
c

C"
"

USER IS MANUAL

ICONjPICK
OPERATING
SYSTEM

(;
ICON INTERNATIONAL

ICONjPICK
USER'S
MANUAL

Copyright C Icon International, Inc., 1986, 1987. All rights reserved worldwide.
No part of this publication may be reproduced without the express written permission of
Icon International, Inc.

This manual has been prepared by the Documentation Support Group of Icon International;
Inc., P.O. Box, 340 Orem, Utah 84057-0340.

Forms for readers' comments have been provided at the back of this publication.
Comments are welcomed and may be sent to the address on the comments form.

Icon International, Inc. reserves the right to make changes, without notice, to the
specifications and materials contained herein, and shall not be responsible for any damages
(including consequential) caused by reliance on the material as presented, including, but not
limited to, typographical, arithmetic, and listing errors.

Revision A

Order No. 172-026-001 (Manual Assembly)
Order No. 171-010-001 (Pages Only)

WARNING

This manual contains information which is proprietary to and considered a trade secret of
PICK SYSTEMS, INC. It is expressly agreed that it shall not be reproduced in whole or
part, disclosed, divulged, or otherwise made availble to any third party either directly or
indirectly. Reproduction of this manual for any purpose is prohibited without the prior
express written authorization of Icon International, Inc. and PICK SYSTEMS, INC. All
rights reserved.

Trademarks

lOtH is a rep~ered tradelD&rk or ICOD ID~erDatioDal, IDe.
PICK is a reptered trademark or PICK SYSTEMS, INC.

TABLE OF CONTENTS

SECTION PAGE

(-~ 1 INTRODUCTION · · · · · · · · · · · · · · · · 1
1.1 WHAT IS THE PICK COMPUTER SYSTEM? · · · · · 2
1.2 AN OVERVIEW OF PICK COMPUTER SYSTEM'S MAJOR

FEATURES · · · · · · · · · · · · · · · · · · 3
1.3 THE PICK SOFTWARE PROCESSORS 5
1.4 OVERVIEW OF TCL · · · · · · · · · · · · · · 6
1.5 DATA BASE MANAGEMENT PROCESSORS 7
1.6 AN OVERVIEW OF SYSTEM UTILITIES · · · · · 8
1.7 AN OVERVIEW OF ACCESS · 8
1.8 AN OVERVIEW OF PICK/BASIC 9
1.9 AN OVERVIEW OF THE EDITOR 10
1.10 AN OVERVIEW OF PROC · · · · · · · · · 10
1.11 AN OVERVIEW OF THE PICK OPERATING SOFTWARE 11
1.12 SUMMARY OF PICK IMPLEMENTATIONS 12
1.13 A GLOSSARY OF PICK TERMS · · · · · · 13

2 FILE STRUCTURE · · · · · · · · · · · · · · 18
2.1 THE FILE HIERARCHY · · · · · · · · · · · 19
2.2 FILE ACCESS · · · · · · · · 21
2.3 THE DICTIONARIES · · · · 22
2.4 SHARING OF DICTIONARIES · · · · · · · · · 24
2.5 BASE AND MODULO · · · · 26
2.6 MODULO SELECTION · · · · · · 29
2.7 ITEM STRUCTURE (PHYSICAL) 30
2.8 ITEM STRUCTURE (LOGICAL) 32
2.9 ITEM STORAGE AND THE HASHING ALGORITHM 34

(-::, 2.10 FILE DEFINITION ITEMS · · · · · · 35
2.11 FILE SYNONYM DEFINITION ITEMS · · · · · 38
2.11.1 Q-POINTERS REFLEXIVE FORM · · · · 39
2.11. 2 Q-POINTERS : ACCOUNT SPECIFICATION 40
2.11. 3 Q-POINTERS : FILE SPECIFICATION · · 41
2.11. 4 Q-POINTERS : MULTI-FILE SPECIFICATION 41
2.12 ATTRIBUTE DEFINITION ITEMS · · · · · 41
2.13 DICTIONARY ITEMS: A SUMMARY · · · · · · · · 43
2.14 INITIAL SYSTEM FILES/DICTIONARIES 45
2.15 OVERVIEW OF FILE MANAGEMENT PROCESSORS 46
2.16 CREATING NEW FILES: THE CREATE-FILE PROCESSOR 47
2.17 CLEAR-FILE PROCESSOR · · · · · · 49
2.18 DELETE-FILE PROCESSOR · · · · · · 50
2.19 COPYING DATA: THE COpy PROCESSOR · · · · · 51
2.20 COPYING DATA: FILE TO FILE COPY 52
2.21 COPYING DATA: THE COpy PROCESSOR OPTIONS 54

3 TERMINAL CONTROL LANGUAGE · · · · · · 56
3.1 INTRODUCTION TO TCL 57
3.2 TCL VERB TYPES · · · · · · 59
3.3 TCL-I VERBS · · · · · · · · · · · · 59
3.4 TCL-II VERBS · · · · · · · · · · · · 60
3.5 LOGON AND LOGOFF PROCESSORS · · · · · · · · 61
3.6 LOG TO · · · · · · · · · · · · · 63
3.7 CHARGE-TO AND CHARGES · · · · · · · · · 64
3.8 LOGON PROCS · · · · · 65
3.9 TERM . · · · · · · · · · · 66

(~
3.10 TABS : SETTING ,TAB STOPS · · · · · · · · 68
3.11 TIME . · · · · · · · · · · · · · · 69

3.12
3.13
3.14
3.15
3.16
3.17

3.18

4
4.1
4.2
4.3
4.4
4.4.1
4.4.2
4.4.3
4.5
4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.6
4.6.1
4.6.2
4.7
4.7.1
4.8
4.8.1
4.8.2
4.8.3
4.8.4
4.8.5
4.9
4.9.1
4.9.2
4.10
4.10.1
4.10.2
4.10.3

4.10.3.1
4.10.3.2
4.10.3.3
4.10.3.4
4.11
4.11.1
4.11. 2
4.11. 3
4.11. 4
4.11. 5
4.12
4.12.1
4.12.2
4.12.3
4.13
4.13.1

SLEEP •..•.•.........
'WIIO ••••••••••••••••
MSG .•••....•........
PROGRAM INTERRUPTION (DEBUG FACILITY)
BLOCK-PRINT•.......
UTILITY PROCS: CT, LISTACC, LISTCONN,
LISTDICTS •
VERB DEFINITION ITEMS IN M/DICT

EDITOR . •
EDITOR PROCESSOR: AN INTRODUCTION
EDITOR OPERATION : AN OVERVIEW
EDIT VERB : ENTERING THE EDITOR
EDITOR COMMAND SYNTAX •...
EDITOR "strings" •......
COLON : EDITOR DELIMITER .
UP-ARROW : WILDCARD EDITOR CHARACTER
LINE POINTER CONTROL : EDITOR
"L" - LIST COMMAND : EDITOR
NULL COMMAND <CR> : EDITOR
"U" - UP COMMAND : EDITOR

69
70
71
72
73

74
75

"N" - NEXT COMMAND : EDITOR

77
78
79
81
83
83
83
84
85
85
85
85
86
86
86
86
88
88
88

"G" GOTO COMMAND : EDITOR
"T" TOP COMMAND : EDITOR . . .
"B" BOTTOM COMMAND : EDITOR
STRING MATCH LOCATING : EDITOR
"L" - LOCATE COMMAND : EDITOR
"A" - AGAIN COMMAND : EDITOR
ENTERING DATA : EDITOR
"I" - INPUT COMMAND : EDITOR
INSERTING DATA : EDITOR
"I" - INSERT COMMAND : EDITOR .. .
"ME" - MERGE COMMAND: FROM THE SAME FILE
MERGE COMMAND : FROM OTHER FILES
MERGE COMMAND DEFAULTS

·90
90
92
92
92
93
93
93
94
94
94
97
97
97

MINIMAL MERGE
DELETING DATA : EDITOR . . . •
"DE" - DELETE COMMAND (SIMPLE) : EDITOR
"DE" - DELETE COMMAND (STRING SEARCH) EDITOR
REPLACING DATA: REPLACE (R) COMMAND
"R" REPLACE COMMAND (SIMPLE) : EDITOR
"R" - REPLACE COMMAND (STRING SEARCH) : EDITOR
"RU" - REPLACE COMMAND (UNIVERSAL STRING
SEARCH) : EDITOR • . . .
MULTIPLE REPLACEMENTS WITHIN A LINE
REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT
MULTIPLE REPLACEMENTS AFTER THE MERGE COMMAND
CREATING NULL LINES - EDITOR
ITEM MANIPULATING - EDITOR
"F" COMMAND - EDITOR
"FI" - FILE ITEM COMMAND : EDITOR
"FS" - FILE SAVE COMMAND : EDITOR
"FO" - FILE PELETE ITEM : EDITOR
"EX" - EXIT COMMAND : EDITOR
FORMATTING COMMANDS : EDITOR
"s" - SUPPRESSION COMMAND : EDITOR
"TB" - TAB COMMAND : EDITOR
" Z " - ZONE COMMAND : EDITOR
ASSEMBLY FO~TTING : EDITOR .
"AS" - ASSEMBLY FORMAT COMMAND: EDITOR

97
99
99
99
99

· . 101
. 101

101
· . 101
· . 102

102
104
104

· . 104
104
106

. 106

o

4.13.2
4.14
4.14.1
4.14.2
4.14.3
4.14.4
4.14.5
4.14.6
4.15
4.15.1
4.15.1.1
4.15.2
4.15.3
4.15.3.1
4.16

5
5.1
5.2
5.3
5.4
5.5
5.6

5.7

5.8
5.9
5.10
5.11

5.12

5.13
5.14
5.15
5.16
5.17

5.18

5.19

5.20
5.21
5.21.1
5.21. 2
5.21. 3

6
6.1
6.2
6.3
6.4
6.5

6.6
6.6.1
6.6.2

"M" - MACRO EXPANSION COMMAND : EDITOR
MISCELLANEOUS COMMANDS : EDITOR
, X' CANCEL COMMAND : EDITOR .•...
, ?' CURRENT LINE COMMAND : EDITOR

· 106

, S?' ITEM SIZE COMMAND : EDITOR

· 108
108
108
108
109
109

, "', WILDCARD TOGGLE COMMAND : EDITOR . . .
'C' COLUMNAR POSITIONS COMMAND: EDITOR
UNPRINTABLE CHARACTERS
'Pn' PRESTORE COMMAND - EDITOR
DEFINING PRESTORE COMMANDS - EDITOR
PRESTORE COMMAND - DEFAULTS

. . 109
110

. . . . 110
. 110

REPEATING PRESTORE COMMANDS
DISPLAYING PRESTORE COMMANDS
PRESTORES IN PROCS
EDITOR MESSAGES

PROC LANGUAGE
THE PROC PROCESSOR . .
PROC LANGUAGE DEFINITION
AN INTRODUCTION TO PROC'S .
INPUT/OUTPUT BUFFER OPERATION
AN OVERVIEW OF PROC COMMANDS . . .
SELECTING PROC BUFFERS: THE SP, SS AND ST
COMMANDS
POSITIONING POINTERS: THE S, F, B, AND BO
COMMANDS . . . • • • • • • . . • . • . .

III
· III
· 112
· 114

. . . 115
· 116

117
119
121

· 123

125

MOVING PARAMETERS: THE A COMMAND
127

. . 129
131
133

INPUTTING DATA: THE IS, IP, AND IT COMMANDS
OUTPUTTING DATA: THE 0 AND D COMMANDS
TERMINAL OUTPUT AND CURSOR CONTROL: THE T
COMMAND •••.•.••.•.•••....
SPECIFYING TEXT STRINGS AND CLEARING BUFFERS:

· 135

THE IH, H 137
TRANSFERRING CONTROL: THE GO n and GO A COMMAND 138
CONDITIONAL EXECUTION: THE SIMPLE IF COMMAND . 141
RELATIONAL TESTING: THE RELATIONAL IF COMMAND . 143
PATTERN TESTING: THE PATTERN MATCHING IF COMMAND 145
FURTHER FORMS OF THE IF COMMAND: THE IF E
and IF S COMMANDS and SELECT LIST AND PROC
INTERACTION · 147
ADDITIONAL FEATURES: THE PLUS (+), MINUS (-), U
AND C COMMANDS 148
PROC EXECUTION AND TERMINATION: THE P, PH, PP,
PW, PX AND X COMMANDS 151
LINKING TO OTHER PROCS: THE LINK COMMAND 153
SUBROUTINE LINKAGES: THE CALL COMMANDS 155
SAMPLE PROCS: FILE UPDATE VIA EDITOR .. 157
USING SSELECT AND COpy VERBS 158
USING VARIABLE TESTING, GO AND D COMMANDS ... 159

ACCESS
AN ACCESS PRIMER
THE ACCESS VERBS
ACCESS INPUT SENTENCES .

. . . . 161
. . 162

. 163

RULES FOR GENERATING ACCESS SENTENCES
. . . 165

. . 167
ACCESS DICTIONARIES AND ATTRIBUTE-DEFINITION
ITEl-1S
ACCESS AND THE FILE STRUCTURE
THE USING CONNECTIVE.
MASTER DICTIONARY DEFAULT

168
171
171
172

6.6.3
6.6.4
6.6.5
6.7
6.8
6.9
6.9.1
6.9.2
6.10
6.11
6.12
6.12.1
6.12.2
6.12.3
6.12.4
6.12.5
6.12.6
6.12.6.1
6.12.6.2
6.12.6.3
6.12.7
6.12.7.1
6.12.8
6.12.8.1
6.12.8.2
6.12.8.3
6.12.8.4
6.12.8.5
6.12.8.6
6.12.9
6.12.9.1
6.12.9.2
6.12.9.3
6.12.9.4
6.12.9.5
6.12.10
6.12.10.1
6.12.10.2
6.12.10.3
6.12.10.4
6.13
6.14
6.15
6.16
6.16.1
6.16.2
6.16.3
6.16.4
6.17
6.18
6.19
6.20
6.21
6.21.1
6.22
6.23
6.24
6.25
6.25.1
6.26

SEQUENCE OF RETRIEVAL (items from files) . 172
ITEM-ID DEFINITIONS WITH o-POINTERS . . . 172
DELIMITERS AND ITEM-ID STRUCTURES 173
ACCESS VERBS : AN OVERVIEW • 175
RELATIONAL OPERATORS AND LOGICAL CONNECTIVES . . 177
ITEM-LIST FORMATION•. . 179
EXPLICIT ITEM-LISTS 179
IMPLICIT ITEM-LISTS 181
SELECTION-CRITERIA FORMATION 182
SELECTION-CRITERIA: STRING SEARCHING . 184
SELECTION PROCESSOR 185
ITEM-ID SELECTION DEFAULT . . 185
SELECTION DELIMITERS . . • . . . • . . 185
EXPLICIT ITEM-IDS 185
ITEM-ID TESTS•. . 185
ITEM-ID SELECTION CRITERIA 187
WITH CONNECTIVE : SELECTION BY DATA VALUE . 188
DATA EVALUATION 188
OBTAINING A VALUE (STRING) TO TEST . 188
EXISTENCE TEST 189
VALUE STRING 190
RELATIONAL CONNECTIVES 191
SPECIFIED VALUES AND ATTRIBUTE 7 191
DATE CONVERSIONS 191
TIME CONVERSIONS 192
MASK CONVERSIONS 192
OTHER MASKING FUNCTIONS 192
TRANSLATE CONVERSIONS 192
SELECTION CONVERSIONS : A SUMMARY .. . 193
SPECIAL CHARACTERS IN SELECTION VALUES 194
SPECIAL CHARACTERS WITH RELATIONAL CONNECTIVES . 195
JUSTIFICATION AND EVALUATION . . . 196
OR CONNECTIVE WITH VALUE PHRASES . 197
AND CONNECTIVES WITH VALUE PHRASES . . 198
EvALUATING VALUE PHRASES 198
SELECTION CRITERIA RELATIONSHIPS 199
AND CLAUSES : SELECTION CRITERIA . . . 200
DATA SELECTION CRITERIA 200
ITEM SELECTION CRITERIA 200
SELECTION PROBLEMS TO AVOID . . 200
OUTPUT SPECIFICATION : FORMATION 202
PRINT LIMITERS 204
DEFAULT OUTPUT-SPECIFICATIONS 206
SUPPRESSION MODIFIERS 207
THE ONLY MODIFIER 207
THE Io-SUPP MODIFIER (I option) . 207
THE HDR-SUPP MODIFIER (H option). . 207
THE COL-HDR-SUPP MODIFIER (C option) . . . 207
MODIFIERS AND OPTIONS . . . 208
THROWAWAY MODIFIERS 211
ACCESS PROCESSOR OPTIONS . 212
HEADINGS AND FOOTINGS 213
TOTAL MODIFIER 215
TOTAL - EVALUATION SEQUENCE ... 217
GRAND-TOTAL MODIFIER . 217
BREAKING ON ATTRIBUTE VALUES 218
SUBTOTALS USING CONTROL-BREAKS 219
OUTPUT OPTIONS - CONTROL BREAKS 221
DET-SUPP MODIFIER 222
LIST VERB 224

(\

'--I

C~··
/

6.27 SORT VERB · · · · · · · · · · · · · · · · · · · 226
6.27.1 BY and BY-DSND MODIFIERS · · · · · · · · · · · 226
6.27.2 CORRELATIVES and CONVERSIONS WITH SORT KEYS · · 226
6.27.3 BY-EXP and BY-EXP-DSND MODIFIERS - EXPLODING

(~
SORTS · · · · · · · · · · · · · · · · · · 228

6.28 WITHIN CONNECTIVE · · · · · · · · · · · · · · · 230
-j 6.29 THE LIST-LABEL AND SORT-LABEL VERBS · 231

6.30 THE REFORMAT AND SREFORMAT VERBS · · · 232
6.31 COUNT VERB · · · · · · · · · · · · · · · · · · 235
6.32 SUM VERB · · · · · · · · · · · · · 236
6.33 STAT VERB · · · · · · · · · · · · · · · · · 237
6.34 THE SELECT AND SSELECT VERBS · · · 238
6.35 THE SAVE-LIST, GET-LIST, AND DELETE-LIST VERBS · 240
6.36 THE COPY-LIST, EDIT-LIST AND QSELECT VERBS · 242
6.37 ISTAT VERB · · · · · · · · · · · · · · · · · · · 245
6.38 HASH-TEST VERB · · · · · · · · · · · · · · 246
6.39 THE T-DUMP AND T-LOAD VERBS, AND THE TAPE

MODIFIER · · · · · · · · · · · · · · · 247
6.40 THE LIST-ITEM AND SORT-ITEM VERBS · · 250
6.41 CONTROLLING AND DEPENDENT ATTRIBUTES: AN

INTRODUCTION · · · · · · · · · · · · · · 251
6.42 CONTROLLING AND DEPENDENT ATTRIBUTES: CAND D

CODES · 253
6.43 SUMMARY OF CONVERSION AND CORRELATIVE CODES · 255
6.43.1 'G' CODE : CORRELATIVE AND CONVERSION GROUP

EXTRACTION CODE · · · · · · · · · · · · · · 257
6.43.2 'L' CODE CORRELATIVE AND CONVERSION LENGTH 258

CODE
6.43.3 'R' CODE : CORRELATIVE AND CONVERSION RANGE

CODE · · · · · · · · · · · · · · · · 259
6.43.4 'P' CODE : CORRELATIVE AND CONVERSION PATTERN

(-~\
CODE · · · · · · · · · · · · · · · · 260

6.43.5 'S' CODE : CORRELATIVE AND CONVERSION
SUBSTITUTION CODE · · · · · · · · · · 261

6.43.6 'c' CODE : CORRELATIVE AND CONVERSION
CONCATENATION · · · · · · · · · · · 262

6.43.7 'T' CODE : CORRELATIVE AND CONVERSION TEXT
EXTRACTION · · · · · · · · · · · · · · · · · · · 263

6.43.8 'D' CODE : CORRELATIVE AND CONVERSION DATE
CODE · 264

6.43.8.1 INTERNAL DATE FORMAT · · · · · · · · · · · · · · 266
6.43.9 'MT' CODE : CORRELATIVE AND CONVERSION MASK TIME

CODE · 267
6.44 DEFINING FILE TRANSLATION: Tfi1e CODE 268
6.45 DEFINING ASCII AND USER CONVERSIONS: MX AND U

CODES · 270
6.46 DEFINING MATHEMATICAL OR STRING FUNCTIONS: F

CODE · 271
6.47 F CODE SPECIAL OPERANDS · · · · · · · · · · 274
6.47.1 The Load Previous Value (LPV) operator. · · 276
6.48 SUMMARY OF F CODE STACK OPERATIONS · · 277
6.49 DEFINING MATHEMATICAL FUNCTIONS: THE A

CORRELATIVE · · · · · · · · · · · · · · 279
6.50 HANDLING NUMBERS AND FORMATTING: MR AND ML

CODES · · · · · · · · · · · · · · · · · · · 282
6.51 ADDITIONAL CHARACTER MANIPULATION: MC CODE · 284
6.52 SPECIAL CONTROL CHARACTERS · · · · · · · · 285

C

7
7.1
7.2
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.2.4

7.3.2.5
7.3.3
7.3.4

7.3.5
7.4
7.4.1
7.4.1.1
7.4.1.2
7.4.1.3
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.4.7.1
7.4.7.2
7.4.7.3
7.4.7.4
7.4.8
7.5
7.6
7.6.1
7.6.2
7.6.3
7.7
7.7.1
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.4.1
7.8.4.2
7.8.4.3
7.8.4.4
7.9
7.9.1
7.9.2
7.9.3
7.9.3.1
7.9.3.2
7.9.3.3
7.9.3.4
7.9.4
7.10
7.11
7.12

PERIPHERALS
AN O'VER.VIEW .•..•......•....
SPOOLER VERBS •••••••••••••••
The SP-ASSIGN, SP-OPEN and SP-CLOSE VERBS
OVERVIEW OF SP-ASSIGN OPTIONS
CLASSES OF SP-ASSIGNMENT PARAMETERS
Destination specification: •...
THE FORM NUMBER

· 286
· . 287
· . 295

· 298
· . 298

299
· 299
· 302

THE COpy COUNT . . . •
Finding out what your assignment specification

· 302

is
PRINTFILE PREDEFINITION•.
The SP-OPEN and SP-CLOSE verbs.
THE GENERAL FORM OF THE SP-ASSIGN VERB.

· 302
· . 303

· 303
. . . . 304

SP-ASSIGN EXAMPLES. 305
HOLD FILE INTERROGATION: THE SP-EDIT VERB . . . 308
SP-EDIT OPTIONS. 308
PRINT FILE SELECTION OPTIONS . . . • . . . 308
HOLD FILE DESTINATION OPTIONS. 310
HOLD FILE TO DATA FILE OPTION 311
PROC CONTROL OF THE SP-EDIT PROCESS . 311
THE SOURCE OF HOLD FILES 312
The SP-EDIT prompt sequence. . 318
THE DISPLAY PROMPT. 319
THE STRING PROMPT. 319
THE SPOOL PROMPT. . . • 320
THE Y RESPONSE. 320
THE T RESPONSE. 321
THE TN RESPONSE. 321
THE F RESPONSE. 322
THE DELETE PROMPT. 323
THE PRINTER CONTROL VERBS. 324
THE STARTPTR VERB. 324
EXAMPLES OF THE STARTPTR VERB. 326
THE PRINT FILE SCHEDULING ALGORITHM. . 328
STARTPTR ERROR MESSAGES 329
THE STOPPTR VERB 331
STOPPTR ERROR MESSAGES. 332
The SP-KILL verb and its extensions. . 334
PRINT FILE TERMINATION. 335
DEQUEING PRINT FILES. 337
DELETING A PRINTER FROM THE SYSTEM. . . 339
SP-KILL MESSAGES. . . 340
General messages. . 340
SP-KILL messages. 340
SP-KILL F messages. . . 341
SP-KILL D messages. 341
THE LISTPEQS VERB. 342
LISTPEQS OPTIONS.. 343
THE LISTPEQS VERB FORM. 344
LISTPEQS STATUS INDICATORS. . . 345
JOB CHARACTERISTICS: 345
CLOSED CONDITION: ..•. 345
ENQUEUED CONDITION: . . 345
SP-EDIT conditions: 346
Examples of the LISTPEQS verb. . . 347
THE LISTPTR VERB. . 350
THE LISTABS VERB. 355
THE SP-STATUS VERB. 356

(""." "
/

7.12.1

7.12.2
7.12.3
7.13
7.13.1
7.13.2
7.13.3
7.14
7.15
7.15.1
7.15.2
7.15.3
7.15.4
7.16
7.16.1
7.16.2
7.17
7.18
7.19
7.20

7.21

7.22

7.23
7.24
7.25
7.26

8
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.7
8.3.8
8.3.9
8.3.10
8.3.11
8.3.12
8.3.13
8.3.14
8.3.15
8.3.16
8.3.17
8.3.18
8.3.19
8.3.20
8.3.21
8.3.22
8.3.23
8.3.24

THE SP-STATUS VERB AS A SYSTEM INFORMATION
DISPI..AY .•.........•..•.. . 356
THE SP-STATUS VERB AS SPOOLER AWAKENER. 356
THE ON-LINE AND OFF-LINE CONDITION. . 356
THE COLDS TART AND THE : STARTSPooLER VERB. . 363
COLDS TART INITIALIZATION OF THE SPOOLER. 363
THE :STARTSPooLER VERB'S ACTION. 363
WHEN TO USE THE :STARTSPooLER VERB. . . 364
SPOOLER VERB OPTIONS HANDLER 367
CONSIDERATIONS ON PROC CONTROL OF THE SPOOLER. . 368
CASES OF PROC INTERACTION. . 368
HOLD FILE RECOGNITION. . .. 370
TAPE CONTROL. 371
PRINTER CONTROL UNDER PROC. 372
MAGNETIC TAPE FACILITIES. 374
COMMUNICATION WITH OTHER PICK-CLASS MACHINES. . 375
COMMUNICATIONS WITH NON-PICK-CLASS MACHINES. 375
MAGNETIC TAPE: TAPE RECORD SIZE 378
MAGNETIC TAPE: THE T-ATT VERB 379
MAGNETIC TAPE: THE T-DET VERB 382
MAGNETIC TAPE CONTROL: THE T-FWD, T-BCK, T-REW,
T-SPACE, AND T-EOD VERBS 383
MAGNETIC TAPE CONTROL: THE T-WEOF AND T-CHK
VERBS
MAGNETIC TAPE I/O: THE T-DUMP, S-DUMP AND
T-LOAD COMMANDS
THE T-READ COMMAND.
EXAMPLES OF THE T-READ COMMAND.
THE SP-TAPEOUT VERB.
THE T-RDLBL COMMAND. GENERATING AND READING
TAPE LABELS

385

387
. 389

390
392

394

RUNOFF 396
RUNOFF INTRODUCTION AND RUNOFF VERB FORMAT . . . 397
RUNOFF SOURCE FILE FORMAT 398
RUNOFF COMMANDS 399
BEGIN PAGE (BP) 399
BOX n,m / BOX OFF (BOX) . . . 399
BREAK (B) 3 9 9
CAPITALIZE SENTENCES (CS) 399
CENTER (C) 4 00
CHAIN {[DICT] [FILE-NAME]} ITEM-ID 400
CHAPTER text 401
, .* ' THE COMMENT INSTRUCTION 401
CONTENTS 401
CRT 401
FILL (F) 401
FOOTING 402
HEADING 402
HILITE c / HILITE OFF 403
, - , TREA!MENT OF HYPHENS 403
INDENT n (I) 403
INDENT MARQIN n (IM) . 403
INDEX text 404
INPUT 404
JUSTIFY (J) 404
LEFT MARGIN n .•.. . . 404
LINE LENGTH n 404
LOWER CASE (LC) 404
LPTR 404

B.3.25
B.3.26
B.3.27
B.3.2B
B.3.29
B.3.30
B.3.31
B.3.32
B.3.33
B.3.34
B.3.35
B.3.36
B.3.37
B.3.3B
B.3.39
B.3.40
B.3.41
B.3.42
B.3.43
B.3.44
B.3.45
B.4
B.4.1
B.4.2
B.4.3

9
9.1
9.2
9.3
9.3.1
9.4
9.5
9.6

9.7

9.B
9.9
9.10
9.11
9.12
9.13
9.14
9.15

9.16
9.17

9.1B
9.19
9.20
9.21

9.22
9.23

9.24
9.25

NOCAPITALIZE SENTENCES (NCS) ..•..
NOFILL (NF) ...•.

· . 405
· 405

. 405 NOJUSTIFY (NJ)
NOPAGING (N)
NOPARAGRAPH
PAGE NUMBER n
PAPER LENGTH n • . . • . .
PARAGRAPH n
PRINT INDEX

· . 405
· 405

405
· . 405

405
· . 407

PRINT · 407
READ {[DIeT] [FILE-NAME]} ITEM-ID
READNEXT

· 407
· . . . 407

SAVE INDEX file-name
SECTION n text

· 411
. 4·11

SET TABS n,n,n,• . .. 411
SKIP n (SK) 412
SPACE n (SP) 412
SPACING n 412
STANDARD
TEST PAGE n
UPPER CASE (UC)
SPECIAL CONTROL CHARACTERS . . .
Upper- and lower-case controls. . .
Underlining and overstriking ..
Tab setting.

· . 412
· . 412

· 412
· 413
· 413

414
· 415

PICK/BASIC 416
THE PICK/BASIC LANGUAGE 417
PICK/BASIC LANGUAGE DEFINITIONS . . 419
PICK/BASIC FILE STRUCTURE 421
THE PICK/BASIC PROGRAM 422
DYNAMIC ARRAYS - FILE ITEM STRUCTURE 423
CREATING AND COMPILING PICK/BASIC PROGRAMS . . . 424
PICK/BASIC COMPILER OPTIONS: A, C, E, L AND P
OPTIONS · 426
PICK/BASIC COMPILER OPTIONS M, S, AND X
OPTIONS 42B
EXECUTING PICK/BASIC PROGRAMS 429
CATALOG AND DECATALOG : SHARING OBJECT CODE .. 430
PICK/BASIC EXECUTION FROM PROC 431
VARIABLES AND CONSTANTS DATA REPRESENTATION 432
ARITHMETIC EXPRESSIONS 434
STRING EXPRESSIONS 436
RELATIONAL EXPRESSIONS 43B
MATCHES : RELATIONAL EXPRESSION PATTERN
MATCHING •.•.....•.......... 440
OR - AND : LOGICAL EXPRESSIONS 442
NUMERIC MASK AND FORMAT MASK CODES : VARIABLE
FORMATTING · 444
@ FUNCTION : CURSOR CONTROL
ABORT STATEMENT : TERMINATION
ABS FUNCTION : ABSOLUTE NUMERIC VALUE
ALPHA FUNCTION : ALPHABETIC STRING
DETERMINATION
ASCII FUNCTION : FORMAT CONVERSION . . .
ASSIGNMENT StATEMENT : ASSIGNING VARIABLE
VALUES
BREAK ON AND OFF : DEBUGGER INHIBITION
CALL AND SUBROUTINE STATEMENTS : EXTERNAL
SUBROUTINES

· 447
· 44B

. . . 449

450
451

. . 452
. . . 453

. . 454

9.26

9.27
9.28
9.29
9.30

9.31
9.32

9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.46
9.47
9.48
9.49
9.50
9.51
9.52

9.53

9.54
9.55
9.56
9.57

9.58

9.59
9.60
9.61
9.62

9.63
9.64
9.65
9.66
9.67
9.68
9.69
9.70

9.71
9.72
9.73
9.74
9.75
9.76

ARRAY PASSING AND THE CALL @ STATEMENT :
INDIRECT EXTERNAL SUBROUTINES
CASE STATEMENT : CONDITIONAL BRANCHING
CHAIN STATEMENT : INTERPROGRAM COMMUNICATION
CHAR FUNCTION : FORMAT CONVERSION
CLEAR STATEMENT : INITIALIZING VARIABLE
VALUES . • • • •
CLEARFILE STATEMENT : DELETING DATA
COLIC) AND COL2() FUNCTIONS: STRING
SEARCHING
COMMON STATEMENT : VARIABLE SPACE ALLOCATION
COS FUNCTION : COSINE OF AN ANGLE
COUNT FUNCTION : DYNAMIC ARRAYS
DATA STATEMENT : STACKING INPUT DATA

· 455
· . 456
· . 457

459

460
· . 461

· 462
· . 463
· . 465

466
467

DATE () FUNCTION : DATE CAPABILITY
DCOUNT FUNCTION : DYNAMIC ARRAYS
DELETE STATEMENT : DELETING ITEMS

· . 468
. . . 469
... 470

DELETE FUNCTION : DYNAMIC ARRAY DELETION
DIM STATEMENT : DIMENSIONING ARRAYS
EBCDIC FUNCTION FORMAT CONVERSION

471
472
473

ECHO ON AND OFF : TERMINAL DISPLAY
END STATEMENT
ENTER STATEMENT : INTERPROGRAM TRANSFERS
EQUATE STATEMENT : VARIABLE ASSIGNMENT
EXP FUNCTION : EXPONENTIAL CAPABILITY ..
EXTRACT FUNCTION : DYNAMIC ARRAY EXTRACTION
FIELD FUNCTION : STRING SEARCHING
FOOTING STATEMENT : PAGE OUTPUT FOOTINGS
FOR ... NEXT STATEMENT: PROGRAM LOOPING
FOR ... NEXT STATEMENT: EXTENDED PROGRAM
LOOPING
GOSUB AND ON ... GOSUB STATEMENTS: INTERNAL
SUBROUTINE BRANCHING
GOTO STATEMENT : UNCONDITIONAL BRANCHING
HEADING STATEMENT : PAGE OUTPUT HEADINGS
ICONV FUNCTION : INPUT CONVERSION
IF STATEMENT : SINGLE-LINE CONDITIONAL
BRANCHING
IF STATEMENT : MULTI-LINE CONDITIONAL
BRANCHING
INDEX FUNCTION : SEARCHING FOR SUB-STRINGS
INPUT STATEMENT : TERMINAL INPUT
INPUT@ STATEMENT : POSITIONING MASKED INPUT
INPUTERR - INPUTTRAP - INPUTNULL : INPUT
FORMS
INSERT FUNCTION : DYNAMIC ARRAY INSERTION
INT FUNCTION : INTEGER NUMERIC VALUE
LEN FUNCTION : GENERATING A LENGTH VALUE
LN FUNCTION : NATURAL LOGARITHM
LOCATE STATEMENTS : LOCATING INDEX VALUES
LOCK STATEMENT : SETTING EXECUTION LOCKS
LOOP STATEMENT : STRUCTURED LOOPING
MAT - ASSIqNMENT AND COPY : ASSIGNING ARRAY

474
· 475

476
477
478

· 479
· 480
· 481
· 482

484
· 486

· 487
· 488

489

490

491
493
494
495

· . 496
497

· 498
499
500
501
502

· . 503

VALUES 505
MATREAD STATEMENT : MULTIPLE ATTRIBUTES 506
MATREADU STATEMENT : GROUP LOCKS 507
MATWRITE STATEMENT : MULTIPLE ATTRIBUTES 508
MATWRITEU STATEMENT : UPDATE LOCKS . . 509
NOT FUNCTION : LOGIC CAPABILITY 510
NULL STATEMENT : NON-OPERATION 511

9.77
9.78
9.79
9.80
9.81
9.82

9.83
9.84

9.85

9.86
9.87
9.88
9.89
9.90
9.91
9.92
9.93

9.94
9.95
9.96

9.97
9.98
9.99
9.100
9.101
9.102
9.103
9.104
9.105
9.106
9.107

9.108
9.109

9.110
9.111
9.112
9.113
9.114
9.115
9.116
9.117
9.118
9.119
9.120
9.121

9.122

9.123

9.124
9.125
9.126

NUM FUNCTION : NUMERIC STRING DETERMINATION
OCONV FUNCTION : OUTPUT CONVERSIONS ..•.
ON •.• GOTO STATEMENT : COMPUTED BRANCHING
OPEN STATEMENT : OPENING I/O FILES • . . .
PAGE STATEMENT : HEADING OUTPUT .•..
PRECISION DECLARATION : SELECTING NUMERIC
PRECISION •
PRINT STATEMENT : TERMINAL OR PRINTER OUTPUT
PRINT STATEMENT : TABULATION AND

512
· . 513

· 514
515

· 516

517
518

CONCATENATION •••..•........... 520
PRINTER ON/OFF STATEMENTS : SELECTING OUTPUT
DEVICE • · . 521
PROMPT STATEMENT : INPUT PROMPT CHARACTER
PWR FUNCTION : RAISING BY A POWER

. . . 522
· 523
· 524
· 525

· . 527

READ STATEMENT : ACCESSING FILE ITEMS
READNEXT STATEMENT : ACCESSING ITEM-IDS .
READT STATEMENT : READING RECORDS FROM TAPE
READU AND READVU STATEMENTS : GROUP LOCKS
READV STATEMENT : ACCESSING AN ATTRIBUTE
RELEASE STATEMENT : RELEASING GROUP UPDATE

· 527
· 528

LOCKS 529
REM OR MOD FUNCTION : REMAINDER VALUE . . . 530
REPLACE FUNCTION : DYNAMIC ARRAY REPLACEMENT 531
RETURN AND RETURN TO STATEMENTS : SUBROUTINE
RETURNING •.............
REWIND STATEMENT : REWINDING THE TAPE
RND FUNCTION : RANDOM NUMBER GENERATION
SELECT STATEMENTS : SELECTING ITEM-IDS

532
. 533

SEQ FUNCTION : FORMAT CONVERSION
SIN FUNCTION : SINE OF AN ANGLE
SLEEP OR RQM STATEMENT : TIME ALLOCATION
SPACE FUNCTION : STRING SPACING
SQRT FUNCTION : SQUARE ROOT CABABILITY
STOP STATEMENT : TERMINATION
STR FUNCTION : GENERATING STRING VALUES .
SYSTEM FUNCTION : CALLING PRE-DEFINED SYSTEM

· . 534
· 535

. . . 536
· 537
· 538
· 539

540
· . 541

· 542

VALUES . 543
TAN FUNCTION : TANGENT OF AN ANGLE 545

· 546
· 547

TIME () AND TlMEDATE () FUNCTIONS : TIME AND DATE
CAPABILITY
TRIM FUNCTION : DELETING EXTRANEOUS SPACES
UNLOCK STATEMENT : CLEARING EXECUTION LOCKS · . 548

. . . 549 WEOF STATEMENT : POSITIONING TAPE
WRITE STATEMENT : MODIFYING ITEMS
WRITET STATEMENT: WRITING RECORDS TO TAPE
WRITEU AND WRITEVU STATEMENTS : UPDATE LOCKS
WRITEV STATEMENT : UPDATING AN ATTRIBUTE .
PICK/BASIC SYMBOLIC DEBUGGER : AN OVERVIEW
USING THE PICK/BASIC DEBUGGER : AN EXAMPLE
THE TRACE TABLE ••............
PICK/BASIC DEBUGGER: THE B, D, AND K COMMANDS
E(XECUTE), G(O) AND N(O or BYPASS) COMMANDS :
DEBUGGER EXECUTION
SLASH '/' COMMAND: DISPLAYING AND CHANGING
VARIABLES
VARIOUS DEBUGGER COMMANDS : ADDITIONAL
FEATURES
GENERAL CODING TECHNIQUES : HELPFUL HINTS
PROGRAMMING EXAMPLES: PYTHAG
PROGRAMMING EXAMPLES: GUESS

· 550
· 551

· . 552
· 553

· . 554
· 556
· 558
· 558

· 560

· 561

· 562
· 563
· 565

567

/~
I

',,--./

9.127 PROGRAMMING EXAMPLES: INV-INQ · · · · · · · · · 567
9.128 PROGRAMMING EXAMPLES: FORMAT · · · · · · 568
9.129 PROGRAMMING EXAMPLES: LOT-UPDATE · 570
9.130 APPENDIX A · · · · · · · · · · · · · · 573
9.131 APPENDIX B · · · · · · · · · · · 575

f'; 9.132 APPENDIX C · · · · · 576
9.133 APPENDIX D · · · · · · · · · · · 580
9.134 LIST OF ASCII CODES · · · · · · · 582
9.135 APPENDIX F · · · · · · · · · · · · · 584
9.136 APPENDIX G · · · · · · · · · · · · · · · 586

10 SYSTEM MAINTENANCE · · · · · · · 587
10.1 VIRTUAL MEMORY STRUCTURE · · · · · · · 588
10.2 ADDITIONAL WORK-SPACE ALLOCATION · · · · 590
10.3 THE FILE AREA · · · · · · · · · · · · · · 591
10.4 FRAME FORMATS · · · · · · · · · · · · 593
10.5 DISPLAYING FRAME FORMATS; THE DUMP VERB · 594
10.6 THE SYSTEM FILE and SYSTEM-level FILES · 596
10.7 THE BLOCK-CONVERT AND POINTER-FILE

DICTIONARIES · · · · · · · · · · · · 598
10.8 THE ERRMSG FILE, LOGON MESSAGES, AND THE

PRINT-ERR VERB · · · · · · · 600
10.9 USER IDENTIFICATION ITEMS · · · 602
10.10 SECURITY . · · · · · · · · · · · · · · · 604
10.11 THE ACCOUNTING HISTORY FILE: AN

INTRODUCTION · · · · · · · · · · · · · 606
10.12 THE ACCOUNTING HISTORY FILE: SUMMARY AND

EXAMPLES . · · · · · · · · · · · · · · · 608
10.13 THE ACCOUNTING HISTORY FILE: PERIODIC

CLEARING · · · · · · · · · · · · · 610
10.14 FILE STRUCTURE: THE ITEM AND GROUP COMMANDS 611

(-" 10.15 FILE STRUCTURE: THE ISTAT AND HASH-TEST
COMMANDS · · · · · · · · · · · · · 613

- ./ 10.16 DETERMINING NATURE OF GROUP FORMAT ERRORS 614
10.16.1 GROUP DEFINITION · · · · · · · · · 614
10.16.2 GROUP FORMAT ERRORS · · · · · · · · · · · 614
10.16.3 RECOVERY FROM GFE's · · · · · · · · · · · 615
10.17 GENERATING CHECKSUMS: THE CHECK-SUM COMMAND 616
10.18 SYSTEM PROGRAMMER (SYSPROG) ACCOUNT · · · · 617
10.19 AVAILABLE SYSTEM SPACE: THE POVF COMMAND · 617
10.20 CREATING ACCOUNTS and ASSEMBLING MODES · · · · · 618
10.21 DELETE-ACCOUNT · · · · · · · · · · · · · · 619
10.22 FILE STATISTICS REPORT · · · · · · · · · · 620
10.23 UTILITY VERBS: STRIP-SOURCE, LOCK-FRAME,

UNLOCK-FRAME , · · · · · · · · · · · · 622
10.24 SYS-GEN AND FILE-SAVE TAPES: FORMAT · · · 624
10.25 FILE-RESTORE · · · · · · · · · · · · · · · 625
10.26 ERROR RECOVERY DURING FILE LOADS · · · · · 627
10.27 SELECTIVE RESTORES · · · · · · 628
10.28 SYSTEM BACKUP : AN OVERVIEW · 631
10.29 THE SAVE VERB · · · · · · · · · 632
10.29.1 MULTIPLE REEL SAVES · · · · · 633
10.30 ACCOUNT-SAVE AND ACCOUNT-RESTORE · 634
10.31 SYSTEM STATUS: THE WHAT AND WHERE VERBS 635
10.32 VERIFYING SOFTWARE · · · · · · · · · · · 638

c

(J

(~- j

SECTION 1

INTRODUCTION
TO THE
ICON/PICK
OPERATING
SYSTEM

c

o

(

(/

c

Chapter 1

INTRODUCTION

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 1

(~"

1.1 WHAT IS THE PICK COMPUTER SYSTEM?

The PICK System is a generalized data base management computer system. It
is a complete system that provides multiple users with the capability to
instantly update and/or retrieve information stored in the on-line data
files. Users communicate with the system through local or remote
terminals to access files that may be private, common, or security
controlled. Each terminal user's vocabulary can be individually tailored
to specific application vocabularies.

The PICK System includes the powerful, yet simple-to-use ACCESS inquiry
language, the PICK/BASIC and PROC high-level languages, file maintenance
tools, an EDITOR, complete programming development facilities, and a host
of other user amenities. PICK System runs in an on-line, multi-user
environment with all system resources and data files being efficiently
managed by a true Virtual Memory Operating System that provides users with
unrivaled performance and reliability.

The PICK System is exceptional when measured from any angle: system
capability multi-user performance, file management languages, ease of
programming, data structure, and architectural features. The high
performance and fast response of the PICK System are possible only through
the use of a unique business-oriented, machine-independent assembly
language which greatly reduces system overhead and program execution time.

The System Software includes:

Virtual Memory Manager.
Multi-user Operating System.
Special Data Management Instructions.
Input/Output Processors.
ACCESS, PICK/BASIC, PROC, TCL Languages.
Selectable/automatic report formatting.
Dynamic file/memory management.
Selectable levels of file/data security.

The unique file structure provides:

Variable length files/records/fields.
Multi-values (and subvalues) in a field.
Efficient storage utilization.
Fast accessibility to data items.
Selectable degrees of data security.
File size limited only by size of disc.
Record size up to 32K bytes.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 2

1.2 AN OVERVIEW OF PICK COMPUTER SYSTEM'S MAJOR FEATURES

The PICK System is a system specifically oriented to provide a vehicle
for the implementation of cost-effective data base ,management. Data (-~ '/,
base management systems implemented in the PICK System afford two
major benefits: 1) providing accurate and timely information to form
the basis for significantly improving the decision-making process, and
2) substantially reducing the clerical and administrative effort
associated with the collection, the storage, and dissemination of the
information pertaining to an organization.

The PICK System is a very efficient and effective tool for on-line
data base management. Pick has implemented a truly revolutionary on
line transaction processing system. Three major components of the
system are especially important:

The virtual memory operating system
The software level architecture
The terminal input/output routines

The virtual memory operating system which has long been used in larger
computer systems had previously been impractical for mini-computers
due to the large amount of overhead needed for the operating system
itself. In the PICK System, the virtual memory operating system has
been optimized and coded in a highly efficient machine-independent
assembly language which executes many times faster than conventional
languages. Thus the overhead time is no longer a serious problem on
the smaller computers.

Most sophisticated computer operating systems require vast amounts of I~ "

mtehmory tdo bsupport them. system1 s cons~ll'ng more tfhan. one hundr~d \,
ousan ytes are common. On y a sma amount 0 ma1n memory 1S

needed to run the PICK System. Everything else (system software, user
software and data) is transferred automatically into main memory from
the disc drive by the virtual memory operating system only when
required.

Data in the PICK System is organized into 5l2-byte pages (frames)
which are stored on the disc. As a frame is needed for process1ng,
the operating system automatically determines if it is already in core
memory. If it is not, the frame is automatically transferred from the
disc unit (virtual memory) to core. Frames are written back onto the
disc on a "least-recent1y-used" basis. The virtual memory feature of
the PICK System allows the user to have access to a programming area
not constrained by core memory, but as large as the entire available
disc storage on the system.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 3 c)

(

o

The second important feature is the software level architecture of the
machine itself. Pick Systems has implemented a machine architecture
expressly designed and optimized for data base management. The
architecture of the PICK System includes very powerful instructions
expressly designed for character moves, searches, compares, and all
supporting operations germane to managing variable length fields and
records. This architecture was designed without the inevitable
restrictions imposed by being tied to anyone piece of hardware! It
is truly a machine-independent approach.

The third major feature is the handling of Input/Output (I/O)
communications with the on-line terminals. In any minicomputer on
line application, one of the main problems is that of managing the I/O
from on-line interactive terminals. As these terminals increase in
number, the load on the CPU becomes overwhelming and consequently the
response to the terminals degrades dramatically. Pick has implemented
the I/O processing of the on-line terminals with an overlapped
buffering concept. This means that other program execution need not
be held up waiting for terminal input/output to complete. As a
result, the central processing unit is utilized more completely and a
very large number of terminals may be connected to the Pick System
before any significant degradation in response time is detected.

In summary, the PICK System encompasses the following extraordinary
features:

True data base management.
Complete small business computer capabilities.
Virtual Memory Operating System.
Multi-user capabilities.
On-line file update/retrieval.
ACCESS retrieval language.
Variable file/record/field lengths.
Dynamic file/memory management.
Automatic report formatting.
Total data/system security.
Fast terminal response.
Line printer spooling.
Special data management processors.
High-speed generalized sort.
Big computer performance on Minis, Micros and Mainframes.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 4

1.3 THE PICK SOFTWARE PROCESSORS THE PICK SOFTWARE PROCESSORS

The processors available on the Pick Computer System comprise the most
extensive data base management software available on any minicomputer. ;-.
An overview of some of the processors available to all terminal users G
is presented in this topic. All processors are described fully in the
sections devoted to them.

The ACCESS Processor

ACCESS is a generalized information management and data retrieval
language. A typical ACCESS inquiry consists of a relatively free-form
sentence containing appropriate verbs, file names, data selection
criteria, and control modifiers. ACCESS is a dictionary-driven
language. The vocabulary used in composing an ACCESS input sentence
is contained in several dictionaries. Each user's vocabulary can be
individually tailored to his particular application terminology.
ACCESS encompasses the following extended features;

Logical English word order and syntax for user inputs.
Automatic or user-specified output formatting.
Sorting capabilities plus generation of statistical information.
Relational and logical operations.
Verbs such as: LIST, SORT, SELECT, COUNT, STAT, etc.

The PICK/BASIC Processor

PICK/BASIC is an exceptionally powerful yet simple and versatile
programming language suitable for expressing a wide range of
processing capabilities. PICK/BASIC is a language especially easy for
the beginning programmer to master. PICK/BASIC is an extended version
of Dartmouth BASIC which includes the following features:

Flexibility in selecting meaningful variable names.
Complex and multi-line statements.
String handling with variable length strings.
Integrated with Data Base file access and update capabilities.
Fully structured programming support.
Re-entrant and recursive abilities.

The PROC Processor

The PROC processor allows the user to prestore a complex sequence of
operations which can then be invoked bya single word command. Any
sequence of operations which can be executed from the terminal can
also be prestored via the PROC processor. The PROC processor
encompasses the following features.

Argument passing.
Interactive terminal prompting.
Conditional and unconditional branching.
Pattern matching.
Free-field and fixed-field character moving.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 5 o

(

(

1.4

c

The EDITOR Processor

The EDITOR permits on-line interactive modification of any item in the
data base. The EDITOR may be used to create and/or modify PICK/BASIC
programs, PROC's, assembly source, data files, and file dictionaries.
The EDITOR uses the current line concept; that is, at any given time
there is a current line that can be listed, altered, deleted, etc.
The EDITOR includes the following features:

Absolute and relative current line positioning.
Merging of lines from terminal or from other file items.
Character string locate and replace.
Input/Output formatting.

The File Management Processors

The file management processors provide the capabilities for
generating, managing, and manipulating files (or portions of files)
within the Pick system. The file management processors include the
CREATE-FILE processor, the CLEAR-FILE processor, the DELETE-FILE
processor, the copy processor, CREATE-ACCOUNT and DELETE-ACCOUNT.

The Utility Processors

Numerous utility processors are also included which provide an
extensive complement of utility capabilities for the system.

Software Processor Usage

These and any other software processors may be used by any or all
terminals simultaneously. Processing is invoked through appropriate
verbs contained in each terminal user's Master Dictionary. User
accessibility to these capabilities may be limited by controlling the
verb selection available in specific user's Master Dictionaries.

OVERVIEW OF TCL

I The Terminal Control Language (TCL) is the primary interface between I
the terminal user and the various PICK System processors.

Most processors are invoked directly from the Terminal Control
Language by a single input statement, and return to TCL after
completion of processing. TCL prompts the user by displaying a">".
This is referred to as the "TCL prompt character". Input statements
are constructed by typing a character at a time from the terminal
until the carriage return or line feed key is depressed, at which time
the entire line is processed by TCL. The first word of an input
statement must be a valid PICK "verb".

One of the powerful features of the PICK System is the ability to
customize the vocabulary for each user. Since verbs reside in the
individual user's Master Dictionary (MD), the vocabulary may be added
to or deleted from without affecting the other users. In addition, an

CHAPTER 1 - INTRODUCTION Copyright (C) 1985 PICK SYSTEMS

PAGE 6

unlimi ted number of synonyms may be created for each verb. The PICK
System operates in what is Jcnown as an "Echo-Plex" environment. This
means that each data character input by the terminal is sent to the
computer and echoed back to the terminal before being displayed on the
screen. The user is thus assured that if the data character displayed ~
on the terminal is correct, the data character stored in the computer ~/
is correct.

In addition to the standard ASCII (96) character set recognized,
special operations are performed when certain control characters are
detected. All other control characters are deleted from the input
line that is passed to lower level processors.

1.5 DATA BASE MANAGEMENT PROCESSORS DATA BASE MANAGEMENT PROCESSORS

-----------~--
The data base management processors provide the capabilities for
generating, managing, and manipulating files (or portions of files)
within the PICK System. The data base management processors include
the CREATE-FILE processor, the CLEAR-FILE processor, the DELETE-FILE
processor, and the COpy processor.

The CREATE-FILE Processor

The CREATE-FILE processor is used to generate new dictionaries and/or
data files. The processor creates file dictionary entries in the
user's Master Dictionary (MD), and reserves disc space for the
dictionary and data portion of the new file. The user need only
specify the name of the file and value for the desired "modulo". The
"modulo" parameter is selected to balance storage efficiency and
accessing speed, based on the number of items in the file, the average ./~~
item size, etc. The required file space is allocated from the,,-j
available file space pool. Files may automatically grow beyond their
initial size when the system automatically attaches additional
"overflow" space from the available file space pool upon demand.

The CLEAR-FILE Processor

The CLEAR-FILE processor clears the data from a file. "Overflow"
space that may be linked to the primary file space will also be
released to the available file space pool. Either the data section or
the dictionary section of a file may be cleared.

The DELETE-FILE Processor

The DELETE-FILE processor allows for the deletion of a file. All
allocated file space is returned to the available file space pool.
Either the data section or the dictionary section (or both) of the
file may be deleted.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 7 o

()

1.6

(i.7

The COpy Processor

The COPY processor allows the user to copy an entire file (or selected
items from the file) to the terminal, to the line printer, to the
magnetic tape unit, to another file (either in the same account or in
some other user-account), or to the same file under a different name
(item-id) •

AN OVERVIEW OF SYSTEM UTILITIES

I The Pick Utility processors provide an extensive complement of utility I
capabilities for the system.

The Pick Computer System includes a very large number of utility
processors. These processors provide such capabilities as:

Magnetic tape unit functions
Mathematical functions
Line printer spooling control
File save/restore functions
File statistics
Creation of user-accounts
Setting of terminal characteristics
Block printing
Virtual memory dumping
Inter-user message communications
Bootstrapping and cold-start
Systems accounting

AN OVERVIEW OF ACCESS

I ACCESS is a user-oriented data retrieval language used for accessing I
files within the Pick Computer System.

ACCESS is a generalized information management and data retrieval
language. A typical ACCESS inquiry consists of a relatively free-form
sentence containing appropriate verbs, file names, data selection
criteria, and control modifiers. Each user's vocabulary can be
individually tailored to his particular application jargon.

ACCESS is a dictionary-driven language to the extent that the
vocabulary used in composing an ACCESS sentence is contained in
several dictionaries. Verbs and file names are located in each user's
Master Dictionary (M/DICT). User-files consist of a data section and
a dictionary section; the dictionary section contains a structural
definition of the data section. ACCESS references the dictionary
section for data attribute descriptions. These descriptions specify
attribute fields, functional calculations, inter-file retrieval
operations, display format, and more.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 8

ACCESS provides the ability to selectively or conditionally retrieve
information and also provides an automatic report generation
capability. Output reports may appear on the terminal or be sent to
the line printer and are automatically formatted according to the
user's specifications by the Pick system. The output may be sorted (--\
into any sequence defined by the user, and encompasses the following ~.~
extended features:

Relatively free-form input of word order and syntax.
Automatic or user-specified output report formats in either
columnar or non-columnar form.
Generalized data selection using logical and arithmetic
relationships.
Sorting capability on variable number of descending and/or
ascending sort-keys.
Generation and retention of multiple specially selected and/or
sorted lists for use by subsequent processors.
User ability to define variables derivable from the data
in the object file and from other files, and to search,
select, sort, total, output and break on the basis thereof.
Selection of sub-records within items containing multiple
unit records and sorts and outputs based on them.
Generation of statistical information concerning files.
Support of 11 digit signed arithmetic.

1.8 AN OVERVIEW OF PICK/BASIC

The PICK/BASIC Language is an extended version of Dartmouth BASIC,
specifically designed for data base management processing on the PICK
System.

PICK/BASIC is an extremely powerful yet versatile programming language
suitable for expressing a wide range of problems. Developed at
Dartmouth College in 1963, Dartmouth BASIC is a language especially
easy for the beginning programmer to master. PICK/BASIC is an
extended version of Dartmouth BASIC with the following features:

Optional statement labels (statement numbers)
Statement labels of any length
Alphanumeric variable names of any length
Multiple statements on one line
Complex IF statements
Multi-line IF statements
Formatting and terminal cursor control
String handling with variable length strings
One and two dimensional arrays
Magnetic tape input and output
Decimal arithmetic with up to 14 digit precision
ACCESS data conversion capabilities
PICK file access and update capabilities
Pattern matching
Dynamic file arrays
External subroutines

CHAPTER 1 - INTRODUCTION Copyright (C) 1985 PICK SYSTEMS

PAGE 9

1.9 AN OVERVIEW OF THE EDITOR

(/
I The EDITOR is a PICK processor which permits on-line interactive I

modification of any item in the data base.

The Pick EDITOR may be used to create and/or modify PICK/BASIC
programs, PROC's, assembly source, data files, and file dictionaries.

The EDITOR is entered by issuing the EDIT verb.
format is as follows:

EDIT file-name item-id

The general command

The item specified by "file-name" and "item-id" will be edited. If
the specified item does not already exist on file, a new item will be
created.

The EDITOR uses the current line concept; that is, at any given time
there is a current line (i.e., attribute) that can be listed, altered,
deleted, etc. The Pick EDITOR includes the following features:

Two variable length temporary buffers
Absolute and relative current line positioning
Line number prompting on input
Merging of lines from the same or other items
Character string locate and replace
Conditional and unconditional line deletion
Input/Output formatting
Prestoring of commands

EDITOR commands are one or two letter mnemonics. Command parameters
follow the command mnemonic.

1.10 AN OVERVIEW OF PROC

(~)

I An integral part of the PICK System is the ability to define stored I
procedures called PROC's.

The PROC processor allows the user to prestore a complex sequence of
TCL operations (and associated processor operations) which can then be
invoked by a single command. Any sequence of operations which can be
executed by the Terminal Control Language (TCL) can also be prestored
via the PROC processor. This prestored sequence of operations (called
a PROC) is executed interpretively by the PROC processor and therefore
requires no compilation phase.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

. PAGE 10

The PROC processor encompasses the following features:

Four variable length I/O buffers
Argument passing
Interactive terminal prompting
Extended I/O and buffer control commands
Conditional and unconditional branching
Relational character testing
Pattern matching
Free-field and fixed-field character moving
Optional command labels
User-defined subroutine linkage
Inter-Proc linkage

1.11 AN OVERVIEW OF THE PICK OPERATING SOFTWARE

Although the user need never be concerned with the architecture and
instruction set of the Pick computer, the following section is
provided for those readers who would like some information on Pick's
unique structure.

In the early development of the PICK System, the task of creating an
efficient, flexible business information system was given to a team of
knowledgeable systems designers. At the time they began, the hardware
selection had not yet occurred. While most people might consider this
a handicap, it was in fact a most fortuitous situation. Not being
constrained by the limits of anyone type of hardware, the designers
had the freedom to create a new language, an assembly language that
was optimized for business data processing.

The power and flexibility in this assembly language is the strength of
the current PICK System. The Pick instruction set has been
specifically designed for character moves, searches, compares, and all
supporting operations pertinent to managing variable length fields and
records. The virtual memory is disc which is divided into 512-byte
frames. The virtual memory addressing range is currently 12,192,320
frames, which is in excess of 6.4 billion bytes of data.

The Virtual Machine has 16 addressing registers and one extended
accumulator for each terminal. A return stack accommodating up to
eleven subroutine calls for each terminal is also provided. By
indirect addressing through anyone of the 16 registers, any byte in
the virtual memory can be accessed. Relative addressing is also
possible using an offset displacement plus one of the 16 registers to
any bit, byte, word (16 bits), double word (32 bits), triple word (48
bits) or quadruple word (64 bits) in the entire virtual memory. This
means fast response time and very high system throughput.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

. PAGE 11 o

(

(j

The PICK Instruction Set

The PICK System has an extensive instruction set.
include:

The main features

Bit, byte, word, double-word and triple-word operations.
Memory-to-memory operation using relative addressing on bytes,
words, double-words, and triple-words.
Bit operations permitting the setting, resetting, and branching
on condition of a specific bit.
Branch instructions which permit the comparison of two relative
memory operands and branching as a result of the compare.
Addressing register operations for incrementing, decrementing,
saving, and restoring addressing registers.
Byte string operations for the moving of arbitrarily long byte
strings from one place to another.
Byte string search instructions.
Buffered Terminal Input/Output instructions.
Handling of all data and program address references by the
virtual memory operating system.
Operations for the conversion of binary numbers to printable
ASCII characters and vice versa.
Ari thmetic instructions for loading, storing, adding·, sub
tracting, multiplying, and dividing the extended accumulator
and a memory operand.
Control instructions for branching, subroutine calls, and
program linkage.
Efficient stack operations for use by high level languages.

For further details regarding the PICK instruction set, refer to the
PICK Assembly Manual.

1.12 SUMMARY OF PICK IMPLEMENTATIONS

c

Pick Operating Software is not new or untried. Its or1g1ns go
back to the mid 1960's. It has been a commercial success since
the early 1970's. In this time the concepts of user friendly
on-line inter-action have been validated over and over again.
The PICK System helps solve the biggest problem facing the
expanded use of computers today. The creation of sufficient
high-quality application software to support the new lower-cost
hardware is a monumental task. By providing the best possible
application software development environment coupled with
intelligent data base management functions and a non-procedural
ACCESS language report generator, the PICK System reduces these
programming requirements.

In addition to the direct benefits of the Operating System,
there are many tangible indirect advantages available to new
users. The vast base of application programmers as well as the
many vertical market packages available make finding application
software easier.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 12

MICRODATA 1600 (8-bit firmware machine)
INTERTECHNIQUE Mu1ti-6 (8-bit firmware machine)
EVOLUTION 280 (8-bit firmware machine)
ULTIMATE Honeywell Level-6
ULTIMATE DEC LSI-11
ADP HEWLETT-PACKARD H-P 3000/Series 30
ADDS Mentor - Z8000 (16-bit microprocessor)
DATAMEDIA Motorola - M68000 (16-bit microprocessor)
C.D.I./IBM Series 1 (16-bit software machine)
ALTOS - 18086 (16-bit microprocessor)
GENERAL AUTOMATION Zebra - M68000 (16-bit microprocessor)
S.M.I./IBM 4300 (32-bit software machine)
PICK SYSTEMS IBM PC-XT (16-bit microprocessor)
SMI/IBM CS9000 - M68000 (16-bit microprocessor)
PERTEC Sabre - M68000 (16-bit microprocessor)
TAU - M68000 (16-bit microprocessor)
WICAT - M68000 (16-bit microprocessor)
CLIMAX - M68000 (16-bit microprocessor)
CIE 680 Series
FUJITSU - 18086 (16-bit microprocessor)
NIXDORF - 8090 VM

Summary of PICK SYSTEM Hardware Implementations.

1.13 A GLOSSARY OF PICK TERMS A GLOSSARY OF PICK TERMS

C~!

The very nature of the PICK OPERATING SYSTEM presents certain terms and
definitions which may be unfamiliar to conventional system users. Those ~.~
terms and definitions, together with some more universally accepted \
acronyms and 'buzz' words, have been combined together in the following- j

Glossary, to aid the first-time user in deciphering common terminology
used in a PICK SYSTEM Environment.

ABS

AMC

ATTRIBUTE

ABSolute data image - generally taken to mean the
Operating System (PICK) Modes which are loaded to
a particular disk-drive area of frames.

Attribute Mark Count a value found in a
attribute defining item which contains the count
(# of delimiters) of attribute marks, thereby
specifying which attribute (field of data) in an
item it refers to.

Each item is made
or attributes.
certainly be three
and Address File.

up of a number of data fields
City, State and Zip would
attributes included in a Name

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 13

BIT

(BOOLEAN

. BYTE

CONTROL CHARACTERS

COMPILE

CONVERSIONS

BInary digiT - a unit of information equal to one
binary decision. An eight BIT unit is called a
byte. A character of data is represented in the
computer by a byte (or 8 BITS).

Refers to a system of mathematical logic dealing
with classes, propositions, on-off circuits, etc.
Taken by programmers to mean, AND-OR-NOT-EXCEPT
IF .. THEN, thereby allowing for logical decision
making.

A group of 8 bits usually processed together in
parallel. A character of data is represented in
the computer by a BYTE (8 bits).

Normal keyboard letters, numbers or symbols which
are entered while the "CONTROL" key is held down.
They are not normally printable characters.

The process of turning user-written code (a
PICK/BASIC program) into machine executable code
which then has meaning to the computer. Source
Code is COMPILED in order to execute it.

Instructions may be stored in attribute 7 of
attribute definition items. These CONVERSION
instructions convert formats, (such as time,
date, decimals, etc.) for the data that the
attribute definition refers to. Internal format
is converted to external format upon output and
vice-versa.

(/ CORRELATIVES Instructions may be stored in attribute 8 of
attribute definition items. Similar to

c'

CPU

CRT

conversions, they differ only in the times that
their instructions are applied to the data. Both
conversions and correlatives perform a number of
tasks and greatly reduce programming
requirements.

Central Processing Unit generally refers to
that electronic circuit board in the computer
which contains the main storage (MOS memory),
arithmetic unit, and special registers.

Cathode-Ray Tube a terminal with a video
screen, also called a VDT.

DEFAULT The way processing will be done unless otherwise
specified. A default value is a value that the
computer will use (pre-programmed) in cases where
user-defined parameters are prompted for and not
supplied by the operator.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 14

DELIMITER

DICTIONARY

EDITOR

FILE

FRAME

GROUP

HARD~~ARE

ITEM

Special Characters used to separate data. System
delimiters separate sub-values, values, and
attributes.

A PICK dictionary is a special type of file.
Normally, a data file dictionary will contain two
types of items. One type (called aD-pointer)
contains information about the size and location
of its associated data file on the disk. The
other type of item is the attribute defining item
and is used to define attributes in the data file
associated with the dictionary.

The EDITOR processor permits on-line interactive
modifications to any item in the data base. It
is the normal input processor for writing procs,
programs, system management and the like.

A file is a logical structure which associates a
set of items. On a PICK system, files are
organized into a hierarchical structure. There
are four distinct levels of files, the SYSTEM
DICTIONARY, a users MASTER DICTIONARY, FILE-LEVEL
DICTIONARIES and the DATA FILES. A PICK system
can contain any number of files, which contain
any number of items, limited only by the size of
the disk drive.

Disc drive storage is divided into sections
called FRAMES. Each FRAME is numbered giving the
system direct access to that particular frame-id
or FID. The physical size of a frame is machine
dependent, the most common size being 512 or 1024
bytes per disk frame.

The number of GROUPS in a file is the same as the
MODULO for that file. As items are added to the
file, additional overflow frames are linked on to
the "primary frames" as needed. The size of each
GROUP would then depend on how many overflow
frames have been linked on to the primary frame
of that GROUP.

The physical part of the system which you can see
and touch. The CPU, disk drives, tape drives,
terminals and printers are examples of HARDWARE.
A PICK/BASIC program is an example of SOFTWARE.

A record made up of attributes. ITEMS make up a
file. ITEMS are variable in length, the maximum
size being 32,267 bytes. There is no limit to
the number of items in a file, other than the
size of the disk drive. The name of an item is
called the "item-id". The item-id is unique to
the file which contains that ITEM.

CHAPTER 1 - INTRODUCTION Copyright (C) 1985 PICK SYSTEMS

PAGE 15

(

c

ITEM-ID

MD or M/DICT

MODULO

MONITOR

NULL

O/S

POINTERS

PROC

The name of an item in a file. An ITEM-ID may be
any combination of numbers or letters, except
system delimiters. If blanks are used in the
ITEM-ID, then the ITEM-ID must be enclosed by
quotation marks when accessed.

MASTER DICTIONARY - each user-account on the
system has a MASTER DICTIONARY associated with
it. It is structurally similar to all other
files on the system. Many things that a user
enters at the TCL prompt are contained in that
users MASTER DICTIONARY (such as verbs, procs,
connectives, file-names, etc.). Upon creation, a
standard set of vocabulary items are copied into
that new account's MASTER DICTIONARY. Additional
items may be added or deleted to customize that
users account, as needed.

The MODULO is the number of "groups" of disk
frames reserved for a file. The MODULO is
specified at the time a file is created and is
based upon an estimate of the number of
characters which will be contained in the file.

The MONITOR is that part of the underlying system
software which handles the operating systems
interaction with peripheral devices. (Disk
requests, Terminal I/O, etc.)

A lack of information as opposed to a zero or
blank for the presence of no information. A
blank or space which you get from the terminal
space bar is not a nUll.

Operating System. The software that controls the
carrying out of computer programs and other
system functions (scheduling, I/O control, etc.).

POINTERS are items in dictionaries which serve a
number of purposes. "D"-type POINTERS provide
FID information to locate items in the data
portion of the file. They reside in that files
dictionary. "Q"-type POINTERS enable users to
access files which are in another account.
"Q"-type POINTERS are also used to shorten
filenames (INV instead of INVENTORY or AH3
instead of ACCOUNT-HISTORY,MARCH).

PROC is short for stored procedure. PROC allows
the user to prestore a complex series of
operations which can be invoked by a single
command. Anything which can be done at the TCL
level, can be accomplished with a PROC.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

. PAGE 16

SOFTWARE

STRING

TCL

VALUE (MULTI/SUB)

VDT

Programs, routines, codes and other written
information for use with computers, as
distinguished from equipment, which is referred
to as "HARDWARE". The PICK OPERATING SYSTEM is
SOFTWARE.

A STRING is any succession of characters. They
may be numbers, letters, blanks or other
characters. The PICK SYSTEM treats most data
simply as a certain sequence of symbols or
"STRING" .

Terminal Control Language processor. TCL is the
primary interface between end-users and the
computer. When the computer "prompt character"
is displayed and is waiting for user input, this
is commonly referred to as being "at TCL". The
TCL processor works on one statement at a time.
Each statement begins with a verb. Only one verb
is allowed per statement.

The contents of an attribute, if not null, is
called its "VALUE". An attribute may contain
more than one value. If it does, each of these
values is called a "MULTI-VALUE". A multi-value,
in turn, may contain more than one value. If it
does, these values are called "SUB-VALUES".

Video Display Terminal. Same as a CRT.

CHAPTER 1 - INTRODUCTION Copyright (c) 1985 PICK SYSTEMS

PAGE 17 C\·
j

c

SECTION 2

THE
ICON/PICK
FILE
STRUCTURE

(

c

Chapter 2

FILE STRUCTURE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made avai1b1e to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 18

2.1 THE FILE HIERARCHY THE FILE HIERARCHY

describes the hierarchical nature of the files IThiS section

(~:~:~-~~~:~:---

in the the I

Throughout these sections the following terms will be used:

NAME

Item
Attribute
Item-id

CONVENTIONAL NAME

Record
Field
Record Key

Files are organized in a hierarchical structure, with files at each level
pointing to multiple files at the next lower level. Four distinct file
levels exist: System Dictionary, User Master Dictionary, File Level
Dictionary, and Data File.

The term "file" as used in the context of this system refers to a
mechanism for maintaining a set of like items logically together. The
data in a file must be accessed via the DICTIONARY associated with it. A
"Dictionary" is like the "index" to a file. Since the dictionary itself
is also a file, it contains items just as a data file does. The items in
a dictionary then serve to define data files.

The system can contain any number of files. Files can contain any number
of items, and can automatically expand to any size. Items are variable
length, and can contain any number of fields and characters so long as it
does not exceed a maximum of 32,267 bytes.

)SYSTEM DICTIONARY (SYSTEM)

The highest level dictionary is called the System Dictionary (SYSTEM).
The System Dictionary contains all legitimate user Logon names, along with
associated passwords, security codes, and system privileges. The Logon
names and related information are stored as items in the System
Dictionary. These items function as pointers to the user's Master
Dictionary.

USER MASTER DICTIONARIES (MDs)

The Master Dictionaries (MDs) comprise the next dictionary level. Each
user's account has a unique MD associated with it. The MD contains items
which make up most of the users vocabulary, (verbs, PROCs etc.) and items
which function as pointers to accessible files.

When an account is created a standard set of MD vocabulary items are
stored in the account's MD. A user may create synonyms and abbreviated
forms of these standard vocabulary elements (since they are merely items
within his Master Dictionary file) by creating copies of the elements.
The user can also add to the prestored vocabulary statements called PROCs.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 19

The file pointers can reference any file or dictionary in the system;
that is, they are not restricted to files defined within the user's
account alone.

FILE LEVEL DICTIONARIES

The File Level Dictionaries describe the structure of the data within the
associated data files. They also contain pointers to the associated Data
level files. A File-level dictionary may be shared by more than one Data
level file.

DATA FILES

The Data files contain the actual data stored in variable record/field
length format. In addition to the normal record/field data structure, an
attribute (field) can contain multiple values, and a value, in turn, can
consist of multiple sub-values. Thus, data may be stored in a three
dimensional variable length format.

Level 0

Level 1

Level 2

Level 3

SYSTEM DICTIONARY

Account names with
passwords accounting
information

I
V

MASTER DICTIONARY (MO)

Vocabulary items;
verbs, modifiers, etc.
filenames

I
V

FILE DICTIONARY

Data definitions and
inter-relationship
definitions.

I
V

FILE DATA

I Data items.

One per system

One per account

Possibly many
per account.

Possibly many
per account.

The Four-level File Hierarchy.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

. PAGE 20

"

2.2 FILE ACCESS FILE ACCESS

IThe file access system is designed to allow the access of a particular
. item (or a number of particular items) in a file, or to access

(' -:~~:::~:~~::~-~::-~:~-~~-~-:~::.:--
A file is a logical structure which associates a set of items so that they
can be accessed for both retrieval and update.

Items are individually variable in length. The maximum size of an item is
32,267 bytes. There is no limit to the number of items which may be
contained in a file, nor any limit to the number of files in an account.
Each item has a "name" which is called its item-id. An item-id is an item
identifier or key that must be unique to the file which contains it.

Items are stored in the file in a "pseudo-random" sequence; this sequence
is determined by the result of a computational "hashing" (randomizing)
technique which is employed by the system for purposes of storage and
retrieval of data on disc. This technique utilizes the item-id along with
other predefined parameters for the file, to produce the disc-address
(Frame-identifier or FID), which identifies the location of the item.

Items that are stored in a file may be accessed directly, using the item
id as the key, or sequentially in the pseudo-random sequence. If items
are to be accessed in any sorted sequence, a preliminary pass through the
file to generate the sort sequence is needed (see SORT and SSELECT
functions in ACCESS). The result of the preliminary pass is a list of
item-ids; this list may be saved for future use, or used to then access
the items in the file in the required sorted sequence (see also SAVE-LIST

(
_ '. and GET-LIST functions in ACCESS).

The direct file access technique, using the item-id to locate the item
within the file, is an efficient method of locating data, and lends itself
to the on-line nature of the Pick system. The system overhead required to
access an item using this technique is essentially independent of the
actual size of the file.

Special reserved characters are used as delimiters for storin~ data within
an item. Attributes are separated by "Attribute-marks" (" ", control
shift-N on most terminals, hexadecimal value X'FE') which may be
subdivided into Values by "Value-Marks" ('l', control-shift-M, hexadecimal
value X'FD'); the values may in turn be subdivided into Sub-values by
"Sub-value-marks" ("\", hexadecimal value X' FC'). This structure allows
each attribute (including values and sub-values) to be of a variable
length. This structure is further discussed in the ITEM STRUCTURE,
PHYSICAL section.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

c PAGE 21

THE SYSTEM CONTAINS ON-LINE:

- ANY NUMBER OF FILES, WHICH CONTAIN:

- ANY NUMBER OF ITEMS (RECORDS), WHICH CONTAIN:

MULTIPLE ATTRIBUTES (FIELDS), WHICH MAY CONTAIN:

- MULTIPLE VALUES, WHICH MAY CONTAIN:

MULTIPLE SUB-VALUES.

ALL FILES, ITEMS, ATTRIBUTES, VALUES, AND SUB-VALUES ARE VARIABLE
IN LENGTH.

EACH ITEM MUST BE LESS THAN OR EQUAL TO 32,267 CHARACTERS LONG

File Structure Summary.

2.3 THE DICTIONARIES THE DICTIONARIES

IA dictionary defines and describes data within its associated file. I
. Dictionaries exist at several levels within the system.

As introduced in the topic titled THE FILE HIERARCHY, the following
dictionary levels exist within the system:

System Dictionary (one per system).

User Master Dictionary (one per user-account).

File Level Dictionary (one per file or files).

Since the dictionary itself is also a file, it contains items just as a
data file does. The items in a dictionary serve as the actual definitions
for data files. The following types of items are stored in dictionaries:

File Definition Items (file-names/pointers)
(also called "D"-items)

File Synonym Definition Items (file-names/pointers)
(also called "Q"-items)

Attribute Definition Items (attribute names)
(also called "A"-items)

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 22 c

The file definition items and the file synonym definition items are used
to define files. The item-ids of these items are the file-names of the
files they define or point to. File-names must start with a non-numeric
character, and may be of any length and may contain any character except a

(-conuna (,) or a semi-colon (;). The attribute definition items are used to
~efine attributes within data file items.

(

For example, "INVENTORY", "TEST.FILE" and "Zl" are all legal file-names.
It is conunon practice to use file-names that are descriptive of the type
of data stored within the file. A file is said to be defined from the
dictionary that contains the "D-item" that points to it. Therefore,
referring to the hierarchy of files in the system, all Master Dictionaries
(or M/DICT's) are defined from the SYSTEM dictionary. In turn, a user may
define any number of user dictionaries (with associated file or files)
from his Master dictionary (see CREATE-FILE processor).

In order to access a file in another user's account, a file synonym
definition item ("Q-item") may be created by the user, using the EDITOR.
Assuming that the system security structure permits it, such a synonym
file definition allows access to any file within the system.

A synonym file-pointer may also be used for convenience; for example the
INVENTORY file may have a synonym file-name "INV", which reduces the
number of characters the user has to type in order to access the file.

The data within each dictionary item consists of attributes (and optional
multi-values) just as data file items.

For ACCESS processors, special dictionary items (called Attribute
Definition items or A-items) define the nature of the data stored in their
associated file. They contain such additional information as:

Conversion specifications which are used to perform table
look-ups, masking functions, etc.

Correlative specifications which are used to describe inter
file and intra-file data relationships.

Type (alphabetic or numeric) and justification (left or right)
for output purposes.

A data file is referenced by its "file-name". The dictionary file which
is associated with that data file is referenced by "DICT" followed by the
data file-name. A dictionary file may have more than one data file
associated with it. This relationship is explained in the following
section.

CHAPTER 2 - FILE STRUCTURE Copyright (C) 1985 PICK SYSTEMS

PAGE 23

A dictionary contains:

1. File definitions, or "D-items", that define the physical
extents of other, lower-level, files.

2. File synonym definitions, or "Q-items" that point to files
in other accounts.

3. Data definition items "A-items" that are used by the ACCESS
processor and define the structure of data in the data
section of the file.

In addition, a Master Dictionary contains:

1. Verbs (see TCL documentation)

2. PROCs (see PROC documentation)

3. Vocabulary elements of the ACCESS language.

Summary of Dictionary Items.

2.4 SHARING OF DICTIONARIES

A dictionary file may be shared by any number of data
structure allows a unique set of dictionary items to define
like data files.

files. This
any number of

File-level dictionaries may define a unique data file or multiple data
files. When a dictionary defines multiple data files it is said to be
"shared" by those data files. The characteristics of the data in the data
files are typically similar.

For example, there may be sets of data relating to the various departments
in a corporation. For ease of maintenance, it may be desired to keep
these sets of data in a shared dictionary structure, since the dictionary
items that describe the data are identical for each department. These
dictionary items, used by the ACCESS processor, apply to all of the data
files defined by that dictionary. This structure has the advantage of
requiring only one set of dictionary items to be maintained for a set of
similar files.

Any number of
simultaneously.

data files sharing a dictionary may be opened
The general form for specification of a data file is:

dictname[,dataname}

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 24

c/

-",

c:

(

The first parameter, dictname, always specifies the file dictionary.
second parameter, dataname, specifies the data file and is required
in the case that multiple data files are using a common dictionary.
only one data file is using a dictionary then the form:

filename

specifies the dictionary and the data file of the same name.

For example, the inventory file may be called:

INVENTORY

The
ONLY

If

but the departmental data files, whose dictionary is called "DEPT", if
using the shared dictionary structure, require a further specification.
For example,

DEPT ,ACCOUNTING or

DEPT ,MAINTENANCE

As mentioned previously, the dictionary of a file contains a "D-item"
which defines the associated data file. If the dictionary is NOT shared,
the item-id of this pointer (file-name) is the same as that of the
dictionary; this is the default case. Therefore, for example, the
INVENTORY dictionary will contain an item, also called "INVENTORY", which
is the pointer to the associated inventory data file. The DEPT
dictionary, on the other hand, will contain as many D-items as there are
departments; the item-ids of these pointers may be the department names.

Using the example below, the statements required to create a shared
dictionary structure are:

1. Create the dictionary of the file:

>CREATE-FILE DICT DEPT m [CR]

2. For each data file, create the data section:

>CREATE-FILE DATA DEPT,ACCOUNTING m [CR]

>CREATE-FILE DATA DEPT,MAINTENANCE m [CR]

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 25

file-name:

User M/DICT

I DEPT I
------1------

V
DEPT Dictionary

I ACCOUNTING MAINTENANCE 1

V
Datafile ACCOUNTING

data

DEPT/ACCOUNTING

V
Datafile MAINTENANCE

data

PROJECT/MAINTENANCE

Example of the Shared Dictionary Concept.

2.5 BASE AND MODULO

\The physical boundaries of the random-access file
parameters: the BASE and the MODULO

are defined by two I

The physical boundaries of a file are stored (in the associated
dictionary) in the File-Definition-Item. The item-id of this item is the
File-name.

Files are defined at the time of creation by the following two parameters:

BASE

MODULO

Is the physical disc address (frame-identifier or
FID) of the start of a contiguous block of reserved
disc space. This is automatically selected by the
system.

Is the number of groups that the file space is
logically divided into (sometimes called "buckets").
(Selected by user.)

CHAPTER 2 - FILE STRUCTURE Copyright (C) 1985 PICK SYSTEMS

PAGE 26 c

The selection of the MODULO is
access method. An algorithm for
next section.

critical to the efficiency of the file
optimum selection is presented in the

f) The BASE and MODULO of the file are stored by the CREATE-FILE processor
. when the file is created. THESE PARAMETERS SHOULD NEVER BE ALTERED IN ANY

WAY BY THE USER!

(

Therefore, at the time of file creation, a contiguous block of disc space
is reserved. The size of this contiguous block is defined by the MODULO,
and is called the "PRIMARY SPACE" allocated to the file. This does not
however, define the TOTAL space available for the file. As data is placed
into each group, the group may overflow by linking on additional disc
frames as needed. There is no theoretical limit to this growth, other
than the physical limit of disc space available. In practice, however, a
group should be kept as small as possible. This may be achieved by the
optimum selection of the file's MODULO.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

c; PAGE 27

Item "INVENTORY" in the M/DICT:

INVENTORY

001 D
002 17324
003 3

FID

17324

17325

17326

"Primary" space allocated to the
INVENTORY dictionary file.

1st group

2nd group

3rd group

Item "INVENTORY" in the dictionary INVENTORY

INVENTORY

001 D
002 17573
003 373

FID "Primary" space allocated to the INVENTORY
data file.

17573

17574

etc.

1st group

2nd group

Example of a File's Defined BASE and MODULO.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 28 c

2.6 MODULO SELECTION MODULO SELECTION

IEffective file accessing and efficient disc utilization depends on proper I
selection of the MODULO.

(... "Modulo" is the number of groups
specifying the "new-file-name" and
allocated by the system

in a file.
a MODULO

A file is
parameter;

created by
the frames

(

Are referred to as the "primary" file-space. As data is placed into the
file, any group may overflow by attaching frames from the available system
space pool; this space is referred to as the "overflow" file-space. To
locate an item given its item-id, the item-id is "hashed" using the MODULO
of the file, which results in a unique number in which it may exist. The
item-ids in that group are then linearly searched for the required item.
A proper selection of the "MODULO" parameter is essential to minimize this
search time.

Selecting a proper MODULO is extremely important, since the number of
groups directly affects the search and update time for an item in the
group. The MODULO selection process will attempt to make the average
GROUP length between 1 and 2 frames. Obviously, if the item-size is of
the order of 250 bytes or greater, this rule must be modified; one should
then try to minimize as far as possible the AVERAGE NUMBER OF FRAMES in a
group. Therefore, the average number of items in a group should be
selected with the average item-size in mind; the larger the item-size,
the smaller the number of items in a group.

The number of disc reads, which is the factor that causes the most
degradation of overall system response, increases dramatically as the
number of frames per group increases, due to the fact that on the average,
one-half of the frames in a group have to be written back to the disc

lafter an item update. Thus to update an item in a group, we have to read
every frame in the group, and write and verify one-half of them.

With this in mind, it is suggested that the tables below be used as a
guide in selecting a proper MODULO.

The discontinuities in the items/group columns are because the selection
of the number is such that the bytes/group figures are close to integral
multiples of frames (500, 1000, 1500, etc.). The last figure, 0.8
items/group, may be used for files with relatively few items that are very
large, such as assembly or BASIC program files. If the number of items in
such a file is also very large, adjust the items/group figure upwards,
since the lower figure will result in a lot of wasted disc space. Using
the table, one can select an appropriate ITEMS/GROUP value; knowing the
expected number of items in the file then gives the approximate MODULO.

MODULO MUST NOT BE A MULTIPLE OF 2 OR 5.

MODULO SHOULD BE A PRIME NUMBER.

CHAPTER 2 - FILE STRUCTURE Copyright (C) 1985 PICK SYSTEMS

PAGE 29

If Then avg. And avg
Avg Item-Size Items/Group Bytes/Group

Is: Should be: Will be:

20 22.0 440
35 13.0 455
50 9.0 450
75 12.0 900

100 9.0 900
125 7.5 937
150 6.0 900
175 8.0 1400
200 7.0 1400
250 5.8 1450
300 6.4 1920
350 5.5 1925
400 4.8 1920
500 3.8 1900

1000 3.0 3000
5000 0.8 4000

Selecting Items/Group

Avg Item Approximate Items/Group Approximate
Size # of Items (From Figure A) Modulo

20 800 / 22.0 = 36
40 5000 / 11.0 = 454

210 1800 / 7.0 257
4000 230 / 1.0 = 230

Examples of Computing Modulo

.2.7 ITEM STRUCTURE (PHYSICAL) ITEM STRUCTURE (PHYSICAL)

Data within an item are stored in terms of attributes, values and sub
values, all of which provide for variable length storage. This topic
describes the physical item format as stored on disc.

An item consists of one or more variable length attributes, separated by
attribute-marks. An attribute mark is a character with a value of X'FE'
(hexadecimal), which prints out as '-'. The first attribute in an item
(attribute 0) is the item-ide The item-id is preceded by a four-character
hexadecimal count field which specifies the total number of characters in

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 30

(
~j

('-

\" /

c

the item including the count field itself. For example, consider the
following stored item:

002EITEMX-LINEl-SMITH, JOHN-1234 MAIN STREET-

Attribute 0 is the item-id "ITEMX". It is preceded by "002E"
specifies that there are X'002E' (decimal 46) bytes in the
Attribute 1 of "ITEMX" is "LINE 111. Attribute 2 is "SMITH, JOHN".
last attribute (attribute 3) is "1234 MAIN STREET".

which
item.

The

An attribute, in turn, may consist of any number of variable length values
separated by value marks. A value mark has an eight bit value of X'FD' ,
which prints as II]". Finally, a value may consist of any number of
variable length sub-values (also known as secondary values) separated by
sub-value marks. A sub-value mark has an eight bit value of X'FE', which
prints as "\". For example, consider the following item:

ITEM-ID ATTI ATT3 ATT5--- ATT6 ATT7--- END OF ITEM

0039I1EMY-b5-AAAAA-1231!5617891o-A1B-518!\99\77\5514-~1-
I

I
COUNT-FIELD ATT2 MULTI-VALUES ATT4 MULTI-SUB-VALUES
(0039= 57 decimal)

The absence of an attribute value is specified by an attribute mark
immediately following the attribute mark indicating the end of the

(previous attribute (i.e. '--I). This maintains the correct attribute
/sequence. The "null" between two adjacent attribute marks may be thought
of as representing the absent attribute.

The mnemonics AM, VM and SVM will be used hereafter to denote attribute
mark, value mark and sub-value mark.

Within a group, there may be zero or more items whose item-ids hash to
that group. Such items are stored sequentially in the group, the sequence
being solely dependent on the order in which the items are created.

After determining the group to which an item-id hashes, a linear search is
conducted to find the particular item-id that is being retrieved. The
count field is used to skip from one item to the next during this search.
The presence of an SM where the count field of the next item should be
indicates the END-OF-GROUP condition. .An empty group therefore has an SM
in the very first data position, which is also the condition setup by the
CREATE-FILE and CLEAR-FILE processors.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 31

\ ---

FIRST
ITEM

G R 0 U P

SECOND
ITEM

I
v

I
V

I COUNT I ATTR 0 I ~ I ATTRIBUTE I - I
FIELD AM ONE AM

FIRST
VALUE

FIRST
SUB-VALUE

I ~ I SECOND
VALUE

SECOND
SUB-VALUE

I
V

I ~ I
I

V

LAST
ITEM

I ~ I ATTRIBUTE I ~ I - I
AM LAST AM SM

I ~ I LAST
VALUE

LAST
SUB-VALUE

General File Item Structure

2.8 ITEM STRUCTURE (LOGICAL) ITEM STRUCTURE (LOGICAL)

IThis topic describes the item structure at the logical level

While it is important to understand the physical item format, in normal
system usage items are always accessed at a more abstract or higher level.
Files are identified by a file-name. Within a file, items are referenced
by their item-id. Attributes are referred to as lines (e.g. Attribute 1
is called "line 1"). Figure A shows a sample COPY operation where the
item with the item-id ITEMX (in the file SAMPLE-FILE) is being copied to
the terminal. The item is shown to have three attributes (lines) of
sample data.

Utility processors like COpy and the EDITOR deal at the file-item line
level. They make no logical distinction in definition between various
lines in an item, other than their implied line numbers.

ACCESS processors, however, add an additional dimension through the use of
the dictionary. The dictionary informs ACCESS as to the nature of the
information stored for each of the attributes.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

. PAGE 32 C· ~\
._/

It was noted that an Item is similar to a "record" in general parlance.
It is more effective to think of and use an Item as a group of related
records, however. In the general case one tends to see a unit record as a
collection of fields distributed horizontally, and having meaning by
virtue of their offsets from the initial byte of the record.

(. ') In the Pick ~ystem a data-string has meaning by virtue of the attribute
(line) it is ~n. Therefore, if one thinks of a unit-record as running
vertically down the horizontal attributes, such that the first field is in
the first attribute, the second field is in the second attribute, and so
on, the nature of the storage structure of the system becomes clearer.
The basic intent of the value mark is to delimit the contents of each unit
record within each attribute, and of the sub-value mark, to delimit
multiple entries within a unit record within an attribute.

It is therefore effective to store transaction records relating to a
single vendor, say, within one item. Within a single attribute the fields
from different unit records are separated by value marks. Attributes used
in this manner are referred to as mUlti-valued. Continuing the chain, a
value within an attribute may itself contain several values. These are
called sub-values and represent multiple sub-records within a given
transaction record, as in the case of a purchase order specifying several
different parts. The individual unit records remain identifiable because
of the ordinal relationship of the delimiting value marks. The intent of
the ACCESS processor is to generate reports from this storage structure.

The logical item format is identical for all processors. It is the
responsibility of the user to ascertain the further qualifications of the
various attributes. In the examples below, the item listing in the first
example is shown in the second example as produced by the ACCESS LIST
processor. Here, the SAMPLE-FILE dictionary "defines" attribute 2 (line

(
- .. 2) as NAME and attribute 3 (line 3) as ADDRESS. This permits the user to

;reference his data symbolically (through dictionaries) when in fact the
actual data stored on file is the same regardless of the processor
accessing it.

Also note that the COPY of the item displays a value of 3746 for attribute
1 of the item, whereas the ACCESS listing displays it as "04/03/78", which
is the same data after conversion using the standard system date code.
(See ACCESS.)

c

>COPY SAMPLE-FILE ITEMX (T

ITEMX (------------------------------- Item-id
001 3746 (--------------------------------- Attribute 1
002 SMITH, JOHN (-------------------------- Attribute 2
003 1234 MAIN STREET (--------------------- Attribute 3

An Item Listing Via the COpy Processor.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 33

where:

x = 0
FOR J = 1 TO LEN(ITEMID)

X = X*lO + SEQ(ITEMID[J,l])
NEXT J
GROUP = REM(X,MODULO)
FID = GROUP + BASE

ITEMID contains the sequence of characters in the item-id;
The LEN function returns the number of characters in the item-id;
The form ITEMID[J,l] extracts the j-th. character of the item-id;
The SEQ function converts the above character to binary for addition;
The REM function returns the remainder of the division of X by MODULO;
And FID is the resulting disc address where the item may be found.

Hashing algorithm as expressed in PICK/BASIC terminology.

2.10 FILE DEFINITION ITEMS FILE DEFINITION ITEMS

File definition items are used to define lower level dictionary files or
data files. File definition items are specified by a "D/CODE" of "D",
"DY", or "DX". They are created automatically by the CREATE-FILE verb.

At the System Dictionary level, File Definition items are used to define
the Accounting File and each user's MD (Master Dictionary). File
definition items in the MD are used to define the file level dictionaries,
which in turn may contain one or more file definition items which define
the associated data file(s). The item-id and each attribute of the file
definition item contain required and optional information which describes
(and 'points to') the lower level dictionary file or data file:

Item-id

Attribute 1

The item-id of a file definition item is the file
name of the dictionary or data file being pointed
to. If the item is pointing to a data level file,
then the item-id must be the same as the name of
the data level file.

This is the D/CODE attribute; it must contain a
"D", followed optionally by a one or two character
code.

When a file is created, the CREATE-FILE processor
will place a "D" in this attribute. Alternate
forms are:

Dx

x = X Do not save this file on files ave tapes
(the file will not exist after a file
restore) .

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 35 c

(

>LIST SAMPLE-FILE "ITEMX" ATTRIBUTE-l NAME ADDRESS

PAGE 1 09:28:32 12 JAN 1978

SAMPLE-FILE .. ATTRIBUTE-l .. NAME ADDRESS

ITEMX 04/03/78 SMITH, JOHN 1234 MAIN STREET

An Item Listing Via the ACCESS LIST Processor.

2.9 ITEM STORAGE AND THE HASHING ALGORITHM ITEM STORAGE AND THE HASHING ALGO:

The system employs a computational group hashing technique which utilizes
the item-id and the file parameters (such as defined at the time of file
creation). This technique generates the disc address (FID) of the group
in which the item is stored.

The hashing formula used by the system to store or retrieve items is shown
below. The item-id is treated as a variable length string of binary
bytesj these bytes are accumulated sequentially with each partial sum
being multiplied by 10. Dividing this value by the positive integer
MODULO yields an unsigned integer remainder within the range:

o (= Remainder (MODULO

This is then the group number (i.e. 0, 1, 2, ... , up to MODULO - 1) where
(- the item is to be stored. Adding the BASE yields the actual FID of the

)first frame in the group.

After computing a FID to locate the specific group in which the item
resides, each item's item-id in the group must be compared for a "match".
The frames comprising a group are linked both forward and backward. This
system facility makes the group appear as a physically sequential string,
where items are stored one immediately after another. In fact, any
portion 6f an item may spill across a physically frame boundary.

When a file is created, it is allocated a primary area of frames, the
number of frames being the MODULO parameter. Thus this amount of
contiguous disc space is permanently allocated to the file. As the file
grows, individual groups may fill up. When this happens, an additional
frame is added to the group from a pool of available space. This
additional frame is linked into the group to increase the length of the
logically sequential group. If a delete or update causes the group to
shrink, any unused frames outside the primary area are returned to the
pool of available space.

CHAPTER 2 - FILE STRUCTURE Copyright (C) 1985 PICK SYSTEMS

PAGE 34

x - Y Do not save the data in this file on
filesave tapes (on a file restore, the
file will be recreated in an empty state).

x - C The file contains binary data (presently
used only by the system POINTER-FILE). ~.

Attribute 2

Attribute 3

Attribute 4

This is the F/BASE (file base) attribute; it must
contain the base FID (as a decimal number) of the
defined file.

This is the F/MOD (file modulo) attribute; it
must contain the modulo (as a decimal number) of
the defined file.

This is the F/SEP (file separation) attribute; it
must contain the separation (as a decimal number)
of the defined file.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 36

'-j

(

WARNING: THE USER SHOULD NEVER ALTER ATTRIBUTES 2 through 4 !

Attributes 5
through 12

Attribute 13

These attributes are identical to those used in
attribute definition items; refer to the topic
entitled ATTRIBUTE DEFINITION ITEMS.

This is the F/REALLOC attribute, which allows for
the reallocation of the physical extents of a file
during a system File-Restore process (see topic
entitled SYSTEM MAINTENANCE PROCEDURES). The
format of this specification is as follows:

(m, s)

where m and s are decimal numbers specifying the
new modulo and separation parameters of the file.

The example below illustrates a sample file definition item which defines
the file level dictionary for the INVENTORY data file. This item has an
item-id of INVENTORY and is stored in the user's MD. It also shows the
file definition item which defines the data area of the INVENTORY file.
This item also has an item-id of INVENTORY but is stored dictionary level
file and points to the data level file.

(Itemid) INVENTORY INVENTORY

D/CODE 001 D 001 D
F/BASE 002 17324 002 17573
F/MOD 003 3 003 373
F/SEP 004 1 004 1

005 005
006 006

V/CONV 007 007
008 008

V/TYPE 009 L 009 R
V/MAX 010 10 010 7

Note that the item "INVENTORY" in the Master dictionary has definitions
relating to the items in the DICTIONARY of the INVENTORY file (such as
V/TYPE of ilL" and V/MAX of "10"; the item "INVENTORY" in the INVENTORY
DICTIONARY has definitions relating to the items in the DATA section,
such as V/TYPE of "R" and V/MAX of "7".

Sample file-definition items.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 37

2.11 FILE SYNONYM DEFINITION ITEMS FILE SYNONYM DEFINITION ITEMS

File synonym definition items are used to allow access
account, or to define a synonym to a file which is
account. File synonym definition items are specified
and are referred to as "Q-items".

to files in another
defined in the same

by a D/CODE of "Q"

The item-id and attributes of a file synonym definition item are as
follows:

Item-id

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attributes 5
through 10

The item-id of a file synonym definition item is
the synonym name by which the defined file may be
referenced.

This is the D/CODE attribute; it must contain a
"Q".

This attribute must contain the name of the
account in which the actual file definition is to
be found (the account name is an entry in the
SYSTEM dictionary). If this attribute is null,
then the synonym file is defined in the same
account.

This is the S/NAME attribute; it must contain the
item-id of the actual file definition item to
which the synonym equates (i.e., the actual file
name). If this attribute is null, it is implied
that the synonym file is the user's MD.

Not used.

These attributes are identical to
attribute definition items; refer
entitled ATTRIBUTE DEFINITION
ITEMS.

those used in
to the topic

A synonym file definition item is required in order to access a file
in another account. In addition, there are many cases where it is
convenient to reference a file within the same account by more than
one name. In this case also, a Q-item must be created; attribute 2
of the Q-item in this case should be NULL. A Q-item to another user's
Master Dictionary should have the user's account-name in attribute 2,
and a NULL attribute 3.

Q-items are created using the EDITOR to edit the items into the Master
Dictionary. There is also a standard PROC called SET-FILE that
creates a temporary Q-item called QFILE, which may be used to setup a
pointer quickly. This PROC is described in the PROC reference manual.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 38 c

The example illustrates a sample INVENTORY file synonym definition
item which allows the user access to the file in the account named
SMITH. The user can reference this file via the synonym file name
INV. It also shows sample O-items that point to another account's
Master dictionary, and to a file within the same account.

(---

("

(Item-id)

D/CODE
F/BASE
S/NAME

MD

001 0
002
003

INV

001 0
002 SMITH
003 INVENTORY

USER3

001 0
002 SMITH
003

SAMPLE

001 0
002
003 SAMPLE-FILE

These are example items in the Master dictionary of account
"JONES"; Item "INV" is a synonym pointer to the file "INVENTORY",
defined as a file in the Master dictionary of account "SMITH".
Note that the form MD must be '001 0', and that Q-ponters to other
MDs do not have 'MD' in 3. Item "USER3" refers to file "USER3" in
the Master dictionary of account "SMITH", since attribute 3 is
null. Item "SAMPLE" is a synonym to the file "SAMPLE-FILE",
defined in the Master dictionary of JONES, since attribute 2 is
null.

Sample Synonym File Definition Items.

>EDIT MD INV
NEW ITEM
TOP

. I [CR]
001 0 [CR]
002 SMITH [CR]
003 INVENTORY [CR]
004 [CR]
.FI [CR]

'INV' FILED.

NOTE: [CR] = press the carriage return key.

Example using the EDITOR to create a new O-item called "INV".

2.11.1 O-POINTERS: REFLEXIVE FORM

(~-
---"

If attributes two and three are null, the O-pointer is a pointer
to the file in which it is stored. This case has two
applications. If you type ED MD MD on an PICK System, you will
find that the MD item contains only a 0 in attribute 1. This is
sufficient, and any other definition is less efficient. The same
follows for MD or the account name entry.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 39

---------------------~~--

The second use is in the definition of a dictionary-only file. If
you want to reference the file without typing 'DICT' each time, an
entry with the same name as the D-pointer to the dictionary in the
master dictionary is inserted in the file dictionary whose only
contents is a Q.

In the master dictionary

MD<File reference to MD.
001 QReference back to 'where you are now'.

In the dictionary of the file FILENAME

FlLENAME(The name referenced by the name FILENAME
in the master dictionary.

001 QReference back to the dictionary itself.

Uses of Q as the only attribute.

The name of the Q-pointer is discarded as soon as the first D
pointer is encountered. That is, a reference to QFILENAME which
points to the file FILENAME will look for the D-pointer FILENAME
in the dictionary of FILENAME. It will not look for a pointer by
the name of QFILENAME. A partial exception to this is in ACCESS,
which will attempt to obtain the conversion, length, and
justification from the Q-pointer. If the Q-pointer does not
contain them, then the ACCESS compiler will search the D-pointer
for them. If the D-pointer does not contain them, then the
conversion will default to null, the justification to 'L', and the
field length to 9 bytes. It is therefore possible to specify
various formats for the item-id field for purposes of sorting and
listing.

2.11.2 Q-POINTERS: ACCOUNT SPECIFICATION

The second attribute in any Q-pointer references an account name.
If attribute 2 is null, then the Q-pointer references a file in
the account onto which you are logged. If attribute 2 is not
null, the file-open processor will search the system dictionary
for a definition of the account name. If the processor does not
find a D-pointer in the system dictionary, the system will respond
with an error message.

Reference to the master dictionary of another account is done with
the name of the D-pointer to the account in attribute 2 and a null
attribute 3.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 40

~ ..
(
"'--_/

(-

(

2.11.3 Q-POINTERS: FILE SPECIFICATION

Attribute 3 contains the name of the file referenced by the Q
pointer. If attribute 3 is null, then the default is the filename
specified by the item-id of the item itself.

In general, the file name referenced in attribute 3 of the Q
pointer definition must be a D-pointer in the master dictionary of
the account referenced in attribute 2.

2.11.4 Q-POINTERS: MULTI-FILE SPECIFICATION

The contents of attribute 3 of the Q-pointer definition may
contain FILENAME,DATAFILENAME. In this case the Q-pointer will
reference the data in DATAFILENAME only, and will ignore the other
data files referenced in the dictionary of FILENAME. The result
is a considerable simplification of the PICK/BASIC programs and
PROCS which reference the various data sets in a multiple-data
file structure.

Therefore, the following Q-pointer will reference
DATAFILENAME in the dictionary of FILENAME in
ACCOUNTNAME.

QFILENAME
001 Q
002 ACCOUNTNAME
003 FILENAME,DATAFILENAME

Referencing a data file with a Q-pointer.

2.12 ATTRIBUTE DEFINITION ITEMS

the data file
the account

Attribute definition items define various attributes (lines or fields) in
the data items for use by the ACCESS processors. Attribute definition
items are specified by a D/CODE of "A".

An attribute definition item defines the nature and/or format of the data
in a specific attribute for ACCESS processing. Each attribute definition
item has a value, called the Attribute Mark Count (AMC) , which acts as a
pointer to the data field (data item attribute) defined by it. The AMC is
simply the attribute number referred to in the data item (e.g. An AMC of
5 means that the attribute definition item "defines" attribute 5 of data
items). An attribute definition item defines the attribute specified (by
the AMC) for all items in the related data file(s). Moreover, an
attribute definition item provides a symbolic name for an attribute.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 41

Attribute definition items are constructed as follows:

Item-id

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Attribute 6

Attribute 7

Attribute 8

Attribute 9

Attribute 10

The itemrid is the
defined attribute.
ACCESS statements
attribute.

symbolic name desired for the
This name would be used in
to reference the defined

This is the D/CODE attribute; it may contain an
"A" or "X".

This is the A/AMC (attribute mark count)
attribute; it contains the AMC of the defined
attribute (i.e. It specifies which attribute in
data item(s) is being defined). An AMC of ZERO
may be used to reference the i tem-id. An AMC of
zero, or a "fake" value higher than the actual
number of attributes that exist in the file, may
be used if the attribute definition item
references data that is not actually stored on the
file, but is computed.

This is the V/TAG attribute; it contains the
optional name used as heading in ACCESS listings.

This is the V/STRUC attribute; it contains the
associative structure code (refer to the ACCESS
reference manual).

Unused.

Unused.

This is the V/CONV attribute; it contains the
conversion specification which is used to convert
from processing format to output format.

This is the V/CORR attributes it contains the
correlative specification which is used to convert
from the internal format to processing format.

This is the V/TYPE attribute; it defines the type
(alphabetic or numeric) and justification (left or
right) for output.

This is the V/MAX Attribute; it defines the
maximum length of values for the attribute. An
entry is a decimal numeric, and is mandatory.

The example illustrates sample attributes definition items which
defines different fields in the INVENTORY file.

CHAPTER 2 - FILE STRUCTURE Copyright (C) 1985 PICK SYSTEMS

PAGE 42

(

(Item-id) QUANTITY LIST-PRICE EXTENDED-PRICE

D/CODE 001 A 001 A 001 A
A/AMC 002 4 002 5 002 300
V/TAG 003 003 LIST PRICE 003
V/STRUC 004 004 004

005 005 005
006 006 006

V/CONV 007 007 MR2$, 007 MR2$,
V/CORR 008 008 008 A;4*5
V/TYPE 009 R 009 R 009 R
V/MAX 010 7 010 8 010 10

Sample Attribute Definition Items in the Dictionary
of the Inventory File.

2.13 DICTIONARY ITEMS: A SUMMARY

I This topic presents a summary
dictionaries in the system.

FILE AND ATTRIBUTE DEFINITION ITEMS

of

DICTIONARY ITEMS: A SUMMARY

the items used in the various I

The File Definition items, File Synonym items, Attribute Definition items,
and Attribute Synonym Definition items which may be used as dictionary

(;entries are summarized below.

SYSTEM DICTIONARY (SYSTEM) ITEMS

There is one and only one System Dictionary for each system. The
System Dictionary should contain only items with D/CODE = D, DX, DY, or
0, representing user accounts or special system files. The Logon processor
uses these "D" type items to verify users attempting to logon to the
system. Only one "D" type item should be present for each account; if
more than one user-name is to be established for the same user-account,
the additional name(s) should be File Synonym Definition ("0" type) items.
The meaning of Attributes five through eight is different for both "0" and
"D" type entries in the System Dictionary. Entries in this dictionary
completely control the File-Save process, whereby the data base is saved
on a secondary storage medium (typically magnetic tape).

MASTER DICTIONARY (MO) ITEMS

There is one Master Dictionary for each account. The MO, like any other
dictionary or data file, is comprised of items. Items with D/CODE of "A"
define the attribute formats for all dictionaries. The file defining
items (D/CODE of "D") point to the various files existing in that account.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 43

In addition to those elements in the MD which define files and attributes,
there are items which define VERBs, PROCs, and various ACCESS language
elements. Each of these items has a coding structure which uniquely
identifies it; refer to the following chapters for their respective
definitions:

TCL

PROC

- ACCESS

ATTRIBUTE
NUMBER NAME

FILE
DEFINITION

ITEM.

FILE
SYNONYM

DEFINITION
ITEM.

ATTRIBUTE
DEFINITION

ITEM.
====================

1

2

3

4

D/CODE

F/BASE
or A/AMC

F/MOD or
V/TAG

F/SEP or
V/STRUC

-==-=--=-======---
D, DX, DY,
DC, DCX,DCY

Base FID
of file

Modulo of
file

Separation
of file

==-===----========

Q

Account
name

Synonym
file-name

Not used

--====-=--=====:===

A,X

amc

tag or
heading

C/O s.tructure
codes

5 L/RET Retrieval lock code(s) Reserved

6 L/UPD Update lock code(s) Reserved

7 V/CONV Conversion specification(s)

8 V/CORR Reserved I Correlative

9 V/TYPE Justification on type code

10 V/MAX Maximum field length

11 Reserved

12 Reserved

13 F/REALLOC Reallocation Reserved.
Specifica
tion

Summary of File and Attribute Definition Items.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 44
r--"
\...~

2.14 INITIAL SYSTEM FILES/DICTIONARIES

jThe files described below are initial System files and are used in the I
operation and maintenance of the system.

() The System Programmer (SYSPROG) account is the only account needed to
maintain the system. The system message file (ERRMSG) and the prototype
MD (NEWAC) are defined in this account; the former is accessed by all
users to obtain error and informative messages, while the latter is used
to create new accounts' MOs. SYSPROG also contains the system-level PROCs
which perform the File-Save and File-Restore functions, and the
initialization of the Accounting History file on a System Setup.

THE ERRMSG FILE

This dictionary level file in the SYSPROG account contains the system
messages (error and informative, see appendix). Each accounts' MD must
have an item call ERRMSG which points to this file in the SYSPROG account.
(This is automatically created by the CREATE-ACCOUNT PROC.)

THE SYSPROG-PL FILE

This dictionary level file contains the System Maintenance PROCs. These
PROCs can be used from the SYSPROG account. Refer to the topic entitled
SYSTEM MAINTENANCE PROCEDURES for a description of the entries in this
account.

THE NEWAC FILE

This dictionary is defined from the SYSPROG account, and is a prototype MD

("" that is used as a model from which a new user's MD is created by the
" ,CREATE-ACCOUNT PROC.

THE ACCOUNTING HISTORY FILE

The ACC file contains system accounting history and currently
(logged-on) users. The format of these entries are described
LOGON/LOGOFF section. The Accounting History File should be
periodically to prevent overflow of the file.

THE PROCLIB FILE

active
in the
cleared

The PROCLIB file is used to contain all common PROCs (e.g. LISTU, CT,
etc.). Each MD will contain a pointer to PROCLIB and items that transfer
control to the corresponding PROCs in PROCLIB. For further information,
refer to the PROC Reference Manual.

THE BLOCK-CONVERT FILE

This file contains items which are used by the BLOCK-TERM and BLOCK-PRINT
verbs to convert characters to a block format.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 45

THE POINTER FILE

Every pointer-file must contain a 'DC' in attribute 1 of its definition.
It must be two-level, but it is convenient to make the data-level pointer
in the dictionary a Q-pointer to itself. The name POINTER-FILE is
reserved and known to the list handler. It is therefore possible, and may C-_.~
be convenient, to call the actual pointer-file or files by names different .7

than POINTER-FILE, and construct POINTER-FILE as a Q-pointer to the
pointer-file which is desired at the moment. Any pointer-file in the
system may be referenced this way. It is also possible to define several
pointer files within one account, with the intent of using each pointer
file for a particular group of tasks which may be executed on the account.

The pointer-file processor may reference only one pointer file at a time,
however, and all processes logged onto a particular account will reference
the same pointer-file.

THE PICK/BASIC PROGRAM FILES

The PICK/BASIC program file must have a dictionary level and one or more
data-level files, and the master dictionary entry for the PICK/BASIC
program file must contain a 'DC' in attribute 1. The source code must be
in a data-level file, and the dictionary will contain pointers to
executable object code. If there are multiple data files, and if there is
a program with the same name in more than one of them, the last one
compiled is the one which will be run.

The CATALOG verb now has the effect of including the name of the program
in the master dictionary, with a pointer to the file which contains the
particular program.

The DECATALOG verb is available to delete the object code from the system.
It does not require that the program has been CATALOGed.

2.15 OVERVIEW OF FILE MANAGEMENT PROCESSORS OVERVIEW OF FILE MANAGEMENT PROI

IThis section describes the data base management processors for the system. I

The File Management processors provide capabilities for generating,
managing, and manipulating files and items within the system. The File
Management processors include the CREATE-FILE processor, the CLEAR-FILE
processor and the DELETE-FILE processor.

Additional file management procedures (such as the creation of new user
accounts, the saving and restoring of files, etc.) are detailed in the
section entitled SYSTEM MAINTENANCE PROCEDURES.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 46

THE CREATE-FILE PROCESSOR

The CREATE-FILE processor is used to generate new dictionaries and/or data
files. The processor creates the file dictionaries which exist as the "D"

(
~ntries (pointers) in the user's Master Dictionary (MD). The processor
,reserves and links primary file space. The user need only specify values
for the desired modulo (number of groups in the file).

THE CLEAR-FILE PROCESSOR

The CLEAR-FILE processor clears the data from a file (i.e., it sets the
file to the "empty" state by placing an attribute mark in the first data
position of each group of the file). "OVerflow" frames that may be linked
to the primary frame space of the file will be released to the system's
overflow space pool. Either the data section or the dictionary section of
a file may be cleared.

THE DELETE-FILE PROCESSOR

The DELETE-FILE processor allows for the deletion of
data section or the dictionary section (or both)
deleted.

a file. Either the
of the file may be

If the file level dictionary is shared by several data files, each data
file can be created, cleared or deleted independently of the other data
files associated with the dictionary.

2.16 CREATING NEW FILES: THE CREATE-FILE PROCESSOR

(~--
IThe CREATE-FILE processor provides the capability for generating new files I
and dictionaries in the system.

The CREATE-FILE processor is used to create file dictionaries by reserving
disc space and inserting a "D" entry in the user's Master Dictionary (MD)
which points to the file-level dictionary, and to create data files by
reserving disc space and placing a pointer to the space in the file level
dictionary. CREATE-FILE will automatically locate and reserve a
contiguous block of disc frames from the available space pool. The user
need only specify a value for the modulo for both the file dictionary and
the data area. For a discussion of the values to use for modulo, refer to
the topic in this section entitled SELECTION OF MODULO.

There may not be a data file without a file level dictionary pointing to
it. Therefore, the file-level dictionary must be created prior to or
concurrently with the data file. The latter is the preferred method for
creating files and this form of the CREATE-FILE command is shown below.
This enables the creation of both the dictionary and the a data area with
one command. The general forms are:

('~

CREATE-FILE filename m1 m2
CREATE-FILE dictname,dataname ml m2

CHAPTER 2 - FILE STRUCTURE

PAGE 47

Copyright (c) 1985 PICK SYSTEMS

where "filename" is the name of the file, ml is the modulo of the
dictionary (DICT) portion, and m2 is the modulo of the data portion.
Dataname is an optional data file name to be used if multiple data files
will be pointed to by the file dictionary. In either case a pointer to
the data file is placed in the file-level dictionary.

A file dictionary may be created without a data file by the command:

CREATE-FILE DICT filename ml

The term 'DICT' specifies creation of the dictionary only with modulo ml,
and a .pointer to filename is placed in the account's MD. The user should
note that a data area need not be reserved for a single-level file, in
which case the data are to be stored in the dictionary, as in the case of
PROCS.

Once the DICT (Dictionary file) has been created, the primary file space
for the data section of the file can be reserved. The general form of the
command is:

CREATE-FILE DATA dictname{,dataname} m2

where the term 'DATA' specifies creation of the data file dataname, if the
data file is unique to the file-level dictionary, or creation of the data
file dataname under dictionary dictname, if the multiple data file option
is desired. The data file has modulo m2 and the pointer to the reserved
space is placed in the file-level dictionary. This form is also used to
create new data files pointed to by a shared dictionary using the option
{dataname}.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 48

(

* >CREATE-FILE INVENTORY 3 373 [CR]

Creates a new file called "INVENTORY", with a DICTIONARY section with
modulo of 3, and a DATA section with a modulo of 373. An item called
"INVENTORY" will be placed in the MD, and a D-item called "INVENTORY" will
be placed in the INVENTORY dictionary.

* >CREATE-FILE DICT TEST/FILE 7 [CR]

Creates a single-level file called "TEST/FILE"i aD-item "TEST/FILE" will
be placed in the Master dictionary, and a D-item "TEST/FILE" will also be
placed in the dictionary created, pointing back to itself.

* >CREATE-FILE DICT DEPT 3 [CR]

Creates a single-level dictionary called "DEPT".

* >CREATE-FILE DATA DEPT,ACCOUNTING 73 [CR]

Creates a new DATA section called "ACCOUNTING" for the dictionary DEPT; a
D-item called "ACCOUNTING" will be placed in the DEPT dictionary. The
data file created will have to be referenced as "DEPT,ACCOUNTING" since it
has the shared dictionary structure.

* >CREATE-FILE DATA DEPT,MAINTENANCE 57 [CR]

Creates a new DATA section called "MAINTENANCE" for the dictionary DEPT.
This data file will have to be referenced as "DEPT,MAINTENANCE".

Examples of CREATE-FILE usage.

NOTE:

If you wish to create a pointer-file or
CREATE-FILE verb, and then use the EDITor
master dictionary to a DC-pointer.

a basic program file, use the
to change the D-pointer in the

2.17 CLEAR-FILE PROCESSOR CLEAR-FILE PROCESSOR

IThe CLEAR-FILE processor is used to clear (i.e., purge) files.

The CLEAR-FILE processor clears the data from a file (i.e., it sets the
file to the "empty" state by placing an attribute mark in the first data
position of each group of the file). "Overflow" frames that may be linked
to the primary file space will be released to the system's additional
space pool. Either the data section or the dictionary (DICT) section of a
file may be cleared using the CLEAR-FILE command. If the dictionary
section is cleared, and a corresponding data section exists (as implied by
the presence of a file defining item in the dictionary), then it will be

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

(': PAGE 49

maintained in the dictionary. The BREAK key is inhibited during the
DELETE process, but not the CLEAR process.

To clear the data section of a file, the following command is used:

CLEAR-FILE DATA filename{,dataname}

In the case that the data file is unique to dictionary filename the data
file "filename" is cleared; in the case that data file "dataname" is one
of multiple data files under dictionary filename, then "dataname" will be
cleared.

To clear the dictionary section of a file, the following command is used:

CLEAR-FILE DICT filename

>CLEAR-FILE DATA INVENTORY [CR]

Clears the data section of the INVENTORY file.

>CLEAR-FILE DICT TEST/FILE [CR]

Clears the dictionary of the TEST/FILE of all non-D-itemsj all
D-ITEMS ARE MAINTAINED in the dictionary.

>CLEAR-FILE DATA DEPT,ACCOUNTING [CR]

Clears the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

Examples of CLEAR-FILE usage.

2.18 DELETE-FILE PROCESSOR DELETE-FILE PROCESSOR

IThe DELETE-FILE processor is used to delete files.

The DELETE-FILE processor allows the deletion of the whole file,
dictionary and data files, the dictionary only (if the dictionary has no
attached data file), the data file in the case of a unique data file, or
any data file in the multiple data file case. A file-level dictionary
which points to a data file can not be deleted. All frames owned by the
deleted file are returned to the available space pool. The BREAK KEY is
inhibited during the DELETE process.

To delete a file-level dictionary and ALL its attached data fi1e(s), use
the command:

DELETE-FILE filename

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 50

c

/ " I '

To delete a file-level dictionary without an attached data file, use the
command:

DELETE-FILE DICT filename

(.-., In both cases the file-definition item ("D"-pointer) in the user's Master
,Dictionary.is deleted, and the space owned by the deleted file is returned

"to the ava~lable space pool.

To delete the data file, the following command is used:

DELETE-FILE DATA filename[,dataname}

This will delete the pointer to the data file from the file-level
dictionary and return the space owned by the data file to the available
space pool. The parameter "dataname" is necessary to delete a file from a
dictionary with multiple data files.

Files that are defined by file-synonym definitions (O-POINTERS) in the
user's MD cannot be specified in a DELETE-FILE command.

>DELETE-FILE INVENTORY [CR]

Deletes the INVENTORY dictionary, and all associated data files.

>DELETE-FILE DICT TEST/FILE [CR]

Deletes the dictionary TEST/FILE. If there are any data sections
associated with this dictionary (i.e., if there are any D-items
in the dictionary, this command is not valid.

>DELETE-FILE DATA DEPT,ACCOUNTING [CR]

Deletes the DATA section ACCOUNTING from the shared dictionary
structure whose shared dictionary name is DEPT.

Examples of DELETE-FILE usage.

2.19 COPYING DATA: THE COpy PROCESSOR COPYING DATA: THE COpy PROCESSOR

The COpy processor allows the user to copy items from a file to the
terminal, the line-printer, to the same file, or to another file (either
in his account, or in some other user-account).

The COpy processor is invoked via the COpy verb, which is a TYPE-II verb.
The general form of the copy command is:

COpy {DICT} filename item-list [(options)}

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 51

The "filename" parameter specifies the source file. The "item-list"
consists of one or more item-ids separated by blanks, or an asterisk (*)
specifying all items; the "item-list" specifies the items to be copied.
The "options" parameter, if used, must be enclosed in parentheses.
Options are described in the next section.

Once a COpy command has been issued, the COPY processor will respond
differently depending on whether the copy is to the terminal or line
printer, or to a file. This is specified by the presence of the "T"
option (copy to terminal), or the "P" option (copy to line-printer). If
neither of these options is specified, the copy is to a file.

If the copy is a file-to-file copy, the processor will respond with:

TO:

The response to this request is in general of the form:

{({DICT} filename)} {item-list}

Where:

1) If the data are to be copied to a DIFFERENT FILE, the destination
filename is entered ENCLOSED IN PARENTHESES; the word DICT may optionally
precede the filename if the data are being copied to a destination
dictionary file instead of a data file.

2) If the data are being copied to the SAME file, the parenthetical
specification is omitted.

3) If the item-ids of the items being copied are to be changed, the list
of NEW item-ids must follow.

4) If a null is entered to the "TO" request, a copy to the terminal is
performed (just as if the original COpy statement had the "T" option).

This is discussed further in the next sections.

2.20 COPYING DATA: FILE TO FILE COPY

I This section discusses further the
another, or within the same file.

copying of data from one file

In using the COPY operation, multiple items may be specified as the source
and as the destination. Multiple item-ids are separated by blanks, unless
the item-id itself has embedded blanks, in which case the entire item-id
may be enclosed in double-quotes (").

For example, the item-list may be:

1024-24 1024-25 "TEST ITEM" ABC

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 52

C',,' , ,

~

which specifies four item-ids, "1024-24", "1024-25", "TEST ITEM" and
"ABC" .

Item-ids may be repeated within the item list. There may be different
numbers of items within the source and destination lists. If the source
item-list is exhausted first, the COpy terminates. If the destination
item-list is exhausted first, the remainder of the items are copied with
NO CHANGE in item-id.

If the items are to be copied without any change in the item-ids, the
destination file item-list may be null.

If it is desired to copy all existing items, an asterisk (*) may be used
as the source file item-list.

If a preselected LIST of items is to be copied, the source item-list
should be NULL; in this case, the COpy statement must have been preceded
by a SELECT, SSELECT, QSELECT or GET-LIST statement. See the appropriate
sections of other chapters for a discussion of these verbs.

When copying from one dictionary to another, the copy processor does not
copy dictionary items which have D/CODE of "D" (that is, the D-pointers).
D-pointers must only be created by the CREATE-FILE processor. To recreate
both the dictionary and the data sections of on file in a new file, a
command sequence such as the example shown below must be used.

>COPY DICT SAMPLE COST
TO: WORTH [CR]

(I) [CR] (------ Single dictionary
item copied

1 ITEMS COPIED

>COpy SAMPLE 1242-01 [CR]
TO: 1242-99 [CR]

(---------- Single data item
copied

1 1242-01
1 ITEMS COPIED

(--------------------- Item-id is listed.

>COpy FLAVORS RED WHITE BLUE [CR]
TO: ALPHA BETA GAMMA [CR]

1 RED
2 WHITE
3 BLUE

3 ITEMS COPIED

(--- Multiple data items
copied

Copying Items to the Same File.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 53

>COpy DICT SAMPLE * (I) [CR] (-------- All dictionary
TO: (DICT FLAVORS) [CR] items copied.
[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED.

2 ITEMS COPIED

Copying Items to a Different File.

>CREATE-FlLE (NEW-SAMPLE 1,1 3,1) [CR] (------ New file created.

[417]
[417]

FILE 'NEW-SAMPLE' CREATED; BASE = 15417, MODULO = 1, SEPAR 1.
FILE 'NEW-SAMPLE' CREATED; BASE = 15418, MODULO = 3, SEPAR = 1.

>COPY DICT SAMPLE * (I) [CR] (----------- All dictionary items
TO: (DICT NEW-SAMPLE) [CR] (except D-pointer) copied.
[418] FILE DEFINITION ITEM 'SAMPLE' WAS NOT COPIED

3 ITEMS COPIED
>COPY SAMPLE * (I) [CR] <---------------- All data items copied.
TO: (NEW-SAMPLE) [CR]

22 ITEMS COPIED

Recreation of Entire Dictionary and Data Sections.

2.21 COPYING DATA: THE COPY PROCESSOR OPTIONS

This section describes the options that may be specified in the COPY
statement. It also describes the method of copying data to the terminal
or the line-printer.

