
c

ICON/UXV
User
Reference

ICON
INTERNATIONAL
764 East Timpanogos Parkway
Orem, Utah 84057
(801) 225-6888

G

USER REFERENCE MANUAL

ICON/UXV
Operating
System

© Copyrig ht 1 988
Icon International, Inc.
All rights reserved worldwide.

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without prior written approval from Icon
International, Inc.

Icon International, Inc. reserves the right to make changes. without notice. to the specifications
and materials contained herein. and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented. including. but not limited to.
typographical. arithmetic. and listing errors.

The UN1X~ Software and Text Source for this manual is under license from AT&T.
Copyright © 1984 AT&T Technologies

Order No. 172-036-004 AO (Manual Assembly)
Order No. 171·063·005 AO (Manual Pages only)

This manual was set on an IMAGEN 81300 laser printer driven by the IROFF formatter
operating under the ICONIUXV system.

Trademarks

The ICON logo is a registered trademark and ICON/UXV is a trademark of Icon International. Inc.
UNIX is a registered trademark of AT&T.
3B. WE. and DOCUMENTER'S WORKBENCH are trademarks of AT&T Technologies.
AUSTEC is a trademark of Austec International. Ltd. (Australia)
DEC, PDP. VAX. UNIBUS, SBI. and MASSBUS are trademarks of Digital Equipment Corp.
DIABLO and Ethernet are trademarks of Xerox Cotporation.
HP is a trademark of Hewlett-Pac~ Inc.
HYPERchannel is a trademark of Network Systems Corporation.
IBM is a trademark of International Business Machines Cotporation.
TEKTRONIX is a registered trademark of Tektronix. Inc.
TELETYPE is a trademark of AT&T Teletype Corporation.
Versatec is a registered trademark of Versatec Corporation.

i ICON INTERNATIONAL

c

ICON/UXV User Reference Manual

Manual Pages Part No .. 171-063-005

Date Revision Description Pages Affected

Mar. 1988 AO Initial production release All

Aug. 1988 A1 Add man pages to TOC, cp, Is, man, patch, sar,
sections 1 and 1C shl, timex, vi, w, which, and

kermit

ICON/UXV USER REFERENCE iii

iv ICON INTERNATIONAL

C·
. .

INTRODUCTION

This manual describes the features of the ICONfUXV operating system, Icon's implementation of
AT&T's UNIX system V Release 2.2. It provides neither a general overview of the ICONfUXV system
nor details of the implementation of the system.

This manual consists of one main section containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands
lC. Communications Commands
IG. Graphics Commands

Section 1 (Oommande .nd Application Programe) describes programs intended to be invoked directly by
the user or by command language procedures, as opposed to subroutines, which are intended to be called
by the user's programs. Commands generally reside in the directory /bin (for binary programs). Some
programs also reside in /uar /bin, to save space in /bin. These directories are searched automatically
by the command interpreter called the ehell. Sub-class lC contains communication programs such as
cv, eend, vvep, etc. These entries may not apply from system to system depending upon the hardware
included on your processor. Some ICONfUXV systems may have a directory called /uar /Ibin, containing
local commands.

Section 1 consists of a number of independent entries of one or more pages. The name of the entry
appears in the upper corners of its pages. Entries within the section are alphabetized, with the excep­
tion of the introductory entry that begins each section. Some entries may describe several routines,
commands, etc. In such cases, the entry appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s} of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few conventions are
used, particularly in Section 1 (Oommands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names found
elsewhere in the manual (they are underlined in the typed version of the entries).

Square brackets [] around an argument prototype indicate that the argument is optional.
When an argument prototype is given as "name" or "file", it always refers to a file name.

A vertical bar I between arguments indicates a selection argument, i.e. only one of the argu­
ments separated by vertical bars is to be used.

Ellipses ••• are used to show that the previous argument prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with a minus
-, plus +, or an equal sign - is often taken to be some sort of flag argument, even if it
appears in a position where a file name could appear. Therefore, it is unwise to have files
whose names begin with -, +, or -.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s} of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced. Messages that
are intended to be self-explanatory are not listed .

Icon International, Inc. v

Introduction

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the suggested fix is also
described.

A table of contents and a permuted index derived from that table precede Section 1. On each index
line, the title of the entry to which that line refers is followed by the appropriate section number in
parentheses. This is important because there is considerable duplication of names among the sections,
arising principally from commands that exist only to exercise a particular system call.

On most systems, all entries are available on-line via the mcm(l) command.

vi Icon International, Inc.

(

HOW TO GET STARTED

This discussion provides the basic information you need to get started on the ICONfUXV system: how to
log in and log out, how to communicate through your terminal, and how to run a program. (See the
ICON/UXV U,er Guide for a more complete introduction to the system.)

Logging in. You must dial up the ICONfUXV operating system from an appropriate terminal.
ICONfUXV supports full-duplex ASCII terminals. You must also have a valid user name, which may be
obtained (together with the telephone number(s) of your ICONfUXV system) from the administrator of
your system. Common terminal speeds are 10, 15, 30, and 120 characters per second (nO, 150, 300, and
1,200 baud); occasionally, speeds of 240, 480, and 960 characters per second (2,400, 4,800, and 9,600
baud) are also available. On some ICONfUXV systems, there are separate telephone numbers for each
available terminal speed, while on other systems several speeds may be served by a single telephone
number. In the latter case, there is one "preferred" speed; if you dial in from a terminal set to a
different speed, you will be greeted by a string of meaningless characters (the login: message at the
wrong speed). Keep hitting the "break" or "attention" key until the login: message appears. Hard­
wired terminals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a half-/full-duplex
switch that should be set to full-duplex. When a connection (at the speed of the terminal) has been
established, the system types login: and you then type your user name followed by the "return" key. If
you have a password (and you should!), the system asks for it, but does not print ("echo") it on the ter­
minal. After you have logged in, the "return", "new-line", and "line-feed" keys will give exactly the
same result.

It is important that you type your login name in lower case if possible; if you type upper-case letters,
ICONfUXV will assume that your terminal cannot generate lower-case letters and that you mean all
subsequent upper-case input to be treated as lower case. When you have logged in successfully, the shell
will type a • to you. (The shell is described below under How to run a program.)

For more information, consult login(l), which discusses the login sequence in more detail, and Btty(l),
which tells you how to describe the characteristics of your terminal to the system. The command
(profile(4) in the ICON/UXV Programmer Reference Manual explains how to accomplish this last task
automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usually typed as

"control-d") to the shell. The shell will terminate and the login: message will appear again.

How to communicate through your terminal. When you type to the ICONfUXV operating system,
a gnome deep in the system is gathering your characters and saving them. These characters will not be
given to a program until you type a "return" (or "new-line"), as described above in Logging in.

ICONfUXV terminal input/output is full-duplex. It has full read-ahead, which means that you can type
at any time, even while a program is typing at you. Of course, if you type during output, the output
will have interspersed in it the input characters. However, whatever you type will be saved and inter­
preted in the correct sequence. There is a limit to the amount of read-ahead, but it is generous and not
likely to be exceeded unless the system is in trouble. When the read-ahead limit is exceeded, the system
silently throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the characters typed before it. The char­
acter # erases the last character typed. Successive uses of # will erase characters back to, but not
beyond, the beginning of the line; @ and # can be typed as themselves by preceding them with \ (thus,
to erase a \, you need two Is). These default erase and kill characters can be changed; see Btty(l).

Icon International, Inc. Vll

HOfIJ To Get Started

The ASCII Dca (control-s) character can be used to temporarily stop output. It is useful with CRT ter- 0\
minals to prevent output from disappearing before it can be read. Output is resumed when a DCI ,j

(control-q) or a second DC3 (or any other character, for that matter) is typed. The DCI and DCS char-
acters are not passed to any other program when used in this manner.

The ASCII DEL (a.k.a. ''rubout'') character is not passed to programs, but instead generates an interrupt
.i,n.l, just like the "break", "interrupt", or "attention" signal. This signal generally causes whatever
program you are running to terminate. It is typically used to stop a long printout that you do not
want. However, programs can arrange either to ignore this signal altogether, or to be notified when it
happens (instead of being terminated). The editor ed(l), for example, catches interrupts and stops what
it is doing, instead of terminating, so that an interrupt can be used to halt an editor printout without
losing the file being edited.

The quit signal is generated by typing the ASCII FS character. It not only causes a running program to
terminate, but also, if possible, generates a file with the "core image" of the terminated process. Quit
is useful for debugging.

Besides adapting to the speed of the terminal, ICONfUXV tries to be intelligent as to whether you have
a terminal with the "new-line" function, or whether it must be simulated with a "carriage-return" and
"line-feed" pair. In the latter case, all inp.t "carriage-return" characters are changed to "line-feed"
characters (the standard line delimiter), and a "carriage-return" and "line-feed" pair is echoed to the
terminal. If you get into the wrong mode, the sttr(l) command will rescue you.

Tab characters are used freely in ICONfUXV source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and echoed as
spaces during input. Again, the .ttr(l) command will set or reset this mode. The system assumes that
tabs are set every eight character positions. The tabs(l) command will set tab stops on your terminal, if
that is possible.

How to run a program. When you have successfully logged into the ICONfUXV operating system, a
program called the shell is listening to your terminal. The shell reads the lines you type, splits them
into a command name and its arguments, and executes the command. A command is simply an execut­
able program. Normally, the shell looks first in your current directory (see The current directory below)
for a program with the given name, and if none is there, then in system directories. There is nothing
special about system-provided commands except that they are kept in directories where the shell can
find them. You can also keep commands in your own directories and arrange for the shell to find them
there.

The command name is the first word on an input line to the shell; the command and its arguments are
separated from one another by space and/or tab characters. .

When a program terminates, the shell will ordinarily regain control and type a • at you to indicate that
it is ready for another command. The shell has many other capabilities, which are described in detail in
.h(l).

The current directory. ICONfUXV has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a directory for you (ordinarily with
the same name as your user name, and known as your lo,in or home directory). When you log in, that
directory becomes your current or working directory, and any file name you type is, by default, assumed
to be in that directory. Because you are the owner of this directory, you have full permissions to read,
write, alter, or destroy its contents. Permissions to have your will with other directories and files will
have been granted or denied to you by their respective owners, or by the system administrator. To
change the current directory use ed(l).

viii Icon International, Inc.

c

How To Get Started

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with I, which is the name of the root directory of the whole file system. After the slash
comes the name of each directory containing the next sub-directory (followed by a I), until finally the
file name is reached (e.g., luar/ee/filex refers to file filex in directory ee, while ee is itself a subdirec­
tory of uar; uar springs directly from the root directory). See intro(2) for a formal definition of path
name.

If your current directory contains subdirectories, the path names of files therein begin with the name of
the corresponding subdirectory (without a prefixed I). Without important exception, a path name may
be used anywhere a file name is required.

Important commands that modify the contents of files are cp(I), mv, and rm(I), which respectively copy,
move (Le., rename), and remove files. To find out the status of files or directories, use le(I). Use
mkdir(l) for making directories and rmdir(l) for destroying them.

For a fuller discussion of the file system, see the references cited at the beginning of the INTRODUCTION
above. It may also be useful to glance through Section 2 of The IOON/UXV Programmer Reference
Manual, which discusses system calls, even if you do not intend to deal with the system at that level.

Writing a program. To enter the text of a source program into an ICON/UXV system file, use ed(l).
The principal languages available under ICON/UXV are C (see cc(l», Fortran (see 177(1», and assembly
language (see ae(l)). After the program text has been entered with the editor and written into a file
(whose name has the appropriate suffix), you can give the name of that file to the appropriate language
processor as an argument. Normally, the output of the language processor will be left in a file in the
current directory named a.out (if that output is precious, use mV(l) to give it a less vulnerable name).
If the program is written in assembly language, you will probably need to load with it library subrou­
tines (see Id(l». Fortran and C call the loader automatically.

When you have finally gone through this entire process without provoking any diagnostics, the resulting
program can be run by giving its name to the shell in response to the S prompt.

If any execution (run-time) errors occur, you will need ed6(1) or ad6(l) to examine the remains of your
program.

Your programs can receive arguments from the command line just as system programs do; see e:eec(2).

Text processing. Almost all text is entered through the editor ed(l). The commands most often used
to write text on a terminal are cat(l), pr(l), and nroff. The cat(l) command simply dumps ASCII text
on the terminal, with no processing at all. The prell command paginates the text, supplies headings,
and has a facility for multi-column output.

Surprises. Certain commands provide inter-ueer communication. Even if you do not plaQ to use them,
it would be well to learn something about them, because someone else may aim them at you. To com­
municate with another user currently logged in, write(l) is used; mai/(l) will leave a message whose pres­
ence will be announced to another user when he or she next logs in. The corresponding entries in this
manual also suggest how to respond to these two commands if you are their target.

When you log in, a message-of-the-day may greet you before the first S.

Icon International, Inc. IX

How To Get Started

x Icon International, Inc.

