sc =<>
sem = run(ken)

pos = v

([

pos = p l)
sc = g~ =. ga

sem = X
sem = run(X)

I
hashiru

3 eu-Prolog

3.1 Conventional Approa~hes

Prolog is often used as an implementation language
for unification-based grammars. However, its execution
strategy is fixed and procedural, i.e., always from left
to right for AND processes, and from top to bottom for
OR processes. Prolog programmers have to align goals
such that they are solved efficiently. Prolog, therefore.
is not well-suited for constraint-based grammars be
cause it is impossible to stipulate in advance which
type of linguistic constraints are to be processed in
what order.

Some Prolog-like systems such as PrologII and
CIL(Mukai 88] have bind-hook mechanisms that can
delay some goals (constraints) until certain variables
bind. As the mechanism, however, can only check con
straints by executing them, it is not always efficient.

Most CLP languages, such as CLP(R)[Jaffar and
Lassez 87], PrologIII, and CAL, take the constraints of
algebraic domain with equations' or inequations. Their
constraint solvers are based on algebraic algorithms
such as Grabner bases, and solving equations. How
ever, for AI applications and especially natural lan
guage processing systems, symbolic and combinatorial
constraints. are far more desirable than algebraic ones.
cu-Prolog, on the other hand, can use symbolic a~d
combinatorial constraints because its constraint domain
is the Herbrand universe.

3.2 C6BStraiBed Horn Clause (CHC)

The basic component of cu-Prolog is the Constrained
Horn Clause (CHCj3.

[Def] 1 (CHC) The Constrained Horn Clause (CHC) IS

30r Constraint Added Horn Clause (CAHC).

Head Body Consil·a.int
~ .---~

HE "4D : - B1 • B2 , ••.• Bn; C\, C2 , ••. , Cm .

349

HEAD. called head. is an atomic fonnula. and
B1 , •.. , Bn. called body. is a sequenCE of atomic for
mulas. C\, Cm . called constraint. is a sequence
of atomic formulas or equal constraints of thE form,'
Va1'iable = Term. Body or constraint can be Empty. 0

From the viewpoint of declarative semantics. the
above clause is equivalent to the following Horn Clause.

HEAD : - B 1 • B2 •..•• Bn. C't. C2 ... ·. c'n .

3.3 Derivation Rule

cu-Prolog expands the derivation rule of Prolog by
adding a constraint transformation operation.

goa./ .---..
A.K:C.

progra.nl

~

A': -L:D.
snbstitldiOIl constraint tra."sj'ormation ________ r ,

0= m.gu(A. A') C' = mf(CO + DO)

LO.KO:C'.
nElL' goa./

A and A' are heads. K and L are bodies. C. D. and C'
are constraints. mgu(A. A') is the most general unifier
between A and A'. m.f(C'str) is a canonical form of a
constraint that is equivalent to Cstr.

As a computational rule. when the transformation of
CO + DO fails. the above derivation rule is not a.pplied.

3.4 PST

cu-Prolog adopts PST (Partially Specified Term)
[Mukai 88] as a data structure that corresponds to thf'
fea.ture structure in unification-based grammars.

[Def] 2 (Partially Specified Term (PST)) PST /.-;
a term of thE following form :

{h/t1,12/t2"" .in/t,,} .
ii. calltd label. is an atom and Ii #- l.i(i #- j). t i . called
value. is a tenn. o

A recursive PST structure is not allowed.

[Def] 3 (constrained PST) In cu-Prolog. PST is
stored as an equal constraint with othu rfleoant con
straints :

x = PST. Cl(X), C2(X), cn(X)

We call the abOVE tYPE of constraints constrained PST.
X=PST correspo'nds to [Kas.per 87] 's unconditional con
junct. and cdX). C2(X) cn(X) c01Tesponds to thE
conditional confunct. 0

In the next subsection. we give its canonical form mod
ula1'. The constrained PST ca.n naturally describe dis
junctive feature structures of unification based gram
mars.

350

3.5 Cal!l6ftical form of a cOBstraint

The canonical form of a constraint in CHC is called
modular. First, we give an intuitive definition of modu
lar without PST.

[Def] 4 (modular (without PST» A sequence of
atomic formulas GI , ... , Gm(m > 1) is modular when
all its arguments are different variables.

For example,

member(X, Y),member(U, V) is modular,
member(X, Y), member(Y, Z) is not modular, and
append(X, Y, [a, b, c, d]) is not modular.

We expand the definition of modular for constrained
PST.

[Def] 5 (comji)onent) The component of an argument
of a predicate is a set of labels to which the argument
may bind. Here, an atom or a complex term is regarded
as a PST of the label [] . 0

Cmp (p, n) stands for the component of the nth argu
ment of' a predicate p. Cmp (T) represents a set of labels
of a PST T. In 'a constraint of the form X=t, variable X
is regarded as taking Cmp (t) .

Components can be computed by static analy
sis of the program [Tsuda 91 J. Vacuous arg'ument
places[Tsuda and Hasida 90J are arguments whose com
ponents are </Y.

Consider the following example.

cO({f/b},X,Y) :-c1(Y,X).
cO(X,b,_):-X={g/c},c2(X).
c1(X,X) .
c1 (X, [X I _]) .
c2({h/a}).
c2({f/c}).

The components are computed as follows.

Cmp(cO,1)={f,g,h}
Cmp(cO,2)=Cmp(c1,2)={[]}
Cmp(cO,3)=Cmp(c1,1)={}
Cmp(c2, 1)={f ,h}

[Def] 6 (dependency) A constraint has dependency
when

1. a variable occurs in two distinct places when their
components have common labels.

2. a variable occu'rs in two dist'inct places where one
component is {[]} and another component does
not contain [], or

3. the binding of an argument whose component is not
</Y. 0

[Def] 7 (modular (with PST» A constraint is mod
ular when it contains no dependency. A Horn clause is
modular when its body has no dependency. 0

User-defined predicates in a constraint must be de
fined with modular Horn clauses 4.

3.6 Constraint Transformation

The constraint solver (mf(Cstr)) transforms non
modular constraints into modular ones by deriving new
predicates. In the following, we refer to this solver
as the constraint transformer. The constraint trans-
former uses the unfold/fold transformation dynamically.
[Tamaki and Sato 83J

3.6.1 Unfold/fold transformation

Let T be, a set of program Horn clauses, L: be
initial constraints {C\, ... , Gn } that contain variables
Xl, ... , x m ' and p be a new m-ary predicate.

Let Pi and Vi be sequences of sets of clauses that are
initially defined as follows.

Vo {p(.rl,.'" xm) : -C\, ... , Cn .}

Po TUVo

mf(L:) returns P(Xl,""Xm), if and only if there
exists a sequence of program Horn clauses

and every clause in PI is modular.
Pi+1 and V i+1 are derived from Pi and Vi by one of

the following three types of transformations (0 ~ i < l).

1. unfolding

Pi = {H: -A,R} UP;
Aj : -Bj E Pi, A/)j = AOj (1 ~ j ~ m)

Pi+l = Uj:l HOj : -BjO), ROj U P[
V i+l = Vi

Here, A, Aj are atomic formulas and R, B j are
sequences of atomic formulas (1 ~ j ~ rn).

2. folding

Pi = {H : -C, R} U Pi
A : - B E Vi. BO = C

Pi+ 1 = H: -A.O.R UP[
V i+1 ='Di

Here. C and R have no common variables.

4For example. member/2. append/3. and finite predicates are
defined with modular Horn clauses,

3. defi.Rition
Let 8 be a sequence of atomic formulas, Xl, Xn
be variables in B, and p be a new predicate.

V i+1 = Vi U {P(Xl,"" Xn) : -B.}
P i +1 = Pi

3.6.2 Exam;ple of Constraint Transformation

The following example shows a transformation of
member(A,~),append(X,Y,Z).

T = {T1,T2,T3,T4}, where

T1 = member (X , [X I YJ) .
T2 = member (X, [Y I zJ) : -member (X, Z) .
T3 = append ([J ,X,X).
T4 = append([AIXJ ,Y, [Alz]) :-append(X,Y,Z).

and
E = {member(A,Z),append(X,Y,Z)}

With a new predicate p1/4 derived as 01,

01 = piCA ,X, Y ,Z): -member (A ,Z) ,ap'pend(X, Y ,Z) .

we get
Vo = {01} Po = T U {01}

Step 1: By unfolding of the first formula of 01 's body
(member(A,Z»), we get

T5 = piCA, X, Y, [A I ZJ) : -append (X , Y, [A I Z]) .

351

P4 = T U {T5'. T6'. T7. TS. T9. T10}.

Step 5: Folding T10 by 01 generates

T10' = p3(A,Z,[BIX] ,Y,B) :-p1(A,X,Y,Z).

Accordingly.

Po = T U {T5'. T6'. T7. T8. T9. T10'}.

Ever~" clause in Po is modular. As a result.
member (A, Z) , append eX, Y ,Z) has been transformed
into p1 (A, X, Y, Z). preserving equivalence. and new
predicates p1/4.p2/4. and p3/5 have been defined with
T5' .T6' .T7.TS.T9. and T10'.

3.6.3 Example of constrained PST unification

e nification between constra,ined PSTs is done with
PST unification followed by the transformation of rele
vant constraints.

The following example from [Eisele and Done
88] shows unification between two disjullctive feature
structures:

b = +
c =- and - -

T6 = piCA,X, Y, [B I Z]) : -member (A , Z), append(X, Y, [B I Z]).
b =

c = +
) [a-[b-vll

d = V J

PI = T U {T5. T6}

Step 2: By defining new predicates p2/4 and p3/5 as
02,03,

T5' = p1(A,X,Y, [Alz]) :-p2(X,Y,A,Z).
T6' = p1(A,X,Y, [Biz]) :-p3(A,Z,X,Y,B).
02 = p2(X,Y,A,Z) :-append(X,Y, [Alz]).
03 = p3(A,Z,X,Y,B):-member(A,Z),append(X,Y, [BIZ]) .

we get

V 2 = {01,02,03} P2 = Tu {T5',T6',02.03}

Step 3: By unfolding 02,

T7 = p2([], [Alz] ,A,Z).
TS = p2([BIXJ ,Y,A,Z) :-append(X,Y,Z).

P3 = Tu {T5',T6',T7.TS.03}

Step 4: Unfolding the second formula of 03'13 body
(append (X, Y , [B I zJ)) gives

These disjullctin' feat ure structures aj'(-' C'ncoded
in the two cow.;trained PST s. X={ a/U} ,s CU) and
Y={a/{b/V},d/V}. where

s({b/+,c/-}).
s ({b/ - , c/ + }) .

% definition of s/l

PST unificatioll between X and Y gi\"es

X=Y={a/U,d/V},U={b/V},s(U).

There is a dependency in terms of a label b because
Cmp(s,l)={b,c}.

B~" defining a new predicate c 1/2. U={b/V}, s (U)
becomes equivalent to U={b/V}, c1(u, V). Here. c1/2 is
defined as follows. :;

c1({c/-},+) .
c1({c/+},-) .

)iote that X=Y={a/U, d/V}, U={b/V}, c1CU, V) dops
not have any dependency because Cmp(c1, l)={c}.

5Precisely. abstractioll operation in [Tsuda 91] is used in this
T9 =p3(A,Z,[],[BIZJ,B):-member(A,Z). transformation. III aiJ.stractloll. PST unifications art' made ill
T10 = p3 (A, Z, [B I xJ , Y , B) : -member (A, Z) ,append (X, Y , Z) . terms of relevant labels alont' for efficiency.

352

4 JPSG parser in eu-Prolog

JPSG (Japanese Phrase Structure Grammar)[Gunji 86]
is a constraint-based and unification-based grammar
designed specifically for Japanese. It is being developed
by the PSG working group at ICOT.

To implement unification-based grammars, we have
to consider how to describe and process feature struc
tures for the first time. In cu-Prolog, PST enables
the natural implementation of non-disjunctive feature
structures. The labels of PST correspond to the fea
tures of a feature structure. As mentioned earlier,
disjunctive .feature structures correspond to constained
PSTs.

In cu-Prolog, both disjunctive feature structures and
structural principles are treated as constarints in CHC.

4.1 Escooing Lexical Ambiguity

As an example of the disjunctive feature structures,
this subsection explains lexical ambiguities in this sub
section. Consider the lexicons of homonyms or poly
semic words. If the lexicon of an ambiguous word is
divided'into plural entries in terms of its ambiguity, the
parsing process may be inefficient in that it sometimes
backtracks to consult the lexicon. In constraint-based
natural language processing, such ambiguity is packed
as a constraint in a lexicon.

Below is a sample lexicon of Japanese auxiliary verb
"reru." "reru" follows a verb whose inflection type is
vs or vs1. If the adjacent verb is transitive, "reru" in
dicates plain passive. If the verb is intransitive. "reru"
indicates affective passive 6. These combinations are
represented by adding constraints of reru_form/1 and
reru_sem/4 in one lexical entry.

y.y. lexical entry of "reru"
lex(reru,{sc/SC, sem/Sem,

adjacent/{pos/v,infl/I,sc/VSC,sem/Sem}});
reru_form(I), % inflection (constraint)
reru_sem(VSC,Vsem,SC,Sem).

% combination of subcat and sem (constraint)

Y.%%%Y.% definition of constraints %%Y.%%Y.
reru_form(vs). Yo inflection type of the adjacent verb
refu_form(vsl).

Yo constraint for intransitive (affective) passive
reru_sem([{form/ga,sem/Sbj}],Sem,

[{form/ga,sem/A},{form/ni,sem/Sbj}],
affected(A,Sem».

Yo constraint for transitive (normal) passive
reru_sem([{form/ga,sem/Sbj},{form/wo,sem/Obj}] ,

Sem,
[{form/ga,sem/Obj},{form/ni,sem/Sbj}] ,
Sem).

6For example, "Ken ga arne ni fu-ra-reru" (Ken is affect.ed
by the rain.)

This lexicon is a representation of the following dis
junctive feature structure.

Although the lexicon is ambiguous, however. many
kinds of constraints are automatically accumulated for
solving during parsing. The disambiguation process in
parsing is naturally realized by the constraint trans
formation of cu-Prolog. It has no need to write any
special procedure for disambiguation.

4.2 Eacoding Structural PriBciple

As mentioned in Section 2, the structural principles of
JPSG are relations among features of three categories
in a local tree. Intuitively, structure principles are en
coded as constraints to a phrase structure rule:

psr(M, D, H); sPl(M, D, H), ... , sPn(M, D, H).

Here, psr / tl j, a phrase structure rule and each spd3 is
a structure principle.

In cu-Prolog, these structural principles are evalu
ated flexibly with heuristics. In Prolog, however. above
phrase structure rule is represented as

psr(M.D. H) : -spl(M.D,H) sPnU\lI, D. H).

Each principle is always evaluated sequentially. Prolog,
therefore. is not well-suited for constraint based gram
mars because it is impossible to stipulate in advance
which kind of linguistic constraints must be processed
in what order.

As the first example, the principle of the sem feature
in Section 2 is encoded as a constraint sfp (M, D , H), .
where

sfp({sem/HS},{mod/+},{sem/HS}).
sfp({sem/HS},{mod/+},{sem/HS}).

As the second example, the Foot Feature Principle is
defined as follows[Gunji 86].

The value of FOOT feature of the mother uni
fies with the union of those of her daughters.

It is represented as constraint ffp(M,D ,H). where

ffp({foot/MF},{foot/DF},{foot/HF})
union(DF,HF,MF).

5 Implementation

cu-Prolog has been implemented in the C language of
UNIX4.2/3BSD and the Apple Macintosh[Sirai 91]. cu
ProloglII [Tsuda et al. 92] is the latest implementation.

This section presents some implementation issues
that relate particularly to the constraint transformer.

5.1 C6BStratBt TraBSformer

5.1.1 Constraint Transformation Strategy

cu-Prolog uses the following three clause pools during
. constraint transformation.

DEFINITION: derivation clauses of new predicates

NON-MODULAR: non-modular clauses

MODULAR: modular clauses

The following is the transformation procedure of cu
Prolog.

1. If DEFINITION IS not empty, remove one clause
from DEFINITION and unfold it.

2. If DEFINITION is empty but NON-MODULAR is not
empty, remove one clause N from NON-MODULAR. If
N's head is modular, unfold N. If not, fold N or
derive new predicates to N's body.

3. Repeat the above operations until DEFINITION and
NON-MODULAR are both empty.

5.1.2 Heuristics

One of the outstanding features of cu- Prolog IS the
heuristics used in the constrai.nt transformation.

The following three choices are available.

• selection of a clause from DEFINITION

• selection of a clause from NON-MODULAR

• selection of a formula to unfold

DEFINITION and NON-MODULAR are implemented by
stacks, that is, the constraint transformer selects the
latest. In unfolding, the· activation value of each atomic
formula is computed from the following formulas and
the atomic formula of the highest value is unfolded.

Arity

Const

Vnum

Funct

Rec

arity of the formula

number of arguments that bind to constants

total number of occurrence of variables

in the formula

number of arguments that bind to

complex terms

If the predicate is recursively defined

353

then 1. otherwise 0

Defs

Units

number of definition clauses of the predicate

number of unit clauses in the

predicate definition

Facts = If Defs = Units then L otherwise 0

The activation value A of an atomic formula is com
pu ted using the following formula.

A = :3 * Const + 2 * Funct + v'nun? - De.r~ + Cnits

-2 * Rec + :3 * Facts

We define each factor of the activation value as in
cluding some empirical heuristics of [Tsuda et al. 89a].
There may, however. be more effective heuristics with
more factors or with a non-linear formula[Hasida 91].

5.2 Example of eu-PrologIII

Figure 1 is an example of disjunctive feature unification
in [Kasper 87].

Figure 2 is an example of the JPSG parser in cu
ProloglII. For ambiguous sentences. the parser returns
the corresponding feature structure with constraints.

6 Concluding Remarks

This paper outlined cu-Prolog. then covered the dis
junctive feature structure and parsing JPSG.

We would like to stress that every feature men
tioned in this paper was equally processed in the same
framework as a constraint transformation. In com
parison with many conventional approaches. our ap
proaches. including Hasida's DP (Dependency Propa
gation) [Hasida 91]. are far more general and fie xi blf'
frameworks for cOllstraint- based natural language pro
cessing.

Acknowledgment

The author thanks Hidetosi Sirai of Chuk.vo Cni
versity for his cooperation in implementing Cll- Prolog.
Thanks are also -due to Kazumasa Yokota. Hideki Ya
sukawa. and Koiti Hasida and other members of ICOT
for their comments.

References

[Carpenter et al. 91] Bob Carpenter. Carl Pollard. and
Alex Franz. The Specification and Implementa
tion of Constraint-Based Cnification Grammar.
In Proc. of Second International Workshop 011

Parsing Technologies. pages 14:3-1;'):3. Sigparse
ACL. February 1991.

354

[Chomsky 81] Norm Chomsky. Lectures on GoveTn
ment and Binding. Foris. Dordrecht, 1981.

[Eisele and Dorre 88] Andreas Eisele and Jochen
Dorre. Unification of Disjunctive Feature Descrip
tions. In Proc. of 26th Ann'ual M~eeting of ACT.
pages 286-294, June 1988.

[Gunji 86] Takao Gunji. Japanese PhrasE St7'uctUrt
Grammar. ReideL Dordrecht, 1986.

[Hasida 91] Kaiti Hasida. Common Heuristics for Pars
ing, Generation, and Whatever. In Hlo'rkshop
on Reversible Grammar in Natural LanguagE Pro
cessing, Berkeley, 1991.

[Hasida and Sirai 86] Kaiti Hasida and Hidetosi Sirai.
Conditioned Unification. Computer Software,
3(4):28-38,1986. (in Japanese).

[Jaffar and Lassez 87] Joxan Jaffar and Jean-Louis
Lassez. Constraint Logic Programming. In Proc.
of 14th ACM POPL Confe'rence, pages 111-119.
Munich, 1987.

[Kasper 87] Robert T. Kasper. A Unification Method
for Disjunctive Feature Descriptions. In Proc.
of 25th Ann'ual lvleeting of ACT. pages 2:35--242.
July 1987.

[Kasper and Rounds 86] Robert T. Kasper and
William C. Rounds. A Logical Semantics for Fea
ture Structure. In PTOf. of]4th ACL Ann uul
]'vleeting, pages 257-266. 1986.

[Kay 8.S] Martin Kay. Parsing in Functional Cnification
Grammar. In David R. Dowty. Lauri Karttunen.
and Arnold M. Zwicky, editors, Natural Languagf
Parsing, chapter 7. pages 2.51-278. Cambridge
University Press, 198.5.

[Mukai 88] Kuniaki Mukai. Partially Specified Term in
Logic Programming for Linguistic Analysis. In
Proc. of the International Conference of Fifth
Generation Computer Systems. pages 479-488.
ICOT. OHMSHA and Springer-Verlag, 1988.

[Pollard and Sag 87] Carl Pollard and Ivan .:l. Sag.
Information-Based Synta.t and Sf mantic8. 1'01. J
Fundamentals. CSLI Lecture \"otes Series :\o.B.
Stanford:CSLI. 1987.

[Shieber 86] Stuart M. Shieber. .4n Introduction to
Unification-Based Approach to Grammar. CSLI
Lecture Notes Series No.4. Stanford:CSLI. 1986.

[Sirai 91] Hidetosi Sirai. A Guide to MacCTP. un
published. 1991. (available by anonyous ftp from
csli.stanford.edu (pub/MacCup)).

[Tamaki and Sato 83] Hisao Tamaki and Taisuke Sato.
Unfold/Fold Transformation of Logic Programs.
In Proc. of Second International ConfeTencE on
Logic Programming, pages 127-1:3~, 1983.

[Tsuda 91] Hiroshi Tsuda. Disjunctive Feature Struc
ture in cu-Prolog. In 8th Conf. Proc. of Japan
Society of Softwart Science and Technology. pages
·50.5-:308.1991. (in Japanese)

[Tsuda and Hasida 90] Hiroshi Tsuda and Kaiti
Hasida. Parsing as Constraint Transformation
-- an Extension of cu-Prolog. In PrOf. of thE
Seo'ul Init rnatio'nal Conference 011 Natural Lan
guagE Processing, pages 325-331. 1990.

[Tsuda et al. 89a] Hiroshi Tsuda, Kaiti Hasida. and
Hidetosi Sirai. cu-Prolog and its Application to
a JPSG Parser. In K.Furukawa. H. Tanaka. and
T.Fujisaki, editors, Logic Programming '89, pages
134-143. Springer-Verlag LNAI-485, 1989.

[Tsuda et al. 89b] Hiroshi Tsuda, Kaiti Hasida. and
Hidetosi Sirai. JPSG Parser on Constraint Logic
Programming. In PTOC. of 4th ACL European
Chapttr, pages 9.5-102. 1989.

[Tsuda et al. 92] Hiroshi Tsuda. Kaiti Hasida. and
Hidetosi Sirai. cu-PrologIII System. ICOT Tech
nical Memorandum. ICOT TM-1160. 1.992.

eel ({voice/passive ,trans/trans , subj/X,goal/X}) . Yo definition of the unconditional conjuncts
ccl({voice/active, subj/X,actor/X}).
cc2({trans/intrans, actor/{person/third}}).
cc2({trans/trans, goal/{person/third}}).
cc3({numb/sing, subj/{numb/sing}}).
cc3({nuab/pl, subj/{numb/pl}}).

1. disjunctive feature unification (user input)

355

~U={rank/clause, subj/{case/nom}}, ccl(U) ,cc2(U) ,cc3(U) , U={subj/{lex/you,person/second,numb/pl}}.

1. answer : equivalent constraint
solution = cO(U_O, {subj/{case/nom}, rank/clause}, {subj/{person/second, numb/pI, lex/you}})

1. definitions of a new predicate (cO)
cO(_pl, _pl, _pl) :- cc2(_pl), ccl(_pl);

_pl={subj/{person/second, numb/pI, case/nom, lex/you}, numb/pI, rank/clause}.

CPU time = 0.150 sec (Constraints Handling = 0.000 sec)

>:-cO(X,_,_). 1. solve the new constraint
success. Yo X is the final answer of the unification.

X = {voice/active, trans/trans, subj/{person/second, numb/pI, case/nom, lex/you},
goal/{person/third}, actor/{person/second, numb/pI, case/nom, lex/you}, numb/pI, rank/clause};

Lines beginning with "(I" are user inputs. To this input, cu- Prolog returns equivalent modular constraint and definition clauses of

newly defined predicates.

Figure 1: Disjunctive feature unification

356

_:-p([ken.ga.ai.suru]). 1. user input of ((Ken ga ai - suru.))

rer.1. parse tree
{sem/[10ve.V7_2030,V6_2029]. eore/{form/Form_1381. pos/v}, sc/V1_2024.
ref1/ []. slash/V3_2026. ps1/ [] .ajn/ []. aje/ [J }--- [suff_p]
I
1--{sem/[10ve.V7_2030.V6_2029], eore/{pos/v}, se/VO_2023, refl/[],

slash/V2_2025, ps1/ [], ajn/ [] , aj e/ [] }--- [subeat_p]
I
I--{sem/ken, eore/{form/ga, pos/p}, se/[], ref1/[], slash/[],

ps1/ [] , ajn/ [] • aj e/ [] }--- [adj aeent_p]
I
I--{sem/ken, eore/ {form/n, pos/n}, se/ [] , ref1/ [] , slash/ [] ,

ps1/ [J , ajn/ [] , aj e/ [] }--- [ken]

I __ {sem/ken, eore/{form/ga, pos/p}, se/[], ref1/[], slash/[] ,ps1/[], ajn/[],
aje/[{sem/ken, eore/{pos/n}, se/[], ref1/ReflAC_70}]}---[ga]

1 __ {sem/[10ve,V7_2030,V6_2029], eore/{form/vs2, pos/v}}---[ai]

' __ {sem/[10ve,V7_2030,V6_2029], eore/{form/Form_1381, pos/v}, se/[], ref1/[],
slash/[], ps1/[], ajn/[], aje/[{sem/[10ve,V7_2030,V6_2029],
eore/{form/vs2, pos/v}, se/[], ref1/ReflAC_1493}]}---[suru]

category= {sem/[10ve,V7_2030,V6_2029], eore/{form/Form_1381, pos/v},
sc/V1_2024, refl/[], slash/V3_2026, psl/[], ajn/[], aje/[]} Y.category

constraint= e40 (VO _2023, VL2024, V2_2025, V3_2026, V4_2027, V5 _2028,
{sem/ken, eore/{form/ga, pos/p}, se/[], refl/[], slash/[], ps1/[],
ajn/[], ajc/[]}, V6_2029, {sem/V6_2029, core/{form/wo, pos/p}}, V7_2030,
{sem/V7_2030, core/{form/ga, pos/p}}),

syu_ren(Form_1381) Y.constraint about the category
true.
CPU time = 2.217 sec (Constraints Handling = 1. 950 sec)

_ : -c40 (V1, _, _, V3, _, _, _, V6, _ , V7, _) . Y.so1 ve constraint
V1=[] V3=[{sem/VO_4}] V6=VO_4 V7=ken; 1. solution 1
V1 = [{sem/VO_4, eore/{form/wo, pos/p}}] V3 = [] V6 = VO_4' V7 = ken; 1. solution 2

no.
CPU time = 0.017 sec (Constraints Handling = 0.000 sec)

The parsing of "Ken ga ai-suru" that has two meanings: "Ken loves (someone)" or "(someone) whom Ken loves." The parser
draws a corresponding parse tree and returns the category of the top node with constraints. In this example, the ambiguity of the
sentence is shown in the two solutions of the constraint c40.

Figure 2: JPSG parser: disambiguation

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 357

Model Generation Theorem Provers
on a Parallel Inference Machine

Masayuki Fujita
Miyuki Koshimura*

Ryuzo Hasegawa
Hiroshi Fujitat

Institute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

{mfujita, hasegawa, koshi}@icot.or.jp fujita@sys.crl.melco.co.jp

Abstract

This paper describes the results of the research and devel
opment on parallel theorem provers being conducted at
ICOT. We have implemented a model-generation based
parallel theorem prover called MGTP in KL1 on a dis
tributed memory multi-processor, Multi-PSI, and on a
parallel inference machine with the same architecture,
PIM/m. Currently, we· have two versions of MGTP: one
is MGTP /G, which is used for dealing with ground mod
els, and the other is MGTP /N, used for dealing with
non-ground models. While conducting research and de
velopment on the MGTP provers, we have developed sev
eral techniques to improve the efficiency of forward rea
soning theorem provers. These include model generation
and hyper-resolution theorem provers. First, we devel
oped KL1 compilation techniques to translate the given
clauses to KL1 clauses, thereby achieving good efficiency.
To avoid redundancy in conjunctive matching, we devel
oped RAMS, MERC, and ~-M methods. To reduce the
amount of computation and space required for obtaining
proofs, we proposed the idea of Lazy Model Generation.
Lazy model generation is a new method that avoids the
generation of unnecessary atoms that are irrelevant to
obtaining proofs, and provides flexible control for the ef
ficient use of resources in a parallel environment. For
MGTP /G, we exploited OR parallelism with a simple al
location scheme, thereby achieving good performance on
the Multi-PSI. For MGTPjN, we exploited AND paral
lelism, which is rather harder to obtain than OR par
allelism. With the lazy model generation method, we
have achieved a more than one-hundred-fold speedup on
a PIM/m consisting of 128 PEs.

*Present address: Toshiba Information Systems
2-1 Nissin-cho, Kawasaki-ku, Kawasaki, Kanagawa 210, Japan

tPresent address: Mitsubishi Electric Corporation
8-1-1 Tsukaguchi-honmachi, Amagasaki, Byogo 661, Japan

1 Introduction

The research on parallel theorem proving systems has
been conducted under the Fifth Research Laboratory at
ICOT as a part of research and development on the
problem-solving programming module. This research
aims at the realization of highly parallel advanced in
ference mechanisms that are indispensable in building
intelligent knowledge information systems.

The immediate goal of this research project is to de
velop a parallel automated reasoning system on the par
allel inference machine, PIM, based on KL1 and PIMOS
technology [Chikayama et. al. 88]. We aim at ap
plying this system to various fields such as intelligent
database systems, natural language processing, and au
tomated programming.

The motive for the research is twofold.
From the viewpoint of logic programming, we try to

further extend logic programming techniques that pro
vide the foundation for the Fifth Generation Computer
System. The research will help those aiming at extend
ing languages and/or systems from Horn clause logic to
full first-order logic. In addition, theorem proving is one
of the most important applications that could effectively
be built upon the logic programming systems. In partic
ular, it is a good application for evaluating the abilities
of KL1 and PIM.

From the viewpoint of automated reasoning, on the
other hand, it seems that the logic programming com
munity is ready to deal with more classical and difficult
problems [Wos et. al. 84] [Wos 88] that remain unsolved or
have been abandoned. We might achieve a breakthrough
in the automated reasoning field if we apply logic pro
gramming technology to theorem proving. In addition,
this trial would also cause feedback for logic program
ming technology.

Recent developments in logic programming languages
and machines have shed light upon the problem of
how to implement these classical but powerful meth
ods efficiently. For instance, Stickel developed a model-

358

elimination[Loveland 78] based theorem prover called
PTTP [Stickel 88]. PTTP is able to deal with any
first-order formula in Horn clause form (augmented by
contrapositives) without loss of completeness or sound
ness. It works by employing unification with occur
rence check, the model elimination reduction rule, and
iterative deepening depth-first search. A parallel ver
sion of PTTP, called PARTHENON[Bose et. al. 89],
has been implemented by Clarke et al. on a shared
memory multiprocessor. Schumann et al. built a
connection-method[Bibel 86] based theorem-proving sys
tem, SETHEO[Schumann 89], in which a method identi
cal to model elimination is used as a main proof mecha
nism. Manthey and Bry presented a tableaux-like theo
rem prover, SATCHMO[Manthey and Bry 88], which is
a very short and simple program in Prolog.

As a first step for developing KLI-technology theo
rem provers, we adopted the model generation method
on which SATCHMO is based. Our reasons were as fol
lows:

(1) A useful feature of SATCHMO is that full unifi
cation is not necessary, and that matching suffices
when dealing with range-restricted problems. This
makes it very convenient for us to implement provers
in KLI since KLI, as a committed choice language,
provides us with very fast one-way unification.

(2) It is easier to incorporate mechanisms for lemmati
zation, subsumption tests, and other deletion strate
gies that are indispensable in solving difficult prob
lems such as condensed detachment problems [Wos
88][Overbeek 90][McCune and Wos 91].

In implementing model generation based provers, it is
important to avoid redundancy in the conjunctive match
ing of clauses against atoms in model candidates. For
this, we proposed the RAMS [Fujita and Hasegawa 91]
and MERC [Hasegawa 91a] methods.

A more important issue with regard to the efficiency
of model generation based provers is how to reduce the
total amount of computation and memory required for
proof processes. This problem becomes more critical if
we try to solve harder problems that require deeper infer
ences (longer proofs) such as Lukasiewicz problems. To
solve this problem, it is important to recognize that prov
ing processes are viewed as generation-and-test processes
and that generation should be performed only when test
ing requires it. We proposed the Lazy Model Generation
method in which the idea of demand-driven computation
or 'generate-only-at-test' is implemented. Lazy model
generation is a new method that avoids the generation
of unnecessary atoms that are irrelevant to obtaining
proofs, and provides flexible control for the efficient use
of resources in a parallel environment.

We have implemented two types of model generation
prover: one is used for ground models (MGTP IG) and
the other is used for non-ground models (MGTP IN).

In implementing MGTP IG, we developed a compil
ing technique to translate the given clauses into KLI
clauses by using advantage (1) listed above. This makes
MGTP IG very simple and efficient. MGTP IG can prove
non-Horn problems very efficiently on a distributed mem
ory multi-processor, the Multi-PSI, by exploiting OR
parallelism.

MGTP IN, on the other hand, aims at proving diffi
cult Horn problems by exploiting AND parallelism. For
MGTP/N, we developed new parallel algorithms based
on lazy model generation method. They run with op
timal load balancing on a distributed memory architec
ture, and require a minimal amount of computation and
memory to obtain proofs.

In the next section, we explain the model generation
method on which our MGTP provers are based. In Sec
tion 3, we discuss the problem of meta-programming in
KLI, and outline the characteristics of MGTP IG and
MGTP IN. In Section 4, we describe the essence of the
main techniques developed for improving the efficiency
of model generation theorem provers. In Section 5,
we present OR parallelization and AND parallelization
methods developed for MGTP/G and MGTP/N. Section
6 provides a conclusion.

2 Model Generation Theorem
Prover

Throughout this paper, a clause is represented in an im
plicational form:

where A(I ::; i ::; n) and OJ(1 ::; j ::; m) are atoms;
the antecedent is a conjunction of AI, A2 , • •• , An; the
consequent is a disjunction of 01 , O2 , • •• , Om. A clause
is said to be positive if its antecedent is true(n = 0), and
negative if its consequent is false(m = 0). A clause is
also said to be tester if its consequent is false(m = 0),
otherwise it is called generator.

The model generation method incorporates the follow
ing two rules:

• Model extension rule: If there is a generator clause,
A -+ 0, and a substitution a such that Aa is satis
fied in a model candidate M and Oa is not satisfied
in M, then extend M by adding Oa into M.

• Model rejection rule: If a tester clause has an an
tecedent Aa that is satisfied in a model candidate
M; then reject M.

We call the process of obtaining Aa a conjunctive
matching of the antecedent literals against elements in
a model. Note that the antecedent (true) of a positive
clause is satisfied by any model.

The task of model generation is to try to construct a
model for a given set of clauses, starting with a null set as
a model candidate. If the clause set is satisfiable, a model
should be found. The method can also be used to prove
that the clause set is unsatisfiable, by exploring every
possible mode~ candidate to see that no model exists for
the clause set.

For example, consider the following set of clauses,
81[Manthey and Bry 88]:

01: p(X), s(X) ~ false.
02: q(X), s(Y) ~ false.
03: q(X) ~ s(J(X)).
04: r(X) ~ s(X).
05: p(X) ~ q(X); r(X).
06: true ~ p(a); q(b).

cP

~
p(a) q(b)

A IC3
q(a) r(a) s(J(b))

IC3 IC4 IC2
s(J(a)) s(a)

IC2 ICI
x

x X

Figure 1: A proof tree for 81

A proof tree for the 81 problem is depicted in Fig. l.
VVe start with an 'empty model, Mo = cPo Mo is first
expanded into two cases, Ml = {p(a)} and M2 = {q(b)},
by applying the model extension rule to 06. Then Ml
is expanded .by 05 into two cases: M3 = {p(a), q(a)}
and M4 = {p(a), r(a)}. M3 is further extended by 03
to Ms = {p(a),q(a),s(J(a))}. Now with Ms the model
rejection rule is applicable to 02, thus .A1s is rejected and
marked as closed. On the other hand, M4 is extended
by 04 to M6 =. {p(a),r(a),s(a)} which is rejected by
01. In a similar way, the remaining model candidate
M2 is extended by 03 to M7 = {q(b), s(J(b))} , which is
rejected by 02. Now that there is no way to construct
any model candidate, we can conclude that the clause set
81 is unsatisfiable.

The model generation method, as its name suggests, is
closely related to the model elimination method. How
ever, the model generation method is a restricted version
of the model elimination method in the sense that the

359

polarity of literals in a clause of implicational form is
fixed to either positive or negative in the model gener
ation method, whereas it is allowed to be both positive
and negative in the model elimination ·method. More
over, from the procedural point of view, model genera
tion is restricted to proceeding bottom-up (as in forward
reasoning) starting at positive clauses (or facts). These
restrictions, however, do not hurt the refutation com
pleteness of the method.

Model generation can also be viewed as unit hyper
resolution. Our calculus, however, is much closer to
tableaux calculus in the sense that it explores a tree,
or a tableau, in the course of finding a proof. Indeed, a
branch in a proof tree obtained by the tableaux method
corresponds exactly to a model candidate.

3 Two Versions of MGTP

3.1 Meta-programming in KL1

Prolog-Technology Theorem Provers such as PTTP and
8ATCHMO utilize the fact that Horn clause problems
can be solved very efficiently. In these systems, the the
orem being proven is represented by Prolog clauses, and
most deductions are performed as normal Prolog execu
tion. However, that approach cannot be taken in KLI
because a KL1 clause is not just a Horn clause; it has
extra-logical constructs such as a guard and a commit
operator.

We should, therefore, treat the clause set as data rather
than as a KLI program. In this case, the inevitable prob
lem is how to represent variables appearing in a given
clause set. Two approaches can be considered for this
problem:

(1) representing object-level variables with KL1 ground
terms, or

(2) representing object-level variables with KLI vari
ables.

The first approach might be the right path in meta
programming, where object- and meta-levels are strictly
separated, thereby providing clear semantics. However,
it forces us to write routines for unification, substitution,
renarping, and all the other intricate operations on vari
ables and environments. These routines would become
extremely large and complex compared to the main pro
gram, and would make the overhead bigger.

In the second approach, most operations on variables
and environments can be performed beside the underly
ing system, rather than as routines running on top of it.
This means that a meta-programmer does not have to
write tedious routines, and gains high efficiency.

Also, a programmer can use the Prolog var predicate
to write routines such as occurrence checks in order to

360

make built-in unification sound, if such routines are nec
essary. This approach makes the program much more
simple and efficient, even though it makes the distinc
tion between object- and meta-levels ambiguous.

In KL1, however, the second approach is not always
possible. This is because the semantics of KL1 never
allow us to use a predicate like var. In addition, KL1
built-in unification is not the same as its Prolog coun
terpart in that unification in the guard part of a KL1
clause can only be one-way, and a unification failure in
the body part is regarded as a program error or exception
that cannot be backtracked.

3.2 Characteristics of MGTP jG and
MGTP/N

Taking the above discussions into consideration, we de
cided to develop both the 1\1GTP IG and MGTP IN
provers so that we can use effectively them according
to the problem domains dealt with.

The ground version, MGTP IG, aims to support finite
problem domains, which include most problems in vari
ous fields, such as database processing and natural lan
guage processing.

For ground model cases, the model generation method
makes it possible to use just matching, rather than full
unification, if the problem clauses satisfy the range
TestTicteciness condition 1 [J\,1anthey and Bry 88]. This
suggests that it is sufficient to use KL1 's head unification.
Thus we can take the KL1 variable approach for rep
resenting object-level variables, thereby achieving good
performance.

The key points of KL1 programming techniques devel
oped for MGTP/G are as follows: (Details are described
in the next section.)

• First, we translate a given set of clauses into a cor
responding set of KL1 clauses. This translation is
quite simple.

• Second, we perform conjunctive matching of a literal
in a clause against a model element by using KL1
head unification.

• Third, at the head unification, we can automatically
obtain fresh variables for a different instance of the
literal used.

The non-ground version, MGTP IN, supports infinite
problem domains. Typical examples are mathematical
theorems, such as group theory and implicational calcu
lus.

1 A clause is said to be range-restricted if every variable in the
clause has at least one occurrence in its antecedent. For example, in
the S I problem, all the clauses, GI-G6, are range-restricted since no
va.riable appears in clause G6; the variable X in clauses GI, G3, G4
a.nd G5 has an occurrence in their antecedents; and variables X and
Y in G2 have their occurrences in its antecedent.

c(1,p(X),[], R):-trueIR=cont.
c(1,s(X),[p(X)],R):-trueIR=false.
c(2,q(X),[], R):-trueIR=cont.
c(2,s(Y),[q(X)],R):-trueIR=false.
c(3,q(X),[], R):-trueIR=[s(f(X))].
c(4 r(X),[], R):-trueIR=[s(X)].
c(5:p(X),[], R):-trueIR=[q(X),r(X)].
c(6,true,[], R):-trueIR=[p(a),q(b)].
otherwise.
c(_,_,_,R):-trueIR=fail.

Figure 2: Sl problem transformed to KL1 clauses

For non-ground model cases, where full unification
with occurrence check is required, we are forced to fol
low the KL1 ground terms approach. However, we do
not necessarily have to maintain variable-binding pairs
as processes in KLl. We can maintain them by using
the vector facility supported by KL1, as is often used in
ordinary language processing systems. Experimental re
sults show that vector implementation is several hundred
times faster than process implementation.

In this case, however, we cannot use the programming
techniques developed for MGTP /G. Instead, we have to
use a conventional technique, that is, interpreting a given
set of clauses instead of compiling it into KL1 clauses.

To ease the programmer's burden, we developed Meta
LibTaTy[Koshimura et. al. 90]. This is a collection of
KL1 programs to support meta-programming in KLl.
The meta-library includes facilities such as full unifica
tion with occurrence check, variable management rou
tines, and term memory[Stickel 89][Hasegawa 91c].

4 Technologies Developed
Efficiency

4.1 KL1 Compiling Method

for

This section presents the compiling techniques developed
for MGTP /G to translate given clauses to KL1 clauses.
It also shows a simple MGTP /G interpreter obtained
by using the techniques[Fuchi 90][Fujita and Hasegawa
90][Hasegawa et. al. 90a].

4.1.1 Transforming problem clauses to KL1
clauses

Our MGTP /G prover program consists of two parts:
an interpreter written in KL1, and a set of KL1 clauses
representing a set of clauses for the given problem. Dur
ing conjunctive matching, an antecedent literal expressed
in the head of a KL1 clause is matched against a model
element chosen from a model candidate which is retained
in the interpreter.

Although conjunctive matching can be implemented
simply in KL1, we need a programming trick for support-

ing variables shared among literals in a problem clause.
The trick is to propagate the binding for a shared variable
from one Ii teral to another.

To understand this, consider the previous example, Sl.
The original clause set is transformed into a set of KL1
clauses, as shown in Figure 2. In c (N ,P , S ,R) , N indicates
clause number; P is an antecedent literal to be matched
against an element t.aken from a model candidate; S is a
pattern for receiving from the interpreter a stack of literal
ins tances appearing to the left of P, which have already
matched model elements; and R is the result returned to
the interpreter when the match succeeds.

Notice that original clause C1 (p(X), s(X) ----+ false.)
is translated to the first two KLl clauses. The conjunc
tive matching for C1 proceeds as follows. First, the in
terpreter picks up a model element, E}, from a model
candidate, and tries to match the first literal p(X) in
Cl against E1 by initiating a goal, c(l,E},[],Rd. If the
matching fails, then the resul t R1 = fail is returned by
the last KL1 clause. If the matching succeeds, then the
result R} = cont is returned by the first KL1 clause and
the interpreter proceeds to the next literal s(X) in C1,
picking up another model element, E2 , from the model
candidate and initiating a goal, c(l, E2 , [Ed, R2)' Since
the literal instance in the third argument, [Ed, is ground,
the variable X in [p(X)] in the head of the second KL1
clause gets instantiated to a ground term. At the same
time, the term s(X) in that head is also instantiated due
to the shared variable X. Under this instantiation, s(X)
is checked to see whether it matches E2 , and if the match
ing succeeds then the result, R2 = false, is returned.

4.1.2 A simple MGTP /G interpreter

With the problem clauses are transformed to KL1 clauses
as above, a simple interpreter is developed as shown in
Figure 32

.

The interpreter, given a list of numbers identifying
problem clauses and a model candidate, checks whether
the clauses are satisfiable or not. The top-level predicate,
clauses/5, dispatches a task, ante/7, to check whether
each clause is satisfied or not in the current model. If all
the clauses are satisfied in the current model, the result,
sat, is returned by sat/4 combining the results from the
ante processes.

For each clause in the given clauses, conjunctive
matching is performed between the elements in the model
candidate and the Ii terals in the antecedent of the clause
with ante/7 and ante1/9 processes. The conjunctive
matching for the antecedent literals proceeds from left to
right, by calling c/4 one by one. An ante process retains

21n the program, 'alternatively' is a KLI compiler directive
which gives a preference among clauses to evaluate their guards
in such a way that clauses above alternatively are evaluated
before those below it. The preference, however, may not be strictly
obeyed. This depends on implementation.

361

a stack, S, of literal instances. If the match succeeds at
a literal, Li, with a model element, P, then P is pushed
onto the stack S, and the task proceeds to matching the
next literal, Li+b together with the stack, [PIS].

According to the result of c/4: fail, cont, false
or list (F), an ante1/9 process determines what to do
next. If the result is cont, for example, ante1 will fork
multiple ante' processes to try to make every possible
combination of elements out of the current model for the
conjunctive matching.

If the conjunctive matching for all the antecedent lit
erals of a clause succeeds, a cnsq/6 process is called to
check the satisfiability of the consequent of the clause.
cnsq1/8 checks whether a literal in the consequent is a
member of the current model. If no literal in the con
sequent is a member of the current model, the current
model cannot satisfy the clause. In this case, the model
will be extended with each disjunct literal in the conse
quent of the clause by calling an extend/5 process.

After extending the current model, a clauses/5 pro
cess is called for each extension of the model, and the
results are combined by unsat/4. When a clauses pro
cess for some of the extended models returns sat as the
result, it means that a model is found and the clause
set is known to be satisfiable. If every extension of the
model leads to unsat, the current model is not a part of
any model for the given set of clauses.

Thus, if the top-level clauses/5 process returns sat
as the result, then the given clause set has a model and is
satisfiable, and if it returns unsat, then the given clause
set has no model and is unsatisfiable.

4.2 Avoiding Redundant Conjunctive
Matching

To improve the performance of the model generation
provers, it is essential to avoid, as much as possible, re
dundant computation in conjunctive matching.

Let us consider a clause, C, having two antecedent
literals. To perform conjunctive matching for the clause,
we need 'to pick a 'pair of atoms out of the current model
candidate, M. Imagine that, as a result of a satisfiability
check of the clause; we are to extend the model candidate
with ~, which is an atom in the consequent of the clause,
C, but not in M. Then, in the conjunctive matching for
the clause, C, in the next phase, we need to pick a pair
of atoms from M U~. The number of pairs amounts to:

(M U ~)2 = M x MUM x ~ U ~ x M U ~ x ~.

362

clauses(_,_,_,_,quit):-trueltrue.
alternatively.
clauses([JICs] ,C,M,A,B):-truel'

ante(J, [true 1M] ,[] ,C,M,Al,B),
sat(Al,A2,A,B), clauses(Cs,C,M,A2,B).

clauses([],_,_,A,_):-trueIA=sat.

ante(_,_,_,_,_,_,quit):-trueltrue.
alternatively.
ante(J,[PIM2],S,C,M,A,B):-truel

mgtp: c(J ,P ,S ,R) ,
antel(J,R,P,S,M2,C,M,A,B).

ante(_,[] ,_,_,_,A,_):-trueIA=sat.

antel(J,fail,_,S,M2,C,M,A,B):-truel
ante(J,M2,S,C,M,A,B).

antel(J,cont,P,S,M2,C,M,A,B):-truel
ante(J,M,[PIS] ,C,M,Al,B),
sat(Al,A2,A,B), ante(J,M2,S,C,M,A2,B).

antel(_,false,_,_,_,_,M,A,B):-truel
A=unsat,B=quit.

antel(J,F,_,S,M2,C,M,A,B):-list(F)1
cnsq(F,F,C,M,Al,B),
sat(Al,A2,A,B), ante(J,M2,S,C,M,A2,B).

cnsqC,_,_,_,_,quit):-trueltrue.
alternatively.
cnsq([DlIDs] ,F,C,M,A,B):-truel

cnsql(Dl,M,Ds,F,C,M,A,B).
cnsq([],F,C,M,A,_):-truel

extend(F,M,C,A,_).

cnsql(D,[DI_],_,_,_,_,A,_):-trueIA=sat.
cnsql(_,[],Ds,F,C,M,A,B):-truel

cnsq(Ds,F,C,M,A,B).
othenTise.
cnsql(D,[_IM2],Ds,F,C,M,A,B):-truel

cnsql(D,M2,Ds,F,C,M,A,B).

extendC, _, _,_ ,qu.it) : -true Itrue.
alternatively.
extend([DIDs],M,C,A,B):-truel

clauses(C,C,[DIM],Al,_),
unsat(Al,A2,A,B), extend(Ds,M,C,A2,B).

extend([],_,_,A,_):-trueIA=unsat.

sat(sat,sat,A,_):-trueIA=sat.
sat(unsat,_,A,B):-trueIA=unsat,B=quit.
sat(_,unsat,A,B):-trueIA=unsat,B=quit.

unsat(unsat,unsat,A,_):-trueIA=unsat.
unsat(sat,_,A,B):-trueIA=sat,B=quit.
unsat(_,sat,A,B):-trueIA=sat,B=quit.

Figure 3: A simple MGTP jG interpreter

M

It should be noted here that 1\11 x !II[pairs were already
considered in the previous phase of conjunctive match
ing. If they were chosen in this phase, the result would
contribute nothing since the model candidate need not
be extended with the same jj.. Hence, redundant consid
eration on M x-!l1[pairs should be avoided at this time.
Instead, we have to choose only the pairs which contain
at least one jj.. This discussion can be generalized for
cases in which we have more than two antecedent liter
als, any number of clauses, and any number of model
candidates.

Vie have taken two approaches to avoid the above re
dundancy. One approach uses a stack to keep the inter
mediate results obtained by matching a literal against an
element out of the model candidate. The other approach
recomputes the intermediate matching results without
keeping them.

{~D2[
01 X 11

02 X 11

03 ! 02 x M 01 X M !
i

01 81 X 11 i 82 X 11

82 i 83
t .. _ _ _ __ ~

A1 , A2, A3 ~C

Figure 4: RAMS method

4.2.1 RAMS Method

The RAMS (ramified-stack) method [Hasegawa et. al.
90a][Hasegawa et. al. 90b][Fujita and Hasegawa 91] re
tains in a stack an instance which is a result of matching
a literal against a model element. The use of this method

for a Horn clause case is illustrated in Figure 4, where
M is a model candidate and 6. is an atom picked from a
model-extending candidate.