FORMAT:

COpy [DICT} filename item-list [(options)}

The "options" parameter, if used, must be enclosed in parentheses.
Options are single alphabetic characters; multiple options may be strung
together, or separated by commas for clarity. The table below describes
the options used by the COpy processor. Note that some options operate
differently depending on whether the copy is to the terminal/line-printer,
or is a file copy.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

PAGE 54

(-

f-

On a terminal or line-printer copy, the data is displayed in the following
format:

item-id
001 attribute one
002 attribute two
003 attribute three

nnn last attribute

For example, the item "ITEMX" in the SAMPLE-FILE may be copied to the
terminal as follows:

>COPY SAMPLE-FILE ITEMX (T [CR]
ITEMX

001 3745
002 SMITH, JOHN
003 1234 MAIN STREET

OPTION NOTE DESCRIPTION

D

F

I

N

0

P

S

T

X

1 Delete item; the original (source item)
is deleted from the file after it is copied.

2 Form-feed; each item will cause a new page to begin.

1 Item-id list suppress; will inhibit the listing of item-ids.

1 New item inhibit; will not copy the items to
the destination file unless the item ALREADY EXISTS there.
That is, NEW items will not be created if this option is set.

2 Will inhibit the automatic end-of-page wait.

1 OVerwrite items option; will copy the item

1

2

1

to the destination file EVEN if it already exists on file.

Printer copy; copies the data to the line-printer.

Suppress error messages; messages indicating that items were
not copied (messages 409, 415 and 418) will not be printed.

Suppress line-numbers; the line-numbers will not be
displayed.

Terminal copy; copies the data to the terminal.

Hexadecimal format; the data is displayed in the
hexadecimal form.

Notes: 1. Valid only on a FILE copy.
2. Valid only on a NON-FILE (terminal or line-printer) copy.

COpy Processor Options.

CHAPTER 2 - FILE STRUCTURE Copyright (c) 1985 PICK SYSTEMS

("'\

/
PAGE 55

()

(!

SECTION 3

THE
ICONjPICK
TERMINAL
CONTROL
LANGUAGE
(TCL)

IceN~

/

(

(

Chapter 3

TERMINAL CONTROL LANGUAGE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (C) 1985 PICK SYSTEMS

PAGE 56

(

3.1 INTRODUCTION TO TeL

TCL, meaning Terminal Control Language, is the primary interface between
the user and the system. It is from TCL that all other processors
(EDITOR, ACCESS, PICK/BASlC, PROC, ASSEMBLY etc.) are invoked. The TCL
processor is automatically entered at LOGON and whenever a particular
process (such as a LIST or COMPILE) is complete. TCL prompts with a')'.

A TCL statement calls into effect one of the TCL verbs (action-initiating
commands) residing in the user's Master Dictionary (MO) which either
perform specified functions or invoke other processors to perform
specified functions. For example, the TIME verb prints the current time
and date on the terminal, while the RUN verb invokes the PICK/BASIC Run
Time processor which 'runs' the specified PICK/BASIC program.

The user is at the TCL level in t.he system when the system "prompts" with
a ">" character, that is, when the ,,>" character is printed at the far
left on the terminal, and the system is awaiting input from the terminal.

The TCL verbs belong to three major categories. TYPE-I verbs are those
which perform specified functions but which do not access data in files.
The TIME verb mentioned above is a TYPE-I verb. TYPE-II verbs are those
whose functions involve the accessing of data in files. The RUN verb
mentioned above is a TYPE-II verb. The third category is made up of
ACCESS verbs which are discussed in the ACCESS Manual.

The user may create any number of synonyms for the verb definition items
(and may even remove the pre-defined verb definition items), thereby
creating his own vocabulary. Synonyms may be created by copying the verb
definition item into another item with the desired name as the item-ID.

A TCL statement consists of the TCL verb, any other parameters (words,
file-names, options, etc.) that the specific verb may require, followed by
a carriage-return or line-feed (shown as [CR] in the documentation. No
action is initiated until the [CR] is input.

All TCL statements may have an "options" entry as the last parameter;
options are single alphabets, and/or a single or double number of the form
"n" or "n- m", where nand m may be decimal, or hexadecimal if preceded by
a period (.). The entire option string is enclosed in parentheses.
Options affect the operation of each verb in an unique way. General
options are "P" for routing data to the line printer and "N" for
inhibiting the end-of-page wait at the terminal. Multiple options may be
separated by commas for clarity.

CHAPTER 3 - TERMINAL CONTROL. LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 57

During the entry of the TeL statement, certain editing functions are
available to the user. A control-H ([cH]) is used to BACKSPACE over the
last character input. Normally, the terminal will also physically
backspace the cursor or carriage to indicate that the last entered C-.~/'
character has been deleted. A control-X ([cX]) may be entered to DELETE ~~
entirely the last entered line; a new line is initiated at the terminal
by the system. A control-W ([CW]) may be used to backspace over the last
WORD. A control-R ([cR]) may be used to RETYPE the last line.

TCL prompt

I
>verb [

character Options enclosed in
parentheses (must be at end)

I
... Parameters .•. } ((Options)) [[csO]}

I I

Carriage return,
(or line-feed)

I
[CR]

Parameters as required by the Optional continuation character
specific verb. (Control-shift-O or control-_).

General form of a TCL input statement.

CHARACTER EDITING FUNCTION COMMENTS

carriage-return End of line.
(or line-feed)

System will take action on
TCL statement.

Contro1-H

Control-W

Contro1-X

Control-R

Backspace over last
Character.

No action if at left margin;.
Character echoed by system may
be set by the TERM command.

Backspace over last word As above.

Delete last line. No action if at left margin; new
line will be started otherwise.

Retype last line.

(Note: the above are system-wide editing functions, and are applicable
whenever the system requests data input from the user's terminal.)

Line-editing characters.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 58 o

(

(

3.2 TCL VERB TYPES

I There are three basic types of TCL verbs. Type I does not reference a I
file; type II and ACCESS verbs always reference a file.

j---
TYPE I VERB

The type I TCL verb does not reference a file in the TCL statement. For
example, the verb used to attach the magnetic tape unit is:

>T-ATT

TYPE II VERB

The type II verbs
explicitly named
Alternately, all
verb "ED" invokes

always reference a single file. Typically, one or more
items (records) in the file may be accessed.

items in the file may be accessed. For, example, the
the text editor. The command:

>ED INVENTORY 1234

will access the item "1234" in the INVENTORY file.

ACCESS VERBS

ACCESS verbs have the most generalized syntax. In general, ACCESS verbs
specify a single file name, and have a set of selection criteria which is
specified to select a subset of the items in the file. Depending on the
particular ACCESS verb, further syntactical elements may be present. For

I example, the statement below is used to list all employees who were born
before 1/1/35:

>LIST EMPLOYEES WITH BIRTHDATE BEFORE "1/1/35"

3.3 TCL-I VERBS TCL-I VERBS

TCL-I verbs do not access a file. The format of the TCL statement is
unique to the specific verb, that is, there is no general form of the TCL
statement using this type of verb.

A TCL-I input statement
carriage return. Some
parameter specifications.

must begin with a TCL-I verb and end with a
TCL-I verbs additionally allow for various

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 59

--
VERB

BLOCK-PRINT
CHARGES
CHARGE-TO
CLEAR-FILE
CREATE-FILE
DELETE-FILE
MESSAGE
MSG
OFF
P
SLEEP

TABS
TIME
SP-ASSIGN
SP-STATUS
T-ATT
T-DET
TERM
TIME
WHAT
WHO

3.4 TCL-II VERBS

DESCRIPTION "•.........••..............

Sends block characters to spooler
Prints current computer usage
Keeps track of computer usage
Removes all file items from a file or dictionary.
Creates a new file
Deletes an entire file
Communicates to other users
Same as MESSAGE
Terminates user's session
Inhibits printing at terminal
Puts a terminal to "sleep" for a specified
time, or until a specified time.
Sets tabs for input or output.
Displays the current time and date.
Sets up assignment status for the spooler.
Spooler and line printer status.
Attaches magnetic tape unit.
Detaches the magnetic tape unit.
Sets or displays terminal characteristics.
Prints time and date.
Displays current system parameters.
Prints the line number and account name
to which any terminal is logged on.

EXAMPLES OF TCL-I VERBS

TCL-II VERBS

TCL TYPE-II verbs allow access to a specified file. The format for
forming a TCL-II input statement is more restrictive than for an ACCESS
statement (refer to the ACCESS Reference Manual). The advantage gained by
this restricted format is an enhancement in processing speed since
statement parsing is quicker.

FORMAT:

>verb (DICT} file-name (item-list} ((options) }

A file-name (or DICT file-name) must immediately follow the TCL-II verb.
Item selection is more restricted than in ACCESS statements, since each
item-id must be explicitly named in the statement (or, alternately, all
items may be specified via use of the asterisk (*) character). The file
name specifies the desired file. The DICT option specifies the dictionary
portion of the file. The item-list is made up of one or more item-id's,
separated by one or more blanks. If an item-id contains embedded blanks
or parentheses, it must be surrounded by quotes. All items in a file may

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 60

/

(\

, /'

(

be specified by using an
Options, if specified, must
input line. The specified
processor.

asterisk (*) character as the item-list.
be enclosed in parentheses at the end of the
options are passed to the appropriate TCL-II

.)The item-list may be omitted entirely if the TCL-II statement is preceded
by a statement that generates a "select-list". The item-ids are then
obtained from this preselected list. Statements that generate select
lists are SELECT, SSELECT, QSELECT and GET-LIST, and are described in the
ACCESS chapter.

VERB

COMPILE
CATALOG
COPY
EDIT
RUN
RUNOFF

DESCRIPTION

Compiles a DATA/BASIC program.
Catalogs a DATA/BASIC program.
Copies data files and dictionaries.
Evokes the EDITOR processor.
Executes a DATA/BASIC program.
Evokes the word-processer.

Examples of some TCL-II Verbs.

3.5 LOGON AND LOGOFF PROCESSORS LOGON AND LOGOFF PROCESSORS

(I
The Logon processor provides a facility for initiating a user's session by
identifying valid users and their associated passwords. The Logoff
processor is used to terminate the session and should always be evoked via
the verb OFF when the user wishes to terminate. These processors can
accumulate accounting statistics for billing purposes and also will
associate the user with his privileges and security codes.

The user may log on to the PICK System when the following message is
displayed:

LOGON PLEASE:

NOTE: The actual form of this message will vary from system to system,
since the message format is obtained from an entry called "LOGON" in the
SYSTEM dictionary!

The user then enters the name (identification) established for him in the
system, followed by a carriage-return. If a password has also been
established, he may follow his identification with a comma, and then the
password, followed by a carriage-return. If the password is not entered
as a response to the LOGON PLEASE message, the system will display the
message:

PASSWORD:

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 61

The system validates the user's identification against the entries in the
SYSTEM Dictionary; if it is illegal, tne following message is returned:

USER-ID?

LOGON PLEASE:

The user must then re-enter his identification and password. If the
user's identification is valid, but the password is not acceptable, the
following message is displayed:

PASSWORD?

LOGON PLEASE:

The user must then re-enter his identification and password. If the user
has successfully logged on to the system) i.e., both the identification
and the password have been accepted, the following message is displayed:

< WELCOME TO THE PICK SYSTEM >
< time release date >

> <------ TCL prompt.

where "time" is the current time, "date" is the current date, and
"release" is the current PICK Systems release level. The ">" is the TCL
prompt character, which indicates that the user may now enter any valid
TCL level command.

LOGGING OFF

FORMAT:
> OFF

Logoff is achieved by entering the word OFF, either at the TCL level or at
the DEBUG level. A message indicating the connect time (i.e., number of
minutes that the user was logged on) and the appropriate charge units will
be displayed. The system then displays the LOGON PLEASE message and waits
for the next user session to be initiated. The general form of the logoff
message is as follows:

< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x >
< LOGGED OFF AT time ON date >

where "n" is the number of minutes of connect time, "m" is the number of
charge units, "time" is the current time, and "date" is the current date,
and "x" is the number of line-printer pages generated. The charge-units
represent usage of the CPU; it is in tenths of a CPU second.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 62

c

C/
]

3.6 LOOTO

I The LOOTO verb allows the user to log to another account faster than by I
(
.. going through the OFF and LOOON process.

r;;~;~---

(I

LOOTO account-name{,password}

where lIaccount-name ll is that of the new account that the user wishes to
logon to, and "password ll is the password associated with that account
name. If "password" is not entered, and the account has a password
defined, the message:

PASSWORD:

will be displayed, and the password may then be entered.

If the account-name is illegal, the message
and the user will be back at TCL. If the
message "PASSWORD?" will be displayed.

"USER ID?" will be printed,
password is incorrect, the

If the account-name and password are both correct, the current logon
session will be terminated by updating the accounting file with the
appropriate statistics, and a new session started. The message:

«< CONNECT TIME = n MINS.i CHARGE UNITS = m, LPTR PAGES= x»>

will be displayed.

Also, the tape unit will be detached, if
line prior to the LOOTO.

the user had it attached to his

LOGON PLEASE: SMITH,XYZ [CR]

< WELCOME TO THE PICK OPERATING SYSTEM >
< 09:15:33 RELEASE n 4 JUL 1984 >

>WHO [CR]
7 SMITH

>LOGTO JONES [CR]
PASSWORD: ABC [CR]

«< CONNECT TIME = 3 MINS.i CHARGE UNITS

>WHO [CR]
7 JONES

11, LPTR PAGES= 0 »>

Sample usage of LOOTO verb.

c .. / CHAPTER 3 - TERMINAL CONTROL LANGUAGE

. PAGE 63

Copyright (c) 1985 PICK SYSTEMS

3.7 CHARGE-TO AND CHARGES

The CHARGE-TO verb allows the user to charge a particular logon session to
a specific charge number or name. The CHARGES verb displays the charge
statistics for the current logon session.

FORMAT:
CHARGE-TO {text}

where "text" is any sequence of non-blank characters. This statement will
cause the current logon session to be terminated and the account file to
be updated with the appropriate statistics; a new session is started,
with the new user identification of the form:

account-n ame * text

where "text" is as specified in the CHARGE-TO statement. This allows the
user to charge his logon sessions to specific names or numbers. If "text"
is null in the CHARGE-TO statement, the user identification will revert to
the form "account-name" alone. The CHARGE-TO statement will also cause
the following message to be displayed:

«< CONNECT TIME - n MINS.; CHARGE UNITS = m, LPTR PAGES= x»>

FORMAT:
CHARGES

This will display the logon statistics with the following message:

«< CONNECT TIME = n MINS.; CHARGE UNITS = m, LPTR PAGES= x»>

LOGON PLEASE: SMITH,XYZ [CR]

< WELCOME TO THE PICK SYSTEM >
< 08:15:25 RELEASE n 5 MAY 1984 >

>WHO [CR]
7 SMITH

>CHARGE-TO A001 [CR]
«< CONNECT TIME = 0 MINS.; CHARGE UNITS

>WHO [CR]
7 SMITH*AOOl

>CHARGES [CR]
«< CONNECT TIME = 0 MINS.; CHARGE UNITS

>CHARGE-TO [CR]

7, LPTR PAGES= 0 »>

8, LPTR PAGES= 0 »>

«< CONNECT TIME = 0 MINS.; CHARGE UNITS = 9, LPTR PAGES= 0 »>

>WHO [CR]
7 SMITH

Sample usage of CHARGE-TO and CHARGES.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

'PAGE 64

C~

/ '" !

(

(

3.8 LOGON PROCS

I Upon logon, the Pick Computer System allows for the execution of a PROC I
with an item-id identical to the user's identification.

When the user has logged on to his account, PICK permits the automatic
execution of PROC whose item-id is the same as the user's identification.
That is, the Master Dictionary of the account will be searched for a PROC
matching the identification which was used to log on to the account; if
lt is found, it will be executed. (See PROC.)

Typically, the Logon PROC is used to perform standard functions that are
always associated with the particular user's needs. For example, setting
of terminal characteristics could be performed by the Logon PROC. When
the user logs on to the system,-his terminal characteristics are set to
the initial conditions listed in the first example (which correspond to an
8 1/2" by 11" page size). These conditions can subsequently be displayed
and altered by the TCL verb TERM. As an example, assume that the PROC
listed in the second example (which includes a TERM operation) is stored as
item SMITH in the user's Master Dictionary (MD). If the user's
identification is the word SMITH, then the SMITH PROC will be executed
automatically every time the user logs on (i.e., the user's particular
terminal characteristics will automatically be set).

Page Width:
Page Body:
Line Skip:
Line-Feed Delay:
Form-Feed Delay:
Backspace Echo:
Terminal Type:

TERMINAL
79 characters
24 lines
o
o
o
8
T

PRINTER
132
60

Initial Terminal Characteristics Automatically Set at Logon Time.

Item 'SMITH -- a sample logon PROC.' in MD of user SMITH
001 PO
002 HTERM 118,44,7,6
003 P
004 x** TERMINAL CHARACTERISTICS SET **

LOGON PLEASE: SMITH,XYZ [CR] <-------------------- Logon sequence.

< WELCOME TO THE PICK SYSTEM >
< 15:09:50 RELEASE n 13 JULY 1984 >

** TERMINAL CHARACTERISTICS SET ** <-------- Message from SMITH PROC.
> <--- TCL prompt character.

--
Automatic Execution of Sample PROC.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

PAGE 65

Copyright (c) 1985 PICK SYSTEMS

3.9 TERM
--
I Terminal and/or line printer characteristics may be displayed or set by a I

process via the TERM command.

FORMAT:

TERM {a,b,c,d,e,f,g,h,t}

ARGUMENTS:

a is the terminal line length (i.e.,number of characters per line).
The a parameter must be in the following range: l6(a(140.

b is the number of print lines per page on the terminal.
c is the number of blank lines per page on the terminal (sum

of band c equals page length).
d is the number of delay or idle characters following each carriage

return or line feed. This is used for terminals that require
a pause after a carriage return or line feed (i.e., since the CPU
generates characters faster than the terminal can accept them).

e is the number of delay characters following each top-of-form.
If e is zero, no form-feed character will be sent to either the
terminal or the printer.
If e is non-zero, a form-feed character is also output before each
page; if e is ONE, this character is sent to the line-printer,
but not to the terminal.
If e is greater than 1, the form-feed character is also sent to the
terminal at the beginning of each page, AND that many delay or idle
characters is also sent to allow the terminal time to settle after
the form-feed.
The form-feed character sent to the printer is always a hexadecimal
'oct (ASCII FF character).

f is the backspace character. An ASCII backspace (control-H) is
always input to backspace over (or erase the last character that
was input; however, the user may set the actual character echoed
to his terminal. This accommodates terminals that cannot physi
cally backspace, or that have a backspace character other than
the ASCII backspace. The f parameter should be 21 for the ADDS
REGENT terminal, and 8 for the TEC 2402 terminal.

g is the line printer line length.
h is the line printer page length.
t is the terminal type code; this changes the form-feed character

sent by the system to match the terminal requirements, and, more
importantly, sets the appropriate cursor addressing for the
BASIC cursor functions. A few TERMTYPES are:

A - ADDS 580
D - DIALOG
L - LEAR-SIEGLER ADM-3A
d - ICON DT1200
R - ADDS REGENT
T - TV950
V - ADDS VIEWPOINT
X - NO CURSOR ADDRESSING FUNCTIONS

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 66

Individual parameters may be null (i.e., as specified by two adjacent
commas in the TERM command). If so, the previously defined parameter
remains in force. A TERM command without a parameter list Causes display
of the current characteristics. To function properly, the t parameter

(" must be the last element in any TERM string. It may be the only element
I if no other elements are to be changed. The other parameters are

positional, however.

>TERM [CR]

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DELAY
FF DELAY
BACKSPACE
TERM TYPE

TERMINAL
79
24
o
1
1

21
R

PRINTER
132

64

Standard terminal characteristics set for the ADDS REGENT terminal.

>TERM ",,2 [CR]

Resets the FF delay to 2, in order to get a clear-screen on the terminal.

>TERM [CR]

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DELAY
FF DELAY
BACKSPACE

TERMINAL
79
24
o
1
2

21

>TERM "",,120,48 [CR]

PRINTER
132

64

Resets the line-printer page size to l20x48.

>TERM [CR]

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DELAY
FF DELAY
BACKSPACE

TERMINAL
79
24
o
1
2

21

PRINTER
120

48

Sample usage of the TERM statement.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 67

3.10 TABS: SETTING TAB STOPS

I Tab stops may be set with the TABS statement.

FORMAT:
TABS {O or I nl,n2,n3 }

TABS {O or I lSI}

where the tabs may be set for input or output, depending on the parameter
"0" or "I" following the TABS verb. nl, n2, etc. are up to fifteen tab
stop positions; they must be in ascending numerical sequence.

Tabs set for input are then available at any time that the system requests
input from the terminal. By entering a control-I ([cI]), the system will
space over to the next tab-stop position, if any. If there are no more
tab-stop positions, the [cI] is ignored (control-I is also generated by
the TAB key on some terminals). The tab stops set by the TABS I statement
are identical to those set by the TB statement in the EDITOR.

Tabs set for output are only useful for those printing terminals that have
a physical tabbing capability .. Do not set output tabs for a CRT! If
output tab stops are set, the system will replace blank sequences in any
output generated by the system by an appropriate tab character ([cI]),
thus reducing the data output. The user must also setup the physical tab
stops on the terminal to correspond to those set in the TABS 0 statement.
On many terminals, this entails positioning the carriage and entering a
set-tabs sequence from the keyboard.

Input or output tab stops may be disabled by entering "TABS I" or "TABS 0"
respectively. Previously set tab stops may then be recalled by entering /,
"TABS I SIt . or "TABS 0 SIt for input and output tab stops respectively. /
Currently set tab stops can be displayed by entering "TABS" alone.

>TABS I 4,8,12,16,20,24,28 [CR]

>TABS 0 10,20,30,40,50,60 [CR]

>TABS [CR]

(sets input tab stops)

(sets output tab stops)

(displays current tab stops)

1234567
1234567890123456789012345678901234567890123456789012345678901234567890

I I I I I I I
00000 0

>TABS 0 [CR] (turns off output tab stops)

Examples of TABS statements.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 68

3.11 TIME

I The TIME statement displays the current system time and date. (---
FORMAT:

TIME

TIME is a simple TCL-I verb which returns the current system time and date
in external format.

EXAMPLE:

>TIME [CR]
09:21:23 11 MAY 1984

Example of TIME Verb.

3.12 SLEEP

The SLEEP verb is a TCL-I verb that is used to put a terminal to "sleep",
that is, to enter a quiescent state, for a specified period of time, or
until a specified time. (--
FORMAT:

SLEEP x

The "x" is either a decimal number specifying the number of seconds to
sleep, or is of the form "hh:mm:ss" or "hh:mm" , specifying a time in
24-hour format until which to sleep. SLEEP is useful to cause a terminal
to wait until some time to run a task, for instance the FILE-SAVE may be
run at 23:00 (11:00PM) every night.

EXAMPLE:

>SLEEP 100 [CR]

>SLEEP 23:00 [CR]

(terminal will sleep for 100 seconds)

(terminal will wake up at 11:00 pm)

The form of SLEEP with a wake-up time is usable for a maximum of 24 hours.

Sample usage of the SLEEP Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 69

3.13 WHO

I The WHO statement is a TCL-I verb which is used
name that a terminal is currently logged on to.

to display the account- I o -- ",~-_/

FORMAT:

WHO (n}

If WHO is entered without the "n", the line-number (channel number) of the
user's terminal is displayed, along with the account-name that he is
logged on to. If the "n" is specified, the same data is displayed for
line-number "n", where n ranges from 0 to the maximum number of lines on
the current system. If the line is non-existent, or if no user is logged
on to that line, the account-name is replaced with "UNKNOWN".

You may specify a range of lines as well. Any non-numeric character will
cause WHO to display all lines and their logon name.

EXAMPLE:

>WHO [CR]
07 SMITH

>WHO 0 [CR]
00 SYSPROG

>WHO 11 [CR]
11 UNKNOWN

>WHO *

>WHO 1-3
01 JOHN
02 SYSPROG
03 UNKNOWN

>WHO 'SYSPROG '

(this is line-number 7, logged on to "SMITH")

(line number 0 is logged on to SYSPROG).

(displays accounts using all lines; lines
(which are not logged on display UNKNOWN.)

(displays all lines logged onto the SYSPROG account.)

Sample usage of the WHO Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 70

'"- /

3.14 MSG MSG

\1 ~~:r r:sG or MESSAGE statement allows one user to send a message to another I
(" ~---

FORMAT:

MSG account-name Message text

MSG !port-number Message text

where "account-name" is the name that the other user is logged on to, and
the text of the message follows. The message text is not edited in any
way; there is no "options" parameter in the MSG statement.

Note that ALL users who are logged on to the specified account-name will
receive the message.

Users with system level 2 privileges (see SYSTEM MAINTENANCE) can
broadcast a message to all users by substituting an asterisk (*) for the
"account-name" in the MSG statement. This message will be received by the
user's terminal also.

The MSG verb will also allow you to direct a message to a particular line
as well as to a particular user by preceding the line number with an
exclamation mark (!). This form of the verb will send messages to
terminals which are not logged-on. Further, the user may send a message
to all lines, signed on or not, by using an asterisk.

("- .-~~~~~--
>MSG JONES*AOOOI WHAT'S THE STATUS OF THE INVENTORY REPORT??? [CR]

>MSG JONES HELLO THERE! "%%%%' "%
USER NOT LOGGED ON

[CR]
(JONES is not logged on).

>MSG * SYSTEM FILE-SAVE WILL START IN 5 MINUTES!!! [CR]

> MSG ! 7 HELLO [CR] (Send "HELLO" to line 7)

>MSG '* LOG OFF PLZ [CR] (MSG to all connected terminals)

>MSG !* AUTOMATIC DISK REFORMAT STARTING IN 10 SECONDS. [CR]

Sample usage of the MSG Verb.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE

C: PAGE 71

Copyright (c) 1985 PICK SYSTEMS

3.15 PROGRAM INTERRUPTION (DEBUG FACILITY)

--~-----------------
Processing can be interrupted by depressing the BREAK key on the terminal
(INT key on some terminals). This causes an interrupt in the current ~
processing, and an entry into the DEBUG state. This is inhibited during ~/
critical stages of processing.

When the BREAK (or INT) key has been depressed, and the DEBUG state has
been entered, the following message will be displayed:

I x.d

where x and d describe the software location of the interruption (refer to
the DEBUG documentation in the PICK Assembly Language Manual). The DEBUG
prompt character (!) is displayed to prompt the user for a DEBUG command.
For users with system privilege levels zero or one, the commands listed in
the example are the only DEBUG commands allowed. Users with system
privilege level two should refer to the PICK Assembly Language Reference
Manual for further DEBUG facilities.

Upon encountering one of the hardware abnormal conditions, the system will
automatically trap to the DEBUG state with a message indicating the nature
and location of the abort. If the user has system privileges level zero
or one, he must type END or OFF to exit from the DEBUG state. The
hardware abnormal conditions are described in the DEBUG section of the
Pick Assembly Language manual.

COMMAND

P

G or
LINE FEED

END

OFF

DESCRIPTION

Print on/off. Each entry of a P command switches
(toggles) from print suppression to print non
suppression. The message OFF is displayed if output
is currently suppressed. The message ON is displayed
if output is resumed. This feature is useful in
limiting the output at the terminal.

GO. This command causes resumption of process
execution from the point of interruption.
LINE FEED cannot be used if a process ABORT
condition caused the entry to DEBUG.

Terminates current process and causes an immediate
return to TCL.

Terminates current process and causes the user to
be logged off the system.

DEBUG Commands for Users With System Privilege Levels 0 or 1

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 72

3.16 BLOCK-PRINT

I The BLOCK-PRINT command will print characters in a 9-by-n block-form on

(
.... the line printer or the user's terminal, respectively. Any ASCII

: characters may be printed.
--

(

FORMAT:

BLOCK-PRINT character-string rep}
This command causes the specified character-string to be block-printed on
the terminal. Any character-string containing single quotes (') must be
enclosed in double quotes ("), and vice versa. The surrounding quotes
will not be printed. A character-string not containing quotes as part of
the string need not be surrounded by quotes. For example, to BLOCK-PRINT
JUDy'S JOB, only enclose JUDY'S with double quotes: "JUDY'S" JOB

The option "P" will route the output to the line printer.

Character-strings to be blocked cannot have more than nine characters.
For the BLOCK-PRINT command, the total number of characters must not
exceed the current line length set by the most recent TERM command.

If a BLOCK-PRINT command is illegally formed, any of the error messages
520 through 525 may be displayed (refer to the list of error messages in
the appendix of this manual).

The BLOCK-PRINT commands use a file named BLOCK-CONVERT to create the
blocked characters. A BLOCK-CONVERT file already exists which contains
the conversion specifications for all printable ASCII characters (no lower
case alphas, however). with this file, characters will be printed as
9-by-12 to 9-by-20 blocks.

If it is desired to change the way any character is printed, it is
necessary to change the corresponding item in the BLOCK-CONVERT file. The
item-id of the item is the character to be converted. Each item in the
file must consist of exactly ten attributes. The first must specify in
decimal the number of horizontal bytes in the blocked character to be
output (i.e., "n" of the 9-by-n block mentioned above). The second and
subsequent attributes provide the conversion specification. These
attributes contain one or more values; each value is separated from the
preceding by a value mark (ASCII 253). The first character of the first
value in each attribute must be "c" or "B"; these signal that the output
matrix line of the blocked character begins with a character or a blank,
respectively. Immediately following must be the number of characters or
blanks (in decimal). The presence of a value mark indicates a switch from
character to blank status (or vice versa) and must be followed by the
number of bytes to be output. The process continues until the attribute
mark at the end of the current line.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 73

EXAMPLE:

BLOCK-PRINT HELLO (CR) will look like this:

HH HH EEEEEE LL LL 00000o
HH HH EE LL LL 00 00
HH HH EE LL LL 00 00
HHHHHHH EEEEE LL LL 00 00
HH HH EE LL LL 00 00
HH HH EE LL LL 00 00
HH HH EEEEEE I ILI.I II.I, I .I ,IJ: ILl, 00000o

>BLOCK-PRINT "JUDY'S" JOB (CR) will look like this:

JJ
JJ
JJ
JJ
JJ

JJ JJ
JJJJ

uu UU
UU UU
UU UU
UU UU
UU UU
UU UU

UUUUUU

DDDDDD
DD DD
DD DD
DD DD
DD DD
DD DD
DDDDDD

yy yy
yy yy

yy yy
yy
yy
yy
yy

JJ
JJ
JJ
JJ
JJ

000000
00 00
00 00
00 00
00 00

JJ JJ
JJJJ

00 00
000000

BBBBBB
BB BB
BB BB
BBBBBB
BB BB
BB BB
BBBBBB

, , ,
, , ,
, I ,

Sample usage of the BLOCK-PRINT verb.

SSSSS
SS SS
SS

SSSSS
SS

SS SS
SSSSS

3.17 UTILITY PROCS CT, LISTACC, LISTCONN, LISTDICTS, LISTFILES,
LISTPROCS, LISTU, LISTVERBS.

I This topic describes various utility PROC's.

CT
CT file-name item-list {options}

The item(s) specified will be copied to the terminal. Options recognized
by the copy verb may be added.

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 74

c

o

(

(

LISTACC
LISTACC (account-name} ...

This PROC lists accounting data for the account-name(s) specified. If no
account-name(s) are specified, accounting data for all users is listed.

LISTCONN
LISTCONN file-name {LPTR}

This PROC sorts all connectives in any dictionary and lists them on the
terminal (or Line-PrinTeR if specified).

LISTDICTS
LISTDICTS file-name {LPTR}

The LISTDICTS PROC sorts all attribute synonym definition items in any
dictionary and lists them on the terminal (or Line-PrinTeR if specified).

LISTFILES
LISTFlLES file-name {LPTR}

The LISTFILES PROC sorts all file or file synonym definition items in any
dictionary and lists them on the terminal (or Line-PrinTeR if specified).

LISTPROCS
LISTPROCS file-name [LPTR}

The LISTPROeS PROe sorts all PRoe's in any file or
them along with a brief abstract on the terminal
specified) .

LISTU
LISTU

dictionary and lists
(or Line-PrinTeR if

The LISTU PRoe lists the account name of all users currently active on the
system, along with their logon time and channel number.

LISTVERBS
LISTVERBS file-name [LPTR}

The LISTVERBS PRoe sorts all verbs (not PROC's in any dictionary and lists
them on the terminal (or Line-PrinTeR if specified).

3.18 VERB DEFINITION ITEMS IN M/DICT

I Each TCL-I, TeL-II, or
Master Dictionary (MD).

ACCESS verb is defined as an item in the user's I

Each verb definition resides as an item in the user's Master Dictionary.
The item-id (i.e., attribute zero) of a verb definition item is the verb
name itself. The user may create any number of synonyms for the verb
definition items (and may even remove the pre-defined verb definition

CHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 75

i tams), thereby creating his own vocabulary. Synonyms may be created by
copying the verb definition item into another MD item with the desired
synonym name as the i tem-ID.

ATTRIBUTE NUMBER
o

1

2

3

4

5

DESCRIPTION
This is the item-id, which is the name of
the verb.

Must contain: Pc 1
P identifies the MD item as a verb definition
item. The single character c is passed to the
defined processor. If c is Q, the item is a
PROC not a verb.

This attribute defines the processor entry
point to which TCL passes control (i.e.,
the mode-id in hex). See PICK ASSEMBLER Manual.

Secondary transfer point. Use depends on
attributes 1 and 2.

Tertiary transfer point. Use depends on
attributes 1 and 2.

TCL-II parameter string. These parameters
govern treatment of the items retrieval by
TCL-II verbs to be passed to the processor
whose entry point is defined in attribute
three. Parameter may be any of the following:

C Copy item to a work area.
F - Pick up file parameters only

(ignore item-list).
N - Okay if item is not on file.
P - Print item-id if item-list is n*n (all

items), or if SELECT-ed item-list.)
S - Ignore the select-list; item-list

required.
U - Items will be updated by processor.
Z - Final entry required on EOI.

WARNING: Do not change any of the data in theses existing verbs!

Verb Definition Item in MD.

iCHAPTER 3 - TERMINAL CONTROL LANGUAGE Copyright (c) 1985 PICK SYSTEMS

PAGE 76

(

(

SECTION 4

THE
ICON/PICK
EDITOR

(

(

Chapter 4

EDITOR

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made avai1b1e to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 77

.4
'~

(

4.1 EDITOR PROCESSOR: AN INTRODUCTION

The EDITOR is a processor which permits on-line interactive modification
of any item in the data base. The EDITOR may be used to create and/or
modify PICK/BASIC programs, PROC's, assembly source, data files, and file
dictionaries. The EDITOR uses the current line concept; that is, at any
given time there is a current line that can be listed, altered, deleted,
etc. The EDITOR includes the following features:

Two variable length temporary buffers
Absolute and relative current line positioning
Line number prompting on input
Merging of lines from the same or other items
Character string location and replacement
Conditional and unconditional line deletion
Input/Output formatting
Prestoring of commands

EDITOR COMMAND AND EXAMPLE CONVENTIONS

CONVENTION
UPPER CASE

MEANING
Characters printed in upper case are required
and must appear exactly as shown.

Lower case

[}

"string"

Characters or words printed in lower case are
parameters to be supplied by the user (i.e.,
line number, data, etc.).

Braces surrounding a parameter indicate that the
parameter is optional and may be included or
omitted at the user's option.

A "string" is a sequence of characters delimited
by any non-numeric character (except a blank or
a minus sign) that does not appear within the
body of the "string" itself. (A further description
of "string" is presented in the topic describing
the Editor syntax).

Conventions Used in EDITOR command Formats

CONVENTION
* TEXT

TEXT

[CR]

CHAPTER 4 - EDITOR

MEANING
An asterisk preceding text represents
the user's input.

Capitalized text represents output printed by
the EDITOR

This symbol represents a carriage return.

Conventions Used in EDITOR Examples

Copyright (c) 1985 PICK SYSTEMS

PAGE 78

4.2 EDITOR OPERATION: AN OVERVIEW

The EDITOR uses two data areas (buffers) to edit an item. The item is
copied into one buffer and updates are assembled in the other. An F C
command merges the updates with the item and then toggles the function of \
the buffers. _J

The EDITOR uses two variable length temporary buffers (Buffer 1 and Buffer
2) to create or update an item. When the EDITOR is entered, the item to
be edited is copied from the file to Buffer 1 (the Current Buffer). Each
line (attribute) of the item is associated with a line number. A current
line pointer points to the current line of the item, and an EOI (End-of
Item) pointer points to the last line of the item. EDITOR operations are
performed on one line at a time (the current line) in an ascending line
number sequence from TOP (line 0) to EOI. As an EDITOR operation is
performed on a line, the modified line and all previous lines are copied
to Buffer 2 (the Update Buffer).

The editing process continues working on Buffer 1. As lines in the item
are changed (or lines are inserted or deleted), the EDITOR builds a new
updated version of the item in Buffer 2. Updating must thus continue in
an ascending line number sequence until a F command is entered. The F
command merges the updates with the previously existing item, and an
automatic resequencing of the item takes place. The F command does not
permanently file an item; it completes the copy to the Update Buffer
causing all lines to be resequenced and the EOI pointer to be
repositioned. It then switches (toggles) the function of the buffers, so
that Buffer 1 becomes the Update Buffer and Buffer 2 becomes the Current
Buffer. Editing then occurs in Buffer 2 with new modifications assembled
in Buffer 1. This toggling of buffers can go in indefinitely until the
item is permanently filed away via a File Item (FI) or File Save (FS)
command.

This editing process is exemplified in the following examples. The first
example shows a four-line item in Buffer 1 (the Current Buffer) with the
current line pointer positioned at line 2. Two lines ("1234" and "567")
are then inserted after line 2 as can be seen in Buffer 2 (the Update
Buffer). When an F command is issued, the buffers are toggled and the
situation is as shown in the second example. Here Buffer 2 has become the
Current Buffer. Further modifications made to the item will be assembled
in Buffer 1 which has now become the Update Buffer.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 79

,/

(

(

1

2

3

4

BUFFER 1
(CURRENT BUFFER)

TOP

AAAAA

BBBB

CCCC

DDDD

BUFFER 1
(UPDATE BUFFER)

TOP

CHAPTER 4 - EDITOR

current
(---- line

pointer

(--- EOI
pointer

BUFFER 2
(UPDATE BUFFER)

1 AAAAA

2 BBBB

3

4

12345

567

TOP

Editing Example Before F Command

current
line -->
pointer

last

line

EOI -->
pointer

BUFFER 2
(CURRENT BUFFER)

1 AAAA

2 BBBB

3 1234

4 567

5 CCCC

6 DDDD

TOP

Editing Example After F Command.

Copyright (c) 1985 PICK SYSTEMS

PAGE 80

4.3 EDIT VERB: ENTERING THE EDITOR

I To enter the EDITOR, the EDIT verb is entered at the TCL level.

FORMAT:

ED{IT} {DIeT} file-name {item-list} {(options)}

The "item-list" parameter consists of one or more item-id's separated by
blanks, or an asterisk character (*) specifying all items in the specified
file. If multiple item-id's are specified, then the first item specified
will be edited first; when the EDITOR then is terminated via a File Item
(FI), File Delete (FD), or Exit (EX) command, then the EDITOR will
automatically be re-entered and the next item will be edited; and so on.

If the DICT option is used, the specified item(s) in the dictionary
section of the specified file will be edited. If DICT is omitted, the
specified item(s) in the data section of the specified file will be
edited.

If a select-list is in effect (by using a SELECT, SSELECT, QSELECT or GET
LIST), the item-list is omitted; the item-ids are obtained from the
select-list in this case.

Editor options are specified'as a single character; multiple options may
be separated by commas.

EDITOR OPTIONS:

A

S

M

P

z

Turns on the assembly-code formatting option; see
"AS" command.

Turns on the suppress-line numbers on suppress
object-code option; see "s" command.

Turns on the macro expansion flag; see "M" command.

Sends all system ouput to the line printer.

Suppresses "TOP" and "EOI" messages.

NOTES ON THE EDITOR:

Once the EDITOR has been entered, the following will be printed:

TOP

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 81

,
\~ /'

The current line pointer is set to line zero, and an EDITOR command is
awaited (i.e., the period prompt character (.) indicates that an EDITOR
command is to be entered).

(.
_. If the specified item does not already exist on file, the message "NEW

\ ITEM" will be printed prior to the "TOP" message. Furthermore, if
multiple item-id's were specified, then the item-id of item currently
being edited will be printed.

As noted in the discussion of file structure, the elements subsidiary to
files are items. Structurally they are made up of attributes, and
functionally they all are seen by some processor as data; but intuitively
one may consider items to be of two types: text or data. A data item is
typified by the condition that the meaning of a data string depends upon
which attribute it is in. A text item is a sequential string using the
attribute mark and count at most to delimit sub-strings. Data strings
include Attribute defining items found in dictionaries, and data items in
files to be processed by ACCESS, PI CK/BASIC or User exits, wherein
individual lines are properly referred to as attributes. Text items are
made up of lines, which are structurally identical to the attributes of
data items, but which do not have meaning by virtue of their attribute
location. Text items include PICK/BASIC and Assembler language programs,
Procs, and the items processed by RUNOFF.

The EDITOR has the
text items anywhere
account's privilege
type of item or its

The EDITOR displays
within the item and

capacity to create, modify, and delete both data and
in the System, within the constraints of the user's

level and update lock codes, without respect to the
end use.

(
-Note that attribute

/EXAMPLES:

attributes as lines, so that the attribute mark count
the line number displayed by the EDITOR are identical.
zero is the item-id.

(-

* >ED Fl II 12 13 [CR] (---------
II (----------------------------
TOP

* .EX (---------------------------
EXIT
12 (----------------------------

TOP
* .EX (---------------------------

EXIT
13 (--~-------------------------
NEW ITEM (---------------------
TOP

* .EX (---------------------------
EXIT
> (-----------------------------

EDIT verb (with multiple item-id's).
Item II is edited first.

Exit command (exits EDITOR).

EDITOR automatically re-entered
to edit next item (12).
Exit command.

EDITOR automatically re-entered.
Shows that 13 is a new item.

Exi t command.

Returns to TCL level.

Sample Usage of the EDIT Verb.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 82

4.4 EDITOR COMMAND SYNTAX

I This section describes the syntax of EDITOR commands.

EDITOR commands are one or two letter mnemonics which.must appear as the
first non-blank input character. Command parameters follow the command;
blanks may be inserted between parameters for clarity if desired, but
embedded blanks in parameters are not permitted.

EDITOR commands can be entered either in upper or lower case. This is
especially convenient when editing text items, when the terminal may be in
the lower-case mode.

4.4.1 EDITOR "strings"

Certain EDITOR commands use a "string" which may be defined as a series of
characters that is surrounded, or delimited by a pair of identical, non
numeric characters that do not appear within the string itself. Lower
case alphabetic characters are not valid as delimiters.

/123 MAIN ST./
.abc 123 DEF.
;Open Architecture:
AThis test stringA

VALID STRINGS

/replacement of the/
" $ 9876.54 "

"PICK/BASIC is .
Z That test string Z

For convenience, the closing delimiter of the "string" is necessary only
if further parameters follow the string specification, or trailing blanks \ /
are to be included as part of the "string".

4.4.2 COLON: EDITOR DELIMITER

The "string" is used in EDITOR commands that specify a search for matching
data in the item. The COLON (:) is a reserved delimiter; if used, it
indicates that a column-dependent correspondence between characters in the
string and characters in the line is necessary for a match.

:LOOP :

would attempt to find the matching characters "LOOP" in columns 1 through 5
of the line; however, the string:

/LOOP /

would attempt to find the matching characters "LOOP" anywhere within the
line.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 83 ()

4.4.3 UP-ARROW: WILDCARD EDITOR CHARACTER

The up-arrow (-) is a reserved character within the body of the "string". The
up-arrow is a wildcard character used with L(ocate) and R(eplace) EDITOR
commands. It indicates that any character in the corresponding position in

(. --.be line is acceptable as a match. Note that this feature may be nullified by
sing the II-II Command. For example, the string:

would attempt to find the matching characters "AB", then any character
whatsoever, then "CD" in the line. This feature may be deactivated by using
the 11- " character alone at the command prompt. Entering it again will toggle
the feature back to activated. The EDITOR outputs /ON\ or /OFF\ accordingly.

COMMAND NAME

Again
Assembler Format ON/OFF
Bottom
Column Number List
Current Line
Delete
Delete
Exit
File Delete
File Item
File Save

Goto
Goto
Input
Insert
List
Locate
Macro expansion
Merge
Next
Prestore
Prestore Call
Replace
Replace
Suppress ON/OFF
Tab
Top
Up
X
XF
Zone

COMMAND FORMAT

A
AS
B
C
?
DE{n}
DE{n} "string" {p{-q}}
EX{K}
FD
FI
FS
F
Gn
n
I
I data
L{n}
L{n}"string"{p{-q}}
M
ME{n}"item"{m}
N{n}
P command
P
R
RU{n}"string l"string 2" {p{-q}}
S
TB xx xx xx ... xx
T
U
X
XF
Z{p{-q}}

EDITOR Command Summary.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 84

4.5 LINE POINTER CONTROL: EDITOR

The commands
pointer and
section.

that are provided for controlling the the current
for listing the item being edited, are described in

4.5.1 "L" - LIST COMMAND EDITOR

FORMAT:

L[n}

line
this

This command causes n lines to be listed, starting from the current line
plus one. If n is omitted, only one line is listed. If n is greater than
or equal to the number of lines from the current line to the EOI, then all
the lines down to the EOI will be listed.

If a List command is issued when the current line pointer is at the EOI,
then the next n lines starting from line 1 will be listed. The List
command positions the current line pointer at the last line listed.

4.5.2 NULL COMMAND <CR> : EDITOR

FORMAT:
<CR>

The Null command is executed by entering a carriage return only. This
command is identical to a List command where n is omitted. The next line
is listed and the current line pointer is advanced one line. This command
is included for convenience when stepping through lines in an item.

4.5.3 "u" - UP COMMAND EDITOR

FORMAT:

Urn}

The Up command decrements the current line pointer by n lines, and then
lists the new current line. If n is omitted or is zero, the current line
will be listed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 85

/

(. "':
./

4.5.4 "N" - NEXT COMMAND EDITOR

FORMAT:

N[n}

This command increments the current line pointer by n lines, and (one line
if n is omitted), and then lists the new current line.

For all of the above commands, the message TOP will be printed if the
current line pointer is set to zero, and the message EOI m (where m is the
last line number of the item) will be printed if the pointer is set to the
EOL

4.5.5 "G" GOTO COMMAND EDITOR

FORMAT:

Gn OR n

These commands position the current line pointer and list line n.

4.5.6 "T" TOP COMMAND EDITOR

FORMAT:

T

TOP sets the current line pointer to zero.

(4.5.7 "B" BOTTOM COMMAND EDITOR

(

FORMAT:

B

Bottom sets the current line pointer to EOI.

On the above commands, the message TOP will be printed if the current line
pointer is set to zero, and the message EOI m

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 86

*)EDIT FILEl ITEM [CR]
TOP

*.P [CR] (---------------------- PO - Prestored command (lists 22 lines
001 AAAAA
002 BBBBB
003 CCCCC (----------------- Item consists of only 6 lines,
004 DDDDD so entire item is listed.
005 EEEEE
006 FFFFF
EOI 6

* [CR] (------------------------- Null command (since current line
TOP pointer is at EOI, the 1st line
001 AAAAA is listed).

* [CR] (------------------------- Null command (lists next line).
002 BBBBB

* .N2 [CR] (----------------------- Next command (goes down 2 lines
004 DDDDD and lists line).

* .U2 [CR) (----------------------- Up command (goes up 2 lines and
002 BBBBB lists line).

* .N9 [CR] (------------------------ Next command; since the item has
006 FFFF only six lines, the last line
EOI 6 is listed.

*.L [CR] (------------------------ List command (since current line
TOP pointer is at EOI, the 1st line
001 AAAAA is listed).

* .L3 [CR] (----------------------- List command (lists next 3 lines).
002 BBBBB
003 CCCCC
004 DDDDD

*.T [CR] (------------------------ Top command (goes to line 0).
TOP

*.P [CR] (---------------------- Prestored command (list 22 lines). \, /
001 AAAAA
002 BBBBB
003 CCCCC (----------------- Item consists of only 6 lines,
004 DDDDD so entire item is listed.
005 EEEEE
006 FFFFF
EOI 6

* .G5 [CR] (----------------------- Goto command (lists line 5).
005 EEEEE

*.B [CR] (------------------------ Bottom command (goes to EOl).
EOI 6

*.L [CR] (------------------------ List command (since current line
TOP pointer.is at EOl, the 1st line
001 AAAAA is listed).

*.3 [CR) (------------------------ Goto command (lists line 3).
003 CCCCC

*.T [CR] (------------------------ Top command (goes to line 0).
TOP

Sample Usage of Line Control Commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

. PAGE 87 (

(

(

4.6 STRING MATCH LOCATING: EDITOR

I The Locate command causes a search for characters that match a specified I
. string. The Again command repeats the last Locate command issued.

4.6.1 "L" - LOCATE COMMAND EDITOR

FORMAT:

L{n) "string" {p{-q}}

This command causes a search for characters matching the "string".

The search is restricted to column p, or columns p through q, if
specified. If q<p, q=p is assumed. If the delimiter used in the Locate
command is a colon, ":", then only matching strings starting in the first
column specified (= p) will be located.

If n is not specified, the next ocurrence of "string" is located, and that
line is listed; the current line pointer is set at the line that is
listed. If n is specified, n lines, starting from the current line plus
one, are scanned for the occurrence of "string"; all lines in which the
"string" is found are listed. The current line pointer is incremented by
n, and therefore might not be located at the last line listed.

The scan always begins from the current line plus one.

"A" - AGAIN COMMAND EDITOR

FORMAT:

A

The Again command repeats the last Locate command issued.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 88

* >ED F1 ABC [CR]
TOP

*.P [CR]
001 ABCDEFG
002 12ABCDEFG
003 BCDEFG
004 ABC

(-------- This is what item ABC looks like.

005 ABCDEFG
EOI 5

*.T [CR]
TOP

* .L"ABC [CR] (-------------- Locate command (locates next line with

001 ABCDEFG (--------------
* . T [CR]

TOP

"ABC").
Line 1 located.

* .L5/ABC/ [CR] (------------ Locate command (scans 5 lines and
001 ABCDEFG locates lines containing "ABC").
002 12ABCDEFG
004 ABC (--------- Lines 1, 2, 4, and 5 located.
005 ABCDEFG
EOI 5

* . T [CR]
TOP

* .L5(A(3-4 [CR] (----------- Locate command (locates
3 thru 4).

002 12ABCDEFG (------------ Line 2 located.
EOI 5

"A" in columns

* L5:ABCD:
TOP

[CR] (------------ Locate command (locates "ABCD" column
dependent; i.e., must be in columns 1
thru 4).

--I (---------- Lines 1 and 5 located.
001 ABCDEFG
005 ABCDEFG
EOI 5

* .L5: AB: [CR] (----------- Locate command (locates
TOP 3 thru 4).
002 12ABCDEFG (------------ Line 2 located.
EOI 5

: * . L:"'B: [CR] (-------------- Locate command (locates
TOP
001 ABCDEFG (--------------

*.A [CR] (------------------
004 ABC (------------------

*.A [CR] (------------------
005 ABCDEFG (---------------

"B" in column 2).
Line 1 located.
Again command (repeats
Line 4 located.
Again command (repeats
Line 5 located.

"AB" in columns

next line with

last Locate).

last Locate).

Sample Usage of Locate and Again Commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 89

j

(- ~'-.
.)

.J

(

4.7 ENTERING DATA: EDITOR

I The Input command is used for data entry. The user may create a new item, I
or may insert or add lines to an already existing item.

4.7.1 "I" - INPUT COMMAND EDITOR "I" - INPUT COMMAND

FORMAT:

I

The Input command, when issued, causes the EDITOR to enter
Environment. All subsequent lines input by the user are then
as data input lines to the item, until the user exits
environment.

EDITOR

the Input
considered
the Input

If the Input command is issued for a
been edited, the new lines will be input
The EDITOR will request data lines by
which data are being entered.

new item which has not previously
to the item starting at line one.
prompting with the line number to

If the Input command is issued for an item already containing data, then
the new lines will be inserted following the current line. Input will be
prompted with the current line number, after which the lines are being
inserted, followed by a plus sign. If the current line pointer is at line
zero (TOP), input lines will be inserted before the first line of the item
with a prompt of "000+".

A null input (carriage return or line feed only) will cause the EDITOR to
exit the Input Environment and await the next EDITOR command. (If a null

(- line is required in the item, it is necessary to create the line with a
Ifill character and then replace the fill character with a null via the
Replace command; refer to the topic describing the Replace command. The
Insert command can also be used to insert null lines). If there is an
error in the current input line, the user can execute a carriage return
twice, to enter the line and exit the input environment, then execute a
Replace-string operation to fix the error, and then reenter the input
environment without executing an F command, except on initial input, as
below.

The user should note that when the Input Environment is initially exited
for a new item, an automatic F command will be executed by the EDITOR,
thus toggling the function of the EDITOR buffers and allowing the newly
entered lines to be listed.

If an input line is too long to fit on one physical line, the line
continuation character (control-shift 0) may be entered at the end of the
physical line and the input line may then be continued on the next
physical line. The line-continuation character must be immediately
followed by a carriage return or line feed.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 90

EXAMPLES:

* >EDIT AFlLE AITEM [CR]
NEW ITEM (-------------------------- Note that this is a new item.
TOP

.I [CR] (--------------------------- Input command. : gg~ ~~~~T[CR] ==1 <------------------ Lines being input.

* 003 [CR] (-------------------------- Input terminated.
TOP (-------------------------------- Automatic F command has been

executed.
* 003 [CR] (-------------------------- Input terminated.

TOP (-------------------------------- Automatic F command has been
executed.

* .L2 (-------------------------------- List command.
001 INPUT
002 DATA
EOI 2

Sample Usage of Input Command for New Item.

* >EDIT TESTFILE TESTITEM [CR]
TOP

*.P [CR] (--------------------- Prestored command (list 22 lines).
001 LINE 1
002 LINE 2
003 LINE 3
EOI 3

I (----------------------- This is what item currents
contains.

*.T [CR] (------------------------------ Top command.
TOP

*.I [CR] (------------------------------
* 000+ NEW LINE A [CR] (----------------
* 000+ [CR] (----------------------------
* .G2 [CR] (-----------------------------

002 LINE 2
*.I [CR] (------------------------------
* 002+ NEW LINE B [CR] (----------------
* 002+ [CR] (----------------------------
*.F [CR] (------------------------------

TOP

Input command.
New line input.
Input terminated.
Goto command.

Input command.
New line input.
Input terminated.
F command toggles buffers.

*.P [CR] (---------------------------- Prestored command (list 22 lines
001 NEW LINE A
002 LINE 1
003 LINE 2
004 NEW LINE B
005 LINE 3
EOI 5

Sample Usage of Input Command for Previously Edited Item.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 91

/ " \
"'_/

(

4.8 INSERTING DATA: EDITOR

The Insert command is used to insert one new line. The Merge command is
used to insert one or more lines by merging lines from the same item, or
from another item in the same file, or another item in a different file.

4.8.1 "I" - INSERT COMMAND EDITOR

FORMAT:

I data

The user enters an "I", followed by one blank, followed by the data to be
inserted. The specified data will be inserted as a new line after the
current line. Note that the data to be inserted must be separated from
the "I" by only one blank; all other blanks will be considered as part of
the line to be inserted. The line continuation character (control-shift
0) cannot be used to continue data beyond one physical line.

The Insert command is most convenient for either inserting only one line
of data (rather than using the Input command), or for INSERTING A NULL
LINE; the latter is done by entering "I" and one space, followed by a
carriage-return. One may also insert a string of Attribute marks to
generate a string of null lines. This feature is particuarly useful when
entering Dictionary items, which use null lines within their structure.

4.8.2 "ME" - MERGE COMMAND FROM THE SAME FILE

FORMAT:

ME{n}/item-id/{m}

This command causes n lines (starting from line number m) of the item
whose item-id specified by litem-idl to be merged (inserted) into the item
being edited. The lines will be inserted following the current line. The
item specified by litem-idl must be in the same file as the item being
edited. A value of one will be assumed for both nand m if either or both
are omitted. If litem-idl is null (II), lines will be merged from the
item being edited itself, as it stands in the current buffer, thus
duplicating the specified lines in the item.

The user should note that if the item from which lines are to be merged is
not on file, the message "NOT ON FILE" will be printed.

CHAPTER 4 - EDITOR Copyright (C) 1985 PICK SYSTEMS

PAGE 92

4 . 8 . 3 MERGE COMMAND : FROM OTHER FILES

The extended syntax requires the use of the delimiters" (" and") " in
place of the "/" delimiter used above. They thus become reserved when
using the merge command in the sense that the colon" :" is reserved when ("
using the locate, replace, and delete commands. In this case there is the ~'
further peculiarity that "(" and ")" are not the same character, whereas . c/
any character may normally be used as a delimiter, so long as all the
delimiters in a particular string are identical.

FORMAT:

ME[n}«(DICT} [FILENAME] {ITEMNAME})[m}

The use of DICT is conventional. It means the same thing here as is does
at TCL in the reference to files, and in the COpy processor. If there is
no item-id specified, then the processor defaults to the item-id of the
item being edited at the moment. This is useful if one wishes to get a
copy of an item into a test file and edit it quickly, or if one wishes to
assure that the item will not be filed inadvertently over the old copy.
Combined with the prestore command structure and the global replace
command, some very powerful things can be done very quickly and easily.

4.8.4 MERGE COMMAND DEFAULTS

There are certain other defaults which apply to the merge command, and
which are carried over into this extended form which will be noted below
as a reminder.

ME{n}({DICT} [FILENAME] {ITEMNAME}

This form does the same thing as above, except that the starting line
number defaults to line 1 in the merge source item.

ME([DICT} [FILENAME] {ITEMNAME}){m}

This does the same thing as above, except that starting-line-number is the
only line which is merged into the destination item. As such, the line
may then be modified using the replace command, as noted above.

ME({DICT} [FILENAME] {ITEMNAME}

This simply returns the first line of the merge source item. Note that
the trailing right parenthesis is optional if the starting line number
defaults to the first line of the source.

4.8.5 MINIMAL MERGE

Obviously, these defaults all apply to the normal merge statement, leading
to the minimal form 'ME/', which simply inserts the first line of the item
currently being edited into the current location in the item, which is
useful if you wish to put a given line in several different places in an
item.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

'PAGE 93

/

EXAMPLES:

>EDIT ABC ITEMS [CR]
TOP
.P
001 ABCDEFG --I <--------------------- This is what ITEMS looks like.
002 HIJK --
EOI 2

* .Gl [CR] <--------------------------- Goto command.
001 ABCDEFG

* .I 12345 [CR] <---------------------- Insert command.
*.F [CR] <---------------------------- F command (toggles buffers).

TOP
* . P [CR]

001 ABCDEFG
002 12345
003 HIJK
EOI 3

<------------------- Here is ITEM5 after insertion.

Sample Usage of Insert Command.

* >EDIT FILEI ITEMI [CR]
TOP

* . P
001
002
003

(- EOI
.) * . EX

EXIT

[CR]
11111
22222
33333
3

[CR]

<------------------- This is what ITEMI looks like.

<------------------------- Exit command (exits EDITOR).

* >EDIT FILEI ITEM2 [CR]
TOP

* . P [CR]
001 AAAAA
002 BBBBB
003 CCCCC
EOI 3

(------------------- This is what ITEM2 looks like.

* .G2 [CR] (------------------------- Goto command.
002 BBBBB

* .ME2"ITEMl"1 [CR] <---------------- Merge 2 lines from ITEMI
starting at line 1.

* .F
TOP

[CR] (-------------------------- F command (toggles buffers).

* . P [CR]
001 AAAAA
002 BBBBB
003 11111
004 22222
005 CCCCC
EOI 5

<------------------- Here is ITEM2 after the 2 lines
from ITEMI have been merged.

Sample of Merge Command.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 94

4.9 DELETING DATA: EDITOR

I The Delete command causes one or more lines to be deleted from the item.
f~·

~-j
4 . 9 . 1 "DE" - DELETE COMMAND (SIMPLE) EDITOR "DE" - DELETE COMMAND (SIMPL:

FORMAT:

DE(n}

This command causes n lines to be deleted (one if n is omitted), starting
from the current line. The current line pointer is set to the line after
the deletion, allowing further Editor command sequences.

4.9.2 "DE" - DELETE COMMAND (STRING SEARCH)

FORMAT:

DE{n} "string" {p{-q}}

EDITOR

The complex form of the Delete command causes a search for characters
matching the specified "string" (see EDITOR command syntax). If n is not
specified, n defaults to 1. If n is specified, n lines, starting from the
current line, are scanned for the occurrence of "string"; all lines in
which the "string" is found are deleted. Lines that are deleted are
listed. The current line pointer is set to the line after the span of the
Delete command (or n lines).

./
The search for the specified "string" is column-dependent if the delimiter \
used in the "string" is a colon, or if parameters p, or p and q are used.
If the colon is used, the Editor defaults to column 1 for the "string"
match, regardless of any p or q parameters. If p is used by itself, the
search starts in column p and continues scanning the remaining line for a
match. If both p and q are used, then the scan will match all "strings"
whose first character is in column p or greater, while at the same time,
the last character of the "string" falling before or at column q. If q<p,
q=p is assumed.

The user should note that the scan always begins from the current line.

This is similar to the simple Delete command which starts with the current
line and then continues for the next (n-l) lines.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 95

EXAMPLES:

(._--
* >ED TEST ITEM.l [CR]

TOP
* . P [CR]

001 l23XYZ
002 AAAAAAA
003 XYZ123
004 ABABABAB
005 12345
006 AA
EOI 6

(----------- This is what item ITEM.l looks like.

* .G5 [CR] (------------------- Goto command.
005 12345

* .DE2 [CR] (------------------ Delete command (deletes 2 lines).
EOI 6

*.F [CR] (-------------------- F command (toggles buffers).
TOP

* . P [CR]
001 l23XYZ
002 AAAAAAA
003 XYZ123
004 ABABABAB
EOI 4

*.T [CR]
TOP

(.. i * . DE99/l23

(------------ Here is item ITEM.l after lines 5
and 6 have been deleted.

001
002
EOI

l23XYZ
XYZ123
4

[CR] <------------ Delete command (deletes lines con
taining "123").

==1 <------------- Deleted lines are listed.

* .F
TOP

[CR]

* . P [CR]
001 AAAAAAA
002 ABABABAB
EOI 2

--I <------------
--

Here is item ITEM.l after deletion.

* .DE:-B [CR] (-------------- Delete command (deletes lines with "B"
in column 2).

002
EOI

* .F
TOP

ABABABAB (---------------- Deleted line is listed.
2
[CR]

* . P [CR]
001 AAAAAAA
EOI 1

(----------------- Here is item ITEM.l after deletion.

Sample Usage of Delete Commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 96

4.10 REPLACING DATA: REPLACE (R) COMMAND

The Replace command may be used to replace a number of lines, or may be
used to replace one character string with another character string (in one
or more lines). The Replace command also allows several executions of the
replace on a single line. The "U" option allows replacement of all copies
of a string within a line with the specified replacement string.

4 .10 .1 "R" REPLACE COMMAND (SIMPLE) EDITOR

FORMAT: .
R[n}

The Replace command takes on two general forms. The simple form causes
the Input Environment to be entered (see Input command). Input is
requested for data to replace n lines (one if n is omitted), starting from
the current line. The Input Environment is exited when either:

1) Data for the specified number of lines has been entered, or

2) A null line (i.e., carriage return or line feed only) is entered.

In the latter case, the remainder of the lines (including the line which
received the null input) will remain unchanged. The current line pointer
points to the next line in the current buffer to be edited.

4.10.2 "R" - REPLACE COMMAND (STRING SEARCH) : EDITOR

FORMAT:
R[U}[n}/string l/string 2/(p[-q}}

This form of the Replace command causes
"string I" (see EDITOR command syntax).
the current line is scanned for "string
it is replaced by "string 2". If n
includes the current line are scanned.
in each line is replaced by "string 2".
in their updated form.

a search for characters matching
If n is not specified, then only

I". If "string 1" is located then
is specified, then n lines which
The first occurrence of "string I"
Lines that are changed are listed

4.10.3 "RU" - REPLACE COMMAND (UNIVERSAL STRING SEARCH) : EDITOR

This option is indicated by simply using the form RU, as noted by the (U}
in the above format.

This form of the Replace command allows the replacement of
"string I" with "string 2" in the line or lines specified.
allows multiple-line replacements using the form RUn for the
otherwise is identical to the "R" format.

COLUMN SPECIFICATIONS:

all cases of
The option

form Rn, and

CHAPTER 4 - EDITOR Copyright (C) 1985 PICK SYSTEMS

PAGE 97 (

As with the "DE" command, if the delimiter is a colon ":", then the column
specification defaults to column 1, regardless of any p or q parameters.
If only p is used, then the scan begins in column p and continues for the
rest of the line until a match is found. If the "RU" form is used, the

(...... scan will continue searching for all string matches after column p. If
both P and q are present, a match is made if the first character of
"string 1" falls in column p or greater while at the same time having the
last character of "string 1" fall before or at column q. If q<p, q=p is

(

assumed. Only one delimiter separates "string 1" and "string 2" in the
complex form of this command, and the third delimiter may be left out if
the column specification is not needed. Any non-numeric character not in
"string 1" and "string 2" may be used as the delimiter.

The protocols above are identical for the string locate and the form of
the delete which deletes lines which contain a given string.

* >ED Fl ABC
TOP

[CR]

* . P [CR]
001 ABCDEF
002 ABCDEF
003 ABCDEF
EOI 3

<------------ This is what item ABC looks like.

* . T [CR]
TOP

* .R2
* 001
* 002
* .F

TOP

[CR] <-------------------
123ABC [CR] --I <-----
XXXXXAB [CR] --
[CR] <--------------------

Replace command (replaces 2 lines).
Replacement lines being input.

F command (toggles buffers).

* . P
001
002
003
EOl

[CR]
123ABC
XXXXXAB
ABCDEF
3

<------------- Here is item ABC after replacement.

* . T
TOP

[CR]

* .R3"AB"HHH" [CR] <-----------
001 123HHHC
002 XXXXXHHH <------------
003 HHHCDEF
EOI 3

* . F [CR]
TOP

* .R3/HHH/S/1-3 [CR] <---------

003
EOI

* .F
TOP

SCDEF <-------------------
3
[CR]

* .R3/HHH//

001 123C
002 XXXXX
EOI 3

[CR] <-------------
--I <----------------

Replace command (replaces "AB" with
"HHH") .
The 3 lines in which replacement took
place are listed.

Replace command (replaces "HHH" in
columns 1 thru 3 with "5").
Line in which replacement took place
is listed.

Replace command (replaces "HHH" with
nUll) .
Lines in which replacement took place
listed.

Sample Usage of Replace Commands.
CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 98

4.10.3.1 MULTIPLE REPLACEMENTS WITHIN A LINE

Multiple string replacements in a single line are possible without
executing a F command if the preceeding update instruction was an Input
command or a Replace-string command. The resulting form will be displayed C
after each replacement, and the current line pointer will remain on the ..
last line to be edited. Re-listing the modified line before an F command --j
will display the current form rather than the modified form.

The intent of multiple replacements within a line is to minimize typing
and buffer switching (the F command). If there are several elements of a
line which you wish to change, you may change them one at a time, using
the R command for each, without using the F command in between. On each
use of the R command in this case, the command operates on the result of
the last command. Only the first use of the R command operates on the
original line. This means that if the X command is used, you move back
to the original line, rather than the line as it was before the last use
of the R command, because the last copy is not saved. In general, you can
modify a line indefinitely.

If the replacement was a full-line replacement of the form R, carriage
return, followed by the prompt, followed by the text and a terminal
carriage-return, the line may not be modified by a string replace until
the buffers have been exchanged using the F command. The premise is that
the X command can be used, followed by another replace. If this is not
satisfactory, then the sequence, 'OE(I text(', will have the same result,
and will allow replacements within the inserted line.

4.10.3.2 REPLACEMENT AFTER MULTIPLE-LINE REPLACEMENT

You may replace text in the last line of an Rn group using another R
command without first flipping the buffers (the F command) in the same way
it can be modified after a single-line replacement command. It is not
possible to access lines prior to the last without using either the F
command, which exchanges the buffers, or the X command, which cancels the
Rn replace command.

4.10.3.3 MULTIPLE REPLACEMENTS AFTER THE MERGE COMMAND

It is possible to merge one or more lines of text into the current
location in the text, and then modify the only or last line merged in
using the multiple replace facility. Lines prior to the last can not be
so modified for the reasons noted above. It is possible to do a lot of
text manipulation very quickly using the merge, delete and replace
commands.

4.10.3.4 CREATING NULL LINES - EDITOR

As discussed in the topic describing the Input command, the Replace
command may be used to create null lines. This is accomplished by using
the Input command to create lines each containing a fill character (such
as an "."), and then prior to permanently filing the item replace each
fill character with a null via a Replace command (such as R99/.//).

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

'PAGE 99

(

(;

EXAMPLES: .

Consider the following line.

084 The difference between the beginning and ending

To re1ace 2nd "the" with "any"

C [CR]
1 2 3 4 5

1234567890123456789012345678901234567890123456789012345

Useful aid for column identification.

R/the/any/24 [CR] which will yield:

084 the difference between any beginning and ending

A column range example:

R/the/any/24-26 [CR]

084 the difference between any beginning and ending

Further unrelated examples:

R5/XYZ/123/15 [CR]

RU7/XX/77/20-50 [CR]

Replace first occurence of string
"XYZ" after column 15 for the
next 5 lines.

Replace all occurences of "XX"
between columns 20 to 50 for the
next 7 lines.

Sample usage of column specifications with the replace command.

Copyright (C) 1985 PICK SYSTEMS (__ \ CHAPTER 4 - EDITOR

PAGE 100

4.11 ITEM MANIPULATING - EDITOR

I Editor commands are provided for merging updates into the item, filing the I
item, deleting the item, or exiting an item.

--------------------~---

4.11.1 "F" COMMAND - EDITOR

FORMAT:
F

The F command toggles the function of the EDITOR buffers. Updates are
merged with the previously existing item, and the current line pointer is
set to zero.

4.11. 2 "FI" - FILE ITEM COMMAND EDITOR

FORMAT:
FI{K} or

FI{K}{O} itemname or

FI{K}{0}({DICT}fi1ename (itemname}

The File Item command updates the edited item to the disc-file and returns
control to TCL. When the item has been filed, the message "xxxx FILED"
(where xxxx is the item name) is printed.

You may file the item currently being edited to either a different item in
the current file, or to the same item name or to a different item name in
a different file, by using the complex form of the "FI" command. Note the
delimiter (space or left parenthesis) must immediately the "FI". Use a
blank as a delimiter when only the itemname is specified. The default is
the currently edited file. Any item-ids with embedded blanks may be
enclosed in parenthesis. The DICT or filename, if present must
immediately follow the left parenthesis, (no blanks). A copy of the
edited item is generated to the designated file, and an updated version of
the currently edited item is copied to the disc. Control is returned to
TCL unless a selected list is in effect, in which case the next item is
entered. The "K" option will cancel any selected list in effect and
return control to TCL or a calling Proc. The "0" option will overwrite
any item with the same name as the item we have instructed the Editor to
generate, if it already exists in the designated file.

4.11.3 "FS" - FILE SAVE COMMAND: EDITOR

FORMAT:
FS or

FS(O} itemname or

FS(O}(filename (itemname}

CHAPTER 4 - EDITOR

PAGE 101

Copyright (c) 1985 PICK SYSTEMS

(

The File Save command updates the edited item to the disc-file and returns
control to the EDITOR. The current line pointer is set to zero.

You may file the item currently being edited to either a different item in
the current file, or to the same item name or to a different item name in
a different file, by using the extended syntax forms of the "FS" command.
The "FS" command generates a copy of the item being edited to the
designated file, updates the currently edited item, and returns control to
the Editor. The "0" option would overwrite any pre-existing item in that
designated file. Once again note the blank used as a delimiter with
itemname only, and the need to put DICT or the filename immediately
following the left parenthesis, which immediately follows the "FS" in
extended forms of the command.

4.11.4 "FD" - FILE DELETE ITEM EDITOR

FORMAT:
FD{K}

The File Delete command deletes the item from the disc-file and returns
control to TCL.

When the item has been deleted, the message "xxxx DELETED" (where xxxx is
the item name) is printed. You can not FD any item other than the one
which you are currently editing. Massive use of the FD can be
accomplished with the DELETE verb (PROC) or by the use of a prestore
command. The delete verb will be faster.

The "K" option returns control to TCL or a calling Proc, before any
remaining selected items need be edited.

("% ~ 11.5 "EX" - EXIT COMMAND : EDITOR

FORMAT:
EX{K}

The Exit command terminates the EDITOR session and returns control to TCL.
The item being edited will not be updated to the disc-file. Upon exit,
the message "'ITEM-ID' EXITED" is printed.

The user should again note that if multiple items were specified in the
EDIT verb at the TCL level, then any of the above commands which
ordinarily return control to TCL will instead return control to the EDITOR
to edit the next item which was specified.

The purpose of the "EXK" command is to exit from just such a situation,
and to cause the editing process to proceed to TCL or the PROC which
called the EDITor. The exit process will not recognize a lowercase 'k'.

NOTES: In general, anything which the EDITOR either does not understand
or of which the EDITOR disapproves will result in CMND? Error message
when the FI, FS, or EX processes are involved.

CHAPTER 4 - EDITOR Copyright (C) 1985 PICK SYSTEMS

(\ PAGE 102

* >ED AFlLE ABC [CR]
TOP

* . P [CR)
001 ~ --I (-------- This is what item ABC looks like.
002 12121212 --
EOI 2

* .DE [CR] (---------------- Delete command (deletes line 2).
EOI 2

*.F [CR] (------------------ F command (toggles buffers).
TOP

*.P [CR)
001 ~ (------------ Here is item ABC after deletion.
EOI 1

* .EX [CR) (----------------- Exit command (returns control to TCL
'ABC' EXITED but does not file updated item).

* >ED AFILE ABC [CR]
TOP

*.P [CR]
gg~ ~ ==1 (--------
EOI 2

* .DE [CR] <---------------
EOI 2

* .FI [CR) (----------------
'ABC' FILED.

* >ED AFILE ABC [CR]
TOP

*.P [CR]
001 ~ (------------
EOI 1

* .FS [CR] (----------------
TOP

* .FD [CR] (----------------
'ABC' DELETED.

Item ABC still contains 2 lines since
Exit command above did not file updated
item.
Delete command (deletes line 2).

File Item command (files item and
Returns control to TCL).

Here is item ABC (note that line 2 is
now permanently deleted).
File Save command (files item and
returns control to EDITOR).
File Delete command (deletes item and
Returns control to TCL).

> (------------------------- TCL verb awaited.

Sample Usage of Item Manipulating commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 103

r'" \ .

,_/

4.12 FORMATTING COMMANDS: EDITOR

I The Editor Formatting commands aid the user with some very useful tools to I
assist in handling edited items.

4.12.1 "s" - SUPPRESSION COMMAND EDITOR

FORMAT:
S

The "s" command is used to suppress Editor line numbers. Entry of an "S"
command acts as an alternate-action toggle switch. The Editor will
respond with "SUPPRESS ON" or "SUPPRESS OFF" accordingly.

When the "s" command is used with Assembly Language programs and the "AS"
command (standard assembly listing format), it takes on an additional
feature. If the "AS" command is in effect, ("AS-ON") the "s" command
causes the suppression of the Object Code. With "AS" disabled ("AS-OFF"),
the "s" command suppresses line numbers as with a non-assembler data item.

The suppress feature may also be enabled by using the" (S " option with
an edit command.

4.12.2 "TB" - TAB COMMAND EDITOR

FORMAT:
TB n, n, n,

The n's consist of up to 15 Tab Settings (in ascending order),
by commas.

seperated

Tabbing is invoked whenever the EDITOR is in the Input Enviroment and a
control-I or on some terminals a TAB key, is pressed. The TAB key will
cause a series of blanks to be output, thus moving the cursor (or printer)
to the next specified tab stop. A backspace and cancel will backspace'
over tabs.

Tabs set by the EDITOR are identical to those set by the external TAB
command.

4.12.3 "z" - ZONE COMMAND EDITOR "Z" - ZONE COMMAND EDITOR

FORMAT:
Z{p{-q}}

This command sets print column limits for listing output of lines via the
List command (i.e., only column positions p through q of each line will be
listed). If p and q are omitted, the zone is reset so that the entire
line will be listed on output. If q<p, q=p is assumed. Setting a zone
does not affect the search for a "string" in the Locate, Delete or Replace
commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 104

EXAMPLES:

* >ED FN5 xx [CR]
NEW ITEM <----------------- This is a new item.
TOP

* .TB 9,18 [CR] <----------- Tab command (sets 2 tab stops).
*.I [CR] <----------------- Input command.
* 001 ABC [CR]
* 002 ABCD EF [CR] (-----
* 003 123456789 [CR]
* 004 [CR]

TOP
* .Z2-3 [CR] (--------------
* . P [CR]

Lines being input; note that for line
2 a control-I (which does not print)
was entered after "ABCD" causing the
EDITOR to tab over to the 1st stop.
Zone commands (limits listing output
to columns 2 thru 3).

001 BC
002 BC
003 23
EOI 3

(--------------- Only columns 2 thru 3 are listed.

* . T [CR]
TOP

* . Z
* . S
* . P

[CR] (----------------- Zone command (restores full line).
[CR] (----------------- Suppress command (suppresses line

[CR] numbers).
ABC
ABCD EF
123456789
EOI 3

I (----------- Line numbers are suppressed.

*.S [CR] (----------------- Suppress command (restores line numbers).
* . P [CR]

TOP
001 ABC
002 ABCD EF I (-------- Line numbers are listed.
003 123456789
EOI 3

Sample Usage of Editor Formatting Commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

'PAGE 105

'. '" /

("~

j

4.13 ASSEMBLY FORMATTING: EDITOR

commands are invaluable features when I The Assembly formatting

(~-~~~~:~-~~~~~~~:-:~::---
using I

4 . 13 . 1 "AS" - ASSEMBLY FORMAT COMMAND EDITOR

FORMAT:

AS

The "AS" command is used to format assembly code source programs in the
standard assembly listing format. The "AS" command acts as an a1ternate
action toggle switch to either format assembly code source program lines
in the assembly listing format, or to revert to unformatted form.

The EDITOR will respond with the message "ASM-ON" or "ASM-OFF", depending
on the previous state.

This mode may also be turned on when entering the EDITOR by using the
" (A)" option on the EDIT command.

Assembly-code source programs contain the assembled object code and macro
expansions along with the original source text. If displayed in nomal
form, a line might look like:

007 LOOP STORE Dl SAVE ACCUMALATOR\OlB A00499

(If the "AS" mode is set on, the same line will be displayed as:

007 OlB A00499
... object code ...

LOOP STORE Dl
... source code ...

SAVE ACCUMALATOR
. .. comment field ...

This display format does not affect the search columns in Locate, Delete
or Replace commands, which use the internal (unformatted) form.

When the "AS mode is on, the "s" (suppress) command will act to suppress
object-code, not line numbers.

4.13.2 "M" - MACRO EXPANSION COMMAND EDITOR

FORMAT:

M

When in the "AS" mode the "M" command will cause macros to be expanded. A
Macro Expansion is generally a line of code which breaks down and is
defined by one or more lower machine level instructions. It is normally
off. Execution of the M command will cause the EDITOR to respond with the
message "MACRO-ON" or "MACRO-OFF", depending on the previous state.

(OC\ CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 106

EXAMPLES:

* ED SM TERMIO [CR]
. TOP

* .L3 [CR]
001 FRAME 006] FRM: 006\001 7FF00006] ORG 1\001
002 *SYSTEM*UTILITY
003 *30SEP84

*.AS [CR] <----------------------------- Turns assembly formatting
ASM-ON mode ON.

* . T [CR]
TOP

* .L3 [CR]
001 001 7FF00006 FRAME 006

002
003

001
*SYSTEM*UTILITY
*30SEP84

* . S [CR]
SUPPRESS

* . T [CR]
* .L3 [CR]

(------------------------------ Suppress object code.
ON

001 FRAME 006
002 *SYSTEM*UTILITY
003 *30SEP84

*.S [CR] <------------------------------ Clear Suppress mode.
SUPPRESS OFF

* .AS [CR] <----------------------------- Clear Assembly formatting
ASM-OFF mode.

* . T [CR]
TOP

* .L3 [CR]
FRAME 006] FRM: 006\001 7FF0006] ORG 1\001
*SYSTEM*UTILITY
*30SEP84

Sample Usage of Assembly Formatting commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 107

4.14 MISCELLANEOUS COMMANDS: EDITOR

I There are a few miscellaneous Editor commands which allow for some helpful I
(.. .-~:~:~:::-~~-:~~:~~~-~:~:.:--

(

4.14.1 'X' CANCEL COMMAND EDITOR

FORMAT:

X[F}

The "X" command deletes the effect of the last Input, Insert, Delete, or
Replace command that was issued. This is useful if one of these commands
has been erroneously entered.

When the effect of the update command has been deleted, the message "L n"
will be printed (where is the line number of the line whose update was
deleted). The X command will not work after multiple string replacements
within a single line.

The XF command will reverse the effect of all updates executed since the
last buffer exchange (F command).

4.14.2 I?' CURRENT LINE COMMAND: EDITOR

FORMAT:

?

When a Current Line command I?' is entered, the editor will respond with
the item-id and the current line number, of the item being edited.

4.14.3 IS?' ITEM SIZE COMMAND EDITOR

FORMAT:

S?

The size of the item being edited may be discovered with the S?
It will output the total size of the item for file purposes.

Command.

CHAPTER 4 - EDITOR Copyright (c) 19B5 PICK SYSTEMS

PAGE lOB

4.14.4 , , WILDCARD TOGGLE COMMAND EDITOR

FORMAT:

The " " command acts as an alternate-action toggle switch to turn off or
on the special effect of the " " character within a "string".

The EDITOR will respond with the message "/ \ ON" or "/ \ OFF".

4.14.5 'C' COLUMNAR POSITIONS COMMAND: EDITOR

FORMAT:

C

The "c" command will print out a list of column numbers so that the user
can readily determine the columnar position of data in a line. This is
particularly helpful when editing fixed-field data, or RUNOFF
documentation.

4.14.6 UNPRINTABLE CHARACTERS

Characters which are unprintable include the control characters, between
X'OO' and X'lF', inclusive. The Editor marks control characters by
inserting a period, '.', Where the control character stands in the text
line. It does not indicate what the character is, however. It may then
be removed by replacing a unique string which includes the control
character with the string of your choice. The control character should be
marked with an ~ in the first string in the replace.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 109

/ '

\)
'- /'

()

(

4.15 'Pn' PRESTORE COMMAND - EDITOR

The prestore facility allows the storage of up to 10 strings of Editor
commands, and the execution of the string by using the name of the string
as the command.

The allowable string names are PO, PI, ... ,P9. There are therefore a
maximum of ten prestored commands available at anyone time. Further,
each prestored command is allocated 100 bytes, so that, if one wishes to
generate a prestored command which exceeds 100 bytes, simply do not
initialize the command whose name is ordinally next. (If PI is 150 bytes,
do not use P2.)

4.15.1 DEFINING PREST ORE COMMANDS - EDITOR

Assume you are currently editing an item and the system is awaiting input
at the". "(Editor Prompt). In order to create a prestored command,
type in the name of the prestored command, PO, PI, ... , P9, followed by a
space, followed by the first command to be executed, followed by the
prestore command delimiter, which is a start buffer mark (X'FB'), and
which may be input by typing CONTROL-[(control-left-square-bracket) or
ESCAPE (esc), followed by the next command, and so on. Any valid command
is usable, including prestore command names.

PO L22

P L22

This is loaded when you enter the
EDITor. It has the following
synonym:

This allows the traditional
L22< to be done by P<, which
is generally convenient, since it
is next to the carriage-return
key.

PI R100/DOG/CAT[F[RlOO/dog/cat[FI This has the effect of changing
dogs to cats in the first hundred
lines of text.

Creating simple prestores.

4.15.1.1 PRESTORE COMMAND - DEFAULTS

In the above examples, note first that 'P' is a synonym for 'PO'. It is
automatically loaded with 'L22' at entry to the EDITor. PI through P9 are
null at entry. Executing them will cause a CMND? Response. All
prestores created since the entry to EDITor are retained until the EDIT
verb is exited. Any of them may be changed by creating another prestore
command string with the same name. The prestores persist from item to
item, whether the EDITor is using an explicit item list, a selected list,
or the whole file.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 110

4.15.2 REPEATING PRESTORE COMMANDS

If one is going to use a prestore command for a repetitive task, it may
either be activated each time it is to be used, or it may call itself, at
which time its termination condi tions must be considered. A prestore (~.
conunand which calls itself will terminate only when it runs out of items ~)
to process. This means that a prestore which calls itself must have an .
EX, FI, or FD is the command string. If it does not have such an item
iteration command in the string, it will loop indefinitely in the current
item. The only exit from this condition is a BREAK-and-END. The primary
use of the prestore calling itself is to manipulate many items with a
single instruction string initiated once. It is particularly useful for
searching for specified strings in text files and replacing them as
necessary. The following example searches a BP (BASIC program) file for
the name GENERAL. LEDGER.

ED BP *<
ITEMNAME
TOP
. Pl L500/GENERAL.LEDGER[EX[PI
. Pl

EOI nnn
'ITEMNAME' EXITED
NEWITEMNAME
TOP

Edit the file.
The first item.
Standard mark.
Define the search .
Initiate the run .

At this point the EDITor will
exhibit all lines in the current
item with the desired string,
and then display
the number of lines in the item
and the name of the item exited.
The name of the next item.
The top mark.
All the lines with the string, if
any, and so on, until the list is
exhausted, at which time the
process will return to TCL.

A prestore conunand calling itself.

The same maneuver may be executed to the printer by appending the (P
option to the EDIT verb. In this case, all information which would have
been displayed on the terminal will be sent to the printer.

4.15.3 DISPLAYING PRESTORE COMMANDS

It is possible to display all currently initialized prestore commands by
using the PD (Prestore Display) command.

In the above example, if the PD command was executed before the Pl
conunand, the following would result:

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

. PAGE 111

(

PD

PO L22
Pl L500/GENERAL.LEDGER[EX[Pl

The prestore display command
will yeild:
The default, and
which is the command
defined above.

The PD command.

4.15.3.1 PRESTORES IN PROCS

It is possible to create the desired prestored command strings in PROCS in
the same manner that instructions are sent to the various processors from
a PROC.

PQ
HED BP *
STON
HPl L500/GENERAL.LEDGER<
HP1(
P

The PROC definition.
The verb.
Turn the stack on.
Specify the prestore.
Execute the prestore.
Execute the verb.

Defining a prestore in a PROC.

The example above assumes that a list is in existence. The verb
(.. activation may include an explicit item list or specify the whole file

I using the conventional asterisk. On entry to the first item from the EDIT
verb, the prestore is automatically set up, and is available for use. All
ten prestores may be initialized this way, allowing the development of
powerful customized EDITor commands.

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

(' PAGE 112

--
* >ED CARS TEN [CR]

TOP
* .L99 [CR]

001 A1234
002 C1234
003 XXXXx1234
004 ABCDE1234
EOI 4

* .Gl
001 A1234

(----------- This is what item TEN looks like.

* .DE [CR] (------------------- Delete command (deletes line 1).
*.X [CR] (-------------------- X command (cancels effect of Delete

command) .
L 1

* .F
TOP

(------------------------- Message indicates that update on line
[CR] 1 was cancelled.

* .L99 [CR]
001 A1234 (------------------- Line
002 C1234
003 XXXXX1234
004 ABCDE1234
Eor 4

1 was not deleted.

*.? [CR] (-------------------- Current Line command.
L 4 (------------------------- Current line is line 4.

* .P DE"1234"6-9 [CR] (-------- Prestore command (prestores
*.T [CR] conunand).

TOP

Delete

*.P [CR] <-------------------- Prestore Call command (calls Delete
into effect).

003
* .F

TOP

XXXXX1234 (--------------- Line 3 deleted.
[CR]

*.P [CR] (-------------------- Prestore Call conunand.
003 ABCDE1234 (--------------- New line 3 deleted.
EOI 3

*.F [CR]
TOP

* .L99 [CR]
001 A1234 -_-_I <-------------- Here is item TEN after deletions.
002 C1234
Eor 2

Sample Usage of X, Current Line, and Prestore Conunands

CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 113

--- ---------

o

/ "

C)

4.16 EDITOR MESSAGES

I This appendix presents a list of the messages output by the EDITOR. (~---

{

MESSAGE

CMND?

STRING?

COLi?

SEQN?

EOI m

TOP

L n

NOT ON FILE

DESCRIPTION

Illegal EDITOR command.

I~le~al specification, or
ID1ss~ng string (e.g.,
required string missing for
Merge; second string missing
for Replace). This message may
also occur as a result of an
illegal numeric parameter
specification, which causes
a part of the numeric parameter
to appear as if it were a string.

Illegal characters follow the
recognized end of the command,
or illegal format for a
column-number limit
specification, or
non-numeric characters used
for p and q in Locate, Replace,
Delete or Merge Commands.

Out-of-sequence update;
updating must be done in an
ascending line number sequence
until an F command is entered.

End-of-item reached at line m.

Top-of-item (line 0) reached.

Specifies that n is the current
line number or specifies that
update action on line N was
deleted via and X command.

Item specified in Merge
command is not on the disc-file.

'xxx' EXITED Editor exited via EX command.

'xxx' DELETED Item with name xxx has been
deleted from the disc-file.

'xxx' FILED Item with name xxx has been
updated to the disc-file.

EXAMPLE CAUSING ERROR

XYZ

ME 10
RS/ABC/

L.lO.23.
R/ABC/DEF/X
R/M/DI CT/MD
L,SMITH,JOHN,

< .. _"': CHAPTER 4 - EDITOR Copyright (c) 1985 PICK SYSTEMS

PAGE 114

SECTION 5

THE
ICON/PICK
PROC
LANGUAGE

(

Chapter 5

PROC LANGUAGE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

Jhis document contains information which is
proprietary to and considered a trade secret of

{PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

C" CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 115

5.1 THE PROC PROCESSOR

I This chapter describes the PROC (stored procedure) processor. (--- ---

(

(

The system allows the user to prestore a complex sequence of Terminal
Control Language (TCL) operations (and associated processor operations)
which can then be invoked by a single word command. Any sequence of
operations which can be executed at the TCL level can also be prestored
via the PROC processor. This prestored sequence of operations (called
PROC) is executed interpretively by the PROC processor and therefore
requires no compilation phase.

The PROC processor has the following features:

Four variable length 1/0 buffers

Parameter passing between buffers

Interactive terminal prompting

Extensive 1/0 and buffer control commands

Conditional and unconditional branching

Relational character testing

Pattern matching

Free-field and fixed-field character manipulation

Optional command labels

User-defined subroutine linkage

Inter-PROC linkage

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 116

5.2 PROC LANGUAGE DEFINITION

A PROC provides a means to prestore a highly complex
operations which can then be invoked from the terminal
command.

sequence of
by a single

The usage of the PROC processor is quite similar to the use of a Job
Control Language (JCL) in some large-scale computer systems. The PROC
language in the Pick Computer System, however, is more powerful since
it has conditional capabilities, and can be used to interactively
prompt the terminal user. Additionally, a PROC can test and verify
input data as they are entered from the terminal keyboard.

A PROC is stored as an item in a dictionary or data file. The first
attribute value (first line) of a PROC is always the code PQ. This
specifies to the system that what follows is to be executed by the
PROC processor. All subsequent attribute values contain PROC
statements that serve to generate TCL commands or insert parameters
into a buffer for interactive processors (such as the EDITOR). PROC
statements consist of an optional numeric label, a one or two
character command, and optional command arguments.

PROC's operate on four input/output buffers; the primary input
buffer, the secondary input buffer, the primary output buffer, and the
secondary output buffer (called the stack). Essentially, the function
of a PROC is to move data from either input buffer to either output
buffer, thus forming the desired TCL and processor commands. At any
given time, one of the input buffers is specified as the "currently
active" input buffer, while one of the output buffers is specified as
the "currently active" output buffer. Buffers are selected as
"currently active" via certain PROC commands. Thus, when moving data
between the buffers, the source of the transfer will be the currently
active input buffer, while the destination of the transfer will be the
currently active output buffer.

The primary input buffer contains the PROC name and any optional
arguments, exactly as they were entered when the PROC was invoked.
The primary output buffer is used to build the command which will
ultimately be submitted at the TCL level for processing.

The secondary input buffer contains data subsequently input by the
user in response to an IN command. Usually the data in this buffer
will be tested for correctness and then moved to the secondary output
buffer (the stack). When all desired data has been moved to the
secondary output buffer, control will be passed to the primary output
buffer via a P or PP command. The command which resides in the
primary output buffer will be executed at the TCL level and the data
in the secondary output buffer (if any) will be used to feed
processors such as ACCESS or EDITOR. When the process is completed,
control returns to the PROC at which time new data may be moved to the
output buffers.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 117

(

(j

(

Once a PROC is invoked, it remains in control until it terminates.
When the PROC temporarily relinquishes control to a processor such as
the EDITOR or a user-supplied subroutine, it functionally remains in
control since an exit from the called processor returns control to the
PROC. TCL only regains control when the PROC is terminated
explicitly, or when all of the lines in the PROC have been exhausted.

COMMAND

A
B
BO
C
D
F
GO
H
IF
IH
IP
IS
IT
0
P
PP
PW
PH
PX
RI
RO
S

SP
SS
ST ON
ST OFF
T
U
X
+

()
[]

BRIEF DESCRIPTION

Moves data argument from input to output buffers.
Backs up input pointer.
Backs up output pointer.
Specifies comment.
Display either input buffer to terminal.
Moves input pointer forward.
Unconditionally transfers control.
Moves text string to either output buffer.
Conditionally executes specified command.
Moves text string to either input buffer.
Inputs from terminal to either input buffer.
Inputs from terminal to secondary input buffer.
Inputs from tape to primary input buffer.
Outputs text string to terminal.
Causes execution of PROC.
Displays content of output buffers and executes PROC.
As above, waits for user response before proceeding.
As in P, but suppresses all terminal output for the verb.
As in P, will return to TCL after processing, not to PROC.
Clears (resets) input buffers.
Clears (resets) output buffers.
Sets position of input pointer and optionally selects

primary input buffer.
Selects primary input buffer.
Selects secondary input buffer.
Selects secondary output buffer (stack on).
Selects primary output buffer (stack off).
Provides formatted terminal output.
Exits to user-defined subroutine.
Exits back to TCL level, or calling PROC.
Adds decimal number to a parameter in input buffer.
Subtracts decimal number from a parameter in input

buffer.
Transfers control to another PROC.
Subroutine call, local or to another PROC.

Summary of PROC Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 118

5.3 AN INTRODUCTION TO PROC'S

I An integral part of the Pick Computer System is the ability
stored procedures called PROC'S.

to define I

A PROC provides the applications programmer a means of creating a sequence
of operations which can then be invoked from the terminal by a one word
command. Any operation that can be executed by the Terminal Control
Language can be performed in a PROC. This usage of a PROC is quite
similar to the use of a Job Control Language (JCL) in some computer
systems. The PROC language in the Pick Computer System, however, is more
powerful since it has conditional capabilities, and can be used to
interactively prompt the terminal user. Additionally, a PROC can test and
verify input data as they are entered from the terminal keyboard.

A PROC is executed interpretively by the PROC processor and therefore
requires no compilation phase. A PROC stored as an item in the user's
Master Dictionary (M/DICT) is executed in the TCL environment by typing
the item-id of the PROC, any optional arguments, and a carriage return.

While a PROC must exist in the Master Dictionary, the actual body of the
PROC may be within the same item, or it may be stored as an item in a~y
dictionary or data file. The first attribute (first line) of a PROC ~s
always the code PQ. This specifies to the system that what follows is to
be executed by the PROC processor. All subsequent attribute values
contain PROC statements that serve to generate TCL commands or insert
parameters into a buffer for the interactive processors, such as the
EDITOR or the BATCH processor. PROC statements consist of an optional
numeric label, a one or two character command, and optional command
arguments. PROC's are created using the EDITOR.

The ability to interactively prompt input data from the user (and
subsequently verify these data) is demonstrated. The PROC then prompts
the user for the required data. The PROC could then, for example, store
these data in a buffer which would then be passed to another processor to
update the file.

Once a PROC is invoked, it remains in control until it terminates. When
the PROC temporarily relinquishes control to a processer such as the
EDITOR, PICK/BASIC, etc., or a user-supplied subroutine, it fuctiona1ly
remains in control since an exit from the called processor returns control
to the PROC. TCL only regains control when the PROC is terminated
explicitly, or when all of the lines in the PROC have been exhausted.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 119

C)

J

>LISTU [CR]

(- CHi PCBF NAME TIME ... DATE LOCATION

00 0200 SP 08:00AM 01/01/78 Channel 0
02 0240 CM 09:10AM 01/01/78 Channel 2
03 0260 LC 07:30AM 01/01/78 Channel 3
04 0280 JP 10:14AM 01/01/78 Channel 4

*06 02CO SAL 08:35AM 01/01/78 Channel 6
10 0340 JET 09:00AM 01/01/78 Channel 10

Sample PROC Execution.

>LISTDICTS POLICY [CR]

POLICY D/CODE .. A/AMC .. V/CONV V/TYP V/MAX

AUDIT-PERIOD A 01 L 4
POLICY-PERIOD-FROM A 02 D L 10
POLICY-PERIOD-TO A 03 D L 11
EXPIRES A 04 D L 12

Sample PROC Execution. (Parameter -Passing)

(,--
>ENTER-DATA [CR]

PART-NUMBER
DESCRIPTION
QUANTITY

ERROR:NUMERIC DATA ONLY!!

QUANTITY

3215-19 [CR]
TRANSISTOR [CR]
FIFTY [CR]

50 [CR]

Sample PROC Execution. (Interactive Prompting)

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 120

5.4 INPUT/OUTPUT BUFFER OPERATION

Operations specified within a PROC involve the movement
either of two input buffers (data storage areas) to either
buffers.

of data from
of two output

PROC utilize four input/output buffers: the primary input buffer, the
secondary input buffer, the primary output buffer, and the secondary
output buffer (called the stack). The general relationship of these
buffers is illustrated in the first example. Essentially, the function of
a PROC is to move data from either input buffer to either output buffer,
thus forming the desired TCL and processor commands. At any given time,
one of the input buffers is specified as the "currently active" input
buffer, while one of the output buffers is specified as the "currently
active" output buffer. Buffers are selected as "currently active" via
certain PROC commands (these commands are discussed in detail in the
remaining topics of this section). Thus, when moving data between the
buffers, the source of transfer is the currently active input buffer,
while the destination of the transfer is the currently active output
buffer.

The primary input buffer contains the PROC name and any optional
arguments, exactly as they were entered when the PROC was invoked. The
contents of this buffer remain the same througout execution of the PROC
unless explicitly modified by an IP, IT, IH, RI, Plus or Minus command.

The primary output buffer builds the single command which ultimately is
submitted at the TCL level for processing. Any command which can be
executed via the terminal at the TCL level can also be constructed and
executed via a PROC.

The secondary input buffer contains data subsequently input by the user in
response to an IS command. The data in this buffer are volatile and are
overwritten by subsequent IS commands. Usually the data in this buffer is
tested for correctness and then moved to the secondary output buffer (the
stack) .

The secondary input buffer is now loaded with data from several system
processors, most notably the spooler. Information such as last hold file
entry number is placed into this buffer. More information on this can be
found in the spooler documentation in the PERIPHERALS manual. The user
should note that the secondary input buffer is a very temporary entity and
that if its contents are to be used, this should be done immediately
subsequent to the execution of the processor which loaded the buffer.

The secondary output buffer ("stack") contains data that is to be used by
the processor called by the PROC generated TCL statement. Zero or more
lines may be stored in the stack. Each request for terminal input by the
called process or (for example each INPUT statement in BASIC) will be
satisfied with a line of data from the stack. In the event that the
called processor requests more data than exists in the stack, data will be
requested from the terminal from that point onwards.

CHAPTER 5 - PROC Copyright (C) 1985 PICK SYSTEMS

PAGE 121

'\

/

Note that each line of data in the secondary output buffer must be
terminated by a carriage return which is explicitly placed in the stack
via an H command (refer to the topic describing that command). This is
not the case with the primary output buffer; a carriage return is
automatically placed at the end of the TCL command in the primary output
buffer upon execution of that buffer via the P, PW, PH, PX or PP command.

When all desired data have been moved to the output buffers, control is
passed to TCL via a P, PH, PX, PW or PP command. The command which
resides in the primary output buffer is executed at the TCL level and the
data in the secondary output buffer (if any) is used to feed processors
such as PICK/BASIC or the EDITOR. When the process is completed, control
returns to the PROC, at which time new data may be moved to the output
buffers.

Moving data between the buffers is done in terms of "parameters". A
parameter is defined as a string of characters (residing in one of the
buffers) which is surrounded by blanks or surrounded by quotes. To keep
track of the parameters, each buffer has a pointer which points to the
"current" position of that buffer. These pointers are depicted in the
buffer diagrams as small arrows placed beneath the buffer. As a general
illustration of this concept, consider the sample situation illustrated in
the second example. Here the PROC has been invoked by the characters ABC
XYZ, which are then automatically placed in the primary input buffer.
PROC commands have then been processed which position the input pointer of
the primary input buffer to the second parameter (XYZ) , and then
subsequently move that parameter to the primary output buffer (i.e., the
currently active buffers are the primary input buffer and the primary
output buffer).

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER
*

SECONDARY INPUT BUFFER SECONDARY OUTPUT BUFFER

*Path taken depends on "currently active" buffers.

PROC Input/Output Buffers.

PRIMARY INPUT BUFFER PRIMARY OUTPUT BUFFER

I ABC XYZ I XYZ

SECONDARY INPUT BUFFER SECONDARY OUTPUT BUFFER

Sample Inter-Buffer Transfer with Both Primary Buffers Currently Active

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS
PAGE 122

5. 5 AN OVERVIEW OF PROC COMMANDS

I A PROC consists of any number of PROC commands, one command per line.

The first line (attribute) of a PROC must contain the code PQ. This
identifies the item as a PROC. The remaining lines in the PROC may
contain any valid PROC commands. There is no limit to the number of lines
in a PROC. However, each line may contain only one command, and each
command must begin in column position one of the line.

PROC commands are listed in alphabetical order in the example. A complete
description of each command type is presented in the remaining topics
within this section.

Any PROC command may optionally be preceded by a numeric label. Such a
label serves to uniquely identify its associated PROC command for purposes
of branching or looping within the PROC. Labels may consist of any number
of numeric characters (e.g., 5, 999, 72, etc.). When a label is used ,
the PROC command must begin exactly one blank beyond the label. For
example:

1 GO 5
23 A
99 IF A = ABC GO 3
2 ST ON

Only the first occurence of the label is used as the destination of any
control transfers; i.e., no check is made for erroneous duplicate labels!

As an introductory example to PROC commands, consider the following PROC
stored as item 'DISPLAY' in the user's MD:

001 PQ
002 HLIST ONLY
003 A2
004 P

Assume that the user types in the following:

>DISPLAY INVENTORY [CR]

This input invokes the above PROC and places the words DISPLAY INVENTORY
in the primary input buffer. The second line of the above PROC is an H
command which causes the text LIST ONLY to be placed in the primary output
buffer. The third line is an A command which picks up the second word
(parameter) in the primary input buffer and places it in the primary
output buffer. Thus the primary output buffer contains the words LIST
ONLY INVENTORY. The last line of the PROC is a P command which submits
the content of the primary output buffer to TCL for processing (i.e., LIST
ONLY INVENTORY is an ACCESS sentence which causes the item-ID's of the
INVENTORY file to be listed; refer to the ACCESS Manual).

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 123

(

(-
, /

(

COMMAND

A

B
BO

C

D

F

G or GO

H

IF

IH
IP
IS
IT

0

P
PP
PW
PH
PX

RI
RO

S

SP
SS

STON
STOFF

T

U

X

+ -,

()
[]

BRIEF DESCRIPTION

Moves data from input to output buffers.

Backs up input pointer.
Backs up output pointer.

Specifies comment.

Outputs from either input buffer to terminal.

Moves input pointer forward.

Unconditionally transfers control.

Moves text string to either output buffer.

Conditionally executes specified command.

Moves text string to either input buffer.
Inputs from terminal to either input buffer.
Inputs from terminal to secondary input buffer.
Inputs from tape label to primary input buffer.

Outputs text string to terminal.

Causes execution of a PROC.
Displays contents of output buffers and executes PROC.
As above, waits for user response before proceeding.
As above but suppresses all terminal output for the verb.
As in P, will return to TCL after processing, not to PROC.

Clears (resets) input buffer.
Clears (resets) output buffer.

Positions input pointer.

Selects primary input buffer.
Selects secondary input buffer.

Selects secondary output buffer (stack).
Selects primary output buffer.

Provides formatted Terminal output (Cursor Control).

Exits to user-defined subroutine.

Exits back to TCL level, or calling PROC.

Adds, subtracts decimal number to parameter in input buffer.

Links to another PROC.
Subroutine call, local or to another PROC.

Summary of PROC commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 124

5 . 6 SELECTING PROC BUFFERS: THE SP, SS AND ST COMMANDS

The SP and SS commands select the primary or secondary input buffer,
respectively, and set the input pointer at the beginning of the buffer.
The STON will turn the stack on while the STOFF will turn the stack off.

The input buffers receive data from the terminal and store it so that it
may be transferred to the output buffers. Only one of the two input
buffers is "currently active". The SP and SS conunands are used to select
one or the other input buffer.

At the initiation of a PRce the primary input buffer is automatically
selected, and the buffer-pointer is set to the start of the input buffer,
which contains the name by which the PROC was called from TCL. After the
execute-primary-output-buffer conunand (P, PH, PX, PP, or PW) the primary
input buffer is selected, and the pointer set to the beginning of the
buffer on return of control to the PROC from TCL. The contents of the
primary input buffer are not disturbed, however.

The general form of the SP conunand is:

SP

It selects the primary input buffer and sets the input pointer at the
beginning of the buffer.

The general form of the SS conunand is:

SS

It selects the secondary input buffer and sets the input pointer at the
beginning of the buffer.

Note that the IS conunand will also select the secondary input buffer.

The primary output buffer is used to store one TCL statement that is
eventually executed by a P, PH, PX, PP or PW conunand. The secondary
output buffer (stack), is used to store zero or more lines of data to
satisfy terminal input requests by the processor invoked by the above
mentioned TCL statement. Note that the "stack" is a first-in, first-out
queue.

Only one of the two output buffers is "currently active". The STON or
STOFF conunands are used to select one or the other output buffers. Upon
initial entry to a PROC, the stack is off.

The STON conunand selects the secondary output buffer (the stack) as the
currently active output buffer (i.e., turns the stack on). Its general
form is:

STON or ST ON

CHAPTER 5 - PRce Copyright (C) 1985 PICK SYSTEMS

PAGE 125

(

(

The STOFF Command selects the primary
currently active output buffer (i.e.,
Its general form is:

STOFF or ST OFF

output buffer as the
turns the stack off).

When the stack is on, all data picked up by the A command are
moved to the secondary output buffer. When the stack is off,
these data are moved to the primary output buffer. The stack
may be turned on or off at any point within the PROC. The
example below shows the results of these instructions. The
pointers indicate currently active buffers in each case.

Initial conditions:

I Primary input buffer I Primary output buffer

After instruction SS

I Secondary input buffer I I Primary output buffer

After instruction STaN

I Secondary input buffer I I Secondary output buffer

After instruction SP

I Primary input buffer I Secondary output buffer

After instruction STOFF

I Primary input buffer I Primary output buffer

Sample usage of SS, SP, STaN, STOFF Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 126

5.7 POSITIONING POINTERS: THE S, F, B, AND BO COMMANDS

The S command positions the input pointer and/or selects the primary
input buffer as the currently active input buffer. The F and B commands r-~.
move the input pointer forward or backward one parameter, respectively. ,,-,/
The BO command moves the output pointer backward one parameter.

The S command positions the input pointer in the currently active input
buffer. This command may be used in the following general form: .

Sp

Sp moves the input pointer to the p'th parameter of the currently active
input buffer, where the parameters are seperated by blanks or enclosed in
single quotes. If there is no pth parameter, the pointer is set to the
end of the input buffer. SO or Sl will set the pointer to the beginning
of the buffer.

The F command causes the input pointer for the currently active input
buffer to move forward one parameter. If the input buffer pointer is
currently at the end of the buffer, this command has no effect.

The general form of the F command is as follows:

F

The B command causes the input pointer for the currently active input /,
buffer to move backward one parameter. If the input buffer pointer is /
currently at the beginning of the buffer, this command has no effect. The
general form of the B command is as follows:

B

The BO command causes the output pointer for the current output buffer to
move backward one parameter. If the output buffer pointer is currently at
the beginning of the buffer, this command has no effect. The general form
of the BO command is as fo11ws:

BO

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 127

(

BEFORE COMMAND AFTER

SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER

I ABC DE FGHIJ S3 * I ABC DE FGHIJ

SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER

I ABC 123 DEF 456 F * I ABC 123 DEF 456

SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER

I ABC 123 DEF 456 B * I ABC 123 DEF 456

PRIMARY OUTPUT BUFFER PRIMARY OUTPUT BUFFER

I XXX yyy zzz BO ** I XXX yyy zzz

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION

* primary or secondary input buffer
** primary output buffer

Sample usage of S, F, B, BO Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 128

5.8 MOVING PARAMETERS: THE A COMMAND

The A command is used to move a parameter from the input buffer to the
output buffer. Either the primary or secondary input buffer may be used
as the source, and either the primary or secondary output buffer may be
used as the destination; the buffers used depend on commands executed
prior to the A command.

The A command may be used in the following general form:

A{c} {p} {,m}

c is the surround character for primary output buffer.
P is the count of the parameter to be moved
m is the count of characters to be moved

The function parameters c, p and m are mutually independent, and may be
used in any combination to achieve the desired result.

p specifies the ordinal number of the parameter to be moved from the input
buffer, and resets the input-buffer pointer to the first character of the
p'th parameter in the input buffer. If p is not specified, the input
buffer pointer remains pointing to the character after the end of the last
character moved, or to the first character of a param~ter, if the pointer
was prevoiusly set by an S- or Sp-command, or an F- or B-command.

If p is not specified, the parameter is obtained from the currently active
input buffer, at the current position of the input-buffer pointer.
Leading blanks are deleted from the parameter. The end of the parameter
is designated by the first blank which is encountered, unless the entire
parameter is enclosed in single quotes, in which case the entire string in
the quotes is moved.

When p is used, (where p is a decimal number) the p'th parameter is moved,
where parameters are separated by blanks, or single quotes.

If the PRIMARY output buffer is active (that is, the stack is OFF), the
parameter is copied with surrounding BLANKS if c is missing. If the
character c is a backslash (\), the parameter is copied without any
surrounding blanks. When the form with c is used (where c is any non
numeric character except a left-parenthesis character, the character c
surrounds the parameter. This feature is useful for picking up item-ID's
and values (which require double quotes) for processing by the ACCESS
language Processor. Note that c is INACTIVE when the stack is ON (i.e.,
parameters are always copied to the stack as they are).

Multiple parameters may be moved to the primary output buffer via a single
A command if these parameters are separated by semicolons in the input
buffer. The parameters will be moved to the primary output buffer with
the semicolons deleted, and surrounded by blanks or the enclosing
character c, if c is specified.

After the execution of an A command, the input buffer pointer points to
the very next character after the string that was moved. Normally this
means the next blank or surround character following the last parameter in
the buffer, if any.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 129

(

(-

If there is no parameter, the A command causes no operation at all.

If the optional m is used, where m is a decimal nwnber, only "m"
characters of the parameter are moved to the output buffer. Each example
below assumes that the output pointer is at the beginning of the buffer
prior to the illustrated operation.

PRIMARY INPUT BUFFER COMMAND PRIMARY OUTPUT BUFFER

I AB CD EF GHI JK A * I CD

PRIMARY INPUT BUFFER COMMAND SECONDARY OUTPUT BUFFER

I AB CD EF GHI JK A5,2 ** I JK

PRIMARY INPUT BUFFER COMMAND PRIMARY OUTPUT BUFFER

I AAA BBB CCC A\2 * IBBB

PRIMARY INPUT BUFFER COMMAND PRIMARY OUTPUT BUFFER

I ABC DEF GHIJK A' ,2 * I 'DE'

SECONDARY INPUT BUFFER COMMAND PRIMARY OUTPUT BUFFER

I ABCiDEFiGH JKL A" *** I "ABC""DEF" "GH"

SECONDARY INPUT BUFFER COMMAND PRIMARY OUTPUT BUFFER

I AAAA BB CCC D A2 *** I BB

ACTIVE BUFFERS PRIOR TO COMMAND EXECUTION:

* primary or secondary input; primary output
** primary or secondary inputi secondary output

*** secondary input; primary output

Sample usage of A Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 130

5.9 INPUTTING DATA: THE IS, IP, AND IT COMMANDS

The IS command selects the secondary input buffer and accepts input from
the terminal. The IP command accepts input from the terminal to the r-~.
currently active input buffer. And the IT command inputs the next tape \ '
label from tape. '.j

The IS command selects the secondary input buffer as the currently active·
input buffer and inputs data from the terminal into the buffer. The
general form of this command is:

IS(r}

If the r specification is used, then that character is a prompt character
at the terminal (r may be any character including a blank). The prompt
character will remain in effect until a new IS or IP command with a new r
specification is executed. If r is omitted,then the TCL prompt is used.
Data input by the user in response to the prompt is placed into the
secondary input buffer. Subsequently, the data may be moved to an output
buffer by using the A command. Any time the IS command is executed, input
from the terminal overwrites all previous data in the secondary input
buffer.

The IP command inputs data from the terminal into the currently active
input buffer. The general form of this command is:

IP(r}

Data input at the terminal in response to an IP command replaces the
current parameter (i.e., as pointed to by the input pointer) of the
currently active input buffer. If several parameters are input at the
terminal, then they will all replace the current parameter in the buffer.
If the input pointer is at the end of the data in the input buffer, then
the new input data will be appended to the end. The r specification is
identical to the r specification for the IS command (see above).

The IT command inputs the tape label from the tape currently attached and
copies that label into a cleared currently active input buffer. The
general form of the command is:

IT

The IT command will first clear the currently active input buffer and then
input the tape label into that buffer. If no tape label exists then the
command leaves the active buffer cleared or empty.

Below are the explanations of the commands and options followed by
examples and explanations of the input commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 131

(

(

(

COMMAND

IS

IS=

IP?

IT

EXPLANATION

Selects secondary input buffer and
inputs data from terminal. Prompt
character is a colon (:).

Selects secondary input buffer and
inputs data from terminal. Prompt
character is an equal sign (=).

Replaces current parameter in
currently active input buffer with
data from terminal. Prompt character
is a question mark (?).

Inputs tape label to primary
input buffer. If no label then
input buffer is cleared.

Sample usage of IS, IP, and IT Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 132

5.10 OUTPUTTING DATA: THE 0 AND D COMMANDS

The 0 command is used to output a specified text string to the terminal.
The D command is used to output parameters from either input buffer to the
terminal.

FORMAT:

O[text}{+}

The 0 command causes the text which immediately follows the 0 to be output
to the terminal. If the last character of the text is a plus sign (+),
then a carriage return will not be executed at the end of the text output.
This feature is useful when using the 0 command in conjunction with an
input command. For example, consider the following commands:

OPART-NUMBER+
IS-

These commands produce the following output on the terminal:

PART-NUMBER=

The specified prompt character (=) is displayed adjacent to the output
text since the 0 command ended with a plus sign (+). The user then enters
the input data right after the prompt character. For example:

PART NUMBER=115020

The D command is used to output parameters from either input buffer to the
terminal. The D command may be used in the following general form:

D[p}[,n}[+}

If the form Dp is used, then the p'th parameter of the currently active
input buffer is displayed on the terminal. If the form D is used, then
the current parameter (i.e., as pointed to by the input pointer) of the
currently active input buffer is displayed on the terminal. If the form
DO (D followed by the number zero) is used, the complete currently active
input buffer is displayed. If the forms Dp,n or D,n are used, then the n
characters starting at the p-th. or current parameter (up to the first
blank character encountered) are displayed.

A plus sign (+) may be appended to the end of the D command, thus
specifying the suppression of a carriage return (as for the 0 command
described above.) The D command does not affect the input pointer.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 133
(\
'-/

(J
(

COMMAND

OTHIS IS AN EXAMPLE

OTHIS IS AN EXAMPLE+

OUTPUT TO TERMINAL

THIS IS AN EXAMPLE [CR]

THIS IS AN EXAMPLE

Sample usage of 0 Command.

PRIMARY INPUT BUFFER COMMAND OUTPUT TO

I AA BBB CC DDD D * BBB [CR]

SECONDARY INPUT BUFFER COMMAND OUTPUT

I AA BBB CC DDD D4+ ** DDD

PRIMARY INPUT BUFFER COMMAND OUTPUT

I ABC XYZ 123 D,2 *** XY [CR]

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION

*primary input buffer
**secondary input buffer

***primary or secondary input buffer

TO

TO

TERMINAL

TERMINAL

TERMINAL

Sample usage of D Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 134

5.11 TERMINAL OUTPUT AND CURSOR CONTROL: THE T COMMAND

The T command is used to specify terminal cursor positioning, to output
literals, or to output non-keyable character codes. The cursor functions
are terminal independent. The special terminal function codes are also
availible.

FORMAT:

T (function) , (function), •..

Where (function) is any of the following:

"Text" Causes the literal text to be output at the current position.

B Causes a BELL code to be output

C Causes a Clear Screen code to be output

Inn Causes the integer character nn to be output.

Xnn Causes the hex character nn to be output.

(X,Y) Causes the terminal cursor to position to X,Y.
This is controlled by the term type code. The special
function codes (-1 thru -10) are also supported.

This command allows the user to create formatted screens in PROCs. The
prompting and positioning of formatted screens generally appears cleaner
and more acceptable to terminal operators. Note that this command does / \
use the SYSTEM-CURSOR mode and so can be controlled terminal by terminal
with the term type code. It is strongly recommended that the user employ
the terminal independent control codes -1 thru -10 in place of 'hard
coding' these functions for a single terminal type.

The T command may be continued onto multiple lines by ending the
preceeding line with a comma. Also comments may be added after the
critical command letters. Thus the code to clear the screen 'C' could
also be spelled out as 'CLEAR', the code for a bell 'B' could be 'BELL',
etc.'. The T command never automaticalyadds a carriage return or line
feed.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 135

'"

(

(

(-1)

(-2)

(-3)

(-4)

(-S)

(-6)

(-7)

(-8)

(-9)

(-10)

COMMAND

Generates the clear-screen character; clears the screen
and positions the cursor at 'home' (upper left corner
of the screen).

Positions the cursor at 'home' (upper left corner).

Clears from cursor positon to the end of the screen.

Clears from cursor position to the end of the line.

Starts blinking on subsequently printed data.

Stops blinking.

Initiates 'protect' field. All printed data will be
'protected', that is, cannot be written over.

Stops protect field.

Backspaces the cursor one character.

Moves the cursor up one line.

Explanation of Cursor Function Values.

OUTPUT TO TERMINAL

T C,B,(lO,S),"TITLE" This sequence first clears the screen.
It outputs a bell code to the terminal.

T (0,8),(-4)

T (-S),"twinkle",(-6)

T CLEAR, "TITLE" ,
(S,S) Comment,"TEXT"

The cursor is postioned to column 10 row S.
The text "TITLE" is output.

This positions the cursor at column 0 row 8.
It then clears the entire line assuming that
the terminal used supports that function.

This starts a blinking field, prints the word
"twinkle", and ends the blinking field.
This assumes the terminal supports blinking.

This illustrates the continuation of a
command over a line boundary and the
insertion of a comment in the line.

Sample usage of the T command.

('" CHAPTER S - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 136

5.12 SPECIFYING TEXT STRINGS AND CLEARING BUFFERS: THE IH, H,
RI, AND RO COMMANDS

The IH and H commands are used to place a specified text string in the
currently active input or output buffer, respectively. The RI and RO
commands are used to reset the input and output buffers (respectively) to
the empty (null) condition.

FORMAT:

IH text

This command causes the text (including any blanks) immediately following
the IH to replace the current parameter (as specified by the input
pointer) in the currently active input buffer. The input buffer pointer
will remain pointing to the beginning of the inserted string.

FORMAT:

H(text}{<}

This command causes the text (including any blanks) which immediately
follows the H to be placed in the currently active output buffer at the
position pointed to by the output pointer.

When the last parameter of a desired output line has been moved to the
secondary output buffer (the stack), a carriage return specification «)
must be placed in the stack. For example, the command HXYZ< would be used
to place in the stack the text XYZ followed by a carriage return, while
the command H< would place a carriage return (only) in the stack.

FORMAT:

RI(p}

If the form RI is used, then both input buffers are reset to the empty
(null) condition. If the form RIp is used, then the primary input buffer
from the pIth parameter to the end of the buffer (as well as the entire
secondary input buffer) are reset to the empty (null) condition. The RI
command always selects the primary input buffer as the active buffer.

FORMAT:

RO

This command resets both output buffers to the empty (null) condition.
The RO command always selects the primary output buffer as the active
buffer.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 137

/

c

(/

('\

PRIMARY INPUT BUFFER BEFORE COMMAND

I AM BBB CCC IHXX yy *

SECONDARY INPUT BUFFER BEFORE

I XYZ ABC H DE< **

PRIMARY INPUT BUFFER BEFORE

I ABC DEF GHI JKL RI3

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION:

*primary input buffer
**secondary input buffer

PRIMARY INPUT BUFFER AFTER

I AM XX YY CCC

SECONDARY OUTPUT BUFFER AFTER

I XYZ ABC DE [CR]

PRIMARY INPUT BUFFER AFTER

I ABC DEF

Sample usage of IH, H, and RI Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 138

5.13 TRANSFERRING CONTROL: THE GO n and GO A COMMAND

Transfer of control (i.e., branching) may be specified within a PROC via
use of the GO. The GO n command provides an unconditional branch ~-~
capability, while the GO A provides a conditional branch capability based ~j:
on the value of A.

FORMAT:
G{O} n
G(O} A

The GO n command causes control to unconditionally transfer to the PROC
command which has the numeric label n. For example:

G 10

This command causes control to transfer to the PROC command which begins
with the label 10.

The GO A command causes control
the numeric label represented
parameter being pointed to in
example:

Input Buffer

10 20 30

GO A

to transfer to the PROC command which has
by the parameter A. (Where A equals the
the currently active input buffer.) For

This command causes control to transfer to the PROC command which begins
with label 20. If label 20 does not exist within the PROC then the GO A
command will not be executed. This command is especially useful in PROCls
that allow operator job selection. Note that several PROC commands may
begin with the same label. If this is the case, the GO command transfers
control to the first PROC command with begins with the specified label
(scanning from the top).

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 139

\. ./

(-~ , \

~-_/

(:

(

JOB. SELECT
001 PO
002 0 1. LIST VENDORS
003 0 2. ENTER NEW VENDORS
004 0
005 0 ENTER JOB # +
006 IP
007 GO A
008 X NO SELECTION
009 1 HSORT VENDORS
010 PX
011 2 HRUN PROGRAMS VENDOR.UPD
012 PX

This PROC displays two job alternatives, 1. LIST VENDORS and 2. ENTER
NEW VENDORS, and prompts with the message ENTER JOB #.
The entry of a "1" or "2" will transfer PROC control to their respective
labels otherwise the PROC will exit to TCL with the message "NO SELECTION".

Sample use of GO A Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 140

5.14 CONDITIONAL EXECUTION: THE SIMPLE IF COMMAND

I Conditional execution may be specified within
command.

a PROC via use of the IF I

The IF command provides for the conditional execution of a specified PROC
command. The IF command takes on three general forms. The simple form is
as follows:

IF {t}a-cmnd proc-cmnd

Where a-cmnd is any legal form of the A command (refer to the topic titled
MOVING PARAMETERS: THE A COMMAND) except for the form using the character
surround feature (i.e., Ac), and where proc-cmnd is any legal PROC
command. If the optional t is not used, the IF command simply tests for
the existence of a parameter in the input buffer as specified by the A
command. If a parameter exists, the specified PROC command is executed;
otherwise, control passes to the next sequential PROC command. For
example:

IF A2 GO 15

This command tests for the existence of a second
currently active input buffer. If a parameter exists,
the PROC command beginning with label 15; otherwise,
the next sequential PRoe command. If the # option is
reversed. For example:

IF #A2 GO 15

parameter in the
control passes to
control passes to

used, the test is

This command causes control to transfer to the command with label 15 if a (/,
second parameter does not exist. /

The user should note that when using an A command as a test condition of
an IF command, parameters are not moved to an output buffer as would be
the case if the A command were used alone. Rather, the A command is used
simply to specify which parameter in the input buffer is to be tested.
However, the input pointer will be re-positioned as specified by the A
command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 141

('

NOTE: The following examples assume that the primary input buffer
is the currently active input buffer and contains the
following parameters:

I ABC AM XYZ

COMMAND

IF A GO 27

IF A3 OHELLO

IF A4 OHELLO

IF # All GO 2

EXPLANATION

Control i~ transferred to the command with
label 27.

Message HELLO is output to terminal; control
then continues with next sequential command.

Message is not output; control continues
with next sequential command.

Control is transferred to the command with
label 2.

Sample usage of Simple IF Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 142

S.15 RELATIONAL TESTING: THE RELATIONAL IF COMMAND

I The relational form of the IF command allows parameters in the input I
buffers to be tested relationally.

-- ~\
The relational form of the IF command is an extended version of the simple
IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE IF
COMMANDS). The relational form is as follows:

If a-cmnd op string proc-cmnd

Where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators listed in Figure B, and where string is
a literal string of characters which the parameter is to be compared
against. For example:

IF A,3 = YES GO 5

Here the PROC would transfer control to the command with the label 5
the current parameter in the currently active input buffer is
character string YES.

if
the

To resolve a relational condition, character pairs (one from the selected
parameter and one from the literal string) are compared one at a time from
leftmost characters to rightmost. If no unequal character pairs are
found, the strings are considered to be equal. If an unequal pair of
characters are found, the characters are ranked according to their numeric
ASCII code equivalents (refer to the LIST OF ASCII CODES in the Appendix
to this manual). The . character string contributing the higher numeric
ASCII code equivalent is considered to be greater than the other string.
For example, AAB is considered to be greater than AAAA, and 02 is
considered greater than 005.