TABLE OF CONTENTS

1. Commands and Application Programs

300(1). • • • • • • • • • • • • • • handle special functions of DASI 300 and 300s terminals
300s(1) • . • • see 300(1)
4014(1) •••••••••••••••••• paginator for the TEKTRONIX 4014 terminal
450(1) ••••••••••••••••• handle special functions of the DASI 450 terminal
acctcom(1) • • • • • • • • • • • • • • • • • • • search and print process accounting file(s)
admin(1). • create and administer SOOS files
apid(1) • • • • • • • • print the process id of designated process
ar(1) • • • • • • • • • • • • • • • • • archive and library maintainer for portable archives
as(1) • • common assembler
asa(1) • interpret ASA carriage control characters
at(1) • execute commands at a later time
awk(1) ••••••••••••••••••••• pattern scanning and processing language
banner(1) • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • make posters
basename(1) • • • • • • • • • • • • • deliver portions of path names
batch(1) ••••••••••••••••••••••••••••••••••• see at(!)
bc(1) •••••••••••••••••••••• arbitrary-precision arithmetic language
bdiff(1) • • • • • • • • • • • • • . • big diff
bfs(!) • big file scanner
bs(1) •••••••••••••••••• a compiler/interpreter for modest-sized programs
cal(1) • • • • • • • • • • print calendar
calendar(!) • . • • reminder service
cancel(1) • . • see Ip(1)
cat(1) • • • • • • • • • • • • • • • . • • • • • • • • • • • • concatenate and print files
cb(1). • 0 program beautifier
cc(1) • 0 compiler
cd(1) • change working directory
cdc(l) • • • • • • • • • • • • • • • • • • change the delta commentary of an SOOS delta
cflow(1) • generate 0 flowgraph
chgrp(1). • .' • • • • • • • • • change group
chgrp(1) . . . • • • • • . see chown(1)
chmod(1) change mode
chown(l) • change owner or group
cmp(1) ••••••••••••••••••••••••.•••••• con1pare t,vo files
col(1) • • • '.' • filter reverse line-feeds
comb(1) • combine SOOS deltas
comm(!) ••••••••••••••••• select or reject lines common to two sorted files
convert(1) • • • • • • • • • • • • • • • convert object and archive files to common formats
cp(1) • copy, link or move files
cpio(1). • copy file archives in and out
cpp(1) • the 0 language preprocessor
crontab(l) •••• • • • • • • • • . • • • • • • • • • • • • • • • • • user crontab file
csh(1) •••••••••••••••••• a shell (command interpreter) with O-like syntax
csplit(1) • context split
ct(10) •••••••••••••••••••••••• spawn getty to a remote terminal
ctrace(1) • 0 program debugger
cu(lO) • • . • . • . • • • call another UNIX system
cut(1) • • • • • • • • cut out selected fields of each line of a file
cxref(l) • • • • • generate 0 program cross-reference
date(1) ••••••••••.• print and set the date

Icon International, Inc. xi

Table oj Contents

xii

dc(I) . . . • • . • • . • • • desk calculator
dd(I) • convert and copy a file
delta(l). • make a delta (change) to an SOOS file
diff(I) •• differential file comparator
diff3(I) •••••••••••••••••••••••• 3-way differential file comparison
diffmk(I) • mark differences between files
dircmp(I}. • • • • • • • • • • • • • • . • • • • • • • • . • • • • directory comparison
dirname(1). • • see basename(1)
dis(I} • an mc68020 disassembler
disable(l). see enable{l)
dosc(I} • • • • . • • • • • • • • • . • • • • • • • • • • • • connect to Proc/286 system
du(I}
dump(I)

. • . • . • summarize disk usage
• • • • • • • • • • • • • . • • • • • • . • dump selected parts oC an object file

echo(1) • . . . • • • • echo arguments
ed(1) . . . • • text editor
edit(I) • • • • • • • • • • • • text editor (variant oC ex Cor casual users)
efl(l) • • • • • • • . • • • . • Extended Fortran Language
egrep(I) • • • • • • • • • • • • • • • • see grep(I)
enable(l) • • • • • • • • • • • • . . . • • • • • • • • . • • ena.ble/disable LP printers
env(I) • • • • • • • • • . • • • • • • • • • • • • set environment for command execution
erase(IG). • • • • • • • • • • • • . . • • • • • • . • . . . • . • • • • • see gdev(lG)
ex(1) • • • • . . • . . text editor
expr(l) • • • • • • • • • • • • • • . • • • • . • • • evaluate arguments as an expression
f77(1) • • • • • • • • • • • • • • • . • • • . • • • • • . . • • • • Fortran 77 compiler
Cactor(l) • • • • • • • • • • • factor a number
false(I) • ••••• • • •• •••• •••• • •••• see true(l)
fgrep(1) • • • • • • • • • • • • • • • • • • • . . see grep(l)
file(l) • • • • • • • • • • • • • • • • • • . determine file type
find(1). • find files
Cold(l) • • • • • . • • • • • • • • • • • • • • fold long lines for finite width output device
Cpu(I). • • • • • • • • • • • . • . . . determine presence of the floating point coprocessor
Csplit(l) • split f77, ratfor, or efl files
gath(10) ••••• • • • . . • • • • • • • • see send(IO)
gdev(IG) • • • • • • • • • • • • • • • • • • • graphical device routines and filters
ged(IG). • • • • • • • • • • . • • • • • graphical editor
get(I) • • . . • . • get a version of an seos file
getopt(I) • • • • • • • • • • • • • . . • • • • • . . • . • • • • parse command options
graph(IG). • • • • • • • • • • • • • • • . • . • • • • • • • • • draw a graph
graphics(lG) • • • . • • • • • • • . . . • • • • access graphical and numerical commands
greek(I). • • • • • • • • • • • . • . • • • • • • • • • . • • • • • select terminal filter
grep(l). • • • • • • • • • • • • • . • • • • • • • • • • • • • search a file for a pattern
gutil(lG) ••••••• • • • • • • . • • • • • • • • • . • • • • • • graphical utilities
hardcopY(IG) • • • • • see gdev(lG)
hashcheck(l) • • • • • • • •• ••••• • • • see spell(l)
hashmake(I) • • • • • • • • • • see spell(l)
help(l) • • • • • • • ask Cor help
hp(I) • handle special functions of Hewlett-Packard 2640 and 262l-series terminals
hpd(IG) • • • • • • • • • • • • • • • • . • • • • • • • • • • • • • see gdev(lG)
hyphen(I) • • • • • • • • • • • • • . • • • • • • • • • • • • • • find hyphenated words
id(l) • • • • • • • • • • • • • • • . • • • • . • • • print user and group IDs and names
intro(l} •••••••••••••.• introduction to commands and application programs
ipcrm(l) ••••••••••• remove a message queue, semaphore set or shared memory id

Icon International, Inc.

\

(

Table of Oontents

ipcs(I). • • • • • • • • • • • • • • • • report inter-process communication facilities status
join(I). • relational database operator
kermit(l) • • • • •• •• kermit file transfer
kermit(IC) • kermit file transfer
kill(l) • terminate a process
Id(l) ••••••••••••••••••••••••• link editor for common object files
lex(l) • generate programs for simple lexical tasks
line(1). read one lille
lint(l) • • • • • • • • • • a C program checker
In(1). see cp(1)
login(1) . ". sign on
logname(1) • • • • • • • • • • • • • • get login name
lorder(I). • •• •••• • find ordering relation for an object library
Ip(l) • • • • • • • • send/cancel requests to an LP line printer
lpr(1) • • • • • • • • • • • • • • off line print
Ipstat(l) • • • • • • • • print LP status information
Is(l) • list contents of directory
m4(1) macro processor
m68k(1) see machid(1)
machid(l) •••••••••••••• provide truth value about your processor type
mail(l) • • • • • • • • • • • • • • • • • • send mail to users or read mail
mailx{l) • • • •••••••• interactive message processing system
make{l) • • • • • • • . maintain, update, and regenerate groups of programs
makekeY(I) . • • • • • • • • • • • • • generate encryption key
man(1) • print entries in this manual
mconf{l) • • • • • provide machine configurtion
mesg{l) • permit or deny messages
mkdir(1) • make a directory
more(1) • . file perusal filter for crt viewing
mt(l) • magnetic tape manipulating program
mV(l} .. see cp(l)
net(IC) • • • • • • • • • • • • • • . • • • • • • execute a command on the PCL network
newform{ 1) • change the format of a text file
newgrp(l) • log in to a new group
news(1) ••••••••••••••••••••••••••••••• print news items
nice(1)' • run a command at low priority
nl(l) • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • line numbering filter
nm(l) • print name list of common object file
nohup(l) •••••••••••••••••• run a command immune to hangups and quits
od(1) • . • • • • • • octal dump
pack(l) ••••••••••••••••••••••••••• compress and expand files
page(1) see more{ 1)
passwd(l) • change login password
paste(l) ••••••••••• merge same lines of several files or subsequent lines of one file
patch(I). • • • • • • • • • • • • • • • • • a program for applying a diff file to an original
pcat(l) • • • • • • • • • • • • • • • see pack(l)
pcc(l) .. see cc(l)
pg(1) • file perusal filter for soft-copy terminals
pr(1) • • • • • • • • • • • • • • • . • print files
prof{ 1). • display profile data
prs{l) ••••• • • • • • • • print an SCCS file
ps(l) • • • • • • • • • • • • • • • . • • • • • • • • • • • • • • • report process status

Icon International, Inc. Xlll

Table of Oontent8

xiv

ptx(l). . . . • • . permuted index
pWd(l) • • • working directory name
ratfor(l) • • • • • • • • • • • • • • • • • rational Fortran dialect
red(l) . see ed(l)
regcmp(l) • • • • • regular expression compile
reten(l) ••••••• program to cha.nge the autoJetension flag for quarter-inch cartridges.
rm(1) •....•••••.•.•...•••.•.•.•.. remove files or directories
rm(1) . • • • • . • . • • . . . • . • • • • • . • . . • . • . • . . . • . • see rmdir(1)
rmail(1) . see mail(1)
rmdel(l) •• remove a delta from an sees file
rmdir{ 1) ••••••••••••••••••••••• remove (unlink) directories or files
rmdir{ 1) • • . . • . • • . . • • . . • • see rm(1)
rsh(l) . see sh{l}
sact{l) • • • • • • • • • • • • • print current SOOS file editing activity
sag(lG) • • • • • • • • • • • • • • • • • • • system activity graph
sar{l) • • • • • • • • • • • • • system activity reporter
scc(l) ••••••.••••.••.•••••••• 0 compiler for stand-alone programs
sccsdiff(l) ••••••••••••••••••••• compare two versions of an sees file
sdb(l) ••••••••••••••.•••.•••••••••••• symbolic debugger
sdiff(1). • • • • • • • • • • • • • . • . • • • • • • . • • side-by-side difference program
sed(1). . • . stream editor
send(10) • • • . • • • • • • • • • gather files and/or submit RJE jobs
sh(l) • • • • shell, the standard/restricted command programming language
shl(1) • shell layer manager
size(l) ••••••••••••••.••••.• print section sizes of common object files
sleep(l) • suspend execution for an interval
sno(l) • • • • • • • • • . • SNOBOL interpreter
sort(l) • • • • • • . • • • • • • • . • • • • • • • • • • . • . • sort and/or merge files
spell(1) • • • • • • • • • • find spelling errors
speUin(1) • . • • • • • • • • • • . . • see spell(1)
spline(IG). • • • • • • • • • • • • . . • • • . . • • • • . • . interpolate smooth curve
split(I). • • • • • • • • • • • • • • • • • • • . • • • • . • • • • split a file into pieces
stat(IG). • • • • • • • • • • • • • • • statistical network useful with graphical commands
strip(I) ••••••••• strip symbol and line number information from a common object file
sttY(I) • • • • • • • • • • • • • • • • • . • set the options for a terminal
sU(l) • • • • • • • • • • • • • • • . • . • . • • • • • become super-user or another user
sum(l) •••••••••••.••••.•.•. print checksum and block count of a file
sync(l) • . • • update the super block
tabs(l) • • • • • • • • • • • • • set tabs on a terminal
tail(l) • deliver the last part of a file
tar{l) . tape file archiver
td(IG) • • • • • . • • • • • • • • . • • • • • • • . • • • • • • . • • • • see gdev{lG)
tee{l) . pipe fitting
tekset(IG) • see gdev(lG)
test(l) • . • condition evaluation command
time(1). • . • time a command
timex(l} • • • • • • • time a command; report process data and system activity
toc(IG) • • • • • • • • • • . . • . . • • • • • • • • graphical table of contents routines
touch(l) •••••••••••••••.•• upda.te access and modification times of a file
tplot(1 G) •••••••••••••••••••••••.••.•.•• graphics filters
tput(l) • • • • • • query terminfo database
tr(1) • • • • . • • • • . • • • . • • • • • . • • • • • • translate characters

Icon International, Inc.

Table of Contents

true(l) • • • • • • • • • • • • • • provide truth values
tsort(l) • • • • • • • • • topological sort
ttY(l) • • • • • • • get the name of the terminal
umask(l) • • • • • • • • • . • • • • • • • set file-creation mode mask
uname(l) • • • • • • • • • print name of current UNIX system
unget(l) • • • • • • • • undo a previous get of an SCCS file
uniq(l) • • • • • • report repeated lines in a file
units(l) • • • • • • • • • • • • • conversion program
unpack(l) • • • • • • • • • • • • • • •••••••••••• see pack(l)
uucp(lC) • UNIX system to UNIX system copy
uulog(IC). • • • • • • • • • • • • •• •••• •• see uucp(IC)
uuname(IC) •••••••••••.••••••••••••••••••• see uucp(IC)
uupick(1 C) • see uuto(1 C)
uustat(IC) • uucp status inquiry and job control
uuto(IC) • • • • • • • public UNIX-to-UNIX system file copy
uux(IC). • • • • • • • • • • • • • • • • • • • UNIX-to-UNIX system command execution
val(1) •••••••••••••••••••••••••••••• • validate SCCS file
ve(!} version control
vers(I) • • • • • • • • • • • • • print version number of the kernel and utilities
viti) • • • • • • • • • • • • • • • . • • screen-oriented (visual) display editor based on ex
vpr(l) • ~ ••••••••••••.• 4 •••••••••••• Versatec printer spooler
w(l) • • • • • • • • • • • • • • • • . • • • • • • • • who is on and what they are doing
waitt!) • • • • • • • • • • • • •• • •••••••••• await completion of process
we{ 1) word count
what(1) • identify SCCS files
which(l) ••• locate a program file including aliases and paths (csh only)
who(l) • • • • • • • ••••••• who is on the system
whodos(I) • • • • • • • • • • • • display information about dosc users
write(I) • • • • • • • • • • • • • • • • • • write to another user
xargs(I) • • construct argument list(s) and execute command
yacc(l) • • • • • • • • • • • • yet another compiler-compiler

Icon International, Inc. xv

Table of Contents

XVI Icon International, Inc.