• A stack called a literal instance stack (LIS), is as
signed to each antecedent literal, A, in a clause for
storing literal instances. Note that LIS for the last
literal expressed in dashed boxes needs not actually
be allocated.

• LIS is divided into tVI/O parts: Di and Si where
D i (i ~ 1) is a set of literal instances generated at
the current stage triggered by 6.; and Si is those
created in previous stages.

• A task, being performed at each literal, Ai, computes
the following:

Di+I := Di x 6. U Di X M U Si X 6. (i ~ 1)

where A x B denotes a set of pairs of an instance
taken from A and B. The above tasks are performed
from left to right.

For non-Horn clause cases, each LIS branches to make
a tree-structured stack when case splitting occurs. The
name 'RAMS' comes from this. The idea is as follows:

• A model is represented by a branch of a ramified
stack, and the model is extended only at the top of
the current stack.

• After applying the model extension rule to a non
Horn clause, the current model may be extended to
multiple descendant models.

• Every descendant model that is extended.from a par
ent model can share its ancestors with other sibling
models just by pointing to the top of the stack cor
responding to the parent.

• Each descendant model can extend the stack for it
self, independent of other sibling models.

The ramified-stack method not only avoids redundancy
in conjunctive matching but also enables us to share a
common model. However, it has one drawback: it tends
to require a lot of memory to retain intermediate literal
instances.

4.2.2 MERe Method

The MERC (Multi-Entry Repeated Combination)
method [Hasegawa 91a] tries to solve the above prob
lem using the RAMS method. This method does not
need a memory to retain intermediate results obtained
in the conjunctive matching. Instead, it needs to pre
pare 2n

- 1 clauses for the given clause having n literals
as its antecedent.

Al A2 A3

~ M M

M ~ M
M M ~
~ ~ M

~ M ~
M ~ ~

~ ~ ~

M
Generator

* For ground,and A 1 =1= A2 =1= A 3
(=1= means not-unifiable)

Figure 5: MERC method

363

An outline of the MERC method is shown in Fig
ure 5. For a clause having three antecedent literals,
AI, A 2 , A3 ~ C, we prepare seven clauses. Each of these
clauses corresponds to a repeated combination of 6. and
111, and performs conjunctive matching using the combi
nation pattern. For example, a clause corresponding to
a combination pattern [M, 6., 111] first matches literal A2
against 6.. If the match succeeds, it proceeds to match
the remaining literals, Al and A3 , against an element
picked from M. Note that each combination pattern in
cludes at least one 6., and that the [M, M, A1] pattern is
excluded.

For ground model cases, optimization can be used
to reduce the number of clauses by testing the unifi
ability of antecedent literals. For example, if any an
tecedent literal in the given clause is not unifiable with
the other antecedent literal in that clause, it is suffi
cient to consider the following three combination pat
terns: [6.,111, M],[1I1, 6., M] and [1\11, M, 6.] . The right
hand side in Figure 5 shows the clauses obtained after
making the unifiability test.

4.2.3 6.-M Method

The' problem with the MERC method is that the num
ber of prepared clauses increases exponentially as the
number of antecedent literals increases. In actual imple
mentation, we adopted a modified version of the MERC
method, which we call the 6.-M method. In place of mul
tiple entry clauses, the 6.-M method prepares a template
like:

{(6., 6.], [6., MJ, [M, 6.])

for clauses with two antecedent literals, and

{[6., 6.,6.], [6.,6., M], [6., M, 6.], [M, 6., 6.],

[6.,111, M], [M, 6., M], [M, M, 6.]}

364

for clauses with three antecedent literals, and so forth.
According to this pattern, we enumerate all possible com
binations of atoms for matching the antecedent literals of
given clauses.

There are some trade-off's between the RAMS method
and the MERC and 6-M methods. In the RAMS
method, every successful result of matching a literal Ai
against model elements is memorized so that the same
literal is not rematched against the same model element.
On the other hand, both the MERC and 6-M methods
do not need to memorized information on partial match
ing. However, they still contain a redundant computa
tion. For instance, in the computation for [M,6,6] and
[M, 6, A1] patterns, the common subpattern [M,6]' will
be recomputed. The RAMS method can eliminate this
sort of redundancy.

4.3 Lazy Model Generation

Model-generation based provers must perform the follow
ing three operations.

• create new model elements by applying the model
extension rule to the given clauses using a set of
model-extending atoms 6 and a model candidate
set M (model extension).

• make a subsumption test for a created atom to check
if it is su bsumecl by the set of atoms already being
created, usually by the current model candidate.

• make a false check to see if the unsubsumed model
element derives false by applying the model exten
sion rule to the tester clauses (rejection test).

The problem with the model generation method is the
huge growth in the number of generated atoms and in the
computational cost in time and space, which is incurred
by the generation processes.

To solve this problem, it is important to recognize that
proving processes are viewed as generation-and-test pro
cesses, and that generation should be performed only
when testing requires it.

For this we proposed a lazy model generation algo
rithm [Hasegawa 91b][Hasegawa 91d][Hasegawa et. al.
92a][Hasegawa et. ai. 92b] that can reduce the amount
of computation and space necessary for obtaining proofs.

This section presents several algorithms, including the
lazy algorithm, for the model generation method, and
compares them in terms of time and space. To simplify
the presentation, we assume that the problem is given
only in Horn clauses. However, the principle behind these
algorithms can be applicable to non-Horn clauses as well.

4.3.1 Basic Algorithm

The basic algorithm shown in Figure 6 performs model
generation with a search strategy in a breadth-first fash-

M:= cp;
D := {A I (true -t A) E a set of given clauses};
while D =I cp do begin

D :=D-6;
if CJMTester(6,M) :3 false

then return(success);
new:= CJA1Generator(6,M);
M :=MU6;
new' := subsumption(new, MUD);
D:= D Unew';

end return(fail)

Figure 6: Basic algorithm

ion. This is essentially the same algorithm as the hyper
resolution algorithm taken by OTTER [McCune 90] 3.

In the algorithm, M represents model candidate,
D represents the model-extending candidate (a set of
model-extending atoms which are generated as a result
of the application of the model extension rule and are
going to be added to M), and 6 represents a subset of
D. Initially, M is set to an empty set, and D is a set of
positive (unit) clauses of the given problem.

In each cycle of the algori thm,

1) 6 is selected from D,

2) a rejection test (conjunctive matching for the tester
clauses) is performed on 6 and M,

3) if the test succeeds then the algorithm terminates,

4) if the test fails then model extension (conjunctive
matching on the generator clauses) is performed on
6 and M, and

5) a subsumption test is performed on new against MU
D.

If D is empty at the beginning of a cycle, then the algo
rithm terminates as the refutation fails (In other words,
a model is found for the given set of clauses).

The conjunctive matching and subsumption test is
represented by the following functions on sets of atoms.

CJMCs(6,M) =
{(TC I (TAl,'" ,(TAn -t (TC

A AI," .,An -t C E Cs
A (TAi = C7B(B EMU 6)(1 ~ Vi ~ n)
A 3i(1 ~ i ~ n)C7Ai = C7B(B E .6.)}

subsumption(6,M) =
{C E 6 I VB E M(B dosen't subsume C)}

30TTER is a slightly optimized version of the basic algorithm
where negative unit clauses are tested on literals in new as soon as
they are generated as the full-test algorithm described in the next
section.

ltd := </>;

D := {A I (trtle ~ A) E a set of given clauses};
while D =I- </> do begin

D:= D -~;
new := C J ltdcenerator(6., ltd);
!vI := ltd U 6.;
new' := subsmnption(new, ltd U D);
if CJ.~dTester(new', ltd U D) 3 false

then return(success);
D:= D Unew';

end return(fail)

Figure 7: Full-test algorithm

4.3.2 Full-Test Algorithm

Figure 7 shows a refined version of the basic algorithm
called the full-test algorithm. The algorithm 1) selects
6. from D, 2) performs model extension using 6. and
j\1 generating new for the next generation of 6., 3) per
forms a subsumption test on new against AI U D, and
4) performs a rejection test on new', which passed the
su bsumption test, together with ltd U D.

Though this refinement seems to be very small on the
text level, the complexity of time and space is signifi
cantly reduced, as explained later. The points are as fol
lows. The algorithm performs subsumption and rejection
tests on all elements of new rather than on 6., a subset
of new generated in the past cycles. As a result, if a fal
sifying atom 4, X, is included in new, the algorithm can
terminate as soon as false is derived from X. That is,
the algorithm neither overlooks the falsifying atom nor
puts it into D as the basic algorithm does. Thus, it never
generates atoms which are superfluous after X is found.

4.3.3 Lazy Algorithm

Figure 8 shows another refinement of the basic algorithm,
the lazy algorithm. In this algorithm, it is assumed that
t'vvo processes, one for generator clauses and the other
for tester clauses, run in parallel and communicate with
each other.

The tester process 1) requests 6. to the generator pro
cess, 2) performs a subsumption test on 6. against ltdUD,
and 3) performs a rejection test on 6..

For the generator process,

1) if a buffer, Buf, used for storing a set of atoms which
are the results of an application of the model exten
sion rule, is empty, the generator selects an atom, e,
from D and sets a code for model extension (delay
CJM) for e and ltd onto Btlf,

2) waits for a request of 6. from the tester process, and

4 A falsifying atom, X, is an atom that satisfies the antecedent
of a negative clause by itself or in combination with MUD.

process tester:
repeat forever

reqtlest(generator, 6.);
6.' := stlbstlmption(6., MUD);
if CJMT(6.',M U D) E false

then return(success);
D:=DU6.'.

process generator:
repeat forever

while Btlf = </> do begin
D:=D-{e};
Btlf :=delayCJMc({e},M);
M:= Mu {e} end;

wait(tester);
6. :=forceBuf;

until D = </> and Buf = </>.

Figure 8: Lazy algorithm

3) forces the buffer, Buf, to generate 6..

365

delay (above) is an operator which delays the execu
tion of its operand (a function call). Hence, the function
call, CJ Mc({e}, M), will not be activated during 1), but
will be stored in Buf as a code. Later, at 3), when the
force operator is applied to Buf, the delayed function
call is activated. This generates the values that are de
manded. Using this mechanism, it is possible to generate
only the 6. that is demanded by the tester process. After
the required amount of 6. is generated, a delayed func
tion call for generating the rest of the atoms is put into
Buf as a continuation.

The atoms are stored in M and D in a way that makes
the order of generating and testing the atoms exactly
the same as in the basic algorithm. The point of the
refinement in the lazy algorithm is, therefore, to equalize
the speed of generation and testing while keeping the
order of atoms that are generated and tested the same as
that of the basic algorithm. This eliminates any excess
consumption of time and space due to over-generation of
redundant atoms.

4.4 Optimization of Unit Tester
Clauses

Given the unit tester clauses in the problem, the three
algorithms above can be further optimized. There are
two ways to do this.

One is a dynamic way called the lookahead method. In
this method, atoms are generated excessively in the gen
eration process in order to apply the rejection rule with
unit tester clauses. More precisely, immediately after
generating new, the generator process generates 'newnext,
which would be regenerated in a succeeding step. Then

366

newnext is tested with unit tester clauses. If the test fails,
then newnezt is discarded whereas new is stored.

< 6..,NI >::::} generate(A1 ,A2 -? C)::::} new

< new, j\1 U D >::::} generate(All A2 -? C) ::::} newnext

newnext ::::} test(A -? false)

The reason why neWnext is not stored is that testing
with unit tester clauses does not require M or D, but can
be done with only neWnext itself. On the other hand, for
tester clauses with more than one literal, testing cannot
be completed, since testing for combinations of atoms
from neWnext would not be performed.

newnext will be regenerated as new in the succeeding
step. This means that some conjunctive matching will be
performed twice for the identical combination of atoms
in a model candidate. However, the increase in computa
tional cost due to this redundancy is negligible compared
to the order of total computational cost.

The other method is a static one which uses partial
evaluation. This is used to obtain non-unit tester clauses
from a unit tester clause and a set of generator clauses
by resolving the two.

Generator: AI, A2 -? C.

Unit tester: A -? false.

N on-unit tester: 0' AI, 0' A2 -? false.

where O'C = 0' A

The computational complexity for conjunctive match
ing using the partial evaluation method is exactly the
same as that using the lookahead method. The partial
evaluation method, however, is simpler than the looka
head method, since the former does not need any modifi
cation of the prover itself whereas the latter does. More
over, the partial evaluation method may be able to reduce
the search space significantly, since it can provide prop
agating goal information to generater clauses. However,
in general, partial evaluation results in an increase in
the number of clauses, Hence it may make performance
worse.

The two optimization techniques are equally effective,
and will optimize the model generation algorithms to the
same order of magnitude when they are applied to unit
tester clauses.

4.4.1 Summary of Complexity Analysis

In this section, we briefly describe the time and space
complexity of the algorithms described above. The de
tails are discussed in [Hasegawa et. al. 92a]. For simplic
ity, we assumed the following.

1) The problem consists of generator clauses with two
antecedent literals and one consequent literal, and
tester clauses with at most two literals.

2) 6.. is a singleton set of an atom selected from D.

3) The rate at which conjunctive matchings succeed for
a generator clause, and atoms generated as the result
pass a subsumption test, the survival rate, is p(O :::;
p :::; 1).

4) The order in which 6.. is selected and atoms are gen
erated according to 6.. is fixed for all of the three
algori thms.

Table 1 summarizes the complexity analysis. T/S/G
stands for complexity entry of rejection test /subsump
tion test/model extension, and M stands'for the required
memory space. The value of a(l :::; a :::; 2) represents the
efficiency factor of the subsumption test. a = 1 means
that a subsumption test is performed in a constant order,
because the hashing effect is perfect. a = 2 means that a
subsumption test is performed in a time proportional to
the number of elemen.ts, perhaps because a linear search
was made in the list. As for the condensed detachment
pro blem, the hashing effect is very poor and a is very
close to two.

The memory space required for the basic, full-test/lazy
and lazy lookahead algOrIthms decreases along this order
by a square root for each. This means that the number
of atoms generated decreases as the algorithm changes,
which in turn implies that the number of subsumption
tests decreases accordingly. In the case of a = 2, the
most expensive computation of all is a subsumption test,
and a decrease in its complexity means a decrease in total
complexity. On the other hand, in the case of a = 1, the
most expensive computation of all is the rejection test
with two-literal tester clauses. This situation, however,
is the same for all of the algorithms and adopting lazy
computation will result in speedup by a constant factor.
In any case, by adopting lazy computation, the complex
ity of the total computation is dominated by that of the
rejection test .

4.4.2 Performance Experiment

An experimental.result is shown in Table 2. The ex
ample, Theorem 4, is taken from [Overbeek 90]. We did
not use heuristics such as weighting and sorting, but only
limited term size and eliminated tautologies.

Every algorithm is implemented in KLI and run on
a pseudo Multi-PSI in PSI-II [Nakashima and Nakajima
87]. The OTTER entry represents the basic algorithm
optimized for unit tester clauses and implemented in
KLl. The figures in parentheses are of algorithms for
tester clauses with two literals as a result of applying
partial evaluation to unit tester clauses. In unify entries,

367

Table 2: Experimental result (Theorem 4)

basic full-test
Time (sec) >14000 409.17

(463.86) (82.40)
Unify - 1656+74800

(43981+74254) (43981+4158)
Subsumption - .5736

test (.5674) (.596)
M - 272

Memory (272) (6:3)
D - 1384

(1:375) (209)

Table 1: Summary of complexity analysis

Unit tester clause
T S G M

basic pm 2 pp2m 4
CY. p'lm4 pJ m 4

full- tes t / lazy pm-2 f.Lm'IOi m 2 pm 2

lazy lookahead m 2 (f.L/p)m Ol m/p m

2-literal tester clause
T S G M

basic p'lm4 f.L p'lm 401 p2m4 p3m 4

full-test / lazy p21n4 p1n201 rn2 pm2

t m is the number of elements in model ca.ndidatE'
when false is detected in the basic algorithm.
t p is the survival rate of a generated atom. f.L is the
rate of successful conjunctive matchings (p ~ f.L),

and a is the efficiency factor of a subsumption test.

a figure to the left of + represents the number of conjunc
tive matchings performed in tester clauses, and a figure
to the right of + represents the number of conjunctive
matchings performed in generator clauses.

These results are a fair reflection of the complexity
analysis shown in Table 1. For instance, to solve The
orem 4 without partial evaluation optimization, the ba
sic algorithm did not reach a goal within 14,000 seconds,
whereas the full-test and lazy algorithms reached the goal
in about 400 seconds. The most time-consuming compu
tation in all of the three algorithms (basic, full-test and
lazy), is rejection testing. The difference in the time com
plexity between the basic algorithm and the other two
algorithms is (/l-p2 m 401)/(/l-m201) = p2m 201 , which results
in the time difference mentioned above.

The basic algorithm and the full-test/lazy algorithm
do not differ in the number of unifications performed in
the tester clauses. However, the number of unifications
performed in the generator clauses and the number of
su bsumption tests decreases as we move from the basic

lazy lazy lookahead OTTER
407.58 210.45 409.16
(81.82) (81.69) (462.1:3)

1656+74737 81956+409.5 1656+74800
(43981+4158) (43981 +409.5) (43981+74254)

5736 593 5736
(.596) (59:3) (5674)

272 63 272
(63) (63) (272)
1384 209 1384

(209) (209) (1375)

algorithm to the full-test and lazy algorithms. The de
crease is about one hundredth when partial evaluation is
not applied. and about one tenth when it is applied.

By applying lookahead optimization, the lazy algo
rithm is further improved. Though the lookahea:d opti
mization and the partial evaluation optimization are the
oretically comparable in their order of improvement, their
actual performance is sometimes very different. For The
orem 4, the lazy algorithm optimized with partial eval
uation took 81.82 seconds, whereas the same algorithm
optimized with lookahead optimization took 210.45 sec
onds. This difference is caused by the difference in the
number of unifications performed in the tester clauses.
This is because in the lazy algorithms with lookahead
optimization, the generator clause, p(X),p(e(X, Y)) ----7

p(Y), generates an atom before the unit tester clause,
ptA) ----7 false tests the atom. In the same algorithm,
with the partial evaluation optimization, the instantia
tion information of A is propagated to the antecedent of
p(X), p(e(X, A)) ----7 false and the unification failure can
be detected earlier.

Partial evaluation optimization is effective for all the
algorithms except OTTER. This is because lookahead
optimization, in the OTTER algorithm, is already ap
plied to unit tester clauses, and the algorithm remains
the basic one for non-unit tester clauses.

5 Parallelizing MGTP

There, are several ways to parallelize the proving process
in the MGTP prover.

These are to exploit parallelism in:

• conjunctive matching in the antecedent part,

• subsumption test, and

• case splitting

For ground non-Horn cases, it is sufficient to exploit
OR parallelism induced by case splitting. Here we use

368

1--··-·-----·--
Master

Slave

N-1

Figure 9: Simple allocation scheme

OR parallelism to seek a multiple model, which produces
multiple solutions in parallel.

For Horn clause cases, we have to exploit AND paral
lelism. The main source of AND parallelism is conjunc
tive matching. Performing subsumption tests in parallel
is also very effective for Horn clause cases.

In the current NIGTP, we have not yet considered non
ground and non-Horn cases.

5.1 OR Parallelization for MGTP /G

With the current version of the MGTP IG, we have
only attempted to exploit OR parallelism[Fujita and
Hasegawa 90] on the Multi-PSI machine[Nakajima et. al.
89].

5.1.1 Processor Allocation

The processor allocation methods we have adopted
achieve 'bounded-OR' parallelism in the sense that OR
parallel forking in the proving process is suppressed so as
to meet restricted resource circumstances.

One simple way of doing this, called simple allocation;
is depicted in Figure 9. 'vVe expanded model candidates,
starting with an empty model, using a single master
processor until the number of candidates exceeded the
number of available processors. We then distributed the
remaining tasks to slave-processors. Each slave processor
explored the branches assigned without further distribut
ing ta.sks to any other processors. This simple allocation
scheme for task distribution works fairly well, since the
communication cost can be minimized.

5.1.2 Performance of MGTP /G on Multi-PSI

One of the examples we used was the N-queens problem.
This problem can be expressed by the following clause
set:

Table 3: Performance of MGTP IG on Multi-PSI

Number of processors
Problem 1 2 4 8 16
4-queens

Time (msec) 40 40 39 44 44
Speedup 1.00 1.00 1.02 0.90 0.90

Kred 1.45 1.47 1.48 1.50 1.50
6-queens

Time (msec) 650 407 266 189 154
Speedup 1.00 1.59 2.44 3.44 4.22

Kred 23.7 23.7 23.7 23.8 23.8
8-queens

Time (msec) 12,538 6,425 3,336 1,815 1,005
Speedup 1.00 1.95 3.76 6.91 12.5

Kred 460 460 460 460 460
10-queens

Time (msec) 315,498 159,881 79,921 40,852 21,820
Speedup 1.00 1.97 3.94 7.72 14.5

Kred 11,117 11,117 11,117 11,117 11,117

true -7 p(1, 1); p(1,2); ... ; p(1, n).

true -7 p(2, 1); p(2, 2); ... ; p(2, n).

true -7 p(n, 1);p(n,2); ... ;p(n,n).

P(Xll Yl), p(X2 , "Y2), unsafe(Xll Yl, X 2 ,"Y2) -7 false.

The first N clauses simply express every possibility of
placing queens on the N by N chess board. The last
clause expresses the constraint that a pair of queens must
satisfy. The problem can be solved when either a model
(one, solution) or all of the models (all solutions)5 are
obtained for the clause set.

Performance was measured on the MGTP IG prover
running on the Multi-PSI with the simple allocation
method. Table 3 gives the result of the all-solution search
on the N-queens problem. Here we should note that the
total number of reductions stays almost constant, even
though the number of processors used increases. This
means that no extra computation is introduced by dis
tributing tasks. Speedup obtained by using up to 16
processors is shown in Figures 10 and 11. For the 10-
queens and 7-pigeons problems, the speedup obtained as
the number of processors increases is almost linear. The
speedup rate is small only for the 4-queens problem. This
is probably because the constant amount of interpreta
tion overhead in such a small problem will dominate the
tasks required for the proving process.

5 All models can be obtained, if they are finite, by the MGTP
interpreter in all-solution mode.

Number of PEs

Figure 10: Speedup of MGTP IG on Multi-PSI
(N-queens)

Number of PEs

Figure 11: Speedup of MGTP IG on Multi-PSI
(Pigeon hole) .

Ideal
7 pigeons
6 pigeons
5 pigeons

369

5.2 AND Parallelization for MGTP IN
We have several choices when parallelizing model
generation based theorem provers:

1) proofs which change or remain unchanged according
to the number of PEs used,

2) model sharing (copying in a distributed memory ar
chitecture) or model distribution, and

3) master-slave or masterless.

The proof obtained by a proof changing prover may be
changed according to a change in the number of PEs. We
might get super-linear speedup if the length of a proof de
pended on the number of PEs used. However, we cannot
always expect an increase in speed as the number of PEs
mcreases.

On the other hand, a proof unchanging prover does not
change the length of the proof, no matter how many PEs
we use. Hence, we could always expect greater speedup
as the number of PEs increased, though we would only
get linear speedup at best.

With model sharing, each PE has a copy of the model
candidates and distributed model-extending candidates.
With model distribution, both the model candidates and
model-extending candidates are distributed to each PE.

Model sharing and model distribution. both have ad
vantages and disadvantages. From the distributive pro
cessing point of view, with model distribution, we can
obtain memory scalability and more parallelism than
with the model sharing method. For a newly created
atom 0, there are n parallelisms in the model distribu
tion method, since we can perform conjunctive match
ings and subsumption tests for it in parallel where n is
the number of processors. On the other hand, in the
model sharing method, we cannot exploit this kind of
parallelism for a single created atom unless conjunctive
matchings and subsumption tests are·made for a different
region of model candidates.

From the communication point of view, however, the
communication cost with model sharing is less than with
model distribution. The communication cost with model
distr.ibution increases as the number of PEs increases,
since generated atoms need to flow to all PEs for sub
sumption testing. For example, if the size of model el
ements finally obtained is M, the number of communi
cations amounts to O(M2) for a clause having two an
tecedent literals. On the other hand, with model sharing,
we do not have to flow the generated atoms to all PEs.
In this case, time-consuming subsumption tests and con
junctive matchings can be performed independently at
each PE, with minimal inter-PE communication.

The master-slave configuration makes it easy to build a
parallel system by simply connecting a sequential version
of MGTP IN on a slave PE to the master PE. However,
its devices must be designed to minimize the load on

370

the master process. On the other hand, a masterless
configuration such as ring connection allows us to achieve
pipeline effects with better load balancing, whereas it
becomes harder to implement suitable control to manage
collaborative work among PEs.

Our policy in developing parallel theorem provers is
that we should distinguish between the speedup effect
caused by parallelization and the search-pruning effect
caused by strategies. In proof changing parallelization,
changing the number of PEs is merely betting, and may
cause a strategy to be changed for the worse even if it
results in the finding of a shorter proof.

In order to ensure the validity of our policy, we imple
mented proof changing and unchanging versions. In the
following sections, we describe actual parallel implemen
tations and compare them.

5.2.1 Proof Changing Implementation

1. Model Sharing
This implementation uses model sharing, and a ring
architecture in which processi(l ~ i < n) is con
nected to proceSSi+l and processn is connected to
process}, where n is the number of PEs[Hasegawa
91aJ.

proceSSi has a copy of model candidates M and dis
tributed model-extending candidates D i •

A rough sketch of operations performed in
processi(l < i ~ 71.) follows.

(1) Receive .6. i - 1 from proceSSi_l.

(2) Pick up an atom Oi from Di such that OJ is
not subsumed by any elements in M and .6. i - 1 .

Di := Di - {od·
(3) .6.i := .6. i - 1 U {Sd.

(4) IfCJMTcstcr({Oi},MU.6.i-l) 3 false then send
a termination message to all processes, other
wise,

(5) Dj := Di U C J MGcnerator({OJ}, M U .6.i- 1).

(6) M := M U .6. i (update M in processi).

(7) Send.6.j to proceSSj+l.

For process 1 , instead of actions (3) and (6), the fol
lowing actions are performed.

(3') .6.1 : = {oIl, and

(6') M:= A1 U .6.n .

Note that actions (4)""(8) can be performed in par
allel.

Figure 12 shows how models are copied, and con
junctive matching is executed in a pipeline manner
in the case of n = 4.

t

t
16
15
14
13
12
11
10

9
8
7

3
2

PE1 PE2 PEs PE4

.
h
9 *1 f 9

.,.Rf' 9 *1 Stage 8

f

*1 e Stage 7

d
e *1 Stage 6 ...,c"

d c
C Stage 5 ,,(f' *1 b c

% c *1 b Stage 4

b a
b *1 a Stage 3

a
a *1 Stage 2

M M M M
Stage 1

Figure 12: Proof Changing and Model Sharing

A letter denotes a model candidate element and an
asterisk indicates an element on which conjunctive
matching is performed. For example, processIon
PEl selects an unsubsumed model element a (from
its own model-extending candidate) at time tIl and
sends it to proceSS2 on P E2.

proceSS2 stores element a into the model candidates
in P E2 , proposes a model-extending element b, sends
a and b to the proceSS3, and starts conjunctive
matching of band {a} U M.

Note that conjunctive matching in a proceSSj can be
overlapped. For example, the conjunctive matching
in stage 6 does not have to wait for the completion of
the conjunctive matching in stage 2. This exploits
pipeline effects very well, resulting in low commu
nication cost compared to the computation cost for
conjunctive matching.

2. Model Distribution
This implementation takes model distribution and
a ring architecture. Each process has its own dis
tributed model candidates and distributed model
extending candidates. The algorithm for each pro
cess is similar to the sequential basic algorithm.
They differ in that: 1) conjunctive matching cannot
be completed in one process because model candi
dates are distributed. Thus the continuations of con
junctive matching in each process need to go around
the ring, and 2) newly created atoms have to go
around the ring for subsumption testing.

5.2.2 Proof Unchanging Implementation

We implemented a proof unchanging version in a master
slave configuration, and model sharing based on the lazy
model generation. In this fmplementation, generator and
subsumption processes run in a demand-driven mode,

while tester processes run in a data-driven mode. The
main advantages of this implementation are as follows:

1) Proof unchanging allows us to 0 btain greater
speedup as the number of PEs increases.

2) By utilizing the synchronization mechanism sup
ported by KLl, sequentiality in subsumption testing
is minimized.

3) Since slave processes spontaneously obtain tasks
from the master, and the size of each task is well
equalized, good load balancing is achieved.

4) By utilizing the KLI stream data type, demand
driven control is easily and efficiently implemented.

By using demand-driven control, we cannot only sup
press unnecessary model extensions and subsumption
tests but also maintain a high running rate, which is the
key to achieving linear speedup.

The model generation method consists of three tasks:

1) generation,

2) subsumption test, and

3) rejection test.

We provided three processes to cope with this:

• G(generator),

• S(subsumption tester), and

• T(rejection tester).

The G / T / S process has a poin ter i / j / k which indicates
an element of the stack, shown.in Figure 13. The stack
elements are model candidates or model-extending can
didates. In the figure, M denotes model candidates for
which conjunctive matching performed by G is completed
and D denotes model-extending candidates on which the
subsumption test is completed. G/ T/ S process iterates
the following actions.

G: performs model extensions by using the i-th element
(.6.) and the 1, ... , i-I -th elements (M), and sends
newly created atoms to S. i := i + 1.

s: performs subsumption tests on the newly created
atoms against 1, ... , k-l -th elements (AI U D),
and pushes the unsubsumed atoms to the stack.
k := k + I where I is the number of unsubsumed
atoms.

T: performs model rejection tests on the j-th element
and the 1, ... ,j -1 -th elements.

371

k Ii i-S

D 11 i-T cjm(j,1 j-1)

/::,. i-G cjm (i, 1 ... i-1)
M

Figure 13: Lazy Implementation

Figure 14 shows a process structure for the proof un
changing parallel implementation. The central box repre
sents the shared model and model-extending candidates.

The upper boxes represent atoms generated by the gen
erator Gi and the arrows indicate the order in which the
atoms are sent to the master process. Proof unchanging
is realized by keeping this order. To make the system
proof unchanging, the sequence order in which M and
D are updated must remain the same as the sequence
in a sequential case. The master process sends an atom
generated by a generator process to a subsumption tester
process in the same order as the master receives the atom,
that is, the master aligns the elements generated by gen
erator processes so as to be in the same order as in the
sequential case.

Many G/ T/ S processes work simultaneously. The mas
ter process is introduced to control task distribution, that
is, giving a different task (~) to a different process. Each
S process requests .6." to a G process through the master
process. This means that the communication between G
and S processes is indirect.

The critical resource for S processes is the model
extending candidates D. The critical regions are the
updating of D by D := D U new' and a part of
subsumption(new, MUD) (see Figure 8).

Most elements of MUD have already been determined
by some subsumption tester process and synchronization
in subsumption testing can be minimized so that most
parts of subsumption tests should not be critical.

To exclusively access the critical resource D, each S
process requests to the master a pair of ~" and a key
which indicates the right to update. If~" is subsumed
by the already determined elements in MUD, the key
is returned to the master process without any reference
to the key. In this case, there is no synchronization with
other S processes. If .6." is not subsumed by the already
determined elements in MUD, the S process refers to
the key to see if it has the right to update, and updates
D by D := D U .6." if it has. Otherwise, the process
waits until the other S process updates D. If the other
S process updates D, the subsumption test is performed
on the added elements.

372

Figure 14: Proof Unchanging

The cri tical resources for the G processes are both the
model candidates A1 and the model-extending candidates
D. This is similar to tester processing.

5.2.3 Performance of MGTP IN on Multi-PSI
and PIM

Some experimental results for the proof changing and
unchanging versions in model sharing are shown in Ta
bles 4 and 5, and Figures 15 and 16. Each program is
implemented in KLI and runs on the Multi-PSI.

Table 4 shows a performance comparison between the
two versions with 16 PEs. In the proof unchanging ver
sion (PU column), we limited the term size and elimi
nated tautologies. In addition to the above, in the proof
changing version (PC column), we used heuristics such
as weighting and sorting. All problems are condensed
detachment problems [McCune and \Vos 91].

We measured performance with 1, 2, 4, 8 and 16 PEs.
In the PC time entry. column, the number of PEs in
parentheses indicates the number of PEs which yield the
best performance. In the proof unchanging version, we
a.lways got the best performance with 16 PEs, whereas
we sometimes got the best performance with 8 PEs in
the proof changing version. We also have an example in
which we got the best performance with 2 PEs.

This comparison implies that super-linear speedup
does not always signify an advantage in a paralleliza
tion method, because the proof unchanging version al
ways beats the proof changing version in absolute speed
with the problems used in the table.

Figures 15 and 16 display the speedup ratio for the
problems #3, #58, #77, #66, #92, and #112 using the

Table 4: Performance Comparison (16PEs)

Problem PU PC
Time (sec) 218.77 6766 (16 PEs)

#3 KRPSjPE 34.68 25.99
Speedup 13.27 -

Time (sec) 3.75 157.63 (16 PEs)
#6 KRPSjPE 12.47 17.75

Speedup 3.65 6.75
Time (sec) 3.53 10.37 (8 PEs)

#56 KRPSjPE 13.39 3.97
Speedup 3.53 415.57

Time (sec) 12.80 27.32 (16 PEs)
#58 KRPSjPE 27.51 3.75

Speedup 9.23 66.32
Time (sec) 4.56 48.37 (16 PEs)

#63 KRPSjPE 20.01 15.24
Speedup 6.06 11.07

Time (sec) 6.07 23.41 (16 PEs)
#69 KRPSjPE 16.69 4.52

Speedup 4.98 2.90
Time (sec) 3.62 12.17 (16 PEs)

#72 KRPSjPE 14.02 2.10
Speedup 4.47 45.51

Time (sec) 37.10 62.07 (8 PEs)
#77 KRPS/PE 36.66 25.62

Speedup 12.65 109.24

Speedup

16

14

12

10

8

6

4

2

0

0 2 4 6 8 10

---EJ- #3

--+-- #58
~::- #77

ideal

12 14 16

No. of PEs

Figure 15: Speedup ratio I

Speedup

16

14

.: .. -

12
.:

10

8

6

4 ----m- #GG

#92

2 #112

ideal

o 2 4 6 8 10 12 14 16

No. of PEs

Figure 16: Speedup ratio II

Table 5: Performance for 16/64 PEs

Problem 16 PEs 64 PEs
Time (sec) 41725.98 11056.12

Th 5
Reductions 38070940558 40759689419
KRPS/PE 57.03 57.60

Speedup 1.00 3.77
Time (sec) 48629.93 13514.47

Th 7
Reductions 31281211417 37407531427
KRPS/PE 40.20 43.25

Speedup 1.00 3.60

proof unchanging version. There is no saturation in per
formance up to 16 PEs and grea,ter speedup is obtained
for the problems which consume more time.

Table 5 shows the performance obtained by running
the proof unchanging version for Theorems 5 and 7 [Over
beek 90] on Multi-PSI with 64 PEs. We did not use
heuristics such as sorting, but merely limited term size
and eliminated tautologies. Note that the average run
ning rate per PE for 64 PEs is actually a little higher
than that for 16 PEs. With this and other results, we
were able to obtain almost linear speedup.

Recently we obtained a proof of Theorem 5 on
PIM/m [Nakashima et. al. 92] with 127 PEs in
2870.62 sec and nearly 44 billion reductions6 (thus
120 KRPS/PE). Taking into account the fact that the
PIM/m CPU is about twice as fast as the Multi-PSI
CPU, we found that near-linear speedup can be achieved,
at least up to 128 PEs.

6The exact figure was 43,939,240,329 reductions

373

6 Conclusion

We have presented two versions of the model-generation
theorem prover MGTP implemented in KL1: MGTP /G
for ground models and MGTP /N for non-ground mod
els. We evaluated their performance on the distributed
memory multi-processors Multi-PSI and PIM.

When dealing with range-restricted problems in model
generation theorem provers, we only need matching
rather than full unification, and can make full use of the
language features of KL1, thereby achieving good effi
ciency.

The key techniques for implementing MGTP /G in KL1
are as follows:

(1) A given set of input clauses of implicational form are
compiled into a corresponding set of KL1 clauses.

(2) Generated models are held by the prover program
instead of being asserted.

(3) Conjunctive matching of the antecedent literals of an
input clause against a model element is performed
by very fast KL1 head unification.

(4) Searching for a model element that matches the an
tecedent is performed by computing a repeated com
bination of model elements by means of loop execu
tions instead of backtracking.

(5) Fresh variables for a different instance of the an
tecedent literal are obtained automatically just by
calling a KL 1 clause.

These techniques are very simple and straightforward yet
effective.

For solving non-range-restricted problems, however, we
cannot use the above techniques developed for MGTP /G.
If the given problem is Horn, it can be solved by the
MGTP prover extended by incorporating unification with
occurrence check, without changing the basic structure of
the prover. For non-Horn problems, however, substantial
changes in the structure of the prover would be required
in order to manage shared variables appearing in the con
sequent literals of a clause. Accordingly, we restricted
MGTP /N to Horn problems, and developed a set of KL1
meta-programming tools called the Meta-Library to sup
port full unification and the other functions for variable
management.

To improve the efficiency of the MGTP provers, we
developed RAMS, MERC, and .0.-M methods that en
able us to avoid redundant computations in conjunctive
matching. We have obtained good performance results
by using these methods on the PSI.

Moreover, it is important to avoid very great increases
in the amount of time and space consumed when proving
hard theorems which require deep inferences. For this
we proposed the lazy model generation method, which

374

can decrease the time and space complexity of the basic
algorithm by orders of magnitude. Experimental results
show that significant amounts of computation and mem
ory can be saved by using the lazy algorithm.

The parallelization of MGTP is one of the most im
portant issues in our research project.

For non-Horn ground problems, a lot of OR parallelism
caused by case splitting can be expected. This kind of
problem is well-suited to a local memory multi-processor
such as Multi-PSI, on which it is necessary to make the
granuality as large as possible so that communication
costs can be minimized. We obtained an almost linear
speedup for the n-queens, pigeon hole, and other prob
lems on Multi-PSI, using a simple allocation scheme for
task distribution.

For Horn problems, on the other hand, we had to ex
ploit the AND parallelism inherent in conjunctive match
ing and subsumption. Though the parallelism is large
enough, it seemed rather harder to exploit than OR par
allelism, since the Multi-PSI is not suited to this kind
of fine-grained parallelism. Nevertheless, we found that
we could obtain good performance and scalability by us
ing the AND parallelization methods mentioned in this
paper.

In particular, the recent results obtained by running
the MGTP IN prover on PIM/m showed that we could
achieve linear speedup for condensed detachment prob
lems, at least up to 128 PEs. The key technique is the
lazy model generation method, that avoids the unneces
sary computation and use of memory space while main
taining a high running rate.

For MGTP IN, full unification is written in KLl, which
is thirty to one hundred times slower than that written in
Con SUN/3s and SPARCs. To further improve the per
formance of MGTP IN, we need to incorporate built-in
firmware functions for supporting full unification, or to
develop KL1 compiling techniques far non-ground mod
els.

Through the development of MGTP provers, we con
firmed that KLI is a powerful tool for the rapid prototyp
ing of concurrent systems, and that parallel automated
reasoning systems can be easily and effectively built on
the para.llel inference machine, PIM.

Acknowledgment

We would like to thank Dr. Kazuhiro Fuchi, the director
of ICOT, and Dr. Koichi Furukawa, the deputy director
of ICOT, for giving us the opportunity to do this research
and for their helpful comments. Many fruitful discussions
took place at the PTP Working Group meeting. Thanks
are also due to Prof. Fumio Mizoguchi of the Science
University of Tokyo, who chaired PTP-WG, and many
people at the cooperating manufacturers in charge of the
joint research.

References

[Bibel 86] W. Bibel, A utomated Theorem Proving,
Vieweg, 1986.

[Bose et. al. 89] S. Bose, E. M. Clarke, D. E. Long and
S. Michaylov, PARTHENON: A Parallel Theorem
Prover for Non-Horn Clauses in Proc. of 4th Annual
Symp. on Logic in Computer Science, 1989.

[Chikayama et. al.88] T. Chikayama, H. Sato and
T. Miyazaki, .Overview of the Parallel Inference
Machine Operating System (PIMOS), in Proc. of
FGCS'88, 1988.

[Fuchi 90] K. Fuchi, Impression on KL1 programming -
from my experience with writing parallel provers -, in
Proc. of KLl Programming Workshop '90, pp.131-
139, 1990 (in Japanese).

[Fujita and Hasegawa 90] H. Fujita and R. Hasegawa,
Implementing A Parallel Theorem Prover in KL1, in
Proc. of KLl Programming Workshop '90, pp.140-
149, 1990 (in Japanese).

[Fujita et. al. 90] H. Fujita, M. Koshiniura, T. Kawa
mura, M. Fujita and R. Hasegawa, A Model
Generation Theorem Prover in KLl, Joint US-Japan
Workshop, 1990.

[Fujita and Hasegawa 91] H. Fujita and R. Hasegawa,
A Model-Generation Theorem Prover in KLI Using
Ramified Stack Algorithm, In Proc. of the Eighth In
ternational Conference on Logic Programming, The
MIT Press, 1991.

[Hasegawa et. al. 90a] R. Hasegawa, H. Fujita and
M. Fujita, A Parallel Theorem Prover in KL1 and
Its Application to Program Synthesis, Italy-Japan
Sweden Workshop, ICOT-TR-588, 1990.

[Hasegawa et. al.90b] R. Hasegawa, T. Kawamura,
M. Fujita, H. Fujita and M. Koshimura, MGTP: A
Hyper-Matching Model-Generation Theorem Prover
with Ramified Stacks, Joint UK-Japan Workshop,
1990.

[Hasegawa 91a] R. Hasegawa, A Parallel Model Genera
tion Th.eorem Pr9ver: MGTP and Further Research
Plan, In Proc. of the Joint American-Japanese Work
shop on Theorem Proving, Argonne, illinois, 1991.

[Hasegawa 91b]
R. Hasegawa, A Parallel Model-Generation Theorem
Prover in KL1, Workshop on Parallel Processing for
AI,IJCAI'91,1991.

[Hasegawa 91c] R. Hasegawa, A Parallel Model Genera
tion Theorem Prover with Ramified Term-Indexing,
Joint France-Japan Workshop,Rennes,1991.

[Hasegawa 91d] R. Hasegawa, A Lazy Model-Generation
Theorem Prover and Its Parallelization, Joint
Germany-J apan vVorkshop on Theorem Proving,
GMD,Bonn,1991.

[Hasegawa et. al. 92a] R. Hasegawa, M. Koshimura and
H. Fujita, La.zy Model Generation for Improving the
Efficiency of Forward Reasoning Theorem Provers,
ICOT-TR-751, 1992.

[Hasegawa et. al. 92b] R. Hasegawa, M. Koshimura and
I-I. Fujita, MGTP: A PaTallel Theorem Prover Based
on Lazy Model Generation, To appear in Proc. of
CADE 92 (.5y.stem Abst.ract), 1992.

[Koshimura et. al. 90] M. Koshimura, H. Fujita and
R. Hasegawa, Meta-Programming in KL1, ICOT-TR-
623, 1990 (in Japanese).

[Loveland 78] D. W. Loveland, Automated Theorem
P1'oving: A Logical Basis, North-Holland, 1978.

[Manthey and Bry 88] R. Manthey and F. Bry,
SATCHMO: a theorem prover implemented in Pro
log, In Proc. of CADE 88, Argonne, Illinois, 1988.

[McCune 90] W. W. McCune, OTTER 2.0 Users Guide,
Argonne National Laboratory, 1990.

[McCune and Wos 91] '\'IV. W. McCune and 1. Wos, Ex
perim.ents in Automated Deduction with Condensed
Detachment, Argonne National Laboratory, 1991.

[Nakajima et. al. 89] K. Naka-
jima, Y. Inamura, N. Ichiyoshi, K. Rokusawa and
T. Chikaya.ma, Distributed Implementation of KL1
on the Multi-PSI/V2, in Proc. of 6th lCLP, 1989.

[Nakashima and Nakajima 87] I-I. Nakashima
and K. Nakajima, Hardware architecture of the se
quential inference machine PSI-II, In Proc. of 1987
Symposium on Logic Programming, Computer Soci
ety Press of the IEEE,1987.

[Nakashima et. al.92] H. Nakashima, K. Nakajima,
S. Kondoh, Y. Takeda and K. Masuda, Architecture
and Implementation of PIM/m, In Proe. of FGCS'92,
1992.

[Overbeek 90] R. Overbeek, Challenge Problems, (pri
vate communication) 1990.

[Slaney and Lusk 91] J. K. Slaney and E. L. Lusk, Paral
lelizing the Closure Computation in Automated De
duction, In Pmc. of CADE 90, 1990.

[Schumann 89] J. Schumann, SETHEO: User's Manual,
Technische UniversiUi.t Miinchen, 1989.

375

[Stickel 88] M. E. Stickel, A Prolog Technology Theo
rem Prover: Implementation by an Extended Prolog
Compiler, In Journal of Automated Reasoning, 4:353-

380, 1988.

[Stickel 89] M. E. Stickel, The Path-indexing method for
indexing terms, Technical Note 473, Artificial Intel
ligence Center, SRI International, Menlo Park, Cali
fornia, October 1989.

[Wos et. al. 84] L. Wos, R. Overbeek, E. Lusk and
J. Boyle, Automated Reasoning: Introduction and
Applications, Prentice-Hall, 1984.

[Wos 88] L. Wos, A utomated Reasoning - 33 Basic Re
search Problems -, Prentice-Hall, 1988.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 376

On A Grammar Formalism, Knowledge Bases and Tools for
Natural Language Processing in Logic Programming

SANO, Hiroshi and FUKUMOTO, Furniyo
Institute for New Generation Technology (IeOT)

Sixth Research Laboratory
sano@icot.or.jp fukumoto@icot.or.jp

Abstract

This paper gives an overview of Natural Language Pro
cessing (NLP) by adopting the framework of logic pro
gramming in ICOT. First, we introduce a grammar for
malism called SFTB, a new grammar formalism which
has been evolved from the latest research work on con
temporary Japanese. SFTB was designed and developed
following the outcome of this research and incorporates
cOI~.putational features. Two grammar studies are in
current use at the laboratory. One, Localized Unification
Grammar (LUG), is based on the phrase-base approach.
Another, Restricted Dependency Grammar (RDG), be
longs to the family of dependency grammars. Computer
based dictionaries should be thought of as knowledge
bases. We have built a dictionary, in the form of LUG,
which is available for sentence processing. In addition to
the hand-built database, we have developed computer
based dictionaries. Finally, a tool for developing gram
mar rules which run on a computer has been introduced.
Basic grammar rules, described in the LUG form, have
been made using the tool. The tool makes it possible to
extend basic grammar rules in order to create adequate
grammar rules for user applications. We believe that this
set of tools is applicable to a well-integrated NLP system
as a whole. Readers who are interested in NLP systems
that are not described here should refer to [1].

1 Introduction

In this paper, we describe NLP research activities con
ducted at ICOTs sixth laboratory. The overall goal
is to provide a set of power tools that use NLP and
consist of (1) a framework of grammar structures
for a language (Japanese), (2) grammar formalisms
for writing grammar structures for computational use,
(3) non-trivial-sized grammar rules running on a com
puter, (4) computer-based dictionaries that help build
dictionary entries and can be used in grammar rules,
(5) tools for analysis sentences, such as a syntactic
parser, morphological analyzer, grammar writer's work
bench, and a dictionary editor. The power tools contain

the results of our research activities on NLP through the
underlying logic programming and may be thought of as
a well-integrated NLP system.

One of the major problems in the area of NLP is
an essential lack of cooperation by the power tools with
each other and subsequent shared data, tools and sys
tems. Because of the wide variety of (1) grammar for
malisms, (2) parsing mechanisms which are independent
developments and (3) forms in which dictionary entries
are written, most researchers develop parsing systems
individually, write several grammar rules and construct
dictionaries as they go. If the many tools for computa
tionallinguistics described above can be made available
in common, we will be able to make progress through
data sharing. To develop a well-integrated NLP system,
we have conducted the following research.

A Grammar Formalism

First, we should clarify what we mean by sentence. To
do so we introduce a grammar formalism which provides
a criterion for defining a relationship between the mean
ing of sentences and a sequence of words. The grammar
formalism described here is called SFTB. The underly
ing framework draws inspiration from Japanese language
morphology [10] and from the latest research work on
contemporary Japanese such as Japanese Phrase Struc
ture Grammar (JPSG)[3]. The framework is intended
for use in computational grammar.

Two Grammar Descriptive Frameworks

The next objective is to investigate a grammar de
scriptive framework to hand-code grammar rules as lin
guistic information supplied by means of SFTB. These
rules should be applicable to computer processing in the
framework of logic programming. There are two gram
mar structures in current use at the laboratory. One,
Localized Unification Grammar (LUG), is based on the
phrase-base approach and aims at unification based for
malisms. Another, Restricted Dependency Grammar
(RDG), belongs to the family of dependency grammars
and processes sentences in a traditional way.

Dictionaries

We shall describe three kinds of dictionaries. Lexical
information used in a computer was required in an im
plementation of LUG's grammar. This is characterized
as the finite syntactic information of attribute value pairs
and results in a hand-built dictionary. Although the
computer resident dictionary, consisting of about 7,000
entries, is hand-coded, the lexical database for morpho
logical analysis created from existing computer-based re
sources by a conversion program consists of 150,000 en
tries. We have a diction,ary where each entry has a large
amount of syntactic information and sense-related se
mantic information. It may be thought of as a linguistic
knowledge base.

A Tool

Finally, we introduce a grammar rule development sys
tem called LINGUIST. LINGUIST consists of a bottom
up parser (BUP-translator[8]) and debugging facilities
with a cooperative response coordinator for user inter
faces. The system is being integrated into an environ
me~t of support tools for developing, testing, and de
bugging grammar rules written in LUG. With this sys
tem, we have developed the basic grammar, which has
800 grammar rules, for contemporary Japanese language
including morphological analysis rules.

For academic use, tapes are obtainable free from
IeOT. These tapes serve as the linguistic tools men
tioned above.

2 SFTB - A Grammar formal
ism for the Japanese language

The aim of developing SFTB is to investigate linguistic
frameworks for computational processing of the Japanese
language. This framework is a necessary grammatical
basis for processing Japanese sentences by computer. A
grammatical basis for a language should provide a con
crete and coherent framework for relating the linguistic
form and the content conveyed by sentence expression.
A computer must operate on the information structure
expressing the content of a sentence produced by the
framework.

In the SFTB framework, the syntactic structure de
rived from the linguistic form is based on a compositional
line of sentence analysis, but not on a fiat dependency
analysis, which is the traditional way of handling sen
tence structure. It is able to cope with the' problems of
subject and object omission, ellipsis, interdependence on
context and so forth. It may also end structureless and
patternless Japanese language confusion caused by the
lack of a proper syntactic framework.

377

2.1 The SFTB grammar system

In our grammar system, the central units will be that
of morphemes but not words, which are classified into
parts of speech generally. The grammar proposed in this
paper has morphemics as a part of its grammar system.
This is a grammar system which is rooted in [10] (see the
survey).

Morphemes come in several varieties. A basic unit
called goki stands for a concept where a certain relation
holds the state of affairs and the idea that the object
belongs in the real (cognitive) universe. Units of this
kind can be divided into two types. One of the free
forms, jiritsu-goki forms words by itself. We call one
of the bound forms ketugou-goki, since the unit must
combine with affix (s) in order to form words.