If the selected parameter and the literal string are not the same length,
but the shorter of the two is otherwise identical to the beginning of the
longer one, then the longer string is considered greater than the shorter
string. For example, the string WXYZ is considered to be greater than the
string WXY.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 143

~J

(

(

c

OPERATOR

<
>
[

]

SYMBOL OPERATION

test for equal
test for not equal
test if parameter less than literal string
test if parameter greater than literal string
test if parameter less then or equal to
literal string
test if parameter greater than or equal
to literal string

Relational Operators.

NOTE: The following examples assume that the primary input buffer
is the currently active input buffer and contains the
following parameters:

I ABC AAA XYZ

COMMAND

IF A = ABC GO 3

IF A3 > XYX HTEST

IF A2 > XYX HTEST

EXPLANATION

Control is transferred to the command
with label 3.

The text string TEST is placed in the
currently active output bufferj control then
continues with next sequential command.

Text string TEST is not placed in output
bufferj control continues with next
sequential command

Sample Usage of Relational IF Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 144

5.16 PATTERN TESTING: THE PATTERN MATCHING IF COMMAND

The pattern matching form of the IF command is an extended version of the
simple IF form (see topic titled TRANSFERRING CONTROL: THE GO AND SIMPLE
IF COMMANDS). The pattern matching form is as follows:

IF a-cmnd op (pattern) proc-cmnd

Where a-cmnd and proc-cmnd are as defined for the simple IF form, where op
is one of the relational operators described for the relational IF form,
and where pattern is a pre-defined format string enclosed in parentheses.
A pattern is used to test a parameter for a specified combination of
numeric characters, alpha characters, alpha-numeric characters, or
literals. The pattern specification in an IF statement consists of any
combination of the following:

An integer number followed by the letter N (which
tests for that number of numeric characters).
An integer number followed by the letter A (which
tests for that number of alpha characters).
An integer number followed by the letter X (which
tests for that number of alpha-numeric characters).
A literal string (which tests for that literal string
of characters).

As an example, consider the following command:

If A = (3NABC) G 3

This command causes a transfer of control to the command with label 3 when
the current parameter of the currently active input buffer consists of
three numerals followed by the characters ABC (e.g., 123ABC).

If the integer number used in the pattern is 0, the test is true only if
all the characters in the parameter conform to character type. The
following command, for example, outputs the message OK if the characters
of the current parameter are all alpha characters:

IF A = (OA) OOK

Note that for any of the three IF command forms, the PROC statement which
is conditionally executed may in turn be another IF command (i.e., IF
commands may be nested). The following command, for example, transfers
control to label 99 if the current parameter consists of two numerals in
the range 10 through 19 (inclusive):

IF A = (2N) IF A] 10 IF A [19 GO 99

The user may wish to visualize nested IF commands as though implied AND
operators were placed between them.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 145

)

NOTE: The following examples assume that the primary input
buffer is the currently active input buffer and contains

(the following parameters:

I ABC 10/09/77 XYZ B123C 33

COMMAND

IF A = (3A) G 7

IF A2 (2N/2N/2N) G 5

IF A4 (ON) G 9

IF AS = (ON) GO 2

IF A4 (lA3NC) OGOOD

IF Al (3X) IF Al > ABB G 9

EXPLANATION

Control is transferred to the
command with label 7.

Control is transferred to the
command with label 5

Control continues with next
sequential command.

Control is transferred to the
command with label 2.

The message GOOD is output to
the terminal; control continues
with next sequential command.

Control is transferred to
the command with label 9.

(.L __ _

Sample Usage of Pattern Matching IF Command.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 146

5.17 FURTHER FORMS OF THE IF COMMAND: THE IF E and IF S COMMANDS and
SELECT LIST AND PROC INTERACTION

The IF E form of the IF command may be used to test for errors generated ~\
by a preceding PROC-generated statement. The IF S form of the IF command ~ J
may be used to test whether a LIST, as generated by a SELECT, SSELECT,
QSELECT or GET-LIST statement, is in effect.

FORMAT:

IF {'}E {op string} proc-cmnd

Where flOp string" and "proc-cmnd" are as defined previously.

This command allows PROCs to test for system generated errors (as
specified in the ERRMSG file). The E command is valid only after a P type
command, that is, when a PROC-generated statement has completed execution,
and control is returned to the PROC. The E command uses the secondary
input buffer, and therefore is valid only until an "IS" command is
executed.

The errors tested for may be unspecified (i.e. Any error) or they may be
specified by the error number. The relational operators "=",">","<",
"[","]" may also be used to test for errors in specified ranges. Thus the
error command may be used in two ways. An example of the first would be :

015 IF E X ENCOUNTERED AN ERROR AT LINE 15

whereby control will transfer to TCL and the text "ENCOUNTERED AN ERROR AT
LINE 15" will be printed if any error were encountered. I "

An example of a statement that tests for an error range is

015 IF E > 91 IF E < 99 X TAPE ERROR!

in which case control will transfer to TCL and the text will be printed if
an error in the range 92-98 had been encountered.

There are certain TCL statements that select lists of item-ids or values,
such as SELECT, SSELECT, QSELECT and GET-LIST. Refer to the appropriate
areas of the documentation for details regarding these statements. There
is an important interaction between these statements and a PROC. A
selected list must be used by the TCL statement immediately following it,
or else it will be lost. If the select-type statement has been executed
by a PROC, the TCL statement that uses it is normally placed in the STACK
prior to execution of the select statement. This second TCL statement
will automatically execute after the select is complete; the PROC will
not gain control in between! If there is a null line in the STACK, the
PROC will then regain control. The PROC may then test if the select
statement executed correctly.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 147

(

The general form of the IF S command is:

IF {I}S proc-cmnd

where proc-cmnd is any PROC command.

This command will test for the presence of a selected-list; the selected
list will be present only if a select-type TCL statement has already been
executed at the time that the IF S command is encountered.

If the select statement has generated an error, such as "NO ITEMS PRESENT"
or "ITEM NOT ON FILE", the select list will not exist, and the IF S may be
used to check on this condition.

TESTI TEST2
001 PQ 001 PQ
002 HGET-LIST 002 HGET-LIST
003 OENTER LIST-NAME+ 003 ENTER LIST-NAME+
004 IP? 004 IP?
005 A 005 A
006 STON 006 STON
007 H< 007 HLIST INVENTORY LPTR
OOB P OOB P
009 IF #S XILLEGAL LIST-NAME! 009 next statement
010 HLIST INVENTORY LPTR
011 P
012 next statement

The PROCs TESTI and TEST2 will operate identically if the GET-LIST
statement executes without an error (that is, if the list exists on file).
However, TEST2 will continue with PROC execution even if the list is not
on file, since there cannot be an IF S test after the stacked LIST
statement executes. TESTl, on the other hand, has a null line in the
stack when the GET-LIST executes; therefore, control is returned to the'
PROC, which can test to see if it executed properly. If the list is not
on file, the PROC will terminate on line 10.

Sample usage of the IF S command, and of PROC-SELECT interface.

CHAPTER 5 - PROC Copyright (c) 19B5 PICK SYSTEMS

PAGE l4B

5.18 ADDITIONAL FEATURES: THE PLUS (+), MINUS (-), U AND C COMMANDS

The Plus and Minus commands are used
specified decimal number to/from the
active input buffer. An exit to
accomplished via the U command. The
within the body of the PROC.

FORMAT:
+n

to add or subtract (respectively) a
current parameter of the currently
a user-defined subroutine may be
C command is used to place comments

This command causes the decimal number n to be added to the current
parameter (as pointed to by the input pointer) of the currently active
input buffer. The current parameter must be numeric.

FORMAT:
-n

This command causes the decimal number n to be subtracted from the current
parameter (as pointed to by the input pointer) of the currently active
input buffer. The current parameter must be numeric.

The Plus or Minus commands will have no effect if the input pointer is
currently at the end of the buffer. Also, the user must take care that
the updated value of the parameter is the same length as the original
parameter, since no automatic check for this is made.

FORMAT:
Umode-id

The U command is used to provide an exit to a user-defined subroutine. (
The format for this command is identical to the P command using the mode- J
id option; however, the U command is meant to be used for a simple
subroutine call. Upon return from the subroutine, control is passed to
the command immediately following the U command. TCL is not involved in
the execution of a subroutine via the U command. (For further
information, see the Pick Assembly Language Reference Manual).

I WARNING: Do not use the U command unless you fully understand its action I
at the system assembly level!

The C command is used to place comments within the body of the PROC.

FORMAT:
C{text}

All the text following the C will be ignored by the PROC processor. For
example:

013 C THIS IS A COMMENT

The C command may be used freely throught the PROC for purposes of clarity
and documentation; however, note that making a PROC excessively long will
slow its execution!

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 149

BEFORE AFTER

PRIMARY INPUT BUFFER COMMAND PRIMARY INPUT BUFFER

I ABC 001 XYZ +99 * I ABC 100 XYZ

SECONDARY INPUT BUFFER SECONDARY INPUT BUFFER

I XXXX IT 39 -5 ** I XXXX IT 34

PRIMARY INPUT BUFFER PRIMARY INPUT BUFFER

I ABC 001 XYZ +99 * I ABC 001 XYZ

ACTIVE BUFFER PRIOR TO COMMAND EXECUTION
*primary input buffer

**secondary input buffer

C THIS IS A COMMENT Ignored by PROC

(- --
. Sample Usage of Plus (+), Minus (-) and C Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 150

5.19 PROC EXECUTION AND TERMINATION: THE P, PH, PP, PW, PX AND X COMMANDS

The P command causes the PROC to execute a TCL command. The PH command is
similar to the P but causes terminal output to be suppressed. The PX
command acts like the P, but turns off any further interaction with the
PROC. The PP and PW commands are identical to the·P command, except that ,~
the content of both output buffers are displayed at the terminal prior to~/
execution. The X command is used to exit from the PROC.

FORMAT:
P[c} where c - H, P, W or X

The P command causes the PROC to execute by submitting the content of the
primary output buffer to TCL for processing; the contents of the stack
(if any) are used to feed interactive processors such as PICK/BASIC or
EDITOR. After execution via TCL,the PROC regains control at the statement
immediately following the P command.

A carriage-return is placed in the STACK, if the stack has any data in it,
and a carriage-return specification is not present as the last character
in the last line.

The PX command acts just as the P does, with the exception that control is
NOT returned to the PROC after the TCL statement has been executed.

The PP command causes execution of the contents of the buffer just as the
P command, except that the content of both output buffers are displayed on
the terminal.

The PW command acts in the same way as the PP command, except that after
the data are displayed, terminal input is then requested via a question
mark (?) prompt character. If the user enters an S, the current PROC
generated conunand is skipped, and PROC execution continues at the command
following the PW. If an X is entered, PROC execution is aborted and an
exit is taken to TCL. Any other character will cause PROC action to
continue. The PW command is normally used as a debugging tool and may be
replaced by a P command once the user has determined that the PROC is
functioning properly.

The PH command executes the buffer but suppressed any output from the
executed process.

FORMAT:
X{text}

The X command is used to exit from the PROC. Normally, PROC control is
terminated with execution of the final PROC statement, ~n which case an X
,command is not needed. However, the X command may be used at intermediate
points in the PROC coding to cause termination of the PROC. Any text
following the X will be output as a message upon termination of the PROC.
For example:

X***EXIT TO TCL***

If the PROC was called as a subroutine the X command will cause a return
to the calling PROC.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 151

(

(

COMMAND

x

XHURRY BACK

XHURRY BACK+

x

EXPLANATION

PROC is terminated.

PROC is terminated and the massage HURRY
BACK is displayed on the terminal.

As above; the message is printed without
a carriage-return/line-feed appended.

If the PROC was called as a subroutine
then X will return control to the calling
PROC and continue at thenext command.

Sample Usage of P, PP, X, and U Commands.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 152

5.20 LINKING TO OTHER PROCS: THE LINK COMMAND

lOne PROC can invoke another PROC via use of the Link command.

A Link command in one PROC causes control to transfer to the first command
of another PROC, which may reside in any dictionary or data file. This
allows the storage of PROC's (except for the LOGON PROC) outside of the
M/DICT. Also, large PROC's can be broken into smaller PROC's to minimize
processing time.

FORMAT:

({DICT} file-name {item-id}) {n}

Where the file-name specifies the file and the item-id specifies the name
of the PROC invoked. If the item-id is omitted, the current parameter (as
specified by the input pointer) of the currently active input buffer is
retrieved and used as the item-id. The optional DICT specifies the
dictionary portion of the file.

The first line of the linked-to PRoe is skipped, since it is assumed that
this line contains the PO code.

If the optional In' is used, control is transferred to the line whose
label is 'n' .

. As an example of the Link command, consider the situation where a PROe
named EXECUTE is used to execute anyone of a series of PROC's in a file
named PROC-FILE. The specific PROC executed is specified by a single
character alaphabetic code input by the user. This sample PRoe is shown
in the examples below. If, for example, the user's response to the IS
command of line 3 is the character D, then line 4 of the PROC (which
contains a Link command as part of the IF command) transfers control to
the PROC stored in item 'D' of FILE PROC-FILE.

Consider next the situation where the PROC named LISTU previously was
present in each user's M/DICT. Assume that LISTU was then moved to the
dictionary section of a file named PROCLIB, and a new LISTU PROC (as shown
in the examples) was then placed in each user's M/DICT. The LISTU PROC
which was moved to the PROCLIB file will now be invoked by the Link
command in the PROC shown in the examples, and thus the LISTU PROC need
not be duplicated in each user's M/DICT.

Note that the PROC buffers remain unchanged when a linkage occurs. Also,
the first line of the linked-to item is always skipped, since it is
assumed that this line contains the PO code.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 153

(

(

("'\

Item EXECUTE

001 PO
002 OPLEASE INPUT CODE+
003 IN?
004 IF A - (lA) (PROC-FILE)
005 XILLEGAL RESPONSE

Sample Usage of Link Command (See Text).

Item 'LISTU' in M/DICT

001 PO
002 (DICT PROCLIB LISTU)

Sample Usage of Link Command (See Text).

CHAPTER 5 - PROC Copyright (C) 1985 PICK SYSTEMS

PAGE 154

5.21 SUBROUTINE LINKAGES: THE CALL COMMANDS

l One PROC can call another as a subroutine, or a local subroutine call can I
be invoked using the call command.

FORMAT:
[] n

This command will store the location of the next PROC command in the PROC
subroutine stack, and transfer control to the command whose label is n.
Execution of PROC commands continues from that point (including P, PP and
PW commands), until an X command is executed, which will return control to
the PROC command following the call command.

FORMAT:
[{DICT} file-name {item-id}] In}

Where "DICT", "file-name" and "item-id" are identical to the LINK command
decribed in the last section. If item-id is not spectified, the name of
the called subroutine is taken from the current parameter (as specified by
the input pointer) of the currently active input buffer.

The optional n indicates that subroutine execution is to begin at label n,
rather than at the second line of the subroutine PROC.

As with external subroutine calls, an X command will return control to the
calling PROC.

In both forms of the subroutine call, none of the input or ouput buffers
are affected by the call itself.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 155
()

(\

Local Subroutine Call
001 PO
002 [] 3
003 OFIRST
004 3 OSECOND
005 X+

SECOND
FIRST
SECOND

NOTE: '+' sign supresses carriage
return after X returns.

Output on terminal

External Subroutine Call
001 PO
002 [MD LISTU]
003 ODONE WITH LISTU

Output to terminal

CHI PCBF NAME TIME ... DATE LOCATION

00 0200 SP 08:00AM 01/01/78 Channel 0
02 0240 CM 09:10AM 01/01/78 Channel 2
03 0260 LC 07:30AM 01/01/78 Channel 3
04 0280 JP 10:14AM 01/01/78 Channel 4

*06 02CO SAL 08:35AM 01/01/78 Channel 6
10 0340 JET 09:00AM 01/01/78 Channel 10
DONE WITH LISTU

(r--
Sample Usage of Local and External Subroutine Calls.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 156

5.21.1 SAMPLE PROCS: FILE UPDATE VIA EDITOR

I This topic presents a sample PROC which changes a specified attribute I
value via the EDITOR.

The first example shows a sample EDITOR operation which changes attribute
3 of item 11115 of file ACCOUNT to the value ABC. The second example
shows a PROC named CHANGE which will perform the exact same operation.
Note that the PROC has been written in such a manner that it updates any
specified attribute in any specified item in any specified file. The
format used to invoke this PROC is as follows:

CHANGE file item attribute-no new-value

If, for examplethe user wishes to perform the same operation shown in the
first example, the PROC must be invoked as follows:

CHANGE ACCOUNT 11115 3 ABC [CR]

The user should note that the normal messages output by the EDITOR (e.g.,
TOP, 111115 1 FILED, etc.) are output when the PROC in the second example
is executed. These messages may be suppressed, however, by preceding each
EDITOR command by a period (.); for further information regarding these
features, refer to the EDITOR Reference Manual.

>EDIT ACCOUNT 11115 [CR]
TOP
.G3 [CR]
003 100 AVOCADO
. R [CR]
003 ABC
111115 1 FILED

Sample EDITOR Operation.

Item CHANGE IN M/DICT

001 PO
002 HEDIT
003 A2
004 A3
005 STON
006 HG
007 A4
008 H<
009 HR<
010 A5
011 H<
012 HFI<
013 P

Generalized PROC Stored As Item I CHANGE I Which
Will Perform Identical Operation.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 157

c

(

(

5.21.2 USING SSELECT AND COPY VERBS

I This topic presents a sample PROC which uses the SSELECT and COpy verbs.
--

The first example shows a sample operation at the TCL level using the
SSELECT verb and then the COpy verb. This identical operation is
performed by the PROC named TEST shown in the next example. Upon
execution of the TEST PROC, the output buffers contain the data shown in
the last example. Note that the SSELECT sentence is contained in the
primary output buffer, while the secondary output buffer contains both
input elements of the copy operation, each terminated by a carriage
return.

>SSELECT INVENTORY WITH QOH > "900" BY-DSND QOH [CR]
19 ITEMS SELECTED
>COPY INVENTORY [CR]
TO: (HOLD-FILE) [CR]
19 ITEMS COPIED

SSELECT and COPY Operation at TCL Level.

Item 'TEST' in M/DICT

001 PQ
002 HSSELECT INVENTORY WITH QOH > "900" BY-DSND QOH
003 STON
004 HCOPY INVENTORY<
005 H(HOLD-FILE)<
006 P

PROC Stored as Item 'TEST' Which Performs Identical
SSELECT and COpy Operations.

PRIMARY OUTPUT BUFFER

I SSELECT INVENTORY WITH QOH > "900" BY-DSND QOH [CR]

SECONDARY OUTPUT BUFFER

I COpy INVENTORY [CR] (HOLD-FILE) [CR]

Output Buffers Upon Execution of TEST PROC.

(~ CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 158

5.21.3 USING VARIABLE TESTING, GO AND D COMMANDS

I This topic presents a sample PROC which
commands.

uses variable testing, GO and

The example shows a sample
previous examples in that
practical value in that the
level for every file that is

tape positioning PROC. It differs from
it uses the arithmetic command. It has

user does not have to enter T-FWD at the TCL
positioned over.

Note that the PROC may be executed by entering liT-SPACE" or "T-SPACE nil at
the TCL level; if no parameter is entered, the PROC will request one.

The input buffer contains the following data:

Parameter# 1
T-SPACE

2
n

3
xx

4

where "n" is the number of files to be spaced over, and xx is the count of
such files, initialized to "00" at line 6.

The PROC will attach the tape unit (T-ATT); check for errors 95 and 93,
terminating execution if either error occurs. Then it will execute a T
RDLBL to read the tape label and print it on the terminal; if error 94
(EOF) occurs on this statement, the end of tape data has been reached;
the message on line 31 will be printed, along with the file-count from
parameter 3.

T-RDLBL executes sucessfully, the tape file is spaced over by executing
T-FWD (the print is turned off and on around this command by the

commands P (I) and P (L), to inihibit spurious messages). ,/

This is repeated until parameter 2 goes to 0; note the multiple tests
required to test for 0, 00 or 000 on lines 24-26, since the - command
doesn't change the parameter size.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 159 C!
.j

(

(

c:

T-SPACE
001 PO
002 4 IF #A2 GO 3
003 IF A2 - (ON) G 7
004 IHOOO
005 7 S3
006 IHOO
007 HT-ATT
008 P
009 IF E = 95 X
010 IF E = 93 X
011 2 HT-RDLBL
012 P
013 IF E = 94 GO 9
014 HP (I)
015 P
016 HT-FWD
017 P
018 HP (L)
019 P
020 S3
021 +1
022 S2
023 -1
024 IF A = 0 X
025 IF A = 00 X
026 IF A = 000 X
027 GO 2
028 3 ONO. OF FILES+
029 IP?
030 GO 4
031 9 OEND OF RECORDED DATA - (+
023 D3+
033 X FILES)

Sample Tape Positioning PROC.

CHAPTER 5 - PROC Copyright (c) 1985 PICK SYSTEMS

PAGE 160

SECTION 6

ACCESS

(

/

(

c

Chapter 6

ACCESS

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

(/' CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 161

()

(

(

6.1 AN ACCESS PRIMER AN ACCESS PRIMER

The user forms ACCESS sentences which specify the desired data
retrieval functions. The ACCESS retrieval language is limited natural
English; formats for sentences are simple yet very general. The
ACCESS processors, together with the use of dictionaries, permit
inputs to be stated directly in the technical terminology natural to
each application area.

ACCESS accepts any number of variable length words and permits a
general freedom of word order and syntax. An ACCESS sentence is
entered at the TCL level. The sentence then directs the appropriate
ACCESS processor to perform the specified data retrieval function.

The verb must be the first word in the ACCESS sentence, while the
other words may generally be in any order. ACCESS verbs are action
oriented words which invoke specific ACCESS processors. The file-name
specification permits the access of either the data section or the
dictionary section of a file. A verb and a file-name are required;
all other elements are optional. Thus, the minimum ACCESS sentence
consists of a verb followed by a file-name.

The selection criteria determine which items in the file will be
operated upon. If nothing is specified, then all items will be used.
One or more direct references may be made by specifying the item-id in
single quotes. A conditional retrieval may be specified by using a
WITH clause. All items in the file will be examined, but only those
meeting the specified criteria will be accepted. The WITH clause may
be a simple or complex combination of attribute names, relational
operators (=, >, LT, AFTER, etc.), logical operators (AND, OR), and
explicit data values ("100", "12/2/76", "RESISTOR", etc.).

The attribute list specifies those attributes desired for output. The
attribute list may be explicity stated using attribute names found in
the file dictionary. If none are specified in sentence, the implicit
attribute synonym list in the file dictionary will be used to specify
the display fields.

The miscellaneous modifiers may be used to modify the effect of the
verb, or to alter the display format.

(\ CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 162

6.2 THE ACCESS VERBS THE ACCESS VERBS

Each ACCESS sentence must begin with one (and only one) ACCESS verb.
ACCESS verbs are action-oriented words which invoke specific ACCESS ~
:~o!~sors. Some of the major ACCESS verbs are briefly discussed . c~

LIST and SORT

The LIST and SORT verbs are used to generate formatted output. LIST
simply lists the selected output, while SORT orders the output in some
specified sorted order. Generated output will be formatted into a
columnar output if possible, taking into account the maximum defined
size of the specified attributes and their associated names, along
with the width of the terminal page. If more attributes have been
specified than will fit across the page, a non-columnar output will be
generated with the attribute names down the side and the associated
attribute values to the right. LIST and SORT will automatically
format multi-valued attributes and sub-values. They provide sub
totaling via the BREAK-ON and TOTAL modifiers, as well as other format
controls. Sample use of the LIST verb with non-columnar output is
shown in the first example. SORT can handle any number of ascending
or descending sort keys.

COUNT

The COUNT verb counts the number of items meeting the conditions
specified. The output generated by this verb is simply the number of
items counted. The second example illustrates the use of the COUNT
verb.

SUM and STAT

The SUM and STAT verbs provide a facility for summing one specified
attribute The STAT verb additionally provides a count and average for
the specified attribute. The output generated by these verbs are the
derived statistics. The third example illustrates the use of the SUM
verb.

SELECT and SSELECT

The SELECT verb provides a facility to select a set of items. These
selected items are then available one at a time to certain Pick
processors. The output from the SELECT verb is a message signaling
the number of items extracted or selected. The SSELECT verb combines
the SORT capability with the SELECT capability.

T-DUMP, I-DUMP, ISTAT, HASH-TEST, and CHECK-SUM

The T-DUMP and I-DUMP verbs allow the user to selectively dump his
dictionaries and data files to the magnetic tape or to the terminal,
respectively. The ISTAT and HASH-TEST verbs provide file hashing
histograms. The CHECK-SUM verb is used to determine if data in a file
has been changed.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 163

/' '\

'~ j

(

(

* >LIST ACCOUNT "23080" "23090" NAME ADDRESS START-DATE CURR-BALNC [CR]

PAGE 1

ACCOUNT 23080
NAME J W YOUNG
ADDRESS 207 COVE STREET
START-DATE 27 MAR 1970
CURR-BALNC $ 89.32

ACCOUNT 23090
NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE 01 JAN 1968
CURR-BALNC $ 20.45

2 ITEMS LISTED

11:29:58

Sample ACCESS Inquiry Using LIST Verb.
(Non-Columnar Output)

16 JAN 1984

* >COUNT ACCOUNT GE '15' WITH CURR-BALNC AND WITH BILL-RATE "30" [CR]

2 ITEMS COUNTED.

* >COUNT ACCOUNT WITH NO SEWER-ASMT [CR]

57 ITEMS COUNTED

* >COUNT TEST [CR]

10 ITEMS COUNTED.

* >COUNT DICT INVENTORY WITH D/CODE "A" [CR]

55 ITEMS COUNTED.

Sample ACCESS Inquiries Using COUNT Verb.

* >SUM ACCOUNT CURR-BALNC [CR]

TOTAL OF CURR-BALNC IS: $2,405,118.10

* >SUM ACCOUNT CURR-BALNC WITH CURR-BALNC > "100000" [CR]

TOTAL OF CURR-BALNC IS $1,836,287.99

Sample ACCESS Inquiries Using SUM Verb.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 164

6.3 ACCESS INPUT SENTENCES

ACCESS is a report-generating language which enables the user to make
various types of listings and queries quickly and easily. It is also used
to select items from a file for use by other processors.

To form an ACCESS statement, the user types in a command sentence at the
TCL level. ACCESS allows the user to select or list the information
contained in all or some of the items in a particular file.

FORMAT:
verb {DICT} file-name (item-list} (selection-criteria}
{sort-keys} { output specifications (print limiters} }
{modifiers} { (options ... options) }

ARGUMENTS:

A verb and a file-name are required; all other elements are optional.
The verb specifies generally what type of processing will be performed on
the file. The file-name must be of one of the following standard forms:

FORM OF FILE-NAME
file-name
dictname,dataname
DICT file-name

EXAMPLE
BP
PROJ,GREEN-ACRES
DICT M/DICT

Note that file names may not start with a left parenthesis ("("), and
may not contain commas (,).

The optional item-list specifies those items eligible for consideration
(the absence of an item-list implies all items). An item-list consists of
specifically enumerated item-ids, each enclosed within quotes (, or ")
or backslashes (\).

Selection criteria, if present, further limit the items for output to
those meeting the specified conditions. Many different specifications may
be combined logically in order to select only those items meeting a
certain set of criteria.

Any attribute name or the item-id may be specified as either an ascending
or a descending sort key. Multiple sort keys may be specified.

Output specifications indicate which attribute-defining items in the
dictionary of the file are to be used to format the listing. The user
indicates exactly which values (fields) in the items (records) he wishes
to see.

Print limiters suppress the listing of data not meeting certain
specifications, in the case where an attribute has many values, but only
those values meeting a set of criteria are to be printed.

Various modifiers and/or options control listing parameters such as
double-spacing, how to handle totals, control breaks, supression of item
ids, sort keys, headings or default messages.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 165

NOTES:

I A standard set of verbs, modifiers, and relational operators are supplied.
(.- \ These special words are defined as items in the user's Master Dictionary

(MD). Modifiers and relational operators (but not verbs), are reserved
words. A user may define any number of synonyms for these words (and even

(

remove the system defined entries) thereby creating his own semantics for
the language. Thus the user can rewrite the ACCESS language to match any
language that follows the rules given in the next section.

EXAMPLES:

> LIST INVENTORY [CR] a minimum ACCESS sentence

> LIST DICT MD WITH D/CODE " PQ" (H) [CR]

> SORT ACC BY NAME NAME TOTAL CHARGE-UNITS [CR]

> SORT STAT-FILE WITH REEL# = "1" BY B/M/S (P) [CR]

> T-DUMP CUSTOMER-MASTER WITH BEGIN-DATE BEFORE "1/1/70" [CR]

> LIST-ITEM BP "STAR-TREK" (NT) [CR]

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 166

6.4 RULES FOR GENERATING ACCESS SENTENCES

I The following general rules apply to the use of ACCESS input sentences: I C'
-- . ..)

1. ACCESS input sentences are entered either at the TCL level,
(when the system prompts with the sign ">"), or into the PROC
primary output buffer.

2. The first word of any ACCESS input sentence must be an ACCESS
verb defined in the user's Master Dictionary (MD or M/DICT.)

3. A sentence is terminated by a carriage return. A sentence
may be continued to multiple lines by use of the line
continuation character (control-shift-O, written [cslO),
followed by a carriage return. Additional lines will be
prompted for with a colon (:) prompt.

4. The data in only one file may be directly referenced by an
ACCESS sentence. Therefore, only one file-name may be used
to specify the data source in an ACCESS sentance. File-names
may consist of any sequence of non-blank characters and must
be unique within the MD. The modifier "DICT" may be included
in the sentence (just preceding the file-name) to specify
operation on the dictionary section of the file, as opposed
to the data section.

5. Any number of attribute names may be used in a sentence.
Attribute names may consist of any sequence of non-blank /"
characters and must be contained in the dictionary of the ~
file being listed, or in the file specified if the USING
modifier is employed, or, in either case, in the user's
M/DICT. If the DICT modifier is used with the data-file
name, then the attribute names must be in the M/DICT, or in
the specified file if the USING connective is employed.

6. Any number of modifiers and relational operators may be used
which have been pre-defined in the MD.

7. Verbs, file-names, attribute names, modifiers, and relational
operators are delimited (separated) in an ACCESS sentence by
blanks, by quotes (" or '), or by backslashes (\).

8. Specific items to be listed are enclosed in
backslashes, (e.g., "SC-128" '0123' \MD\) , and
immediately following the file-name. Elements
Single quotes (') will be considered to be item
anywhere in the sentence.

quotes or
must appear
enclosed in
references

9. Specified values are enclosed in double quotes or backslashes
(e.g., "12.50" \DISCOUNT\) and apply to the previous
attribute name.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 167

(

(

6.5 ACCESS DICTIONARIES AND ATTRIBUTE-DEFINITION ITEMS

ACCESS uses dictionary items to define the data-structure in the file.
Dictionary items are the user-defined vocabulary used in the ACCESS
statement.

Each data-file has an associated dictionary, which may contain a set of
items used to define the data. The item-ids of these dictionary items are
the "attribute names" used in ACCESS statements in selection criteria,
sort specifications and other specifications. These names may be of any
form and length, but must not be the same as any of the MODIFIERS and
CONNECTIVES that are defined in the Master Dictionary and are therefore
reserved words.

Each dictionary item serves to:

define the location of the data field within the data item;

define a "tag" or heading field for ouput;

define interrelationships between atributes;

define output formats, table look-ups, etc.

EXAMPLE:

>LIST ACCOUNT WITH CURR-BALNC NAME CURR-BALNC LPTR [CR]

"ACCOUNT"
"CURR-BALNC" and "NAME"

"WITH"
"LPTR"

is the filename;
are items in the ACCOUNT dictionary
and therefore "attribute names";
is a modifier and is in the MDi
is a modifier and is in the MD .

The dictionary items that define the data format for ACCESS processing are
called "attribute-definition" items. Line 1 of an attribute-definition
item has the Code "A" (therefore these dictionary items are called
"A"-items). Other lines contain data as described below:

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 168

LINE

1

2

3

4

5

6

7

8

9

10

DATA

"A"

AMC

TAG

STRUCT

Not used.

Not used.

CONY

CORR

TYPE

MAX

BRIEF DESCRIPTION

Defines attribute-definition item.

Numeric value defining the location of the data
defined by this item, (attribute mark count). May
contain 0 if referencing the item-id, or a dummy value
if the data referenced is computed or generated but
not actually stored. It is used to identify
controling and dependant attributes. In addition, an
arnc of 9999 is used to access the SIZE or count field
of the item; an arnc of 9998 is used to access the
current item counter (item sequence number).

Textual data used as tag on heading in LIST or SORT
statements. If null, the item-id is used as the tag.
May contain blanks for formatting purposes. The
reserved character "\" is used to specify a null tag.
Multiple line tags for COLUMNAR listings only may be
specified by storing multiple values (separated by a
value-mark, control-]) in this field.

Defines the "controlling-dependent" relationship.

Contains the conversion specification(s) which is
(are) used to convert from the processing format to
the external (displayed) format. Mul tiple
specifications are separated by value-marks
(control-]).

Contains the correlative specification(s) which
is(are) used to convert from the internal format to
the processing format. Multiple specifications are
separated by value-marks (control-]).

Defines the justification (left or right). An entry
is mandatory, and must be an "L", "T", "U", or an "R".
This code is used both in formatting the output, and
in determining the sort sequence when sorting data.
An "R" is used to specify a right-justified numeric
sort (even for alphanumeric fields); an "L" will
always sort left-to-right, and will left-justify,
folding at the end of the field; a "Til will left
justify, and if the value exceeds the specified
maximum length will fold at blanks. A "U" code causes
left-justification without folding.

Defines the maximum length of values for the
attribute; an entry is a decimal number, or an "L"or
"R" followed by a number and is mandatory. A value of
zero may be used to suppress the listing of a control
break field on detail lines.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 169

Typically, there are several dictionary items that can refer to a
particular data field in the file, since different formatting, sorting or
selection requirements may require them. Multiple items are commonly
called "synonym" items, and there is no limit to the number of such
synonyms. For example, one may want to sort a field using a right
justified (numeric) sorting sequence, but may want to output the data
left-justified, which would require two different dictionary items.

PART #
001 A
002 1
003 PART#
004
005
006
007
008
009 R
010 10

ONE
001 A
002 1
003 ONE
004
005
006
007
008
009 L
010 10

Sample A-items in the INVENTORY file.

Sample ACCESS statements:

1. >SORT INVENTORY BY PART# PART# [CR]

2. >SORT INVENTORY BY ONE ONE [CR]

(i Sample PART#'S

P2000-99C
P2000-12A
P2000-105B

Sorted output (statement 1)
P2000-12A
P2000-99C

P2000-105B

(statement 2)
P2000-l05B
P2000-12A
P2000-99C

Example of different sort sequences and output justification
using synonym A-items.

Copyright (c) 1985 PICK SYSTEMS ~, CHAPTER 6 - ACCESS

PAGE 170

6.6 ACCESS AND THE FILE STRUCTURE

ACCESS is designed to take advantage of the file structure available on ~\
this machine. Usually, the data is in the data section of the file and ()
the data definition items are in the dictionary of the file. ~- .

ACCESS files are made up of elements found in files, and values related to
the actual data to be retrieved. The verb definition, file definitions,
modifiers and relational operators must be in the master dictionary.
Attribute definition items are normally found in the dictionary of the
data file to which they relate.

6.6.1 THE USING CONNECTIVE.

The USING connective allows the specification of the file to be used as
the dictionary in the ACCESS sentance in place of the standard dictionary.

FORMAT:

USING DICT FILENAME

USING FILENAME

The first references the dictionary of the file FILENAME; the second
references the data-level file FILENAME. Note that the data-level file
may be of the form FILENAME, SUBFILENAME. In these cases all data
definition items will be taken from the file referenced by the USING
connective, except those data definition items which default to the master
dictionary, as below.

Only one USING connective is allowed in an ACCESS sentence. The USING
connective must be immediately followed by either DICT FILENAME or
FILENAME. The source of the data processed remains specified by the
conventional file name element in the sentence.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 171 (\
/'

(

(

--

LIST WORKFILE USING DICT TESTDICT The data source will be WORKFILE.
The data definition items will
be retrieved fram DICT TESTDICT.
The default data definition
items will be used.

LIST DICT WORKFILE USING DICT WORKFILE
The data and data definition
items have the same source.

Examples of the USING connective.

6.6.2 MASTER DICTIONARY DEFAULT MASTER DICTIONARY DEFAULT

If the data definition item is not found in the dictionary specified for
the file, then the ACCESS compiler will search the master dictionary for
the data definition item, and will include it if found.

6.6.3 SEQUENCE OF RETRIEVAL (items from files)

The ACCESS compiler takes two passes to retrieve all the definitions from
files which it needs to execute a sentance. The first pass uses the
master dictionary to find the file names and all modifiers and relational
operaters in the sentence. Any data defintion items found in the master
dictionary will be ignored on this pass. When the input string is
exhausted, the compiler proceeds to look up all undefined terms in the
dictionary-level file either implicitly defined by the sentence or
explicitly defined by the USING connective. Items which are found are
included in the string in the proper location. If an item is not found in

j the specified dictionary, then the compiler will look it up in the master
dictionary. If it still does not find the item in the master dictionary,
it will concatenate a blank and the next data definition item-id in the
string to the missing item-id. The compiler will attempt to look up this
new key in the dictionary-level file and the master dictionary. This
process will terminate either when a data definition is retrieved or the
list of data definition items is exhausted.

The compiler does not look up elements in the string which are enclosed in
quotes, single quotes, or back-slashes. These are taken to be literals
rather than variables. They have the effect of terminating a string of
data definition item-ids.

6.6.4 ITEM-ID DEFINITIONS WITH Q-POINTERS

The file definition item in an ACCESS sentence allows the use of
attributes 7, 9, and 10 as meaningful elements in the data definition.
The label comes from the D- or Q-pointer name because attribute 3 of the
D- or Q- pointer is in general otherwise occupied. Attribute 2 is
obviously forced to O. Note that the selection, sort and output
processors all ignore attribute 8. The selection and sort processors take
the item-id as it is; the output processor allows the use of an attribute
7 conversion.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 172

The justification is of importance to both the sort and output processors;
the field length is of importance to the output processor, especially if
the item-ids are significantly longer than the file name or its nominal
field length, and especially in the columnar processor. Note that item-
ids do not fold, unlike other data processed by the cqlumnar processor. (~"
All of the characteristics of item-id handling may be got around by using _~
a data definition item which references data attribute 0 with ID-SUPP. If
a Q-pointer is used to reference a file, the contents of attributes 7, 9,
and 10 in the Q-pointer definition take precedence over the those
attributes in the D-pointer if they exist in the Q-pointer. Those that do
not exist in the Q-pointer will be retrieved from the D-pointer. In the
case that they do not exist in either, attribute 7 will be defined as
null, attribute 9 will become L and attribute 10 will become 9. These
defaults will be taken for all data definition items processed by the
ACCESS compiler.

This allows the creation of multiple Q-pointers which treat the item-id
field in different ways.

6.6.5 DELIMITERS AND ITEM-ID STRUCTURES

In TCL the universal delimiter is a blank. Verbs, file names,
and data definition names are normally delimited by blanks.
verbs which reference files and items will take a string of
which is delimited by blanks to be the file name or one of the
depending on its location in the command sequence.

connectives
Non-ACCESS
characters

item names,

If one constructs an ACCESS sentence which references a data definition
item which it cannot find in either the specified file dictionary or the
master dictionary, it will then generate another item-id by taking the
item-id for which a record did not exist and concatenate the next string
delimited by blanks in the sentence to it, with a blank between the two
character strings. This will now be used as an item-id. This is why the
error message which is trying to tell you that the data definition item is
not on file may includes more elements of the ACCESS sentence. For
example, if in the example below, the data definition item DOG is not on
file,

LIST MD CAT DOG RAT

The error message

[24] THE WORD "DOG RAT" CANNOT BE IDENTIFIED

Will be returned.

The sequence of concatenated strings will terminate at the end of the
sentence, or at the first connective, value, or item-id which succeeds the
unidentified word.

This means that a blank is, in general, a character which is allowable for
item-ids in the system. If you wish to EDIT a item-id which includes one
or more blanks, enclose the string in one of the value delimiters above.

You may also use the delimiters within a string enclosed in delimiters.
Simply use a delimiter which is not part of the item-id as the va1ue
surrounding delimiter~

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS
PAGE 173

(

(

EXAMPLE:

If DOG RAT is an attribute definition item in MO, then

LIST MD DOG RAT Will return the one attribute
definition item whose name
is DOG RAT.

In order to modify the item DOG RAT, use the form

EDIT MD "DOG RAT" Which will obtain the item.

If you have an item named O'HARA, use the form

LIST MD "O'HARA"

Similarly, the form

This will return the item
O'HARA.

SELECT CUSTOMERFILE WITH LASTNAME "O'HARA"
Will find all the O'HARAs in the
file CUSTOMERFILE.

Examples of infrequent but legal item-ids.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 174

6 . 7 ACCESS VERBS : AN OVERVIEW

I ACCESS verbs are action oriented words which evoke specific ACCESS I
processors. The common ACCESS verbs are briefly discussed below.

Each ACCESS sentence must begin with only one ACCESS verb. The verbs
specify generally what is to be done to the data in the file.

LIST and SORT: LIST-LABEL and SORT-LABEL

The LIST and SORT verbs are used to generate formatted output. LIST takes
items from the file in the same order as they are stored, group for group.
SORT will sort the items by item-id, or by any number of other specified
sort keys. Generated output is formatted into a columnar output if
possible, taking into account the maximum defined size of the specified
attributes and their associated names, along with the page width as
defined by the TCL verb TERM. If more attributes have been specified than
will fit across the page, a non-columnar output is generated with the
attribute names down the left side and the associated attribute values to
the right. LIST-LABEL and SORT-LABEL are analogous to LIST and SORT but
allow more than one item to appear on one line of output.

COUNT

The COUNT verb counts the number of items meeting the conditions as
specified by the combination of item-list and selection-criteria. The
output generated by this verb is simply the number of items counted.

SUM and STAT

The SUM and STAT verbs provide a facility for summing (totaling) one
specified attribute name. The STAT verb additionally provides a count and
average for the specified attribute name. The output generated by these
verbs are the derived statistics.

SELECT and SSELECT

The SELECT verb provides a facility to select a set of item-ids or values
using the item-list and the selection-criteria. SELECT generates a list
of item-ids or values; SSELECT generates a sorted list. The list is then
available to other ACCESS or TCL-II processors. The very next ACCESS or
TCL-II verb executed will have access to this list, so the set of item-ids
or values processed by the next verb will be those selected by the SELECT
or SSELECT verb.

SAVE-LIST, GET-LIST, and DELETE-LIST

The SAVE-LIST, GET-LIST, and DELETE-LIST verbs are used to save, restore,
and delete lists created by SELECT and SSELECT statements. SAVE-LIST will
save a list of item-ids or values generated by a SELECT or SSELECT verb by
"cataloguing" the list in the POINTER-FILE. The GET-LIST verb retrieves a
list from the POINTER-FILE, at which time the retrieved list is handled
exactly like a list generated by a SELECT or SSELECT verb. DELETE-LIST
will remove a catalogued list from the POINTER-FILE.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 175

(

(

T-DUMP and T-LOAD

The T-DUMP verb allows the user to selectively dump his dictionaries and
data files to the magnetic tape. The T-LOAD verb allows the selective re
loading of data or dictionary items that have been previously dumped to
tape using T-DUMP. Data in a T-DUMP-ed tape may also be listed by using
the LIST, LIST-ITEM or LIST-LABEL verbs with the TAPE modifier.

ISTAT and HASH-TEST

HASH-TEST and ISTAT provide useful file management information. These
verbs give a file hashing histogram, and file utilization statistics; the
ISTAT verb is used to provide information for an existing file, and the
HASH-TEST verb to provide information about a file using a test modulo,
typically prior to the re-a11ocation the extents of the file.

LIST-ITEM and SORT-ITEM

The LIST-ITEM and SORT-ITEM verbs faci1tate the dumping of the contents of
selected items to the user's terminal or to the lineprinter. The items
will be dumped in EDITOR format, with line numbers to the left. This kind
of a dump differs from a COpy dump in that SORT-ITEM and LIST-ITEM are
ACCESS verbs, while COpy is a TCL-II verb. This means that SORT-ITEM and
LIST-ITEM sentences may contain selection criteria, headings, and
footings, none of which are available to the COpy processor.

COUNT SELECT
HASH-TEST SORT
ISTAT SORT-LABEL
LIST SSELECT
LIST-LABEL STAT
SAVE-LIST GET-LIST

ACCESS Verbs

>LIST ACCOUNT NAME CURR-BALNC WITH CURR-BALNC [CR]

>SORT ACCOUNT >"10000" WITH CURR-BALNC [CR]

>LIST-LABEL ACCOUNT NAME ADDRESS (N) [CR]

SUM
T-DUMP
T-LOAD
LIST-ITEM
SORT-ITEM
DELETE-LIST

>SORT-LABEL ACCOUNT NAME ADDRESS BY BILL-RATE LPTR [CR]

>COUNT INV WITH PRICE ".30" [CR]

>SUM FILE4 QUAN [CR]

>SSELECT ACCOUNT WITH BILL-RATE = "10.03" [CR]

Sample ACCESS Sentences

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 176

6.8 RELATIONAL OPERATORS AND LOGICAL CONNECTIVES

I Relational operators and logical, connectives may be used to form complex I
" item-lists and selection-criteria.

Relational Operators may be used in an item-list to constrain the items
eligible for processing (refer to the topic titled ITEM LIST FORMATION),
or may be used in selection-criteria to limit items to those whose
attribute values meet the specified conditions (refer to the topic titled
SELECTION-CRITERIA FORMATION). Relational operators apply to the item-id
or value immediately following the operator. The absence of a relational
operator implies an equality operator.

To resolve a relational condition, every item-id (or attribute value) is
compared to the item-id (or value) specified in the item-list (or
selection-criteria) of the ACCESS input sentence.

If the attributes or item-ids are left justified (type-code of "L" in the
dictionary definition), character pairs (one from the specified item-id or
value and one from the item-id or attribute currently being compared) are
compared one at a time from leftmost characters to rightmost. If no
unequal character pairs are found, then the item-ids or values are
considered to be "equal". If an unequal pair of characters are found, the
characters are ranked according to their numeric ASCII code equivalents
(refer to the LIST OF ASCII CODES in the appendix to this manual). The
item-id or value contributing the higher numeric ASCII code equivalent is
considered to be "greater" than the other.

If attributes or item-ids are right-justified, a numeric comparison is
attempted first. If either or both of the item-ids (values) are non- / ~
numeric, the character pair comparison, as if for left-justified /
attributes, is used.

Logical connectives bind together sets of item-ids into item-lists, sets
of values into value-lists, and sets of selection-criteria into complex
selection-criteria. The AND connective specifies that both connected
parts must be true, while the OR connective specifies that either (or
both) connected parts must be true. In all cases where neither AND nor OR
are specified, OR will be assumed.

An ASCII up-arrow (-) may be used as an 'ignore' character in any value or
item-ide All comparisons made against the value or item-id then ignores
the characters in the corresponding positions. Thus an up-arrow matches
any character.

A left-bracket ([) is a multiple 'ignore' character, which means that all
characters to the left of the value or item-id being compared are ignored.
Similarly, a right-bracket (]) is a multiple ignore character for the
right of the item-id or value being compared. This means that a left
bracket will match any string occurring on the left of a value, including
a null string, and a right-bracket will match any string on the right.

The usage of the up-arrow and the brackets is further discussed in the
topic SELECTION CRITERIA: STRING SEARCHING.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE.177 ()

("

NOTE: These are partial examples and therefore do not illustrate complete
ACCESS sentences. They are presented at this point to give the user a
general feel for these operators. Complete ACCESS sentences using the
above constructs are presented throughout the remainder of the manual.

--
OPERATOR

or EO

> or GT or AFTER

< or LT or BEFORE

>= or GE

<= or LE

or NE or NOT or NO

CONNECTIVE

AND

OR

MEANING

Equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

Not equal to or null attribute value

If a relational operator is not given,
EO is assumed

RELATIONAL OPERATORS

MEANING

Both connected parts must be true.

Either connected part must be true.
If a logical connective is not given,
OR is assumed.

LOGICAL CONNECTIVES

PARTIAL EXAMPLE EXPLANATION

= "ABC" OR > "DEF" Item-list which selects item "ABC" as well
as all items with item-ids greater than
'DEF' .

WITH Al ="X" AND WITH A2 =,,-Z" Complex selection criterion which selects
all items having a value of "X" for
attribute AI, and a value for A2 which
consists of any character followed by a Z.

WITH NAME "[SMITH" "MEL]"

LT "100" GT "200"

Selection criterion which selects all
items having a value for attribute NAME
which either ends with the letters SMITH
or begins with the letters MEL.

Item-list which selects all items with
item-ids either less than "100" or greater
than "200".

Sample Usage of Relational and Logical Connectives

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 178

6.9 ITEM-LIST FORMATION

An item-list specifies those items eligible for consideration
specified processor (verb). There are two types of item-lists:
item-lists, which are part of the input ACCESS sentence, and
item-lists, which are created by the SELECT, SSELECT QSELECT and
verbs.

6.9.1 EXPLICIT ITEM-LISTS

by the
explicit
implicit
GET-LIST

I Explicit item-lists consist of one or more specifically enumerated item- I
ids, enclosed in double quotes ("), or backslashes (\).

An item-list defines those items desired for processing. Absence of an
item-list implies all items on the file. A simple item-list consists of
any number of specified item-ids surrounded by quotes or backslashes,
(e.g., \XYZ\ or "100-600 1111 100-500""300-000"), or a relational operator
followed by a single value in quotes (e.g. ·<"100" Or >"'''SMITH"). A
complex item-list consists of sets of simple item-lists bound together
with logical connectives (ANDs and ORs).

An explicit item-list, if present, should come right after the file name
in the ACCESS sentence. For example, consider the following ACCESS
sentence, in which the complex item-list has been underlined:

>LIST TEST-FILE "ABC""XYZ" OR > "DEF" AND < "GHI"

This item-list selects items "ABC" and "XYZ", as well as all items with
item-ids both greater than "DEF" and less than "GHI".

Use of the complex item-list causes all items in the file to be accessed
for examination, as does absence of an item-list. If a simple item-list
is used, only those items in the list will be accessed, and processing
will be faster.

This means that the ACCESS sentence:

>LIST-ITEM BP "STAR-TREK" [CR]

will cause only
"STAR-TREK", to
the item, the
sentence:

one item in the BP file, namely the one whose item-id is
be accessed. Since the item-id is the retrieval key for
item will be accessed immediately. However, the ACCESS

>LIST-ITEM BP = "STAR-TREK" [CR]

will cause the entire BP file to be searched, with every item-id in the
file being matched against the explicit item-list "STAR-TREK".

The hierarchy (precedence) of the logical connectives in an item-list is
AND over OR, and left to right. For example, consider the following item
list:

< "A" OR > "B" AND < "c" OR > "0" AND < "E"

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 179

(/

(\

This item-list selects all items with item-ids less than "A", or with
item-ids greater than "B" but less than "C", or with item-ids greater than
"D" but less than "E". Since the AND connective has a higher precedence
or binding strength than the OR connective, ANDs will be evaluated before
ORs, and the above item-list would be evaluated like the following:

<"A" OR (>"B" AND <"C") OR (>"D" AND <"E")

(Note that the parentheses "(" and ")" are not part of the ACCESS granunar,
but are added in the above illustration for clarity.)

Since the OR connective is implied if no connective is used, ORs may be
omitted from ACCESS sentences. Therefore the above item-list could have
been specified by:

< "A" > "B" AND < "c" > "D" AND < "E"

The item-lists may also specify a string-searching capability; this is
discussed in the section "SELECTION CRITERIA: STRING SEARCHING".

EXAMPLES:

The SORT verb is used to select and sequence the item-ids in file TEST.
(TEST contains 10 items, with item-ids "10" through "19".) The word ONLY
used in these examples specifies that only the item-ids are to be listed.

>SORT O~TLY TEST > "13" AND < "17 II [CR]

PAGE 1 15:32:19 20 AUG 1984

TEST

14
15
16

3 ITEMS LISTED.

>SORT ONLY TEST >= "13" AND <=="16" OR >="18" AND <"19" [CR]

PAGE 1

TEST

13
14
15
16
18

5 ITEMS LISTED.

CHAPTER 6 - ACCESS

15:33:01 20 AUG 1984

SAMPLE USAGE OF EXPLICIT ITEM-LIST

Copyright (c) 1985 PICK SYSTEMS

PAGE 180

~.9.2 IMPLICIT ITEM-LISTS

Implicit item-lists are formed by the verbs SELECT, SSELECT, QSELECT and ~
GET-LIST. The next ACCESS sentence executed after the execution of one of (I
these verbs will use the list of items generated by the first verb.-/

Execution of a SELECT, SSELECT, QSELECT or GET-LIST verb will result in
the message tIn ITEMS SELECTED.", where "n" is the number of items selected
and put into the item-list. In the case of a SELECT or SSELECT, the items
put into the item-list will be those satisfying the selection criteria (if
any) of the SELECT or SSELECT sentence. The item-list generated by a GET
LIST verb is the same item-list that was saved by the use of a SAVE-LIST
verb. The item-list generated by a QSELECT depends on the data stored in
the items specified in the QSELECT statement.

It is important to note that the use of an imp1ici~ item-list will
override any explicit item-list. This means that an ACCESS sentence
executed after a SELECT, SSELECT, QSELECT or GET-LIST will use the
implicitly specified list and will ignore any explicit item-list.

Selection criteria specified in the statement will, however be applied as
usual to the items in the implicit item-list.

Other SELECT or SSELECT functions can be used on the implicit list
obtained from one SELECT, SSELECT, QSELECT or GET-LIST statement.

EXAMPLES:

>SSELECT TEST [CR]

10 ITEMS SELECTED.

>SAVE-LIST T [CR]

[214] 'T' CATALOGED, 1 FRAME(S) USED.

>GET-LIST T

10 ITEMS SELECTED.
>LIST ONLY TEST (= "13" [CR]

PAGE 1 15:32:19 20 AUG 1984

10
11
12
13

4 ITEMS LISTED.

--
SAMPLE USAGE OF IMPLICIT ITEM-LIST

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 181 C·· \ . j

6.10 SELECTION-CRITERIA FORMATION SELECTION-CRITERIA FORMATION

I Se1ection~criteria specify a set of conditions which must be met by an
(- . item before it is eligible for output. Complex selection-criteria are

/: made up of one or more simple selection-criteria. . .

(

--

FORMAT:

WITH or IF {NO} {EVERY or EACH} attribute-name fop} {va1ue~list}

Each selection-criterion must begin with the word WITH or IF followed by a
single attribute name. (WITH and IF are synonymous.) The attribute name
may then be followed by a value-list. The "op" refers to any legal
relational operator. The rules for forming value-lists are identical to
those for forming item-lists (refer to the topic titled FORMING ITEM
LISTS); double quotes must surround the actual values. For example, the
following selection-criterion is met by those items which have at least
one value for the attribute DESC which is either equal to "ABC" or is both
greater than "DEF" and less than "GHI".

WITH DESC "ABC" OR > "DEF" AND < "GHI"

If a selection-criterion does not include a value-list, then it is true
for all those items which have at least one value for the specified
attribute name. The selection-criterion may be further modified by using
either or both of the modifiers EVERY or NO immediately following the
WITH. The modifier EVERY requires that every value for the attribute meet
the specified condition, i.e., if the attribute has multi-values, then
each value must meet the condition. (The modifier EACH is a synonym for
EVERY.) the modifier NO reverses (inverts) the sense of the entire

I selection-criterion.

Several selection-criterion may be bound together by logical connectives
to form a complex selection-criterion. When used in this fashion, the AND
connective has a higher precedence than the OR connective. A se1ection
criterion may consist of up to nine "AND clauses". An AND clause is made
up of any number of selection-criteria bound by AND connectives. The AND
clause is terminated when an OR connective is found in the left to right
scan. (NOTE: the absence of an AND connective implies an OR connective.)
for an item to pass the selection-criteria, the conditions specified by
anyone of the AND clauses must be met. An example of the logical
hierarchy of AND clauses is shown in the complex selection-criterion below
which contains two AND clauses.

WITH DESC "ABC" AND WITH VALUE "1000" OR WITH DESC "ABC" AND WITH
NO VALUE

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

·PAGE 182

EXAMPLES:

)LIST ACCOUNT NAME WITH AVG-USAGE "20" OR "25" AND [esO] [CR]
:WITH SEWER-ASMT "150" OR WITH AVG-USAGE "20" OR "30" [esO] [CR]
:AND WITH BILL-RATE >"30" [CR]

PAGE 1 17:36:04 20 AUG 1984

ACCOUNT... NAME.......... AVG-USAGE SEWER-ASMT. BILL-RATE

23100
23080
11045

G J PACE
J W YOUNG
F R DRESCH

3 ITEMS LISTED.

30
20
30

1.50
10.30

8.40
10.03

>COUNT ACCOUNT WITH CURR-BALNC >"100" AND WITH SEWER-ASMT [esO] [CR]
:OR BILL-RATE = "30" [CR]

7 ITEMS COUNTED.

>LIST ACCOUNT TRNS-DATE WITH EVERY TRNS-DATE BEFORE "3/18/70" [CR]

PAGE 1

ACCOUNT ...

35090

END OF LIST

TRNS-DATE ..

17 MAR 1970
28 FEB 1970
17 FEB 1970
30 JAN 1970
16 JAN 1970
29 DEC 1969

17:40:57 20 AUG 1984

SAMPLE USAGE OF SELECTION-CRITERIA

CHAPTER 6 - ACCESS Copyright (e) 1985 PICK SYSTEMS

PAGE 183

c

6.11 SELECTION-CRITERIA: STRING SEARCHING

I Selection-criteria may be used to search an attribute or an item-id for a
(' string of characters, or to choose attribute values (item-ids) that begin

, or end with a certain character string.

(

(,-,

String Searching

ACCESS has the ability to search an attribute value or item-id for any
string of characters. The left-bracket character ([) and the right
bracket character (]) may be used within the double-quotes in a se1ection
criterion, or complex item-list to specify a match on any string to the
left or right of the given string.

A left-bracket indicates that there may be any (or no) characters to the
left of the string. A right-bracket indicates that there may be any (or
no) characters to the right of the string. Used separately, the 1eft
bracket specifies that the value must end with the character string, while
a right-bracket specifies that the value must begin with the character
string. If both brackets are used, the character string may appear
anywhere in the attribute value.

The up-arrow (-) indicates a match on any character.

NOTE: this string searching capability may not be used in a simple item
list, but may be used with a complex item-list. That is, the simple item
list "[JONES" will only select the item-id "[JONES", if such an item-id
is present. The complex item-list = "[JONES" will select any items
ending in the string "JONES".

EXAMPLES:

>LIST ACCOUNT WITH NAME "[INE]" NAME [CR]

PAGE 1

ACCOUNT. . . NAME..

11095 J B STEINER
35065 L J RUFFINE

2 ITEMS LISTED.

>LIST ONLY BP = "-STAR-TREK" [CR]

PAGE 1

BP

$ STAR-TREK
*STAR-TREK

2 ITEMS LISTED.

18:16:56 20 AUG 1984

18:16:56 20 AUG 1984

SAMPLE USAGE OF STRING SEARCHING SELECTION-CRITERIA

CHAPTER 6 - ACCESS Copyright (c) 1985 PIC~ SYSTEMS

PAGE 184

6.12 SELECTION PROCESSOR

This section is intended to help clarify the actions of the selection
processor.

6.12.1 ITEM-ID SELECTION DEFAULT

The ACCESS item-id selection default is the whole file, or the item-ids
specified in a list if a list is active.

6.12.2 SELECTION DELIMITERS

In the following examples the delimiters II, and \ are all used
equivalently to delimit item-ids or values, as the case may be. In
general, only the delimiter ' is reserved for item-ids or item-id-related
values. The II and \ may be used for values related to data definition
item selection criteria and print-limiters as well. They prefer to be
associated with the data selection criteria rather than with item-id
selection criteria. In general, values delimited by either " or \ will be
treated as item-id selection criteria only if they follow the file
reference and precede a data definition item.

The delimiter 'will cause the value which it surrounds to be treated as
an item-id selection criterion wherever it may be in the sentence.

6.12.3 EXPLICIT ITEM-IDS

If explicit item-ids are specified, then only those item-ids will be
returned. If there is a list in effect, it will be ignored.

EXAMPLES:

LIST FILENAME 'ITEM1' 'ITEM2' 'ITEM3' or

LIST FILENAME "ITEM1""ITEM2""ITEM3" or even

LIST FILENAME \ITEM1\\ITEM2\\ITEM3\

Each of these will yield a listing of the three items, ITEM1, ITEM2, and
ITEM3. The processor does this by retrieving each of these items directly
from the file referenced. The collection of explicit item-ids becomes a
list, which the processor uses to obtain the next item-id until the list
is exhausted, at which time the process terminates.

6.12.4 ITEM-ID TESTS

ACCESS also allows t.ests on item-ids. All tests are on the item-id as it
stands in the file. No conversions or correlatives will be applied to the
item-id before the test is made.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 185

(

The specification of an item-id test rather than the retrieval of a
specified set of items is done by including a relational operator,
hereinafter referred to as a relational connective, in the item-id
specification string. For example:

LIST FILENAME 'ITEMl' = 'ITEM2"ITEM3' or

LIST FILENAME "ITEMl""ITEM2" = "ITEM3" or even

LIST FILENAME = \ITEMl\\ITEM2\\ITEM3\

will all have the same effect. ACCESS will search the whole file, or all
the items in a list if there is one in effect, looking for items which
have the item-ids ITEMl, ITEM2, and ITEM3. This will take longer than
using the explicit item-id reference given above, and is not recommended
when you know which item-ids you want.

The intent of relational connectives is to allow specifications of the
form

LIST FILENAME < 'CAT'

which will have the effect of selecting all items which are
lexicographically less than CAT, presuming that the file is left
justified. The full effects of justification will be considered below.

Note that in the examples above only one relational connective was
included. In that case, all the elements not preceded by a connective are
automatically assigned the connective '='. This is true throughout ACCESS
in those cases when values are usable.

(' . There need no~be spaces between the item or value strings, and the file
. name, data definition items or connectives may be concatenated to a value
in the input sentence, as in the form

="ITEMl"

In all other cases, all elements in the sentence to be retrieved from a
dictionary or dictionary-equivalent file must be surrounded by blanks.

It is possible to specify either a list of item-ids for retrieval or to
specify a test on item-ids using this mechanism. It is not possible to
retrieve certain items directly and to test all the other items for
admissability using only item-id tests. In other words, the item-id list
is either a list of explicit item-ids or it is a sequence of values
against which to test each item-id in the file. The difference is the
inclusion of a relational connective in the item-id list.

6.12.5 ITEM-ID SELECTION CRITERIA

Presume that we have a set of values with an associated relational
connective, so that ACCESS is scanning the whole file in order to test the
item-ids for acceptability. The item-id test is logically ANDed with all
other selection criteria. If the item-id fails the item-id test, the item
will be discarded. If one wishes to 'or' an item-id test with other
selection criteria, then a data definition item must be included which
references the item-ide

(' CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 186

EXAMPLES:

Consider the following data definition items.

o
001 A
002 0
003
004
005
006
007
008
009 L
010 10

1
001 A
002 1
003
004
005
006
007
008
009 L
010 10

and the following ACCESS sentences:

LIST MD < "CAT" WITH 1 ... "0"

LIST MD < "CAT" AND WITH 1 == "0"

DOl item-id
DOl typifier.
AMC specifier.
null label

Justification.
Length

Select item-ids alpabetically
less than 'CAT' AND which have a
'0' in attribute 1.

ERROR--Will terminate ACCESS
compiler with an error, because
the AND connective must be followed
by another value which may be
ANDed with CAT, and because the
AND connective may not immediately
precede the first WITH connective
in the ACCESS sentence.

When the item-id is referred to as attribute "0", the rules change
somewhat as "0" is treated like any other attribute.

LIST MD WITH 0 < "CAT" WITH 1 == "D"Selects item-ids alpabetically
less than 'CAT' OR which have a
'D' in attribute 1.

LISTMD WITH 0 < "CAT" AND WITH 1 = "D"
Selects item-ids alphabetically
less than 'CAT' AND which have
a 'D' in attribute 1, as in the
first case.

LIST MD WITH 0 < "CAT" AND 1 ... "0" This is erroneous.
It will have the effect of
selecting all items whose item-ids
satisfy the CAT criterion, as
above. The rest of the sentence
has to do with print-limiters.

ITEM-ID SELECTION CRITERIA RELATIONSHIP TO DATA SELECTION CRITERIA

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 187

6.12.6 WITH CONNECTIVE: SELECTION BY DATA VALUE

I Attributes may be used as selection criteria in the ACCESS command by I
(

'.. preceding the attribute name (or number) with the connective WITH.
'._--

FORMAT:
WITH [NOT} [EACH} ATTNAME [value string},

This is called a selection criterion. For convenience, the connectives
NOT and EACH following the WITH shall be referred to as selection
modifiers.

EXAMPLES:
WITH ATTNAME

will select an item if that attribute has any value other than null.

WITH NOT ATTNAME (or WITHOUT ATTNAME)

will select an item only if that attribute contains only nulls.

WITH EACH ATTNAME

will select an item only if each value in the attribute named is non-null.

WITH NOT EACH ATTNAME (or WITHOUT EACH ATTNAME)

will select any item with at least one null value in the attribute named.
The meaning of the term 'value' in this context is considered below.

(I

0.12.6.1 DATA EVALUATION

The selection processor processes the data according to attribute 8 of the
data definition item. That is, it executes any conversions or
correlatives which are in attribute 8. The result of this calculation is
returned to the selection processor. The conversions or correlatives
which may be in attribute 7 of the data definition are not applied to data
values. The contents of attribute 7, however, may have a significant
effect on the success of the selection process as we shall see below.

6.12.6.2 OBTAINING A VALUE (STRING) TO TEST

The selection processor will ignore leading null sub-values within each
value. That is, if an attribute of a data item contains multiple values,
which themselves contain sub-values, as below,

-\\3\4]6\\7]1\2\3]]\\-

then the processor will retrieve one data value from each value. In this
case the values returned will be: 3; 6; 1; null; null, regardless of
whether the string was an actual string or a string computed by a F or A
correlative.

4[~~ CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 188

In either case, if the search for the string results in a null followed by
a sub-value mark, the processor will proceed to the next sub value in the
string. It will end the data search if a non-null string has been
retrieved, or if it encounters a null value followed by a value mark, or
if it encounters a null value followed by an attribute mark.

If the search results in a null data value, the process returns to the
value test routine. If a non-null data value is returned, the process
will then execute any conversions remaining in attribute 8 of the data
definition item. The data resulting from the conversion, if any, will
then be returned to the value test.

This is the 'value' referred to above. Note particularly that only the
first non-null sub-value is returned. If another value is requested, then
the next value is taken from the next value, that is, from the right side
of the next value mark if there is one. All sub-values which follow the
first non-null sub-value are never inspected by the selection processor.

6.12.6.3 EXISTENCE TEST

What occurs at the value test level when testing for existence depends
upon the selection modifiers. If there are no modifiers, then if any non
null sub-value is returned from the item, the selection phrase will
succeed. If a null value is returned, then the tester will request the
next value in the item, unless the last null value was terminated by an
attribute mark. In this case, the values within this attribute of this
item have been exhausted, and the item does not have the required value.
Therefore, this selection phrase fails.

If the selection modifier is NOT, then all values defined by the attribute
definition must be inspected in order that the selection phrase succeed.
If any value is returned which is non-null, then the clause will fail.

If the selection modifier is EACH, then all values defined by the data
definition must be inspected in order to succeed. If any value is
returned which is null, then the clause will fail.

If both modifiers are used, WITH NOT EACH or WITHOUT EACH, then the clause
succeeds if any value is null. It fails only if all values are non-null.

WITH ATTNAME succeeds if

(VALUEI # NULL) OR (VALUE2 # NULL) OR (VALUE3 # NULL) OR ...

WITHOUT ATTNAME succeeds if

(VALUEI = NULL) AND (VALUE2 = NULL) AND (VALUE3 = NULL) AND ...

WITH EACH ATTNAME succeeds if

(VALUEI # NULL) AND (VALUE2 # NULL) AND (VALUE3 # NULL) AND •••

WITHOUT EACH ATTNAME succeeds if

(VALUEI = NULL) OR (VALUE2 = NULL) OR (VALUE3 = NULL) OR ...

Success conditions for WITH and its modifiers under the test for existence.
CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 189

o

(

WITH ATTNAME fails if

(VALUEI - NULL) AND (VALUE2 .. NULL) AND (VALUE3 ... NULL) AND •••

WITHOUT ATTNAME fails if

(VALUEI # NULL) OR (VALUE2 # NULL) OR (VALUE3 # NULL) OR ...

WITH EACH ATTNAME fails if

(VALUEI = NULL) OR (VALUE2 = NULL) OR (VALUE3 = NULL) OR ...

WITHOUT EACH ATTNAME fails if

(VALUEI # NULL) AND (VALUE2 # NULL) AND (VALUE3 # NULL) AND •••

Failure conditions for With and its modifiers
under the test for existence.

6.12.7 VALUE STRING

In the syntax of the WITH phrase above, there is an optional value string
which has not been mentioned S1nce, although all of the tests for
existence assume a null string as the value. A value string is made up of
value phrases of the following form

{relational connectives} VALUE.

(- i The relational connectives are optional in the sense that the relation
. will default to '=' if there is no relational connective preceding the
value.

VALUE FORMAT:
"text string"
or
\text string\

Remember that the delimiter ' will always specify an item-id reference.

The contents of the text string may be any characters with the exception
of the system delimiters. Avoid the control characters if possible.
There are three special symbols, -, [, and] which have a special meaning
to the selection processor, and will be considered below.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 190

6.12.7.1 RELATIONAL CONNECTIVES

The master dictionary contains definitions of the usual relational
connectives: -, I, <, >, a>, >-, <-, -<, EO, NE, GT, GE, LT, and LE.
These may be used in any combination except with the condition I, which ~.
must be used by itself. Note that all normal combinations are already '-/
defined. The form = < may be used as well as -<, for example. Note that
the space between the connectives requires that two look-ups must be done,
while the =< form is retrieved in a single master dictionary reference.
If you have a syntactic preference for the form <>, you may copy the item
'I' in the master dictionary to the item '<>'. The operators are
logically equivalent.

6.12.8 SPECIFIED VALUES AND ATTRIBUTE 7

It was noted above that the contents of attribute 7 might have an
unexpected effect on the results of the selection processor. This is
because attribute 7 is generally thought of as an output conversion,
because that is what it is designed to affect. For this reason, the
ACCESS compiler will execute an inverse conversion on the data values
defined in the value string, so that the output conversion does not need
to be done for each value in the file referenced by the data definition
item. The compiler then throws away the contents of attribute 7.

The ACCESS compiler will not attempt to execute an F- or an A-correlative
in attribute 7. These will be ignored.

6.12.8.1 DATE CONVERSIONS

The date conversion will take a date in display format and return the
internal form, which is a decimal number representing the number of days
since December 31, 1967. In this case you would not wish to execute a
date output conversion in attribute 8, since it is unlikely that you would
ever get a match. Note that an input date conversion will only transform
the external form of a date into the internal form, and that an output.
conversion will only transform an internal date into the external form of
the date. The only time that an input conversion is done in ACCESS is for
the evaluation of values associated with selection phrases according to
attribute 7.

It is preferable to do the data conversion associated with selection in
attribute 7 because it only needs to be done once, at compile time, and
because, if it is done in attribute 8 on each value, it will be necessary
to remember the precise form which will result, and because the form which
derives from attibute 8 will be evaluated according to the alphanumeric
form of an external date, rather than in the normally-desired numeric form
of the internal date. The internal date is represented as an increasing
integer, so that less than and greater than relational connectives have
the expected meaning of before and after. The external date does not have
this characteristic. It is therefore advisable to store dates in files in
the internal form.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 191
(" , \,

.....)

6.12.8.2 TIME CONVERSIONS

Time conversions are allowable. Again, it is preferable to use the
attribute 7 form. Time is represented in the machine as an integer which
is the time since midnight in seconds.

6.12.8.3 MASK CONVERSIONS

In general the forms MR, ML, and MD will treat only the scaling and
decimal location characteristics available with these masks. Nothing else
will be touched. This means that they will have an effect only if they
are immediately followed by one or two numeric digits. They will have an
effect only on a value string which represents a number. If the value is
a number, it is scaled and the decimal place is attended to. Remember
that the internal form is an integer. That is, there is no decimal point
in the number. If there are some numeric digits at the front of the
value, then these will be taken as the number, and the rest of the value
will be thrown away, unless the number is attended to in an attribute-8 F
correlative. If the first character of the specified value is not
numeric, then the value string will be taken without modification.

Thus, if attribute 7 has a MR, ML, or MD conversion in it, numeric values
are recommended. Note especially that masks of the form IML#20' and
IMR#lO' have no effect.

6.12.8.4 OTHER MASKING FUNCTIONS

The MCXD (convert from hex to decimal) and MCDX (convert from decimal to
hex) conversions have inverse functions, so that they are useable in

(') attribute 7 of a data definition item being used for selection. The MCXD
will convert decimal to hex as an input conversion, and the MCXD will
convert hex to decimal as an input conversion.

6.12.8.5 TRANSLATE CONVERSIONS

If there is a translate conversion in attribute 7, then it will be
executed as an input conversion. This means that the first of the
translate attribute mark count numbers in the translate syntax will be
used. If the field is null, then the translate will return the item-id if
it found an item-id.

If the value specified does not yield an item-id, and if the translate
option byte is an 'X', then the value for which the processor will search
will be a null. If the option byte is a 'C', then the value for which the
processor will search will be the specified value.

What the an input translate will not do is search the file specified by
the translate for an item which has the specified value in the correct
attribute, and return the item-id as the value.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 192

If there is a direct one-to-one correspondence between the source and
destination items, then it is possible to have a set of translate elements
within the file which are an inverse transformation. That is, if you
supply the value generated by the output translation, and if that value is
an item in the file which has as contents the item-id the value which
translates to the value supplied, then a translation in attribute 7 is
valid. For instance,

In a file we may call CUSTOMER,

232 Pacific Printing The item names.
001 Pacific Printing 001 232 The translate references.

Then if attribute 7 of the data definition item CUSTTRANS is

TCUSTOMER;C;l;l

and the data file reference to Pacific Printing is '23'2', then

LIST FILENAME WITH CUSTTRANS = "Pacific Printing" ... CUSTRANS

will yield the desired result, because Pacific Printing will be
translated into 232 for the selection, and 232 will be translated
into Pacific printing for output.

A translate which will work in a selection.

If the output translate function translates several different strings to a
single output result, such that it would require an inverse function which
is multi-valued, then a translate in attribute 7 is inappropriate,
because only the first value found by the attribute 7 manipulation will be
included in the resultant value string. In this case, the translate must
be put in attribute 8, so that the processor is comparing the translated
value to the value originally specified in the value string.

6.12.8.6 SELECTION CONVERSIONS: A SUMMARY

It is generally a good idea to use the date and time conversion in
attribute 7. The MCXD and MCDX conversions will work. The MR, ML, and MD
conversions will work so~etimes, and will do strange things other times.

The various other masks and conversions which have
function$ will tend to fail in a data-sensitive
recommended.

no natural inverse
way, and are not

The processor will not even try to deal with A- and F-correlatives. In
all cases the contents of attribute 7 are discarded during the compilation
process.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 193 C,· '\
'j

6.12.9 SPECIAL CHARACTERS IN SELECTION VALUES

As noted above, there are three special characters associated with value
specification: '[', I-I, and I]'. These are not optional and they are

(\ not modifiable. They have the following meanings:

(

stipulates that any leading string is acceptable.

stipulates that any character is acceptable in this position.

] stipulates that any trailing character is acceptable.

The test will terminate at this point with success. For purposes of
evaluation, the inclusion of a special character forces evaluation from
1eft-to-right, on a character-by-character basis.

EXAMPLES:

= "[6"

"3-5"

= "6]"

= "[6]"

Will accept any data value which
terminates in a '6', such as
'6' or 'ABC6' or '123456'.

Will accept any three-character
string which begins with a '3'
and ends with a '5', such as
'305' or '3A5' or '3*5'.

will accept any string which
starts with a '6', such as
'6' or '6ABC' or '654321'.

will accept any string which
contains a '6', such as
'6' or 'ABC6' or '6ABC' or
'ABC6XYZ' .

will accept any string which
contains any three-character
string which starts with a '3'
and ends with a '5', such as
'335' or '305XYZ' or 'ABC3X5'
or 'ABC3X5XYZ'.

Use of special characters in selection values.

There are certain forms which will not work. If the' [' is used in the
value specification,it must be the first character in the string, and it
must be the only' [' in the string. If the 'l' character is used in the
string, it will terminate the specified string at that point. Any
characters which may occur after a 'J' will never be inspected. The - may
be used anywhere, and anr number of them may be included in the value
specification. The form' --I may be used to retrieve all three-character
strings, for instance, although there is a conversion, 'L', which performs
this function.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 194

6.12.9.1 SPECIAL CHARACTERS WITH RELATIONAL CONNECTIVES

The following examples
(greater than) and-,
these.

use the relational connectives < (less than), >
since the other permutations can be derived from

The case of equality is shown above. If the form

WITH 2 < "5]"

is used, the test is on the first character, and is straightforward.

If the form

WITH 2 < "[5"

is used, the test is on the last character, and is straightforward.

If the form

WITH 2 < " [5] "

is used, then, if there is a '5' anywhere in the string, equality will be
true, and inequality will fail. If there no '5' in the data string, then
the condition 'less than' will hold if the last character is less than the
5, and the condition 'greater than' will hold if the last character in the
data string is greater than '5'.

If the string of actual data specified is several digits long, the test
which generates the type of equality will be as follows: if the process
reaches the end of the data string when it is on the first real character
of the test string, it will compare those two characters and yield a
result as above. If it is on a character other than the first real
character in the specified string, it will generate the result expected if
the compare were on the first k characters in the specified string against
the last k characters in the data string.

Equality will not occur unless all of the real character string is found
in the data string.

NOTE:

Truly, many strange and unexpected results can be achieved using certain
combinations of special characters and relational connectives, and the
user should take great care in the use of such.

CHAPTER 6 - ACCESS copyright (c) 1985 PICK SYSTEMS

PAGE 195

(

6.12.9.2 JUSTIFICATION AND EVALUATION

If numeric data is to sort in proper ascending order, it must be right
justified and will print "flush right". Use an "R" on line 9 of the
attribute definition item.

Alphabetic data will sort in proper alphabetical order regardless of
whether it is right or left justified. Usually alphabetic data is desired
"flush left" so an "L" is put on line 9 of the attribute definition.

If the attribute definition item is left-justified or if there is a
special character in the value specification string, then comparison will
proceed from left to right, and inequality will be declared as soon as
characters in the same location in the two strings are different.

The collating sequence is that of the ASCII character set, with the
particular characteristic that numbers precede letters, and capital
letters precede lower-case letters. An absolute null is less than any
character, including an ASCII null. An absolute null occurs when the end
of a string is reached, with the result that 'ABC' comes before 'ABCO'.

If the attribute definition item is right-justified, and there are no
special characters in the string, and the data string and value string are
numeric, then the test will be on the magnitude of the two numbers such
that 12 is greater than 2. If these were left-justified, 12 is less than
2 because 1 collates before 2. If the data are not numeric, then they
will be compared in the usual left-to-right manner until either inequality
is discovered, the strings terminate, or numeric fields are found. If
both the data and the specified value are equal up to the start of numeric
fields, then the numeric fields will be evaluated as binary integers and
compared. If inequality is found, then the string with the smaller
imbedded integer is taken as less. If they are equal and both strings

'terminate at this point, then the strings are equal. If the strings
continue with non-numeric data, the left-to-right process continues until
inequality occurs or the strings terminate.

In summary, numeric data is normally right justified and alphabetic data
is normally left justified.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 196

6.12.9.3 OR CONNECTIVE WITH VALUE PHRASES

It is possible to select based on more than one value. The relation
associated with each value is the relational connective which immediately
precedes the value. If there is no relational connective which precedes
the value, then a default '=' will be inserted into the value string. The
implicit relation between the value phrases is 'OR'. If the data value
must pass both of two criteria, then there must be an 'AND' between the
two value phrases.

EXAMPLES:

The relational connective default:

WITH X "A""C""E""G" is equivalent to

WITH X = "A" = "C" = "E" = "G"

which will succeed if

(DATA = "A") OR (DATA = "C") OR (DATA>= "E") ...

where DATA in each case represents only one value which
may be returned to the value comparison processor.

Therefore we may say,

IF «DATA = "A") OR (DATA "C") OR (DATA II E") ...)

then DATA IS TRUE else DATA IS FALSE.

A data value is said to succeed if the test returns TRUE.

The cases of inequality are similar:

... WITH X < II A" > "C" # "E" (- "Gil

is equivalent to

IF «DATA < "A") OR (DATA> "C") OR (DATA # II E")

OR (DATA (= "G") ...)

Then DATA IS TRUE else DATA IS FALSE.

(This particular case will succeed in all cases).

ORed values with relational connectives.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 197

/ ' , \

(, \
j

(

6.12.9.4 AND CONNECTIVES WITH VALUE PHRASES

To specify a range of values which will be acceptable, or a collection of
conditions on a given data value such that they must all be true in order
for the condition to succeed, the specified values may be ANDed together.

FORMAT:

value AND {relational connective} value.

EXAMPLES:

... WITH X (= "A]" AND >= "C]" will accept all values which
start with A, B, or C, as in

IF «DATA (= "A]") AND (DATA >= "C]"»

then DATA IS TRUE else DATA IS FALSE.

WITH X = "1]" AND ("[5" will have the effect of
accepting all values with start
with 1 and end with a character
less than 5, as in

IF «DATA = "1]") AND (DATA ("[5"»

then DATA IS TRUE else DATA IS FALSE.

Examples of AND value specification phrases.

6.12.9.5 EVALUATING VALUE PHRASES

An indefinite collection of value phrases may be ANDed together into what
we may call an AND value specification phrase. Further, several AND value
specification phrases may be ORed together into what we have been calling
a value string.

Essentially, an AND phrase, which may consist of sub-conditions, acts as a
single entity which can either pass or not pass. For an AND value
specification phrase to pass, all elements must pass.

With ORed value specification phrases, if any element succeeds, then the
selection criterion succeeds.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 198

6.12.10 SELECTION CRITERIA RELATIONSHIPS

It was just noted that if one ORed value specification allows a data
element to pass, the selection criterion will pass. It is possible to
have set~erabel selectiohn crlite:ia w~tthi~ a'lslibengle seontence' h Th7fdefaultf ~,
connec ~ve tween t e se ect~on cr~ er~a w~ an R, so t at ~ any 0)
the criteria pass, the item will pass. This is of course modified by the \--
selection modifiers NOT and EACH. The NOT modifier will cause the
criterion to fail in the case that the value string succeeds and vice
versa. We may therefore replicate the table of success and failure under
the conditions of WITH, WITHOUT, WITH EACH and WITHOUT EACH which was
displayed for the case of existence only. Note that the case of existence
is equivalent to the value string # "", although using the explicit string
is inefficient. In the table below the form '# NULL' is replaced by the
form 'IS TRUE', and the form '- NULL' is replaced by the form 'IS FALSE',
as values returned from the value test processor.

EXAMPLES:

WITH ATTNAME <VALUE STRING> succeeds if
(VALUEI IS TRUE) OR (VALUE2 IS TRUE) OR (VALUE3 IS TRUE) OR ...

WITHOUT ATTNAME <VALUE STRING> succeeds if
(VALUE1 IS FALSE) AND (VALUE2 IS FALSE) AND (VALUE3 IS FALSE)

WITH EACH ATTNAME <VALUE STRING> succeeds if
(VALUE1 IS TRUE) AND (VALUE2 IS TRUE) AND (VALUE3 IS TRUE) ...

WITHOUT EACH ATTNAME <VALUE STRING> succeeds if
(VALUEI IS FALSE) OR (VALUE2 IS FALSE) OR (VALUE3 IS FALSE) ...

Success conditions for WITH and its modifiers
under test against a value string.

WITH ATTNAME <VALUE STRING> fails if
(VALUE1 IS FALSE) AND (VALUE2 IS FALSE) AND (VALUE3 IS FALSE) AND , ..

WITHOUT ATTNAME <VALUE STRING> fails if
(VALUE1 IS TRUE) OR (VALUE2 IS TRUE) OR (VALUE3 IS TRUE) ...

WITH EACH ATTNAME <VALUE STRING> fails if
(VALUEI IS FALSE) OR (VALUE2 IS FALSE) OR (VALUE3 IS FALSE)

WITHOUT EACH ATTNAME <VALUE STRING>fails if
(VALUEI IS TRUE) AND (VALUE2 IS TRUE) AND (VALUE3 IS TRUE) ...

Failure conditions for WITH and its modifiers
under test against a value string.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 199

'\

/

6.12.10.1 AND CLAUSES: SELECTION CRITERIA

(- ,

We may now consider the behavior of the traditional AND clause. Note that
there may be a maximum of 9 AND clauses. The sentence will be very
difficult to comprehend long before it has acquired 9 AND clauses.

We define the term SELECTION-CRITERION to be of the form

WITH (NOT} (EACH} ATTNAME «VALUE-STRING>}

such that each tests one attribute definition item against any value
string, and modifies it as specified, across such data values as are
available and are required, within one item.

Then an AND clause is of the form

SELECTION-CRITERION AND SELECTION-CRITERION AND SELECTION-CRITERION

The criterion for success of an AND clause is that each SELECT ION
CRITERION succeed, as per the table above.

6.12.10.2 DATA SELECTION CRITERIA

The data selection criterion is made up of an indefinite number of
selection-criteria ORed together. These may include at most 9 AND-clauses
and any number of ORed selection criteria which are not members of AND
clauses. The condition for success of the data selection criteria is that
at least one of the selection criteria which are ORed together succeed.

(;.12.10.3 ITEM SELECTION CRITERIA

The condition for item selection is that the item-id tests succeed, and
that the data selection criteria succeed. In other words, the item-id
test is implicitly ANDed with the data selection test.

6.12.10.4 SELECTION PROBLEMS TO AVOID

The form

LIST MD < "CAT" AND WITH 1 = "0"

will not work because the item-id test is implicitly ANDed with the data
selection criteria, and becuase in this context the AND must either attach
an item-id test value to "CAT" or generate an AND clause based on a prior
selection criterion. This will generate error message 71.

The form

LIST MD < "CAT" OR WITH 1 = "0"

will not work because of the implicit ANDing, and has been discussed
above.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 200

If you desire the case «1 II: "A" OR 2 .. "B") AND 3 .. "C"), then it must be
written in the following manner:

LIST MD WITH 1 == "A" AND WITH 3 - "C" OR WITH 2 - "B" AND WITH 3 .. "c"

Two data values cannot be compared by the form WITH 1'" 2, because the
system has only one temporary data area. If this is desirable, an F
correlative can be generated of the form F;1;2;=, which will return the
value 1 when the statement is true, or the value 0 when the statement is
false. The above form would be written 'WITH 1 ... 2? ... Ill"'.

Returning to the relationship between the character surrounding a value
and the treatment of the value by the ACCESS compiler, we consider the
following example:

LIST "20""30''''40'' FILENAME "50""60" WITH 1.

This will compile as though the following had been entered:

LIST FILENAME '50' '60' WITH 1 ... "20" .. "30" ... "40" ... "50 ... "60".

The values which fall between the file name and the first succeeding
attribute definition item will be construed as constituting an item-id
test. Since there are no relational connectives associated with these
item-id test elements, the process will explicitly retrieve items 50 and
60. It will then test them to see if the data definition item whose name
is '1' will return the value 20, 30, 40, 50, or 60. In this case the item
will succeed. Otherwise it will fail. This result may be unexpected.

On the other hand, the form

LIST '20' '30' '40' FILENAME '50' '60' WITH 1.

will behave like the following sentence:

LIST FILENAME '20' '30' '40' '50' '60 WITH 1

Further, the sentence

LIST "20""30""40" FILENAME "50''''60''.

will yield the following error message:

[19] A VALUE WITHOUT AN ATTRIBUTE NAME IS ILLEGAL.

The gist of this is that values delimited by 'will be taken as item-ids
or item-id test values, that values delimited by " or \ which fall between
the file reference and the first data definition item will be taken as
item-ids or item-id test values, and that all other values in the string
delimited by " or \ will be associated with either the immediately
preceding attribute definition item, if there is one, or with the next
attribute definition item, or if there are no attribute definition items
in the string, then the sentence will fail in the compiler.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 201
(-"\

j

6.13 OUTPUT SPECIFICATION: FORMATION

.II Output specifications enumerate those attributes to be listed. If no

(". output specifications are specified, the default set of attribute
) definition items is used to determine the output specifications.
--

All attribute names in an ACCESS sentence which are not part of a
selection-criterion (i.e., preceded by the modifier WITH) or are not
modified by certain control modifiers are considered as part of the output
specification. These attribute names specify the attribute values which
are to be printed out as a result of the specified operation.

If no output specifications are in the ACCESS sentence, the system will
use the default output specifications. These default specifications are
those contained in the items in the dictionary of the file being listed
whose item-ids are the numbers 1, 2, 3, 4, ... The system will
sequentially search the dictionary for these items until it comes to an
item-id which is not in the dictionary.

Selected attribute definition items (either specified or default) will be
displayed in an automatically generated system format. This format will
include a heading line displaying the date, time, and page number (unless
supressed*) at the beginning of each new page. The page size is set
through the use of the TERM command

The LIST, SORT, LIST-LABEL and SORT-LABEL verbs will attempt to format the
output into a columnar format with each specified attribute name as a
column heading. If line 3 of that specified attribute defining item
contains multi-valued "heading text", each multi-value is used on a new

("" heading line, allowing great flexibility in generating multiple line
. i headings.

The number of output columns reserved for each attribute definition item
(column width) will be the maximum size from line 10, or the length of the
heading in line 3. If the sum of the column widths (adding one blank
separator for each specified attribute name) does not exceed the page
width as set by the TERM command, then a columnar format will be
generated. In a columnar format, the specified attribute names are
displayed in a heading across the top of the page. The values for each of
the items are then displayed in their respective columns.

If the requested output exceeds the page width, then the attribute names
are listed down the side of the output with their respective values
immediately to the right. This is known as non-columnar format.

A significant difference between the two formats is that for the columnar
format all headings are listed only once for each page, whether or not
values exist for the columns, while in the non-columnar format, headings
are displayed for each attribute definition item only if the item being
listed has values for those specified attributes.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 202

Some general forms of OUTPUT-SPECIFICATIONS are exemplified below.

FORMAT:

Attribute-name {"print limiters"}

BREAK-ON attribute-name {"text {'options'} text"}

TOTAL attribute-name {"total limiters"}

>SORT ACCOUNT WITH CURR-BALNC > "100000" NAME ADDRESS CURR-BALNC [CR]

PAGE 1

ACCOUNT ...

11020
11055
23040
35080

NAME

J T O'BRIEN
W H KOONS
P B SCIPMA
G A BUCKLES

ADDRESS

124 ANCHOR PL
131 BEGONIA
213 CARNATION
307 DOCK WAY

09:09:19 21 AUG 1984

CURR-BALNC ..

$306,755.54
$958,343.75
$123,423.22
$447,765.48

4 ITEMS LISTED.

Columnar Output Format
(Output specifications are underlined.)

>LIST ACCOUNT "35060" NAME ADDRESS CURR-BALNC BILL-RATE AVE-USAGE [CR]

PAGE 1

ACCOUNT
NAME
ADDRESS
CURR-BALNC
BILL-RATE
AVG-USAGE

END OF LIST

35060
J A SCHWARTA
331 DOCK WAY
$33,822.34
2
31

09:11:53 21 AUG 1984

Non-Columnar Output Format
(Output specifications are underlined.)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 203

'\

)

(

(

6.14 PRINT LIMITERS

Print limiters may be used to select certain values from multi-valued
attributes. The printing of values can be limited to those satisfying
certain criteria, and dependent values in associative data sets can be
suppressed if the value they depend on is not printed.

Selection for output of specific values from multi-valued attributes can
be accomplished by placing the relational operator(s), and the desired
value (or values) in double-quotes (") or backslashes (\), immediately
following the attribute name.

If the attribute is an associative controlling attribute then the
corresponding values from the dependent attributes will also be returned.
Likewise, if the controlling value does not match any of the desired
values in quotes, then the dependent values associated with those
controlling values will not be printed.

For example, to limit the printing of an attribute called TRAN-DATE (which
is a date field) to dates in the range 1/1/84 through 12/1/84 inclusive,
the following print-limiting condition may be specified:

TRAN-DATE)= \1 JAN 84\ AND <= "12/1/84" .

Note that the form of the print-limiter follows the general form as
specified in for selection criteria; in fact, the only difference between
a selection criterion and a print-limiting output specification is the
absence of the WITH modifier.

The string-searching formats may also be used within the print-limiting
structure.

Although most practical applications of "print-limiters" will involve
multi-valued and/or dependent attributes, this is not to imply that useful
"print-limiting" on single valued attributes cannot be done.

The first example lists all the items in the INV file which contain any
value for the attribute TRAN-DATE. In the second example, the TRAN-DATE
"11 FEB 84" portion of the ACCESS sentence indicates to the ACCESS
processor that only the dates equal to 11 Feb 84 are to be retrieved.
Since TRAN-DATE is a controlling attribute, only the values associated
with the 11th of February for TRAN-TYPE and TRAN-QTY (which are dependent
attributes) are retrieved.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 204

EXAMPLES:

>LIST INV TRAN-DATE TRAN-TYPE TRAN-QTY [CR]

PAGE 1 18:18:36 20 AUG 1984

INV TRAN-DATE TRAN-TYPE TRAN-QTY
* *

1242-22 11 FEB I 100
R 48
S 31

12 FEB I 144
R 43
S 66

1242-11 11 FEB I 19
R 122
S 33

12 FEB I 97
R 39
S 7

2 ITEMS LISTED.

Selection of All Values for Multi-Valued Attribute
(Controlling Attribute Name is Underlined.)

r~,
~

/ \.

-- J

>LIST INV TRAN-DATE "11 FEB 84" TRAN-TYPE TRAN-QTY [CR]

PAGE 1 18:20:04 20 AUG 1984

INV TRAN-DATE TRAN-TYPE TRAN-QTY
* *

1242-22 11 FEB I 100
R 48
S 31

1242-11 11 FEB I 19
R 122
S 33

2 ITEMS LISTED.

Selection of Specific Value for Multi-Valued Attribute.
(Attribute Name and Specific Value are Underlined.)

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 205

6.15 DEFAULT OUTPUT-SPECIFICATIONS

I If no output-specifications appear in an ACCESS sentence, a set of default

(.- . attribute definition items are used to determine the output
j specifications.

(...

If no output specifications are found in an ACCESS sentence, the ACCESS
processor will look up the items with the sequential item-ids
1, 2, 3, 4 ... in the dictionary of the file being listed. The search
for items will continue until an item-id which is not in the dictionary is
reached.

If an item with item-id "1" cannot be found in the dictionary of the data
file specified, a search is made of that users MD for an item with an
item-id of "1". If item-id "1" is not found in the MD, then no output
specifications are used.

The attribute definition items should have an "A" in line one if the
attributes they define are to be listed; a "X" may be specified in line
one if the attribute name is not to be listed, but the search for other
items is to continue.

Notice that the amc's of these special items 1, 2, etc., need not be in
sequence, though typically the item whose item-id is "1" will have an amc
of 1, that whose item-id is "2" will have an arnc of 2, etc.

NOTE:

When listing or sorting DICT items for any file, the attribute defining
items will reside in the MD.

When listing or sorting any single
defining items exist in the MD.
using ACCESS on the SYSTEM file.

level file, again these attribute
A practical example of this would be

Attribute defining items for the MD reside in that MD.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 206

6.16 SUPPRESSION MODIFIERS

I Suppression modifiers are used to cancel some of the default features of I
ACCESS, namely the heading, columnar headings and item-id listings.

6.16.1 THE ONLY MODIFIER

FORMAT:
ONLY filename

Use of the modifier ONLY just before the file name in an ACCESS sentence
will cause the default set of attribute definition items to be ignored.
Only the itemnames (item-ids) will display upon output.

6.16.2 THE ID-SUPP MODIFIER (I option)

FORMAT:
ID-SUPP or (I

Item-ids of the data items will appear leftmost on the listing, underneath
the file name in the heading, unless the ID-SUPP modifier or 'I' option is
used.

6.16.3 THE HDR-SUPP MODIFIER (H option)

FORMAT:
HDR-SUPP or (H option)

The HDR-SUPP modifier (or 'H' option) will suppress the system generated
page heading (time and date on the left, page number on the right), and
the Itn ITEMS LISTED." message at the end of the listing. Note that a
HEADING modifier will have this same effect.

6.16.4 THE COL-HDR-SUPP MODIFIER (C option)

FORMAT:
COL-HDR-SUPP or (C

The headers (tags) defined in the dictionary items will appear in the
heading, in order from left to right, unless the COL-HDR-SUPP (or 'C'
option) is used; a COL-HDR-SUPP will also cause the HDR-SUPP to be in
effect.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 207

('"
.j

, ,

()

(

EXAMPLES:

>LIST SM80 [CR]

PAGE 1

SM80 FRM CLASS

WHERESUBS 121 SYSTEM
A-CORR1 231 ACCESS

>LIST SM80 HDR-SUPP [CR]

SM80

WHERESUBS
A-CORR1

>LIST SM80

WHERESUBS
A-CORR1

(C)

FRM CLASS

121 SYSTEM
231 ACCESS

3 [CR]

121 SYSTEM
231 ACCESS

>LIST ONLY SM80 [CR]

PAGE 1

SM80

WHERESUBS
A-CORR1
BRP1
IDATE

17:45:10 17 NOV 1984

SUB-CLASS .. REV DATE REV CKSM LINES OBJ

UTILITY 25OCT80 80A C5BE 234 1FB
CONVERSION 12SEP80 80A 8BE2 43 008

SUB-CLASS .. REV DATE REV CKSM LINES OBJ

UTILITY 250CT80 80A C5BE 234 1FB
CONVERSION 12SEP80 80A 8BE2 43 008

UTILITY 250CT80 80A C5BE 234 IFB
CONVERSION 12SEP80 80A 8BE2 43 008

23:32:41 14 DEC 1984

Sample usage of Suppression Modifiers.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 208

6.17 MODIFIERS AND OPTIONS

I Modifiers or options may be used to further modify the meaning of ACCESS I
sentences.

A set of modifiers may be used to generate more elaborate listings and
reports from ACCESS. Some modifiers appear before attribute names in the
ACCESS sentence, and some appear at the end of a sentence, and may be
replaced by an option in the option string.

The modifiers which may be used in an ACCESS sentence, and their
equivalent options, if any, are listed in alphabetical order below.

MODIFIER OPTION MEANING

BREAK-ON

BY

BY-DSND

BY-EXP

BY-EXP-DSND

COL-HDR-SUPP (C)

DBL-SPC

DET-SUPP (D)

DICT

EVERY or EACH

CHAPTER 6 - ACCESS

Specifies a break will occur whenever the value
of the specified attribute changes.

Designates
following
Sequencing
values.

the attribute name immediately
as a sort-key for the SORT operation.
is in ascending order comparing ASCII

values.

Specifies sorting
ascending order.

in descending instead of

Sorts by exploding attribute values;
order.

ascending

Sorts by exploding attribute values; descending
order.

Suppress the output of the time/date heading,
the column headings, and the end-of-list message.

Causes an extra blank line to be inserted between
items to double-space a listing.

Suppresses detail output when used with TOTAL or
BREAK-ON modifiers.

Specifies the DICT (dictionary) portion of a file
is to be listed, as opposed to the DATA file.

Modifies a selection-criterion so that every
value for a multi-valued attribute must meet the
specified condition for the criterion to be true
for that item. This modifier must immediately
follow the modifier WITH.

Copyright (c) 1985 PICK SYSTEMS

PAGE 209

FOOTING

((F)

GRAND-TOTAL

HEADING

HDR-SUPP or SUPP (H)

ID-SUPP (I)

LPTR (P)

ONLY

NOPAGE (N)

(TAPE

TOTAL

USING

WITH or IF

WITHOUT

WITHIN

CHAPTER 6 - ACCESS
(

~\

---'

Indicates that the following text string is to be
processed and used for a footing on the bottom of
each page of output.

Specifies start of a
COPY, LIST-ITEM and
equivalent modifier.)

new page with each item to
SORT-ITEM verbs. (No

Indicates the following text is to be printed on
grand total lines.

Indicates that the following text string is to be
processed and used for a heading on the top of
each page of output.

Supresses the output of the time/date heading and
the end-of-list message.

Suppresses the display of item-ids for LIST and
SORT operations.

Routes output to line-printer.

Inhibits the use of default attribute definition
items when no output specification is indicated.
It must precede the file name.

When output is
will prevent
each page.

to the terminal,
the halt of output

this modifier
at the end of

Causes the data to be obtained from the magnetic
tape file in a T-DUMP format.

Causes totals for the attributes which follow to
be accumulated.

Causes the attributes to be obtainded from a file
other than the dictionary-level file.

Designates that the following attribute name is
part of a selection criterion.

Is a synonym for WITH NOT or WITH NO.

Designates a special form of processing in which
items may contain additional item-ids relating to
the primary item-id.

Copyright (c) 1985 PICK SYSTEMS

PAGE 210

6.18 THROWAWAY MODIFIERS

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, and THE are throwaway
modifiers which may be used to add clarity and naturalness to an ad hoc
ACCESS inquiry sentence.

A, AN, ARE, ANY, FILE, FOR, IN, ITEMS, OF, OR, and THE are throwaway
modifiers which do not affect the meaning of the ACCESS sentence. They
may be used anywhere in the sentence after the verb, and are included to
provide a degree of naturalness to the language. Any other words not
otherwise defined in an account's master dictionary may be included as
throwaways by copying the definition of an existing throwaway to the new
throwaway.

EXAMPLES:

>LIST THE ACCOUNT FILE [CR] or

>LIST ACCOUNT [CR]

> SORT ANY ITEMS IN THE INVOICE FILE WITH A DATE OF "4JUL84 " [CR] or

>SORT INVOICE WITH DATE = "4JUL84"

>SELECT ANY ITEMS IN THE INVENTORY WITH A QTY OF "0"

>SELECT INVENTORY WITH QTY "0" [CR]

>COUNT THE EMPLOYEES WITH A STATUS OF "RETIRED" [CR]

>COUNT EMPLOYEES WITH STATUS "RETIRED"

Sample usage of Throwaway Modifiers.

or

or

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 211

/ ".
0/

6.19 ACCESS PROCESSOR OPTIONS

Some of the more commonly used modifiers can alternately be invoked by use
of the ACCESS OPTIONS feature.

(---

(

Some ACCESS modifiers may be replaced by OPTIONS.
always appears last in the ACCESS sentence and is
parenthesis. (The closing parenthesis is optional.)
alphabetic characters.

The options
preceded by

OPTIONS are

string
a left
single

Options are decoded during the initial instruction scan. The call to the
options processor is initiated by the left parenthesis which must preceed
them. The option processor will accept any upper-case alphabetic
character. All other characters in the string will be ignored by the
options processor for the purposes of ACCESS.

OPTIONS

B

C

D

F

H

I

N

o
P

MEANING

Causes the line-feed at the end of the compile
phase to be avoided.

Equivalent to COL-HDR-SUPP. Relevant to LIST-class
verbs.

Equivalent to DET-SUPP. Relevant to verbs capable of
BREAK-ON and TOTAL.

Causes page eject for each item. Relevent only to
the LIST-ITEM, SORT-ITEM and COpy verbs.

Equivalent to HDR-SUPP. Relevant to LIST-class verbs.

Equivalent to ID-SUPP. Suppresses the item-id in
LIST-class verbs. Causes the item-id to be
output to the terminal with T-LOAD.

Equivalent to NOPAGE. Relevant to terminal output
with LIST-class verbs.

Overwrite items. Relevant to the T-LOAD verb.

Equivalent to LPTR. Relevant to LIST-class verbs.

ACCESS OPTIONS.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

-PAGE 212

6.20 HEADINGS AND FOOTINGS

I LIST, SORT, LIST-ITEM and SORT-ITEM ACCESS sentences may use user-designed I
headings and/or footings.

FORMAT:

HEADING or FOOTING "text {' options'} text {' options' } ... "

The HEADING and FOOTING modifiers specify that the following string,
(enclosed in double quotes (") or backslashes "\"), is to be used as
heading or footing text. Special characters inside the text string,
enclosed in single quotes ('), specify special operation on the heading.
During generation of the listing, the special characters in the heading or
footing text string will be replaced by the current value of the page
number, the item-id of the item being listed, break-on data or other
parameters. A provision for centering headings, even variable length
ones, is provided. The specified heading or footing will be printed at
the top or bottom of every page of output.

If an ACCESS input sentence contains a HEADING modifier, then the normal
heading, which consists of a page number and the current time and date,
and the usual "n ITEMS LISTED." message will not be printed.

A HEADING (FOOTING) specification may appear anywhere in the LIST type
statement.

EXAMPLE:

>SORT ACCOUNT NAME HEADING" NAME LIST AT 'TL' PAGE NO. 'PL'" [CR]

NAME LIST AT 10:29:39 21 AUG 1984
PAGE NO. 1

ACCOUNT ...

11000
11015
11020
11025

NAME

M H KEENER
L K HARMAN
J T O'BRIEN
P R BAGLEY

Sample Usage of HEADING

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 213

OPTION

'B' (Break)

'C' (Center)

'D' (Date)

, F ' (File-name)

'Fn'

'L' (New line)

'P' (Page)

lPN' (Page)

'T' (Time)

, ,

CHAPTER 6 - ACCESS

MEANING

Inserts the value causing a control-break, if the 'B'
option has been specified along with the control-break
field. This option has no effect otherwise.

Causes the current line of the HEADING or FOOTING to
be centered on the output page.

Inserts the current date at this point in the heading
in the form: dd mrnm yyyy, where dd is the day of the
month, mrnm is the abbreviation for the name of the
month, and yyyy is the 4-digit year.

Inserts the name of the file being LISTed or SORTed.

(Where In' is a decimal number) Causes the file-name
to be left-justified in a field of n blanks at that
point in the HEADING or FOOTING.

Specifies the start of a new line in the HEADING or
FOOTING. (Sometimes called the Carriage return/line
feed option.)

Inserts the current page number, right justified in a
field of 4 blanks.

Inserts the current page number,

Inserts the current time and date in the form:
hh:mm:ss dd mrnm yyyy, where hh is the hour in 24-hour
(or "military") format, mm is the number of minutes
and ss is the number of seconds past the hour, dd is
the day of the month, mrnm is the abbreviation for the
name of the month, and yyyy is the 4-digit year.

TWO successive single quotes are used to print a
single quote mark in heading text.

HEADING and FOOTING Options.

, ,

Copyright (C) 1985 PICK SYSTEMS

PAGE 214

6.21 TOTAL MODIFIER

.1 LIST and SORT sentences may generate subtotals and totals for attribute 1
values. The TOTAL modifier is used to generate sub- and grand-totals.

FORMAT:

TOTAL attribute-name {"total limiter"}

The TOTAL modifier causes a total to be computed for the attribute whose
name immediately follows the word "TOTAL". On the output, the default
total identification is three asterisks (***) in the item-id column.

The total limiter may be used to limit the total-ing to values that pass
the limiting criterion. The form of the total-limiter is the same as that
for the print-limiter (see section PRINT LIMITERS); the total-limiter
will also cause a print limiting function.

It is possible to total fields of length O. Nothing will be printed at
detail time. At break time the value will appear at its appointed
location, unless the output value is cleared to null with an Fi"" in
attribute 7 of the data definition item.

The TOTAL modifier may be used in conjunction with the BREAK-ON modifier
to output subtotals, as further described in the section SUBTOTALS USING
CONTROL BREAKS.

EXAMPLE:

>LIST ACCOUNT AFTER "35090" NAME ADDRESS TOTAL DEPOSIT [CR]

PAGE 1 10:31:23 21 AUG 1984

ACCOUNT. . . NAME.... ADDRESS DEPOSIT.

35100
35095
35110
35105

R W FORSTROM
A W FEVERSTEIN
H E KAPLOWITZ
S J FRYCKI

4 ITEMS LISTED.

318 CARNATION
324 CARNATION
306 CARNATION
312 CARNATION

8.00
10.00
10.00
10.00

38.00

Sample Usage of the TOTAL modifier.

CHAPTER 6 - ACCESS Copyright (e) 1985 PICK SYSTEMS

PAGE 215

6.21.1 TOTAL - EVALUATION SEQUENCE

I Totals are generated from the number that results after applying the
. Correlative in attribute 8 of the attribute definition item, and testing

(:~:~:-:~:~~~=:~~~::~:-~:-:~~~~:=:~~~::~::-----------------------------------
Totals are generated from the number that results after the execution of
attribute 8 of the data definition item, and after the test for the print
or total limiter. If the result after the execution of attribute 8 is
non-numeric, the total is unchanged.

At output time on a control break or at the grand total, the data in the
related control break item and all of the totals are composed into an
item. Each element of this item is obtained from the control-break or
total record. The element is then used as input for the conversion in
attribute 7 of the data definition item. Conventionally, this has the
effect of masking the total according to the same MR-c1ass mask as was
used on the detail-time data in this field.

It is possible, however, to use F- or A-correlatives in attribute 7 to
generate compositions of totals. In this case the attribute-mark-count
number specified in the F-corre1ative refers to the attribute-mark-count
number in attribute 2 of the data defining items. In other words, if an
F-corre1ative stipulates an AMC of 17, at detail-time the processor will
look in attribute 7 of a data item for the value requested. At total-time
the processor will look for the data defining item in the compiled process
controlling string which has '17' as its AMC specifier. This is the
number in attribute 2 of the data defining item in the dictionary file.
The processor will then retrieve the total related to that item at the
current break level for processing in the F-corre1ative. It is therefore

; possible to generate data which are the result of arithmentic
manipulations on totals.

It is in this context that the operand 'ND' and 'NB', referenced in the
section on F-corre1atives, are of use. The ND operand obtains the number
of items processed since the last break at this level. (Note that BY-EXP
sorts and lists run using lists created with a BY-EXP modifier consider
each the collection of values obtained at each value mark count to be an
item.) The ND is useful for obtaining the number of values included in a
total if there is a one-to-one correspondence between the values and the
item count represented by ND. If there is not, a separate totaled data
definition item whose definition includes Fi"I" in attribute 8 should be
included in the sentance and referenced in attribute 7 of the data
definition item which is generating the composition at total time.

The NB operand returns the break level at which processing is currently
occuring. NB is zero at detail-time, and is 255 at grand total time. The
lowest level break yei1ds 1; and for each succeeding break level the
number is incremented by one. The processor is capable of 99 break
levels. What this means is that a different class of number may be
constructed at eack break level.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 216

6.22 GRAND-TOTAL MODIFIER

1
The GRAND-TOTAL modifier is used to specify special formatting on the I
grand-total line.

FORMAT:

GRAND-TOTAL "... text. . . {f opTIONS'} .. {text}"

The GRAND-TOTAL connective may be used in reports that have TOTALs and/or
BREAK-ONs, to specify special action when printing the grand-total line.

The GRAND-TOTAL connective may appear anywhere within the statement, and
it must be followed immediately by a value string enclosed in double
quotes.

The optional "text" is any literal string that is to be printed as a
substitute for the normal "***" that appears as the Item-Id of the grand
total line. The literal string will be printed left-justified, starting
at column 1, regardless of the actual justification of the Item-Id, and
even if the "ID-SUPP" connective has been used.

The "options" string is enclosed within single-quotes, and is used to
specify the "U" (underline), "L" (line-suppress), and "P" (page-eject)
options. The page-eject feature is particularly useful when the grand
total line of a report is actually meaningless; by specifying page-eject,
the grand-totals appear on a new page, and may be discarded. If the
underline option is used, all total-ed fields in the report will be
underlined with a row of equal-signs (=).

EXAMPLE:

>LIST ACCOUNT AFTER "35090" NAME ADDRESS TOTAL DEPOSIT cs[O] [CR]
: GRAND-TOTAL" 'U'GRAND-TOTAL IS :" [CR]

PAGE 1 10:31:23 21 AUG 1984

ACCOUNT. .. NAME..... ADDRESS.... DEPOSIT.

35100 .
35095
35110
35105

R W FORSTROM
A W FEVERSTEIN
H E KAPLOWITZ
S J FRYCKI

;GRAND TOTAL IS :

4 ITEMS LISTED.

318 CARNATION
324 CARNATION
306 CARNATION
312 CARNATION

8.00
10.00
10.00
10.00

=====:=-===
38.00

Sample Usage of the GRAND-TOTAL Modifier.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 217

/~ '\

6.23 BREAKING ON ATTRIBUTE VALUES

I The BREAK-ON modifier may be used to group items in a listing according to

(~-:~:-~~:~:-~:-:~:-~~~=~~-~:::~~~::=~~:~:~~--------~-----------------------

(

FORMAT:

BREAK-ON attribute-name ("text ... ('options'} .. text}

The attribute-name indicates the attribute on which a break will occur.
The optional text string, if specified, will be printed instead of the
normal break-on line. Options are provided to put additional information
in the break-on text (see OPTIONS FOR CONTROL-BREAKS).

During the LIST or SORT operation, a control-break occurs whenever there
is a change in the value of the specified attribute. Value comparison is
made on a left-to-right, character-by-character basis, with a maximum of
the first 24 characters being used in the comparison only. In generating
the value for comparison, correlatives in the attribute definition are
processed but conversions are not. (See CORRELATIVES and CONVERSIONS).

Up to 15 control-breaks may be specified, the hierarchy of the breaks
being specified by the sequence of the BREAK-ONs in the input line, the
first being the highest level.

When a control-break occurs, three asterisks (***) are displayed in the
BREAK-ON attribute column (i.e., the attribute whose value has changed,
thus causing the break), preceded and followed by blank lines. If the
optional text string is specified, the proccessed text string will be

j substituted for the asterisks.

For multiple control-breaks, output proceeds from lowest level BREAK to
highest level. The data associated with the lowest level control-break is
printed on the current page (even if the end of the page has been
reached). If multiple BREAKs occur, normal pagination proceeds on the
second and subsequent data lines, unless an option prevents this (see
OPTIONS FOR CONTROL-BREAKS).

The BREAK-ON modifier may be used in conjunction with the TOTAL modifier
(see SUB-TOTALS USING CONTROL-BREAKS.)

The data associated with the break-on attribute may be suppressed in the
detail lines by using a MAX length of zero in the dictionary attribute
definition (line 10 in the item). If suppression of the data associated
with the control break is desired at total time, it must be done with an
Fi"" in attribute 7 of th data defintion associated with the control
break. R. Additional output formatting capabilities are described in the
topic titled OPTIONS FOR CONTROL-BREAKS.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 218

EXAMPLES:

--
>SORT ACCOUNT > "35000" BY STREET NAME BREAK-ON STREET CURR-BALNC [CR] C)
PAGE 1 09:34:01 02 APR 1977

ACCOUNT ... NAME• STREET ..•..... CURR-BALNC ...

35090 D U WILDE CARNATION $ 884.53
35095 A W FEVERSTEIN CARNATION $ 19.25
35100 R W FORSTROM CARNATION
35105 S J FRYCKI CARNATION $ 5,569.53
35110 H E KAPLOWITZ CARNATION $ 94,944.55

35005 J S ROWE COVE $ 464.72-
35010 S R KURTZ COVE $ 467.33
35015 W F GRUNBAUM COVE $ 88.47
35025 J D GUETZINGER COVE $ 3.45

35030 F M HUGO DAHLIA $ 123.48
35035 M J LANZENDORPHER DAHLIA $ 445.89
35040 C E ESCOBAR DAHLIA $ 38,822.12-
35050 P J WATT DAHLIA $ 337.18
35055 J W ROMEY DAHLIA $ 33,478.95 /' '\ I

*** .'
/

35060 J A SCHWARTA DOCK $ 33,822.34
35065 L J RUFFINE DOCK $ 558.43
35070 F R SANBORN DOCK $ 22,144.67
35075 J L CUNNINGHAM DOCK $ 7.70
35080 G A BUCKLES DOCK $ 447,765.48
35085 J F SITAR DOCK $ 200.00

20 ITEMS LISTED.

Sample Usage of Control-Break.
(The BREAK-ON modifier and associated attribute name are underlined)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 219 (~)

6.24 SUBTOTALS USING CONTROL-BREAKS

The TOTAL modifier is used to generate and print subtotal values (in
addition to a total) when it appears in the same sentence as BREAK-ON.
The format is the same as for generating totals, see TOTALS.

Values for the specified attribute are
subtotals whenever a control-break occurs.
appear.

accumulated and printed as
Multiple TOTAL modifiers may

When a control-break occurs, a line of data is output, preceded and
followed by blank lines. Three asterisks (***) are displayed in the
BREAK-ON attribute column, and a subtotal is displayed in the appropriate
column for each attribute specified in a TOTAL mofifier. Subtotals are
the values accumulated since the last control-break occured.

At the end of the listing, a TOTAL line is generated for every BREAK used
alone -- is also printed. All end of listing sums are printed on the
current page.

In computing the value for accumulation, correlatives are processed but
conversion specifications are not (see the section CORRELATIVES AND
CONVERSIONS). Conversion is applied only when the value being accumulated
is actually printed.

(--
J >SORT ACCOUNT WITH BILL-RATE "2" "40" NAME BREAK-ON BILL-RATE [cs]O [CR]

: TOTAL CURR-BALNC BY BILL-RATE [CR]

PAGE 1 09:28:03 22 AUG 1984

ACCOUNT ... NAME BILL-RATE CURR-BALNC ..

35060 J A SCHWARTA 2 $ 33,822.34
35085 J F SITAR 2 $ 200.00

*** $ 34,022.34

11100 E F CHAlMERS 40 $ 17.50
35075 J L CUNNINGHAM 40 $ 7.50

*** $ 25.20

*** $ 34,047.54

4 ITEMS LISTED.

Sample Usage of Control-Breaks
(The BREAK-ON and TOTAL modifiers and

their associated attribute names are underlined)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 220

6.25 OUTPUT OPTIONS - CONTROL BREAKS

I Headings and output control options may be specified for control-breaks.
---~------------------------

FORMAT:

BREAK-ON attribute-name {"text !' OPTIONS '} text"}

A user-generated heading can be specified to be printed in place of the
default name CONTROL BREAK HEADING (***) by following the BREAK-ON
attribute-name with the desired heading, enclosed in double quote marks
(" "). Within the heading, output control OPTIONS may be specified,
enclosed in single quote marks (' ').

The text, if specified, replaces the default asterisk field ("***") in the
attribute-name column when the control-break printout line occurs.
OPTIONS are used to modify some of the actions taken at control-break
time; OPTIONS are specified as one or more characters.

The data associated with the BREAK attribute may be suppressed on detail
lines if the attribute definition item used with the BREAK-ON modifier has
a max-length of zero (line 10).

If OPTIONS are used without accompanying
single quotes within double quotes (e.g.

EXAMPLE:

text, they
" 'V'").

must be enclosed in

C)

-- \
>SORT ACCOUNT WITH BILL-RATE "2" "40" BY BILL-RATE NAME [cs]O[CR], /J

:BREAK-ON BILL-RATE "SUB-TOTAL FOR 'V'" TOTAL CURR-BALNC [cs]O[CR]
: GRAND-TOTAL "GRAND TOTAL: 'U'" [CR]

PAGE 1

ACCOUNT ...

35060
35085

11100
35075

GRAND TOTAL:

NAME BILL-RATE

J A SCHWARTA
J F SITAR

2
2

SUB-TOTAL FOR 2

E F CHALMERS
J L CUNNINGHAM

40
40

SUB-TOTAL FOR 40

4 ITEMS LISTED.

11:22:33 21 FEB 1984

CURR-BALNC ..

$ 33,822.34
$ 200.00

$ 34,022.34

$ 17.50
$ 7.70

$ 25.20
===-.==============

$ 34,047.54

Sample Usage of Control-Break Options
(BREAK-ON modifiers and associated headers are underlined)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 221

(
'B' BREAK. Specifies this control break attribute name as the

one whose value is to be inserted in the ACCESS page heading
in place of the 'B' option in the HEADING specification (see
GENERATING HEADINGS). It is not meaningful to specify this
option within more than one BREAK-ON specification.

'D' DATA. Suppresses the break data line entirely if there was
only one detail line since the last time this control-break
occured.

'L' LINE.
line.
used.

Supresses the blank line preceding the break data
This option is ignored when the 'u' option, below is

'N' Resets the page number to one on this break.

'pI PAGE. Causes a page eject after the data associated with
this break has been output.

'R' ROLLOVER. Inhibits page rollover, thus forcing all the data
associated with this break to be current on the same page.

'u' UNDERLINE. Causes the underlining of all specified TOTAL
fields.

'V' VALUE. Causes the value of the control-break to be inserted
at this point in the BREAK-ON heading.

BREAK-ON OPTIONS.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 222

---.... - .. _-----------_. __ . __ ._---- -_._----- _._- ---

6.25.1 DET-SUPP MODIFIER

I The DET-SUPP modifier may be used to suppress detail in listings.

F~: 0
..... [BREAK-ON and/or TOTAL] DET-SUPP

The DET-SUPP modifier is used with the TOTAL and/or BREAK-ON modifiers.
When the DET-SUPP modifier is used with the TOTAL modifier and/or the
BREAK-ON modifier, all detail will be suppressed and only the subtotal and
total lines will be displayed upon output. Notice that the example ACCESS
sentence is the same as the previous section's example, the only
difference being the DET-SUPP modifier.

EXAMPLE:

>SORT ACCOUNT WITH BILL-RATE "2" "40" BY BILL-RATE NAME [cs]O [CR]
:BREAK-ON BILL-RATE "SUB-TOTAL FOR 'V'" TOTAL CURR-BALNC DET-SUPP [CR]

PAGE 1

ACCOUNT ... BILL-RATE

SUB-TOTAL FOR

SUB-TOTAL FOR

3 ITEMS LISTED.

2

40

CURR-BALNC ..

$ 34,022.34

$ 25.20

$ 34,047.54

09:39:20 22 AUG 1984

Sample Usage of the DET-SUPP modifier.
(The DET-SUPP modifier is underlined.)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 223

6.26 LIST VERB

I LIST is an ACCESS verb which is used to generate a formatted output of I
(', \ selected items and attributes from a specified file.

~--~--------------------~---

(

(

FORMAT:

LIST [DICT} file-name [item-list} [selection-criteria}
[output specifications [print limiters} }
(modifiers} { (options,options, ... options) }

The optional DICT modifier specifies that the dictionary section of the
file, as opposed to the data section, is to be listed. The file-name is
the name of the file, and must be present in the user's master dictionary
(MO). The optional item-list enumerates specific items to be listed. The
optional selection-criteria will limit the items to be listed to those
meeting some user-defined set of specifications. The output
specification, if present, indicates to the LIST processor just which
attributes (fields) of the selected items (records) are to be listed.

If an item-list is used, items will be listed in the same order as the
item-ids appear in the item-list. If no item-list is specified, all items
in the file will be listed, and they will appear in order of the group
they hash into, and within groups by order of when they were added to the
file.

The LIST verb will provide information on any or all items in a file. It
can be particularly useful if the user only wishes to see information on a
small number of items.

I EXAMPLE:

>LIST ACCOUNT "35000""35050" NAME ADDRESS [CR]

This LIST sentence specifies that the attributes (fields) named "NAME" and
"ADDRESS" in the items (records) having item-id'g (keys) 35000 and 35050
in file ACCOUNT are to be listed.

To query the file for items meeting a set of specifications, selection
criteria are used.

EXAMPLE:

>LIST ACCOUNT WITH NAME "J J JOHNSON" [CR]

This LIST sentence specifies that all items whose NAME is "J J JOHNSON" in
the file named ACCOUNT are to be displayed, along with their item-ids.
Thus the entire file can be queried to discover which items meet the user
defined specifications.

Note that all output from the LIST verb will be to the terminal, unless
the LPTR modifier or the " P " option is specified in the ACCESS sentence.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 224

EXAMPLES:

>LIST ACCOUNT WITH BILL-RATE "30" NAME ADDRESS BILL-RATE [CR]

PAGE 1 11:08:37 12 SEP 1984

ACCOUNT ... NAME ADDRESS BILL-RATE

11115 D R MASTERS 100 AVOCADO 30
11085 A B SEGUR 101 BAY STREET 30
11040 3 G MCCARTHY 113 BEGONIA 30
11050 J R MARS HECK 125 BEGONIA 30
11020 J T O'BRIEN 124 ANCHOR PL 30
11095 J B STEINER 124 AVOCADO 30
11110 D L WEISBROD 106 AVOCADO 30
11015 L ~ HARMAN 118 ANCHOR PL 30
11105 C C GREEN 112 AVOCADO 30
11090 J W JENKINS 130 AVOCADO 30
23030 L J DEVOS 201 CARNATION 30

11 ITEMS LISTED.

>LIST ACCOUNT> "23080" AND (= "23095" NAME ADDRESS [cs]O [CR]
:START-DATE CURR-BALNC DEPOSIT [CR]

PAGE 1

: 23095 ACCOUNT
NAME
ADDRESS
START-DATE
DEPOSIT

ACCOUNT
NAME
ADDRESS
START-DATE
CURR-BALNC
DEPOSIT

W E ZUMSTEIN
224 BEGONIA
01 JAN 1968
11.00

23979
J W YOUNG
207 COVE STREET
27 MAR 1970
$89.32
10.00

ACCOUNT 23090
NAME W J HIRSCHFIELD
ADDRESS 230 BEGONIA
START-DATE 01 JAN 1968
CURR-BALNC $20.45
DEPOSIT 10.00

3 ITEMS LISTED.

11:19:58 13 JUL 1977

Sample Usage of the LIST Verb.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 225

;:--\
I

~ ..)

6.27 SORT VERB

I SORT is an ACCESS verb which is used to generate a sorted and
output of selected items and attributes from a specified file.

formatted I
(---

FORMAT:
SORT {DICT} file-name {item-list} {selection-criteria}

{sort-keys} { output specifications {print limiters} }
{modifiers} { (options ... options) }

The output produced by a SORT operation is identical to the output
produced by a LIST operation (refer to the LIST VERB), except that a sort
operation orders the output in a user-specified order. Sort keys are
specified by the BY, BY-DSND, BY-EXP and BY-EXP-DSND modifiers.

6.27.1 BY and BY-DSND MODIFIERS BY and BY-DSND MODIFIERS

FORMAT:

BY attribute-name or BY-DSND attribute-name

The attribute name immediately following one of these modifiers in the
SORT sentence will be used as a sort key. The "-DSND" suffix to a
modifier specifies descending order; the default is ascending order.
(The -EXP suffix (EXPloding) specifies that the attribute specified by the
attribute name has multiple values, and multiple sort keys may be
generated for each item; see next section).