c

PERMUTED INDEX

of Hewlett-Packard 2640 and
/functions of Hewlett-Packard

functions of DASI 300 and 300&/
handle special functions or DASI

of DASI 300 and 300&/ 300,
special functions or DASI 300 and

eomparison dill'3
TEKTRONIX 4014 terminal

paginator for the TEKTRONIX
the DASI 4SO terminal

special functions of the DASI
f77 Fortran

a file toucb update
commands graphics

search and print proeellS
procellS accounting flle(s)

print current sees file editing
report procellS data and system

8ag system
sar system

sees files
admin create and

sort sort
send, gath gather files

designated procellS
introduction to commands and

maintainer ror portable archives
language bc

for portable archives ar
convert convert object and

tar tape IIle
library maintainer for portable

cpio copy file
command xargs construct

echo echo
expr evaluate

bc arbitrary-precision
control characters

asa interpret
help

las common
later time

reten program to change the
wait

proeellSing language

(visual) display editor
portions or path names

later time at,
arithmetic language

262l-series terminals ,functions 0 0 hp(l)
2640 and 2821-aer~s termiJlals 0 0 hp(l)
300,300& handle special ••• 300(1)
300 and 300s terminals ,.,. 0 ••••• 0 0 0 0 0 300(1)
300& handM special functioaa 0 0 • 0 00 300(11)
300& terminals /300& ..hUdM 300()
~way dill'erential file 0 0 • _ • dill'3(l)
4014 paginator ror the • • • • 0 4014(1)
4014 terminal 4014 • 0 • • • 0 0 • 0 0 4014(1)
4SO handle special functions of 0 0 4SO(I)
4SO terminal 4SO handle 0 0 • • 450(1)
77 compiler ••••••••• 0 0 0 f77(1)
access and modification times or • 0 • toucb(l)
accellS grapbical and numerical •• 0 • • • • grapbics(lg)
accounting IIle(s) acctcom • • • • • • • aectcom(l)
acdeom search and print 0 acctcom(l)
activity sact •••••• • • • • • • • • ... ct(l)
activity timex time a command; •••••• timex(l)
activity graph ••• 0 • • 0 • 0 0 0 0 • • 0 sag(lg)
activity reporter 0 • 0 • • • 0 •• r(l)
admin create and administer admin(l)
administer sees files 0 admin(l)
and/or merge files •••••••••••• • •• sort(l)
and/or submit RJE jobs 0 send(lc)
apid print the procellS id or • • • • • • • apid(l)
application programs intro 0 • • • 0 intro(l)
ar arcbive and library • 0 _ • 0 0 • ar(l)
arbitrary-precision aritbmet.h: 0 ••• 0 bc(l)
archive and library maintainer ••• ar(l)
arcbive files to eommon rorDDt8 0 ••• convert(l)
ar'tbiver • • 0 0 • • • • • tar(l)
arebives ar archive and • • • • • • • ar(l)
archives in !Lnd out • • • • • cpio(l)
argument list(s) and execute • 0 0 xargs(l)
arguments • • • • • • • • • • •• eeho(l)
arguments as an exprellSion 0 • expr(l)
arithmetic language 0 bc(l)
asa interpret ASA carriage • 0 • 0 • • 0 • • asa(l)
ASA carriage control characters • • 0 0 • • asa(l)
asHor help 0 0 • • • • • • • 0 help(l)
assembler •••••••••• • • • • • • • u(l)
at, batcb execute commands at a • 0 0 at(l)
auto..retension fiag forI 0 • _ • • • reten(l)
await completion or procellS •• 0 wait(l)
awk pattern scannill& a.nd •• • • 0 awk(l)
banner make posters banner(l)
based on ex vi screen-orient~d 0 • vi(l)
basename, dirname deliv~ 0 • • 0 0 basename(l)
batch execute commaJlds~.. • •• 0 0 ••• at(l)
bc arbitrary-precision •• 0 • • • 0 0 • 0 • bc(l)
bdill' big dill • 0 • 0 0 • 0 • • bdilf(l)

cb e program beautifier ••••••••••• • • 0 cb(l)
su become super-user or anotber De!' sU(l)

bdilf
bfs

sync update the super
sum print checksum and

modest-sized programs
cc, pcc

programs scc
cllow generate

cpp the
cb

lint a
cxrer generate

ctrace

brs big file scanner bfs(l)
big dilf bdilJ(l)
big file scanner • • • • bfs(l)
block •••••••• 0 • 0 sync(l)
block count or a file • 0 0 • sum(l)
bs a compiler/interpreter ror • 0 0 bs(l)
C eompiler • • • • • • • • • • • • • cc(l)
e compiler for stand-alone • scc(l)
e fiowgrapb •• 0 0 0 0 •• 0 • 0 cfiow(l)
e language preprocessor • cpp(l)
e program beautifier • • cb(l)
e program cheeker ••• • • Iint(l)
e program cross-rererence cxrer(l)
e program debugger • • • • • • • ctrace(l)
cal print calendar • • • • • • • • • • cal(l)

leon International, Inc. xvii

Permu'ed l,.de~

Xl'iii

de desk
cal print

eu
an LP line printer Ip,

ua interpret ASA
Bag ror quarter-inch

text editor (variant or ex ror

of an sees delt.a

cbarp
paaswd
chmod

chown, chgrp
for / reten program to

sees delta cdc
newform

delta make a delta
cd

interpret ASA carriage control
tr trl.nsll.te

lint a e program
61e sum print

cbown,

group
sbell (comma.nd interpreter) with

comb
common to two sorted 61es
test condition evaluation

time time a
argument Iist(s) and execute

niee run a
env set environment for

uux UNIX-to-UNIX system
quits nobup run a
syntax csh a shell

net execute a
getopt parse

/sbell, the standard/restricted
system I.ctivity timex time a
a.ccess graphicl.l and numerica.l
network uieful with araphical

intro introduction to
at, batch execute

cdc change tbe delta
las

object and arcbive 61es to
/nm print name list of

line number information from a
/Id link editor for

/size print section sizes of
comm select or reject lines

ipes report inter-process
dill' dill'erential Ille

emp
IIle scesdill'

dilr3 3-way differential IIle
dircmp directory

regcmp regular expression
cc, pee e

r77 Fortran 77
scc e

yaee yet another
modest-sized programs bs a

wa.it await

calcwat.or •••••••• • • • • • • • dc(l)
caleadar • • • • • • • • • • • • • • • • • eaJ(1)
calendar reminder service ••••• • • • • • calendar(l)
eaJl anot.ber UNIX eyltem • • • cu(lc)
cancel send/cancel requests to Ip(l)
carriaae control characters •• asa(l)
cartridges. /the autoJetension • reten(l)
casual users) edit •••••• • edit(l)
cat conc .. ten .. t.e I.nd prillt lies • • • • • • • cl.t(l)
cb e program bel.utiller •••• cb(l)
cc, pcc e compiler • •• • • • • cc(l)
cd change working directory •• • cd(l)
cdc cbange the delta commentary • cde(!)
dow gentrate e lowgrapb • clow(l)
change aroup •• cbarp(l)
chanae login puaword • • • • • • paawd(l}
change mode • • • • • chmod(l)
cbange owner or aroup chown(l)
change the autoJetension lag • reten(l}
cbnge tbe delta commentary of an • cdc(l)
change tbe form .. t or a text file • newform(l)
(change) to an sees file ••••• • delt .. (l)
cbange working directory • cd(l)
cbar .. cters asa • • • • • • asa(l)
characters • • • • • • • • • tr(l)
cbecker ••••••••• • •••• " • liDt,(l)
cbecksum and block count or a • • • • • lum(l)
chgrp cbange group •• • • • • • • • • chgrp(l)
chgrp change owner or group • • • • • • cbown(l)
cbmod cbange mode • • • • • chmod(l)
chown, cbgrp change owner or ••• cbown(l)
Oolite syntax csh a esb(l)
cmp compare two files • • • • • cmp(l)
col filter reverse line-feeds • • col(l)
comb combine sees deltas • comb(l)
combine sees delt.as • • • • • eomb(l)
comm select or reject lines • • • • • comm(l)
command •••• _ • • • • test(l)
cornman d •••••••• • • • • • time(1)
command xargs construct • • • • • • xargs(l)
comma.nd at low priority nice(l)
comma.nd execution env(l)
command execution • uux(lc)
command immune to hangups a.nd nohup(l)
(command interpreter) with Oolike ••• csb(l)
command on the peL network net.(lc)
comma.nd options ••••••• • getopt(l)
command programming Ia.nguage •• sh(l}
command; report process data a.nd ••• timex(l)
commands grapbics ••••••• • • • • • • graphics(lg)
comma.nds stat statistica.l • • • • • • • stat(lg)
commands and applica.tion progra.ms •• intro(l)'
commands at a later time • • at(l}
commentary or an sees delta • • • • • cdc(l)
common aasembler ••• aa(l)
common formats convert convert convert(l)
common object file •••••• • • • • • • • nm(l)
eommon object IIle /symbol and strip(l)
common object files • • • • • • Id(l)
common ohject files • • • • • • • • • • • • • • size(l)
common to two sorted files • • • • • • • comm(l)
communication facilities status ipcs(l)
comparator •••••••••• dill'(l)
compare two Illes • • • • • • • • cmp(l)
compare two versions of a.n sees .. sccsdill'(l)
comparison • • • • • • • • dilr3{l)
comparison ••••• dircmp(l)
compile •••• regcmp(l)
compiler • • • ee(l)
compiler • • • f'77(1)
compiler ror stand·alone programs Ice(l)
compiler-compiler •••••• ya.cc(l)
compiler/interpreter for bs(l)
completion or process • wait(l)

Icon International, Inc.

o
pack, peat, unpack

eat
t.est

mconf provide machine
dose

execute command xargs
1& list

toe graphical t.able of
csplit

uucp st.atus inquiry and job
vc version

ua int.erpret ASA carriage
units

archive 81es to common format.s
dd

to common formats convert.
presence of the 80at.ing point

UNIX system to UNIX system
public UNIX-ta-UNIX system 81e

dd convert and
cpio

cp, In, mv
we word

sum print checksum and block
files
out

admin

cron ta.b user
exref genera.te e progra.m
page 81e perusal filter for

interpreter) with e-like synta.x

terminal

activity sact print
uname print name of

spline interpolate smooth
each line of a. file
line of a file cut

cross-reference
/handle special functions of

handle special functions of the
prof display profile

time a. comma.nd; report process
tput query terminfo

join relational
dat.e print and set tbe

ctrace e program
sdb symbolic

basename, dirname
tail

the delta commentary of an sees
an sees file

delta make a
cdc change the

rmdel remove a
comb combine sees

mesg permit or
apid print the process id of

dc
file

floating point coprocessor fpu

Icon International, Inc.

lines for finite width output
/hardcopy, tekset, td graphical

ratfor ra.tional Fortran
bdiff big

comparator
compa.rison

Permuted Indez

compress and expand 8les • • • pack(l)
concatenate and print 81es ••••••••• cat(l)
condition evaluation command • test(l)
conBlurtion ••••••••• • • • • • • meonf{l)
connect to Proc/286 system • dosc(l)
construct a.rgument list(a) and •••••••••••• xargs(l)
contents of directory • • • • • • • • I&(ll
contents routines toc 19)
context split • • • • • • • • • • • espUt(l)
control uuatat • • • • • uustat(lc)
control ••••• vC(l)
cont.rol characters •••••• ua(l)
conversion program •
convert convert object and
convert and copy a 81e
convert object and archive 81es
coprocessor fpu determine
copy uucp, uulog, uuna.me
copy uuto, uupick

unit.s(l)
convert(l)

• • • • • • • dd(l)
• • • • • • • cODvert(l)

fPU(ll
uucp lC)
uut.o(lc)

copy a 81e ••••••••
copy 81e a.rchives in and out
copy, link or move 81es ••

• • • • • • dd(l)

count • • • • ••••••
count of a file ••••••
cp, In, mv copy, link or move.
cpio copy 81e archives in a.nd • • •••
cpp t.he e langua.ge preprocessor

• • • • • cpio(l)
cp(l)

• wC(l)
sum(l)

• cp(l)

create and administer sees 81es •••• ••

• • cpio(l)
cpp(l)
admin(l)
crontab(l) crontab user crontab 81e

crontab file • crontab(l)
• exrer(l) cross-reference • • • •

crt viewing more, •••••••••• • more(l)
csh a shell (command
csplit context split
ct spawn get.ty to a. remote
ctra.ce e program debugger
cu ca.l1 another UNIX system
current sees file editing
current UNIX system • • • •
curve •••••••.•••

• • csh(l)
• • csplit(l)

ct(lc)
• • ctrace(l)
• • cu(lc)
• • sact(l)
• • uname(l)

cut cut out selected fields of • • • • • • • •
cut out selected fields of each

• • apline(lg)
cut(l)

• • cut{l}
cxrer(l) cxref genera.te e program

DASI 300 a.nd 300s termina.ls
DASI 450 termina.l 450
data •••.•••.••••
data and system activity timex
da.tabase • • • • • •
database operator
da.te ••••••
da.te print a.nd set the da.te
dc desk calculator • • • •
dd convert and copy a file

• • 300(1)
• • 450(1)

pror(l)
• timex(l)

• • tput(l)
• • join(l)

date(l)
• date(l)

dc(l)
••••• dd(l)

• • • • • • ctrace(l) debugger ••••••••
debugger ••••••••
deliver portions of path names

• sdb(l)
buename(l)

deliver the lut. part of a file ••
delta cdc change •••••••
delta make a delta (change) to
delta (change) to an sees file ••
delta commentary of an sees delt.a.

• tail(l)
cdc(l)

• delta(l)
• • • • • • • • • delta{l)

• • cdc(l)
delt.a from an sees 81e • • • • • • • • • rmdel(l)
deltas • • • • • • •
deny messa.ges •••
designated process •••••••
desk calculator • •
determine file type
determine presence of the
device fold fold long
device routines a.nd filters
dialect ••••• •
diff ••••••••••
diff differential file
diff3 3-way differential file

'.