A unit called setsuji performs a grammatical func
tion where states of affairs are linked with certain re
lations. For example, verb endings are a type of mor
pheme. This approach uses a neutral unit goki in rela
tion to the grammatical behavior under syntax.

Example 1 shows a phrase structure produced
SFTB framework for the phrase "Uresi sa no taiigen"
("Expression of happiness" in English). In this case,
the word Uresi-sa (Happiness) is derived from the
Uresi(Keiyou-goki) and the affix sa.

Nominal

~
Adnominal Nominal

r---- I
Nominal joji Taigen-goki

I I I
Taigen-goki no Taigen
~ (of) (expression)

Keiyou-goki affix

I I
Uresi

(happy)
sa

(ness)

Figure 1: Example of phrase structure

Note that, although the phrase structure is a con
stituent structure representation from a structural point
of view, nodes including feature information are more
complex i.e. feature bundles instead of category name.
Semantic information is also added to the feature bun
dles. To make this approach applicable to sentence anal
ysis, all that needs to be done is to integrate morphology
and syntax into a comprehensive system.

378

2.2 Basic patterns and sentence struc
ture

The integration required reconsideration of not only the
relation between morphology and syntax but also the
general framework of the Japanese language, such as con
jugation lists of verbs, word classification, basic sentence
patterns and so forth. In this section, we concentrate on
the grammar basis for syntactic analysis for Japanese
language applicable to computer processing-."'

First, we should clarify what we mean by a sen
tence as a criterion. No sentence is uttered or written
without the speaker or writer expressing their view on a
subject. This may suggest that we ought to extract not
only the contents of the sentence but also the intention of
the originator from the surface structure of the sentence.
Above all, the syntactic forms mapped to verb endings
are to be closely related to the meaning of the sentence.

However, this is an ideal case where actual usage
depends on context and discourse. As you know, speech
is often rambling. One may ask how the content and
intuition of graffiti can be extracted. Of course, the cri
terion mentioned above has to be applied to a limited
range of linguistic phenomena. While bearing the above
in mind, we offer the criteria and seek sentence structure
to map the surface string to an internal representation
that is used for NLP by computers.

We characterize the properties of sentence struc
tures we have been investigating, as illustrated in Figure
2.

o ..

[Conten~:]tence }]
Speaker] {[Modal]}

[Topic]} 0

[Predicate]
(Agent)

Connections between
states of affairs

1

Subject
Time

Location
Complement

Complement
)

Figure 2: The Sentence Structure

The basic patterns of Japanese sentences are pre
sented in Table 1. The verb "suru", to do, is taken up
as a model.

Several types of conjugation lists for verbs are avail
able and the elements of verb endings will be tailored to
meet the sentence endings of basic patterns. The lists

T bl 1 B . a e : aSlC patterns
Pattern Sentence endings Intention

Indicative suru/sita Neutral
Presumptive surudarou/sitadarou Presumptive
Volitional siyou/sitadarou Volitional
Imperative siro/suruna Imperative

consist of sentence endings and phrase endings appear
ing in loosely dependent clauses. The derivation of the
conjugation lists illustrated in Table 2 are based on the
assumption that verb endings are proportional to the lin
guistic clues depending on the meaning that the sentence
conveys.

Table 2: Conjugation lists

Lists (SFTB) Lists t
Form Type Form

Hanasu su Non-perfect indicative sa
(To speak) sita Perfect so

sudaraou Non-perfect presumptive si
sitadarou Perfect presumptive su
sou Positive volitional su
sumai Negative volitional se
se Positive imperative se
suna Negative imperative
si Connective form 1
site Connective form 2
seba Non-perfect conditional
sitara Perfect conditional
sitari Coordinate form

t School grammar: 1 : Mizen-kei, 2 : Mizen-kei, 3 : Renyou-kei, 4
: Shuusi-kei, 5 : Rentai-kei, 6 : Katei-kei, 7 : Meirei-kei

Compare SFTB's conjugation lists with the gram
mar lists of the school. The number of verb endings in
the school grammar lists is less than seven, in the SFTB's
lists, there are over a dozen. For each verb ending form,
however, a type name provides sentence patterns, a syn
tactic function link to the meaning expressed by the sen
tence.

3 Linguistic Knowledge Bases
Grammar

The well understood way of processing Japanese lan
guage is that you read the technical papers and un
derstand the most important part of the framework.
Since linguistic knowledge about grammar and dictio
naries is described in the natural language itself, there is
no straightforward means of applying linguistic knowl
edge investigated by SFTB to map underlying descrip-

Type
1
2
3
4
5
6
7

tions onto grammar rules that run on computers. The
weakness is in the representations of the programs un
derlying the parser available for language processing on
computers. To solve the problem, we present two com
putational grammar descriptive frameworks for develop
ing grammar rules built from the SFTB framework. For
computer systems with the parser developed in the logic
programming framework, these grammar structures give
the grammar writer a descriptive framework for writing
grammar rules to be used by a parser.

In this section, we describe two computational
grammar descriptive frameworks, one is LUG formalism,
the other is RDG formalism (RDG), used for writing
grammar rules that run on computers. The former is
based on the unification grammar that belongs to the
phrase structure base grammar. The formalism of the
latter takes its stand on the dependency structure gram
mar.

Much has been done in writing grammar rules to
parse natural languages. These grammar rules generally
make use of an assumed grammar formalism. Almost
no attempt, however, has been made to utilize differ
ent ways that base their underlying formalisms on the
same grammar for processing a natural language. Thus,
although processing methods have been discussed that
contrast parsing speeds, required memories and so forth,
we have not talked about the merits and the demerits
of these grammar structures. In order to ascertain what
kind of grammar formalism is appropriate for processing
Japanese language, different approaches must be applied
to the language.

The original goal of SFTB was to provide a new
Japanese language grammar formalism for contemporary
Japanese. As applicability to computational linguistics
look possible, we are now concentrating on writing gram
mar rules in terms of LUG and RDG, in the framework
of SFTB.

3.1 A Phrase Based Approach - LUG

Definite Clause Grammar (DCG)[6] is one of the bridges
connecting NLP and logic programming. Most of our
grammar research activities can be regarded as improve
ments and extensions of DCG. A wide range of parsing
techniquea have been suggested based on DCG through
underlying context-free grammar. Although the compu
tational effectiveness of DCG is powerful enough to write
grammar rules that run directly on a computer, it can be
thought of as programming rather than the description
of the grammar of a language. It may be said that DCG
is less expressive than other grammar formalisms in the
sense of mathematical measures. If the process of devel
oping grammar rules is tied to the description of DCG,
it will be difficult to develop large grammar structures
manual by using 'the DCG description. To overcome this
pro blem, we have designed LUG to be accessible to gram-

379

mar writers with little computer experience. Thus, LUG
is a grammar specification language designed for users to
develop non-trivial grammar expressed in the DCG.

The basic data of LUG is a feature syntax. Cat
egories are expressed as feature sets. Since the feature
sets are represented as Prolog lists, the grammar is writ
ten in D CG formalisms, allowing users to make use of
the BUP[8], BUP-XG[12], SAX(9] translators being de
veloped in the framework of logic programming. As a
sample LUG, we present, in Figure 3, an. informal repre
sentation of the phrase "Uresi sa no taigen".

Morph taigen
Category Taigen
Marker no

[

Morph uresi/ sa]
Category Taigen

of type Marker sa

Sem nominalize(Y)
Sem oftype(X,nominalize(Y))

Figure 3: LUG for the phrase

The form produced by LUG can be described as
a complex constituent that is the result of composi
tional and functional application. The functional appli
cation is used to limit compositional ambiguities caused
by unification-oriented structural description. The con
textual information of knowledge bases is dealing with
the world or pragmatic knowledge about words, for ex
ample can be re-unified later. Thus, complete resolu
tion of constituent structures depends on semantic-based
and pragmatic-based accounts of subsequent informa
tion. With this formalism, the Japanese language gram
mar is written independently of the task of the applica
tion domain.

3.1.1 The Basic Grammars

The LUG formalism has been used to build grammar
structures for basic coverage of contemporary Japanese.
As of now, grammar structures of 800 grammar rules
are usable and are under development for the purpose of
increasing coverage.

Remember, however, that the readability of gram
mar structures is sacrificed when its rules are extended.
It is often difficult to keep a large number of grammar
rules under control. Even a small loss of attention caus
ing inconsistent grammar can cause ambiguities to in
crease and analysis to become useless. An important
characteristic of the basic grammar structure is that it is
orderly divided into 12 groups to the following standards:

o Difficulty in analyzing sentences
According to Figure 2, a complete analysis of sen
tences comes from success in understanding the syn
tactic elements in the structure when in the parsing

380

process. This is directly and indirectly related to
the basic sentence patterns and the sequence that
words appear in sentences. The fewer syntactic el
ements omitted, the easier it is to parse its struc
ture. The greater the difference between the syn
tactic elements and their corresponding morphemes,
the more it costs to analyze a sentence correctly and
to grasp its meaning.

Grammar structures can be loosely divided into
three levels: elementary, intermediate and advanced lev
els. vVe list here some samples of the kinds of grammar
structure levels, but are limited to the following.

Elementary level

decision(declaratives), supposition, conjectural
form (declaratives), command(imperative), aspect oper
ators, negation, polite form, complements, mood auxil
iaries.

Intermediate level

passives, causatives, modal adverbs, spacio-temporal ad
verbs, topicalized phrases, relatives.

Advanced level

conditional phrases, causal phrases, some connectives,
conjunctions and disjunctions of nominal phrases.

3.2 A Dependency Based Approach
RDG

Japanese word order is said to be free. Thus, depen
dency grammar that only focuses on the relation be
tween two arbitrary constituents as a syntactic structure
in a sentence has been well studied. Many NLP systems
for the Japanese language have adopted the dependency
paradigm as an approach for syntactic analysis.

However, the problem of the dependency structure
(it is not a tree but a connected graph structure) which
is used in these NLP systems is that useless solutions are
generated, which bring about a combinatorial explosion.
This is because whether one constituent of a sentence
modifies another constituent concerns only the localized
information between the two constituents, such as the se
lectional restriction between a verb and its complements.

In this section, we propose a dependency grammar
formalism for the Japanese language called Restricted
Dependency Grammar (RDG). A characteristic of RDG
is (1) The interpretation of whether one constituent
modifies the other or not depends on global informa
tion based on the word order of a sentence. So we can
suppress the generation of useless solutions. (2) Every
constituent of a sentence except the last should modify
at least one constituent on its right. So, some linguistic

phenomena, themes or ellipses can be treated easily in
our approach.

RDG is currently implemented in the SICStus pro
log, and is being evaluated by using a Japanese newspa
per editorial, with specially attention given to the num
ber of solutions.

In the following subsections, we introduce an out
line of RDG formalism, concentrating on the constraint
based on the word order of a sentence.

3.2.1 Modifiability rank

A sentence consists of many constituents. We call these
phrases. Every phrase of a sentence has two syntactic
contrastive aspects, that is, one phrase modifies the other
and one phrase is modified by the other. We call these
aspects the modifier (henceforth Mer) and the modifi
cand (Mcand). When the Mer of one phrase and the
Mcand of another phrase match, we can connect the two
phrases by an arc. In RDG formalism, every phrase and
atc have a modifiability rank value.

The phrase rank is a classification of a phrase based
on the number of Mer and Mcand phrases. For example,
a manner adverb such as "yukkuri" (slowly) can modify
verbs such as "yomi-nagara" (reading a book), "yome
ba" (if you are reading), "yomu-node" (as you read),
and "yonda-keredo" (though you read). On the other
hand, of all these verbs, a modal adverb, such as "tabun"
(probably), can only modify "yonda-keredo" (though you
read). This means that the number of Mer "yukkuri"
(slowly) is more than that of "tabun" (probably). In
a similar way, if a phrase can be modified more than
another phrase, the number of Mcand phrases is more
than that of the other phrase.

The phrase rank consists of 7 Mer and 7 Mcand
ranks. Every phrase has a Mer and Mcand rank. The
classification of phrases based on these ranks is given in
Table 3.

Table 3: Classification of phrases based on rank

Mer phrase example Mcand phrase example

al deictic pronoun Al deictic pronoun

a2 manner adverb A2 manner adverb

a3 noun A3 noun

a4 continuous verb A4 continuous verb
b condition verb, temporal adverb B condition verb
c causal verb C causal verb
d contrastive verb, modal adverb D contrastive verb

Conditions between phrase ranks are formulated as in
(1), and (2).

a2 >- aa >- a4 >- b >- c >- d

a2 -« aa -« a4 -« B -< C -< D

(1)

(2)

(1) shows the Mer rank. (2) shows the Mcand rank.
For example, when a manner adverb "yukkuri" (slowly)
is classified as a2, and a modal adverb "tabun" (proba
bly) is classified as d from Table 3 Mer Rank, we found
that the number of Mer "yukkuri" (slowly) is more than
"tabun" (probably) from formula (1).

The arc rank is a classification of an arc based on
the phrase's modifiability rank. It is incorporated in the
word order of a sentence. We assume that a sentence
consists of three phrases, Pi, Pj, and Pk (i < j < k). We
can get the dependency structures (Fig 4 (a), and (b))
from this sequence. The arc between Pi and Pj is shown

----? ----?

as PiPj . In Fig 4 (a), we call PiPj an adjacent arc of
----? ----? ----?

PjPk. In Fig 4 (b), we call PjPk the inside arc of PiPk.

(a) (b)

I
IE]

Figure 4: Dependency structure

(1) [Kare-ga] yobu-to heya-kara dete-kita.
When he called <p, <p went out of the room.

(1)' Yobu-to [kare-ga] heya-kara dete-kita.
When <p called him, he went out of the room.

(1)1 shows a (1) [kare-ga (he)] /[yobu-to (when
called)] conversion. We found that the meaning of (1)
is different from that of (1)/. When we read sentence
(1), we pause on the phrase "yobu-to" (when called).
That is, the temporal particle "to" has a function that
temporarily disconnects the sentence. So it is hard to say
that "kare-ga" (he), which exists before "yobu-to" (when
called), is able to modify "dete-kita" (went out of) across
a phrase "yobu-to" (when called). This means that there
exists a word order constraint between the phrase "kare
ga" (he) and "yobu-to" (when called). Thus, we can get
one ofthe solutions shown in Fig 4 (a). In (1), "Kare-ga"
(he) equals Pi, "yobu-to" (when called) equals Pj, and
"dete-kita" (went out of) equals Pk •

The rank of an arc incorporates these phenomena
(the word order of a sentence). The ·rank of an arc con
sists of four levels, corresponding to a phrase's function,
that temporarily disconnect the sentence. These four
levels are represented by a, b, c, and d. These values
depend on the values of the Mer and the Mcand rank
shown in Table 3. Rank of phrase Pi, Pj, and an arc
----?

PiPj are shown in Table 4.
In Table 4, the Mer rank of Pi is on the left and the
Mcand rank of phrase Pj is on the top. The column

----?

shows the rank of an arc PiPj . A blank column indicates
that there is no arc between these two phrases. Condi
tions between the rank of two arc's is formulated in (3).

381

----?

Table 4: Rank of Pi, Pj and PiPj

a1 a
a2 a a a a a a

a~ a a a a a

a4 a a a a
b b b b
c c c
d d

In (3), for example, when a >- b we say that b is lower
than a.

a>-b>-c>-d (3)

Now we show the constraints of word order using
the rank of an arc. When the dependency structure is as
in Figure 4 (a), the rank between the two arcs sh<;>uld be
satisfied by formula (4). When the dependency structure
is as in Figure 4 (b), the rank between the two arcs should
be satisfied by formula (5).

----? ----?

Rank of PiPj t Rank of PjPk
----? ----?

Rank of PjPk t Rank of PiPk

3.2.2 The RDG formalism

(4)

(5)

In RDG formalism, there are two different kinds of con
straint. One is how to make an arc which connects a pair
of phrases. The other is whether we can make an arc.
These constraints are described as follows.

Structural constraints

1. Absolute dependency
Every phrase of a sentence except the last should
modify at least one phrase on its right. If a phrase
modifies a phrase on its right, we can connect them
with an arc. The last phrase modifies no other
phrase.

2. Crossing
No two arcs should cross each other.

Linguistic constraints

1. Constraints for phrases
When Pi and Pj satisfy Table 4, we can get the
dependency relation between Pi and Pj • Its column
value is the rank value of an arc.

2. Constraints for arcs
----?

When Pi modifies Pj, (i) the rank of PiPj should be
lower than the rank of its adjacent arc. (ii) the rank

382

~

of PiPj should be lower than the rank of its inside
arc.

4 Linguistic Knowledge Bases
Dictionaries

Terms used to refer to these dictionaries are (1) com
puter resident dictionary to be used in syntactic process
ing by the parser, (2) computer-based dictionary being
applicable to applications such as morphological anal
ysis, and (3) machine-tractable dictionary containing
lexical information to be interpreted by human readers,
i.e. a database used in a data base management system.

The lexical data of these computerized dictionaries
includes the following information in (3) only: a list of
possible words in a given language (in our research, that
language was Japanese), a list of base words and their
inflected and derived forms. A classification of semantic
information such as word senses.

For dictionary (1), since the lexical data is not nec
essarily stored in one place, syntactic information about
category and the sub categorization behavior of words
will appear in grammar rules implicitly.

4.1 Dictionary available in LUG

The dictionary was built by analyzing data from a stan
dard elementary school text. The computer resident dic
tionary consists of 7,000 entries for each entry in LUG
form. Work on the application of the dictionary to the
grammar structure has focused on the development of
grammar structures written in LUG. Hence, the dictio
nary relies on our hand- built database and tends to be
rather limited in size.

4.2 Dictionary used for Applications

Taking limitations into account, we have developed a
program which provides a way of constructing lexical
databases through the available machine-readable dic
tionaries. The lexical database, consisting of 150,000 en
tries, was created from existing machine-readable dictio
naries by using the program. We intend to provide the
dictionary as a resource for morphological analysis.

4.3 Dictionary available in DB

A compact but high-capacity computer resident dictio
nary was extracted from machine-readable dictionaries
supplied by IPA [4, 5] by a specialized program. The dic
tionary can be thought as a linguistic knowledge base and
can assist in constructing a restricted specific-domain
dictionary for used in NLP, by providing semantic in
formation to the analysis. At present, we utilize the dic
tionary by using a data base management system.

5 Tools for NLP

We have formalized the SFTB grammar formalism for
the Japanese language and grammar rules running on
computers are realized in the framework of logic pro
gramming using LUG and RDG to demonstrate the de
scriptive power of their grammar formalisms. On the
other hand, we have developed NLP systems for do
ing computational linguistics with logic programming
techniques, such as a dictionary management system, a
grammar writer's workbench, a debugging system built
around a parser and so forth. In the following section,
we introduce a grammar rules development system.

5.1 LINGUIST

LINGUIST is a NLP system with three purposes:

(1) verifying the more detailed nature of the framework
of a natural language (Japanese) in a strict enough
sense to take an objective view;

(2) developing more useful grammar structures that can
be used widely in the domains where the natural
language interface to an information retrieval com
ponent is used as an intelligent system device; and

(3) having a tool for processing Japanese language and
thoroughly trying our grammar ideas.

In the sense of (1), LINGUIST is a grammar de-
o velopment system designed to assist the development of

grammar rules expressed in the DCG formalism. LUG,
mentioned in Section 3.1 is currently implemented in the
LINGUIST, and has been doing well as a development
and verification tool in the research of Japanese grammar
with respect to computational linguistics. The primary
goal in designing the LINGUIST was to efficiently develop
grammar rules by computer using logic programming.
Thus, the system described with respect to (1) functions
as a grammar writer's workbench for NLP.

Once produced, the grammar rules are included in
the NLP unit that makes up one part of the user in
terface of a system, such as an expert system, and the
translator of a machine translation system. Then the
grammar rules are adjusted to a particular purpose for
which the parser applying the grammar to sentence anal
ysis must be able to produce the structure needed by the
application domain. Modification of the grammar rules
increases with greater application speciality. When this
happens, it becomes unclear what the basic grammar
rules are.

In order to avoid this problem, LINGUIST has been
enhanced with a powerful editing facility that makes
it easy to support modification of the grammar rules
needed for adjustment to an application domain. With
this improvement, the LINGUIST provides users with the

basic grammar rules being developed at ICOT. The ap
plication of the basic grammar rules within the LINGUIST

simplifies many of the modifications dealt with by the
application system builders, as mentioned in (2).

In (3), the system being developed in the frame
work of logic programming will enable the investigation
and processing of various linguistic phenomena in the
approach of parsing a natural language (Japanese) by
computer.

5.1.1 The Machinery of the LINGUIST

This system initially implemented on PSI-IP under ESP2

is now available on a SP ARCstation under CESP3 .

The LINGUIST is organized into three major mod
ules, as illustrated in Figure 5:

Levell
LINGUIST

Grammars f.4!-+-L---j

(Parser)

*

Also provided is the basic grammar structures of Level l",Level 12

Figure 5: The System Configuration

o Generator includes the BUP translator that trans
lates Grammar rules written in DCG into ESP
(CESP) code. The user may manually select opera
tions to consult with, save or load a pal~~er program.

o Accessor allows the user to access the parser that is
ready to parse and provides inspectors to display the
results of parsing. Each inspector provides an iconic
menu of operations. Grammar structures can be
tested interactively and the results saved on system
holders for inspect and on files for future reference.

1 Personal Sequential Inference Machine developed at ICOT.
2Extended Self-contained Prolog developed at ICOT.
3Common ESP based on ESP developed at AI Language Insti-

tute Corp.

383

o Debugger provides a debugging tool for visualizing
each invocation during parsing as mouse-sensitive
operations. A tracing facility that follows the
progress left by the parser is built into the module.

Together these provide a menu-based interface that
makes communication with th: LINGUIST easy.

5.2 Other applications of the system

As of autumn 1991, the LINGUIST consists ofthe software
itself, a set of grammar rules and a set of dictionaries
used by it. The LINGUIST allows an advanced user to
extend and modify the basic grammar rules for a specific
usage. On the other hand, for inexperienced users the
system with its debugging facilities allows the process
to be mentioned and helps comprehension of how the
grammar rules are applied.

6 Final Remarks

In this paper, we presented an overview of the achieve
ments of our lengthy study in the ICOT project: (1) A
framework of Japanese grammar called SFTB, (2) Two
grammar formalisms, LUG and RDG, both based on
logic programming, (3) Dictionaries thought of as lin
guistic databases, (4) A grammar rule development sys
tem, LINGUIST.

In point (1), our framework of Japanese grammar
has the sentence level and structural aspects of Japanese
sentence construction. It, also, covers the basic linguis
tic phenomena of contemporary Japanese and these phe
nomena are systematically ordered in accordance with
the standards, as mentioned in Section 3.1.1.

Section 3 of the paper outlined two grammar for
malisms. LUG is a unification-based grammar formal
ism whose syntactic notation is DCG and is a kind of
context-free structure grammar. At present, grammar
rules written in LUG formalism on the basis of SFTB
are under evaluation by using elementary school texts.
On the other hand, RDG is the based on dependency
grarpmar formalism with a mechanism producing the
connected graph structures of sentences. We are cur
rently testing its descriptive power by using Japanese
newspaper editorials.

In Section 4, we described several kinds of dictio
naries thought of as linguistic databases. First, the dic
tionary consists of about 7,000 entries and is used for
analysis as part of the LUG grammar structure. Each
entry has the detailed information needed to perform
morphological analysis and syntactic parsing. Second,
the TRIE structure dictionary has a huge number of dic
tionary entries built for use in morphological analysis.
The dictionary consists of about 150,000 entries.

In Section 5, a tool for the grammar rules devel
opment system called LINGUIST was introduced. With

384

LINGUIST we developed basic grammar structures with
800 grammar rules written in LUG formalism. Thus,
LINGUIST provides not only an environment for the de
velopment of grammar rules but also an envi~onment for
modifying grammar rules that will be utilized in various
NLP application systems.

The LINGUIST software and the basic grammar
rules mentioned above are available to the general pub
lic. The dictionaries are also freeing available. We hope
these are extensively utilized in various NLP systems.

Availability
Academic users of LINGUIST can obtain free a magnetic tape
of the CESP code of the LINGUIST system. The basic gram
mar rules for the Japanese language in LUG is available as
an appendix to the LINGUIST system. -The software can be
ordered from Mr.Yukio Shigihara, Deputy Chief Research
Planning Section, Research Planning Department Research
Center, lCOT.

References

[11. Akasaka, K., et at. (1989). Language Tool Box (LTB) A
Program Library of NLP Tools, ICOT Technical Report:
TR-521, ICOT.

[2J Fukumoto, Fumiyo., et al. (1991). A Framework for Re
stricted Dependency Grammar, Papers from 3rd Inter
national Workshop on Natural Language Understanding
and Logic Programming, pages 68-81.

[3J Gunji, Takao (1987). Japanese Phrase Structure Gram
mar A unification-Based Approach, Studies in Natural
Language and Linguistic Theory, D.Reidel Publishing
Company.

[4J Keisankiyou Nihongo Kihon Doushi Jisho lPAL (Basic
Verbs) (in Japanese), (1987). Information Technology
Promotion Agency, Japan.

[5J Keisankiyou Nihongo Kihon Keiyoushi Jisho lPAL (Ba
sic Adjectives) (in Japanese), (1990). Information Tech
nology Promotion Agency, Japan.

[6J Pereira, F. & Warren, D (1980). Definite clause gram
mar for language analysis - a survey of the formalism
and a comparison with augmented transition networks,
Artificial Intelligence, VoU3, No.3, pages 231-278.

[7] Masuoka, Takashi & Takubo, Yukinori (1989). Kiso Ni
hongo Bunpou (in Japanese), Tokyo. Kuroshio Shup
pan.

[8J Matsumoto, Yuji., et al. (1983). BUP : A Bottom-Up
Parser Embedded in Prolog, New Generation Comput
ing, VoU, No.2, pages 145-158.

[9] Matsumoto, Yuji. & Sugimura, Ryouichi (1986). Ronri
gata Gengoni motozuku Koubun Kaiseki Sisutemu SAX
(in Japanese), Computer Software, Vol. 3, No.2, Japan
Society for Software Science and Technology.

[10] Morioka, Kenji (1987). Goi no Kousei (in Japanese).
Tokyo, Meiji Shoin.

[11] Sano, Hiroshi (1990a) Shizen Gengo Jikken Shien
Kankyou LINGUIST (in Japanese), Papers form 8th
Symposium on Fifth Generation Computer Technology,
ICOT.

[12] Tokunaga, Takenobu., et al. (1988). LangLAB : A Nat
ural Language Analysis System, Papers from 12th In
ternational Conference on Computational Linguistics,
Vol.!!.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 385

Argument Text Generation System (Dulcinea)

IKEDA Teruo, KOTANI Akirat, HAGIWARA Kaoru and KUBO Yukihiro

Institute for New Generation Computer Technology

1-4-28, Mita, Minato-ku, Tokyo 108, Japan

Abstract

A generation of texts to justify some opmlOn requires
clear expression of the system's standpoint and beliefs
along with the proper strategy for structuring text. We
call these kinds of texts Argument Texts. This paper
is intended to investigate the argument strategy for the
coherence of text and definite expression of standpoints.
Moreover, we developed the argument text generation
system, Dulcinea, using this argument strategy.

This strategy is plausible for the multi-paragraph text
generation in a very narrow domain, but we believe that
it is one of the answers to the question: "What relations,
plans and schemas are necessary to support the planning
of coherent multi-paragraph texts?".

The system generates text to justify an argument goal.
The text, which reflects the standpoint and the judgment
of the system, is represented by an FTS (Functional Text
Structure). The FTS represents not only the semantic
contents of the argument but the system's standpoint,
the judgments and the linguistic constraints.

1 Introduction

N aturallanguage generation systems produce various ut
terances: from single sentences in a dialog to coherent
paragraphs. In recent years, the volume of text gener
ated in text generation research has increased. Many
natural language generation systems are able to gener
ate multi-paragraph texts. The quality of these texts is
also improving. The center of research is shifting from
linguistic realization, which deals with linguistic forms,
to structure planning, which produces semantic struc
tures to attain the system's communicative intention.
Not only the propositional content, but also the writer's
intention and viewpoint are being focused on.

The multi-paragraph texts written by humans are ap
propriately structured to present their intentions effi
ciently, and to develop the topics according to their be
liefs, interests and viewpoints. These properly structured
coherent texts are able to express judgments and atti
tudes on topics based on the standpoint of the author.
By computer, however, it is difficult to produce coherent

Mitsubishi Electric Corporation t
5-1-1, Oofuna, Kamakura, Kanagawa 247, Japant

texts. Therefore, it is necessary to consider coherence
and appropriate structure planning for generating high
quality multi-paragraph texts by computer.

Especially, the generation of texts to justify some opin
ion requires clear expression of the system's standpoint
and beliefs along with the proper strategy for structur
ing text. We call these kinds of texts Argument Texts.
This paper is intended to investigate the argument strat
egy for the coherence of text and definite expression of
standpoints. Moreover, we developed the argument text
generation system, Dulcinea, using this argument strat
egy.

Section 2 illustrates the features of the argument texts
and gives a brief description of the belief contents, the
plans to generate semantic contents for each constituent
of the argument texts, and an abstract text structure
form called FTS (Functional Text Structure). Section
3 describes an overview of the Dulcinea argument texts
generation system. The system has four processes: gen
erating the semantic contents of arguments, organizing
linguistic text structure with argument strategy, sen
tence level organization for orders and connections, and
realizing texts. Section 4 gives an example of argument
text generation.

2 What are Argument Texts?

2.1 Features of Argument Texts Writ
ten by Humans

An argument text is a set of sentences in support of some
opinion. They are generated according to some argument
strategies, in order to persuade the reader to agree with
the opinion. An argument strategy based on linguistic
knowledge is useful to generate effective text to persuade
the reader. As a manner of showing the justification of
an opinion, for example, some texts give a simple but
forceful sentence while others spend paragraphs in ex
plaining the detailed grounds step by step. In addition
to how justification is given, it is important to reinforce
the argument with related topics. Adding examples to
the grounds increases the persuasiveness of a text. More
over, a technique in which a text mentions an expected

386

opposing argument and refutes this argument is an ef
fective way of persuasion.

As mentioned above, giving not only the grounds for
the conclusion, but also developing topics with examples
and opposing arguments persuades the reader more ef
fectively. Such a text must reflect that the writer holds
a consistent attitude from a specific standpoint to the
topic. An argument text may become vague and not
clearly state a view if it does not show a consistent at
titude by the writer. Thus it is important to reflect a
writer's consistent attitude in natural language expres
sions by considering the coherence of the text.

2.2 Related Work in Text Generation

In his research, Hovy developed a system[Hovy 1988]
that achieves various pragmatic goals to convey more
information than that contained in the literal meanings
of words. This he did by setting rhetorical goals as inter
mediate goals between the pragmatic aspects of commu
nication and the syntactic decision of the text generator.
As a result, a single semantic content can produce a vari
ety of texts which reflect various conversational settings
in various ways.

Hovy's purpose was to connect wide-range pragmatic
aspects to natural language expression by various con
versational settings and rhetorical goals. His work was
successful in this point, but did not give a concrete struc
turing method to make texts coherent. According to
Hovy[Hovy 1990b], one of the unsolved problems in the
field of generation by computer is what relations, plans
and schemas are necessary to support the planning of co
herent multi-paragraph texts. We investigate this prob
lem in the narrow domain of the argument, which we
choose as one of the applications of multi-paragraph text
generation.

To solve our problems, we investigated the follow
ing: what semantic content affects the reader, what text
structure should we organize and how should we rep
resent the text structure efficiently. As a result, we de
scribed various argument strategies on three levels. First,
the plans for generating the semantic content of each con
stituent of the argument texts. Second, the prescriptive
knowledge for organizing the linguistic text structure by
combining the constituents. Third, the representation
form of the local relations between adjacent sentences
that holds within the argument texts.

Many text generation systems employ a model for dis
course structure. RST[Mann and Thompson 1987] and
Schema[McKeown 1985] are typical examples of a model
for generating a coherent discourse structure. Mann and
Thompson formalized a set of about 25 relations suffi
cient to represent the relations between adjacent blocks
of text by RST. McKeown's schema represents the struc
ture of stereotypical paragraphs for describing objects,
and selecting the proper schema from her four schemas

enforces this coherence. The schema that describes the
typical format of argument text is suitable for our sys
tem's generation process, because it is driven by one
global intention (i.e. insisting the system's standpoint
effectively), and it completes the multi-paragraph text
without any interaction with the user. In fact, Dulcinea
uses the schema-like knowledge to generate the semantic
contents of the text and to organize the text structure.

By schemas, however, it is difficult to represent the
local relations between adjacent sentences within the
blocks. We represent the relations between adjacent sen
tences with the RST-like representation form, called FTS
(Functional Text Structure). The plans for each con
stituent of argument text generate the semantic contents
and each linguistic structure which is represented by the
FTS.

2.3 Generation Process of Dulcinea

The following is a brief review of the generation process
of Dulcinea. At first, we set the standpoint of the system
by giving it an argument goal. The system's standpoint
is whether some states of affairs are good or not good.
These are the only possible judgments of the state of
affairs. Dulcinea makes the semantic contents of an ar
gument justify the given argument goal according to its
beliefs, and represents them with a data structure called
the Argument Graph. Then, the argument strategy on
linguistic text structure is applied to the argument graph
to organize an abstract text structure, which is repre
sented by the FTS. The FTS represents not only the
semantic content, but also the text structure, according
to the standpoint of Dulcinea, and the belief necessary
to generate the persuasive argument text. The FTS pro
duces various surface syntactic text structures. Finally,
the best text structure is selected and used to form nat
ural language expressions.

The rest of this section describes Dulcinea's belief con
tents, gives an argument graph for representing semantic
contents, and gives the FTS representation form of the
text structure.

2.4 Belief Contents and the Argument
Goal

Dulcinea's standpoint, which is set by the given argu
ment goal and system beliefs, is the basis of the argu
ment. The beliefs consist of three types of belief con
tents: Fact, Rule,and Judgment. Every element of Fact
is a belief that Dulcinea believes to be true in the real
world. Every element of Rule is a causal relation between
two states of affairs. Every element of Judgment is a be
lief content that the system regards as good or not good.
Figure 1 is an example of beliefs.

We give one of the three kinds of modal expressions,
defined by the judgments in the table below, for the state

• Rules

1. enforce[obj=one-way-system,loc=L],
enforce[obj=two-way-lane, loc=L, pol=O]
=> change[obj2=bus-route, loc=L].

2. change[obj2=bus-route,loc=L]
=> decrease[obj2=passenger, loc=L].

3. decrease[obj2=passenger[mod=bus]J, loc=L]
=> abolish[bus, loc=L].

4. enforce[obj=two-way-lane, loc=L]
=> dangerous[obj=pedestrian, loc=L].

5. enforce[obj=two-way-lane, loc=LJ,
turn-on[act=bus, obj=lights, loc=L]
=> dangerous[obj=pedestrian, loc=L, pol=O].

6. enforce[obj=two-way-lane, loc=L]
=> dangerous[obj=enteringcar, loc=L].

7. enforce[obj=two-way-lane, loc=LJ,
set-up[obj=road-sign, loc=L]
=> dangerous[obj=entering-car, loc=L, pol=O].

• Facts

1. enforce[obj=one-way-system, loc=Midosuji]

2. enforce[obj=two-way-lane, loc=Midosuji, pol=O].

3. change[obj2=bus-route, loc=Midosuji].

4. change[obj2=passenger[mod=bus]J, loc=Midosuji].

5. enforce[obj=two-way-lane, loc=London].

6. dangerous[obj=pedestrian, loc=London, pol=O].

7. turn-on[act=bus, obj=lights, loc=London].

• Judgments

l. ng[obj=abolish[mod=bus]].

2. ng[obj=dangerous[obj=_]].

Figure 1: Contents of the Beliefs

of affairs to the system as the argument goals. In the
table, A means some state of affairs, and A means the
negative state of affairs of A. If a judgment g(A) exists
in the system's belief, then the system believes A to be
good.

Correspondent
Argument goal Assertion Judgement

must(A) It must be A ng(A)
hb(A) It had better be A g(A)
may(A) It may be A -,ng(A)

Dulcinea converts the given argument goal to the cor
respondent judgment, and shows that this judgment is
supported by its beliefs.

2.5 Constituents of the Argument Text

The argument texts consist of the grounds for the argu
ment goal, the expected opposing arguments, its refuta
tion and the examples. The plans are prepared for each
constituent to generate its content. A brief description
of the constituent follows.

• Argument goal

The argument goal is given to the system first. It
provides the system's standpoint. It is the conclu
sion of the text, which is mostly placed at the end
of the text.

387

Ex. 1 Therefore) the two-way lane 1 must be
enforced.

• Ground
The grounds are necessary to justify the argument
goal. The type of argument goal and the beliefs
are used to select the proper plan for generating the
grounds. The plans that are very restricted based on
the reasons for the states of affairs will be described
in detail in Section 3. An example of the grounds is
given below.

Ex. 2 Because the bus service stops if a two-way
lane is not enforced) " .

• Opposing argument and its refutation

Showing the grounds is enough to justify the argu
ment goal. But, add to this any expected opposing
argument and its refutation increases the persua
siveness of the text. The system adds the pseudo
ground of the opposite argument goal as the oppos
ing argument, and points out that it is incorrect by
refuting it.

Ex. 3 Indeed enforcing the two-way lane seems to
be dangerous for pedestrians) but they are safe if the
buses tum their lights on.

• Example
The argument text with the example is more per
suasive.

Ex. 4 For example) the number of passengers using
the bus decreased) because the two-way lane was not
enforced.

2.6 Argument Graph

The semantic contents that consist of the above parts are
represented by the argument graph. Figure 2 is an exam
ple of the argument graphs, which insist the argument
goal "Tbe two-way lane must be enforced".

Each node in the graph represents a state of affairs.
Ng in the nodes indicates that the state of affairs is
regarded as no_good, and af indicates that the system
assumes that this is true. Nodes (2)rv(5) with the as
sumed node (1) represent the grounds for justifying of
the argument goal. The cause link in the graph means
a general causation, and the p link is used to repre
sent the assumed node. The term in the node (2)
enforce (two-way-lane; 0) is the negative state of af
fairs of enforce (two-way-lane). The system regards
node (5) as no_good and node (2), the negative state of
affairs of the argument goal which causes the no_good
state of affairs, as node (5). Therefore, this causal re
lation is the ground for the argument goal. The ant i
link means the linked graph has contents opposite to the
ground, and the deny link shows that the node seems to
be caused, but is denied by the linked graph. The details
of the ground, the opposing argument and the refutation
of it are given in Section 3.

1 A two-way lane is a lane which allows buses to drive the wrong
way up a one-way street.

388
(3)change(bu.-route) c~e (4)decrea..e(pa •• enger) c~e (5)a.bolish(bu.-service)

ng

(6)enforce(two-wa.y-lane) c~e
ng

ng ng

Figure 2: Argument Graph

2.7 A Structural Gap between the Ar
gument Graph and a Linguistic
Text Structure

The system realizes the semantic contents by natural lan
guage expression. However, the semantic text structure
does not always correspond to the linguistic text struc
ture. The various relations in the argument graph such
as causation, temporal sequence, condition and assump
tion are expressed by various natural language connec
tive expressions by considering the system's standpoint
and beliefs. The direct realization of the propositional
content makes for unnatural text. Therefore, the system
must consider the judgment in relation to the proposi
tional content and the role of the block that the propo
sitional content is placed on such as the grounds and the
opposing argument. One of the correspondent natural
language expressions to the argument graph in Figure 2
is given below.

Ex. 5 If the one-way system is introduced into a
street(l) , and a two-way lane is not enforced in the
street(2) then the route of the bus service changes(3), the
number of passengers decreases(4) , and, unfortunately,
the bus service eventually stops (5)-

Indeed enforcing the two-way lane(6) seems to be dan
gerous for pedestrians(7) , but they are safe(lo) if the
buses turn their lights On(8), even if the two-way lane
is enforced(9)'

Nodes (2)""""(5) are linked by the cause link, but the sur
face expressions connect them naturally in a variety of
ways. In (5), "unfortunately" is used to express the
writer's negative attitude, this word communicates ef
ficiently that nodes (2)"'(5) are the grounds. The ex...:
pression "Indeed rv seems to be "," and "even if "," are
used, because (6).......,(7) represent content that opposes the
argument goal. These are denied by (8)"'(10). Since
(6)"'(10) have a different content from (1)"'(5), two sep
arate paragraphs are formed.

All these things make it clear that the surface natural
language expression reflects the system's standpoint and
beliefs besides the propositional contents. However, since
there is a gap between the semantic contents and the

natural language expression, the direct realization from
the semantic data structure needs complicated process
ing because their is too much information to be referred
to and a large variety of decision orders_ To realize the
proper expressions, as in the example above, it is nec
essary to not only refer to the relations between each
state of affairs, but to consider how the partial structure
relates to the whole text. A limited natural language ex
pression is likely to be realized to avoid complexity, and
such expressions cannot affect the reader_

In the early stages of the generation process, the orga
nization of the linguistic text structure based on the lin
guistic strategy for the argument is important to realize
the persuasive text, which utilizes the rich expressiveness
of natural language. The linguistic strategy consists of
the prescriptive descriptions of the developing topics and
the local plans for each constituent to represent the local
relations. In addition, we need the abstract representa
tion form to represent the text structure generated as a
result of structure planning.

2.8 FTS (Functional Text Structure)

We introduced the FTS as the abstract representation
form. The FTS is able to represent information such as
the writer's judgments, necessary to generate coherent
text, and to reflect the writer's standpoint besides the
propositional contents. Both the local relations between
the states of affairs and the global construction of the
text are described together.

FTS is a text structure representation form which rep
resents the functional relations that hold within a piece
of text. FTS consists of the FTS-term, order constraints
and gravitational constraints. The order constraints and
the gravitational constraints are optional.

FTS-term: The data structure that represents func
tional dependencies that hold within a piece of text.
FTS does not fix the order of the sentences_

Order' constraint: The constraint of the order between
two sentences. The order constraint Sl <S2 means
that the text in which sentence S2 comes after sen
tence Sl is preferable.

Table 1: Attribute Labels in the FTS-term

I Labels II Description of attribute

thesis A conclusion of the FTS-term
reason A reason of the thesis
antLt An opposing content of the thesis
crecog A cause of the thesis
exampl An example of the thesis

Gravitational constraint: The constraint of the dis
tance between two sentences. The gravitational con
straint Sl-S2 means that the text in which sentence
Sl is near sentence S2 is preferable.

Table 1 is a list of attributes to describe the FTS-term.
These attributes take the FTS-term recursively as its
value except thesis that takes a belief content as its
value.

FTS produces various surface text structures by decid
ing the order of the sentences, and whether to connect
two adjacent sentences or not, as well as the type of the
connectives. The order of the sentences and the con
nection of the adjacent sentences is important to make
the text comprehensible. Our system is able to generate
coherent text in regards to sentence order and connec
tion by selecting the best surface text structure from the
structures that FTS can generate. The selection is based
on criteria we will describe later.

3 Overview of the System

The argument text generation system Dulcinea consists
of the four modules described below.

• Generation of semantic contents of argu
ments

This module creates a data structure called an Ar
gument Graph which represents the semantic con
tent of arguments to justify a given argument goal
according to the system's own beliefs.

• Linguistic organization with argument strat
egy

This module creates an FTS from a given argument
graph using linguistic knowledge. The FTS repre
sents a whole text structure.

• Clause level organization of orders and con
nections

Each leaf node in the FTS corresponds to a clause
in natural language. This module adds order and
connection information from each clause to the FTS.

• Realization of texts

To realize natural language text from the FTS, ap
propriate words are selected. Tense, aspect and
mood are fixed in this module.

These four modules are connected in sequence (Fig
ure 3). Details on each module are described in the est
of this section.

Generating Semantic
Contents of Arguments

FrS §
(Functional Text Structure) :

Figure 3: Dulcinea's Architecture

389

Argument
Goal
.:

3.1 Generating Semantic Contents of
Arguments

This module creates an argument graph which represents
the semantic content of the argument from the given
goal. The module refers to a knowledge base which con
tains the system's own beliefs while creating the argu
ment graph.

As described in the previous section, an argument con
sists of three different parts: grounds for the argument,
refutations of the opposing arguments, and examples of
the arguments or refutations. Every argument has at
least one ground argument, whereas refutations of the
opposing argument and examples are optional to the ar
gument. We will describe the procedure for creating each
part and combining those parts into one argument.

1. Generation of grounds

The procedure for creating ground differs according
to the type of goal. The procedures are as follows.

(a) goal type 1 (must, hb)
The module searches a reason for believing a
judgment corresponding to a given goal. If
there is a rule in beliefs which predicts a result
state B from a state A, and state B is believed
to be good (g(B)), then state A is also believed
to be good (g(A)).

Ab A2, ... , An ::} B
A2 ", An

g(B)

Ab A2, ... , An ::} B
A2 '" An
ng(B)

ng(AI)

In the course of applying these schemas, states
A2 I"'J An are proved by applying rules back
ward. If those states cannot be proved by
the schemas below, the module assumes those
states hold in its belief.

390

enforce(two-way-lane;O) c~e •••••• c~e a.bolish(bus.service)
ng ng

~ anti

enforce(two-way-Iane) c~e
ng

Figure 5: Generation of Refutation of Opposing Argu
ment

A 1 ,A2 , ••. ,An :::} B
Al rv An

B

The result of application of rules is represented
in an argument graph. Figure 4 shows an ex
ample.

(b) goal type 2 (may)
A goal of the form may(A) corresponds to a
judgment --.ng(A). We cannot obtain this type
of judgment using the schema above. we de
fine the semantics of --.ng(A) as follows, "There
seems to be grounds for a judgment --.ng(A).
But, in fact, there is a refutation to the argu
ment"

This idea is also used in the creation of refuta
tions of an opposing argument.

2. Generation of opposing arguments and their
refutation

An argument Al whose goal is contrary to the goal
of argument A2 is called an opposing argument of
A2 • Its goal and its opposing argument's goal are
listed below.

Argument goal Opposing goal

must(A) (= ng(A)) ng(A),g(A)
hb(A) (= g(A)) ng(A),g(A)

The module creates the pseudo-ground for the goal
opposing the original goal. Find, then, creates
the refutation to the opposing argument. Figure 5
shows an example of the refutation of the opposing
argument.

3. Generation of examples

We define a pair of facts which are unifiable to a rule
as an "example" of the rule. By attaching examples
to the rules in an argument, we can reinforce the
argument (See Figure 6).

3.2

dangerous(pedestrian ;0)

af

cause
=>

da.ngerous(pedestrian,

London;O)
f

Figure 6: Generation of the Example

Linguistic Organization with Ar
gument Strategy

This process applies some linguistic argument strategies
to an argument graph and constructs an FTS of an argu
ment text. Since the argument graph expresses only the
semantic content of the argument, the structure of the
graph is independent of the natural language expressions
to be generated. Therefore, in order to generate the ar
gument text, the argument graph should be translated
into the FTS, which can be transformed into suitable
natural language expressions.

First of all, basic constituents in the argument graph
such as the ground, the example and the refutation of
the opposing argument are recognized. Then the order
of these constituents is decided according to the prescrip
tive knowledge. The order is described using the order
constraints of the FTS.

For instance, the opposing arguments ate placed before
the argument goal. The examples are placed after the
ground. The ground is realized earlier than its opposing
arguments and refutations of it.

At the same time, each constituent is transformed
into the FTS-term according to the transformation rules.
Those constituents which cannot be used for the argu
ment or would make the text unnatural are ignored.

The following shows the transformation rules defined
for each constituent of the argument graph.

1. Generation of the ground

A causal relation in the argument graph is trans
formed into a new term which has a pair of labels
cause and result. If the causal relation has precon
dition link p, then the content of the precondition
with a label p_cond is added to the term. For exam
ple, the argument graph in Figure 4 is transformed
into the following FTS-term. The FTS-term which
represents the ground for the given argument goal
has an attribute fts_type and its value main.

[thesis= [set={
[thesis=[p_cond=enforce(two-way-lane),

cause= enforce(two-way-lane;O),
result=change(bus-route)]],

[thesis=[cause= change(bus-route),
result=decrease(passenger)]],

[thesis=[cause= decrease(passenger),
result=abolish(bus-service)]]}],

fts_type= main]

391

d.cr (p ng.r) ewe .. boli.h(bu.-•• rvic.)
nr; nr;

Figure 4: Generation of the Ground

2. Generation of the opposing argument and the
refutation of it

The FTS-term which represents the opposing argu
ment is generated with a label antLt in the FTS
term which represents the ground. The contents of
the opposing argument in the argument graph are
transformed into the FTS-term in the same way as
the transformation of the ground part.

The FTS-term which expresses refutation of the op
posing argument has an attribute fts_type with the
value anti-deny. The following shows the FTS
term corresponding to the argument graph in Fig
ure 5.

[set={
[thesis=t1: ... ,
fts_type= main],

[thesis=t2:[though=enforce(two-way-lane),
assume=turn-on(lights),
result~dangerous(pedestrian;O)],

anti_t=t3:[thesis=
[seem=
[thesis=

[cause=enforce(two-way-lane),
result=dangerous(pedestrian)]]]],

ft s_type=ant i_deny]
}]

order constraints: tl<t2, t3<t1

3. Generation of the example

The FTS-term which stands for the example of the
ground is generated with the label exampl in the
FTS-term expressing the ground. The FTS-term
that corresponds to the argument graph in Figure 6
is as follows.

[thesis=
[though=enforce(two-way-lane),
assume=turn-on(lights),
result=dangerous(pedestrian;O)] ,

exampl=
[thesis=dangerous(pedestrian,London;O) ,
crecog= [set={

[thesis=enforce(two-way-lane,London)] ,
[thesis=turn-on(lights,London)]}]]]

3.3 Clause Level Organization of Or
ders and Connections

This module defines the connection relation of each sen
tence in a given FTS, and generates the surface structure
of a whole text. In general, a number of surface struc
tures can be generated from one FTS. In order to gener
ate one plausible surface structure, the module processes
the FTS in two steps.

Table 2: Criteria for Connection Relation

Depth of a memory stack The depth of a memory stack should be
shorter.

Nwnber of bad dependency The number of bad dependency struc-
structures tures should be smaller in a text.
Structural similarity The structure of the surface text should

be similar to the FTS.
Nwnber of connectives with Not more than two connectives to intra-
negative statements duce negative statement should appear

in a sentence.
Nwnber of connecting two Two clauses should not be connected
clauses more than a certain number of times.
Gravitational constraint Two sentences under the gravitational

constraint should be placed close.
Stability of topics Sentences should be ordered so as not to

change the topic frequently.
Connecting two implications Two implications A-+B and B-+C

should be realized in this order
Sentence order similarity be- The sentence order of the example
tween the ground and the should be similar to the ground.
example

1. Generates every possible connection relation from
the given FTS.

2. Evaluates those connection relations based on the
criteria in Table 2, and chooses the best connection
relation.

Using the criteria for connection relation in Table 2,
the module adds an order attribute which represents
sentence order and a conn attribute which represents the
connection of two sentences to the FTS. The surface ex
pression for connectives are specified by the type of the
connections (Table 3).

We illustrate the criterion for the bad dependency
structure using the FTS below.

[thesis= t1
anti_t= t2
exampl= t3]

t2 < t1. t2 < t3

In this case, we can generate sentences in two different
orders.