If no sort keys are specified, the item-ids will be used as sort keys, and
(" sorting will be in ascending order. A descending sort on item-ids may be

'produced by sorting on an attribute name that is synonymous with the item
id (has a 0 (zero) in line 2). Multiple sort keys may be used with the
leftmost sort key being the most significant. That is, the items will
first be sorted by the sort key which appears first in the ACCESS
sentence, then by the next sort key on the right, and so on.

Sequencing of a SORT operation is accomplished by comparing
character representations of the attributes specified by the
from left to right, if the attribute is left-justified.

the ASCII
sort keys

If the sort key attribute name is right justified, (has an R in line 9),
then a numeric comparison is performed; if the data is alphanumeric,
numeric portions of the keys are compared numerically, and and non-numeric
portions are compared left-to-right. (Note difference in this comparison
technique and that used in the selection criteria!).

6.27.2 CORRELATIVES and CONVERSIONS WITH SORT KEYS

In generating the values used in the sort key comparison, correlatives in
the attribute definition are processed, but conversion specifications are
not (see section CORRELATIVES AND CONVERSIONS). Also note that several
correlative or conversion codes (MR, ML, MC, and D) do not affect the
results of sorting and should not be used as correlatives in attribute
names which make up sort keys in order to save processing time.

(" CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS
PAGE 226

EXAMPLES:

>SORT ACCOUNT GE "23000" AND LE "23020" NAME START-DATE [CR]

PAGE 1

ACCOUNT ...

23000
23005
23010
23015
23020

NAME ..•••••.•...•..•

H T LEE
W B THOMPSON
W E MCCOY
R M COOPER
S L UNGERLEIDER

5 ITEMS LISTED.

START-DATE.

01 JAN 1968
29 DEC 1969
01 JAN 1968
01 JAN 1968
23 APR 1972

14:11:02 22 NOV 1984

>SORT ACCOUNT WITH CURR-BALNC > "95000" NAME CURR-BALNC [cs]O [CR]
:BY-DSND CURR-BALNC HDR-SUPP [CR]

ACCOUNT ...

11055
35080
11020
23040
23045

NAME

W H KOONS
G A BUCKLES
J T O'BRIEN
P B SCIPMA
P F KUGEL

5 ITEMS LISTED.

CURR-BALNC .

$958,343,75
$447,765.48
$306,755.54
$123,423.22
$ 99,422.34

>SORT ACCOUNT> "35070" NAME DEPOSIT BILL-RATE [cs]O [CR]
:BY DEPOSIT BY BILL-RATE [CR]

PAGE 1 14:15:47 25 OCT 1984

ACCOUNT ... NAME DEPOSIT BILL-RATE

35090
35100
35080
35095
35105
35075
35085

D U WILDE
R W FORSTROM
G A BUCKLES
A W FEVERSTEIN
S J FRYCKI
J L CUNNINGHAM
J F SITAR

7 ITEMS LISTED.

3.17
8.00

10.00
10.00
10.00
10.00
12.00

10.03
10.03

.35

.35

.35

.40

.02

Sample Usage of the SORT Verb with Sort Keys.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 227 ()

6.27.3 BY-EXP and BY-EXP-DSND MODIFIERS - EXPLODING SORTS

I The EXPLODING SORT on multi-values allows the system processors to access
individual values in a multi-valued item, and to sort that item according

(~~~-~~~-~:::-:~::~:~:~-~~~~:-~~:-~~~~::~:------------------------------------
FORMAT:

BY-EXP(-DSND} attribute-name ("explosion limiter"}

The explosion-limiter is of the same form as the print-limiter (see
section PRINT LIMITERS), and serves to limit the explosion to only those
multi-values that pass the limiting condition.

The exploding sort capability is used
effectively multiple items, the explosion
valued attribute or attributes in the data.

to "explode" an item into
being controlled by a multi-

The exploding sort modifiers may be used in SORT or SSELECT sentences. If
SSELECT is used with the exploding modifiers, the select-list that is
generated will have not only the item-id, but the value-number of the
value within its multi-valued set stored in the string. This value-number
is accessible to PICK/BASIC programs via the READNEXT,X form of the
PICK/BASIC READNEXT statement.

The explosion is caused by using the BY-EXP modifier instead of the BY
modifier (or the BY-EXP-DSND instead of the BY-DSND). The attribute that
follows the BY-EXP may be multi-valued; there will be as many pseudo
items created as there are values in the attribute. If multiple BY-EXPs
are specified, the attribute with the maximum number of multiple values

(,will be used to create the items, with other fields being treated as null
'if there is no data for all the values.

(\

A single-valued attribute that is specified in the output specification of
the SORT using an exploding modifier will have the single value repeated
in each occurrence of the sort key.

The following example demonstrates how an Exploding Sort may be used to
sort items according to one value. Sorts may be performed in ascending
order using the "BY-EXP" modifier or in descending order, using the "BY
EXP-DSND" modifier.

A Publisher's mailing-list file is comprised of items which contain the
names, addresses, special type code and subscription dates of all
customers. The Item-Id is a last name concatenated with a first initial
and the item contains the above information for all customers with that
last name and first initial. Attributes in the item are ordered as
follows:

Attr. 1
Attr. 2
Attr. 3
Attr. 4
Attr. 5
Attr. 6

First Name and Initial
First Line of Address
Second Line of Address
Zipcode
Special Type Code
Subscription Date

CHAPTER 6 - ACCESS

PAGE 228

Copyright (c) 1985 PICK SYSTEMS

Each attribute contains a number of values; one value per customer. For
the sake of demonstration, we will assume the file 'MASTER' contains only
the following 2 items:

Item-Id: SMITH*J
001 JOHN T]JIM W]JANET]JOSEPH K
002 11 NORTH]BOX 301] 77 SUNSET]405 NASTER
003 L. I. NY] PLAINS GA] MIAMI FL] IRVINE CA
004 37901]44506]22116]22116]33288
004 4D]7D]9E]3E
005 6/66]8/72]4/76]11/75

Item-ID: JONES*T
001 TOM F]TERRY]TEDDY]TIM
002 1 APPLE]56 FIRST]45 HOLLY]112 ELM
003 AKRON OH]MODESTO CA]TAMPA FL]JACKSON MS
004 44300]33299]2117]98761
005 6D]2D]7D]5D
006 4/75]3/76]11/71]4/73

Thus a master address listing sorted by zip code can be obtained with the
following Access statement:

>SORT MASTER ID-SUPP BY-EXP ZIP FNAME LNAME ADR1 ADR2 ZIP TCODE DATE

The consequent listing is sorted in the order of the zip codes of each
value, as shown below:

FIRST NAME LAST NAME ADDRESS STATE

JANET
TEDDY R
JOSEPH K
TERRY
JOHN T
TOM F
JIM W
TIM

SMITH
JONES
SMITH
JONES
SMITH
JONES
SMITH
JONES

77 SUNSET MIAMI FL
45 HOLLY TAMPA FL
405 NASTER IRVINE CA
56 FIRST MODESTO CA
11 NORTH L. LNY
1 APPLE AKRON OH
BOX 310 PLAINS GA
112 ELM JACKSON MS

ZIP

22116
22117
33288
33299
37901
44300
44506
98761

CODE DATE

9E 4/76
7D11/71
3E11/75
2D 3/76
4D 6/66
6D 4/75
7D 8/72
5D 4/73

If the preceding sort had employed the "BY-EXP-DSND" modifier then the
data would have sorted in the reverse sequence, that is, from the highest
zip code to the lowest.

The exploding-sort modifiers may also be used with explosion limiters.
For example, the Access stutement: >SORT MASTER BY-EXP ZIP > "39999" ID
SUPP FNAME LNAME ADR1 ADR2 ZIP CODE DATE

yields only values whose cor)"esponding zip is greater than 39999:
,

FIRST NAME LAST NAME ADDP.ESS STATE ZIP

44300
44506
98761

CODE DATE

TOM F
JIM W
TIM

JONES
SMITH
JONES

CHAPTER 6 - ACCESS

1 APFLE
BOX 310
112 ElM

AKRON OH
PLAINS GA
JACKSON MS

Sample Usag ~ of EXPLODING SORTS

6D 4/75
7D 8/75
5D 4/73

Copyright (c) 1985 PICK SYSTEMS
PAGE 229

o

()

(

6.28 WITHIN CONNECTIVE

I The WITHIN connective used with a LIST or COUNT verb can retrieve and list I
all of the items which are sub-items of a specified item.

FORMAT:

LIST WITHIN file-name 'item-id' {options ... }

The WITHIN connective may be used to list or count the tree explosion of
one item that contains an attribute which contains one or more
(multi valued) values that are, in turn, item-ids within the same file.
This second level item may also contain, in the same attribute number, one
or more item-ids. The explosion may proceed up to 20 sub-levels. The
DL/ID of the file must have a V code in attribute 8.

ATTRIBUTE 8 FORMAT:

V;;attribute-no.-to-exp1ode

As an example, this capability is useful for bi11-of-materia1 processing,
where you have assemblies and sub-assemblies.

>LIST DICT ASSEMBLY 'ASSEMBLY' [CR]

PAGE 1

ASSEMBLY D/CD

ASSEMBLY D

AMC

34012

S/NAME

23

STRUCT

1

08:39:17 01 JUL 1984

CORR TYP MAX

V; ;2 L 10

() 1 ITEMS LISTED.

Sample Dictionary V code entry

>LIST WITHIN ASSEMBLY 'A200-123, PART# DESC SUB.ASS QOH (I) [CR]

PAGE 1 11:08:37 12 SEP 1984

LEVEL PART NO. DESCRIPTION SUB. ASS ON-HAND

1 A200-123 SERVOS A201-789 53
A201-890

2 A201-789 D.C.MOTOR A202-101 24
A202-102

3 A202-101 D.C.MOTOR PLATFORM 73
3 A202-102 D.C.MOTOR POWER UNIT 54
2 A201-890 SERVO BOARD 12

5 ITEMS LISTED.

Sample Usage of WITHIN connective.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 230

6.29 THE LIST-LABEL AND SORT-LABEL VERBS

I LIST-LABEL and SORT-LABEL are ACCESS verbs that may be used to print I
mailing labels or to produce other special purpose listings.

-- ~~ r)

FORMAT:

LIST-LABEL {DICT} file-name {item-list} {selection-criteria}
{ output specifications {print limiters} }

SORT-LABEL {DICT} file-name {item-list} {selection-criteria}
{sort-keys} { output specifications {print limiters} }
{modifiers} { (options,options, ... options) }

(See the LIST and SORT verbs for parameter information.)

The LIST-LABEL and SORT-LABEL verbs function almost identically with the
LIST and SORT verbs, the only difference being that the LIST-LABEL and
SORT-LABEL listings can have more than one item on each line. Thus the
data associated with each item can be grouped into blocks, and several of
these blocks may be placed across each page of the listing.

LIST-LABEL and SORT-LABEL sentences have exactly the same format as LIST
and SORT sentences, respectively, except that an additional set of
parameters is requested from the user after the ACCESS sentence is
provided. The ACCESS sentence is entered in the same manner as any other
ACCESS sentence, either by the user's terminal at TCL level, or into the
Primary Output Buffer in PROC. The additional parameters are then entered
either through the user's terminal, or through the Secondary Output Buffer
(Stack) in PROC. The system prompts for the additional parameters with a
question mark (?) prompt until a null line of data ([CR]) is entered.

The first additional line of parameters, which must be input after a LIST
LABEL or SORT-LABEL verb, has the following format:

?count,rows,skip,indent,size,space{,C}

These parameters determine only the arrangement of attribute data into
lines of labels, and are entered in the following format:

PARAMETER

count

rows

skip

indent

size

CHAPTER 6 - ACCESS

MEANING

The number of items (labels) across each page

The number of lines printed for each label (height
of each label, in rows)

The number of lines to skip between
(vertical spacing between labels, in rows)

labels

The number of spaces to indent the data from the
left margin

The maximum width allowable for the data associated
with each attribute name (width of each label, in
columns)

Copyright (C) 1985 PICK SYSTEMS

PAGE 231

~/

C)

(

(

space The number of horizontal spaces between items
(horizontal spacing between labels, in columns)

C Optional; if present, specifies that null
attributes are not to be printed. If the C is not
specified, null values will be printed as all
blanks.

Values must conform to the range:

{count * (size + space) + indent) <- (current page width)

where "current page width" is the number defined for the current output
device (terminal or line-printer) by the TERM verb. Otherwise the system
will respond with error message 290:

[290) THE RANGE OF THE PARAMETER "parameter" IS NOT ACCEPTABLE.
where "parameter" is the invalid numeric parameter entered.

The normal non-columnar list heading (page number, time and date) will
print on the top of each page, unless suppressed by the COL-HDR-SUPP
modifier or (C) option. If headings are suppressed, pagination and all
top-of-forms are suppressed, which produces a continuous forms format
without page breaks.

If the parameter "indent" is non-zero, a set of row header data lines will
be requested. These requests will immediately follow the first request
for the six numeric parameters, and are prompted for with question marks.
The parameter "rows" specifies how many row headers will be requested,
because one row header will be printed for each row in the labels. When
the listing is printed, these headers will appear in the left-hand margin
or "indent" area. Area. Null headers may be specified by entering null
lines ([CR]) to the header data requests.

r--
>SORT-LABEL NAMES WITH LAST.NAME = "[SON" BY LAST.NAME [cs)O [CR]
:BY FIRST.NAME NAME ADDRESS CITY/STATE ZIP [CR]

?3,4,l,13,14,5,C
?CUST.NAME.
?ADDRESS ...
?CITY/STATE
?ZIP CODE ..

PAGE 1

CUST.NAME.
ADDRESS ...
CITY/STATE
ZIP CODE ..

CUST.NAME.
ADDRESS ...
CITY/STATE
ZIP CODE ..

AARON AARONSON
1213 N. ELAINE
MELBROOK, OHIO

34523

JACK JOHNSON
845 AVOC1UX)
FLINT, ARIZ.

43321

6 ITEMS LISTED.

11:22:33 25 OCT 1984

ABE AARONSON
18286 FOXGLOVE
BOSTON, MASS.

10042

KELLY JOHNSON
20650 MARCHETA
SURF, NEW MEXI

54000

CITY OF CARSON
P.O. BOX 9905
CARSON, CALIF.

92412

LARRY JOHNSON
525 DUNNEGAN
BOSTON, MASS.

10042

Sample Usage of SORT-LABEL Verb.
(~~\ CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 232

6.30 THE REFORMAT AND SREFORMAT VERBS

REFORMAT and SREFORMAT are equivalent
output is directed to another file
terminal or lineprinter.

FORMAT:

to LIST and SORT, except that the
or to magnetic tape, instead of a

REFORMAT {DICT} file-name {item-list} {selection-criteria}
{ output specifications {print limiters} }
{modifiers} { (options,options, ... options) }

SREFORMAT {DICT} file-name {item-list} {selection-criteria}
{sort-keys} [output specifications {print limiters} }
[modifiers} [(options,options, .•. options) }

NOTE: exploding sort keys are valid, but control breaks and totals are
not. The REFORMAT and SREFORMAT verbs function almost identically with
the LIST and SORT verbs, the only difference being that the output is not
made into a listing. Instead, the output can be used as data to update
items in a file, or to write tape records.

If the PROC stack is not on, the user's terminal will be prompted with:
FILE NAME:

at this point, the user enters the name of the destination file, where the
output of the list processor will be stored, or enters the word TAPE for
magnetic tape. The destination file name is entered either through the
user's terminal, or through the Secondary Output Buffer (Stack) in PROC.
A null response will indicate that the file specified in the ACCESS
sentence will be used as a destination file.

NOTE: to REFORMAT a file onto itself, you must specify an item list or
have a select list present; otherwise, an infinite loop condition may
result, in which items are continually added to the file!

REFORMATTING TO ANOTHER FILE

When reformatting a file onto another file, the first value defined by the
output specifications (i.e., the first column that would appear in a
listing) is used as an ITEM-ID. The remaining values make up the item.
Thus each line that would have occurred in a listing becomes one item in
the destination file.

REFORMATTING TO MAGNETIC TAPE

When reformatting a file to mag tape, the values are concatenated
together, and either truncated or padded at the end with nulls (hex tOo's)
to obtain a record the same length as the current tape record length, as
specified by the T-ATT verb.

One tape record will be written for each line that would have appeared in
the listing. A tape label, which contains the file name, tape record
length (in hex,) time and date, is written on the tape first, unless the
HDR-SUPP or COL-HDR-SUPP modifiers (H or C options) are specified. TWo
End-Of-File marks (EOF's) terminate the tape. ITEM-ID's will be printed
as items are dumped, unless the (I) (ID-SUPPress) option is used.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS
PAGE 233

o

()

(

(

>LIST EMPLOYEE NAME SSN (H) [CR]

EMPLOYEE
572-08-3839

. 215-54-4351
684-34-1100

NAME•
GROMAN,M.
ROSE,J.
CHAPEL,B.

>REFORMAT EMPLOYEE NAME SSN [CR]

FILE NAME:NAMES [CR]

>SORT NAMES SSN HDR-SUPP [CR]

NAMES. SSN
CHAPEL,B. 684-34-1100
GROMAN,M. 572-08-3839
ROSE,J. 215-54-4351

SSN
572-08-3839
215-54-4351
684-34-1100

Example Use of REFORMAT Verb to Create a Cross-Index.

>SORT VENDORS NAME PHONE ADDRESS HDR-SUPP [CR]

VENDORS. .. NAME................ PHONE... ADDRESS.......................

12345 JACKSON ENTERPRISES 523-3888 P.O. BOX 322 JACKSON, MISS.
12888 ACME BOLT CO. 444-8819 17911 SKY PARK CIR IRVINE, CA.

>T-ATT (80) [CR] (Specifies 80-byte tape records.)
TAPE ATTACHED
>SREFORMAT VENDORS NAME PHONE ADDRESS [CR]

IFILE NAME:TAPE [CR]

1 12345
2 12888

2 ITEMS DUMPED.

>T-REW [CR]
>T-READ [CR]

L 0050 12:18:15 28 JUN 1984 VENDORS

RECORD = 1

1 JACKSON ENTERPRISES 523-3888P.O. BOX 322 JACKSON,
51 MISS.

RECORD = 2

1 ACME BOLT CO. 444-881917911 SKY PARK CIR IRV
51 INE, CA

[94] END OF FILE

Output to Magnetic Tape from ACCESS Using SREFORMAT Verb.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 234

6. 31 COUNT VERB

COUNT is an
conditions as
criteria.

ACCESS verb which counts the number of items meeting the
specified by the combination of item-list and selection-

FORMAT:

COUNT {DICT} file-name {item-list} {selection-criteria}
{ (options,options, ... options) }

An ACCESS sentence using the COUNT verb may contain any item-lists or
selection criteria valid for a LIST or SORT sentence, but no sort keys,
break-ons, totals or output specifications will be processed.

The COUNT verb will generate the error message

n ITEMS COUNTED.

where "n" is the number of items meeting the specifications set down by
the item list and selection criteria, if present. If neither item list
nor selection criteria are specified, the number (n) returned will be the
number of items in the specified file.

>COUNT MD WITH 1 = "P]"
126 ITEMS COUNTED.

>COUNT TEST [CR]
10 ITEMS COUNTED.

Count verbs and procs in your MD.

Count all items in file TEST.

>COUNT ACCOUNT WITH BILL-RATE "30" [CR]
11 ITEMS COUNTED.

>COUNT ACCOUNT GE "11115" WITH CURR-BALNC AND WITH BILL-RATE "30" feR]
2 ITEMS COUNTED.

Sample Usage of COUNT Verb.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 235

6.32 SUM VERB

I SUM is an ACCESS verb which generates the total of all the values of one I
(

.... attribute name for a selected set of i terns in a file.
---~---

FORMAT:

SUM {DICT} file-name {item-list} {selection-criteria}
{ (options ... options) }

SUM VERB OUTPUT DISPLAY:

TOTAL OF aaaa IS : xxxx

where aaaa is the header for the attribute name, (the header from line 3,
or the item-id if line 3 is null), and xxxx is the computed total for the
attribute name.

NOTE: correlatives are processed in determining totals for the SUM verb,
but conversions are not processed. Any conversions present will be
applied just before the total is printed. (See CORRELATIVES AND
CONVERSIONS) .

>SUM ACCOUNT CURR-BALNC [CR]

C" JTOTAL OF CURR-BALNC IS: $2,405,118.10

>SUM ACCOUNT CURR-BALNC WITH CURR-BALNC > "100000" [CR]

TOTAL OF CURR-BALNC IS $1,836,287.99

>SUM ACCOUNT> "35055" CURR-BALNC [CR]

TOTAL OF CURR-BALNC IS $605,916.48

>SUM DICT ACCOUNT V/MAX [CR]

TOTAL OF V/MAX IS 2887

>SUM ACCOUNT DEPOSIT WITH CURR-BALNC <"50000"& WITH NO SEWER-ASMT [CR]

TOTAL OF DEPOSIT IS: 460.00

Sample Usage of SUM Verb

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 236

__________ . __ • ___ ~ ___ ~ __ "~,=.,~ .. ~ __ ~.= ,_··_""-'-"'--'-"·_---'-,:..,,,:.:_·1

6.33 STAT VERB

I STAT works identically to SUM, but STAT also provides a count of the I
number of items selected and an average value for the attribute name.

FORMAT:

STAT {DICT} file-name {item-list} {selection-criteria}
{ (options ... options) }

STAT VERB OUTPUT DISPLAY:

STATISTICS OF aaaa :
TOTAL - xxxx AVERAGE ... yyyy COUNT = ZZZZ

where aaaa is the header for the attribute name, xxxx is the generated sum
of all the values for the attribute name (total), ZZZZ is the number of
items selected (count), and yyyy is the average value for the attribute
name (total divided by count).

NOTE: correlatives are processed in determining totals
but conversions are not processed. Any conversions
applied just before the total is printed. (See
CONVERSIONS) .

>STAT ACCOUNT TRASH-CHGS [CR]

for the STAT verb,
present will be
CORRELATIVES AND

STATISTICS OF TRASH-CHGS TOTAL = 504.94 AVERAGE = 7.4255 COUNT = 68

>STAT ACCOUNT CURR-BALNC WITH TRASH-CHGS GE "7.4255" [CR]

STATISTICS OF CURR-BALNC: TOTAL'" $1,199,466.82 AVERAGE - $57,117.4676
COUNT ... 21

>STAT ACCOUNT "11065" "23055" "35050" "35085" BILL-RATE [CR]

STATISTICS OF BILL-RATE: TOTAL = 57 AVERAGE

>STAT ACCOUNT DEPOSIT WITH NO CURR-BALNC [CR]

14.25 COUNT = 4

STATISTICS OF DEPOSIT: TOTAL = 39.00 AVERAGE = 7.8000 COUNT = 5

Sample Usage of STAT Verb

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 237

\ ". -

C)

6.34 THE SELECT AND SSELECT VERBS

I SELECT is an ACCESS verb which provides the facility to select a set of
(" . items or attribute values from a file, and generating a select-list of the

. '" selected item-ids or values. The SSELECT verb combines the SORT
capability with the SELECT capability.

(

FORMAT:

SELECT {DICT} file-name {item-list} {selection-criteria}
{ output specifications {print limiters} }
{modifiers} { (options ... options) }

SSELECT {DICT} file-name {item-list} {selection-criteria}
{sort-keys} { output specifications {print limiters} }
{modifiers} { (options ... options) }

The difference between the SELECT and LIST verbs (or between the SSELECT
and SORT verbs) is in the handling of the attribute name output as
specified by the output specifications. with the LIST or SORT verbs, the
output for each attribute name is directed to the user's terminal, a line
printer, a magnetic tape unit, or a SPOOLER hold file. With the SELECT or
SSELECT verbs, the attribute values and/or item-ids in the output
specifications are saved in a select-list. This "select-list" is a
temporary list which is stored in the user's workspace until the execution
of one more verb. The next verb executed will use the select-list as its
implicit item list. The output from a SELECT or SSELECT sentence is the
select-list and error message 404:

n ITEMS SELECTED.

where "n" is the number of item-ids or values selected and placed in the
select-list.

SELECT is analogous to the LIST verb in that there is no sequencing of the
items. SSELECT will order the selected item-ids or values according to
the sort keys in the ACCESS sentence, exactly like the SORT verb would.

The elements of the select-list may be used as item-ids to reference data
in any file, not just the file referenced in the SELECT or SSELECT
sentence. For instance, if a SSELECT on one file is followed by a LIST
operation on a different file, the sorted list of item-ids generated by
the SSELECT will be used as an item list in the LIST. The LIST processor
will attempt to look up and list the items in the second file with the
same item-ids as those items selected in the first file. If the LIST
processor cannot find an item it will append error message 780:

[780] ITEM "item-id" NOT ON FILE.

to the end of the listing for each item not found.

(_~\ CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 238

In the special case where the SSELECT verb is used with a BY-EXP or BY
DSND-EXP modifer, the elements of the select-list will be multi-valued,
with the first value being the selected data, and the second value being a
three-digit value mark count. In PICK/BASIC, the two values are retrieved
by use of the READNEXT ID,VMC form of the READNEXT statement.

A select-list may be permanently saved by use of the SAVE-LIST verb, or it
may be passed as a parameter to PICK/BASIC or RUNOFF.

The following notes apply to other processes on the system immediately
after execution of a SELECT or SSELECT sentence.

PICK/BASIC The select-list is available to the PICK/BASIC program via the
READNEXT statement. The select-list will override the first
SELECT statement in a PICK/BASIC program. (See PICK/BASIC.)

ACCESS

RUNOFF

The select-list is available to ACCESS verb processors as an
implicit item-list, and will override any item-lists in the
ACCESS sentence. The selection criteria are still processed.
(See FORMING ITEM-LISTS.)

The selected item-ids or values may be inserted into RUNOFF
text by use of the READNEXT command.

SAVE-LIST The select-list may be cataloged into the POINTER-FILE by use
of the SAVE-LIST verb. This saved select-list is now
available to any process on any line through the GET-LIST
verb. (See GET-LIST and SAVE-LIST.)

It is important to note that only the sentence immediately following the
SELECT or SSELECT sentence will have access to the temporary select-list.
This means that if the user makes an error entering the next sentence, /~.
then the select-list will be lost and must be selected again. This can be /
avoided by putting both sentences inside a PROC. If the SELECT or SSELECT
sentence is generated by a PROC, the next sentence must be in the PROC
Secondary Output Buffer (Stack.)

Some of the
select-list.
processed.

available disc space will be used to
This space will be released after the

>SELECT ACCOUNT WITH SEWER-ASMT [CR]

11 ITEMS SELECTED.

>EDIT ACCOUNT [CR]

store the temporary
select-list has been

>SSELECT ACCOUNT > "11045" WITH CURR-BALNC LE "0" [CR]

3 ITEMS SELECTED.

>RUN BP ACCOUNT.ZERO

Sample Usage of Select and SSelect Verbs.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 239 C)

(

(

6.35 THE SAVE-LIST, GET-LIST, AND DELETE-LIST VERBS

The verbs SAVE-LIST, GET-LIST and DELETE-LIST are used to save,
retrieve, and delete selected item-lists.

--

The SAVE-LIST, GET-LIST and DELETE-LIST verbs are useful if several
processing passes are to be made on the same set of item-ids or
attribute values.

The SAVE-LIST verb provides the facility to make a permanent select
list out of a temporary select-list produced by the SELECT, SSELECT
and QSELECT verbs. These permanent select-lists are retrievable via
the GET-LIST verb, and may be deleted via the DELETE-LIST verb. Using
the list processor requires an account to have a file called POINTER
FILE with a DC on line 1 of its 'D' pointer in that account's MD.

FORMAT:

SAVE-LIST list-name

The SAVE-LIST verb will catalog the select-list, (save it in overflow
frames) and add or update the pointer to the select-list in the
POINTER-FILE with the item-id of the assigned list-name. The system
will respond with message 241:

[241] 'list-name' CATALOGED; n FRAMES(S) USED.

where "n" is the number of frames of overflow needed to store the
list. A previously existing catalogued select-list with the same name
will be overlaid by the newly catalogued select-list.

If a SAVE-LIST command is entered at TCL level, it must immediately
follow the SELECT or SSELECT sentence that generated the desired
temporary select-list. If the SAVE-LIST sentence is entered in a
PROC, it must be placed in the PROC Secondary Output Buffer (Stack).
Files other than the POINTER-FILE may be created for saving lists.
They must contain a 'DC' on line 1 of their pointer. To use these
files requires the format:

SAVE-LIST (DICT} file-name list-name

The GET-LIST verb looks up a pointer in the POINTER-FILE and retrieves
the select-list to which it points.

FORMAT:

GET-LIST (file-name} list-name

The list-name specifies which saved list is requested. A POINTER-FILE
item-id will be generated exactly as for a SAVE-LIST verb, and the
POINTER-FILE item will be used to find the saved select-list. The
file-name is specified if not using the POINTER-FILE. If the item
cannot be found, the system will respond with message 202:

[202] 'list-name' NOT ON FILE.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 240

If the item is found, the system will respond with error message 404:

n ITEMS SELECTED.
where "n" is the number of item-ids or attribute values in the saved
select-list. The select-list is now available for use by various
processors. Only one processor will have access to the select-list,
just as for a regular select-list generated by a SELECT or SSELECT.

If the next verb after a GET-LIST is entered in a PROC, it must be
entered in the PROC Secondary Output Buffer (Stack).

The DELETE-LIST verb removes a pointer to a select-list from the
POINTER-FILE and returns the frames containing the catalogued list to
the overflow pool.

FORMAT:
DELETE-LIST {file-name} list-name

A POINTER-FILE item-id will be generated, just as for a SAVE-LIST
verb, and the item will be looked up in the POINTER-FILE, unless file
name is specified. If the pointer item cannot be found, the system
will respond with error message 202:

[202] 'list-name' NOT ON FILE.
where 'list-name' is the name following the
if no name was specified. If the item is
respond with error message 242:

[242] 'list-name' DECATALOGED.

GET-LIST verb, or null,
found, the system will

The pointer item in the POINTER-FILE will be deleted, and the frames
used to store the select-list will be released to the overflow pool.

>SSELECT ACCOUNT WITH BILL-RATE> ".35" BY NAME [CR]

24 ITEMS SELECTED.
>SAVE-LIST OVER. 35 [CR]

[241] 'OVER.35' CATALOGED, 1 FRAME{S) USED.

>GET-LIST OVER.35 [CR]

24 ITEMS SELECTED.
>COPY ACCOUNT [CR]
TO: (NEW-ACCOUNT)

24 ITEMS COPIED.

>GET-LIST OVER.35

24 ITEMS SELECTED.
>RUN BP BILLING-OVER.35

>DELETE-LIST OVER.35 [CR]
[242] 'OVER.35' DECATALOGED.

Sample Usage of SAVE-LIST, GET-LIST, and DELETE-LIST.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 241

C\
)

/' '\

\ /

6.36 THE COPY-LIST, EDIT-LIST AND QSELECT VERBS

I The verb COPY-LIST enables the user to copy a saved select-list to the
terminal, another select-list, or to an item in a file. The EDIT-LIST

(. , verb allows the editing of a saved select-list. The QSELECT verb allows

I the creation of a select-list from attributes in an item or items in a
file.

FORMAT:

COPY-LIST {list-name {account-name} } { (options) }

where list-name and account-name are as described in the SAVE-LIST
section. The options can be:

OPTION

D

N

P

T

x

DESCRIPTION

When copying a select-list to another list, the
original select-list is Deleted after the copy.

When copying a select-list to the terminal, the
automatic end-of-page wait is inhibited.

The select-list is copied to the line-printer.

The select-list is copied to the terminal.

On a terminal or line-printer copy, the data is
displayed in hexadecimal.

If the T or P options are NOT specified, the select-list is to be copied
to another select-list, or to an item; in this case, the system will
respond with the message:

TO:

The general response to this message is of the form:

{ (File-name } list-name

If the list-name form is specified, the original select-list is copied to
the newly specified list-name. If the list-name is not specified, a null
list-name is assumed. The original select-list will be deleted if the D
option had been specified. Note that the new select-list will overwrite
any existing select-list with the same list-name. Also note the use of a
left parenthesis preceding the use of a different file-name to copy to.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

-PAGE 242

If the form with the file-name is used, the select-list will be converted
to standard item format, with each element of the select-list being stored
as an attribute. If the resulting item exceeds the maximum size of 32,267
bytes, it will be truncated at that point.

The EDIT-LIST statement may be used to edit a previously saved se1ect
list.

FORMAT:

EDIT-LIST {file-name} list-name

The system EDITOR will be entered; each element in the
be treated as a line in the EDITOR. All normal
including MERGE, are valid. (See EDITOR.)

select-list will
EDITOR functions,

The QSELECT verb is used to generate a select-list from attribute(s)
within an item or items in a file.

FORMAT:

QSELECT file-name {item-list} { (n }

where the data are extracted from the item(s) specified in the file. The
item-list consists of item-ids separated by blanks, or an asterisk (*)
specifying all items. All data from the items are stored in the se1ect
list, unless the optional (n) specification is used; in this case, only
data from the n-th attribute of each item is used. Multiple values or
sub-values are stored as separate elements in the select-list.

The message "n ITEMS SELECTED" will appear at the conclusion of the
selection, just as if a SELECT or SSELECT statement has been executed;
the generated select-list may then be saved using SAVE-LIST, or used in an
ACCESS statement or PICK/BASIC program.

Just as with any other verb of this format, the item-list may be omitted
by preceding the QSELECT statement with a SELECT, SSELECT, GET-LIST or
another QSELECT statement.

Note the complementary nature of the QSELECT verb (which creates a se1ect
list from an item or items), and the COPY-LIST to a file (which creates an
item from a select-list).

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 243

>COPY-LIST ABC [CR]
TO: DEF [CR]

(. \ , DEF' CATALOGED; 7 FRAMES USED.

>COPY-LIST ALIST (T) [CR]

001 0123-889
002 987-0999
003 111-5690

>COPY-LIST ALIST [CR]
TO: (TEST-FILE) AL [CR]

>EDIT-LIST ALIST SMITH [CR]
TOP

Copies select-list ABC to another
list called DEF.

Copies list ALIST to the terminal.

Data from the select-list elements.

Copies list ALIST to an item "AL"
in the TEST-FILE.

Edits the select-list ALIST.
EDITOR message; top of item.

>QSELECT INV-TRANS 0123-889 987-0999 111-5690 (2) [CR]

3 ITEMS SELECTED. A select-list is built from the
second attribute of the three spe
cified items from the INV-TRANS file.

() >QSELECT SYSPROG-PL COLD-LIST [CR]

31 ITEMS SELECTED. A select-list is built from all of
the attributes in the item COLD-LIST
in the file SYSPROG-PL.

>SSELECT INVENTORY WITH QUANTITY > "200" BY QUANTITY feR]

123 ITEMS SELECTED.
>QSELECT INV-TRANS (2) feR]

123 ITEMS SELECTED.
>SAVE-LIST XYZ [CR]

Generate a temporary select-list.

Generate a new select-list from the
DATA in attribute 2 of those items in
the INV-TRANS file previously selected.
Save this new select-list.

Examples of COPY-LIST, EDIT-LIST and QSELECT usage.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 244

6. 37 ISTAT VERB

I ISTAT is an ACCESS verb which provides file utilization information.

FORMAT:
ISTAT {DICT} file-name [item-list} {selection-criteria}

[modifiers} [(options,options, ... options) }

'File-name' is the name of the file for which the user desires to see the
hashing statistics. The ISTAT verb provides a file hashing histogram (bar
graph) for the selected items in the selected file, as well as the item
count, the total number of bytes in all the items tested, the average
number of bytes per item, the average number of items per group and
standard deviation, and the average number of bytes per group.

The average number of bytes per group is an excellent indicator as to how
well the file space is being utilized. If each group had less than 500
bytes in it, no additional frames of overflow would be needed for the
file. (See first example.) However, if every group had 501 bytes in it,
an additional frame would be linked to each group in the file, just to
contain that one last byte, and the remaining 499 bytes in the linked
frame would be wasted. (See second example.)

>ISTAT TEST-FILE [CR]

FILE- TEST-FILE MODULO= 29
BYTES ITMS

16:11:30 27 DEC 1984

05644 023 *»»»»»»»»»»»>
05645 022 *»»»»»»»»»»»
05646 018 *»»»»»»»»»

05671 017 *»»»»»»»»>
05672 025 *»»»»»»»»»»»»>
05673 020 *»»»»»»»»»>
ITEM COUNT= 365, BYTE COUNT= 15993, AVG. BYTES/ITEM=
AVG.ITEMS/GROUP= 12.5, STD. DEVIATION= 3.7, AVG. BYTES/GROUP=

>ISTAT TEST-FILE> "100" AND < "400" [CR]

43.8
551. 4.

FlLE= TEST-FILE MODULO= 29
BYTES ITMS

16:11:30 27 DEC 1984

05644 003 *»>
05645 001 *>
05646 000 *

05671 002 *»
05672 004 *»»
ITEM COUNT= 15, BYTE COUNT= 512, AVG. BYTES/ITEM-
AVG. ITEM/GROUP- 2.6, STD. DEVIATION= 2.3, AVG. BYTES/GROUP=

Sample Usage of ISTAT Verb.

46.3
93.3.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 245

(

(

6 . 38 HASH-TEST VERB

HASH-TEST is an ACCESS verb which provide file utilization information.
The HASH-TEST verb can be used to determine the best modulo for a given
file. It shows how any or all of the items in the file would hash into
groups, for any given modulo, as well as the other figures and averages
provided by the ISTAT verb.

FORMAT:
HASH-TEST {DICT} file-name {item-list} {selection-criteria}

{modifiers} { (options,options, ... options) }

'File-name' is the name of the file to be tested at a new modulo. The
optional item-list specifies which particular items to be tested. If the
item list is not specified, all items in the file will be tested. After
the HASH-TEST sentence has been entered, the system will prompt for an
additional parameter. This parameter, the modulo to be tested, must be
entered by the user either from the terminal, or by use of the Secondary
Output Buffer (Stack) in PROC. If PROC is not in command, the user's
terminal will be prompted with:

TEST MODULO:
to which the user enters the modulo (number of groups) with which he
wishes to HASH-TEST the specified file. The HASH-TEST verb will then
generate a histogram (bar graph) showing the number of items which would
hash into each group if the file had the test modulo as well as the
statistics generated by the ISTAT verb.

>HASH-TEST JUNK-l [CR]
TEST MODULO: 3 [CR]

FILE= JUNK-l MODULO= 3
BYTES ITMS
00400 001 *»>
00455 001 *»>
00345 001 *»>

12:33:13 22 FEB 1984

ITEM COUNT= 9, BYTE COUNT= 1200, AVG. BYTES/ITEM= 133.3
AVG.ITEMS/GROUP= 3.0, STD. DEVIATION= .0, AVG. BYTES/GROUP= 400.0

(An example showing desirous file utilization.)

>HASH-TEST JUNK-2 [CR]
TEST MODULO: 3 [CR]

FILE= JUNK-2 MODULO= 3
BYTES ITMS
00600 001 *»>
00655 001 *»>
00845 001 *»>

12:33:13 22 FEB 1984

ITEM COUNT= 9, BYTE COUNT= 2100, AVG. BYTES/ITEM= 233.3
AVG.ITEMS/GROUP= 1.0, STD. DEVIATION= .0, AVG. BYTES/GROUP= 700.0

(Note that now there must be 2 frames in each group!)

Sample Usage of HASH-TEST Verb.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 246

6.39 THE T-DUMP AND T-LOAD VERBS, AND THE TAPE MODIFIER

T-DUMP is an ACCESS verb which dumps a specified
T-LOAD is used to restore data form a previously
The TAPE modifier may be used to list or otherwise
DUMP tape.

T-DUMP

file to magnetic tape.
generated T-DUMP tape.
access data from a T-

An ACCESS sentence using the T-DUMP verb may specifiy selection criteria,
but not output specifications.

FORMAT:

T-DUMP {DICT} file-name {item-list] {selection-criteria}
{HEADING "text"} {modifiers} { (options,options, ... options) }

The magnetic tape unit must be attached by the user before the T-DUMP
command is issued. The T-ATT command will also setup the tape record
length to be used in the T-DUMP. (See T-ATT.)

T-DUMP causes a tape label to be written on the magnetic tape drive,
followed by a dump of the selected items. If the optional HEADING and
text are specified, the text is added to the standard heading, which is of
the form "(DICT] file-name". If the optional DICT is included, the
dictionary section of the file will be dumped, and no File Definition
Items (with line 1 ... "D", "DX", "DY" or "DC") will be dumped. An EOF
(End-Of-File) mark is written to the tape after the dump.

The HDR-SUPP connective or (H) option is used to suppress the tape label.

The ID-SUPP connective, or the (I) option is used to suppress the listing
of item-ids that are being dumped.

T-LOAD

An ACCESS sentence using the T-LOAD verb may specifiy selection criteria,
but not output specifications.

FORMAT:

T-LOAD (DICT} file-name (item-list] (selection-criteria}
(modifiers} ((options,options, ... options))

The magnetic tape unit must be attached by the user before the T-LOAD
command is issued.

T-LOAD causes the tape label to be read form the tape; this will also
setup the tape record length from the label. If unlabeled tapes, or non
PICK tapes are used, the appropriate tape record length must be setup in
the T-ATT statement.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 247

o

./

(

The appropriate items, as restricted by the selection crtiteria or item
list, will be loaded into the file. To overwrite existing items, the (0)
option must be specified!

If the ID-SUPP connective, or the (I) option is used, the listing of item
ids being loaded will be suppressed.

The tape will be positioned at the EOF marker at the conclusion of the
load; this will happen even if the T-LOAD is aborted by using a BREAK and
END sequence. (See also PERIPHERALS, T-DUMP & T-LOAD)

THE TAPE MODIFIER

The TAPE modifier may be used to read data from a T-DUMP tape. The
TAPE modifier may be used in any LIST, LIST-LABEL, LIST-ITEM, SUM,
STAT, ISTAT, HASH-TEST or COUNT statement; the data items will be
retrieved from the tape file. Note that a file-name must be
specified as usual when using the TAPE modifier; the dictionary of
this file is still used as the source for the dictionary definitions.

EXAMPLES:

>T-DUMP ACCOUNT> "23060" WITH CURR-BALNC ID-SUPP [CR]

31 ITEMS DUMPED

This sentence dumps to the magnetic tape all items in the
ACCOUNT file which have items with item-ids greater than
"23060" as well as values for attribute CURR-BALNC.

>T-DUMP TEST-FILE [CR]

1 A-002
2 A-088
3 C-999
4 A-560
5 C-888

5 ITEMS DUMPED

This sentence dumps the entire TEST-FILE file to the magnetic tape.

Sample Usage of T-DUMP Verb.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 248

EXAMPLES:

>T-LOAD TEST-FILE ID-SUPP [CR]
'A-002' EXISTS ON FILE.

1 A-088
2 C-999
3 A-560
4 C-888

4 ITEMS LOADED.

This sentence loads all items from the tape to the TEST-FILE;
one item already existed on file, and was not over-written.

>T-LOAD TEST-F "100" AND < "400" (10) [CR]

17 ITEMS LOADED

This sentence loads only those items from the T-DUMP tape that
have item-ids in the range 100 through 400.

Sample Usage of T-LOAD Verb.

>LIST TEST-FILE TAPE [CR]

This sentence will use the dictionary of the TEST-FILE to gen
erate the default output specifications; then will read the
T-DUMP tape and format the data items it finds there in the
standard listing format.

>LIST ACCOUNT WITH CURR-BALNC > "100.00" CURR-BALNC BILL-RATE TAPE [CR]

This statement will select data items from the T-DUMP tape with
CURR-BALNC greater than 100.00, and list the CURR-BALNC and BILL-RATE
fields. CURR-BALNC and BILL-RATE are attribute definition items in
the dictionary of the ACCOUNT file.

Sample Usage of TAPE modifier.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 249

c

6.40 THE LIST-ITEM AND SORT-ITEM VERBS

I The LIST-ITEM and SORT-ITEM verbs combine the action of the COpy verb with I
(.-, the selection criteria and heading/footing capabilities of ACCESS verbs.

/---

()

An ACCESS sentence using the LIST-ITEM or SORT-ITEM verb has the same
general form as a sentence using a LIST or SORT verb, except that no
output specifications are used.

FORMAT:

LIST-ITEM {DICT} file-name {item-list} {selection-criteria}
{modifiers} { (options }

SORT-ITEM {DICT} file-name {item-list} {selection-criteria}
{sort-keys} {modifiers} { (options }

The same rules for item lists, selection criteria, sort keys, modifiers
and options hold for LIST-ITEM and SORT-ITEM sentences as for LIST and
SORT sentences. No output specifications are given, because instead of
listing attribute data, the entire contents of the data items are printed.
The items are copied to the user's terminal or to the lineprinter or
spooler just as the COpy verb would copy them, with three digit line
numbers on the left margin. LIST-ITEM differs from COpy in that LIST-ITEM
is an ACCESS verb, while COpy is a TCL-II verb. This means that a
sentence using the LIST-ITEM verb can specify selection criteria, heading
text and footing text.

OPTION

N

P

F

S

MEANING

If output is to terminal, inhibits the
wait at the end of each page (NOPAGE).

Route output to lineprinter (LPTR).

Causes a Form-feed for each item.
Starts a new page for each item.

Supresses line numbers.

(Equivalent connectives in parentheses)

>LIST-ITEM BP #= "*]" AND #= "$]" (P [CR]

Selects those items in the file named BP which start with
characters other than * or $, and copies them to the printer.

>SORT-ITEM MD WITH 1 "PO" HEADING "PROC: '110' PAGE'P'" (P,F) [CR]

Copies all the user's PROCs (those items in his MD with a PO
in attribute 1) to the lineprinter, one PROC per page, using
the specified heading, in sorted order by item-ida

Sample Usage

C': CHAPTER 6 - ACCESS

of the LIST-ITEM and SORT-ITEM Verbs.

Copyright (c) 1985 PICK SYSTEMS
PAGE 250

6.41 CONTROLLING AND DEPENDENT ATTRIBUTES: AN INTRODUCTION

----------~---
There is the facility in ACCESS to define a set of attributes that are
associated together for listing or other purposes. Such an associative r~
set of attributes have one "Controlling" attribute, with the other (.-/
attributes in the set being called "Dependent" .--

An associative set of attributes is used where there is a definite
relationship between the attributes, and the attributes are typically
multi-valued. The "Controlling" attribute has multiple values;
associated with each one of these multi-values is a corrosponding set of
values in each of the dependent attributes. The dependent attributes may
in turn have sub-multi-values; however, each set of sub-multi-values is
considered one value for associative purposes.

The controlling-dependent set must be maintained in a particular format by
whatever program is updating the file; see the FILE STRUCTURE section for
a general discussion on the physical item format and the usage of value
delimiters.

The controlling attribute may be used in several
formatting or to limit or control the data output.

ways to improve

For example, if the controlling attribute of an associative attribute set
has a print-limiter on it, the dependent attributes will automatically be
limited also. That is, if only the first and the seventh multi-values of
the controling attribute pass the print-limiting test, only the first and
the seventh multi-values of all associated dependent attributes will be
output. In columnar formats, there may be a blank line output when print-
limiters are so used. 1\

The controlling-dependent attributes are specified by the "c" and "D"
structure codes in attribute 4 of the dictionary items. This is described
in the next section.

There may be more than one associative attribute set in a file.

Dependent attributes may not be specified in an output
without the controlling attribute also being specified.
special purposes, a synonym attribute definition without the
code may be used for listing the dependent attribute data by

specification
However, for

"D" structure
itself.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 251 (" . \

. c/

(

As an example, consider the system ACC file, which contains the accounting
history data. Attribute 4 of this file stores the dates that the user has
logged on; redundant values are not stored, that is, if a user logs on
more than once in the same day, only one date is stored. Thus values in
this attribute are unique. This attribute is considered the Controlling
attribute of the associative attribute set.

Attributes 5, 6, 7 and 8 store the actual time that the user logged on,
the connect-time associated with each logon session, the number of CPU
units used, and the number of line-printer pages printed respectively.
Since there may be more than one of these sets associated with a
particular date logged on, these are stored as sub-multi-values.
this indicates a controlling attribute which controls dependent

For example, a listing of an item "SMITHtO" in the file may look like:

>LIST ACC "SMITH#O" (H) [CR]

ACC DATE TIME CONN ... UNITS LPTR
* * * * SMITH#O 03/01/84 lO:33AM 00:10 222 11 1
04:15PM 00:05 23 1

03/03/84 11:12AM 00:33 1123 78 2
12:13PM 00:04 34 2
01:01PM 01:03 3090 6 2

There are two dates in the Controlling attribute, 03/01/84 and 03/03/84;
associated with these two dates are two sets of values in the attributes
TIME, CONN, UNITS and LPTR. (These are marked as "1" and "2" on the far
right). The data under the DATE column are stored as two multi-values;
that under the other columns are also two multi-values, but each is
further comprised of sub-multi-values, two in the first set and three in
the second.

The internal format of the item SMITH#O is shown below; the
representation here is not the actual data, since dates and times are
actually stored in an internal format, but they are shown as if stored in
the format displayed above, for clarity. The symbols [am], [vrn] and [svrn]
stand for attribute mark, value mark and sub-value mark, respectively.

SMITH#O[am] [am] [am] [am] 03/01/84 [vrn] 03/03/84 [am]
.. attribute 4

10: 33AM[svrn] 04:15PM[vrn] 11: 1 2 AM [svrn] 12: 13PM[svrn] 01: 01PM[AM]
.. Attribute 5 .. .

00:10[Svrn]00:05[vrn]00:33[svrn]OO:04[svrn]01:03[vm]
.. Attribute 6

11 [Vm] 78 [svrn] [svm] 6 [am]
.. Attribute 7

222 [Svrn] 23 [vrn]1123 [svrn] 34 [svrn] 3090 [am]
.. Attribute 8

Copyright (c) 1985 PICK SYSTEMS () CHAPTER 6 - ACCESS
PAGE 252

6.42 CONTROLLING AND DEPENDENT ATTRIBUTES: C AND D CODES

'C' and 'D' structure code operators define controlling and dependent
attributes. Attribute 4 of attribute definition items is reserved for 'C' C' ~
and 'D' structure definition codes. A 'C' code indicates a controlling '.
attribute; a 'D' code indicates a dependent attribute.

'C' CODE FORMAT:

C;amc;aIDc; ... amc

where 'c' is the capital letter C, and each 'amc' is a dependent attribute
number.

In order to be a controlling attribute, the attribute definition item must
have a 'c' code in line 4. This code must contain the attribute numbers
of all the dependent attributes for the controlling attribute.

'D' CODE FORMAT:

D;amc

where'D' is the capital letter D, and 'amc' is the single attribute
number of the attribute which controls the dependent attribute.

EXAMPLE:

In the following example attribute 1, the check number, controls
dependent attributes 2, the check amount, and 3, the check date. In the
first example ACCESS sentence, all values for each attribute name are
listed. In the second example ACCESS sentence, the user only wishes to
see data on check number 502, so he uses a print limiter on the attribute
name CK-NO. Since the attributes named CK-AMOUNT and CK-DATE are
dependent upon the attribute named CK-NO, only the check amount and date
for check number 502 are printed.

The dictionary of the CHECK-REGISTER file looks like:

item-id CK-NUMBER CK-AMOUNT CK-DATE
001 A A A
002 1 2 3
003 Check Number Amount Date

. 004 C;2;3 D;l D;l
005
006
007 MR2$ D
008
009 R R L
010 3 12 15

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 253

-;/

C)

(

(

(

The item with item-id "JAN" in the CHECK-REGISTER file looks like:

item-id
001
002
003

JAN
50l[vm] 502[vm] 503
12300 [vm]400[vm]4488
3289[vm]329l[vm]329l

(Multi-valued check numbers)
(Multi-valued check amounts)
(Multi-valued check dates)

>LIST CHECK-REGISTER "JAN" CK-NUMBER CK-AMOUNT CK-DATE SUPP [CR]

CHECK-REGISTER CHECK NUMBER AMOUNT DATE

JAN 501
502
503

$123.00 01 JAN 1984
$4.00 03 JAN 1984

$44.88 03 JAN 1984

>LIST CHECK-REGISTER "JAN" CK-NUMBER "502" CK-AMOUNT CK-DATE SUPP [CR]

CHECK-REGISTER CHECK NUMBER AMOUNT DATE

JAN
502 $4.00 03 JAN 1984

Sample Use of Controlling and Dependent
Structure-definition Codes (With Print Limiting)

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 254

6.43 SUMMARY OF CONVERSION AND CORRELATIVE CODES

Processing codes may be
CONVERSION codes, depending
applied to the data.

specified as either CORRELATIVE codes
upon when the user wants the codes to

or
be

An ACCESS attribute defining item may specify a processing code either in
line 7, where it is called a CONVERSION code, or in line 8, where it is
called a CORRELATIVE code.

During execution of an ACCESS sentence, the data in the items being listed
is represented in three different formats. The first is the "stored"
format, which is the format of the attributes exactly as they appear in
the items in the file. Whenever a piece of data is retrieved from a file
it is picked up in stored format.

The CORRELATIVE code, if any, may then be applied to the data, converting
it to "intermediate" format. The intermediate format is used whenever:

1. The attribute name is part of a sort key

2. The data is compared to a selection criterion

3. The attribute name has a print limiter

4. The attribute name has a TOTAL or GRAND-TOTAL connective

5. The data produces a control break

6. The data is printed, except on break lines

CONVERSION codes are applied as output conversions to the intermediate
format data whenever the data is printed, including break lines. This
transforms the data from "intermediate" format to "external" format. The
data is printed in external format.

If a CONVERSION is specified for an attribute name which is followed by a
selection criterion, the conversion is applied as an input conversion to
the values in the ACCESS sentence to form the selection criterion value.

Conversions and correlatives may be multi-valued, in which case they are
separated by a value-mark (VM = control shift M = Hex 'FD').

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 255 C· ";
./

(

.-

C

NAME

A

C

D

F

G

L

MC

ML

MR

MT

MX

P

R

S

T

Tfile

U

DESCRIPTION

ARITHMETIC. Used to compute mathematical expressions.
Converted to an "F" code at run-time.

CONCATENATE. Used to concatenate attribute values.

DATE. Used to convert dates to external format.

FUNCTION. Used to compute a mathematical function on attribute
values.

GROUP. Used to extract one or more fields seperated by a given
delimiter. delimiter.

LENGTH. Used place constraints on what kind of data will be
returned, based on the length.

MASK CHARACTER. Used to convert strings to upper or lower case,
or to extract alphabetic or numeric characters from strings.

MASK DECIMAL. (Left justified) Used to format and scale numbers
and dollar amounts (same as PICK/BASIC format string).

MASK DECIMAL. (Right justified) Same as ML.

MASK TIME. Used to convert time of day from internal to
external format.

MASK HEXADECIMAL. Used to convert ASCII character strings to
their hexadecimal (Base 16) representations.

PATTERN MATCH. Used to return only those data values which
match the specified pattern.

RANGE. Used to return only those data values which fall within
the specified ranges.

SUBSTITUTION. Used to substitute the data value for none null
or zero values.

TEXT EXTRACTION.
attribute value.

Used to extract a fixed field from an

FILE TRANSLATION. Used to convert attribute values by
translating them through another file.

USER-DEFINED. Used to evoke assembly language routines to
perform special user-written conversions or correlatives.

Correlative and Conversion Processing Code Summary.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 256

6.43.1 'G' CODE: CORRELATIVE AND CONVERSION GROUP EXTRACTION CODE

I The 'G' code is used to extract from a value,
separated by a given delimiter.

FORMAT:

G[m}*n

PARAMETER DEFINITIONS:

G is the group extraction code.

one or more

m optionally specifies the number of fields to skip.

fields, I

If m is not specified, zero is assumed, and no fields
are skipped.

*

n

Represents any single non-numeric character
which is the field separator, except a
minus-sign (-), or any system delimiter
(SM, AM, VM, SVM or SB).

is a decimal number which is the number of
contiguous fields to be extracted.

If an attribute value consists of
delimiter, the 'G' code can be used
fields.

multiple fields separated by a
to extract one or more contiguous

EXAMPLES:

G Code Attribute Value Output Value

G/l 04/02/1984 04
Gl/l 04/02/1984 02
G2/1 04/02/1984 1984
G/2 04/02/1984 04/02
Gl/2 04/02/1984 02/1984

GO*l 123*888*444 123
G1*2 123*888*444 888*444
G2*1 123*888*444 444
G3*1 123*888*444 (null)

G1*1 *WRITTEN 21 DEC 1984 WRITTEN 21 DEC 1984

Sample Usage of 'G' (GROUP EXTRACTION) Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 257

'<..,- --,-

6.43.2 ILl CODE: CORRELATIVE AND CONVERSION LENGTH CODE

(- I The LENGTH code places length constraints on which data values will be
! returned, or returns the length of the data.
--

FORMAT:

Ln{ ,m}

PARAMETER DEFINITIONS:

n

m

EXAMPLES:

LO

L7

L3,5

used by itself, is the exact number of characters the
defined attribute data value must match. When "m" is
present, "n" equals the minimum length parameter,
of a length range.

when present, equals the maximum data length parameter.

Returns the length of the data string submitted to
the length processor.

Return the data value if it is equal to 7 characters
long. If the data does not meet the criteria then null
is returned.

Return the data value if it is greater than or equal to 3
characters long or less than or equal to 5 characters long.

Sample Usage of the ILlength Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 258

6.43.3 'R' CODE: CORRELATIVE AND CONVERSION RANGE CODE

The RANGE code returns data values which fall within the specified ranges.
Multiple ranges are allowed.

FORMAT:
Rn,m{in,m }

PARAMETER DEFINITIONS:

n

m

is the minimum range parameter.

is the maximum range parameter.

When using negative range sets, the most negative number must be stated
first.

Note that any delimiter (except system delimiters) may be used to separate
the numbers in a range. However, for the sake of clarity, minus sign
should not be used, as the minus sign may refer to the number(s) in the
range.

In all cases, if the range(s) specifications are not met, null is
returned.

EXAMPLES:

RlOO,200 Returns the data value if it falls within the ranges of
100 to 200.

R400,600;750,950 Returns the data value if it falls within the
ranges of 400 to 600 or 750 to 950.

-------------------~--
Sample Usage of the 'R'ange Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 259

6.43.4 'pI CODE: CORRELATIVE AND CONVERSION PATTERN CODE

based on PATTERN matching I The 'pI code places restrictions on output

(" .-~~~~:-~:-~~-~:::~~~::~--~---
the I

(

()

FORMAT:

P (op){ ; (op) }

PARAMETER DEFINITIONS:

P is the PATTERN MATCH code.

op is a literal or a pattern match operator.

The Pattern Match code returns data values which match the specified
pattern. If the data does not match the specified pattern exactly, then
null is returned.

Any combination of PATTERN MATCH operators is allowed.

PATTERN MATCH OPERATORS:

nN An integer number followed by the letter 'N' , which tests for
that number of of numeric characters.

NA An integer number followed by the letter 'A' , which tests for
that number of alpha characters.

NX An integer number followed by the letter 'X' , which tests for
that number of alpha-numeric characters.

"LITERAL" A literal string, which tests for that literal string.

EXAMPLES:

P(3N-2N-4N);(9N) Returns Social Security numbers, either 9 numeric
characters or 3 numeric, hyphen, 2 numeric,
hyphen, 4 numeric.

P«3N) 3N-4N);(10N) Returns telephone numbers, either 10 numeric
characters or 3 numeric in parenthesis, space,
3 numeric, hyphen, 4 numeric.

Sample Usage fo the 'p'attern Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 260

6.43.5 IS' CODE: CORRELATIVE AND CONVERSION SUBSTITUTION CODE

I The'S' code substitutes the data value of a referenced attribute with a I
specified attribute, if the original value is not null or zero.

FORMAT:

S; op1;op2

PARAMETER DEFINITIONS:

S is the SUBSTITUTION code

op1 may either be a delimited text string or an AMC numeric value
which is used for the substitution if the data value tested
is not null or not zero.

op2 may either be a delimited text string or an AMC numeric value
which is used for the substitution if the data value tested
is null or zero.

The Substitution code substitutes the current data value with opl if the
data value is not null or zero. If the current data value is null or
zero, it will be substituted with op2.

EXAMPLE:

S;4 i 'XXX' This specifies that if the data is not
equal to zero or null, then it will be
replaced by the contents of attribute 4.
If it is equal to zero or null,
it will be replaced by the string 'XXX'.

An additional feature of the Substitution code is that
conjunction with the Function Processor, it may serve to
zero, and take different actions according to what
encounters.

if it is used in
test for null or
kind of data it

F1(Si*i'NORMAL VALUE') This specifies that if attribute 1 is null
or zero, the string tl NORMAL VALUE"
will be used, otherwise the contents
of attribute 1 will be used.

Sample Usage of the 'S'ubstitution Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 261

6.43.6 'C' CODE: CORRELATIVE AND CONVERSION CONCATENATION

I The 'C' code provides the facility

(-:~~::~:-~~:~::~---
to concatenate attributes and/or I

(II

(

FORMAT:

C[x}element x {element x }

PARAMETER DEFINITIONS:

C

x

is the concatenate code.

is the character to be inserted between the concatenated
attributes and/or literals. A semicolon (i) is a
reserved character that means no separation character
is to be used. Any non-numeric character (except system
delimiter) is valid, including blank.

element is an attribute mark count (AMC), or any string
enclosed in single quotes ('), double quotes (")
or backslashes (\), or is an asterisk (*),

EXAMPLES:

which specifies the last generated value (from a
previous Conversion or Correlative operation).

ATTRIBUTE VALUES C CODE RESULTANT OUTPUT
014 SMITH Ci "NAME" : 14,15 NAME:SMITH,JOHN H.
015 JOHN H.

001 DIME Ci l / 2 DIMEjDOZEN
002 DOZEN

001 DICK PICK F i 'ATT1=' i (C*: 1) ATT1=DICK PICK

Sample Usage of 'C'oncatenate Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 262

6.43.7 'T' CODE: CORRELATIVE AND CONVERSION TEXT EXTRACTION

I The 'T' code is used
. attribute value.

FORMAT:
T[m, }n

PARAMETER DEFINITIONS:

to extract a fixed

T is the text extraction code.

number of characters

m is the optional starting column number.

n

Is the necessary separator when 'm' is specified.

is the number of characters to extract.

from an I

A contiguous string of characters may be extracted from an attribute value
via the use of a 'T' code. This is useful for fixed field data, or for
truncating data, which is sometimes neccessary to prevent folding.

If the form 'Tn' is specified, In' characters will be extracted, either
from the left or the right, depending upon the attribute definition item's
V/TYPE (line 009). If the V/TYPE is 'L' (or Ln), the 'Tn' form of the
Text code will extract the first In' characters of the attribute value.
If the V/TYPE is 'R' (or Rn), the 'Tn' code will extract the In' rightmost
characters of the attribute value.

If the form 'Tm,n' is specified, then In' characters, starting at column
'm', will be extracted. The 'Tm,n' form always counts columns and
extracts characters from left to right, regardless of the attribute
definition's V/TYPE.

T CODE ATTRIBUTE VALUE JUSTIFICATION VALUE OUTPUT

T3 ABCDEF L ABC
T3 ABCDEF R DEF
T3,5 HELLO OUT THERE L LLOO
T3,5 HELLO OUT THERE R LLOO
Tl,ll THIS IS A LONG STRING L THIS IS AL
T4,7 123SMITH CR L SMITH
T4,7 848JOHNSONDB L JOHNSON
T3 123SMITH CR L 123
T3 848JOHNSONDB L 848
T2 123SMITH CR R CR
T2 848JOHNSONDB R DB

Sample Usage of IT' (Text Extraction) Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 263

/'

6.43.8 'D' CODE: CORRELATIVE AND CONVERSION DATE CODE

I The 'D' code provides the facility for converting dates to or from a I
(

compact internal format suitable for arithmetic processing.

(

~--

FORMAT:

D{n}{*m}{s}

PARAMETER DEFINITIONS:

D is the DATE FORMAT code ..

n is an optional single digit number which specifies the number of
digits to occur in the year on output. If In' = 0, no year will
appear in the date. n = 0, 1, 2, 3 or 4 is valid; n = 4 is
assumed default.

* Stands for any single non-numeric character which specifies the
delimiter between fields for group extraction. (* May not be a
system delimiter.)

m is a single digit number (required parameter if * is specified),
that specifies the number of fields to skip for group
extraction.

s stands for either any single non-numeric character that may be
specified to separate the day, month and year on output, or a
special date sub-code. If's' is specified, the format will be
like 12-31-1967. If's' is not specified, the format will be
like 31 DEC 1967.

DATE FORMAT SUB-CODES

D Day of month.
I Internal date. Reverse conversion.
J Julian day of year.
M Month numeric.
MA Month alphabetic.
Q Quarter numeric.
W Weekday numeric. Monday 1.
WA Weekday alphabetic.
Y Year. Default = 4 digits.

Dates may be stored in items as numbers, and may be printed in any of
several different formats in a listing, by use of the 'D' (Date
conversion) code. This allows the user to store dates with fewer bytes of
disc space, and to perform mathematical calculations involving stored
dates.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 264

NOTES:

Notice the use of the '*m' option, which will perform a Group Extraction
before applying the date conversion. (See 'G' CODE.)

When using the 'D' (Date conversion) code on input: if no year is
specified, the current year will be used. If only two digits are
specified for the year, then years entered as 30 to 99 will be stored as
1930 through 1999, and years entered as 00 to 29 will be stored as 2000
through 2029.

EXAMPLES:

D CODE INTERNAL FORMAT EXTERNAL (LISTING) FORMAT

D 5992 27 MAY 1984
D/ 5992 OS/27/1984
D- 5992 05-27-1984
DO 5992 27 MAY
DO/ 5992 OS/27
D2* 5992 05*27*84
D%l ABC%5992 ABC%27 MAY 1984
D%l/ ABC%5992 ABC%05/27/1984
D%l- ABC%5992 ABC%05-27-1984
DO%l ABC%5992 ABC%27 MAY
DO ABC%5992 ABC%5992

D4- 1234 05-18-1971
DY 1234 1971 (4-digit year)
D2Y 1234 71 (2-digit year)
DO 1234 2 (2nd quarter)
DD 1234 18 (18th day)
DM 1234 5 (5th month)
DMA 1234 MAY
DJ 1234 138 (138th day of year)
DW 1234 2 (2nd day of week)
DWA 1234 TUESDAY
DI 5/18/71 1234 (Reverse conversion)
DI]D2 5/18/71 18 MAY 71 (Multi-value conversion)

Sample Usage of 'D' (Date Conversion) Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 265

/" '\

"-

(

6.43.8.1 INTERNAL DATE FORMAT

---------------------------------~--
The INTERNAL
less bytes
manipulating
31, 1967.

NOTES:

DATE format allows storage of the date in a form which uses
of storage on the disk and also allows mathematical
of that internally stored value. Zero Date equals December

The internal format of any date is the integer number of days between that
date and the zero date, December 31, 1967. Dates before 12/31/67 are
stored as negative numbers; dates after 12/31/67 are stored as positive
numbers. To give the user a feel for the use of dates in internal format,
examples of dates in both internal and external (listing) format are shown
below.

EXAMPLES:

INTERNAL FORMAT

-173573
-100000

-69942
-10000

-1000
-100
-10
-1
o
1

10
100

1000
10000
11689

100000

EXTERNAL (LISTING) FORMAT

12 OCT 1492
19 MAR 1694
04 JUL 1776
14 AUG 1940
05 APR 1965
22 SEP 1967
21 DEC 1967
30 DEC 1967
31 DEC 1967
01 JAN 1968
10 JAN 1968
09 APR 1968
25 SEP 1970
18 MAY 1995
01 JAN 2000
13 OCT 2241

Sample Dates in Internal and External (Listing) Format.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 266

6.43.9 'MT' CODE: CORRELATIVE AND CONVERSION MASK TIME CODE

I
The MT code provides the facility for converting times to or from a 1
compact internal format suitable for arithmetic processing. ~, __ r

FORMAT:
MT[H}[S}

PARAMETER DEFINITIONS:

MT is the Mask Time code specification.

H is the
format.
assumed.

capital letter H, which optionally specifies 12 hour
If 'H' is omitted, 24 hour (military) format is

S is the capital letter S, which optionally specifies seconds on
output. If'S' is omitted, seconds are not listed on output.

The internal time format is
external time is 24 hour
format (e.g., 11:25:59PM).

the number of seconds from midnight. The
military format (e.g., 23:25:59) or 12 hour

When codes MTH or MTHS are used, 12
For input conversion, then, the time
following the numeric time (AM is
always printed immediately following

hour external format is specified.
is entered with AM or PM immediately
optional). On output, AM or PM is
the numeric time.

NOTE: 12:00 AM is considered midnight, and 12:00 PM is considered noon.

,-j

AM and PM will be ignored on input if code MT i£ specified. Illegal'
values are converted to null on input. "'-7'

MT CODE INPUT VALUE STORED VALUE OUTPUT VALUE

MT 12 43200 12:00
MTH 12 0 12:00AM
MTS 12 43200 12:00:00
MTHS 12 0 12:00:00AM
MT 12:15AM 44100 12:15
MTH 12:15AM 900 12:15AM
MT 1 3600 01:00
MTH 1 3600 01:00AM
MT 6AM 21600 06:00
MTH 6AM 21600 06:00AM
MT 1PM 3600 01:00
MTH 1PM 46800 01:00PM
MT 13 46800 13:00
MTH 13 46800 01:00PM
MT XYZ NULL BLANK

Sample Usage of MT (MASK TIME) Code

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 267

(

6.44 DEFINING FILE TRANSLATION: Tfi1e CODE

I The Tfi1e code provides a facility for converting a value by translating I
through a file.

FORMAT:

ARGUMENTS:

T

file

c

n

i-arnc

o-amc

b-amc

T(DICT} [fi1e;cn(;vmc};i-amc;o-amc](;b-amc}

is the code name.

is the name of the file through which translation takes place.
The file narne preceded by "DICT" indicates a dictionary.

is the translate sub-code, which must be one of the following:

v Conversion item must exist on file, and the specified
attribute must have a value. Aborts with an error
message if translation is impossible.

C Convert if possible; use original value if item in
translate file does not exist or has null conversion
attribute.

I Input verify on1y--functions like 'V' for input and
like ·C· for output.

0 Output verify on1y--functions like ·C· for input and
like 'V' for output.

X Convert if possible, otherwise return a null value.

is an optional value mark count specification. If the c
element is followed by a number, the translate will return
only the value in VMC n, instead of the complete collection of
values concatenated together with blanks. Subva1ues will be
returned with included blanks.

is the decimal attribute number for input conversion (in
PICK/BASIC). The input value is used as an item-id in the
specified file, and the translated value is retrieved from the
attribute specified by the i-arnc. (If the i-arnc is omitted,
no input translation takes place.)

is the attribute mark count for output translation.
ACCESS creates a listing, the attribute values will be
up in the specified file, and the attribute specified
o-amc will be listed instead of the original value.

When
looked
by the

if specified, will be used instead of o-arnc during the listing
of break-on and total lines.

The value to be translated is used as an item-id for retrieving an item
from the defined translation file. The translated value is retrieved from
the specified attribute of the item.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 268

Item CARDS in DICT MUNCH is:

001 S
002 4
003 CREDIT CARDS
004
005
006
007 TCARD-FILE;C;;l
008
009 L
010 20

Data section of MUNCH file is:

Item-id:
001:
002:
003:
004:

DENNY'S
HAMBURGERS
BRISTOL STREET
5563072
MC]V

Data section of CARD-FILE is:

Item-id:
001:

MC
MASTER CHARGE·

CARLS-JR
HAMBURGERS
BRISTOL STREET
9792231
NONE

V
VISA

MEYERHOFS
SANDWICHES
S.COAST VILLAGE
8830002
MC]V]BA

BA
BANKAMERICARD

>LIST MUNCH "DENNY'S" "CARLS-JR" "MEYERHOFS" CARDS HDR-SUPP [CR]

MUNCH CREDIT CARDS

DENNY'S MASTER CHARGE
VISA

CARLS-JR NONE
MEYERHOFS MASTER CHARGE

VISA
BANKAMERICARD

Sample Usage of the Tfile (Translate) Code.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 269

6.45 DEFINING ASCII AND USER CONVERSIONS: MX AND U CODES

The MX code is used to convert strings to or from their hexadecimal
equivalents. The 'u' code allows the user to write his own conversions in

i assembly language.

()

FORMAT:

MX

The MX code specifies that character strings are to be converted, one
character (byte) at a time, into their hexadecimal (base sixteen)
representations. Each character will be converted to a 2-digit (one byte)
hexadecimal number. This feature is useful in finding non-printable
characters in data strings.

FORMAT:

Unxxx

The 'u ' code specifies an entry point into a user-written piece of
software.

where:

u is the code name.

n is the entry point number, and

xxx is the hexadecimal FID (Frame ID) of the frame containing
the user's assembly code.

\ WARNING: Do not use the U code unless you fully understand its action at .\
the assembly-code level!

INPUT VALUE

ABC
JOHN
john
HI THERE

CONVERTED VALUE

414243
4A4F484E
6A6F686E
4849205448455245

Sample Usage of the MX (Mask Hexadecimal) Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 270

6.46 DEFINING MATHEMATICAL OR STRING FUNCTIONS: F CODE

I The 'F' code is used to perform mathematical operations on the attribute I
values of an item, or to manipulate strings. r'\.

---~ .. /
All operations specified by an 'F' code operate on the last two entries in
a push-down stack. This push-down stack may be visualized as follows:

STACKI

STACK2 I

STACK3 I
STACK4

STACKS

etc ...

STACKI is the top position in the stack, STACK2 is the next position, etc.
As a value is pushed onto the stack, it is pushed into position STACKl;
the original value of STACKI is pushed down to STACK2; and so on.

An 'F' code is comprised of any number of operands or operators in reverse
Polish format separated by semicolons. When an operand specification (a
numeric attribute number or constant, or a string) is encountered, the
value is "pushed" onto the top of the stack. When an operator is
encountered, the specified operation is carried out on the top one or two (' '\
entries in the stack, depending upon the operator. When the entire 'F' \.. /
code has been processed, the value printed is the value in the top of the
stack.

FORMAT:

Felement;element;element ...

An "element" may be any of the following: a numeric AMC specifying an
attribute value to be pushed onto the stack (optionally followed by an "R"
to specify that the first value or sub-value of an at tributeR is to be
used repeatedly when using it against a multi-valued value or sub-value).

An element may also be of the form 'Cn' where 'n' is a numeric constant to
be pushed onto the stack; a 'D' which specifies that the current date is
to be pushed onto the stack; a 'T' whih specifies that the current time
is to be pushed onto the stack; a special 2-character operand; or an
operator which specifies an operation to be performed on the top two
entries in the stack. The operators are listed in figure A.

The relational operators compare STACKl to STACK2; after the operation
STACKl will contain either a 1 or 0, depending upon whether the result is
true or false, respectively (e.g., if the 'F' code were F;C3;C3;= then
STACKl would contain a 1).

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 271

(

OPERATOR

*{n}

/

R

+

[]

S

P

(...)

OPERATION

Multiplication of the top two entries in the stack.
If the optional "n" is used, the result is "descaled"
by n, that is, it is divided by 10**n.

Division of STACKl by STACK2, result to STACKl

Same as "/" but remainder is returned to top of
stack (instead of quotient).

Addition of the top two entries in the stack.

Subtraction of STACK2 from STACK1, result to STACKl

Concatenate; the string value from STACKl is concatenated
onto the end of the string value from STACK2.

Sub-string; a subset of the string value from STACK3
is extracted, using STACK2 as the starting character
position, and STACKl as the number of characters to
extract; the result is placed on top of the stack.
This is equivalent to the PICK/BASIC [m,n] operator, where
"m" is in STACK3 and "n" in STACK2.

A total surn of all previous computations is placed
at the top of the stack.

Exchanges top two positions in stack.

Pushes the top stack value back onto the stack; that is,
it duplicates the top stack value.

Conversion operator; a standard conversion operator
such as D (date), G (group), etc. may be specified
and will operate on the top stack value; the result
will replace the original top stack value.

The following operators operate on the top 2 stack entries, and a result
of zero or one is placed on the top of the stack, depending on whether
the condition is not or is satisfied.

=
<
>

[
]

"Equal" relational operator.
"Less than" relational operator.
"Greater than" relational operator.
"Not equal" relational operator.
"Equal to or greater than" relational operator.
"Equal to or less than" relational operator.

'F' Code Operators.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 272

F Code F;C3;C2;Cl;+;*'

STACKl 3 STACKl 2 STACKl 1 STACKl 3 STACKl
STACK 2 STACK2 3 STACK2 2 STACK2 3 STACK2
STACK3 STACK3 STACK3 3 STACK3 STACK3
STACK4 STACK4 STACK4 STACK4 STACK4
STACKS STACKS STACKS STACKS STACKS

Sample IF' Code and Associated Operations on Stack.

F2;3;4;*;+ is equivalent to:

(attribute3 * attribute4) + attribute2

F23;24;*;ClOO;+;P;CO;<;* is equivalent to:

(attribute23 * attribute24) + 100 ;
if this result is < zero, final result is zero;
else the above value is returned as the result.
(The above value is generated, and is repeated in
the stack via the P operator; it is then compared
to zero, which gives a result of 0 or 1 depending
on whether it was less than zero or not; this is
multiplied by the original value, giving a zero or
the original value).

F3;4;*;6R;+;/;S is equivalent to:

F3;"

(attribute3 * attribute4) + attribute6
If attributes 3 and 4 are mutli-valued, and 6
is not, the single value in attribute 6 will be
used repeatedly in the addition (if the "R" is
not present, it will be used only once, and
zeroes will be used for other computations);
a sum of such computations for all multi-values
in attribute3 or attribute4 (whichever has the
greater number of multi-vlaues) is returned.

" ... 4 ... S . Cl . ClO . [] .. ,-, ,." , , I- is equvalent to:

attribute3:" ":attribute4:attributeS[l,10]
That is, the value from attribute 3 is
concatenated to that from attribute 4, with
a space between them; the first through the
lO-th. characters from attribute S are then
concatenated to the end of that result.

Examples of Function codes.

9

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 273 (",
. ;I

6.47 F CODE SPECIAL OPERANDS

'F' code operands may be multi-valued, may contain conversion
specifications, or may be a special 2-character operand specifying one of
several counters. Different interpretations are given to an 'F'
correlative vs. an 'F' conversion for an attribute with a TOTAL modifier.

F-code operands may be multi-valued. When arithmetic operations are
performed on two multi-valued lists (vectors), the answer will also be
multi-valued and will have as many values as the longer of the two lists.
Zeros will be substituted for the null values in the shorter list. For
example, suppose the attribute with AMC=lO had a value of "5]10]15" and
the attribute with AMC-15 had a value of "20]30]40]50"i if the
correlative FilOi15i+ were processed, the result in STACKl would be
tl25]40]55]50". If a single valued attribute is to be repetitively added
(or subtracted, etc.) with a multi-valued attribute, then the single
letter R should immediately follow the AMC in the 'F' code (e.g.,
FilOi25Ri+) .

Any conversion may be specified in the body of a Function correlative.
The conversion specification must be enclosed by parentheses.

Special 2-character operands may
in the table of operands below.

FiNDi 3 il

be used as 'F' code elements, as listed
For example:

On every detail line, this returns the value from attribute 3i on every
Break line (including the grand-total line), the average value of the data
in attribute 3 is returned. (This must be specified as a conversion in
line 7!).

The Function code operates in two different fashions on an attribute with
a TOTAL modifier, depending on whether it is specified as a correlative or
as a conversion. As a correlative, the function is applied before the
accumulation of the total, and is ignored on the Break data line;
therefore, the total of the functioned value is computed. As a
conversion, the function is ignored on detail lines, and is applied only
on the Break data line and other subtotal fields in the output.
Therefore, the function of other totalled values is obtained. If the
function is specified as a conversion, the numeric operand (AMC) in the
Function code must correspond to an attribute that is being totalled
within the statement. If such an attribute does not exist, a value of
zero is returned. Note that the numeric operators may be dummy AMC's in
that they may reference other attributes within the statement that have
function correlatives.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 274

F;10;11;(TDICT SALES;X;3;3);* Places the data from attribute 10 in
the stack; translates the data from
attribute 11 through the file named SALES (~.!.
and stacks it; then multiplies the two ~/
numbers together. I

F ; D; (DY) ; 3 i (DY) ;- computes the difference in years between .
the current date and the date in
attribute 3.

F; 1 ; (ML#: 10) ; 2 ; : Concatenates the data
the result of applying
"Lil0" to attribute 1.

in attribute 2 with
the format string

OPERAND

NI

ND

NV

NS

NB

Sample Usage of F-Correlatives with Conversions.

DESCRIPTION

Current item counter (number of items listed or selected).

Number of Detail lines since last BREAK
detail line it has a value of 1. On a
equals the item counter. (Used to
conjunction with control breaks.)

on a break line. On
grand-total line,

generate averages

Current multi-value counter for columnar listing only.

Current sub-multi-value counter for columnar listing only.

a
it
in

Current Break level number; 1 = lowest level break;
value of 255 on the grand-total line and a value
detail time. The lowest level control-break, the
right in the sentence, will have a value of 1.

This has a
of zero at
one on the

LPV Will load the result of the last conversion onto the stack.
Note the extended discussion of the facility below before use.

F-Code Counter Operands.

CHAPTER 6 - ACCESS Copyright (C) 1985 PICK SYSTEMS

PAGE 275

(

(

(

6.47.1 The Load Previous Value (LPV) operator.

The function processor commences operation with no prior data. If
attribute 8 commences with an F-correlative, there is no pr10r data set up
by any processor in the system. Entering attribute 7 there is the result
of attribute 8, or at least the data retrieved from the item according to
the specification in attribute 2 of the data definition item. It is
possible to load this data into the function correlative stack using the
LPV instruction. Noting that a conversion may call a function
correlative, we may also load the last result of a series of conversions
within a given attribute definition line into a function which follows the
conversion in the line. For instance,

DATA DEFINITION ITEM
001 A
002 3

007 F;LPV;"lOO";/

008 F;2;3;*

data definition item mark
specifies data attribute 3.

Will divide the result of
attribute 8 by 100.
contents of data attribute 2
times the contents of data
attribute 3.

If this data definition item is totalled, the total generated will
be loaded into attribute 7 and divided by 100 prior to output on
the break line.

002 5 Data attribute 5.

008 G*1]MR%8]F;LPV;"52";R;"*C";:]TFILE;C;;3

This has rather less motivation, since it is equivalent to

008 F;5(G*1]MR%8);"52";R;"*C";:;(TFILE;C;;3).

Use of the LPV operator in F-corre1atives.

The LPV should be used as the
it has the effect of loading
the stack. If the LPV is
strange things will happen.

first operator in an F-corre1ative, because
the contents of the temporary data area into
used at other points in an F-corre1ative,

The LPV operator is available for use in A-correlatives.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 276

6.48 SUMMARY OF F CODE STACK OPERATIONS

The following operands are pushed onto the stack, and all other stack
elements are pushed down one level.

OPERAND ACTION

n{R} (a decimal number) The attribute value for the corresponding
attribute number is stacked.

Cn

"String"

'String'

D

T

P

NI

ND

NS

NB

(where 'n' is a decimal number) The integer constant 'n' is
stacked.

The literal string enclosed in double quotes is stacked.

The literal string enclosed in single quotes is stacked.

The current date (in internal format) is stacked.

The current time (in internal format) is stacked.

The top stack element is pushed back onto the stack.

The current item counter is stacked.

The number of detail lines since the last control
stacked. (This number is 1 on detail lines, and is the
the item counter on grand-total lines.)

The current sub-multi-value counter is stacked.

The current control-break number is stacked.

break is
same as

The following operator pops three entries off the stack, computes a
result, and pushes it onto the stack.

[] The sub-string from the string in the third stack element is
extracted, starting from the character position defined in the
second stack element, and the number of characters defined in
the top stack element.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 277

c

(~\

(

The following operators pop the top two operands from the stack, compute a
result, and push the result onto the stack. All other stack elements are
popped up one level.

OPERAND

+

ACTION

The top two elements are added together and the sum is stacked.

The second stack element is subtracted from the first, and the
difference is stacked.

*[N} The top two elements are multiplied, and the result is stacked.

/

R

If n is specified, the result is divided by 10**n before it is
stacked.

The top stack element is divided by the second stack element,
and the dividend is stacked.

The top stack element is divided by the second stack element,
and the remainder is stacked.

The second stack element is concatenated onto the end of the top
stack element, and the resultant string is stacked.

The following relational operators compare the two top elements of the
stack, pop them both off the stack, and then push a 1 (TRUE) or 0 (FALSE)
onto the stack.

The top two elements of the stack are compared, a 1 is stacked
if they are equal, a 0 is stacked if they are not equal.

(, # Stacks a 1 if the top two stack elements are unequal; stacks a
o if they are equal.

(-\

>

<

]

Stacks a 1 if the top stack element is greater than the second
stack element, stacks 0 otherwise

Stacks a 1 if the top stack element is less than the second, a 0
otherwise.

Stacks 1 if the top element is greater than or equal to the
second element, 0 otherwise.

Stacks 1 if the top element is less than or equal to the second
element, 0 otherwise.

The following operators function on just the top one or two stack entries,
and have no effect on the rest of the stack.

S Sums the multiple values (if any) of the top stack element.

Exchanges the first and second stack elements.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 278

~.49 DEFINING MATHEMATICAL FUNCTIONS: THE A CORRELATIVE

The A-code is designed to perform the same function as the F-code, but it
is writtem in a format which is both simpler to write and easier to
understand than the format of the F-code.

FORMAT:

A(expression)

Where an expression is made up of operands, functions and operators, as
described below.

OPERANDS

AMC NUMBERS

An Attribute Mark Count (AMC) is specified by putting the number in the A
code, just as in the F-code. An AMC of 0 (zero) will indicate the Item
Id. The special AMC's 9999 and 9998 retain their original functions, and'
can be legally inserted into an A-code. An AMC can optionally be followed
by the letter "R", which indicates repetition of the value, just as in F
codes.

AMC NAMES

An attribute name can be used instead of an AMC in an A-code, as long as
the name exists in the dictionary of the file being listed. The
dictionary name is used as an argument to the "N" function of the A-code.
The format of the "N" function is N(NAME). For example, if the name
INVOICE-AMOUNT exists in the dictionary, the corresponding "N" function
would be N(INVOICE-AMOUNT).

The operation of the "N" function is as follows:

The name is referenced in the dictionary of the file, and an error message
is printed if it is not found. The AMC of the dictionary item (attribute
2) is used as the AMC in the A-code.

Any correlatives existing in attribute 8 of the dictionary item, including
F-codes or A-codes, will be used in the A-code. If an A-code or F-code
exists in attribute 8 of the dictionary item, the AMC from attribute 2 is
ignored.

Note that an A-code can now call another A-code by name, and that the
second A-code can specify a third A-code, and so on. However, no attempt
is made to assure that an A-code does not call itself. If this is
attempted, or any time that "nested" calls are made more than seven (7)
levels deep, the ACCESS compiler will abort with a RTN STACK FULL message.

LITERAL NUMBERS

A number is specified by enclosing the number in quotes, either single (')
or double ("). For example, the number 10 could be specified by "10" or
'10'. Any integer, positive, negative or zero, is legal inside quotes.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 279

(

(

LITERAL STRINGS

Any literal string, enclosed in single quotes (') or double quotes (") is
a legal operand.

SPECIAL OPERANDS

The A-code has several special system operands which are the same as for
F-codes. They consist of:

NI the item counter

NV the value counter

NS the sub-value counter

ND the detail-line counter

NB the break level counter

LPV load previous value

D the system date (in internal format)

T the system time (in internal format)

These special operands can be used exactly like an AMC, attribute name or
literal. Also, any of the above legal operands preceded by a minus sign,
(-), is a legal operand.

FUNCTIONS

REMAINDER FUNCTION: "R"

The remainder function takes two expressions as operands, and returns the
remainder of the first operand divided by the second. The format of the
"R" function is R(expression,expression). For example, R(2,"5") returns
the remainder when the value of attribute 2 is divided by 5.

SUMMATION FUNCTION: "s"

The summation function takes one expression as an operand, and works the
same way as the S operator in the F-codes. For example, S(4) will sum any
multi-values of attribute 4.

The summation operator may appear anywhere in an A-code.

SUB-STRING FUNCTION

A sub-string may be specified by using square brackets, just as in
DATA/BASIC. The numbers inside the brackets may be literal numbers,
AMC' s, or entire expressions. For example, 1 [" 2" , , 3 '] means the
3-character long string starting at position 2 of attribute 1. The
expression 1["1",'99'*(2==4)] will evaluate to the value of attribute one,
unless attributes two and four are different, in which case the expression
evaluates to a null string.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 280

OPERATORS

ARITHMETIC OPERATORS

The operators +, -, * and / denote addition, subtraction, multiplication
and division, respectively. All of the arithmetic operators take two ~
expressions as operands, and return the sum, difference, product or \..._j
quotient of the two operands. It is important to note that division in an
A-code always returns an integer result, just as in F-codes, so that
"3"/"2" evaluates to 1, not 1.5.

RELATIONAL OPERATORS

The relational operators <, >, >==, <=, .. and It denote the logica relations
greater-than, less-than, greater-than or equal to, less-than or equal to,
equal and not-equal respectively. Each of the relational operators takes
two expressions as operands, and evaluates to 1 (true) or 0 (false)
depending whether or not the indicated relation holds between the two
operands. For instance, "1">="2" evaluates to 0 (false) because the
number 1 is not greater-than or equal to the number 2. Expressions
involving these and other A-code operators are written much like
DATA/BASIC expressions.

NOTE: The precedence of the operators is important to keep in mind when
writing an A-code. In the absence of parentheses to indicate the order in
wh.ich operators are to be applied, multiplications and divisions have
"2ater precedence than addition and subtraction which in turn have
c~'eater precedence than the relational operators. If two operators have

the same precedence, they are applied from left to right. For example,
1*2+3<4 will evaluate as «1*2)+3)<4, but 1>=2-3/4 will evaluate as
1>=(2-(3/4». Also, 1+2-3 will evaluate as (1+2)-3, and 4/5*6 will
evaluate as (4/5)*6. 20 Levels of parentheses nesting are allowed in A
codes.

A-CODE MEANING

Al+2 Adds attributes 1 and 2.

A"10"*3 Multiplies the value of attribute 3 by 10.

AS(4+"25") Adds 25 to each value of attribute 4,
then sums the multi-values.

AN(INV-AMT)-N(BAL.DUE) Subtracts the value of the attribute
defined by BAL.DUE in the dictionary
from the value of the attribute
defined by INV-AMT.

AN(SS-NUM)['4','2'] Returns the 4th and 5th digits
of the attribute specified by SS-NUM.

Sample usage of the Mathematical 'A' function.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

'PAGE 281 C)

6.50 HANDLING NUMBERS AND FORMATTING: MR AND ML CODES

I The MR and ML codes allow special processing for numbers or dollar I
-- amounts, and allow special formatting. (~--

(

(

The ACCESS MR and ML codes function exactly the same as the 'R' and 'L'
format strings in PICK/BASIC.

FORMAT:

where:

M

n

m

Z

C

D

M

E

N

$

M(R/L){n{m}}{Z}{,}{C/D/M/E/N}{$}{ (format-string) }

is the code name. MR specifies the number to be right
justified; ML specifies left justification.

is a single decimal digit (0-9) which specifies the number
of digits to be printed to the right of the decimal point.
If In' is not specified, 0 is assumed. If 0 is assumed or
specified, no decimal point will be printed.

is a single digit number (0-9) which specifies that the
number on file is to be 'descaled' (divided) by that power
of ten. (That is, if m=2, the number is divided by 100, if
m=3, the number is divided by 1000, and so on.) The number
'm' is the number of implied digits to the right of the
decimal point for the number as it is stored in the file.
If m > n, then the number will be rounded off, either up or
down, to In' digits.

is the optional zero-suppress parameter. If 'z' is
specified, the number a (zero) will be printed as blanks.

specifies insertion of commas every three digits to the
left of the decimal place.

causes negative values to be followed by the letters CR.

causes positive values to be followed by the letters DB.

causes negative numbers to be followed by a minus sign (-).

causes negative numbers to be enclosed inside
brackets « and ».

angle

causes the minus sign on negative numbers to be suppressed.

appends a dollar
justification.

sign ($) to the number before

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 282

The format mask specification, which is enclosed in parentheses, consists
of format codes and literal data. A format code is one of the characters
#, *, or %, optionally followed by a number to indicate that number of
repititions of the character.

#n specifies data to be justified in a field of 'n' blanks.

*n specifies data to be justified in a field of 'n' asterisks
(*).

%n specifies justification in a field of 'n' zeroes (O) •

~y amount of alphabetic data may also be specified inside the parentheses
~n the format mask specification. The data will be printed exactly as
specified in the format mask, with the number being processed appearing
either right or left justified in the place of the #'s, *'s or %'s.

NOTE: the $ option appends a dollar sign to the number, and then
justifies the number, so the dollar sign will always appear just before
the first digit of the number on output.

DATA

1234
1234
1234
1234

12345678
-12345678
-12345678

572082394
572082394
572082394
572082394

572082394
572082394
572082394

CONVERSION

MR2
MR
MR{%10)
MR(*10)

MR2,E
MR2,E
MR2,C$

MR24
MR2,$(#20)
MR2,{$#20)
MR2,$(*20)

ML(###-##-####)
MR(#3-#2-#4)
ML(#3-#4 EXT.#2)

RESULT

12.34
1234
0000001234
******1234

123,456.78
<123,456.78)
$123,456.78CR

57208.24 (Note the Rounding)
$5,720,823.94

$ 5,720,823.94
*******$5,720,823.94

572-08-2394
572-08-2394
572-0823 EXT.94

Sample Usage of the MR and ML Codes.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 283

("
0

6.51 ADDITIONAL CHARACTER MANIPULATION: MC CODE

I The MC (Mask Character) Code allows the user to change attribute data to I
.. ~.. upper or lower case, or to select out certain classes of characters. (.,---

(

Following is a list of the legal forms of the MC code and their function:

MCU Converts data to upper case. Will change all lower-case
letters to upper case; has no effect on upper-case letters
or non-alphabetic characters.

MCL Converts data to lower case. Will change all upper-case
letters to lower case; has no effect on lower-case letters
of non-alphabetic characters.

MCA Extracts and prints all
upper-case or lower-case;
be deleted from the data.

Alphabetic characters, either
non-alphabetic characters will

MCN Extracts all numeric characters (0-9) from the data;
deletes all other characters.

MC/A Extracts all non-alphabetic characters from the data;
deletes all alphabetic characters.

MC/N Extracts all non-numeric characters; deletes all numeric
characters.

VALUE MC CODE OUTPUT VALUE

JOHN SMITH 1234 MCL john smith 1234
John Smith 1234 MCU JOHN SMITH 1234

John Smith 1234 MCA JohnSmith
John Smith 1234 MCN 1234

572-08-2394 MCN 572082394
(714) 552-4275 MCN 7145524275

abc123$%XYZ MC/A 123$%&
abc123$%XYZ MC/N abc$%XYZ

Sample Usage of the MC (Mask Character) Code.

CHAPTER 6 - ACCESS Copyright (c) 1985 PICK SYSTEMS

PAGE 284

6.52 SPECIAL CONTROL CHARACTERS

I This appendix describes special control characters which can be used I ~. _,
during input to the user's terminal. ~-

-- ()
CONTROL CHARACTER

Control-H

Control-X

Control-R

Control-W

Control-Shift-O

CHAPTER 6 - ACCESS

FUNCTION

Backspace: Deletes last character typed and prints
the backspace character as defined by the TERM verb.
Cancel: deletes entire line and prints a carriage
return. Will cause a listing to terminate if it is
being sent to the screen, and it is pausing at the end
of the page.

Retype: causes the entire current line to be
reprinted on the next line. This is useful after
backspace characters have been typed.

Backup one word: backspaces until a character which
is neither a number nor a letter is reached.

Line Continuation character: if typed as the last
character on a line (before the carriage return) will
allow the line being typed to be more than 140
characters long. Additional lines will be prompted
for with a colon {:} prompt character.

Copyright (c) 1985 PICK SYSTEMS

PAGE 285

~~-.

SECTION 7

ICON/PICK
PERIPHERALS

ICON~

(

(

Chapter 7

PERIPHERALS

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made avai1b1e to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 286

7 . 1 AN OVERVIEW

The PICK system has two classes of peripheral devices: one magnetic tape
drive and one or more printers. It is the nature of each of these devices
that each can service only one user at a time. This section discusses the
facilities in the PICK system which allow the convenient use of these
devices in a multi-user environment.

The tape drive and printer do different things and as such are controlled
by different subsystems. The tape drive is both an input device and an
output device, and in both modes can transfer either machine-readable
(data and programs) or people-readable (text) data. It may be used by
only one process at a time, and that process must be a user process with a
terminal attached or an equivalent phantom process. The routines
available for tape manipulation include the ability to acquire and release
the tape drive and to transfer data to and from data files and print
files.

The function of a printer is simpler, and as such has a more extensive
control subsystem called the spooler, which separates the generation of
output to printers from the actual printing process. It allows many
processes to generate output to a printer at the same time without
conflict over the physical device, and it allows flexibilty as to what
gets printed where and when.

The process of generating a report and obtaining it from the printer is as
follows. The user process executes a routine which generates print output
which is stored on disk and creates a control record pointing to the print
file. Another process, known as the spooler, finds the print file and

(executes the actual printing process.

The spooler runs as a separate process which is numerically the last
process on the system. Since the terminal for this line does not exist,
this is often referred to as a "phantom process". The spooler is
automatically started by either a "FILE-RESTORE" or a "COLD-START" and is
automatically assigned by the system to the last hardware terminal
communication line in the system + 1. The spooler may also be restarted
by use of the :STARTSPOOLER verb.

The following is an overview of features of the spooler. Precise
discussion of each is to be found in the relevant sections following. The
verb names have been included where relevant for quick reference.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 287

SPOOLER SYSTEM FEATURES

- GENERAL STRUCTURE.

- Six hundred print files may be retained and controlled.

- Sixty print files may be generated simultaneously.

- One hundred twenty-five different output queues are
available

- Up to 125 copies of a report may be requested as one
print job.

- Up to twenty printers may be defined -- 4 parallel, 16 serial.

- Print files are printed on four parallel printers
concurrently by one process.

- Up to sixteen ports may be used as serial printer spoolers.

- Print files may be transferred to and from tape.

- Print files are transferred to and from tape by the
requesting process, not by the spooler.

- PRINT FILE DEFINITION FEATURES. (SP-ASSIGN)

- Control of print file destination -- tape, printer or
hold file.

-
- Control of time of enquernent -- immediate, at completion or

from a hold file.

- Control of time of print file deletion -- concurrent with
printing, at completion of printing or from a hold file.

- Control of the use of disc storage by the print file.

- Specification of the number of copies to print, up to 125.

- Specification of one of 125 output queues.

- Predefinition of several print files generated by a
single job, such that each has its own assignment
specification.

- Print files may be held open across several jobs.

- Open print files may be closed when desired.

- Open print files will be automatically closed when
necessary, if unintentionally left open.

- The current specification of the line may be displayed.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 288

- PRINT FILE CONTROL FEATURES. eSP-EDIT)

- Print file security: Print files may be inspected and
printed only by the generating account, or by the system
manager.

- Ease of print file identification.

- All print file entry numbers are displayed
at print file generation time.

- Only the account's print files are returned.

- Numerically contiguous blocks of print files may be
accessed, subject to ownership considerations.

- Print files specified to be enqueued to a particular
output queue, or a numerically contiguous group of
output queues, may be accessed, subject to ownership
considerations.

- Print files not being output may be disenqueued.
Non-permanent files will become hold files. eSP-KILL)

- The first 500 bytes of each print file available to
the user may be displayed.

- A text string may be specified as the address of the
line which is to be the start of the output text.

- Destination, printer or tape, may be specified by options
on the SP-EDIT verb, without reassigning the line.

- Selected groups of print files may be spooled or deleted
without using the prompt sequence.

- The output queue specification of a print file may be
changed.

- The copy count specification of a print file may be
changed.

- A print file may be sent to the user's terminal a page
at a time, or continuously.

- In page at a time mode the user may go back a page,
go back to the top, or exit from the end of each page.

- A print file may be sent to a file as a set of items
in RUNOFF format.

- Each print file may be deleted when desired.

- The system manager may inspect, print, and delete any
print file.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 289

- The system manager may access print files by the name
of the account which generated them.

- The system manager may inspect the first 500 bytes
of any enqueued print file.

- The system manager may not send a print file to a file
in RUNOFF format unless he is logged on to the generating
account.

- PRINTER CONTROL FEATURES.

- From one to twenty printers may be declared.
(STARTPTR)

Each has a unique printer ordinal, device specification,
output queue list, and inter-job page eject count.

- Each printer can output the contents of one, two, or
three output queues.

- Any number of printers can output the contents of a
given output queue at the same time.

- Print files may be aligned on each printer. (STATRPTR)

- The output on each printer can be terminated immediately.
(SP-KILL)

- Print file output may be terminated while the print
file is being generated.

-
- Serial printers will normally paginate on the basis of

a page-eject (X'OC') character.

Serial printers which do not recognize a page-eject
character can be informed of the fact, and informed of
the number of lines per page to print.

- Serial printers may caused to suppress the initial page
eject in each print file.

- Each printer can be set to stop at the completion of
the current job. (STOPPTR)

- Each printer may be deleted from the spooler system.
(SP-KILL)

- SPOOLER SYSTEM CONTROL FEATURES.

- Print file entry numbers are returned to the PROC
secondary input buffer and marked as entry numbers.

- The print file control block record may be displayed.
(LISTPEQS)

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 290

---------- - -----~-------~--------~---.- ---- ----- -"--

(

- The print file control block record contains:

- The entry number of each print file.

- The status of each print file.

- The next link in the output queue for each
print file, as applicable.

- The output queue specified for each print file.

- The number of copies requested for each print file.

- The size in frames of each print file.

- The date and time of generation of each print file.

- The name of the account which generated the print
file.

- The total number of frames used by the listed
control block records.

- The print file control block can display:

- All control block records, including records
of deleted print files.

- All current control block records.

- All print files generated by a named account,
either current, or current and deleted.

- The chain of print files enqueued in each output
queue by queue, by print file sequence in the queue.

- Any group of numerically contiguous entries or
queues, and with the above conditionals.

- Just the total number of frames referenced
in any of the above cases.

- The printer control block may be printed. (LISTPTR)

- The printer control block display includes:

- The printer ordinal (identification number).

- The printer type -- serial or parallel.

- The output queues to which it is allocated.

- The inter-job page eject specified for the printer.

- The parallel printer number or line number.

- The current status of the printer.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS
PAGE 291

The data from the LISTPTR display is inserted in the
PROC secondary input buffer in order to allow PROC
control of the printer system.

- The assignment specifications of all lines on the
system may be displayed. (LISTABS)

- The status of the spooler system may be displayed.
(SP-STATUS)

- The status of all printers, one printer, or
a numerically contiguous printers may be selected
for display.

- The SP-STATUS verb leaves error message numbers indicating
the condition of the spooler system in the PROC secondary
input buffer.

- The COLD-START routine leaves print file control record
area intact, if possible.

- :STARTSPOOLER allows the following levels of
reinitia1ization:

- Reinitia1ization of the major control pointers.

- Reinitia1ization of all printers, input queues and
output queues, excepting the print file control
records, and includes a inspection or print file
control record for admissability.

- Reinitialization of the whole spooler workspace
and table area, as on a file restore.

- The linking-up of work space for all other lines
on the system which are not logged on.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 292 c~

(

(

USER OUTPUT OUTPUT TO DEVICE

*--------)
*--------)
*--------)
*--------)
*--------)
*--------)
*--------)
*--------)
*--------)

Spooler --------) 1 Parallel printer 1

permanent or

control block -------) 1 Serial printer

and file. or

-------) 1 Terminal

Spooled Output

USER DEVICE
Output to tape

*--------------------------------------) 1 tape

Concurrent output.

The Spooler

OUTPUT QUEUES PRINTER PROCESS PRINTER

Queue 0

Queue 1

Queue 2

Queue 3

)-----*-------------) Logical
------------) Printer 0 ----)

I ,---------)---------------
)-----+-+-+---

I I I I ----)--~~~i~~l------
--+-+--+--+---) Printer 1 ----)

)-------+-+--+---

)-------+-* -------) I 1---------)
Logical 1

Printer 2

Queue 4)--------

A case of queue to printer bindings.

Parallel
Printer
o

Parallel
Printer
1

Serial
Printer
Line K

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 293

--

I Print file

/

and/or ---------------------->/ ~~~~~~~~~t

1 Spooler

and/or

I
---------------------->1 Hold file

1 Enqueue

or

I At start of I
generation

or

or

---->1 Retain as a
holdfi1e

/ <------or

---->1 De~et7 during 1<------
pr~nt~ng

1--------->
Delete at
completion
of printing

The destinations of a print file.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 294
r1'-,\
\._)

(

(

7.2 SPOOLER VERBS

Since the spooler is a unique software process, a complete set of TCL
verbs is supplied to communicate with it. These verbs are summarized in
Figure A. The rema1n1ng topics within this chapter present detailed
descriptions of each verb.

OUTPUT SPECIFICATION

Pick allows the user to specify the destination of the output of each job
by the use of the SP-ASSIGN verb. Default assignment is set up at logon
time, and the verb only needs to be used if the current assignment needs
to be changed. Output may be sent to the printer or tape drive and/or
retained as a hold file, or suppressed all together.

PRINT FILE CONTROL

The use of the SP-EDIT, SP-ASSIGN, and SP-KILL verbs allows considerable
flexibility over the disposition of print files. The key to control is
the hold file, which is simply a print file which has been specified by
the SP-ASSIGN verb to be retained, or which has been disenqueued by the
SP-KILL verb, and will be retained as a result. These hold files are the
object of the SP-EDIT verb. In association with the SP-ASSIGN verb, the
SP-EDIT verb allows enqueuement of hold files to any desired output queue,
and thereby to the desired printer, modification of the number of copies
requested, display of the print file to a CRT or the printing of the print
file on a printer auxiliary to a CRT, translation of the print file into a
sequence of file items in RUNOFF format, or deletion.

HOLD FILES

The creation of hold files permits reports to be spooled to the disc and
held for an indeterminate length of time for subsequent or multiple
output. The spooler structure will accommodate a maximum of 600 print
files. Print files are normally created as hold files in any case when
recreation of the print file might be inconvenient or time consuming.
They are particularly recommended if the printer tends to jam or the
communication line to a remote printer is tempermental, if the process
generating the print file also updates the relevant data records, if the
decision at to when and where to print the report has not been made at
generation time, or if there is a reasonable possibility that more copies
of the report may be desired. The drawbacks of hold files are that they
require considerable amounts of disc space, that they must be explicitly
deleted, and that they are not saved by the formatted file save process.
If a restore is done from a file-save tape, the hold files will disappear.
If necessary, they may be spooled to tape for more secure retention, and
restored via the SP-TAPEOUT verb. They will remain after a COLD-START if
the print file control records pass certain admissability tests.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 295

PRINTER CONTROL

Control of the multiple printers on the system uses the STARTPTR, STOPPTR,
and SP-KILL verbs. The STARTPTR verb associates the physical printer and
its associated process with the desired output queues. It also defines
the printer ordinal by which the printer is referenced, the number of ()
pages to skip between jobs, the type of printer involved, and executes /
alignment when desired. The STOPPTR verb indicates that the printer
process is to stop at the completion of the current job, and is required
prior to the execution of the STARTPTR verb if the printer has been
previously initialized. The SP-KILL verb terminates the execution of the
current print job on the specified printer. The SP-KILL verb is also used
to delete a printer from the spooler system when the proper option is
used.

SPOOLER SUBSYSTEM INTERROGATION

The condition of the various parts of the Spooler subsystem may be
interrogated by the use of the LISTPEQS, LISTPTR, LISTABS, and SP-STATUS
verbs. The LISTPEQS verb displays the print file control block records in
various ways according to the specified options, and allows the user and
the system manager to find out what print files are currently resident on
disc, their condition, and who generated them when. The LISTPTR verb
displays the printer allocations. The LISTABS verb displays the
assignments of all the lines on the system. The SP-STATUS verb and
thereby the WHAT verb display the condition of the spooler and the
definition and current task of each printer.

SPOOLER INITIALIZATION

The Spooler is automatically initialized by the execution of a file
restore. The Spooler is reinitialized by the execution of a COLD-START;
hold files are retained in this case. Should intialization or
reinitialization of the Spooler be desired, the :STARTSPOOLER verb is
available. Be aware that much storage can be lost, possibly requiring a
restore at an inconvenient time.

DEVICE ATTACHMENT

Only one process at a time may use the tape. The system software keeps
track of which process is associated with the tape drive. Users of the
printers need not be concerned with attachment/detachment since the
spooler is the only process which can use the parallel printers, and only
the processes attached to the serial printers can output to the serial
printers, under the control of the spooler process.

TAPE MANIPULATION

There are a collection of verbs involved in tape manipulation. They
include T-ATT and T-DET to attach the tape drive to a process and then to
detach it. T-FWD, T-BCK, and T-REW are available for tape positioning.
T-RDLBL and T-READ are available to interrogate the tape. SP-TAPEOUT is
available to move print files from tape to print files. T-DUMP and T-LOAD
are ENGLISH verbs available to move data items to and from tape. All
other verbs in the system which generate print files may send those print
files directly to tape, and SP-EDIT may send stored print files to tape.
The various verbs involved in the save and restore processes utilize the

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

. PAGE 296

(

(

tape. Finally, note the tape manipulation operators in BASIC.

VERB

LISTPEQS
LISTPTR
LIS TABS

SP-ASSIGN
SP-CLOSE

SP-EDIT
SP-KILL

SP-OPEN

SP-STATUS

SP-TAPEOUT
STARTPTR
STOPPTR
T-ATT
T-DET

VERB

T-ATT
T-DET
T-FWD
T-BCK
T-SPACE
T-EOD
T-REW

T-WEOF
T-CHK
T-LOAD
T-DUMP
T-READ
T-RDLBL
S-DUMP

BRIEF DESCRIPTION

Displays the print file control records.
Displays the printer control block.
Displays the assignment of each line
on the system.
Defines the print file destination.
Terminates the SP-OPEN condition, so that
the print file is closed.
Allows operation on hold files.
Cancels the current output from a printer,
disenqueues a print file, or deletes a
printer from the system.
Causes a sequence of jobs to be taken as
one job for purposes of output.
Displays the current status of the Spooler
and each defined printer.
Prints a tape created by the spooler.
Initializes a printer.
Halts printer after current job.
Attaches the tape drive to a line.
Detaches the tape drive from a line.

Summary of Spooler Verbs

BRIEF DESCRIPTION

Attaches the tape drive to a line.
Detaches the tape drive from a line.
Moves the tape forward.
Moves the tape backward.
Causes multiple T-FWDs.
Moves the tape forward to end-of-device.
Rewinds -- moves the tape backward to
end-of-device.
writes an end-of-file mark on the tape.
Checks the tape for parity errors.
Moves data from tape to disc files.
Moves data from disc files to tape.
Allows inspection of the contents of a tape.
Allows inspection of the tape label.
Sorts data, then moves the data from
a disc file to tape.

Tape Verbs.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 297

7.3 The SP-ASSIGN, SP-OPEN and SP-CLOSE VERBS.

Device assignments are individually set by each terminal user.
can modify his device assignment by use of the SP-ASSIGN verb.
process assigns the line printer as the standard ou~put device.
be altered at any time via the SP-ASSIGN verb.

7.3.1 OVERVIEW OF SP-ASSIGN OPTIONS.

Each user
The logon
This can

The SP-ASSIGN verb allows the specification of destination of a print
file. The H, I, and S specifications are as before. The T specification
specifies that the print file shall go directly to tape under the control
of the generating process, rather than under the control of the spooler
process. Therefore, mount your tape before you start a tape output job.
The N specification no longer exists because the spooler is the only
process which has access to the parallel printers and tape assignment
automatically allocates the tape drive to the process.

The SP-ASSIGN verb has the following specifications. A? in the options
string will display the resulting setting. A? by itself will display
the current setting without disturbing it.

Since thespooler has 126 different output queues (0-125), SP-ASSIGN allows
specification of the form queue by use of Fn where n is between 0 and 125,
inclusive. There may be no spaces between F and n. The default form
number is O.

A number n in the string not immediately following F will specify the
number of copies to print, where n is between 0 and 125, inclusive. The
first number n in the options string will be taken to-be the copy count,
and its successors, if any, will be ignored. The default copy count is 1;
and the default assignment is print at completion. These are generated at
logon and by executing the SP-ASSIGN verb with no options.

The R specification will open a print file with the specifications given
by the other options in the string, and will aviod the automatic print
file closure embedded in the SP-ASSIGN verb. This uses the form Rn, where
n is between 0 and 125 inclusive, is concatenated to the R, and specifies
the print file name to be used in conjunction with PRINT ON n in basic
programs.

The 0 specification causes the print file to remain open at completion of
the process. The C specification means that the process is to be choked.
It is allowable only with a I specification and with no H specification.
It causes the process to stop generating output when it gets 20 frames
ahead of the consuming process. Be aware that if a printer is not
available or assigned to other form queues, your process will wait
indefinitely if this option is invoked.

The default is:
generation.

Print one copy on output queue 0 at completion of

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 298

.~

(

(

H

S

I

T

C

0

Rn

?

number

Fn

Holdfile

No printed output -- do not link on

Link on at initiation

Send to tape -- generating process does this

Choke the process -- slow generation to output rate

Keep the print file open at close time.

Initiate a print file with this SP-ASSIGN to be
generated by PRINT ON n, where n is between 0 and 125,
inclusive.

Display the curent or resulting assignment.

Number of copies, between 1 and 125, inclusive.

Form number (output queue number) between 0 and 125,
inclusive.

OPTION SUMMARY

7.3.2 CLASSES OF SP-ASSIGNMENT PARAMETERS

The various characteristics which can be attributed_to a print file are
discussed below. Destination specifications define general dispostion of
the print file, whether it goes to tape, the printer, a hold file, or
nowhere. If it is going to a printer, the destination specifications also
define when it is to be enqueued and when its storage is to be released.
The form number specifies the output queu~ into which a print file is to
be inserted, and thereby the printer which shall print it. The copy count
specifies how many copies of the report shall be generated. Print file
predefinition allows different assignments for print files generated
simultaneously.

7.3.2.1 Destination specification:

There are four output possible
and nowhere. Output to the
possibilities are:

destinations: printer, tape, hold file,
printer is the default. Therefore, the

Not printer

Tape

Holdfi1e

S

T

H

CHAPTER 7 - PERIPHERALS

Causes output to be not printed.

Causes output to be sent to the tape.

Causes output to be retained in a
hold file.

Copyright (c) 1985 PICK SYSTEMS

PAGE 299

Note that the T specification will cause the process to send its print
file output directly to tape. This allows c6ntrol over the tape record
size and supression of the tape label. It also means that several
different print files created by the PRINT ON statement in basic can be
intermixed on the tape. See the discussion of print file predefinition ~~\
below. (J
The specifiers used with SP-ASSIGN may be in any order. The above three
specifiers may be used in the following combinations with the following
meanings.

S

H

HS

T

TS

THS

The print file disappears.

The print file will become a hold file on disc, and
it will be enqueued for output.

The print file will become a hold file. It will not
be enqueued for output.

The print file will be output to tape concurrently
with its generation, and a disc print file will be
created which will be enqueued for output.

The print file will be output to tape concurrently
with its generation; it will not become a disc print
file.

The print file will be output to tape concurrently
with its generation; a hold file copy of it will be
created on disc, and it will not Pe enqueued for
output.

Compound destination parameters.

The Immediate specification.

There are two enquing timings, immediate and at the end of the job. At
the end of the job is the default; therefore:

Immediate I Links the job on at the start.

The I flag will only be set in conjunction with output to the printer. It
will have no effect on the H option. Tape output is done by the
generating process concurrent with the generation; therefore this option
has no meaning when attached to a T option. An S option will nullify an I
option.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 300

(

(

There are four output storage protocols for the single copy case:

1) Hold files are not released to overflow by the spooler.
They are released by a specific command within the
SP-EDIT processor by the user's process.

2) Closed non-hold files are released frame by frame
during output.

3) Open non-hold files are released upon completion of output.

4) Choked open non-hold files are released to overflow
frame by frame during output, and the frame counter
is decremented.

The difference in release timing allows the SP-KILLing of an open print
file without loss of the print file or its associated storage.

The case for multiple copies varies in that the storage can not be
released until the last copy. Therefore the following considerations
hold: The first copy may be SP-KILLed while it is still open, but it will
turn into a hold file. All succeding copies are closed. Storage will be
released during the printing of the last copy if release lS specified.
The multiple copy option is not valid with the choke option, and the
specifification of the choke option will cause the copy count to go to 1.

THE CHOKED SPECIFICATION.

Defining a print file as choked, the C option, causes the input processor
to enter a wait loop when it is more than 20 frames ahead of the output
processor. It will resume when the output processor releases another
frame to overflow.

Choke C Limits the storage used by a print file.

This option will only be set if immediate ouput to the printer is
specified. It has no effect on output to tape, which is inherently
synchronous with the generation of output. This option is not available
if the print file is a hold file. It is irrelevant to tape output. It
operates only in conjunction with the I option. It causes the copy count
to be set to one. It will not work if there is not a printer available to
process the form number specified for the output.

OPEN SPECIFICATION.

It is possible to keep a print file open at the end of a
run, that is, as the user's process goes to TCL or its
This option is compatable with all other options, and
value of keeping a related set of reports together.

print generation
proc equivalent.
has the primary

Keep Open o This flags the print file to be not closed
at close time.

Executing the SP-ASSIGN verb will have the effect of closing these files,
unless the R option is used in the current SP-ASSIGNment. SP-CLOSE and
logging off will force the print files to close.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 301

7.3.2.2 THE FORM NUMBER

The form number specified for a printfile allows ease of printer
allocation to print jobs and classes of print jobs. The default form
number is o. The maximum is 125. The format of the form option requires
that the form number be concatenated with the F option specifier. Note
that "form" is a synonym for "output queue".

Form number Fn Where n is the desired form number, where
n may be between 0 and 125 inclusive.

This option is irrelevant for tape output. It is not effective until the
job is enqueued for output. The job is then enqueued in output queue n.
A print job may be enqueued in only one output queue, while each printer
may service up to three output queues, and any, some, or all of the
printers on the system may service one output queue. The output queue
specification for a printfile may be changed by the SP-EDIT function.

7.3.2.3 THE COPY COUNT

The number of copies of a printfile to be output may be specified. The
default is one; the maximum is 125. The copy count generated is the
first numerical string in the SP-ASSIGNment parameter list not preceeded
by an F or an R.

Copy count n n is the number of copies to output.
n may be between 1 and 125 inclusive.

This option is irrelevant for tape output. It is not useable with the C
option. No storage is released until the last copy is being output, in
those cases which specify release of storage by the spooler. The copy
count specification for a printfile may be changed by the SP-EDIT
function. At the completion of output, the copy count parameter will
always be decremented to one.

7.3.2.4 Finding out what your assignment specification is.

You can interrogate your assignment specification by using the ?

Your assignment ? will output your line's assignment
specification

This option may be used as the only option on the SP-ASSIGN verb at which
time the assignment will not be modified; but it will be displayed. If
the? option is used with other options, the other options will be
inserted in your line's assignment block, and then the contents of that
block will be displayed, as in all the examples below.

Note that the LISTABS verb will give the assignments for all lines, and
that the discussion of the LISTABS verb includes a list of the indicators
and their meanings. The only difference is that when "s" is not

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

. PAGE 302 ()

specified, "P" is displayed;
displayed.

and when "S" is specified, "P" is not

PRINTFILE PREDEFINITION
(

7.3.2.5

It is possible to preassign the various print files which may be generated
by a basic program using the PRINT ON n statement. Execution of an SP-
ASSIGN with this option will reserve input and permanent control blocks
and obtain the first frame of storage for the printfile. If the printfile
is defined as a hold file, the entry number will be issued at this time.
If it is to go to tape, the tape will be attached at this time, if it has
not already been attached. The format of this option requires that the
PRINT ON number of this printfile be concatenated with the R option
specifier.

Predefinition Rn where n is the number of the printfile
specified in the PRINT ON n statement
in a basic program or from RUNOFF.

This option allows all of the other options. Clearly, however, if two or
more printfliles are sent to tape, their outputs will be commingled on the
tape. Further, if more than one print file is to be choked, then there
should be more than one printer available to process these jobs.
Otherwise, the job will hang. Note that predefinition with the I option
will cause the printer to attempt to output the print file before the
program commences to generate it. There is no harm in this, except that
no other print jobs can be serviced by that printer until the program is
complete. The execution of the SP-ASSIGN verb can be continued with R

(.. options to initialize several print files until the capacity of the input
,control record block is exhausted. There are about 60 input control block
. records available, depending on system configuration. Execution of the

SP-ASSIGN verb without an R option will have the effect of closing all
printfiles currently active.

7.3.3 The SP-OPEN and SP-CLOSE verbs.

These two verbs are superceeded by the SP-ASSIGN verb, but they are
retained so that PROCs can declare a sequence of print jobs as one print
file without having to know the other details of the SP-ASSIGNment
currently necessary. The SP-OPEN simply turns on the bit associated with
the "0" option of the SP-ASSIGN verb without disturbing any other
parameters of the assignment. The SP-CLOSE causes the print file close
sequence to take place without disturbing the assignment parameters,
except to turn off the open bit.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 303

7.3.4 THE GENERAL FORM OF THE SP-ASSIGN VERB.

>SP-ASSIGN H (S} or null
I
IC

Retain as
Holdfile.

T 0 7 F32 R81
list assignment
specifications.

Predefine print
file to be
generated by
PRINT ON 8.

Form queue #: 32.

print 7 copies.

-- do not close this print file at
the completion of the job step.

-- Output to Tape while generating.

Printer specifications:

S
null
I
C

None
Enque
Enque
Choke
rate.

on close of job
at start of job
input to output
Requires I.

The SP-ASSIGNMENT verb parameters.

Any or all of these parameters can be used together, except that the S
parameter causes the I parameter to be without meaning, and that the
absence of the I parameter or the presence ·of the H paramater causes the C
parameter to be meaningless. The parameters can be in any order. The
numbers associated with predefinition and form specification must be
concatenated with their character keys, that is, Rand F.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 304

(

(

7.3.5 SP-ASSIGN EXAMPLES. SP-ASSIGN EXAMPLES.

>SP-ASSIGN the logon default setting:

LINE STATUS COP FORM
IES #

5 P 1 o

This will cause: Output to the printer with deletion

>SP-ASSIGN HS3?

during printing;
The job to be enqueued upon completion;
In form Q 0;
One copy to be printed;
By a printer allocated to form 0, whenever

such a printer becomes available.

The SP-ASSIGN and the LOGON default.

LINE STATUS COP FORM
IES #

5 H 3 o

This will cause: Retention of the printfi1e upon completion;
If the form and copy parameters are not

changed at SP-EDIT time, it will:
Print three copies;
On a printer allocated to form O.
In order to change the assignment parameters

at SP-EDIT time, use the SP-ASSIGN verb,
followed by SP-EDIT with the R option.

The SP-ASSIGN Hand S options.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 305

>SP-ASSIGN TS?

LINE STATUS COP FORM
IES #

5 T 1 o

This will cause: The output generated by the process to
go directly to tape under the control
of the generating process.

There will be no spooler involvement.

The SP-ASSIGN T option.

>SP-ASSIGN CI?

LINE STATUS COP FORM
IES #

5 PIC 1 o

This will cause: The print file to be linked onto output Q 0
as soon as the first line of output is
available.

If a printer is available for form Q 0, and idle,
it will commence to output_the job.

In any case, should the generating process get 20
frames (a convenient constant) ahead of the
output processor, the generating process will
wait until the output processor has output
another frame.

Should the output processor catch up to the input
processor, it will wait until the output
processor has completed its current frame.

This option does not allow multiple copies.
This option is available for tape input to the

spooler.

The SP-ASSIGN C option.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 306

,/

(

(

>SP-ASSIGN HSRO

LINE STATUS COP FORM
IES #

5 H 1 o

This causes the print file which will be generated by a

>SP-ASSIGN TSRl

LINE STATUS COP FORM
IES #

5 T 1 o

PRINT or PRINT ON 0 statement in a
succeeding basic program to be made into
a hold file which, for the moment, will
generate 1 copy on form o.

This causes the print file which will be generated by a

>SP-ASSIGN CIR2F3

LINE STATUS COP FORM
IES #

5 CI 1 3

PRINT ON 1 statement in a succeeding basic
program to go directly to tape, without
generating a print file on disc. It is
necessary to have the tape drive available
when the basic program is run. The copy
and form parameters are irrelevant in
this case.

This causes the print file which will be generated by a
PRINT ON 2 statement in a succeeding basic
program to go to the printer allocated to
form 3, to be enqueued during the execution
of this SP-ASSIGN verb, and to choke the
output by the basic program to this print
file to the output rate of the printer.
The copy specification of 1 is forced by
the C specification, and the I specification
is required by the C specification.

An example of the use of SP-ASSIGN Rn.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 307

7.4 HOLD FILE INTERROOATION: THE SP-EDIT VERB

I The SP-EDIT verb is used to interrogate
dispatch them in various directions.

one or more hold files and and I

The intent of the SP-EDIT verb is to allow access to print files which
have been retained on disc for future output. It allows the user to
obtain a print file and then direct it to the desired output device, or to
delete it and release its storage space. The output devices available
include any line printer or parallel printer on the system, the magnetic
tape device, and data files. Print files may be specified by the entry
number displayed at generation time, but there are other facilities
available. Specification of destination is by means of parameters stored
at print file generation time, and by the current SP-ASSIGNment of the
line, but there are numerous options available to modify and override the
default specifications. Execution of the process is by response to
prompts, but there are options and facilities available to override these
as well.

7.4.1 SP-EDIT OPTIONS.

The SP-EDIT verb previously allowed editing either everything, or one
print file, n. It now allows greater selectivity. The previous form of
the SP-EDIT verb presented print files generated by any and every account
on the system for inspection. It now presents only those generated on the
account onto which the SP-EDITing process is now logged. The system
manager can override this convenience and security feature to some extent.
The previous SP-EDIT verb required that the SP-EDITing process be SP
ASSIGNed to the desired output destination. The current form allows this
as well as options specifying destination submitted to the SP-EDIT verb at
SP-EDIT time.

7.4.1.1 PRINT FILE SELECTION OPTIONS

With no options in effect the SP-EDIT process will return all print files
generated on the account onto which the SP-EDITing process is now logged.
It is the same group of print files whose control records are displayed by
the LISTPEQS verb with the A option.