• comb(l)
mesg(l)

• apid(l)
dc(l)

• 8le(1)
fpu(l)
fold(l)

• gdev(lg)
ratfor(!)
bdiff(l)
diff(l)
diff3(1)

xix

Permuted 1 .. 4"

sdiff side-by-side
dillmk mark

diff
dilf3 3-way

Illes

rm, rmdir remove Illes or
rmdir, rm remove (unlink)

cd cbange working
Is list CODteDts of

mkdir make a
dircmp

pwd working
path Dames basename,

printers enable,
dis an mc88020

du summarize
vi screen-oriented (visual)

users whodos
prof

display informat.ion about
grapb

od octal
object 61e

61e /dump

ecbo

for casual users)
sact print current sees file

ed, red text
ex text

ged grapbical
sed stream

screen-oriented (visual) display
/Id link

users) edit text

fsplit split (77, ratror, or
a p&ttern grep,

LP printers
enable, disable

makekey generate
man print

execution
env set

graphical device/ gdev, hpd,
basbcbeck find spelling

expression expr
test condition

(visual) display editor based on

edit text editor (variant of
network net

const.ruct argument list.(s) and
at, batcb

env set environment for comma.nd
uux UNIX-to-UNIX system command

sleep suspend
pack, pca.t, unpack compress a.nd

expression
expr eva.luate arguments as a.n

regcmp regular
ell

fsplit split
inter-process communica.tion

fa.ctor
true,

pattern grep, egrep,

dillerence program ••••• • • • • • • sdill(l)
differences between files • • • • • • • • • • • • dillmk(l)
dilrereDtiai lIe comparator • dilf(l)
dilrerentlalille comparison ••• • dilf3{l)
dillmk mark differences between • diffmk(l)
dircmp directory comparison • dlrcmp(l)
directories • • • • • • • • rm(l)
directories or Illes •••••••••••••• • rmdir(l)
directory cd(l)
directory ••••• • 11(1)
directory ••••• • • • • • • mkdir(l)
directory compa.rison • • • • • • dircmp(I)
directory name • • • • • • pWd(l)
dirname deliver portions of basename(l)
dis an mc88020 dilUllembler • dis(l)
disable enable/disable LP • • • enable(l)
diS&l8tmbler • • • • • • • • • ••• dis(l)
disk ulrle • • • • • . • • • • • • • • • du(l)
display editor based on ex • • • •••• vi(l)
display information about dose • • • • • • • •• whodos(l)
display prolle data • • • • • • • pror(l)
dosc connect to Proc/286 system ••••• dosc(l)
dose usera wbodos •• whodos(l)
drawl. graph •••••• • • graph(lg)
du summarize disk uaage •• duel)
dump ••••••• • • • od(l)
dump dump selected pa.rts or an • • • • • • dump(l)
dump selected parts of an object dump(l)
echo echo arguments etho(l)
echo arguments ••••••• • • echo(l)
ed, red text editor • • • • • • • • • ed(l)
edit text editor (varia.nt of ex edit(l)
editing activity • • • • • • • • • • • sact(l)
editor • • • • • • • ed(l)
editor •• eX(I)
editor ged(lg)
editor • • • • • • • • • • • • • • • • sed(l)
editor based on ex vi • • • • • • • • • vi(l)
editor for common object files • • • • • • • • • Id(l)
editor (variant of ex ror casua.l edit(l)
eft Extended Fortran Language • eft(l}
eft ftles •••••••••••• • fsplit(l)
egrep. fgrep search a file for ••••••• grep(l}
ena.ble. disable enable/disa.ble ••••••••• enable(l)
enable/disable LP printers ena.ble(l)
encryption key • • .'. • • • • • • • • • • • • makekeY(l}
entries in this manual ma.n(l)
env set environment for command env(l)
environment for command execution env(l}
erase, hardcopy, tetaet, td • ,dev(lg}
errors spell, hashma.ke. spellin, ••••••• spell(l}
evaluate arguments as an expr(l)
eva.luation command • • • • • • test(l)
ex vi screen-oriented • • • • • • • •• vi(l)
ex text editor • • • • • • • • • ex(1)
ex for casual users) • • • • • • • edit(l)
execute a comma.nd on the peL net(lc)
execute command xargs •• xargs(l)
execute commands at a Ia.ter time •• at(l}
execution ••••.•• • •••••• env{l}
execution ••••••• uux(lc)
execution for an interval • • • • • • • • sleep(l)
expand files •••••• • patk(l}
expr evalua.te arguments as an • • • • • expr(l)
expression ••• • . • • • • • • • • • • • • expr(l)
expression compile ••• regcmp(l)
Extended Fortran La.nguage • • • • • • • etI(l)
(77 Fortra.n 77 compiler • ••••• (77(1)
(77, ratror, or etI ftles • • • • • • • • • • • • fsplit(l)
fa.cilities sta.tus ipcs report • ipes(l)
fa.ctor fa.etor a number factor(l)
factor a number ••••••••••• fa.ctor(l)
false provide truth values true(l}
fgrep search a file for a • • • • • grep(l) C··>

j

leon International, Inc.

(

cut eut out seleeted
crontab user crontab

seleeted fields of eaeh line of a
dd eon vert and copy a

make a delta (change) to an sees
dump Beleeted pa.rts of an object

get get a version of an sees
ehange the format of a text

print name list of eommon objeet
81ea or subsequent linea of one

prs print an sees
remove a delta from an sees

eompare two versions of an sees
information from a common objeet

eheeksum and block eount of a
tail deliver the lut part of a

and modi8eation times of a
undo a previous get of an sees
uniq report repeated lines in a

val validate sees

tar tape
epio eopy

diff differential
diff3 3-way differential

publie UNIX·to-UNIX system
saet print current sees

grep, egrep, fgrep seareh a
split split a

viewing more, page
terminals pg

bCs big
kermit kermit
file determine

umuk aet
and print process accounting
create and administer sees
cat concatenate and print

cmp compare two
reject lines common to two sorted

cp, In, mv copy, link or move
dilImk mark differences between

find find
split f77, rat Cor , or efl

link editor Cor common object
unpack compress and expand

pr print
remove (unlink) directories or

section sizea of common object
sort sort and lor merge

what identiCy sees
send, gath gather

rm, rmdir remove
file Imerge same lines or several

leonvert object and are hive
greek select terminal

nl line numbering
more, page file perusal

pg file perusal
col

graphieal deviee routines and
tplot graphies

kon International, Inc.

find
hyphen

object library lorder
huh make, spellin, huheheek

fold fold long lines Cor
tee pipe

Ito change the auto..retension
Cpu determine presence or the

cftow generate e
width output device

output device Cold

Permuted Inde~

fields of each line of a file • • cut(l)
file •••••• • • • • • • crontab(l)
file cut cut out • • • • •
8le • • • • • • ••••••

••• cut(l)
••• dd(l)

ftle delt.a ••••• • • • • • • delta(l)
81e Idump ••••• • • dump(l)
8le ••••••••• • • get(l)

newform(l) Sle DewCorm •••••••••
tile lum
81e Imerge same lines oC several
flle ••••••••••••
81e rmdel ••••••••

• nm(l)
• • • • • • • paate(l)

• •••• • pra(l)
rmdel(l)

fli e sccadi If ••••••••• • aecadilf(l)
81e Isymbol and line number •••••••••• • • Itrip(l)

• Bum(l) file sum print • • • •••
flle •• ••••••••• • ••••••• • taU(!)
81e toueh update access
8le unget
81e •••••••• ••••••••••
flle •••••••••
file determine 81e type
file archiver •••••
file archives in and out

toueh(l)
• ••••• unget(l)

uniq(l)
· . Va1(ll

flle(1
ta.r(1
epio(l)

file comparator • • • • • • • • •
file comparison • • • • • • • • •
Ille copy uuto, uupick

••••••••• • ditr(l)

file editing activity •
file for a pattern ••
81e into pieces
81e perusal filter for crt
IIle perusal IIlter Cor soft-copy
file scanner • • • • • • • •
Ble tr&DSrer ••••••••••••
IIle type • • • • • • •
IIIe-creation mode muk • • • • • •
IIle(s) acctcom aearch
files admin
Illes •••
Illes • • •
ftles comm select or
flies ••••••
files ••••
files •••
ftles Csplit
files /Id
files pack, pcat,
files • • •••••
Illes rmdir, rm
files /size print

• • • • • • diff3(I)
uuto(lc)

• •• sact(l)
• • grep(l)

split(l)
more(l)

• ps(l)
• • • • • bCs(l)

• •• kermit(l)
• • flle(l)

• •• umuk(l)
acctcom(1)
admin(l)
eat(l)

• cmp(l)
• comm(l}

• • • • • • ep(l)
• dilfmk(l)
• flnd(l)
• fsplit(l)
• Id(l)

pack(l)
• • pr(l)

• rmdir(l)
• • lize(l)

files •••••• . • • • • . . . • • • • • sort(l)
ftles • • • • • • • • • • • • what(l)
files and/or submit RJE jobs •••• aend(lc)
files or directories ••••• • rm(l)
ftles or subsequent lines of one •• pute(l)
files to common formats • convert(l)
IIlter •••••••• • • greek(l)
IIlter •••••••• • nl(l)
IIlter Cor crt viewing • • • • • • • more(l)
IIlter Cor soft-eopy terminals • • • • • ps(l)
filter reverse line-Ceeds • col(l)
81ters Ihardcopy, tekset, td • • gdev(lg)
filters • • • • • tplot(lg)
lind find files •••• • IInd(l)
find files • • • • • • • IInd(l)
lind hyphenated words hyphen(l)
lind ordering relation Cor an • 10rder(l)
find spelling errors spell, • • • • • • • • • speU(I)
flnite width output device • • • Cold(l)
fitting • • • • • • • • • • • •• tee{l}
lIag Cor quarter-inch cartridges. reten(l)
lIoating point coprocessor •• • fpu(l)
flowgraph ••••••••••••••• • cftow(l)
fold fold long lines for IInite Cold(l)
fold long lines ror finite width • • fold(I)

xxi

PfTmuteci Indcs

xxii

newform eban,e tbe
and archive Illes to common

m
ratfor rat.ionl

eft Extended
lIoatin, point. coproceaeor

etlllies
300, 3005 handle special
and/ hp handle special

terminal 450 bandle special
RJE jobs send,
jobs send, lath

tekiet., td arapbieal device/

dow
crOll-rererenee enef

makekey
lexical tasb lex

ct spawn
,raph draw a

sag system activity

grapbies access
statistical network useful with

/hpd, erase, bardcopy, tekaet, td
ged

routines toc
gutil

numerical commands
t.plot

file for a pattern
ehgrp cbange

ebown, chgrp change owner or
newgrp log In to a new

id print user and
maintain, update, and regenerate

300 and 3005 terminals 300,3005
Hewlett.-Paekard 2640 and/ bp

DASI 450 terminal 450
nohup run a command immune t.o

device/ gdev, bpd, erase,
spell, hash make, spellin,
find spelling errors spell,

hel p ask for

bp bandle special funeUons of
Hewlett-Packard 2640 and/

graphical deviee/ gdev,

hyphen find
semaphore set or shared memory

names
apid print t.be process

wbat
id print user and group
nobup run a command

ptx permuted
Ipstat print LP status

whodos display
/strip symbol and line number

uustat uucp status
syst.em mailx

spline
characters asa
sno SNOBOL

csh a shell (command
ra.cilities status ipcs report

sleep suspend execution for an
and application programs

application programs intro
semaphore set or shared memory /

rormat or a text IIle ••••••
rormats convert convert object.
Fortran 17 compiler •••••
Fortran dialect • • • • • • • • •

• •••••• • newrorm(l)
conert(l)

• • • • • • m(l)

Fortran Language •••••••••••••
Cpu determine presence or tbe

•••• rat.ror(l)
ell (I)

• • fpu(l)
••• fsplit(l)

• 300(1)
rsplit split m, ratror, or • • • •
functions or DASI 300 and 3005/ • • •
functions or Hewlett-Packard 2640
CUDCtiODS of tbe DASI 450 • • • •
pth pther Illes and/or submit
pther Illes aDd/or submit RJE
,dev, hpd, erase, hardcopy,
led araphical editor • • • • • • • • •
generate e tlowara.p h • • • • • •
geaerate e proaram
,enerate encryption key • •

• • • • • hp(l)
••••• • 450(1)

send(le)
Bend(lc}
,dev(lg)

• •••••• ged(lg)
• eIlow(l)

cxref(l)
makekey(l)

• ••••• ~ lex(l) ,enerate PfOlraIDI ror simple ••
getopt parse command options
getty to a remote terminal •••

• ••••••• ,etopt.(I)

IJ'&ph • • • • • • •••••••
era-ph • • • • • • • • • • • •
"aph draw a graph • • • • •
araphica.1 a.nd numerical commands
ara.phical commands stat •
arapbiea.1 device routines and/ •

ct.(lc)
• arapb(lg)

sag(lg)
• araph(lg)

• • graphies(lg)
• st.at(l,)

araphieal editor ••••••••••••
"apbieal table of eontent.s

gdev(lg)
• • ,ed(lg)

t.oc(lg)
gut.il(lg) gra.phieal utilities ••••••

graphics access graphical and
graphics IIlters • • • • • •
greek select. terminal filter
grep, egrep, rgrep searc h a
IJOUP • • • • • • • •
Iroup • • • • • • • •••
group • • • • • •••••
group IDs and names • •
groups of programs make
gutil graphical utilit.ies
handle special functions of DASI
handle special functions or
handle special functions of the •
bangups and quits ••••••
hardcopy, tekset, t.d graphica.l
bashcheck find spelling errors
basbmake, spellin, hash check •
belp • • • • • • • • • • • ••
help ask for help ••••••
Hewlett-Packard 2640 and/ • • •
hp handle special runctions or
bpd, erase, bardcopy, tekset, t.d

• • • • • • • ,rapbics(lg)
• tplot(lg)

• • greek(l)
• • grep(l)
• • charp(l)

ehown(l)
• • newgrp(l)

id(l)
make(l)

• gutil(lg)
300(1)

• hp(l)
••••• 450(1)

• nohup(I)
• gdev(lg)

• • • spell(I)
spell(l)
help(l)
help(l)
bp(l)
hp(l)

hyphen find hypbenat.ed words • • • • • • •
byphenated words ••••••

• • gdev(lg)
byphen(I)
hyphen(l)

id /remove a message queue,
id print user and group IDs and
id or designat.ed process • • • • •
identify sees Illes •••••
IDa and names • • • • • • • •
immune to bangups aDd quits
index ••••••••••••
information ••••••••
iDrormation about dOle users ••
information from a common object/
inquiry and job control ••••
interactive message processing
interpolat.e smooth curve
interpret. ASA carriage control
interpreter • • • • • • • • • •
interpreter) with C-Iike syntax
iJlt.er-process communication
interval ••••• • • • • • •
intro int.roduction t.o commands
introduction to comma.nds a.nd
ipcrm remove a message queue, •

• ipcrm(l)
• • • • id(l)

apid(l)
• • wbat(l)

• id(l)
nohup(l)

• ptx(l)
•••••••• Ipsta.t(I)

wbodos(l)
• • strip(l)

uust.a.t.(lc)
• . • • • • • mailx{l)

• • spline(lg)
• • asa(l)

• • • • • • • 800(1)
• • esh(l)

• ipcs(l)
• • •• sleep(l)

• • intro(l)
intro(l)
ipcrm(l)

Icon International, Inc.