1. t2<t1<t3

2': t2<t3<t1

Figure 7 represents the dependency structure of each
text. Since dependency structure 2 does not have direct
dependency between t2 and t3, ,the reader cannot find
the semantic dependency of t3 when t3 is reached while
reading this text. They can find the semantic depen
dency only after reading through t 1. This means that
the text in order 2 is much more difficult to understand

392

Table 3: Type of Connections and Their Expressions

deduction shitagatte,dakara,yotte,yueni, ...
",kara,"'node, ...

causation sonokekka,sonotame, .. .
"'tame,'" (ren'youkei), .. .

reason nazenara'" karadearu,toiunoha", karadearu, ...
X

development suruto, ...
"'to,N(ren'youkei), ...

negation! shikashi ,daga, ...
"'ga, ...

negation2 II-"--l-_"'''''ga;:..:.,.::..:. .. ___________ --i
X

juxtaposition II-=-+:::m=;at:.:;:a:!:,., .. :..:.... -------------1
",shl, ...

example tatoebaJissai,. ..
X

generalization konoyouni, ...
X

presentation s (just placed continuously)
"'ga,

implication II-=--+-:..:.x----._~...,..---------__I
c naraba,reba,to, ...

addition If-C.-l-,;..:.x-,--.,.----,.--,...-________ --I
te,(ren'youkei), ...

concession II-"--l-,;..:.x ____________ ----l

c temo,tatoeNtemo, ...

s:separate
c:connect

1. t2

bad
dependency

t1 t3

2. t2·~ucture .. t3 t 1

Figure 7: Dependency Structure

than that in 1. We call the dependency structure in 2
the bad dependency structure.

In evaluation of the bad dependency structure, order
2 is preferred to 1, and the attributys' values become the
following.

[thesis= t1
antLt= t2
exampl= t3
order= [2 ~ 3 , 1J ,
conn= [(negation1,s),(example,s)JJ

3.4 Realizing Texts

This process realizes the content of the FTS added order
and conn attributes in terms of natural language ex
pressions. The FTS with order and conn is the tree
structure which represents the syntactic structure of the
whole text. The leaves of the tree structure are realized
as clauses. Syntactic structural relations which hold at
a higher level than clauses, such as the relation between
clauses and the relation between sentences, have already
been generated by adding order and conn to the FTS.

For each term in the tree structure, lexicons corre
spond to each object in the term. Here, suffixes ex
pressing the functions for each object, tense and aspect
expressions of predicates and the system's judgment ex
pressions are all decided. Then, connectives which rep
resent the relations between terms are determined by
Table 3.

Among the causal relations between terms, those that
have been described as a rule in the beliefs are repre
sented as an "implication", which is a strongly depen
dent connective relation. The following rule in the belief

change(bus-route)=*decrease(passenger)

will be realized "If the bus route is changed, the passen
gers decrease." The relation between thesis and reason
described in the FTS-term is represented as a "deduc
tion", which is a weakly dependent connective relation.
For instance, the FTS-term:

[thesis=must(enforce(two-way-lane»,
reason=abolish(bus-service)]

will be expressed "The bus service will be abolished.
Therefore, a two way lane should be enforced."

4 Example

In this section, we show an example of Dulcinea's argu
ment. The beliefs used for the argument are shown in
Figure 1.

When the argument goal

must(cont=enforce(obj=two-way-lane»,

which means "The two-way lane must be enforced.",
is given to Dulcinea, it generates the argument graph
shown in Figure 9 according to the beliefs.

Then this argument graph is transformed into the
FTS, to which information on sentence order and con
nectives are added afterwards. The FTS with these two
kinds of information is shown in Figure 10.

From this FTS structure the argument text shown in
Figure 8 is realized.

5 Conclusion

We have described.the argument text generation system
Dulcinea, which generates text to justify the argument
goal. The text, which reflects the standpoint and the
judgment of the system, is represented by the FTS. The
FTS represents not only the semantic contents of the
argument' but the system's standpoint, the judgments
and the linguistic constraints.

In addition to the generation frame-work, we have in
vestigated the argument strategy to generate coherent
and persuasive argument texts. This strategy is plausible
for the multi-paragraph text generation in a very narrow
domain, but we believe that it is one of the answers to the
question: "What relations, plans and schemas ar~ neces
sary to support the planning of coherent multi-paragraph
texts?)' .

m~m~-~~fi~~~LL, ~fiv
y ~~~ L 7j: 7J>.-? t-c.. -t (J)M*, /{ AJV- 1-

7J~~{t L t-c.. -t (J) t-c. '1>, /{ A (J)*~7J~ 40%
~1;- L L L'"f -? t-c.. t. (J) J: 5 K, -~~fi~
~~TQc!K, ~fiv-Y~~~L7j:~n
ti, /{ A Jv- 1- 7J~~{t L, /{ A (J)*~7J~~1;
T.o. ~ t-c., /{ A7J~~ll:: ~ nL L'"f 5.

-~, ~fiv-Y~~~Tn~, ~fi~
7J~fi1:~ 7j: J: 5 K lj. ~ Q. L 7J>. L, /{ A (J) 71
1- ~J~,flTnti, ~fiv- Y~~~LL~,
~fi~ t± fi1:~-C~ 7j: 0. L t-c. 7J~ -? L , ~fi v -
Y ~~1i'tIi L 7j: ~nrf7j: ~ 7j: 0.

Generated Text

When the one-way system was intro
duced in Midosuji street, a two-way lane
was not enforced. As a result, the route of
the bus service changed. Therefore, the num
ber of passengers decreased by 40%. In this
way, when a one-way system is introduced to
a street, if a two-way lane is not enforced,
then the route of the bus service changes,
and this makes the number of passengers de
crease. Finally, the bus service is abolished.

On the other hand, enforcing the two
way lane seems to be dangerous for pedestri
ans. But they are safe if the buses turn their
lights on. Therefore, the two-way lane must
be enforced.

393

Translated from Japanese

Figure 8: Argument Text

To generate more coherent and natural texts using the
rich expressiveness of natural language, some user model
and more complicate conversational settings will be nec
essary in the future.

Acknow ledgments

Thanks are due to TANAKA Yuichi for reading the draft
and making a number of helpful suggestions. We also
wish to thank all the members of the Sixth Research
Laboratory and the members of working group NL U for
valuable advice.

References

(Appelt 1988] Douglas E. Appelt. Planning natural
language,referring expressions. In David D. McDon
ald and Leonard Bole, editors, Natural Language
Generation Systems. Springer-Verlag, 1988.

(Danlos 1984] Laurence Danlos. Conceptual and lin
guistic decisions in generation. In the Proceedings
of the International Conference on Computational
Linguistics, 1984.

(Hovy 1985] Eduard H. Hovy. Integrating text planning
and production in generation. In the Proceedings
of the International Joint Conference on Artificial
Intelligence.

(Hovy 1987] Eduard H. Hovy. Interpretation in genera
tion. In the Proceedings of 6th AAAI Conference.

[Hovy 1988] Eduard H. Hovy. Generating Natural Lan
guage under Pragmatic Constraints. Lawrence Erl
baum Associates, Publishers, 1988.

[Hovy 1990a] Eduard H. Hovy. Pragmatics and natural
language generation. Artificial Intelligence, 43:153-
197, 1990.

[Hovy 1990b] Eduard H. Hovy. Unresolved issues in
paragraph planning. In Current Research in Nat
ural Language Generation. Academic Press, 1990.

[Joshi 1987] Aravind K. Joshi. Word-order variation in
natural language generation. In the Proceedings of
6th AAAI Conference.

[Mann and Thompson 1987] W. C. Mann and S. A.
Thompson. Rhetorical structure theory: Descrip
tion and construction of text structures. In Natural
Language Generation: New Results in Artificial In
telligence, Psychology, and Linguistics. Dordrecht:
Martinus Nijhoff Publishers, 1987.

[McDonald and Pustejovsky 1985] David D. McDonald
and James D. Pustejovsky. Description-directed
natural language generation. In the Proceedings of
the International Joint Conference on Artificial In
telligence.

[McKeown 1985] K. R. McKeown. Text Generation: Us
ing Discourse Strategies and Focus Constraints to
Generate Natural Language Text. Cambridge Uni
versity Press, 1985.

[McKeown and Swartout 1988] K. R. McKeown and
W. R. Swartout. Language generation and expla
nation. In Michael Zock and Gerard Sabah, ed
itors, Advances in Natural Language Generation,
volume 1. Ablex Publishing Corporation, 1988.

[M~tter 1990] Marie W. Meteer. The 'generation gap'
the problem of expressibility in text planning. Tech
nical report, BBN Systems and Technologies Corpo
ration, 1990.

394

anti
enforce(two- way-Ia.ne)

(af)

cause
==>

cause
==>

cause
==> decrease(p ... senger)

(af)

Figure 9: The Argument Graph

[thesis= 1 :must [cont= enforce [obj=tvo-vay-lane]] ,
reason= 2: [set:{

1: [thesis= [set={
1: [thesis= 1: [set={

1: [thesis= [p_cond= 1: (enforce [obj=one-vay-system] ,af),
cause= 2: (enforce [obj=tvo-vay-lane ,pol=O] ,af) ,
result= 3: (change [obj2=bus-route] ,af),
order= [1,2,3], conn" [(condition,c) ,(implication ,c)]]] ,

2: [thesis= [cause= 1: (change [obj2=bus-route] ,af) ,
result= 2: (decrease [obj2=passenger [mod=bus]] ,af) ,
order= [1,2], conn= [(implication ,c)]]]),

order= [1,2], conn= [(development,c)]],

cause
==>

abolish(bus-service)

(af,ng)

exampl= 2: [thesis= 1: (decrease [obj2=passenger[mod=bus] ,amo=40%, ten=prec ,loc=Midosuji] ,f ,ng) ,
crecog= 2: [thesis= 1: (change [obj2=bus-route ,loc=Midosuj i] ,f) ,

crecog= 2: [set= {
1: [thesis= (enforce [obj=one-vay-system , loc=Midosuj i] ,f)],
2: [thesis= (enforce [obj=tvo-vay-lane ,loc=Midosuji ,pol=O] ,f)]},
order= [1,2], conn= [(juxtaposition,c)]] ,

order= [2,1], conn= [(causation,s)]],
attent= [{loc ,Midosuji}] , .
order= [2,1], conn= [(causation,s)]]]),

order=[2,1] , conn=[(generalization,s)]],
2: [thesis= [cause= 1: (decrease [obj2=passenger[mod=bus]] ,af),

result= 2: (abolish [obj=bus] ,af ,ng) ,
order= [1,2], conn=[(implication,c)]] ,

order: [1.,2], conn= [(juxtaposition,s)]],
ftst_ type= main] ,

2: [thesis= 1: [though= 1: (enforced[obj=tvo-vay-lane] ,af) ,
assume= 2: (turn-on [obj=lights [mod"'bus]] ,af) ,
result= 3: (dangerous [obj2=pedestrian,pol=O] ,af),
order= [2,1,3], conn: [(implication ,c), (concession,c)]] ,

ftst_type= anti_deny,'
attent= [{obj2 ,pedestrian}] ,
anti_t= 2: [thesis= [seem= [cause= (enforce [obj=tvo-vay-lane] ,af) ,

result= (dangerous [obj2=pedestrian] ,af ,ng),
order= [1,2], conn= [(implication,c)]]
order= [1], conn= []]],

order= [2,1], conn= [(negation1,s)]] },
order= [1,2], conn= [(change,s)]],

order= [2,1], conn= [(deduction,s)]]

Figure 10: FTS with order and conn attributes

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 395

Situated Inference of Temporal Information

Satoshi Tojo Hideki Yasukawa t

Mitsubishi Research Institute., Inc.
8-1, Shimomeguro L Meguro-ku, Tokyo 153, JAPAN
(phone) +81-3-3536-5813 (e-mail)tojo(Q!nui.co.jp

Institute of New Generation Computer Technology (ICOT)t
Mita Kokusai Bldg. 21F

4-28 Mita L Minato-ku, Tokyo 108. JAPAN
(phone) +81-3-3456-3194 (e-mail)yasukawa@icot.or.jp

Abstract

Representations of natural language, describing the same

state of affairs may differ between speakers because of

their different viewpoints. In this paper we propose the

concept of perspectives that are applied to situations.

to explain this variety of the representation of an infon,

with regard to time. We define the perspective by the

relation theory of meaning, namely the relative locations

in mind between the described situation. the utterance

situation, and the infon. Our aim is to model a situated

inference system that infers temporal features of a sen

tence from the partial temporal information each lexical

item carries. For this purpose, we apply our notion of

perspectives to actual tense and aspects that are used as

lexical temporal features, and in addition we inspect the

validity of our formalization for verbs. 'y\;'e show the in

ference system in the logic programming paradigm. and

introduce an ambiguity solver for Japanese -teiru that

may have multiple meanings. as an experiment of our

framework.

1 Introduction

The most common way to represent time is to assume

that it is a one dimensional line which extends both

to the eternal past and to the eternal future. and a

point called 'now' which moves along the line at a fixed

speed. The semantics of time in natural languages. so of

ten associated with this physical time parameter of. has

been dealt with. However, the introduction of parame

ter 't' seems too strong for natural languages. contrary

to the case of physical equations. Actually. we cannot

always map the temporal property of verbs or temporal

anaphora on the time axis correctly.

In opposition to this view of the time. we have been

forced to loosen the strongest topology of physical time

in some ways. One of the most famous works to repre

sent so-called 'coarse' time is the interval-based theor!"

by Allen [Allen 84]. Kamp [Kamp 79] proposed event cal

culus where he claimed that 'an instant' was relatively

defined by all the known events in his D RT. Our work

is to extend this temporal relativity. We will mainly pay

attention to the temporal structures of tense. aspects,

and verbs within the framework.

From the viewpoint of the history of situat.ion theory,

the notion of a spatio-temporallocation. or simply a lo

cation. was proposed to represent the four-dimensional

concept of time and place. In the early stages of sit

uation theory. situations and spatio-temporal locations

were distinguished [Barwise 8:3] as: In $. at 1 a hold

However the consideration of spatio-temporal location

seems to have been rather neglected since then. and we

have only found ('ooper's :work [Cooper 8.5] [Cooper86]

to give a significant interpretation of locations for time

semantics.

The authors have worked for the formalization of a

temporal location as a meaning carrier of temporal in

formation [Tajo 90]. In this paper. we aim to show a

396

paradigm of an inference system that merges temporal

information carried by each lexical item and resolves any

temporal ambiguity that a word may have. First we re

view the role of the temporal location following Cooper's

work. Our' position is to regard temporal locations of

infons and situations as mental locations. We define a

temporal perspective toward a situation, which decides

how an infon is verbalized, in terms of relative locations

of situations and infons. In the following section, we will

give accounts for several important temporal features of

tense and aspects by the perspectives, not only to de

fine the basic information for the intended situated in

ference but also to see the validity of our formalization.

In the following section, we discuss the computation sys

tem that infers temporal features of a natural language

sentence. We have implemented an experimentation sys

tem of the ambiguity solver in Japanese -teiru with a

knowledge representation language QUIXOTE, devel

oped at ICOT (Institute of New Generation Computer

Technology, Japan).

2 Situations with perspectives

The temporal information in our mind seems preserved

in a quite abstract way, and temporal span or duration

are relative to events in the mind. In this section, we will

discuss the structure of those subjective views for time.

and for the real situation.

2.1 Real situations and perspectives

"Ve often write down an infon in the following way:

~ relation, parameter'8 ~

However none have been concerned with those labels for

the relation in an infon. For example. should we admit

such relations as those contains tense and aspect'? If so.

and if the following supporting relations are valid:

8 F=~ 8wim,john ~
s' F=~ 8warn,john ~
s" F=~ is-swimming,john ~

then how should we describe the relation in 8,8', and .sit,?

Are we making different expressions for the same real

situation?

We hypothesize a virtual physical world, or in other

words an ontological world which was originally proposed

as a real situation [Barwise83]. According to the notion

of real situations, we can assume that there is proto

lexicon in the world though there are many different ways

to verbalize them. We may call those infons that are not

yet verbalized proto-infon.s. 1 We can regard proto-infons

as the genotype of infons; to describe a proto-infon to

make the phenotype one is to give rel and roles in natural

language with a certain viewpoint. We propose an idea

of perspective which gives this notion of view next.

In the scheme of individuation, Barwise regarded all

linguistic labels as being encoded in the situation itselt

already [Barwise 89J. We will not discuss the adequacy

of this idea in this paper, however it gives us a way to

formalize situations with perpsectives as follows. In or

der to state a formula of the form .s F= 0', we are required

to assume a certain observer who has cut out s as a part

of the world and has paid attention to information 0', so

that the formula must already contain someone's view or

perspective. In that meaning, in S or in 0'. the basic lex

icon must be included as linguistic labels. For example,

if the observer is a Japanese. Japanese language labels

should be used to describe the information. From this

point of view, we assume that in the formula of the sup

port relation between a situation and an infon someone's

perspective already exist.

s F= 0' {::} P(,s' F= 0")

It is an open question whether we can strip off all the

external perspectives from a support relation, as below:

Even if we can. this must not be the only way to choose

a sequence of Pi'S.

2.2 Temporal perspective

We concern ourselves with the temporal part of the

spatio-temporal location of the situation theory here.

The natural way to do this is to assume that there is

a support relation:

8 F~'" ~

that is already verbalized even though the relation inside

the infon do not. have tense nor aspects. Our formaliza

tion is as follows. There is a perspective P for a support

relation that adds tense and aspect.

1 This is a reinterpretation of the concept of information in the
real situation.

P(s P~ rei,··· ~)
-lJ,

P(s) Pt ~ reLwith_tense_aspect, ... ~

Here, we assumed that the perspective is decomposable

to both sides of the supporting relation, the meaning

of which is assumed to be independent of each perspec

tive though we add the subscript 'f to represent if P is

temporal. We may omit the subscript hereafter to avoid

confusion.

The next work we need to do is to define the structure

of a P.

2.3 Relation theory of meaning with
regard to time

Suppose that the mental descripton of the temporal

length, or the duration, of an infon can be written as

110'11t- In the same way, we can assume the temporal size

of a situation such as IIsllt, if we use the situation as

some time-space expansion. In this case, which is the

temporal location it, IISlit or 1I0'11t"? And also how should

we interpret the supporting relation with regard to time'?

One possibility is the inclusion of intervals:

s P 0' {:} IISlit 2 1I00lit

while other people may say

is more felicitous. Actually the authors consider that the

plausibility between '2' and '~' depends on the temporal

feature of the rei-ation of an infon2 .

Although we cannot fix the size and the location of

information in the real time scale, we assume we can

map them in a relative way with other events inside our

minds. In this paper, we do not use the notion of tem

poral locations it on the physical time axis. Instead. we

will consider mentally dec scribed IISlit and 1I001it. s was

a part of the world cut off by a perspective of a certain

observer. In this meaning, we may say that IISlit is the

temporal area the observer is paying attention to so that

we may name it as the fieid of view of the perspective.

Field of view: To which time part of the

event the observer pays attention, that is a

mental location of the described situation IIslit.

2 An instantaneous change of state such as 'understand' seems to
require the temporal vicinity (11Sllt :J lIunderstandll t) while statwf
verbs should be valid anytime in s (llsllt C lIis-runningllt).

We call 1I00lit an in-progress state [Parsons 90] of 0'.

In-progress state: the mental time of the

duration of 0'. namely from the beginning of 0'
to the finishing point: 1I001it.

397

'V\ie need another component for our temporal perspec

tive, that decides tense. Tense should be decided in ac

cOl'dance with the relative position between the described

situation and the utterance situation (that offers ·now·).

in terms of the 'relation theory of meaning'. that is, a

nat ural language sentence . (J)' is interpreted as the rela

tion between the utterance situation u and the described

situation c denoted by u.[<p]e.[Barwise83]. According to

this theory. we can say that the standpoint of vievv is the

mental location of the utterance situation.

Standpoint of view: From which time point

the observer sees the event, that is the mental

location of the utterance situation II u II t·

We will discuss the temporal features with regard to

the above three parameters of 1I0'11t- IIsllt- and Ilu111 3
. as

in fig. l.

'VVe characterize the notion of a perspective as con

straints attached to the described situation, each of

which is the temporal relation with the utterance situa

tion or with the information as in Fig. 2 (in that figure,

the relations are denoted by''''' or 'I'), where the ver

balized information can be identified with the natural

language expression.

2.4 Set-theoretical foundation

The real or physical time space has the strongest topol

ogy where any two time points can be separated4 a,nd all

the points are totally ordered: in addition. it is a metric

space. However our mental recognition for time is much

more vague. V,ie regarded that the temporal recogni

tion of one event is t.he rela.tive position and the relative

length of 1I001it. IISlit. and 1Iu.llt. Therefore. the mental

time space we are considering has a very weak topology,

3Reichenbach [Dowty 79] distinguished three kinds of temporal
information timf of action. time of reference. and time of speech.
1I(Tllt and IIUllt cOlTespond to time of action and timf of speech
respectively, and the 1I(Tllt is timE of refen-ncc t.hough we ext.end
the notions as int.ervals instead of point.s.

41n t.he meaning of Axiom of Separation in t.opological spaces.

398

Othe utterance
situation

l a mentftl time axis

c=J ~ 11~""tt o : Ullt
Figure 1: the relation theory of meaning wrt time

s~O'
-U-

P(s) ~t«'" ~

Figure 2: The denotation of the relation theory of meaning

whose open sets are these IISllt's, IIUllt'S,5 and 1I001It's. We

may call them intervals, sets of points, or even points,

however they all should be reinterpreted in terms of open

sets in the weak topological space.

We will not mention this topological notion hereafter

though we may use some set theoretical notations such

as .~, U, n, cp'. We adopt the normal subset relation

.~, between 1I001It and also lis lit to represent the tempo

ral partiality. In addition, we equip ourselves with the

normal temporal order, denoting:

for time intervals Ti'S, iff all the time points in Tl chrono

logically precede those in T2 . Where an instant may be

shared between two sets, we use '~t'. We may drop the

subscript 't' hereafter as far as there is no confusion.

3 Tense and aspects as temporal
perspectives

We have claimed that the temporal perspective depends

upon the individual view of the state of affairs. However.

as we use natural languages to communicate with others.

we may hopefully receive stereotypical views of things.

These stereotypes must be tense and aspects. This im

plies that we can define tense and aspects by situation

5We can assume that a Ilulit is a set that does not contain other
sets inside in the topological view. if we were to persist with the
interval logic.

types that are independent of each 0'. In this section,

we will introduce inference rules that infers those stereo

types, that are used as ground rules of the system later.

3.1 Situated inference rules

We defined the role of a perspective P as follows: if an

infon 0' is supported by a situation s and if we add a

view p, then 0' is transformed to another expression 0".

or:

P (s) ~ 0" -¢::: S ~ 0'.

s~O'
P(s) ~ 0','

We defined the notion of perspective by the set the

oretical relation between Ilsll, Ilull, and 110'11· We de

note s[X] for the described situation with a perspective,

where the contents of [X] is the temporal consraint that

observes the following convention.

1) sf-< u], s[c 0']. and s[:J 0'] are the described sit

uations where 11811t -< Ilullt, lis lit c 110'11t- and

Ilsllt :J 1I001It hold. respectively.

2) s[X. Y] means s[X]!\ slY]. For example, .s[C 0', -< u]

means s such that IISllt C 1I001It and lis lit -< Ilullt-

:3) the relation between 0' and u is written as s[O' -< u].

3.2 Tense

We define the tense as the problem of chronological order

between IISlit and Ilullt, independent of Iiallt-
Let us consider the sentence: 'Ken was running in the

park.' There must be a duration of time in which 'Ken

runs', which is Iialit where a =~ run, ken ::?> in our

definition. However the speaker of the sentence does not

necessarily know whether Ken ceased to run at the point

this utterance was made. Therefore. whether the verb

.is past or present does not depend on whether the deed

finished. Instead, the only required condition for past

is that the area the speaker paid attention to (= Ilslid
precedes the point at which this utterance was made (=

Ilulid. Fig. 3 depicts this case; in that figure, the deed

(= lia/ld mayor may not finish at the utterance point

(= IIUllt) however both situations can support the same

infon: ~ was-running, ken ::?>.

o

o

Figure 3: past

c=J
o

The past VIew for affairs is represented by /lsllt jt
/lullt. On the contrary, the present tense is represented

by IIUlit c IIsllt-
We formalize the feature of past and present as follows:

s[j u] F~ past, a::?> ¢= S F a (1)

s[:::> u] F~ present, a::?> ¢= s F a (2)

3.3 Aspects

The study on how we see the temporal features of event::;

has been done in linguistics and we know the variety of

aspects. Among the taxonomy, it seems rather proper

to pay attention to the following two important features

[Comrie 76] though other features may be omitted. be

cause those distinctions can be found in any language.

One is:

• the deed is recognized as a duration of time / a point

on the time scale of time (durativejnon-durative)

399

and the other is:

• the finishing of the deed is recognized / llOt recog

nized (past or perfective jimperfective)

In summary. perfective/imperfective is distinguished. de

pendent on if the finishing point of Iialit is before II ullt
Durative /non-durative depends on if the field of view

wraps up lIalit or not.

Durative The most important feature of our method

is the distinction of dumtiv(; and non-dumtivf aspects

by the relation between II alit and IISlit. 'We interpret

the p'l'ogressiv(; feature in terms of our formalization as

follows.

The state of progressive is to see the deed as a durative.

and seeing a part of the inside of the deed. Namely the

speaker does not pay attention to when the deed began,

nor to when it will finish. The state is shown in Fig. 4.

)

Figure 1: progressive

On the contrary. let us consider the case we do not pay

attention to the inside of the deed. \'"hen lis lit contains

the whole time of the deed, we can conclude that the

observer recognized the event as a non-durative one. in

which case the event was regarded as a point with no

breadth on the mental time axis (Fig .. 5). if there is no

interaction with other events.6

Jj.

G

Figure :'): compression to lloll-durative

A lexical item for the durative \'iew becomes t he fol

lowing:

I)From the topological point of view, a set which does not con
tain other sets inside nor has intersections with other sets is iden
tified with one of the smallest sets of the space. viz. a point.

400

Perfect and time of reference As Reichenbach

claimed in [Dowty 79], present perfect in English refers to

the current state. We have shown that present is repre

sented by the relation that IISllt includes IIUlit. Therefore,

to satisfy this issue, our 1I001It must precede the IIUllt to

represent the present perfect. In Fig. 6, we have shown

the perspective for the present perfect.

case (1)

case (2)

o

o

Figure 6: present perfect

c=:l
o

In Fig. 6, case (1) shows that perfect is interpreted as a

terminative aspect although case (2) shows that perfect

is read as an experience.

The perfect view becomes the following:

4

4.1

s[O'::S u] F~ perfect, 0' ~ ~ SF 0' (4)

Inference of temporal infor
mation

Situated inference

In terms of situated inference, we expect the inference

with the following rules:

This sample rule can be interpreted as: if SI supports

0'1, S2 supports 0'2, and so on, then we can infer that So

supports 0'0'

This kind of rule can be read as backward chaining

from the head, just as with the inference rules of Prolog.

\\t'e would like to devise a system that computes tem

poral information, asking questions that corresponds to

the head of a rule, and accumulating the temporal infor

mation from its body. For example. assume X. }-, ... are

variables for temporal information.

s[X, y, ...] F 0'0 ~ s[X] F 0'1' s[Y] F 0'2,····

where all the basic. lexical information such as (1). (2).

(:3), (4), and so on, defined in the previous section. are

considered to be the basic rules. The accumulation of

temporal information must not be a mere addition; in

our case, it must be the merger of different topologies in

IISlit 's, 1I001I~'s, and IIUlit's. The computation, therefore,

must be done in the dual mode; one mode is conventional

unification and backward chaining, and the other is the

merger of s[X] with consistency. This is the reason why

we chose the QUIXOTE language with its concept of

modules (situations, in our case) inside of which features

can be defined. We will mention the specification later.

We have developed an ambiguity solver for Japanese

-teiru that can have three different kinds of meaning that

depend on the context.

4.2 The problem of Japanese '- teiru'

Prior to introducing the ambiguity solver we have devel

oped, we need to give a short tip on Japanese grammar

and the problem we tackled.

In the Japanese language, auxiliary verbs are aggluti

nated at the tail of the syntactic main verb that is the

original meaning carrier. In order to compose a progres

sive sentence. we need to add an auxiliary verb '-tei-' ..

and after that we are required to affix a tense marker.

We summarize them below for a Japanese verb' kiru (to

wear)'.

lexical entry I part of speech I meaning

ki- verb to wear
-tei- aux. verb be -ing*
-ru affix present
-ta affix past or perfect
lma adv. now
zutto adv. all the time
san-nen-mae-ni adv. phrase 3 years ago

b-tei-ta I verb phrase I was wearing*

The problem lies in the places marked with * in the

table above. The meaning marked by * is not the sole

meaning of -ftC i: actually we can interpret the auxiliary

verb ill thref' different vvays, depending on the context.

vVe show sample sentences below7
.

'This example was shown by the members of the JPSG working
group in ICOT

ima ki-tei-ru
(be putting on currently)
zutto ki-tei-ru
(wear all the time)
san-nen-mae-ni ki-tei-ru
(have worn three years ago)

We will build our ambiguity solver, focusing on the area

of a deed in JPSG framework that corresponds to our

IIsllt- The partial information that each lexical item car

ries, as defined in the previous section, is utilized. ac

cording to the Japanese lexicon table above. Namely we

use the inference rules of past (1) I present (2) and per

fect (4), for Japanese '-rul -ta'. We use the inference rule

of durative (3) for Japanese '-tei-'.

The ambiguity of '-tei-' is solved as in Fig. 7 where .&'

is the merger of information: X 2 = [0" -< u] is incompat

ible with [8 C 0"] in Xs and X6 = [u C s], so that the

value of Xs necessarily becomes [0" C u], and this gives

'-tei' the interpretation of the resultant state.

4.3 Implementation

This section shows an implementation of the treatment

of temporal information discussed in this paper. The

program is written in the knowledge representation lan

guage QUIxoT£[Yasukawa90],[Yasukawa92].

4.3.1 QUIXOTE

Terms in QUIXOTE are extended terms on an order-sorted

signature called object terms. and written in general as:

where ° is an atom called basic object. 11.12 are atoms

called labels, and 01,02 possibly be object terms. The

domain of atoms (BO) is ordered and constitutes a lat

tice (BO, -:!C. T, ~).

The subsurnption reiation(r;;;.) is a binary relation on-'!'

the domain of object terms. and corresponds to so-called

isa-relation. Intuitively, 01 r;;;. 02 (we say 02 subsumes 01)

holds if 01 has more arcs than 02 and the value of a node

of 02 is larger than the value of the corresponding node

of 01 with respect to -:!c-ordering. In QUIXL'lTE, subsump

tion constraints can be used to specify an object or the

relation among objects.

A rule of QUIXOTE is a prolog-like clause of the form:

401

where 1/1. 1771' mil are special extended terms called

lTIodule identifiers. and 0". TI • Tn are extended

terms. and (. is a set of constraints.

4.3.2 Representation in QUI,YOTE

There are several points to be explained. that is. how

the notions introduced in the preceding sections are rep

resented.

Object terms are used to represent situations. infons.

perspective. and so forth.

First, verbalized infons are represented by object terms

of the following form:

inflv-I'cl = [I'd = R. cls = CIS. pET = P],

aTgs = Args].

The CIS' takes the symbols act1. act2, act3 as its

value which indicates the classifications of verbs 011 what

state. that is. in-progress. target. resultant. each verb

can introduce. Here's a list of the classification and the

states introduced:

act} =} ip. tar'., 7'e8

act] =}ip. rt8

act3 =} tar. rES.

The relationship among these three classes IS given by

the following subsumption definition.

Thus. the verb "ki-" can introduce all the threE' .'itates.

while the verbs like "hashi-" could not introduce fal'-

state.

For example. the wrbalized infon correspouding to tlw

sentence ··.John is running" is represented as follows:

illf[t,-1'cl = [nl = nm.cls = act}.ptI'S = Pl.
(ll'g,'-.; = [agt = john]].

when' P is the 1 emporal lwrspective \\'hosp iiplcl of view

is in-progress and point of vie\',' is the pn Sfld, A PP1'

spective is also represented. by a pa.ir of two object terms

as follows:

([foe = Fml [POl' = POt']).

where For E {ip. tal'. I'ts} represents the field of view.

and P or E {pns, past} represents the point of view.

402

s I=~~ s I=~~

S[X5]1=~ tei ~ S[X6]1=~ ru ~

Xl = X 2&X3

X 2 = (J -< u
X3 = X 4&XS&X6

X 4 = []
X.5 = (J -< s or s C (J

X6 = U C s

Figure 7: the inference tree

The ip and res correspond to in-progress state, target

state, and resultant state, respectively.

Among the situations of several kinds, discourse situ

ations are represented by object terms of the following

form:

dsit[jov = Fov,pov = Pov, src = U]

where U is the object term representing the utterance

situation.

Thus the propositional content of the sentence "John

is running" is represented by

dsit[jov = ip, pov = pn:.s, src = Ul] :

inf[v]el = [reI = run. cis = act2 •

pep, = [j01' = ip.por = pres]],

args = [agt = john]].

For simplicity, the object term [rel = run, peT'S

[jot' = ip,pov = pres]] is written as is]unning.

Next, the lexical entries of Japanese are defined. For

example, the Japanese expression "ki-tei-ru" consist of

three words. The lexical entries are as follows.

diet :: v[cis = acf1.T'el = puLon, form = h]::

diet :: v[cls = aet2 , rel = run. fonn = hashi]::

diet :: aU;Tv[asp = state. for-m = tei]; :

diet :: afliJ~[pov = pres. forTH = ru]: :

The ambiguity is processed by the mapping from a

pair of the class of a verb and the aspect of an auxilially

verb:

(act1, state) -+ {ip, tar. res },

(aet 2 , state) -+ {ip,tar},

(act3, state) -+ {tar, res}.

For example, the expression "ki-tei-" has three interpre

tations, while "hashi-tei-" has two interpretations. The

target and resultant are the states after an event's hav

ing culminated. Thus, it is possible to disambiguate the

interpretations if some evidence that the event has cul

minated or not. for example. the successive utterance

of .. mi ni tuke-tei-nai" (does not wear) makes it clear

that the first sentence "ki-tei-ru" should be interpreted

as having ip as its field of view.

The definition of a tiny interpreter is given in the ap

pendix ·5.

A toplevel query corresponds to the definition of the

meaning of a sentence in Situation Semantics. and is of

the following form:

?- rni [u=ul ,exp=Exp,e=E,infon=Infon] I I
{E=dsit[fov=Fov,pov=Pov,src=ul]}.

This query says that the meaning of the expression "Exp"

in an utterance situation "ul" is represented by the de

scribed (temporal) situation "E" and the infon "Infon"

where the variable "Fov" and "Pov" represent the tem

poral perspective.

For example. the following result is given by this in

terpreter:

?- rni[u=ul,exp=[ki,tei,ru],

e=dsit[fov=Fov,pov=Pov,src=ul],

infon=Infon] .

Answer:

Fov {ip,tar,res}

Pov pres

Infon

inf[v~rel=[rel=put_on,cls=act1,pers=PJ ,

args=_J

P = [fov=Fov,pov=PovJ

This means that the expression "ki-tei-ru" has three in

terpretations depending on which fov is applied, because

the verb "ki-" introduces all the three states8 .

On the contrary, expressions like "hashi-lei-ru" and

"waka-tei-ru" has two interpretations, because those

verbs can not introduce all the three states.

?- mi[u=u1,exp=[hashi,tei,ruJ,

e=dsit[fov=Fov,pov=Pov,src=u1J,

infon=InfonJ .

Answer:

Fav {ip,res}

Pov pres

Infon

inf[v_rel=[rel=run,cls=act1,pers=pJ,

args=_J

P = [fov=Fov,pov=PovJ

?- mi[u=u1,exp=[waka,tei,ruJ,

e=dsit[fov=Fov,pov=Pov,src=u1J,

infon=InfonJ .

Answer:

Fov

Pov

Infon

{tar,res}

pres

inf[v_rel=[rel=understand,cls=act1,pers=PJ,

args=_J

P = [fov=Fov,pov=PovJ

5 Conclusion

We have introduced the idea of temporal perspectives for

situations, to explain the variety of language expressions

for information in real situations. As a perspective, we

BIn QUIXOTE, the fact 0[1 = {a,b}] is interpreted as the two
facts, o{l = a] and 0(1 = b].

403

assumed a topological relation between the three param

eters of the standpoint of view (liullt), the field of view

(1Islld. and the duration of information (liallt), each of

which is the mentally recognized location of the utter

ance situation. the described situation, and the infon,

respectively in terms of the relation theory of meaning.

VV'e have defined tense and several important aspectual

distinctions such as perfective /imperfective and dura

tive /non-durative, with the perspective, that should be

used as the partial information for the situated inference

system. In addition, we tried to define other temporal

features of verbs such as telic / atelic and temporal well

jill-foundedness, to see the validity of our formalization.

Our framework for the situated inference of tempo

ral information is to infer the whole temporal features

of phrases or sentences, collecting the partial informa

tion that is carried by each lexical item, and to solve

the ambiguity partial phrases they may have. vVe are re

quired to have mechanisms for that system. both Prolog

like backward chaining and maintenance of consistency

in modules (situations. in our case), so that we can uti

lize the knowledge representation language QUTYOT£

in IeOT. '0.fe have implemented an inference system to

solve the ambiguity of Japanese '-teiru'. the lIallt of

which may refer to different parts of a deed. In that

experiment, the problem is solved together with another

lexical item which offers the information 'which Iialit co

incides with IISllt'.
Our inference system is still small. and needs to be

developed to cover many other kinds of lexicon and tem

poral ambiguity. According to this future work, we might

be required to reconsider the structure of perspectives.

VV'e are still trying to determine other temporal features

of verbs. and, as a task in the near future, we are going

to try tto define the temporal perspectives of sentence

adverbs.

Acknowledgment

Thanks to the members of STS-WG (Working Group

for Situation Theory and Semantics) of IeOT for their

stimulating discussions and suggestions. Special thanks

to Kuniaki Mukai who gave the authors many important

suggestions about the treatment of perspectives in Sit

uation Theory, to Kazumasa Yokota who gave authors

404

many important comments, and to Koiti Hasida who ex

plained the JPSG theory for verbs to the authors. Spe

cial thanks also to Mitsuo Ikeda of ICOT, who has stud

ied the analysis of Japanese -teiru.

References

[Barwise89] J. Barwise. The Situation in Logic. CSLI

Lecture Notes 17, 1989.

[Barwise83] J. Barwise and J. Perry. Situations and At~

tdudes. MIT Press, 1983.

[Comrie 76] B. Comrie. Aspect. Cambridge University

Press, 1976.

[Cooper 85] R. Cooper. AspeCtual classes in situation

semantics. Technical Report CSLI-84-14C, Center

for the Study of Language and Information, 1985.

[Dowty 79] D. Dowty. Word Meaning and Montague

Grammar. D.Reidel, 1979.

[JPSG91] JPSG-WG. The minutes of Japanese phrase

structure grammar. 1987-91.

[Allen 84] J.F.Allen. Towards a general theory of action

and time. ATtificial Intelligence, 1984.

[Kamp 79] H. Kamp. Events, Instants. and Temporal

Refe1'ences, pages 376-417. Springer Verlag, 1979. in

Semantics from Different Points of View.

[Cooper 86] R.Cooper. Tense and discourse loca.tion

in situation semantics. Linguistics and Philosophy,

9(1):17-36, February 1986.

[Tojo90] S. Tojo. A temporal representaion by a topol

ogy between situations. In Proc. of SICONLP '90.

University of Seoul, 1990.

[Parsons 90] T .Parsons. Events in the Semantics of En

glish. MIT press, 1990.

[Yasukawa90] H. Yasukawa and K. Yokota, "Labeled

Graphs as Semantics of Objects", In Proc. SIGDBS

and SIGAl of IPSJ, Oct., 1990.

[Yasukawa92] H. Yasukawa, K. Yokota, H. Tsuda, Ob

jects, Properties, and Modules in QUIXOTE, In Proc.

FGCS '92, Tokyo, June, 1992.

Appendix - The interpreter

XX Subsumption Definition

aet1 >= aet2;; aet1 >= aet3;;

XX Lexical Entry

diet .. v[els=aet_1,rel=put_on,form=ki];;

diet .. v[els=aet_2,rel=run,form=hashi];;

diet v [els=aet_3,rel=understand,form=waka] ;;

diet .. auxv [asp=state ,form=tei] ;;

diet .. affix[pov=pres,form=ru];;

diet .. affix [pov=past ,form=ru] ;;

XX Top level

mi[u=U,exp=[] ,e=D,infon=Infon];;

mi[u=U,exp=[ExpIR],e=D,infon=Infon] <=

d_eont[exp=Exp,e=D,infon=Infon] ,

mi[u=U,exp=R,e=D,infon=Infon];;

%%%% Interpretation Rules

d_eont[exp=Exp,e=dsit[fov=Fov,pov=Pov,sre=U],

infon=inf [v_rel=V_rel, args=Args]]

<= diet: v[els=CLS,rel=Rel,form=Exp] I I

{V_rel=[rel=Rel,els=CLS,pers=P]};;

d_eont[exp=Exp,e=dsit[fov=Fov,pov=Pov,sre=U],

infon=inf[v_rel=V_rel,args=Args]]

<= diet: auxv[asp=ASP,form=ExpJ,

map[els=CLS,asp=ASP,fov=Fov] I I

{V_rel=[rel=_,els=CLS,pers=P] ,

P = [fov=Fov,pov=_]} ;;

d_eont[exp=Exp,e=dsit[fov=Fov,pov=Pov,sre=U],

infon=inf[v_rel=V_rel,args=Args]]

<= diet : affix[pov=Pov,form=ru] I I

{V_rel=[rel=_,els=_,pers=P] ,

P = [fov=_,pov=Pov]} "

XX Field of view Mapping

map[els=aet1,asp=state,fov={ip,tar,res}] "

map[els=aet2,asp=state,fov={ip,res}] ;;

map[els=aet3,asp=state,fov={tar,res}] ;;

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 405

A Parallel Cooperation Model for Natural Language Processing

Shigeichiro Yamasaki, Michiko Turuta, Ikuko N agasawa, Kenji Sugiyama

Fujitsu LTD.
1015, Kamikodanaka Nakahara-Ku, Kawasaki 211, Japan

Abstract

This paper describes the result of a study of a natural
language processing tool called "Laputa", which is based
on parallel processing. This study was done as a part of
the 5th generation computer project. The purpose of
this study is to develop a software technology which in
tegrates every part of natural language processing: mor
phological analysis, syntactic analysis, semantic analysis
and so on, to make the best use of the special features
of the Parallel Inference Machine.

To accomplish this purpose, we propose a parallel co
operation model for natural language processing that
is constructed from ·a common processor which per
forms every sub-process of natural language process
ing in the same way. As a framework for such a
common processor, we adopt a type inference system
of record-like type structures similar to Hassan Ait
Kaci's psi-term [Ait-Kaci 86], Gert Smolka's sorted fea
ture logic [Smolka 88] or Yasukawa and Yokota's object
tem [Yasukawa 90].

We found that we can utilize parallel parsing algo
rithms and th~ir speed-up technology to construct our
type inference system, and we then built a type infer
ence system using an algorithm similar to a context-free
chart parser.' As a result of experimentation to evaluate
the performance of our system on Multi-PSI, the simula
tor of the Parallel Inference Machine, we have been able
to achieve a speed-up of a factor 13 when utilizing 32
processors of Multi-PSI.

1 Introduction

With the. advance of semiconductor technologies, com
puters can be made smaller and cheaper, so that we
can increase the value of a computer by giving it multi
processor abilities. However, the software application
technology for a parallel machine is still at an unsatis
factory level except for some special cases.

The Parallel Inference Machine which is being devel
oped in the 5th generation computer project has some
special features such as an automatic synchronization
mechanism and a logic programming language allowing

declarative interpretations.
Such features make complicated parallel processing

tasks, that used to be practically impossible, possible
to realize. Knowledge Information Processing is one such
application which needs lots of computational power and
consists of very complicated problems, but we expect
that the Parallel Inference Machine will make these prob
lems amenable to parallel processing. The purpose of
this study is to propose a parallel cooperation model
which makes natural language processing more natural
by making use of the parallel inference machine features.

In this paper, we will discuss the schema of the parallel
cooperation model, as well as its realization and show
the experiment results of the model capacity evaluations
on the Multi-PSI, the simulator of the parallel inference
machine.

2 Parallel cooperation model

The advantages of using the Parallel Inference Machine
lie not only in the processing speed, but also in the prob
lem solving techniques. We were able to find more nat
ural ways of solving a problem by looking at it from the
parallel processing point of view.

In recent years, system integration has often been sug
gested in the field of natural language processing. This
involves the integration of morphological analysis, syn
tactic analysis, semantic analysis and speech recognition,
and the integration of analysis and generation. The im
plication is that the various natural processing mecha
nisms at every stage must be linked to each other in
order to understand natural language entirely. [Hishida
91]

As the basis of this way of thinking, it is emphasized
that our information processing has been carried out un
der "partialness of information", in other words, incom
pleteness of information. From the above, we can derive
that a system which aims at integrating natural language
processing could adopt parallel processing because it dis
regards the processing sequence.

We adopted a mechanism which integrates all natural
language analysis processing stages and makes them co
operate in parallel as the fundamental processing model.

406

Also we have added a priority process as an extension, in
order to improve the processing efficiency. This priority
process is the combination of both load balance and the
parallel priority control. We call this process 'competi
tion' and we call the extended parallel cooperation model
the "model of cooperation and competition". However,
we shall not discuss 'competition' in this paper.

3 Realization of automatic par
allel cooperation

It is well known that the integration of natural language
processing and parallel cooperation is a natural model.
However, very few systems based on this model are re
ported to have been actually built. One of the main
problems has been modularity.

Various research projects in natural language process
ing have been achieving good results in the fields of
morphological analysis and syntactic analysis. However,
these systems were designed as independent modules and
very often their interfaces are very restricted and inter
nal informatiot:l is normally invisible from the outside.
To carry out efficient parallel cooperation, all processes
must be able to exchange all of their information with
each other. Therefore construction of methods of infor
mation exchange between the various modules and the
control of these exchanges will be serious and compli
cated problems.

One way to solve this problem is to make an abstrac
tion of the processing framework, so that analysis phases
such as morphological analysis, syntactic analysis etc.
are carried out by one single processing mechanism. One
such approach is Hashida's Constraint Transformation
[Hasida 90]. We have adopted an approach similar to
that of among others Hashida, in the sense that all levels
of processing are carried out by one and the same pro
cessing mechanism. Our processing framework, however,
does not utilize Constraint Transformation, but rather
Type Inferencing with respect to record-like type struc
tures, which is comparable to Hassan Ait-Kaci's LOGIN
, Gert Smolka's Feature Logic, or the Object Terms in
Yasukawa and Yokota's QUIXOTE.

In our system, the usage of type inferencing can be
seen to have two aspects: it works as a framework for
analysis processing as well as for cooperation. Analysis
processing employs a vertical kind of type judgment, as
exemplified by .. the cooperation between morphological
analysis and syntactic analysis. In morphological anal
ysis characters are considered to be objects, and mor
phemes are to be taken as types; but when we perform
syntactic analysis, morphemes are considered to be ob
jects.

The usage of type inferencing as a framework for coop
eration, the second aspect of this usage mentioned above,
is as a means for exchanging information between objects

and types and for structuring the contents of this infor
mation. Here' both objects and types are represt\nted
as typed record structures containing shared or com
mon variables, and information exchange is implemented
through the unification of shared variables in two typed
record structures representing an object and a type.

This unification mechanism of typed record structures
has a mechanism to judge the types of objects that are
instantiated to field elements through communication,
and this is what was called the vertical type judgment
mechanism.

Parallel cooperation between syntactic and semantic
processing is expressed through the unification mecha
nism of typed record structures.

Even if we . treat all phases of natural language pro
cessing as similar in kind, it is still natural, for the sake
of ease of grammar development and debugging, to do
the development of the distinct processing phases sepa
rately. For this reason, we have structured our system so
that concept organization rules for morphological, syn
tactic and· semantic processing can be developed sepa
rately. Parallel cooperation is then realized automati
cally by merging these diverse rules and definitions.

4 The realization of parallel
analysis processing

4.1 Type judgment mechanism

Efficient algorithms exist for morphological and syntactic
processing, and we cannot afford to ignore such knowl
edge in developing a practical system, even in the case of
an integrated natural language processing system. Luck
ily we have found that there is a strict correspondence
between our vertical type judgment and known syntactic
analysis methods. Matsumoto's parallel syntactic analy
sis system PAX [Matsumoto 86] performs syntactic pro
cessing in parallel through a method called the "layered
stream method", which is an efficient processing mech
anism for search problems involving parallel logic pro
gramming languages.

PAX employs what is basically a chart parsing algo
rithm. Our vertical type judgment processing formalism
involves a reversal of the relationship between process
and communication data in PAX. A syntactic analysis
system using a similar processing method to ours is be
ing considered by Icot's Taki [Sato 90]. Whereas PAX
is strongly concerned with the clause indexing mecha
nism of logic programming languages, our method con
centrates on increasing OR-parallellism and reducing the
amount of data communicati~n in parallel execution.

How we interpret phrase structure rules, using the type
ordering relation "<" and type variables, is shown below.

s (- np,vp

This is rewritten based on the rightmost element as fol
lows.

vp < (np -> s)

Here the ordering relation "<" expresses
a superordinate-subordinate relationship between types.
Intuitively this means that the object that is judged to
be a subordinate type can also be judged to be a super
ordinate type. It follows that the meaning of this rule is
that the object that can be judged to be the vp, can also
be judged to be a function of type np to s.

s <- advp,np,vp

In a case like this one, we embed functions to produce
the following.

vp < (np -> (advp -> s»

When there are several possibilities, this is expressed in
a direct sum format as follows.

vp < (np -> ((advp -> s) + s»

The dictionary is a collection of type declarations as fol
lows.

(in,the,end):advp
love:np
wins:vp

Analysis is exe~uted as a process of type judgment of a
word string .. In other words, analysis is the execution
of the judgment of a type assignment such as the one
below.

(in,the,end,love,wins):s

The execution is bottom-up. First the type of every word
is looked up among the type declarations. The words
then send these type judgments to their right adjacent
element. If these types again have superordinate types,
then they are treated as follows.

If the superordinate type is a function, then a process
is generated which checks the possibility that the typed
object received from the left is appropriate. If it is not a
function (in which case it is atomic), then this type judg
ment formula is sent to the right adjacent element, and
also it is checked whether it has a superordinate type.
When the result of a superordinate type or function ap
propriateness is a direct sum, then this result is handled
in OR-parallel form. Repeating this kind of processing
over and over, we get as answers all the combinations of
elements from the leftmost to the rightmost that satisfy
"s" .

One of the special features of this processing formal
ism is that, when sending an object of atomic type, the
pointer to the 'position of the leftmost of the elements
that make up this object is sent along as the "exit of

407

communication path". Hereby the partial tree that is
constructed upon reception of this object in fact is ca
pable of including all atomic-type objects that are struc
tured to the left of the received object. If we translate
this to structure sharing in sequential computation, we
see that we can avoid unnecessarily repeating the same
computation while retaining the computational efficiency
of a chart parsing algorithm for context-free grammars.

Below we give the KLI program for the fundamental
part of vertical type judgment. Note however that the
notation we have used above is transformed to KLI no
tation, in the manner explained directly below.

direct sum
type+, ... ,+type ==> [type, ... ,type]

type declaration
object:type ==> type(object,T) :

true I T=type.
type ordering

type < type

input format

==> upper(type,T)
truel T=type.