This selection may be overridden by an account with SYS2 privileges, a
condition which is normally limited to SYSPROG, the system manager. There
are two approaches which may be taken. The U (Universal) option will
return any hold file which is SP-EDITable, within the context of the other
options which may be in effect. The other approach is to specify the
account on which the print file was generated, which requires SYS2
privileges. It specifies that the SP-EDIT processor return only print
files generated on the specified account, again within the context of
other selection options which may be in effect.

Effectively, the U option obtains all available hold files, and as such is
equivalent to the previous form of the SP-EDIT verb with no selection.

Hold file entries may also be referenced by entry number, n, or by a range
of entry numbers, n-m. The numbers nand m must both be between 1 and 600

CHAPTER 7 - PERIPHERALS Copyright (c) 19B5 PICK SYSTEMS

PAGE 30B C· '-, , \

j

(

(

inclusive, and m must be greater than or equal to n, or an error message
will ensue, and the SP-EDITing process will terminate. Selection of print
files by the SP-EDITor in the presence of numeric options is in ascending
order, starting with n and continuing through m. Each will be checked for
admissability as an SP-EDITab1e hold file and then for admissability
according to the generating account.

Selection may also be according to output queue specification. If the F
(Form) option is selected, then n or n-m are taken to be output queue
numbers rather than entry numbers. In this case nand m must be in the
range of 0 through 12S, with m greater than or equal to n, as above. In
this case, selection will occur across all the available entries in the
print file control block, using both output queue specification and
generating account as selection criteria.

SP-EDIT AVAILABILITY

In order for a print file to be SP-EDITab1e, its control block record must
pass certain system admissability tests. There must be a print file
associated with the control block record, and it must be marked as a hold
file. The SP-EDITor will then test for account name, entry number, or
output queue number admissability. If the print file passes these tests,
it will be checked to determine whether it is actually available, or
unlocked. It is locked, not available, when it is being generated, when
it is enqueued for output or is being output, or when it is being SP
EDITed. It is unlocked at the end of generation, at the end of output, or
when it is removed from an output queue by the SP-KILL F verb, by the
:STARTSPOOLER (C verb, or by a cold start. If an admissable hold file is
discovered which is locked, the following message will appear: "ENTRY
n IS NOT AVAILABLE", and the SP-EDITor will search for the next entry.
When an available entry is encountered, the print file is retreived, and
the print file inspection and dispatch phase, which ia the subject of most

lof this discussion of the SP-EDIT verb, is entered.

SP-EDIT TERMINATION MESSAGES

The SP-EDITing process will normally terminate with one of the two
following messages. If entry number specifications were included and they
do not exhaust the print file control block, then the message will be:

END OF REQUESTED PRINT FILES.

Otherwise, the message will be:

END OF PRINT FILE CONTROL BLOCK.

THE SP-EDIT LOOK, OR PRINT FILE PEEK.

There is a singular option which operates with the selection criteria
which allows a peek at the first SOO-odd bytes of any print file which is
locked but not being output, or any print file marked as a hold file which
is being output. This allows inspection of the print files in an output
queue in order to identify them further than the LISTPEQS verb does. It
is activated by specifying the L option. The L (look) option operates
under the print file selection criteria discussed above, and enables the
display of the first SOO-odd bytes of print files which are locked. It
specifically does not allow any manipulation of print files.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 309

7.4.1.2 HOLD FILE DESTINATION OPTIONS.

The usual hold file manipulation will be discussed under the topic of the
SP-EDIT prompt sequence below. Here we consider certain options
submittable at verb activation time which modify the results of the normal
SP-EDITing process.

The usual process at SPOOL time is to transfer the device specification
from the SP-EDITing line's SP-ASSIGNment block, and either enque the print
file to a printer queue, if the printer is specified, or to send the print
file to tape under the control of the SP-EDITing process, if that is
specified. In some situations under PROC control it is inconvenient to
reSP-ASSIGN the line for the purpose of SP-EDITing, however, and it is
occasionally convenient not to reassign while running interactively. For
this purpose the P (Print) and T (Tape) options are available. The T
option directs the output to tape, and the P option directs the output to
the printer. They supersede the current SP-ASSIGNment specification, and
the T option supersedes the P option.

In the case of the T option or SP-ASSIGNment T, the SP-EDITing process
sends the print file to tape itself, and, as usual, the process checks
tape attachment. If the tape is already attached, the process will
proceed. If the tape is not attached, the process will attempt to attach
it. If attachment is successful, the process will proceed. If the tape
is attached to some other line, the attachment will be impossible, and, in
the normal course of events processing will terminate with a tape not
available message. In the case that the SP-EDITing is under PROC control
it may be preferable to wait until the tape is available and then proceed.
For this purpose the W option is supplied. It will cause the process to
wait until the tape is available, spool the hold file to tape, and then
return. The W option may be used any time that a hold file is being sent
to tape. It has no effect otherwise.

TAPE RECORD SIZE WITH PRINT FILE TO TAPE

Specification of tape record size is available for all print file to tape
operations, since all transfers to tape are done by the generating or SP
EDITing process. If there is no prior attachment by means of the T-ATT
verb, the process will attach the tape on initiation. The tape block size
will be the last tape block size used by the line, if tape has been used
since logon time, or it will default to 500 bytes. It may be the case
that there is a preferred size, in which case the use of the T-ATT verb
with the desired parameter is recommended.

TAPE LABELS WITH PRINT FILE TO TAPE

In the normal course of events, a print file on tape will be preceeded
with a tape label which includes the header "SPOOLER". Should it be
desired that the print files on tape not be preceeded by a tape label,
then the H (Header-suppress) option can be used. This may facilitate
transfer of print files (or data) to foreign machines, or avoid having
labels between each of several contiguous print files on a tape for use on
an evolution machine. It is best that one not change tape record sizes
between tape files without allowing a tape label at the beginning of the
tape file with the new block size.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 310

(' '\

/

C· \
-~,/

OUTPUT QUEUE AND COPY COUNT SPECIFICATION REPLACEMENT

The multiple printer spooler processor has several different output queues
into which a print file may be enqueued, and it has the ability to output
several copies of a report on a single activation. These are specified by
the SP-ASSIGNment in effect when the print file control record is created.
In the normal course of events, they are probably that which is desired.
Therefore, they are the default output queue and copy count
specifications. It may become convenient to change them, however. In
this case, the SP-EDITor will obtain the new output queue and copy count
specifications from the SP-ASSIGNment of the SP-EDITing process at SP-EDIT
time. In order to cause this transfer of specifications, the R (replace)
option is used.

GENERALIZED HOLD FILE MANIPULATION

The SP-EDIT process allows precise manipulation of print files. There
occur times when less precision is necessary and more speed and less work
are desired, as when it is desired to either spool or delete all the
available hold files which can be selected under the selection techniques
noted above. For this purpose, there is the M (Manage) option. It
enables the S (Spool) and D (Delete) options. When the M option is in
effect, and the S option is selected, then all selected print files will
be spooled according to the destination options and specifications active
at the time. When the M option is in effect and the D option is
specified, then all print files passed by the selection criteria will be
deleted and their storage space returned to overflow. Note that the use
of the LISTPEQS verb is recommended, because the SP-EDITor will not pause
to discuss the matter when the SP-EDITor is in this mode. The MD option
is particularly recommended when an account name or an output queue
specification defines the intended group of print files uniquely,

(. although it can be used on print files identified by entry number using
/ the n or the n-m options. All selection and destination options are avail

able for use with the M _ option, but only the SPOOL Y or the DELETE Y
alternatives of the SP-EDIT prompt sequence can be executed in this manner.
The entry number of each affected print file will be sent to the terminal
of the SP-EDITing process.

7.4.1.3 HOLD FILE TO DATA FILE OPTION

(

There is a further option associated with the hold file to data file
capability which runs under the SPOOL prompt. In the normal case, the
print file is transferred to a data file with one page per item, such that
the trailing blank lines on each page are deleted from the data file. If
the trailing blank lines are desired, there is a V (Vanilla) option which
will cause all trailing blank lines on each page to be kept.

7.4.2 PROC CONTROL OF THE SP-EDIT PROCESS

The SP-EDIT process can be executed from PROC with stacked inputs in the
same way that any other process which requests input is to be executed.
Note that the PH comand will not avoid the prompts normally sent to the
screen, which will generate at least some audit trail. The problem with

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 311

the use of SP-EDIT under PROC control is the matter of whether the PROC
knows what it ought to SP-EDIT. For this purpose, each time a print file
control record is created and its entry number is sent to the screen, the
entry number is also placed in the PROC secondary input buffer. This
allows a process running under PROC control to generate a hold file, and
then immediately obtain the hold entry number or numbers from the
secondary input buffer. The process may either pass an entry number to
the SP-EDITor, or it may pass a collection of entry numbers to a BASIC
program to file for future reference. The normal technique is to set the
PROC input pointer to the secondary input buffer with an SS command, and
then inspect and transfer the entries to the primary or secondary output
buffer, as the case may be. Note that there may be error message numbers
intermixed in the secondary output buffer, and that the SP-EDIT process
does not allow a list of entry numbers. The intermixture is particularly
likely if the print file generating process is the result of an
instruction stream introduced from the secondary output buffer after a
SELECT or an SSELECT introduced from the primary output buffer. The
evanescence of secondary input buffer entries is one of the reasons for
the P, T, and TW options.

If PROC control of the spooler structure is seriously contemplated, then
there are two protocols which are recommended, and which depend on the
selection options noted above. First, print files or print file classes
may be identified by the generating account name. This must be a real
system file account name rather than a CHARGE-TO name. It may be
implimented either by requiring a LOG TO the generating account to spool
the results of that account, or by logging the PROC to a SYS2 account to
spool the results of named accounts in an orderly manner. Secondly, each
print file class may be assigned a specific output queue number, so that
each class can be selected and output together. Note that in each case
the print files will be enqueued in ascending entry number sequence, which
is not necessarily the sequence in which they were generated, or the
sequence in which they are desired to be output.

7.4.3 THE SOURCE OF HOLD FILES

Hold files conventionally are the result of generating print files under
an SP-ASSIGN H assignment specification. There are other conditions under
which a print file directed to a printer may become a hold file. All
existing print files which are directed to a printer which are not hold
files either are already enqueued for output to a printer, or are in the
process of generation and will be enqueued at the termination of
generation under any completion state other than catestrophic failure of
the system. Any of these may be disenqueued before it is being output by
the use of the SP-KILL F verb. Upon disenqueuement, the print file will
be returned in the form of a hold file available for later SP-EDITing. If
the print file is being output, there are conditions under which it may be
disenqueued and retained as a hold file. See the section on SP-KILL F.
If a coldstart is executed, all salvageable non-hold files will be
returned as hold files, and all output queues will be cleared. If the
:STARTSPOOLER (C is executed, the same result will occur.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 312

\ j

(

(

Selection options Selection options

none

U

The default is to select all hold files generated on
the account onto which you are currently logged.

Edit all hold files. Requires SYS2 privileges.

'accountname' SP-EDIT print files generated on account
'accountname'. The single quotes are required.
SYS2 privileges are required. The account name
option will override the U option.

n SP-EDIT print file number n if it is otherwise
available.

n-m SP-EDIT the print files whose entry numbers are n
througn m inclusive, and which are otherwise
avaliable. Nand m must be within the range of 1
through 600 inclusive when referencing entry
numbers, and m must be greater than or equal to n.

F Used with n or n-m, causes the meaning of nand n-m
to change to output queue numbers. Hold files whose
output queue specication is n or is in the range n
through m inclusive will be selected. Here, nand
m must be in the range of 0 through 125 inclusive,
and m must be greater than or equal to n.

SP-EDIT

SP-EDIT U

SP-EDIT n

SP-EDIT n-m

SP-EDIT SELECTION OPTIONS

Will return available jobs generated by the account
onto which you are now logged.

Will return all available jobs.

Will edit print file n, if it is yours.

Will edit your print files between the numbers nand
m inclusive, where n is greater than or equal to m.

SP-EDIT 'accountname'

SP-EDIT Fn

SP-EDIT Fn-m

Will return all jobs generated on account
'accountname', and requires SYS2 privileges.

Will select all print files generated on this account
and marked for output queue n.

Will select all print files generated on this
account marked for output queues n through m, where
m is greater than or equal to n.

SP-EDIT selection -- simple examples.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 313

Print file inspection options.

L

o

Inspects an enqueued print file. This option accepts
all selection options and ignores all manipulation
options.

In conjunction with the L option, the 0 option allows
peeking at hold files which are being output.

Hold file manipulation options.

R

P

T

Uses the current SP-ASSIGNment parameters for the
form specification and copy count.

Forces the print file to the printer. Superseeds the
line's current SP-ASSIGNment output specification.

Forces the print file to tape, as above. Supersedes
a P option.

Hold file to tape sub-options.

H

w

Causes no tape label to be put on a tape when the
print file destination is tape. The option is
effective with either the SP-ASSIGN tape
specification or the SP-EDIT tape specification.

Causes the SP-EDITing process to wait for the tape
drive to be available. Used in conjunction with
the T option to simulate the prior spooler's system
for tape print file generation.

Force option /

M Manager -- allow multiple hold file manipulations
without intervention at each prompt, according
to the two following options:

S Spool each hold file selected.

D Delete each hold file selected.

Hold file to terminal option

N Causes ouptput to the terminal to run continuously
across page breaks. The option with the "T"
response is equivalent to the "TN" response.
It has no effect with respect to any other
destination.

Hold file to data file option

v Vanilla hold file to data file conversion: do not
remove trailing blank lines from each page during
conversion.

SP-EDIT PRINT FILE MANIPULATION OPTIONS
CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

. PAGE 314

---------~---- ----

(

SP-EDIT

SP-EDIT L

SP-EDIT LO

The default is to output the hold file to tape if
the SP-EDITing line's current SP-ASSIGNment so
specifies, or to enqueue the hold file for output to
a printer. The hold file is enqueued in the output
queue specified by the entry in the print file
control block record, not in the SP-EDITing line's
current SP-ASSIGNment. The number of copies printed
will be the number specified in the control record.

Will allow you to peek at jobs which are enqueued
for output but are not being output. This option
supersedes all other destination specifications
and options.

Will allow you to look at the first 500-odd bytes
of print files which are being output and are marked
as hold files.

Options related to printer output

SP-EDIT R

SP-EDIT P

Will function as SP-EDIT, and transfer the copy
count and form number in your current assignment
specification to the print file control record
and enque the print file accordingly. This
option has no effect if the destination of the
print file is tape.

Force the print file to be enqueued for output to
the printer.

(; Options related to tape output

SP-EDIT T

SP-EDIT W

SP-EDIT H

SP-EDIT TW

SP-EDIT TH

SP-EDIT TRW

Force the output to the tape if the tape drive is
available. Otherwise, the process will terminate
with an error message.

As above, if the SP-EDITing line's output assignment
is to tape. Otherwise, t~e W option has no effect.

If the SP-EDITing line's current output assignment
is to tape, then the standard tape label will not
be written. The default is to write the label.
If the destination of the print file is not to
tape, then the option is irrelevant.

As above, except that the process will continue to
attempt to attach the tape rather than terminating.
It will continue to attempt attachment indefinitely.

Forces output to tape, does not write a label.

Forces the print file to tape, waits for the tape
drive to be available, does not write a tape label.

SP-EDIT hold file manipulation options -- simple examples part 1.
CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 315

Forcing options

SP-EDIT MS

SP-EDIT MD

Hold file to

SP-EDIT N

Hold file to

SP-EDIT V

Force all selected print file to be spooled to the
device specified by the SP-EDITing line's current
SP-ASSIGnment specification, or by the options
in effect.

Force all selected print files to be deleted
without passing go or collecting the traditional,
if shrinking, 200 dollars. The process is
breakable only between deletions.

terminal option

Causes the T response to the T option to
behave like the TN response. The N option has
no other effect.

data item option.

In conjunction with an F response to the SPOOL
prompt discussed below, this option will override
the default deletion of trailing blank lines
at the end of each page.

SP-EDIT hold file manipulation options -- simple examples part 2.

SP-EDIT RU3 Will SP-EDITentry 3, generated by any account and
utilize the SP-EDITing process's form and copy count
specifications.

SP-EDIT 7-11 Will send each print file generated by the account
onto which the process is now logged with entry
numbers 7 through 11 inclusive to tape if the current
assignment is HS.

SP-EDIT 10-20 Will obtain all allowable hold files with entry
numbers 10 through 20 inclusive in ascending order.

SP-EDIT R 'accountname'
Will obtain all available hold files generated on
account 'accountname' and transfer the SP-EDITing
process's copy count and form specification to any
of the hold files which are spooled to the printer.

General examples of the SP-EDIT verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 316

/

C·----;

(

SP-EDIT 4LU Will look at the first SOO-odd bytes of print file
number 4 created on any account if the user has SYS2
privileges and it is not being output.

SP-EDIT 4LOU Will do as above, and include the case that print
file 4 is a hold file which is being output. If
it is not a hold file, it will not be displayed.

SP-EDIT F3MS Will spool all print files created on this account
and specified to be enqueued on output queue 3,
according to the SP-EDITing line's current
output specification.

SP-EDIT F4 P MS 'ACCOUNTING'
Will enqueue all available print files created by
the account ACCOUNTING, specified to be enqueued
in output queue 4, to the printer irrespective
of the SP-EDITing line's current SP-ASSIGNment
specification, without recourse to the interactive
prompts, in the natural order of the print file
control records, if the SP-EDITing account
has SYS2 privileges.

SP-EDIT U F 10-20 MD

SP-EDIT MD

Will delete all available print files, created on
any account and specified to be enqueued onto
output queues 10 through 20 inclusive, in the
natural order, without recourse to the prompts,
if the SP-EDITing account has SYS2 privileges.

-
Will delete all available print files created
by this account.

General examples of the SP-EDIT verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 317

7.4.4 The SP-EDIT prompt sequence.

I The SP-EDIT verb is interactive. This section discusses the prompts given I
and responses allowed.

ENTRY #: nnn
DISPLAY? (Y/N/S/D/X/(CR»

Y Display.
N Skip to STRING.
S Skip to SPOOL.
D Skip to DELETE.
X Terminate SP-EDIT.
(CR) Skip to next print file.

Any other response will skip to STRING.

STRING-

(cr) Skip to SPOOL.
text Scan print file to 'text'.

SPOOL (Y/N=CR/T/TN/F)?

Y

N
(cr)
T

TN

F

DELETE (Y/N=CR)?

Y
N
(cr)

Enque for output to a printer
or output to tape directly.
Skip to DELETE.
Skip to DELETE.
Output to user's terminal.
Roadblock at the end of each page.
Output to user's terminal without
roadblock.
Convert to data file item set.

Release remaining storage to overflow
Skip to next print file.
Skip to next print file.
Any other response will skip to
the next print file.

The SP-EDIT prompts.

Note that the ALIGN prompt has disappeared. See the STARTPTR verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 318

(

7.4.5 THE DISPLAY PROMPT.

The SP-EDITor will specify: ENTRY # nnn, and will then output:

DISPLAY? (Y/N/S/D/X/(cr»

The suggested responses have the following meanings:

Y says yes to the DISPLAY question, and the processor will proceed to
display as many lines as are required to output the first 500 bytes of the
report. It will go beyond the SOOth byte in order to complete the last
line of the display. It will display the whole report if the report is
less than 500 bytes.

If the L option is in effect, the DISPLAY prompt will be presented. The
carriage return response will cause selection of the next hold file, the X
response will cause the process to exit to TCL, and any other response
will generate the SOD-odd byte display of any print file which is not
being output. If the print file is being output, and the 0 option is in
effect, and the print file is marked as a hold file, then the first
SOD-odd bytes will be displayed. Otherwise the message:

BEING OUTPUT

will be displayed, and the process will continue to the next selected hold
file or to TCL. If the requested fragment of the print file is displayed,
the prompt NEXT? will occur. When it is desired to proceed to the next
hold file or TCL, then a carriage return will cause the process to
recommence.

N will cause the processor to skip the display routine and proceed
directly to the STRING- prompt.

S will skip both the display and string routines, and proceed directly to
the SPOOL? prompt.

D will skip all of the above and proceed directly to the DELETE prompt

X will leave the SP-EDITing process immediately.

(CR) will skip to the next requested hold file, if any.

7.4.6 THE STRING PROMPT.

STRING-

The intent of the function available at the STRING- prompt is to allow the
continuation of the printing of a report which was previously interrupted,
as by a paper jam, without having to reprint that which was already
printed. A carriage return will skip the function. Any other input is
construed as a litteral string from the prompt to the carriage return,
including blanks. The processor will then scan the hold file, starting
from the top, until it encounters the first instance of the desired
string. It will then set the beginning-of-report address to the beginning
of the line in which the string was found, and deliver the result to the
SPOOL prompt. If the report in question was paginated by the standard

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 319

system output processor (any case other than line-counting in BASIC, an
assembler routine written by a user, or a print file generated with a page
length of zero as specified by TERM), then it is sufficient to align the
paper to the standard top-of-form for the printer and initiate output from
the SPOOL prompt in order to obtain proper alignment. This will work if
the string sought is on a page prior to the desired output. When the
printer encounters the top-of-form byte at the top of the next page, the
printer will eject paper to the top of the page, yeilding alignment of the
paper and the text. If the job was generated without top-of-form char
acters, the paper will have to be aligned to the correct relative location
on the paper. See the STARTPTR verb for the alignment proceedure.

7.4.7 THE SPOOL PROMPT.

The SPOOL prompt has the form:

SPOOL (Y/N-CR/T/TN/F)?

The responses to the SPOOL prompt, in conjunction with
current assignment and the options on the SP-EDIT verb,
file to go to the specified destination.

7.4.7.1 THE Y RESPONSE.

the process's
cause the print

Y enqueues the job for output by a printer if the SP-ASSIGNment of the SP
EDITing process so specifies or the P option is in effect, or sends the
print file to tape under the control of the SP-EDITing process if the SP
ASSIGNment of the SP-EDITing process so specifies, or the T option is in
effect. Note that options supersede SP-ASSIGNment specifications, and the
T option or specification supersedes the P option or specification. Also
note that the SPOOL Y may be forced by the use of- the MS option. If
neither the P nor the T option nor an SP-ASSIGNment specification to
printer or tape is in effect, then the following message will be output to
the terminal and the process will return to TCL:

YOUR OUPUT SPECIFICATION IS NO OUTPUT.
REASSIGN YOUR LINE IF YOU WISH TO OUTPUT A HOLDFILE.

When a job is enqueued, the SP-EDITing process executes the enquement,
alerts the spooler, and returns to the next desired hold file, if any.
The print file is enqueued in the output queue specified in the print file
control record as specified in the SP-ASSIGNment form number in effect at
print file generation time. RThis may be overridden by the option, which
will transfer the SP-EDITing line's current form number specification to
the print file control record, and enqueue the print file in that output
queue. The changed form number will persist. The next time that the
print file is SP-EDITed with out an R option in effect, the print file
will be enqueued in the output queue specified by the new form number
specified by the last SP-EDIT operation with the R option in effect.

If the process is to copy the hold file to tape, the following sequence
will occur. The process will attempt to attach the tape. If this is not
possible, the message

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

. PAGE 320

(

TAPE ATTACHED TO LINE nn

will be output to the screen and the process will
option is in effect, the process will wait
available. If the tape is not attached already,
following message will be output:

TAPE ATTACHED BLOCK LENGTH IS nnnn.

return to TCL. If the W
until the tape becomes
and it is available, the

The tape block length will be the system default 4000 byte records. If
the tape was already attached by means of the T-ATT verb, the same message
will be output, and the block length will be that set at T-ATT time. See
the discussion of tape record size for further considerations thereon.

The SP-EDITing process will then put a tape label on the tape which will
include the text field "SPOOLER". If the tape is to have no label, then
use the H option with the SP-EDIT verb. This will cause suppression of
the tape label. Note that this is the HDR-SUPP option in ENGLISH, and
that the use of the H option with any verb which generates a print file in
conjunction with a T assignment specified will cause tape label
suppression. If the verb is an ENGLISH verb, the HDR-SUPP connective will
achieve the same result. The SP-EDITing process will then proceed to
copy the hold file to tape, and will return to the DELETE prompt upon com
pletion of the tape output.

7.4.7.2 THE T RESPONSE.

T will cause the contents of the hold file to be printed on the terminal
of the SP-EDITing process, and will request a carriage return at the end
of each page in order to continue to the next. In place of the carriage

(- return the characters U, T, or X may be used. Use of. the character U will
\) cause the current page to be repeated; use of the U at the end of this

page will cause the previous page to be displayed. Its predecessor is not
immediately available. Use of the T will cause the report to start again
from the top. Use of the X will cause termination of the spooling to the
terminal and a return to the SP-EDITor process to the SPOOL prompt. Note
that a carriage return may be necessary to obtain the first page, and that
occasionally page p-2 may appear instead of p-l on the second U command.
The SP-EDITing will return to the SPOOL prompt.

7.4.7.3 THE TN RESPONSE.

TN will cause the contents of the hold file to be output to the terminal
of the SP-EDITing process, but will not pause at the end of each page, con
sequently, the above control characters are unavailable in the nopage case.

It is possible to emulate a serial printer using a normally-logged-on
terminal using the SPOOL TN response. The processor will count lines and
execute line-feed to the bottom of the current page when it encounters a
form-feed character. Successful execution of this technique requires the
execution of the TERM verb in order to specify the actual page length of
the paper onto which the print file is to be spooled. In other words, if
you have 11 inch long paper, and the printing terminal is set for 6 lines

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 321

per inch, the TERM verb must be used to tell your process that there are
66 lines per page, as follows:

TERM ,66

The SPOOL TN process will not send form-feed characters to a printing
terminal in the way that the serial printer process would prefer to do.

Be sure to reset the TERM before you commence to do normal processing.

The SP-EDITing process will return to the SPOOL prompt.

7.4.7.4 THE F RESPONSE.

F will allow the transfer of a hold file to an item or a series of items
in a file in RUNOFF format. This can only be accomplished when the SP
EDITing process is logged onto the account which created the hold file.
The process will prompt with FILE NAME-, at which time the name of the
file into which the item or items are to be inserted is input, and then
with INITIAL ITEM-, at which time the name of the first item of the string
of items to be generated from the hold file is to be input. An incorrect
file name will cause termination with the usual error message. The item
name may be an existing item, at which time the existing item will be
over-written.

The hold file to file translation is accomplished by putting a leading .bp
.nf into the head of the item, and then by copying the contents of the
hold file into the item, with two modifications. First, carriage return,
line feed sequences are removed and an attribute mark is inserted in their
place. Second, upon a page break, the processor will terminate the
current item with a .CHAIN ITEM-NAMEnnnn, file the current item, and
initialize the next item. The sequence "nnnn" concatenated to ITEM-NAME
is a member of the sequence 0001, 0002, 0003, The first item in the
string has the name ITEM-NAME and chains to ITEM-NAME0001; the second
item in the string has the name ITEM-NAMEOOOl and chains to ITEM-NAME0002,
and so on. The terminal item has no chain statement in it. Clearly, this
set of item ids will sort into sequence. Hold files which do not have
top-of-form characters in them or which have very long pages will be
blocked into items about 12000 bytes long.

The use of this facility includes the ability to merge anything printable
into documentation, to merge ENGLISH reports into RUNOFF reports within
the body of the RUNOFF text, and to retain any output file as part of the
saved files in the system.

The proceedure does not modify the print file itself except to delete any
trailing blank lines in the text. These trailing blank lines may be
retained if the V option is selected when initiating the SP-EDIT verb.
Upon completion the process returns to the DELETE prompt in the SP-EDIT
process.

It is necessary to be logged onto the account which created the print file
in order to execute this process.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 322

7.4.8 THE DELETE PROMPT.

(

(

\ (- -,

DELETE (Y/N=CR)?

The only action which will cause deletion of the print file is the
execution of the "Y" response. Any other response will obtain the next
hold file desired, if any. Deletion is executed by the SP-EDITing
process. Once it is initiated, it is not breakable, in order to protect
the overflow table. Upon completion of the release of storage to the
system and the reinitiation of the print file control block, the process
will proceed to the next desired hold file, if any. Note that the
reinitia1ized print file control block will be unchanged under listing by
the LISTPEQS verb, except that it is marked available, until such time as
it is reused. This gives some chance of discovering that the print file,
which apparant1y disappeared, did so because it was deleted.

Print files may be systematically deleted by the use of the MD option on
the SP-EDIT. The prompts will not be seen, but the print files will be
deleted. The process is not breakable during the deletion of a print
file. It will respond to the break key between print files.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 323

7.5 THE PRINTER CONTROL VERBS. THE PRINTER CONTROL VERBS.

I The following sections discuss the verbs which allocate,
printers, and which terminate print jobs and printers.

start and stop I

Three verbs are supplied to start, stop, and delete printers from the ~
spooler system. The verb which starts printers, the STARTPTR verb,
defines the printer. It specifies the printer ordinal, the device, the
output queues to consume, and the inter-job page skip to execute. It also
executes the form-alignment process when desired. The STOPPTR verb simply
flags the stopped printer to terminate output at the end of its current
print file. The D option used with the SP-KILL verb causes deletion of
the specified printer from the spooler system. Associated with these
verbs are the other uses of the SP-KILL verb, which control print files
enqueued for output.

7.6 THE STARTPTR VERB. THE STARTPTR VERB.

The STARTPTR verb specifies a printer and allocates it to specific output
queues, and starts it.

The STARTPTR verb is the primary control processor of this spooler. It
can be executed either upon initiation of the spooler, or after a STOPPTR
has been executed, and the printer has stopped.

The STARTPTR verb specifies 1) the printer number of a device, 2) the
output queue or output queues upon which it is working, 3) the page skip
to execute at the end of each print file, 4) the type of printer, P for
parallel or S for serial,S) the device number for parallel printers or
the line # for serial printers, and 6) whether this is an alignment, which
is no longer in the SP-EDIT process. Further, if the target printer is a
serial printer which does not recognize a X'OC' as a page-eject command,
then the X option is available to specify this, and the number of lines
per page may be specified as a numeric option.

Note that in the case of a parallel printer, the printer number and the
printer device number should be the same. The system will take the
printer number as the device number in any case. It requires that there
be a device number, but it will then ignore it. Also note that the system
can and may be defined for more than four parallel printers. If your
system has the hardware to support two printers and the software to allow
four printers, and you start a third parallel printer, printer 2 on device
2, the worst that will happen is that a 'no printer controller' message
will occur for that printer under SP-STATUS, and that the printer will
grab a non-hold file and refuse to let go of it. An SP-KILL D2 and a
:STARTSPOOLER C should attend to the situation. Then SP-EDIT the print
file, which should now be a hold file, to res pool or delete it, and
reinitialize the other printers as desired. Also, reSP-ASSIGN all the
lines on the system.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 324

(

(

STARTPTR n,f,p,Tm,A CO) for a single output queue, or

STARTPTR n,{fl,f2[,f3}),p,Tm,A CO) for multiple output queues,

where

n is the printer ordinal specified for the printer
where n is between 0 and 19, inclusive.

f or fi is the output queue Q number, where
where f or fi is between 0 and 125, inclusive.

P is the number of pages to skip, where p is between 0 and 9,
inclusive.

T is the printer type, P for parallel or S for serial printers.
Note that a parallel printer runs off a GPIO board, and
that a serial printer runs off an eight-way board.

m is the line number for serial printers or the physical
device ordinal for parallel printers, where m is 0 to 3 for
parallel printers, and is one of the legal port numbers for
serial printers.

A initiates the alignment process.

o options, which may be:

x indicates that this serial printer does not recognize a
X'OC' as a page-eject command, and that the printing
process must count lines within the page, and emit the
correct number of blank lines when each page-eject
command occurs.

N where 'N' is numeric, indicates the number of lines per
page. It is only effective with the X option. If the
X option is specified and there is no numeric
specification, then the page length will default to 66
lines.

S option indicates that the initial form-feed command at
the initiation of a print file is to be ignored by a
serial printer. It is not available for parallel
printers. It is best used in the case that the inter-job
page-eject count is nonzero. It is intended to be used
in a packing-slip, picking-slip environment.

The form of the STARTPTR verb.

The syntax of the STARTPTR verb requires that the printer number be
specified on each use of the verb, hence the example of the minimal
activation. At initialization, after a STARTSPOOLER (I) or a cold start,
the page skip, type of printer, and device address or line specifier, must
be included in the use of the verb. Once printer type, address, and page
skip are specified, then they will persist until changed.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 325

Note that the device ordinal controls the printer number in the case of
parallel printers. The printer allocated PO will consume the forms
specified in the control block for printer ° without respect to the
printer ordinal specified.

Use of the ALIGN option, A, will produce the prompt LINES?, which is
asking for the number of lines to output on each alignment attempt. After
each trial, the prompt AGAIN(Y/T/N) will be forthcoming. A response of Y
will cause another alignment attempt. A response of T will cause the
alignment attempt to be terminated, and will leave the printer in question
stopped. Any modified printer parameters will be stored in the printer
control block, however. Any response other than Y orT will cause the
real print file to be printed. During the course of the alignment, the
printer is not attached to the line which is doing the alignment, but the
printer will not do anything else, either.

7.6.1 EXAMPLES OF THE STARTPTR VERB.

>STARTPTR O,O,l,PO

1-- specifies parallel printer on device address
OS. This printer will consume the queues
specified for printer 0.

eject one page after each job.

-- specifies that the printer will print jobs in
output queue 0.

--this is printer 0 in the LISTPTR display.

Form of the STARTPTR verb to be used for a default system.

>STARTPTR 1, 0,3,11 ,2,P1,A

1-- specifies alignment at start.

-- specifies parallel printer, using the
second system device address, 06.

eject two pages after each job.

--------- this printer is to print output queues 0, 3
and 11.

-- this is printer number 1 in the LISTPTR display.

General form of the STARTPTR verb.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 326

>STARTPTR 1

1-- specifies printer 1. This is a restart without
parameter changes after a stop.

Minimal form of the STARTPTR verb.

>STARTPTR 3'12,4

-- specifies forms 2 and 4.

-- specifies printer 3.

Minimal form of the STARTPTR verb with two output queues to be printed.

STARTPTR 1,2",A

1-- Alignment

of job on output queue 2

-- on printer 1.

Printer restart with alignment.

>STARTPTR 7,12,2,S23 (X 51

1-- Page length is 51 lines.

Specifies line counting since this
serial printer does not recognize the
X'OC' character as a form-feed. Used
with the '51' numeric option.

specifies serial printer on line 23.

eject two pages after each job.

-- specifies that the printer will print jobs in
output queue 12.

--this is printer 7 in the LISTPTR display.

Form of the STARTPTR verb to be used for serial printers which
do not recognize X'OC' as a form-feed character.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 327

7.6.2 THE PRINT FILE SCHEDULING ALGORITHM.

It is possible to allocate several printers to a single output queue as
well as to assign up to three output queues to a single printer. In
either case the order of execution of jobs within an output queue and I~
amongst output queues becomes a matter of interest. ~/

When a printer locates a print file available for output, the printer
process marks the print file as being output, but leaves it enqueued for
output until the task is complete. Print files are left enqueued for
output so that, if there is a system difficulty which requires the use of
the :STARTSPOOLER verb, the spooler system can restart from a point prior
to whatever problem occured. A discussion of the disposition of print
files under :STARTSPOOLER and COLDS TART conditions will be found in the
section on the :STARTSPOOLER verb.

When a printer completes a print file task, it will remove the print file
control record from the output queue. Completion is defined as either
normal completion, or termination under STOPPTR conditions, or termination
under SP-KILL conditions.

The print file task initiation algorithm searches the output queue
specified first in the STARTPTR verb until it encounters the first job not
being output. If there are no print files available to be printed in the
first-named output queue, the printer will search the second-named output
queue in order, and then the third. It will not persist in the output
queue whence the last job came. It is therefore possible to set
priorities on print jobs using a single printer. The highest-priority
jobs are sent to the first-named output queue, the second-priority jobs to
the second-named output queue, and the lowest-priority to the third-named
output queue. The priority structure can be reset by stopping and then
restarting the printer. Jobs sent to other output queues will not appear ~
until the printer is allocated. to those output queues. It is the case /
that only one printer can look in the output queues at a given time.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 328

(

7.6.3 STARTPTR ERROR MESSAGES

The STARTPTR process has a full set of error messages. In the order in
which they are encountered, they are:

NULL PRINTER NUMBER~

This will occur when the first parameter, the printer number, is either
null or non-numeric.

PRINTER NUMBER TOO BIG

This will occur when the printer number is larger than 19.

NO FORM NUMBER

This will occur when the second parameter, form number, is null or non
numeric. It is required for initialization.

ILLEGAL CHARACTER

This will occur when the parser encounters an unexpected character in one
of several different circumstances.

PRINTER MUST BE STOPPED

This indicates that the printer which is being started either has not been
stopped by the use of the STOPPTR verb, or has been set to stop but is
still outputting a job. If it is desired to stop the printer immediately,
use the SP-KILL verb. If it appears that the printer is unstoppable, then

(,~:~~:m:a:e:::s:~E::E::: ::: SP-KILL verb with the D option.
This may apply to any of the output queue specification parameters.

TOO MANY PAGES IN THE PAGE SKIP -- EXCEEDS 9

This should be self-explanatory.

NEGATIVE NUMBER

As above, but probably indicates an aberation of some sort.

TOO MANY PRINT FILES

A maximum of three forms may be specified. Note again, that if there is
more than one form specified, the group of forms must be placed in
parantheses, that the right parentheses may not be omitted, and that the
paranetheses are to be placed within commas. The exceptional case occurs
upon restart, in which case the trailing parenthesis and comma may be left
off if the page skip parameter is not to be changed.

ILLEGAL PRINTER TYPE -- NOT P OR S

The printer types may be only P for parallel or S for serial.

(_ \ CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 329

ILLEGAL LINE NUMBER OR PARALLEL PRINTER NUMBER

Serial printers may be allocated only to legal ports on the system. The
spooler process may not be used as a serial printer. Parallel printers
must be specified as 0, 1, 2, or 3. Note that you can start a parallel ;-\
printer as parallel printer 1 even though there is not a GPIO board in the ~)
computer with device address 6. This will cause the spooler to waste a
lot of time looking for it. The search can be terminated with an STOPPTR
and three SP-KILLs, or with an SP-KILL with the D option. The latter
approach may leave a print file in an ambiguous state.

ILLEGAL PARALLEL PRINTER NUMBER

Must be 0, 1, 2, or 3.

ILLEGAL SERIAL PRINTER NUMBER

Must be between 0 and 19 inclusive.

ALLOCATION ATTEMPTED ON UNINITIALIZED PRINTER

The printer has not been fully started yet. Tell it what its page skip
is, what type it is, and what its physical device specification is.

YOU ARE ATTEMPTING TO START PRINTER nn ON LINE mm, WHICH IS NOT STOPPED

The printer control block, nn, is allowable in this case, but the line,
mm, is still active, indicating that the stop/active flags are not set the
same way in the two control blocks. The SP-KILL verb with the D option is
probably called for in this case.

YOUR ALIGN PROCESS WAS JUST ABORTED BY SOMEONE.
START THE ALIGN PROCESS OVER.

An SP-KILL was apparantly executed on the printer which is the object of
the align.

THERE IS NO JOB ENQUEUED FOR OUTPUT ON THE FORMS YOU SPECIFIED.
THEREFORE, ALIGNMENT IS IMPOSSIBLE.

In this case, execute an SP-STATUS or a LISTPTR n, where n is the logical
address of the printer specified as the first parameter in the STARTPTR
verb, to see what forms were specified. Then used the LISTPEQS verb with
the F option to see what is enqueued in which queues and what their
statuses are. If all appears correct, disenqueue them with the SP-KILL
verb with the F option, and reenque them with the SP-EDIT processor.

THE PRINTER CONTROL BLOCK HAS BEEN INITIALIZED.

This indicates success for the STARTPTR process.

THE DEVICE OR LINE WHICH YOU SPECIFIED IS BEING USED
AS ANOTHER PRINTER ON THE SYSTEM.

Another printer control block has control of the device or line.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 330

./

7.7 THE STOPPTR VERB

I The STOPPTR flags the specified printer that it is to stop at the end of I
the current print file.

The STOPPTR verb is analogous to the old SP-STOP verb, execpt that it is
intended to stop a printer, rather than the spooler. It requires a
numerical argument in the same way that the SP-KILL verb does. The
STOPPTR verb sets a flag which causes the printer to stop after it has
completed outputting its current print file. The process can be expedited
by executing a SP-KILL to that printer to complete the print file sooner.
If the current print file is specified to print multiple copies of the
report, then the printer will stop at the completion of the current copy.

If the STOPPTR verb is being used under PROC control with the STARTPTR
verb, the STARTPTR verb will terminate unsuccessfully if the printer is
still active when the start is attempted. Two facilities are available to
control the timing of the execution of the STARTPTR verb. First, there is
the W option, which causes the STOPPTR verb to wait until the printer has
become inactive before it returns to TCL and thence to the initiating
PROC. If the W option is used, the printer will be stopped and inactive
when control returns to the user. Second, the messages which the verb
sends are from the ERRMSG file and have error numbers which are
conveniently stored in the PROC secondary input buffer. Error message
number 1171 says that the printer is inactive and error message number
1172 says that the printer is still active. The E form in PROC cannot in
general be used in this case, because it references only the first element
of the PROC secondary input buffer.

To access the PROC secondary input buffer, execute an SS to set the PROC

(
' input pointer to this buffer, and then execute a scan of the buffer. The

! intent of the scan is to test for the ERRMSG number-indicating the state
of the printer process of interest to the PROC. For a complete
discussion, see the section on handling error messages. Using the error
message numbers rather than the W option allows the PROC to continue with
other processing, and then to return to start the printer at a later time.
Bear in mind that the PROC secondary input buffer is evanescent. It will
disappear at the next verb execution.

Note that SYS2 privileges are required for the STOPPTR verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 331

>STOPPTR n{-m}

>STOPPTR B

>STOPPTR W

Where nand m are a legal printer numbers
between 0 and 19 inclusive.

Will stop all printers.

Will cause the process to wait until the printer
has completed any print file and is inactive.

----------------------------------~---------------------------------------

>STOPPTR 1

>STOPPTR 3-5

>STOPPTR B

>STOPPTR lW

>STOPPTR

The general form of the STOPPTR verb.

Will set printer 1 to stop at the completion
of its current job

Will set printers 3 through 5 inclusive
to stop on completion of their current
jobs.

Will set all printers to stop as above.

Will set printer 1 to stop and will wait until
printer 1 becomes inactive before the process
retuns to TCL.

Examples of the STOPPTR verb.

Is erroneous because no printer number
has been specified.

Erroneous use of the STOPPTR verb.

1171 The printer is inactive

1172 The printer is active.

1174 The printer is unallocated.

STOPPTR error message numbers.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 332

(-

7.7.1 STOPPTR ERROR MESSAGES.

The following error messages will occur upon successful completion:

PRINTER # nn SET TO STOP AND IS INACTIVE.

In this case, the STARTPTR verb may be executed on this printer.

PRINTER # nn SET TO STOP BUT IS STILL ACTIVE.

stop flag has been set but the printer is still
The printer will go to inactive status upon completion

condition which will be specified by the SP-STATUS and
their normal course, as well as the STARTPTR verb as an

In this case the
outputting a job.
of the job, a
LISTPTR verbs in
error message.

The following messages indicate errors:

ILLEGAL PRINTER NUMBER. MUST BE BETWEEN 0 AND 7 INCLUSIVE ..

This will occur if n lies outside of the legal range, or if n is not used.
There is no default to zero.

PRINTER # nn CONTROL BLOCK HAMMERED. CLEARED TO NULL.

This message will occur if the contents of the printer control block does
not pass certain validation requirements. The message, and variants
thereon, can occur from other verbs which utilize the printer control
block, because it is checked for validity upon each use.

The effect is to deallocate the printer control block, but to ignore the
printer entirely. In this case, the process or subprocess which is acting
as the printer may continue to sleep, print or commit mayhem. It cannot
be stopped in an orderly manner by means of the STOPPTR and SP-KILL verbs,
or even in a disorderly manner with the SP-KILL verb with the D option.
It can be reinitia1ized with the initialization form of the STARTPTR verb,
however; or the :STARTSPOOLER verb can be used to clear all printer
processes and clean the output queues.

An attempt to execute the STOPPTR verb when logged onto an account with a
privilege level lower than SYS2 will yei1d the following message, and a
return to TCL.

YOUR SYSTEM PRIVILEGE LEVEL IS NOT SUFFICIENT FOR THIS STATEMENT.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 333

7.8 The SP-KILL verb and its extensions.

The SP-KILL verb serves to terminate various elements of the spooler
structure. It is used to terminate print jobs immediately, to disenqueue
print files, and to remove printers from the spooler system. Control is
by options.

The SP-KILL verb has acquired several functions beyond simply
the output of the current job on the printer, and several
control the verb. The SP-KILL can now disenqueue print files
output, and remove printers from the system entirely.

terminating
options to

enqueued for

The SP-KILL verb is unchanged when used for the termination of the output
or the current print file, excepting that the printer executing the job
must be specified. It will be 0 or 1 for parallel printers and between 2
and 7 inclusive when the serial printer processors are working. Use the
LISTPTR and LISTPEQS verbs to find out what is happening.

Note that the option strings may be put inside of parentheses as well as
be used without parantheses. See the section on options.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 334

(

(

Which elements:

n

n-m

B

What to kill:

null

F

D

Suboptions:

N

0

A

Specifies element n, where n is between 0 and 7,
inclusive, for printers, or is between 1 and the
last active print file on the system, which must
be less than or equal to 600, for print files.

Specifies elements from n through m inclusive, where
n is less than or equal to m and m is in the same
range as n, above.

Specifies all elements possible.

Specifies termination of current print job on
specified printer or printers.

Specifies unlinking of print files.

Specifies deletion of a printer from the system.

Specifies no abort message when killing the output
on a printer.

Specifies unlinking of a print file which is being
output, where possible.

Specifies unlinking of print files created on the
account onto which you are now logged, or the
termination of output of print files of the same sort.

SP-KILL options.

7.8.1 PRINT FILE TERMINATION.

This is the classical use of the SP-KILL verb. It is used to terminate
the print file being printed on a given printer. The verb requires an
option specifying the logical number of the printer to which that job is
going, or the range of printers to kill, or the B option to specify the
termination of print files going to all printers. Generally, the user can
kill only print files generated on the account onto which he is currently
logged. SYS2 privileges for the account allow termination of any print
file.

After the execution
print file with the
specified, or make
proceed to the next

of the SP-KILL verb, the printer will terminate the
message ABORT!, release the print file if release was
available for SP-EDITing. The printer will then

print file in its assigned queues which is available

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 335

for output, and commence to output the print file, unless the STOPPTR verb
has been executed for this printer, in which case the printer will stop
and await reassignment.

The suboption N suppresses the message ABORT! which is normally placed
one line after the point where the text of the report was terminated.

Note that executing SP-KILL n on print file n will cause its control
record to be marked as aborted, which will appear on the status displayed
by the LISPTEQS verb for print file n as an X.

The normal form of print file termination is:

SP-KILL 3

SP-KILL 3-5

SP-KILL B

SP-KILL 3N

SP-KILL (N3

SP-KILL A

SP-KILL A2

This will cause termination of the print file going
to printer * 3 if either the account doing the
SP-KILL has SYS2 privileges, or the print file was
created on the account which is executing the
SP-KILL, and will leave the message ABORT! at the
end of the output.

This will cause termination of the print files
going to printers 3, 4, and 5, subject to the
considerations on print file noted above.

This will cause termination of the print files
going to all the printers, again subject to the
considerations above.

As above, but without the abort message at the
end of the report.

The same as above.

Will terminate output from each printer which is
outputting a report which was created on the
account onto which you are now logged.

Will terminate the output on printer 2 if it is
outputting a print file created on the account
onto which you are now logged.

Examples of print file termination with the SP-KILL verb.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 336

/

(

(

7.8.2 DEQUEING PRINT FILES.

The SP-KILL verb is also used to deque print files which have been spooled
either in the normal course of the generation of the print file, or by
means of the SP-EDIT process. Dequeueing is indicated by means of the F
option. Print file elements which are to be dequeued are addressed by
their print file identification number, which is the number sent to the
screen when the print file is initiated, when it is SP-EDITed, and when
the LISTPEQS verb is used. They are not identified by the number of the
output queue onto which they are linked, which means, among other things,
that if something should happen to the links in the output queue chain,
the individual elements can be retreived and then reSP-EDITed onto an
output queue.

When a print file is enqueued, it is marked as being spooled; and the
mark will show up in the LISTPEQS display of the print file control record
as an "S". If a print file is not enqueued, it can not be dequeued. When
a print file is dequeued, it is set to hold file status and made available
for SP-EDITing. A print file which is marked as being output, indicated
by an "0" in the LISTPEQS display, will not be dequeued, except under the
conditions of the 0 suboption. The 0 suboption has the effect of
dequeuing print files which are either hold files, or are specified for
multiple copies and are not on the last copy, or are open and not choked.
In none of these cases has the storage release process started. If the
storage release process has started, as in the other cases, the print file
will not be dequeued.

When the printer completes output of a print file which has been dequeued,
it searches the expected queue, and upon not finding the expected control
record, simply tidies up, shrugs, and goes upon its way.

There are assorted reasons for dequeuing print tiles. They may be
enqueued unintentionally, due to an incorrect SP-ASSIGN specification, or
mistakenly, into the wrong output queue. If there is more than one
printer available, it may be convenient to move some work from a full
ouput queue being serviced by one printer to the printer with less work.
It may be decided that the report is erroneous in some way, and instead of
waiting to execute an SP-KILL when it starts printing, one can dequeue and
delete it now. Generally, any change in plans or system protocols may
make it advantageous to move print files about. Note that in making
decisions as to what print file to move where, there are LISTPEQS
facilities, which show the size of each element in the queue, and its
account, line, and time of generation, as well as the L option for the SP
EDIT verb, which allows the inspection of members of the output queue.

Note that any print file can be dequeued by an account with SYS2
privileges, but other accounts can only dequeue print files generated on
the account onto which they are now logged.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 337

SP-KILL F5 Will dequeue print file 5 if it is enqueued, and if
the account executing the verb has SYS2 privileges
or is the account which generated the print file.

SP-KILL F5-10 Will dequeue print files 5 through 10, inclusive

SP-KILL FB

SP-KILL F70

SP-KILL (7FO

if they are enqueued, or any which are enqueued,
and report the status of each, with the limitations
noted above.

Will deque all print files currently enqueued,
subject to the ownership conditions noted above.

Will deque print file 7 even if it is being output,
if it is not being released to overflow during
output, and subject to the other considerations
supra.

The same as above.

SP-KILL 05-l0F The same as SP-KILL F5-l0, but with dequeuing
of print files being output, subject to the
usual considerations.

SP-KILL A

SP-KILL 5-9A

Will dequeue all print files created on the
account onto which you are now logged.

Will deque all print files with entry numbers
5 through 9 inclusive which were created on
the account onto which you are now logged.

Examples of dequeuing with SP-KILL F.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 338

(

(

7.8.3 DELETING A PRINTER FROM THE SYSTEM.

The SP-KILL verb with the D option is used to delete a printer from the
system. The effect of the action is to clear the printer control block to
its initial state, and to clear the task control block used by the printer
to its initial state. The printer looses its mind at this point. If it
is outputing a file when it is deleted, the print file will remain in
never-never land until an SP-KILL D is executed on it. If the printer
process was releasing space to overflow when the deletion occured, the
rest of the space used by the print file is now lost, and the control
record is retreivable only by execution of the :STARTSPOOLER verb. The
residual control record is harmless, but tiresome to look at.

If the printer which is deleted is a parallel printer, the effect of the
deletion is to cause the spooler to not-activate that printer until it is
reinitia1ized. If the printer was a serial printer, the printer deletion
process sends the line occupied by the printer to LOGON, so that it may
then be used as a normal communication port.

Note that only accounts with SYS2 privileges may delete printers from the
system, and that the A option is not applicable.

SP-KILL D1

SP-KILL D7

SP-KILL 3-5D

SP-KILL BD

Will delete printer 1, which is a parallel printer.

Will delete printer 7, which is a serial printer,
and send its process to LOGON.

Will delete printers 3 through 5 inclusive.

Will delete all printers from the system.

Examples of deletion of printers by SP-KILL D.

('" CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 339

7.8.4 SP-KILL MESSAGES.

7.8.4.1 General messages.

Erroneous specifications may yield one of the following messages:

ILLEGAL PRINTER NUMBER. MUST BE BETWEEN 0 AND 7 INCLUSIVE.
ILLEGAL SPECIFICATION NUMBER nnn.

An attempt to execute a procedure restricted to SYS2 privileged accounts
when logged onto an account with a lower privilege level will yield the
following message, and a return to TCL.

YOUR SYSTEM PRIVILEGE LEVEL IS NOT SUFFICIENT FOR THIS STATEMENT.

The occurance of a printer contol block which is in an ambiguous state
will yield the following:

PRINTER # n CONTROL BLOCK HAMMERED. CLEARED TO NULL.

This means that the printer cannot be accessed. It should be restarted
with the use of the initialization form of the STARTPTR verb, and then
either used or deleted. If it is active and printing a real report, it
should be allowed to finish. It will then go to sleep. If it is
reinitialized while printing a report, that report and its storage will be
lost.

7.8.4.2 SP-KILL messages.

The following messages may result from the execution of SP-KILL:

Successful execution of the SP-KILL verb will yield the message:

JOB ABORTED ON PRINTER # n.

Unsuccesful execution will yield the following:

PRINTER # n IS INACTIVE.
THE JOB BEING OUTPUT ON PRINTER # n IS NOT YOUR PRINT FILE.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 340

7.8.4.3 SP-KILL F messages.

Execution of the SP-KILL F verb will yield one of the following messages:

PRINT FILE # nnn WAS NOT UNLINKED BECAUSE IT IS BEING OUTPUT.

(PRINT FILE # nnn WAS NOT UNLINKED BECAUSE IT IS UNUSED.

PRINT FILE # nnn WAS NOT UNLINKED BECAUSE IT WAS NOT SPOOLED.

PRINT FILE # nnn WAS NOT CREATED ON THE ACCOUNT ONTO WHICH YOU ARE NOW LOGGED.

Successful dequement is indicated by:

PRINT FILE # nnn WAS UNLINKED AND IS AVAILABLE AS A HOLD FILE.

7.8.4.4 SP-KILL D messages.

Execution of the SP-KILL D verb will yield one of the following messages:

PARALLEL PRINTER # n HAS BEEN DELETED.

SERIAL PRINTER # n HAS BEEN DELETED, AND ITS PROCESS SENT TO LOGON.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 341

7.9 THE LISTPEQS VERB.

The LISTPEQS verb enables the user to interrogate the permanent print file
control record area. It allows the system manager and system users to
find out the disposition of individual print files, the activity on ,~
specific accounts, and the condition of spooler storage. U

LISTPEQS will display the relevant information in print file control block
elements about both live and recently released print files.

The print file control block is set up when the first line of output from
the generating process is 'spooled'. The generating process enters the
spooling routine and checks whether it has a place to put the current
line. If it does not have the necessary storage structure constructed, it
proceeds to obtain a print file control block on a first available basis,
and a frame of storage for the line of output. It transfers the output
specifications for the job from the SP-ASSIGment block and the print file
storage location to the print file control block, as well as the line's
identification and the date and time of initiation, and then goes about
its business. It returns at close time to mark the control block element
and to transfer the number of frames used.

The print file control block element will persist until the print file is
deleted from the system by either the spooler or an SP-EDITing process, at
which time the print file control block element will be marked available.
The element will remain with the terminal condition information until it
is used by another print file. How long that may be depends on the
relative rate at which print files whose control blocks preceed the
control block in question are made available, and the rate at which new
print files are generated.

Note that the number of frames used will be spurious in the case of SP
ASSIGN I and IC jobs. The number of frames used will reflect the number
of frames left to print when the print file was closed, rather than the
total number of frames used. This will be importance only in the SP
ASSIGN HI case, or if multiple copies are desired, and in the case that
precise overflow availablity calculations are being performed.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 342

',- /

(

(

7.9.1 LISTPEQS OPTIONS.

The LISPTEQS verb has several options which allow selectivity of display.

A Displays only the print files generated on the account
on to which you are currently logged.

L Displays those print files which are deleted as well as
those which are active.

C Displays only the number of print files and the amount
of storage used thereby as totals for the class of
print files specified by other options.

F Displays print files enqued for output in their output
sequence in each non-null queue by queues in the
natural order.

E Displays print file real storage location. This is to
be used in conjunction with the DUMP verb by the
instalation manager in moments of stress.

'accountname' Displays all print files generated on the account
with the name 'accountname'.

P

n

n-m

Causes the results of the verb to be printed. P

Displays print file control block entry # n, which is
the same number output as a message_ upon the
initiation of the print file control block element.

Displays print files n through rn, inclusive, as above.

The LISTPEQS verb's options.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 343

----. -------------------------------_.-

7. 9 . 2 THE LISTPEQS VERB FORM.

Definition of LISTPEQS FIELDS:

STAT LK LN STATUSES CP FO FRMS DATE TIME ACCT

16 C009 11 A (HP C RL) 1 4 38 01/31/79 16:42:30 TSB

1-- ACCT
NAME

creation time

creation date

number of frames in
closed file; OPEN if
open; residue at close
for choked file.

form number from SP-ASSIGN or
SP-EDIT R.

copy count from SP-ASSIGN or
SP-EDIT R.

-- print file statuses:

A Available H Holdfile
P Printer T Tape -

I Immediate G aliGn
N No close C Closed
S Spooled 0 being Output
X aborted (SP-KILL) R Requeued (SP-EDITed)
L Locked

Line number of generation or SP-EDIT spooling.

Forward link, if nonzero.

Status tally.

Spooler permanent entry number for SP-EDIT use.

Spooler permanent Q element display explaination.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 344

" j

(

7.9.3 LISTPEQS STATUS INDICATORS.

Note that if the element status is available, the leading indicator will
be an A and that the indicators of the terminal status of the element will
be enclosed in parentheses. The other status indicators are grouped into
four blocks delimited by blanks.

A (...) specifies that the control block is available.

7.9.3.1 JOB CHARACTERISTICS:

H specifies that this is a hold file, either by virtue of the SP
ASSIGNment under which it was created, or because it was dequeued by the
execution of the SP-KILL F verb, or due to the occurance of a cold start.

P specifies that it is to go to the printer either from the initial SP
ASSIGNment, or by virtue of the SP-ASSIGNment in effect at SP-EDIT time.
In the latter case the R indicator will probably be on.

I indicates that the print file was linked on to its specified output
queue when it was initiated.

N specifies that the print file was generated under an SP-OPEN condition
or SP-ASSIGN 0 specification.

G indicates that the control record references a phantom print file which
is the alignment segment of another print file which was aligned.

T indicates that the print file has gone to tape by means of the SP-EDIT
process.

7.9.3.2 CLOSED CONDITION:

C indicates that the print file is closed;
print file is still open, which means
generated, or it is in an SP-OPEN condition.

7.9.3.3 ENQUEUED CONDITION:

its absence indicates that the
that it is currently being

S indicates that the print file is linked on to an output queue, and as
such should appear in an execution of LISTPEQS F. If it does not, execute
an SP~KILL Fn, and then reenque it as necessary.

o indicates that the print file is being output. As such, it should be
spooled and have that condition indicated by the S indicator above.
Further, it should show up in the LISTPEQS F display, and as the print
file being output by one of the printers as displayed by the SP-STATUS
verb. If the print file has disappeared from the LISPTEQS F display but
not the SP-STATUS display, it should terminate normally; if it has
disappeared from the SP-STATUS display, an SP-KILL FOn is probably called
for. If that does not remove the control record, a :STARTSPOOLER will.
Be sure to check the record twice, however, because it is possible to
display the record during transitions.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 345

---------------- ---------

7.9.3.4 SP-EDIT conditions:

L indicates that the record is locked. It can not be SP-EDITed when it is
locked, except by the SP-EDIT L option. The control block record will be
locked when it is available, open, spooled, being output, or while being
SP-EDITed. Only one process can deal with a print file at a time. It
should return to an unlocked state after any abnormal termination of the
SP-EDIT process. It will be set to hold file status and unlocked at cold
start time, unless it does not pass certain validity tests.

R indicates that the print file has been SP-EDITed and sent to the printer
at some time.

X indicates that the print file has been aborted by the SP-KILL process at
some time.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 346

7.9.4 Examples of the LISTPEQS verb.

(

(

(\

>LISTPEQS L

PRINTER LIST ELEMENTS

STAT LK LN STATUSES

1 C080
2 C080
3 81CO
4 C088
5 81L1
6 41C1
7 8001
8 C088
9 C098

10 C080
11 8001
12 6001
13 CI00
14 C019
15 C098
16 C009
17 4011
18 COOl
19 4001
20 4001
21 4001
22 4001

11 HP C
1 HP C
5 H C
o HP C R
5 H C
7 P L
5 A (H C L)
9 HP C R
5 HP C XR
1 HP C
5 A (H C L)
1 A (PI C L)
5 A (HP C)

11 A (HP C XRL)
7 HP C XR

11 A (HP C RL)
3 A (P C XL)

11 A (HP C L)
7 A (P C L)
7 A (P C L)
7 A (P C L)
7 A (P C L)

22 QUEUE ELEMENTS LISTED.

02 FEB 1979 12:51:05

CP FO FRMS DATE TIME ACCT

1 4 261 01/31/79 17:49:32 TSB
1 4 575 02/02/79 10:58:54 TSB
1 0 37 02/01/79 10:37:52 MANUALS
1 0 81 02/01/79 10:32:53 BUG EYE
3 0 OPEN 02/02/79 12:51:06 DP
1 0 OPEN 02/02/79 12:43:06 MANUALS
3 0 2 02/02/79 12:44:18 DP
1 0 30 02/01/79 09:43:19 BUGEYE
5 1 21 01/31/79 12:06:56 DP
1 4 420 02/01/79 09:48:16 TSB
3 0 1 02/02/79 12:40:05 DP
1 0 5 01/31/79 18:44:49 BFS
1 5 1 01/31/79 15:38:59 CAROL
1 0 2 01/31/79 16:04:21 TSB
1 0 19 01/31/79 16:12:08 CAROL
1 4 38 01/31/79 16:42:30 TSB
1 0 64 01/31/79 17:09:12 ADM
1 4 1 01/31/79 17:10:21 TSB
1 0 5 01/31/79 17:10:59 CAROL
1 0 3 01/31/79 17:11:07 CAROL
1 0 17 01/31/79 17:11:16 CAROL
1 0 22 01/31/79 17:11:30 CAROL

1609 FRAMES IN USE.

Listing of all permanent Q elements.

>LISTPEQS AL

PRINTER LIST ELEMENTS

STAT LK LN STATUSES

5 8080
7 80Cl
9 C098

11 8001

5 H C
5 H L
5 HP C XR
5 A (H C L)

4 QUEUE ELEMENTS LISTED.

02 FEB 1979 12:51:17

CP FO FRMS DATE TIME ACCT

3 0 4 02/02/79 12:51:06 DP
3 0 OPEN 02/02/79 12:51:18 DP
5 1 21 01/31/79 12:06:56 DP
3 0 1 02/02/79 12:40:05 DP

26 FRAMES IN USE.

Listing of control records of print files generated on this account.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 347

~ .. - .. ~. ~---, .. ~ry,..~-.----~~- .~~ .. >. ---~-,----.--.--... -~---.-.-.-

)LISTPEQS

PRINTER LIST ELEMENTS

#- STAT LK LN STATUSES

1 C080
2 C080
3 81CO
4 C088
5 80BO
6 41Cl
7 8080
8 COB8
9 C098

10 C080
11 80Cl
15 C098

11 HP C
1 HP C
5 H C
o HP C R
5 H C
5 P L
5 H C
9 HP C R
5 HP C XR
1 HP C
5 H L
7 HP C XR

12 QUEUE ELEMENTS LISTED.

02 FEB 1979 12:51:55

CP FO FRMS DATE TIME ACCT

1 4 261 01/31/79 17:49:32 TSB
1 4 575 02/02/79 10:58:54 TSB
1 0 37 02/01/79 10: 37: 52 MANUALS
1 0 81 02/01/79 10:32:53 BUG EYE
3 0 4 02/02/79 12:51:06 DP
1 0 OPEN 02/02/79 12: 43: 06 MANUALS
3 0 1 02/02/79 12:51:1B DP
1 0 30 02/01/79 09:43:19 BUGEYE
5 1 21 01/31/79 12:06:56 DP
1 4 420 02/01/79 09:48:16 TSB
3 o OPEN 02/02/79 12:51:56 DP
1 0 19 01/31/79 16:12:0B CAROL

1449 FRAMES IN USE.

Listing of Q elements retaining storage.

)LISTPEQS 5-10

PRINTER LIST ELEMENTS 02 FEB 1979 12:52:43

STAT LK LN STATUSES CP FO FRMS DATE TIME ACCT

5 80BO 5 H C 3 0 4 02/02/79 12:51:06 DP
6 41C1 5 P L 1 o OPEN 02/02/79 12:43:06 MANUALS
7 80BO 5 H C 3 0 1 02/02/79 12:51:18 DP
8 C088 9 HP C R 1 0 30 02/01/79 09:43:19 BUG EYE
9 C098 5 HP C XR 5 1 21 01/31/79 12:06:56 DP

10 C080 1 HP C 1 4 420 02/01/79 09:48:16 TSB

6 QUEUE ELEMENTS LISTED. 476 FRAMES IN USE.

Listing of Q elements 5 through 10.

)LISTPEQS C

PRINTER LIST ELEMENTS

12 QUEUE ELEMENTS LISTED.

02 FEB 1979 12:53:37

1449 FRAMES IN USE.

Count number of live Q elements and the number of frames used.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 348

(-\

\,-~

// "\

/

(

>LISTPEQS F

FORM QUEUE 0

PRINTER LIST ELEMENTS 15 FEB 1979 12:08:37

STAT LK LN STATUSES CP Fa FRMS DATE TIME ACCT

3 4085 4 3 P C S L 1 0 77 02/15/79 11:09:48 ADM
4 4085 8 13 P C S L 1 0 1 02/15/79 11:32:40 JB
8 4085 14 P C S L 1 0 2 02/15/79 11:52:20 CHRIS

FORM QUEUE 4

5 COAD o HP C SO RL 1 4 250 02/15/79 10:26:43 DP

FORM QUEUE 5

6 4085 2 o P C S L 1 5 1 02/15/79 11:52:09 DP
2 C09D o HP C S XRL 3 5 420 02/14/79 22:08:31 TSB

6 QUEUE ELEMENTS LISTED. 751 FRAMES IN USE.

Listing of Q elements by output Q

In this case, note that there is a printer outputing print file control
block entry 5, which is in form queue 4.

>LISTPEQS 'MANUALS'

PRINTER LIST ELEMENTS 11 MAY 1979 11:55:13

STAT LK LN STATUSES CP Fa FRMS DATE TIME ACCT

1 C8AD 7 7 HP C SO RL 1 0 3946 05/10/79 10:57:15 MANUALS
2 C888 7 HP C R 1 0 67 05/10/79 11:32:26 MANUALS
4 8880 0 H C 1 0 3945 05/11/79 10: 42: 48 MANUALS
5 8880 0 H C 1 0 67 05/11/79 11:02:44 MANUALS
6 8880 0 H C 1 0 107 05/11/79 11:05:33 MANUALS
7 C88D 7 HP C S RL 1 0 128 05/08/79 08: 00: 48 MANUALS

6 QUEUE ELEMENTS. 8260 FRAMES IN USE.

Example of the use of LISTPEQS 'accountname'.

Note that if other options are used, they must be either in from of the
account name, or preceeded by a left parenthesis, as in the normal system
options case. Also, the account name must preceed any left parenthesis,
as with all other processors on the system.

In this particular example, print file # 1 is being output, and print file
7 is linked on behind it.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 349

7.10 THE LISTPTR VERB.

1 The LISTPTR verb lists the currently allocated
including number, status, and forms allocated.

printer control blocks, 1
(\ -- \',,-_.-/

The use of the LISTPTR verb is
their form allocations. It
STARTPTR, LISTPEQS, and SP-EDIT
the SP-STATUS verb is more than

to discover the state of the printers
is to be used in conjunction with
verbs, and when the information given
you want for the moment.

PRINTER
TYPE NUMBER

PARALLEL 1

FORMS

o 4

1--------------1

PAGE DEV OR
SKIP LINE #:

o 1

STATUS

INACTIVE

1-- Status
explanation.

Parallel printer
number or line
number.

-- Number of pages to skip
between printfiles.

-- Numbers of form queues being processed
by this printer.

-- Printer number -- for STARTPTR, SP-KILL, STOPPTR.

-- Printer type -- parallel or serial.

STOPPED

INACTIVE

Definition of LISTPTR fields.

The printer is set to stop.

The printer is inactive. If it is also STOPPED,
the STARTPTR verb may be used on the printer.

and
the

by

ACTIVE The printer is printing a report, or intitating or
terminating a print file.

UNALLOCATED The printer has never been started, or has been
deleted by the SP-KILL D verb, or has been lost
due to a control block error. It may be started
by the STARTPTR verb.

LISTPTR statuses.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 350

(

f j

>LISTPTR

PRINTER ASSIGNMENTS

PRINTER
TYPE NUMBER

PARALLEL 0 1
PARALLEL 1 0

>LISTPTR 1

PRINTER ASSIGNMENTS

PRINTER
TYPE NUMBER

PARALLEL 1 o

>LISTPTR

PRINTER ASSIGNMENTS

PRINTER
TYPE NUMBER

PARALLEL 0 0
SERIAL 7 11

12:40:06

FORMS PAGE DEV OR STATUS
SKIP LINE #

0 0 INACTIVE STOPPED
4 0 1 INACTIVE

Normal form of the LISTPTR verb.

FORMS

4

PAGE DEV OR
SKIP LINE #

o 1

12:44:11

STATUS

INACTIVE

Limited form of the LISTPTR verb.

14:16:35

FORMS PAGE DEV OR STATUS
SKIP LINE #

0 0 INACTIVE
3 11 INACTIVE

LISTPTR with a serial printer allocated.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 351

>LISTPTR B

PRINTER ASSIGNMENTS 12:44:19

PRINTER FORMS PAGE DEV OR STATUS
TYPE NUMBER SKIP LINE #

PARALLEL 0 1 0 0 INACTIVE
PARALLEL 1 0 4 0 1 INACTIVE
SERIAL 2 UNALLOCATED
SERIAL 3 UNALLOCATED
SERIAL 4 UNALLOCATED
SERIAL 5 UNALLOCATED
SERIAL 6 UNALLOCATED
SERIAL 7 UNALLOCATED

Inclusive form of the LISTPTR verb.

Error message Meaning
number

1171 The printer is inactive.

1172 The printer is active.

1174 The printer is unallocated.

LISTPTR error message numbers.

Note from the examples that it is possible for a printer to be STOPPED and
either ACTIVE or INACTIVE. This is becuase the STOPPTR verb only marks
the printer to stop at the completion of the current job or copy of a
print file. A printer may not be restarted until the printer is both
INACTIVE and STOPPED.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 352

r"
\

"-

()

The LISTPTR verb generates the following pattern in the PROC secondary
input buffer: The first argument will always be 1134, which is the source
of the heading in the display. Each printer is then represented as a
block of either two or six arguments. If the printer is unallocated,
there will be two arguments; if the printer is allocated, there will be
six. The first element in each printer block is a condition value, as in
the table above. Printers with the condition 1174, unallocated, will have
one argument following the condition code. Printers with the condition
1171, inactive, and 1172, active, will have five arguments following the
condition code. The argument following the condition code is the printer
number in all cases. This finishes the block for unallocated printers.

If the printer is allocated, the printer number will be followed, in
order, by the number of the first-specified output queue, the number of
the second-specified output queue, and the number of the third-specified
output queue. The sixth argument in the block is the number of pages to
eject.

Below is a picture and an example, with the PROC secondary input buffer
contents which result from the execution of the verb in a PROC.

>LISTPTR 1

PRINTER ASSIGNMENTS

PRINTER
TYPE NUMBER

FORMS PAGE DEV OR
SKIP LINE #

12:44:11

STATUS

PARALLEL 1 0 4 0 1 INACTIVE
/ / / / / / --+----+-----+----+-------+-------------

/ / / /
/ / /

/ /
/ ---------
I(

1134 1171 1 0 4 127 0
I
-- page skip specification.

-- queue queue 3; 127 specifies no queue
and is internal flag.

output queue 2; in this case, O.

-- output queue Ii in this case, 1.

-- printer number 1.

-- the printer is inactive.

the buffer contents are marked as a LISTPTR result.

LISTPTR and the PROC secondary input buffer: one printer.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 353

>LISTPTR 0-4

PRINTER ASSIGNMENTS 12:44:19

PRINTER FORMS PAGE DEV OR STATUS
TYPE NUMBER

PARALLEL 0
PARALLEL 1
SERIAL 2
SERIAL 3
SERIAL 4

1134 1172 o 1
I

SKIP LINE #

1 0 0 ACTIVE STOPPED
o 4 0 1 INACTIVE

UNALLOCATED
UNALLOCATED
UNALLOCATED

127 127 0 1171 1 0 4 127 0 1174 2 1174 3 1174 4
I I I I I I I I I

I
-- printer

4 block

printer 3 block

printer 2 block.

-- printer 1 block; inactive.

-- printer 0 block; active.

-- the LISTPTR PROC secondary input buffer residue mark.

LISTPTR PROC secondary input buffer contents after
listing several printers.

In this example, note that allocated printers have six arguments, that
unallocated printers have two, that the first argument in each block is
the printer condition code, and that the second is the printer number.
The third through sixth arguments are the output queue and page skip
specifications. The output queue value of 127 specifies that there is no
output queue specified for that element.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 354

C)

,,,' '.

r\
~j

7.11 THE LISTABS VERB.

('~ I The LISTABS verb lists
! system.
--

the on the I current assignment of all the lines

(

The LISTABS verb is useful if there is a question as to the allocation of
a running process, or if the system manager wishes to discover why print
files seem to be going unexpected places.

>LISTABS

LINE STATUS COP FORM
IES #

0 P 1 5
1 PI 1 0
2 P 4 0
3 PIC 1 0
4 PI 1 0
5 PO 1 0
6 HT 1 0
7 H 1 0
8 0 0
9 0 0

10 0 0
11 0 0
12 0 0

Example of the LISTABS verb.

P Print output.

H Create and keep a hold file copy. H

T Output to tape.

I Enque the job at the beginning of the job.

C Choke the creating process to printer speed.

0 Keep the print file open at close time.

Status indicators for the LISTABS verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 355

7.12 THE SP-STATUS VERB. THE SP-STATUS VERB.

The SP-STATUS verb displays the current status of the spooler system and
of each printer defined for the system. The SP-STATUS verb also has the r-~
effect of awakening the spooler if he was asleep. ~_/

7.12.1 THE SP-STATUS VERB AS A SYSTEM INFORMATION DISPLAY

The intent of the SP-STATUS verb is to give a general over-view of the
system. The message will indicate whether the spooler is active or
inactive. Activity normally implies that one or more of the parallel
printers which run as subtasks of the spooler are attempting to ouput.
The spooler may be executing one of its administrative tasks, however.
There are other messages indicating that request flags have been set by
other processes. The persistance of such messages may indicate that all
is not well with the spooler, and measures may have to be taken.

The SP-STATUS message process will then report on each possible printer.
It will specify the type and status of each printer, its form and page
skip specifications; and if the printer is active, it will note the print
file element number, line number and account name of the generating
process, and its size if closed.

7.12.2 THE SP-STATUS VERB AS SPOOLER AWAKENER.

All processes which request activity from the spooler will awaken it.
There may be cases in which it continues to snooze, however, in which case
the use of the SP-STATUS verb will awaken the spooler and cause it to go
look for work to do. Therefore, if it appears that the spooler is
neglecting a task, it may be encouraged by the use of the SP-STATUS verb.
If this does not have the desired effect, then various other approaches
should be taken. For instance, check to see if the printer is on line,
that the printer is allocated to the intended output queue, and that the
desired print file exists, is enqueued and is enqueued in the correct
output queue. The side-effect of the SP-STATUS verb awakening the spooler
is that the messages generated by the verb may be transiently spurious
because the spooler is looking for work, and in the case that the system
load is relatively constant, several executions of the SP-STATUS message
may encounter exactly the same transient condition several times in
succession without actually finding an error condition, even though it is
reported. Further investigation is recommended.

7.12.3 THE ON-LINE AND OFF-LINE CONDITION.

Note that the ON LINE and OFF LINE are often imprecise in the following
ways and for the following reasons. If the printer is inactive, it
necessarily had to complete the last job successfully, at which time the
printer was on line, and the SP-STATUS message so indicates whether the
physical printer is on line or off line. There is no specific check for
the current condition of the physical printer if the logical printer is
inactive for two reasons. First, only the spooler process attends to the

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 356

'- /

(

('

parallel printers, and only the serial printer process can attend to its
physical serial printer. Second, since the parallel printer subprocess
initializes the printing of a block of text when the printer is "on line",
and then loops while the transfer is taking place, the normal condition
seen from an active physical parallel printer is "not ready" or "off line"
because it is currently printing a block of text and is not ready for the
next block. The result of this is that if the SP-STATUSing process checks
the physical printer while it is printing, it will normally appear to be
off line when it is either on line or off line. Therefore, the SP
STATUSing process checks only what the printer output control block thinks
the status of the printer is, since, given the wires available, it is not
analytical. If it is printing, then the messages carried by the STATUSing
are not passed. In that case, they are reserved for the WHERE section of
the WHAT verb. The P and B options will still be effective. The P option
will print all of the WHAT verb's results, a facility which is possibily
of use in documenting system difficulties.

none

B

P

n

n-m

The status of the spooler and all allocated printers
will be displayed.

The status of the spooler and all printers, allocated
and unallocated, will be displayed.

The SP-STATUS results will be printed.
\

The status of the spooler and the status of printer
will be displayed. The option n must be between 0
and 7, inclusive.

The status of the spooler and the status of printers
n through m will be displayed. The option m must be
between nand 7, inclusive.

SP-STATUS options.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 357

>SP-STATUS B

THE SPOOLER IS ACTIVE.

PRINTER # 0 IS PARALLEL, ACTIVE, AND ON LINE.
THE PRINTER IS DEFINED AS PARALLEL PRINTER # O.
PRINT FILE BEING OUTPUT IS ELEMENT 8, A CLOSED FILE FOR LINE

GENERATED ON ACCOUNT DP, WHICH IS 13 FRAMES LONG.
ASSIGNED OUTPUT QUEUES: O.
THE NUMBER OF INTER-JOB PAGES TO EJECT IS O.

PRINTER # 1 IS UNALLOCATED.
PRINTER # 2 IS UNALLOCATED.
PRINTER # 3 IS UNALLOCATED.
PRINTER # 4 IS UNALLOCATED.
PRINTER # 5 IS UNALLOCATED.
PRINTER # 6 IS UNALLOCATED.
PRINTER # 7 IS UNALLOCATED.

6

Example of the SP-STATUS verb with all printers displayed.

>SP-STATUS

THE SPOOLER IS ACTIVE.

PRINTER # 0 IS PARALLEL, ACTIVE, AND ON LINE.
THE PRINTER IS DEFINED AS PARALLEL PRINTER # O.
PRINT FILE BEING OUTPUT IS ELEMENT 8, A CLOSED FILE FOR LINE # 6

GENERATED ON ACCOUNT DP, WHICH IS 13 FRAMES LONG.
ASSIGNED OUTPUT QUEUES: O.
THE NUMBER OF INTER-JOB PAGES TO EJECT IS O.

Normal form of the SP-STATUS display.

>SP-STATUS 4-7

THE SPOOLER IS INACTIVE.

PRINTER # 7 IS SERIAL, INACTIVE, AND ON LINE.
THE PRINTER IS RUNNING ON LINE 11.
ASSIGNED OUTPUT QUEUES: 8, 9.

Example of SP-STATUS with a range and an allocated printer.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 358

'-. .. /

(

:(

>SP-STATUS

THE SPOOLER IS INACTIVE.

PRINTER # 0 IS PARALLEL, INACTIVE, AND ON LINE.
THE PRINTER IS DEFINED AS PARALLEL PRINTER # O.
ASSIGNED OUTPUT QUEUES: O.
THE NUMBER OF INTER-JOB PAGES TO EJECT IS O.

PRINTER # 7 IS SERIAL, INACTIVE, AND ON LINE.
THE PRINTER IS RUNNING ON LINE 11.
ASSIGNED OUTPUT QUEUES: 8, 9.
THE NUMBER OF INTER-JOB PAGES TO EJECT IS 3.

Example of SP-STATUS with a serial printer allocated.

>SP-STATUS 0-2B

THE SPOOLER IS INACTIVE.
PRINTER # 0 IS UNALLOCATED.
PRINTER # 1 IS UNALLOCATED.

THE CONTROL BLOCK FOR PRINTER # 2 IS IN AN AMBIGUOUS STATE.
DELETE THE PRINTER FROM THE SPOOLER SYSTEM.

SP-STATUS with an erroneous transient.

The example above was taken precisely when printer 2 was checking to see
if there was more work for it to do. There are various transient cases
when the condition of the spooler may be reported to be strange. When the
timings on the system change due to changed work loads, the transients
will become invisible, and the message will become normal.

On the other hand, the message may be telling the truth, in which case use
of the LISTPTR verb, using the printer as the destination of a test print
file, or using the STOPPTR verb should generate an irregularity, in which
case the use of the SP-KILL D verb, followed by the use of the full
STARTPTR verb is called for. Should this not prove sufficient, see the
discussion of the :STARTSPOOLER verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 359

Error message Number

THE SPOOLER IS INACTIVE. 1200

THE SPOOLER IS ACTIVE. 1201

NEEDS TO START PRINTERS. 1202

NEEDS TO LOG DISC ERRORS. 1203

SPOOLER condition error messages and numbers.

The messages 1200 and 1201 refer to the spooler process rather than a
single printer. If it is INACTIVE, it is asleep and using no CPU
resources; if it is ACTIVE, it is operating one or more of the parallel
printers, starting printers, or logging disk errors. Messages 1202 and
1203 refer to flags set by other processes to cause action on the part of
the spooler process. The spooler is flagged to start printers and
awakened when a print file is enqueued, when a printer is started by the
STARTPTR verb, and under certain options of the :STARTSPooLER verb. The
spooler is flagged to log disk errors and is awakened if a process
encounters a disc error. The spooler is also awakened by the SP-STATUS
verb.

If messages 1202 and 1203 persist, there may be problems with the system.
Normally the spooler process turns the flag off when it executes the
necessary activity. If the flag which causes message 1202 stays on, it is
probably because the spooler is probably confused, and various forms of
:STARTSPOOLER should be executed, although there are cases of timing where
the message will be fairly persistent when there is no problem. If
message 1203 persists, either the spooler is confused, as above, or the
system has a hard disk error. Check the tenth section of this manual for
disk error log retrieval.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 360

I-~· ..
I

'\,,--c>/
)

('\
\'. / "-J

(

:()

(

Error message

THE CONTROL BLOCK FOR PRINTER # n IS IN AN AMBIGUOUS STATE.
DELETE THE PRINTER FROM THE SPOOLER SYSTEM.

PRINTER # n IS

UNALLOCATED

SERIAL

PARALLEL

INACTIVE

ACTIVE

STOPPED

AND ON LINE.

AND OFF LINE.

THE PRINTER CABLE IS OFF

THERE IS NO CONTROLLER FOR THIS PRINTER

THE PRINTER IS DEFINED AS PARALLEL PRINTER # n.

THE PRINTER IS RUNNING ON LINE n.

PRINT FILE BEING OUTPUT IS ELEMENT n

AN OPEN FILE FOR LINE # n

A CLOSED FILE FOR LINE # n

GENERATED ON ACCOUNT accountname

WHICH IS n FRAMES LONG.

AND THE OUTPUT IS CHOKED.

ERRONEOUSLY, THE PRINTER HAS NO OUTPUT QUEUES ASSIGNED TO IT.

ASSIGNED OUTPUT QUEUES n,n,n

THE NUMBER OF INTER-JOB PAGES TO EJECT IS n.

PRINTER error messages and numbers.

Number

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1229

1230

1231

1232

1233

1234

1239

1240

1243

Note that there are several other error message numbers which may occur.
They have to do with conditional punctuation, and are trivial. Note also
that, unlike the LISTPTR verb, the numeric arguments which are inserted
into the text here are not sent to the PROC secondary output buffer.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 361

Error message 1209 usually means what it says, but it is possible to
obtain the error if the SP-STATUS verb is executed at just the wrong time.
Reexecute the verb to see if the message persists, and, if it does, see
the note under the example above.

Error message 1219 means what it says: If it occurs, there is a
discontinuity in the cable between the printer controller and the printer.

Error message 1220 also means what it says. If a parallel printer is
started at a device address which is either not in the computer, or is
defective, then the message will occur. If the parallel printer was
started on a device address which is not there, use the SP-KILL D, and
start the correct printer. No harm has been done. If the printer is
supposed to operate from that address and does not, call hardware.

The argument in error message 1221 will be the same as the argument in
error message 1210.

Error message 1222 refers to serial printers, and the argument will be the
line, channel, or port number, as in the WHAT verb.

Error message 1232 gives the account on which the print file
generated, if there is a print file being output. Error messages
through 1234 are applicable only to active printers. Error message
refers to print files generated under SP-ASSIGN CI, and which have
indicatior under a LISTPEQS display.

was
1229
1234

the C

Error message 1239 indicates that something
and restart it, or delete it and restart it.
a COLDSTART or a patch is probably in order.

is amiss. Stop the printer
If there is still a problem,

Error messages 1240 through 1243 have to do with the display of the form
numbers to which the printer is allocated, and its inter-job page eject
specification. ~ /

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 362

7. 13 THE COLDS TART AND THE : STARTSPooLER VERB.

I The coldstart process automatically starts the spooler. The :STARTSPooLER I
verb is available to restart the spooler if necessary and advisable. (--

(

7.13.1 COLDS TART INITIALIZATION OF THE SPOOLER.

The spooler is started during the coldstart process. This occurs
immediately after the ABS section has been loaded. There are two paths
which may be taken at this point. If the coldstart was executed with a C
option, then the co1dstarting process will start the spooler, link up its
own work space and execute the coldstart proc. If the coldstart was
executed with the F option, then the coldstarting process will start the
spooler and then execute the file restore.

In both cases the spooler will reinitialize its local constants and its
local workspaces. In the case of a C-level coldstart, the spooler will
clear all control blocks except the permanent print file control record
block. It will attempt to identify all good print files, unlink them from
any output chains, make them SP-EDITable, and set its end marker to one
after the last good hold file found. If the spooler finds what it
considers to be irredeemable garbage, the list of print file control
records will be terminated at that point. Note that the effect of this is
to clear all printers, output queues, input pointers, and assignments.
The spooler then proceeds to link up workspace for all of the lines on the
system.

In the case of the F-level cold start, all of the spooler's control blocks
are initialized. Any print files which may have been there are gone; and
all spare storage is returned to overflow.

7.13.2 THE :STARTSPOOLER VERB'S ACTION.

The :STARTSPOOLER verb allows the execution of these processes selectively
and without coldstarting. The minimal execution of the :STARTSPOOLER
verb, without any options, is to reinitialize certain global pointers and
control data and to send the spooler to a normal sleep. Generally, this
will be necessary only if the spooler goes on an unexpected trip to never
never land, which should not happen in any case. The next level is the C
option, which clears all the control blocks except the permanent print
filecontrol record area. This should not be executed when any spooler
related tasks are live, either generating or printing print files. The
global level is the I option, which reinitializes everything the way the
F-1evel coldstart does, except that the storage contained in any extant
print files is lost until the next file restore. There is also the L
option, which causes the spooler to link up the extended work spaces for
all lines which are not logged on at the time. In this case the spooler
will also execute a minimal initialization of its control data.

Note especially that the :STARTSPooLER with the C
executed when no processes are generating print files,
will have to reexecute the SP-ASSIGN verb before any
attempted, and the the printers must be initialized.

option should be
that all processes
further output is

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 363

7 . 13 . 3 WHEN TO USE THE : STARTS POOLER VERB.

In general, the :STARTSPOOLER verb should not be used until all other
resources have been exhausted, and then only if the spooler is asleep or
in the debugger. The spooler may not be responding to a request to print
because it is logging disk errors, which is a priority task, for instance.
If the printer is not printing when it appears that it should, first try
some of the following approaches. Make sure that the printer is on line.
This is non-trivial: cold starts have been done because the printer was
not on line. Make sure that something is enqueued to print by using the
LISTPEQS verb with the F option, and by checking that the printer is
allocated to the output queue with available work using the LISTPTR and
SP-STATUS verbs. Print files which are available from the spooler's point
of view to be printed are enqueued in one of the output queues assigned to
the particular printer and are not flagged as being output.

If all of this appears to be in order, and the spooler has been encouraged
to attempt output by the execution of the SP-STATUS verb, then the printer
is possibly assigned to the incorrect hardware address. This might occur
after service, or due to an incorrect execution of the STARTPTR verb.
Normally the SP-STATUS verb will point out that the printer controller or
printer cable is missing. In this case, delete the printer and reexecute
the STARTPTR verb. If all appears good here, it may be that the printer
controller board has failed. This happens very seldom, and is probably
not the case now. .

If there is no progress thus far, create a small, well-known hold file.
Inspect it using the SP-EDIT verb. Enqueue it onto an output queue with
no other occupants. Start the printer on this output queue only. If
nothing happens, that is, nothing is printed, the print file stays
enqueued, it is not marked as being output, and it does not appear in the
SP-STATUS message, then we must inspect the spooler process to see if it
is confused.

Inspection of the spooler process starts with the . execution of the WHERE
verb, which is in SYSPROG. The spooler is conventionally the last line on
the system, so that if you have a 20 line system, the spooler is line 20,
the twenty-first process. We are concerned with two things. First, we
wish to know if the spooler has an abnormal status; second, we wish to
know where it is processing, and if it is processing.

The spooler will normally have one of three statuses, 3F, SF, or 7F. If
the status is 3F, it is either sleeping between jobs, or napping while the
printer is outputting a block of data. He will also nap between status
checks to discover whether there is a printer there, and, if so, whether
it is on line. All snoozing will be executed in frame 170. If the status
is SF, the spooler is waiting for disk access. Normally this will be
observed when it is releasing storage used by an SP-ASSIGN I print file
which was open when output was started. In a heavily loaded system this
may occur while getting the next frame of print file to output. If the
status is 7F, the spooler is enqueued for the cpu. This is a rare
occurance.

Abnormal status is normally a 7D40 or a 7B40. These indicate that the
spooler is in the debugger and trying to talk to a non-existant terminal.
Use the PEEK verb to see what it is trying to say. The spooler will
normally be executing in frame 1 at this point.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS
PAGE 364

(

(

The spooler will get into the debugger for the following sorts of reasons:
1) The code which the spooler runs in has been modified; 2) the control
data which the spooler uses is erroreous, or 3) the spooler has
encountered an illegal forward link. In the first case, execute the
VERIFY-SYSTEM verb to see if a coldstart is required. If the system does
not verify, this may be the case. Check the second case by executing the
LISTPEQS, LISTPTR, LISTABS and SP-STATUS verbs in order to ascertain what
might be amiss. What looks right and that which looks wrong using these
verbs is a matter of practice. If they work properly, there is probably
not a problem here. The spooler is primarily concerned with its internal
printer control blocks which will be best displayed by the SP-STATUS verb,
and which can in general be cleared by the SP-KILL D verb and
reinitia1ized, as has been done above.

This leaves the case of the illegal forward link. It is normally to a
frame beyond the range of disk storage on the system, becuase a forward
link of zero is the normal mode of termination of a print file. It is the
case that in general the system will burp ocasionally. If there is not a
recent history of similar spooler problems, catalogued production basic
programs which seem to degrade over time, group format errors which
reappear, or chains which seem to cross, then the best course is to
execute the :STARTSPOOLER verb with no options. It is relatively inocuous
and will get things started again. If they stop suddenly again, SP-KILL
the print file which the spooler is attempting to print. It probably has
a bad link. Deleting the print file will probably result in an ILLEGAL
FID message being returned to the deleting process, in which case, END.
If the spooler attempts to return the storage, it will retire to the
debugger and need to be restarted. Normally, the :STARTSPOOLER verb
without options will discard print files which were being output
concurrent with storage release because their storage retention is
unknown.

If the system has the syndrome of symptoms noted above, depending on the
use of the machine, then it is an indication that the computer or its
environment is degrading, and it is time to call field service.

If for some reason the control block area of the spooler is a disaster,
but the system verifies (there is no known case of this), then execute the
:STARTSPOOLER with the C option. If the permanent print file control
record area has apparant trash in it which is found to be admissable by
the :STARTSPOOLER C, improbable but possible, then delete all print files
whose storage is reasonably trust-worthy, and execute the :STARTSPOOLER
with the I option.

Print files which print garbage probably have a dubious link some where
along the line. Avoid deleting them because, if the print file has a link
pointing into valid data, then, when it is deleted, the data area becomes
part of the overflow area and group format errors are likely to occur.
This is not the only way to print garbage, however.

In general, the :STARTSPOOLER verb need be used only when the spooler has
gone off to the debugger due to an erroneous forward link in the print
file. Note these occurances. They are a very good indicator of the
general health of the system.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 365

: STARTS POOLER

: STARTSPOOLER C

: STARTS POOLER I

:STARTSPOOLER L

Initializes control data, and take a normal
path to sleep if there is nothing to do.

Initializes control data and all control blocks
except the permanent print file control record
block. All lines must be reassigned and all
printers redefined.

Initializes all control blocks and control data.
All lines must be reassigned and all printers
redefined.

Causes the spooler to link up the extended
work space for all lines not logged on at
the time.

The STARTSPOOLER verb and its options.

Note that the C option is a subset of the I option, and that the L
may be used with either or alone if workspace linkage is desired.
the LINK-WS verb. Note also that the spooler may be started on
other than the last in the system if a numerical argument is given
option string used with the :STARTSPOOLER verb.

option
Note

a line
in the

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 366

7.14 SPOOLER VERB OPTIONS HANDLER

I Many of the verbs in the spooler process share a common options handler I
(' --~~~-:~:~::~~:-~~~~:-:~:-~~:-~~:~~~-~~~~:~~~-~~~:~~:~~---------------------

The following verbs share the options handler:

STOPPTR
LISTABS
T-FWD
SP-TAPEOUT

: S TART S POOLER
SP-STATUS
T-BCK
DUMP

SP-EDIT
LISTPEQS
T-ATT
T-RDLBL
WHO

SP-KILL
LISTPTR
T-DET
T-READ
WHAT WHERE WHO

All of the options specified for these verbs
parentheses as per the normal form for the system.
file specifications used with these verbs, it is not
parentheses. The following rules hold:

could be placed in
Since there are no

necessary to use the

It is possible to place some of the options within parentheses and others
prior to the parentheses, as long as there is no numeric argument within
the parentheses. If there is a numeric argument in the string, then
either it must preceed the parentheses, or all of the options must be to
the right of a left parentheses. Further, if dual numeric arguments are
used, they must have the form n-m with nothing but the hyphen between
them. If they are otherwise separated, then the options handler will
return the last numeric found as a single parameter. If two numbers are

) used in the proper way, they return a range, which is taken to be
inclusive in all cases where it has meaning. In general, each processor
checks the numbers for legality, and sets up a default value for each
where possible. In the table below, the defaults are indicated by ON and
OM.

If there is more than one number or legal pair of numbers in the option
string then the last number or number pair will be retained. If there is
a legal number pair, n'-m', early in the string which is loaded into Nand
M, such that N = n' and M = m', and there is a single number n" later in
the string, the options handler will return N n" and M n' '.
Similarly, if there is a second legal number pair, n' '-m", in the string
after a first pair, n'-m', then the options handler will return N = n"
and M = m' '. Do not, therefore, put more than one numeric element, n or
n-m, in an options string.

The 'accountname' parameter used with the SP-EDIT and LISTPEQS verbs must
be surrounded by', ", or \ as per the item specification rules of ACCESS.
If there are other options specified, they must either be to the right of
the left parenthesis, or proceed the 'accountname' specification. They
can be scattered between the two places as above. They will disappear if
they are between the 'accountname' specification and a left parenthesis.
Note that the 'accountname' specification must preceed all left
parentheses, and that only one 'accountname' specification is allowed.
Below are legal and illegal examples. .

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS
PAGE 367

Any alphabetic or numeric option or 'accountname' may be used with any
processor, but it will be ignored by the processor if it has no meaning.

OPTION SET

>VERB ABC

>VERB CD (E

>VERB

> VERB G

(EFG

H

>VERB I,J,K

>VERB 3KIM

>VERB 4 M(NO

>VERB (OP50

>VERB 0 (R5S

>VERB STU (6

>VERB UVW 7-8

>VERB 8-9(WXY

>VERB YZ (9-10A

I

>VERB (ABCI-2

>VERB l-C2DE

>VERB 2-E(FG3

>VERB GHI 4 'accountname'

>VERB 'accountname' (IJK5-6

>VERB K7-8 'accountname' (LM

>VERB 'accountname' M8-9 (NO

>VERB 'accountname' (OP09-10

>VERB 01-2 (RS 'accountname'

OPTIONS

ABC

CDE

EFG

GHI

IJK

KIM

MNO

OPO

RS

UVW

WXY

A

ABC

CDE

FG

GHI

IJK

KIM

NO

OPO

ORS

N M acct error
name

DN DM no

DN DM no

DN DM no

DN DM no

DN DM no

3 DM no

4 DM no

5

5

6

7

8

9

1

2

3

4

5

7

DM no

DM no

DM no

8 no

9 no

10 no

2 no

DM no

DM no

DM yes

6 yes

8 yes

DN DM yes

9 10 yes

I 2 no

error

error

error

error

error

error

error

Spooler options processor alternatives.
It is syntactically legal to make the second operand smaller than the
first, except that the processor will trap to an error because all of the
processors operating with a range operate in ascending order.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 368

7.15 CONSIDERATIONS ON PROC CONTROL OF THE SPOOLER.

I There are some facilities for the control of the spooler from PROC.
Transfer of information concerning the state of the system is into the

(--:~~-:::~~~~:~-~~~~~-~~:::::-----------------------~------------------------

(

The spooler system may be controled to some extent from PROC by making use
of the information which appears in the secondary input buffer from the
error message handler and from certain exceptional information transfers
executed by some informational elements of the spooler.

The string of parameters which are left in the secondary input buffer
after the execution of a verb, which occurs after the P in the PROC, may
be seen by inserting an SS instruction in the PROC after the P, and then a
DO. This will display the PROC secondary input buffer. It is of use when
debugging PROCs which use the buffer, and during consideration of designs
which might use the buffer.

Retreiving the information from the secondary input buffer for use by PROC
is related to the E command in PROC, except that the spooler system may
occasionally deliver more than one piece of information. The E command
will inspect only the first data field in the PROC secondary input buffer.
Therefore, the strategy is to point the PROC input pointer at the
secondary input buffer by executing an SS command, and then execute a
search.

There are three things which may be done. One may search for a number
within certain limits of admissability, one may search for a specific
number, or one may transfer all or part of the buffer to an output buffer.
Note that the only thing which may be done with the secondary input buffer
is to inspect it or to transfer it to an output buffer, and that it will
disappear at the execution of each PROC verb execution. Therefore, if the
information affects more than one verb execution, or if it is to affect a
verb execution after the next immediate verb execution, the contents of
the buffer must be saved. It may be saved by moving it to the secondary
output buffer, which is then fed to a BASIC program, which then inspects,
files, or returns it through a DATA or CHAIN statement. If particular
pieces of information are expected, conditional statements may be defined
which write a field to the primary input buffer upon encountering the
specified information.

Information which is passed by means other than the ERRMSG processor are
the entry number for each print file control record at print file
initialization time, a large volume of data on the condition of the
printers" from the LISTPTR verb, and tape ownership data from any process
which attempts tape attachment. All verbs which use the ERRMSG file leave
residues in the form of error message numbers as well. These error
message numbers will be left at error message printing time.

7.15.1 CASES OF PROC INTERACTION.

The principle cases which use the interaction are hold file acquisition,
tape control, and printer control.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 369

7.15.2 HOLD FILE RECOGNITION.

Processes running under PROC control with an SP-ASSIGNment which specifies
that print files are to be held will leave a mark and the print file
number in the PROC secondary input buffer at the time when the ENTRY # is
being displayed. The mark is the error message number 1099. The print
file number is the parameter which succeedes the 1099. If the process
generates the message

HOLD ENTRY # 17

then the PROC secondary input buffer will contain at least

1099 17

It will also contain any other error message numbers which may have been
generated during the execution of the verb.

What is not contained in the string is the print file identification
number as referenced in PICK/BASIC in the PRINT ON statement, in RUNOFF in
the .PFILE statement, and with the R parameter in the SP-ASSIGN statement.
Control in that case must be due to a well-known order of initialization
of print files, either within the verb activation, or by execution of a
sequence of SP-ASSIGN Rn's prior to the verb's activation.

An example of a fragment of a PROC to retrieve the hold file entry number
for a succeeding SP-EDIT is below.

<verb which generates a print file>

P
SS

B
5 IF # A G 99
IF A = 1099 G 15
F
G 5
15 F
IF A # (ON) G 98
HSP-EDIT
A

STON

P

Execute "the verb.
Set the buffer pointer to the secondary input
buffer.

End of buffer -- entry not found.
Test for mark.
Advance the pointer to the next argument.
Test the next parameter.
Advance the pointer to the print file number.
Absent or spurious data.
Go SP-EDIT the print file.
Move the print file number to the primary output
buffer.
Turn on the stack for the prompts, as necessary.

Go process the SP-EDIT.

<Process next or exit.>

98 XBAD DATA.
99 XNO DATA.

Exit error message.
Exit with error message.

Example of the PROC use of the hold file entry number.

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS
PAGE 370

/

(

7.15.3 TAPE CONTROL.

The magnetic tape drive unit has always been an exceptional part of the
computer system, since, unlike essentially all the other devices and
structures in the system, it can not be shared. Therefore, its

I availability and condition has always been of great importance to any
sequence of processes running under PROC control and which use the tape
drive, since PROCs can not mount tape, and they can not continue when the
tape is inoperative. Note that the tape control error message numbers are
90 through 99, and are to be found in the ERRMSG file. Also note that
certain tape difficulties are not ammenable to PROC control because they
interrupt the process and speak only to the operator of the terminal. In
these cases, only human intervention is capable of dealing with the
t:.:~oblem, or human judgement is considered necessary.

Because of the nature of the tape, it is advisable to specifically attach
the tape each time it is used, by means of the T-ATT verb. The T-ATT verb
will return one of two possible patterns. It the tape is available or is
already attached, it will return

90 nnnn

in the PROC secondary input buffer. The number 90 is a mark which
specifies that the tape is attached. The string 'nnnn' is the tape block
size as it is displayed on the screen. It is in general advisable to use
an explicit block size with the T-ATT verb, because there may be
exceptional cases when the prior state of the process is unanticipated.

If the tape is not available, the T-ATT verb will return

95 nn

(I in the PROC secondary input buffer, where 95 is a mark indicating that the
tape is not available, and the string Inn' is the number of the line which
has the tape attached.

The second concern with the tape has to do with the modification of the
spooler which removes the tape drive from spooler control. If the intent
is to send the print file to tape on completion, under PROC control, in a
situation wherein it is inconvenient to have the tape drive attached to
the print-file generating process, as when several different lines are
executing the same function, and all wish to send their current print file
to the tape, then it is convenient to send the print file to the tape from
the SP-EDIT process at the completion of generation, using the SP-EDIT
protocol as noted above, and with at least the T and W options on the SP
EDIT verb. The T option will force the output to tape under a SPOOL Y
condition, and the W option will cause the process to wait until the tape
drive becomes available.

If a fully automatic process is desired, the the MS options may be added
to the SP-EDIT verb. Below is an example.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 371

<verb which
P
SS
B

generates a print file>
Execute the verb.
Get the print file entry number.

5 IF # A XNO DATA.
IF A .. 1099 G 15
F
G 5
15 F
IF A # (ON)
HSP-EDIT
A

H MSTW
PP

XBAD DATA.
Go SP-EDIT the print file.
Move the print file number to the primary output
buffer.
Spool to Tape; Wait until the tape is available.
Yei1ds SP-EDIT n MSTW

<Process next or exit.>

Example of SP-EDIT to tape in PROC.

7.15.4 PRINTER CONTROL UNDER PROC.

Given that this spooler sub-system is both flexible and fairly complex, it
is probably preferable in a normal application environment to retain most
or all of the spooler manipulation under control of PROCs written by the
application system programmer. It is particuarly important since the
printer control verbs allow considerable facilities management
opportunities.

The principle devices to be used to manage the flow to the printer are the
output queues to which the generating tasks are assigned under the SP
ASSIGN verb, and the STOPPTR and STARTPTR verbs which consume the print
files according to instalation management plans. It is trivial to control
the flow of print files onto output queues. What is more delicate is the
reallocation of printers, since a printer must have completed its current
task before it can be reallocated using the STARTPTR verb. It is
generally unsatisfactory to use the SP-KILL verb indiscriminantly, because
necessary reports will tend to be truncated thereby.

The verb which interrogates the condition of the printers and which
communicates to PROC is the LISTPTR verb. See the section on the LISTPTR
verb for the details of the display and the string which is returned to
the PROC secondary input buffer. The LISTPTR verb will return information
about the condition of the desired printer, and about the other possible
printers on the system. One wishes to know whether the intended printer
is allocated; if so, to what forms, whether it is active or inactive, and
whether it is stopped. One also wishes to know whether any other printers
are allocated to the contemplated output queue number. If one or more is,
then the print file may go to one of them instead of the intended printer.
In order to discover the condition of the intended printer, say printer 3,
then one executes a procedure of the following sort:

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 372

/

(
HSTOPPTR 3
P

Issue a stop command.
Execute it.

SS To the secondary input buffer.
B
5 IF # A G 20
IF A .. 1171 G 80
IF A - 1174 G 80
IF A - 1172 G 15
F
G 5
15 HSLEEP 1
20 HLISTPTR 3
P
SS
B

Out of data
Stopped and inactive; go
Unallocated; go start.
Go pause
To next buffer element
Go test next.
Pause
Execute the LISTPTR verb.

start.

Set the pointer to the secondary input buffer.

25 IF A - 1034 G 10 Check for the correct initial mark.
IF # A G 99 Not there.
F To the next element.
G 25 Test it.
10 F To the condition
IF # A G 99 Nothing there.
IF A - 1074 G 80 Not allocated; can be used.
IF A - 1171 G 80 Inactive; go start.
IF A - 1172 G 40 Active
C The buffer contains illegal data.
XBAD DATA. Error exit.
40 OTHE PRINTER IS ACTIVE; DO YOU WISH TO WAIT (Y/N)+
SP Set the pointer to the primary input buffer.
IP? Input the answer.
IF A = Y G 15 Go pause.
X Else exit.
80 HSTARTPTR 3,7,0,S9 Start the printer as per the standard.
P Execute the verb.

Example of the use of the STOPPTR, LISTPTR, and STARTPTR verbs
under the control of PROC.

A more complex case is probably best handled using a basic program, which
inspects the data and constructs verb strings to which the process then
chains.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 373

7.16 MAGNETIC TAPE FACILITIES.

I There are three types of magnetic tape verbs: prerequisites, utilities, I
and production. The production verbs fall into four categories.

The T-ATT and T-DET verbs are prerequsites for the orderly sharing of the
magnetic tape drive.

The PICK System provides a complete set of magnetic tape commands which
apply to all 1/2 inch reel tape devices. However, not all of the commands
will function for all magnetic tape devices. For example, not all Audio
Cassette and 3M 1/4 inch cartridge tape devices are capable of T-BCK. In
addition, some of these devices are only capable of writing new data at
the beginning of the tape (BOT) and the end of data; records in-between
cannot be modified.

The T-FWD, T-BCK, T-EOD, T-REW, T-SPACE, T-WEOF, and T-CHK verbs are
useful to position, mark and check tape. The T-READ and T-RDLBL verbs are
available to inspect tapes, and are the tools available if there are any
difficulties encountered using tape as a storage or transport medium.

The first of the production facilities has to do with saving and restoring
the system. The storage intitiating verb is SAVE, a discussion of which
is to be found in chapter 10 of this manual. With it are associated the
ACCOUNT-SAVE PROC, which is the SAVE verb with one selection of options,
and the FILE-SAVE PROC with a different selection of options.

Retrieval of data on a tape generated by one of the variations on the SAVE
verb is either by 1) the file-restore option of the coldstart tape, 2) the
:FILES verb, and which is the same without a coldstart, which has no real
point on a orderly system, and 3) the SEL-RESTORE verb, which allows
access to items in a specified file. Each of these processors is
discussed in chapter 10, infra.

The second of the production facilities is the T-DUMP and T-LOAD verb
pair, discussed in this chapter, infra. The T-DUMP verb formats the data
on the tape in a very different way than the SAVE verb, so that tapes
generated under the SAVE verb may not be read by the T-LOAD verb, and
tapes generated by the T-DUMP verb may not be read by verbs intended to
work with tapes generated by the SAVE verb. T-DUMP is an ACCESS verb, so
that it allows selection of items on the basis of data values and by item
lists. It will also work from lists generated by SELECT and the
processors relatep to that verb. The T-DUMP verb generates a tape without
the control data included by SAVE, and with the items concatenated end-to
end and spanned. It saves data from one file at a time, and is
recommended as the basic data transfer tape writing verb. T-LOAD is the
verb which retrieves data written by T-DUMP. It is also capable of
selection criteria, which cause only specified records to be written to
disk.

The third set of facilities are primarily for print files. All processors
which can produce printed output, can send the print file to tape. Any
print file which can be SP-EDITed can be sent to tape. This has been
discussed above. Retrieval of print files from tape is by means of the

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 374

,/ ,

(-

SP-TAPEOUT verb which is discussed below. It is possible to build tapes
which contain data readable by non-PICK machines by using a print file
generating process; and it is possible to move data from machines which
delimit data records on tapes with a carriage-return, line-feed sequence
by means of the SP-TAPEOUT verb and the print file to data file facilities
of the SP-EDIT verb.

The fourth set of facilities for tape generation and retrieval are the
operators in PICK/BASIC which read and write tape. Unlike the other tape
processes used by the system, PICK/BASIC has control of all blocking and
deblocking of tape data records. Each time that the WRITET operator is
envoked, the string specified as the operand is placed in the next tape
block, and any unused portion of the tape block is padded with blanks. If
the string which is to be sent to the tape is null, an error message will
be issued. If the length of the string which is being sent to tape
exceeds the size of the tape block, an error message will be issued, the
string will be truncated, and as much of the string as will fit in the
tape block will be written to tape. Under PICK/BASIC there are no
automatic spanned records. It is therefore convenient to use fixed-length
records, which may be either blocked or unblocked, and it is efficient to
specify the tape record length as the size of the block of data being
written by the PICK/BASIC program. If the data is naturally of variable
length, then a spanned-record protocol must be constructed in PICK/BASIC
and managed by the PICK/BASIC program.

7.16.1 COMMUNICATION WITH OTHER PICK-CLASS MACHINES.

In general, and with no assurances that future machines of this class will
continue to behave as follows, the most stable tape transfer facility is

:(- the T-DUMP, T-LOAD verb pair, using a tape block size of 500 bytes, and
~J without a tape label. The tape block size of 500 bytes is the minimum

size of core buffers in PICK-class machines, and as such, assures backward
compatability. Tape labels vary between different versions and releases.

7.16.2 COMMUNICATIONS WITH NON-PICK-CLASS MACHINES.

Dealing with an abitrary foreign machine can be unpleasant. The first
thing to note is that the tape drives must be compatable. PICK normally
uses 9-track, 800-bpi, NRZI tape drives, with an ASCII character set.
9-track means that all 8 bits of one byte and one non-error-correcting
lateral parity bit are placed across the tape at the same time. 800-bpi
means a data density of 800 data locations per inch. The bpi means "bits
per inch" along one of the 9 tracks on the tape. Another term is
"800-cpi", where "cpi" means a more accurate "characters per inch". NRZI
means "non-return zero", and is a particular physical magnetic tape
recording protocol. The ASCII (American Standard Code for Information
Interchange) is the collection of bit patterns used to represent
characters in the PICK machine, as opposed EBCDIC or another code pattern.
It is typified by noting that all characters are in the lower 128
possibilities, that the numbers collate before the alphabet, and that
capital letters collate before lower-case letters. Another tape protocol
which occurs on some PICK machines is l600-bpi PE (Phase Encoded).

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 375

The two tape drives involved in the transfer must be compatible. If they
are not, then a third machine with tape drives compatible with each must
be found, and a second tape must be made which is a translation of the
first from one tape protocol to the other. This third machine is called a i-"
service bureau. '~_/

Once the physical protocols are compatible the character sets must be
translated. PICK includes facilities for translation to and from EBCDIC.
If the PICK machine is the destination, and the tape is in a print file
format, then SP-TAPEOUT may be used with the A option, and the print file
to data file facility of SP-EDIT may be used to move the data to a data
file. If the data is not in print file format, the PICK/BASIC must be
used to read the tape, execute the deblocking, and form the PICK-class
items. The operator ASCII can translate the string from EBCDIC to ASCII.

If the PICK machine is the source, then it is usually convenient to build
a tape of the form which the destination machine requires. If print file
format is acceptable, the various facilities of PICK/BASIC, ACCESS, and
RUNOFF may be use to make the tape directly, or through a hold file. If
the destination machine requires EBCDIC, it is then convenient to use the
hold file to data file protocol of the SP-EDIT verb, and then do the
translation using PICK/BASIC. If a print file format is not convenient,
then PICK/BASIC must be used.

Usually, PICK/BASIC power and flexability is highest when arbitrary data
patterns are required. It may build fixed length records (using the form
"R#lO", say), to translate, to block, and to deblock.

Tape labels are generally not recommended when transferring data to
foreign machines, because their tape label protocols are different, and
often intransigent, and becuase tape labels have a different block size
than will probably be used for the data (80 bytes). When transferring
data to an PICK machine, tape 'labels are also not recomended. Because
they do not fit the PICK protocols, they cannot be read by T-RDLBL; and
since they are not considered to be labels, they will be considered to be
data. In this case, the reading process will either receive spurious
data, in the case that the label tape record size is greater than or equal
to the size of the data records on the tape, or a BLOCK TRANSFER
INCOMPLETE error message will be issued. All is not lost, however,
because the label can usually be read by the T-READ verb, and because it
can be skipped by using aT-FWD 1.

In order to use the T-READ verb on the label, the tape block size of the
process must be set to match the size of the label. In general, if the
tape block size of the process is less than the size of the tape record,
then the number of bytes specificied by the T-ATT (tape block size) will
be returned to the terminal. If the tape record size is exceeded by the
tape block size specified by an execution of the T-ATT verb (or by the
default or residual size -- see the discussion of T-ATT infra), then the
BLOCK TRANSFER INCOMPLETE message will be issued. It is therefore
possible to discover the size of tape records, either label or data. One
does a binary search from a T-ATT specification which does not cause an
error to a T-ATT specification which does cause an error by splitting the
difference each time, and going toward the case which did not occur. It
is the case that no error will be reported if the T-ATT specification is
one byte larger than the actual tape record size. It is also the case

CHAPTER 7 - PERIPHERALS Copyrigbt (c) 1985 PICK SYSTEMS

PAGE 376

/

(

that if the T-ATT specification is set to a tape block size less than the
actual tape record size, then a number of bytes in the block equal to the
difference in the to sizes will be lost from the end of the tape record.
The reading process may run to completion, but data will have been lost.
It therefore behoves one to test the block size of the data before
actually reading all of it into a file.

It is also convenient to use the T-READ verb to inspect the data on the
tape, to see if it is as advertised. If it is in EBCDIC, it may be
translated to ASCII by means of the A option. If it is in binary, it may
be displayed in hexidecimal by the use of the X option. It may be sent to
the printer by means of the P option. See the discussion of the T-READ
verb infra.

Given the ability of the PICK machine to inspect tape, control label
generation, and form and translate data, it is usually convenient to do
the conversion on the PICK machine, rather than the foreign machine.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 377

----- ._---- ~~~~

[

7 .17 MAGNETIC TAPE: TAPE RECORD SIZE

The T-ATT verb attaches the tape drive to a user's process and specifies
the tape record length. This section notes considerations on tape record
size selection.

The T-ATT verb, noted in the next section, allows the user to specify the
length of the block sent to the tape on each write, or retrieved from the
tape on each read. The default value is 4000 bytes. The exceptional
default is 500 bytes for the T-DUMP verb for backward coompatability. The
range of allowable values is arbitrary, but may be taken to be from 80
bytes to 24768 bytes for the following reasons.

Tapes are written with a fixed physical gap between records known as the
inter-record gap (IRG), thereby placing an upper limit on the number of
records on a tape of given length. The length of each tape record is a
function of the number of bytes per record, however. Therefore increasing
the record length increases the storage capacity of the tape.
Furthermore, since the tape drive starts and stops for each record,
increasing record size decreases the number of records containing a body
of data, decreases wear and tear on the tape drive, decreases processing
time, and increases system throughput.

Because data files, items, and their elements are of variable length, the
length of tape records has no influence on the contents of blocks of data
written to tape or read from tape and vice versa. Thus the tape routines
automatically handle multiple item records and spanned item records. This
compact protocol is used by the various system tape processors: the file
save and restore and T-LOAD and T-DUMP. The various logical records and
their elements are delimited with the usual system delimeters.

The protocol for the PICK/BASIC READT and WRITET are different. Basic
handles the tape by writing one tape record for each logical record. This
is useful when conversing with a fixed-length-record machine, and when
storing data on tape which is to be returned through a basic program.
When conversing with a fixed-record-length machine it is useful to define
the tape record size so that it matches the length of the data being sent
to it, and it is efficient to block the data being sent. Blocking data
normally means the process of placing a well-known number of logical
records of fixed and equal length in a single physical block for the
convenince of the physical device on which it is to be stored. Retreival
of the data then requires deblocking into individual logical records. The
PICK tape processor will supply only &One\ Tape record for each record
sent by a WRITET instruction. If the data record overflows the tape
record, it will be truncated on the right and an error message will be
issued. If the data record does not fill the tape records, the remainder
of the last tape record will be padded with blanks.

It is possible for the user to define the tape record size for print
files. Note that print files are a continuous string of data, with lines
delimited by carriage-return (X'OD') and line-feed (X'OA') characters.
Pages are delimited by form-feed (X'OC') characters. A line of a print
file is stored through the last non-blank character. There is no padding
of blanks on the right. The end of a print file is padded with nulls
(X'OO'). This suggests that communication of a print file to a foreign
machine requires the acceptance by the foreign machine of the four

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS
PAGE 378

(

(

(-\

characters noted above, and that it not require fixed-length records. If
there is some problem with this set of protocols, then use of the SP-EDIT
process to transfer the print file to a data file, followed by the use of
a basic program is suggested. ACCESS will require various strategies if
headings, footings and control breaks are required.

If the carriage-return, line-feed characters are useable, it then becomes
possible to generate blocked, fixed-length data records using ACCESS,
noting that if the page length parameter found in the TERM statement is
zero, then ACCESS will not paginate; and that if two bytes are reserved
for the CRLF, then there are sufficient resources in the F-correlative
structure to generate fixed-length data records.

Another strategy is to construct the meaningful part of the data record
using a SELECT or SSELECT with an output attribute, which generates a
fixed-length data record using an F-correlative. The list is then saved,
and then given to a PICK/BASIC program which uses the READNEXT command to
obtain the fixed-length data records. It may them pad them out to a
desired length, translate them to EBCDIC, and block them as desired. This
approach appears to get the job done with less programming time, and less
computer time. The COPY-LIST verb is then available if a hard copy of the
transmitted data is desired. T-READ is useful in order to obtain a sample
of the tape for verification, and as an aid to the recipient thereof. It
does not appear that many non-PICK-class machines have a capability
similar to T-READ.

Note that the tape file will be padded on the end with X'FB' characters if
it comes from a data transfer verb, that it will be padded on the end with
X'OO' characters if it comes from a print file generating process, and
that it will be padded with blanks by PICK/BASIC.

A minimum record size of 80 bytes is recommended only for the generation
of a tape of card images for transfer to a machine which needs such a
tape. For off-line storage of data to be used by Pick systems, a record
length of 4000 bytes is recommended as the best compromise between tape
storage efficiency and the tape record size upper limit considerations,
which are as follows.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 379

7.18 MAGNETIC TAPE: THE T-ATT VERB

I The T-ATT verb attaches the tape drive to a user's process and specifies I
the tape record length.

--

The T-ATT verb is used prior
sections, prior to generating
ASSIGN T, the execution of an
option, tape reads and writes
REFORMAT verb.

to all tape-control verbs in the following
print file output to the tape under an SP
SP-EDIT under SP-ASSIGN T or with the T
in PICK/BASIC, or tape output using the

The T-ATT verb is used both to assure that the tape is attached to the
user's process before it is used, in order to avoid collisions, and to
specify the tape record or block size. Note the preceeding discussion of
tape record size. FORMAT:

T-ATT {(N)} or T-ATT {N}

The T-ATT command assigns the magnetic tape unit to the terminal issuing
the command. Other users are locked out. If the tape unit is attached to
another line, the following message is displayed on the terminal:

TAPE ATTACHED TO LINE n

If attachment is successful, the following message is displayed:

TAPE ATTACHED BLOCK SIZE: n

If already attached to the process, the following message will occur:

BLOCK SIZE: n.

All tape manipulation proceses on the system will check for attachment,
attach the tape if possible, generate the required message, and terminate
if the tape is not available. The implied T-ATT will use the line's
current tape record size specification. If there is no specification,
then the default will be 500 bytes. Once the line's tape record size 1S
initialized after LOGON, it will persist until LOGOFF unless it is changed
by the use of the T-ATT verb. The tape record length may be initialized
explicitly, by the use of the T-ATT with a numeric argument, implicitly by
the use of the T-ATT without a numeric argument, by using any tape verb
which checks for tape attachment, or by executing the T-RDLBL verb when a
labeled tape is mounted, in which case the tape record length specified in
the tape label will be transferred to the tape record specification for
the line. .

CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 380
(t~\

i~j

none

n

T-ATT

T-ATT (80)

T-ATT 4000

The tape will be attached to the user's line, if
possible, and the tape record length will be the
line's current tape record size if it has been
initialized or it will be the default 4000 bytes.

The tape will be attached, as above, and the tape
record size will be n bytes, where n is preferably
between 80 and 24768 bytes.

T-ATT options.

Attaches the tape to the user's line if possible.
The default record length of 4000 bytes is taken.

Attaches the tape to the user's line if possible.
Tape record length is 80 bytes.

Attaches the tape to the user's line if possible.
Tape record length is 4000 bytes - recommended.

Examples of the T-ATT {(N)} verb.

Note that the numeric option can be used either with or without a left
parenthesis. See the section on options, above.

Message Meaning and response

BLOCK SIZE: n The tape continues to be attached to your line.
Proceed.

TAPE ATTACHED BLOCK SIZE: n
The tape is attached to your line. Proceed.

TAPE ATTACHED TO LINE n

Successful

Unsuccessful

The tape is attached to another line. Check
with the user of that line. Detach if reasonable
and possible, then reexecute the T-ATT.

T-ATT messages and responses.

90 N where N is the tape block size.

95 N where N is the line to which the
tape is attached.

T-ATT error message pattern.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 381

]

7.19 MAGNETIC TAPE: THE T-DET VERB

I The T-DET verb detaches the magnetic tape from the user's line, allowing I r-'.",
other processes access to it. ~j

FORMAT:

T-DET {U}

The T-DET verb releases tape unit
currently attached to the tape unit.
displayed:

attachment if the user's line is
Otherwise, the following message is

[1147] NOT ATTACHED!

Users with SYS2 privileges may use the unconditional form, T-DET U. This
will detach the tape unit from any line except the spooler, which detaches
automatically at the end of each job. An attempt by a user to use this
form without SYS2 privileges, or an attempt to detach the spooler from an
error message.

Use of the SP-ASSIGN verb also affects tape attachment or detachment.
Successful execution of the SP-ASSIGN T requires that the tape be
available, because it is attached at that time. It must then be detached
at some later time by the user. The tape will automatically be detached
from the user's line when the user logs off the system.

none

U

T-DET

T-DET U

Will detach your line if it is attached, else the
NO~ ATTACHED message will be returned.

Will detach any line on the system which has the tape.
Requires SYS2 privileges, in lieu of which message
82 will be returned. If the option is allowed,
no message will be returned, and the tape will
be available whether or not it was in use.

T-DET options.

Will detach the tape from your line.

Will detach the tape from any line if your
account has SYS2 privileges.

Use of the T-DET verb.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 382

'. ;/

(f-- ""\

-~./

7.20 MAGNETIC TAPE CONTROL: THE T-FWD, T-BCK, T-REW, T-SPACE, AND T-EOD VERBS

I This section discusses verbs to be used to space the tape forwards and I
backwards to the location of the desired file.

(--
T-FWD

f

FORMAT:

T-FWD en}

This command moves the tape forward n records. The maximum value for n is
32,767. If n is not specified, the tape spaces forward to the position
immediately beyond the next EOF mark.

T-BCK

FORMAT:

T-BCK en}

This command backspaces the tape n records. If n is not specified,
default is a backspace to the position immediately preceding the previous
EOF mark, or to the load point; before reading the next record, aT-FWD
must then be issued to position the tape after the EOF mark.

Note that both
numeric entry n
prefers.

T-SPACE

FORMAT:

T-FWD and T-BCK use the options handler and
may be either within parentheses or not as

T-SPACE n

that the
the user

This command is a proc which executes the T-RDLBL and T-FWD verbs n times.
It spaces the tape forward over n files.

T-EOD

FORMAT:

T-EOD

This command moves the tape forward to the end-of-file mark after the last
file in the tape.

T-REW

FORMAT:
T-REW

The T-REW command rewinds the tape unit to the load point (BOT) and
returns control immediately to TCL.

(\ CHAPTER 7 - PERIPHERALS Copyright (C) 1985 PICK SYSTEMS

PAGE 383

T-FWD In}

T-BCK In}

T-REW

T-SPACE N

T-EOD

spaces the tape for ward n records, n (32,768, or
spaces the tape forward to just beyond the next
EOF mark, if n is nUll.

backspaces the tape n records, n(32,768, or
back-spaces the tape to just before the last
EOF mark, if n is null.

rewinds the tape to the load point.

spaces the tape forward past n files.

spaces the tape forward past the last file.

Form of the T-FWD, T-BCK, T-REW, T-SPACE and T-EOD verbs.

T-FWD Spaces forward past next EOF mark.

T-FWD 37 Spaces forward 37 records.

T-BCK Spaces tape to immediately before prior EOF mark.

T-BCK 22 Backspaces tape 22 records.

T-SPACE 12 Spaces the tape forward 12 files.

T-EOD Spaces the tape forward past the end of the
last file.

Examples of T-FWD, T-BCK, T-REW, T-SPACE, and T-EOD.