(

o

communication facilities status
news print news

uustat uucp status inquiry and
gather flies and/or submit RJE

operator

kermit
print version number of the

makekey generate encryption

patt.ern scanning and procusing
arbit.rary-precision arithmetic

eft Extended Fortran
command programming

cpp the C
at, bat.ch execut.e commands at a

shl shell
object Illes

simple lexical t.asb
generate programs for simple

ordering relation for an object
archives ar archive and

line read one

common/ /strip strip symbol and
nl

cut out selected fields of each
Ipr off

send/cancel requests to an LP
col filter reverse

comm select or reject
device fold fold long
uniq report repeated

of several files or subsequent
subsequent/ pute merge same

files /Id
cp, In, mv copy,

Pttrmulttd Indtts

ipcs report inter-process
items •••••

••••• • ipes(l)
new8(1)

job control •••••••
jobs send, gath
join relational database
Itermit Itermit 81e transfer
kermit 81e transfer ••
kernel and utilities vers
tey •••••••••
Itill terminate a process
language awk •••••
laDIUalt be •••••• • • • • •
Language ••••••••••
language /the standard/restricted •••••
language preprocessor

• • • • • uustat(lc)
• lend(lc)

• • join(l)
Itermit(l)
kermit(l)

• • vera(l)
• • makekey(l)
• • Itill(l)

awlt(l)
bc(l)

• • • • • eft(l)
• sh(l)

• •••• cpp(l)
later time ••••••••
layer manager ••••••
Id Iinlt editor tor common

• • • • • • • ••• • a.t,(l}

lex generate progams for
lexical t.asb lex

• • shl(l)
Id(l)

• • lex(l)
· • • • • lex(l)

library lorder 8nd • • • • •
library maintainer ror port.able ••••••

• lorder(l)
• ar(l)

line(l)
• • • • • line(l)

• • strip(l)
nl(l)

line • • • • • • • • • • • • • •
line read one line •••••••
line number information from a
line numbering filter
line of a IIle cut
line print •••••
line printer Ip, cancel
line-feeds •••• ••
lines common to two sorted files
lines for finite width output
lines in a file • • • • • • •
lines of one 81e /same lines
lines of several flies or
link editor for common object
link or move 81es • • • • •
lint a C program checker

••••••• • cut(l)
Ipr(l)
Ip(l)

• • col(l)
• .•• • comm{l}

• • fold(l)
uniq(l)
pute(l)

• •••• pute(l)
Id(l)

• • • • • cp(I)
.•..• . lint(l)

Is list contents of directory • IS(I)
nm(l) /nm print name list of common object 81e •

xargs construct argument Iist(s) and execute command
cp,

newgrp

logname get
passwd change

for an object library
nice run a command at

to an LP line printer
lend/cancel requests to an

enable, disable enable/disable
Ipstat print

information

your processor type machid,
value about your processor type

meonf provide
m4

program mt
send mail to users or read

or read mail
mail, rmail send
processing system

groups of programs make
ar archive and library

shl shell layer
mt magnetic tape

man print entries in this
diffmk

umuk set file-creation mode

In, mv copy, link or move files
log in to a new group
login sign on
login name •••••
login password ••••
logname get login name
lorder 8nd ordering relation
low priority •••••••••
Ip, cancel send/cancel requests
LP line printer Ip, cancel
LP printers
LP status information
Ipr off line print
Ipstat print LP status
Is list contents of directory
m4 macro processor • • •
m68k provide truth value about
machid, m68k provide truth
machine con8gurtion •••
macro processor •••••
magnetic tape manipUlating
mail mail, rmail
mail, rmail send mail to users
mail to users or read mail • • • •
mailx interactive message
maintain, update, and regenerate
maintainer for portable archives •
makekey generate encryption key
manager •••••••••••
manipulatillg program
manua.l •••••••••••
mark differences between files
mask ••••••••••••

• xargs(I)
cp(I)

• •••• newgrp(I)
• • login(l)
• • logname(l)

passwd(l)
• • • • logname(I)

• • lorder(l)
nice(l)

• • Ip(l)
Ip(l)

• • enable(I)
• • • •• Ipstat(l)

• • Ipr(l)
• • • •• Ipstat(I)

15(1)
m4(I)

• •••• machid(I)
machid(I)

• • mconr(l)
• •••• m4(I)

• •• mt(I)
• • mail(l)

mail(I)
..•..•• • mail(l}
••••••• • maiJx(l)

malte(l)
• ar(l)

makekeY(I)
shl(l)
mt(l)
manti)
diffmk(I)
umuk(l)

I,:on International, Inc. xxiii

Permuted Indez

dia aD
conflgurtion

queue, semaphore set or shared
10ft 10ft. and/or

or subaequeDt IiDes or oDe/ put.e

mailx iDteraetive
ahared memory/ ipcrm remove a

mesg permit or deDY

cbmod change
umut set. flle-creation

ba a compiler/interpreter tor
touch update acceas and

tor crt yiewing
cp, In, my cop" link or

program
ep,ln,

logname get. login
pwd working director,

Inm print
uname print
tt, get the

deliver portions of path
id print user and group IDa and

peL network
execute a command on the PCL

commands stat atatistieal
text flle

news print
priorit.y

object flle
hangups and quits

factor factor a
Istrip strip symbol and line

utilities vers print version
nl line

graphics access graphieal and
common formats convert convert
Idump dump selected parts or an

Inm print name list or common
number information from a common

lid link editor for common
print sect.ion sizes of common

find ordering relation ror an
od

JOIn relational dat.abase
get.opt. parse command

stty set the
library lorder find

fold long lines for finite width
chown, chgrp change

expand files
crt viewing more,

terminal 4014
getopt

t.ail deliver the lut
Idump dump selected

passwd change login
several Illes or subsequentl

dirname deliver portions of
fgrep searc b a file ror a

language awt
expand Illes pact,

ec,
net execute a command on the

mesg
ptx

more, page 11141

mc68020 diaauembler • • • • • • • dis{l)
mcont proylde machine ••• mconl'{l)
memor, id Iremove a mesaage • iperm(l)
me". 81ea • • • • • • • • • • • • • • • • • aort.(1)
merge same lines or seyeral lies • • • • • • pute(l)
me.. permit or deny messages mesg(l)
meaaage proeessing a,atem • • • • • mailx(l)
meaaage queue, semaphore set or ipcrm(l)
messages •••••••• • • • • • • • (1)
mkdir mate a direetory ••••• mkdir(l)
mode •••••••• • chmod(l)
mode muk ••••••••••••• nmut(l)
modest-aized programs • • • • • ba(l)
modilcation times of a flle • touch(l)
more, page lIe perusal fllter more(l)
move Illes ••••••••• ep(l)
mt magnetic tape manipulatiDg ••••• • mt(l)
my copy,link or move flies • • • • cp(l)
name ••••••••••••• • logDame(l)
name ••••••••••••••
name list or common object flle
name or current UNIX system
name or the terminal • • •
names ba.sename, dirname
names •••••••••
net execute a command on t.be
network net •••••••••
network useful with graphical • • ••••
newform change tbe format of a
newgrp log in to a new group
news print news items • • •
news items ••••.••••
nice run a command at low
nl line numbering Biter
nm print name list of common
nohup run a command immune t.o

pWd(l)
• • nm(l)

uname(l)
• • ttY(I)

baaename(l)
• •• ide!)

• • net(lc)
Det(lc)

• • atat(lg)
newtorm(l)
newgrp(l)

• news(l)
• • news(l)

nice(l)
• • • nl(l)

• • • • • • nm(l)
• nohup(l)

number ••••••••••••••• • • • • • • • factor(l)
number inrormation from a common I
number of the kernel and
numbering filter
numerical commands • • • • • • • • •
object and archive flies to
object IIle •••••••
object Ble •••• •••
object flle Isymbol and line
object flies • • • • •
object Illes Isize
object library lorder
octal dump

strip(l)
• • vers(l)

nl(l)
• • • graphics(lg)

convert(l)
dump(l)
nm(l)
atrip(l)

• • • Id(l)
size(l)

• 10rder(l)

od octal dump •• •••
••••••• od(l~

. • . • • . od(l
operator •••••
options •••••
options ror a terminal •••••
ordering relation ror an object
output device fold •••••
own er or grou p • • • • • • • •
pack, pcat, unpack compress and

join I)
getopt(l)

• • • • • • attY(I)
• 10rder(l)
• fold(l)

chown(l)

page IIle perusal fllter for • • • • • •
• pact(l)

more(l)
•• 4014(1) paginator for the TEKTRONIX 4014

parse command options
part of a flle • • • • • • • • • • •

· .•.•••• • letopt(l)
• tail(l}

parts of an object Ble • • • • • • • • • • • • • • dump(l)
passwd(l)
passwd(l)
pute(l)

passwd change login password • • • • •
password ••••••••
pute merge same lines or
patb names buename,
pattern grep, egrep,
pattern scanning and processing
pcat, lin pack compress and
pcc C compiler
PCL network •••••
permit or deny messages
permuted index
perusal fllter for crt viewing

baaename(l)
grep(l)

•••• aWk(l)
• • • • • • pact(l)

· • • te(t)
• . . • • • • net(le)

," meag(l)
•• ptx(l)

more(l)

Icon Interna.tional, Inc.

()

termin&ls pg Ille
lOrt-eopy termin&la

split .plit & IIle into
tee

presence or the Bo&Ung
and library m&int&iner for

buen&me, dirn&me deliver
b&nner make

cpp the e langulLge
coprocessor rpu determine

unget undo &
Ipr olr line

prs
d&te

e&1
& Ble lum

&etivity nct
m&n

e&t eone&tenate &nd
pr

Iplt&t
IIle Inm

uname
news

&ectcom se&rch &nd
object liles lsize

design&ted process apid
names id

kernel &nd utilities vers
requests to an LP line

vpr VerSILtec
disable enable/disable LP

nice run a command &t low
dose connect to

the process id or designated
kill terminate a

wait await completion or
acctcom search and print

timex time a command; report
apid print the

ps report
awk pattern scanning and
mailx interactive message

m4 macro
provide truth value about your

pror display
!pt mlLgnetic t&pe m&nipulating

Idilr lide-by-side difference
units conversion

cb e
lint a e

cner generate e
ctrace e

&utoJetension BILg ror I reten
the stand&rd/restricted command

for modest-sized
to commands and application

update, and regenerate groups or
scc e compiler for stand-&Ione

lex generate
mconr

processor type machid, m68k
true, raise

copy uuto, uupick

the autoJetension lIag ror
tput

memory / ipcrm remove a message
a command immune to hangups and

leon International, Inc.

perus&l Illter for lOrt-copy
pg IIle perunl IIIter ror
pieces • • • • • • • • •
pipe IItting •••••••
point coprocessor Idetermine
port&ble &rchives &r &rchive
portionl or p&th n&mes
posters
pr print Illes
preprocessor •
presence of t.he 1000ting point.
previous get. of &n sees IIle
print •••.••••
print &n sees Ble
print &nd set the d&te
print c&lend&r •••••••••••
print checksum &nd block count or
print current sees IIle editing
print entries in this m&nu&l

Permulell Inllez

• • ,,(1)
,,(1)
.pllt(l)
tee(l)

• rpu(l)
• • &r(l)

• buen&me(l)
••• b&nner(l)

prell
• epp(l)

• • rpu(l)
• • unget(l)

• Ipr(l)
prs(l)

• • d&te(l)
c&l(l)
lum(l)

. . • • • • aaet(l)
• m&n(l)
• c&t(l) print Illes •••• ••••

print Illes ••••••••
print LP st&tus inform&tion • •
print n&me list or common object

• • • • • • pr(l)

print n&me or current UNIX system
print news items • • • • • •
print process &ccounting IIle(s)
print section sizes of common
print the process id or
print user and group IDs &nd
print version number or the ••
printer Ip, cancel send/cancel
printer spooler ••

••••••• Ipltat(l)
• • nm(l)

uname(l)
• • • • • news(l)

• •••• &cctcom(l)
• size(l)
• &pid(l)
• id(l)

• • vers(l)
• Ip(l)

vpr(l)
• enable(l) printers en&ble, ••••••

priority ••••• • • • • • • • • •• niee(l)
Proc/286 system
process apid print
process •••••
process ••••••.
process accounting flle(s)
process data and system activity
process id or designated process
process status
processing language
processing system
processor
processor type machid, m68k
prof display profile data
profile data
program •••••
program ••••••
program •••••
program beautifier
program checker ••
program cross-reference
program debugger
progr&m to change the ••••

dosc(l)
&pid(l)
kiIl(l)
wait(l)