(in,the,end,love,wins):s
==>judgment([in,the,end,love,wins] ,s,R).

Note: R will contain the result of computation
Also we use "*,, for the operator that constructs the

pair of the sending atomic type and the stream, and the
atom "Leftmost" as an identifier for the leftmost position
of the input.

judgment(Objects,Type,Result) :- truel
objects(Objects,'Leftmost',R),
judged_as(R,Type,Result).

objects([] ,L,R) :- trueIL=R.
objects([WordIZ] ,L,R) :- true I

type(Word,Type) ,
sum_type(Type,L,Rl),
objects(Z, [Word\Rl] ,R).

sum_type([] ,L,R) :- true\L=R-.
sum_type([Type -> Type2\Z],L,R) :- true \

function_type(Type ->Type2,L,Rl),
sum_type(Z,L,R2),
merge({Rl,R2},R).

otherwise.
sum_type([Type!Z],L,R) :- true!

atomic_type(Type,L,Rl),
sum_type(Z,L,R2),
merge({Rl,R2},R).

function_type(Type -> Type2, [],R)
true\R=[] .

function_type(Type -> Type2,'Leftmost' ,R)
true \R=[] .

function_type(Type-> Type2,[Type *Ll!L],R) :-

408

true I
sum_type(Type2,Ll,Rl),
function_type(Type -) Type2,L,R2),
merge({Rl,R2},R).

otherwise.
function_type(Type -) Type2, [_IL] ,R)

true I
function_type(Type -) Type2,L,R).

atomic_type(Type,L,R) :-
true I
upper(Type,Upper_Type),
R= [Type*L I Rl] ,
sum_type(Upper_Type,L,Rl).

judged_as([] ,Type,Result) :
trueIResult=[].

judged_as([Type*'Leftmost' IL] ,Type,Result)
true I
Result=[TypeIR] ,
judged_as(L,Type,R).

otherwise.
judged_as([_IL] ,Type,Result) :- true I

judged_as(L,Type,Result).

% Example of dictionary:

type(love,Type) :- true I
Type=[np] .

type(wins,Type) :- true I
Type=[vp] .

type(end,Type) :- true I
Type=[the -> [in -) [advp]]].

% Example of grammar:

upper(vp,Upper_Type) :- true I
Upper_Type=[np -) [advp -> [s], s]].

4.2 Unification mechanism of the
record-like type structure

A record-like type structure is a pair of a sort symbol
and a description. A sort symbol denotes the sort to
which the type belongs. A description is a so-called
record structure formed by pairs of feature names and
their values. The feature value is also a description or
an object. However a description is unlike an ordinary
record structure in that its feature and value pairs are not
always apparent. Indeed, the purpose of this structure
is to obtain incremental precision from partial informa
tion, just like the feature structures used in unification
grammar formalisms such as LFG.

In systems like Ait-Kaci's psi-term, Smolka's sorted
feature structure'or Yasukawa & Yokota's object term,
the value of a feature is also a record-like type struc-

ture. However in our system, a value of a feature is not
a record-like type structure but a description and only
the terminal nodes of a feature structure tree are typed
objects. This is to improve the efficiency of calculation.

In our system an object is represented as a pair of
a record-like type structure and an identifier of the ob
ject. The value of a feature can be a variable. However
the unification of descriptions involves merging feature
structures rather than instantiating variables.

Variables of feature value play the role of a tag for the
merging point in feature unification. In our system such
variables also play the role of communication pass to ex
change information for our parallel cooperation. Some
times a variable can be assigned a type. When a variable
is assigned a type such a typed variable must be instan
tiated by an object.

Below we give an example of a record-like type struc
ture.

{human, [parents=[father={human,211, [name=taro]},
mother=X:{human,[]}]]}

This example shows a type which is sorted "human" and
satisfies some constraints as a description. The descrip
tion has a feature "parents" and the value of the feature
is also a description that contains the feature of "father"
and feature of "mother". The value of the feature "fa
ther" is an object that is of sort "human" and named
"taro" and its object identifier is "211". The value of
feature "mother" is a typed variable. The type of the
variable is sorted "human" and its description has no
information.

The unification mechanism for the record-like type
structure is realized as the addition of information to the
table of the pairs of the tag and the structure to which
the tag referred. The unification process is the merging
process to construct the details of the record-like type
structure. When the typed variable is instantiated by an
object, the type judgment process is invoked.

This is in concreto how our parallel cooperation mech
anism for semantic analysis and syntactic analysis works.

4.2.1 Parallel cooperation and record-like type
structure

A type can be seen as a program which can process an
object. This implies that there is a close relation between
merging of information using record-like type structures
on the one hand, and the "living link" between objects
or programs on the other. As an example, imagine that
a graph object which was created by a spread sheet pro
gram is passed on to an object which is a word processor
document. If we want such a graph object to be a "liv
ing" object, re-computable by the creator program, then
it must be annotated by its creator as a data type in the
record structure of the word processor document. Now

when the data is re-computed, the system will invoke
its creator application program automatically. The type
theory of record-like type structures can be viewed as a
framework for this kind of cooperation of different appli
cation programs.

Laputa's principle of automatic parallel cooperation
is a parallel version of this "live linking". Vertical type
judgment of morphological analysis and syntactic analy
sis is an application program in this sense.

We can extend this live linking even further by using
variables that are shared between objects and types, so
that we can propagate information to objects within ob
jects. For example, if a graph object from a spread sheet
is pasted to a word processor document, and some of
the data within the graph is shared with a part of the
document text, then re-computation of the spread sheet
program will happen when that part of the document
text is modified. In our system, such re-computation is
realized by communication of processes.

5 The grammar and lexicon for
parallel cooperation

In this section we explain the syntax and description
method for the grammar and lexicon for our system.
Grammar rules and lexical items are described as a type
definition or an ordinal relation of types. Our paral
lel processing mechanism treats morphological data and
syntactic data in a uniform way. However it is not effi
cient to use exactly the same algorithm for morphological
processing as for syntactic processing, because morpho
logical processing examines only immediately adjacent
items and therefore does not need context-free grammar.
Our processing mechanism treats characters and mor
phemes in a slightly different way. For this reason char
acters and morphemes are distinguished as data types.
Another, more essential reason for this is the problem
posed by morphemes that consist of only one character.
If there is no difference between a character and a mor
pheme, then our type judgement process will never be
able to stop.

5.1 Some examples of grammatical and
lexical description

5.1.1 Dynamic determination of semantic rela-
tion of subject and object

The semantic categories of subject and object are not
determined only by the verb with which they belong. In
many, if not most cases, the adequacy of the semantic
category of the object changes according to the subject.
Because of this, the required semantic categories of sub
ject and object should not be fixed in the lexical descrip
tion of the verb.

409

The example grammar rules below show how the ade
quacy of the semantic category of the grammatical object
can vary dynamically depending on the subject.

{np,[sem=Ob]} < ({vt,VT} -> {vp,VT=[obj=Ob]})
{vp,VP} < ({np,[sem=Ag]} -> {s,VP=[agent=Ag]})

In this exam pIe the first grammar rule shows that the
superordinate type of the type "np" is a function of type
"vt- > vp". This rule means that an object which
is judged as the type "np" is also a function which, if
applied to an object of type "vt", results in an object
of type "vp". In this rule every description of "vt" is
merged to "vp" and the value of the feature "sem" of
"np" is unified with the value of feature "obj" of the
type "vp".

The next grammar rule means that an object of type
"vp" is also a function of type "np- > s". This rule
means that the value of the feature "sem" of subject
"np" is unified with the value of the feature "agent" of
"vp".

Now we also show some lexicon entries to go with these
rules.

eats:{vt,[agent=Ag:{animal,[eat_obj=Ob]},obj=Ob]}
john:{np, [sem={human,Id,[name='John ']}]}
the_tiger :{np,[sem={tiger,Id,[]}]}

In the lexicon the object "eats" has type "vt" and com
plex description. In the description the value of the fea
ture "agent" is a typed variable and the type of the vari
able is sorted "animal" and the value of the feature of
"eat-obj" is unified with the value of the feature of "obj"
of type "vp".

The rules specifying semantic categories look as fol
lows.

{tiger,[]} < {animal, [eat_obj=E:{animal,[]}]}
{human,[]} < {animal, [eat_obj=E:{food, []}]}

These rules mean that a tiger is an animal which eats
animals and a human is an animal which eats food, re
spectively.

Although under these rules of grammar, lexicon and
semantic categories 'john' and 'the_tiger' are both ani
mals, the judgment (the_tiger,eatsjohn):s succeeds but
(john,eats,the_tiger):s fails, because John is a human and
a human is an animal which eats food but a tiger can
not be judged as food from the rules governing semantic
categories.

5.1.2 Subcategorization

The next example is the lexical entry for the Japanese
verb "hanasu" (to speak). This verb is subcategorized by
3 "np"s which are marked for case by the particles "ga",
"wo" and "ni".

410

hanasu:{vp,[subcat=Case:{ga,wo,ni},
predicate=[ga=[gram_rel=subj,

sem=G] ,
wo=[gram_rel=comp,
sem=W] ,
ni=[gram_rel=obj,
sem=N] ,

sem=[rel=speak,
agent=G:{human,[]},
object=N:{human,[]},
topic=W:{event,[]}]]]}.

In addition to the above, suppose that we also have the
following lexical entries and grammar rules.

ga:{noun,N} -> {np,N=[case_marker=ga]}
ni:{noun,N} -> {np,N=[case_marker=no]}
wo:{noun,N} -> {np,N=[case_marker=wo]}

{vp,VP=[subcat=Case:SUB]} <
{np,[case_marker=Case]} ->

{vp,VP=[subcat=New:SUB-{Case}]}

In that case the type judgments for the sentences below
will be successful.

(john,ga,mary,ni,anokoto,wo,hanasu):{vp,[]}
(mary,ni,anokoto,wo,john,ga,hanasu):{vp,[]}

5.1.3 Example of the conceptual system rules

The conceptual system rules are sets of rules which de
termine superordinate and subordinate relations of con
cepts. The semantic analysis of Laputa uses these con
ceptual rules when it performs semantic judgemant.

{object,O} < {'Top',O}
{event,[]} < {'Top' ,[]}
{concrete-object,[]} < {object,[]}
{creature,[]} < lconcrete-object, []}
{human,[]} < {creature,[]}
{student, []} < {human,[]}

6 An experiment using Laputa

6.1 Conditions of the experiment

computer Multi-PSI 32PE construction

as PIMOS 3.0.1

The size of the grammar and dictionary
grammar rules 651
words 14,613
morphemes 8,268
concepts 770

We used the syntactic grammar and morphological
grammar which were developed by Sano of ICOT's

6th Laboratory [Sano 91]. We made the concep
tual system rules in accordance with the conceptual
system of the Japan Electronic Dictionary Research
Institute EDR.

The experiment We used 22 test sentences and exam
ined 3 types of cooperation pattern: (1) syntactic
analysis only, (2) cooperation of morphological anal
ysis and syntactic analysis, and (3) cooperation of
morphological analysis, syntactic analysis and se
mantic analysis.

We checked the relation between the number of pro
cessor elements utilized and the number of reduc
tions and processing time for each of these 3 cases.

All the tests have been performed three times, and
the measurements given here are the averages com
puted from these three processing runs.

Example of analysis result To indicate the level of
processing of this experiment, I will show the result
of analysis of a example sentence.

Example sentence

r~Btil~X:O).~ ~~It' t'=J
(He inherited his father's business.)

Analysis result

vp(l, [subcat=SUB: [],
infl=u_ga,
predicate=[

lex= ~,
soa=[ga=[sem={man,l,[]},

gram_rel=subj],
wo=[sem={job,6,

[of_type={man,2,[]}]},
gram_rel=comp],

sem={tugu,8,
[agent={man,l,[]},
object={job,6,

[of_type=

tenseless=action],
polarity_of_soa=true,
judgment=affirmation,
aspect=not_continuous],

{man,2, 0 }] }]}

mood=finished,
recognition=[modality=descriptive,

acceptance=affirmative]])

6.2 Outcome of the experiment

The the following graph shows, for the analysis of ex
ample sentence 12, how the speed-up ratio changes as
the number of processors is increased from 1 to 32.

40

30
.9
§
Q.. 20 ::J

-6
<lJ
<lJ
Q..
(/) 10

0
0 10 20 30

processors

imaginary

40

a morph+syn+sem
..... · ... w....... morph+syn

~ syn

Figure 1: Example 12 processors and speed up ratio

The behavior of the cooperative process of morphologi
cal, syntactic and semantic analysis is almost identical to
that of syntactic analysis alone, while the cooperation of
just morphological and syntactic analysis shows a much
better speed up ratio relatively. This might lead one to
think that cooperation of just morphological and syntac
tic a.nalysis makes for a better speed-up ratio. However
examples involving a greater amount of calculation do
not show this difference. Figure 2 is the result of the
analysis experiment on example sentence 14.

This graph show that all three types of cooperation
have the same speed-up ratio, which is a different result
t4an that we deduced from example sentence 12.

We can interpret this difference as resulting from a dif
ference in the amount of calculation. Both the syntax
only calculation and the cooperative syntactic and mor
phological analysis process for example sentence 12 sim
ply do not involve enough computation to fully show
the potential speed-up ratio. Sentence 14, on the other
hand, requires enough computation for any of the three
types of cooperation, so that we can more clearly see the
speed-up ratio.

To verify this assumption, we plot the speed-up ratio
against the amount of calculation for the three types of
cooperation. As the graph shows, all three cooperation
types show similar behavior for this relation. We can
understand why this is so if we recall that in our system,
all modes of processing employ the same basic processing
mechanism.

In the graph, we can see that the speed-up ratio rises
steeply while the number of reductions remains small,
but gradually becomes saturated as the number of re
ductions grows.

40

30
.9
§
Q.. 20 ::J

-6
<lJ
<lJ
Q.. 10 (/)

0
0 10 20 30

processors

imaginary

----- morph+syn+sem
........ ·w · morph+syn

---<>--- sy n

411

40

Figure 2: Example 14 processors and speed up ratio

In the bar graph of Figure 4, we can see that the
number of reductions for sentence 12 in the case of co
operative morphological and syntactic analysis is about
1,200,000, while in the other two cases it is about half
as much (approximately 600,000). Because the number
of reductions as a whole is small, this difference is im
portant. Example 14 on the other hand involves enough
computation so that the effect is minimized and the sim
ilarities between the processing modalities are allowed to
come out.

7 Conclusion

In this paper, we proposed a model for integrated natu
ral language processing on a parallel inference machine.
This model is realized by choosing similar processing
schemes for morphological, syntactic and semantic anal
ysis and having these cooperate in parallel.

Also, we have carried out an experiment to evaluate
the ,practicality of our processing model.

As the result of our experiment we have been able to
realize speed-up to a factor of about 13 when utilizing
32 processor elements.

The results also showed that the speed-up ratio is de
termined only by the amount of computation, and is not
influenced by the configuration of cooperating analysis
processes.

If our processing model is to be practical as a method
for a real parallel inference machine, the object of analy
sis should require a great amount of calculation because
when the amount of calculation is low we can not expect
a satisfactory speed-up ratio.

We think that our processing model has the potential

412

20~------------------------~

o

18

16

14

.~ 12

0.. 10
:J

-6 8
<l.J

~ 6
(/)

4

2

O~~--'-~--'-~--'-~--'-~~

Oe+O 2e+6 4e+6 6e+6 8e+6 1e+7

reductions

......... '6

~

morph+syn+sem

morph+syn

syn

Figure 3: reductions and speed-up ratio

to be a practical technology for natural language pro
cessing, and that it can help increase the amount of co
operation with fields like pragmatics, speech recognition
and the utilization of world knowledge.

Acknow ledgments

We would like to thank Yuuichi Tanaka, Hiroshi Sano
and other members of 6th laboratory of ICOT.

We were supported by Hirosi Onodera, Naoto Hirota,
Yoshiko Kamimura and other members of Fujitsu-FIP
Ltd in our experiments.

We are also grateful to Eric Visser for his support in
finalizing this paper.

References

[Martin-Lof 84] Per Martin-Lof: Intuitionistic Type
Theory, Studies in Proof Theory, Lecture
Notes, 1984.

[Ait-Kaci 86] Hassan Ait-Kaci and Roger Nasr, LOGIN:
A Logic Programming Language with Built
in Inheritance, The Journal of LOGIC PRO
GRAMMING, Vol. 3, No.3, Oct. 1986.

[Schmidt-Schauss 89] M. Schmidt-SchauB, Computa
tional Aspects of an Order-Sorted Logic
with Term Declarations, Lecture Notes
in Artificial Intelligence, Springer-Verlag,
1989.

6.00e+6----------------,

5.00e+6

4.00e+6
(/)

c:
g .00e+6
o
:J
"0

~ .00e+6

1.00e+6

O.OOe+O
Example12 EX;'lmple14

Example sentence

• morph+syn+sem

JJ morph+syn

1m syn

Figure 4: cooperation case and reductions

[Smolka 88] Gert Smolka, A Feature Logic with Sub
sorts, IBM Deutschland, Stuttgart, West
Germany, LILOG Report 33, May 1988.

[Yasukawa 90] Hideki Yasukawa, Kazumasa Yokota,
The Overview of a Knowledge Representa
tion Language Quixote, lCOT (draft), Oct.
21, 1990.

[Sano 91] Sano Hiroshi, User's Guide to SFTB, ICOT
(draft), Sep. 1991.

[Hasida 91] Koiti Hasida, Aspects of Integration in Nat
ural Language Processing (In Japanese),
Japan Society for Software Science and
Technology, COMPUTER SOFTWARE,
Vol. 8, No.6, Nov. 1991.

[Hasida 90] Koiti Hasida, Sentence Processing as Con
straint Transformation, Proceedings of 9th
European Conference on Artificial Intelli
gence, 1990

[Matsumoto 86] Yuuji Matsumoto, A Parallel Pars
ing System for Natural Language Analy
sis, Proc. of 3rd Internatioanl Conference on
Logic Programming, London, 1986.

[Sato 90] Hiroyuki Sato, An improvement of a paral
lel natural language analyzing system PAX
(In Japanese)), Proc. of KL1 Programming
Workshop '90, ICOT, Tokyo, 1990.

Appendix
Example sentences

Examplel ::t: -:J -C ~.o
(I will get fat.)

Example2 *lCfT-a-m<'1j:
(Do not connect bamboo t.o wood.)

Example3 1$aJ::5(0)$~-a-mlt>ti
(He inherited his father's business.)

Example4 WO)~rj.l-c·'itt3lS-a-·W.o Ij:
(Don't hang up the telephone in t.he middle of a conversa
t.ion.)

Example5 4-1J0)1Rk1·VJ:LO)~iiJ: 1):i:-:J-C1t>1L
(Today's Nanako is fatter than before.)

Example6 $~:o'0I±lte 0'itt5i:i.0);;r.. -1 -;; 1":rtJ] I) Ij: ~ Ir>
(Turn off the light when you leave t.he room.)

Example7 ~-a-IJSfN-C·/.t-*:r~· -:J te:O'0mfi~ICj1gN--C·Ir>.o
(Because I called and scolded him, it is progressing well.)

ExampleS
te
(She began to tell me that that. was the reason why she cut
her hair.)

Example9 :~lf~lCfT < ~p:;6;*-:J te(-\Jff.;6;JJ§.lj.rJ: t. N';>le 0~;6~
~-:J-C~te
(When the train that she, who was going to Tokyo, was on
started moving, snow began to fall.)

ExamplelO fLti~p::ri~t.:.-Clt>teo)lC-t '5 1t>'5~k:::-HJ:~"i--C:
:b .r c mh -C L 1j:;6, -:J te
(Though I believed her, Nanako didn't return until the night
on purpose.)

Examplell -t O)~~"ef.L.til1;6;~J!"i-·§-:J te L c -c·1&--c·~tl--c:
L '5 It> '5 rc'lm KIj: -:J te
(Because only I expressed my opinion at that meeting, later
at the company we had this kind of problem.)

Exalllple12 'iI.;6;*.oO)"i-~i;>Ij:;6~0/~-T~ 1C1lf~~~O)L
c "i- 3'R k=f;6;~ K ffiS L -C It> te
(While waiting for the train, Nanako told him about the
friends that she would invite to the party.)

Example13 f.L.O):5(;6;rc,jl§O) f,ff!lWJ "i-MIr>-C{BtKJ!-ttte 01&--C:iT r'J
:/7 '7 t:7£~(7)p:~;6'0i1ffiS;6;~1tv>-:J -C! te
(First my father opened t.he package in question and showed
it to him, and later we got a telephone call from a woman
from the Kingdom of Saudi Arabia.)

Example14 ;; 9 ;;r..",,;;r..0)1iiK~tt:O'0~-:J-C< .o~k-f-"i-*i;>
1j:~0:5(cML-Clt>k0.ICIj:-:Jk
(As I talked to my father while waiting for Nanako to come
home from school on Christmas Eve, it started snowing.)

Example15 7 j. 9 :h:o'0LO)~ijtcffi5L-Clr>te:~H~a:IJSfNtiiJ'0
<h(7)iS:5(;6;:5(O)$~"i-m<'ti 0 '5
(Since he called that managing director I was telling you
about before from America, that uncle will probably inherit
my father's business.)

Example16 fLti l1iJi .:t 0) jJ~A:a-MIt>-c It> Ij: iJ, -:J tc:o' 0 M! 1i
"i-~-:J-CIr>.o~~K~~~-c-tO)~m"i-Mlr>k
(Since only I hadn't solved that equation, my friends who
knew how to solve it helped me out and I solved the prob
lem.)

413

Example17 f.L.t-cl1;6i-t O)1f¥1E:tt"i-MIr>-C1t>1j: :O>-:J te iJ'0M~ 1i
a-~-:J-CIt>.o~~K~~-:J-C-t0)~~"i-M0-C~tc
(Since only 1 hadn't, solved that. equation, my friends who
knew how to solve it helped me out and 1 solved the problem
and went to bed.)

Example18 tJ:~;6;7) 9 :hiJ'0LO)~iJtcffiSL-Clr>teW:ti5-a-Pf-N
ti:o'0<h0){S:5(;6~:5(0)$~"i-m<'ti0 oj

(Since the president called tha.t. managing director I was
telling you about before from America., that uncle will prob
ably inherit my father's business.)

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 414

Architecture and Implementation of PIM/p

Kouichi KUIvrON Akira ASATO Susumu ARAI

Tsuyoshi SHINOGI Akira HATTORI

Fujitsu Limited
1015, Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

Kiyoshi HIRANO Hiroyoshi HATAZA WA

Fujitsu Social Science Laboratory Ltd. Institute for New Generation Computer Technology

Abstract

In the FGeS project, we have developed a parallel in
ference machine, PIM/p, as a one of the final outputs of
the project [Taki 1992]. PIM/p has up to 512 process
ing elements(PEs) using two level hardware structures.
Each PE has a local memory and a cache system to re
duce bus traffic. The special cache control instructions
and the macro-call mechanism reduce the common bus
traffic, which may become the performance bottle-neck
for shared-memory multi-processor systems. Eight PEs
and a main memory are connected by common bus using
the parallel cache protocol, we call it a cluster. PIM/p
system consists sixty-four clusters, those are connected
by dual sixth-order hyper-cube networks.

The KL1 processing system on PIM/p has two com
ponent, the compiler and the run-time support routines.
The compiler uses the templates to generate PIM/p na
tive codes from KL1-B codes. Each KL1-B instruction
has a corresponding template .. The codes are optimized
after the expansion from KL1-B to native. codes. The
run-time support routines are placed in the internal
instruction memory, in the local-memory, or in the shared
memory according to their calling frequencies.

The preliminary evaluation results are presented. Cor
responding to the hierarchy of PIM/p, two different con
figuration systems: the network connected system and
the common bus connected system, are compared.

The results show that the speedup ratio compared to
one PE is nearly equal to the number of PEs for both
configuration systems. Hence, the bus traffic is not a per
formance bottle-neck in PIM/p, and the automatic load
balancing mechanism appropriately distributes loads
among PEs within a cluster at the evaluation.

1 Introduction

A parallel inference machine prototype(PIM/p) is now
being used. It is tailored to KL1 [Ueda and Chikayama
1990], and includes up to 512 processors. A two-level

hierarchical structure is being used in the new system: a
processing element and a cluster(Figure 1).

Eight processing elements form a cluster, which com
municates with a shared memory through a common bus
using snooping cache protocols. The clusters are con
nected with dual hypercube packet switching networks
through network interface co-processors and packet
routers. The chassis consists of four clusters. The max
imum PIM/p system includes sixteen chassis. A single
clock is delivered to all processing elements, maintaining
the phase between different chassis.

Some of the features introduced in the PIM/p system
are:

• Two level hierarchical structure to allow parallel
programming with common memory and to facili
tate system expansion with the hypercube network.

• The macro-call instructions which have the advan
tages of both hard-wired RISC computers and
micro-programmable instruction set computers.

• Architectural support for incremental garbage col
lection Multiple Reference Bit(MRB), which reduces
memory consumption when the executing parallel
logic programming languages such as KL1.

• Each processing element has a local memory, which
can reduce bus traffic if the accessed data are placed
in the local memory.

• Coherent cache and dedicated cache commands for
KL1 parallel execution, which can also reduce com
mon bus traffic.

• Generating the native instruction codes from inter
mediate KL1-B codes by optimizing compiler with
a optimizer.

• The optimizer analyses data-flow for both the tag
parts and the data parts independently, which can
eliminate unnecessary tag operations.

Cluster63

PE: Processing Element

NIU: Network Interface Unit

415

Figure 1: PIM/p system configuration

64 bi t internal data bus
NIU

~ Network router
r--- (Network

~
SCSI Interface Unit)

Protocol S
FPU Controller

CSI bus

r--- (Floating
Point Unit) I-

internal IIM
IPU address (Internal

(Instruction internal r--
rn(lp Instruction

Pro cessing Unit) Memory)

Instruction t Cache address

Instruction
r- Cache ~

64KB r-- ccu
r---

Data Cache/.
(Cache
Controller

64K~ Units)

t
Common bus

Figure 2: PIM processing element configuration

The processing Element(PE) consists of an Instruction
Processing Unit(IPU), a Cache Control Unit(CCU) and
network interface unit(NIU). Figure 2 is a schematic di
agram of aPE.

In this paper, the hardware architecture and the KLI
processing system are described. In Section 2 to Sec
tion 4 we describe IPU, cache and the network system.
Then, the run-time support routines for KLl, and the
KL1-B compiler code generation and its optimization are
described in Section5. Finally in Section 6 a preliminary
performance evaluation results are presented.

2 IPU Architecture

The instruction processing unit(IPU) executes RISC-like
instructions which have been tailored to KLI execution.
The instruction set has many features which facilitate
efficient KLI program execution. In this section, we de
scribe these features.

2.1 Tagged data and type checking

To execute KLI programs, a dynamic data type checking
mechanism is needed to provide:

• Transparent pointer dereferencing.

• Polymorphic operations for data types.

• Incremental garbage collection support.

Dereference is required at the beginning of most uni-
fication operations in KLI. In dereference, a register
is first tested' to see whether its content is an indirect
pointer or not. If it is an indirect pointer, the cell pointed
to is fetched into the register and its data type is tested
again.

Many operations in KLI include run-time data type
checks even after dereferencing has been completed. Uni
fications include polymorphic operations for data whose
type is not known until run-time.

In addition, incremental garbage collection by MRB
is embedded in dereferencing(See Section 2.5 for details).

Therefore, tagged architecture is indispensable for
the KL1 processing. In PIM/p, data is represented as
40-bit (8-bit tag + 32-bit data), and the general-purpose
register has both a data part and a tag part. The MRB
is assigned in one bit of the 8 bit tag.

The tag conditions are specified as bit-wide logical
operations between the tag of a register and the 8-bit
immediate tag value in the instruction. An instruction
can specify the logical operation as AND, OR, or XOR
or a negations of one of these.

416

If a.n instruction specifies XOR as its logical opera
tion, it checks whether the tag of the register matches
the immediate value supplied in the instruction. Xor
mask operation does this matching under the immediate
mask supplied in the instruction, which enables various
groups of data types to be specified in a conditional in
struction if the data types are appropriately assigned to
tag bits (See Section 5.1 for details).

Various hardware flags, like the condition code of
ALU operations or hardware exception flags, can be
checked as the tags of dedicated registers, so these flags
can be examined by a method similar to data type check
ing.

2.2 Instructions and pipeline execution

The processing element uses an instruction buffer and
a four-stage pipeline, D A T B, to attempt to issue
and complete an instruction. Table 1 shows the pipeline
stages in AL U, memory access and branch instructions.
All instructions except co-processor instructions are is
sued in every cycle.

Basic instructions such as ALU operations have three
operands, and memory accessing instructions are limited
to load and store type instructions. Pipeline execution
tends to make the branch penalty large. In PIM/p, the
target instruction starts four clock after the branch in
struction starts. To reduce the branch penalty, delayed
branch instructions are used. These have one delay slot
after them.

The skip instruction is also useful. This nullifies a
subsequent instruction if the skip condition is met. The
skip instruction does not cause a pipeline break, so its
use results in efficient instruction execution. Figure 3
shows the pipeline stages in conditional branch/delayed
branch/skip instructions.

In the PIM/ p pipeline, all instructions write their re
sults at the B stage and ALU or memory write instruc
tions require source operands at the beginning of the B
stage. The bypass from the B stage can eliminate inter
locks. Conditional branch instructions test the condition
at the B stage, the bypass also eliminates condition test
interlocks. However, when the register is used by address
calculation at the A stage when the value of the register
has just been changed, an interlock may occur even if a
bypass from B to A is prepared. Figure 4 shows this ad
dress calculation interlock. The compiler must recognize
such interlock conditions and should eliminate them as
far as possible.(See section 5.2.3)

2.3 Macro call and internal instructions

A RISC or RISC-like instruction set has advantages in
both low hard ware design cost and fast exec~tion pipelin
ing. However, naive expansion of KL1-B to low-level
RISC instructions produces a very large compiled code.

When conditional branch is taken: condition tested at B
D A T B : condo branch instruction

D A T canceled : next external instruction
D A canceled : 2nd external instruction

D canceled : 3rd external instruction
D AT: branch target instruction

When delayed branch is used: condition tested at B
D A T B : condo branch instruction

D A T B : next external instruction
D A canceled : 2nd external instruction

D canceled : 3rd external instruction
D AT: branch target instruction

When conditional skip is taken: condition tested at B
D A T B : condo skip instruction

D A T canceled : next external instruction

Figure 3:

D A T B : 2nd external instruction
D A T B : 3rd external instruction

Pipeline stages of conditional branch/skip
instructions

D A T B
D D D A T B

D A T

: register write instruction.
: inter-lock occurs
: next instruction

Figure 4: Interlock caused by address calculation

This may cause frequent instruction cache miss-hits and
may fill up the common bus band width with instruction
feed, especially in tightly-coupled multiprocessors such
as a PIM/p cluster. Here, reducing common bus traf
fic is a most important design issue as is reducing the
cache miss-hit ratio. On the other hand, the static code
size can be small in a high-level instruction set computer
with micro-programs, such as PSI.

To meet both requirements, the processing element
of PIM/p has two kinds of instruction streams, ex,~ernal
and internal. External instructions are mostly RISC-like
instructions with KL1 tag support[Shinogi et al. 1988].
Internal instructions are fed from internal instruction
memory like micro-instructions.

The external instruction set includes macro-call in
structions, which first test the data type of a register
given as an operand, then invoke programs in the in
ternal instruction memory(IIM) or simply execute the
next external instruction, depending on the test result.
Every time a macro-call instruction is executed, the cor
responding macro-body instruction is fetched from IIM
to reduce the calling overhead, but it is not executed un
less a macro-call test condition is met (See the Sand C
stages of Table 1). Figure 5 shows the pipeline stages of
macro-call instructions. A macro-call instruction can be
regarded as a light-weight conditional subroutine call or

417

. Table 1: Pipeline stages of ALU, memory access and branch instructions

ALU operation Memory access Branch
(S) Set IIM address, valid only for m-call or internal instructions
(C) Fetch instruction from IIM, valid only for m-call or internal instructions

D Decode
Decode 7 Decode 7
Register read for address Register read for address

A
Memory address Branch address
calculation calculation

T Register read Cache tag access Cache tag access

B
AL U operation 7
Register write

Cache data access 7
Register write

Cache data access 7
Condition test

When the condition met: condition test at A
D A : macro-call instruction

D canceled : next external instruction
S C D A T B : first internal instruction

S C D A T B : 2nd internal instruction

When the condition is not met: condition test at A
D A : macro-call instruction

D A T B : next external instruction
D A T B : 2nd external instruction

Figure 5: Pipeline stages of macro-call instructions

as a high-level instruction with data type checking.
To reduce the overhead of passing parameters from

a macro-call instruction to the macro-body, the PIMjp
processing element has three indirect registers. The in
direct registers are pseudo registers whose real register
numbers are obtained from the corresponding macro-call
instruction parameters.

These mechanisms may appear to be similar to those
of conventional micro-programmable computers. Pro
grams stored in IIM are written by system designers into
internal instruction memory, like micro-programs. How
ever, the internal instruction set is almost the same as
the external instruction set, so a designer can use same
development tools to generate both external and inter
nal programs. Therefore, system designers can specify
internal or external at the machine-language level, with
out writing complicated micro-instructions, as in conven
tional micro-programmable computers.

2.4 Dynamic test stage change

As discussed in the Section 2.3, internal instruction exe
cutions require an additional two pipeline stages, Sand
C, before the D stage, internal conditional branch causes
a five clock cycle branch penalty when the branch is
taken. In the case of an external branch instruction, tar
get instruction fetch starts at A as an operand and the
fetch finishes at the B stage, thus testing the condition
before the B stage cannot reduce branch penalty.

However, internal instructions must use the Sand

Table 2: The advantages and disadvantages of B and A
condition check

Test stage
B
A

Advantages
No interlock
1 r branch penalty

Disadvantages
5r branch penalty
O/1/2r interlock
lr=l clock cycle

C pipeline stages to fetch the target internal instruc
tion. It cannot not start before the condition test. If
the branch condition is determined earlier, say at stage
A, target fetch can be started earlier. This reduces the
branch penalty. However, an early condition test causes
interlocking, which is common to memory address calcu
lation, and this will occur even if the branch is not taken.
Table 2 shows the advantages and disadvantages of both
B stage and A stage condition tests. Some sample cod
ings show internal conditional branches are often placed
just after memory read or ALU operation instructions,
and it is hard to insert non-related instructions between
them. To minimize pipeline stall, an A stage test should
be used if the previous instruction does not interlock the
condition test, otherwise B stage test should be used.

Preparing two sets of branch instructions, a B stage
test and an A stage test, adds instructions to the PIMjp
instruction set, because the PIMjp instruction set has
many conditional branch instructions for various tag
checking.

Without adding instructions, the PIMjp pipeline con
troller decides between internal conditional branch A or
B[Asato et al. 1991]. When some instructions inter
lock the test stage A of a successive internal conditional
branch, the test stage is changed to B to avoid interlock,
otherwise the test is done at A stage. We call this a
dynamic conditional branch test stage change. If a com
piler or a programmer can put two or more instructions
between a register write instruction and a conditional
branch based on the register, the test is done at the A
stage.

418

2.5 MRB support

Incremental garbage collection support is one of the most
important issues in parallel inference machines. The
PIM/p instruction set includes several instructions for
efficient execution of MRB garbage collection[Chikayama
and Kimura 1987].

Using the MRB incremental garbage collection, value
cells or structures are allocated from free lists, and when
those allocated areas are reclaimed, the areas are linked
to free lists. To support these free list operations, the
push and pop instructions are used.

The MRB of each pointer and data object has to be
maintained in all unification instructions. Especially in
dereference, the MRB of the dereferenced result is off
if and only if MRBs of both the pointer on a register
and the pointed cell are MRB-off. MRB is assigned to
one of the eight bit tag data. MRB-on means the bit
is 1, MRB-off means a respectively. Therefore logical
or of both the pointer MRB bit and the pointed data
MRB bit represents the pointed data's multiple refer
ence status. Dedicated instructions Read Tag WordMrbor
and Deref support this operation. Read Tag WordMrbor
loads memory data pointed by address register into des
tination register, accumulates both the address register's
MRB and the destination register's MRB that is MRB
of the memory data, sets the result status in the destina
tion register. De ref is similar to the Read Tag WordMrbor
instruction, but loads memory data into address regis
ter and the old address register value is saved to des
tination register simultaneously. Therefor, succeeding
instructions can examine that the pointed data can be
reclaimed or not by testing destination register's MRB
bit.

These dedicated instructions can minimize the over
head to adopt MRB incremental garbage collection.

3 Memory Architecture

3.1 Cache and bus protocols

Each PIM/p element processing has two 64K bytes caches
for instructions and data. PIM/p uses copyback cache
protocols which have been proved effective for reducing
common bus traffic in shared-memory multiprocessors.
To maintain cache coherence, there are basically two
mechanisms, invalidating the modified block and broad
casting the new data to others.

PIM/p uses the invalidation method for the following
reasons. To use incremental garbage collection MRB, a
reclaimed memory area need not be shared. Next time
the area is used it may not be shared with the same
processors which previously shared the area. In other,
KL1 load distribution is achieved by distributing goal
records in a cluster from one processor to another. Usu
ally the distributed goals will not be referred from the

source processor. In these cases, the broadcast method
will produce unnecessary write commands to the ,com
mon bus on every write to the newly allocated area or
distributed goals. The invalidation method is much more
efficient.

PIM/p cache protocol is similar to Illinois protocol.
However, PIM/p protocol has the following cache com
mands optimized for KLl. In normal write operations,
a fetch-on-write strategy is used; however, it is not nec
essary to fetch the contents of shared memory when the
block is allocated for a new data structure. That means
the old data in the block is completely unnecessary. In
KLl, when free lists are recreated after grand garbage
collection, the old contents of memory have no mean
ings. To accomplish this, DirecL Write is used.

DirecLwrite: If cache misses at the block boundary,
write data into cache without fetching data from
memory.

The following instructions are used for inter-processor
communication through a shared memory, for example
goal distribution.

Read..Invalidate: When cache misses, fetch the block
and invalidate the cache block on other CPUs. This
operation guarantees that the block is exclusive un
less the other CPU subsequently request the block.

Read-Purge: After the CPU reads a block, it is simply
discarded even if it is modified.

Exclusive-fead: Same as Read-Invalidate except for the
last word in a cache block. When it is used to read
the last word in a cache block, it purges the block
like Read_Purge.

Using these instructions, unnecessary swap-in and swap
out can be avoided by invalidating the sender's cache
block after receiver the gets the block, and by purging
the receiver's cache block after the receiver reads all data
in the block.

Ill-behaved software may cause these instruction to
destroy cache coherency. However, these instructions are
used only in KLI processing system, and only systems
programmers use them.

There are hardware switches which can change the
actions of those special read/write instructions to normal
read/write actions. By using these switches, the systems
programmer can examine their programs consistency.

3.2 Exclusive control operation

To build a shared-memory parallel processor system, lock
and unlock operation are essential guarding critical sec
tions. KLI requires fine-grain parallel processing. The
frequency of locking and unlocking operation needed for
shared data is estimated at more than 5% of all mem
ory accesses. Thus these operation must be executed

with low overheads by using hardware support. How
ever, locking operations should seldom conflict with each
other. It is therefore useful to introduce a hardware lock
mechanism which has low overhead when there are no
lock conflicts. In PIM/p, the cache block has exclusive
and sha1'ed status. When the block is exclusive, it is not
owned by other PEs. Hence there is no need to use the
common bus. A marker called the lock address register
which remembers the block is locked by the CPU. When
the CPU locks a block, other CPU cannot get the block
data until the block is unlocked by the original CPU.
Even when the block is shared, fetching data and invali
dating the block before locking is sufficient. The cost is
nearly equivalent to the normal write operation.

In KL1 processing, unification requires frequent lock
ing, but the locking time is fairly short. A hardware
busy wait scheme is better for lock conflict resolution.
If a longer locking time is needed, a software lock can
be made by combining lock, read and conditional jump
instructions. For KL1, no bus cycles are needed for most
of the lock reads hitting exclusive cache blocks.

4 Network Architecture

4.1 Network interface unit

Multiple clusters are connected by a hypercube topology
network. At the design stage, we assumed that ten log
ical reductions require a hundred-bytes packet transfer.
The target speed of PIM/p PE will be between 200K
LIPS to 500K LIPS. This means 2M to 5M bytes per
second network bandwidth is required by each PE. Thus
16M to 40M bytes per second network bandwidth is re
quired to a cluster which contains eight PEs. If this
data flows into the common bus, network packet data
occupies about 10% to 25% of the total bandwidth of
the common bus. Providing a network interface to each
processing element reduces such common bus traffic.

Each cluster has 8 PEs, and each PE has a net
work interface co-processor called a network interface
unit (NIU). By attaching a NIU to each PE, a PE can
send to or receive from a packet without using the com
mon bus. The NIU performs the following functions:

• Builds a packet into the NIU's packet memory, and
sends it to the network router(RTR).

• Receives a packet from the RTR, stores it to the
packet memory. and signals the arrival of a packet
to IPU.

• Communicates to a SCSI bus driver chip which
connects to PIM/p front-end processors(FEPs) or
disks.

All these actions are controlled by the IPU's co-processor
instructions.

419

To build a packet, the IPU first makes a header which
contains the packet destination and mode for broadcast
ing. It then building a packet body by executing co
processor write instructions, which packs data one, two,
or four bytes at a time. Finally the IPU puts a end
of packet marker to send the packet to RTR. A whole
packet of data is stored in packet memory before send
ing it, to minimize RTR busy time. The send and receive
packet memories are both 16K bytes long.

Each cluster has four SCSI ports which are connected
to the PEs. Two have non-differential SCSI interface
ports, and the other two have differential SCSI inter
face ports. The differential SCSI interface is able to ex
tend the interface cable up to twenty five meters. It is
used to connect SCSI disks which need not be placed
beside the cluster. The PIM/p FEP is connected to
a non-differential interface, and various other SCSI de
vices, such as an ether-net transceiver, can be connected
through the SCSI bus. This extends PIM/p's application
domain.

4.2 Inter-cluster network connection

While the NIU sends and receives packets, the network
packet router(RTR) actually delivers packets. Each RTR
connects four NIUs and up to six other RTRs to build a
sixth order hypercube network topology. Thus each clus
ter has two RTRs which construct two independent hy
percube networks to improve the total network through
put. The RTR can connect a maximum of sixty-four
clusters(512 PEs).

RTR uses the wormhole routing method to reduce
traveling time when the network is not so busy, to avoid
packet length restrictions caused by RTR packet buffer
limitation. Between RTRs data is transferred at system
clock rate. RTR has approximately 1K bytes of packet
buffer for every output port, in order to reduce network
congestion. The static routing method is used and dead
locks are avoided by the routing method. Broadcasting
to the sub-cube is available. This can be used when the
system is at the initial program stage.

In the PIM/p system, one chassis contains four clus
ters. The maximum 512PE PIM/p system is sixteen
chassis. Building for such a large system can be prob
lematic. Transferring data between these chassis by syn
chronous-phase matched clock is impossible, because the
system occupies an area of about sixteen meters square.
This means that the traveling time of data is about
one system clock tick. Introducing another hierarchy
between inner-chassis communication and inter-chassis
communication complicates the distribution strategies of
the KL1 processing systems. This should be avoided.

One of main feature of RTR is the interconnection be
tween PIM/p chassis. To attain a transfer rate equal to
system clock rate f<?r both inner-chassis and inter-chassis
data, RTR uses a data synchronization mechanism for

420

inter-chassis connections. This makes the inter-chassis
connection transfer rate equal to the inner-chassis trans
fer rate, with little increase in data traveling time. This
simplifies the cluster hierarchy.

5 The Kil Language Processing
System for PIM/p

The KL1 language processing system for PIM/p is de
signed on the basis of the VPIM [Hirata et a1. 1992]; it is
the common specifications of the KL1 language process
ing system on the two level hierarchical multi-processor
system. Most specifications of VPIM are used for PIM/p
with no changes. Some modification, however, were ap
plied to exploit the PIM/p hardware efficiently.

The KL1 language processing system is implemented
as the KL1 compiler and the run-time support routines.
The KL1 program must be compiled into PIM/p na
tive machine code when it is executed on PIM/p. The
KL1 compiler for PIM/p consists of three passes - the
compiler to the intermediate code, the native machine
code generator and the optimizer. Compiled KL1 pro
grams may call some run-time support routines as cir
cumstances demand. The run-time support routines are
classified into three groups, which correspond to PIM/p
n1emory architecture.

5.1 Changes for PIM/p

There a.re some changes from VPIM to PIM/p. These
were applied to exploit the PIM/p hardware efficiently.

(1) Data Structure

The basic KL1 data are realized by tagged words;
each of them consists of a 8- bit tag part and a 32-bit
value part, and all KL1 data are realized by tagged words
in VPIM. The memory of PIM/p consists of 64-bit width
words. Tagged words are placed in aligned 54-bit width
words in the PIM/p memory system [Goto et a1. 1988].
Although KL1 data density will be low in this scheme,
this will not cause performance degradation.

The PIM/p instruction processing unit can access the
memory not only in the unit of tagged data, but also
in the 8-bit, 16-bit, 32-bit and 64-bit units. A string
- an array of integers can, therefore, be realized us
ing 64-bit width words, as shown in figure 6. A module
which holds KL1 compiled code, is also realized under
the same scheme. Since PIMOS [Chikayama et a1. 1988]
uses many string data and module data, this scheme can
promote efficiency of memory using.

(2) Data Type Checking

The PIM/p instruction processing unit has special
instructions for data type checking: JumpXorUnderMask

VPIM: I-- 40-hit -I
rSTRGT~ CNST num.ofTW

INT I
: elements

INT I

elements

Figure 6: String data of VPIM and PIM/p

and JumpNotXorUnderMask. These have the following
functions:

if(tag_of(Reg)&Mask = Const) goto Label;
and

if(tag_of(Reg)&Mask =f. Const) goto Label;

These functions can test not only if the data type is
correctly specified, but also if the data type group is
correctly specified, since the bit assignment of tag field
is designed effectively.

The KL1 language processing system uses 44 kinds
of data types; these can be expressed in 6 bits. The tag
part, however, is 7-bit width except MRB. We use 7 bits
in a tag part to express data type; data types are assigned
sparsely in order to check data type group easily by
JumpXorUnderMask or Jump NotXorUnderMask. There
are the following data type groups:

• Atomic - atom or integer.

• Vector - null vector, short vector or long vector.

• Short Vector - vector containing 1-8 elements.

• Undefined - variable in some conditions.

These data type groups are often checked in KL1 execu
tion, and this assignment can reduce execution costs.

5.2 Compiler

The KL1 program must be compiled into PIM/p native
machine code when it is executed on PIM/p. The KL1
compiler for PIM/p consists of three passes - the com
piler to the intermediate code, the native machine code
generator and the optimizer. In the first pass, the KL1
program is compiled into intermediate code; its instruc
tion set is called KL1-B. The native machine code gener
ator expands intermediate code into PIM/p native ma
chine code. The optimizer improve the expanded code.

5.2.1 Intermediate Code

In the first pass of the KL1 compiler, the KL1 program
is compiled into intermediate code; its instruction set
is called KL1-B. It is designed as the instruction set for
the abstract KLI machine (Kimura and Chikayama 1987]
and interfaces between the KL1 language and the PIM
hardware, just as the Warren Abstract Machine [Warren
1983] does for Prolog. The KL1-B for PIM is extended
from KL1-B for Multi-PSI to exploit the PIM hardware
efficiently.

KL1-B contains passive unification instructions, ac
tive unification instructions, argument/element prepara
tion instructions, incremental garbage collection instruc
tions and goal manipulation instructions. These specifi
cations are identical with VPIM (Hirata et al. 1992].

5.2.2 Native Machine Code Generator

The intermediate code, which consists of KL1-B instruc
tions, is expanded into native machine code according
to the template; the template is a set of rules governing
translation from KL1-B instructions to native machine
instructions. These rules are defined according to the
following principles:

• Use the special instructions for KL1 effectively.

• Don't jump in the main pass.

• Minimize the pipeline break ratio.

• Maximize the hit ratio of the instruction cache.

The translating rules are classified into the follow-
ing 3 groups according to the properties of the KL1-B
instructions.

(1) Expand to In-Line Code

These KL1-B instructions which can always be real
ized by a few native machine instructions are translated
accordingly. Consider the following examples:

load Rgp, Pos, Reg

~ ReadTagWordShortOffset Reg,Pos*8+40(Rgp)

read Rsp,Pos,Reg

~ ReadTagWordMrbOr Reg,Pos*8(Rsp)

is_vector Reg,Lab

~ JumpNotXorUnderMask Reg, VG,Lab, VGM

put-integer Const,Reg

~ Move Tag Word With Tag
(Const = 0)

~ Addlmmediate
Move Tag Word With Tag

(0 < Const < 256)

Rzero, Reg, IN T

Reg,Rzero,Const
Reg, Reg,lNT

~ Loadlmmediate Reg,Const
Move TagWordWith Tag Reg, Reg,lNT

(Const ~ 256 or Const < 0)

421

Load is translated into a single native machine in
struction. In this sample, Pos, the position specifying
an argument, is adjusted to the offset in a byte unit.

Read is not a simple read instruction; it must main
tain the MRB. PIM/p, however, has a special instruction
for this use. Read can be realized by a single native ma
chine instruction: Read TagWordMrbOr.

Is_vector tests if the data type group of Reg is a vector
group. This is translated into a single native machine
instruction: JumpNotXorUnderMask.

Put-integer has three translation rules from which is
selected according to the value of Const, in order to gen
erate fast, concise code. These translated codes take
1clock-cycle/4bytes, 2clock-cycles/8bytes and 2clock
cycles/10bytes respectively.

(2) Expand to Conditional Subroutine Call

The KL1-B instructions whose main pass can be re
alized by a few native machine instructions are trans
lated into these instructions, together with the instruc
tions calling a subroutine conditionally. The subroutines
are classified into two groups; the macro library and the
roundabout routines.

The macro library is a set of the run-time support
routines and called by the macro call instruction. These
routines realize common functions in executing KL1, and
are shared with all compiled codes (See section 5.3).
Consider the following examples:

reuse_vector Arity,Reg

~ MacroCallAnd Reg,MRB,Arity,m-AllocVector

Reuse_vector does nothing when the MRB of the vec
tor pointer on the register is not marked. It can, there
fore, be translated into a single conditional macro call
instruction. When the MRB of the pointer is marked,
reuse_vector allocates a new vector; this allocation is
done in the macro library.

The roundabout routine is placed in the compiled code
of the KLl program. It realizes a local function, and is
used from the compiled code of a single KLI-B instruc
tion. Consider the following example:

reuse_vector_with_elements 3,Reg,{l,O,l}

-t JumpAnd Reg,MRB,LCOOl
LROOl:

LCOOl:
Ma cro Call Rworkl,O,Arity,m-AllocVector
Rea dTagWordMrbOr Rwork2,O(Reg)
Write TagWordShortOffset Rwork2,O(Rworkl)
ReadTagWordMrbOr Rwork2,l6(Reg)
Write TagWordShortOffset Rwork2,l6(Rworkl)
JumpDelayed LROOl
Move TagWord Rworkl,Reg

422

Reuse_vector_with_elements is translated into a single
JumpAnd instruction as a main pass, and some addi
tional instructions as the roundabout routine. In KLI
applications, the MRB of the structure pointer is often
unmarked, and roundabout routine is not executed. This
1'oundabout routine is changeable according to the third
arguments of the KLI-B instruction. It cannot, there
fore, be shared with some KLI-B instructions.