CHAPTER 7 - PERIPHERALS Copyright (0) 1985 PICK SYSTEMS

PAGE 384

-. - - -,,/

j

7.21 MAGNETIC TAPE CONTROL: THE T-WEOF AND T-CHK VERBS

T-WEOF

The T-WEOF command writes an end-of-file (EOF) mark on the tape. Its form
is:

T-WEOF

T-CHK

The T-CHK verb is used to check a tape for parity errors. Its form is:

T-CHK (A)}

with no option, the verb will cause the file at which the tape is
currently located to be checked for parity errors. The processor will
return to TCL at the end of the file, and display the message below. The
A option will check all files on the tape until it encounters an EOD,
which is a double EOF mark and signifies the logical end of the tape. The
processor will return to TCL with the message:

[91] END TAPE CHECK - n FILE(S)

where n is the number of files checked. It will be 1 if no option was
used, or the number of files on the tape if the option A was selected.

T-WEOF

T-CHK

T-CHK (A)

Writes an end of file mark on the tape.

Checks a tape-file for parity errors.

Checks a complete tape for parity errors.

Figure A. Form and examples of the T-WEOF and T-CHK verbs.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 385

7.22 MAGNETIC TAPE I/O: THE T-DUMP, S-DUMP AND T-LOAD COMMANDS

The T-DUMP and S-DUMP ACCESS verbs causes selected file items to be dumped
(written) to the magnetic tape unit. The T-LOAD command allows the user
to load <read) selected items from files previously saved via a T-DUMP or 0.-\
S-DUMP operation.

The T-DUMP and T-LOAD verbs are used to move files and parts of files from
one machine to another bu means of magnetic tape. They are also of use if
one wishes to back up a particular file rather than a whole account. They
are also tape generation and retrevial processors which have been most
resistant to change, so that they are of particular use in transporting
data between different versions and vintages of PICK class machines. In
this case, a T-ATT 500 is recommended. The verbs are also useful if a
given large file is to be reallocated without using either an account
restore or a system restore, particularly in the case that the disk is
almost full, and the source and destination files are at opposite ends of
the disk. By dumping the file to tape, and then loading it from tape, the
reduction in total disk head travel time will often make the file-to-file
copy by way of tape faster in real time and less disrupive to normal
system use, than using the copy verb.

The T-DUMP verb copies the specified contents of the specified file from
disc to tape. The S-DUMP verb copies the specified contents of the
specified file from disc to tape in a sorted sequence. The T-LOAD verb
restores the contents of a T-DUMP or S-DUMP tape to a specified file.

T-DUMP and S-DUMP

FORMAT:

T-DUMP [DICT} file-name [item-list} [selection-criteria}
[HEADER "name"} [(options)}

The S-DUMP verb allows sort criteria as well. The form and operations
specified by the "item-list" and "selection-criteria" are described in the
ACCESS Reference Manual. They select a sub-set of the items in the
specified file which are to be written to tape. Absence of both causes
all items in the file to be written to the tape. The HEADER option is
used to include the "name" in the tape label written at the start of the
file. See the topic entitled GENERATING AND READING TAPE LABELS. The
file-name may be preceded by the DICT modifier to dump dictionary data.
File definition items (D/CODE=D) will not be dumped. An EOF mark is
written to the tape at the completion of T-DUMP. As in other ACCESS
statements, each item-id must be enclosed in double quotes. FORMAT:

T-LOAD [DICT} file-name [item-list} [selection-criteria}
[HEADER "name"} [(options)}

This command allow the user to load dictionaries or data files saved by a
T-DUMP operation. The data from the tape are loaded to the file "file
name". The [item-list} and [selection-criteria} options allow the
selection of a sub-set of the items in the file on tape for inclusion in
the destination file "file-name" on disk. The Dictionary used by the
[selection-criteria} processing routines is that of the destination file.
Items in the tape file with item-ids identical to items in the destination

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 386

File will overwrite only if the (0) option is specified. Item-ids will be
listed at the terminal as they are loaded unless the (I) option is used,
which suppresses (inhibits) the item-id listing. The tape is positioned
at the EOF mark at the conclusion of the operation.

Note that the tape must be positioned at the first record of the file.
Otherwise, the tape read will probably commence with an initial spurious
item, because the tape records and items are not aligned. See the
discussion of tape record length above.

T-DUMP {DICT} file-name {item-list} {selection-criteria}
{HEADER "name"} {(options)}

S-DUMP {DICT} file-name {item-list} {selection-criteria}
{HEADER "name"} {sort specifications} {(options)}

T-LOAD {DICT} file-name {item-list} {selection-criteria}
{HEADER "name"} {(options)}

DICT

file-name

Item-list

Specifies dictionary of "file-name" - optiona1.

Name of source file (T-DUMP) or
destination file (T-DUMP) - required.

List of items to be dumped or loaded - optional.

Selection-criteria Selection of items to be dumped or loaded
- optional.

HEADER "name"

Options

(I)

(0)

Causes the tape label "name" to be incuded in
in the label written - optional.

Specifies options to be taken - optional.

Suppresses (inhibits) listing to the terminal
of items dumped or loaded - default is listing.

Enables overwrite of items in file with item-ids
corresponding to the item-ids of items in the
tape file. Default is retention of destination
file items.

Form of the T-DUMP and T-LOAD verbs.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 387

T-DUMP FILEI

<Copies FILEI to tape. writes an EOF on completion.

T-LQAD FILE2

Loads the contents of the tape from the location of the tape at
initiation of the T-LOAD through EOF into FILE2. Items on the
tape with item-ids identical to those of items in the file are
not written into the file.

T-DUMP FILE3 "ltem7" "itemll" "iteml7" HEADER "PRIME" (I)

Writes the items item7, itemll, and item17 in FILE3 (if they
exist) to tape after inserting the text "PRIME" into the label,
and writes an EOF at completion. The item-ids of the items
dumped are not listed on the terminal.

T-LOAD FILE4 WITH VALUE = "37" (0)

Copies all items in the tape file which have contents such that
the attribute "VALUE" in the dictionary of FILE4 evaluates to
37. Any items in FILE4 which have item-ids identical to the
item-ids of selected items in the tape file are overwritten.

S-DUMP FILES

This command will sort the file into ascending sequence by item
ids, and then transfer it to tape, listing the item-ids on the
terminal and write an EOF at the end of the file.

Examples of the T-DUMP and T-LOAD verbs.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 388

/ "'\

7.23 THE T-READ COMMAND.

FORMAT:

T-READ {(options)}

This command dumps the content of the tape to the terminal (or optionally
to the line printer). The T-READ operation terminates when the specified
number of items (records) have been dumped, or when an EOF mark is
detected. Valid options are as follows:

A

x
P
n{-m}

Dump alphanumeric segment in character after conversion
from EBCDIC to ASCII.
Dump in hexadecimal instead of character format.
Dump to the line printer.
Dump nth through mth tape record, counting from the current
position of the tape. If m is omitted, m=n is assumed. If
the entire n-m option is omitted, all tape records up to the
EOF (or EOT) will be dumped.

The T-READ operation must be preceded by tape attachment to the user's
line by to T-ATT verb. The T-READ verb is used to investigate the
contents of a tape. It may be used to find out either the contents of the
tape in general, or to find the location of a specific file. Note in the
examples of the T-READ in the following section that the tape label is
displayed at the start of the output. This and the contents of the output
generated by T-READ may be used to find the location of a desired file.

In the next section there are samples of the T-READ operation on a
fragment of basic program to display the format of the default character
form (Figure B) and the optional Hexadecimal form (Figure C). The
structure of the label will be discussed in the section on T-RDLBL. It is
in the upper left hand corner of each form. Each record is preceded by a
record counter. Note that the end of the last tape record is filled with
X'FB' ([) after the end of the valid data.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 389

T-READ {(options)} dump tape records to printer or terminal.
all tape records in file to terminal in
character form.

--
options:

A - EBCDIC to ASCII conversion.
X - hexidecima1 output
P - output to line printer.
n{-m} - output n recor ds, or

record n through record m.

General form of T-READ Command

7.24 EXAMPLES OF THE T-READ COMMAND. EXAMPLES OF THE T-READ COMMAND.

I The T-READ command dumps the contents of the tape to the terminal or line I
printer either in character form or in hexidecima1 and character form.

L 01F4 16:12:27 20 MAR 1978 BP

RECORD == 1

1 FORMATC**
51 *********************** THIS PROGRAM FORMATS A 0

101 ATA/BASIC PROGRAM TO[* DISPLAY BLOCK STRUCTURIN
151 G BY INDENTING LINES.****************************
201 *************************************----[DEFIN
251 ITIONS10 LOOP SP = 6 ;* LEFT
301 MARGIN COLUMN NUMBER 10 = 3 ;*
351 NUMBER OF SPAC[ES TO INDENT FLF=O
401 ;* FUNKY LINE FLAG*---- INITIALIZATION
451 SPX = SP LINE.NO = 0*--[-- INPUT FIL

RECORD = 2

1 E NAME AND
51 RINT

101 INPUT FI[LE

.

PROGRAM NAME PRINT
PRINT 'DATA/BASIC FILE NAME

UNTIL FILE=" DO

P
- '. ,

OPEN

401 [[
451 [[

[94] END OF FILE

FIGURE B. T-READ in character form.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 390

/ "

(

(

L 01F4 16:12:27 20 MAR 1978 BP

RECORD = 1

0000
0010
0020
0030
004,0
0050
0060
0070
0080
0090
OOAO
OOBO
OOCO
OODO
OOEO
OOFO
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
01AO
01BO
01CO
0100
OlEO
01FO

464F524D 415443FE 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A FE2A2020 54484953
2050524F 47524140 20464F52 4D415453
20412044 4154412F 42415349 43205052
4F475241 4D20544F FFFBFE2A 20204449
53504C41 5920424C 4F434B20 53545255
43545552 494E4720 42592049 4E44454E
54494E47 204C494E 45532EFE 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A FE2A2D2D
2D2DFFFB 20444546 494E4954 494F4E53
FE313020 2020204C 4F4F50FE 20202020
20202020 20535020 3D203620 20202020
20202020 203B2A20 4C454654 204D4152
47494E20 434F4C55 4D4E204E 554D4245
52FE2020 20202020 20202049 44203D20
33202020 20202020 2020203B 2A204E55
4D424552 204F4620 53504143 FFFB4553
20544F20 494E4445 4E54FE20 20202020
20202020 464C463D 30202020 20202020
20202020 3B2A2046 554E4B59 204C494E
4520464C 4147FE2A 2D2D2D2D 20494E49
5449414C 495A4154 494F4EFE 20202020
20202020 20535058 203D2053 50FE2020
20202020 2020204C 494E452E 4E4F203D
2030FE2A 2D2DFFFB 2D2D2049 4E505554
2046494C

RECORD = 2

0000 45204E41 4D452041 4E442020 50524F47
0010 52414D20 4E414D45 FE202020 20202020

OlEO FBFBFBFB FBFBFBFB FBFBFBFB FBFBFBFB
01FO FBFBFBFB

[94] END OF FILE

o :FORMATC~********:
16 :****************:
32 :****************:
48 :****************:
64 :********~* THIS:
80 : PROGRAM FORMATS:
96 : A DATA/BASIC PR:

112 :OGRAM TO [~* DI:
128 :SPLAY BLOcK STRU:
144 :CTURING BY INDEN:
160 :TING LINES.~****:
176 :****************:
192 :****************:
208 :****************:
224 :************~*--:
240 :-- [DEFINITIONS:
256 :~lO LOOP~
272 SP = 6
288 ; * LEFT MAR:
304 :GIN COLUMN NUMBE:
320 :R~ ID = :
336 :3 ;* NU:
352 :MBER OF SPAC [ES:
368 : TO INDENT~ - :
384 FLF=O
400 ;* FUNKY LIN:
416 :E FLAG~*---- INI:
432 :TIALIZATION~
448 SPX = SP~
464 LINE.NO =:
480 O~*--_[-- INPUT:
496 FIL:

o : E NAME AND PROG :
16 :RAM NAME~

480 :[[[[[[[[[[[[[[[[:
496 : [[[[:

Figure C. T-READ in hexidecima1 form.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 391

7.25 THE SP-TAPEOUT VERB.

The SP-TAPEOUT verb moves print files on magnetic tape to print files on
disc. They are handled as though they were generated by any other system 1--\,
processor. '~J

FORMAT:

SP-TAPEOUT {options}

The SP-TAPEOUT verb executes T-ATT and inputs the contents of a tape file
to the Spooler. Disposition of the file input to the Spooler is according
to the current SP-ASSIGNment of the user's line. It may be printed
immediately, at the completion of input, or as choked input. It may be
saved as a hold file. It may be then be returned to tape from the hold
file through the facilities of the SP-EDIT verb.

The SP-TAPEOUT verb has two options. The U options causes all alphabetic
information to be masked to upper case. The A option causes an EBCDIC to
ASCII to occur. The A option is executed before the U option; and both
can be executed on the same tape file. All SP-TAPEOUT manipulations will
assume process print file O. Each print file on tape is normally moved to
the disc as a distinct print file; if they are to be placed into one disk
print file, then the SP-ASSIGN 0 option should be used. In general, if it
is desired to concatenate several print files in to one print file, the
only way currently available to do it is to send them to the tape by way
of SP-EDIT, and then to return them under SP-ASSIGN 0 using SP-TAPEOUT.

SP-TAPEOUT will fail under SP-ASSIGN T. Note that the SP-ASSIGN CI
process is available to limit disc usage by the print file.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 392

\,,--

')
j

(

(

A

L

U

AU

SP-TAPEOUT

SP-TAPEOUT U

SP-TAPEOUT A

Causes conversion from EBCDIC to ASCII between
tape and the print file.

Causes print files which have been transmitted with
one line per tape record, right padded with
blanks, and without chariage-return, line-feed
sequences embedded in them to be transferred to
spooler print files directly, if the tape
record length is less than or equal to 140 bytes.
The option causes each tape record to be treated
as a line. Trailing right blanks are removed,
and a carriage-return, line-feed sequence is
inserted.

Causes conversion of all lower case alphabetic
characters to upper case

Causes conversion from EBCDIC to ASCII and
then to upper case.

SP-TAPEOUT options.

AU

Spools the file at the current location of the tape
to the destination specified by the user's current
output assignment.

Spools the print file on tape to the specified
destination, converting lower case to upper case
in the process.
Converts the print file on tape from EBCDIC to
ASCII and spools the converted print file to the
specified destination.

SP-TAPEOUT UA Converts the print file on tape from EBCDIC to
ASCII, then converts the ASCII to upper case, and
then spools the print file to the specified
destination.

SP-TAPEOUT L Causes each tape record to be treated as a line.
Trailing blanks are removed, and a carriage-return,
line-feed sequence is inserted.

Examples of SP-TAPEOUT.

A

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 393

7.26 THE T-RDLBL COMMAND. GENERATING AND READING TAPE LABELS

I Tape labels may be generated via File-Save, S-DUMP, or T-DUMP operations. I .f\
Tape labels may be read by File-Restore, T-LOAD, or T-RDLBL operations. ~)

GENERATING TAPE LABELS

A tape label may be written at the beginning of each tape reel. The
system adds the time, date and the reel number. Labels are specified when
invoking either the File-Save, S-DUMP or T-DUMP processor. In the case of
a File-Save, the label is written after the Cold-Start section of the
tape. T-DUMP and S-DUMP will cause the label to be written only if the
tape is at the load point. It will be ignored otherwise.

Labeled tapes are always created via the T-DUMP or S-DUMP ACCESS verb; by
using the HEADER option the user may specify text to be included in the
label. For example,

T-DUMP FNA HEADER "XYZ"

causes the text "XYZ" to be included in the tape label. Note that the
label must be enclosed in double quotes.

READING TAPE LABELS

The tape label is read by a File-Restore, a T-LOAD, or a T-RDLBL
operation. The File-Restore operation will always read the first record
presented to it when an "A", "AF" or "F" option is entered to see if it is
a label. The T-LOAD command (see below) will attempt to read the label
only if the tape is at the load point. In the case of unlabeled tapes, J
the operations will read the first tape record, determine that the tape is
unlabeled, and backspace the tape by one record before continuing.

THE T-RDLBL COMMAND

FORMAT:

T-RDLBL {(N)}

This command will read and store the label from tape reel number n (n is
hexadecimal), if the tape is at load point. This command must be used to
initialize the internal label storage area, and is needed under either of
the following conditions,

If data is to be read from a tape (e.g., T-LOAD, SEL-RESTORE,
etc.) starting at other than the load point of reel number one.

The tape manipulation processes normally obtain the tape label at the
beginning of each tape and after each end-of-file mark. If a tape
manipulation verb is initiated on a reel of a multi-volume set of tape
which is not the first, the tape process will obtain the tape label and
with it the reel number. At the end of the tape, the process will prompt
for the next reel, based on the reel-number of the preceeding tape.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 394

(

(

THE FORM OF TAPE LABELS

A tape label consists of eight elements, as shown in Figure B. They are a
uniform 80 bytes in length. The label section is 49 bytes long and is
constructed by concatenating the source file name in the T-LOAD verb and
the "name" in the HEADER "name" option of the T-LOAD verb with an
intervening space, and then truncating the right end of this string as
necessary to insert it into the label block. If the spooler generates the
tape output, the file name is "SPOOLER".

T-RDLBL (N)} !reads and stores label from tape reel
!number (N). (N) is hexadecimal.

General form of T-RDLBL Command

L 01F4 16:12:27 20 MAR 1978 FILENAME HEADERNAME ... -01

Element Source and use

L Label specifier.

01F4

16:12:27

20 MAR 1978

FILENAME

HEADERNAME

-01

Record length in hexadecimal. Here, 500 bytes.

System time at tape write.

System date at tape write.

Name of the source file, either filename if T-DUMP
was used or SPOOLER if the spooler was used.

The "name" in the HEADER option of T-DUMP.

The reel number in bytes 79 and 80.

Contents of the tape label.

CHAPTER 7 - PERIPHERALS Copyright (c) 1985 PICK SYSTEMS

PAGE 395

(

(/

(-.-.".

"

\

SECTION 8

ICON/PICK
RUNOFF

~.- .. - --- "._ .. _---------

(

('

Chapter 8

RUNOFF

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 396

'- .. /

(

8.1 RUNOFF INTRODUCTION AND RUNOFF VERB FORMAT

RUNOFF is a verb which facilitates the preparation and maintenance of
textual material such as memos, manuals, etc. RUNOFF takes text prepared
with the PICK EDITOR and produces formatted output. RUNOFF source text
contains commands which control justification, page titling and numbering,
spacing and capitalization. Textual material prepared with RUNOFF may be
easily edited and corrected with the PICK Editor and then reprinted with
RUNOFF. Material may be inserted or deleted, while unchanged text need
not be retyped. RUNOFF also provides the capability of combining separate
textual material into a single report and inserting duplicate text into
different reports.

RUNOFF is the TCL-II verb issued to process one or more source text file
items in RUNOFF format. Multiple input items are treated as a single
source text file. A source text item may contain a command which causes
RUNOFF to CHAIN to another file item. This makes it possible to CHAIN
file items together without doing a SELECT or SSELECT. items included in
the RUNOFF verb's item-list may chain to other items within the same file.
when the chain ends, processing continues with the next item from the
item-list.

A source text item may also contain a command which causes RUNOFF to READ
a second file item and then resume processing of the first item. This
makes it possible to insert the text from a single file item in the output
from many other file items (see example below).

The RUNOFF verb format is: RUNOFF file-name item-list (options)}

OPTIONS:

C The C option suppresses the .CHAIN & .READ commands.

I The I option will output the name of the next item to be
'Runoff'. (helpful for tracing .CHAINed sequences)

J The J option will suppress Highlighting.

N The N option will cause output to the terminal to be continuous;
that is, RUNOFF will not pause at the bottom of a page
and wait for a carriage-return if the N option is used.

Nnn This numeric option may be used to set the number of times
BOLDFACE letters are overprinted.

P The P option may be used to direct output to the line printer.

S The S option may be used to suppress underlining and boldface
when RUNOFF output is directed to a CRT.

U The U option will force the output to upper-case.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 397

8.2 RUNOFF SOURCE FILE FORMAT

The source file contains the textual material which will appear on the
final copy, plus command information to specify formatting and alternate
sources of input.

Each line of input source text is processed in the text mode except those
beginning with a period. A line beginning with a period is assumed to be
a command line and is processed in the command mode. A command line may
contain one or more commands, each starting with a period. The commands
provide formatting information and select various modes of operation.

RUNOFF fills each output line by adding successive words from the source
text until one more word will not fit on the line. The line is then
justified by inserting blank spaces between words at random until the last
word in the line exactly meets the right margin.

RUNOFF may be set to fill output lines without justifying the right
margin. When filling lines, spaces and end-of-1ines are treated only as
word separators. Multiple word separators are stripped from the input.

RUNOFF may be set to transmit the input source text to the output without
filling lines or justifying margins. In this mode, multiple spaces and
end-of-lines are not stripped from the input. Some of the commands cause
a BREAK in the output. A BREAK means that the current line is output
without justification. This occurs at the end of paragraphs .

. SK.BOX 1,78.SK

.BP.J:PARAGRAPH O.LINE LENGTH 74.LEFT MARGIN 2

.SECTION 2 INTRODUCTION TO RUNOFF

.INDEX 'RUNOFF Introduction'

.BOX OFF.C

Common RUNOFF Commands.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 398

(~
~)

8.3 RUNOFF COMMANDS

RUNOFF commands are stored along with the textual material in the source
file. These commands are distinguished by a period at the start of a
command line. A command line may contain one or more command, each
starting with a period. The commands provide formatting information and
select various modes of operation.

Note: In the following descriptions of RUNOFF commands, valid command
abbreviations are enclosed in parantheses (where such abbreviated forms of
the command exist).

8.3.1 BEGIN PAGE (BP) BEGIN PAGE (BP)

BEGIN PAGE causes a BREAK (see below) followed by an advance to a new
page. The page number is incremented and the page heading (if set) is
printed.

8.3.2 BOX n,m / BOX OFF (BOX) BOX n,m / BOX OFF (BOX)

The BOX command
width parameter
The text will
encountered.

causes the following text to be enclosed in a box with the
specified by In' (right margin) and 'm' (left margin).
continue to be 'boxed' until a "BOX OFF" command is

For example:

001 .BOX 4,74.CENTER
002 This is an example of a BOX.
003 .BOX

This is an example of a BOX.

8.3.3 BREAK (B) BREAK (B)

BREAK causes any partially filled line to be output before processing the
next input line.

8.3.4 CAPITALIZE SENTENCES (CS) CAPITALIZE SENTENCES (CS)

This command puts RUNOFF in the capitalize sentences mode. In this mode
the first letter of each sentence is capitalized. The first letter after
a'.', I?', or '!', followed immediately by either a space or an end-of
line (Attribute Mark) is capitalized. The capitalize sentences mode also
causes the following characters to be followed by a double space or an
end-of-line: '.', I?', I!', I:', and 'it. CAPITALIZE SENTENCES is one of
the STANDARD settings. (See the STANDARD command.) note: This command is
ignored in the NOFILL (NF) mode.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 399

8.3.5 CENTER (C)

CENTER causes the next line to be input in NOFILL mode and centered on the
next line of output. This command causes a BREAK to occur.

8.3.6 CHAIN ([DICT] [FILE-NAME]} ITEM-ID

This command causes RUNOFF to CHAIN to the input text file item indicated.
The [DICT] and [FILE-NAME] are both optional. If DICT is not specified,
the DATA section of the file is assummed. If no FILE-NAME is given, the
item will be read from the same file as the item being processed.

The text input from this
parameter or mode changes.
the current source of input.

item is processed and output without any
RUNOFF does not resume processing text from
This command does not cause a BREAK.

The .CHAIN command will scan the string following the command, looking
for an item-id or a file name. The legal delimiter for the item-id or
file name is a blank. They may have an included period. If there is more
than one string following the CHAIN command which is delimited by a
blank, then the next-to-the-1ast field will be taken to the the file name,
and that file will be opened. The last field delimited with a blank will
be considered the item-id, and it will be retrieved by the RUNOFF
processor to be executed next. You can include a comment statement after
the CHAIN, however. Therefore, for the purposes of the CHAIN commands,
the line is considered exhausted when the processor encounters an end-of
line mark, or when it encounters a period preceeded by a space.

If the processor opens a file when executing a CHAIN statement, that file
will be the file from which all succeeding items are retrieved, until the
file is respecified by another CHAIN statement.

The C option will suppress the .CHAIN command if it is desired to RUNOFF
one element of a chained or treed structure. The I option will cause the
name of the next item to be output by RUNOFF to be placed in the last line
of the last item RUNOFF. This is of use with relatively large documents.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 400

/ \

c

(

B.3.7 CHAPTER text

This command may be used to handle automatic chapter numbering and
formatting. This command has the same effect as:

.BEGIN PAGE. CENTER

.CHAPTER n

.SPACE 2
text
.SPACE 2

where the chapter number n is incremented automatically. For example:

.CHAPTER RUNOFF

would produce:

CHAPTER B

RUNOFF

B.3.B , .* ' THE COMMENT INSTRUCTION

This command informs the RUNOFF processor that all of the rest of the
text in the line in which it occurs is a comment. It must either be at
the beginning of the line, or after another command in a command line. It
is always the last command in a line. This allows text to be commented
out, and the intent of READs and CHAINs to be noted.

(3.3.9 CONTENTS

This command prints the table of contents accumulated by preceding CHAPTER
and SECTION commands. This command should be used at the end of the
RUNOFF source file. an example of the results of this command can be seen
by looking at the TABLE OF CONTENTS at the beginning of this manual.
Note: the LINE LENGTH and LEFT MARGIN of the Table of Contents is
determined by those settings that are in effect when the first .CHAPTER or
.SECTION command is encountered.

8.3.10 CRT

This command directs the RUNOFF output to the user's terminal. CRT is one
of the STANDARD settings. (See the STANDARD command.)

B.3.l1 FILL (F)

FILL puts RUNOFF into the line fill mode. Words are processed until there
are enough to fill a line without overflowing it. If justifaction mode is
on, RUNOFF will insert spaces in the line at random to make the right
margin line up. FILL is one of the STANDARD settings. (See the STANDARD
command.)

CHAPTER B - RUNOFF Copyright (c) 19B5 PICK SYSTEMS

PAGE 401

8.3.12 FOOTING

FOOTING causes the next line to be input in nofi1l mode and stored in a
page footing buffer. The page footing buffer will be output at the bottom
of each page. The page footing may be changed with successive FOOTING
commands. The following characters have special meaning in page footings
and headings:

'P' Prints out the page number~ right justified in
a field of four spaces, with blank fill.

'Pn' Prints out the page number, l~ft justified in
a field of 'n' spaces ('n' specified by the user).

'L' Performs a carriage return/line-feed (CR/LF).

'i' Prints out the Item-Id.

'in' Prints out the Item-Id, left justified in a field
of 'n' spaces ('n' specified by the user).

'F' Prints out the File-Name.

'Fn' Prints out the File-Name, left justified in a field
of 'n' spaces.

'T' Prints out the Time and Date (22 characters long).

'0' Prints out the Date in '01 JAN 1977' format (11 characters).

'C' Centers the line.

FOOTING causes a BREAK and also is one of the STANDARD settings. (See the
STANDARD command.) .'

8.3.13 HEADING

HEADING causes the next line to be input in NOFILL mode and stored in a
page heading buffer. the page heading buffer will be output at the top of
each page.

The page heading may be changed with successive HEADING commands. the
special characters described under the FOOTING command may also be used in
page headings.

The HEADING command causes a BREAK and also is one of the STANDARD
settings. (See the STANDARD command.)

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 402

"-

C--'"
,,: \

(

(

8.3.14 HILITE c / HILITE OFF

HILITE causes
extreme right
encountered.
this text.

the character specified by 'c' to be printed out at the
margin for every line of text until a HILITE OFF command is
An example of the HILITE command may be seen at the right of *

*
*

The highlight command does not cause a break in the text. This allows *
parts of paragraphs to be highlighted in justify or fill mode. If you *
wish to align the HILITE command with a paragraph, it may be necessary to *
put the HILITE I command after the first line of filled or justified text, *
and to put the form .BREAK at the end of the paragraph.

The execution of the hilite command also is such that if the term is the
last character string in command line, then it is equivalent to HILITE
OFF.

The J option will suppress highlighting.

8.3.15 , - , TREATMENT OF HYPHENS

Hyphens which are surrounded by alphabetic characters will allow a word
break on the hyphen in fill and justify modes. That is, if a term is a
concatenation of two words separated by a hyphen, and the line overflows
within the second part of the term, then the first part and the hyphen are
left in the line, and the next line is commenced with the second part of
the word.

Similarly, if a line in the source text terminates with a hyphen preceeded
by an alphabetic character, and the first character in the next line is an
:alphabetic character, then the last word in the line and the hyphen will
be concatenated with the first word in the next line and output together
in a line with the hyphen between the two parts. If there is a line
overflow which occurs during this process, the hyphenated word will be
handled as above. What the processor will not do is remove the hyphen.

If the hyphen does not have this meaning, then the back-arrow character
may be placed in front of it to suppress this action.

8.3.16 INDENT n (I)

,INDENT causes the next line of output to be indented by n spaces to the
right of the left margin. n may be negative to cause the line to begin
left of the left margin. If n is missing, n=l is assumed. This command
causes a BREAK to occur.

8.3.17 INDENT MARGIN n (1M)

This command causes the left margin to be increased by n spaces and the
line length to be decreased by n. Negative n may be used to decrease the
Cleft margin and increase the line length. This command causes a BREAK to
occur.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 403

8.3.18 INDEX text

INDEX causes the text specified to be stored in an index list. The text
may be more than one word, or several words enclosed in single quotes.
The word, or words, along with the current page number, are put in a
sorted index list. The index can be printed by the PRINT INDEX command.

8.3.19 INPUT

The INPUT command caused RUNOFF to read the next line of source text from
the user's terminal. The text input from the terminal is processed and
output without a BREAK or mode change.

8.3.20 JUSTIFY (J)

JUSTIFY puts RUNOFF in the FILL and JUSTIFY mode. RUNOFF fills each
output line by adding successive words from the source text until one more
word will not fit on the line. the line is then justified by inserting
blank spaces between words at random until the last word in the line
exactly meets the right margin. JUSTIFY is one of the STANDARD settings.
(See the STANDARD command.)

8.3.21 LEFT MARGIN n

This command sets the left margin to n spaces. If n plus the current line
length exceeds the maximum line length, this command is ignored. A LEFT
MARGIN of 0 is one of the STANDARD settings. (See the STANDARD command.)

8.3.22 LINE LENGTH n

This command sets the line length to n characters (not counting the left
margin). If n plus the current left margin exceeds the maximum line
length, this command is ignored. A LINE LENGTH of 70 is one of the
STANDARD settings. (See the STANDARD command.)

~.3.23 LOWER CASE (LC)

:his command puts RUNOFF into lower case mode. in lower case mode all
letters are automatically made lower case. They may then be changed to
upper case by various text commands or control characters. (See the
section on RUNOFF Special Characters.)

8.3.24 LPTR

This command directs the RUNOFF output to the line printer.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 404

~,
I ,

~j

/

8.3.25 NOCAPITALIZE SENTENCES (NCS)

This command resets the CAPITALIZE SENTENCES mode.

(13. 3 • 26 NOFILL (NF)

This command resets both the JUSTIFY and FILL modes. Input text lines
will be output as they are, (after posssible elimination of special
control characters) without removal of extra spaces. Output lines will
not be filled nor will right margins be justified. This command causes a
BREAK.

8.3.27 NOJUSTIFY (NJ)

This command resets the JUSTIFY mode, but has no effect on the FILL mode.

8.3.28 NOPAGING (N)

The N option may be used to eliminate the wait for terminal input at the
end of each page printed on the terminal.

8.3.29 NOPARAGRAPH

This command resets the paragraph mode. blank input text lines and spaces
at the beginning of a line will be ignored in justify mode.

PAGE NUMBER n
(

" 8.3.30

This command sets the
assumed.

current page number to n. If n is missing, n=l is

8.3.31 PAPER LENGTH n

This command sets the paper length to n lines.

8.3.32 PARAGRAPH n

('

This command causes any blank line or any line which starts with a space
to be considered as the start of a new paragraph. This allows normally
typed text to be justified without any special commands. n sets the
number of spaces paragraphs are to be indented or unindented. A paragraph
causes a BREAK followed by (line spacing + 1)/2 blank lines. A PARAGRAPH
5 is one of the STANDARD settings. (See the STANDARD command.)

The PARAGRAPH command may be set to a negative number. Figure A shows the
use of a negative paragraph setting to decrease the left margin.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 405

001 .SK.PARAGRAPH -4 .LEFT MARGIN 13 .LlNE LENGTH 63
002 1. The user enters the command "z" to the DEBUGGER prompt character
003 "*". The DEBUGGER responds with "PROG NAME?" I the user enters the (~
004 program name. This allows the DEBUGGER access to the symbol table '-./
005 created during compilation. Alternatively, if the user uses the
006 "(D)" during run time, access to the symbol table is already
007 established, and use of the "z" command is unnecessary.
008 2. To find out how far in the loop the program progressed, the
009 user looks at the variable "I" by entering "/I". The DEBUGGER
010 responds with
011 "11 -", at which the user may change the value of "I" if desired.
012 The user may then want to look at all of the values in the array by
013 entering "/ARRAY". The DEBUGGER responds with "ARRAY(l)=l=", the
014 user depresses
015 return and the DEBUGGER continues with the next "array slot"
016 (i.e., "ARRAY(2 etc.)==2="). Once "ARRAY(10)-10"''' has been reached
017 the ... etc.
018 .PARAGRAPH 0 .LEFT MARGIN 2 .LlNE LENGTH 74

Note that in the above example the text lines beginning with 1. and 2. are
spaced over one space thus resulting in the negative paragraphing.

The above source text would print:

1. The user enters the command "z" to the DEBUGGER prompt
character "*". The DEBUGGER responds with "PROG NAME?", the
user enters the program name. This allows the DEBUGGER access
to the symbol table created during compilation. Alternatively,
if the user uses the debug option "(D)" during run time, access
to the symbol table is already established, and use of the "z"
command is unnecessary.

2. To find out how far in the loop the program progressed, the
user looks at the variable "I" by entering "/I". The DEBUGGER
responds with "11 =", at which the user may change the value of
"I" if desired. The user may then want to look at all of the
values in the array by entering "/ARRAY". The DEBUGGER
responds with "ARRAY(l)=l=", the user depresses return and the
DEBUGGER continues with the next "array slot" (i.e.,
"ARRAY(2)=2=" etc.). Once "ARRAY(lO)=lO=" has been reached the

etc.

Sample usage of a negative PARAGRAPH command.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 406

8.3.33 PRINT INDEX

This command causes
printed. The index
columns per page.
causes a BEGIN PAGE

the sorted index list of words and
is sorted into alphabetical order,

Note -- this command changes the
command to be performed.

page numbers to be
and printed in two
tab settings, and

8.3.34 PRINT

The PRINT command causes RUNOFF to print the next line of input text on
the user's terminal.

8.3.35 READ {[DICT] [FILE-NAME]} ITEM-ID

(,

This command causes RUNOFF to read the file item indicated. The [DICT]
and [FILE-NAME] are both optional. If DICT is not specified, DATA section
of the file will be used. If no FILE-NAME is given, the item will be read
from the same file as the item being processed. The text input from this
item is processed and output without any parameter or mode changes. After
processing this item, RUNOFF resumes input with the next line of the
current source of input. This command does not cause a BREAK.

The .READ command will scan the string following the command, looking for
an item-id or a file name. The legal delimiter for the item-id or file
name is a blank. They may have an included period. If there is more than
one string following the READ command which is delimited by a blank, then
the next-to-the-last field will be taken to the the file name, and that
file will be opened. The last field delimited with a blank will be
considered the item-id, and it will be retrieved by the RUNOFF processor
to be executed next. If the statement is a READ, then the processor will
eventually return to this item and continue processing it. When it does,
it will commence at the beginning of the next line in the item.
Therefore, no statements which occur after the READ statement in the line
will be executed. You can include a comment statement after the READ
however. Therefore, for the purposes of the READ command, the line is
considered exhausted when the processor encounters an end-of-line mark, or
when it encounters a period preceeded by a space.

The C option will suppress the .READ command if it is desired to RUNOFF
one element of a chained or treed structure. The I option will cause the
name of the next item to be output by RUNOFF to be placed in the last line
of the last item RUNOFF. This is most useful with large documents.

8.3.36 READNEXT

This command is used to read data from a pre-selected LIST. It has an
effect only if, prior to entering RUNOFF, a SELECT, SSELECT, QSELECT or
GET-LIST statement has been entered, which selects a list of values. Each
READNEXT command in RUNOFF will extract one value from the select-list and
place it in the text stream. READNEXT does not cause a break. If there
is no pre-selected list, or when the list is exhausted, the READNEXT
command will cause a termination of RUNOFF, and a return to TCL.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 407

This command is particularly useful when form-letters are to be generated.
For example, it may be necessary to insert the name and address of each
recipient of the letter from a separate file. A SSELECT statement is used
to extract the relevant data from the file and save it in a list. A
series of READNEXT statements will insert the data into the text of the (-~
letter. At the end of the letter, a CHAIN statement may be used to ~ /
restart the next letter. When the list is exhausted, the RUNOFF will
stop.

The commands necessary to generate a form letter are:

{S}SELECT file-name {selection criteria} attribute-list

.READNEXT

. CHAIN item-name

The selected attribute-list contains all the variable information to be
'written' into the form letter. The use of '.READNEXT' commands reads
each of these variables and causes them to be 'written' into the letter.
The '.CHAIN' command causes the letter to be repeated so long as there is
variable information in the selected attribute list. The following
example demonstrates the generation of a form letter.

Assume the dictionary of the accounts payable file for a company contains
the following three Attribute defining Items:

NAME ACCOUNT AMOUNT
001 A 001 A 001 A
002 1 002 2 003 3 /' ~,

003 CUSTOMER NAME 003 ACCOUNT TYPE 003 AMOUNT DUE \ , J

004 004" 004
005 005 005
006 006 006
007 007 007
008 Al:"," 008 008 A;3(MR2$,):"."
009 L 009 L 009 R
010 25 010 30 010 10

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 408

(

(

(

The dictionary also contains the following form letter written in RUNOFF:

LETTER

001 .SK 8
002 Dear Mr.
003 .READNEXT
004 Our records show that your
005 .READNEXT
006 account is overdrawn by the amount of
007 .READNEXT
008 We would appreciate prompt payment.
009 Thank you,
010 Indiana Jones
011 .SK 2
012 President CELEBRITY SERVICES CO.
013 .SK 3
014 .BP
015 .CHAIN LETTER

The data file contains items such as the following three:

250

001 Magic Johnson
002 Basketball Shoes
003 25000

251 252

001 Eddie Van Ha1en 001 Boy George
002 Guitar String 002 Voice Lesson
003 12345 003 452359

J generate the form letter the data file is first sort selected by the
name with the attribute list of NAME ACCOUNT and AMOUNT:

SSELECT ACC-PAYABLE BY NAME WITH AMOUNT "100" NAME ACCOUNT AMOUNT

This command will generated a selected list containing the following
information:

001 Boy George,
002 Voice Lesson
003 $4,523.59.
004 Eddie Van Ha1en,
005 Guitar String
006 $123.45.
007 Magic Johnson,
008 Basketball Shoes
009 $250.00.

Note that the correlatives on the names and on the amounts have been
performed. Now by issuing the following RUNOFF command the form letters
are generated:

RUNOFF DICT ACC-PAYABLE LETTER (P)

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 409

The fonn letters will be printed as follows:

Dear Mr. Boy George,

Our records show that your Voice Lesson account is
overdrawn by the amount of $4,523.59. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

(next page)

Dear Mr. Eddie Van Ha1en,

Our records show that your Guitar String account is
overdrawn by the amount of $123.45. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

(next page)

Dear Mr. Magic Johnson,

Our records show that your Basketball Shoes account is
overdrawn by the amount of $250.00. We would appreciate
prompt payment.

Thank You,

Indiana Jones

President CELEBRITY SERVICES CO.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 410

(

B.3.37 SAVE INDEX file-name

This command causes chapter and page number information of indexed data in
a text to be saved in a separate file. Each indexed datum is stored as an
individual item using the datum as the Item-Id, the chapter (where that
datum is referenced) as the first attribute and the page number as the
second attribute. Multiple values are stored in these attributes as
multiple references to the same indexed datum are encountered. The
resulting file may then be operated on by the ACCESS processor to generate
listings for the chapter and page number information of all indexed data
in a text.

The 'file-name' is the name of the file in which the chapter and page
information is to be stored. NOTE: This must be a SEPARATE FILE from the
text file !!! (Otherwise data in the text file will be DESTROYED.) The
.SAVE INDEX command is placed in the text item itself and must precede the
'.INDEX' commands. In short, only that indexed data which has been
preceded by the '.SAVE INDEX' command will be saved in the specified file.

8.3.38 SECTION n text

This command may be used in conjunction with the CHAPTER command to handle
automatic chapter section numbering and formattin. The SECTION command
automatically starts the next section at depth n, where n is the range
1-5. The text is printed following the section number and SKIP occurs.
The text is recorded as the section heading in the TABLE OF CONTENTS. If
no text appears on the SECTION command, then no SKIP occurs and the
section is not recorded in the TABLE OF CONTENTS. Section numbers are
incremented automatically and the section number is printed in the form
i.j.k.l.m with n digits printed.

Conventionally the .SECTION command is followed by a blank line before the
next paragraph starts. Since the SECTION command causes a break which
terminates the preceding paragraph, and since the text following the
SECTION command is placed immediately into an ouput line and output prior
to a consideration of the next line, the blank line after the SECTION·
command can be avoided by not indenting the first line of the next
paragraph. That is, if the processor does not know that the next line
starts a paragraph, it will not skip a line. It may be necessary to use
an INDENT MARGIN if paragraph indentation is desired, however.

8.3.39 SET TABS n,n,n, ...

This command clears previous tab stops and sets new tab stops as indicated
by the numeric tab positions. The tab stops (up to 30) must be greater
than zero and in increasing order. They indicate tab stop positions
relative to the left margin. Tabs are only in effect in NOFILL mode. The
left-tab character «) causes the next word to start at the next tab
position. The right-tab character (» causes the next word to end at the
next tab position. If a tab character appears at a point in the line
where no further tab stops have been set, the tab character is ignored.

CHAPTER B - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 411

8.3.40 SKIP n (SK)

The SKIP causes a BREAK after which n*(SPACING n) lines are left blank.
If the skip would advance past the end of the page, the output is advanced
to the top of the next page. If n is missing, n-1 is assumed. (~~

8.3.41 SPACE n (SP)

This command has the same affect as SKIP, except that n (rather than
N*(SPACING n) lines are left blank. SPACE is used where space is to be
left independent of the line spacing; SKIP is used where space should be
relative to the SPACING command. If n is missing, n=l is assumed.

8.3.42 SPACING n

This command sets the line spacing to n.
used for double spacing.

8.3.43 STANDARD

The command .SPACING 2 may be

This command sets the standard (default) parameters and modes. The
STANDARD command is equivalent to the following commands:

.CS.F.J.UC.LEFT MARGIN O.CRT.HEADING

. FOOTING

.PARAGRAPH 5.LINE LENGTH 70

8.3.44 TEST PAGE n

This command causes a BREAK followed by an advance to a new page when
there are less than n lines remaining on the current page. If there are n
or more lines remaining on the current page, this command has no effect.
This command should be used to ensure that the following n lines are all
output on the same page.

8.3.45 UPPER CASE (UC)

This command puts RUNOFF into upper case mode. Alphabetic letters will be
processed as they are, unless modified by special commands or control
characters. This command allows users of terminals with upper and lower
case to generate the input text file without special commands or control
characters. UC is one of the STANDARD settings. (See the STANDARD
command.)

The 'u' option will force the whole runoff output to upper-case if that is
desired.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

"PAGE 412

i ,
~/

C,"i
"./

(

8.4 SPECIAL CONTROL CHARACTERS

I RUNOFF features Special Control Characters for Underlining, Tab Setting, I
Upper;Lower Case, and Special Character Override.

8.4.1 Upper- and lower-case controls.

The upper-case, lower-case control structure causes the text to go to the
case specified. ENDCASE or EC will turn off both the upper-case condition
and the lower-case condition to allow the text to go to its natural
condition.

The forms ~~ and \\ cause the text to switch
case in the same way that UC and LC cause the
\\ may be imbedded in a line. Turning off the
the use of EC.

to upper-case or to lower
switch, except that ~- and
condition -- or \\ requires

The forms ~, \, &, and @ will produce one character of upper-case, lower
case, underline, or overstrike. Each will be treated as the character
itself if it is followed by a blank. The backarrow or underline
character, _, will cause the succeeding character to be taken as a text
character rather than a control character. This means that if you have
existing RUNOFF text with forms such as '40# @$1.28/#', the dollar sign
will be overstruck and the @ will disappear unless the backarrow, , is
inserted in front of the @. The same is true of the '&' character if it
occurs in a character string.

The example below is an attempt to display the interactions of the several
commands above. The first part is the text which was sent to RUNOFF and
the second part is the output from RUNOFF. First, note that the 'I' in
'is' is always capitalized by the single-character -, and that the 'a' is
always in lower-case due to the single-character \ command.

The first line is in its natural form. The second line is uniformly
capitalized by the UC command, excepting the 'a'. The third line is
uniformly sent to lower-case, except for the 'Is'. The fourth and fifth
lines contain a ,~- text \\' string, which is uniformly capitalized,
excepting the 'a'. After the \\ the string reverts to lower-case. The
only way to retrieve the capitalization of the string tuc AND 'LC' is by
the use of EC command. Thus, the sixth line is in its natural form.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 413

.LINE LENGTH 66.PARAGRAPH 5.J
This -is \a test of UC AND LC.

(~ .uc , I

This -. ~s \a test of UC AND LC. \ '

'-/
.lc
This -. \a test of UC AND LC. ~s

This -. \a --test of UC AND LC. ~s

This -. \a test\\ of UC AND LC. ~s

.ec
This -. \a test of UC AND LC. ~s

This Is a test of UC AND LC.

THIS IS a TEST OF UC AND LC.

This Is a test of uc and lc.

This Is a TEST OF UC AND LC.

THIS IS a TEST of uc and lc.

This Is a test of UC AND LC.

Example of .UC, .LC, .EC and the associated - and \ characters.

8.4.2 Underlining and overstriking.

UNDERLINING The ampersand (&) ,may be used to indicate underlining.
ampersand causes the letter immediately following to be underlined .

The '-.. ,/

. LC
THE LETTER &A IS FIRST IN THE ALPHABET

~~is example of RUNOFF source would print as:
he letter a is first in the alphabet

Ampersand may be used in conjunction with the
underline a series of characters. An ampersand
arrow (&-) puts RUNOFF in the Underline mode
immediately by a back-slash (&\) is encountered .

. UC
&-SPECIAL CONTROL CHARACTERS&\ ARE NEEDED ...

This example of RUNOFF source would print as:

SPECIAL CONTROL CHARACTERS ARE NEEDED ...

up-arrow and back-slash to
followed immediately by an up
until an ampersand followed

The S option suppresses underlings and overstriking.

CHAPTER 8 - RUNOFF Copyright (c) 1985 PICK SYSTEMS

PAGE 414 c

8.4.3 Tab setting.

TAB SETTINGS The less-than «) and greater-than (» characters may be used for
tabbing. The left-tab character «) causes the next word to start at the next

(tab position as set by the .SET TABS command. The right-tab character (»
, causes the next word to end at the next tab position .

. NF

.SET TABS 5,8,25

.SK 1
><&-NAME<CONVENTIONAL DATA PROCESSING NAME&\
.SK 1
>1. < Item<Record
>la.<Attribute<Fie1d
>lb.<Item-id<Record Key

This example of RUNOFF source would print as:

NAME CONVENTIONAL DATA PROCESSING NAME

1. Item
lao Attribute
lb. Item-id

Record
Field
Record Key

Note: Tab characters are only in effect in the NOFILL (NF) mode. You will
also note that the sequence «< will tab over to the third tab if tabs are set,
and that the right tabs are more cooperative.

BOLDFACE PRINTING The at sign (@) may be used to indicate BOLDFACE type. An at
sign followed immediately by an up-arrow (@-) puts RUNOFF in the boldface mode

(lnti1 an at sign followed immediately by a back-slash (@\) is encountered. The
. humber of times the boldface letters are overprinted may be set by using the

numeric option of the RUNOFF verb .

. UC
@-SPECIAL CONTROL CHARACTERS@\ ARE NEEDED ...

This example of RUNOFF source would print as:

SPECIAL CONTROL CHARACTERS ARE NEEDED ... SPECIAL CONTROL CHARACTERS

SPECIAL CHARACTER OVERRIDE The back-arrow (_) may be used to quote one of the
special control characters or blanks. the letter immediately following the
back-arrow is transmitted to the output without special processing.

_-SPECIAL _-CONTROL _-CHARACTERS ARE NEEDED

This example of RUNOFF source would print as:

-SPECIAL -CONTROL -CHARACTERS ARE NEEDED ...

CHAPTER 8 - RUNOFF Copyright (C) 1985 PICK SYSTEMS

PAGE 415

C·.;
.~

f

(

SECTION 9

THE
ICON/PICK
PICK/BASIC
LANGUAGE

\ /

(

Chapter 9

PICK/BASIC

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 416

/ "

9.1 THE PICK/BASIC LANGUAGE THE PICK/BASIC LANGUAGE

(·I._~;;~~~~~~;~~~:~~::~~:~~~_::x~:_~::::~:~_:~::_~:_::_::::~~_l
BASIC (Beginners All-purpose Symbolic Instruction Code) is a simple yet
versatile programming language suitable for expressing a wide range of
problems. Developed at Dartmouth College in 1963, BASIC is a language
especially easy for the beginning programmer to master. Extended
PICK/BASIC has the following extraordinary features:

- Optional statement labels (i.e., statement numbers)

- Statement labels of any length

- Multiple statements on one line

- Computed GOTO statements

- Complex IF statements

- Multi-line IF statements

- Priority case statement selection

- String handling with variable length
strings up to 32,267 characters

- External subroutine calls

(- Direct and indirect calls

- Magnetic tape input and output

- Fixed point arithmetic with up to
15 digit precision

- ACCESS data conversion capabilities

- PICK file access and update capabilities

- File level or group level lock capabilities

- Pattern matching

- Dynamic arrays

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 417

ABORT FOOTING MATCHES PROMPT SLEEP (\

BREAK ON/OFF FOR ... NEXT MATREAD READ STOP 0

CALL GO MATREADU READNEXT SUBROUTINE

CASE GOSUB MATWRITE READV UNLOCK

CHAIN GOTO MATWRITEU READT WEOF

CLEAR GO TO NEXT READV WRITE

CLEARFILE HEADING NULL READVU WRITEU

COMMON IF ON GOSUB RELEASE WRITET

DATA INPUT ON GOTO REM * I WRITEV

DELETE I NPUTERR OPEN RETURN WRITEVU

DIM INPUTNULL PAGE RETURN TO

END I NPUTTRAP PRECISION REWIND

ENTER INPUT @ PRINT RQM

EQUATE MAT SELECT PRINTER ON/OFF
/ " -- ,

PICK/BASIC Statements

--
@ COUNT ICONV NUM SPACE

ABS DATE () INDEX OCONV SQRT

ALPHA DCOUNT INSERT PWR STR

ASCII DELETE INT REM TAN

CHAR EBCDIC LEN REPLACE TIME ()

COLI EXP LN RND TIMEDATE ()

COL2 EXTRACT LOCATE SEQ TRIM

COS FIELD NOT SIN

PICK/BASIC Intrinsic Functions

CHAPTER 9 - PICKjBASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 418

9.2 PICK/BASIC LANGUAGE DEFINITIONS

(

(,

A PICK/BASIC program is comprised of PICK/BASIC statements.
PICK/BASIC statements may contain variables, constants, expressions,
and PICK/BASIC Intrinsic Functions.

A PICK/BASIC program consists of a sequence of PICK/BASIC statements.
More than one statement may appear on the same program line, separated
by semicolons. Any PICK/BASIC statement may begin with an optional
statement label.

PICK/BASIC statements may contain arithmetic, relational, and logical
expressions. These expressions are formed by combining specific
operators with variables, constants, or PICK/BASIC Intrinsic
Functions. The value of a variable may change dynamically throughout
the execution of the program. A constant, as its name implies, has
the same value throughout the execution of the program. An Intrinsic
Function performs a pre-defined operation upon the parameter(s)
supplied.

FUNCTION

ABS
ALPHA
ASCII
CHAR
COLl
COL2
DATE
DELETE
EBCDIC
EXTRACT
FIELD
ICONV
INDEX
INSERT
INT
LEN
LOCATE
NOT
NUM
OCONV
REPLACE
RND
SPACE
STR
TIME
TlMEDATE
Controls

BRIEF DESCRIPTION

Returns an absolute value.
Tests for alphabetic value.
Converts string from EBCDIC to ASCII.
Converts numeric value to ASCII character.
Returns column position preceding FIELD-selected sub-string
Returns column position following FIELD-selected sub-string
Returns current internal date.
Deletes attribute, value, or sub-value from dynamic array.
Coverts string from ASCII to EBCDIC.
Returns attribute, value, or sub-value from dynamic array.
Returns a delimited sub-string.
Provides for Pick input conversion.
Returns column position of sub-string.
Inserts attribute, value, or sub-value into dynamic array.
Return an integer value.
Returns length of string.
Returns the index of a sub-string in a dynamic array.
Returns logical inverse.
Tests for numeric value.
Provides for Pick output conversion.
Replaces attribute, value, or sub-value in dynamic array.
Generates random number.
Generates string containing blanks.
Generates specified string.
Returns internal time of day.
Returns external time and date.

terminal cursor.

Summary of PICK/BASIC INTRINSIC FUNCTIONS

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 419

STATEMENT
BREAK ON/OFF
CALL
CASE

CHAIN
CLEAR
CLEARFILE
COMMON

DELETE
DIM
END
EQUATE
FOR ... NEXT
GOSUB
GOTO
HEADING
IF
INPUT
LOCK
LOOP ... REPEAT
MAT
MATREAD
MATREADU
MATWRITE
MATWRITEU
NULL
OPEN
PAGE

BRIEF DESCRIPTION
Enables or disables debugger.
External subroutine branching.
Provides conditional selection of a sequence

of statements.
Passes control to another program.
Initializes all variables to zero.
Clears data section of specified file.
Variable storage space allocation, used with

CHAINed programs.
Deletes specified file item.
Reserves storage for arrays.
Designates the physical end of the program.
Allows variable to be defined as equivalent of another.
Specifies beginning of a program loop, NEXT specifies end.
Transfers control to a subroutine.
Transfers control to another statement.
Prints a page heading.
Provides conditional execution of specified statements.
Inputs data from the terminal.
Sets an execution lock.
Provides for structured program loops.
Assigns value to each element of an array.
Reads a file item into an array.
Reads a file item into an array, sets update lock.
Writes a file item with the contents of an array.
Same as MATWRITE but will not unlock update group.
Specifies a non-opertion.
Selects a file for subsequent I/O.
Pages output device and prints heading.
Causes specified data to be printed. PRINT

PRINTER
PROMPT
READ

ON/OFFControls selection of printer or terminal for output.

READU
READNEXT
READT
READV
READVU
REM
RETURN

Selects a prompt character for the terminal.
Reads a file item.
Reads a file item, sets update lock.
Reads next item-id.
Reads next magnetic tape record.
Reads an attribute.
Reads an attribute, sets update lock.
Specifies a remark (command) statement.
Returns control from a subroutine.
Rewinds magnetic tape.

SLEEP Terminates programs current time quantum.
REWIND
RQM or
STOP
SUBROUTINE
UNLOCK
WEOF
WRITE
WRITET
WRITEU
WRITEV
WRITEVU

Designates a logical end of the program.
Specifies a program branch subroutine.
Resets an execution lock.
Writes an EOF on magnetic tape.
Updates a file item.
Writes a magnetic tape record.
Writes a file item, will not unlock update group.
Updates an attribute value.
Updates an attribute value, will not unlock update group.

Summary of PICK/BASIC Statements

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 420

(

9.3 PICK/BASIC FILE STRUCTURE PICK/BASIC FILE STRUCTURE

A PICK/BASIC program, when stored, constitutes a File Item, and is
referenced by its Item-Name (i.e., the name it is given when it is created
via the EDITOR. An individual line within the PICK/BASIC program
constitutes an attribute.

There is a fixed structure for PICK/BASIC source files. The file MUST
have a dictionary and a separate data level. The PICK/BASIC source
programs are stored in the data level of the file. The compiler writes
the object and the symbol file as one record into the dictionary. This
makes it much simpler to manipulate the program source. It can be LISTed,
T-DUMPed, T-LOADed, and so on, without having to select the source items.
The object record has the same format as a pointer-file record and so the
dictionary "0" pointer must have a "DC" in attribute one. The primary
advantages of this new format are:

1. The object can now be protected with access/update locks.

2. The object saves/restores with the account on account-saves.

3. The CATALOG function is not necessary for run time efficiency.

4. There is less disk space utilized and fewer steps to perform.

5. The PICK/BASIC Debugger can tell the name of the item and verify
the object code integrity.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 421

9.3.1 THE PICK/BASIC PROGRAM THE PICK/BASIC PROGRAM

A PICK/BASIC program is comprised of PICK/BASIC
statement may be used to identify the function
sections of the program.

SEMICOLON - , . , ,

statements.
or purpose

The Remark
of various

A PICK/BASIC program consists of a sequence of PICK/BASIC statements.
More than one statement may appear on the same program line, separated by
semicolons. For example:

X = 0; Y - 0; GOTO 50

LABELS - optional

Any PICK/BASIC statement may begin with an optional statement label. A
statement label is used so that the statement may be referenced from other
parts of the program. A statement label may be any constant whole number.
The following INPUT statement, for example, has a statement label of 100:

100 INPUT X

Statement labels may be included or omitted at the programmer's option.

REMARKS - 'REM' '" '*'

A helpful feature to use when writing a PICK/BASIC program is the Remark
statement. A Remark statement is used to explain or document the program.
It allows the programmer to place comments anywhere in the program without
affecting program execution. A Remark statement is specified by typing
the leters REM, or the asterisk character (*), or the exclamation (!) at
the beginning of the statement; any arbitrary characters may then follow
(up to the end of the line). For example:

REM THESE PICK/BASIC STATEMENTS
! DO NOT AFFECT
* PROGRAM EXECUTION

BLANK SPACES

Except for situations explicitly called out in the following sections,
blank spaces appearing in the program line (which are not part of a data
item) will be ignored. Thus, blanks may be used freely within the program
for purposes of appearance.

REM PROGRAM TO PRINT THE
* NUMBERS FROM ONE TO TEN
* I = 1; * START WITH ONE
5 PRINT I; * PRINT THE VALUE

IF I = 10 THEN STOP; * STOP IF FINISHED
I = I + 1; * INCREMENT I
GOTO 5; * START OVER
END

Sample PICK/BASIC Program Including Remark Statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 422

/

I I" j

9.4 DYNAMIC ARRAYS - FILE ITEM STRUCTURE

I PICK/BASIC allows the user to manipulate PICK file items in the form of I
item-formatted strings which are called dynamic arrays.

(-C--;h~-~~~~~~~~~--l~~;~~;~-~~~~~i~~--~--~.~-~~--~~~~~~~~~-~~d--~~~~~i~~~--
which are extremely useful in accessing and updating PICK files. A
complete description of the PICK file structure is presented in the
chapter on File-structure. A brief description of the structure as viewed
by the PICK/BASIC programmer is appropriate at this point.

(

A PICK file consists of a set of items. When a PICK file item is
accessed by a PICK/BASIC program (refer to INPUT/OUTPUT STATEMENTS), it is
represented as a PICK/BASIC string in item format. A string in item
format is called a dynamic array.

A dynamic array consists of one or more attributes separated by attribute
marks (i.e., an attribute mark has an ASCII equivalent of 254, which
prints as II-If). An attribute, in turn, may consist of a number of values
separated by value marks (i.e, a value mark has an ASCII equivalent of
253, which prints as "]"). Finally, a value may consist of a number of
secondary values separated by secondary value marks (i.e., a secondary
value mark has an ASCII equivalent of 252, which prints as 1f\1f). An
example of a dynamic arra1 is as follows:

"55-ABCD-732XYZ 100000.3#"
where "55", "ABCD" , "73XYZ", and "100000.33" are attributes.
The following illustrates a more com~lex dynamic array:

"Q5-AAAA-952]ABC]12345-A-B C]TEST\12I\9\99.3] 2-555"
where "Q5", "AAAA", "952]ABC]12345", "A", "BIf, "C]TEST]\12I\9\99.3]2" and
"555" are attributes; "952", "ABC", "12345", "C", "TEST\12I\9\99.3", and
"2" are values; and "TEST", "121", "9", and "99.3" are secondary values.

Dynamic arrays can be directly manipulated by the PICK/BASIC dynamic array
functions (refer to the section titled PICK/BASIC INTRINSIC FUNCTIONS).
Dynamic arrays are called "arrays" because they can be referenced by these
functions using 3 subscripts. They are "dynamic" in the sense that
elements can be added and deleted without having to re-compile the
program, as long as the item does not exceed 32,267 characters.

J;.RRAY
l23-456-789]ABC]DEF

1234567890

Q56-3. 22] 3. 56\88\B2C-99

EXPLANATION
"123", "456", "789]ABC]DEF" are attributes;
"789", "ABC" and "DEF" are values.

"1234567890" is an attribute.

"Q56" , "3.22]3.56\88\B]C", and "99" are
attributes; "3.22", "3.5688b", and
"c" are values; "3.56", "88", and
"B" are secondary values.

"A]B]C]D", "E]F]G]H", and "I]J" are
attributes; "A", "B", "C", "D", liE", "F",
"G", "H", "I", and "J" are values.

Sample Usage of Dynamic Arrays.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 423

9.5 CREATING AND COMPILING PICK/BASIC PROGRAMS

A PICK/BASIC program is created via the EDITOR as any other data-file
item. Once this source code item has been filed, it is compiled by
issuing the COMPILE verb (or the PICK/BASIC verb) at the TCL level.

FORMAT:

ED (or EDIT) file-name item-id

Upon execution, the EDITOR processor will then be entered, and the user
may begin entering his PICK/BASIC program. For ease of instruction
indentation, the user may set tab stops (either at the TCL level or while
the EDITOR processor is in control-- see examples below).

The program name will be that specified by the 'item-id' and the program
will be stored in the file specified by the 'file-name'. Users will
typically have a file exclusively devoted to the storage of PICK/BASIC
programs. The PICK/BASIC compiler stores the object code in the same
file, but not the same item, as the source code (see below).

Once the PICK/BASIC program has been entered and filed, it may be compiled
by issuing the BASIC verb at the TCL level. BASIC is a TCL-II verb which
creates a new file item: it contains the compiled PICK/BASIC program (the
object code), and a symbol definition table of the variables used in the
program. The object code item has an item-id of a '$' concatenated with
the item-id Both items are stored in the same file (specified by 'file
name') .

FORMAT:

BASIC file-name item-list {(options}

The 'item-list' consists of one or more item-id's (program names)
separated by one or more blanks. The 'options' parameter is optional and
if used, must be preceded by a left parentheses. Multiple options should
be separated by commas. Valid options are listed below. For detailed
descriptions of each, see following section.

BASIC VERB OPTIONS

A Assembled code option
C Suppress End Of Line (EOL) opcodes from object code.
E List error lines only.
L List PICK/BASIC program.
M List map of PICK/BASIC program.
P Print compilation output on line printer.
S Suppress generation of symbol table.
X Cross reference all variables.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 424

(
* >TABS I 4,8,12 [CR] (------------ User sets input tabs

at TCL level

* >ED BP COUNT [CR] (------------ User edits item 'COUNT'

NEW ITEM
TOP

* . I [CR]

in file 'BP' (Basic Programs)

(------------ User enters input mode and
begins to enter program

* 001*
* 002
* 003
* 004
* 005
* 006
TOP

PROGRAM COUNTS FROM 1-10 * [CR]
FOR I = 1 TO 10 [CR] (----- Entered with [C] I (or TAB key)

PRINT I [CR] (------- depressed once for indentation
NEXT I [CR] I to first tab stop.

END [CR]
[CR]

* .FI [CR]

'COUNT' FILED

(---------
I

[C] I (or TAB key) depressed
twice for second tab stop
indentation

-------- User files item

* >BASIC BP COUNT [CR] (---------- User issues compile command

[BO] LINE 5 COMPILATION COMPLETED

PICK/BASIC Program "COUNT" Created (edited), Filed and Compiled.

('\ CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 425

9.6 PICK/BASIC COMPILER OPTIONS: A, C, E, L AND P OPTIONS

This section describes five of the options available when issuing the '
BASIC ' compile statement. They are the "A" for assembled code, the "C"
for suppression of end of line opcode, "E" for the listing of error lines
only, the "L" for the listing of the program during compilation, and "P"
for routing output to the printer. The following section describes the
remaining three compiler options.

FORMAT:

BASIC file-name item-name {(options}

If multiple options are present, they are seperated by commas.

A The assembled code option. The "A" option generates a

C

listing of the source code line numbers, the labels and the
PICK/BASIC opcodes used by the program. This is a 'pseudo'
assembly code listing which allows the user to see what
PICK/BASIC opcodes his program has generated. The
hexadecimal numbers on the left of the listing are the
PICK/BASIC opcodes and the mnemonics are listed on the
right. The assembled code listing of the PICK/BASIC program
"COUNT" (from previous section) is shown, as an example, on
the facing page.

The catalog option. The catalog option suppresses the end
of-line (EOL) opcodes from the object code item. The EOL
opcodes are used to count lines for error messages. This
eliminates 1 byte from the run time object code for every
line in the source code. This option is designed to be used
with debugged cataloged programs. Any run time error
message will specify a line number of 1.

E The 'list error lines only' option. The "E" option
generates a listing of the error lines encountered during
the compilation of the program. The listing indicates line
number in the source code item, the source line itself and a
description of the error associated with the line.

L The list program option. The "L" option generates a line by
line listing of the program during compilation. Error lines
with associated error messages are indicated.

P The printer option. The "P" option routes all output
generated by the compilation to the printer.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 426

/,

SOURCE BASIC PSEUDO
CODE OBJECT ASSEMBLY

(
-- LINE NO. CODE CODE

001 01 EOL
002 03 LOADA I
002 FD LOAD. 1
002 20 ONE
002 2D SUBTRACT
002 5F STORE
002 *1001
002 05 LOADN 10
002 03 LOADA I
002 20 ONE
002 28 FORTEST *2001
002 01 EOL
003 5D LOAD I
003 50 PRINTCRLF
003 01 EOL
004 06 BRANCH *1001
004 *2001
004 01 EOL
005 01 EOL
006 45 EXIT

[BO] LINE 6 COMPILATION COMPLETED

"A" option listing of PICK/BASIC program "COUNT"

CHAPTER 9 - PICK/BASIC
(_,,

Copyright (c) 1985 PICK SYSTEMS

PAGE 427

9.7 PICK/BASIC COMPILER OPTIONS M, 5, AND X OPTIONS

This section describes the remaining three options available when issuing
the BASIC compile statement. They are the "M" for map, the "5" for
suppressing generation of the symbol table, and the "X" for cross
reference.

M The map option. The "M" option generates a variable map and a
statement map, both of which are printed out after compilation.
These maps show where the program data has been stored in the
user's workspace. The variable map lists the offset in decimal
(from the beginning of the seventh frame of the IS buffer) of
every PICK/BASIC variable in the program. For example, the
form:

5

20 xxx 30 yyy

shows that the descriptor of variable 'xxx' starts on byte 20
and the descriptor of variable 'yyy' starts on byte 30 of the
seventh frame of the IS buffer. Descriptors are 10 bytes in
length.

The statement map shows which statements of the PICK/BASIC
program are contained in the frames of the OS buffer. If the
program is 'run' frame number '01' refers to the seventh frame
of the OS buffer. If the program is cataloged, frame 01 will be
specified in the catalog pointer item in the POINTER-FILE. The
statement map may be used to determine if frequently executed
loops cross frame boundaries.

The suppress symbol table option. The "5" option suppresses the
the symbol table item which is normally generated during
compilation.

The symbol table item is used exclusively by the PICK/BASIC
DEBUGGER for reference, therefore it must be kept on file only
if the user wishes to use the Debugger.

X The cross reference option. The "X" option creates a cross
reference of all the labels and variables used in a PICK/BASIC
program and stores this information in the BSYM file. Note: A
BSYM file must exist (a modulo and separation of 1,1 should be
sufficient). The "X" option first clears the BSYM file
information in the BSYM file then creates an item for every
variable and label used in the program. The item-id is the
variable or label name. The attributes contain the line numbers
of where the variable or label is referenced. An asterisk will
precede the line number where a label is defined, or where the
value of the variable is changed.

No output is generated by this option. An attribute definition
item should be placed in the dictionary of the "BSYM" file which
allows a cross reference listing of the program to be generated
by the command: >SORT BSYM BY LINE-NUMBER LINE-NUMBER.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 428

(

9.8 EXECUTING PICK/BASIC PROGRAMS

I The PICK/BASIC program is executed by issuing the RUN verb.

FORMAT:

RUN fi1e-neme item-id {(options)}

RUN is the TCL-II verb issued to run a compiled PICK/BASIC program. The
"file-name" and "item-id" specify the compiled PICK/BASIC program to be
executed. The "options" parameter is optional (if used, it must be
enclosed in parentheses). Multiple options are separated by commas.
Valid options are as follows:

A Abort option. The "A" option inhibits entry to the Basic
Debugger under all error conditions; instead, the program will
print a message and terminate execution.

D Run-time debug option;
entered before the start
PICK/BASIC debugger may
program is executing, by

causes the PICK/BASIC debugger to be
of program execution. Note that the

also be called at any time while the
pressing the BREAK key on the terminal.

E Errors option. The "E" option forces the PICK/BASIC runtime
package to enter the PICK/BASIC Debugger whenever an error
condition occurs. The use of this option will force the
operator to either accept the error by using the Debugger, or
exit to TCL.

I Inhibit initialization of data area. The "I" option should only
be used in the "CHAIN" statement. (refer to the description of
the PICK/BASIC CHAIN statement).

N Nopage option. The "N" option cancels the default wait at the
end of each page of output.

P Printer on (has same effect as issuing a PICK/BASIC PRINTER ON
statement). Directs all program output to the printer.

S Suppress run-time warning messages.

* >RUN PROGRAMS TESTING [CR]

THIS IS

A TEST

>

Execution of Sample PICK/BASIC Program

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 429

9.9 CATALOG AND DECATALOG : SHARING OBJECT CODE

I PICK/BASIC programs may be shared by cataloguing and may be used in PROC, I
as outlined in this topic.

PROGRAM SHARING

A PICK/BASIC program may be shared among users by loading its object code
into system disk space and evoking it via a verb at the TCL level. To
load the program into the system disk space, issue the CATALOG verb.

FORMAT:

CATALOG file-name item-id

The "file-name" and "item-id" specify the previously compiled PICK/BASIC
program which is to be loaded. If there are no conflicts, the system will
respond with:

[241] item-id CATALOGED; x FRAMES USED.

where "x" is the size of the object code in frames (500 bytes each). Once
a program is cataloged, it is 'run' simply by issuing the program name at
the TCL prompt. Do not use the RUN verb! The TCL-II verb which is added
to the user's Master Dictionary (if not already present) has the following
form:

1) P
2) 10B4
3)
4)
5) XXXXX

where XXXXX is the user's account name. If an item already exists in the
user's Master Dictionary which is not in the above form, the system will
respond with:

[415] item-id EXISTS ON FILE

and the program will not be cataloged.

In order to decatalog a PICK/BASIC program, the following verb has been
provided.

FORMAT:

DECATALOG item-id {account-name}

An item is maintained in the POINTER-FILE for each cataloged PICK/BASIC
program. The DECATALOG statement will delete that item from the POINTER
FILE, returning all of the overflow space, and deleting the verb from the
user's Master Dictionary. After deletion, verbs executed from other
dictionaries will receive the message:

'item-id' NOT ON FILE

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 430

/

if~

~/

9.10 PICK/BASIC EXECUTION FROM PROC

I PICK/BASIC program execution can be intiated from PROC, similar
other TCL command.

to any I
(--

A PICK/BASIC program may be run from a PROC. The following example
illustrates the use of a PICK/BASIC program in conjunction with the ACCESS
Sort Select (SSELECT) verb.

PROC named LISTBT as follows:

PO
HSSELECT BASIC/TEST
STON
HRUN BASIC/TEST LISTIDS
P

PICK/BASIC program named LISTIDS as follows:

OPEN" ,'BASIC/TEST' ELSE PRINT 'FILE MISSING'; STOP
10 N = 0
20 READNEXT ID ELSE STOP

PRINT ID 'L##################':
N = N + 1
IF N>= 4 THEN PRINT; GO TO 10
GO TO 20
END

(, By typing in the following:

LISTBT

at the TCL level, the PROC LISTBT selects the item-id's contained in file.
BASIC/TEST and invokes the BASIC program LISTIDS to list the item-id's
selected, four to a line.

Sample Usage of PICK/BASIC called from PROC.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 431

9.11 VARIABLES AND CONSTANTS: DATA REPRESENTATION

There are two types of data: NUMERIC and STRING. These data types are
represented within the PICK/BASIC program as either variables or as .~ ~\
constants. i,,--,,)

Numeric data consists of a series of digits and represent an amount (e.g.,
255). String data consist of a set of characters, such as would be for a
name and address. For example:

JOE DOE, 430 MAIN, ATOWN, CA.

These data types may be represented within the PICK/BASIC program as
either constants or variables. A constant, as its name implies, has the
same value throughout the execution of the program. A numeric constant
may contain up to 15 digits, including a maximum of 4 digits following the
decimal point and must be in the range:

-14,073,748,835.0000 to 14,073,748,835.0000

if the PRECISION (see section on PRECISION DECLARATION) of the program is
4 digits; by setting the PRECISION to a value less than 4, the range of
the allowable numbers is increased accordingly.

The unary minus sign is used to specify negative constants. For example:

-17000000
-14.3375

A string constant is represented by a set of characters enclosed in single
quotes, double quotes, or backslashes. For example:

"THIS IS A STRING" 'ABCD1234#*' \HELLO\

if any of the string delimiters ('," or \) are to be part of the string,
then one of the other delimiters must be used to delimit the string. For
example:

"THIS IS A 'STRING' EXAMPLE"
\THIS IS A "STRING" EXAMPLE\

A string may contain from ° to 32,267 characters (i.e., maximum length of
a PICK file item).

As mentioned above, data may also be represented as variables. A variable
has a name and a value. The value of a variable may be either numeric or
string, and may change dynamically throughout the execution of the
program. The name of a variable identifies the variable (the name remains
constant throughout program execution). Variable names consist of an
alphabetic character followed by zero or more letters, numerals, periods,
or dollar signs. The length of a variable name may be from 1 to 64
characters.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 432

/-----"",
!

~/

(

For example:
X
QUANTITY
DATA. LENGTH
B$ •• $

The variable X, for example, may be assigned the value 100 at the start of
a program, and may then later be assigned the value "THIS IS A STRING".

It should be noted that PICK/BASIC keywords (i.e., words that define
PICK/BASIC statements and functions) may not be used as variable names.

VALID STRING

"ABC%123#*4AB"

'lQ2Z '

"A 'LITERAL' STRING"

'A "LITERAL" STRING'

" (i.e., the empty string)

\JOHN PROGRAMMER\

INVALID STRING

ABC123
(i.e., quotes are missing)

'ABC%QQR"
(i.e., either two single quotes
or two double quotes
must be used)

"12345678910
(i.e., terminating double
quote missing)

Sample Usage of String Constants

(0" --
VALID VARIABLE NAME INVALID VARIABLE NAME

A5 ABC 123
(i.e., no space allowed)

ABCDEFGHI
5AB

QUANTITY. ON. HAND (i.e., must begin with letter)

R$$$$P$ Z. ,$
(i.e., comma not allowed)

JlB2Z
A-B

INTEGER (i. e., "-" not allowed)

THIS~IS.A.NAME

Sample Usage of Variable Names

Copyright (c) 1985 PICK SYSTEMS CHAPTER 9 - PICK/BASIC
('I,

PAGE 433

9.12 ARITHMETIC EXPRESSIONS

Expressions are formed by combining operators with variables, constants,
or PICK/BASIC Intrinsic Functions. Arithmetic expressions are formed by
using arithmetic operators.

When an expression is encountered as part of a PICK/BASIC program
statement, it is evaluated by performing the operations specified by each
of the operators on the adjacent operands, i.e., the adjacent constants,
identifiers, or Intrinsic Functions. (NOTE: Intrinsic Functions are
discussed in a separate section of this manual.)

Arithmetic expressions are formed by using the arithmetic operators listed
below. The simplest arithmetic expression is a single numeric constant,
variable, or Intrinsic Function. A simple arithmetic expression may
combine two operands using an arithmetic operator. More complicated
arithmetic expressions are formed by combining simple expressions using
arithmetic operators.

When more than one operator appears in an expression, certain rules are
followed to determine which operation is to be performed first. Each
operator has a precedence rating. In any given expression the highest
precedence operation will be performed first. Precedence of the
arithmetic operators are shown below. If there are two or more operators
with the same precedence (or an operator appears more than once) the
leftmost operation is performed first. For example, consider this
expression: -R/A+B*C. The unary minus is evaluated first (i.e.,-R
result 1). The expression then becomes: result 1 /.A+B*C. The division
and multiplication operators have the same precedence; since the division
operator is leftmost it is evaluated next (i.e., result 1 / A = result 2).
The expression then becomes: result 2+B*C. The multiplication operation
is performed next (i.e., B*C = result 3). The result 2 + result 3 = Final
Result.

Using some figures in the above expression illustrates, for example, that
the expression -50/5+3*2 evaluates to -4.

Any sub-expression may be enclosed in parentheses. Within the
parentheses, the rules of precedence apply. However, the parenthesized
subexpression as a whole has highest precedence and is evaluated first.
For example: (10+2)*(3-1) = 12*2 = 24. Parentheses may be used anywhere
to clarify the order of evaluation, even if they do not change the order.

If a string value containing only numeric characters is
arithmetic expression, it is considered as a decimal number.
123 + "456" evaluates to 579.

used in an
For example,

If a string value containing non-numeric characters is used in an
arithmetic expression, a warning message will be printed (refer to
APPENDIX D - PICK/BASIC RUN-TIME ERROR MESSAGES) and zero will be assumed
for the string value.

The following expression, for example, evaluates to 123:

123 + "ABC"

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 434

(-

(

(\

OPERATOR SYMBOL

+

*
/
+

2+6+8/2+6

12/2*3
12/(2*3)

12/2*3

12/(2*3)

A+75/25

-5+2

-(5+2)

8*(-2)

5 * "3"

OPERATION PRECEDENCE

unary plus 1 (high)
unary minus
multiplication 2
division 2
addition 3
subtraction 3 (low)

Arithmetic Operators

Evaluates to 18

Evaluates to 18
Evaluates to 2

Evaluates to 18

Evaluates to 2

Evaluates to 3 plus
the current value
of variable A.

Evaluates to -3

Evaluates to -7

Evaluates to -16

Evaluates to 15

Sample Usage of Arithmetic Expressions.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 435

9.13 STRING EXPRESSIONS

A string expression may be any of the following: a string constant, a
variable with a string value, a sub-string, or a concatenation of string
expressions. String expressions may be combined wi th ari thmetic j
expressions.

FORMAT:
variable [expressionl,expression2l

starting character position expressionl
expression2 number of characters in sub-string length

A sub-string is a set of characters which makes up part of a whole string.
For example, "SO.", "123", and "ST." are sub-strings of the string "1234
SO. MAIN ST." Sub-strings are specified by a starting character position
and a sub-string length, separated by a comma and enclosed in square
brackets. For example, if the current value of variable S is the string
"ABCDEFG", then the current value of S [3,2] is the sub-string "CD" (i. e. ,
the two character sub-string starting at character position 3 of string
S) . Furthermore, the val ue of S [1, 1 1 would be" A", and the val ue of
S [2,6] would be "BCDEFG".

If the "starting character" specification is past the end of the string
value, then an empty sub-string value is selected (e.g., if A has a value
of 'XYZ " then A [4,1] will have a value of ") . If the "starting
character" specification is negative or zero, then the first character is
assumed (e.g., if X has a value of 'JOHN', the X[-5,l] will have a value
of 'J').

If the "sub-string length" specification exceeds the remaining number of
characters in the string, then the remaining string is selected (e.g., if
B has a value of '123ABC', the B[5,lOl will have a value of 'BC'). If the
"sub-string length" specification is negative or zero, then an empty sub
string is selected (e.g., B[5,-2] and B[5,O] both have a value of ").

Concatenation operations may be performed on strings. Concatenation is
specified by a colon (:) or CAT operator. The concatenation of two
strings (or sub-strings) is the addition of the characters of the second
operand onto the end of the first. For example:

"AN EXAMPLE OF " CAT "CONCATENATION" evaluates to

"AN EXAMPLE OF CONCATENATION"

The precedence of the concatenation operator is higher than any of the
arithmetic operators. So if the concatenation operator appears in the
same expression with an arithmetic operator, the concatenation operation
will be performed first. Multiple concatenation operations are performed
from left to right. Parenthesized sub-expressions are evaluated first.
The concatenation operator considers both its operands to be string
values; for example, the following expression evaluates to "56ABC":

56: "ABC"

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 436

I

"'. /

(

()

NOTE: For the following examples, assume that the current
value of A is "ABC123", and the current value of
variable Z is "EXAMPLE".

EXPRESSION

Z[1,4]

A : Z[l,!]

Z[l,l] ~ A[4,3]

5*2:0

A[6,1]+5

Z CAT A Z

Z CAT " ONE"

EXPLANATION

Evaluates to "EXAM".

Evaluates to "ABC123E".

Evaluates to "E123"

2:0 is evaluated first and results in
the string "20" (i.e., concatenation
operator assumes both operands are
strings). 5*"20" is then evaluated
and results in 100 (i.e., * operator
assumes both operands are numeric.
Final result is 100.

Evaluates to 8.

Evaluates to "EXAMPLEABC123EXAMPLE".

Evaluates to "EXAMPLE ONE".

Examples of String Expressions Combined
with Arithmetic Examples.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 437

9.14 RELATIONAL EXPRESSIONS

I Relational expressions are the result of applying a relational operator to I
--~-~~~:-~:-~:~:~::~:-~:-~::~~~-~~::~~~~~~~--------------------------------- (~ ~-j

The relational operators are listed below. A relational operation
evaluates to 1 if the relation is true, and evaluates to 0 if the relation .
is false. Relational operators have lower precedence than all arithmetic
and string operators; therefore, relational operators are only evaluated
after all arithmetic and string operations have been evaluated.

For purposes of clarification, relational expressions may be divided into
two types: arithmetic relations and string relations. An arithmetic
relation is a pair of arithmetic expressions separated by anyone of
relational operators. For example:

3 < 4 (3 is less than 4)-=(true)=1

3 - 4 (3 is equal to 4)=(false)=O

3 GT 3 (3 is greater than 3)=(false)=O

3 >= 3 (3 is greater than or equal to 3)-(true)=1

5+1 > 4/2 (5 plus 1 is greater than 4 divided by 2)=(true)=1

A string relation is a pair of string expressions separated by anyone of
the relational operators. A string relation may also be a string
expression and an arithmetic expression separated by a relational operator
(i.e., if a relational operator encounters one numeric operand and one
string operand, it treats both operands as strings). To resolve a string
relation, character pairs (one from each string) are compared one at a
time from leftmost characters to rightmost. If no unequal character pairs
are found, the strings are considered to be 'equal'. If an unequal pair
of characters are found, the characters are ranked according to their
numeric ASCII code equivalents (refer to the LIST OF ASCII CODES in
APPENDIXE of this manual). The string contributing the higher numeric
ASCII code equivalent is considered to be "greater" than the other string.
Consider the following relation:

"AAB" > "AAA"

This relation evaluates to 1 (true) since the ASCII equivalent of B (66)
is greater than the ASCII equivalent of A (65).

If the two strings are not the same length, but the shorter
otherwise identical to the beginning of the longer string, then
string is considered "greater" than the shorter string. The
relation, for example, is true and evaluates to 1:

"STRINGS" GT "STRING"

string is
the longer

following

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 438

I
\-... ,/

(

it

('i

OPERATOR SYMBOLS

< or LT

> or GT

<= or LE or =<

>= or GE or =>

== or EQ

or <> or <> or NE

MATCH or MATCHES

EXPRESSION

4 < 5

"0" EQ "A"

"0" > "A"

tlQIt LT 5

6+5 = 11

Q EQ 5

"ABC" GE "ABB"

"XXX" LE "XX"

OPERATION

Less than

Greater than

Less than or equal to

Greater than or equal to

equal to

not equal to

pattern matching (see next page)

Relational Operators

EXPLANATION

Evaluates to 1 (true).

Evaluates to 0 (false).

ASCII equivalent of D (X'44') is greater than
ASCII equivalent of A (X'4l'), so expression
evaluates to 1.

ASCII equivalent of Q (X'5l') is not less than
ASCII equivalent of 5 (X'35'), so expression
evaluates to O.

Evaluates to 1.

Evaluates to 1, if current value of variable
Q is 5; evaluates to 0 otherwise.

Evaluates to 1 (i.e., C is "greater" than B).

Evaluates to O.

Sample Usage of Relational Expressions.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 439

9.15 MATCHES: RELATIONAL EXPRESSION PATTERN MATCHING

BASIC pattern matching allows the comparison of a string value to a -~
predefined pattern. Pattern matching is specified by the MATCH or MATCHES
relational operator.

FORMAT:
expression MATCH{ES} "pattern"

The MATCH or MATCHES relational operator compares the string value of the
expression to the predefined pattern (which is also a string value) and
evaluates to 1 (true) or 0 (false). The pattern may consist of any
combination of the following:

- An integer number followed by the letter N (which tests for that
number of numeric characters).

- An integer number followed by the letter A (which tests for that
number of alphabetic characters).

- An integer number followed by the letter X (which tests for that
number of any characters).

- A literal string enclosed in quotes (which tests for that literal
string of characters).

Consider the following expression:

DATA MATCHES "4N"

This relation evaluates to 1 if the current string value of variable DATA
consists of four numeric characters.

If the integer number used in the pattern is 0, then the relation will
evaluate to true only if all the characters in the string conform with the
"specification letter" (i.e., N,A, or X). For example:

X MATCH "OA"

This relation evaluates to 1 if the current string value of variable X
consists only of alphabetic characters.

As a further example, consider the following expression:

A MATCHES "1A4N"

This relation evaluates to 1 if the current string value of variable A
consists of an alphabetic character followed by four numeric characters.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 440

(

({

EXPRESSION

Z MATCHES '9N'

Q MATCHES "ON"

B MATCH '3N"-"2N"-"4N'

B="4N1A2N"
C MATCHES B

A MATCHES "ON' . 'ON"

"ABC" MATCHES "#N"

"XYZ" MATCHES "A"

"XYZ1" MATCH "4X"

X MATCHES ' ,

EXPLANATION

Evaluates to 1 if current string value
of variable Z consists of 9 numeric
characters; evaluates to 0 otherwise.

Evaluation to 1 if current value of Q is
any unsigned integer; evaluates to 0
otherwise.

Evaluates to 1 if current value of B is,
for example, any social security number;
evaluates to 0 otherwise.

Evaluates to 1 if current string value
of C consists of four numeric characters
followed by one alphabetic character
followed by two numeric characters;
evaluates to 0 otherwise.

Evaluates to 1 if current value of A is
any number containing a decimal point;
evaluates to 0 otherwise.

Evaluates to O.

Evaluates to 1.

Evaluates to 1.

Evaluates to 1 if current string value
of X is the empty string; evaluates to
o otherwise.

Sample Usage of Pattern Matching Relation.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 441

9.16 OR - AND : LOGICAL EXPRESSIONS

Logical expressions (also called Boolean expressions) are the result of
applying logical (Boolean) operators to relational or arithmetic
expressions.

FORMAT:
AND
OR

or
or

& Logical And operation
Logical Or operation

Logical operators operate on the true or false results of relational or
arithmetic expressions. (Relational expressions are considered false when
equal to zero, and are considered true when equal to one; arithmetic
expressions are considered false when equal to zero, and are considered
true when not equal to zero.) Logical operators have the lowest precedence
and are only evaluated after all other operations have been evaluated. If
two or more logical operators appear in an expression, the leftmost is
performed first.

Logical operators act on their associated operands as follows:

a OR b is true (evaluates to 1) if a is true or b is
true; is false (evaluates to 0) only when a
and b are both false.

a AND b is true (evaluates to 1) only if both a and b
are true; is false (evaluates to 0) if a is
false or b is false or both are false.

consider, for example, the following logical expression:
A*2-5>B AND J>J

The multiplication operation has highest precedence, so it is evaluated
first (i.e., A*2 = result 1). the expression then becomes:

result 1 - 5>B AND 7>J

The subtraction operation is next (i.e., result 1 - 5=result 2). The
expression then becomes:

result 2 > B AND 7>J

the two relational operators are of equal precedence, so the leftmost is
evaluated first (i.e., result 2 > B-resu1t 3, where result 3 has a value
of 1 indicating true, or a value of 0 indicating false). the expression
then becomes:

result 3 AND 7>J

The remaining relational operation is then performed (i.e., 7>J = result
4, where result 4 equals 1 or 0). The final expression therefore becomes:

result 3 AND result 4

which is evaluated as true (1) if both result 3 and result 4 are true, and
is evaluated as false (0) otherwise.

The NOT function may be used in logical expressions to negate (invert) the
expression or sub-expression (refer to the description of the NOT
Intrinsic Function).

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 442

)

.\1.. /

(

EXPRESSION

1 AND A

8-2*4 OR 05-3

A>5 OR A(O

1 AND (0 OR 1)

J EO 7 AND I EO 5*2

"XYZl" MATCH "4X" AND X

Xl AND X2 AND X3

EXPLANATION

Evaluates to 1 if current value of
variable A is non-zero; evaluates
to 0 if current value of A is o.
Evaluates to 1 if current value of
05-3 is non-zero; evaluates to 0 if
current value of 05-3 is o.
Evaluates to 1 if the current value of
variable A is greater than 5 or is
negative; evaluates to 0 otherwise.

Evaluates to 1.

Evaluates to 1 if the current value
of variable J is 7 and the current
value of variable I is 10; evaluates
to 0 otherwise.

Evaluates to 1 if the current value of
variable X is non-zero; evaluates to 0
if current value of X is o.
Evaluates to 1 if the current value
of each variable (Xl, X2, and X3) is
non-zero; evaluates to 0 if the
current value of either or all
variables is o.

Sample Usage of Logical Expressions.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 443

9.17 NUMERIC MASK AND FORMAT MASK CODES: VARIABLE FORMATTING

Variable values may be formatted via the use of format strings. A format
string immediately following a variable name or expression specifies that
the value will be formatted as specified by the characters within the
format string. The format string may also be used directly in conjunction
with the PRINT statement.

FORMAT:

variable = variable"(numeric mask code} (format mask code)}"

The format string uses the same subroutines as the ACCESS Mask Conversion
Code. It may be used to format both numeric and non-numeric strings.

The entire format string is enclosed in quotes. If the format mask is
used, it is enclosed in parentheses within the quotes.

The entire format string may be used as a literal, or it may
to a variable. In either case the format string or variable
follows the variable it is to format.

be assigned
immediately

The numeric mask code is
and $, which controls
indication. The format
characters.

represented by the symbols: J, n, m, Z,
justification, precision, scaling and
mask code controls field length and

I, I, C

credit
fill

The formatted value may be assigned to the same variable or to a new
variable (as shown in the general form), or it may be used in a PRINT
statement of the form: PRINT X"format string".

The format mask code may be used separately or in conjunction with the
numeric mask.

The format mask code is enclosed in parentheses, and may consist any
combination of format characters and literal data.

The field length specified (In') should not exceed 99. The format
characters are n#n, n*n or n%n, optionally followed by a numeric, such as
n#3 n or n%5".

Any other character in the format field, including parentheses, may be
used as a literal character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output ju~t prior to the value, regardless of the filled mask. If a
dollar s1gn is used within the format field it will be output in the
leftmost position regardless of the filled field.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 444

(/.

j

NUMERIC MASK CODE:

specifies justification. "R"
specifies left justification.

specifies right justification. "L"
Default justification is left.

n is a single numeric digit defining the number of digits to print out
following the decimal point. If n - 0, the decimal point will not be
output following the value.

m is an optional 'scaling factor' specified by a single numeric digit
which 'descales' the converted number by the 'mth' power of 10.
Because PICK/BASIC assumes 4 decimal places (unless otherwise
specified by a Precision Statement) to descale a number by 10 m should
be set to 5, to descale a number by 100, m should be set to 6, etc.

Z is an optional parameter specifying the suppression of leading zeros.

is an optional parameter for output which inserts commas between every
thousands position of the value.

c The following five symbols are Credit Indicators which are optional
parameters of the form:

c Causes the letters 'CRt to follow negative values and causes two
blanks to follow positive or zero values.

d Causes the letters 'DB' to follow positive values; two blanks to
follow negative or zero values.

m Causes a minus sign to follow negative values; a blank to follow
positive or zero values.

e Causes negative values to be enclosed with a "< >" sequence;
a blank follows positive or zero values.

n Causes the minus sign of negative values to be suppressed.

$ Is an optional parameter for output which appends a dollar

FORMAT MASK CODE:

#n specifies that the data is to be filled on a field of In' blanks.

*n specifies that the data is to be filled on a field of In'
. asterisks.

%n specifies that the data is to be filled on a field of
and to force leading zeros into a fixed field. 'D'()
the standard system '0' (date) conversion.

NOTE: Any other character, including parentheses may be used as
a field fill.

Explanation of the Format String Codes.

In' zeros
specifies

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 445

FORMAT:

variable ... variable"{numeric mask code}{(format mask code)}"

NUMERIC MASK

MASK CODE IMPLEMENTED AS
j R or L

n single numeric
m single numeric
Z Z

c C,D,M or E
$ $

MEANING
Right or Left justification
(default is left justification).
of decimal places.
'Descaling' factor.
Suppress leading zeros.
Insert commas every thousands
position.
Credit indicators.
Outputs dollar sign prior to value.

FORMAT MASK (enclosed in parentheses)

MASK CODE
$

#n
%n
*n

IMPLEMENTED AS
$

#10
%10
*10

MEANING
Outputs a dollar sign in the
leftmost position of field.
Fills data on a field of 10 blanks.
Fills data on a field of 10 zeros.
Fills data on a field of 10 asterisks,
or on a field of any other specified
character.

NOTE: If a dollar sign is placed outside of the format mask, it will be
output j';1st J?rior to the value, regardless of the filled field. If a (" "
dollar slgn 1S used within the format mask it will be output in the
leftmost position regardless of the filled field.

General Form and Summary of Format String Codes.

UNCONVERTED STRING (X) FORMAT STRING RESULT (V)
X 1000 V= X"R26" 10.00
X 1234567 V= X"R27," 1,234.57
X ... -1234567 V= X"R27,E$" $<1234.57>
X == 38.16 V= X"l" 38.2
X -1234 V= X"R25$,M(*10#)" ***$123.40-
X = -1234 V == X"R25,M($*10#)" $****123.40-
X ... -1234 V ... X"R25,M($*10)" $***123.40-
X ... 072458699 V'" X"L(###-##-####)" 072-45-5866
X ... 072458699 V == X"L(#3-#2-#4)" 072-45-5866
X ... SMITH, JOHANNSEN V ... X"L«#13»" (SMITH, JOHANN)

--
Sample usage of Numeric & Format Codes.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 446

9.18 @ FUNCTION: CURSOR CONTROL

I The @ function generates the terminal output codes required to position I
the cursor to a specified position.

(- --
FORMAT:

@(column{ ,row})

The column parameter specifies
the cursor. (at the current
parameter generates the cursor
cursor.

column cursor address at which to position
line if row not specified). The row

row address at which to position the

The values of the expression(s) used in the @ function must be within the
row and column limits of the terminal screen.

When the @ function is used with a negative value, it generates the
special cursor-control characters for the current terminal type (as
defined by the TERM statement in effect at the time).

(-1) Clear screen and 'home' cursor. (upper-left corner)
(-2) Positions the cursor at 'home' (upper left corner).
(-3) Clears from cursor positon to the end of the screen.
(-4) Clears from cursor position to the end of the line.
(-5) Starts blinking on subsequently printed data.
(-6) sStops blinking. @(-6)
(-7) Initiates 'protect' field.
(-8) Stops protect field. @(-8)
(-9) Backspaces the cursor one character.

(- (-10) Moves the cursor up one line.@(-lO)
/---

(

STATEMENT
X = 7 ; Y = 3
PRINT @(X,Y) Z

Q = @(3 "HI"
PRINT Q

A = 5
PRINT @(A,A+5):A

PRINT @(-l)

CURSOR FUCTION VALUES.

EXPLANATION
Prints the current value of variable Z
at column position 7 of line 3.

Prints "HI" at column position 3 of
current line.

Prints the value 5 at column position
5 of line 10.

Clears the screen and positions
the cursor at 'home' position.

Sample usage of the @ Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 447

9.19 ABORT STATEMENT: TERMINATION

The ABORT statement may appear anywhere in the program; it designates a r"
logical tennination of the program. "'_}

FORMAT:
ABORT (errnum(,param, par am , ... }}

Upon the execution of a ABORT statement, the PICK/BASIC program will
tenninate.

The ABORT statement may be placed anywhere within the PICK/BASIC program
to indicate the end of one of several alternative paths of logic. The
ABORT statement is simi1iar to the STOP statement except that the ABORT
statement will tenninate execution of any PROC which might have called the
program containing the ABORT statement.

Like the STOP statement, the ABORT statement may optionally be followed by
an error message name, and error message parameters separated by commas.
The error message name is a reference to an item in the ERRMSG file. The
parameters are variables or literals to be used within the error message
format.

PRINT 'PLEASE ENTER FILE NAME':
INPUT FN
OPEN", FN TO FFN ELSE ABORT 201, FN

This program requests a file name and attempts to open the file. If an
incorrect file name is entered, the standard system error message 201 "xxx
IS NOT A FILE" will be printed, and the program is tenninated.

Sample usage of the ABORT statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 448

j

(

9.20 ABS FUNCTION: ABSOLUTE NUMERIC VALUE

The ABS function returns an absolute value.
unsigned integer value.

An absolute value is an

FORMAT:
ABS(expression)

The ABS function generates the absolute numeric value of the expression.

An absolute value is the numerical value of a number without reference to
its algebraic sign. The result looks positive, but it is in fact,
unsigned. For example:

A = 100 ; B = 25
C = ABS(B-A)

These statements assign the value 75 to variable C. (An absolute value is
conventionally written as 1751 .)

STATEMENT

A = ABS(Q)

A 600
B = ABS(A-I000)

A 3
B -10
C = ABS(A+B)

EXPLANATION

Assigns the absolute value of
variable Q to variable A.

Assigns the value 400 to vari
able B.

Assigns the value 7 to variable C.

Sample Usage of the ABS Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 449

9.21 ALPHA FUNCTION: ALPHABETIC STRING DETERMINATION

The ALPHA function returns a value of true (1) if the given expression c-
evaluates to a alphabetic character or string. ~~

FORMAT:
ALPHA(expression)

The ALPHA function tests the given expression for a alphabetic value. For
example, if the expression evaluates to a alphabetic character or
alphabetic string the ALPHA function will return a value of true (i.e.,
generating a value of 1).

Inversely, an expression evaluating to a number or an numeric string will
cause the ALPHA function to return a value of false. Consider the
following examples:

IF ALPHA(expression) THEN PRINT "ALPHABETIC DATA"

This statement will print the text "ALPHABETIC DATA" if the current value
of variable "expression" is a letter or an alphabetic string.

In the case of a non-numeric, non-alphabetic character or string (#,?,
., etc.) a value of false would be returned for both the ALPHA and NUM
functions.

The empty string (' ') is considered to be a numeric string, but not an
alpha string.

(See: NUM)

STATEMENT

Al=ALPHA("ABC")

A3=ALPHA("12C")

IF ALPHA(I CAT J) THEN GOTO 5

EXPLANATION

Assigns a value of 1 to variable Al.

Assigns a value of 0 to variable A3.

Transfers control to statement 5 if
current value of both variables I
and J are letters or alphabetic strings.

Sample Usage of NOT, NUM and ALPHA Functions.

CHAPTER 9 - PICK/BASIC Copyright (c) 19B5 PICK SYSTEMS

'PAGE 450

,./

9.22 ASCII FUNCTION: FORMAT CONVERSION

,- I The ASCII function converts a string value from EBCDIC to ASCII.

(---~------------------------

(

(:\

FORMAT:

ASCII (expression)

The string value of the expression is converted from EBCDIC to ASCII. For
example:

A = ASCII(B)

Conversely, the EBCDIC function is available to convert string values from
ASCII to EBCDIC.

(See: EBCDIC)

STATEMENT

READT X ELSE STOP
Y = ASCII(X)

EXPLANATION

Reads a record from the magnetic tape
unit and assigns value to variable X.
Assigns ASCII value of record to
variable Y.

Sample Usage of the ASCII function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 451

9. 23 ASSIGNMENT STATEMENT : ASSIGNING VARIABLE VALUES

The Simple Assignment statement is used to assign a value to a variable. ('\

------------~---

FORMAT:

variable = expression

The resultant value of the expression becomes
variable on the left side of the equality sign.
legal PICK/BASIC expression. For example:

the current value of the
The expression may be any

ABC = 500
X2 = (ABC+lOO)/2

The first statement will assign the value of 500 to the variable ABC. The
second statement will asign the value 300 to the variable X2 (i.e., X2 =
(ABC+lOO)/2 = (500+100)/2 = 600/2 = 300).

String values may also be assigned. For example:
VALUE = "THIS IS A STRING"
SUB = VALUE [6,2]

The first statement above assigns the string "THIS IS A STRING" to
variable VALUE. The second statement assigns the string "IS" to variable
SUB (i.e., assigns to SUB the 2 character sub-string starting at character
position 6 of VALUE).

STATEMENT

X=5
X=X+l
ST="STRING"
ST1=ST[3,1]
TABLE(I,J)=A(3)

A=B=O

EXPLANATION

Assigns 5 to X.
Increments X by 1.
Assigns the character string to ST.
Assigns sub-string "R" to STl.
Assigns matrix element from vector
element.
Assigns 1 to A if "B=O" is true,
assigns 0 to A if "B=O" is false.

Examples of Assignment Statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 452

\.-,j

/'

9.24 BREAK ON AND OFF: DEBUGGER INHIBITION

-I The BREAK statements enable or disable the Debugger function accordingly.

(--

(

(-

FORMAT:

BREAK ON
BREAK OFF
BREAK expression

These commands increment/decrement the break inhibit counter. Note that
they are cummulative. If two BREAK OFFs are executed, two BREAK ONs must
be executed to restore a breakable status.

If the expression form of the command is used, the break key is disabled
when the expression evaluates to O. The break key is enabled when the
expression evaluates to non-zero.

(See: PICK/BASIC DEBUGGER)

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 453

9.25 CALL AND SUBROUTINE STATEMENTS: EXTERNAL SUBROUTINES

The CALL and SUBROUTINE statements
capabilities for the PICK/BASIC program.
subroutine that is compiled and cataloged
programs that call it.

provide external subroutine
An external subr~tine is a

separately from the program or

FORMAT:
CALL name (argument list)
SUBROUTINE name (argument list)

The CALL statement transfers control to the cataloged subroutine 'name'.
The CALL 'argument list' consists of zero or more expressions, separated
by commas, that represent actual values passed to the subroutine. The
SUBROUTINE 'argument list' consists of the same number of expressions, by
which the subroutine references the values being passed to it.

The SUBROUTINE statement is used to identify the program as a subroutine
and must be the first statement in the program.

There is no correspondence between variable names or labels in the calling
program and the subroutine. The only information passed between the
calling program and the subroutine are the arguments. A sample external
subroutine that involves two arguments together with correctly formed CALL
statements, is shown below.

CALL Statements
CALL ADD (A,B,C)
CALL ADD (A+2, F, X)
CALL ADD (3,495,Z)

Subroutine ADD
SUBROUTINE ADD (X,Y,Z)
Z"'X+Y
RETURN
END

An external subroutine must contain a SUBROUTINE statement, a RETURN " ..
statement, and an END statement. GOSUB and RETURN may be used in the
subroutine. When a RETURN is executed with no corresponding GOSUB,
control passes to the statement following the corresponding CALL
statement. If the subroutine's END statement, a STOP or CHAIN statement
(see appropriate section of the manual) is executed, control never returns
to the calling program. The CHAIN statement should not be used to chain
from an external subroutine to another PICK/BASIC program.

STATEMENTS

CALL REVERSE (A,B)
SUBROUTINE REVERSE (I,X)

CALL REPORT
SUBROUTINE REPORT

CALL DISPLAY (A,B, C)
SUBROUTINE DISPLAY (I,J,K)

EXPLANATION

Subroutine REVERSE has two arguments.

Subroutine REPORT has no parameters.

Subroutine DISPLAY accepts (and
returns) three argument values.

Sample Usage of CALL and SUBROUTINE Statements.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 454

9.26 ARRAY PASSING AND THE CALL @ STATEMENT: INDIRECT EXTERNAL SUBROUTINES

(-l_~~~~~_~~~~~:~~~::~_::_:::::::~_:~::~:~:::~ __ ~:::::~_:~::~:~:::_::~_~:_l
PASSING ARRAYS TO EXTERNAL SUBROUTINES PASSING ARRAYS TO EXTERNAL SUBROUTINES

FORMAT:
MAT variable

The 'variable' is the name of the array given in the DIMENSION statement.
The array must be dimensioned in both the calling program and the
subroutine. Array dimensions may be different, as long as the total
number of elements matches. Arrays are copied in row major order.
Consider the following example:

Calling Program
DIM X(lO), Y(lO)
CALL COpy (MAT X, MAT Y)
END

Subroutine
SUBROUTINE COpy
DIM A(10,2)
PRINT A(15)
RETURN
END

(MAT A)

In this subroutine the parameter passing facility is used to copy MAT X
and MAT Y specified in the CALL statement of the calling program into MAT
A of the subroutine. Printing A(15) in the subroutine is equivalent to
printing Y(5) in the calling program.

INDIRECT FORM OF THE CALL STATEMENT

FORMAT:
CALL @name (argument list)

The 'name' is a variable containing the name of the cataloged subroutine
to be called. The argument list performs the same function as in a direct
call.

NAME = 'XSUBl'
CALL @NAME
NAME = 'XSUB2'
CALL @NAME

The first call invokes subroutine XSUBI.
subroutine XSUB2.

The second call invokes

STATEMENTS
DIM A(4,10),B(10,5)
CALL REV (MAT A, MAT B)

SUBROUTINE REV (MAT C, MAT B)
DIM C(4,10), B(50)

EXPLANATION
Subroutine REV accepts two input
array variables, one of size 40
and one of size 50 elements.

Examples of Array Parameters.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 455

9.27 CASE STATEMENT: CONDITIONAL BRANCHING

I The CASE statement provides conditional selection of a sequence of BASIC I
statements.

-- (-'\
FORMAT: BEGIN CASE

CASE expression
statements
CASE expression
statements

END CASE
If the logical value of the first expression is true (i.e., non-zero),
then the statement or sequence of statements that immediately follows is
executed, and control passes to the next sequential statement following
the entire CASE statement sequence. If the first expression is false
(i.e., zero), then control passes to the next test expression, and so on.
Consider the following example:

BEGIN CASE
CASE A (5
PRINT 'A IS LESS THAN 5'
CASE A (10
PRINT 'A IS GREATER THAN OR EQUAL TO 5 AND LESS THAN 10'
CASE 1
PRINT 'A IS GREATER THAN OR EQUAL TO 10'

END CASE
If A(5, then the first PRINT statement will be executed. If 5<=A<10, then
the second PRINT statement will be executed. Otherwise, the third PRINT
statement will be executed. (Note that a test expression of 1 means
"always true.")

STATEMENTS
BEGIN CASE

CASE Y=B
Y-Y+l

END CASE

BEGIN CASE
CASE A=O; GOTO 10
CASE A<O; GOTO 20
CASE 1; GOTO 30

END CASE

BEGIN CASE
CASE ST MATCHES "lA"
MAT LET=l
CASE ST MATCHES "IN"
SGL=l; A.l(I)=ST
CASE ST MATCHES "2N"
DBL=lj A.2(J)=ST
CASE ST MATCHES "3N"
GOSUB 103

END CASE

EXPLANATION
Increment Y if Y is equal to B.
Note that this single-case example
is equivalent to the statement
IF Y-B THEN Y=Y+l.

Program control branches to the
statement with label 10 if the
value of A is zero; to 20 if A
is negative; or to 30 if A is
greater than zero.

If ST is one letter, "1" is assigned
to all LET elements and the entire
CASE is ended. If ST is one number,
"1" is assigned to SGL, ST is stored
at element A.l(I), and the entire
case is ended. If ST is two numbers,
"1" is assigned to DBL, ST is stored
at element A.2(J), and the entire
case is ended. If ST is three
numbers, subroutine 103 is executed.

Sample usage of the CASE statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 456

/

(

9.28 CHAIN STATEMENT: INTERPROGRAM COMMUNICATION

The CHAIN statement allows a PICK/BASIC program to execute any valid TCL
command, including the ability to pass values to a separately compiled
PICK/BASIC program which is executed during the same terminal session.

FORMAT:

CHAIN "any tcl command"

The CHAIN statement causes the specified TCL command to be executed. The
CHAIN statement may contain any valid Verb or PROC name in the user's
Master Dictionary. Consider the following example:

CHAIN "RUN FILEl PROGRAMl (I)"

This statement causes the previously compiled program named PROGRAMl in
the file named FILEl to be executed. The I option specifies that the data
area is not to be re-initialized.

The CHAIN statement allows values to be passed to the specifed program.
This is possible since all PICK/BASIC programs which are executed during a
single terminal session use the same data area. The variable in one
program that are to be passed to another program must be in the same
location. This is accomplished via use of the DIM statement. Consider,
for example, the following two PICK/BASIC programs:

Program ABC in file BP

DIM A(l,l), B(2)
A=500
B(l)=l B(2)=2
CHAIN "RUN BP XYZ (I)"
END

Program XYZ in file BP

DIM 1(2), J(l,l)
PRINT I,J
END

Program ABC causes program XYZ to be executed. The I option used in the
CHAIN statement (refer to the section titled USAGE PROCEDURES) specifies
that the data area is not to be re-initialized, thus allowing program ABC
to pass the values "500", "1", and "2" to program XYZ. Program XYZ, in
turn, prints the values "500", "1", and "2". All dimensioned variables
form a long vector in row major order, and on a the chain are assigned
left to right to chained program's dimensioned variables.

The user should note that control is never returned to the PICK/BASIC
program originally executing the CHAIN statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 457

STATEMENT

CHAIN "RUN FN1 LAX (I)"

CHAIN "LISTU"

CHAIN "LIST FILE"

CHAIN "RUN PROGRAMS ABC"

EXPLANATION

Causes the execution of program LAX
in file FN1. I option specifies
that data area is not to be re
initialized (i.e., the program
executing the CHAIN statement will
pass values to program LAX).

Causes the execution of the LISTU
SYSPROG PROC.

Causes the execution of the LIST
ACCESS Verb.

Causes the execution of program
ABC in file PROGRAMS. Since I
option is not used, values will
not be passed to program ABC.

Sample usage of the CHAIN statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 458

/

~- /'

(

(

9.29 CHAR FUNCTION: FORMAT CONVERSION

I The CHAR function converts a numeric
character.

FORMAT:

CHAR(expression)

value to its corresponding ASCII I

The CHAR function converts the numeric value specified by the expression
to its corresponding ASCII character string value. For example, the
following statement assigns the string value for as Attribute Mark to the
variable AM:

AM = CHAR (254)

Conversely, the SEQ function is available to convert the first character
of a string value to its corresponding numeric decimal value.

NOTE: For a complete list of ASCII codes, refer to the Appendix.

STATEMENT

SM = CHAR(255)

X = 252
SVM = CHAR(X)

EXPLANATION

Assigns the string value for a Segment
Mark to variable SM.

Assigns the string value for a Secondary
Value Mark to variable SVM.

Sample Usage of the CHAR Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 459

9.30 CLEAR STATEMENT: INITIALIZING VARIABLE VALUES

--~-------

The CLEAR statement is used to initialize all variables to a value of
zero.

FORMAT:
CLEAR

The CLEAR statement initializes all possible variables to zero (i.e.,
assigns the value 0 to all variables). The CLEAR statement may be used in
the beginning of the program to initialize all variables to zero, or may
be used anywhere within the program for re-initialization purposes.

STATEMENT

CLEAR

EXPLANATION

Assigns the value 0 to all
possible variables.

Example of the CLEAR Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 460
(~ ~ ,

~~

9.31 CLEARFlLE STATEMENT: DELETING DATA

_I The CLEARFILE statement
(, specified file.

is used to clear out the data section of a

(

FORMAT:

CLEARFlLE (file. variable}

Upon execution of the CLEARFlLE statement, the data section of the file
which was previously assigned to the specified file. variable via an OPEN
statement, will be emptied. The data in the file will be deleted, but the
file itself will not be deleted. If the file. variable is omitted from the
CLEARFILE statement, then the internal default variable is used (thus
specifying the file most recently opened without a fi1e.variab1e).

The dictionary section of file cannot be cleared via a CLEARFILE
statement. A PICK/BASIC program will. abort with an appropriate error
message if the specified file has not been opened prior to the execution
of the CLEARFILE statement.

STATEMENT
OPEN 'FN1' ELSE PRINT 'NO FN1'iSTOP
READ I FROM 'I1' ELSE STOP
CLEARFILE

OPEN 'FILEA' TO A ELSE STOP
OPEN 'FILEB' TO B ELSE STOP
CLEARFILE A
CLEARFILE B

OPEN 'ABC' ELSE PRINT 'NO FILE'; STOP
READV Q FROM 'IB3',5 ELSE STOP
IF Q = 'TEST' THEN CLEARFILE

EXPLANATION
Opens the data section of file
FN1, reads item I1 and assigns
value to variable I, and
finally clears the data
section of file FN1.

Clears the data sections of
files FILEA AND FILEB.

Clears the data section of
file ABC if the 5th attribute
of the item with name IB3 has
a string value of 'TEST'.

Sample usage of the CLEARFILE statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 461

9.32 COL1() AND COL2() FUNCTIONS: STRING SEARCHING

The COLl and COL2 functions return the numeric values of the column r'\
positions inunediately precec;ting and immediately following the sub-string (j
selected by the FIELD funct~on.

FORMAT:
COL1()
COL2()

COL1() returns the numeric value of the column position immediately
preceding the sub-string selected via the most recent FIELD function. For
example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
BEFORE = COL1()

These statements assign the numeric value 4 to the variable BEFORE (i.e.,
the value "YYY" which is returned by the FIELD function is preceded in the
original string by column position 4).

COL2() returns the numeric value of the column position immediately
following the sub-string selected via the most recent FIELD function.
COL2() returns zero if the sub-string is not found. For example:

B = FIELD("XXX.YYY.ZZZ.555",".",2)
AFTER = COL2 ()

These statements assign the numeric value 8 to the variable AFTER (i.e.,
the value "YYY" which is returned by the FIELD function is followed in the
original string by column position 8).

(See: FIELD)

STATEMENT

Q FIELD ("ABCBA" ,"B" ,2)
R = COL1()
S COL2()

EXPLANATION

Assigns the string value "c" to
variable Q, the numeric value 2 to
variable R, and the numeric value 4
to variable S.

Sample Usage of the COL1() and COL2() Functions.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 462

(

9.33 COMMON STATEMENT: VARIABLE SPACE ALLOCATION

The COMMON statement may be used to control the order in which space is
allocated for the storage of variables, and for the passing of values
between programs.

FORMAT:

COM(MON} variable (,variable} ...

The purpose of the COMMON statement is to change the automatic allocation
sequence that the compiler follows, so that more than one program may have
specified variables in a pre-determined sequence.

In the absence of a COMMON statement, variables are allocated space in the
order in which they appear in the program, with the additional restriction
that arrays are allocated space after all simple variables. Common
variables (including Common arrays) are allocated space before any other
variables in the program. The COMMON statement must appear before any of
the variables in the program are used.

The COMMON variable list may include simple variables, file variables and
arrays. Arrays may be declared in a COMMON statement by specifiying the
dimensions enclosed in parentheses, (e.g. COMMON A(lO) declares an array
"A" with 10 elements). Arrays that are declared in a COMMON statement
should not be declared again by a DIMENSION statement. All variables in
the program which do not appear in a COMMON statement are allocated space
in the normal manner.

The COMMON statement may be used to share variables among CHAINed
programs, or among main-line programs and subroutines. This ensures that
all 'COMMON' variables refer to the same stored values in different
programs. (The 'I' option must be used with the RUN verb in chained
programs to inhibit re-initialization.) For example:

COMMON X,Y,Z(5)
COMMON O,R,S(5)

If the first statement is found in a main-line program and the second in a
subroutine call it is ensured that the variables X and 0, Y and R, and the
arrays Z and S share the same locations. NOTE: The second COMMON
statement variables may be regarded as a mask over the first. What
associates ° to X (R to Y and S to Z) is a matter of alignment. Thus if
the second statement had been "COMMON 0(2),R(5)" then 0(1) would refer to
the location where the value of X is stored and 0(2) would refer to the
location where the value of Y is stored.

The COMMON statement differs from the argument list in a Subroutine Call
in that the actual storage locations of Common variables are shared by the
main-line program and its external subroutines; whereas the argument list
in a Subroutine Call causes the values to be pushed on to the stack. The
COMMON statement thereby affords a more efficient method of passing
values.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 463

Item "MAINPROG"

COMMON A,B,C(lO)
A - "NUMBER"
B .. "SQUARE ROOT"
FOR I == 1 TO 10
C(I) .. SQRT(I)

NEXT I
CALL SUB
PRINT "DONE"
END

Item SUBPROG

COMMON X(2),Y(10)
PRINT X(l), X(2)
FOR J = 1 TO 10

PRINT J, Y(J)
NEXT J
RETURN
END

Variables A, B, and array Care
allocated space before any other
variables.

Subroutine call to program SUBPROG.

The 2 elements of array X contain
respectively, the values of A and
B from the main-line program. The
array Y contains the values of C
from the main-line program.
Returns to main-line program.

Sample usage of the COMMON statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

. PAGE 464

C)

9.34 COS FUNCTION: COSINE OF AN ANGLE

..

(

(-

The COS function generates the trigonmetric cosine of an angle.

FORMAT:

COS (expression)

To generate the cosine of an angle expressed in degrees the COSINE
function ~s used. The given angle must be less than or equal to
14,073,748,834 and greater than or equal to -14,073,748,834.

Values which are less than ° degrees, or greater than 360 degrees are
adjusted to this range before generation.

(See: SINE)

STATEMENT EXPLANATION

YY = COS(XX) Assigns the cosine of an
angle of XX degrees to YY.

PRINT COS(l) Prints "0.9998"

PRINT COS(36l) Prints "0.9998"

PRINT COS(2) Prints "0.9994"

PRINT COS(362) Prints "0.9994"

PRINT COS(45) Prints "0.7071"

PRINT COS(90) Prints "0"

Sample usage of the COS function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 465

9.35 COUNT FUNCTION : DYNAMIC ARRAYS

The COUNT function counts the number of occurances of a substring within a
string.

FORMAT:
COUNT(string, substring)

The COUNT function counts the number of occurances of a substring within a
string. Any number of characters may be present in the substring. This
function is particularly useful for determing the number of attributes
within an item, or the number of multiple values or sub-values within an
attribute.

The COUNT function returns a value of zero if the substring is not found,
and returns the number of characters in the string if the substring is
null (i.e. a null matches on any character). For example:

COMMAND

X - COUNT('THIS IS A TEST','IS')
X = COUNT('THIS IS A TEST','X')
X = COUNT('THIS IS A TEST',' ')

(There are 14 characters in the string.)

X = COUNT ('AAAA' , 'AA')

VALUE OF X

2
o

14

3

There are 3 substrings within the string AAAA.

AAAA
XX

XX
XX

(See: DCOUNT)

STATEMENT

A = "1234ABC5723"
X COUNT(A,'23')

X = COUNT('ABCDEFG',' ')

STRING
SUBSTRING 1
SUBSTRING 2
SUBSTRING 3

EXPLANATION

Value returned in X is 2 as
there are two occurances of '23'
in the string A.

Value returned in X is 7 as a null
substring will match any character.

Sample examples of the COUNT function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 466

- , ,
\

9.36 DATA STATEMENT: STACKING INPUT DATA

I The DATA statement is used to store data for stacked input when using the I
CHAIN statement.

~. --;;~;~---

DATA expression{,expression ... }

(

Where 'expression' may be any valid combination of variables, literals,
functions, etc. Each expression becomes the response to one input request
from the CHAINed process.

Each DATA statement will generate one line of stacked input. The lines of
stacked input are then used in response to the input requests of other
processes. The DATA statement may be used to store stacked input for
ACCESS, TCL, PROCs, or other PICK/BASIC programs.

The following example illustrates the procedure to exit a
program, sort-select a file and be~in execution of a second
program. The variable REF-DATE ~s passed to the second
program. Assuming that no stacked input is currently present:

PICK/BASIC
PICK/BASIC
PICK/BASIC

DATA 'RUN BP PROG'; DATA REF-DATE
CHAIN 'SSELECT FILE WITH DATE " , : REF. DATE: '" BY DATE'

The first statement stacks two values (e.g. 'RUN BP PROG' and 'REF-DATE').
The second statement causes an ACCESS statement to be executed. When the
ACCESS processor has completed, the first value on the stack is the input
to the TCL prompt, thus BP PROG begins execution. (Note that the stack is
a First In First Out (FIFO) type.)

NOTE: the DATA statement must be processed before the CHAIN statement!!
, The second PICK/BASIC program (BP PROG) then performs the following:

INPUT REF-DATE

This instruction gets its input from the second value on the stack, i.e.
the value of REF-DATE from the first PICK/BASIC program.

STATEMENT
DATA A
DATA B
DATA C
CHAIN 'RUN BP TEST'

DATA 'RUN BP CHARGE-ACC'
DATA DATE
CHAIN 'SELECT ACC WITH AMT > 100'

EXPLANATION
Stacks the values of A, B
and C for subsequent input requests.
Program 'TEST' may have three
input requests which will be
satisfied by the stacked input.

This causes the TCL command 'RUN
BP CHARGE-ACC' to be stored on
the stack. Control first exits to
the ACCESS processor to perform
the SELECT, after which the PICK/BASIC
program is run with DATE as stacked
input.

Sample usage of the DATA statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 467

9.37 DATE() FUNCTION : DATE CAPABILITY

The DATE() function returns the current internal date.

FORMAT:

DATE()

The DATE() function returns the string value containing the internal date.
The internal date is the number of days since December 31, 1967.

(See: TIME() and TIMEDATE() functions)

STATEMENT

Q = DATE()

PRINT DATE ()

WRITET DATE() ELSE STOP

EXPLANATION

Assigns string value of current
internal date to variable Q.

Prints the current date
in the internal format.

Writes the string value of the
current internal date onto a magnetic
tape record.

Sample Usage of the DATE() function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 468

/ '\

rf.'·- .,
(" '

~-_/

9. 38 DCOUNT FUNCTION : DYNAMIC ARRAYS

(

(--\

FORMAT:
DCOUNT(string,substring)

The DCOUNT function counts the number of values separated by a specified
delimiter. The DCOUNT function differs from the COUNT function in that it
returns the true number of values by the specified delimiter, rather than
the number of occurances of the delimiter within the string. For example,
considering the string:

A = ABC~DEF~GHI~JKL

COMMAND

x = COUNT(A,AM)
X = DCOUNT(A,AM)

VALUE OF X

3
4

The DCOUNT function may be used to count the number of attributes in an
item, or the number of values (or subvalues) within an attribute. The
DCOUNT function returns a value of zero when a null string is encountered.

(See: COUNT)

STATEMENT

AM = CHAR(254)
A = "123-456-ABC"
X = DCOUNT(A,AM)

VM = CHAR (253)
A "123]456-ABC]DEF]HIJ"
X DCOUNT(A,VM)

A "ABCDEFG"
X = DCOUNT(A, ' ,)

EXPLANATION

Value returned in X is 3 as there
are three values in the string
separated by attribute marks.

Value returned in X is 4 as there
are four values in the string
separated by value marks.

Value returned in X is 0 as a null
is specified as the delimiter.

Examples of DCOUNT function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 469

9.39 DELETE STATEMENT: DELETING ITEMS

The DELETE statement is used to delete a file item.

FORMAT:
DELETE {file. variable,} itemname

The DELETE statement deletes the item which is specified by the itemname
and which is located in the file previously assigned to the specified
file. variable via an OPEN statement. If the file. variable is omitted,
then the internal default variable is used (thus specifying the file most
recently opened without a file.variable).

No action is taken if a non-existent item is specified in the DELETE
statement.

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the DELETE statement.

(See: DELETE Function)

STATEMENT

DELETE X, "XYZ Il

Q=IIJOB"
DELETE Q

EXPLANATION

Deletes item XYZ in the file opened
and assigned to variable X.

Deletes item JOB in the file opened
without a file variable.

Sample Usage of the DELETE Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 470

\

,/

9.40 DELETE FUNCTION: DYNAMIC ARRAY DELETION

1
The DELETE function deletes an attribute, a value, or a secondary value I
from a string in 'item' format (called a dynamic array). (--
FORMAT:

DELETE(da.expression,att#{,value#,sub-value#})

The dynamic array used by this function is specified by the da.expression.
Whether an attribute, a value, or a secondary value is deleted depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies a value, and the sub-value#
specifies a secondary value. If the value# and sub-value# both have a
value of 0, or are dropped, then an entire attribute is deleted. If the
last three expressions are all non-zero, then a secondary value is
deleted.

If a value is deleted the value mark associated with the value is also
deleted. If an attribute is deleted the attribute mark associated with
the attribute is also deleted. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201, 'TEST'
READ X FROM TEST, 'NAME' ELSE STOP 202, 'NAME'
WRITE DELETE(X,2) ON TEST, 'NAME'

These statements delete attribute 2 (and its associated delimiter) of item
NAME in file TEST.

I STATEMENT
Y = DELETE(X,3,2)

EXPLANATION
Deletes value 2 of attribute 3 of
dynamic array X (and its associated
delimiter), and assigns

('\

A=1;B=2;C-3
DA = DELETE(DA,A,B,C-A)

X DELETE (X,7)

PRINT DELETE(X,7,l)

resultant dynamic array to Y.

Deletes secondary value 2 (and
its associated delimiter) of
value 2 of attribute 1 of dynamic
array DA.

Deletes attribute 7 (and its
associated delimiter) of dynamic
array X.