• &cctcom(l)
• Umex(l)

apid(l)
ps(l)
aWk(l)
mailx(l)
m4(1)
machid(l)

• • • pror(l)
pror(l)

• •••• mt(l)
• • • sdilJ(l)

units(l)
• • • cb(l)

• lint(l)
• • • • • exret(l)

ctrace(l)

programming language /shell, •
programs /a compiler/interpreter
programs intro introduction •
programs make maintain, ••

• reten(l)
_ • sh(l)

. •..••. • ba(l)

programs ••••••••••
programs for simple lexical tub • •
provide machine configurtiob
provide truth VlLlue about your
provide truth values • • • • • • •
prs print an sees file • • • • •
ps report process status
ptx permuted index • • • •• ••• ••
public UNIX-to-UNIX system file
pwd working directory name • •
quarter-inch cartridges. /change
query terminfo databue
queue, semaphore set or shared
quits nohup run •••••

intro(l)
make(l)
scc(l)

• • • • lex(l)
• meonr(l)

• •• machid(l)
true(l)
prs(l)

• ps{l)
ptx(l)
uuto(lc)
pWd(l)
reten(l)
tput(l)

• ipcrm(l)
Dohup(l)

xxv

Ptrmuted Indu

xxvi

rsplit split f77,
ratror

rmail send mail to users or
line
ed,

compile
make maintain, update, and

ngcmp
files comm select or
lorder find ordering

join
calendar

ct apawil geUy to a
rmdel

set or ahared memory id ipcrm
rm, rmdir

files rmdir, rm
ulliq report

commullicatioll racilities/ ipcs
activity timex time a command;

ps
uniq

lar system activity
Ip, cancel send/cancel
auto...retension Ilag for/

col filter
gath ga.ther files a.nd/or submit

or files rmdir,
directories

rea.d mail mail,
sees file

directories rm,
directories or files

toc gra.phical table of contents
tekset, td gra.phiea.1 device

standard/restricted command/ sh,
nice

and quits nohup
editing activity

brs big file
awk pattern

progra.ms
cbange the delta. commentary of a.n

comb combine
make a delta (change) to an

get get a version of an
prs print an

rmdel remove a. delta from a.n
compare two versions of an

unget undo a previous get of an
val valida.te

sact print current
admin crea.te a.nd administer

wbat identify
of a.n sees file

editor based on ex vi

program
grep, egrep, fgrep

accounting flle(s) acctcom
files /size print

two sorted files comm
greek

file cut cut out
/dump dump

ipcrm remove a message queue,
submit RJE jobs

mail, rmail
line printer Ip, cancel

calendar reminder

ratror rationa.l Fortran dialect
ratfor, or ell 81es • • • •
rational Fortran dialect
read mail mail,
read one line • • • • • • •
red text editor
regcmp regula.r expression

ratror(l)
faplit(l)

• ratror(l)
mail(l)

• • • • • line(l)
ed(l)

regenerate groups or programs •••••
regula.r expression compile

• •• regcmp(l)
make(l)

• regemp(l)
• •• eomm(l)

lorder(l)
joill(l)

reject lines common to two sorted
relation tor an object library
relational database operator
reminder service ••••••
remote termillal ••••••
remove a delta trom an sees file
remove a message queue, semapbore
remove files or directories • • • •
remove (unlink) directories or •
repeated lines in a 81e ••••••
report inter-process • • • • • •
report process d .. ta alld system
report process status ••••
report repeated lines in a file
reporter • • • • ••••••
requests to an LP lille printer
reten program to change tbe
reverse line-feeds • • • • • •
RJE jobs sen d, • • • • • • • • • •
rm remove (unlink) directories
rm, rmdir remove files or
rmail send mail to users or • • •
rmdel remove a delta from a.n

• ealenda.r(l)
• ct(lc)

• • rmdel(l)
ipcrm(l)

• •• rm(l)
• • rmdir(l)

ulliq(l)
ipca(l)
timex(l)
ps(l)
uniq(l)

• • • • • Ia.r(l)
• • lp(l)

• ••••••• • reten(l}
col(l)

• • send(lc)
• • rmdir(l)

• rm(l)
mail(l)

• • rmdel(l)
• rm(l) rmdir remove files or ••••

rmdir, rm remove (uillink) ••• ••••••••• • rmdir(l}
routines • • • • • • • • • .
routines and filters /b .. rdeopy,
rsb sbell, the •••••••
run a command at low priority
run a command immune to hangups
aact print current sees file
ug system .. ctivity grapb
sar system activity reporter
sea-nner ••••••••••
sea.nning a.nd processing language
sce e compiler for stand-done
sees delta cdc
sees delta.s • •
sees file delta
sees file
sees file
sees file
sees file sccsdiff
sees file
sees file
sees file editing activity
sees 81es •••••••
sees 81es ••••••••
Iccadifr compa.re two versions
screen-oriented (visu .. l) display
sdb symbolic debugger • •
sdiff side-by-side difrerence ••
search a. 81e ror a pa.ttern • • •
sea.rch and print process
section sizes of common object
sed stream editor •••••
select or reject Ii nes common to
select terminal filter •••••
selected fields or each line or a ••
selected parts of a.n object file •
semaphore set or sha.red memory id
send, gatb ga.tber files a.nd/or
send mail to users or read mail
send/cancel requests to an LP
service •••••••••.

toc(lg)
• gdev(lg)

• • sb(l)
nice(l)
nohup(l)

• • • sa.ct(l)
• ug(lg)

• • sar(l)
• • • • • • brs(l)

aWk(l)
• • • • • • • 8ce(1)

• ••• cdc(l)
comb(l)

• •••• delta(l)
• • • • • • • • Cet(l)

• • • • prs(l)
• •••• rmdel(l)

• • sccsdifr(l)
unaet(l)

• • va.1(1)
• •• sact(l)

• ••••••• • admin(l)
• •• wha.t(l)

• accsdilf(l)
vi(l)
adb(l)

• sdilf(l}
,repel)

• • • • acctcom(l)
• ••• size{l)

• • • • • sed(l)
• comm(l)
• ,reek(l)

cut{l)
• dump(l)

ipcrm(l)
••••••• • send (Ie)

mail(l)
• Ip(l)

calendar(l)

Icon International, Inc.

/~.

c'

()
~/

execution env
umask

remove a meuage queue, semaphore
tabs

date print and
stty

or/ paste merge same lines or
standard/restricted command/

a me88&ge queue, semaphore set or
C-Iike syntax cah a

shl
command programming/ sb, rah

sdill
login

lex generate programs ror
common object liles
/size print section

interval
spline interpolate

sno
pg file perusal filter ror

tsort topological

sort
or reject lines common to two

ct
3OOs/ 300, 300& bandle

Hewlett-Packard 2640/ bp ha.ndle
termina.l 450 handle

hashcheck lind spelling errors
spelling errors spell, hash make,

spellin, hash check lind

csplit context

split
rsplit

vpr Versa.tec printer
scc C compiler ror

programming/ sh, rah ahell, the
with graphical commands
gra.phical commands stat

communication Cacilities
ps report process

Ipstat print LP
uustat uucp

sed
number inrormation Crom a common/

inrormation Crom a common/ /strip
terminal

user
send, gath gather files and/or

/same lines or severa.l files or
count or a file

du
sync update the

su become
sleep

inCormation Crom a/ /strip strip
sdb

(command interpreter) with C-like
cu call another UNIX

dosc connect to Proe/286
interactive meuage proceasing

print name or current UNIX
who who is on the

comma.nd; report process data. and
sag
sar

uux UNIX-to-UNIX
uuna.me UNIX system to UNIX

aet environment ror command •
set Ble-creation mode mask
set or shared memory id ipcrm
set tabs on a terminal
set the date •••••••••
set the options ror a terminal
several files or subsequent lines
sh, rsh shell, the ••••••
shared memory id ipcrm remove
shell (command interpreter) with
shell layer manager • • • • • •
sbell, tbe standard/restricted
abl shell layer manager
side-by-side dillerence program

Permuted Indez

• tnv(l)
• • • • • umask(l)

· ••• iPCrm3) tabs(l
date(l

• • sttY(l)
paste(l)

• • sb(l)
• ••• ipcrm(l)

• csb(l)
• shl(l}
• sb(l)

• • sbl(l)
• sdill(l)

siln on •••••.. •. • • • • • login(l)
simple lexical tasks • • • • • •
size print section sizes or • •
sizes of common object files

• • • • • • • • •• • lex(l)
• • • • • . aize(!)

• • sizt(l)
sleep suspend execution ror an • • • • • • •• •• sleep(l)
smooth curve ••••••
sno SNOBOL interpreter
SNOBOL interpreter •••
sort-copy terminals • • • •
IOrt • • • • • • • • • • •
sort sort and/or merge files
sort and/or merge Illes
sorted liles comm select •
spawn getty to a remote terminal
special functions of DASI 300 and
special functions or • • • • • • •
special functions of the DASI 450
spell, hashmake, spellin, • • ••
speUin, hashcheck lind • • ••
spelling errors spell, hashmake,
spline interpolate smooth curve
split •••••••• ••
split split a lile into pieces

.' .. • • spline(lg)
sno(l)
Ino(l)
pg(l)

• • tsort(l)
• sort(l)

• • • sort(l)
•••••• comm(l)

• ct(lc)
• 300(1)

hp(l)
• • 450(1)

• spell(l)
• spell(l)

Ipell(l)
• • spline(lg)

• ••• csplit(l)
• ••• split(l)

• split(l) split a lile into pieces • •
split (77, ratror, or eli liles • • • • • •• •••• rsplit(l)
spooler •••••••••
stand-alone programs • • •
standard/restricted comma.nd • • • • •
stat statistica.l network userul
sta.tistical network useful with
status /report inter-proeess ••
status • • • • • • • • • • • •
status inrormation •••• ••
statuI inquiry and job control
stream editor •••••••
strip strip symbol and line •
strip symbol and line number
stty set the options for a
su become super-user or another
su bmit RJE jobs •••••••
subsequent lines or one IIle

• vpr(l)
• • scc(l)

• sh(l)
• • • • stat(lg)

stat(lg)
• • • • • • ipes(l)

pS(l)
• Ipstat(l)

uustat(lc)

• • Bed(l?
strip 1)
strip 1)

• sttY(l)
• sU(l)
• Bend(lc)

paste(l)
sum print checksum and block
summarize disk usage • • •••
super block •••••••••
super-user or another user • • • •
suspend execution ror an interval
symbol and line number

..•.••• • lum(l)

symbolic debugger ••••••
sync update the super block
syntax csh a shell
system
system
system ma.ilx
system uname
system
system activity timex time a
system activity gra.ph
system activity reporter
system command execution
system copy uucp, uulog,

• duel)
• • sync(l)

• • • • • • • • • • 8u(l)
• sleep(l)
• strip(l)

sdb(l)
• sync(l)

csh(l)
cu(lc)
dosc(l)
mailx(l)

• • uname(l)
wbo(l)

• timex(l)
• • • sag(lg)

• 8ar(1)
uux(lc)
uucp(lc)

kOIl International, Inc. xxvii

•

Permuted I"de~

XXI'iii

uupick public UNlX-t~UNIX
uucp, uulog, uuna.me UNIX

toe: cra.pbical

ta.bs set
tile
tar

lOt m",netic

proara.ms for simple lexiCl.I
Ihpd, era.ae, ba.rdcopy. tebet.

gdev, hpd. erase, ba.rdcopy,
4014 p",iutor for tIM:

pa.glna.tor for tbe TEKTRONIX 401-4
specia.l fUDct-ions or tbe DASI 450

ct spawn getty t.o a. remot.e
Itty set the opt.ionl for a

tabs set tabs on a
tty get tbe na.me of the

greek select
functions of DASI 300 a.nd 300s

2640 and 2621-leries
Ille perusal Illter for sott-eopy

kill
tput query

comma.nd
ed, r.d

ex
casual users) edit

newform cbange tbe format or a
update access and modification

process data and system activity
routines

tsort
modification times of a file

kermit kermit file
tr

values
type maehid, m68k provide

true, false provide

termin .. l
file determine file

truth value .. bout your processor
mask

UNIX system
file unget
sees file

file

cu call anotber
una.me print na.me of current

uulog, uuna.me UNIX system to
uucp, uulog, uunarne

execution uux
uUto, uupiek publi.c
rmdir, rm remove

Illes pack, pcat,
times of a IIle t.oucb

programs make ma.intain,
sync

du summarize disk
sta.t sta.tistical network

IU become super-user or anotber
write write t.o a.nother

id print
croDtab

editor (,variant of ex for casual
display information a.bout dose

mail, rmail send ma.iI to

system IIle copy uut.o, uuto(lc)
.,ltem t.o UNIX system copy • • • • • uucp(lc)
ta.ble or contents routines • • • • • • • toe(lg)
ta.be at t.abs on a. terminal • • • • • • • • b.bs(l)
ta.bs on a termina.l • • • • • • • • • • • • • ta.bs(l)
ta.il deliver the last pa.rt of .. • • • • ta.il(l)
ta.pe file a.rchiver • • • • • • • • • • • • tar(l)
tape ma.nipula.ting proara.m • • • • • • • • • mt{l)
tar tape lie a.rcbiver •• ta.r(l)
tub lex generate • • • • • lex(l)
td gap hi cal device routinesl • • • • • • • gdevilg)
tee pipe IUing •••••••••••• tte(l
tebet, td graphical devicel gdev Ig)
TEKTRONIX 4014 terminal 4014(1)
termina.l 4014 • • • • • 4014(1)
termlul 450 hndle 45O(1)
termi nal • • • • • • • • • • • • • • • et.(1 c)
terminal • • • • • • • • • • • • Itty(l)
terminal • • • • • • • tabs(l)
termini • • • • • tty(l)
termini IIlter ••••••• • • creek(l)
terminals 1300& handle special 300(1)
termluls lof Hewlett-Packard ••••• hp(l)
terminals pg ••••• • • • • • pg(l)
terminate a process • • • • • till(l)
terminto database • • • • • tput(l)
test condition evaluation • • • • • • • • • • test(l)
text editor • • • • • • • • • • • • • • ed(l)
t.ext editor • • • • • • • • • • • • • • ex(1)
text editor (variant of ex for •••• edit(l)
text file •••••••••• newform(l)
times or JL file touch • • • • • • • touch(l)
timex time a command; report • • ••••••••• timex(l)
t.oe: ,raphical table of contents ••••• toe{lg)
topological 80rt • • • • tsort(l)
t.ouch update access and •••••••••••••• t.ouch(l)
tplot graphics filters • • • • •• ••••••••• tplot(lg)
tput query terminfo da.tabase • • • • • tput(l)
tr translate characters • • • tr(l)
transfer •• • • • • • • • • kermit(l)
translate characters • • tr(l)
true, false provide truth • • • true(l)
truth value about your processor ••• machid(l)
truth values • • • • • • • • • true(l)
tsort topological 80rt • tlOrt(l)
tty get the name of the • ttY(l)
type ••••••••• • • • • • • 61e(1)
type machid, m68k provide • machid(l)
umask set file-creation mode umask(l)
una.me print name of current • • • • • • • uname(l)
undo a previous get of an sees unget(l)
unget undo a previous get of an unget(l)
uniq report repeated lines in a uniq(l)
units conversion program • • • • • • • units{l)
UNIX system ••••••••••••••••••• cu(lc)
UNIX system ••••••• • • • • • • uname(l)
UNIX system copy uucp, ••••••••• uucp(lc)
UNIX system t.o UNIX system copy ••• uucp(lc)
UNIX-t~UNIX system command uux(lc)
UNIX-t~UNIX system file copy ••••••••••• uuto(lc)
{unlink) directories or files • rmdir(l)
unpa.ck compress a.nd expa.nd pack(l)
update access and modillcation • touch(l)
update, and regenerate groups of ••• make(l)
upda.te the super block ••• sync(l)
URge •••••••••••••
useful with graphical commands
ustr • • • • • • • • • • • ••
user • • • • • • • • • • • •
user and group IDs and na.mes
user crontab file •
users) edit text • • • • • •
users whodos
users or read mail

••• duel)
• stat(lg)

•••• sU(I)
• write(l)

id(l)
•• crontab(l)

• •• edit(l)
• wbodos(l)

mail(l)

Icon International, Inc.

c'
gutil graphical

version number oC the kernel and
control uustat

to UNIX system copy
UNIX system copy uucp,
system copy uucp, uulog,

system Ille copy uuto,
job control

UNIX-to-UNIX system Ille copy
execution

Icon International, Inc.

val
machid, m68k provide truth

true, Calse provide truth
edit text editor

the kernel and utilities
vpr

vc
utilities vers print

get get a
sccsdifl' compare two

display editor bued on ex
file perusal filter Cor crt

ex vi screen-oriented

process

about dose users
fold fold long lines for finite

we
hyphen find hyphenated

cd change
pwd

write
list(s) and execute command

compiler-compiler
yacc

Permuted Indez

utilities ••••••••• • gutil(lg)
utilities vers print • vers(l)
uucp status inquiry and job • • • • • uustat(lc)
uucp, uulog, uuname UNIX system •••••• uucp(lc)
uulog, uuname UNIX system to • uucp(lc)
uuname UNIX system to UNIX • • • • • • • • uucp(lc)
uupick public UNIX-to-UNIX • • • • • • uuto(lc)
uustat uucp status inquiry and • uustat{lc)
uuto, uupick public ••••••• uuto{lc)
uux UNIX-to-UNIX system command uux(lc)
val valid .. te sees Ille • • • • • • • • • 1'1.1(1)
l'alidate sees Ille ••••••• • val(l)
value about your processor type •• machid(l)
values • true{l}
(variant or ex Cor cuual ulers) • • edit(l)
YC l'ermOD cODtrol • • • • • • • • • • • • 'Yc(l)
vers print version number oC • • • • • • vers(l)
Versatec printer spooler • • • • • vpr(l)
version control • • • • • • • • • • • vC{l)
version number or the kernel and • • • vers(l)
version oC an sees Ille • • • get(l)
versioDs or an sees Ille • • • • • • • sccsdifl'(l)
vi screen-oriented (l'isual) • • vi(l)
viewing more, page • • more(l)
(visual) display editor bued on ••••• vi(l)
vpr Versatec printer spooler vpr(l)
wait await completion of ••••• wait(l)
wc word count ••••••• • •• wC(l)
whodos display inCormation ••• whodos(l)
width output device • • • • • • • Cold(l)
word count • wC(I)
words • • • • • • • • hyphen(l)
working directory • • • • • • • cd(l)
working directory name • • • • • • pWd(l)
write write to another user •• write(l)
write to another user • • • • • write(l)
xargs construct argument xargs(l)
yacc yet another yacc(l)
yet another compiler-compiler ••• yace(l)

xxix

Permuted Intlez

xxx Icon International, Inc.

c,
INTRa (l) USER COMMANDS INTRO(l)

NAME

intro - introduction to commands and application programs

DESCRIPTION

This section describes, in alphabetical order, publicly-accessible commands. Certain
distinctions of purpose are made in the headings:

(1) Commands of general utility.
(IC) Commands for communication with other systems.
(IG) Commands used primarily for graphics and computer-aided design.

COMMAND SYNTAX

Unless otherwise noted, commands described in this section accept options and other
arguments according to the following syntax:

name [option(s)] [cmdarg(s)]
where:

name

option

The name of an executable file.

- noargletter(s) or,
- argletter<>optarg
where <> is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding argletter.

noargletter

argletter

optarg

cmdarg Path name (or other command argument) not beginning with - or, -
by itself indicating the standard input.

SEE ALSO

getopt(I).
exit(2), wait(2), getopt(3C) in the ICONjUXV Programmer Reference Manual.

How to Get Started, at the front of this volume.

DIAGNOSTICS

Upon termination, each command returns two bytes of status, one supplied by the
system and giving the cause for termination, and (in the case of "normal" termina­
tion) one supplied by the program (see wait(2) and exit(2)). The former byte is 0 for
normal termination; the latter is customarily 0 for successful execution and non-zero

Icon International, Inc. 1

INTRO(l) USER COM:MANDS INTRO(l)

BUGS

to indicate troubles such as erroneous parameters, bad or inaccessible data, or other
inability to cope with the task at hand. It is called variously "exit code", "exit
status", or "return code", and is described only where special conventions are
involved.

Regretfully, many commands do not adhere to the aforementioned syntax.

WARNINGS

2

Some commands produce unexpected results when processing files containing null
characters. These commands often treat text input lines as strings and therefore
become confused upon encountering a null character (the string terminator) within a
line.

Icon International, Inc.

300(1) . USER COMl\1ANDS 300(1)

NAME

300, 300s - handle special functions of DASI 300 and 300s terminals

SYNOPSIS

300 [+12] [-n] [-dt,l,c]

300s [+12] [-n] [-dt,l,c]

DESCRIPTION

The 800 command supports special functions and optimizes the use of the DASI 300
(GSJ 300 or DTC 3(0) terminal; 800s performs the same functions for the DASI 300s
(GSI 300s or DTC 300s) terminal. It converts half-line forward, half-line reverse, and
full-line reverse motions to the correct vertical motions. It also attempts to draw
Greek letters and other special symbols. It permits convenient use of 12-pitch text.
It also reduces printing time 5 to 70%. The 800 command can be used t.o print
equations neatly, in the sequence:

neqn file ••• I nroff I 300

WARNING: if your terminal has a PLOT switch, make sure it is turned on before 300 is
used.

The behavior of 800 can be modified by the optional flag arguments to handle 12-
pitch text, fractional line spacings, messages, and delays.

+12 permits use of 12-pitch, 6 lines/inch text. DASI 300 terminals normally
allow only two combinations: 100pitch, 6 lines/inch, or 12-pitch, 8
lines/inch. To obtain the 12-pitch, 6 lines per inch combination, the user
should turn the PITCH switch to 12, and use the +12 option.

-n controls the size of half-line spacing. A half-line is, by default, equal to 4
vertical plot increments. Because each increment equals 1/48 of an inch, a
100pitch line-feed requires 8 increments, while a 12-pitch line-feed needs
only 6. The first digit of n overrides the default value, thus allowing for
individual taste in the appearance of subscripts and superscripts. For
example, nroff half-lines could be made to act as quarter-lines by using -2.
The user could also obtain appropriate half-lines for 12-pitch, 8 lines/inch
mode by using the option -3 alone, having set the PITCH switch to 12-
pitch.

-dt,l,c controls delay factors. The default setting is -d3,90,30. DASI 300
terminals sometimes produce peculiar output when faced with very long
lines, too many tab characters, or long strings of blankless, non-identkal
characters. One null (delay) chara.cter is insert,ed in a. line for every set of
t tabs, and for every contiguous string of c non-blank, non-tab characters.
If a line is longer than I bytes, l+{total length)/20 nulls are inserted at the
end of that line. Items can be omitted from the end of the list, implying

Icon International, Inc. 1

300(1) USER COMMANDS 300(1)

(-~ ,

use of the default values. Also, a value of zero for t (c) results in two null ',_
bytes per tab (character). The former may be needed for C programs, the
latter for files like /ete/pu8wd. Because terminal behavior varies
according to the specific characters printed and the load on a system, the
user may have to experi~nt with these values to get correct output. The
-d option exists only as a last resort for those few cases that do not oth-
erwise print properly. For example, the file /ete/paaawd may be printed
using -d3,30,5. The value -dO,1 is a good one to use for C programs
that have many levels of indentation.

Note that the delay control interacts heavily with the prevailing carriage
return and line-feed delays. The sttY(I) modes nlO er2 or n10 er3 are
recommended for most uses.

The 900 command can be used with the nroff -s flag or .rd requests, when it is
necessary to insert paper manually or change fonts in the middle of a document.
Instead of hitting the return key in these cases, you must use the line-feed key to get
any response.

In many (but not aU) cases, the following sequences aTe equivalent:

nroff -T300 files... and nroff files .•. 1300
nroff -T300-12 files... and nroff files •.• 1300 +12

The use of 900 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement opt.imization of 900 may
produce better-aligned output.

The neqn names of, and resulting output for, the Greek and special chara,cters sup­
ported by 900 are shown in greek(5).

SEE ALSO·

BUGS

2

450(1), eqn(I), graph(IG), mesg(I), nroff(l), stty(l), tabs(I), tbl(l), tplot(IG).
greek(5) in the IOON/UX'V System Programmer Reference Manual.

Some special characters cannot be correctly printed in column 1 because the print
head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a ten­
dency to slip when reversing direction, distorting Greek characters and misaligning
the first line of text after one or more reverse line-feeds.

Icon International, Inc.

./

'f

, 4014 (1) USER COMMANDS 4014(1)

NAME

4014 - paginator for the TEKTRONIX 4014 terminal

SYNOPSIS

4014 [-t] [-n] [-eN 1 [-pL] [file 1

DES CRlP TION

The output of ./01.1 is intended for a TEKTRONIX 4014 terminal; ./01./ arranges for
66 lines to fit on the screen, divides the screen into N columns, and contributes an
eight-space page offset in the (default) single-column case. Tabs, spaces, and back­
spaces are collected and plotted when necessary. TELETYPEii' Model 37 half- and
reverse-line sequences are interpreted and plotted. At the end of each page, ./014
waits for a new-line (empty line) from the keyboard before continuing on to the next
page. In this wait state, the command !cmd will send the cmd t.o t.he shell.

The command line options are:

-t Do not wait between pages (useful for directing output into a file).

-n St.art. printing at. the current cursor position and never erase the screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and I (lines);
default is lines.

SEE ALSO

pr(I), tc(I), troff(I).

Icon International, Inc. 1

450 (1) USER CO:MM.A.NDS 450 (1)

NAME

450 - handle special functions of the DASI 450 terminal

SYNOPSIS

450

DESCRIPTION

The ./50 command supports special functions of, and optimizes the use of, the DASI
450 terminal, or any terminal that is functionally identical, such as the DIABLO 1620
or XEROX 1700. It converts half-line forward, half-line reverse, and full-line reverse
motions to the correct vertical motions. It also attempts to draw Greek let.ters and
other special symbols in the same manner as 900(1). Use 450 to print equations
neatly, in the sequence:

neqn file ... I nroft' I 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450 is used.
The SPACING switch should be put in the desired position (either 10- or 12-pitch). In
either case, vertical spacing is 6 lines/inch, unless dynamically changed to 8 lines per
inch by an appropriate escape sequence.

Use 450 with the nroff -8 flag or .rd requests when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the return
key in these cases, you must use the line-feed key to get any response.

In many (but not all) cases, the use of 450 can be eliminated in favor of one of the
following:

Droft' - T 450 files

or

nroft' -T450-12 files ...

The use of 450 can thus often be avoided unless special delays or options are
required; in a few cases, however, the additional movement. optimization of 450 may
produce better-aligned output.

The neqn names of, and resulting out.put for, the Greek and special characters sup­
ported by 450 are shown in greek(5).

Icon International, Inc. 1

j

,/" ----..,

~./

450(1) USER COMMANDS 450 (1)

SEE ALSO

BUGS

2

300(1), eqn(I), graph{IG), mesg{I), nrofl'(I), stty(l), tabs{l), tbl(l), tplot(lG).
greek(5) in the IOON/U:A'V System Programmer Reference Manual.

Some special characters cannot be correctly printed in column 1 because the print
head cannot be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen
instead of a forms tractor; although good enough for drafts, the latter has a ten­
dency to slip when reversing direction, distorting Greek characters and misaligning
the first line of text after one or more reverse line-feeds.

Icon International, Inc.