(3) Expand to Subroutine Call

The KLI-B instructions which always execute com
plicated functions are translated into the subroutine call
instruction or the macro call instruction. The processing
of complicated functions are executed by run-time sup
port routines. Most KLI-B instructions for active unifi
cation and body built-in predicates are translated using
this rule. This is because the calling cost is low compared
to the cost of executing complicated functions, and the
size of the compiled code can be minimized.

5.2.3 Optimizer

The compiler for PIM/p supports the optimization of the
expanded code; the expanded code is the native machine
code translated from the intermediate code according to
the template. Since expansion according to the template
is applied to each KLI-B instruction separately, some
redundant instructions may be generated, and the order
of instructions is not refined. Optimization is applied
to the expanded instructions as a group, and these in
structions are removed. Two optimization techniques are
introduced.

(1) Optimization by Data Flow Analysis

The optimizer analyzes data flow among the instruc
tions in the expanded code. It then trims some redun
dant instructions and merges some instructions into a
single instruction; for example:

• The optimizer trims the instruction which puts a
datum onto a register, even if the datum is not
used later.

• The optimizer generates an instruction which cal
culates with a constant datum, instead of an in
struction which puts the constant onto a register
and an instruction which calculates with the datum
on the register.

In this optimiza.tion, the data flow analysis is applied
separately to the tag part and the value part of a datum.
This is because the KLI-B always treats a datum as a
set of the tag part and the value part, while some native
machine instructions disregard the value part.

The sample code is shown as follows; this is the com
piled code of a guard built-in predicate: add(X,l, Y).

• intermediate code:

put-integer
integer_add

1, R2
R1, R2, R3, fail

• native machine code (not optimized):

Addlmmediate R2, Rzero, 1
Move Tag Word With Tag R2, R2, INT
Add R3, R1, R2
JumpAnd CCR, CC V, fail

• native machine code (optimization #1):

Addlmmediate R2, Rzero, 1
Add R3, R1, R2
JumpAnd CCR, CC V, fail

• native machine code (optimization #2):

A ddlmmediate R3, R1, 1
JumpAnd CCR, CC V, fail

There are two KLl-B instructions, and each of them
is expa.nded into two native machine instructions. In
the unoptimized code, the Add instruction uses R2 as
the input, but disregards the value part; therefore the
Move TagWordWith Tag instruction has no effect and can
be removed (optimization #1). Additionally, Addlm
mediate R2,Rzero,l and Add R3,R1,R2 can be merged
into a single native machine instruction: Addlmmediate
R3,R1,l. In this sample, optimized code takes 2clock
cycles/lObytes while unoptimized code takes 4clock
cycles/18bytes.

(2) Pipeline Optimize

The processing element for PIM/p uses a four-stage
pipeline. In expanded code, the dependencies between
instructions which have been expanded from different
KLI-B instructions, are disregarded, and delayed branch
instructions are not used as often. The optimizer rear
ranges the order in which instructions are executed, to
ensure smooth pipeline processing .

In KLI execution, pointer operations - pointer read
ings and address calculations are often done while pointer
operations may cause interlocks. This optimization, there
fore, is very effective .

5.3 Run-time Support Routines

The run-time support routines are called from the com
piled KLI program in order to execute complicated func
tions. They are divided into three groups corresponding
to PIM/p memory architecture (Figure 7).

,. , · . · . · . · . · .
Compiled ; ~

KLl Program acro:

H ~~_~:d~ti~,,_~~ll__~_~~.J ltb~~
Subroutines

(Local memory
Shared memory)

(IIM)

... Run -time Routines .. :

Figure 7: Run-time support routines

(1) Macro Library

The macro library is called using macro call instruc
tions. This is a kind of subroutine library, but is stored
in the internal instruction memory (IIM) of IPC, like
microprograms. There are no instruction cache misses.

The characteristics of macro call instructions are as
follows:

• In a macro call instruction, a tag conditional branch,
applied to a run-time KLl data type check, is car
ried out in one instruction step.

• Argument registers or short (S-bit) immediate val
ues are specified in the macro call instruction, so
the operands of a macro call can be efficiently passed
to its macro library function.

The IIM can store SK-step instructions. We imple
ment the most frequently used functions, for example,
the dereference and unification functions, in the macro
library.

(2) Frequently-used Libraries

Other frequently-used libraries are stored in local mem
ory. The cost of instruction fetches in local memory is
small, because it doesn't use the common bus.

Functions for the suspend/resume processes for KL1
goals and the copying GC routines, are implemented in
these libraries.

(3) Occasionally-used Libraries

Occasionally-used libraries are stored in shared mem
ory. Access speed for shared memory is slower than that
for local memory or IIM, but the storage is so large that
we can implement complicated libraries in this memory.

We implement most of the body built-in predicates,
the network control routines and the shoen (meta-function)
control routines for these libraries [Hirata et al. 1992].

423

Number of PEs S

Memory shared system
Network connected system

6 Evaluation

We used Pentomino as a benchmark program and exe
cuted it on two system configurations - multi-PExlCL
and IPExmulti-CL. The multi-PEx1CL configuration
represents the memory shared multi-PE system, and the
IPExmulti-CL configuration represents the network con
nected multi-PE system.

Pentomino is a program to find out all solutions of a
5 x S packing piece puzzle; packing a 5 X 8 rectangular
box by ten various shaped pieces, each is made up of four
unit squares. The program does an exhaustive search of
an OR-tree of possible pieces elements.

The benchmark program for the network connected
multi-PE system contains the multi-level load balancing
[Furuichi et al. 1990] code which requires the optimiza
tion for the network configuration. However, the pro
gram for the memory shared multi-PE system does not
contains load balancing code.

On the memory shared multi-PE system, the load
balancing in a cluster is executed automatically with a
KLl goal as a unit. Each PE has two goal pools, one is
local for the PE, the other is public; it is accessible from
other PEs. If a PE has many goals in its local pool, it
moves some goals into its public pool. The goals in the
public pool might be executed by any PEs in the cluster.

Table 3 shows that the speedup ratio according to the
number of PEs is nearly equal to the number of PEs for
two system configurations. The automatic load balanc
ing mechanism of the memory shared multi-PE system
works as efficiently as the optimized load balancing cqd~
for the network connected multi-PE system.

7 Conclusion

PIM/p has up to 512 PEs using two level hardware struc
tures. Two level hierarchical structure allows parallel
programming with common memory and facilitates sys
tem expansion with the hypercube network. On the two
level hierarchical structure system, programmers do not
think about load balancing inner cluster and write only
the load balancing code for clusters.

The special cache control instructions and the macro
call mechanism reduce the common bus traffic, which
may become the performance bottle-neck for shared mem
ory multi-PE systems. The evaluation result shows that
the speedup is linear upto 8 PEs in a cluster. The com-

424

mon bus traffic, therefore, does not become the perfor
mance bottle-neck.

The macro-call mechanism reduces the costs of type
checking and the overhead of passing parameters. Using
this mechanism, it becomes easier to implement the KL1
language processing system.

Acknowledgment

We wish to tha.nk all of the PIM research members both
at ICOT, at Fujitsu Social Science Laboratory Ltd. and
at Fujitsu Limited. Especially we thank ICOT researchers,
Dr. K. Hirata and Mr. A. Imai for their useful com
ments. VVe also wish to thank Mr. A. Shinagawa and Mr.
H. Miyake of Fujitsu Limited for their helpful support in
developing softwares. Finally, we would like to thank the
director of ICOT research center, Dr. K. Fuchi, the man
ager of research department, Dr. S. Uchida, the chief of
first research laboratory, Dr. K. Taki, the general man
ager of processor division in Fujitsu Laboratories Ltd,
Mr. J. Tanahashi, and the general manager of advanced
information systems division in Fujitsu Laboratories Ltd,
Mr. H. Hayashi, for their valuable suggestions and guid
ance.

References

[Asato et al. 1991] A.Asato, M.Kimura, T.Shinogi,
A.Hattori. A Pipeline Control Method of PIM/p. In
P1'Oceedings of 43rd Anual convention IPS Japan, 1991
(In Japanese).

[Chikayama and Kimura 1987] T.Chikayama and Y.Ki
mura. Multiple Reference Management in Flat GHC.
In Proceedings of the Fourth International Conference
on Logic Programming, pp.276-293, 1987.

[Chikayama et al. 1988] T.Chikayama, H.Sato and
T.Miyazaki. Overview of the Parallel Inference Ma
chine Operating System (PIMOS). In Proceedings
of the International Conference on Fifth Generation
Computer Systems, pp.230-251, 1988.

[Furuichi et al. 1990] M.Furuichi, K.Taki and N.Ichiyo
shi. A Multi-Level Load Balancing Scheme for OR
Parallel Exhaustive Search Programs on the Multi
PSI. In Proceedings of 2nd ACM SIGPLAN Sympo
sium on Principles and Practice of Parallel Program
ming, 1990.

[Goto et al. 1988] A.Goto, M.Sato, K.Nakajima, K.Taki
and A.Matsumoto. Overview of the Parallel Inference
Machine Architecture (PIM). In Proceedings of the In
te1'national Conference on Fifth Generation Computer
Systems, pp.208-229, 1988.

[Goto et al. 1990] A.Goto, T Shinogi, T.Chikayama,
K.Kumon and A.Hattori. Processor Element Architec
ture for a Parallel Inference Machine, PIM/p. In Jour
nal of Information Processing, pp.174-182, Vol. 13,
No.2, 1990.

[Hirata et al. 1992] K.Hirata, R. Yamamoto , A.Imai,
H.Kawai, K.Hirano, T. Takagi , K.Taki, A.Nakase and
K.Rokusawa. Parallel and Distributed Implementa
tion of Concurrent Logic Programming Language
KL1. In Proceedings of the International Conference
on Fifth Generation Computer Systems, 1992.

[Kimura and Chikayama 1987] Y.Kimura and T .Chika
yama. An Abstract KL1 Machine and its Instruction
Set. In Proceedings of the 1987 Symposium on Logic
P1'Ogramming, pp.468-477, 1987.

[Shinogi et al. 1988] T.Shinogi, K.Kumon, A.Hattori,
A.Goto, Y.Kimura and T.Chikayama. Macro-Call In
struction for the Efficient KL1 Implementation on
PIM. In Proceedings of the International Conference
on Fifth Generation Computer Systems, 1988.

[Taki 1992] K.Taki. Parallel Inference Machine PIM. In
P1'Oceedings of the International Conference on Fifth
Generation Computer Systems, 1992.

[Ueda and Chikayama 1990] K.Ueda and T.Chikayama.
Design of the Kernal Language for the Parallel In
ference Machine. The Computer Journal, (33)6, 1990,
ppA94-500.

[Warren 1983] D.H.D.Warren. An Abstract Prolog In
struction Set. Technical Note 309, Artificial Intelli
gence Center, SRI, 1983.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992,
edited by ICOT. © ICOT, 1992 425

Architecture and Implementation of PIM/m

Hiroshi Nakashima *t
Seiichi Kondo t

Yu Inamurat

Katsuto Nakajima*
Yasutaka Takeda*
Satoshi Onishit

Kanae Masuda *

* Mitsubishi Electric Corporation
5-1-1 Of una, Kamakura, Kanagawa 247, Japan

t Institute for New Generation Computer Technology
4-28, Mita 1-Chome, Minato-ku, Tokyo 108, Japan

Abstract

In the FGCS project, we have developed a parallel in
ference machine, PIM/m, as one of the final products of
the project. PIM/m has up to 256 processor elements
(PEs) connected by a 16 X 16 mesh network, while its
predecessor, Multi-PSI/v2, has 64 PEs. A PE has three
custom VLSI chips, one of which is a pipelined micro
processor having special mechanisms for KL1 execution,
such as pipelined data typing and dereference.

As for the KL1 implementation on PIM/m, we took
much care of garbage collection and introduced various
techniques, such as incremental reclamation of local and
remote garbage. Especially, a hardware mechanism to
support the local garbage collection greatly contributes
to reducing the overhead and achieving high peak per
formance, 615 KLIPS in append on single processor.

Sustained performance of single processor is also im
proved, and is approximately twice as high as that of
Multi-PSI/v2. This improvement and the enlargement
of the system scale cooperatively enhance the total sys
tem performance, and make PIM/m 5 to 10 times as fast
as Multi-PSI/v2.

1 Introduction

Several parallel inference machines have been developed
in the Japanese Fifth Generation Computer Systems
(FGCS) project. As a part of this activity, we have devel
oped three parallel machines. The first machine, Multi
PSI/v1 [Masuda et al. 1988, Taki 1988], was an experimen
tal version and was completed in 1986. It has 6 processor
elements (PEs) each of which is our first sequential infer
ence machine, PSI-I (Taki et al. 1984], and has a software
interpreter for the machine language KL1 which is an ex
tended version of flat GHC [Ueda 1985]. Though the ma
chine scale was small and the performance was not very
high, the development of Multi-PSI/v1 gave us valuable
experimental knowledge of the distributed implementa
tion of KL1 [Ichiyoshi et al. 1987].

thiroshi~isl.melco.co.jp

The second machine is Multi-PSI/v2 [Takeda et al.
1988, Uchida et ai. 1988], which contains 64 PEs connected
by two-dimensional mesh network. Each PE consists
of PSI-Il's CPU kernel [Nakashima and Nakajima 1987],
a network controller, and an 80 MB local memory. KL1
programs are compiled to WAM-like machine instruc
tions for KLl [Kimura and Chikayarna 1987] executed by
a microprogrammed emulator. The large machine scale
and high performance, owing to the improvement of the
processor architecture and implementation technology,
make Multi-PSI/v2 the first practical parallel inference
machine. Its operating system, PIMOS [Chikayarna et al.
1988], also greatly contributes to its availability by pro
viding highly sophisticated environment for parallel pro
gramming. Thus, many KL1 programs for various ap
plication areas have been developed on it since its first
model was shipped in 1988 [ICOT 1990]. These programs
and many users of 15 systems prove the efficiency and
practicality of Multi-PSI/v2.

Then, we have just finished the development of our
final machine, PIM/m. It inherits many architectural
features, such as the mesh network and KL1 execution
mechanism, from Multi-PSI/v2. The performance, how
ever, is greatly improved by drastically modifying PE
architecture and increasing the number of PEs to 256.

In this paper, the hardware architecture of PIM/m
and the KL1 implementation on it are described. Sec
tion 2 shows the system configuration, and the architec
ture of PE and its processing unit. Section 3 describes
several topics about the KLl implementation empha
sizing the relation with garbage collection. Section 4
presents preliminary performance evaluation results and
analysis on them.

2 Hardware Architecture

2.1 System Configuration

Figure 1 shows the overview of PIM/m 256 processor
system. PIM/m consists of up to 8 cabinets, each of
which contains 32 PEs connected to form an 8 X 4 mesh

426

Fgp

DO
DD
DO

Figure 1: Overview of PIM/m

sub-network. This sub-network is embedded in a larger
network, up to 16 x 16, by channels connecting adjacent
cabinets. Thus we can provide various size systems, from
32 to 256 PEs.

A cabinet also contains four 670 MB disks, which
make a 256 PE system have huge disk space, larger than
20 GB. This huge capacity should be enough for appli
cations such as knowledge base and genetic information
analysis. Each disk is coupled with a PE by SCSI bus,
which is also used to connect other special I/O devices,
other PIM systems, and/or front end processors (FEP).

The FEP is a high performance AI workstation,
PSI/UX [Nakashima et at. 1990]. It has a special attach
ment processor to execute a sequential logic program
ming language ESP [Chikayama 1984]. Since the CPU
kernel of FEP is that of PIM/m's PE, FEP is also ca
pable to execute KL1 in single processor environment or
simulated multiprocessor environment. Therefore, pro
grammers use FEP not only as an interactive I/O sys
tem, but also as a convenient debugging workbench.

2.2 Processor Element

Each PE has three VLSI chips, PU (Processing Unit),
CU (Cache Unit) and NU (Network Control Unit), as
shown in Figure 2. These chips and other peripheral
chips including a floating point processor are installed
on one printed circuit board. The other board carries a
16 M-word (80 MB) local memory constructed from 4 M
bit DRAM chips. This two board configuration of PE is
much smaller than that in Multi-PSI/v2, eight boards,
and makes it possible to increase number of PEs from
64 to 256, owing to the advanced VLSI technology. The
machine cycle is 65 ns, which has also been improved

from 200 ns of Multi-PSI/v2.
PU is a 40-bit pipelined microprocessor which exe

cutes KL1 (and ESP in FEP) under the control of a mi
croprogram stored in 32 K-word writable control store.
The architecture of PU is described in 2.3 and 2.4. CU
contains a 1 K-word (5 KB) instruction cache and a 4 K
word (20 KB) data cache.

NU performs switching of message packets trans
ferred through the mesh network, using so-called Worm
Hole Routing mechanism. As shown in Figure 3, the
network of PIM/m consists of full duplex channels con
necting adjacent PEs. That is, a pair of adjacent PEs
may simultaneously transmit message packets to each
other. Moreover, a message packet passing through a
PE does not disturb the KL1 execution on the PE, nor
collide with others unless they have the same direction.

The network is invested with these properties by the

CU I I Local Memory
• I-Cache (IKw X 40b)

I
(16Mwx40b)

• D-Cache (Addr Array)
• 610 KTr (l/-'m)

I !NU
I---

Data Cache • 5 X 5 crossbar I---
(4Kwx40b) • RB (1 KB). WB (1 KB) I---

• 324 KTr (l/-'m) I---

1 I
I

PU
• 5 Stage Pipeline WCS

FPP • /-'Prog. Control r--- (32Kwx64b)
• 384 KTr (0.8/-'m)

Figure 2: Processor Element

Figure 3: Network Configuration

Chl Ch2

ChO Ch3

Figure 4: Network Control Unit (NU)

archi tecture of NU shown in Figure 4. NU has a 5 x 5
crossbar to switch four input/output channel pairs for
adjacent PEs (ChO-3) and a pair for CPU (ChC). These
channels carry a 9-bit packet byte, which consists of 8-bit
data field and a mark to indicate the header and trailer
of a packet.

Switching is performed by looking up a RAM table
named path table (PT). The address of the table is pro
vided from the packet header which specifies the desti
nation PE number of the packet. Each entry of the ta
ble contains a 2-bit code indicating the direction of the
packet, going straight, turning left/right, or arriving at
its destination. This mechanism gives us much flexibility
for routing, system reconfiguration, and physical inter
connection of PEs. As the path table has independent
read ports for each input channels, collision of packets
does not occur even in switching phase.

427

Once the connection of an input/output channel pair
is established, NU transmits a packet byte per four ma.
chine cycles regardless the physical location of the adja
cent PE. This feature is owing to a sophisticated asyn
chronous communication mechanism using FIFO output
buffers (OBO-3). In this mechanism, a sender PE does
not wait for acknowledgment from the receiver for a
packet byte. Instead it cares about the caution from
the receiver saying that the output buffer on the next
path will soon be full. Since the caution is raised before
the buffer is really full taking physical line delay into ac
count, packet bytes never overrun. The output buffers
also contribute to reducing the probability of network
choking.

The channel pair for CPU has two FIFO buffers, a
read buffer (RB) and a write buffer (WB). The read
buffer acts as an output buffer for the packets directed
to the PE itself. Its size 1 KB, however, is much greater
than that of output buffers, 64 B, in order to hold a whole
message packet. When the tail of a packet written into
the read buffer, an interrupt raises to tell CPU that the
packet arrives. The write buffer, whose size is also 1 KB,
starts transmission of a packet when its tail is written, in
order to avoid that the packet is chopped. Both buffers
also have the capability to compose/decompose a 40-bit
word from/into packet bytes.

2.3 Processing Unit (PU)

Figure 5 shows the configuration of the processing unit,
PU [Nakashima et al. 1990, Machida et al. 1991]. PU ex
ecutes WAM-like instructions for KL1, named KLI-B
[Kimura and Chikayama 1987, Warren 1983], with the fol
lowing registers.

An/Xn .. Argument and temporary registers.

PC Program counter.

AP Alternate clause pointer.

CGP Current goal record pointer.

GSP Goal stack pointer.

SST Suspension stack top.

lIP Heap pointer.

SP Structure pointer.

FVP Free variable cell pointer.

FLP Free list cell pointer.

FG P Free goal record pointer.

An/Xn are implemented as a register file. The other reg
ister file, WR, contains the control registers shown above,
except for PC and SP which are hardware counters. Each
register is 40 bit width, including 8 bit tag for data type

428

D

A

R

5

E

Figure 5: Processing Unit (PU)

representation and incremental/ordinary garbage collec
tion. The tag bit for incremental garbage collection is
called Multiple Reference Bit (MRB) described in 3.1.

PU has five pipeline stages, D, A, R, Sand E.
The D (Decode) stage has a RAM table for instruc

tion decode. Each entry of the table contains the start
address of the microprogram routine for an instruction,
and the nano-code to control the following stages. This
RAM decoder makes it easy to develop the micropro
gram.

The A (Address Calculation) stage calculates the op
erand address by adding two of following resources, ac
cording to the nano-code.

• An operand field of the instruction.

• Program counter, PC.

• An/Xn specified by an operand field.

• Current goal pointer, CGP, to get a location of a
goal argument.

The A stage also controls instruction fetch, including
conditional and unconditional branch operations.

The R (Read Data) stage fetches an operand from
data cache using the calculated address, if necessary. The
S (Setup) stage selects three operands from the following
resources and transfers them to the E (Execution) stage,
according to the nano-code.

• An operand field of the instruction.

• The operand fetched by the R stage and its ad
dress.

• An/Xn specified by an operand field.

• Control registers in WR

• Structure pointer, SP.

In conventional pipdined processors, the operand setup
operation is performed by the stage like R. PU, however,
has an additional special stage, S, for the operation. The
reason for introducing the S stage is that it is required for
the pipelined data typing and dereference, as discussed
later.

The E stage has two pipelined phases controlled by
microinstructions. The first phase contains An/Xn, WR,
and special registers including PC and SP. This phase is
shared by the Sand E stages for the operand setup. The
second phase has two temporary registers (XR/YR), two
memory address registers (MAR1/2), and two memory
data registers (MDR1/2). Two of those registers are in
put to ALU, and the result is written into registers in the
first and/or second phase. AL U operation and tag ma
nipulation including turning on/off MRB are performed
in parallel.

2.4 Data Typing and Dereference

Data typing and dereference are very important for effi
cient implementation of logic programming languages.
Both data typing and dereference are performed by
checking the tag of data and changing the control flow
according to the result. PU has powerful mechanisms,
including the pipelined data typing and dereference, for
these operations.

The E stage has the following microprogram opera
tions for tag checking.

(1) Two-way conditional jump. The jump condition is
obtained by comparing the tag of a register with
an immediate value or the tag of another register.

(2) Three-way jump. The tag of MDRl or MDR2 is
compared with an immediate value and reference
tag.

(3) Multi-way jump. A RAM table, which contains
jump offsets, is looked up by the tag of MDRl or
MDR2.

These operations requires two machine cycles. The first
cycle makes the jump condition or offset, and the second
generates the jump address and fetches the microinstruc
tion.

The pipelined data typing and dereference, which are
most unique features, mainly depend on the S stage. The
S stage has the following three functions for data typing.

(1) Modify the microprogram entry address comparing
the tag of the operand fetched by the R stage with
an immediate value.

(2) Set up the offset of a multi-way jump, which can be
performed by the first microinstruction, looking up
the RAM table by the tag of the operand fetched
by the R stage.

(3) Set up the two-way jump condition, which can be
examined by the first microinstruction, comparing
the tag of an operand transferred to the E stage
with an immediate value.

The first two functions require the special stage between
the Rand E stages.

The S stage also performs dereference. When the
dereference from An/Xn is ordered, the R stage fetches
the operand if the An/Xn contains reference pointer,
while it always fetches the operand in the case of the
dereference from memory. In both cases, the S stage
examines the tag of fetched data, and repeatedly reads
memory until a non-reference data is obtained. The state
of the reference path indicated by MRB of each reference
pointer is also examined, as described in 3.1.

3 Implementation

Since logic programming languages don't have destruc
tive assignment, manipulating a data structure often
makes a copy of the data leaving its old version as a
garbage. In Prolog, garbage data cells may be reclaimed
by intentional backtrack with side effect operations. In
KL1, however, this technique cannot be used because
deep backtrack causes the failure of the entire program.
Thus, garbage reclamation has to be performed only by
the run-time system.

In the KLl implementation on PIM/m, therefore, we
took much care of garbage collection and its efficiency.
For the reclamation of local garb ages , an incremental
garbage collection using Multiple Reference Bit (MRB)
is introduced. Remote garbages, which was once pointed
from PEs other than its home, are also reclaimed in
crementally by a sophisticated reference counting mech
anism for reducing the number of inter-PE messages,
called Weighted Export Counting (WEC).

This section describes the implementation of KL1,
emphasizing these garbage collection mechanisms and re
lated techniques to reduce memory space and number of
messages.

3.1 Local Incremental Garbage Collec
tion

Concurrent processes in KLl communicate each other
through shared logical variables. Typically, a pair of
concurrent processes, a producer and a consumer, has
its own logical variable in which the producer puts some
data by an active (or body) unification. The consumer

I list 0 I +-+jl----l
(a)

(c)

I ref 0 I ~atom 0 I a I
(e)

o : MRB = off, .: MRB = on

(b)

(d)

(f)

Figure 6: Multiple Reference Bit (MRB)

429

will be activated by binding the variable and read its
contents by a passive (or guard) unification. Because
the variable cell is shared only by the producer / consumer
pair, it will become garbage after the consumer gets its
contents. Moreover, a structured data unified with the
variable may also become garbage after the consumer
decomposes it.

The Multiple Reference Bit is introduced in order
to reclaim these garb ages [Chikayama and Kimura 1987].
MRB is a one-bit reference counter attached to both
pointers and objects. As the counter for a pointer, MRB
is turned on (overflowed) if the pointer is duplicated, as
shown in Figure 6(a) and (b). That is, a pointer with
MRB on might refers to an object together with other
pointers. In other words, an object directed by a pointer
with MRB off can be reclaimed as a garbage after the
(passive) unification is performed through the pointer.

This rule, however, has an exception for unbound
variables each of which can have two reference point
ers with MRB off, for a producer and a consumer (Fig
ure 6(c)). After the producer unifies the variable with
some data and loses its reference path to the variable,
the path from the consumer to the data is left alone as
the rule requires.

This exception leads to the other aspect of MRB,
counter for an object. As shown in Figure 6(d), an un
bound variable might have a pointer with MRB off and
two or more pointers with MRB on. If the variable is
unified with a data through the pointer with MRB on,
the data has a pointer with MRB off, although it can
not be reclaimed by the unification through the pointer.
Thus the data, which is an atomic or a pointer, should
have MRB indicating whether it is pointed by multiple

430

root rr====9 SRP leOl
I ref 01 ~ref 01 FJ---.-Ilist 01 FI-1 I yes/yes

I list 01 F1-1t-----tI
I ref 01 ~refol 3-..jlist_1 FttjI------1

I ref _I ~ list 01 3-+j I

c:::J: collectable 0: MRB == off
.: MRB == on

yes/no

no/yes

no/no

Figure 7: Pipelined Dereference Supporting Incremental
Garbage Collection

pointers as shown in Figure 6(e) and (f).
The incremental garbage collection is mainly per

formed when the unifier makes dereference. A member
of the chain of reference pointers can be reclaimed if both
its MRB and that of its predecessor are off. The terminal
of the chain is also reclaimable if the same condition is
satisfied. Especially, all of the members on the chain is
collectable if their MRBs are off.

In order to support the reclamation, the pipelined
dereference mechanism of PU maintains the following in
formation (Figure 7).

SRP (Single Reference Path):
MRBs of all the pointers on the chain are off.

COL (Collectable):
MRBs of the first two pointers are off.

These are not only passed to the E stage, but also com
bined with the data typing result to make microprogram
entry address, in order that the E stage easily decide
whether the reclamation can be done.

On passive unification, if the dereference result is a
structure, the structure will be collected after the com
mit operation. For example, the instruction" collect_
list" is located at the beginning of the body code for
a clause having head unification with a list cell, and re
claims the list cell if the path to it is single. For the
processes filtering streams represented by lists, "reuse_
list" is used for passing the list cell directly rather than
putting and getting it to/from the free cell pool. To these
instructions, SRP is passed through the MRBs of their
operands, An/Xn.

SRP is also examined by built-in predicates for op
timization [Inamura et al. 1989J. For example, ((set_
vector _element" updates an element of a vector to
make its new version, providing the path to the vector
is single. The stream merger also examines the state of
the paths to the variable cell representing a stream and
the list cell to be put, in order to reuse these cells.

Pm Pn
Import Table Export Table

exported dat a e
1 (n, e)

I I

Figure 8: Export Table and Import Table

3.2 Remote Incremental Garbage Col
lection

As MRB overflows when an object has two or more point
ers, there are garb ages which cannot be reclaimed by the
incremental garbage collection mechanism described in
3.1. Therefore, a PE may exhaust its local memory space
and invoke a batch-mode garbage collector. In order to
allow the garbage collector to move data'around in the lo
cal memory space, remote references are indirected with
export table as shown in Figure 8 [Ichiyoshi et al. 1987J. A
remote reference consists of the pair of identifiers for PE
and the export table entry from which the exported data
is pointed. Thus, a PE is free to perform batch-mode
garbage collection independently, because other PEs are
ignorant of local data addresses but aware of positions
of the table entries which never move.

The other indirection table for remote references, im
port table in Figure 8, is introduced to reclaim export
table entries incrementally. Entries for single-referenced
objects are easily reclaimed using MRB scheme. When a
PE, Pe , exports the pointer to a single-referenced object
to another PE, Pi, it registers the pointer into MRB-off
export table. Pi also registers the remote reference into
MRB-oJJ import table in order to identify that the re
mote path is single. Unless Pi duplicates the path to the
import table entry, the export table entry is reclaimed
when Pi makes a remote access to the object. For exam
ple, when Pi wants to read the object, it sends a mes
sage to get the object. The message also says that the
remote path is single, and causes reclamation of the ex
port table entry by Pe • On the other hand, if Pi makes
multiple paths and then loses them all, the reclamation
is triggered by batch-mode garbage collector on Pi. Af
ter the marking of the garbage collection, the import
table is scanned to find out unmarked entries and send
a message for each of these entries for the reclamation of
corresponding export table entry.

In order to reclaim export table entries for multiple
referenced objects, we introduced Weighted Export
Counting (WEC) method [Ichiyoshi et at. 1988], which
is also independently proposed in [Watson and Watson
1987J. A PE pair, Pe and Pi, exporting and importing
the pointer to a multiple-referenced object has entries

431

p.
~

Imp Tbl Exp Tbl Imp Tbl Exp Tbl Imp Tbl Exp Tbl

WEe WEC WEe WEe WEe WEC

1000 I 1000 I 600 I 1000 I 600 l 1000 I

message

] WEe

400 --

Pi'

o o
Imp Tbl

WEe

400 I

(a) (b) (c)

Figure 9: Weighted Export Counting (WEC)

on MRB-on export/import table for the object. Each
entry has a slot for WEC value, which is a kind of refer
ence counter but is initiated with some large number, say
1000, rather than one, as shown in Figure 9(a). When
Pi duplicates the pointer and exports one of the results
to another PE, Pi', it divides the WEC value into two
portions, say 600 and 400. Then Pi sends a message con
taining the remote reference and the WEC value 400 to
Pi' (Figure 9(b)). Pi' receives the message and makes
an import table entry with the WEC value 400 (Fig
ure 9(c)). Note that the total of WEC values associated
with the remote references is equal to the WEC value of
export table entry through all phases shown in Figure 9.
If Pi (or Pi') finds that there are no paths to an import
table entry on incremental or batch-mode garbage collec
tion, it sends a message for reclamation to Pe with the
WEC value. The WEC value of the export table entry
is decremented by that in the message, and the entry is
reclaimed if the WEC value becomes zero.

This scheme has the advantage of ordinary reference
counting, because it omits request and acknowledgment
messages which the ordinary scheme requires when Pi ex
ports the pointer to Pi" That is, in the ordinary scheme,
Pi should send a message for incrementing the reference
counter to Pe , and suspend exporting until it receives ac
knowledgment from Pe . Unless Pi wait for the acknowl
edgment, the counter on Pe might be cleared transitively
by the decrement request from Pi' which possibly reaches
Pe earlier than the increment request from Pi'

A similar weighted counting method, Weighted Throw
Counting (WTC), is adopted to detect the termination

of a group of goals [Rokusawa et ai. 1988]. KL1 has the
capability to supervise goal groups, called Shoen, as if
they are meta-interpreted [Chikayama et al. 1988]. For
example, the operating system PIMOS can detect the
termination of a user program represented as a Shoen.
Since goals in a Shoen may be distributed to many PEs,
some remote reference counting is necessary to detect
the termination of them all. As WEC for remote refer
ences, WTC values are given to PEs executing goals in a
Shoen. Thus, PEs can exchange goals with some WTC
values omitting requests/acknowledgments as described
before. This feature is very important for efficient execu
tion because an active unification with a remote variables
is a goal.

3.3 Multiple Export and Import

Once a multiple-referenced object is exported, it is often
exported again. If such a object is repeatedly exported
overlooking that it has been already exported, each time
an export table entry is consumed. A PE importing such
a object repeatedly, worse still, gets multiple copies of
the object. In order to solve these problems, both ex
port table and import table are content addressable by
hashing. The hash table for export associates (local)
addresses of exported objects with export table entries,
while that for import associates remote references with
import table entries.

This scheme, however, cannot deal with more compli
cated situations. For example, if Pi imports two pointers
from Pe and Pe" and each pointer refers to a copy of a

432

Table 1: Single Processor Performance

benchmark condition PIM/m Multi-PSI/v2 Multi-PSILv2
PIM/m

append 1,000 elements 1.63 msec 7.80 msec 4.8 -
best-path 90,000 nodes 142 sec 213 sec 1.5
pentomino 8 x 5 box 107 sec 240 sec 2.2
15-puzzle 5,885 K nodes 9,283 sec 21,660 sec 2.3

data structure on each PE, Pi will get multiple copies
from Pe and Pe,. This troublesome situation may oc
cur in distribution of program codes which have intricate
cross references.

Therefore, -we introduced global identification of code
modules to promise that a PE should not have multiple
copies of a code module (Nakajima et ai. 1989J. When Pe

is requested by Pi to send a data object and find out
that the object is a code module, it transmits the module
identifier rather than the module itself as the reply. Then
Pi looks up a hashed table for modules resident in it
with the identifier. If the module is resident, Pi simply
executes it. Otherwise, Pi sends a special message for
getting the module itself to Pe .

4 Performance Evaluation

4.1 Single Processor Performance

Table 1 shows the single processor performance of PIM/m
for four benchmarks. The table also includes the per
formance of Multi-PSI/v2 and the ratio of PIM/m and
Multi-PSI/v2 (M/P-speedup) to show the effect of archi
tectural improvement.

The performance for append represents the peak
performance which is 4.8 times as high as that of
Multi-PSI/v2. This improvement should greatly owe
to pipelined data typing and dereference, because the
speedup factor for major E stage operations is only 1.5
(two 65 ns cycle versus one 200 ns cycle). The effective
ness of pipelined dereference supporting the incremental
garbage collection is proved by the fact that the speedup
factor is significantly larger than 4.2* for Prolog append
on PSI-II and PSI/UX whose CPU kernels are those for
Multi-PSI/v2 and PIM/m respectively [Nakashima et ai.
1990J.

On the other hand, the absolute performance, 615
KLIPS, is still lower than 1.4 MLIPS for Prolog on
PSI/UX. A part of this dereference is caused by the
fact that the incremental garbage collection mechanism
inherently requires additional memory accesses to free

'This value is normalized to compensate the machine cycle dif
ference between Multi-PSI/v2 and PSI-II.

cell pool and variables excluded from list cells. In fact,
KLI append performs 10 memory accesses per one reduc
tion in our system, while Prolog append does 6 accesses
required essentially. The other part, however, should be
due to the hardware support for the incremental gar
bage collection which is not yet sufficient to remove the
overhead. For example, we estimated that some modifi
cations of the hardware with few gates for;

• making information indicating whether the deref
erenced path is totally collectable,

• fetching an element from free variable pool in
pipeline, and

• storing the result of an AL U operation into both
the structure pointer and an argument register

will make the performance 810 KLIPS.
The other three benchmarks are search programs

with various parallel algorithms and load distribution
strategies. Best-path finds out the shortest path be
tween two vertices of a directed weighted graph with
a parallelized Dijkstra's algorithm and static load dis
tribution [Wada-K and Ichiyoshi 1989J. Pentomino makes
OR-parallel exhaustive search to solve a packing piece
puzzle problem with a multiple level dynamic load dis
tribution method [Furuichi et al. 1990J. 15-puzzle solves
a well-known puzzle problem in parallel by employing
iterative-deepening A * algorithm (Wada-M and Ichiyoshi
1991]. Although these programs are not practical, the al
gorithms and load distribution strategies should be gen
erally adopted to various application programs of paral
lel processing. Thus, it is expected that the performance
for them reflects the performance sustainedly gotten on
PIM/m.

The M/P-speedup for these program, 1.5 to 2.3, are
not excellent in contrast with the case of append. This
is probably caused by two major reasons, context switch
and cache miss. In these programs, context switches fre
quently occur, every two to three reductions, by the ter
mination or suspension of goals, while never in append.
Since instructions for the context switch take dozens of
cycles for execution in the· E stage and make pipeline
stagnant, the pipelined architecture doesn't gain much
performance improvement for these programs.

433

(Speerd~u~pL-~ __ ~ __________ ~ ____ ~ __ ~~ __ , (Speerd_u~pL-~ __ ~ __________ ~ __ ~ ____ ~~ __ ,

120
~ :PIM/m

120
~: PIM/m

*" ~: Multi-PSI/v2
: 0 *" ~: Multi-PSI/v2 <>

100 100 ... • • • • • • • I • • • • • •

*
80 80

60 60

.~

40

40 60 80 100 120 (PEs) 00 20 40 60 80 100 120 (PEs)

o : 1 M-nodes 0: 10 x 6 box

* : 250 K-nodes

(a) best-path (90 K-nodes) (b) pentomino (8 x 5 box)

Figure 10: Speedups for best-path and pentomino

Cache miss penalty should be the major degradation
factor in best-path which has a large working set. Even
in Multi-PSI/v2, cache miss degrades the performance
10 to 20 % as reported in [Nakajima and Ichiyoshi 1990].
Thus, the penalty relative to the machine cycle becomes
more critical, because the cache size and physical mem
ory access time of PIM/m are not greatly evolved from
Multi-PSI/v2.

4.2 System Performance

System performance is strongly related with load distri
bution strategy and communication cost. Since PIM/m
has four times as many PEs as Multi-PSI/v2 has, it
might become difficult to balance loads distributed to
PEs. As for communication cost, we evaluated that
the network capacity of Multi-PSI/v2 is much larger
than required [Nakajima and Ichiyoshi 1990J. Therefore,
we designed PIM/m's network making its throughput
and bandwidth almost equal to those of Multi-PSI/v2's,
expecting that the network still has enough capacity.
The frequency of message passing, however, might be
contrary to our expectation, because of underestimation
of hot spot effect and so on.

The speedup, which is gotten by dividing execution
time for single processor by that for n processors, may
give preliminary answers about those questions. Fig
ure 10 shows the speedups of PIM/m and Multi-PSI/v2
for best-path and pentomino. Up to the 64 PE system,

the speedup of PIM/m are quite similar to or slightly
better than that of Multi-PSI/v2. Especially, the result
of best-path shows surprising super-linear speedup, prob
ably because partitioning the problem makes required
memory space for a PE small and reduces cache miss rate
and/or the frequency of batch-mode garbage collection.
These results show that the network of PIM/m stands
increase of message passing frequency caused by the im
provement of PE performance. Thus, the perfomance of
single cabinet minimum system is greatly improved from
Multi-PSI/v2. That is, M/P-speedup is 5.6 for best-path
and is 8.3 for pentomino.

On the other hand, the speedup of the 128 PE sys
tem are considerably low, especially for best-path. Thus,
the M/P-speedups for 4-cabinet a half of maximum sys
tem are 3.7 for best-path and 6.4 for pentomino. This
implies that the problem size is too small to distribute
loads to 128 PEs and/or the message passing frequency
exceeds the network capacity. As for best-path, the rea
son of low speedup seems to be small size of the problem
which takes only 1.8 sec on the 128 PE system, because
a PE transmits messages only to its adjacent PEs. For
example, when the problem is scaled up by increasing
the number of nodes from 90 K to 250 K and 1 M, the
speedups for the 128 PE system become 87 and 109 re
spectively, as shown in the figure*.

*Since large problems cannot run on small size systems, the
speedups are estimated by multiplying 32 PE speedups for small
problems by 32 to 128 PE speedups for large problems.

434

In pentomino, its load distribution strategy might
cause hot spot PEs which pool loads and distribute them
in demand driven manner. The hot spot, however, is pos
sibly that of computation for load generation rather than
communication for distribution,,~ ,The problem size may
also limits the speedup, because the execution time of
the 128 PE system is only 1.3 sec. The speedup of larger
size problem, which is for 10 X 6 box and takes 211 sec
on the 128 PE system, is 105 as shown in the figure*.
We are now planning further evaluation and analysis to
confirm these observations or find out other reasons.

As for IS-puzzle, we measured the speed ups of 64 and
128 PE systems changing the problem size as shown in
Figure 11. The figure also shows the number of nodes
in the search space for, each of seven initial states of
the game board. The results for the 64 PE system of
PIM/m is also quite similar to that of Multi-PSI/v2.
The speedup of the 128 PE system, 38.7 to 109.2, are
tightly related to the size of problems. The analysis of
this relation is also left as a future work.

5 Concluding Remarks

This paper presented the hardware architecture of PIM/m
system, its processor element, and the pipelined micro
processor dedicated to the fast execution of KL1 pro
grams. The KL1 implementation issues focused on its re
lation with garbage collection were also described. Then
preliminary performance evaluation results were shown
with brief discussions on them.

We are now planning a research concentrated on fur
ther evaluation of the performance of PIM/m and the
behavior of various KL1 programs. The evaluation re
sults and detailed analysis on them should greatly con
tribute not only to the performance tune-up of PIM/m
but also to the research on parallel inference machines in
next step.

Acknowledgment

We would like to thank all those who contributed to
the development of PIM/m system in ICOT, Mitsubishi
Electric Corp. and related companies. We also wish to
thank Vu Phan and Jose Uemura for their contribution
to this paper.

References

[Chikayama 1984J T. Chikayama. Unique Features of ESP.
In Proc. IntI. Con£. on Fifth Generation Computer Sys
tems 1984, pp. 292-298, Nov. 1984.

[Chikayama and Kimura 1987J T. Chikayama and Y. Ki
mura. Multiple Reference Management in Flat GHC. In

(Speed up)

120

100

80

60

40

20 ...

--.. : PIM/m (128 PE)

G-€> : PIM/m (64 PE)
.............
~ - ~ : Multi-PSI/v2

(Nodes)

6000

5600

1600

.. ..: .:.:.. .. ~.~ 1200

800

400

o

Figure 11: Speedup for is-puzzle

Proc. 4th IntI. Con£. on Logic Programming, pp. 276-293,
1987.

[Chikayama et ai. 1988J T. Chikayama, H. Sato, and T.
Miyazaki. Overview of the Parallel Inference Machine Op
erating System (PIMOS). In Proc. Intl. Con£. on Fifth
Generation Computer Systems 1988, pp. 230-251, 1988.

[Furuichi et ai. 1990J M. Furuichi, K. Taki, and N. Ichiyoshi.
A Multi-Level Load Balancing Scheme for OR-Parallel Ex
haustive Search Programs on the Multi-PSI. In Proc. 2nd
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 50-59, Mar. 1990.

[Ichiyoshi et ai. 1987J N. Ichiyoshi, T. Miyazaki, and K.
Taki. A Distributed Implementation of Flat GHC on the
Multi-PSI. In Proc. 4th IntI. Con£. on Logic Programming,
pp. 257-275, 1987.

[Ichiyoshi et ai. 1988J N. Ichiyoshi, K. Rokusawa, K. Naka
jima, and Y. Inamura. A New External Reference Man
agement and Distributed Unification for KL1. In Proc.
IntI. Con£. on Fifth Generation Computer Systems 1988,
pp. 904-913, Nov. 1988.

[ICOT 1990J ICOT. Proc. Workshop on Concurrent Pro
gramming and Parallel Processing, 1990.

[Inamura et ai. 1989J Y. Inamura, N. Ichiyoshi, K. Roku
sawa, and K. Nakajima. Optimization Technique Using
the MRB and Their Evaluation on the Multi-PSIjV2. In
Proc. North American Con£. on Logic Programming 1989,
pp. 907-921, 1989.

[Kimura and Chikayama 1987J Y. Kimura and T. Chika
yama. An Abstract KL1 Machine and Its Instruction Set.
In Proc. 4tll IEEE Symp. on Logic Programming, pp. 468-
477, Sept. 1987.

[Machida et ai. 1991 J H. Machida, H. Andou, C. Ikenaga, H.
Nakashima, A. Maeda, and M. Nakaya. A 1.5 MLIPS 40-

bit AI Processor. In Proc. Custom Integra.ted Circuits
Coni, pp. 15.3.1-15.3.4, May 1991.

[Masuda et al. 1988] K. Masuda, H. Ishizuka, H. Iwayama,
K. Taki, and E. Sugino. Preliminary Evaluation of the
Connection Network for the Multi-PSI system. In Proc.
8th European Conf. on Artificial Intelligence, pp. 18-23,
1988.

[Nakajima et al. 1989] K. Nakajima, Y. In amur a , N. Ichi
yoshi, K. Rokusawa, and T. Chikayama. Distributed Im
plementation of KLI on the Multi-PSI/V2. In Proc. 6th
IntI. Conf. and Symp. on Logic Programming, 1989.

[Nakajima and Ichiyoshi 1990] K. Nakajima and N. Ichi
yoshi. Evaluation of Inter-Processor Communication in
the KLI Implementation on the Multi-PSI. In Proc. 1990
IntI. Coni on Parallel Processing, Vol. 1, pp. 613-614,
Aug. 1990.

[Nakashima and Nakajima 1987] H. Nakashima and K. Naka
jima. Hardware Architecture of the Sequential Inference
Machine: PSI-II. In Proc. 4th IEEE Symp. on Logic Pro
gramming, pp. 104-113, Sept. 1987.

[Nakashima et al. 1990] H. Nakashima, Y. Takeda, K. Naka
jima, H. Andou, and K. Furutani. A Pipelined Microproc
essor for Logic Programming Languages. In Proc. 1990
IntI. Conf. on Computer Design, pp. 355-359, Sept. 1990.

[Rokusawa et al. 1988J K. Rokusawa, N. Ichiyoshi, T. Chika
yama, and H. Nakashima. An Efficient Termination Detec
tion and Abortion Algorithm for Distributed Processing
Systems. In Proc. 1990 IntI. Conf. on Parallel Processing,
Vol. I, pp. 18-22, Aug. 1988.

[Takeda et al. 1988J Y. Takeda, H. Nakashima, K. Masuda,
T. Chikayama, and K. Taki. A Load Balancing Mechanism
for Large Scale Multiprocessor Systems and Its Implemen
tation. In Proc. IntI. Conf on Fifth Generation Computer
Systems 1988, pp. 978-986, Sept. 1988.

(Taki et al. 1984J K. Taki, M. Yokota, A. Yamamoto, H.
Nishikawa, S. Uchida, H. Nakashima, and A. Mitsuishi.
Hardware Design and Implementation of the Personal Se
quential Inference Machine (PSI). In Proc. IntI. Conf. on
Fifth Generation Computer Systems 1984, pp. 398-409,
Nov. 1984.

[Taki 1988J K. Taki. The Parallel Software Research and De
velopment Tool: Multi-PSI System. In K. Fuchi and M.
Nivat, editors, Programming of Future Generation Com
puters. North-Holland, 1988.

[Uchida et al. 1988] S. Uchida, K. Taki, K. Nakajima, A.
Goto, and T. Chikayama. Research and Development of
the Parallel Inference System in the Intermediate Stage of
the FGCS Project. In Proc. IntI. Coni on Fifth Genera
tion Computer Systems 1988, pp. 16-36, Nov. 1988.

[Ueda 1985] K. Ueda. Guarded Horn Clauses. Technical
Report 103, ICOT, 1985. (Also in Concurrent Prolog:
Collected Papers, The MIT Press, 1987).

435

[Wada-K and Ichiyoshi 1989] K. Wada and N. Ichiyoshi. A
Study of Mapping of Locally Message Exchanging Algo
rithms on a Loosely-Coupled Multiprocessor. Technical
Report 587, ICOT, 1989.

(Wada-M and Ichiyoshi .1991] M. Wada and N. Ichiyoshi. A
Parallel Iterative-Deepening A * and its Evaluation. In
Proc. KL1 Programming Workshop '91, pp. 68-74, May
1991. (In Japanese).

[Warren 1983] D. H. D. Warren. An Abstract Prolog In
struction Set. Technical Report 309, Artificial Intelligence
Center, SRI International, Oct. 1983.

[Watson and Watson 1987] P. Watson and I. Watson. An Ef
ficient Garbage Collection Scheme for Parallel Computer
Architecture. In Proc. Parallel Architecture and Lan
guages Europe, June 1987.

PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON FIFTH GENERATION COMPUTER SYSTEMS 1992
edited by ICOT. © ICOT, 1992 ' 436

Parallel and Distributed Implementation bf Concurrent Logic
Programming Language KLl

Keiji HIRATA Reki YAMAMOTO Akira IMAI Hideo KAWAI
Kiyoshi HIRANO Tsuneyoshi TAKAGI Kazuo TAKI

Institute for New Generation Computer Technology
4-28 Mita 1 chorne, Minato-ku, Tokyo 108 JAPAN

Akihiko N AKASE

TOSHIBA Corporation

Abstract

This paper focuses on a parallel and distributed imple
mentation method for a concurrent logic programming
language, KL1, on a parallel inference machine, PIM.
The KL1 language processor is systematically designed
and implemented. First, the language specification of
KL1 is deliberately analyzed and properly decomposed.
As a result, the language functions are categorized into
unification, inter-cluster processing, memory manage
ment, goal scheduling, meta control facilities, and an
intermediate instruction set. Next, the algorithms and
program modules for realizing the decomposed require
ments are developed by considering the features of PIM
architecture on which the algorithms work. The fea
tures of PIM architecture include a loosely-coupled net
work with messages possibly overtaken, and a cluster
structure, i.e. a shared-memory multiprocessor portion.
Lastly, the program modules are combined to construct
the language processor. For each implementation issue,
the design and implementation methods are discussed,
with proper assumptions ~iven.

This paper concentrates on several implementation is
sues that have been the subjects of intense ICOT re
search since 1988.

1 Introduction

In the Fifth Generation Computer Systems Project,
ICOT has been, simultaneously, developing a large-scale
parallel machine PIM [Goto et al. 1988] [Imai et al.
1991], designing a concurrent logic programming lan
guage KL1 [Ueda and Chikayama 1990], and investigat
ing the efficient parallel implementation of KL1 on PIM
[ICOT 1st Res. Lab. 1991]. These subjects are closely
related and have been evolving together.

Kazuaki ROKUSAWA

OKI Electric Industry Co.,Ltd.

The KL1 language has several good features: a declar
ative description, simple representation of synchroniza
tion and communication, symbol manipulation, paral
lelism control, and portability. Similarly, PIM architec
ture, also, has a number of good features: high scalablity,
general purpose applicability, and efficient symbolic com
puting.