Prints the dynamic array which
results when value 1 of attribute
7 of dynamic array X is deleted.

Sample usage of the DELETE Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 471

9.41 DIM STATEMENT : DIMENSIONING ARRAYS

I Mul tiple valued var. iables are called arrays. Before arrays may be used in I
a PICK/BASIC program they must be dimensioned via a DIM statement.

FORMAT:
DIM variable (dimensionl[,dimension2})

A variable with more than one value associated with it is called an array.
Each value is called an element of the array, and the elements are
ordered. Before an array may be used in a PICK/BASIC program, however,
the maximum dimension(s) of the array must be specified for storage
purposes. This is done via a DIM statement, wherein the dimensions of an
array are declared with constant whole number, separated by commas. DIM
statements must precede any array references, and are therfore usually
placed at the beginning of the program. (Arrays need only be dimensioned
once throughout the entire program.) Several arrays may be dimensioned via
a single DIM statement.

1 3 1---- The first element of A has value 3

1 8 1---- The second element of A has value 8

Array A: -------
1-20.31---- The third element of A has value -20.3

1 ABC 1---- The fourth element of A has string value "ABC"

The above example illustrates a one-dimensional array (called a vector).
A two-dimensional array (called a matrix) is characterized by having rows
and columns. For example:

COL. 1 COL. 2 COL. 3 COL.4 ,/ "

Row 1 3 1 XYZ 1 A 1 -8.2

Array Z: Row 2 8 1 3.1 1 500 1 .333

Row 3 2 1 -5 1 0123 1 84

Any array element may be accessed by specifying its position in the array.
This position is like an offset from the beginning of the array. In
specifying an element, the user must have one offset or subscript for each
dimension of the array. In Array A, element A(l) has a value of 3, while
element A(3) has a value of "20.3". For a two-dimensional array (matrix)
the first subscript specifies the row, while the second specifies the
column. For example, in array Z above, element Z(l,l) has a value of 3,
while element Z(2,3) has a value of 500.

DIM MATRIX(10,12)
DIM O(lO),R(lO),S(lO)

DIM Ml{50,10),X(2)

Specifies 10 by 12 matrix named MATRIX.
Specifies three vectors named 0, R, and
S (each to contain 10 elements).
Specifies 50 by 10 matrix named Ml,
and two-element vector named X.

Sample usage of the DIM statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 472

(

(

9.42 EBCDIC FUNCTION: FORMAT CONVERSION

The EBCDIC function converts a string value from ASCII to EBCDIC.

FORMAT:

EBCDIC(expression)

The string value of the expression is converted from ASCII to EBCDIC. For
example:

B = EBCDIC(A)

Conversely, the ASCII function is available to convert string values from
EBCDIC to ASCII.

(See: ASCII)

STATEMENT

B = EBCDIC(A)

EXPLANATION

Assigns the EBCDIC value of variable A
to variable B.

Sample Usage of the EBCDIC function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 473

9.43 ECHO ON AND OFF : TERMINAL DISPLAY

The ECHO statement enables or disables terminal output accordingly.

FORMAT:
ECHO ON
ECHO OFF
ECHO expression

These commands turn the system echo-back on or off. They may be used to
suppress the echo back of terminal input.

If the expression form is used, terminal echo is inhibited when the
expression evaluates to zero. Terminal echo is enabled when the
expression evaluates to non-zero.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 474

/ '

(

(

9.44 END STATEMENT

The END statement must be the
it designates the physical
statement may appear anywhere
termination of the program.

last statement of the
end of the program.
in the program; it

PICK/BASIC program;
The STOP and ABORT

designates a logical

FORMAT:
END

The END statement may appear as the very last statement
program. It is used to specify the physical end of the
statements comprising the program, and increases readability.

in the BASIC
sequence of

The END statement is also used to designate the physical end of
alternative sequences of statements within the IF statement and within
certain of the PICK/BASIC I/O Statements.

(See: IF .. THEN, LOCATE, LOCK, READ for a discussion of this alternative
use of the END statement.)

A=500 ; B=750 ; C=235 ; D=1300
REVENUE = A + B i COST = C + D
PROFIT = REVENUE - COST
IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"
STOP

10 PRINT "POSITIVE PROFIT"
END (---------------------------- Physical end of program

Sample usage of the END Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 475

9.45 ENTER STATEMENT: INTERPROGRAM TRANSFERS

The ENTER statement permits transfer of control from one cataloged program j'-\
to another cataloged program. The program that executes the ENTER : ::
statement must be executed via the cataloged verb in the user's MD. ~j

FORMATS:
ENTER program-name

where program-name is the item-id of the program to be ENTERed and

ENTER @Variable

where variable has been assigned the program name to be ENTERed.
All variables which are to be passed between programs must be declared in
a COMMON declaration in all program segments that are to be ENTERed.

All other variables will be initialized upon ENTERing the program. It is
permissible to ENTER a program that calls a subroutine, but it is illegal
to ENTER a program from a subroutine.

STATEMENT
ENTER PROGRAM. 1

N=2
PROG = "PROGRAM."
ENTER @PROG

N

EXPLANATION
Causes execution of the cataloged
program "PROGRAM. l". Any COMMON
variables will be passed to "PROGRAM.l".

Causes execution of the cataloged
program "PROGRAM. 2" . Any COMMON
variables will be passed to
"PROGRAM. 2".

Sample usage of the ENTER statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 476

9.46 EQUATE STATEMENT: VARIABLE ASSIGNMENT

(

(

(-

I The EQUATE statement allows one variable to be defined as the equivalent I
of another variable.

FORMAT:
EQU(ATE} variable TO equate-variable(,variable TO equate-variable .. }

The variable must be a simple variable. The equate-variable may be a
literal number, string, character or array element. The equate-variable
may also be a CHAR function, however, the CHAR function is the only
allowed function in an EQUATE statement. The EQUATE statement must appear
before the first reference to the equate-variable.

The EQUATE Statement differs from the ASSIGNMENT Statement (where a
variable is assigned a value via an equal sign) in that there is no
storage location generated for the variable. The advantage this offers is
that the value is compiled directly into the object-code item at compile
time and does not need to be re-assigned every time the program is
executed. The EQUATE Statement is therefore particularly useful under the
following two conditions:

Where a constant is used frequently within a program, and therefore the
program would read more clearly if the constant were given a symbolic
name. In the example on the facing page, "AM" is the commonly used symbol
for "attribute mark", one of the standard data delimiters.

Where a MATREAD statement is used to read in an entire item from a file
and disperse it into a dimensioned array. In this case, the EQUATE
statement may be used to give symbolic names to the individual array
elements which makes the program more meaningful. For example:

DIM ITEM(20)
EQUATE BIRTHDATE TO ITEM(l), SOC.SEC.NO. TO ITEM(2)
EQUATE SALARY TO ITEM(3)

in this case, the variables BIRTHDATE, SOC. SEC. NO. and SALARY are
rendered equivalent to the first three elements of the array ITEM. These
meaningful variables are then used in the remainder of the program.

STATEMENT

EQUATE PI TO 3.1416

EQUATE STARS TO "*****"

EQUATE AM TO CHAR(254)

EQUATE PART TO ITEM(3)

EXPLANATION

Variable PI is compiled as the value
3.1416 at compile time.

Variable STARS is compiled as the
value of five asterisks at compile time.

Variable AM is equivalent to the ASCII
charater generated by the CHAR function.

Variable PART is equivalent to
element 3 of array ITEM.

Sample usage of the EQUATE statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 477

9.47 EXP FUNCTION : EXPONENTIAL CAPABILITY

The EXPONENTIAL function generates the result of raising base 'e' to the C,' ""'"
power designated by the expression. (Base 'e' is 2.7183)

FORMAT:

EXP(expression)

The EXPONENTIAL function raises the number 'e' (2.7183) to the value of
the expression. If the value of the expression 1S such that 'e' to that
power is greater than 14,073,748,834, the function returns a value of
zero.

The EXPONENTIAL function is the inverse of the NATURAL LOGARITHM (LN)
function.

(See: LN)

STATEMENT

IT = EXP(XX)

PRINT EXP(l)

PRINT EXP(-110+120)

PRINT 24 + EXP(1000)

PRINT EXP(10000)

EXPLANATION

Assigns the result of
raising base 'e' the power of
the expression XX, to variable IT.

Prints "0"

Prints "2.3026"

Prints "30.9079"

Prints "9.2105"

Sample usage of the EXP function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 478

9.48 EXTRACT FUNCTION: DYNAMIC ARRAY EXTRACTION

I The EXTRACT function returns an attribute, a value, or a secondary value I
from a string in 'item' format (called a dynamic array).

('" --
FORMAT:

EXTRACT(da.expression,att#{,value#,sub-value#})
or

da.expression<att#{,value#,sub-value#}>

the dynamic array used by this function is specified by the da.expression.
Whether an attribute, a value, or a secondary value is extracted depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies an value, and the sub-value #
specifies a secondary value. If the third and fourth parameters both have
a value of 0, or have been dropped, then an entire attribute is extracted.
If the sub-value# (only) has a value of 0, or been dropped, then a value
is extracted. If the last three parameters are all non-zero, then a
secondary value is extracted. Trailing zero value# or sub-value# mark
counts are not required. Consider the following example:

OPEN 'TEST' TO TEST ELSE STOP 201, 'TEST'
READ ITEM FROM TEST, 'NAME' ELSE STOP 202, 'NAME'
PRINT ITEM(,3,2>

These statements cause value 2 of attribute 3 of item NAME in file TEST to
be printed. Consider the following example:

OPEN 'ACCOUNT' TO ACCOUNT ELSE STOP 201, 'ACCOUNT'
READ ITEMI FROM ACCOUNT, 'ITEMl' ELSE STOP 202,'ITEMl'
IF ITEMl<3,2,1>=25 THEN PRINT "MATCH"

These statements cause the message "MATCH" to be printed if secondary
value 1 of value 2 of attribute 3 of item ITEMI in file ACCOUNT is equal
to 25.

STATEMENT
Y=EXTRACT(X,2,0,0)
Y=X<2>

A=3
B=2
Ol=ARR<A,B,A+1>

IF B<3,2,1> >5 THEN
PRINT MSG
GOSUB 100
END

PRINT D<25,2,0>

or
EXPLANATION
Assigns attribute 2 of dynamic
array X to variable Y.

Assigns secondary value 4 of
value 2 of attribute 3 of
dynamic array ARR to variable 01.

If secondary value 1 of value 2
of attribute 3 of dynamic array
B is greater than 5, then the
value of MSG is printed and a
subroutine branch is made to
statement 100.

prints value 2 of attribute 25
of dynamic array D.

Sample usage of the EXTRACT Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 479

9.49 FIELD FUNCTION : STRING SEARCHING

The FIELD function returns a sub-string from a string by specifying a
delimiter character.

FORMAT:
FIELD'(expression, delimi ter ,occurencei)

The FIELD function takes the string value of the expression and searches
for a sub-string delimited by the character specified by the delimiter.
The occurence# specifies which occurrence of the sub-string is to be
returned. If the occurence# has a value of 1, then the FIELD function
will return the sub-string from the beginning of the string up to the
first occurrence of of the delimiter. For example, the statement below
assigns the string value of "XXX" to the variable A:

A = FIELD("XXX.YTI.ZZZ.555",".",1)

If the occurence# has a value of 2, then the sub-string delimited by the
first and second occurrence of the specified delimiter character will be
returned. A value of 3 for the occurence# will return the sub-string
delimited by the second and third occurence of the specified delimiter
character, and so on for higher values. For example, the statement below
assigns the string value "zzz" to variable C:

C = FIELD("XXX.YTI.ZZZ.555",".",3)

(See: COLl() and COL2(} Functions}

STATEMENT

T "12345A6789A98765A"
G = FIELD(T, "A" ,1)

T "12345A6789A98765A"
G = FIELD(T,"A",3)

X = "77ABCXX"
Y "$"
Z = "ABC"
IF FIELD(X,Y,2)= THEN STOP

EXPLANATION

Assigns the string value "12345"
to variable G.

Assigns the string value "98765"
to variable G.

The IF statement will cause the
program to terminate (i.e., the
value returned by the FIELD function
is "ABC", which equals the
value of Z, thus making the test
condi tion true).

Sample usage of the FIELD statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 480

9.50 FOOTING STATEMENT: PAGE OUTPUT FOOTINGS

I The FOOTING statement causes the specified text string to be printed at I
the bottom of each page. (--
FORMAT:

FOOTING "text 'options' {text 'options'}"

The first FOOTING statement executed will initialize the page parameters.
Subsequently, the Footing literal data may be changed by a new FOOTING
Statement, and the new Footing will be output when the end of the current
page is reached.

The special Footing option characters listed below may be used as part of
a FOOTING string expression. These special characters will be converted
and printed as part of the Footing. Option characters are enclosed in
single quotes. Consider, for example:

FOOTING "Copyright 1985 PICK SYSTEMS 'T' PAGE 'p'"

This statement will print a Footing consisting of: the words "Copyright
1985 PICK SYSTEMS", followed by the current time and date, followed by the
word "PAGE", followed by the current page nwnber. Page nwnbers are
assigned in ascending order starting with page 1.

The footing literal data may be changed at any time in the PICK/BASIC
program by another FOOTING statement; this change will take effect when
the end of the current page is reached. The same set of special option
characters are used in heading statements.

(. (See: HEADING)

HEADING OPTIONS

P
L
T
C
D
N

Character is Converted to:

Current page nwnber
Carriage return/line feed
Current time and date
Centers the line
Current date
No stop at end of page

Special Option Characters for FOOTING Statement.

STATEMENT
FOOTING "TIME & DATE: 'T'

HEADING "PAGE 'p'"

FOOTING '" LTP , "

EXPlANATION
The text "TIME & DATE:" will be printed
followed by the current time and date.

The text "PAGE" will be printed
followed by the current page nwnber.

The following footing will be
printed: the current time, date and page.

Sample Usage of FOOTING Statements.

('\ CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 481

9.51 FOR ... NEXT STATEMENT: PROGRAM LOOPING

The FOR and NEXT statements are used to specify the beginning and ending
points of a program loop. A loop is a portion of a program wri tten in C"'\
such a way that it will execute repeatedly until some test condition is . /
met.

A FOR and NEXT loop causes execution of a set of statements for successive·
values of a variable until a limiting value is encountered. Such values
are specified by establishing: 1) an initial value for a variable, 2) a
limiting value for the variable, and 3) an increment value to be added to
the value of the variable at the end of each pass through the loop. When
the limit is exceeded, program control proceeds to the following body of
the program.

FORMAT:

FOR variable = expression TO expression {STEP expression}

NEXT variable

The expression preceding TO specifies the initial value of the variable,
the expression following TO gives the limiting value, and the optional
expression following STEP gives the increment. If STEP is omitted, the
increment value is assumed to be +1. The initial value expression is
evaluated only once (when the FOR statement is executed). The other two
expressions are evaluated on each iteration of the loop.

The function of the NEXT statement is to return program control to the \
beginning of the loop after a new value of the variable has been computed. .~ /'
Note that the variable in the NEXT statement must be the same as the
variable in the FOR statement.

As an example, consider the execution of the following statements:

150 FOR J=2 TO 11 STEP 3
160 PRINT J+5
170 NEXT J

Statement 150 sets the initial value of J to 2 and specifies that J
thereafter will be incremented by 3 each time the loop is performed, until
J exceeds the limiting value 11. Statement 160 prints out the current
value of the expression J+5. Statement 170 assigned J its next value
(i.e., J=2+3=5) and causes program control to return to statement 150.
Statement 160 is again executed, and statement 170 again increments J and
causes the program to loop back. This process continues with J being
incremented by 3 after each pass through the loop. When J attains the
limiting value of 11, statement 160 will again be executed and control
will pass to 170. J will again be incremented (i.e., J=11+3=14), and
since 14 is greater than the limiting value of 11, the program will "fall
through" statement 170 and control will pass to the next sequential
statement following statement 170.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 482

(

STATEMENTS

FOR A-I TO 2+X-Y

NEXT A

FOR K-IO TO 1 STEP -1

NEXT K

FOR VAR= o TO STEP .1

NEXT VAR

EXPLANATION

Limiting value is current value of
expression 2+X-Yi increment value
is +1.

Increment value is -1 (i.e., vari
able K will decrement by a value -1
for each of 10 passes through the
loop) .

Increment value is .1 (i.e., vari
able VAR will increment by a value
of .1 for each of 11 passes through
the loop).

Sample usage of the FOR ... NEXT statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 483

9.52 FOR ... NEXT STATEMENT: EXTENDED PROGRAM LOOPING

Optional condition clauses (WHILE and UNTIL) may be used in the FOR
statement. FOR and NEXT loops may be "nested"; a nested loop is defined
as a loop which is wholly contained within another loop.

EXTENDED FORMAT:

FOR variable - expression TO expression (STEP
expression} (WHILE expression}

FOR variable = expression TO expression (STEP
expression} (UNTIL expression}

The extended form of the FOR statement functions identically to the basic
form, with the following additions.

If the WHILE clause is used, the specified expression will be evaluated
for each iteration of the loop. If it evaluates to false (i.e., zero),
then program control will pass to the statement immediately following the
accompanying NEXT statement. If it evaluates to true (i.e., non-zero),
the loop will re-iterate.

If the UNTIL clause is used, the specified expression will be evaluated
for each iteration of the loop. If it evaluates to true (i.e., non-zero),
then program control will pass to the statement immediately following the
accompanying NEXT statement. If it evaluates to false (i.e., non-zero),
the loop will re-iterate.

The following FOR and NEXT loop, for example, will execute until 1=10 or
until the statements within the loop cause variable A to exceed the value
100: / ~

FOR 1=1 TO 10 STEP .5 UNTILA>100

NEXT I

FOR and NEXT loops contained within the range of other FOR and NEXT loops
are called nested loops. For ,example:

FOR 1=1 TO 10
FOR J=l TO 10
PRINT B (I,J)
NEXT J

NEXT I

The above statements illustrate a two-level nested loop. The inner loop
will be executed ten times for each of ten passes through the outer loop,
i.e., the statement PRINT B(I,J) will be executed 100 times, causing
matrix B to be printed in the following order: B(l,l), B(1,2),
B(1,3), ... , B(l,lO), B(2,1), B(2,2), ... , B(10,10).

Loops may be nested any number of levels. However, a nested loop must be
completely contained within the range of the outer loop (i.e., the ranges
of the loops may not cross).

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 484

(

(

STATEMENT

ST="X"
FOR B-1 TO 10 UNTIL ST="XXXXX"
ST=ST CAT "X"
NEXT B

A-20
FOR J-l TO 10 WHILE A(25
A=A+l
PRINT J,A
NEXT J

A=O
FOR J-l TO 10 WHILE A(25
A=A+l
PRINT J,A
NEXT J

EXPLANATION

Loop will execute 4 times (i.e.,
an "X" is added to the string
value of variable ST until the
string equals "XXXXX").

Loop will execute 5 times (i.e.,
variable A reaches 25 before
variable J reaches 10).

Loop will execute 10 times (i.e.,
variable J reaches 10 before
variable A reaches 25).

Sample usage of the FOR ... NEXT statement.
(Extended Form)

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 485

9.53 GOSUB AND ON ... GOSUB STATEMENTS: INTERNAL SUBROUTINE BRANCHING

The GOSUB, COMPUTED GOSUB, RETURN, and RETURN TO statements (The RETURN
and RETURN TO statements will be discussed in the next section.) provide ;--,\
internal subroutine capabilities for the PICK/BASIC.program. A subroutine ~
is an integral group of statements which handle a unique function or task. ..' .
An internal subroutine is a subroutine that is contained within the
program that calls it (i.e., before the END statement). The GOSUB
statement transfers control to the subroutine).

FORMAT:
GOSUB statement-label

Upon execution of a GOSUB statement, program control is transferred to the
statement which begins with the specified numeric statement-label.
Execution proceeds sequentially from that statement until a RETURN or
RETURN TO statement is encountered. Either of these statements transfers
control back to the main program.

The Computed GOSUB statement is a combination of the Computed GOTO
statement and the GOSUB statement. Control is transferred to one of
several statement-labels selected by the current value of an index
expression. Control returns to the statement following the computed GOSUB
when a RETURN statement is executed.

FORMAT:
ON expression GOSUB statement-label, statement-label, ...

The expression is evaluated and truncated to an integer value. The result
is used as an index into the list of statement-labels. A subroutine
branch is executed to the statement-label selected.

If the expression evaluates to less than 1 or to a value greater than the
number of statement-labels, no action is taken, that is, the statement
immediately following the ON GOSUB will be executed next.

ON I GOSUB 100,150,200
* CONTROL TRANSFERS HERE AFTER RETURN FROM SUBROUTINE

(DIRECTLY IF 1<1 OR 1>3)
100 * CONTROL TRANSFERS HERE IF 1==1

RETURN
150 * CONTROL TRANSFERS HERE IF 1=2

RETURN
200 * CONTROL TRANSFERS HERE IF 1=3

RETURN

Sample usage of the ON ... GOSUB statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE; 486
(,-,\
'j

9.54 GOTO STATEMENT: UNCONDITIONAL BRANCHING

(.
. 1 The GO{TO} statement unconditionally transfers program control to any

, statement within the PICK/BASIC program.
--

(

(\

FORMAT:
GO{TO} statement-label

Execution of the GO{TO} statement causes program control to transfer to
the statement which begins with the specified numeric statement-label. If
a statement does not exist with the specified statement-label an error
message will be printed at compile time (refer to the appendix describing
compiler error messages). Note that control may be transferred to
statements following the GO{TO} statement, as well as to statements
preceding the GO{TO} statement.

=====) 100 A=O

REM BRANCH TO STATEMENT 500
200 GOTO 500

==~====~============

1
==) 500 A=B+C

D=lOO

REM REPEAT PROGRAM
GOTO 100 ===

=======--====---=====1

Sample usage of the GOTO statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 487

9.55 HEADING STATEMENT: PAGE OUTPUT HEADINGS

The HEADING statement causes the specified text string to be printed as ~
the next page heading. ~~

FORMAT:
HEADING "text 'options' (text 'options'}"

The first HEADING statement executed will initialize the page parameters.
Subsequently, the Heading literal data may be changed by a new HEADING
Statement, and the new Heading will be output at the beginning of the next
page. The special heading option characters listed below may be used as
part of a HEADING string expression. These special characters will be
converted and printed as part of the heading. Option characters are
enclosed in single quotes. Consider, for example:

HEADING "INVENTORY LIST 'T' PAGE 'PL'"

This statement will print a heading consisting of: the words "INVENTORY
LIST", followed by the current time and date, followed by the word "PAGE II ,

followed by the current page number, followed by a carriage return and
line feed. Page numbers are assigned in ascending order starting with
page 1.

The same set of special option characters are used in FOOTING statements.

(See: FOOTING)

HEADING OPTIONS

P
L
T
C
D
N

Character is Converted to:

Current page number
Carriage return/line feed
Current time and date
Centers the line
Current date
No stop at end of page

Special Option Characters for HEADING Statement.

STATEMENT EXPLANATION

HEADING "TIME & DATE: 'TL' The text "TIME & DATE:" will be
printed followed by the current time and
date plus a carriage return/line feed.

HEADING "PAGE 'PL'" The text "PAGE" will be printed
followed by the current page number and a
carriage return/line feed.

sample Usage of HEADING Statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 488

(

(

9.56 ICONV FUNCTION: INPUT CONVERSION

The ICONV function provides the PICK input conversion capabilities to the
PICK/BASIC programmer.

FORMAT:

ICONV(expression, conversion)

the conversion specifies the type of input conversion to be applied to the
string value resulting from the expression. The resultant value is always
a string.

(See: OCONV)

The input conversion operation specified by the conversion parameter may
include anyone of the following:

D Convert date to internal format (for ICONV function)
or to external format (for OCONV function).

MT Converts time.

MX Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function) .

T Convert by table translation.

U Call to user-defined assembly routine.

For a detailed treatment of these (and other) conversion capabilities, the
user should refer to the ACCESS Chapter.

NOTE: The ACCESS 'F' conversion
ACCESS 'MR' or 'ML' conversion
which performs the same function
OCONV functions in this case.

STATEMENT

IDATE = ICONV("7-01-74","D")

ITIME ICONV("17:04:18","MT")

cannot be called by these functions. The
may be called by using the Format String
and is preferable to using the ICONV or

EXPLANATION

Assigns the string value
"2374" (i.e., the internal
date) to the variable IDATE.

Assigns the string value
"61458" (i.e., the internal
time) to the variable ITIME.

Sample usage of the ICONV Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 489

9.57 IF STATEMENT SINGLE-LINE CONDITIONAL BRANCHING

The Single-Line IF statement provides the conditional execution of a
sequence of PICK/BASIC statements, or the conditional execution of one of
two sequences of statements.

FORMAT:
IF expression THEN statements {ELSE statements}

If the result of the test condition specified by the expression is true
(i.e., non-zero), then the statement or sequence of statements following
the THEN are executed. If the result of the expression is false (i.e.,
zero), then the statement or sequence of statements following the ELSE are
executed, unless the ELSE clause is omitted, in which case control will
pass to the next sequential statement following the entire IF statement.
The expression may be any legal BASIC expression.

The sequence of statements in the THEN or ELSE clauses may consist of one
or more statements on the same line. If more than one statement is
contained in either the THEN or ELSE clause, they must be separated by
semicolons. Consider the example:

IF ITEM THEN PRINT X; X-X+l ELSE PRINT X*5; GOTO 10

If the current value of ITEM is non-zero (i.e., true), then this statement
will print the current value of X, add one to the current value of X, and
then transfer control to the next sequential instruction in the program.
If the value of ITEM is zero (i.e., false), then the value of X*5 will be
printed and control will transfer to statement 10.

Any statements may appear in the THEN and ELSE clauses, including
additional IF statements.

The THEN
present.
with the

clause of an IF statement is optional if the
One or the other MUST be present. This allows

format:
IF expression ELSE statements

STATEMENT EXPLANATION

ELSE
IF

clause is
statements

IF A="STRING" THEN PRINT "MATCH" Prints "MATCH" if value of
A is the string "STRING".

IF X>5 THEN IF X<9 THEN GO TO 10 Transfers control to state
ment 10 if X is greater
than 5 but less than 9.

IF Q THEN PRINT A ELSE PRINT B; STOP The value of A is printed
if Q is non-zero. If QeD,
then the value of B is
printed and the program is
terminated.

IF A-B THEN STOP ELSE IF C THEN GOTO 20 Program is terminated if
A=B; control is passed to
statement 20 if A does not
equal B and if C is non-zero.

Sample usage of the Single-Line IF statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 490

9.58 IF STATEMENT: MULTI-LINE CONDITIONAL BRANCHING

~. I The Multi-Line IF statement is functionally identical to the Single-Line
(IF statement. It provides the conditional execution of a sequence of

I PICK/BASIC statements, or the conditional execution of one of two
sequences of statements. The statement sequences, however, may be placed
on multiple program lines.

The Multi-Line IF statement is actually an extension of the Single-Line
format. With this format, the statement sequences in the THEN and ELSE
clauses may be placed on multiple program lines, with each sequence being
terminated by an END. The general format of the Multi-Line IF statement
takes on three forms as shown in Figure A.

In each of the three forms, the ELSE clause is optional and may be
included or omitted as desired. Any statements may appear in the THEN and
ELSE clauses.

FORM 1:

FORM 2:

FORM 3:

NOTE:

IF expression THEN
statements

END ELSE statements

IF expression THEN
statements

END ELSE
statements

END

IF expression THEN
statements ELSE

END

In each of the above forms,
the ELSE clause is optional.

General form of the Multi-Line IF statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 491

IF STATEMENTS

IF ABC-ITEM+5 THEN
PRINT ABC
STOP

EXPLANATION

END ELSE PRINT ITEMj GOTO 10

The value of ABC is printed and the
program terminates if ABC=ITEM+5j
otherwise the value of ITEM is
printed and control passes to
statement 10.

IF VAL THEN
PRINT MESSAGE
PRINT Vl\L
Vl\L==lOO
END

10 IF S "XX" THEN PRINT
PRINT "NO MATCH"
PRINT S
STOP
END

20 REM REST OF PROGRAM

IF X>l THEN
PRINT X
X-X+l

END ELSE

END

PRINT "NOT GREATER"
GOTO 75

If the value of Vl\L is non-zero
then the value of MESSAGE is
printed, the value of VAL is
printed, and VAL is assigned a
value of 100j otherwise control
passes to the next statement
following END.

"OK" ELSE If the value of S is the string
"XX" then the message "OK" is
printed and control passes to
statement 20j otherwise "NO MATCH"
is printed, the value of S is
printed, and the program terminates.

If X>l the value of X is printed
and then incremented, and control
passes to the next statement fol
lowing the second END: otherwise
"NOT GREATER" is printed and
control passes to statement 75.

Sample usage of the Multi-Line IF statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 492

(

(

9.59 INDEX FUNCTION: SEARCHING FOR SUB-STRINGS

I The INDEX function searches a string for the occurrence of a sub-string I
and returns the starting column position of that sub-string.

FORMAT:

INDEX(string.expression,substring,occurence#)

The INDEX function takes the string value of the expression and searches
for the sub-string specified by substring. The occurence# specifies which
occurrence of that sub-string is sought. The resultant numeric value of
the INDEX function is the starting column position of the sub-string
within the string. a value of 0 is returned if the sub-string is not
found.

The user should note that no blank space may appear between "INDEX" and
"(". This is true for all PICK/BASIC Intrinsic Functions.

STATEMENT
A -= INDEX ("ABCAB" ,"A" ,2)

x = "1234ABC"
Y = "ABC"
IF INDEX(X,Y,1)=5 THEN GOTO 3

Q INDEX("PROGRAM","S",5)

S = "X1XX1XX1XX"
FOR 1=1 TO INDEX(S,"1",3)

NEXT I

EXPLANATION
Assigns value of 4 to variable A
(i.e., 2nd occurrence of "A" is
at column position 4 of "ABCAB").

The IF statement will transfer con
trol to statement 3 (i.e., "ABC"
starts at column position 5 of
"1234ABC" which makes the test con
dition in the IF statement true).

Assigns value of 0 to variable Q
(i.e., "S" does not occur in
" PROGRAM") .

The loop will execute 8 times
(i.e., 3rd occurrence of "1"
appears at column position 8 of
the string named S).

Sample usage of the INDEX Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 493

9.60 INPUT STATEMENT: TERMINAL INPUT

--
The INPUT statement is used to request input data from the user's
terminal.

FORMAT:
INPUT variable {:}

Upon execution of an INPUT statement, a "prompt" character will be printed
at the user's terminal. The user's response will then be assigned to the
variable indicated in the INPUT statement. For example:

INPUT A

This statement will cause a prompt character to be printed at the user's
terminal. The data which the user thereupon inputs will become the
current value of variable A.

A colon may be used following the input variable to supress the automatic
carriage return and line feed printed when a value is input. For example:

INPUT AMOUNT:

Via the PROMPT statement, the user may select any character to be used as
the input prompt character.

(See: PROMPT)

Additional functionality can be added to the input function, including
masking, screen positioning, and error checking.

(See: INPUT, I NPUTERR, INPUTTRAP, and INPUTNULL)

STATEMENT

INPUT VAR

EXPLANATION

Will request a value for variable VAR at
the user's terminal.

Sample Usage of the INPUT Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

. PAGE 494

(

(

9.61 INPUT @ STATEMENT: POSITIONING MASKED INPUT

I Masking functions are available for use with the INPUT statement.

FORMAT:
INPUT @(x,y):variable mask

The parameter x refers to the terminal column position, and y to the
terminal row position.

This is a VERY powerful input function! It is capable of replacing as
many as twenty lines of PICK/BASIC code used in screen input. Its
functions include cursor addressing, output masking, editing, error
messages, input masking, and exception trapping.

This command itself is used for the actual entry of the data. Ancillary
functions can be performed by the commands described below. In the above
example, "variable" represents the name of the variable being input, and
"mask" represents a standard PICK format mask. If the variable being used
already has a value it will be displayed at the specified cursor address
using "mask" as the output mask. Regardless, the cursor is positioned one
character back of "x" in the "@(x,y)" specification, the prompt character
is printed and input is requested. If the user presses the return key,
then whatever default value was there before will be accepted. Otherwise,
the input will be verified against the mask, and, if acceptable, will be
assigned to "variable". If the mask contains a decimal digit
specification and/or a scaling factor, then numeric checking will be
performed. If the mask contains a length specification (eg. R#lO), then
length checking will be performed. If the mask is 'D' (or any other valid
date mask) then a date verification will be performed.

Note that data is converted on output and input. Thus, if you wish to
input a date, the default should be stored in internal format, will be
displayed and input in output format and will be placed back in the
variable in internal format. Note also that the '%' is a numeric
character verification symbol. Thus, for example, if the statement
executed is INPUT @(20,lO):SOC.SEC '%%%-%%-%%%%' and the data entered is
423-15-6897 then SOC.SEC will contain the value 423156897. If an error
condition is encountered, a message is printed at the bottom of the
screen.

(See: INPUT)

INPUT @(25,2):INV.DATE 'D'

INPUT @(35,7):AMOUNT 'R2,'

INPUT @(20,14):NAME 'L#40'

INPUT @(O,lO):DESC

Inputs a date.

Inputs a dollar value.

Inputs a text field with
a length specification.

Inputs data with no mask.

Sample usage of the INPUT @ Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 495

9 . 62 INPUTERR - INPUTTRAP - INPUTNULL : INPUT FORMS

Some extended features of the INPUT fuction.

FORMAT:
INPUTERR expr

INPUTTRAP 'xx' GOTO n,n,n,n ...

INPUTTRAP 'xx' GOSUB n,n,n,n ...

INPUTNULL x

These are all support functions for the extended form of input statement.
They allow the user to tailor the INPUT function to conform to local
standards.

INPUTERR causes a message, specified by "expr", to be printed on the last
line of the screen. This differs from an explicit PRINT statement in that
it sets a flag indicating that a message has been printed. Thus, when the
next valid entry is made the system will check the flag and clear the
bottom line.

INPUT TRAP allows the user to set a trap for a particular character or
characters. Each character in the string specification corresponds to a
label in the GOTO or GOSUB clause. Thus, for example, if the statement
INPUTTRAP '_X' GOTO 10,20 is executed, the subsequent entry of a '_I
character will cause a branch to "10" and the entry of 'X' will cause a
branch to "20". The GOSUB form of this expression will cause a subroutine /
call to be issued instead. Caution - the subroutine RETURN statement will
cause a return to the statement following the INPUTTRAP statement - not
the one following the INPUT statement.

The INPUTNULL statement allows the user to define a character which is to
signify that whatever default value was present is to be replaced by the
null string. Thus, if the statement INPUTNULL 'I' is executed, the
subsequent entry of a 'I' character will cause a defaulted value to go to
null. Note that the default character is ' ,

(See: INPUT)

INPUTERR 'INVALID DATA! '

INPUTTRAP '*1' GOTO 150,170

INPUTNULL '@'

Displays error message

Causes branching if either '*'
or 'I' is entered.

Causes the '@' character to null
defaults in INPUT statements.

Examples of I NPUTERR, INPUTTRAP and INPUTNULL Statements.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 496

(

9.63 INSERT FUNCTION: DYNAMIC ARRAY INSERTION

I The INSERT function inserts an attribute, a value, or a secondary value I
into a string in 'item' format (called a dynamic array).

FORMAT:
INSERT(da.expression,att#(,value#,sub-value#,}(;}new.expression)

The dynamic array used by this function is specified by the da.expression.
Whether an attribute, a value, or a secondary value is replaced depends
upon the values of the second, third, and fourth parameters. The att#
specifies an attribute, the value# specifies a value, and the sub-value#
specifies a secondary value. If the value# and sub-value# both have a
value of 0, (or dropped) then an entire attribute is replaced. If the
sub-value# (only) has a value of 0, (or dropped) then a value is replaced.
If the second, third, and fourth parameters are all non-zero, then a
secondary value is replaced. The replacement value is specified by the
new. expression. The semi-colon (;) is used whenever value# and/or sub
value# have been dropped and the new. expression is no longer the fifth
parameter.

If the att#, va1ue# or sub-va1ue# of the INSERT function has a value of
-1, then insertion after the last attribute, last value, or last secondary
value (respectively) of the dynamic array is specified. For example:

OPEN 'FN1' TO FN1 ELSE STOP 201, 'FNI'
READ B FROM FN1,'ITEMX' ELSE STOP 202,'ITEMX'
A = INSERT(B,-l;'EXAMPLE')
WRITE A ON FN1, 'ITEMX'

These statements insert the string value "EXAMPLE" after the last
attribute of item ITEMX in file FNI.

(--
I STATEMENTS EXPLANATION

Y = INSERT(X3,2,0,"XYZ")

NEW = "VALUE"
TEMP = INSERT(TEMP,9,0,0,NEW)

A = "123456789"
B INSERT(B,3,-1,0,A)

Z INSERT(W,5,1,1,"B")

Inserts before value 2 of attribute
3 of dynamic array X the
string value "XYZ" (thus creating
a new value), and assigns the
resultant dynamic array to variable Y.

Inserts before attribute 9 of
dynamic array TEMP the string
value "VALUE" (thus creating a
new attribute).

Inserts the value "123456789"
after the last value of attribute
3 of dynamic array B.

Inserts the string value "B"
before secondary value 1 of value 1
of attribute 5 in dynamic array W
(thus creating a new secondary
value), and assigns the resultant
dynamic array to variable Z.

Sample usage of the INSERT Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 497

9.64 INT FUNCTION: INTEGER NUMERIC VALUE

The INT function returns an integer value. An integer is a whole number. (~

FORMAT:
INT(expression)

The INT function returns the integer portion of the specified expression
(i.e., the fractional portion of the expression is truncated). For
example:

PRINT INT(5.37)

This statement causes the value 5 to be printed.

STATEMENT

A INT(Q)

A == 3.55
B = 3.6
C == INT(A+B)

J INT (5/3)

EXPLANATION

Assigns the integer value of
variable Q to variable A.

Assigns the value 7 to variable C.

Assigns the value 1 to variable J.

-- /

Sample Usage of the INT Function.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 498

(f-~

~~/

9.65 LEN FUNCTION: GENERATING A LENGTH VALUE

(The LEN function determines the length of a string.

FORMAT:
LEN(expression)

the LEN function returns the numeric value of the length of the string
specified by the expression. For example:

A = "1234ABC"
B ... LEN(A)

These statements assign the value of 7 to variable B.

STATEMENT

Q = LEN ("123")

X "123"
Y = "ABC"

EXPLANATION

Assigns the value 3 to variable Q
(i. e., the length of string "123").

Assigns the value 6 to variable z.
Z LEN(X CAT Y)

(--
Sample Usage of the LEN Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 499

9.66 LN FUNCTION: NATURAL LOGARITHM

The NATURAL LOGARITHM function generates the natural logari tlun of the (\
expression. (Base 'e' is 2.7183) \._ /

FORMAT:

LN(expression)

The NATURAL LOGARITHM (LN) function generates the natural (base e)
loqaritlun of the expression. If the value of the expression is less than
or equal to zero, the LN function returns a value of zero. The upper
range limit for the expression is 14,073,748,834.

The NATURAL LOGARITHM function is the inverse of the EXPONENTIAL function.

(See: EXP)

STATEMENT

IT = LN(XX)

PRINT LN(-35+37)

PRINT LN(1000)

PRINT LN(10000)

EXPLANATION

Assigns the natural loqaritlun of
expression XX to variable IT.

Prints "0.6932"

Prints "6.9079"

Prints "9.2105"

Sample usage of the LN function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 500

9.67 LOCATE STATEMENTS: LOCATING INDEX VALUES

(I The LOCATE statement may be used to find the index of an attribute, a
value, or a secondary value within a dynamic array. The elements of the
dynamic array may be specified as being in ascending or descending ASCII
sequence, and sorted with either right or left justification. If the
specified attribute, value, or secondary value is not present in the
dynamic array in the proper sequence, an index value is returned which may
be used in an INSERT statement to place the sought element into its proper
location.

FORMAT:
LOCATE('string',item[,att#[,val#}};index#[;'sequence}) THEN/ELSE stmts

'String'is the element to be located in dynamic array 'item'. 'Index#'
is the variable into which the index of 'string' is to be stored. 'Att#'
and "val#" are optional parameters which restrict the scope of the search
within 'item'. If neither parameter is present, 'string' is tested for
equality with attributes in 'item', and 'index#' returns an attribute
number. If 'att#' is present, 'string' is compared with values within the
attribute specified by "atti" of "item", and "index#" returns a value
number. If 'vall' is also present, the search is conducted for secondary
values of the specified attribute and value of 'item', and 'index#'
returns a secondary value number.

If 'sequence' has the value 'A' (or any string value beginning with 'A'),
the elements of "item" are assumed to be sorted in ascending sequence. If
"sequence" has the value "D" (or any string value beginning with "D"), the
elements are assumed to be in descending sequence. All other values for
'sequence' are ignored.

If the first character of 'sequence' is 'A' or'D', the second character
determines the justification used when sorting the elements. If the
second character is "R", right justification is used. For any other
value, including null, left justification is used. If 'sequence' is not
specified and the string is not found, the default will be to the last
position.

SEQUENCE PARAMETERS SEQUENCE PARAMETERS
AL - ascending, left-justified DL - descending, left-justified
AR - ascending, right-justified DR - descending, right-justified

STATEMENT:
LOCATE('55',ITEM,3,1;INDEXl;'AR') ELSE ITEM = INSERT(ITEM,3,l,INDEXl,'55')

EXPLANATION
The third attribute, first value of dynamic array 'ITEM' is searched for
the numeric literal '55'. 'INDEXl' will return with the secondary value
index if the numeric is found, and will return with the correct secondary
value index if the numeric is not found. If it is not found, control
passes to the ELSE clause which inserts the numeric into the correct
position by virtue of the index contained in 'INDEXl'. The optional
parameter 'AR' specifies ascending sequence and right justification.

Sample usage of the the LOCATE statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 501

9.68 LOCK STATEMENT: SETTING EXECUTION LOCKS

The LOCK statement provides a file and execution lock capability for
PICK/BASIC programs. The LOCK statement sets execution locks while the
UNLOCK statement releases them.

FORMAT:

LOCK expression {THEN/ELSE statements}

The LOCK statement sets an execution lock so that when any other BASIC
program attempts to set the same lock, then that program will either
execute an alternate set of statements or will pause until the lock is
released (via an UNLOCK statement) by the program which originally locked
it.

Execution locks may be used as file locks to prevent multiple PICK/BASIC
programs from updating the same files simultaneously. There are 48
execution locks numbered from 0 through 47.

the value of the expression specifies which execution lock is to be set.
If the specified execution lock has already been set by another
concurrently running program (and the ELSE clause is not used), then
program execution will temporarily halt until the lock is released by the
other program.

If the ELSE clause is used, then the statement(s) following the ELSE will
be executed if the specified lock has already been set by another program.
The statements in the THEN/ELSE clause may be placed on the same line
separated by semicolons, or may· be placed on multiple lines terminated by
an END (i.e., the THEN/ELSE clause takes on the same format as the
THEN/ELSE clause in the IF statement).

All execution locks set by a program will automatically be released upon
termination of the program.

(See: UNLOCK)

STATEMENTS

LOCK 15 ELSE STOP

LOCK 2

LOCK 10 ELSE PRINT Xi GOTO 5

EXPLANATION

Sets execution lock 15 (if lock 15
is already set, program terminates.

Sets execution lock 2.

Sets execution lock 10 (if lock 10 is
already set, the value of X is printed
and program branches to statement 5.)

Sample Usage of the LOCK Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 502

'\.". ./

(

(

9.69 LOOP STATEMENT: STRUCTURED LOOPING

I Program loops may be constructed via the use of the LOOP statement.

FORMAT:

LOOP {statements) WHILE expression DO {statements) REPEAT

LOOP {statements) UNTIL expression DO {statements) REPEAT

Execution of a LOOP statement proceeds as follows. First the statements
(if any) following "LOOP" will be executed. Then the expression is
evaluated. One of the following is then performed depending upon the form
used:

If the "WHILE" form is used, then the statements following "DO"
(if any) will be executed and program control will loop back to the
beginning of the loop if the expression evaluates to true (i.e.,
non-zero), or program control will proceed with the next sequential
statement following "REPEAT" (i.e., control passes out of the loop)
if the expression evaluates to false (i.e., zero).

If the "UNTIL" form is used, then the statements following "DO"
(if any) will be executed and program control will loop back to the
beginning of the loop if the expression evaluates to false (i.e.,
zero), or program control will proceed with the next sequential
statement following "REPEAT" (i.e., control passes out of the loop)
if the expression evaluates to true (i.e., non-zero).

Statements used within the LOOP statement may be placed on one line
separated by semicolons, or may be placed on multiple lines. Consider
the following example:

LOOP UNTIL A=4 DO A=A+1; PRINT A REPEAT

Assuming that the value of variable A is 0 when the LOOP statement is
first executed, this statement will print the sequential values of A
from 1 through 4 (i.e., the loop will execute 4 times). As a further
example, consider the statement:

LOOP X=X-10 WHILE X>40 DO PRINT X REPEAT

Assuming, for example, that the value of variable X is 100 when the
above LOOP statement is first executed, this statement will print the
values of X from 90 down through 50 in increments of -10 (i.e., the loop
will execute 5 times).

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 503

STATEMENTS

J=O
LOOP

PRINT J
J-J+l

WHILE J<4 DO REPEAT

0=6
LOOP O=Q-l WHILE 0 DO PRINT 0

0=6
LOOP PRINT 0 WHILE 0 DO 0=0-1

B=l
LOOP UNTIL B=6 DO

B=B+l
PRINT B

REPEAT

EXPLANATION

Loop will execute 4 times (i.e.,
sequential values of variable J
from 0 through 3 will be
printed) .

Loop will execute 5 times (i.e.,
REPEAT values of variable 0 will be

printed in the following order:
5 , 4, 3, 2 , and 1).

Loop will execute 7 times (i.e.,
REPEAT values of variable 0 will be

printed in the following order:
6, 5 , 4, 3, 2 , 1 , and 0).

Loop will execute 5 times (i.e.,
sequential values of variable
B from 2 through 6 will be
printed) .

Sample usage of the LOOP statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 504

/ "

(

(

9.70 MAT - ASSIGNMENT AND COPY: ASSIGNING ARRAY VALUES

I MAT Assignment and Copy
element in the array.

statements are used to assign values to each I
FORMAT: MAT variable = expression

The MAT Assignment statement is similar to the Simple Assignment
statement. It assigns a single value to all elements in an array.

The resultant value of the expression (which may be any legal expression)
is assigned to each element of the array. The array being assigned is
specified by the "variable" parameter. The specified array must have been
previously dimensioned via a DIM statement. The following statement, for
example, assigns the current value of X+Y-3 to each element of array A:

MAT A = X+Y-3

FORMAT: MAT variable = MAT variable

The MAT Copy statement copies one array to another. The first element of
the array on the right becomes the first element of the array on the left,
the second element on the right becomes the second element on the left,
and so forth. Each variable name must have been dimensioned, and the
number of elements in the two arrays must match; if not, an error message
occurs.

Arrays are copied in row major order, i.e., with the second subscript
(column) varying first. Consider the following example:

Program Code Resulting Array Values
DIM X(5,2), Y(lO) X(l,l) = Y(l) = 1
FOR 1=1 TO 10 X(1,2) Y(2) = 2
Y(I)=I X(2,1) Y(3) = 3
NEXT I
MAT X = MAT Y

X(5,2) = Y(lO) = 10

The program dimensions two arrays as both having ten elements (5x2=10),
initializes array Y elements to the numbers 1 through 10, and copies array
Y to array X, giving the array elements the indicated values.

STATEMENTS
MAT TABLE=l

MAT XYZ=A+B/C

DIM A(20), B(20)

MAT A = MAT B

DIM TABI (10,10), TAB2(50,2)

MAT TABI = MAT TAB2

EXPLANATION
Assigns a value of 1 to each element
of array TABLE.

Assigns the expression value to each
element of' array XYZ.

Dimensions two vectors of equal length,
and assigns to elements of A the values
of corresponding elements of B.

Dimensions two arrays of the same
number of elements (10xlO=50x2),
and copies TAB2 values to TABI in
row major order.

Sample usage of the MAT Assignment and Copy statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 505

9.71 MATREAD STATEMENT: MULTIPLE ATTRIBUTES

The MATREAD statement reads a file item and assigns the value of each
attribute to consecutive vector elements.

FORMAT:

MATREAD array.var FROM (file.variable,} itemname THEN/ELSE statements

The MATREAD statement reads the file item specified by the itemname and
assigns the string value of each attribute to consecutive elements of the
vector specified by the array. variable. If the file. variable is used, the
item will be read from the file previously assigned to that file. variable
via an OPEN statement. If the file. variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file.variable).

If a non-existent item is specified, then the statements following the
ELSE will be executed. The statements in the THEN/ELSE clause may appear
on one line separated by semicolons, or on multiple lines terminated by an
END (i.e., the THEN/ELSE clause takes on the same format as the THEN/ELSE
clause in the IF statement). If the item does not exist, the contents of
the vector remain unchanged.

If the number of item attributes is less than the DIMensioned vector size,
the trailing vector elements are assigned a null string. If the number of
attributes in the item exceeds the DIMensioned vector size, the remaining
attributes will be assigned to the last element of the array.

(See: MATREADU)

STATEMENT

DIM ITEM (20)
OPEN' 'f 'LOG' TO Fl ELSE STOP
MATREAD ITEM FROM FI, 'TEST' ELSE STOP

EXPLANATION

Reads the item named TEST from
the data file named LOG and
assigns the string value of
each attribute to consecutive
elements of vector ITEM,
starting with the first element

Sample Usage of the MATREAD Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 506

(

9.72 MATREADU STATEMENT: GROUP LOCKS

MATREADU provides the facility to lock a group of items in a file prior to
updating an item in the group. Using a group lock prevents updating of an
item by two or more programs simultameouslly while still allowing multiple
program access to the file.

FORMAT:

MATREADU variable FROM (fi1e.var,} itemname THEN/ELSE statements

This statement functions identically to the MATREAD statement, but
additionally locks the group of the file in which the item to be accessed
falls.

(See: MATREAD)

A group lock will prevent:

1. Access of items in the locked group of other PICK/BASIC
programs using the READU, READVU, and MATREADU statements.

2. Update by any other program of any item in the locked group.

3. Access of the group by the file-save process.

The group will become unlocked when any item in that group is updated by
the process which has it locked, when the PICK/BASIC program is
terminated, or a RELEASE statement unlocks the group. Items can be
updated to the group without unlocking it by using the WRITEU, WRITEVU or
MATWRITEU statements.

Other processes (as in 1,2,3 above) which encounter a group lock will be
suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system is 32. If a process attempts to lock a group when 32 locks are
already set, it will be suspended until some group is unlocked.

(See: MATWRITEU)

STATEMENTS

MATREADU T FROM XM, "N4"
ELSE NULL

EXPLANATION

This example shows use of a null ELSE
clause to lock the group regardless
of whether the item is existent or not.

Sample Usage of the MATREADU statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 507

9.73 MATWRITE STATEMENT: MULTIPLE ATTRIBUTES

The MATWRITE statement writes a file item with the contents of a vector.

FORMAT:
MATWRITE array.variable ON [file.variable,} itemname

The MATWRITE statement replaces the attributes of the item specified by
the itemname with the string value of the consective elements of the
vector named by the array.variable. If the file. variable is used, the
item will be written in the file previously assigned to that file. variable
via an open statement. If the file. variable is omitted, then the internal
default variable is used. If the itemname specifies an item which does
not exist, then a new item will be created. The number of attributes in
the item is determined by the DIMensioned size of the vector.

(See: MATWRITEU)

STATEMENT

DIM ITEM (10)
OPEN' 'f 'TEST' ELSE STOP
FOR I-l TO 10
ITEM(I)=I
NEXT I
MATWRITE ITEM ON "JUNK"

EXPLANATION

Writes an item named
JUNK in the file named
TEST. The item written
will contain 10 attributes
whose string values are
1 through 10.

Sample Usage of the MATWRITE Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 508

/ "

(

9.74 MATWRITEU STATEMENT: UPDATE LOCKS

The MATWRITEU statement has the letter "U" appended to it to imply update.
This command will not unlock the group locked by the program.

FORMAT:

MATWRITEU variable ON (file.variab1e,} itemname

This command executes similar to the MATWRITE statement with the following
added functionality.

(See: MATWRITE)

This command will not unlock the group locked
varient is used primarily for master file
transactions are being processed and an update of
following each transaction update.

by the program. This
updates when several
the master item is made

If the group is not locked when the MATWRITEU statement is executed, the
group will not be locked by the execution of the command.

STATEMENT

MATWRITEU ARRAY ON FILE.NAME,ID

EXPLANATION

Replaces the attributes of
the item specified by ID
(in the file opened and assigned
to variable FILE. NAME) with
the consecutive elements of
vector ARRAY. Does not unlock
the group.

Sample usage of the MATWRITEU statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 509

9.75 NOT FUNCTION: LOGIC CAPABILITY

The NOT function returns a value of true (1) if the given expression
evaluates to 0 and a value of false (0) if the expression evaluates to a
non-zero quantity.

FORMAT:

NOT (expression)

The NOT function returns the logical inverse of the specified expression;
it returns a value of true (i.e., generates a value of 1) if the
expression evaluates to 0, and returns a value of false (i.e., generates a
value of 0) if the expression evaluates to a non-zero quantity. The
specified expression must evaluate to a numeric quantity or a numeric
string. The following statement, for example, assigns the value 1 to the
variable X:

X "" NOT(O)

As a futher example, the following statements cause the value 0 to be
printed:

STATEMENT

A "" 1
B "" 5
PRINT NOT(A AND B)

X=A AND NOT(B)

IF NOT(Xl)THEN STOP

PRINT NOT(M) OR NOT(NUM(N»

EXPLANATION

Assigns the value 1 to variable X if
current value of variable A is 1 and
current value of variable B is o.
Assigns a value of 0 to X otherwise.

Program terminates if current value
of variable Xl is o.
Prints a value of 1 if current value
of variable M is 0 or current value
of variable N is a non-numeric string.
Otherwise prints a zero.

Sample usage of the NOT Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 510

9.76 NULL STATEMENT: NON-OPERATION

I The NULL statement specifies a non-operation, and may be used anywhere in
(the program where a PICK/BASIC statement is required.

I

FORMAT:

... NULL ...

The NULL statement is used in situations where a
required, but no operation or action is desired.
example:

PICK/BASIC statement is
Consider the following

IF Xl MATCHES "9N" THEN NULL ELSE GOTO 100

This statement will cause program control to branch to statement 100 if
the current string value of variable Xl does not consist of 9 numeric
characters. If the current string value of variable Xl does consist of 9
numeric characters, then no action will be taken and program control will
proceed to the next sequential PICK/BASIC statement.

The NULL statement may be used anywhere in the PICK/BASIC program where a
statement is required.

STATEMENT

10 NULL

IF A=O THEN NULL ELSE
PRINT "A NON-ZERO"
GOSUB 45
STOP
END

READ A FROM "ABC" ELSE NULL

EXPLANATION

This statement does not result in any
operation or action; however, since it
is preceded by a statement label (10)
it may be used as a program entry point
for GOTO or GOSUB stmts elsewhere in
the program.

If the current value of variable A is
non-zero, then the sequence of state
ments following the ELSE will be executed.
If A=O, no action is taken and control
passes to the next sequential statement
following the END.

File item ABC is read and assigned to
variable A. If ABC does not exist, no
action is taken. (Refer to description
of READ statement for further information).

Sample usage of the NULL statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 511

9.77 NUM FUNCTION: NUMERIC STRING DETERMINATION

The NUM function returns a value of true (1) if the given expression
evaluates to a number or a numeric string.

FORMAT:

NUM(expression)

The NUM function tests the given expression for a numeric value. For
example, if the expression evaluates to a number or numeric string the NUM
function will return a value of true (i.e., generating a value of 1).

Inversely, an expression evaluating to a letter or an alphabetic string
will cause the NUM function to return a value of false (0). Consider the
following example:

IF NUM(expression) THEN PRINT "NUMERIC DATA"

This statement will print the text "NUMERIC DATA" if the current value of
variable "expression" is a number or a numeric string. In the case of a
non-numeric, non-alphabetic character or string (#, ?, ., etc.) a value
of false would be returned for both the NUM and ALPHA functions. The
empty string (' ') is considered to be a numeric string, but not an
alphabetic string.

(See: ALPHA)

STATEMENT

Al=NUM(123)

A2=NUM(" 123")

A3=NUM("12C")

EXPLANATION

Assigns a value of 1 to variable A1.

Assigns a value of 1 to variable A2.

Assigns a value of 0 to variable A3.

Sample Usage of the NUM Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 512

/

(

(

9.78 OCONV FUNCTION: OUTPUT CONVERSIONS

The OCONV function provides the PICK output conversion capabilities to the
PICK/BASIC programmer.

FORMAT:
OCONV(expression , conversion)

the conversion specifies the type of output conversion to be applied to
the string value resulting from the expression. The resultant value is
always a string.

(See: ICONV)

The output conversion operation specified by the conversion parameter may
include anyone of the following:

D Convert date to internal format (for ICONV function)
or to external format (for OCONV function).

MT Converts time.

MX Convert ASCII to hexadecimal (for ICONV function) or
convert hexadecimal to ASCII (for OCONV function).

T Convert by table translation.

U Call to user-defined assembly routine.

For a detailed treatment of these (and other) conversion capabilities, the
user should refer to the ACCESS chapter.

NOTE: The ACCESS 'F' conversion cannot be called by these functions. The
ACCESS 'MR' or 'ML' conversion may be called by using the Format String
which performs the same function and is preferable to using the ICONV or
OCONV functions in this case.

STATEMENT

A = "2374"
B = liD"
XDATE = aCONV(A,B)

A = OCONV(O, 'U50BB')
PRINT A
END

EXPLANATION

Assigns the string value
"01 JUL 1974" (i.e., the external
date) to the variable XDATE.

Assigns the string value of
the line number and using
account name to A.
"02 SYSPROG" is printed.

Sample Usage of the OCONV Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 513

9.79 ON .•. GOTO STATEMENT: COMPUTED BRANCHING

I The ON GOTO statement transfers control to one of several statement- I
labels selected by the current value of an index expression.

FORMAT:

ON expression GOTO statement-label, statement-label, ...

Upon execution of the ON GOTO statement, program control is transferred
to the statement which begins with the numeric statement-label selected by
the expression. Statement-labels in the list are numbered 1, 2, 3,
In executing the ON GOTO statement, the expression is evaluated and then
the result of the expression is truncated to an integer value.

Consider the following example:

ON I GOTO 50, 100, 150

50

100 .

150

The labels in the label list may precede or follow the ON GOTO statement.
If the current value of variable 1=1, control transfers to the first
statement-label, i.e., the statement with label 50. If 1=2, control /'
transfers to the third statement-label, i.e., statement 150.

If the value of the expression evaluates to less than one or greater than
the number of statement-labels, no action is taken, that is, the statement
immediately following the ON GOTO will be executed next.

STATEMENT

ON M+N GOTO 40, 61, 5, 7

ON C GOTO 25, 25, 20

IF A GE 1 AND A LE 3 THEN
ON A GOTO 110, 120, 130

END

EXPLANATION

Transfer control to statement 40,
61, 5, or 7 depending on the value
of M+N being 1, 2, 3, or 4
respectively.

Transfer control to statement 25
if C= 1 or 2, to statement 20 in all
other cases.

The IF statement assures that A
is in range for the computed
GOTO statement.

Sample usage of the ON ... GOTO statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 514

(

9.80 OPEN STATEMENT: OPENING I/O FILES

The OPEN statement is used to select a file for subsequent input, output,
or update. Before a file can be accessed by a READ, WRITE, DELETE,
MATREAD, MATWRITE, READV, or WRITEV etc. statement, it must be opened via
an 'OPEN statement.

FORMAT:
OPEN {"DICT,"}, "expression" {TO variable} THEN/ELSE statements

The expression in the OPEN statement indicates the file name. If the
first parameter is a '0' or any string beginning with 0 (such as 'DICT')
then the dictionary section of the file is opened. The word DICT must be
explicitly supplied to open a dictionary level file. If the file is a
multiple data file (that is, multiple data files associated with a single
dictionary), to open one of the data sections the format:
'dictname,dataname' is used.

If the "TO variable" option is used, then the dictionary or data section
of the file will be assigned to the specified variable for subsequent
reference. If the "TO variable" option is omitted, then an internal
default variable is generated; subsequent I/O statements not specifying a
file variable will then automatically default to this file.

If the file indicated in the OPEN statement does not exist, then the
statement or sequence of statements following the ELSE will be executed.
The statements in the ELSE clause may be placed on the same line separated
by semicolons, or may be placed on multiple lines terminated by an END
(i.e., the ELSE clause takes on the same format as the ELSE clause in the
IF statement).

There is no limit to the number of files that may be open at any given
time.

STATEMENT

A='DICT'
OPEN A, ., XYZ' TO B ELSE

PRINT "NO XYZ"
STOP
END

EXPLANATION

Opens the dictionary portion of file
XYZ and assigns it to variable B.
If XYZ does not exist, the text
"NO XYZ" is printed and the program
terminates.

OPEN" ,'ABC,X' TO 05 ELSE STOP Opens data section X of file ABC and
assigns it to variable 05. If ABC,X
does not exist, program terminates.

X=' ,
Y-'TEST1'
Z=='NO FILE'
OPEN X, Y ELSE PRINT Z; GOTO 5

Opens data section of file TEST1
and assigns it to internal default
variable. If TESTl does not exist,
"NO FILE" is printed and control
passes to statement 5.

Sample usage of the OPEN statement.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 515

9. 81 PAGE STATEMENT : HEADING OUTPUT

----------------------------------~---

The PAGE statement causes the current output device to page, and causes o.
the heading specified by the most recent HEADING statement to be printed
as a page heading. The page number may optionally be reset by the PAGE
statement.

FORMAT:
PAGE {expression}

The PAGE statement causes the current output device to page, and causes
the heading specified by the most recent HEADING statement to be printed
at the top of the page. the number of print lines per page is controlled
by the current ~ERM command (see TERM - TCL section). if a Footing
statement has also been used, the PAGE statement will cause the footing to
be printed out at the bottom of the page. If only a footing is desired, a
null heading should be assigned. Headings and/or footings must be
assigned before the PAGE statement is encountered.

If the PAGE statement has the optional expression, the expression is
evaluated and the resulting number becomes the next page number used. If
a FOOTING is in effect at the time that the page number is changed, the
footing will be printed with a page number one less than the evaluated
expression!

STATEMENT

HEADING "ANNUAL STATISTICS"
FOOTING "XYZ CORPORATION"
PAGE

PAGE 1

PAGE X+Y

EXPLANATION

The PAGE statement will cause both
the specified heading and footing to be
printed out when the paging is executed.

This statement will cause the current footing,
if any, to print (with a page number of 0),
and the current heading, if any, to print
with a page number of 1.

The current footing and heading will be
output, and the page number set to the
evaluated result of X+Y.

Sample Usage of PAGE Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 516

9.82 PRECISION DECLARATION: SELECTING NUMERIC PRECISION

(-- ! The PRECISION declaration allows the user to select the degree of I
precision to which all values are calculated within a given program.

--

(

FORMAT:

PRECISION n

n is a number from 0-4.

The default precision value is 4, that is, all values are stored in an
internal form with 4 fractional places, and all computations are performed
to this degree of precision. The desired number of fractional digits may
be specified by a PRECISION declaration within the range of 0-4.

Only one PRECISION declaration is allowed in a program. If more than one
is encountered, a warning message is printed and the declaration is
ignored.

Where external subroutines are used, the mainline program and all external
subroutines must have the same PRECISION. If the precision is different
between the calling program and the subroutine, a warning message will be
printed.

Changing the precision changes the acceptable form of a number; a number
is defined as having a maximum of "n" fractional digits, where "n" is the
precision value. Thus, the value:

1234.567

is a legal number if the precision is 3 or 4, but is not a legal number if
the precision is 0, 1 or 2.

Setting a precision of zero implies that all values are treated as
integers.

STATEMENT

PRECISION 0
A = 3
B = A/2

PRECISION 1

PRECISION 2

PRECISION 3

EXPLANATION

All numeric values in the program will
be treated as integers. The value
returned for B will be 1, not 1.5.

All numeric values in the program will
be calculated to one fractional digit.

All numeric values in the program will
be calculated to two fractional digits.

All numeric values in the program will
be calculated to three fractional digits.

Sample Usage of PRECISION Declaration.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 517

9.83 PRINT STATEMENT: TERMINAL OR PRINTER OUTPUT

The PRINT statement outputs data to the device selected by the PRINTER
statement. The PRINT ON option allows output to multiple print files.

FORMAT:
PRINT {ON expression} print-list

The PRINT statement without the ON option is used to output variable or
literal values to the terminal or line printer, as previously selected by
a PRINTER statement. The print-list may consist of a single expression,
or a series of expressions, separated by commas or colons (these
punctuation marks are used to denote output formatting; refer to the
section Tabulation and Concatenation in PRINT Statement). The expressions
may be any legal PICK/BASIC expressions. The following statement, for
example, will print the current value of the expression X+Y:

PRINT X+Y

The PRINT ON statement (i.e., with the ON option) is used, when PRINTER ON
is in effect, to output the print-list items to a numbered print file. This
is usually done when building several reports at the same time, each
having a different number. The expression following ON indicates the
print file number, which may be from 0 to 254 (selected arbitrarily by the
program). Consider the following example:

PRINT ON 1 A,B,C,D
PRINT ON 2 E,F,G,H
PRINT ON 3 X,Y,Z

These statements will generate 3 separate output listings, one containing
A, B, C, and D values, one containing E, F, G, and H values, and the third
containing X, Y and Z values.
~

When the ON expression is omitted, print file zero is used.

The HEADING statement affects only print file zero. Pagination must be
handled by the program for print files other than zero. Lack of
pagination will result in continuous printing across page boundaries.

When PRINTER OFF is in effect, both PRINT ON and PRINT operate
identically, i.e., all output is to the terminal. The contents of all
print files used by the program, including print file zero, will be output
to the printer in sequence when a PRINTER CLOSE statement is given or on
termination of the program.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 518

C·~
/

(-

(

STATEMENT

PRINTER ON
PRINT X

PRINTER ON
PRINT ON 24 X

N=50
PRINT ON N X,Y,Z

PRINTER ON
PRINT ON 15 "100"
PRINT ON 40 "100"

PRINTER ON
PRINT A
PRINT B

PRINTER ON
PRINT ON 10 Fl,F2,F3
PRINT ON 20 M,N,P
PRINT ON 10 F4,F5,F6

EXPLANATION

Causes the value of X to be output
to print file o.
Causes the value of X to be output
to print file 24.

Outputs print-list to print file
50.

Causes the value 100 to be copied
to both print file 15 and print
file 40.

Print file 0 will contain the
values of A and B.

Print file 10 will contain the
values of Fl through F6; print
file 20 will contain the values
M, Nand P.

Sample usage of the PRINT statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 519

9.84 PRINT STATEMENT: TABULATION AND CONCATENATION

I The print-list of the PRINT statement may specify tabulation or I
concatenation when printing multiple items.

Output values may be aligned at tab positions across the output page by
using commas to separate the print-list expressions. Tab positions are
pre-set at every 18 character positions. Consider the following example:

PRINT (50*3)+2, A, "END"

Assuming that the current value of A is 37, this statement will print the
values across the output page as follows:

152 37 END

Output values may be printed continuously across the output page by using
colons to separate the print-list expressions. The following statement,
for example, will cause the text message "THE VALUE OF A IS 5010" to be
printed:

PRINT "THE VALUE OF A IS" :50:5+5

After the entire print-list has been printed, a carriage return and a line
feed will be executed, unless the print-list ends with a colon. In that
case the next value in the next PRINT statement will be printed on the
same line as the very next character position. For example, these
statements:

PRINT A:B,C,D:
PRINT E,F,G

will produce exactly the same output as this statement:
PRINT A:B,C,D:E,F,G

STATEMENT
PRINT A:B:
PRINT C:D:
PRINT E:F

PRINT A-I

PRINT A*lOO,Z

PRINT

PRINT "INPUT":

PRINT" ", B

EXPLANATION
Prints the current values of A, B, C, D,
E, and F contiguously across the output
page, each value concatenated to the next.

Prints 1 if "A=l" is true; prints 0
otherwise.

Prints the value of A*lOO starting at
column position 1; prints the value of
Z on the same line starting at column
position 18 (i.e., 1st tab position).

Prints an empty (blank) line.

Prints the text "INPUT" and does not
execute a carriage return or line feed.

Prints the value of B starting at column
position 18 (i.e., 1st tab position).

Sample usage of the PRINT statement formatting.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 520

(

(

9.85 PRINTER ON/OFF STATEMENTS: SELECTING OUTPUT DEVICE

I The PRINTER statement selects either
printer for subsequent program output.

the user's terminal or the line I
FORMAT:

PRINTER ON
PRINTER OFF
PRINTER CLOSE

The PRINTER ON statement directs
subsequent PRINT, HEADING, or PAGE
printer. The PRINTER OFF statement
the terminal.

program output data specified by
statements to be output to the line
directs subsequent program output to

Once executed, a PRINTER ON or PRINTER OFF statement will remain in effect
until a new PRINTER ON or PRINTER OFF statement is executed. If a PRINTER
ON statement has not been executed, output will be to the terminal.

When a PRINTER ON statement has been issued, subsequent output data
(specified by PRINT, HEADING, of PAGE statements) are not immediately
printed on the line printer (Unless immediate printing is forced via the
system SP-ASSIGN I or N option, as described in the PICK Peripheral
Manual). Rather, the data are stored in an intermediate buffer area and
are automatically printed upon termination of program execution.

If the user's application requires that the data be printed on the line
printer prior to program termination, he may issue a PRINTER CLOSE
statement. The PRINTER CLOSE statement will cause all data currently
stored in the intermediate buffer area to immediately be printed.

When a PRINTER OFF statement has been issued, subsequent output data are
always printed at the user's terminal immediately upon execution of the
PRINT, HEADING, or PAGE statements (i.e., the PRINTER CLOSE statement
applies only to output data directed to the line printer).

STATEMENT
PRINTER ON
PRINT A
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER CLOSE
PRINTER OFF
PRINT B

PRINTER ON
PRINT A
PRINTER OFF
PRINT B
PRINTER CLOSE

EXPLANATION
Causes the value of variable B to be
immediately printed at the user's ter
minal, and the value of variable A to
be printed on the line printer when
the program is finished executing.

Causes the value of variable A to be
immediately printed on the line printer,
and thereafter causes the value of
variable B to be printed at the user's
terminal.

Causes the value of variable B to be
immediately printed at the user's ter
minal, and thereafter causes the value
of variable A to be printed on the line
printer.

Sample usage of the PRINTER ON/OFF/CLOSE statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 521

9.86 PROMPT STATEMENT: INPUT PROMPT CHARACTER

The PROMPT statement is used to select the "prompt character" which is
printed at the terminal to prompt the user for input.

FORMAT:
PROMPT expression

The value of the expression becomes the prompt character. For example:

PROMPT": "

This statement selects the character n:n as the prompt character for
subsequent INPUT statements. If the value of the expression is a numeric
value of more than 1 digit, or a string consisting of one character, only
the most significant character will be used.

When a PROMPT statement has been executed, it will remain in
another PROMPT statement is executed. If a PROMPT statement
executed, the INPUT statement will use a question mark (?) as
character (i.e., n?n is the default prompt character).

effect until
has not been
the prompt

(See: INPUT)

STATEMENT

PROMPT n@n

PROMPT A

EXPLANATION

Specifies that the character @ will be
used as a prompt character for subsequent
INPUT statements.

Specifies that the current value of A will
be used as a prompt character.

Sample Usage of the PROMPT Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 522

9.87 PWR FUNCTION: RAISING BY A POWER

The PWR function raises an expression by the power parameter.

(--

FORMAT:

PWR(expression,power)

The POWER function raises the expression to the power denoted by the power
parameter. If the power parameter is zero, the function will return the
value one.

If the expression raised to the power denoted by the power
greater than 14,073,748,834, the function will return
numbers. If the expression is zero and the power parameter
other than zero, the function will return a value of zero.

parameter is
unpredictable
is any number

Note: another way to express the PWR function is X-Y where X is raised to
the Y power.

STATEMENT

yy = PWR(XX,ZZ)

PRINT PWR(3+4,10)

PRINT 6 + PWR(2,4)

PRINT PWR(0,5)

EXPLANATION

Assigns the result of
raising XX by the power
of ZZ to the variable YY.

Prints "282475249"

Prints "22"

Prints "0"

Sample usage of the PWR function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 523

9.88 READ STATEMENT: ACCESSING FILE ITEMS

The READ statement reads a file item and assigns its value to a variable.

FORMAT:
READ variable FROM {file.variable,} itemname THEN/ELSE statements

The READ statement reads the file item specified by the itemname and
assigns its string value to the variable. The file. variable is optional
and specifies the file variable. If the file. variable is used, the item
will be read from the file previously assigned to that file. variable via
an OPEN statement. If the file. variable is omitted, then the internal
default variable is used (thus specifying the file most recently opened
without a file.variable).

If the itemname specifies the name of an item which does not exist, then
the statement or sequence of statements following the ELSE will be
executed. The statements in the THEN/ELSE clause may appear on one line
separated by semicolons, or on multiple lines terminated by an END (i.e.,
the THEN/ELSE clause takes on the same format as the THEN/ELSE clause in
the IF statement).

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the READ statement.

STATEMENT

READ A1 FROM X," ABC" ELSE
PRINT "NOT ABC"
GOTO 70
END

A="TEST"
B="l"
READ X FROM C, (A CAT B) ELSE STOP

READ Z FROM "Q" ELSE PRINT Xi STOP

EXPLANATION

Reads item ABC from the file
opened and assigned to file variable
X, and assigns its value to
variable A1. If ABC does not
exist, the text "NOT ABC" is printed
and control passes to statement 70.

Reads item TEST1 from the file
opened and assigned to file variable
C, and assigns its value to
variable X. Program terminates if
TEST1 does not exist.

Reads item Q from the file
opened without a file variable and
assigns its value to variable z.
Prints value of X and terminates
program if Q does not exist.

Sample usage of the READ statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 524

(

(

9.89 READNEXT STATEMENT: ACCESSING ITEM-IDS

The READNEXT statement reads the next Item-id from a selected list. If
multiple files have been selected, which list is specified by
select. variable.

FORMAT:
READNEXT variable {,vrnc} {FROM select.variable} THEN/ELSE statements

The READNEXT statement reads the next Item-id and assigns its string value
to the variable indicated. The Item-id is read from the list created by
the most recent program SELECT statement or SELECT, SSELECT, or QSELECT
command issued at the TCL level. If the list of Item-id's has been
exhausted, or if no selection has been performed, the statements following
the ELSE will be executed. The statements in the THEN/ELSE clause may be
placed on the same line separated by semicolons, or may be placed on
multiple lines terminated by an END (i.e., the THEN/ELSE clause takes on
the same format as the THEN/ELSE clause in the IF statement).

READNEXT FORMATS:

READNEXT variable THEN/ELSE statements
This will read the next Item-id of the last file selected without a
select. variable.

READNEXT variable,vrnc THEN/ELSE statements
The 'vrnc' is used for the value mark count to be obtained from the
Exploding Sort (External SSELECT).

READNEXT variable FROM select. variable THEN/ELSE statements
Reads the next Item-id of the file (or variable) selected and assigned to
the select. variable.

READNEXT variable,vrnc FROM select. variable THEN/ELSE statements
This is a combination of the previous two forms.

READNEXT A FROM X ELSE STOP

READNEXT X2 ELSE
PRINT "UNABLE"
GOTO 50
END

FOR X-l TO 10
READNEXT B(X) ELSE STOP

NEXT X

Specifies the list selected
and assigned to the select-variable
X. Assigns the value of that
list's next item-id to variable
A. If itern-id list exhausted (or if no
SELECT, SSELECT or QSELECT executed), pro
gram will terminate.

Specifies the last list selected
without a select-variable. Assigns
the value of the next item-id to
variable X2. If unable to read,
"UNABLE" is printed and control
transfers to statement 50.

Reads next ten item-id's and
assigns values to matrix elements
X(l) through X(10).

Sample usage of the READNEXT statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 525

9.90 READT STATEMENT: READING RECORDS FROM TAPE

BASIC programs may specify Magnetic Tape I/O operations through the use of r-\
the READT (Read Tape Record) statement. The record length on the tape is I

as specified by the most recent T-ATT statement executed at the TCL level. ''''-.cj

FORMAT:

READT variable THENjELSE statements

The READT statement reads
The next record is read and
indicated. If the tape unit
(EOF) mark is read, then the
the ELSE will be executed.

(See: T-ATT and WRITET)

STATEMENT

READT B ELSE
PRINT "NO"
GOTO 5

END

the next record from the magnetic tape unit.
its string value is assigned to the variable
has not been attached, or if an End-of-File
statement or sequence of statements following

EXPLANATION

The next tape record is read and
its value assigned to variable B.
If EOF is read (or tape unit not
attached), then "NO" is printed
and control passes to statement 5.

Sample usage of the READT statement.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 526

(

9.91 READU AND READVU STATEMENTS: GROUP LOCKS

READU and READVU provide the facility to lock a group of items in a file
prior to updating an item in the group. Using a group lock prevents
updating of an item by two or more programs simultameouslly while still
allowing multiple program access to the file.

FORMAT:
READU variable FROM {file.var,} itemname THEN/ELSE statements

READVU variable FROM {file.var,} itemname,att# THEN/ELSE statements

These statements function identically to the READ and READV statements,
but additionally lock the group of the file in which the item to be
accessed falls.

(See: READ and READV)

A group lock will prevent:

1. Access of items in the locked group of other PICK/BASIC
programs using the READU, READVU, and MATREADU statements.

2. Update by any other program of any item in the locked group.

3. Access of the group by the file-save· process.

The group will become unlocked when any item in that group is updated by
the process which has it locked, when the PICK/BASIC program is
terminated, or a RELEASE statement unlocks the group. Items can be
updated to the group without unlocking it by using the WRITEU, WRITEVU or
MATWRITEU statements.

Other processes (as in 1,2,3 above) which encounter a group lock will be
suspended until the group becomes unlocked.

The maximum number of groups which may be locked by all processes in the
system is 32. If a process attempts to lock a group when 32 locks are
already set, it will be suspended until some group is unlocked.

STATEMENTS
READU ITEM FROM INV, S5 ELSE
GOSUB 4

READVU ATT FROM B, "REC",
6 ELSE STOP

EXPLANATION
Lock group of items containing item S5.
Read S5 to variable ITEM or, if S5 is
non-existent, execute the ELSE clause;
in either case the group remains locked
until one of its items is updated, or a
RELEASE statement unlocks the group.

Lock group of items containing item
REC. Read attribute 6 to variable
ATT or, if REC is non-existent,
execute the ELSE clause. The group
remains locked as above.

Sample Usage of READU and READVU statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 527

9.92 READY STATEMENT : ACCESSING AN ATTRIBUTE

1
The READV statement is used to read a single attribute value from an item I
in a file.

FORMAT:

READV variable FROM {fi1e.variable,} itemname,att# THEN/ELSE statements

The READV statement reads the attribute specified by att# (attribute
number) from the item specified by the itemname, and assigns its string
value to the variable.

The file. variable is optional and specifies the file variable; if it is
used, the attribute will be read from the file previously assigned to that
file. variable via an OPEN statement. If the file. variable is omitted,
then the internal default variable is used (thus specifying the file most
recently opened without a fi1e.variable).

If a non-existent item is specified, the statement or sequence of
statements following the ELSE will be executed. The statements in the
THEN/ELSE clause may be placed on the same line separated by semicolons,
or may be placed on multiple lines terminated by END (i.e., the THEN/ELSE
clause takes on the same format as the THEN/ELSE clause in the IF
statement) .

The PICK/BASIC program will abort with an appropiate error message if the
specified file has not been opened prior to the execution of the READV
statement.

STATEMENT

READV X FROM A, "TEST",5 ELSE
PRINT ERR
GOTO 70
END

EXPLANATION

Reads 5th attribute of item TEST
(in the file opened and assigned
to variable A) and assigns value
to variable X. If item TEST is
non-existent, then value of ERR
is printed and control passes to
statement 70.

Sample usage of the READV statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS '

PAGE 528
(~

",j

~----~---- -----------

(

9.93 RELEASE STATEMENT: RELEASING GROUP UPDATE LOCKS

The RELEASE statement unlocks specified groups or all groups locked by the
program.

FORMAT:
RELEASE {{file.variable,} expression}

The RELEASE statement unlocks the group hashed into by the item-id
specified by the expression. If the file. variable is used, the file will
be the one previously assigned to that file. variable via on OPEN
statement. If the file. variable is omitted, then the internal default
variable is used (thus specifying the file most recently opened without a
file. variable) .

If the RELEASE statement is used without a file. variable or expression all
groups which have been locked by the program will be unlocked.

The RELEASE statement is useful when an abnormal condition is encountered
during multiple file updates. A typical sequence is to mark the item with
an abnormal status, update it to the file and then RELEASE all other
locked groups. This version of the RELEASE statement will release all
groups locked by the program.

(See: READU, READVU and MATREADU)

(--
STATEMENT

RELEASE

RELEASE CUST.FILE, PART.NO

EXPLANATION

Releases all groups locked
by the program.

Releases group hashed into
by item-id contained in PART.NO
in file CUST.FILE.

Sample usage of the RELEASE statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 529

9. 94 REM OR MOD FUNCTION : REMAINDER VALUE

The REM or MOD function generates the remainder of one number divided by /,-,
another. l/I

FORMAT:
REM(numerator,denominator)

or
MOD(numerator,denominator)

This function returns the remainder of the value of the numerator divided
by the value of the denominator.

The REM and MOD (modulo) functions are identical.

STATEMENT EXPLANATION

A = MOD(Q,Z) Assigns the remainder of variable
Q divided by Z to variable A.

A = 600 Assigns the value 600 to vari-
B = REM(A,-1000) able B.

J REM(5,3) Assigns the value 2 to variable J.

Q = MOD (1023,256) Assigns the value 255 to the variable Q.

Sample Usage of the REM or MOD function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 530

(

(

9.95 REPLACE FUNCTION: DYNAMIC ARRAY REPLACEMENT

I The REPLACE function replaces an attribute, a value, or a secondary value I
in a string in 'item' format (called a dynamic array).

FORMAT:
REPLACE(da.expression,att'{,value',sub-value#,}{i}new.expression)

or
da.expression(att#{,value#,sub-value#}> = new.expression

The second form above is actually an extract function being utilized as a
replacement function. The dynamic array used by this function is
specified by the da.expression. Whether an attribute, a value, or a
secondary value is replaced depends upon the values of the second, third,
and fourth parameters. The att. specifies an attribute, the value#
specifies a value, and the sub-value' specifies a secondary value. If the
value# and sub-value# both have a value of 0, (or dropped) then an entire
attribute is replaced. If the sub-value' (only) has a value of 0, (or
dropped) then a value is replaced. If the second, third, and fourth
parameters are all non-zero, then a secondary value is replaced. The
replacement value is specified by the new.expression. The semi-colon (i)
is used whenever value# and/or sub-value# have been dropped and the
new.expression is no longer the fifth parameter.

If the att#, value' or sub-value# of the REPLACE function has a value of
-1, then insertion after the last attribute, last value, or last secondary
value (respectively) of the dynamic array is specified. For example:

OPEN 'XYZ' TO XYZ ELSE STOP 201, 'XYZ'
READ B FROM XYZ,'ABC' ELSE STOP 202, 'ABC'
B(3,-1>='NEW VALUE'
WRITE B ON XYZ,'ABC'

These statements insert the string value "NEW VALUE" after the last value
of attribute 3 of item ABC in file XYZ.

STATEMENT
X=REPLACE(X,4;' ')

Y-REPLACE(X,4,0,0,' ')

VALUE="TEST STRING"
DA(4,3,2>=VALUE

X="ABC123 "
Y(l,l,-l)=X

EXPLANATION
Replaces attribute 4 of dynamic array
X with the empty (null).
string.

Replaces attribute 4 of dynamic
array X with the empty (null) string.
string, and assigns the resultant
dynamic array to Y.

Replaces secondary value 2 of
value 3 of attribute 4 in dynamic
array DA with the string value
"TEST STRING".

Inserts the value "ABC123" after
the last secondary value of value 1
of attribute 1 in dynamic array Y.

Sample usage of the REPLACE Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 531

9.96 RETURN AND RETURN TO STATEMENTS: SUBROUTINE RETURNING

The RETURN or RETURN TO statements return control to the main program.

FORMAT:
RETURN
RETURN TO statement-label

The RETURN statement will transfer
statement immediately following
statement returns control from the
PICK/BASIC main program having the

control from the subroutine back to
the GOSUB statement. The RETURN
subroutine to the statement within
specified statement-label.

the
TO

the

The statements in a subroutine may be any PICKjBASIC statements,
including another GOSUB statement. To insure proper flow of control, each
subroutine must return to the calling program by using a RETURN (or RETURN
TO) statement, not a GOTO statement. The user should also insure that the
subroutine cannot be executed by any flow of control other than through
the execution of a GOSUB statement.

If the RETURN TO statement refers to a statement-label which is not
present in the program, an error message will be printed at compile time
(refer to APPENDIX C - PICKjBASIC COMPILER ERROR MESSAGES).

Consider the statements shown in the example below . Upon execution of
statement 10, control will transfer to statement 30 as illustrated in the
left side of the figure. The statements within the subroutine will be
executed and statement 40 will then return control to statement 15.
Execution will then proceed sequentially to statement 20, whereby control
will again be transferred to the subroutine as shown in the right side of
the figure. The conditional RETURN TO path is taken instead of the normal
RETURN if the logical variable ERROR is true (=1).

1st Execution of Subroutine
I

10 GOSUB 30=====
====>15 PRINT Xl

I
20 GOSUB 30

=== __ ===~=====_==c
I
=>30 REM SUBROUTINE

I iF ERROR RETURN TO 99
40 RETURN===

I
=================

99 REM ERROR RETURN HERE

2nd Execution of Subroutine

10 GOSUB 30
15 PRINT Xl

I .
20 GOSUB 30====

======> . I
~--~~=~--~=~----=

=>30 REM SUBROUTINE

I IF ERROR RETURN
40 RETURN===

I

TO 99

99 REM ERROR RETURN HERE

Sample usage of the RETURN statement.
CHAPTER 9 - PICKjBASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 532

c

9.97 REWIND STATEMENT: REWINDING THE TAPE

(. I BASIC programs may specify Magnetic Tape to rewind to the BOT mark through
(the use of the REWIND (Rewind Tape Unit) statement.

{

FORMAT:

REWIND THENjELSE statements

The REWIND statement rewinds the magnetic tape unit to the Beginning-of
Tape (BOT). If the tape unit has not been attached, then the statement(s)
following the ELSE will be executed.

STATEMENT EXPLANATION

REWIND ELSE STOP ~ape is rewound to BOT.

Sample Usage of the REWIND statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 533

9.98 RND FUNCTION: RANDOM NUMBER GENERATION

The RND function returns a random number. The range of the random number
generated is controlled by the expression.

FORMAT:
RND(expression)

The RND function generates a numeric value for a random number between
zero and the number specified by the expression less one (inclusive),
which must be positive.

Therefore, an expression
generate 0, 1, or 2.
games of chance.

STATEMENT

z RND(ll)

R = 100
Q = 50
B RND(R+Q+l)

Y RND(ABS(051»

parameter which evaluates to 3, would randomly
This is an invaluable function when programming

EXPLANATION

Assigns a random number between
o and 10 (inclusive) to the variable z.
Assigns a random number between
o and 150 (inclusive) to the
variable B.

Assigns a random number between
o and 50 (inclusive) to the
variable Y.

Sample Usage of the RND Function.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 534

(

9.99 SELECT STATEMENTS: SELECTING ITEM-IDS

The SELECT command provides a facility to select a set of item-ids or
attributes which, when used in conjunction with the READNEXT statement
(see section on READNEXT following), may be used to access single or
multiple file item-ids or attributes within a PICK/BASIC program.

FORMAT:
SELECT {file.variable}{TO select. variable}

The SELECT statement builds the same list of item-ids as a SELECT command
executed at the TCL level without any selection criteria (see ACCESS). If
the file. variable is used, a list of item-ids will be created for the file
or item previously assigned to that file. variable via an OPEN or READ
statement. If the file. variable is omitted, then the internal default
variable is used (thus specifying the file most recently opened without a
file. variable) .

SELECT FORMATS:
SELECT
Creates a select list of item-ids from the file most recently opened
without a file variable.

SELECT file. variable

Creates a select list of item-ids from the file opened to 'file-variable'.

SELECT var
Creates a select
The select list

list from the attributes of the variable 'var'. Note:
will only include the first value of a multivalued

attribute.

SELECT TO select. variable
Creates a select list from the file most recently opened without a file
variable and assign the selected list to 'select-variable'.

SELECT file. variable TO select. variable
Creates a select list from the file opened to 'file-variable' and assign'
the selected list to 'select-variable'.

SELECT var TO select. variable
As above, except the selected list is assigned to 'select-variable'.

STATEMENT EXPLANATION
SELECT Builds list of item-id's using the

default variable of the last file
opened without a file-variable.

SELECT BP TO BLIST Builds a list of item-ids for the
file opened and assigned to
file-variable 'BP'. Assigns the list
to select-variable 'BLIST'.

READ A FROM FILEX,'ALIST' ELSE STOP Creates a select list of the
SELECT A attributes in item ALIST.

Sample usage of the SELECT statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 535

9.100 SEQ FUNCTION: FORMAT CONVERSION

The SEQ function converts an ASCII character to its corresponding numeric
value.

FORMAT:

SEQ(expression)

The first character of the string value
its corresponding numeric value. The
number 49:

of the expression is converted to
following example will print the

PRINT SEQ(' l') (character 1 - 31 hex or 49 decimal)

Conversely, the CHAR function is available to convert a numeric expression
to its corresponding ASCII character string value.

(See: CHAR)

NOTE: For a complete list of ASCII codes, refer to the appendix.

STATEMENT

DIM C(50)
S = 'THE GOOSE FLIES SOUTH'
FOR I=l TO LEN(STRING)
C(I) SEQ(S[I,l])
NEXT I

EXPLANATION

Encodes in vector C elements the decimal
equivalents of individual characters
of character string S.

Sample Usage of the SEQ Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

·PAGE 536

C·,--
..»

9.101 SIN FUNCTION: SINE OF AN ANGLE

(I The SIN function generates the trigonmetric sine of an angle.

(

FORMAT:

SIN(expression)

To generate the sine of an angle expressed in degrees the SINE function is
used. The given angle must be less than or equal to 14,073,748,834 and
greater than or equal to -14,073,748,834.

Values which are less than 0 degrees, or greater than 360 degrees are
adjusted to this range before generation.

(See: COSINE)

STATEMENT EXPLANATION

YY = SIN(XX) Assigns the sine of an
angle of XX degrees to yYY.

PRINT SIN(l) Prints "0.0174"

PRINT SIN(361) Prints "0.0174"

PRINT SIN(2) Prints "0.0349"

PRINT SIN(362) Prints "0.0349"

PRINT SIN(45) Prints "0.7071"

PRINT SIN(90) Prints "1"

Sample usage of the SIN function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 537

9.102 SLEEP OR ROM STATEMENT: TIME ALLOCATION

The ROM or SLEEP statement terminates the executing program's current
quantum (time-slice) The ROM or SLEEP statement may be used to effect
program execution speed.

FORMAT:

ROM (seconds}
ROM("time.expression"}

or
or

SLEEP (seconds}
SLEEP("time.expression"}

The time-shared environment of the Pick system allows concurrent execution
of several programs, with each program executing for a specific time
period (called a time-slice or quantum) and then pausing while other
programs continue execution. The ROM statement terminates the program's
current time-slice. The ROM statement may be used in heavy compute loops
to allow increased execution speed of other concurrently executing
programs by giving up time. It may also be used to cause predetermined
pauses (in seconds or until specified time) in program execution. The
seconds parameter does not require quotes. The time expression (AM, PM or
MILITARY) requires enclosure in quotes.

STATEMENTS

SLEEP 20

SLEEP "15:00"

* PROGRAM SEGMENT TO SOUND
* TERMINAL "BELL" FIVE TIMES.
BELL==CHAR(7)
FOR I==l TO 5
PRINT BELL:
ROM
NEXT I
END

EXPLANATION

Sleep fo 20 seconds.

Sleep until 3:00 PM.

ROM statement allows enough
time for bell to be heard as
discrete "beeps".

Sample usage of the SLEEP and ROM statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 538

9.103 SPACE FUNCTION: STRING SPACING

The SPACE function generates a string value containing a specified number
of blank spaces.

FORMAT:
SPACE (length)

the SPACE function generates a string value containing the number of blank
spaces specified by the length. For example:

PRINT SPACE(lO):"HELLO"

This statement prints 10 blanks followed by the string "HELLO".

Conversely, the TRIM function is available to delete extraneous blanks.

(See: TRIM)

STATEMENT

B = 14
A = SPACE(B)

DIM M(lO)
MAT M = SPACE(20)

S
L
C
F
N

SPACE(5)
"SMITH"
" " ,
"JOHN"
S:L:S:C:S:F

EXPLANATION

Assigns to variable A the string
value containing 14 blank spaces.

Assigns a string consisting of
20 blanks to each of the 10 elements
of array M.

Assigns to variable N the concatenated
string consisting of 5 blanks,
the name SMITH, 5 blanks, a comma,
5 blanks, and the name JOHN.

Sample Usage of the SPACE Function.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 539

9.104 SQRT FUNCTION: SQUARE ROOT CABABILITY

The SQUARE ROOT function returns the positive square root of a positive
number.

FORMAT:
SQRT(expression)

The SQUARE ROOT function returns the positive square root of any positive
number (expression) that is greater than or equal to 0 and less than or
equal 14,073,748,834.

STATEMENT EXPLANATION

Y - SQRT(36) Assign the value 6
to variable Y.

PRINT SQRT(1024) Prints "32".

PRINT SQRT(lOOO) Prints "31.6227"

PRINT SQRT(14073748834) Prints "118632.832"

Sample Usage of the SQRT Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 540
(7-"\
'~/'

(

(

9.105 STOP STATEMENT: TERMINATION

The STOP statement may appear anywhere in the program;
logical termination of the program.

it designates a

FORMAT:
STOP {errnum{,param, param, ... }}

Upon the execution of a STOP statement, the PICK/BASIC program will
terminate.

The STOP statement may be placed anywhere within the PICK/BASIC program to
indicate the end of one of several alternative paths of logic.

The STOP statement may optionally be followed by an error message
and error message parameters separated by commas. The error message
is a reference to an item in the ERRMSG file. The parameters
variables or literals to be used within the error message format.

(See: ABORT)

10

A=500 ; B=750 ; C=235 ; D=1300
REVENUE=A+B ; COST=C+D
PROFIT=REVENUE-COST
IF PROFIT > 1 THEN GOTO 10
PRINT "ZERO PROFIT OR LOSS"
STOP (---------------------------
PRINT "POSITIVE PROFIT"
END

If this path taken,
program will terminate

Sample usage of the STOP Statement.

name,
name
are

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 541

9.106 STR FUNCTION: GENERATING STRING VALUES

The STR function generates a string value containing a specified number of
occurrences of a specified string.

FORMAT:
STR(expression,occurence#)

The STR function generates a string value containing the number of
occurrences specified by the occurence# of the string specified by the
expression. The following statement, for example, assigns a string value
containing 12 asterisk characters to variable X:

X==STR('* ' ,12)

As a further example, the following statement will cause the string value
"ABCABCABC" to be printed:

PRINT STR('ABC',3) LEN(expression)

STATEMENT

VAR - STR("A" ,5)

A == 'BBB'
B = STR("B",3)
C == B CAT A

N == STR("?%?",4)

EXPLANATION

Assigns to variable VAR the string
value containing five A's.

Assigns to variable C the string
value containing six B's.

Assigns to variable N the string
value containing 4 consecutive
occurrences of the string "?%?".

Sample Usage of the STR Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

. PAGE 542

(

9.107 SYSTEM FUNCTION: CALLING PRE-DEFINED SYSTEM VALUES

The SYSTEM function allows the user to obtain certain pre-defined values
from the system. The value returned may either be an error status code
(generated as a result of a previous BASIC statement), or a parameter such
as the page-number of page-width.

FORMAT:

SYSTEM(expression}

The value of expression is in the range 0 through the maximum value as
defined in table A. If the value of "expression" is outside the allowable
range, the SYSTEM function will return a value as if the "expression"
evaluated to zero (the error function).

If the expression used in the SYSTEM function is a zero, the function
returns a value determined by the last executed BASIC statement that set
an error condition. Examples of such BASIC statements are the tape
commands such as READT, WRITET, etc. if the ELSE branch executes.
SYSTEM(O), therefore, allows one to determine exactly what error has
occurred when the program follows the ELSE branch of these statements. If
the ELSE branch was not followed, the value returned by SYSTEM(O) is zero.

For example, the sequence of BASIC instructions:

READT TAPERECORD ELSE
BEGIN CASE

END

CASE SYSTEM(O)
CASE SYSTEM(O)

END CASE

= 1; PRINT "ATTACH THE TAPE UNIT"; STOP
2; PRINT "END OF FILE; DONE!"; STOP

will result in one of the messages being printed if there is either an EOF
read from the tape, or if the tape unit was not attached to the line
running the BASIC program.

The SYSTEM function, with non-zero values of the expression, returns
parameters that have been set external to the BASIC program. See Table A.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 543

Value of expression
used in SYSTEM func.

o

1

2

3

4

5

6

7

8

9

10

11

Value returned

Error function value; see table B.

1 If PRINTER ON or (P) option used in RUN;
o If data is being printed to the terminal.

Current page-size (page-width in columns).

Current page-depth (number of lines in page).

Number of lines remaining in current page.

Current line-counter (number of lines printed).

Current page-number.

One-character terminal-type code.

Current tape record length.

Current CPU millisecond count.

1 if current stack (STON) condition enabled.
o if current stack inactive.

1 if LIST Function is active.
o if LIST function is inactive.

Meaning of values usable in the SYSTEM function.

Previously executed
BASIC statement.

READT, WRITET,
WEOF or REWIND

READT

WRITET

Error cod·~ Meaning
returned.

1 ~ape unit is not attached.

2 EOF read from tape unit.

3 Atten,pted to write null string.

11 Attempted to write variable
longer than tape record length.

Values returned by the error function, SYSTEM(O}

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 544

_/

9.108 TAN FUNCTION: TANGENT OF AN ANGLE

(..... I The TAN function generates the trigonmetric tangent of an angle.
/

(

FORMAT:

TAN(expression)

To generate the tangent of an angle expressed in degrees the TAN function
is used. The given angle must be less than or equal to 14,073,748,834 and
greater than or equal to -14,073,748,834.

Values which are less than 0 degrees, or greater than 360 degrees are
adjusted to this range before generation.

(See: COS and SIN)

STATEMENT EXPLANATION

YY = TAN(XX) Assigns the tangent of an
angle of XX degrees to yYY.

PRINT TAN(l) Prints "0.0174"

PRINT TAN(361) Prints "0.0174"

PRINT TAN(2) Prints "0.0349"

PRINT TAN(362) Prints "0.0349"

PRINT TAN (45) Prints "1"

PRINT TAN(90) Prints "0"

Sample usage of the TAN function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 545

9.109 TIME() AND TIMEDATE() FUNCTIONS: TIME AND DATE CAPABILITY

The TIME() function returns the internal time of day. The TIMEDATE()
function returns the current time and date in external format.

FORMAT:

TIME()

TIMEDATE{)

The TIME() function returns the string value containing the internal time
of day. The internal time is the number of" seconds past midnight.

For example, at 4
statement would
midnight.)

minutes and 18
print I 61458

seconds after 5 P.M., the following
(17:04:18 is 61458 seconds since

PRINT TIME()

The TIMEDATE() function returns the string value containing the current
time and date in the external format. This format is:

HH:MM:SS DD MMM YYYY
or

17:04:18 01 APR 1985
(See: DATE() function)

STATEMENT

A = TIME()

IF TIME() > 1000 THEN GOTO 10

PRINT TIMEDATE()

WRITET TIME() ELSE STOP

EXPLANATION

Assigns string value of current
internal time to variable A.

Branches to statement 10 if more
than 1000 seconds have passed
since midnight.

Prints the current time and date
in the external format.

writes the string value of the
current internal time onto a magnetic
tape record.

Sample usage of the TIME() and TIMEDATE() functions.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 546

/ ,
I , /

(

(

9.110 TRIM FUNCTION: DELETING EXTRANEOUS SPACES

The TRIM function removes extraneous blank spaces from a specified string.

FORMAT:
TRIM(expression)

The TRIM function deletes preceding, trailing, and redundant blanks from
the literal or variable expression. For example:

A=' GOOD MORNING, MR. BRIGGS
A=TRIM(A)
PRINT A

The PRINT statement will print:

GOOD MORNING, MR. BRIGGS
Conversely, the SPACE function is available to generate blank spaces.

(See: SPACE)

STATEMENT

S
L
C =
F
N
M

SPACE(5)
"SMITH"
" " ,
"JOHN"
S:L:S:C:S:F
TRIM(N)

EXPLANATION

Assigns to variable N the concatenated
string consisting of 5 blanks,
the name SMITH, 5 blanks, a comma,
5 blanks, and the name JOHN.

Assigns to variable M a string
consisting of the name SMITH,
1 blank, a comma, one blank, and
the name JOHN.

Sample Usage of the TRIM Function.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 547

9.111 UNLOCK STATEMENT: CLEARING EXECUTION LOCKS

The UNLOCK statement provides a file and execution lock clearing r--~
capabili ty for PICK/BASIC programs. The LOCK statement sets execution ~/
locks while the UNLOCK statement releases them.

FORMAT:

UNLOCK (expression}

The LOCK statement sets an execution lock so that when any other BASIC
program attempts to set the same lock, then that program will either
execute an alternate set of statements or will pause until the lock is
released via an UNLOCK statement by the program which originally locked
it.

The value of the expression specif~es which execution lock is to be
released (cleared). If the express~on is omitted, then all execution
locks which were previously set by the program will be released.

All execution locks set by a program will automatically be released upon
termination of the program.

(See: LOCK)

STATEMENTS

UNLOCK 47

UNLOCK

UNLOCK (5+A)*(B-2)

EXPLANATION

Resets execution lock 47.

Resets all execution locks
previously set by the program.

The value of the expression
specifies which lock is released.
execution lock is released.

Sample Usage of the UNLOCK Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 548

.. '. (.,

,_/

(

9.112 WEOF STATEMENT: POSITIONING TAPE

BASIC programs may specify Magnetic Tape positioning operations through
the use of the WEOF (Write End-of-Fi1e Mark) statement.

FORMAT:

WEOF THEN/ELSE statements

The WEOF statement writes two EOF marks on the tape, then backspaces over
the second one. This correctly positions the tape for subsequent WRITET
operations.

(See: WRITET)

STATEMENT

WEOF ELSE STOP

EXPLANATION

Writes two EOF marks, then
backspaces over the second one.

Sample usage of the WEOF statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 549

9 . 113 WRITE STATEMENT : MODIFYING ITEMS

The WRITE statement is used to update a file item.

FORMAT:
WRITE expression ON [file.variable,} itemname

The WRITE statement replaces the content of the item specified by itemname
with the string value of the expression. The optional file. variable
specifies the file variable; if it is used, the item will be replaced in
the file previously assigned to that file. variable via an OPEN statement.
If the file. variable is omitted, then the internal default variable is
used (thus specifying the file most recently opened without a file
variable). If the itemname specifies an item which does not exist, then a
new item will be created.

The user should note that the PICK/BASIC program will abort with an
appropriate error message if the specified file has not been opened prior
to the execution of the WRITE statement.

(See: WRITEV and WRITET)

STATEMENT

WRITE "XXX" ON A, "ITEM5"

A="123456789"
B="X55"
WRITE A ON FN1,B

WRITE 100*5 ON "EXP"

EXPLANATION

Replaces the current content of item
ITEM5 (in the file opened and assigned
to variable A) with string value "XXX".

Replaces the current content of item
X55 (in the file opened and assigned
to variable FN1) with string value
"123456789".

Replaces the current content of item
EXP (in the file opened without a file
variable) with string value "500".

Sample Usage of the WRITE Statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 550

;r-:- .",
I '

\",-_/

9.114 WRITET STATEMENT: WRITING RECORDS TO TAPE

I BASIC programs may specify Magnetic Tape output
(of the WRITET (Write Tape Record) statement.

operations through the use
The record length on the

statement executed at the I, tape is as specified by the most recent T-ATT
TCL level.

FORMAT:

WRITET expression THEN/ELSE statements

The WRITET statement writes a record onto the magnetic tape. The string
value of the expression is written onto the next record of the tape.

If the tape unit has not been attached, or if the string value of the
expression is the empty string (' I), then the statement(s) following the
ELSE will be executed.

(See: T-ATT and READT)

STATEMENT

FOR 1==1 TO 5
WRITET A(I) ELSE STOP
NEXT I

EXPLANATION

The values of array elements A(l)
through A(5) are written onto 5
tape records. If one of the array
elements has a value of " (or if
tape unit not attached), the pro
gram will terminate.

Sample Usage of the WRITET statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 551

9.115 WRITEU AND WRITEVU STATEMENTS UPDATE LOCKS

The WRITEU and WRITEVU statements have the letter "U" appended to them to
imply update. The execution of these commands will not unlock the group
locked by the program.

FORMAT:

WRITEU variable ON {file.variable,} itemname

WRITEVU variable ON {file.variable,} itemname,att#

These statements execute identically to the WRITE and WRITEV statements,
with the following noted additional functionality.

(See: WRITE and WRITEV)

This version of these commands will not unlock the group locked by the
program. This varient is used primarily for master file updates when
several transactions are being processed and an update of the master item
is made following each transaction update.

If the group is not locked when the WRITEU, WRITEVU or MATWRITEU statement
is executed, the group will not be locked by the execution of the command.

STATEMENT EXPLANATION

WRITEU CUST.NAME ON CUST.FILE,ID Replaces the current contents of
the item specified by variable ID
(in the file opened and assigned
to variable CUST.FILE) with
with the contents of CUST.NAME.
Does not unlock the group.

WRITEVU CUST.NAME ON CUST.FILE,ID,3 Replaces the third attribute
of item ID (in the file opened
and assigned to variable CUST.FILE)
with the contents of variable
CUST.NAME. Does not unlock
the group.

Sample usage of WRITEU and WRITEVU statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 552

9.116 WRITEV STATEMENT: UPDATING AN ATTRIBUTE

I The WRITEV statement is used to write (update) a single attribute value to I
(. .-~~-~:~-~~-~-:~:::--

(

FORMAT:
WRITEV expression ON {file.variab1e,} itemname,att#

Upon the execution of the WRITEV statement, the value of the expression
becomes the attribute specified by att# (attribute number), in the item
specified by the itemname and in the file previously assigned to the
specified file. variable via an OPEN statement.

If the file. variable is omitted, then the internal default variable will
be used (thus specifying the file most recently opened without a
file.variab1e).

If a non-existent item name (or attribute number) is specified, then a new
item (or attribute) will be created.

The WRITEV statement will also allow the attribute number (att#) to have a
value of either zero or minus one, thus inserting data prior to the first
attribute or following the last attribute.

When att# = 0, the expression is inserted
All attributes in the item are shifted by
becomes attribute 1.

at the begining of the item.
1 attribute and the expression

When att# = -1, the expression is appended to the end of the item. The
number of attributes in the item increase by 1 and all previously existing
attributes are undisturbed.

The PICK/BASIC program will abort with an appropiate error message if the
specified file has not been opened prior to the execution of the WRITEV
Statement.

STATEMENT

Y="THIS IS A TEST"
WRITEV Y ON X,"PROG",O

WRITEV "XYZ" ON "A7",4

EXPLANATION

The string value "THIS IS A TEST"
is inserted prior to the first
attribute of item PROG in the file
opened and assigned to variable X.

Attribute 4 of item A7)in the file
opened without a file variable) is
replaced by string value "XYZ".

Sample usage of the WRITEV statements.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 553

9.117 PICK/BASIC SYMBOLIC DEBUGGER : AN OVERVIEW

I The PICK/BASIC Symbolic Debugger facilitates the debugging of new I
PICK/BASIC programs and the maintenance of existing PICK/BASIC programs.

When a PICK/BASIC program is compiled a symbol table item is automatically
generated unless the suppress option (5) has been used. This table is
used by the PICK/BASIC Debugger to reference symbolic variables during
program execution.

The PICK/BASIC Debugger may be entered at execution time by 1) depressing
the BREAK key or 2) using the '0' (debug) option with the RUN verb. Once
the PICK/BASIC Debugger has entered it will indicate the source code line
number about to be executed and will prompt for commands with an asterisk
(*) as opposed to the System Debugger prompt '!' or the TCL prompt.

The user now has at his disposal the following general capabilities:
Controlled stepping through execution of program by way of single or
multiple steps. Transferring control to a specified step (line number).
Breaking (temporary halting) of execution on specified line number(s) or
on the satisfaction of specified logical conditions. Displaying and/or
changing any variable(s), including dimensioned variables. Tracing
variables. Conditional entry to the System Debugger. Directing output
(terminal/printer). Stack manipulation (displaying and/or popping the
stack). Displaying of specified (or all) source code line(s).

The symbol table
catalog space.
requires the use
required. Note
by using the (S)

is embedded in the object code which is placed in the
The debugger has instant access to the symbol table, and
of the 'z' command only when access to the source code is
that the user may suppress generation of the symbol table
option when compiling programs.

A user requires SYS2
prevents users from
and data entry.

privileges to use the PICK/BASIC debugger. This
making unauthorized changes to data during reporting

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 554

(

(

(~

BASIC DEBUGGER FEATURE
1. Set breakpoint on logical condition

where '0' is logical operator (,),=,#,
'v' is variable, 'c' is condition to be met,
or 'n' is line number where preceded by B$o.

2. Display breakpoint table

3. Escape to System Debugger

4. Single/multiple step execution

5. End program execution and return to TCL

6. Proceed from breakpoint
to specified line 'n'

7. Remove all breakpoints
specified breakpoint 'n'

B. Display source code current line
'n' number of lines from current one
number of lines from m-n
all lines

9. Toggle output device (terminal & printer)

lO.Pass one breakpoint before stopping
'n' breakpoints

11.Logoff

12.Inhibit output

l3.Printer-close output to spooler

14.Pop return stack
Display return stack

15.Switch turns trace table on/off
Trace specified variable 'v'

l6.Remove all traces
specified trace

l7.Request symbol table

IB.Display current line number
Print value of variable 'v'
of element 'x' in array 'm'
of element 'x,y' in matrix 'm'
of entire array 'm'
entire symbol table
Set window
remove window setting

RELATED COMMAND
Bvoc(&voc} or

B$on

D

DEBUG or DE

En

END

G
Gn

K
Kn

L
Ln
Lm-n
L*

LP

N
Nn

OFF

P

PC

R
S

T
Tv

U
Un

Z

$
/v
/m(x)
/m(x,y)
/m
/*
[x, y]
[

CHAPTER 9 - PICK/BASIC Copyright (c) 19B5 PICK SYSTEMS

PAGE 555

9.118 USING THE PICK/BASIC DEBUGGER: AN EXAMPLE

The following is a step-by-step introduction to the use of the PICK/BASIC
DEBUGGER for inexperienced users. This will demonstrate only a few of the
commands as it is merely intended to give the user an introductory r--'"
"feeling" for the use of the PICK/BASIC DEBUGGER. ~,)

A sample program" SAMPLE" is shown below, followed by steps a user might
take to debug it.

SAMPLE

001 DIM ARRAY (10) ; * ARRAY HAS 10 SLOTS
002 FOR I-I TO 20 ; * BUG: LOOP SPECIFIES 20 PASSES, ARRAY HAS ONLY 10
003 ARRAY (I) == I ; * EACH SLOT WILL BE FILLED WITH A CONSECUTIVE #
004 NEXT I
005 PRINT ARRAY(I)
006 END

"SAMPLE" compiles without any errors detected. Once it is run however, it
aborts with the error message "ARRAY SUBSCRIPT OUT OF RANGE" and traps to
the PICK/BASIC DEBUGGER. Supposing that the user cannot find the error,
the following steps could be taken for detecting the error using the
PICK/BASIC DEBUGGER.

1. The user enters the command "z" to the DEBUGGER prompt
character "*" The DEBUGGER responds with "PROG NAME?", the
user enters the program name. This allows the DEBUGGER access
to the symbol table created during compilation. Alternatively,
if the user uses the debug option "(D)" during run time, access
to the symbol table is already established, and use of the "z"
command is unnecessary.

2. To find out how far in the loop the program progressed, the
user looks at the variable "I" by entering "/1". The DEBUGGER
responds with "11 =", at which the user may change the value of
"I" if desired. The user may then want to look at all of the
values in the array by entering "/ARRAY". The DEBUGGER
responds with "ARRAY(l)=l=", the user depresses return and the
DEBUGGER continues with the next "array slot" (i.e.,
"ARRAY(2)=2=" etc.). Once "ARRAY(lO)=lO=" has been reached the
user presses return and the DEBUGGER returns with the "*"
prompt, the user knows that the array has only 10 slots and the
loop calls for 20 -- thus he finds the error. The user may
then end the "session" with PICK/BASIC DEBUGGER by entering
"END" and repair the bug.

A summary of this interaction is given in Figure A on facing page. For
purposes of clarity, whatever is entered by the user is shown enclosed in
square brackets "[l". These are not part of the commands; they are to
distinguish user entry from DEBUGGER response.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 556

'
\

(-

(

NOTE: The square brackets surround user input to distinguish it from
PICK/BASIC Debugger responses. They are not part of the commands!

LINE 3 (Bl?) ARRAY SUBSCRIPT OUT OF RANGE
*13
*[Z] PROG NAME?[SAMPLE]
* [/1] [CR] 11=
* [/ARRAY] [CR] ARRAY(l)-l- [CR]

ARRAY(2)=2= [CR]
ARRAY(3)=3- [CR]
ARRAY(4)=4- [CR]
ARRAY(5}=5= [CR]

.
ARRAY(lO)=10= [CR]

* [CR]
* [END]

Sample Session with the PICK/BASIC Debugger.

NOTE: A carriage return will return control to the BASIC DEBUGGER
prompted by "*" whereas a line-feed will return control to program
execution until a breakpoint, an error or the end of the program is met.

CHAPTER 9 - PICK/BASIC

(".119 THE TRACE TABLE
. PAGE 55?

Copyright (C) 1985 PICK SYSTEMS

I The trace table is used for the automatic printout of a specified variable I
or variables after a break has occured.

Up to six trace values may be entered in the table. Ei ther the symbolic ~/
name, or a line number and variable number may be used to reference the
variable. In addition, all the variables in the last statement executed
may be printed out. The trace table may be alternately turned on and off
by use of the "T" return command.

Examples of use of the trace table are shown below:

Tname

T%10,3

The value of the variable name will be printed out at
each breakpoint.

The value of the third variable in line number 10 will
be printed out at each breakpoint. If line number 10
contains the statement "A=B+C+D" the value of "C" will
be printed.

To delete a variable from the trace table use the "U" command followed by
the trace variable to be deleted. For example, to delete the variable
name from the table type in "Uname". "U" return deletes the entire trace
table.

If a program calls an external subroutine, and the BASIC/DEBUGGER has been
entered previously, a complete symbol table will be set up for the
external subroutine. the table will have 4 break-points and 6 variable
traces available, as well as pointers to program source and object, which
may be set up by the Z command. break points set up for a subroutine are
independent from break points set up in the main program or other
subroutines; however, the execution counters (E and N,) are global.

the use of multiple symbol tables allows the programmer to set up
different break points and/or variable traces for different subroutines.

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 558
9.120 PICK/BASIC DEBUGGER: THE B, D, AND K COMMANDS (f "

~-j

I Additional commands
breakpoints.

to set (B)reakpoints, (D)isplay and (K)ill I
FORMAT:

B[variable-name] [operator] [expression] { & another condition}
B$[operator] [line-number] { & another condition}

Where 'variable-name' is a simple variable or an explicitly stated array
element and 'expression' is a variable, constant, or array element. If
the variable does not exist or if the wrong Symbol Table is assigned, the
message "SYM NOT FND" will be printed. String constants must be enclosed
iL quotes using the same rules that apply to PICK/BASIC literals. The
Breakpoint Table may contain up to four conditions that when satisfied,
will cause a break in execution. Logical expressions are used to set the
break conditions. The logical operators used are:

<
>

&
$

less than
greater than
equal to
not equal to
is used as a logical connector between conditions.
is a special symbol used to indicate that a line number
is specified rather than a variable name.

A plus sign will be printed next to the command if it is accepted. When
the condition is met, an execution break will occur and the Debugger will
halt execution of the program and print *Bn I where 'n' is one of the 4
Breakpoint Table entries and '1' is the program line number that caused
the break.

FORMAT: D

The 'D' command will display the Trace and Breakpoint Tables.

FORMAT:
Kn
K<return>

Deletes 'n'th breakpoint. 'n' range 1 to 4.
Deletes all breakpoint conditions.

The 'K' command is used to delete breakpoint conditions from the table. A
minus sign will be printed next to the command to indicate that an entry
has been removed.

COMMAND
BX<42
BADDRESS=' ,
BDATE=INV.DATE&$-22

K2
BPRICE(3)=24.98

D
K

~HAPTER 9 - PICK/BASIC

EXPLANATION
Breaks when X is less than 42.
Breaks when ADDRESS is null.
Breaks when variable DATE is equal to
variable INV.DATE and if the line number is 22.
Kills the second breakpoint condition.
Breaks when the third element of the array PRICE
is equal to 24.98. Only individual array
elements may be specified.
Displays the Trace and Breakpoint Tables.
Kills all breakpoint conditions.

Examples of B, D, and K Commands.

Copyright (c) 1985 PICK SYSTEMS

PAGE 559

9.121 E(XECUTE), G(O) AND N(O or BYPASS) COMMANDS: DEBUGGER EXECUTION

I The commands "E", "G", and "N" in conjunction with the breakpoint table I (-"
control the execution of the program under debug control.

-- ~/
The "E" command will allow the execution of a specified number of lines
before returning control to the user. The number of statements to be
executed is selected by putting a numeric value after "E". For example
"E3" will executed three line statements before returning control to the
user. "E" return will turn off the "E" command.

COMMAND RESULT

EIO Ten line statements will be executed before control returns
to the user.

E Execution continues until interuption by the user, by a
breakpoint or until program ends.

The "N" command will allow the user to bypass any number of breakpoints
before control is passed back to the user, however, the trace table
variables will be printed at each breakpoint. "NO" equals 'pass one
breakpoint', "Nl" equals 'pass two breakpoints', etc. and "N" return will
set "N" to "NO".

COMMAND

N3

RESULT

Four breakpoints are passed, although the trace table values,
if present, are printed out at each breakpoint. Control is
then returned to the user.

The "G" command followed by a line number will allow control to be passed
to the line number indicated. The "G" return command will cause program
to execute the next command from the current line number and it will
return control depending on the breakpoint setup.

COMMAND

G153

G

RESULT

Control passes to line number 153 and thereafter to user.

Control passes to next program line and thereafter to user.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 560

f

(

9.122 SLASH 'I' COMMAND: DISPLAYING AND CHANGING VARIABLES

I Variables and arrays can be
string formats.

displayed and changed in either decimal or I

To display a variable use the command 'Iv' where 'v' is a variable. For
example to display the value of the variable name select '/name'. The
DEBUGGER will respond with the string in the name field and an equal sign.
If the variable is not to be changed press return. If the variable is to
be changed put in the new value of the variable desired and press return.
To display a complete array just place the name of the array after the
slash. To display one value in the array use the form '/M(x) , or
'/M(x,y)' where 'x' and 'y' are points in the array. The array point may
then be changed in the same way as for a single variable.

A window may be placed after any variable selection by following the
variable with a Ii' and the length of the window. For example, to limit
the variable name to eight characters the command '/namei8' would be used.
Numeric variables will ignore any window commands.

The symbolic name of the variable may
where 'x' is the line number and 'y'
the same way as the breakpoint table.
variables follows:

be replaced with the form '%x,y'
is the nth variable in that line in
Examples of displaying and changing

ICITY IRVINE=

ISTATE NY=CA

/FIELD(5) 10=

1*

The variable 'city' is displayed but not changed.

The variable 'state' is displayed as 'NY' and changed to
'CAl

The fifth point in array FIELD is displayed as-10 and not
changed.

All the symbols in the symbol table are displayed.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 561

9.123 VARIOUS DEBUGGER COMMANDS: ADDITIONAL FEATURES

I Additional PICK/BASIC Debugger commands
and END.

I/O CONTROL

PC , P, LP, $, L, Z , [] I DEBUG I

The "P" command inhibits all PICK/BASIC program output so that the user
may look only at the DEBUGGER output. "P" return alternately turns "P" 6n
and off.

The "LP" command forces all output to the line printer which can be used
for a fast trace or hard copy of a trace. "LP" return alternately turns
the line printer command on and off.

The "PC" command is the same as the PICK/BASIC printer close command. All
data that is waiting to be sent to the printer is output at this time.

SOURCE CODE DISPLAY

The "$" command will print the next line number to be executed.

The "L" command will display sorce code lines. "L" will display the
current line of source. "Ln" will display line wnw. "Lm-n" will display
lines 'm-n'. "L*" will display the entire source program.

SYMBOL TABLE

The "z" command will allow the operator to specify a symbol table. After
the operator enters the program name, that symbol table if present, will
be enabled. The program name may be entered as "item-name", "file-name
item-name", or "file-name,dataname item-name".

STRING WINDOWS

The string window command "[n,m]" will cause the output of all variables
to be limited to the substring selected. An example of the command
follows:

X=1234567890
[3,2] Sets the window for the third character position with a string
length of two. Any printout of x will be 34.

Setting the window length to zero will turn the string window command off.
"[Carriage-return" will have the same result.

ESCAPE TO SYSTEM DEBUGGER

The "DEBUG" command will pass control to the System DEBUGGER.