When implementing KL1 on PIM, various difficulties
appear. However, the parallel and distributed imple
mentation of KL1 must bridge the semantic gap be
tween PIM and KL1 so that programmers can enjoy the
KL1 language as an interface for general-purpose con
current/parallel processing [Taki 1992].

ICOT has implemented KLI on Multi-PSI (a
distributed-memory MIMD machine) and has been accu
mulating experience in KLI implementation [Nakajima
et al. 1989]. The implementation of KL1 on Multi-PSI
was a preliminary experiment for our implementation.

This paper primarily focuses on a parallel and dis
tributed implementation method for the concurrent logic
programming language KLI on a parallel inference ma
chine PIM. Section 2 gives readers some brief background
knowledge on PIM and KLl. Section 3 systematically
investigates the complex connections of what part of
the language specifica:tion is supported by what com
ponent(s) of the KL1 language processor. Among these
components, Section 4 focuses on and discusses several
key implementation issues: efficient parallel implementa
tion within a shared-memory portion, inter-cluster pro
cessing, a parallel copying garbage collector, meta con
trol facilities, and a KL1 compiler. Section 5 concludes
this paper.

Inter-Cluster Network

Clusterl Clusterm

Figure 1: PIM Architecture

2 Overviews of PIM and KLI

2.1 PIM

Figure 1 shows the PIM architecture [Goto et al. 1988]
[Imai et al. 1991]. PIM architecture assumptions and
features are described below.

One of the features of PIM architecture is its hierar
chy. Up to about ten processing elements (PEs) are in
terconnected by a single bus to form a structure called a
"cluster" in which main memory is shared. Here, the
bus can be regarded as a local network. Many clus
ters can be interconnected by a global network. Within
a cluster, inter-PE communication can be realized by
short-delay high-throughput data transfer via the bus
and the shared memory. Thus, PEs within a cluster share
their address spaces, and each PE has its own snooping
cache. The instruction set of a PE includes lock&read,
wri te&unlock, and unlock as basic memory operations.

Inter-cluster communication, though, may pass mes
sages through some relay nodes and over long distances.
Thus, inter-cluster communication increases the time de
lay and decreases the throughput. The address spaces of
distinct clusters are separated, of course. The network
delivers message packets to destinations while reading
their header and tailer information.

PIM architecture assumes the following property for
the inter-cluster loosely-coupled network. If PEs send
and/or other PEs receive message packets, the order of
packets does not obey the FIFO rule. Even in one-PE
to-one-PE communication, the FIFO rule is not obeyed.
This assumption comes from the following hardware
characteristics of PIM architecture. The reasons for this
assumption are as follows. One is that there may be more
than one path between two clusters I. The other is that
when more than one PE within a cluster simultaneously
sends message packets, it is not determined that which
packet will be launched first into the network. In this
sense, in the loosely-c.oupled network of PIM, messages

IHowever, the routing of the PIM network is not adaptive.

Processing Element

Current Goal

Suspension by
passive unification

@

Creation by
goal rewriting

437

c;:;)G c;:;)G
© © R~sump~ion· ~y @ ©

actIve umficatlOn
Suspended Goals Ready Goals

Figure 2: KL1 Execution Image

are possibly overtaken in the network.

2.2 KLI

KL1 is a kernel language for the PIM based on the GHC
(Guarded Horn Clauses) language [Ueda and Chikayama
1990]. Figure 2 shows our KL1 execution image. A
clause of a KL1 program can be viewed as a rewrite rule,
which rewrites to the body goals a goal that succeeds
the guard unification and satisfies the condition (guard),
and has a form as follows:

p: -g1, ···,gm I qb ... , qn'
~ ---..-.-

guard part body part

Where p, gi, and qi stand for predicates. This rewriting of
a goal is also called reduction. The execution model has
a goal pool which holds the goals to be rewritten. Goals
are regarded as lightweight processes. Basically, guard
goals gl, ... ,gm and body goals are reduced concurrently,
thus yielding parallelism.

Goal (process) communication is realized as follows.
Suppose that more than one goal shares a variable.
When a goal binds a value to the shared variable, a clause
for rewriting the other goal that shares the variable may
be determined. The value which is instantiated to the
shared variable controls the clause selection; this is the
communication between KLI goals.

Synchronization is realized as follows. When a goal is
going to determine which clause can be used for rewrit
ing, and the variables included in the goal are uninstan
tiated, the unification and the guard execution may be
deferred since there is not enough information for the
clause selection. The uninstantiated variables are sup
posed to be shared and the other goal is expected to bind

438

a value to the variable afterwards. Consequently, the sus
pended goal reduction waits for variable binding for the
clause selection. That is, variable instantiation realizes
data-flow synchronization. Actually, the KL1 language
processor must deal efficiently with frequent suspension
and resumption.

Even if more than one clause can be used for rewriting,
just one clause is selected indeterminately. A vertical bar
between the guard part and the body part 'I', called a
commit operator, designates indeterminacy. Since it is
sufficient to hold a single environment for each variable,
efficient implementation is expected.

One of features of the KLI language is the provision
of simple yet powerful meta control facilities as follows:
goal execution control, computation resource manage
ment, and exception handling. These are essential for
designing efficient parallel algorithms and enabling flex
ible parallel programming. Usually, operating systems
perform meta-control on a process basis. However, the
KL1language aims at fine-grain parallelism, and the KL1
language processor reduces a large number of goals in
parallel. Therefore, it is inefficient and impossible for a
programmer or th: runtime system 2 to control the ex
ecution of each goal. Consequently, KL1 introduces the
concept of a shoen 3 [Chikayama et at. 1988]. A shoen
is regarded as a goal group or a task with meta-control
facilities. An initial goal is given as an argument to the
built-in predicate shoen; descendant goals belonging to
the shoen are controlled as a whole. Descendant goals
inherit the shoen of the parent goal. Shoens are possibly
nested as well; the structure connecting shoens is a tree.

Moreover, to realize sophisticated mapping of paral
lel computation, priority and location specification are
introduced; that is, they can be used for programming
speculative computation and load balancing. If a pro
grammer attaches an annotation to a body goal e.g.
p@priority (N) , this tells the runtime system to execute
goal p at priority N. Moreover, a goal can have a loca
tion specification e.g. p@cluster(M); this designates the
runtime system to execute the goal p in the M th cluster.
These two specifications are called pragmas. These prag
mas never change the correctness of a program although
they change the performance drastically.

3 Systematic Design of KLI
Lang!lage Processor

When implementing KL1 on PIM, various kinds of dif
ficulties appear. Firstly, although the PIM architecture

2The software modules of the KLllanguage processor executed
at run time are called a runtime system as a whole. For instance,
the runtime system may include an interpreter, firmware in mi
crocode, and libraries. On the contrary, compilers, assemblers and
optimizers are not included in a runtime system.

3Shoen is pronouned, ~show' 'N'.

adopts a hierarchical configuration, the KL1 implemen
tation has to provide a uniform view of the machine
to programmers. Secondly, it is difficult to determine
to what extent a runtime system should support the
functions of KL1 and which functions it should sup
port within the specification of KLl. For instance, since
the KL1 language does not specify the goal-scheduling
strategy, a runtime system can employ any schedul
ing algorithm. However, both the general-purpose and
the efficient algorithm are generally difficul.t to develop.
Thirdly, for efficient implementation, it is important to
employ algorithms which include fewer bottlenecks in
terms of parallel execution. Lastly, the KL1 language
processor is complex and of a large scale.

Therefore, it is a promising idea to be able to overcome
these difficulties by systematically designing a language
processor as follows. Firstly, the given language speci
fication must be deliberately analyzed and properly de
composed. Then, the algorithms and the program mod
ules for realizing the decomposed requirements must be
developed by considering the machine architecture on
which the algorithms work. Lastly, the designer must
construct the language processor by combining the pro
gram mod ules. A good combination of these modules will
yield an efficient implementation. We designed the KL1
language processor on a loosely-coupled shared-memory
multiprocessor system (PIM) by following these guide
lines.

3.1 Requirements

At first, we summarize the required functions of the KL1
language processor into the four items in the leftmost
column of Table 1. These items are the result of analy
sis and decomposition of the KL1 language specification.
The KL1 language processor may look like the kernel of
an operating system.

Next, mechanisms which satisfy these requirements are
divided into those supported by a compiler and those
supported by a runtime system. Furthermore, mecha
nisms by the runtime system are divided into two levels
according to the machine configuration of PIM: shared
memory level and distributed-memory level (the topmost
row of Table 1).

Some of the technologies used for KL1 implementation
on single-processor systems may be expanded to shared
memory multiprocessor systems. That is because both
systems suppose a linear memory address space. How
ever, it may not be straightforward to expand the single
processor technologies to distributed-memory multipro
cessor systems in general. Of cource, that is mainly be
cause distributed-memory systems provide a non-linear
memory address space. Thus, the techniques used for
distributed-memory systems are possibly quite different
from those for a single-processor system.

The contents of Table 1 show our solutions; that is,

439

Table 1: Implementation Issues of this Paper

Compiler Runtime System
Shared-memory Level Distributed-memory Level

Unification Decomposition Suspension and Resumption Message Protocol
Memory Management Reuse inst. Local GC Export and Import Tables

Weighted Export Count
Goal Scheduling TRO Automatic Load Balancing

Meta-control
Execution Control Termination Detection Foster-parent

Resource Management
Exception Handling

what techniques are used for parallel and distributed
KLI implementation. Each item in the leftmost column
of the table is mentioned below.

3.1.1 Unification

Goals are distributed all over a system for load balancing
and may share data (variables and ground data) for com
munication. Logical variables remain resident at their
original location. Consequently, not only intra-cluster
but also inter-cluster data-references appear. During
unification, goals have to read and write the shared data
consistently and independently from the timings and lo
cations of goals and data. Thus, mechanisms for preserv
ing data consistency are needed.

As described above, goals are rewritten in parallel
and, thus, variable instantiations occur independently
from each other. Suspension and resumption mecha
nisms based on variable bindings control goal execution
and realize data-flow synchronization.

Hence, our KLI implementation must realize the
mechanisms for data· consistency, synchronization, and
unification in a parallel and distributed environment.
Moreover, since a major portion of the CPU time is spent
for unification, the algorithm should be concerned with
efficiency.

3.1.2 Memory Management

Logical variables inherently have the single-assignment
property. The single assignment property is very useful
to programmers, but gives rise to heavy memory con
sumption. Since the KLI language does not backtrack,
KLI cannot perform memory reclamation during execu
.tion as Prolog does. Thus, an efficient memory manage
ment mechanism is indispensable for the KLI language
processor. The issues associated with memory manage
ment are allocation, reclamation, working-set size, and
garbage collection. To achieve high efficiency, not only
must the algorithms and the data s.tructure of the run
time system be improved, but also a compiler has to gen
erate effective codes by predicting the dynamic behavior

Resource Caching Weighted Throw Count
Message Protocol

of a user program as much as possible.

3.1.3 Goal Scheduling

The KLI language defines goal execution as concurrent.
Thus, the system is responsible for the exploitation of
actual parallelism. One implementation issue associated
with goal scheduling is determining which goal schedul
ing strategies have high data locality, yet keep the num
ber of idle PEs to a minimum.

Further, the KLllanguage provides the concept of goal
priority; each KLI goal has its own priority as explicitly
designated by a programmer. Then, goals with higher
priorities are likely to be reduced first. Goal prioritiza
tion in KLI is weak in some respect. Under the goal
priority restriction, it is crucial to achieve load balanc
ing.

3.1.4 Meta Control Facilities

The goals of a shoen may actually be distributed over any
clusters, and, thus, goals may be reduced on any PE in
the system. Since the system operates in parallel, shoens
are loosely managed; it is simply guaranteed that each
operation will finish eventually. That is, it is impossible
to execute a command simultaneously to all the goals of
a shoen.

A shoen has two streams as arguments of the shoen
built-in predicate; one is for controlling shoen execu
tion, and the other is for reporting the information
inside the shoen. A shoen communicates with out
side KLI processes through these two streams. Mes
sages, such as start, stop, and add_resource, enter
the control stream from the outside. Messages, such as
terminated, resource_low, and exception return to
the report stream from the inside.

It is very difficult to evaluate the CPU time and mem
ory space spent for computation when goals are dis
tributed and executed in parallel. Therefore, the current·
system regards the number of reductions as a measure
of the computing resources consumed within the shoen.

440

The exceptions reported from a shoen include illegal in
put data, unification failure4 , and perpetual suspension.

Some examples of shoen functions are shown below.

Stop message: When a stop message is issued in
the control stream of a shoen, the system has to check
whether or not the goals to be reduced belong to the
shoen, and, if they do, the shoen changes its status to
stop as soon as possible. The stop message is propa
gated to the nested descendant shoens.

Resource Observation: The system always watches
the consumption of computation resources, that is, the
total number of times goals belonging to each shoen
are reduced over the entire system. If the amount
of consumption within a shoen is going to exceed the
initial amount of supplied resources, the system stops
the reduction of shoen goals and, then, issues the
resource_lot,]' message on the report stream, viz. a sup
ply request for a new resource.

Exception Handling: When a programmer or the
system creates an exception during the reduction of a
goal in a shoen, the shoen responsible recognizes the
exception and converts the exception information to a
report stream message 5. The exception of the KL1 lan
guage is concerned with illegal arguments, arithmetic,
failure, perpetual suspension and debugging. An ex
ception message on the report stream indicates which
goal caused what exception and where. Additionally, the
exception message includes variables for a continuation
given from the outside; the other process can designate a
substitute goal to be executed, instead of the goal caus
ing the exception.

3.2 Overview of Implementation Tech-
niques

IeOT developed the Multi-PSI system in 1988 [Naka
jima et al. 1989]. The KLI system is running on the
Multi-PSI. The architecture of PIM is very different from
that of Multi-PSI in the following two points. One is that
PIM has a loosely-coupled network with messages possi
bly overtaken. The other is that PIM has cluster struc
tures that are shared-memory multiprocessors. Due to
these features, PIM attains high performance, and, at
the same time, the complexity of the KLI language pro
cessor increases.

This section describes many of the implementation
techniques we have been developing for such an archi-

4Notice that the unification failure of a KLI goal does not in
fluence the outside of a shoen. In this sense, the reduction of a
KLI goal never fails, unlike GHC.

5The mechanism for creating and recognizing exceptions is sim
ilar to catch-and-throw in LISP.

tecture. Among these techniques, the issues which this
paper focuses on are listed in Table 1.

3.2.1 Unification

The synchronization and conununication of KLI are re
alized by read/write operations to variables and sus
pension/resumption of goal reduction during unification.
These operations are described below.

Passive Unification and Suspension: Passive uni
fication is unification issued in the guard part of KLI pro
grams. The KL1 language does not allow instantiation of
variables in its guard part. The guard part unification is
nonatomic. Since KL1 is a single-assignment language,
once a variable is instantiated, the value never changes.
This means that passive unification is simply the reading'
and comparing of two values. From the implementational
point of view, basically only read operations to variables
are performed. Thus, no mutual exclusion is needed in
the guard part.

If goal reduction during the guard part is suspended,
the goal is hooked to variables. Here, we have an assump
tion that almost all goals wait for a single variable to be
instantiated afterwards. Therefore, an optimization may
be taken into account; the operation for the goal sus
pension is just to link the goal to the original variable.
If multiple uninstantiated variables suspend goal reduc
tion, however, the goal is linked to the variables through
a special structure for multiple suspension. During pas
sive unification, only these suspension operations modify
variables; the operations are realized by the compare &
swap primitive.

Active Unification and Resumption: Active uni
fication is unification issued in the body part of KL1 pro
grams. The KLI variables are allowed to be instantiated
only in the body part. When an instantiation of a shared
variable occurs, if goals are already hooked to the vari
able, these goals have to be resumed as well as the value
assignment. When instantiating a variable, since other
PEs might be instantiating the variable simultaneously,
mutual exclusion is required. We also adopt compare &
swap as the mutual exclusion primitive. '

When unifying two variables, one variable has to be
linked to another to make the two variables identical. At
this time, other PEs might be unifying the same two vari
ables. Therefore, imprudent unification operation might
turn out to generate a loop structure and/or dangling ref
erences. To avoid these, the following linking rule should
be obeyed: the variable with the lowest address is linked
to the one with the highest.

Section 4.1 describes the implementation of unification
in detail.

3.2.2 Inter-cluster Processing

In a KLI multi-cluster system, more than one PE in each
cluster reduces goals in parallel. If a goal reduction suc
ceeds, there are two kinds of new goal destination: the
cluster that the parent goal belongs to and the other clus
ter. If the other cluster is designated for load balancing,
the runtime system throws the new goals to the clusters.
If the arguments of a goal to be thrown are references
to variables and structures, the references across clusters
consequently appear, these are called external references.
Here, suppose that a new goal with reference to data in
cluster A is thrown to cluster B. Then, original cluster A
exports the reference to the data to cluster B, and foreign
cluster B imports the reference to the data from cluster
A. Exportation and importation are also implemented
by message sending. Multiple reference across clusters
inevitably occurs.

An external reference is straightforwardly represented
by using the pair <cl, addr> where cl is the cluster num
ber in which the exported data resides, and addr is the
memory address of the exported data. This representa
tion of an external reference provides programmers with
a linear memory space.

However, this implementation causes a crucial prob
lem; efficient local garbage collection is impossible. Here,
local means that garbage collection is performed locally
within a cluster. See Section 4.3 for more details on
garbage collection. Since our local garbage collector
adopts a stop and copy algorithm (Section 4.3), the lo
cations of data move after garbage collection. At that
time, all of the new addresses of moved data should be
announced to all other clusters. Thus, straightforward
representation would make cluster-local garbage collec
tion very inefficient.

Section 4.2 shows our solution to this problem and
discusses more detailed inter-cluster processing subjects.

3.2.3 Memory Management

As described in Section 3.1.2, the implementation of
memory management should pay close attention to al
location, reclamation, working set size, and garbage col
lection.

Allocation and Reclamation: A cluster has a set
of free lists for pages and supports any number of con
tiguous pages 6. These are called global free lists. The
size of 'pages is uniform; supposedly the integral power
of two 7. A PE has a set of free lists for data objects,
the sizes of which are less than the page size. These are
called private free lists. Actual object size is rounded up
to the closest integral power of two; the private free lists

6Currently, there are 15 kinds of free lists for supported pages:
,.., 15 - and - more.
7The size of a page is currently 256 words.

441

just support the quantum sizes of 2n. Moreover, objects
contained in a page are uniform in size.

A PE allocates an object as follows. When a PE re
quires an object which is smaller than a page, the PE
first tries to take an object from an appropriate private
free list. If a PE runs out of a private free list and fails to
take an object, then the PE tries to take a new page from
the global free lists. If it succeeds, the PE partitions the
page area into objects of the size the PE requires, re
covers the starved free list and, then, uses an object.
Otherwise, if a PE cannot take a proper page area from
a global free list, the PE tries to extend the heap to allo
cate a new page area on demand. When a PE requires an
object which is larger than a page, the PE tries to take
new contiguous pages from global free lists. Otherwise,
the PE tries to extend a heap to allocate new contiguous
pages as above.

When a PE reclaims a large or small object, it is linked
to the proper free list.

The features of this scheme are as follows:

• Since a PE has its own private free lists for small
objects, the access contention to global free lists and
the heap is alleviated.

• A PE usually just links garbage objects to and takes
new objects from appropriate free lists; it leads the
small runtime overhead for allocation and reclama
tion 8.

• Since every PE handles its private free lists using
push and pop operations (obeying the LIFO rule),
the working set size can be kept small.

• Since the size of small objects is rounded up to the
nearest 2n, the number of private free lists to be
managed decreases, and the deviation of private free
list lengths can be alleviated to some extent. Ad
ditionally, the fragmentation within a page is pre
vented, though some objects might contain unused
areas.

• Since this scheme does not join two contiguous ob
jects, unlike the buddy system, its runtime overhead
of reclamation is kept small.

On the other hand, when the free list of some size run
out, our KLI language processor does not partition a

. large object into smaller ones, but allocates a new page.
This is mainly because, due to too much partitioning, it
is likely that garbage collection will be invoked even if
only slightly large object is required. The other reasons
are as follows. In general, it is inefficient to incremen
tal~y partition a small object into even smaller objects.
The overhead for searching an object to be partitioned
is needed. Also, in our KLI language processor, a local
stop-and-copy garbage collector (described just below,'
(2)) collects garb ages and rearranges the heap area effi
ciently.

8 A module of PIM, PIM/p, has dedicated machine instructions
for handling free lists, push a.nd pop.

442

Furthermore, a KL1 compiler optimizes memory man
agement by generating codes not only for allocation and
reclamation but also to reuse data structures utilizing
the MRB scheme [Chikayama and Kimura 1987] (Sec
tion 4.6.4).

Garbage Collection: Our KL1 language processor
performs three kinds of garbage collections

(1) local real-time garbage collection using the MRB
scheme

(2) local stop-and-copy garbage collector
(3) real-time garbage collection of distributed data

structures across clusters.

Since (1) can reclaim almost any garbage object, (2) is
needed, eventually. (1) has a very small overhead and
can defer the invocation of (2). Moreover, in a shared
memory multiprocessor, it is important that (1) does not
destroy data on snooping caches and keeps the working
set size of an application program small [Nishida et at.
1990], unlike (2). Section 4.3 discusses the parallel copy
ing garbage collector (2) in detail. Section 4.2.2 discusses
our method for reclaiming data structures referred to by
external reference (3) in detail.

3.2.4 Goal Scheduling

The aim of goal scheduling is to finish the execution of
application programs earlier. It is impossible for a pro
grammer to schedule all goals strictly during execution.
In particular, in the knowledge processing field, there are
many programs in which the dynamic behavior is diffi
cult to predict. The optimum goal scheduling depends
on applications, and, thus, there are no general-purpose
goal scheduling algorithms. Hence, a programmer can
not avoid leaving part of the goal scheduling to a run
time system. Then, PEs within a cluster share their
address spaces, and the communication between them is
realized with a relatively low overhead. Optimistically
thinking, the performance will pay for the overhead of
the automated goal-scheduling within a cluster as the
number of PEs increases. However, when the automated
goal-scheduling for inter-cluster does not work well, the
penalty is even greater. Consequently, the KL1language
processor adopts automated goal-scheduling performed
within a cluster and manual goal-scheduling among clus
ters.

Furthermore, the runtime system should schedule
goals fairly by managing priorities. Section 4.4 discusses
the implementation of goal scheduling.

3.2.5 Meta Control Facilities

The meta control facilities of KL1 are provided by a
shoen. The implementation model for a shoen on a dis
tributed environment introduces a joster-parent to pre
vent bottlenecks and to realize less communication. A

I shoen I
• .Ii'

cluster 0 cluster 1

shoen : shoen record
fp : foster-parent record

cluster 2

G:goal

Figure "3: Relationship of Shoen and Foster-parents

foster-parent is a kind of proxy shoen or a branch of a
shoen; the foster-parents of a shoen are located on clus
ters where the goals of the shoen are reduced.

A shoen and a foster-parent are realized by record
structures which store their details, such as status, re
sources, and number of goals. Figure 3 shows the rela
tionship between shoens, foster-parents and goals.

As in Figure 3, a shoen controls its goals and the de
scendant shoens resident in a cluster through a foster
parent of the cluster. A shoen directly manages its foster
parents only. Then, a foster-parent manages the descen
dant shoens and goals.

A shoen is created by the invocation of the shoen pred
icate. At that time, a shoen record is allocated in the
cluster to which the PE executing the shoen predicate
belongs. Next, when a goal arrives at a cluster but the
foster-parent of its shoen does not yet exist, a foster
parent is created for the goal execution automatically.
During execution, new goals and new descendant shoens
are repeatedly created and terminated. When all goals
and descendant shoens belonging to a foster-parent are
terminated, the foster-parent is terminated, too. Fur
ther, when all foster-parents belonging to a shoen are
terminated, the shoen is terminated.

On comparing a shoen record and a foster-parent
record of our implementation with those of the Multi
PSI system, ours must hold more information because
of the PIM network with messages possibly overtaken.
That IS, in our KL1 system, the automatons to control a
shoen and a foster-parent require more transition states.

Consequently, in terms of implementing a shoen and
a foster-parent, we have to pay special attention to ef
ficient protocols between a shoen and its foster-parents

which work on the loosely-coupled network of PIM (mes
sages are possibly overtaken in the PIM). Another point
requiring attention is that, since parallel accessing might
become a bottleneck, the system should be designed so
that such data do not appear, i.e. less access contention.
Section 4.5 describes the parallel implementation of a
shoen and a foster-parent in more detail.

3.2.6 Intermediate Instruction Set

As described so far, the KL1 language processor is too
large and complex to be implemented directly in hard
ware or firmware. To overcome this problem, we adopted
a method suggested by Prolog's Warren Abstract Ma
chine (WAM) [Warren 1983] where the functions of the
KL1 language processor are performed via an interme
diate language, KL1-B. The advantages of introduction
of an intermediate language include: code optimization,
ease of system design and modification, and high porta
bilty.

The optimization achieved at the W AM level brings
about more benefits than the peep-hole optimization
since the intermediate instruction sequence reflects the
meanings of the source Prolog program. Similarly, the
optimization at the KL1-B level gains more than the
peep-hole optimization. Details on the optimization are
described in Sections 4.6.4 and 4.6.5.

If the specification of the KL1-B instruction set is
fixed, it is possible to independently develop a compiler
for compiling KL1 into KL1-B and a runtime system ex
ecuting the KL1-B instructions. If a runtime system can
be designed so that it absorbs the differences in hard
ware architecture, the machine-dependent parts of the
KL1 language processor are made clear, and portability
is improved.

3.2.7 Built-in Predicates

This section mentions the optimization techniques on
the implementation of the built-in predicates merge and
set_vectoLelement. These techniques were originally
invented for the Multi-PSI system. Our KL1 language
processor basically inherits the techniques.

merge: The merger predicate merges more than one
stream into another. It is useful for representing inde
terminacy; actually, the merge predicate is invoked fre
quently in practical KL1 programs, such as the PIMOS
operating system [Chikayama et al. 1988]. Although a
program for a stream merger can be written in KL1, the
delay is large. Thus, it is profitable to implement the
merger function with a constant delay by introducing
the merge built-in predicate.

Let us consider a part of a KL1 program:

.. , p(X), q(Y), merge(X,Y,Z), ..

443

When predicate p is to unify X and its output value, a
system merger is invoked automatically within the unifier
of X. The same thing happens as Y of q. See [Inamura et
al. 1988] for a more detailed discussion.

seLvector _element: To write efficient algorithms
without disturbing the single-assignment property of log
ical variables, the primitive can be used as follows in the
KL1 language:

set_vector_element(Vect, Index, Elem,
NewElem, NewVect)

When an array Vect, its index value Index, and a new
element value NewEl ern are given, this predicate binds
Elem to the value at the position of Index and NewVect
to a new array which is the same as Vect except that
the element at Index is substituted for NewEl ern. Using
the MRB scheme, our KL1 language processor detects
a situation that NewVect is obtained in constant time.
That is, the situation is that the reference to Vect is
single, and, thus, destructive updating of the array is
allowed. See [Inamura et al. 1988] for a more detailed
discussion.

4 Implementation Issues

This section focuses on several important implementa
tion issues which ICOT has been working on intensively
for the past four years.

Our implementation mainly takes the following into
account:

- Smaller and shorter mutual exclusion within a clus
ter
If the locking operation is effective over a wide area
or for a long time, system performance is seriously
degraded due to serialization. To avoid this, scat
tered and distributed data structures are designed,
and only the compare & swap operation is adopted
as a low-level primitive for light mutual exclusion 9.

- Less communicationj i.e., fewer messages
Since inter-cluster communication costs more than
inner-cluster communication, mechanism for elimi
nating redundant messages are effective.

- Main path optimized while enduring low efficiency
m rare cases
Since the efficiency of rare cases does not affect total
performance, the implementation for handling the
rare cases is simplified and low efficiency is endured.
This is important for reducing code size.

Important hardware restrictions to be taken into account
are:

9Higher-level software locks contain this primitive.

444

- Snooping caches within a clusterj data locality has a
great effect
It is important to keep the working set of each PE
size small. This leads to a reduction in the shared
bus traffic and increase in the hit ratio of the snoop
ing caches.

- Messages are possibly overtaken in the loosely
coupled network of PIM
The number of shoen states and foster-parent states
to be maintained increases. The message protocol
between clusters should be carefully designed.

4.1 Unification

The unification of variables shared by goals realizes syn
chronization and communication among goals. Since
more than one PE within a cluster performs unification
in parallel, mutual exclusion is required when writing a
value to a variable.

Since unification is a basic operation of the KL1 sys
tem, efficiency greatly affects total performance. At first,
this section shows simple and efficient implementation
methods of unification. Next, since problems associated
with the loosely-coupled network of PIM occur, a dis
tributed unification algorithm which works consistently
and efficiently on the network is presented.

4.1.1 Simplification Methods

There are two ways to simplify the unification algorithm
as follows.

Structure Decomposition: A KL1 compiler decom
poses the unification of a clause head. For example, (a)
of the following program is decomposed to (b) at compile
time.

p ([f (X) ! LJ) : - true q(X), pel). (a)
peA) :- A = [Y!L], Y = f(X) q (X), p (L) . (b)

Thus, the compiler can generate more efficient KL1-B
code corresponding to (b).

Substitution for System Goals: In rare cases, a
runtime system automatically substitutes part of the uni
fication process with special KL1 goals. This can allevi
ate the complexity of a unification algorithm; imp lemen
tors need not pay attention to mutual exclusion of the
part. For example, let us consider the following two rare
cases.

• A compare & swap failure (another PE has modified
the value); If this happens, then the following KL1
goal is automatically created and scheduled as if it
were defined by a user:

unify_retry(X,Y) true! X - Y.

The above X and Y are unified to variables one at
least of which has failed compare & swap during
unification.

• Active unification of two structures is invoked; All
elements of the two structures should be unified,
however, the operation is rather complex (the or
dinal implementation uses stacks like Prolog). To
simplify the operation for rare cases, a special KL1
goal is ordinarily created and scheduled. For ex
ample, if two active unification arguments are both
lists, the following goal is created.

list_unifier([XlIX2J, [YlIY2J) true 1

Xl = Yl, X2 = Y2.

4.1.2 Distributed Implementation Based on
Message Passing

The principle of the protocol for distributed unification
is as follows. A read/write operation to an external refer
ence cell (Section 4.2.1) basically causes a corresponding
request message to be launched to the network. However,
redundant messages are eliminated as much as possible.

Distributed Passive Unification: Passive unifica
tion has two phases: reading and comparing. First, to
execute the read operation on an external reference cell
is to send a read message to the foreign exported data. If
the exported data has become a ground term (an instan
tiated variable), an answer_value message returns. If
the exported data is still a variable, the request message
is hooked to the variable. If the data is an external ref
erence cell, the read message is forwarded to the cluster
to which the cell refers.

Next, the answer_value message arrives at the origi
nal cluster. Then, the returned value is assigned to the
external reference cell, and the goal waiting for the reply
message is resumed. Eventually, the goal reduction is
going to compare the two values. Moreover, the import
table entry for the cell can be released.

The efficient implementation of inter-cluster message
passing itself is presented in Section 4.2.

Safe and Unsafe Attributes: If an argument of
active unification is an external reference cell, the ac
tive unification has to realize the assignment in a remote
cluster. Sending a unify message to the exported data
assigns a value to the original exported data. However,
in general, the unification of two variables from distinct
clusters may generate a reference loop across clusters. In
order to avoid creating such reference loop, we introduce
the concept of safe/unsafe external references [Ichiyoshi
et al. 1988]. When there is active unification between
a variable and an external reference cell, and the exter
nal reference cell is safe, it is possible that the variable

is bound to the external reference cell. If the external
reference cell is unsafe, a unify message is sent to the
exported data.

4.2 Inter-cluster processing

4.2.1 Export and Import Tables

Export Table: As described in Section 3.2.2 ,
straightforward implementation of an external reference
makes cluster-local garbage collection very inefficient.

In order to overcome this problem, each cluster in
troduces an export table to register all locations of data
which are referenced from other clusters (Figure 4). That
is, exported data should be accessed indirectly via the
export table. Thus, the external reference is represented
by the pair < el, ent>, called the external reference ID,
where ent is the entry number of the export table. As
the export table is located in the area which is not moved
by local garbage collection, the external reference ID is
not affected by local garbage collection. Changes in the
location of exported data modify only the contents of
export table entries.

Since exported data is identified by its external ref
erence ID, distinct external reference IDs are regarded
as distinct data even if they are identical. To eliminate
redundant inter-cluster messages, exported data should
not have more than one external reference ID. Thus, ev
ery time a system exports an external reference ID, the
system has to check whether or not the external reference
ID is already registered on the export table.

Import Table: In order to decrease inter-cluster traf
fic, the same exported data should be accessed as few
times as possible. Hence, each cluster maintains an im
port table to register all imported external reference IDs.
The same external references in a cluster are gathered
into the same internal references of an external reference
cell (EX in Figure 4).

Then, exported data is accessed indirectly via the ex
ternal reference cell, the import table, and the export
table.

The external reference cell is introduced so that it can
be regarded equally as a variable. Operations to a vari
able are substituted for the operations to the external
reference cell.

Every time the system imports an external reference
ID, the system has to check whether or not the external
reference ID is already registered in the import table.
Thus, the import table entry and the external reference
cell point to each other.

4.2.2 Reclamation of Table Entries

As described above, the export table is located in the
area which is not moved by local garbage collection.

445

Export Table Import Table

Cluster A Cluster B

Figure 4: Export and Import Tables

During local garbage collection, data referred to by
an export table entry should be regarded as active data,
because it is difficult to know whether or not the export
table entry is referred to by other clusters immediately.
Therefore, without an efficient garbage collection scheme
for the export table, many copies of non-active data
would survive, these reducing the effective heap space
and decreasing garbage collection performance.

One way of managing table entries efficiently is for
table entries to be reclaimed incrementally. Below, we
describe a method for reclaming table entries in detail.

Let us consider utilizing local garbage collection. Ex
ecution of local garbage collection might release the ex
ternal reference cells. This leads to the release of import
table entries and the issue of release messages to the
corresponding export table entries. When the export
table entry is no longer accessed, the entry is released.
However, the reference count scheme cannot be used to
manage the export table entries. This is because the
increase and decrease messages for the reference coun
ters of the export table entries are transferred through
a network. Then, the arrival order of the two messages
issued by the two distinct clusters is not determined in
the PIM global network. This destroys the consistency
of reference counters. Additionally, in the PIM network,
messages are possibly overtaken. Although the reference
count scheme has been improved and now requires the
acknowledgment of each increase and decrease message,
this will increase the network traffic.

A more efficient scheme, the weighted export count
ing (WEC) scheme has been invented [Ichiyoshi et al.
1988]. This is an extension of the weighted reference
counting scheme [Watson and Watson 1987] [Bevan 1989]
in the sense that the messages being transmitted in the
loosely-coupled network also have weights. With the
WEC scheme, every export table entry E holds the fol
lowing invariant relation (Figure 5):

Weight of E = Weight of x
x E references to E

A weight is an integer. When a new export table entry is
allocated, the same weight is assigned to both the export
table entry and the external reference. When an import
table entry is released, its weight is returned to the cor
responding export table entry by the release message.
The weight of the export table entry is decreased by the
returned weight. The export table entry is detected as

446

no longer being accessed when the weight of the entry
becomes zero. Then, the entry is released from the ex
port table. See [Ichiyoshi et ai. 1988] for more details on
the operation of the WEC scheme.

Cluster A
I

WEe = 50
Cluster C

Message\ I I
WEe = 20 WEe = 100

Cluster B
I 1

WEe = 30

Figure 5: WEC Invariant Relation

It is important that the WEC scheme is not affected by
the order in which messages arrive, and there is no need
to give acknowledgment. Furthermore, the WEC scheme
alleviates the cost of splitting external references.

4.2.3 Supply of Weighted Export Count

In terms of the WEC scheme, the problem of how to
manage WEC when the weight of the import table entry
cannot be split (when the weight reaches 1) remains.

In order to overcome this problem, we developed a
WEe supply mechanism which is an application of the
bind hook technique. The bind hook technique suspends
and resumes the 1\:L1 language (Section 2.2) [Goto et ai.
1988].

The WEC supply mechanism works as shown in Figure
6 and 7. The current situation is that the weight of an
import table entry in Cluster Breaches 1, and a goal
in Cluster B issues an access command to the data in
Cluster A. In this case, the message related to the access
command cannot be sent, because the weight to be put
on the message command cannot be got from the import
table entry.

In the WEC supply mechanism, the left WEC (the
weight is 1), first, is taken from the import table entry,
and the import table entry is reclaimed. After that, in
Cluster B, an export table entry for the external refer
ence cell is allocated. This new external reference ID is
supposed to be the return address for the reply to the
following WEC supply request. At that time, the goal is
hooked to the external reference cell. Eventually, Clus
ter B sends the RequestWEC message to request a new
weight to Cluster A. Of course, the weight taken from
the import table entry described above is returned to
the corresponding export table entry by this message.
Figure 6 shows the situation at that time.

·When Cluster A receives the RequestWEC message,
Cluster A adds a weight, say W, to the corresponding
export table entry and returns the SupplyWEC message
to Cluster B. The SupplyWEC message tells Cluster B to

add the weight W to a new import table entry. In Cluster
B, the suspended goal is resumed when the new import
table entry is allocated. Then, the export table entry
for the return address is reclaimed. Figure 7 shows the
situation at that time.

exported
data

Export Table Import Table

e Requ stWEC

suspended
goals

Export Table

Cluster A Cluster B

Figure 6: WEC Request Phase

Export Table Import Table

exported
data

Cluster A

e
k---4----I- <A,e>

@:
resumed:

goals
Export Table

~-----~ :
r -r--- J

Cluster B

Figure 7: WEC Supply Phase

This mechanism allows the originated goal to be
hooked and resumed inexpensively without additional
data structures.

The 1\:L1 language processor on Multi-PSI copes with
this situation using indirect exportation and zero WEe
message [Ichiyoshi et al. 1988]. However, the zero WEC
message is a technique which is applicable to a FIFO
network. As described earlier, the PIM network does not
obey the FIFO rule, so the zero WEC message cannot be
used in PIM. Therefore, PIM uses indirect exportation
and WEC supply mechanism.

4.2.4 Mutual Exclusion of Table Entries

In order to check whether or not an external reference
is already registered on the export table, a hash table
is used. When an export table entry is allocated, it is
registered in the hash table. When a cluster receives

a release message, a PE in the cluster decreases the
weight of the corresponding export table entry. If the
weight reaches zero, the export table entry is removed
from the hash table. Figure 8 shows the data structure
of the export table and its hash table. Its hash key is
the address of exported datum.

Since up to about ten PEs within a cluster share these
structures and access them in parallel, efficient mutual
exclusion should be realized.

Export Table

'--_----JI+---+ ®_ ~~~a_ p!:._
__ _ .w~_G __ _

hash chain
__ ~~~c: p!:. __

WEe -----------
hash chain

'--_----JI+---+ __ ~c:~c: p ~:. __
exported ___ '!y~_G __ _

data hash chain

CD Hash Table

(2) entry

entry

Figure 8: Data Structures of Export Table

Here, let us consider how to realize efficient mutual
exclusion in the following two cases, which are typical
cases of release message processing.

Case 1: A PE decreases the weight of an export table
entry and the weight does not reach zero. In this
case, only an export table entry is directly accessed.
The export table entry should be locked, when ma
nipulating its weight. The corresponding hash table
entry does not need to be locked, because the hash
chain does not change.

Case 2: A PE decreases the weight of export table en
try and the weight reaches zero. In this case, the
export table entry is released from hash table entry.
Therefore, the export table entry should be locked
for the same reason as in Case 1. The hash table
entry should also be locl{ed, when the export table
entry is released from the hash chain, because other
PEs may access the same hash chain simultaneously.

The problem is how to lock these structures efficiently.
Here, we implemented the following three methods and
evaluated their efficiency.

Method 1: Locking entire hash table and export
table
Whenever a PE accesses the export table, the ex
port table and the hash table are entirely locked. In

447

Figure 8, location CD is locked.
Since the implementation of this method is sim
ple, the total execution time is short. However,
this method occupies a large locking region for a
long time. Thus, access contention occurs very fre
quently.

Method 2: Locking one hash table entry
When a PE decreases the weight of an export table
entry, the corresponding hash table entry ((2) in Fig
ure 8) is locked.
In this method, the data structure to be locked is
obviously smaller than in Method 1. However, this
method has an overhead for computing the hash
value of exported data even when the hash chain
is not modified.

Method 3: Locking one hash table entry and one
export table entry
When a PE decreases the weight of an export ta
ble entry, the export table entry (@ in Figure 8)
is locked. If the weight becomes zero, the corre
sponding hash table entry ((2) in Figure 8) is locked.
Then, the export table entry is released from the
hash chain.
In this method, the locking of data structures is at
a minimum and the frequency of access contention
is low. However, implementation of this method is
complicated.

In the above two cases, the static execution steps of the
three methods are measured, using a parallel KL1 emu
lator on a Sequent Symmetry. Tables 2 and 3 show the
results. In the tables, Total represents the total execu
tion steps spent on receiving a release message. Lock
ing region represents locking intervals, that is, how long
each structure is locked.

Table 2: Locking Intervals (static steps) Case 1

Total Locking region

CD (2) @
Method 1 30 23 - -

Method 2 37 - 23 -

Method 3 32 - 0 26

Table 3: Locking Intervals(static steps) Case 2

Total Locking region

CD ~ @
Method 1 61 54 - -

Method 2 61 - 47 -

Method 3 73 - 32 27

Before evaluation, we thought that Method 1 took
fewer steps than the other methods. However, there is

448

,actually, no great difference in the total number of exe
cution steps. This is because the essential part of access
ing the export table is complicated, and dominates the
steps. In Method 1, as the ratio of the locking region to
the total is relatively high, access contention to the hash
table is supposed by frequent. Hence, we do not adopt
Method 1.

[Tal<:agi and Nakase 1991] tells us that WEC is effec
tively divided in actual programs. From this result, we
assume that there are many release messages which
just decrease the weight of WECo That is, Case 1 occurs
much more frequently than Case 2. Thus, we mostly
deal with Case 1. The total execution steps of Methods
2 and 3 (37 steps and 32 steps) are almost the same,
The locking intervals of Methods 2 and 3 (23 steps and
26 steps) are almost the same. It is preferable that the
data structure to be locked is small. According to this
discussion, we adopt Method 3 as the mutual exclusion
method for the export table.

For the import table, a similar technique is used to
reclaim the import table entries.

4.3 Parallel Copying Garbage Collec
tor

Efficient garbage collection (GC) methods are especially
crucial for the KL1 language processor on multiprocessor
systems. Since the KL1 execution dynamically consumes
data structures, GC is necessary for reclaiming storage
during computation. Moreover, GC should be executed
at each cluster independently since it is very expensive
to synchronize all clusters.

As we described briefly in Section 3, an incremental
GC method based on the MRB scheme was already pro
posed and implemented on Multi-PSI [Inamura et al.
1988], however since it cannot reclaim all garbage ob
jects, it is still important to implement an efficient GC
to supplement MRB GC.

We invented a new parallel execution scheme of stop
and copy garbage collector, based on Baker's sequential
stop-;;md-copy algorithm[Baker 1978] for shared memory
multiprocessors. The algorithm allocates two heaps al
though only one heap is actively used during program
execution. When one heap is exhausted, all of its active
data objects are copied to the other heap during GC.
Thus, since Baker's algorithm accesses active objects this
algorithm is simple and efficient.

Innovative ideas in our algorithm are the methods
which reduce access contention and distribute work
among PEs during cooperative GC. Also no inter-cluster
synchronization is needed since we use the export table
described in Section 4.2. A more detailed algorithm is
described in [Imai and Tick 1991].

4.3.1 Parallel Algorithm

Parallelization: There is potential parallelism inher
ent in the copying and scanning actions, of Baker's algo
rithm, i.e., accessing Sand B. Here pointer S represents
the scanning point and B points to the bottom of the new
heap. A naive method of exploiting this parallelism is to
allow multiple PEs to scan successive cells at S, and copy
them into B. Such a scheme is bottlenecked by the PEs
vying to atomically read and increment S by one cell and
atomically write B by many cells. Such a contention is
unacceptable.

Private Heap: One way to alleviate this bottleneck
is to create multiple heaps corresponding to multiple
PEs. This is the structure used in both Concert Mul
tilisp[Halstead 1985] and JAM Parlog[Crammond 1988]
garbage collectors. Consider a model where each PE(i) is
allocated private sections of the new heap, managed with
private Si and Bi pointers. Copying from the old space
could proceed in parallel with each PE copying into its
private new sections. As long as the mark operation in
the old space is atomic, there will be no erroneous dupli
cation of cells. Managing private heaps during copying,
however, presents some significant design problems:

• Allocating multiple heaps within the fixed space
causes fragmentation .

• It is difficult to distribute the work among the PEs
throughout the GC.

To efficiently allocate the heaps, each PE extends its
heap incrementally in chunks. A chunk is defined as a
unit of contiguous space, that is a constant number of
HEU cells (HEU == Heap Extension Unit). We first con
sider a simple model, wherein each PE operates on a
single heap, managed by a single pair of S and B point
ers. The Bglobal pointer is a state variable pointing to the
global bottom of the new allocated space shared by all
PEs. Allocation of new chunks is always performed at
Bglobal'

Global Pool for Discontiguous Areas: When a
chunk has been filled, the B pointer reaches the top of
the next chunk (possibly not its own!). At this point a
new chunk must be allocated to allow copying to con
tinue. There are two cases where B overflows: either
it overflows from the same chunk as S, or it overflows
from a discontiguous chunk. In both cases, a new chunk
is allocated. In the former case, nothing more needs to
be done because S points into B's previous chunk, per
mitting its full scan. However, in the latter case, B's
previous chunk will be lost if it is separated from S's by
extraneous chunks (of other PEs, for instance).

The problem of how to 'link' the discontiguous areas,
to allow S to freely scan the heap, is solved in the fol
lowing manner. In fact, the discontiguous areas are not

449

bottom

top

The shaded portions of the heap are owned by a PE(i) which manages Sand B. Other
portions are owned by any PE(j) where j =I- i. The two chunks shaded as '/' are refer
enced by PE(i) via Sand B. The other chunks belonging to PE(i), shaded as '\', are not
referenced. To avoid losing these chunks, they are registered in the global pool.

Figure 9: Chunk Management in Simple Heap Model

linked at all. When a new chunk is allocated, the B's
previous chunk is simply added to a global pool. This
pool holds chunks for load distribution, to balance the
garbage collection among the PEs. Unscanned chunks
in the pool are scanned by idle PEs which resume work
(see Figure 9).

Uniform Objects in Size: We now extend the pre
vious simple model into a more sophisticated scheme
that reduces the fragmentation caused by dividing the
heap into chunks of uniform size. Imprudent packing of
objects which come in various sizes into chunks might
cause fragmentation, leaving useless area in the bottom
of chunks. To avoid this problem, each object is allo
cated the closest quantum of 2n cells (for integer n <
10g(HEU)) that will contain it. Larger objects are allo
cated the smallest multiple of HEU chunks that can con
tain them. When copying objects, smaller thanREU,
into the new heap, the following rule is observed: "All
objects in a chunk are always uniform in size." If HEU
is an integral power of two, then no portion of any chunk
is wasted. When allocating heap space for objects of size
greater than one REU, contiguous chunks are used.

In this refined model, chunks are categorized by the
size of the objects they contain. To effectively man
age this added complexity, a PE manipulates multiple
{S,B} pairs (called {SI,Bd, {S2,B2}, {S4,B4}, ... , and
{SHEU' BREU }). Initially, each PE allocates multiple
chunks with Si and Bi set to the top of each chunk.

Referring back to Figure 9, recall that shaded chunks
of the heap are owned by PE(i) and non-shaded chunks
are owned by other PEs. The chunks shaded as 'I',
in the extended model, contain objects of some fixed
size k, and are managed with a pointer pair {Sk,Bd.
Chunks shaded as '\' are either directly referenced by
other ,Pointer pairs of PE(i) (if they hold objects of size
m -=I k), or are kept in the global pool.

Load Balancing: In the previous algorithm, it is a
difficult choice to select an optimal REU. As REU in
creases, Bglobal accesses become less frequent (which is
desirable, since contention is reduced); however, the av
erage distance between Sand B (in units of chunks) de-

creases. This means that the chance of load balancing
decreases with increasing REU.

One solution to this dilemma is to introduce an in
dependent, constant size unit for load balancing. The
load distribution unit (LDU) is this predefined constant,
which is distinct from HEUID and enables more fre
quent load balancing during GC. In general, the op
timized algorithm incorporates a new rule, wherein if
(Bk - Sk > LDU), then the region between the two
pointers (i.e., the region to be scanned later) is pushed
onto the global pool.

4.3.2 Evaluation

The parallel GC algorithm was evaluated for a large set
of benchmark programs (from [Tick 1991] etc.) execut
ing on a parallel KL1 emulator on a Sequent Symmetry.
Statistics in the tables where measured on eight PEs with
HEU=256 words and LDU=32 words, unless specified
otherwise. A more detailed evaluation is given in [Imai
and Tick 1991].

To evaluate load balancing during GC, we define the
workload of a PE and the speedup of a system as follows:

workload(PE) = number of cells copied +
number of cells scanned

2::: workloads
speedup =

max (workload of PEs)

The workload value approximates the GC time, which
cannot be accurately measured because it is affected by
DYNIX scheduling on Symmetry. Workload is measured
in units of cells referenced. Speedup is calculated with
the assumption that the PE with the' maximum work
load determines the total GC time. Note that speedup
only represents how well load balancing is performed and
does not take into account any extra overheads of load
balancing (which are tackled separately). We also define
the ideal speedup of a system:

ideal speedup =

mm , #PEs
. (2::: workloads)

max (workload for one object)

lOWe assume that HEU = kLDU, for integer k > O.

450

avg. Speedup
WL Size of LDU

Benchmark x 1000 32w 64w 128w 256w ideal
BestPath 165 7.15 7.06 6.46 6.36 8.00
Boyer 47 5.67 5.83 4.38 4.12 8.00
Cube 139 7.74 7.67 7.35 6.83 8.00
Life 101 7.10 6.86 6.31 6.29 8.00
MasterMind 4 2.50 2.48 2.58 2.48 2.87
MaxFlow 95 4.06 3.84 3.70 2.86 8.00
Pascal 5 2.67 2.91 3.45 2.77 7.25
Pentomino 3 4.34 3.34 3.67 4.21 8.00
Puzzle 17 2.63 2.84 2.58 2.61 2.92
SemiGroup 496 7.75 7.28 7.49 7.02 8.00
TP 17 2.49 2.39 2.43 2.33 2.79
Turtles 203 7.79 7.44 7.20 7.22 8.00
Waltz 32 4.38 2.92 2.31 1.64 8.00
Zebra 167 6.27 6.04 6.42 6.28 8.00

Table 4: Average Workload and Speedup (8 PEs,
REU =256 words)

Ideal speedup is meant to be an approximate measure of
the fastest that n PEs can perform GC. Given a perfect
load distribution where 1/ n of the sum of the workloads
is performed on each PE, the ideal speedup is n. There
is an obvious case when an ideal speedup of n cannot be
achieved: when a single data object is so large that its
workload is greater than l/n ofthe sum ofthe workloads.
In this case, GC can complete only after the workload
for this object has completed. These intuitions are for
mulated in the above definition.

Speedup: Table 4 summarizes the average workload
and speedup metrics for the benchmarks. The table
shows that benchmarks with larger workloads display
higher speedups. This illustrates that the algorithm is
quite practical. It also shows that the smaller the LDU,
the higher the speedup obtained. This means there are
the more chances to distribute unscanned regions, as we
hypothesized.

In some benchmarks, such as MasterMind, Puzzle and
TP, ideal speedup is limited (2-3). This limitation is
due to an inability of PEs to cooperate in accessing a
single large structure. The biggest structure in each of
the benchmark programs is the program module. A pro
gram module is actually a first-class structure and there
fore subject to garbage collection (necessary for a self
contained KL1 system which includes a debugger and in
cremental compiler). In practice, application programs
consist of many modules, opposed to the benchmarks
measured here, with only a single module per program.
Thus the limitation of ideal speedup in MasterMind and
Puzzle is peculiar to these toy programs.

In benchmarks such as Pascal and Waltz, the achieved
speedup is significantly less than the ideal speedup.
These programs create many long, fiat lists. When copy
ing such lists, Sand B are incremented at the same rate.
The proposed load distribution mechanism does not work

LDU (words)
Benchmark 32 64 128 256
BestPath 421.0 139.6 84.4 45.8
Boyer 208.8 131.3 24.3 12.8
Cube 609.4 241.6 96.a, 55.5
Life 145.8 66.5 29.8 14.8
MasterMind 3.9 1.5 1.1 1.0
MaxFlow 211.3 75.0 37.0 10.0
Pascal 1.6 1.0 1.0 1.0
Pentomino 134.3 65.3 21.0 7.5
Puzzle 51.6 30.6 10.5 4.9
SemiGroup 1,700.7 910.8 439.3 29.6
TP 44.4 19.8 8.8 4.6
Turtles 1,427.0 640.0 314.0 136.0
Waltz 76.0 36.0 11.5 1.4
Zebra 2,127.9 920.2 467.7 222.4

Table 5: Accesses of the Global Pool (8 PEs, HEU=256
words)

well in these degenerate cases. Our method works best
for deeper structures, so that B is incremented at a faster
rate than S. In this case, ample work is uncovered and
added to the global pool for distribution.

Contention at the Global Heap Bottom: We an
alyzed the frequency with which the global heap-bottom
pointer, Bg/oba/, is updated (for allocation ofn"ew chunks).
This action is important because Bg/oba/ is shared by all
the PEs, which must lock each other out of the critical
sections that manage the pointer. For instance, in Zebra
(given HEU = 256 words and LDU = 32 words), Bg/oba/

is updated 3,885 times by GCs. If Bg/obal were updated
whenever a single object was copied to the new heap, the
value would be updated 126,761 times. Thus, the update
frequency is reduced by over 32 times compared to this
naive update scheme. In other benchmarks, the ratios of
the other programs range from 15 to 114.

Global-Pool Access Behavior: Table 5 shows the
average number of global-pool accesses made by the
benchmarks, and the average number of cells referenced
(in thousands) by the benchmarks per global-po~l ac
cess. These statistics are shown with varying LDU sizes.
The data confirms that, except for Pascal and Master
Mind, the smaller the LDU, the more chances these are
to distribute unscanned regions, as we hypothesized. The
amount of distribution overhead is at least two orders of
magnitude below the useful GC work, and in most cases,
at least three orders of magnitude below.

As described above, to achieve efficient garbage col
lection on a shared-memory multiprocessor system, load
distribution and the working set size should also be care
fully considered.

4.4 Goal Scheduling in a Cluster

An efficient goal scheduling algorithm within a cluster
must satisfy the following criteria:

1. no idle processing elements
2. high data locality
3. less access contention
4. no disturbance of busy processing elements

Moreover, since the KLI language has the concept of
goal priority (Section 3.1.3), goals with higher priorities
within a cluster are the targets of scheduling. Notice
that Load is the amount of work to be performed by a
PE, cluster or system. Thus, load does not mean the
number of goals.

No Idle Processing Elements: The aim of goal
scheduling is to finish the execution of application pro
grams earlier. Previous software simulation told us the
following [Sato and Goto 1988]: .

• To keep all PEs busy is the most effective way of load
balancing since the goals of the KLI language are,
in general, fine-grained and have rich parallelism.

• Making the numbers of goals of each PE the same
during execution does not lead to good load balanc
ing.

Here, an idle PE means one that does not have any goals
to be reduced, or one that reduces goals with lower pri
orities.

High Data Locality: Since a cluster is viewed as a
shared-memory multiprocessor, it is important to keep
the data locality high to achieve high performance. This
means keeping the hit ratio of snooping caches high. In
our KLI runtime system, once argument data are allo
cated to a memory, the locations are not moved (only a
garbage collector can move them). Hence, it is desirable
that a goal that includes references to the argument data
is reduced by a PE in which the cache already contains
the data. Furthermore, in terms of KLI goal reduction,
suspension and r~sumption during unification give rise
to expensive context switching. If context switching oc
curs frequently, the hit ratio of snooping caches decreases
and, consequently, the total performance is seriously de
graded.

Less Access Contention: To schedule goals prop
erly, each PE has to access shared resources in parallel.
For instance, there is a goal pool that stores goals to
be reduced and priority information that must be ex
changed among PEs. Since expensive mutual exclusion
is required when PEs within a cluster access these shared
resources, access conflicts should be decreased as much
as possible.

451

No Disturbance of Busy Processing Elements:
From the load balancing point of view, it is better to have
as many idle PEs as possible involved in work associated
with goal scheduling. Moreover, when an idle PE tries
to find a new goal, it is desirable that the idle PE should
neither interrupt nor disturb the execution of busy PEs.

Consequently, well-distributed data structures and al
gorithms should be designed so that these criteria are
satisfied as much as possible.

4.4.1 Goal Pool

Let us consider two ways of implementing a goal pool:
centralized implementation and distributed implementa
tion. That is, one queue in a cluster or one queue for
every PE. If centralized implementation is used, prior
ity is strictly managed. However, every time a goal is
picked up and new goals are stored, the access contention
may occur. Thus, our KLI implementation adopts the
distributed implementation method. It turns out that
transmission of goals between PEs for load balancing is
required "and priority is loosely managed. On the con
trary, however, distributed queue management is neces
sarily loose for priority.

The distributed goal queues are managed using a
depth-first rule to keep the data locality high. Under
depth-first (LIFO) management, it is presumed that the
same PE will often write and read the same data and that
the number of suspensions and resumptions invoked will
be less. Therefore, the cache hit ratio increases.

Further, when a PE resumes goal unification, the PE
sends the goal to the queue of the PE which suspended
the goal previously. This also contributes to keeping the
data locality high.

As described above, since goals are accompanied with
priorities, in our KLI implementation, a PE has its own
goal queues for each priority. Figure 10 shows the goal
queues with priorities.

high

~t . ..,
J...t
~

low
priority-wise stacks

Figure 10: Goal Queue with Priorities

4.4.2 Transmission of Goals

As soon as a PE becomes or may become idle, it must
take a new goal with higher priority from the queue of .
a PE with a small overhead to avoid going into an idle
state. An idle PE triggers the transmission of a new goal.

452

Here, two design decisions are needed. One decision is
deciding whether the PE that transmits a new goal with
high priority is a request sender (idle PE) or a request
receiver (busy PE). Another decision is deciding whether
a new goal is to be picked from the top of a queue or the
end. If an idle PE has the initiative, access contention
may occur in the queue of a busy PE. If a busy PE has
the initiative, the CPU time of the busy PE must be con
sumed. If a new goal is picked from the top of a queue,
it may destroy the data locality of the busy PE's cache.
If a new goal is at the end, it will often happen that the
goal reduction of an idle PE is immediately suspended;
the potential load of the goal may be small under LIFO
management. Thus, this method may frequently trigger
transmission.

The current implementation uses dedicated PIM hard
ware which broadcasts requests to all PEs within a clus
ter, in order to issue a request for a new goal to the other
PEs. Each busy PE executes an event handler once a re
duction and the event handler may catch the request.
Then, the busy PE which catches the request first. picks
up the goal with the highest priority from the top of its
goal queue. Our implementation should be evaluated for
comparison.

4.4.3 Priority Balancing

A PE always reduces goals which belong to its local
queue and have the highest priority. There are two prob
lems; one is how to detect the priority imbalance, and
the other is how to correct the imbalance by cooperating
with the other PEs. Our priority balancing scheme was
designed so that fewer shared resources are required and
busy PEs do less work concerned with priority balanc
ing (Figure 11). Our scheme requires only one shared

priority

~ ~~ . ~
...... ,.: .

Pa

integral

o
min

Time

Time

Figure 11: Priority Balancing Scheme

variable Pa to record a.n average priority, and the same

number of va,riables 11 I'V In as the number of PEs to
record a current integral value for each PE. A current
priority of each PE is represented by Pi. There are two
constants, max (> 0) and min « 0). Every PE will
always calculate the integral Ii of Pi - Pa along time.
When Ii > max, the PE(i) adjusts Pa to the current Pi
and resets Ii to zero. When Ii < min, the PE(i) issues
a goal request, adjusts Pa to the priority of a transmit
ted goal, and resets Ii to zero. The mechanism of the
goal transmission described above is used as well, since
the goal with the highest PE priority is picked up. More
details on this algorithm are described in [Nakagawa et
al. 1989].

The features of this scheme are as follows. The cal
culation of the integral reduces the frequency of shared
resource Pa updating and busy PEs do some work only
when I > max.

The disadvantages are as follows. It may happe~ that
the priority of a transmitted goal is even lower, that Pa

decreases unreasonably, and that the frequency of the
high-priority goal transmission decreases. Our priority
balancing scheme utilizes the goal transmission mecha
nism (Section 4.4.2), which does not always transfer the
goal with the most appropriate priority. Accordingly, a
load imbalance may be sustained for a while. How well
this method works depends on the priority of the goals
transmitted upon requests. In other words, there is a
tradeoff between loose priority management and the fre
quency of high-priority goal transmission. Further, in
this scheme, a busy PE (a PE satisfying Ii > max) has
to write its current priority Pi to the shared variable Pa.
This may cause access conflict and disturb the busy PE.

A new scheme which we will design should overcome
these problems. However, we think that calculation of
the integral along time is essential even in new schemes.

4.5 Meta Control Facilities

When designing the implementation for a shoen, we as
sume that the following dynamic behavior applies in the
KLI system:

• Shoen statuses change infrequently.
• Shoen operations are not executed immediately but

within a finite time.
• Messages transferred are possibly overtaken in the

inter-cluster network.

Under these assumptions, our implementation must sat
isfy the following requirements:

• The less inter-cluster messages the better.
• No bottleneck appears; algorithms and protocols

that do not frequently' access shoen records and
foster-parent records are desirable.

• The processing associated with meta control should
not degrade the performance of reduction.

Many techniques realizing a shoen have been devel
oped to achieve high efficiency. This section concentrates
on execution control and resource management.

From now on, stream messages on the control and
report streams for communication to the outside are
represented in a typewriter typeface, such as start,
add_resource, and ask_statistics.

4.5.1 Execution Control

This section describes schemes for implementing the
functions for execution control. Schemes (1) rv (2) are ef
fective in a shared-memory environment (intra-cluster).
Schemes (3) rv (5) are effective in a distributed-memory
environment (inter-cluster).

(1) Change of Foster-parent Status: Since goal
reduction cannot be started when the status of foster
parent which the goal belongs to is not started, impru
dent implementation needs to check the status of a foster
parent before every goal reduction. To avoid such fre
quent checking, a status change of the foster-parent is
notified by the interruption mechanism. When a cluster
receives a message that changes a foster-parent's status
to non-executable, an interruption is issued to every PE
in the cluster. When a PE catches the interruption, the
PE checks to see if the current goal belongs to the tar
get foster-parent. If so, then the foster-parent is to be
stopped and the PE suspends execution of the current
goal and starts to reduce the goal of the other active
foster-parent. Otherwise, the PE continues the reduc
tion. Since the newly scheduled goal is supposed to be
long to the other foster-parent, the context of the goal
reduction 11 must be switched, too.

The assumption that the status of a foster-parent is
switched infrequently implies that interruptions happen
rarely. Thus, an advantage of the scheme is that the or
dinary reduction process rarely suffers from foster-parent
checking.

(2) Foster-parent Termination Detection: To
detect the termination of a foster-parent efficiently, a
counter called childcount is introduced. The childcount
represents the sum of both the number of goals and
the number of shoens which belong to the foster-parent.
When the childcount of a foster-parent reaches zero, all
goals of the foster-parent are finished.

The child count area is allocated in a foster-parent
record, and all PEs in a cluster must access the area.
Since this counter must be updated whenever a goal
is created or terminated, frequent exclusive updating of
this counter might become a bottleneck. To reduce such
an access contention, the cache area of the childcount
is allocated on each PE. The operations go as follows.
At first, a counter is allocated on the childcount cache

11 A childcount cache and a resource cache.

453

of each PE, initialized with a value zero. Every time a
new goal is spawn, the counter is incremented, and the
counter is decremented upon the end of goal reduction.
When the reduction of a new goal whose foster-parent
differs from the previous one begins, the current foster
parent should be switched. That is, the value of the
counter on the childcount cache is brought back to the
previous foster-parent record, and the counter is reini
tialized. The foster-parent terminates when it detects
that the counter on the foster-parent record is zero.

This scheme is expected to work efficiently if foster
parents are not changed often.

(3) Point-to-point Message Protocol: Basi-
cally, message protocols based on point-to-point com
munication between a shoen and a foster-parent are not
designed on the basis of broadcasting [Rokusawa et al.
1988]. If almost all clusters always contain foster-parents
of a shoen, protocols based on broadcast are taken into
account. However, the current implemetation does not
assume this, although it depends on applications. There
fore it is inefficient to broadcast messages to all clusters
in the system every time. Then, a shoen provides a table
that indicates whether or not its foster-parent exists in a
cluster corresponding to the table position. The table is
maintained by receiving foster-parent creation and ter
mination messages from the other clusters. Accordingly,
a shoen can send messages only to the clusters where its
foster-parents reside.

(4) Lazy Management of Foster-parent: A
shoen controls its foster-parents by exchanging messages,
such as start / stop messages. However, these messages
may overtake, and, thus, a foster-parent may go into the
incorrect states. For the stats to be correct and to mini
mize the maintenance cost, received start/stop messages
aremanaged by a counter. If a start message arrives, the
foster-parent increments the counter. If a stop message
arrives, the foster-parent decrements the counter. Then,
when the counter value crosses zero, the foster-parent
changes the execution status properly.

(5) Shoen Termination Detection: To detect
the termination of a shoen efficiently, a Weighted Throw
Count (WTC)· scheme was introduced [Rokusawa et al.
1988] [Rokusawa and Ichiyoshi 1992]. This scheme is also
an application of the weighted reference count scheme
[Watson and Watson 1987][Bevan 1989]. Logically, a
sh0en is terminated when there are no foster-parents.
However, this is not correct enough to maintain the num
ber of foster-parents, since goals thrown by a foster
parent may be transferred in the network. Thus, a
foster-parent lets both all goals to be thrown and all
messages between a shoen and foster-parents to have a·
portion of the foster-parent's weight. On terminating
a foster-parent, all foster-parent weights are returned to

454

the shoen. If the foster-parent terminated at message ar
rival, the messages from the shoen are also sent back to
the shoen to keep its weight. Then, when all weights are
returned to the shoen, the shoen terminates itself. An
advantage of this scheme is that it is free from sending
acknowledgement messages.

Thus, since a shoen must not continue to lock shared
resources in this scheme until an acknowledgement re
turns, the scheme can reduce not only the network traffic
but can also alleviate mutual exclusion.

4.5.2 Resource Management

As described above, a shoen is also used as a unit for
resource management. In the KL1 language, the reduc
tion time is regarded as the computation resource. The
shoen consumes the supplied resources while shifting the
resources. Moreover, since a shoen works in parallel, lazy
resource management is inevitable, like in the shoen ex
ecution control (Section 4.5.1).

A shoen has a limited amount of resources which it
can consume. Upon exceeding the limit, goals in the
shoen cannot be reduced. When a runtime system de
tects that the total amount of consumed resources so far
is approaching the limit, a resource_low message is au
tomatically issued on the shoen's report stream. The
shoen stops its execution with its resources exhausted.
On the other hand, the add_resource message on the
control stream raises the limit and the shoen can utilize
the resource up to the new limit. Furthermore, a shoen
which accepts the ask_statistics message reports the
current resources consumed so far.

This section describes our resource management im
plementation schemes.

(1) Distributed Management: The scheme is
briefly described below. Figure 12 shows the resource
flow between a shoen and its foster-parents.

A shoen has a limit value, which indicates that the
shoen can consume resources up to' the limit. Initially,
the resource limit is zero. Only the add_resource mes
sage can raise the limit. When a shoen receives the
add_resource message, the shoen requests new resources
to the above foster-parent by a value within the limit
value designated by the add.xesource message. Here,
we also call this foster-parent the parent foster-parent.
Notice that a shoen and its parent foster-parent reside
in the same cluster, and, thus, the operation for the re
source request is implemented by read and write opera
tions on a shared memory.

After a shoen has got new resources from its par
ent foster-parent, the shoen further supplies resources
to its foster-parents which requested resources by the
supplY-1'esource message across clusters. Moreover the
supplied resources may be supplied to the descendant
shoens and foster-parents. Then, those foster-parents

add resource

/I' resource low :::: 1 bliu~et r

! s~~r~ t r~\SUPPIY/r\llurn
~

fp : foster-parent G: Goal

Figure 12: Resource Flow Between a Shoen and its
Foster-parents

consume the supplied resources. The shoen has a buffer
for the resources; the excessive resources returned from
terminated foster-parents are stored in the shoen buffer.
When the remaining resources of a foster-parent are go
ing to run out, a resource request message is sent to the
above shoen. If the shoen cannot afford to supply the
requested resources, the shoen issues the resource_low
message on its report stream. Otherwise, if the shoen
can afford and has sufficient resources in the buffer, the
resources are supplied to the foster-parent immediately.
If there are insufficient resources, the shoen requests new
resources within the current limit value from its parent
foster-parent. As described here, the resource buffer of
a shoen can prevent the message from being issued more
frequently than necessary.

If the resources of the foster-parent are exhausted, goal
reduction stops. Then, the scheduled goals are hooked
on to the foster-parent record, in preparation for re
scheduling when new resources are supplied from the
shoen.

Furthermore, each PE has a resource cache area for the
foster-parent, and, hence, a counter is actually decre
mented every time a goal is reduced. This mechanism
is similar to the childcount mechanism (Section 4.5.1).
However, when the foster-parent of a goal tobe reduced
alters, the caches on PEs must be brought back to the
foster-parent record.

(2) Resource Statistics: While the system en-
joys lazy resource management, it gets harder to collect
resource information over the entire system. A shoen re
ceives the ask_statistics message, which reports the
current total consumed resources.

The scheme used to collect the information is de
scribed. A shoen issues inquiry messages to each foster
parent. When an inquiry message arrives at a foster
parent, the foster-parent informs each PE of this using
the interruption mechanism. This portion is similar to
the mechanism of Section 4.5.1 (1). The PEs which catch
the interruption check if the current goals belong to the
target foster-parent. If so, the PE puts the resource on
the cache back to the foster-parent record. When all
corresponding PEs have been put back, the subtotal re
source on the foster-parent appears. If not, the PEs do
nothing and reduction continues. Then, the foster-parent
reports the subtotal to the shoen and re-distributes some
resources back to the PEs. As a result, the PEs resume
goal reduction.

We assume that the ask_statistics message is issued
infrequently. This scheme works well.

(3) Point-to-point Resource Delivery: The
destination of new resources when a shoen receives re
source request messages from its foster-parents is a de
sign decision. It must be decided whether the shoen
delivers the new resources only to the foster-parents
which have requested them, or delivers them to all foster
parents. A protocol based on broadcast may be prefer
able when the foster-parents in nearly all clusters always
possess the same amount of resources and consume them
at the same speed. The current method is similar to one
in Section 4.5.1 (3).

Our assumptions we based on an experience of the
Muti-PSI system. Goal scheduling within a cluster, how
ever, differs and there is no guarantee that every cluster
has the foster-parent of the shoen. Therefore, in the
current implementation method the shoen sends the re
source supply message just to the clusters which have
sent resource request messages.

4.6 Intermediate Instruction Set

The KL1 compiler for PIM has two phases. The first
phase compiles a KL1 program into an intermediate in
struction code; the instruction set "is called KL1-B. The
second phase translates the intermediate code into a na
tive code. KL1-B is designed for an abstract KLl ma
ch~ne [Kimura and Chikayama 1987], interfacing between
the KL1 language and PIM hardware, just as in Warren
Abstract Machine [Warren 1983] of Prolog.

KL1-B for PIM is extended from KL1-B for Multi-PSI
to efficiently exploit the PIM hardware.

4.6.1 Abstract KL1 machine

The abstract KLl machine is simple virtual hardware to
describe a KL1 execution mechanis-1TI. It has a single PE
with a heap memory and basically expresses the inside
execution of a PE. However, every KL1-B instruction

455

implicitly supports multi-PE processing. Further, some
KL 1-B instructions are added for inter- cluster process
ing.

A goal is represented by a goal record on a heap. The
goal record consists of arguments and an execution en
vironment which includes the number of arguments and
the address of the predicate code. A ready goal is man
aged in the ready goal pool which has entries for each pri
ority. Each entry indicates a linked stack of goal records.
Suspended goals are hooked on the responsible variable.

Each data word consists of a value part, a type part
and a MRB part [Chikayama and Kimura 1987]. An
MRB part is valid, if the value part is a pointer, and indi
cates whether its object is single-referenced or multiple
referenced. It is used for incremental garbage collection
and destructive structure updating.

4.6.2 Overview of KL1-B

The intermediate instruction set KL1-B was designed ac
cording to the following principles:

• Memory based scheme - goal arguments are basi
cally kept on a goal record at the beginning of a
reduction, and each of them is read onto a register
explicitly just before it is demanded. Thus, almost
all registers are used temporarily (Section 4.6.3).

• Optimization using the MRB scheme - some in
structions to reuse structures are supported to alle
viate execution cost (Section 4.6.4).

• Clause indexing - the compiler collects the clauses
which test the same variables, and compiles them
into an instruction module. Then, all guard parts
of a predicate are compiled as one into the code
with branch instructions forming a tree structure
(Section 4.6.5).

• Each body is compiled into a sequence of instruc
tions which run straight ahead without branching.

The basic KL1-B instruction set is shown in Table 6.

4.6.3 Memory Based Scheme

The Multi-PSI system executes a KL1 program using
the register based scheme - all arguments of the current
goal are loaded onto argument registers before reduction
begins, just as WAM does for Prolog.

Here, let us compare the following two methods in
terms of the argument manipulation cost:

• In the memory based scheme, the arguments referred
to in the reduction are loaded and the modified ar
guments are stored at every reduction. There is no
cost for goal switching.

• In the register based scheme, all arguments of the
swapped out goal are stored and all arguments of the
swapped in goal are loaded at every goal switching.

456

Table 6: Basic KLI-B Instruction Set

KLI-B Instruction
For passive unification:

load_wait Rgp,Pos,Rx,Lsus

read_wait Rsp, Pos,Rx, Lsus

is_atom/integer/list/.. RX,Lfail

tesLatom/integer Rx, Const, Uail
equal RX,Ry,Lsus,Uail

suspend Lpred,Arity

For argument/element preparation:
load Pgp, Pos, Rx

read

puLatom/integer

allocvariable

alloclist/vector

Rsp,Pos,Rx

Const,Rx

Rx

(Arity,)Rx

write RX,Rsp,Pos

For incremental garbage collection:
mark Rx

collecLvalue

collecUist/vector

reuse_list/vector

For active unification:

Rx

(Arity,)Rx

(Arity,)Rx

unify_atom/integer Const,Rx

unify_bound_value Rsp,Rx

unify Rx, Ry

For goal manipulation and event handling:
collecLgoal Arity, Rgp

alloc_goal Arity, Rgp

store
geLcode

push_goal

push_goaL with_priority

throw_goal

execute
proceed

RX,Rgp,Pos

CodeSpec,Rcode

Rgp, Rcode,Arity

Rgp, Rcode, Rprio, Arity

Rgp, Rcode, Rcls, Arity

Rcode, Arity

Specification

Read a goal argument onto Rx and check binding.
Read a structure element onto Rx and check binding.
Test data type of Rx.

Test data value of Rx.

General unification.
Suspend the current goal

Read a goal argument onto Rx.

Read a structure element onto Rx.

Put the atomic constant onto Rx.

Allocate a new variable and put the pointer onto Rx.

Allocate a new list/vector structure and put the pointer onto Rx.

Write Rx onto a structure element.

Mark MRB of Rx.

Collect the structure recursively unless its MRB is marked.
Collect the list structure unless its MRB is marked.
collecUist/vector + allodist/vector.

Unify Rx with the atomic constant.
Unify Rx with the newly allocated structure.
General unification.

Reclaim the goal record.
Allocate a new goal record.
Write Rx onto a goal argument.
Get the code address of the predicate onto Reode.

Push the goal to the current priority entry of ready goal pool.
Push the goal to the specified priority entry of ready goal pool.
Throw the goal to the specified cluster.
Handle the event if it occurrs and execute the goal repeatedly.
Handle the event if it occurrs and take a new goal from ready
goal pool to start the new reduction.

Some arguments may be moved between registers at
every reduction.

other hand, the naive memory based scheme necessar
ily writes back all arguments to the goal record, even if
tail recursion is employed. Since this is very wasteful, an
optimization to keep frequently referenced arguments on
registers is mandatory during tail recursion.

Therefore, the memory based scheme is better than the
1'egister based scheme when

• Goal switching occurs frequently.

• A goal has many arguments.

• A goal does not refer to many arguments in a reduc
tion.

Actually, these cases are expected to be seen often in
large KLI programs. Thus, we have to verify the memory
based scheme with many practical KLI applications.

Additionally, the number of goal arguments is limited
to the number of argument registers - 32 in the case of
Multi-PSI. This limitation is too tight and is not favor
able to KLI programmers. The memory based scheme
can alleviate this limitation to some extent. On the

4.6.4 Optimization

Two optimization techniques are introduced: tail recur
sive optimization and the reuse of data structures. We
can describe these using the following sample codes.

• source code:

app([HIL),T ,X) :- true I X=[HIY), app(L,T ,Y).
app([) ,T,X):- true I X=T.

• intermediate code:

app_entry:
load CGP,O, Rl % Load up

load
app-'oop:

wait
is_list
commit

CGP,2, R2

R1, sus_orJail
R1, next

* read R1, car, R3
read R1, cdr, R4
reuse_list R1

* write R3, R1, car
al/oc-va ria ble RS
write RS, R1, cdr
unify_bound_value R1, R2
move R4, R1
move R5, R2
execute_tro app_Ioop

next:
is_atom R1, sus_orJail
tesLatom [J, R1
commit
load CGP, 1, R3
unify R3, R2
col/ecLgoal 3, CGP
proceed

sus_orJail:
store R1, CGP, 0
store R2, CGP,2
suspend app_entry, 3

% arguments

%H
%L

%H
%Y

%T

% Write back
% arguments

Tail Recursive Optimization: Some instructions
are added for this optimization. Wait tests if an argu
ment on a register is instantiated. Move prepares ar
guments for the next reduction. Execute_tro executes a
goal while some arguments are kept on registers.

In the above source code, the first and third arguments
of the first clause are used in tail recursion. These ar
guments are loaded at the beginning of the reduction by
the load instructions which are placed before the tail re
cursive loop. There is no need to write them into the
goal record during tail recursion. However, they must
be written back to the goal record explicitly before, say,
switching the goal caused by the suspend instruction.
Since the second argument is not used in tail recursion,
it is kept on the goal record until it is referred to in the
second clause.

In this example, two write instructions and two read
instructions are replaced with two move instructions.
Thus, by assuming a cache hit ratio of 100 %, this opti
mization can save two steps on each recursion loop.

Reuse of Data Structures: KLI-B for PIM sup-
ports the reuse of data structures. The reuse_list and
reuse_vector instructions realize this. These instructions
reuse an area in a heap on which the structure unified
in a guard part was allocated, but, only if the MRB of
the reference to the area is not ma.rked. However, the
area for the element data of the reused structure is not
reused.

In KLI applications, it often happens that the areas
of reclaimed structures can be reused for successive allo-

457

cation. This is frequent in programs for list processing
and programs written in message driven programming.
In the sample codes in Section 4.6.3, element H of the
passive-unified list [HIL] is used as element H of the new
list [HIY], and is read and written by the instructions
marked with stars ("*"). However, if the MRB of the
passive-unified list is not marked, element H can actu
ally be used in the new list as is, and, therefore, read
and write instructions can be eliminated.

Therefore, the following new optimized instructions
are introduced:

reuse_IisLwith_elements Reg, [Fear 1 Fedr]
reuse_vector_with_elements Arity, Reg, { Fo, FI , ... ,Fn}

These instructions do nothing when the MRB of the
structure pointer on Reg is not marked. If marked, they
allocate a new structure, copy specified elements on the
structure referenced by Reg to the new structure, and
put the pointer to the new structure onto Reg. Thus,
reuse of data structures reduces the number of memory
operations and, accordingly, keeps the size of the working
set small.

Sample code is shown as follows:

• optimized intermediate code:

app_Ioop:
wait
is_list
commit

R1, sus_orJail
R1, next

read R1, cdr, R4 % L
reuse_IisLwith_elements R1, [110]
al/oc-variable RS % Y
write R5, Rl, cdr
unify_hound_value R1, R2
move R4, Rl
move RS, R2
execute_tro app_Ioop

In this code, reuse_list and instructions marked with
stars ("*") are replaced with the reuse_IisLwith_elements
instruction. The second argument [110] specifies that
the head element has to be copied if the MRB of the list
pointer on R1 is marked. If the MRB is not marked,
it does nothing and is equal to nop. Therefore, only
the following write RS,R1,cdr instruction can allocate the
list structure [HIY]; the instruction works like the rplacd
function in LISP. Consequently, in this example, reuse
optimization can save one read and one write instructions
and is worth approximately two machine steps.

4.6.5 Clause Indexing

The KLI language neither defines the testing order for
the clause selection nor has the backtracking mechanism.
Thus, to attain quick suspension detection and quick
clause selection, the compiler can arrange the testing or
der of KLI clauses; this is called clause indexing. At first,

458

the compiler collects the clauses which test the same vari
able, and compiles the clauses into shared instructions.
Most of these work as test-and-branch instructions with
branch labels occurring in the instruction codes. All
guard parts of a predicate are, then, compiled into a
tree structure of instructions.

Our KL1 programming experiences up to now have
told as that a clause is infrequently selected according to
the type of argument but is often selected according to
the value. Further, even if multi-way switching of KL1-B
instructions on data types is introduced, these KL1-B in
structions are eventually implemented by a combination
of native binary branch instructions, in general. Con
sequently, we decided that KL1-B does not provide a
multi-way switching instruction on data types, but just
binary-branch KL1-B instructions on a data type. Ad
ditionally, KL1-B provides a multi-way jump instruction
on the value of an instantiated variable.

Two instructions are added for multi-way jump on a
value:

switch_atom Reg, [{X1 ,Ld,{X2 ,L2 }, ... ,{Xn,Ln}]
switch_integer Reg, [{X1 ,Ld,{X2 ,Ld, ... ,{Xn,Ln}]

Switch_atom is used for multi-way switching on an atom
value, and switch_integer is used for multi-way switching
on an integer value. They test the value on the regis
ter Reg, and if it is equal to the value Xi, a branch to
the instruction specified by the label Li occurs. Since the
internal algorithm implementing these switching instruc
tions is not defined in KL1-B, the translator to a native
code may choose the most suitable method for switching.

The current KL1-B instruction set was designed under
several assumptions in terms of KL1 programs. Thus, we
have to investigate how correct our assumptions are and
how effective our KL1-B instruction set is.

5 Conclusion

This paper discussed design and implementation issues
of the KL1 language processor. PIM architecture dif
fers from Multi-PSI architecture because of its loosely
coupled network with messages possibly overtaken, and
because of its cluster structure (i.e. its shared-memory

. multiprocessor portion). These differences greatly influ
ence the KL1 language processor and are essential to
parallel and distributed implementation of the KL1 lan
guage. Several of the implementation issues focused on
in this paper are more or less associated with these fea
tures. Our implementation is a solution to this situation.
ICOT has been working on these implementation issues
intensively for the past four years, since 1988.

In this paper, we began by making several assump
tions and, then, tailored our implementation to them.
The assumptions came from our experiences based on the
Multi-PSI system. Thus, we have to evaluate our imple
mentation, accumulate experiences on our system, and

verify the appropriateness of the assumptions. Hence,
we will be able to reflect our results in the KL1 language
processor of the next generation. In this development
cycle, the systematic design concept is effective, and the
concept yields the high modularity of a language pro
cessor. It turns out to be easy to improve and highly
testable.

Our KL1 language processor is presented on the PIM
systems (PIM/p, PIM/c, PIM/i, PIM/k), which are be
ing demonstrated at FGCS'92.

Acknowledgment

We would like to thank all ICOT researchers and com
pany researchers who have been involved in the im
plementation of the KL1 language so far, especially,
Dr. Atsuhiro Goto, Mr. Takayuki Nakagawa, and Mr.
Masatoshi Sato. We also wish to thank the R&D mem
bers of Fujitsu Social Science Laboratory. Through their
valuable contributions, we have achieved a practical KL1
language processor. Thanks also to Dr. Evan Tick of
University of Oregon, for his great efforts in evaluating
the parallel garbage collector with us. We would also like
to thank Dr. Kazuhiro Fuchi, Director of ICOT Research
Center, and Dr. Shunichi Uchida, Manager of Research
Department ICOT, for giving us the opportunity to de
velop the KL1 language processor.

References

[Baker 1978] H. G. Baker. List Processing ih Real Time
on a Serial Computer. Communications of the A CM,
21(4), 1978, pp.280-294.

[Bevan 1989] D. 1. Bevan. Distributed Garbage Collec
tion Using Reference Counting. Parallel Computing,
9(2), 1989, pp.179-192.

[Chikayama et al. 1988] T. Chikayama, H. Sato and T.
Miyazaki. Overview of the Parallel Inference Machine
Operating System PIMOS. In Proc. of the Int. Conf.
on Fifth Generation Computer Systems, ICOT, Tokyo,
1988, pp. 230-25l.

[Chikayama and Kimura 1987] T. Chikayama and Y.
Kimura. Multiple Reference Management in Flat
GHC. In Proc. of the Fourth Int. ConJ. on Logic Pro
gramming, 1987, pp.276-293.

[Crammond 1988] J. A. Crammond. A Garbage Col
lection Algorithm for Shared Memory Parallel Pro
cessors. Int. Journal of Parallel Programming, 17(6),
1988, pp.497-522.

[Goto et al. 1988] A. Goto, M. Sato, K. Nakajima, K.
Taki and A. Matsumoto. Overview of the Parallel In
ference Machine Architecture (PIM). In Proc. of the
Int. Conf. on Fifth Generation Computer Systems,
ICOT, Tokyo, 1988, pp.208-229.

[Halstead 1985] R. H. Halstead Jr. Multilisp: A Lan
guage for Concurrent Symbolic Computation. A CM
Transactions on Programming Languages and Sys
tems, 7(4), 1985, pp.501-538.

[Ichiyoshi et al. 1988] N. Ichiyoshi, K. Rokusawa, K.
Nakajima and Y. Inamura. A New External Ref
erence Management and Distributed Unification for
KL1. New Generation Computing, Ohmsha Ltd. 1990,
pp.159-177.

[ICOT 1st Res. Lab. 1991] ICOT 1st Research Labora
tory. Tutorial on VPIM Implementation. ICOT Tech
nical Memorandum, TM-1044, 1991 (In Japanese).

[Imai et al. 1991] A. Imai, K. Hirata and K. Taki. PIM
Architecture and Implementations. In Proc. of Fourth
Franco Japanese Symposium, ICOT, Rennes, France,
1991.

[Imai and Tick 1991] A. Imai and E. Tick. Evaluation
of Parallel Copying Garbage Collection on a Shared
Memory Multiprocessor. ICOT Technical Report, TR-
650, 1991. (To appear in IEEE Transactions on Paral
lel and Distributed Systems)

[Inamura et al. 1988] Y. Inamura, N. Ichiyoshi, K.
Rokusawa and K. Nakajima. Optimization Techniques
Using the MRB and Their Evaluation on the Multi
PSljV2. In P1'OC. of the North American Conf. on
Logic Programming, 1989, pp. 907-921 (also ICOT
Technical Report, TR-466, 1989).

[Kimura and Chikayama 1987] Y. Kimura and T.
Chikayama. An Abstract KL1 Machine and its In
struction Set. In Proc. of Symposium on Logic Pro
gramming, 1987, pp.468-477.

[Nakagawa et al. 1989] T. Nakagawa, A. Goto and T.
Chikayama. Slit-Check Feature to Speed Up Interpro
cessor Software Interruption Handling. In IPSJ SIG
Reports, 89-ARC-77-3, 1989 (In Japanese).

[Nakajima et d. 1989] K. Nakajima, Y. Inamura, N.
Ichiyoshi, K. Rokusawa and T. Chikayama. Dis
tributed Implementation of KL1 on the Multi-PSljV2.
In Proc. of the Sixth Int. Conf. on Logic Programming,
1989, pages 436-451.

[Nishida et al. 1990] K. Nishida, Y. Kimura, A. Mat
sumoto and A. Goto. Evaluation of MRB Garbage
Collection on Parallel Logic Programming Architec
tures. In Proc. of the Seventh Int. Conf. on Logic Pro
gramming, 1990, pages 83-95.

459

[Rokusawa et al. 1988] K. Rokusawa, N. Ichiyoshi, T.
Chikayama and H. Nakashima. An Efficient Termi
nation Detection and Abortion Algorithm for Dis
tributed Processing Systems. In Proc. of the 1988
Int. Conf. on Parallel Processing, Vol. 1 Architecture,
1988,pp.18-22.

[Rokusawa and Ichiyoshi 1992] K. Rokusawa and N.
Ichiyoshi. A Scheme for State Change in a Distributed
Environment Using Weighted Throw Counting. In
Proc. of Sixth Int. Parallel Processing Symposium,
IEEE, 1992.

[Sato and Goto 1988] M. Sato and A. Goto. Evaluation
of the KL1 Parallel System on a Shared Memory Mul
tiprocessor. In Proc. of IFIP Working Conf. on Par
allel Processing, 1988, pp. 305-318.

[Takagi and N akase 1991] T. Takagi and A. N akase,
Evaluation of VPIM: A Distributed KL1 Implementa
tion - Focusing on Inter-cluster Operations -, In IPSJ
SIG Reports, 91-ARC-89-27, 1991 (In Japanese).

[Taki 1992] K. Taki. Parallel Inference Machine PIM. In
Proc. of the Int. Conf. on Fifth Generation Computer
Systems, 1992.

[Tick 1991] E. Tick. Parallel Logic Programming. Logic
Programming, MIT Press, 1991.

[Ueda and Chikayama 1990] K. Ueda and T. Chika
yama. Design of the Kernal Language for the Paral
lel Inference Machine. The Computer Journal, (33)6,
1990, pp.494-500.

[Warren 1983] D. H. D. Warren. An Abstract Prolog In
struction Set. Technical Note 309, Articial Intelligence
Center, SRI, 1983.

[Watson and Watson 1987] P. Watson and I. Watson.
An Efficient Garbage Collection Scheme for Parallel
Computer Architectures. In Proc. of Parallel Architec
tures and Languages Europe, LNCS 259, Vol. II, 1987,
pp.432-443.

A be, Masahiro 1022
Aiba, Akira '113, 330

Ait-kaci, Hassan ·····················1012
Aikawa, Seiichi ························286
A1feres, Jose J. ························562
Ali, Khayri A.M. ·····················739
Alliot, Jean-Marc ·833
Amano, S '1133

Aparicio, Joaquim N. ···············562
Arai, Susumu ······414

Arikawa, Setsuo ························618
Arima, J un ······························505
Asaie, M ·723

Asato, Akira ···························414
Babaguchi, Noboru ··················497
Bahr, E. ·································969
Barachini, F. ··········· .. ···············969
Bark1und, Jonas ························8l7
Bj~rner, Dines ························191
Borgida, Alexander ··················1036
Bossi, A. ·································570
Brachman, Ronald J 1036, 1063
Bratko, Ivan ···························1207
Bruschi, Massimo ·634

Bruynooghe, Maurice············473, 481
Bueno, Francisco ·····················759
Carpineto, Claudio ··················626
Castaing, Jacqueline··················l076
Cheng, Anthony S.K. ···············825
Chikayama, Takashi ··················73
Chikayama, Takashi

························269, 278, 286, 791
Chino, T. ······························1133
Cho, Jung Wan '643, 851
Ciancarini, Paolo ·926

Ciapessoni, Emanuele ···············702
Corradini, Andrea ····,'················887
Cox, P.T. ·································539
Dally, William J. ·746
Darlington, John ·682

Date, Hiroshi ···························237
De Schreye Danny ·········473, 481, 650
Debray, Saumya K. ··················581
Denecker, Marc ·650

Dung, Ph an Minh ·····················555
Duvvuru, S ·809

Eddy, John K. ························1091
Eshghi, Kave ···························514
Evans, Chris ···························546
Feldmann, Richard J. ···············300
Fuchi, Kazuhiro 3

Author Index

Fujise, Tetsuro ················269
Fujita, Hiroshi ························357
Fujita, Masayuki ···············132, 357
Fukumoto, Fumiyo ··················376
Furukawa, Koichi '20, 230
Gabbrielli, M. ···························570
Gaines, B.R '1157, 1165

Gallaire, Herve ························220
Gaudiot, Jean-Luc ·············977
Ge1ernter, David······················· ·926
Giacobazzi, Roberto ··················581
Goldberg, Varon ·951
Gregory, Steve······ ·843

Guo, Yi-ke ······························682
Gupta, Gopal ···························770
Hagiwara, Kaoru ·····················385
Hagstrom, Ray ························307
Hamfelt, Andreas ·····················1107
Hansen, L. ······························809
Hansson, Ake ························1107
Hasegawa, Ryuzo '113, 132, 357
Hasida, Koiti ···························1141
Hatazawa, Hiroyoshi ··················414
Hattori, Akira ···························414
Hawley, David J. ·····················330
Hermenegi1do, Manuel Y.······759, 770
Herzig, Andreas ························833
Hirano, Kiyoshi , ··········414, 436
Hirata, Keiji ·436
Hirosawa, Makoto '294, 300
Hoare, C.A.R. ······ ····· · .. · .. ··211
Honda, Yasuaki .. · · ·1044
Hori, Atsushi · .. · · .. · ·269
Horiuchi, Kenji 897
Hoshi, Masahiro 237
Hoshida, Masaki · ·294, 300
Ichiyoshi, Nobuyuki · ·166, 869
Idestam-A1mquist, Peter 610
Ido, N. · .. ·· ······ ···· .. · · .. ·723
Ikeda, Teruo ·385
Imai, Akira ·436
Inamura, Yii 425
Inoue, Katsumi 522
Ishida, Y oshiteru ·· ·1030
Ishikawa, Masato · 294, 300
Isozaki, Hideki ·694
Itoh, Fumihide 278
I wamasa, Mikito 1099
Iwayama, Noboru ·33q
Jaffar, Joxan ·987
Kahn, Kenneth M ... · · ·943

Yol.l 1- 460
Yol.2 461-1218

Kakas, Antonios C. 546
Kale, Laxmikant Y. · · · .. ·783
Kamiko, Mayumi 286

Kamiya, Akimoto········ .. ···········l099
Karlsson, Roland · · .. · ·739
Kasahara, Takayasu ··················1084
Kato, Hiroo · .. · ·· · ·237
Kato, Tatsuo ·· .. · ·· .. · .. · .. ·· .. ··278
Kawagishi, Taro ··· .. ·· · 330
Kawai, Hideo ·436
Kawamura, Moto ·248
Kawamura, Tadashi '463
Kawato, Nobuaki ·1181
Kazic, Toni · .. ·· .. · 307
Kesim, F.Nihan · · .. ·· .. ·1052
Kim, Byeong Man ·643
Kimura, Kouichi · 237, 869
Knill, E · ··· ·539
Kobayashi, Yasuhiro · · ·1084
Kodama, Yuetsu························ 7 31
Koike, Hanpei .. ·········· .. · .. ··········715
Komatsu, Keiko 1\ 73
Konagaya, Akihiko ··· ·791
Kondo, Seiichi -.... 425
Konishi, Koichi · · 791
Konuma, Chiho 1099
Koseki, Yoshiyuki · · 1190
Koshimura, Miyuki .. · · 357
Kotani, Akira · · ·385
Kowalski, Robert A. .. · ···· .. · .. ··219
Kubo, Hideyuki .. · · .. · .. · 288
Kubo, Yukihiro ··· 385
Kuhara, Satoru ·618

Kumon, Kouichi .. · · .. ·········· .. ··414
Kurozumi, Takashi .. · .. · · 9
Lassez, Catherine 1066
Le Provost, Thierry · ·1004
Lee, J.H.M ·· · · .. 996
Lee, Sang Ho 643
Lefebvre, Alexandre · .. · 915
Levi, Giorgio · 570, 581
Lima-Marques, Mamede · ·833
Lin, Eileen Tien .. · ·907

Lin, Zheng ·· .. ·· ············· .. ·· .. ·859
Linster, M ·1157

Maeda, Munenori · · ·· .. ·961
Maeda, Shigeru '" ·1115
Maeng, Seung Ryou1 '643, 851
Maher, Michael J ... ·· · 987
Maim, Enrico · 702
Martens, Bern 473

ii

Maruyama, Fumihiro ·1181
Maruyama, Tsutomu 791
Masuda, Kanae 425
Matono, Fumio 877
Matsumoto, Yukinori ·237, 1198
Matsuo, Masahiro ·269
Matsuzawa, Fumiko 286
McGuinness, Deborah L. ·1036
Menju, Satoshi 330
Meo, M.C ··570
Michaels, George ·300, 307
MiIlroth, Hiikan 817
Minoda, Y oriko '1181
Mistelberger, H 969
Miyano, Satoru 618
Mizoguchi, Fumio 1061
Mochiji, Shigeru ·1099

Montanari, Angelo" ···················702
Montanari, Ugo 887
Mori, Takeshi ·278
Mori, Toshiaki 497
Morita, Masao ·······799
M uggleton, Stephen l 071
Mukouchi, Yasuhito 618
Naganuma, Kazutomo ·248
Nagasawa,Ikuko ·405
Nakagawa, T ·723
Nakajima, Katsuto ·425
N akakuki, Y oichiro 1190
Nakase, Akihiko························436
Nakashima, Hiroshi 425
Nang, long H ·851
Nitta, Katsumi 166, 294, Il15
Nonnenmann, Uwe 1091
Ohkawa, Takenao ·497
Ohki, Masaru ···· .. ··· · .. ·l 022
Ohsaki, Hiroshi 1115
Ohta, Yoshihiko 522
Ohtake, Y oshihisa 1115
Omiecinski, Edward 907
Onishi, Satoshi ·425

Onizuka, Kentaro ·············294
Ono, K ... ······· .. ······ .. ··············1133
Ono, Masayuki 1115
Oohira, Eiji ·· ·1022
Overbeek, Ross .. · · 223, 307
Patel-Schneider, Peter F 1036
Paterson, Ross A. ·825

Pereira, Luis Monis · .. · 562
Pietrzykowski, T. ·539
Pliimer, Lutz · .. · ·489

Po del ski, Andreas·· .. ········ .. ····· .. 1012
Poirriez, Vincent··· .. · .. ······· .. ··· .. ··674
Poole, David 530

Preist, Chris··············· ····· .. ···· 514
Pull, Helen · ······· .. · .. ····· .. ····682
Ratto, Elena· · .. ····· ···· .. ····· 702
Rawn, David .. · · .. ·300
Reiter, Raymond··· .. · .. ··· .. · · .. ·600
Resnick, Lori Al perin ·1036
Robinson, l.A. ·199
Rokusawa, Kazuaki '436
Rosenblueth, David A. · .. 1125
Rossi, Frances~a 887
Sakai, Shuichi · · .. ·731
Sakama, Chiaki 592
Sakane, Kiyokazu 1115
Sano, Hiroshi 376
Sastry, A.V.S ... · .. · ·809
Sato, Hiroyuki .. · ·248
Sato, Masaki ·278
Sato, Tadashi · ·~278

Satoh, Ken ········· .. ···················330
Sawada, Hiroyuki · 330
Sawada, Shuho · ·1181
Sehr, David C. · · 783
Sergot, Marek 1052
Shapiro, Ehud 951
Shaw, M.L.G. 1157
Shimada, Kentaro · · .. ·715
Shin, D.W. ··· .. · .. · ·········· .. · .. ··851
Shinjo, Hiroshi ·1022
Shinogi, Tsuyoshi 414
Shinohara, Ayumi · 618
Shinohara, Takeshi .. · · 618
Shoham, Y oav·························· ·694
Silverman, William ·951
Smith, Cassandra · · ·307

Smolka, Gert .. ············· .. ······ .. ··1012
Sohn, Andrew · 977
Stuckey, Peter J · · 987
Sueda, N aomichi '1099
Sugie, M. · · .. ···· ········ .. ·723
Sugiyama, Kenji 405
Sumita, K · .. · · ·1133

Sundararajan, R. .. · .. ······ .. · .. ········809

Suzuki, lunzo · ·1099
Takagi, Tsuneyoshi 436
Takayama, Yukihide · .. · 658
Takeda, Yasutaka ·425
Taki, Kazuo

............ 50, 166,237,436, 1074, 1198
Takizawa, Yuka ·1181
Tanaka, Hidehiko · 715
Tanaka, Hidetoshi · .. · ·321
Tanaka, liro 877
Tanaka, Midori ·· ····· .. · 1190
Tanaka, Yuichi .. · · 155
Tarui, T. ·723
Tatsuta, Makoto 666
Taylor, Ron · .. · .. · .. ·· · .. · ···307
Terasaki, Satoshi · .. · .. · · .. ·· .. ·330
Tezuka, Yoshikazu .. ······· .. · · .. ··497
Tick, E · · .. · .. · · .. '''809, 934
Tojo, Satoshi · · · .. · · 395
Tokoro, Mario ·1044
Toya, Tomoyuki · · .. 294
Tsuda, Hiroshi · ·257, 347
Turuta, Michiko 405
Uchida, Shunichi · .. · .. 33, 232
Ueda, Kazunori ·· .. ·· .. · .. ····· .. 799
Ukita, T ·· · .. · · .. · .. ·1133
van Emden, M.H. · .. · · 996, 1149
Verschaetse, Kristof 481
Wada, Kumiko ·· 269
Wallace, Mark ·1004
Watanabe, Toshinori .. · · .. · .. 1173
Watari, Shigeru ·1044
Wegner, Peter .. · .. · .. ·· .. · .. ·· 225
Yalamanchili, Sudhakar ·907
Yamada, Naoyuki 1084
Yamaguchi, Yoshinori .. · 731
Yamamoto, Reki 436
Yamasaki, Shigeichiro ·405
Yang, Rong · ···· ····· .. ···· .. ··843
Yap, Roland H.C · .. · ·987
Yashiro, Hiroshi ····· · ··········269
Yasukawa, Hideki · .. · ·89, 257, 395
Yokota, Kazumasa "89,248, 257
Yoshida, Kaoru · · .. · ·307, 791
Yoshimura, Kikuo 1084
Yoshino, Katsuyuki 1084
Zawada, David 307

Zhong, X ·· .. ···· ····· .. ··· .. ·· .. ·809