TERMINATION

The "END" command will terminate the PICK/BASIC and DEBUG programs and
return control to TCL.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 562

/ "

9.124 GENERAL CODING TECHNIQUES: HELPFUL HINTS

1 This topic p=-esents a number of general coding techniques which the I
(I_~:~:~::-:~~~~~-~::~-~~-~~~-~~:~-~~:~~~-:::~~~~~:~-~:~:~:~ ___________ _

The PICK system uses standard attribute and value delimiters. These
should be defined once in the initialization portion of the program, and
then referenced by their variable name. for example:

AM == CHAR (254)
VM ... CHAR (253)
SVM == CHAR(252)

Attribute Mark
Value Mark
Secondary Value Mark

Cursor positioning should be controlled by the following PRINT Statements
using the @ Functions and the Character Functions:

ERASE SCREEN = PRINT @(-l)
CLEAR TO END OF SCREEN = PRINT @(-3)
START BLINK = PRINT @(-5)
START PROTECT = PRINT @(-7)
BACKSPACE = PRINT @(-9)
DOWN 1 LINE = CHAR(lO)
BELL = CHAR(7)

HOME = PRINT @(-2)
CLEAR TO END OF LINE = PRINT @(-4)
STOP BLINK = PRIN~{-6)
STOP PROTECT = PRINT @(-8)
UP 1 LINE = PRINT @(-10)
RIGHT 1 CHARACTER = CHAR(6)

The OPEN statement is very time consuming and should be
times as possible. All files should be opened to file
beginning of the program; access to the files can then
referencing the file variables.

executed as few
variables at the
be performed by

The size of programs can be reduced, with a corresponding increase in
overall system performance, by reducing the amount of literal storage.
For example:

These

200 PRINT 'RESULT IS ' :A+B
210 PRINT 'RESULT IS ' :A-B
220 PRINT 'RESULT IS ' :A*B
230 PRINT 'RESULT IS ' :A/B

statements should have been written

MSG = 'RESULT IS'

200 PRINT MSG:A+B
210 PRINT MSG:A-B
220 PRINT MSG:A*B
230 PRINT MSG:A/B

CHAPTER 9 - PICK/BASIC

PAGE 563

as follows:

Copyright (c) 1985 PICK SYSTEMS

9.128 PROGRAMMING EXAMPLES: FORMAT

**
* THIS PROGRAM FORMATS A PICK/BASIC PROGRAM TO
* DISPLAY BLOCK STRUCTURING BY INDENTING LINES.

*
*

**
*----
10

*----

*----

*----
100

DEFINITIONS
SP .. 6
ID .. 3
INITIALIZATION
SPX ... SP

;* LEFT MARGIN COLUMN NUMBER
;* NUMBER OF SPACES TO INDENT

LINE.NO .. °
INPUT FILE NAME AND PROGRAM NAME
PRINT
PRINT
PRINT 'DATA/BASIC FILE NAME
IF FILE = " THEN STOP

- ' .. • I INPUT FILE

OPEN' ',FILE ELSE PRINT 'CANNOT OPEN FILE - ': FILE;
PRINT 'DATA/BASIC PROGRAM NAME - ':; INPUT NAME
IF NAME = " THEN GOTO 10
NEWITEM = "
READ ITEM FROM NAME ELSE

END

PRINT 'CANNOT FIND THAT PROGRAM'
GOTO 10

GET NEW LINE, IF NONE - THEN DONE
LINE.NO = LINE.NO + 1
LINE = EXTRACT(ITEM,LINE.NO,O,O)
IF LINE = " THEN

WRITE NEWITEM ON NAME
PRINT; PRINT; PRINT '--DONE--'; GOTO 10

END
LABEL = "

*---- STRIP OFF LEADING/TRAILING SPACES

GOTO 10

200 IF LINE[l,l] = ' , THEN LINE" LINE[2,32767]; GOTO 200
210 IF LINE[LEN(LINE),l] = ' , THEN LINE = LINE[l,LEN(LINE)-l]; GOTO 210
---- LOOK FOR A COMMENT ('', '! " OR 'REM')

IF LINE[l,l] = '*' THEN GOTO 1500
IF LINE[l,l] = '!' THEN GOTO 1500
IF LINE[l,3] = 'REM' THEN GOTO 1500

*---- LOOK FOR 'FOR'
IF LINE[1,4]='FOR ' AND INDEX(LINE, 'NEX ',1»0 THEN GOTO 2000
IF LINE[1,4]='FOR ' AND INDEX(LINE,'NEXT ',1)=0 THEN GOTO 1000

*---- LOOK FOR 'END'
IF LINE = 'END' THEN GOTO 1100
IF LINE[1,4] = 'END ' THEN

IF LINE[LEN(LINE)-4,5] .. , ELSE' THEN GOTO 1200
END

*---- LOOK FOR 'NEXT'
IF LINE[1,5] .. 'NEXT ' THEN GOTO 1100

*---- EXTRACT LEADING NUMERIC LABEL
IF LINE[l,l] MATCHES 'IN' THEN

L .. 2

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

. PAGE 568 ("
1'\...0./

(

300 IF LINE[L,l] MATCHES 'lN' THEN L-L+1; GOTO 300
LABEL ~ LINE[1,L-1]
LINE - LINE[L,32767]
GOTO 200
END

*---- LOOK FOR LINE ENDING IN ' ELSE' OR 'THEN' ('IF' OR 'READ')
X - LINE[LEN(LINE)-4,5]
IF X = , THEN' THEN GOTO 1000
IF X = , ELSE' THEN GOTO 1000

*---- THIS IS JUST ANOTHER LINE, THEREFORE NO CHANGE
GOTO 2000

*---- INDENT ON SUBSEQUENT LINES
1000 SP = SP + ID
GOTO 2000
*---- OUTDENT ON THIS AND SUBSEQUENT LINES
1100 SP = SP - ID
*---- OUTDENT THIS LINE ONLY
1200 SPX = SPX - ID

GOTO 2000
*---- PRINT WITH NO INDENTATION
1500 SPX = 0
*---- WRITE NEW LINE
2000 NEW.LINE = LABEL: STR(' ',SPX-LEN(LABEL» : LINE

PRINT NEW.LINE
NEWITEM = REPLACE(NEWITEM,LINE.NO,O,O,NEW.LINE)
SPX = SP
GOTO 100

END

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 569

9.129 PROGRAMMING EXAMPLES: LOT-UPDATE

**
* THIS PROGRAM UPDATES DATA ON LOTS IN A HOUSING TRACT. *
* ITEM-ID'S IN "LOT" FILE ARE TRACT.N.AME*LOT.NUMBER *
**
100* INITIALIZATION

PROMPT '-'
CLEAR

*

DIM DESC(30),TYPE(30)
OPEN 'DICT','LOT' ELSE

END

PRINT "CAN'T OPEN DICT LOT"
STOP

200* GET DESCRIPTIONS, CONVERSIONS
FOR I == 1 TO 30

250*

*
*

*

READ DICT.ITEM FROM I ELSE
PRINT "DICTIONARY ITEM '":I:''' NOT FOUND"
GOTO 250

END
D == EXTRACT(DIC.ITEM,3,0,0) i* S/NAME--DESCRIPTION
IF D # " THEN DESC(I) = D:STR('.',15-LEN(D»
IF C[1,2] = 'MD' THEN

END

TYPE(I) + 'NUM'
GOTO 250

IF C[l,l] = '0' THEN TYPE(I) 'DATE'

NEXT I

OPEN' ','LOT' ELSE

END

PRINT "CAN'T OPEN LOT FILE."
STOP

300* GET THE TRACT NAME
PRINT

*

PRINT "TRACT NAME ":
INPUT TRACT
IF TRACT = 'STOP' OR TRACT = 'END' THEN STOP
IF TRACT = " THEN GOTO 300
READ INFO FROM TRACT ELSE

PRINT "TRACT '":TRACT:''' OT ON FILE"
GOTO 300

END

400* GET A VALID LOT NUMBER
PRINT
PRINT "LOT NUMBER ":
INPUT NUMBER
IF NUMBER = " THEN GOTO 400
IF NUMBER == 'END' OR NUMBER - 'STOP' THEN GOTO 300
IF NUM(NUMBER) == 0 THEN

PRINT "MUST BE A NUMBER"
GOTO 400

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS
PAGE 570

(

*
450*

*

*

550*

*

END
NUMBER = TRACT:'*':NUMBER
READ ITEM FROM NUMBER ELSE

ITEM = "
PRINT "NEW LOT"

END

NOT.SOLD = °
FOR I = 1 TO 30

GOSUB 1000 i* UPDATES THE I'TH ATTRIBUTE
IF I == 10 THEN

END

IF EXTRACT(ITEM,10,0,0) - " THEN
NOT. SOLD = 1
I == 19

END

IF I = 21 THEN
IF NOT. SOLD THEN GOTO 500

END
NEXT I

VERITY DATA & STORE
PRINT
PRINT" OK ":
INPUT OK
IF OK = " THEN

END

WRITE ITEM ON NUMBER
GOTO 400

IF OK = 'L' THEN
PRINT
FOR L = 1 TO 30

ATT = EXTRACT(ITEM,I,O,O)
IF ATT = " THEN GOTO 550
PRINT DESC (L) :
IF TYPE(L) = 'DATE' AND NUM(DATE) THEN ATT = OCONV(ATT, 'DO')
IF TYPE(L) = 'NUM' AND NUM(ATT) THEN ATT = 0.01 * ATT
PRINT ATT 'R###############'

NEXT L
GOTO 500

END
GOTO 400

1000* UPDATE'S THE I'TH ATTRIBUTE OF "ITEM"
IF DESC(I) == " THEN RETURN i* NOT NEEDED OR NOT FOUND
PRINT DESC(I):
CURRENT == EXTRACT(ITEM,I,O,O)

*
IF TYPE(I) = 'NUM' THEN

1100 * NEED A NUMBER (AMOUNT)
PRINT CURRENT*.Ol 'R##############':
INPUT RESPONSE
IF RESPONSE == " THEN RETURN i* JUST LOOKING
IF RESPONSE == " THEN

ITEM == REPLACE(ITEM,I,O,O,' ')
CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 571

*

*

RETURN
END
IF NUM(RESPONSE) - ° THEN

PRINT ItMUST BE A NUMBER"
GOTO 1100

END

;* DELETE THIS ATT.

ITEM = REPLACE(ITEM,I,0,0,RESPONSE*100)
RETURN

END

IF TYPE(I) - 'DATE' THEN
1200* NEED A DATE

1250*

PRINT OCONV(CURRENT,'DO') 'R###############':
INPUT RESPONSE
IF RESPONSE == " THEN RETURN ;* JUST LOOKING
IF RESPONSE = 'T' THEN

DATE = DATE ()
GOTO 1250

END
IF RESPONSE == " THEN

END

ITEM = REPLACE(ITEM,I,O,O,' ') i* DELETE THIS ATT.
RETURN

DATE - ICONV(RESPONSE,'D')
IF DATE = " THEN

PRINT "USE DATE FORMAT 'MONTH/DAY/yEAR'"
GOTO 1200

END

END

ITEM = REPLACE(ITEM,I,O,O,DATE)
RETURN

1300* NO NECESSARY FORMATS
PRINT CURRENT 'R###############':
INPUT RESPONSE
IF RESPONSE = " THEN RETURN
IF RESPONSE == " THEN RESPONSE = "
ITEM = REPLACE(ITEM I,O,O,RESPONSE)
RETURN

END

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 572

9.130 APPENDIX A

SUMMARY OF PICK/BASIC STATEMENTS

(---
I This appendix presents the general form for each of the PICK/BASIC I

Statements. The statements are listed in alphabetical order.

STATEMENTS

ABORT[errnum[,pararn,pararn, ... }}

BREAK ON/OFF

CALL @narne(argument list)

CALL name(argument list)

CASE BEGIN CASE

CASE expression
stmts
CASE expression
stmts

END CASE

CHAIN "any TCL command"

I(CLEAR

CLEARFILE [file. variable}

COM[MON} variable {,variable}

DATA expression{,expression ... }

DELETE {file.variable,} itemnarne

DIM variable(dimensions) [,variable(dimensions)}

ECHO ON/OFF

END

EQU{ATE} variable TO equate-variable [, ... }

FOOTING "text 'options' {text 'options'}"

FOR ... NEXT---FOR variable = exp TO exp {STEP exp} {WHILE/UNTIL exp}

NEXT variable

GOSUB statement-label

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 573

GO{TO} statement-label

HEADING "text 'options' {text 'options'}"

IF expression THEN stmts {ELSE stmts}

INPUT variable {:}

INPUT @(column,row)

INPUTERR expression

variable {'mask'}

I NPUTTRAP 'xx' GOTOn,n,n ...

INPUTTRAP 'xx' GOSUB n,n,n ...

INPUTNULL x

LOCATE('String',Item{,Att#{,Val#}}iindex#[isequence}) THEN/ELSE stmts

LOCK expression {THEN/ELSE stmts}

LOOP {stmts} WHILE/UNTIL expression DO {stmts} REPEAT

MAT variable

MAT array.variable expression

MAT array.variable = MAT array. variable

MATREAD array.variable FROM [file.variable,} itemname THEN/ELSE stmts

MATREADU array.variable FROM {file.variable,} expression THEN/ELSE stmts

MATWRITE array.variable ON [file.variable,} expression

MATWRITEU array.variable ON [file.variable,} expression

NEXT variable

NULL

ON expression GOTO/GOSUB statement-label, statement-label

OPEN ["DICT",} "filename" [TO file.variable} THEN/ELSE stmts

PAGE [expression}

PRECISION n

PRINT {ON expression} print-list

PRINTER ON/OFF

PRINTER CLOSE

CHAPTER 9 - PICK/BASIC

. PAGE 574

Copyright (c) 1985 PICK SYSTEMS

c

,/ "

(

PROMPT expression

READ variable FROM {file.variable,} itemname THEN/ELSE stmts

READNEXT variable {,vmc}{FROM select.variable} THEN/ELSE stmts

READT variable THEN/ELSE/ stmts

READU variable FROM {file.variable,} itemname THEN/ELSE stmts

READV variable FROM {file.variable,} itemname,att# THEN/ELSE stmts

READVU variable FROM {file.variable,} itemname,att# THEN/ELSE stmts

RELEASE {{file.variable,} expression}

REM or * or

RETURN

RETURN TO statement-label

REWIND THEN/ELSE stmts

ROM {seconds or "time"}

SELECT {file.variable}{TO select. variable}

SLEEP {seconds or "time"}

STOP [errnum[param,param, ... }}

(SUBROUTINE name (argument list)

UNLOCK [expression}

WEOF THEN/ELSE [expression}

WRITE expression ON [file.variable,} itemname

WRITEU variable ON [file.variable,} itemname

WRITET expression THEN/ELSE stmts

WRITEV expression ON [file.variable,} itemname,att#

WRITEVU expression ON {file.variable,} itemname,att#

CHAPTER 9 - PICK/BASIC Copyright (C) 1985 PICK SYSTEMS

PAGE 575

READ

9.131 APPENDIX B

BASIC INTRINSIC FUNCTION SUMMARY

This appendix presents the general
Intrinsic Functions. The functions
page referenced.

FUNCTION

@(column(,row})

ABS(expression)

ALPHA (expression)

ASCII (expression)

CHAR(expression)

COLl()

COL2()

COS (expression)

COUNT (string, substring)

DATE ()

form for each of the PICK/BASIC
are listed in alphabetical order.

DCOUNT (string,substring)

DELETE(da.expression,att#{,value#{,sub-value#}})

EBCDIC (expression)

EXP(expression)

EXTRACT(da.expression,att#(,value#(,sub-value#}})

FIELD(expression,delimiter,occurence#)

ICONV(eXpression,conversion)

INDEX(string,sub-string,occurence#)

INSERT(da.expression,att#(,value#(,sub-value#,}}(;}new.expression)

INT(expression)

LEN(expression)

LN

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 576

MOD(numerator, denominator)

NOT (expression)

NUM(expression)

OCONV(expression, conversion)

PWR(expression,power)

REM(numerator,denominator)

REPLACE(da.expression,att#{,value#{,sub-value#,}} {i}new.ex pression)

RND(expression)

SEQ(expression)

SIN (expression)

SPACE(length)

SQRT (expression)

STR(expression,occurence#)

TAN (expression)

TIME ()

TIMEDATE()

TRIM(expression)

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 577

9.132 APPENDIX C APPENDIX C

BASIC COMPILER ERROR MESSAGES

I This appendix presents a list of the error messages which may occur as a I
result of compiling a PICK/BASIC program.

ERROR NO. ERROR MESSAGE CAUSE

BO PROGRAM 'xx' COMPILED. PICK/BASIC program compiled with
n FRAMES USED. no compilation errors. This is not

an error; it simply informs that
compilation is completed.

BIOO COMPILATION ABORTED; Compilation errors present.
NO OBJECT CODE
PRODUCED

BIOI MISSING "END", NEXT", Compilation error present.
"WHILE", "UNTIL",
"REPEAT", OR "ELSE";
COMPILATION ABORTED,
NO OBJECT CODE
PRODUCED

Bl02 BAD STATEMENT Unrecognizable statement.

Bl03 LABEL "C" IS Label indicated by GOTO or GOSUB

Bl04

Bl05

Bl06

Bl07

Bl08

Bl09

BllO

BIll

MISSING was not found.

LABEL "c" IS
DOUBLY DEFINED

"C" HAS NOT
BEEN DIMENSIONED

"C" HAS BEEN
DIMENSIONED AND USED
WITHOUT SUBSCRIPTS

"ELSE" CLAUSE MISSING

"NEXT" STATEMENT
MISSING

VARIABLE MISSING IN
"NEXT" STATMENT

"END" STATEMENT
MISSING

"UNTIL" OR "WHILE"
MISSING IN "LOOP"
STATEMENT

More than one statement was found
beginning with the same label.

Subscripted variable was not
dimensioned.

Dimensioned variable used without
subscripts.

ELSE clause is missing.

NEXT statement is missing in
FOR-NEXT loop.

Iteration variable is missing in NEXT
statement.

END statement is missing in multi
line IF statement.

UNTIL or WHILE clause is missing in
a LOOP statement.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 578

(

Bl12

Bl13

"REPEAT" MISSING IN
"LOOP" STATEMENT

COLUMN B
TERMINATOR MISSING

REPEAT is missing in a LOOP statement.

Garbage following a legal statement
or quote missing.

Bl14 MAXIMUM NUMBER OF Using the default descriptor size of
VARIABLES EXCEEDED 10, the maximum number of variables

(including array elements) is 3274.

Bl15 LABEL 'e' IS USED The equate-variable is referenced
BEFORE THE EQUATE STMT before it has been defined.

Bl16 LABEL 'C' IS USED A common variable has been referenced
BEFORE THE COMMON STMT before it is put in common.

Bl17 LABEL 'e' IS MISSING An array is referenced without
A SUBSCRIPT LIST a subscript list.

Bl18 LABEL 'e' IS THE
OBJECT OF AN EQUATE
STMT AND IS MISSING

Bl19 WARNING - PRECISION
VALUE OUT OF RANGE -
IGNORED!

B120 WARNING - MULTIPLE
PRECISION STATEMENTS -
IGNORED!

B121 LABEL 'c' IS A
CONSTANT AND CAN NOT
BE WRITTEN INTO

B122 LABEL 'C' IS
IMPROPER TYPE

CHAPTER 9 - PICK/BASIC

PAGE 579

Copyright (c) 1985 PICK SYSTEMS

9.133 APPENDIX D

BASIC RUN-TIME ERROR MESSAGES

This appendix presents a list of the error message_s which may occur as -a
result of executing a PICK/BASIC program. Warning messages indicate that
illegal conditions have been smoothed over (by making an appropriate
assumption), and do not result in program termination. Fatal error
messages result in program termination.

--

WARNING MESSAGES

Error
No. Error Message

BIO VARIABLE HAS NOT BEEN
ASSIGNED A VALUE;
ZERO USED!

Bll TAPE RECORD TRUNCATED
TO TAPE RECORD LENGTH!

B13 NULL CONVERSION CODE
IS ILLEGAL;

B16

B19

B20

B24

NO CONVERSION DONE!

NON-NUMERIC DATA WHEN
NUERIC REQUIRED;
ZERO USED!

ILLEGAL PATTERN

COLI OR COL2 USED
PRIOR TO EXECUTING
A FIELD STMT; ZERO
USED!

DIVIDE BY ZERO ILLEGAL;
ZERO USED!

B209 FILE IS UPDATE
PROTECTED

B2l0 FILE IS ACCESS
PROTECTED

CHAPTER 9 - PICK/BASIC

Cause

An unassigned variable was referenced.
(A value of 0 is assumed.)

An attempt was made to write more onto
a tape record than the tape record
length. (The record is truncated to tape
record length.)

A string variable that should have a
value is actually null.

A non-numeric string was encountered
when a number was required. (A value of
o is assumed.)

Illegal pattern used with MATCH or
MATCHES operator.

COLI or COL2 function used before FIELD
function used. (A value of 0 is assumed.)

Division by zero attempted. (A value of
o is assumed.)

Copyright (c) 1985 PICK SYSTEMS

PAGE 580
('

':, ;'
/

(

(

FATAL ERROR MESSAGES

Error
No. Error Message

B12

B14

B15

B17

B18

B25

B27

B28

B30

B31

B32

B33

FILE HAS NOT BEEN
OPENED

BAD STACK DESCRIPTOR

ILLEGAL OPCODE: C

ARRAY SUBSCRIPT
OUT-OF-RANGE

ATTRIBUTE LESS THAN
-1 IS ILLEGAL

PROGRAM "C" HAS
NOT BEEN CATALOGED

RETURN EXECUTED WITH
NO GOSUB

NOT ENOUGH WORK SPACE

ARRAY SIZE MISMATCH

STACK OVERFLOW

PAGE HEADING
EXCEEDS MAXIUM OF
1400 CHARACTERS

PRECISION DECLARED
IN SUBPROGRAM 'c' IS
DIFFERENT FROM THAT
DECLARED

Cause

File indicated in I/O statement has
not been opened via an OPEN statement.

This error message is generated if the
the lengths of the input-lists or
lengths of the input-lists or output
lists in the CALL and SUBROUTINE state
ments are different, if an attempt is
made to execute an external subroutine
as a main program or if a file variable
is used as an operand.

Object code for this item is not legal.

Array subscript is less than or equal
to zero or exceeds the row or column
number indicated by a DIM statement.

Attribute less than on specified in
READV or WRITEV statement.

The specified external subroutine must
be cataloged before appearing in a CALL
statement.

RETURN statement executed prior to
GOSUB.

Not enough work space assigned at
LOGON to run program.

Array sizes in MAT Copy statement, or
in CALL and SUBROUTINE statements, do
not match.

The program has attempted to call too
many nested subroutines.

Page heading is too long.

Precision must be the same between
calling programs and subroutines.

B34 FILE VARIABLE USED WHERE STRING EXPRESSION EXPECTED

B41 LOCK NUMBER IS
GREATER THAN 47

CHAPTER 9 - PICK/BASIC

Maxium of locks available is 47.

Copyright (c) 1985 PICK SYSTEMS

PAGE 581

9.134 LIST OF ASCII CODES

I This appendix presents a list of ASCII codes used in the PICK system.

DECIMAL

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

CHAPTER 9 -

HEX

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30

CHARACTER

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
SPACE
I

"

$
%
& ,
(
)

*
+

.
/
o

PICK/BASIC

SPECIAL USE IN PICK

Null prompt character
Cursor home on CRT Terminal

Cursor forward on CRT Terminal
Bellon CRT Terminal

Cursor down on CRT Terminal
Vertical address on CRT Terminal
Screen erase on CRT Terminal
Carriage return on CRT Terminal

Horizontal address on CRT Terminal

Cursor back on CRT Terminal

Cursor up on CRT Terminal

Copyright (c) 1985 PICK SYSTEMS

PAGE 582

./

c

DECIMAL HEX CHARACTER SPECIAL USE IN PICK
49 31 1
50 32 2
51 33 3

(52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A
59 3B ;
60 3C <
61 3D
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N

(79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C /
93 5D [
94 5E
95 5F
123 7B
124 7C
125 7D
126 7E
127 7F DEL
251 FB SB Start buffer
252 FC SVM Secondary Value Mark
253 FD VM Value Mark
254 FE AM Attribute Mark

(0, 255 FF SM Segment Mark
CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 583

9.135 APPENDIX F

SUMMARY OF THE PICK/BASIC DEBUGGER COMMANDS

I The following is a summary of all the PICK/BASIC DEBUGGER commands
their descriptions.

Bx

D

DEBUG

DE

En

Set breakpoint condition table where 'x' is a simple
logical expression, which may be composed of < (less
than), > (greater than), = (equal to), # (not equal to),
& (and), and the special operator $ (line number).

Displays breakpoint and trace tables.

Escape to standard debugger.

Short form of DEBUG.

Step on n+1 instructions. E [CR] turns mode off.

END End execution of PICK/BASIC program and return to TCL.

G Proceed from breakpoint.

Gn Go to line n.

K Kills all breakpoint conditions in table set by 'B'
command.

Kx Kills breakpoint condition 'x'
breakpoint number from 1-4.

where 'x' is the

Ln# Display source code lines starting at n and continuing
for # lines.

LP All output forced to printer reverses status each time
LP is selected.

Nx Continue thru x+l breakpoints before stopping.

OFF Log off.

P Inhibit PICK/BASIC program output.

PC Printer close - output to spooler.

R Pops return stack.

S Display subroutine stack.

T Turns breakpoint trace table a1ternat1ey off and on.

Tv Set variable 'v' in trace breakpoint table.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 584

(-

U

Uv

v

z

$

?

/v

/m(x)

/m(x,y)

/m

/*

[x,y]

=

NOTE:

Remove all breakpoint trace table variables set by 'T'
command.

Remove breakpoint trace variable 'v' from table.

Verify object code.

Request symbol table.

Current statement number.

Display current program name, line # and object code
verification status.

Print value of a variable 'v'.

Print value of a point 'x' in array 'm'.

Print value of point 'x,y' in array 'm'.

Print the entire array where 'm' is the array.

Dump entire symbol table.

String window where 'x' equals the start of the string
and 'y' equals the length of the string. This command
effects all outputs of variables and has no effect on
input.

Removes string window (setting string length to zero has
the same effect).

Equal sign prints out after the printing of a variable
in any slash command except '/m'. The value of the
variable may be changed at this point.

Carriage return terminates all controls.

A linefeed equals G [CR]

Break key breaks to PICK/BASIC DEBUGGER from PICK/BASIC program

at end of line.

PICK/BASIC DEBUGGER prompts with '*'

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

. PAGE 585

9.136 APPENDIX G

BASIC DEBUGGER MESSAGES

The following informative, warning or error messages are
used by the BASIC DEBUGGER.

*E x Single step breakpoint at line number 'x'.

*Bn x Table breakpoint at line number 'x','n' equals

number of breakpoint.

*V=x Value of variable at breakpoint.

* Nvar Variable not found in statement.

CMND? Command not recognized.

NSTAT# Statement number out of range of program.

SYM NOT FND Symbol not found in table.

UNASSIGNED VAR Variable not assigned a value.

STACK EMPTY The subroutine return stack is empty.

STACK ILL Illegal subroutine return stack format.

TBL FULL Trace or break table full.

ILLGL SYM Illegal symbol.

NOT IN TBL Not in trace break table.

NO SYM TAB Symbol table not in file.

CHAPTER 9 - PICK/BASIC Copyright (c) 1985 PICK SYSTEMS

PAGE 586

(

(

SECTION 10

ICON/PICK
SYSTEM
MAINTENANCE

Ie N~

c

(

(/

Chapter 10

SYSTEM MAINTENANCE

THE PICK SYSTEM

USER MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made availble to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 587

c

(
c

[

(

10.1 VIRTUAL MEMORY STRUCTURE

PICK is a multi-programmable virtual memory machine with all of the
virtual memory (i.e., disc) being directly addressable as if it were real
memory (i. e., core).

The virtual memory of
which is divided into
or "FID"s numbered 1,
the size of the disc.

an PICK system resides on a magnetic disc drive,
2048 byte "Frames". The frames are given Frame-ID's,
2, 3 up to the maximum FID, which depends upon

The lower-numbered frames on the disc are "ABS" frames, which contain
system software and workspaces. all frames above the ABS area are
available for use in files. those frames not used in files make up the
Available Space, sometimes called "Overflow".

EXECUTABLE AREA (ASS)

The ABS area consists of executable object code and process workspaces.
Software written in PICK assembly language is loaded onto disc In the
executable area. The length of the executable area is a system generation
parameter, and must be between 513 and 1024. Frames 1 through 512 of the
executable area are reserved for current and future PICK software. User
written assembly language programs may be place in frames found by using
the FIND-FRAME verb, which identifies available frames.

WORK AREA

The PICK operating system allows multi-programming, which means more than
one different program may be executed, on a time-sharing basis, by the
CPU. each running program, or process, has a "Primary" workspace area of
32 contiguous frames, the first of which is called the "Process Control
Block" (PCB).

The PCB of channel zero is normally frame 512 (200 hex). PCB's for
succeeding processes are separated by 32, and therefore the PCB for
channel one is 544 (220 hex), channel two is 240 hex, etc.

Additionally, larger "Secondary" workspace blocks are reserved following
the last primary workspace, that of the SPOOLER. WSSTART is the starting
FID of the secondary workspaces, which continue to the end of the work
area. each process has three secondary workspaces, usually of 100 frames
each.

FILES AND OVERFLOW

After the work area are the PICK files, beginning with the SYSTEM file.
The base of the SYSTEM file, SYSBASE, is the beginning of the file space.
on a newly generated or restored system, all other files on the system
immediately follow the SYSTEM file. At the end of the files is the start
of Available Space (overflow), which then continues until the end of the
disc--MAXFID. (See the left side of the first figure.)

On a running system, the overflow area will become "fragmented", as frames

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 588

are taken from and returned to the overflow pool. (See the right side of
the second figure.)

FlO (HEX)
1 1
2 2 PICK
3 3 Assembly EXECUTABLE

Code AREA
399 V
400 -

User
Assembly . Code

511 IFF V V
512 200 - Line 0 PCB -I & Primary WORK

Workspace AREA
V

220 - Line 1 PCB Process

I
& Primary Control
Workspace Blocks

V &
... workspaces ... Primary
1 Workspaces

Spooler PCB
I & Primary

Workspace
V V

WSSTART - Line 0 Sec. -
V Workspace

Secondary

- SPOOLER Sec.
Workspaces

. V Workspace V V
ABS area, including Executable area and Work area.

SYSBASE -
Files

--Available---
Space I

MAXFIO V

Files and Available Space, after a file-restore (left)
and after undergoing normal fragmentation (right)

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 589

10.2 ADDITIONAL WORK-SPACE ALLOCATION

I The "additional workspace" is a set of contiguous, linked frames that is I
initialized by the system at coldstart or system-generation time. (--

(

There are several processors in the system that require large amounts of
workspace, or buffer area. This workspace is pre-assigned, and need not
be linked up at LOGON time. The workspace is linked after a file-restore,
or it may be linked from TCL by use of the LINK-WS verb. The SPOOLER
process links the workspace for all the other lines, and no other user can
log on the system while this linkage is taking place; the message:

LINKING WORK-SPACE; WAIT

will appear until the spooler has finished the linkage.

The starting FlO of the workspace may be computed as below:

WSSTART = 512 + (number of lines)*32. Each line has three (3) workspaces
of one hundred (100) contiguous frames.

The workspace may be linked on a live system using the LINK-WS verb on the
SYSPROG account. This may be done if it is suspected that the links of
the additional workspace have been destroyed for some reason. One
manifestation of this situation is that BASIC programs may terminate with
the "NOT ENOUGH WORK SPACE" message. Work-space links should be
particularly suspect if a program or process aborts on one channel, but
works correctly on others.

The general form of the verb to reI ink the workspace is:

LINK-WS [(n[-m})}

If the "(n)" or "(n-m)" is omitted, the workspace of ALL lines will be
relinked, except those of lines logged on and that of the spooler process.
The parenthetical specification may be used to limit the relinking process
to lines "n", or "n" through "m" only.

As the linkage proceeds, the line-number of the process whose workspace is
currently being linked is displayed on the terminal; if the line is
logged on, the message "ON!" will be displayed, and THE WORK-SPACE IS NOT
RELINKED!

The spooler's workspace can only be reI inked via a coldstart!

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 590

10.3 THE FILE AREA

Beginning immediately after the Work Area, the remainder of
memory (called the File Area) is available for the storage
files. The portions of the File Area that are not allocated
are maintained as a pool of Available Space.

the virtual
of data in
to the files

The beginning of the File Area is a system generation parameter. It may
be computed via the following general formula:

Start of File Area - {FID of first PCB} +
{{number of processes)*32 +
{(number of processes) * {pre-assigned work-space}*3

Pre-assigned work-space is set to 100 frames per process per work-space.
Each process {including the spooler} has 3 secondary workspaces of 100
frames each.

As an example, a system with 16 communication lines {therefore 17
processes including the spooler} will have the start of the file area at
frame:

512 + (17 * 32) + (17 * 300) = 6156

The end of the File Area is the highest available disc frame, MAXFID.

File Area frames which are not allocated to the files are maintained as a
pool of Available Space, often called "Overflow". Available Space is used
by the Pick system file management routines as additional data space, as
well as to other processors as scratch work space. The Pick Computer
System maintains a table of pointers that define the Available Space,
which may be either in a "linked" form, or in a "contiguous" form.
Contiguous Available Space, as the name implies, consists of blocks of
contiguous frames (defined by starting and ending numbers) that can be
taken out of the pool either singly or as a block. Linked Available Space
can only be taken a frame-at-a-time. Conversely, space may be released by
processors to the linked available pool a frame-at-a-time, or to the
contiguous pool as a block.

At the conclusion of a File-Restore process on the Pick system, an initial
condition may be said to exist; there will be one principle block of
contiguous available space, extending from the end of the current data
space through the last available data frame. This is illustrated in the
first figure; the results of the POVF (print overflow) verb indicate that
there is no linked overflow space (blank line at the top of the output),
and only one contiguous block of space.

As the system obtains and releases Available Space (and as files are
created and deleted), the Available Space gets fragmented; at any
particular time there may be several blocks of contiguous Available Space,
and a chain of linked Available Space. Available frames will be placed in
the linked Available Chain only when there are 31 sets of contiguous

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 591 c

(

(

Available space (representing the maximum that the system space management
routines can maintain). This is illustrated in the second figure; here
the linked Available chain starts at FID 23459 and contains 400 frames.
There are also several sets of contiguous Available space as shown by the
pairs of FIDs displayed.

) Logically, there is no difference between Available space in linked chain
and that in the contiguous sets; however, certain processors obtain
frames from the contiguous space only, for example the CREATE-FILE
processor, and the MEM-DIAG processor. Therefore, if the system Available
space is severely fragmented, while there may be actually be enough disc
space to create a large file, for example, there may not be enough
available as a contiguous block. Periodically, a File-Restore may be run
to restore contiguous Available space from the linked Available space
chain.

(SEE: POVF)

>POVF [CR]

23987- 97799

TOTAL NUMBER OF CONTIGUOUS FRAMES AVAIABLE= 63812

Results of POVF immediately after a file-restore
(One contiguous block of Available space only)

--
>POVF [CR]

23459 (400)
8112- 8117 (6) 9000- 9000 (1)

23789- 23801 (13) 25000- 25678 (679)
25681- 25692 (12) 27123- 27323 (201)
34502- 35123 (522) 35800- 35801 (2)
37091- 37091 (1) 37093- 37093 (1)
37099- 37100 (2) 38100- 38100 (1)
43100- 44234 (1135) 45680- 45681 (2)
46343- 46443 (101) 46445- 46445 (1)
46448- 46448 (1) 46451- 46451 (1)
46454- 46454 (1) 46458- 46474 (17)
47011- 47444 (434) 47460- 47492 (33)
47661- 47750 (90) 48012- 48017 (6)
48018- 48018 (1) 48020- 48101 (82)
48233- 48268 (36) 48299- 48299 (1)
51111- 53234 (2124) 53400- 53601 (202)
60000- 97799 (37800)

TOTAL NUMBER OF CONTIGUOUS AVAILABLE FRAMES= 43509
--

Results of POVF after normal system operation.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

<_\ PAGE 592

10.4 FRAME FORMATS

I A Frame is a block of 512 bytes that is referenced by a unique number I
called the Frame Identifier, or FlO.

--
There are two types of frames in the Pick system - ABS frames, and FILE
frames. The FILE frames contain only 500 bytes of data, the remaining 12
bytes being the "link fields". Al3Sframes may be object-code (assembly or
PICK/BASIC-compiled object code), buffers or other workspaces required by
the system.

Linked frames are used to define data areas which may be greater than 1
frame in length. The groups in data files may expand as more data is
placed in the group, so when the end of a frame is reached, another frame
is obtained from the system Available Space pool and linked to the end of
the group. The format of the linked frame is as follows:

byte: 0

*
where:

* =

nncf =

npcf

1 2 3 4 5 6 7 8 9 A B C

nncf .. forward link backward link ... npcf * start
of data

Unused byte.

Number of next contiguous frames (count of frames that are
linked forwards of this one, whose FlO's are sequential to
this FlO).

Number of previous contiguous frames (count of frames that
are linked backwards to this one, whose FID's are
sequential to this FlO).

forward link = FlO of the frame that is next in logical sequence to this
one.

backward link = FID of frame that is logically previous to this one.

The first frame of a linked set of frames will have zero "npcf" and
"backward link" fields, and the last frame of such a set will have zero
"nncf" and "forward link" fields. The "nncf" and "npcf" fields are also
normally zero, except in the "linked workspace" allocated to each process,
and in files that have a separation greater than one.

Following the link fields is the 500-byte data block.

Unlinked frames have no specified format;
be used by the system.

all 512 bytes of the frame may

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 593 c

10.5 DISPLAYING FRAME FORMATS; THE DUMP VERB

I The DUMP verb may be used to display data in a frame. The data display I
may be specified in either character or hexadecimal format.

--
(,

("":
/

FORMAT:

DUMP nl{-n2},options

"nl" and "n2" are numbers that may be specified in decimal, or in
hexadecimal by preceding the hex number with a period (.). nl and n2
contain the FID of the frame or the core location of the buffer being
dumped. Options are specified just as normal statement options, single
characters, optionally separated by commas. Valid options are specified
in the table below:

OPT- DESCRIPTION
ION

G Group; specifies that the data starting at frame nl is to be dumped,
and that the dump continue following either the forward or backward
links (depending on whether the U option is not or is specified).
The dump will terminate when the last frame in the logical chain has
been found.

L Links; specifies that the dump be confined to the "links" of the
frame(s) concerned; no data is displayed.

N NostoPi if the data is printed on the terminal, specifies that the
end-of-page stop be inhibited.

u

Printer; the display is routed to the line-printer.

The data or links are traced logically Upwards;
backward links are used to continue the display.

that is, the

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 594

>DUMP 6950,L [CR]

FID:
+FID:

6950 :
6967 :

o 6967 0
o 0 6950

o (lB26: ~ IB37
o (lB37: 0 0

00)
lB26 0)

In the example above, \the display indicates that 6950 is the FID whose
links are being dumped; the "nncf" field is 0; the "forward link"
field is 6967; the "backward link" field is 0; the "npcf" field is
O. Data in parentheses are the same numbers displayed in
hexadecimal. The next line displays the link fields of FID 6967;
the "+" indicates that this FID is logically "forward" of the
preceding one.

>DUMP .lB37,X [CR]

FID:

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
001'.0
OOBO
OOCO
OODO
OOEO
OOFO
0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
011'.0
OlBO
OlCO
OlDO
OlEO
OlFO

6967 : o o 6950 0 (lB37

00000000 00000000 lB260000 21'.21'.21'.21'.
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 2A2A2A2A 2A2A2A2A
2A2A2A2A 2A2A2A2A 21'.21'.21'.21'. 21'.21'.21'.21'.
2A2A2A2A 2A2A2A2A FE2A2020 54484953
2050524F 47524l4D 20464F52 4D4l5453
20412044 4l544l2F 42415349 43205052
4F47524l 4D20544F 2020FE2A 20204449
53504C4l 5920424C 4F434B20 53545255
43545552 494E4720 42592049 4E44454E
54494E47 204C494E 45532EFE 2A2A2A2A
21'.21'.21'.21'. 2A2A2A2A 2A2A2A2A 21'.21'.21'.21'.
21'.21'.21'.21'. 21'.21'.21'.21'. 2A2A2A2A 21'.21'.21'.21'.
2A2A2A2A 2A2A2A2A 2A2A2A2A 21'.21'.21'.21'.
2A2A2A2A 2A2A2A2A 21'.21'.21'.21'. FE2A2D2D
2D2D2D2D 20444546 494E4954 494F4E53
FE3l3020 2020204C 4F4F50FE 20202020
20202020 20535020 3D203620 20202020
20202020 203B2A20 4C454654 204D4l52
47494E20 434F4C55 4D4E204E 554D4245
52FE2020 20202020 20202049 44203D20
33202020 20202020 2020203B 2A204E55
4D424552 204F4620 53504143 45532020
20544F20 494E4445 4E54FE20 20202020
20202020 464C4630 30202020 20202020
20202020 3B2A2046 554E4B59 204C494E
4520464C 4147FE2A 2D2D2D2D 20494E49
54494l4C 4951'.4154 494F4EFE 20202020
20202020 20535058 203D2053 50FE2020
20202020 2020204C 494E452E 4E4F2030
2030FE2A 2D2D2D20 2D2D2049 4E505554
2046494C 45204E4l 4045203D 20224250

o o lB26 0)

o : & •• ****:
16 :****************:
32 :****************:
48 :****************:
64 :********-* THIS:
80 : PROGRAM FORMATS:
96 : A DATA/BASIC PR:

112 :OGRAM TO -* DI:
128 :SPLAY BLOCK STRU:
144 :CTURING BY INDEN:
160 :TING LINES.-****:
176 :****************:
192 :****************:
208 :****************:
224 :************-*--:
240 .---- DEFINITIONS:
256 :-10 LOOP-
272 SP = 6
288 ;* LEFT MAR:
304 :GIN COLUMN NUMBE:
320 :R- IO = :
336 :3 ;* NU:
352 :MBER OF SPACES
368 : TO INDENT-
384 FLF=O
400· ;* FUNKY LIN:
416 :E FLAG-*---- INI:
432 :TIALIZATION-
448 SPX = SP-
464 : LINE.NO =:
480 : 0-*------ INPUT:
496 : FILE-NAME = "BP:

Sample usage of the DUMP verb.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

. PAGE 595

10.6 THE SYSTEM FILE and SYSTEM-level FILES

I The SYSTEM file is the highest-level file in the PICK file hierarchy. It
contains the file-pointers to every account in the data-base, as well as

(-~~~~:::~-:~-:~:-~!~:~=::~::-:~::~-~~~~-~~-~~~~-:~~~:~~-::~~---------------

(~\

Entries in the SYSTEM file define
neccessary for the PICK software.

user M/DICT's or special files

the M/DICT pointers are either D (file definition) or Q (file synonym)
items. The item-ID's of such items are the USER-NAMES that the user
enters when the system requests him to LOGON. Such items are created by
the CREATE-ACCOUNT processor, (for D items,) or by use of the EDITOR or
COpy processor for Q items. The format of user-identification items is
discussed in the section on USER IDENTIFICATION ITEMS.

The SYSTEM file also contains the file-pointers to the system-level files
that are necessary to the proper functioning of the system. These files
are:

ACC
BLOCK-CONVERT
POINTER-FILE
PROCLIB
SYSTEM-ERRORS

(Accounting file)
(for BLOCK-PRINT and PICK/BASIC (A) option)
(Saved lists.)
(Standard system PROC library)
(Disc errors) SYSTEM-ERRORS

The ACC file (Accounting history) has two types of items; those that
indicate the actively logged-on users, and the accounting-history data
items that keep track of the usage statistics of each user. The format of
the items in this file is discussed in later sections.

The ACC files have a tri-Ievelstructure, with an ACC account, an ACC
dictionary and an ACC data section.

The BLOCK-CONVERT file contains two unrelated types of items:

1) Items that define the format used in the characters displayed when
the BLOCK-PRINT verb is used.

2) Items that are used to print a descriptive message when the "A"
(assembly-code) option is used when compiling a PICK/BASIC program.

The BLOCK-CONVERT file is a single-level file.

The POINTER-FILE contains items that are "pointers" to binary data
strings. It is referenced implicitly whenever the SAVE-LIST, GET-LIST,
DELETE-LIST, CATALOG or DECATALOG verbs are used. The POINTER-FILE is a
single-level file. The file-defining entry "POINTER-FILE" in the SYSTEM
file must have the code "DC" in line 1. This indicates that the file
contains non-standard, binary data items.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 596

The PROCLIB file is a single-level file that contains commonly used PROCs,
such as CT (Copy to Terminal), LISTU (List active users), etc.

The SYSTEM-ERRORS file is a three-level file reserVed for logging system
errors. currently its only use is to store disc errors.

Level 0 SYSTEM dictionary

Level 1 ACC BLOCK-CONVERT POINTER-FILE PROCLIB SYSTEM-ERRORS
(account) dictionary dictionary dictionary (account)

Level 2 ACC SYSTEM-ERRORS
dictionary dictionary

Level 3 ACC SYSTEM-ERRORS
data data

SYSTEM-level files

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 597

c

10.7 THE BLOCK-CONVERT AND POINTER-FILE DICTIONARIES

I This section describes the format of
POINTER-FILE dictionaries.

entries in the BLOCK-CONVERT, and I
(--

BLOCK-CONVERT dictionary:

(

There are two types of entries in the BLOCK-CONVERT file; type I is the
entry that forms the characters for the BLOCK-PRINT verb. Its format is:

Item-id: is the character to be formed; that is, the item whose item-id
is "c" will form the character C; that whose item-id is "{" will form the
character {, etc.

The first attribute contains a code of the form:

nrc}

where "n" is the width of the character matrix (the depth of all
characters formed is fixed at 8); and the optional "c" is a character
that will replace the item-id in the generation of the BLOCK-PRINT form.

There must be 8 succeeding attributes, each one specifying the format of a
row in the generated form. Each attribute must begin with a "C" or a "B",
specifying a character insertion or a blank insertion respectively,
followed by the number of such insertions needed; optionally, additional
numbers may be specified, separated by commas. Each succeeding number
switches the insertion from character to blank and vice-versa. The sum of
all numbers must equal the character width specified in attribute 1. See
the first example.

The second type of data in the BLOCK-CONVERT file has a two-hexadecimal
digit item-id, corresponding to the PICK/BASIC opcode generated by the
PICK/BASIC compiler; attribute 1 is the symbolic name for the opcode.
These entries are used by the "A" option of the PICK/BASIC compiler to
generate a listing of the PICK/BASIC object code.

POINTER-FILE dictionary:

This file contains the pointers to select-lists (stored by the SAVE-LIST
verb) and to cataloged PICK/BASIC programs (stored by the CATALOG verb).
They may be examined, but, like file-pointers, should never be altered in
any way by the user!. The format of these items is:

Item-id account-name*x*y

001 CL or CC
002 fid
003 n
004 m

005 time & date

CHAPTER 10 - SYSTEM MAINTENANCE

PAGE

where "x" is C for a cataloged
program, or "L" for a select-list,
and y is the program-name, or
select-list name.
CL for lists, CC for programs.
Base FID of the program or list.
frames in the program or list.
Number of items in a list; null
for a program.
Time and date of generation.

Copyright (c) 1985 PICK SYSTEMS

598

--------------~--

>COPY BLOCK-CONVERT S 8B (T) [CR]

S Item-id; defines format for character "s"
001 7 Defines character width as 7 i"
002 Bl,5,l Specifies string" SSSSS " (1 blank,S S 0
003 C2,3,2 Specifies string "ss SS"
004 C2,5
005 Bl,5,1 Specifies string" SSSSS "
006 B5,2
007 C2,3,2
008 Bl,5,1
009 B7

8A Item-id (BASIC object-code byte)
001 STOP Identifies object-code (STOP opcode).

Sample items from BLOCK-CONVERT file.

>BLOCK-PRINT S [CR]

SSSSS
SS SS
SS

SSSSS
SS

SS SS
SSSSS

Output using BLOCK-PRINT verb.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 599

10.8 THE ERRMSG FILE, LOGON MESSAGES, AND THE PRINT-ERR VERB

I Most error messages generated by TCL, ACCESS, PICK/BASIC, PROC or any
other system software are contained in the ERRMSG file. a standard set of

(.
.. approximately 250 error message items is provided wi th the PICK base

/ system. however, the user may change the error messages in the ERRMSG
file, add new error messages, or even create another ERRMSG file for each
account. this can be particularly useful when used in conjunction with
the STOP and ABORT statements in PICK/BASIC, in which the user can specify
an error message and pass parameters to the error message processor.

Items in the ERRMSG file must follow a certain format, in which the first
character in each line of the item defines a special operation, as listed
below.

CHARACTER MEANING

H Causes the string following the "H" on be placed in the output
buffer, with no carriage return or line feed. At the end of the
error message item, the string "H+" will inhibit the final carriage
return/line-feed that is normally output.

L Causes the output buffer to be printed, with a carriage-return and
line-feed

L(n) As above, and also causes n-l blank lines to be printed.

D

T

f ,A

Places the current date in the output buffer.

Places the current time in the output buffer.

Inserts the next parameter in the list of parameters which was passed
to the error message processor with the error message. The
parameters may be specified by the PICK/BASIC program (in the case of
a PICK/BASIC STOP or ABORT statement,) or by some system processor in
the case of system-generated error messages.

R(n) Inserts the next parameter right-justified in a field of n blanks.

A(n) Same as R{n), but left-justified.

x Skips a parameter in the parameter list.

Sen) Sets the output buffer pointer to location lin".

SPECIAL ERRMSG FILE ITEMS. The item "LOGON" in the SYSTEM dictionary
contains the request to logon to the system (typically "LOGON PLEASE").

When a user logs onto an PICK system, the error message specified by the
item "LOGON" in the ERRMSG file is printed on the user's terminal.
Therefore, any message which is to be received by all users on the system
immediately upon logging on may be placed in this item. This item must
exist on file even if there is to be no general system message.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

Ci ·PAGE 600

The ERRMSG items "335" and "336" contain the connect time messages
displayed when a user logs on or off the system.

Some examples of error message processing are shown in the first figure.
The PRINT-ERR verb allows the user to invoke the error message processor c ..
from TCL. the format is:

>PRINT-ERR file-name item-list

the error messages specified
parameter list of A,B,C,D ...

in the item-list will
See second figure.

In a PICK/BASIC program, the lines ...

FILE II: "BP" ; ID .. "1006"
OPEN "",FILE ELSE STOP 20l,FILE
READ ITEM FROM ID ELSE STOP 202,ID

be processed, wi th a

could cause the program to stop with either of the following:

[201] 'BP' IS NOT A FILE NAME
'1006' NOT ON FILE.

If the item "LOGON" in the ERRMSG file for an account looked like:

HHel10 out there!
L
HIt's now
T
H and all's well!

then the user would see the following when he logged on:

Hello out there!
It's now 11:22:33 and all's well!

Sample Usage of the Error Message Processor.

>PRINT-ERR ERRMSG 201 [CR]
[201] 'A' IS NOT A FILE NAME

>PRINT-ERR ERRMSG 289

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP
LF DELAY
FF DELAY
BACKSPACE
TERM TYPE

TERMINAL
A
C
E
F
G
H
I

PRINTER
B
D

Sample U~age of the PRINT-ERR verb.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 601

10.9 USER IDENTIFICATION ITEMS

Each user has a user identification item stored in the System Dictionary
(SYSTEM). This set of user identification items define the users who can
log on to the system. User identification items are either file

(,-~::~~~:~~~-~:~-~:-:~::-~!~~~~-~::~~~:~~~-~:~.:.--------------------------

(

User identification items are initially created via the CREATE-ACCOUNT
PROC These items may subsequently be updated via the EDITOR. ENTRIES IN
THE SYSTEM DICTIONARY SHOULD NOT BE UPDATED (from the SYSPROG account)
WHEN ANY OTHER USER IS LOGGED ON to the system. this is because the
system software maintains pointers to data in the System Dictionary when
users log on, and updating the System Dictionary will invalidate the
pointers. An exception to this rule is when creating a new account (or a
synonym to an existing account), which can be done at any time since new
items are added to the end of the existing System Dictionary data, and
thus do not disturb any pointers to it.

Attributes five through eight of a user identification item contain data
associated with the user's security (lock) codes, password, and system
privileges:

ATTRIBUTE

5

6

7

8

9

USE

Contains the set of retrieval lock-codes associated with the
user. Multiple values (separated by value marks) are allowable.
There is no restriction as to the format of individual lock
codes. This attribute may be null, indicating no lock-codes.
(Lock-code usage is described in the topic titled SECURITY.)

Contains the set of update lock-codes associated with the user.
(Same as described for retrieval lock-codes above.)

Contains the user's password, which is a single value. This
attribute may be null. There is no restriction as to the format
of the password.

Contains a code which indicates the level of "system privileges"
(see below) assigned to the user.

May contain the code "U" to indicate that logon/ logoff times
should be logged by the system. May contain the code "R" to
specify the RESTART option.

Attributes one through four and attributes ten through thirteen are as
defined for regular file definition of file synonym definition items (see
topic titled DICTIONARIES). The first figure shows a sample user
identification item (for user SMITH).

Three levels of system privileges are available; they are referred to as
zero (lowest) , one, and two (highest), respectively. Lower levels of
system privileges restrict usage of certain facilities of the system, as
described in the second figure. System privileges are assigned by the
code in attribute eight of the user identification item. Leave this part
null for level 0, SYSI for levell, and SYS2 for level 2.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 602

Attribute 9 may contain the codes lUI or 'R', or both. lUI specifies that
the accounting listing file is to be updated whenever the user logs on and
off this account (see ACCOUNTING FILE). 'R' specifies that the Restart
option is to be set. This causes the LOGON PROC to be re-executed
whenever an "END" is typed at the DEBUG level.

Item SMITH in System Dictionary

001 D <-------------------------- D/CODE
002 2537 <----------------------- Base FID
003 13 <------------------------- Modulo
004 1 <-------------------------- Separation
005 ABC (------------------------ Retrieval lock Code (L/RET)
006 1234 <----------------------- Update Lock Code (L/UPD)
007 PW5 <------------------------ Password
008 SYS2 (----------------------- System Privilege Level
009 U <-------------------------- Update Account File for this user

Sample User Identification Item (For User SMITH)

FACILITY LOWEST PRIVILEGE LEVEL REQUIRED

Updating of M/DICT One

Use of magnetic tape One

Use of DEBUG (other than P, Two
OFF, END and G commands).

Use of DUMP Processor Two

Use of Assembler and Loader Two

Use of FILE-SAVE and Two
FILE-RESTORE processors.

Required System Privilege Levels.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 603

c

10.10 SECURITY

I
(J

(

Security codes may optionally be placed in the L/RET and L/UPD attributes
of a dictionary item to restrict access and update. At Logon time, each
user is assigned the set of security codes which are in his user
identification item. During the session, whenever, an L/RET or L/UPD code
is encountered, a search is made of the user assigned codes for a match;
if no match is found the user is denied access. A security code may
consist of any combination of legal ASCII characters.

L/RET and L/UPD

Both file definition ("D" code) and synonym file definition ("0" code)
items have L/RET (retrieval locks) and L/UPD (update locks) attributes.
When these attributes have values stored, they are known as security
codes. Although there is no prohibition against multiple values for these
attributes, only the first attribute value is used for matching against
the user assigned codes. Since each file may be individually locked for
both update and retrieval, a user must be assigned multiple codes to that
set of data he is allowed to access. Using this feature, a complex "mask"
can be constructed for each user, giving each user a different sub-set of
files which he may access.

Security at the file level is invoked at the processor level. The
following processors are assumed to be updating processors and therefore
require a match on the L/UPD attribute in the file definition item: COPY,
EDIT, PICK/BASIC if writing a file, RUN and the Assembler. Other
processors are assumed to be retrieval processors and require a match on
the L/RET attribute in the file definition item.

PICK/BASIC requires a match against L/RET code when the file is opened;
and requires a match against the L/UPD if data is changed in the file.

Failure to match one of the user security codes with either the L/RET (or
L/UPD) attribute value will generate the following message (and return
control to TCL):

[210] FILE xxx IS ACCESS PROTECTED

User Assigned Codes

Each user identification item in the System Dictionary (see topic titled
USER IDENTIFICATION ITEMS) contains the list of security codes assigned
for that particular user. These codes are values for the attributes L/RET
and L/UPD. The lock code in the user-identification item and the lock
code in the file being verified must match.

Security codes may be assigned initially when an account is created via
use of the CREATE-ACCOUNT PROC Security codes may be added or deleted by
updating the appropriate security codes); however, updates to the user
.identification item should only be performed when no one else is logged
onto the system.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 604

Security Code Comparison

Security codes are verified comparing the value in the file dictionary
against the corresponding string of values in the user identification
item. Characters are compared from left to right. An equal (verified)
compare occurs when the value in the file dictionary is exhausted and all !~~
characters match up to that point. This is illustrated below. ~

When referenc~ng a file using a Q synonym a security code match is made at
all levels (i.e., SYSTEM, M/DICT, and file dictionary) and therefore ,a
correspondence must be maintained at all levels in order to process the Q
synonym files. Since the user identification item for the account
containing the primary file is verified for security codes, the user
referencing the Q synonym must have a code defined in this user
identification item which will verify with the first code in the equated
account's user identification item. Therefore, in a user identification
item, only the first code is used to protect the account from Q synonym
accesses,while all the codes in the item are assigned to the user when he
logs on.

FILE DICTIONARY CODE USER IDENTIFICATION CODE RESULT

123 123 Match

12 123 Match

123 12 No Match

~z ~Z5 Match

AQ2 AQ No Match

Sample Security Code Comparisons.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 605

~ ~

/

c

lO.ll THE ACCOUNTING HISTORY FILE: AN INTRODUCTION

I The Accounting History File is one of the mandatory files in the PICK
(.. system. This file contains accounting history for the system, as well as

.1 the entries that describe the currently active (logged-on) users.

(

The System dictionary (SYSTEM) contains the file definition item (item-id
'ACC') for the Accounting History File, as illustrated in the figure. The
'ACC' dictionary is set up for examining and listing the data in
Accounting History File via ACCESS (see topic titled THE ACCOUNTING
HISTORY FILE: SUMMARY AND EXAMPLES). There are two types of entries
(items) in the Accounting History File: those that represent active
(logged-on) users, and those that keep track of accounting history.

Active Users Items

The item-id of an active user item in the Accounting History File is the
four-character hexadecimal FID of the PCB of the user's process. If the
PCB's start at FID=512, (they proceed in steps of 32 frames from there
on), we see that a user logged on to process zero will have an entry with
an item-id '0200' (512), while a user logged on to process one will have
an entry with an item-id '0220' (544), and so on. Attribute one of an
active user item contains the name of the user (i.e., the item-id of the
user identification item), attribute three the date logged on, and
attribute four the time logged on. Active user items are created when a
user logs on, and deleted when he logs off.

Accounting History Items

The item-id of an accounting history item is the name of the user (i.e.,
the item-id of the user identification item), with the channel number
concatenated by a n#". For example, if user 'SMITH' logs on to channel
12, when he logs off, the item whose item-id is 'SMITH#12' in the ACC file
will be updated. This allows one to keep track of system usage by user-id
as well as channel number.

Attributes one, two and three are not used.
attributes are described below:

ATTRIBUTE USE

The remainder of the

4 Dates(s} Logged on. Each unique date is stored. Value marks are
tagged on to the value in this attribute if multiple Logoffs occur on
the same date (for LIST alignment purposes). Date is stored in Pick
Computer System date format.

5 Time(s) Logged on. An entry is made for each Log-off, representing
the time at which the user Logged on. Time is represented in seconds
past midnight (24- hour clock).

6 Connect time(s). This entry represents the time in seconds between
the Logon and the Logoff.

7 Charge-units. A number representing the CPU usage is added on each
Logoff.

CHAPTER 10 - SYSTEM MAINTENANCE
PAGE 606

Copyright (c) 1985 PICK SYSTEMS

8 Line-printer pages. A number representing the number of pages routed
to the line-printer for each session.

Note: Attributes 4, 5, 6, 7 and 8 are stored as a "Controlling
dependent" data set, with attribute 4 being the controlling value, and the (\
0d~hers . the dfepehnd;nt tonellsio dsee tdhet " AdCCEtSS rtefferencte manual for· a ~3
~scuss~on 0 t e con ro ng- epen en a a se orma.

The accounting history file 'ACC' is not automatically updated every time
a user logs off the system. The SYSTEM dictionary item for the user must
have a lUI in attribute 9 if the user is to have his Account file history
items updated. The entries in the Account file contain the history of
each session (logon to logoff). If the SYSTEM dictionary data has been
changed since logon or the history item to the updated is too large for
the work-space, the message number 338 will be printed.

Channel #Item-id

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0200
0220
0240
0260
0280
02AO
02CO
02EO
0300
0320
0340
0360
0380
03AO
03CO
03EO

Channel #

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Item-id

0400
0420
0440
0460
0480
04AO
04CO
04EO
0500
0520
0540
0560
0580
05AO
05CO

Channel (Line) numbers and corrosponding Active User Item-IDs.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 607 c

10.12 THE ACCOUNTING HISTORY FILE: SUMMARY AND EXAMPLES

I This topic summarizes the formats of the active user
(

c accounting history items in the Accounting History File.
. , are sample entries for the Accounting History File.

items and the
Also presented

:(

The first figure summarizes the attributes for the active user items and
the accounting history items. The second figure shows a sample sorted
listing of the active users (users with a value for attribute AI) via an
ACCESS SORT statement. The third figure shows a sample listing of the
accounting history item for user SMITH via an ACCESS LIST statement.

ATTRIBUTE 'ACC' DICTIONARY ACCOUNTING
NUMBER NAME ACTIVE USER ITEM HISTORY ITEM

(item-id) Four-character User name#lineno
hexadecimal PCB-FID

1 NAME User name Not used

2 DATE Date logged on Not used

3 TIME Time logged on Not used

4 DATES Dates logged on

5 TIMES Times logged on

6 CONN Connect time

7 UNITS Charge-units

8 PAGES Number of printer
pages generated.

Summary of Active User Items and Accounting History Items

(
_' CHAPTER 10 - SYSTEM MAINTENANCE

. PAGE

Copyright (c) 1985 PICK SYSTEMS

608

>LISTU [CR]

CHi PCBF NAME

00 0200 CM
01 0220 SYSPROG
02 0240 EL-ROD
03 0260 LC
05 02AO HVE

*06 02CO CM
07 02EO BUGEYE
10 0340 JT

TIME. .. DATE.... LOCATION

11:02AM 03/22/78 Channel 0
12:10PM 03/22/78 Channell
09:11AM 03/22/78 Channel 2
06:59AM 03/22/78 Channel 3
09:55AM 03/22/78 Channel 5
ll:25AM 03/22/78 Channel 6
01:29PM 03/21/78 Channel 7
11:34AM 03/22/78 Channel 10

Sample sorted listing of active user items (using LISTU).

>LIST ACC = "SMITH]"

PAGE 1

ACC DATE. TIME ...
*

SMITH # 0 01/13 16:56
01/14 10:13

10:15
02/06 17:02
02/09 10:21
02/23 07:58
03/09 11:35

16:05
SMITH#5 01/13 12:48

15:20
15:25
15:28
16:20
19:15

01/16 09:41
15:55

2 ITEMS LISTED.

CONN ...
*

00:04
00:00
00:01
00:18
00:17
00:01
01:57
00:22
02:25
00:05
00:00
00:17
02:55
00:00
06:13
00:12

(selects items with item-ids
starting with the string "SMITH")

12:17:22 22 MAR 1978

UNITS .. PAGES
* *

9
5

343
41

690
27

378
94

160 5
14

2
110

2575 16
13

1853 6
15

Sample listing of accounting-history item for user "SMITH".

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 609

c

/--"

"-/

10.13 THE ACCOUNTING HISTORY FILE: PERIODIC CLEARING

To avoid overflowing the accounting history items in the Accounting
History file for a specific user, the items should be periodically

(.- I __ :::~::~':'---________________________ _

(

To clear the accounting history items from the ACC file, follow the steps
detailed in the first figure.

The point of overflow is determined by the activity of the user-account
(however, approximately 1000 Logon/LOgoffs are allowed). This point can
be calculated by following the procedure detailed in the second figure.

If the accounting history item for a user-account does exceed the
available workspace, the user will be logged off, but the Accounting
History File will not be updated. To recover from this situation, follow
the procedure detailed below.

1. Logon to the SYSPROG account.

2. Type the following (if you need a listing only):

>SORT ACC WITH NAME LPTR [CR]

3. Type the following:

>SELECT ACC WITH NAME [CR]
>DELETE ACC [CR]

Procedure to Clear all Accounting History Items.

1. Use the WHAT verb to determine the number of additional
work-space frames allocated for the system (parameter
WSSIZE in the WHAT display). Multiply this figure by 500
and add 3000.

2. To determine the current size, type:

>STAT ACC ACC-SIZE 'user-name' [CR]

This will produce the following output:

STATISTICS OF ACC-SIZE:
TOTAL = xxx AVERAGE = yyy COUNT = ZZZ

3. If the value displayed for TOTAL in step 2 (i.e., xxx)
approaches the value calculated in step 1, then the
user-account is approaching the overflow point.

Determining the point of overflow for an accounting-history item.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 610

--~-~.~. ~. ~. ---. -.. -. ~ .. ~ .. --.----.-.. ~ ..

10.14 FILE STRUCTURE: THE ITEM AND GROUP COMMANDS

The ITEM and GROUP commands provide information about the item and group
structure of Pick files. Output can be displayed at the terminal or
optionally directed to the line printer.

FORMAT:

ITEM file-name item-id {(options)}

This command displays the base FID of the group into which the specified
item-id hashes. If the item is not already on file, the message "ITEM NOT
FOUND" is displayed. In addition, every item-id, in that group is listed
along with a character count of the item (in hex). At the end of the list
the following message is displayed:

where:

n is
m is
p is
q is

the
the
the
the

n ITEMS m BYTES p/q FRAMES

number of items in the group.
total number of bytes used in the group.
number of full frames in the group.
number of bytes used in the last frame of the group.

Valid options for this command are as follows:

P - Direct output to line printer.
S - Suppress item list.

FORMAT:

GROUP file-name (options)}

This command displays the base FID of each group in the specified file.
In addition, every item-id in the group is listed along with a character
count of the item (in hex). At the end of the list for each group the
following message is displayed:

where:

n is
m is
p is
q is

the
the
the
the

n ITEMS m BYTES p/q FRAMES

number of items in the group.
total number bytes used in the group.
number of full frames in the group.
number of bytes used in the last frame of the group.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 611

c

/,,' - ""

(

Valid options for this command are as follows:

P - Direct output to line printer.
S - Suppress item list.

>ITEM M/DICT A [CR]

27121
0022 FILE-DOC
001C bd
0009 A
0011 T-ATT
OOOF DUMP
0018 B/ADD
OOOF DIVX
0014 EDIT-LIST
0028 V/CONV
0022 LISTU
0019 V/MIN
001B ACCOUNT-RESTORE
001D D/CODE
0028 SL
0023 INST-INDEX
0047 SAL
0072 TB
OOOE SAVE
18 ITEMS 591 BYTES 1/91 FRAMES

(--
Figure A. Displaying data in a group using the ITEM command.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 612

10.15 FILE STRUCTURE: THE ISTAT AND HASH-TEST COMMANDS

ISTAT and HASH-TEST are ACCESS verbs that produce file hashing histograms,
ISTAT for specified file items and HASH-TEST on the basis of a user
specified test modulo.

I STAT

An ACCESS sentence using the ISTAT command is constructed as illustrated
below. The ISTAT command provides a file hashing histogram for the
selected items in the selected file, as illustrated by the examples. For
further information regarding file hashing, refer to the section of this
manual titled VIRTUAL MEMORY OPERATING SYSTEM.

HASH-TEST

HASH-TEST produces a file hashing histogram as a result of a user
specified test modulo. The general form of this verb is as follows:

HASH-TEST {DICT} file-name {item-list} {selection-criteria}

>ISTAT PARCEL [CR]

FILE- PARCEL MODULO- 3 SEPAR= 1 13:50:42 22 MAR 1978
FRAMES BYTES ITMS
000002 00757 027 *»»»»»»»»»»»»»>
000002 00836 030 *»»»»»»»»»»»»»»»
000002 00785 028 *»»»»»»»»»»»»»»

ITEM COUNT= 85, BYTE COUNT= 2378, AVG. BYTES/ITEM=
AVG. ITEMS/GROUP= 28.3, STD. DEVIATION= 1.5, AVG. BYTES/GROUP=

Sample usage of the ISTAT command.

>HASH-TEST PARCEL [CR]

TEST MODULO: 9 [CR]
FILE= PARCEL MODULO= 9 SEPAR= 1
FRAMES BYTES ITMS
000001 00256 009 *»»»»>
000001 00281 010 *»»»»»
000001 00255 009 *»»»»>
000001 00229 008 *»»»»
000001 00248 009 *»»»»>
000001 00251 009 *»»»»>
000001 00272 010 *»»»»»
000001 00307 all *»»»»»>
000001 00279 010 *»»»»»

13:50:55 22 MAR 1978

ITEM COUNT= 85, BYTE COUNT= 2378, AVG. BYTES/ITEM-
AVG. ITEMS/GROUP- 9.4, STD. DEVIATION= .8, AVG. BYTES/GROUP=

Sample usage of the HASH-TEST verb.

27.9
792.6.

27.9
264.2.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

c

;tC"'
PAGE 613 ~j

10.16 DETERMINING NATURE OF GROUP FORMAT ERRORS

10.16.1 GROUP DEFINITION

(

The term group is used to specify one 'bucket' of storage. A file is made
up of a collection of groups, such that there are the same number of
groups as the number specified for the modulo of the file. Put another
way, the modulo of the file specifies the number of groups which make up
the file.

The hashing algorithm takes the specified item-id and decides in which
group it is or should be stored. The file retrieval or storage routine
then searches that group for the specified item. The hashing algorithm
may be thought of as dividing the item-id by the modulo in order to obtain
the remainder. This remainder is then the 'group number', and specifies
the group which is to be searched.

Within each group the items are stored physically end to end. Each item
is made up of a count field, a key, and the data. The documentation for
this system has conventionally used the term 'item-id' in place of the
term 'key'. It remains that the item-id is the key which is used to look
up the location of the item.

The count field exists only in a file representation of the item. It is a
sixteen-bit binary number, such that the high-order bit is zero,
represented in the file in ASCII hexadecimal notation, and as such takes
up four bytes of storage. It immediately precedes the item-id in the
file. If the item in question is the first item in the group, the count
field starts in the first data byte in the frame. If the item is not the
first item in the group, then the count field starts at the first byte
after the termination mark of the last item.

The count field is used as a pointer to the end of the item. The end of
the item must be an attribute mark followed by a segment mark. If the
count field does not point to this pattern, there is a group format error,
and the group format error handler will be entered.

10.16.2 GROUP FORMAT ERRORS

A GROUP FORMAT ERROR IS THE RESULT OF A HARDWARE ERROR!

A group format error is sensed if the count field does not point at an
attribute mark, segment mark sequence. This may occur if the count is
wrong, or if the data at the end of the item is wrong.

The count field is definitely wrong if any of the four digits which make
up the count field are not ASCII hexadecimal digits, which are X'30' -
X'39' or X'4l' - X'46', which are 0-9 and A-F.

The end of item data may be wrong if the count field contains the wrong
.ASCII hexadecimal digits, or if the end of item data is actually wrong.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 614

The end of item data may be wrong in several ways. If the item is
contained in a frame, then the end of item data may be wrong in the ways
that the the count field may be wrong. If the item spans a frame
boundary, certain other mechanisms came into play. If a process was in
the process of updating an item, to the extent that the first frame
containing the item was written to disc, but that the last frame was not
written when the process was interrupted by something like a cold start,
then a group format error will occur. If the overflow handler becomes
confused, the frames attached to a group may be acquired by another data
file or by a print file. The difference should be obvious on inspection,
using the DUMP verb. Print files do not normally contain attribute or
value marks and data files do not normally contain carraige-return, line
feed sequences.

If the damaged frame is the result of an incomplete update, then the
difficulty is localized. Repair of this group will usually attend to the
matter. If the damage appears to be due to co-ownership of the frame, the
problem may be greater. In this case it is best to leave the frame with
the frame to which it has a back-link, presuming that the data is
consistent in that chain. Then cut the forward link in the spurious chain
and terminate the group.

The effect of the group format error handler is to terminate the group at
the end of the last consistent item and cut the forward link out of the
last acceptable frame in the group. The rest of the overflow is
intentionally lost, because of the effect of having two copies of the same
frame referenced in the overflow chain.

The one case in which the group will not be terminated is when
file has meandered across the base of the file. In this case
probably best to recreate the file and selectively restore it.
file pointer should be thrown away. Do not use the DELETE-FILE
the old file, because this will further muddy the condition
overflow handler.

10.16.3 RECOVERY FROM GFE's

a print
it is

The old
verb on
of the

If a group format error is encountered, the system will invoke the group
format error handler. This processor will print the error message to the
terminal and wait for an operator response. The valid operator responses
are:

'D' - which will enter the system debugger.

'E' - which will end the process and return to TCL.

'F' - which will allow the GFE handler to fix the error and continue.

NOTE that fixing the error will undoubtedly cause the loss of at least one
data item. This record normally must be manually recovered! The recovery
strategy is to identify the file affected and do a SEL- RESTORE on the
file. It is best to do this as soon after the group format error is
noticed as possible.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 615

10.17 GENERATING CHECKSUMS: THE CHECK-SUM COMMAND

(-. I The CHECK-SUM command generates a checksum for file items, thus providing I
. a means to determine if data in a file has been changed.
--

(

FORMAT:

CHECK-SUM (DICT} file-name {item-list} {attribute} (selection-criteria}

A checksum is generated for items in the specified file, or subset of
items if the optional "item-list" and/or "selection-criteria" appear.
Furthermore, the checksum may be calculated for one specified attribute.
If no attribute is specified, the 1st default attribute will be used. If
there is no default attribute, or if the AMC is 9999, the entire item will
be included. The checksum will include the binary value of each character
times a positional value. This yields a checksum which has a high
probability of being unique for a given character string. The dictionary
portion is checksummed if the "DICT" option appears. (A checksum is the
arithmetic total, disregarding overflow, of all bytes in the selected
items.)

A message is output, giving checksum statistics, in the following form:

BYTE STATISTICS FOR file-name (or attribute name):
TOTAL = t AVERAGE = a ITEMS = i CKSUM= c BITS = b

where:

t is the total number of bytes in the attribute (or item) included
a is the average number of bytes
i is the number of items
c is the checksum
b is a bit count

The attribute mark trailing the specified attribute (or item) will be
included in the statistics.

To use checksums, the user should issue CHECK-SUM commands for all files,
or portions of files, to be verified and keep the output statistics.
Subsequently, the CHECK-SUM commands can be reissued to verify that the
checksum statistics have not changed. The checksum must be recalculated
whenever the user updates the file!

(~~\ CHAPTER 10 - SYSTEM MAINTENANCE

PAGE 616

Copyright (c) 1985 PICK SYSTEMS

10 . 1 B SYSTEM PROGRAMMER (SYSPROG) ACCOUNT

----------------------------~---
Several special faciities are normally used from the System Programmer
(SYSPROG) Account. Procedures on this account are normally performed by
persons more familiar with the overall operation of the system.

To log on to the SYSPROG Account, type the following:

LOGON PLEASE: SYSPROG, password [CR]

where "password" is the appropriate password set up
Alternate logon names (such as SP) may be used.

CREATE-ACCOUNT
ACCOUNT-RESTORE
BUFFERS
LOCK-FRAME
: FILES
:ABS/FILES

DELETE-ACCOUNT
SAVE
SEL-RESTORE
UNLOCK-FRAME
:ABSLOAD
WHAT

Some SYSPROG Verbs and Procs.

10.19 AVAILABLE SYSTEM SPACE: THE POVF COMMAND

I The POVF verb displays the system overflow table.

FORMAT:
POVF (P}

for SYSPROG.

The POVF verb displays the contents of the system overflow table.

The P option forces all printed output to the line printer. the first
line of output is the FID of the first frame in linked overflow, folowed
by the number of frames in the linked chain. the next lines (up to 16)
describe blocks of contiguous overflow, and have the following format:

m - n p m - n p

where:

m is the first frame of a contiguous block.
n is the last frame of the block.
p is the number of frames in the block.

The total number of frames contained in all the contiguous overflow is
then printed (using error message number 293):

TOTAL NUMBER OF CONTIGUOUS FRAMES : number

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 617

10.20 CREATING ACCOUNTS and ASSEMBLING MODES

I The CREATE-ACCOUNT PROC is used to create new user-accounts. The SETUP- I
(- --~:::-:~~-:~~::~-:~:-~~::-~::~~~:-:~-~~~~::-:~:~-~:~:~~~---------------

(

(

CREATE-ACCOUNT PROC

The CREATE-ACCOUNT PROC generates a new account according to given
specifications. It then cop1es the contents of the NEWAC file (the
prototype M/DICT to the new user M/DICT. Finally it adds a file synonym
(Q item) to the account into SYSPROG's M/DICT.

The CREATE-ACCOUNT PROC is invoked by typing in the PROC name:

> CREATE-ACCOUNT [CR]

The PROC then prompts the user for the required information, as shown
below.

The CREATE-ACCOUNT PROC should not be used to create a new synonym to an
existent account; this should be done by using the EDITOR to create the
file synonym definition item (Q-item) in the SYSTEM dictionary.

SETUP-ASSY PROC

The SETUP-ASSY PROC sets up a user-account so that it is able to assemble
Assembly Language programs. To invoke this PROC enter "SETUP-ASSY"
followed by the account name. For example:

>SETUP-ASSY USER3 [CR]

Once invoked, the PROC will ask a series of questions requiring input from
the user. These questions are self-explanatory.

> CREATE-ACCOUNT
ACCOUNT NAME?SHERRY
L/RET CODE(S)?AAA]BBB

L/UPD CODE(S)?
PASSWORD?R2D2

PRIVILEGES?
MOD, SEP?37,1

FILE 'SHERRY'

391 ITEMS COPIED.
'SHERRY' UPDATED.
'SHERRY' COPIED.

PROC is typed in at TCL.
Anything but [CR] is legal.
Multi-valued retrieval code.

[CR] means no lock code.
User's LOGON password.

[CR] means SYSO. May be SYSO, SYSl, or SYS2.
[CR] defaults to 29,1.

CREATED; BASE= 34593 MODULO= 37 SEPAR = 1

Sample CREATE-ACCOUNT Usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 618

10.21 DELETE-ACCOUNT

I DELETE-ACCOUNT deletes an account and all its files from an PICK system.
r-\

DELETE-ACCOUNT is a PROC which runs the program DEL-ACC in SYSPROO-PL. '0
The PICK/BASIC program removes the SYSTEM D-pointer for the account, and
puts it in SYSPROO's MD. Then it removes all D-pointers to data files
from all the dictionaries on that account and places them in the accounts .
MD. the program then calls on the DELETE-FILE verb, which deletes the
account's MD, plus all dictionary and data-level files for that account,
from SYSPROO's MD.

Requirements to run DELETE-ACCOUNT:

1. You must be logged on to SYSPROO.

2. SYSPROO must have Q-pointers to the MD of the account, and to SYSTEM.

3. D-items must exist in DICT SYSTEM for SYSPROOand the account name.

4. SYSPROO must have access to SYSTEM and all files on the account to be
deleted.

ALL USERS SHOULD LOO OFF before running this because an item in the SYSTEM
dictionary will be deleted.

The DEL-ACC program produces a listing of all files being deleted.

> DELETE-ACCOUNT

ACCOUNT NAME ?SHERRY

FILES TO BE DELETED IN ACCOUNT SHERRY

FILE BASE MOD SEP

MD 34593 37 1
GEN/LED 85344 1 1
GEN/LED 49911 231 1
BP 44319 17 5

DO YOU STILL WANT TO DELETE THE ACCOUNT

PROC name is typed

at TCL.

02 APR 78 PAGE 1

?YES Must start with 'Y'

Sample DELETE-ACCOUNT usage.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

. PAGE 619

10.22 FILE STATISTICS REPORT

'I The File Statistics Report is a valuable tool for data base management.
(- This Report is automatically generated by running a FILE-SAVE, or may be
,i generated at any time by using the PROC LIST-FILE-STATS.

(

(

The FILE-SAVE process creates one item in the STAT-FILE for each D-pointer
saved on the file-save tape. a listing of the STAT-FILE is created at the
end of every file-save. the same listing can be generated from TCL by the
LIST-FILE-STATS PROC.

The statistics report adds data security by providing a list of file Base,
Modulo and Separation parameters, and by recording the order of files on a
FILE-SAVE tape.

The report is broken down by account, with a line of information generated
for each file in the account that includes:

total and average item size
total and average number of items per group
utilization of file-space
actual data stored, and "pad" space used in the file

A total line is generated for each account showing the total:

items
bytes (characters)
frames (includes linked)
group format errors

Creation of the STAT-FILE dictionary
procedure. STAT-FILE is contained
Account. As it is normally updated
for STAT-FILE on any other account.

and data areas is part of the SYS-GEN
on the System Programmer (SYSPROG)

from this account, there is no need

Alternately, the file may be created via the following:

CREATE-FILE (STAT-FILE 1,3 29,1) [CR]

When a FILE-SAVE is started, the STAT-FILE data area is cleared and the
current file statistics information is written into the data area.

The STAT-FILE data area will also be empty after a file-restore is done,
be cause Attribute 1 of the file definition is a DY. This is desirable as
the statistics are no longer applicable.

It is helpful to make synonym accounts in the SYSTEM dictionary Q
pointers, so that there is only one D-pointer for each account. this way,
the data for the account will be saved under the one account name that is
a D item in SYSTEM.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 620

The item-id in the STAT-FILE is of the form:

t:n

where "t" is the tape reel number where the file was dumped (this will be C' '\',
o if the SAVE was run without dumping data to the tape); and "n" is the
FILE-NUMBER. This file-number is used in the selective restoration of
files using "SEL-RESTORE".

Note that files in the listing that have a SIZE field of zero are synonym
D-pointer files, that is, a previously found D-pointer caused the data to
in the file to be dumped.

The NAME field of the items in the STAT-FILE contains data in the form:

accountname*dictname*dataname

where one, two or all three of the fields may be present, depending on
whether the file is an account, a dictionary, or a data-file.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 621

/ -~

10.23 UTILITY VERBS: STRIP-SOURCE, LOCK-FRAME, UNLOCK-FRAME,

CHARGES, AND CHARGE-TO

UTILITY VERBS

(" --
, ,I This topic describes a number of special utility verbs.

(

STRIP-SOURCE Verb

The STRIP-SOURCE verb is a TCL-II verb used to remove the source code from
Assembly Language programs. this frees large amounts of disc space back
to the available space pool. modes with source stripped out out can still
be verified against the ABS.

FORMAT:

STRIP-SOURCE file-name item-list

After the verb has been invoked, the user is prompted with:

DESTINATION FILE:

The file-name where the stripped object code is to be stored should then
be entered. For example:

>STRIP-SOURCE PROG * [CR]
DESTINATION FILE-SPROG [CR]

Here the file PROG containing source programs is stripped and copied to
the file SPROG.

The first six lines of the source item will be copied without source code
stripping. Standard Pick Systems convention for source modes has the
"FRAME" statement in line 1, and other descriptive information in lines 2
through 6; this information is maintained through the STRIP-SOURCE
process.

LOCK-FRAME Verb

The LOCK-FRAME verb may be used to core lock a frame.

FORMAT:

LOCK-FRAME number

where "number" is a decimal frame number. The LOCK-FRAME verb responds
with the absolute hexadecimal work address of the memory buffer in which
the frame is corelocked. The frame remains corelocked until it is
released by the UNLOCK-FRAME verb, or the system is re-booted.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 622

UNLOCK-FRAME Verb

The UNLOCK-FRAME verb clears the corelocked buffer status of the frame
indicated.

FORMAT:

UNLOCK-FRAME number

where "number" is a decimal frame number.

CHARGES Verb

The CHARGES verb prints the current computer usage since logon as connect
time in minutes and CPU usage in charge-units.

FORMAT:

CHARGES

CHARGE-TO Verb

The CHARGE-TO verb is used to keep track of computer usage for several
projects associated with the same logon name.

FORMAT:

CHARGE-TO name

This verb performs the following:

1. Terminates the current charge session by updating the ACC file with
the user's accumulated charge-units, line printer pages and connect
time statistics.

2. Changes the logon name to the original name concatenated with an
asterisk and then the name following "CHARGE-TO".

For example, if the user is currently logged on to SYSPROG, and he types
in the following:

>CHARGE-TO PROJECT 1 [CR]

the LOGON name in the ACC file for the process will be changed to
"SYSPROG*PROJECTl".

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 623

10.24 SYS-GEN AND FILE-SAVE TAPES: FORMAT

System restore is the process of "bringing up", or creating, the PICK
('~ . system. a bootstrap program, all system software and all files can be

. I loaded from magnetic tape. The system configuration is set up at cold
start time.

(

A system can be restored from a SYS-GEN tape or a file-save tape. there
are three sections on a SYS-GEN tape:

1. The bootstrap section contains the MONITOR, the configurator, and
some virtual program frames needed to bootstrap the system. There
are 33 tape records in this section, followed by an END-OF-FILE mark
(EOF) .

2. The ABS section, which contains the system software. this section is
preceeded by a tape label, which contains the release level, and
terminated by an EOF. this software makes up the PICK Operating
System, the Language processors (ACCESS, PICK/BASIC, PROC, ASSEMBLY),
and the various utility programs.

3. The FILES section contains a minimum set of PICK files, including the
SYSTEM dictionary, a SYSPROG account, and the POINTER-FILE, SYS-ERRS,
ERRMSG and ACC files. each account is preceeded by a tape label
containing the account name, and is followed by an EOF. the last
account on the tape is followed by two (2) EOF's (called an EOD, or
END-OF-DATA mark).

A FILE-SAVE tape contains only the third section--Files.
coldstart nor ABS sections on FILE-SAVE tapes, only files.

There are no

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 624

10.25 FILE-RESTORE

A file-restore can be initiated from a bootstrap, by use of the F option.

Sequence of Events in File-restores

The first event in a complete file-restore is the initialization of
available overflow space to the complete range on the system from the
process workspaces (WSSTART) forward to the end of disc (MAXFID).

The SYSTEM dictionary is then created and cleared. Then the first account
Master Dictionary (MD) is created and a pointer to it is placed in the
SYSTEM dictionary. Then the first file dictionary is created and a
pointer to it is placed in the account's Master Dictionary. Next is the
data file, which will proceed in one of two ways:

1. The slow method. The file is created, a pointer is added to the
dictionary, and then the data is loaded. This method is necessary if
reallocation is being done, or if the file is the POINTER-FILE.

2. The fast method. The file is loaded group by group as it is created.
After it is completely loaded, a pointer is placed in the dictionary.
This is the normal method.

Next, the file dictionary is loaded. The
sections are created and loaded, and so
are finished, when the SYSTEM dictionary
file-restore.

next file's dictionary and data
forth until all of the accounts
is loaded. This completes the

Account-restores proceed in the same sequence, except that the SYSTEM
Dictionary is already present, and only the pointer to the account Master
Dictionary is added to it.

Console Listing Accompanying File-restore

The figure below is an example of a file-restore listing. Each line
corresponds to a file pointer. Each line is indented in accordance with
the level of the file in which the pointer is placed. The file name is
first followed by the base, modulo, and separation of the file as it is
being restored. An (S) following the line indicates that the pointer has
the same base as some other pointer already listed and that that file has
already been created.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 625

(

(

TERMINAL RESPONSE FOR ADDITIONAL REELS

When a tape reaches the end-of-tape mark without having finished the
routine which it is executing, it will send the "mount next tape" message.
When the next tape is mounted, the process will wait for the character
'C', at which time it will check the tape label on the new tape for
admissability. If it does not like the tape label, it will say so, and
wait for the tape to be changed to the correct tape, and the character 'c'
to be entered.

It may occur that the tape that was mounted, which had a label that the
processor did not like, was the correct tape, however. It is now possible
to execute the response '0', for override. This will cause the tape
accept the new reel without continuing to complain about the label. It
may also cause the processor to complain about the label on the next tape,
at which time the use of the '0' response is recommended.

>SEL-RESTORE TEST * (N) [CR]

FILE#:999[CR]

SYSTEM 1
BLOCK-CONVERT 2

BLOCK-CONVERT (S)
SYSPROG 4

SM 5
SM 6
SM77 7

MD (S)
M/DICT (S)
SHERRY 65

INVOICE 66
INVOICE-FEB 67
INVOICE-JAN 68
INVOICE-MAR 69

ACC 144
ACC 145

ACC 146

Fake SEL-RESTORE to look at tape

Non-existant file number

SYSTEM dictionary pointer
BLOCK-CONVERT dictionary
DATA section same as DICT section
SYSTEM pointer to SYSPROG account
dictionary
data
another data file

files in SYSPROG account

SYSPROG'S MD

new account
Shared dictionary
Multiple DATA pointers

Other accounts

SYSTEM pointer to ACC account
DICT ACC file in ACC account
DATA ACe file

Sample FILE-RESTORE Console Listing.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 626

10.26 ERROR RECOVERY DURING FILE LOADS

If parity errors or other errors mar the files section of a FILE-SAVE
tape, some data may be lost. The file-restore will continue, but operator
assistance may be needed.

Parity Error Recovery Procedure

If a parity error is detected on a file restore, the prompt:

PARITY ERROR! ENTER A TO TRY AGAIN
I TO IGNORE?

will be printed. Entering 'I' will cause the data block to be accepted as
it is from tape without data correction. The specific item and file
affected cannot be determined except as can be judged by the tape
position, and the current set of files which have not been completed.

Recovery From Destroyed Pointers

If tape information identifying a file is destroyed, it may be impossible
for the restore to create that file and subsequent files in the right
order. the message:

ERROR IN DSEGMENT
@fff.ddd
LEVEL (1-3)?'

will be printed. fff.ddd gives the frame and hex displacement of the
software location at which the error was detected. The operator is
expected to advise the restore processor whether to:

1. Search for and continue with the next account on tape,

2. Search for the next dictionary file on tape, or

3. Search for the next data file on tape.

The response requires the operator's judgment as to the positioning of
files on the tape and the total situation.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 627

10.27 SELECTIVE RESTORES

(

c'

This verb is used to restore a file from a system or account file save
tape.

Selective restores are performed as follows:

1. Log on to the account with the file to be restored.

2. Mount the tape.

NOTE: Selective-restores may be started from any tape of a multi-tape
file-save! To save time in searching a tape, the STAT-FILE listing may be
consulted to determine which reel the file's data starts on, and that reel
may be mounted. a SEL-RESTORE may be started at any place on any reel of
the file-save tape. any co1dstart or ABS sections will be skipped
automatically.

3. Attach the tape unit (T-ATT)

4. To start the restore, enter:

>SEL-RESTORE file-name (item-list} (options)} [CR]

where "file-name" is the file in which items will
must be defined on the account from which the
optional item-list enumerates those items eligible
be used to indicate all items on the tape.

be placed. This file
restore is run. The
for restore. '*' may

The data may be restored from either a specific file-name on the tape, or
a file-number; the file-number may be obtained from a listing of the
STAT-FILE when the tape was created.

If the N option is NOT used, the operator will be prompted:

ACCOUNT NAME ON TAPE?account-name

FILE NAME?fi1e-name

where 'account-name' is the name of the account under which the file was
saved on tape, and 'file-name' is the name of the file as it appears on
the tape. Entering [CR] to 'FILE NAME?' causes the account Master
Dictionary (MO) to be restored. The file-name may be of the form file
name, DICT file-name, of fi1e-name,data-name.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 628

If the N option is used, the prompt will be:

FILE t?

and the file~number must then be entered.

As the tape is searched, the file-names on it are printed, along with the
file-numbers; names are indented one space for account-names, two spaces
for dictionaries, and three for data-file-names.

Applicable options are:

o Overlay items already on the file.

A The tape is already positioned in the desired account. In this case
the "ACCOUNT NAME ON TAPE" prompt will not appear.

N The file is to be identified on tape by its file number, in which
case the prompt will be FILEt? The required file t is the one
which accompanies the file on the statistics file print-out for the
appropriate file save.

I The item-ids of the restored items will not be printed.

C This option has effect when the 'N' option is used. It causes every
item before the next end of file to be a candidate for restore. This
ensures that data can be restored even if a D pointer is damaged on
the tape.

S Skips forward spacing of the tape. this is used when restoring from
2.4 or 2.5 tapes, or when at the beginning of the second or later
reels of a file-save.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (C) 1985 PICK SYSTEMS

PAGE 629

, . C
~

(/

c'

Hints:

If a STAT-FILE listing for the tape is available, ensure that the account
name and file-name are on the tape as you think they should be. In the
case of mUltiple D-pointers in the SYSTEM dictionary to an account, or
multiple D-pointers in the M/DICT to the file, the account-name or file
name on the tape will be the first one the save processor encounters, and
may be different from the one commonly used by you. All other names will
appear in the STAT-FILE listing with no data (null SIZE field), and cannot
be specified in the SEL-RESTORE!

If in doubt about the contents of the tape, the files can be listed by
using a SEL-RESTORE of the form:

>SEL-RESTORE TEMP *

ACCOUNT-NAME ON TAPE? XXXXX

FILE-NAME? YYYYY

where XXXXX and YYYYY are fake names that will
search the tape for non-existent data; files
encountered, along with the file-numbers. Files
and should be ignored.

cause the SEL-RESTORE to
will be printed out as
with an (S) are synonyms,

In restoring both the dictionary and data section of a file, restore the
,dictionary first (DICT filename) . remember that the dictionary items
FOLLOW the data items, so for large files, there may be a considerable
pause after the time that the system has found the file (it stops the
printout), and the actual restore of the items.

At any point, the tape may be backed up (T-BCK (n)), or forward-spaced
(T-FWD (n)) to position it, and a SEL-RESTORE with the A or N options may

'be started; this may be faster than restarting the tape from the
beginning when restoring both the dictionary and the data sections of a
file, or when restoring multiple files.

Remember also that account dictionaries (M/DICT items) FOLLOW ALL OTHER
FILES for the account on the tape.

~o restore the Q-pointers in the SYSTEM dictionary, use the N option with
FILE# = 1. Remember that this will be the last file on the tape! On a
multi-reel file-save, mount reel #1 first, and start the SEL-RESTORE as
usual; when the file-name "SYSTEM" has printed out, use the BREAK key to
interrupt the restore, then mount the LAST reel of the set, and type
"G[CR]" to continue the process. This saves searching the entire first
reel and any intermediate reels of tape.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

,PAGE 630

10. 28 SYSTEM BACKUP : AN OVERVIEW

The PICK system has the ability to save the entire disk data base on
magnetic tape and to restore the tape copy, entirely or selectively, to L~
disc. It is this procedure that provides backup in the event of·a
catastrophic failure or error.

IT IS YOUR RESPONSIBLITY TO DO SAVES FREQUENTLY ENOUGH TO ENSURE ADEQUATE
BACKUP FOR YOUR PARTICULAR SITUATION!

The FILE-SAVE procedure protects your valuable data base by creating an
off-line copy of it on magnetic tape. Tape is a inexpensive commodity
when compared to the time and effort invested in your data base. It is
vital that you protect that investment through adequate backup. As a
MINIMUM pratice you should have separate daily backup tape-sets for one
week's time and a monthly backup for each month in the previous year.
Some situations may also need a weekly backup cycle for the past month.
That is, use a separate tape-set for each day of the week, one for each
week of the month and one for each month of the year. The longer cycle
tape-sets should be stored off premises to provide protection in the event
of physical damage such as fire.

ONLY YOU CAN DETERMINE WHAT IS ADEQUATE FOR THE PROTECTION OF YOUR DATA!

The FILE-SAVE procedure is quite easy. You simply mount the tape reel
onto which you intend to save your data, and then LOGON to the FILE-SAVE
account. The FILE-SAVE will ask a few simple questions and then will
begin saving your data. When it has finished it will rewind the tape and
log itself OFF. Operator intervention is required only if the data to be
saved exceeds one tape reel (approximately 28 Mh. per 2400-ft. reel).
You then have a complete backup of your disk data base. \"

The FILE-SAVE procedure normally creates a list on the terminal of the
files it finds as it saves the data base. It will output error messages
if it encounters unusual or illegal conditions but it will attempt to
continue to save data. If the terminal you run the save on is not a hard
copy terminal, you may want to send the listing to your printer. You can
do so by answering "Y" to the first question "CONSOLE LIST TO PRINTER?".

The FILE-SAVE generates statistics of the saved data as a by-product.
Answer "Y" to the question "DO YOU WANT FILE STAT REPORT?"if you desire a
printed report displaying the current file statistics.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 631
;<f0-
("

~./

10.29 THE SAVE VERB

c

I SAVE is the verb that performs a FILE-SAVE; it is called by the FILE- I
SAVE PROC.

The FILE-SAVE PRce sets up a sentence using the SAVE verb.

FORMAT:

SAVE {(options) }

OPTION MEANING

D Data area is saved. this option must be present if any Files are
to be saved.

F File names are printed. if (F) is not specified, just the SYSTEM
file and account-names are listed.

G Group Format Errors are repaired. GFE's are also logged in the
STAT-FILE, if the (S) option is present.

M

N

P

Bit Map of all FID's of frames
generated. (Not implemented fully).

in Files on the system is

No overflow space is required to run the SAVE. this makes it
possible to perform a FILE-SAVE on a system that has no overflow
space available. NOTE: if there are more than 1500 Files on the
system, one (1) frame of overflow space will be needed for every
125 files above 1500.

Output (list of file names) goes to the line printer. if (P) is
not specified, all output goes to the user's terminal.

S STAT-FILE items are stored, one for each file saved. must be
present if a STAT-FILE listing is made after the FILE-SAVE.

T Output to Magnetic Tape. if the (T) option is not specified,
nothing will be written on magnetic tape. however, the STAT-FILE
will be generated if the (S) option is used.

Files whose file definition items have a "DX" in line 1 will not be
saved. thus any data file, dictionary or even an entire account may
be prevented from taking up space on the FILE-SAVE tape.

Files whose file definition items have a "DY" in line 1 will be saved,
but none of the items in the file or sub-files will be saved. the
data section of the STAT-FILE, for instance, has a "DY" code, because
the data is not valid after a file-restore, and needs not be saved.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 632

To prevent spurious (fake) Group Format Error messages from occurring
on other lines while the FILE-SAVE is running, the SAVE processor
locks groups as it saves them. up to 4 groups may be locked at one
time by a file-save process. these groups would be the ones
containing:

1. The SYSTEM dictionary pointer for the account being saved.

2. The file dictionary pointer for the dictionary of the file being
saved. this would be a group in the account's MD.

3. The group in the data file being saved.

4. A group in the dictionary of the ACC file.

If a user on another line tries to access data in a locked group, his
terminal will hang until the file-save process finishes saving all the
items in that group and unlocks it.

If the (T) option is specified, the SAVE processor will prompt the
user's terminal:

FILE-SAVE TAPE LABEL =

The response will be written on the tape as part of the tape label

10.29.1 MULTIPLE REEL SAVES

When the data to be saved exceeds the capacity of the mounted reel, a
MOUNT NEXT REEL message will appear on the terminal screen. The
cursor will be prompting the operator for input, immediately following
a pound-sign (#) which has been displayed as part of the MOUNT NEXT
REEL message.

Remove the tape reel, which should have rewound itself. Mount and
position the next reel to the BOT mark. (Beginning Of Tape) Make sure
you have inserted a write-ring. Make sure tape drive is on-line. Now
enter the appropriate character at the #.

C - CONTINUE

o - OVERWRITE (used in cases of erroneous tape labels)

Q - QUIT

This procedure also holds true for RESTORING multiple reels.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 633

c

(

10.30 ACCOUNT-SAVE AND ACCOUNT-RESTORE

The system has the ability to save and restore single
ACCOUNT-RESTORE verb is used to add a single account
existing PICK system. The ACCOUNT-SAVE PROC allows you to
tape with only one account on it.

accounts. The
to an already
generate a save

ACCOUNT-RESTORE

An Account-restore can be performed from a save of a whole system or from
an Account-save tape. in either case, the account will be restored and a
pointer to the account will be created in the SYSTEM dictionary. NOTE
the account must not already exist on the system. Account-restores may be
started from any tape of a multi-tape file-save! To save time in
searching a tape, the STAT-FILE listing may be consulted to determine
which reel the account's data starts on, and that reel may be mounted.

Account restores are performed as follows:

1. Log on to SYSPROG
2. Mount the tape with the account on it.
3. Type: ACCOUNT-RESTORE new-account-name [CR]

ACCOUNT NAME ON TAPE? old-account-name [CR]

The operator must respond with the name of the account, the same name
under which the save tape saved the account must be used. The tape will
be searched for the account, and the restore will proceed automatically.

A 'Synonym' segment may be encountered with a base which has
found on the tape. This would happen if a D pointer on the saved
pointed to a file on another account, or if a 'D' segment on the
unrecognizable because of a parity error. In this case, the
'SYNONYM NOT FOUND' will appear. The synonym D-pointer will
created but the restore will continue.

ACCOUNT-SAVE PROC

not been
account

tape was
message
not be

The 'ACCOUNT-SAVE' PROC functions similarly to the 'FILE-SAVE' PROC. The
files section contains no System Dictionary pointer or items, and only one
account is saved. No synonym D or Q pointers will be saved. If STAT-FILE
items are generated, they will pertain only to the saved account.

Account saves are performed as follows:

1. Log onto SYSPRO
2. Mount a tape with a write ring.
3. Type: ACCOUNT-SAVE [CR]

TAPE LABEL IF DESIRED tape-label [CR]
ACCOUNT NAME? account-to-be-saved [CR]

The response to this must be an account name in the system dictionary.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 634

10.31 SYSTEM STATUS: THE WHAT AND WHERE VERBS

The WHAT verb is used to display the system configuration, the current
status of its locks and tables, and the location of the processes that are
logged on. The WHERE verb is a subset of the WHAT verb.

FORMAT:

WHAT {(options) }

where the options may be "P" for output to the printer, and "s" for
generating the "WHERE"-data (see below) in numerical sequence.

FORMAT:

WHERE {n} {(options)}

WHERE may be used to display data for all channels that are logged on; if
the optional "n" is used, only data for channel n is displayed. The where
verb also allows specification of a range of lines as well as the
specification of an account name. The default form of the WHERE displays
all lines which are logged-on. Display of the status of lines not logged
on by the where verb requires the use of the 'Z' option.

The WHAT verb has several selectable parts. The system configuration is
displayed in every case. The option 'L' will suppress the display of the
locks; the option 'W' will suppress the display of the WHERE component;
and the'S' option will suppress the display of the SP-STATUS component.
If a numeric or a numeric range is included, it will be applied the the
WHERE component, as will an account name specification. The 'z' option
will apply to the WHERE component, and the 'A' option will apply to the
SP-STATUS component. Some examples follow:

WHERE 3-5

WHERE 'DP'

WHATL

WHATW

WHATS

WHAT LWS

Displays the return stack for users three through
five.

Displays the return stack for all lines logged onto
DP.

Will suppress the locks section of the WHAT verb.

Will suppress the WHERE section of the WHAT verb.

Will suppress the SP-STATUS section of the WHAT verb.

Will yei1d only the system configuration section of
the WHAT verb.

WHAT 'account-name'
Will display only those lines which have the account
account-name logged onto them.

New forms of the WHO, WHAT, and WHERE verbs.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 635

c

(

The WHAT verb displays the state of the system as below: (numbers
brackets are not part of display).

15:03:22 19 JAN 1978
CORE LINES PCBO WSSTART WSSIZE SYSBASE/MOO/SEP MAXFIO OEBASE AVAILS PACE

64K 17 512 1056 100 6156 11 1 97799 0 51234
[1] [2] [3] [4] ... [5] [6] [7]

15679 (303F)-11

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00

16 0400 3F 00 165.083 164.04C
*02 0240 7F 00 121.000 121.059

00 0200 7B 00 6.lSB 183.123 l8l.07F
11 0360 5F 00 ll.lS6 16.0F4
01 0220 70 40 21.033 6.070 6.033 16.1C8 13.042
07 02EO 70 00 T 6.070 6.033 5.0S4
08 0300 70 00 6.070 6.033 S.054

[12] [13] [14] [IS] [16] [17]

SPOOLER IS NOT ACTIVE
LINE PRINTER READY.

NOTES:
[1] Number of communication lines (terminals) plus one (spooler)

= number of processes on system.
[2] PCB-FlO for channel zero; each following channel's PCB-FlO is

displaced by 32 frames from PCBO.
[3] Extended work-space starting FlO; WSSTART = PCBO + 32*LINES

(Including SPOOLER).

[8]

[9]

[10]
[10]
[10]

[11)

[4] Extended work-space size; number of frames per workspace is either
100 or 66 frames. There are 3 workspaces per line.

in

[S] System base-FIO/modulo/separation; SYSBASE = WSSTART + WSSIZE*3*LINES.
[6) Maximum disc FlO; (TSO - 97799; T200 - 364999).
[7] Reserved.
[8] Available overflow space; linked frames + contiguous frames.
[9] Group-locks (if any); format= ddddd (xxxxx)-cc where:

ddddd=group FlO (decimal); xxxxx-group FlO (hex); cc=channel number

channel number is internally coded from PCB-FlO of channel; upper nybble
of lower byte concatenated with lower nybble of upper byte; it displays
as the actual channel number, however.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 636

[10] PICK/BASIC locks (48); system reserved (15); spooler-linking-work
space (last bit). Bits start @ 127.20.

[11] System lock bytes; OO-available; else has channel # as above.
LOCK # LOC USAGE
o 127 .0 Lock-table lock. (~~.
1 127.1 OVerflow table lock.
2 127.2 Group-lock table lock. ',,---/
3 127.3 MESSAGE processor lock.
4-29 Reserved.

Data equivalent to "WHERE" follows.

Sequence of channels is in current priority chain sequence, except for those
channels that have a PIB-status of "7D" (waiting for terminal input),
which are not in the chain and therefore appear in numerical sequence.
If the "s" option is used in the WHAT verb, all channels are in numerical
sequence.

[12] Channel number; preceded by a "*" if your channel.
[13] PCB-FID (hex) of channel.
[14] PIB-status of channel; 7F/FF = Active, or ready to go.

7B/FB -= Terminal output; 7D - Terminal input;
SF = waiting for disc; 3F ""' Release Quantum/Sleeping.
Typically spooler is "3F".

[15] PIB-status-2; 00 - Normal; 40 = In DEBUGGER.
[16] "T"""' Tape attached; "P"- Printer attached.
[17] Location counter (first address) & subroutine return-stack addresses.

Entry format = fff.lll where fff ""' decimal FID; III = hex. location.

Typical locations: 5 = TCL
6/9 = Terminal I/O; 13-16 = EDITOR;
22-32 = ASSEMBLER 53-70 = ACCESS Compiler;
107,109,180-189= PICK/BASIC;
290-298= RUNOFF; 165= SPOOLER.
Note: in above data, channels 7 & 8 are at TCL prompt;
channel 1 is in the debugger.

21 -= DEBUGGER;
71-100 = LIST;
190-199= PICK/BASIC CO~~~J

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 637

10.32 VERIFYING SOFTWARE

I The VERIFY-SYSTEM PROC checks to see if the system software is correct.

(--:::-~::~~:::::--::::-:::::::::-:-:::::~:::--:::-::::~-:::::-::-::::::::~--

(,

from 1 to 399. These check-sums are compared with those in the ERRMSG
file, in an item named "CHECK-SUM". This item contains the correct check
sum for all the system software frames. Each line in the item contains a
check-sum for one frame of code, optionally followed by one or more
hexadecimal limits. If the limits are present, the check-sum is generated
only for bytes within the limits. If no limits are present, the check-sum
is generated for bytes O--X'lFF'. This is done because some frames
contain tables which change from time to time, such as the system overflow
table. Table entries are not check-summed, only assembly code.

If all the program frames verify, error message 341 is printed:

[341] RELEASE XX.X SYSTEM VERIFIED.

If a frame generates a check-sum which does not match the check-sum for
that frame in the "CHECK-SUM" item, the FID of the frame, the generated
check-sum and the stored check-sum from the item are printed, and error
message 342 is printed at the end of the check run:

[342] RELEASE XX.X SYSTEM DOES NOT VERIFY!
THERE ARE n PROGRAM FRAMES WITH MISMATCHES!

Where n is the number of programs whose check-sums do not match.

The VERIFY-SYSTEM PROC should be
system software is in error.

run whenever it is suspected that the

If a mismatch is found, the software can be restored by mounting the sys
gen tape and using the 'A' boot option.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 638

10.33 USER-DEFINED CURSOR CONTROL IN PICK/BASIC

I PICK PICK/BASIC supports ADDS REGENT 100 terminals; to use other I
--~~~~~~~:~::~~-::~~~:~~-~:-~~::-~~~:-~~~~:~-~~-~~-~~~:~-~~~:~~::~----- ~)

The cursor control (@) function in PICK/BASIC is designed to run on a
REGENT terminal. To do this, set the terminal type to R. (See the
section on the TERM verb.)

To use another terminal, pick a terminal type other than R. When you use
the @ function in PICK/BASIC, the PICK/BASIC run-time package performs a
subroutine call to frame 399 (SYSTEM-CURSOR.) The interface is:

TO

CTRll

CTRIO

contains the X co-ordinate.

also contains the X co-ordinate.

contains the Y co-ordinate, if there is one. otherwise, CTRIO
will be negative.

R15 points one byte before the location of the cursor control string
to be generated by the user's assembly program.

NOTE: Cursor control strings are built directly in the PICK/BASIC
program's descriptor table, using a direct string (X'02') descriptor type.
Cursor control strings cannot exceed 8 bytes in length! If you generate a
cursor control string of more than 8 bytes, you will destroy the
PICK/BASIC program's descriptor table!

The user should look at the item SYSTEM-CURSOR in the USER-MODES file for
examples of how to program cursor control for different terminals.

CHAPTER 10 - SYSTEM MAINTENANCE Copyright (c) 1985 PICK SYSTEMS

PAGE 639

(

(

SECTION 11

ICONjPICK
TERMINAL
DEVICES

~--./

r'
~-j

(

(

(

TERMINAL DEVICES SECTION 11

11.1 Terminal Control Faeilities: An Introduction

Most modern application programs take advantage of the enhanced characteristics offered by
asynchronous terminals. Features such as reverse video and row/column addressing are
common, as well as a host of other enhanced characteristics that vary from vendor to vendor.
An installed site also has a vast plethora of terminals to chose from, each offering a feature or
capability that make them unique in the marketplace. In order to cope with the reality of
options given to the buyer, lOON/PICK has facilities to upgrade current terminal definitions
to incorporate new features, as well as define entirely new cursor types to the system. It is
the purpose of this chapter to describe in detail the issue of system terminal control.

OONVENTIONS USED IN THIS OHAPTER

CONVENTION MEANING

UPPER CASE Characters printed in upper case are
required and must appear exactly as
shown.

lower case Characters printed in lower case are
parameters provided by the user.

[] Braces surrounding a parameter
indicate that the parameter is optional

TERMTYPE The single character code that defines
a port as a type of terminal, the
same character that shows in the
TERM TYPE field of the TERM verb.

11.2 EDIT-TERMINALS

Terminal definitions proc, allowing a system administrator to alter or define new
terminals and make them available to system users.

FORMAT:

ED IT-TERMINALS

EDIT-TERMINALS PROC

The EDIT-TERMINALS PROC will modify or generate terminal definitions according to
specifications provided by the user in a menu driven environment. If new terminal definitions
are to be generated, the user must have a manufacturer's technical reference for that terminal.
This PROC is only available to the SYSPROG account.

ICeN INTERNATIONAL 11-1

TERMINAL DEVICES

Mter entering the proe name EDIT-TERMINALS at TCL, the following menu will be
displayed:

Current terminal definitions are

*W wyse50
v vt100
I mMPC

*v viewpoin t
*A ansi
*H hazeltine

1) Activate a terminal definition
2) Deactivate a terminal definition

*D dt1200 L
t tvi970 T

*R regent

3) Modify/Define a terminal definition
4) Delete a terminal definition ..
5) Copy an EXISTING terminal definition

En ter selection, RETURN to exit

LSI
tvi940

Beneath the heading Current terminal definitions are is the list of terminals that may be
understood by the ICON/PICK system. The· character before a terminal name indicates
that this terminal type has been loaded by this PROC or by the LOAD-TERMINALS verb
and is currently available to users on the system. The single character preceding the long
version of the name is the TERMTYPE code used when setting a port to a specific
TERMTYPE via the TERM verb. The rest of the entry is the long version of the terminal
name. This is also the item name in the TERMINALS file, typically found in the SHARED-

c

FILES account. "-.-

11.2.1 Activate a Terminal Definition

Activating a terminal definition is the functional equivalent of executing the LOAD
TERMINALS PROC. An additional prompt is displayed

Enter terminal name (* means ALL)

By entering the * character, all of the terminal types will be loaded and available for use by
the TERM verb. The user may optionally enter the long name of the terminal, after which
only that terminal type will be loaded. Upon completion, the screen will be repainted and the
main menu displayed again. Note that the TERMTYPE character must be unique for each
terminal definition loaded. If there are duplicates, terminal definitions should be loaded
selectively one at a time.

11.2.2 Deactivate a Terminal Definition

11-2

Deactivating a terminal definition is the functional equivalent of executing the CLEAR
TERMINALS verb. An additional prompt is displayed: .

Enter terminal name (* means ALL)

ICON INTERNATIONAL

(

(

11

By entering the * character, all of the terminal types will be cleared, leaving no system ability
to do any special terminal codes. The user may optionally enter the long name of the
terminal to be deactivated. This is particularly useful if the definition of a terminal has been
changed and needs to be reloaded, as an active terminal cannot be reloaded.

11.2.3 Modify/Define a Terminal Definition

Modifying or Defining a terminal definition is the most powerful feature of this proc. The
ICON/PICK system is shipped with a variety of terminals, but it is this feature that allows a
vendor or a user site to customize an application package by exploiting the features of a
terminal.

When using this option, there are a number of prompts that must be responded to, typically
with the character code for a given function. These codes can be entered in one of three ways;
by entering the ASCn mnemonic, by the decimal or hexadecimal value, or by an ASCII
character.

EXAMPLE: ENTERING A TERMINAL CODE SEQUENCE

CODE:
HEXIDECIMAL:
DECIMAL:
MNEMONIC:

Escape "A" char(9)
.IB .41 .09
27659
ESC AHT

Notice that hexadecimal numbers are preceded by a period. The mnemonic codes are the
typical ASCII codes for the characters, which can be found in Section 9.134, List 0/ ASCII
Codes, in the ICON/PICK User Manual (P /N 171-010-(01).

The first prompt asks for the terminal type, which is the long name of the terminal. If t.his is
a Modification, then an item with the terminal name exists in the TERMINALS file and will
be retrieved at this time. As the user progresses through the various definition items, the
values found in the item will appear as defaults, allowing the user to press the return key if
no modification is required. Default values will appear within brackets in the ASCII
mnemonic form (using the example above, the default would appear as IESC A HT]).

If a terminal definition is being created (which is to say the value entered is not an item in the
TERMINALS file), the message New terminal type will appear.

The next prompt will request the TERMINAL TYPE code, which is the TERMTYPE code.

ICON INTERNATIONAL 11-3

11-4

TERMINAL DEVICES

The Cursor address type is the next prompt. This requests the type of row/column
addressing codes that are used. The large majority of terminals use one of four types of /~

addressing schemes, one of which must be entered here: L
1- Adds Regent
2 - Televideo
3 - ANSI
4- WYSE 132

For example, the Televideo type of addressing is done with tour characters; an ESC, followed
by an "=", followed by row, and then column, each occupying a byte. If it is not altogether
clear from the technical documentation what type of scheme a given terminal is using, a little
experimentation with this 1>rompt may yield results.

Lead escape sequence is not currently in use.

Number of entries refers to the number of characteristics for a given terminal to be
maintained by ICON/PICK in the system tables. Any terminal will have at least ten
attributes, and the system will currently support up to 28. This number reflects how many
prompts will be displayed, as the PROC will not ask for features that are not to be included
in the definition. Null attributes are allowable.

Size of each entry will alert the system to the longest possible sequence of characters to be
used. Four is typical, although there are terminals that have functions requiring as many as
eight.

The remainder of the prompts will request specific codes, as can be seen in the following
example. By using the terminal manufacturer's technical reference guide, a terminal definition
may be constructed in a short time. .

IC.N INTERNATIONAL c

(

EXAMPLE: Modify/Define a terminal definition

Terminal type
Terminal code
Cursor address type
1 - Adds Regent, 2 - Televideo, 3 - ANSI, 4 - WYSE 132

Lead escape sequence
Number of entries
Size of each en try
Clear screen
Home cursor
Clear to end of screen
Clear to end of line
Start blink
Stop blink
Enable protect mode
Disable protect mode
Cursor back
Cursor up
Cursor righ t
Cursor down
Start reverse video
Stop reverse video
Start underline
Stop underline
Start protect
Stop protect
Enable transparen t
Disable transparent
Lock keyboard
Unlock keyboard
Insert line
Delete line
Insert character
Delete ch aracter

11.2.4 Delete a Terminal Definition

Deleting a terminal definition is functionally equivalent to removing an item from the
TERMINALS file. This function will completely erase a specific terminal definition.

IceN INTERNATIONAL

11

11-5

TERMINAL DEVICES

11.2.5 Copy an Existing Terminal Definition

Copying an existing terminal definition is the functional equivalent of copying one item of the
TERMINALS file to another, with the addition of requesting the user to enter a new
TERMTYPE code. This is especially useful for making new definitions, as you can copy the
definition of an existing terminal to a new item and have most of the work taken care of.

NOTE: It is impossible to copy a definition to itself.

11.3 CLEAR-TERMINALS

The CLEAR·TERMINALS vetb anows a user to disable a terminal definition system
wide. . .

FORMAT:

CLEAR· TERMINALS termtypes

where termtllPes is the single character TERMTYPE that has been previously loaded into the
system by the LOAD-TERMINALS verb. The TERMTYPE displayed when the TERM verb
is executed with no options.

11.4 LIST-TERMINALS

11-6

The LIST· TERMINALS verb displays all active TERM types and the corresponding
terminal name.

FORMAT:

LIST-TERMINALS [(S)]

This verb will list all active TERM types, which are activated through the EDIT
TERMINALS utility or LOAD·TERMINALS verb. Displayed are the one character TERM
codes, followed by the terminal name. A * appears next to the current TERM type for the
current line. If the S option is used, only the active TERM characters are displayed.

IC.N INTERNATIONAL
(

~
, \

,
J

(
EXAMPLE:

> LIST· TERMINALS

Available terminal type characters are:

8 80ROC t
R regent w
*D dt1200 P

TV910 Y
wyse50 d
pertec L

VT100 Y
Dialog B
lsi

vt52
bantam

The one character TERM TYPE is displayed, followed by the terminal name. A * precedes
the current TERM TYPE of this port.

>LIST·TERMINALS (8)

Available terminal type characters are: 8tyYRwdBDPL

The one character TERM TYPE codes are displayed.

11.5 LOAD-TERMINALS

Load a terminal definition item from a file into the system so that a new TERM TYPE
is available to the users.

FORMAT:

LOAD· TERMINALS filename [itemnameJ [*J

The -item loaded from the file must be in the proper format, having been created by the
EDIT-TERMINALS PROC.

E;XA.MJlLE:

> LOAD-TERMINALS TERMINALS DT1200

Will load the terminal definition for the DT1200 into the system terminal tables.

11.6 TERM:

Terminal and/or line printer characteristics may be displayed or set by a process via the
TERM command.

FORMAT:

TERM {a,b,c,d,e,f,g,h,t}

11

ICON INTERNATIONAL 11-7

11-8

TERMINAL DEVICES

ARGUMENTS:
i-'.

a is the terminal line length (i.e.,number of characters per line). The & parameter ~)
must be in the following range: 16<&<140.

b is the number of print lines per page on the terminal.

c is the number of blank lines per page on the terminal (sum of band e equals page
length).

d is the number of delay or idle characters following each carriage return or line
feed. This is used for terminals that require a pause after a carriage return or line
feed (i.e., since the CPU generates characters faster than the terminal can accept
them).

e is the number of delay characters following each top-of-form. If e is zero, no
form-feed character will be sent to either the terminal or the printer. If e is non
zero, a form-feed character is also output before each page; if e is 1, this character
is sent to the line-printer, but not to the terminal. If e is greater than I, the
form-feed character is also sent to the terminal at the beginning of each page and
that many delay or idle characters is also sent to allow the terminal time to settle
after the form-feed. The form-feed character sent to the printer is always a
hexadecimal 'OC' (ASCII FF character).

J is the backspace character. An ASCII backspace (control-H) is always input to
backspace over (or erase) the last character that was input; however, the user may
set the actual character echoed to his terminal. This accommodates terminals ' -
that cannot physically backspace, or that have a backspace character other than
the ASCII backspace. The r parameter should be 21 for the ADDS REGENT
terminal, and 8 for the TEC 2402 terminal.

9 is the line printer line length.

h is the line printer page length.

t is the terminal type code. This changes the form-feed character sent by the
system to match the terminal requirements and, more importantly, sets the
appropriate cursor addressing for the BASIC cursor functions. A few
TERMTYPES are:

A - ADDS 580
D - DIALOG
L - LEAR-SIEGLER ADM-3A
d - ICON DTI200
R - ADDS REGENT
T - TV950
V - ADDS VIEWPOINT
X - NO CURSOR ADDRESSING FUNCTIONS

IC.N INTER!'lATJONAL

(

11

Individual parameters may be null; i.e., as specified by two adjacent commas in the TERM
command. If so, the previously defined parameter remains in force. A TERM command
without a parameter list causes display of the current characteristics. To function properly,
the t parameter must be the last element in any TERM string. It may be the only element if
no other elements are to be changed. The other parameters are positional, however.

EXAMPLE:

>TERM <OR>

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP:
LF DELAY:
FF DELAY:
BACKSPACE:
TERM TYPE :

Terminal

79
24
o
1
1

21
R

Printer

132
64

Standard terminal characteristics set for the ADDS REGENT terminal.

>TERM ",,2 <OR>

Resets the FF delay to 2 in order to get a clear-screen on the terminal.

>TERM <OR>

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP:
LF DELAY:
FF DELAY:
BACKSPACE:

IceN IKTERNATIONAL

Terminal

79
24
o
1
2

21

Printer

132
64

11-9

11-10

TERMINAL DEVICES

> TERM ,,,,,,120,48 <OR>

Resets the line-printer page size to l2Ox48.

>TERM <OR>

PAGE WIDTH:
PAGE DEPTH:
LINE SKIP:
LF DELAY:
FF DELAY:
BACKSPACE:

Terminal

79
24
o
1
2

21

Printer

120
48

Use the TERM or SET-TERM verb to allow the ICONjPICK system to echo the proper
control characters Cor a given terminal type. The TERM verb will reset the TERMINAL
TYPE until the user executes the OFF verb. The SET-TERM verb will reset the TERMINAL
TYPE until the users executes another SET-TERM or TERM verb.

EXAMPLE:

>TERMw

Will set the TERMINAL TYPE to "w" until the user executes the OFF verb.

>SET-TERM w

Will set the TERMINAL TYPE to "w".

/' "

f't
ICON INTERNATIONAL ~~

(

(:

SECTION 12

ICON/PICK
UNIX
PROCESSOR

IceN~

<-

(

c

ICON/PICK/UNIX PROCESSOR SECTION 12

12.1 Introduction to ICON/PICK/UNIX Processor

The ICON/PICK/UNIX Processor (IPU processor) is a product of the unique concurrent
operating systems technology offered by ICON. This chapter discusses the utilities that
provide the user a "window" into the ICONjUX systems, both to execute commands and to
transfer data.

There are two basic forms to the IPU processor functions; the first is an extension of the TCL
processor, and the second is used by invoking new TCL verbs. There are two basic types of
commands; those 'that execute commands in another operating system, and those that transfer
data. This chapter will discuss the new extensions to ICON/PICK and then conclude with a
technical discussiQn on the impact and limitations of the extensions.

12.2 EXPORT

The export command allows data to be transferred from the ICON/PICK database file system
into the ICON/UX file system on a item by item basis.

FORMAT:

EXPORT filename

This will cause another prompt to appear:

Enter the Item ID:

which is a request for an item name. The prompt

Enter the UNIX file name

requests a path name for an ICON/UX file. No assumptions can be made as to the directory
the file will be placed in if a full path name is not specified. AU ICON/UXfile names should
be specified with a full path name. .

Conversions'will automatically be performed when data is tran.sferred. All attribute marks
(char(254» will be converted to new-line (char(lO») characters when EXPORTing. No
conversions are done on value marks or subvalue marks. The conversion facilitates ease of
using ICON/UX utilities, such as the vi editor or the itroff text formatter.

The EXPORT verb as of ICON/PICK Release 3.00 does not process LISTs, but requires a
one by one transfer of items. This feature will be present in a future release.

EXAMPLE~

>EXPORTBP
Enter the Item ID: MYPORG .
Enter the UNIX file name: /usr/max/basic/myprog.b

. . .
Take the item MYPROG in the BP file and copy it into myprog.h

found in the /usr/max/basie directory.

ICON INTERNATIONAL 12-1

ICON/ PICK/ UNIX PROCESSOR

12.3 IMPORT

The IMPORT command is used to copy data from the ICON/UX file system a single file at
a time. Each ICON/UX file is placed within an item of a file, with appropriate conversions
being performed.

FORMAT:

IMPORT filename itemname

Mter the IMPORT command is executed, a prompt will appear:

En ter the UNIX filename:

after which the user must enter the full pathname of the ICON/UX file. It is important to
remember that the ICON/PICK system does not have a locality of reference in the ICON/UX
tree structured file system; the system does not depend on any particular directory for
operation.

12.4 UXVerb

12-2

The UX command will execute an ICON/UX command and display the results on the users
terminal, or alternatively execute a shell specified in the ETC.FILE of the SYSPROG account.

FORMAT:

UX {command} {[optl) lopt2) [opt3] ... loptn)}

the UX command will execute a given ICON/UX command and display the results on the
users terminal. For example:

UX vi /usr/tom/myprog

will invoke the ICON/UX vi full screen editor and operate on the file myprog found in the
/usr/tom directory.

EXAMPLE:

UX Is /usr/don list the files of the /usr/don director

UX execute the shell found in the ETC.FILE

UX uniplex invoke the uniplex application program

Note that features normally expected by ICON/UX shells such as output redirection and pipes
are not concurrently supported when executing ICON/UX commands from the ICON/PICK
operating system.

ICON INTERNATIONAL

CI

(

(

12.5 PASSWD

The P ASSWD proc will enable an account to use the facilities of the ICONjUX systems.

FORMAT:

PASSWD

The P ASSWD proc is available in the SYSPROG account for the system administrator to
enable ICON/UX privileges on an account basis.

EXAMPLE:

>PASSWD

1 root
5 don
9 remo

2 daemon
6 tom
10 jan

3 uucp
7 ellen
11 kay

4 sys
8 rjt
12 ski

Enter the name of the ICON/PICK account: SYSPROG
Enter the number of the ICON/UNIX login: 5
Give d06 privileges? : N

The first question should be answered with a name of a valid account within the system;
SYSPROG is the account entered above.

The second prompt requires the user to enter the number of one if the ICON/PICK logins
displayed above; 5 is entered above to give the SYSPROG account don privileges when
executing ICON/UX commands ..

12

Finally, DOS capabilities can be enabled here autonomously from ICON/UX capability. This
option will work only if the hardware option is present in the machine, and has been properly
installed and configured.

ICON INTERNATIONAL 12-3

12-4

ICON/ PICK/ UNIX PROCESSOR

NOTE:

System Orientation: a difference in Operating system philosophy.

There are two distinct approaches to system organization that are worth mentioning here in
an effort to allow the casual user an understanding of ~oth the ICON/PICK and ICON/UX
systems.

The PICK system security and orientation is defined by the account. Accounts tends to be
logically organized within a given data domain; for example, in a typical organization all of
the payroll programs and data may be found within an account named PAYROLL, all of the
general ledger data in aD account named GENLEG, etc. Accounts tend to be autonomous
from other accounts. A user is typically given the password(s) to the account(s) that they are
required to interact with. This tends to cause certain users who perform a variety of
functions to have several passwords (this is especially true where each account needs to
maintain a certain amount of security, causing synonym file pointers to be unacceptable). An
important distinction of the orientation here is that where the account exists as a functional
domain, several users may hold passwords to the account and use it on a regular basis.

The UNIX system security and orientation tends to be defined by the file, and hence in a beta
definition by the user login (the owner of the file). Accounts tend to be personal with each
user of the system having their own account and set of files. Application programs can be
made availai:lle to users either globally or in groups. Data domains tend to be the directory, a
repository for a logically related data set or collection of files.

The bridge between the systems is typically executed with a single UNIX login available per
account.

When using the IPU processor, the user is causing the ICON/PICK system to relinquish
control and allow one of the ICON/UX systems to execute a command or shell of some kind.
Logically, the ICON/PICK process will be put to sleep and control given to the ICON/UX
system for the duration of the command execut~d. The ICON/UX systems are true operating
systems and perform many of the same functions an ICON/PICK user would normally have
available at TCL. In addition, there are other facilities such as'on-line manual helps, full
screen editors, various compilers and an assembler, as well as text formatting facilities.

lCeN INTERNATIONAL

(

12

12.6 The! Command Line Processor

The! command line processor provides a shorthand version of the UX command for user.

FORMAT:

! command {[options]}

By preceding an ICON/UX command with an ! (exclamation mark) at TCL, privileged users
may execute ICON/UX commands. This form may not be used from within a PROC or a
BASIC EXECUTE statement.

EXAMPLE:

IceN INTERNATIONAL

! lsjusr List the files of the jusr directory

! man pipe Display online documentation for
pipes

! id Display effective user and group
id

! WHO Returns to TCL and WHO is not.
an ICON/UX command

12-5

(

(

(-

COMMENTS

ICON/PICK USER'S MANUAL PIN 172-026-001

1.

Your comments and suggestions are appreciated and will help us to provide you with the
very best in system and application documentation. Please send your comments to the
address at the bottom of this page.

How would you rate this manual for COMPLETENESS? (Please Circle)
Excellent

5 ------------ 4 ------------ 3 ------------ 2 ------------ 1 ------------ 0
Poor

2. Is there any information that you feel should be included or removed?

3. How would you rate this manual for ACCURACY? (Please Circle)
Excellent

5 ------------ 4 ------------ 3 ------------ 2 ------------ 1 ------------ 0
Poor

4. Indicate the page number and nature of any error(s) found in this manual.

5. How would you rate this manual for USABILITY? (Please Circle)
Excellent

5 ------------ 4 ------------ 3 ------------ 2 ------------ 1 ------------ 0
Poor

6. Describe any format or packaging problems you have experienced with this manual and/or
binder.

7. Do you have any general comments or suggestions regarding this publication or future
publications?

Your Name _______________________________ _
Company ___ ___

Address ____________________ Phone (__) ____ _

City & State Zip Code _____ _
Job Function ___________________________________ _

Type of Equipment Installed: __________________________ _

ICON I!'\TERNATIONAL .4 MEMBER OF THE SANl'O GROUP PO Box 340 Orem, UT 84057-0340

··.m.d...;.,..-:.:.t;:':':f",~::",>Mfe;.'"
.,~~~ ~~~Ao· 172-026-001

'",-)

(
~, .. ,.