ACCTCOM(l) USER COM}.1ANDS ACCTCOM(l)

NAME

acctcom - search and print process accounting file(s)

SYNOPSIS

aeeteom [[options J [file 1 J . • .

DESCRIPTION

Acctcom reads file, the standard input, or /usr /adm/paeet, in the form described
by acct(4) and writes selected records to the standard output. Each record
represents the execution of one process. The output shows the COMMAND NAME,
USER, TTYNAME, START TIME, END TIME, REAL (SEC), CPU (SEC), MEAN
SIZE(K), and optionally, F (the fork/exec flag: 1 for fork without exec), STAT (the
system exit status), HOG FACTOR, KCORE MIN, CPU FACTOR, CHARS
TRNSFD, and BLOCKS fWD (total blocks rea,d and writ.t.en).

The command name is prepended with a # if it was executed with super-user
privileges. If a process is not associated with a known terminal, a 1" is printed in the
TTYNAME field.

If no files are specified, and if the standard input is associat.ed with a terminal or
/dev /null (as is the case when using &. in the shell), /usr /adm/pacet is read; oth­
erwise, the standard input is read.

If any file arguments are given, they are read in their respective order. Each file is
normally read forward, i.e., in chronological order by process completion t.ime. The
file /uer /adm/paeet is usually the current file to be examined; a busy system may
need several such files of which all but the current file are found in
/usr /adm/pacct? The options are:

-a

-b

-f
-h

Show some average statistics about the processes selected. The statis­
tics will be printed after the output records.
Read backwards, showing latest commands first. This option has no
effect when the standard input is read.
Print the fork/exec flag and system exit st.atus columns in the output.
Instead of mean memory size, show the fraction of total available CPU
time consumed by the process during its execution. This "hog factor"
is computed as:

(total CPU time)/(eJapsed time).

-i Print columns containing the I/o counts in the output.
-k Instead of memory size, show total kcore-minutes.
-m Show mean core size (the default).
-r Show CPU factor (user time/(system-time + user-time).
-t Show separate system and user CPU times.

Icon International, Inc. 1

f

ACCTCOM(l) USER COMl\1.ANDS ACCTCOM(l)

FILES

-v
-1 line
-u user

-g group

-s time

-e time
-S time
-E time

-n pattern

-q

-oofile

-H factor

-0 sec
-c sec

-I chars

Exclude column headings from the output.
Show only processes belonging to terminal/dey /line.
Show only processes belonging to user that may be specified by: a user
ID, a login name that is then converted to a user ID, a :/1= which desig­
nates only those processes executed with super-user privileges, or r
which designates only those processes associated with unknown user
IDs.
Show only processes belonging to group. The group may be designated
by either the group ID or group name.
Select processes existing at or after time, given in the format

hr [:min [:sec] J.
Select processes existing at or before time.
Select processes starting at or after time.
Select processes ending at or before time. Using the same time for both
-S and -E shows the processes that existed at time.
Show only commands matching pattern t.hat may be a regular expres­
sion as in ed(l) except that + means one or more occurrences.
Do not print any output records, just print the average statistics as
with the -a option.
Copy selected process records in the input data format to ofile; supress
standard output printing.
Show only processes that. exceed factor, where factor is the "hog fac­
tor" as explained in option -h above.
Show only processes with CPU system time exceeding sec seconds.
Show only processes with total CPU time, syst.em plus user, exceeding
sec seconds.
Show only processes transferring more characters than the cut-off
number given by chars.

/etc/passwd
/usr /adm/pacct
/etc/group

SEE ALSO

BUGS

2

ps(l), su(l).
acct(2), acct(4), utmp(4) in the ICON/UXV System Programmer Reference Manual.
acct(lM), acctcms(lM), acctcon(lM), acctmerg(lM), acctprc(IM), acctsh(lM),
fwtmp(lM), runacct(lM) in the lCON/UXV System Administrator Reference Manual.

Acctcom only reports on processes that have terminat.ed; use ps(l) for active
processes. If time exceeds the present time, then time is int.erpret.ed as occurring on
the preyious day.

Icon International, Inc.

ADMIN(l) USER COMMANDS ADMIN (1)

NAME

admin - create a.nd administer sees files

SYNOPSIS

admin [-D] [-i[nameJ] [-rrel] [-t[nameJ] [-fftag[fta.g-valJ] [-dftag[ftag-val]]
[-alogin] [-elogin] [-m[mrlist]] [-y[comment]] [-h] [-z] files

DESCRIPTION

Admin is used to create new sees files and change paramet.ers of existing ones.
Arguments to admin, which may appear in any order, consist of key letter arguments,
which begin with -, and named files (note that. sees file names must begin with t.he
characters s.). If a named file does not exist, it is created, and its parameters are
initialized according to the specified keyletter arguments. Parameters not initialized
by a keyletter argument are assigned a default value. If a named file does exist,
parameters corresponding to specified keyletter arguments are changed, and other
parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were
specified as a named file, except that non-Sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of
- is given, the standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed. Again, non-sees files and unreadable files
are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named
file is to be processed since the effects of the arguments apply independently to each
named file.

-D

-i[name]

Icon International, Inc.

This key letter indicates that a new sees file is to be created.

The name of a file from which the t,ext for a new sees file is
to be taken. The text constitutes the first. delta of the file (see
-r keylett.er for delta numbering scheme). If the i keylett.er is
used, but the file name is omitt.ed, the text is obtained by
rea.ding the standard input. until an end-or-file is encountered.
If this keylet.ter is omitted, then the sees file is created
empt.y. Only one sees file may be created by an admin com­
mand on which t.he i keylet.ter is supplied. Using a single
admin to create two or more sees files requires that they be
created empty (no -i keyletter). Note that the -i keyletter
implies the -D keyletter.

1

/~,
(\

~J

ADMIN(l)

(

2

-rrel

USER COM11Al\1J)S ADMIN (l)

The release into which the initial delta is inserted. This
keyletter may be used only if the -i keyletter is also used. If
the -r key letter is not used, the init.ial delta is inserted into
release 1. The level of the initial delta is always 1 (by defa ult
initial deltas are named 1.1).

-t[nameJ The name of a file from which des('riptive text for the sees
file is to be taken. If the -t key letter is used and admin is
creating a new sees file (the -n and/or -i keylet.ters also
used), the descriptive text file name must also be supplied. In
the case of existing sees files: (I) a -t keyletter without a
file name causes removal of deseriptive text (if any) eurrently
in the sees file, and (2) a -t key letter with a file name causes
text (if any) in the named file to replace the descriptive text
(if any) currently in the sees file.

-fflag

b

This key letter specifies a flag, and, possibly, a value for the
flag, to be placed in the sees file. Several f keylettE"rs may be
supplied on a single admin command line. The allowable flags
and their values are:

Allows use of the -b keyletter on a get(l) command to create
branch deltas.

c:ceil The highest release (i.e., "ceiling"), a number less than or
equal to 9999, which may be retrieved by a get(l) command
for editing. ThE" default. value for an unspecified c: flag is 9999.

ffloor The lowest release (i.e., "floor"), a number greater than 0 but
less than 9999, which may be rE"trieved by a get(l) command
for editing. The default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(l) com­
mand.

i[strJ Causes the "No id keywords (ge6)" m('ssage issued by get(l) or
delta(l) to be treated as a fatal error. In the absence of this
flag, the message is only a warning. The message is issu('d if
no sees identification keywords (see gel(l)) are found in the
text retrieved or stored in the sees file. If a value is supplied,
the keywords must exactly mat('h the given string, howE"ver
the string must contain a kE"yword, and no embedded newlines.

Icon Int.ernational, Inc.

ADMIN(l)

j

USER CO:M}..1ANDS ADMIN(l)

Allows concurrent gel(l) commands for editing on the same
SID of an sees file. This allows multiple concurrent updates
to the same version of the sees file.

llist A list of releases to which deltas can no longer be made (get
~ against one of these "locked" releases fails). The list has
the following syntax:

n

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the Jist is equiyalent to specifying all
releases for the named sees file.

Causes delta(l) to creat.e a "null" delta in each of those
releases (if any) being skipped when a delta is made in a new
release (e.g., in making delta 5.1 after delta 2.7, releases 3 and
4 are skipped). These null deltas serve as "anchor points" so
that branch deltas may later be created from them. The
absence of t.his flag causes skipped releases to be non-existent
in the sees file, preventing branch deltas from being created
from them in the future.

qtext User definable text substituted for all occurrences of the
%Q% keyword in sees file text retrieved by get{l).

mmod Module name of the sees file substituted for all occurrences
of the %M% keyword in sees file text retrieved by get{l). If
the m flag is not specified, the value assigned is the name of
the sees file with the leading 8. removed.

ttype Type of module in the sees file substituted for all occurrences
of %Y% keyword in sees file text retrieved by get(l).

v [pgmJ Causes delta(l) to prompt for ~fodification Request (MR)
numbers as the reason for creating a delta. The optional
value specifies the name of an MR number validity checking
program (see delta(1)). (If this flag is set when creating an
sees file, the m keyletter must also be used eyen if its yalue is

Icon International, Inc. 3

/ "
;I

ADMIN(I)

(

-dflag

llist

-a/ogin

--elogin

-y[comment]

-m[mrlist]

4

USER COM11ANDS AD!\HN(1)

null).

Causes removal (deletion) of the specified flag from an sees
file. The -d keyletter may be specified only when processing
existing sees files. Several -d key letters may be supplied on
a single admin command. See the -f key letter for allowable
flag names.

A list of releases to be "unlocked". See the -f keylet.ter for a
description of the 1 flag and the synt.ax of a list.

A login name, or numerical IeONfl.JA'V system group ID, t.o be
added to the list of users which may mah deltas (changes) to
the sees file. A group ID is equivalent to specifying all login
names common to that group ID. Several a keyletters may be
used on a single admi1l command line. As many logins, or
numerical group IDs, as desired may be on the list simultane­
ously. If the list of users is empty, then anyone may add del­
tas. If login or group ID is preceded by a ! they are to be
denied permission to make deltas.

A login name, or numerical group ID, to be erased from the
list of users allowed to make deltas (changes) to the sees file.
Specifying a group ID is equivalent to specifying all login
names common to that group ID. Several e keyletters may be
used on a single admin command line.

The comment text is inserted into the sees file as a comment
for the initial delta in a manner identical to that of delta{l).
Omission of the -y key letter results in a default comment. line
being inserted in t.he form:
date and t.ime created IT/MM/DD HH:MM:SS by login
The -y keyletter is valid only if the -i and/or -n key letters
are specified (i.e., a new sees file is being creat.ed).

The list. of Modification Requests (MR) numbers is inserted
into the sees file as the reason for creating the init.ial delta in
a manner identical to delta{l). The v flag must be set and the
MR numbers are validated if the v flag has a value (the name
of an MR number validation progra.m). Diagnostics will occur
if the v flag is not set or AIR validat.ion fails.

Icon International, Inc.

AD:MIN{l) USER COMMANDS ADMIN(l)

FILES

-h

-z

Causes admin to check the structure of the sees file (see
8ccsjile(5)), and to compare a newly computed check-sum (the
sum of all the characters in the sees file except those in the
first line) with the check-sum that is stored in the first line of
the sees file. Appropriate error diagnostics are produced.

This keyletter inhibits writing on the file, so that it nullifies
the effect of any other key letters supplied, and is, therefore,
only meaningful when processing existing files.

The sees file check-sum is recomputed and stored in the first
line of the sees file (see -h, above).

Note that use of this key letter on a truly corrupted file may
prevent future detection of the corruption.

The last component of all sees file names must be of the form s.jile-name. New
sees files are given mode 444 (see chmod{l)). Write permission in the pertinent
directory is, of course, required to create a file. All writing done by admin is to a
temporary x-file, called x.jile-name, (see get(l)), created with mode 444 if the admin
command is creating a new sees file, or with the same mode as the sees file if it
exists. After successful execution of admin, the sees file is removed (if it exists), and
the x-file is renamed with the name of the sees file. This ensures that changes are
made to t.he sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and that sees
files themselves be mode 444. The mode of the directories allows only the owner to
modify. sees files contained in the directories. The mode of the sees files prevents
any modification at all except by sees commands.

If it should be necessary to patch an sees file for any reason, the mode may be
changed to 644 by the owner allowing use of ed(l). Care must be taken! The edited
file should always be processed by an admin -h to check for corruption followed by
an admin -z to generate a proper check-sum. Another admin -h is recommended
to ensure the sees file is valid.

Admin also makes use of a transient lock file (called z.jile-name), which is used to
prevent simultaneous updates to the sees file by different users. See get{l) for
further information.

Icon International, Inc. 5

/

ADMIN(l) USER COMM'ANDS ADMIN(l)

(SEE ALSO

delta(l), ed(l), get(l), help(l), prs(l), what(l).
sccsfile(4) in the ICON/WtV System Programmer Reference ~Manual.

Source Code Control System User Guide in the ICON/W..'V System User Guide.

DIAGNOSTICS

Use help(l) for explanations.

6 Icon International, Inc.

APID(l) USER COMMANDS APID(l)

NAME

apid - print the process id of designated process

SYNOPSIS

apid ancestor pid

. DESCRIPTION

Apid is used to print out the process id of the appropriate ancestor of a given pro­
cess. If ancestor = 0, the process id printed will simply be the process id passed in,
ancestor = 1 returns the parent of the passed in process id, ancestor = 2, the
grandparent, etc.

EXAMPLES

NOTES

PID PPID TTY TIME C01.fMAND
o O'? 0:33 swapper
1 O? 0:02 /etc/init

5848 1 con 0:06 -csh
26099 5848 con 0:05 -u
28292 26099 con 0:00 vi apid.l
28293 28292 con 0:00 sh -c ps-
28296 28293 con 0:00 ps -axl

% apid 0 28296
28296
% apid 2 28296
28292
% apid 5 28296
1

Process id O's parent id is 0, thus trying to print the process id of previous ancestors
will always return O.

Icon International, Inc. 1

o

(

:f

AR(l) USER COMMANDS AR(l)

NAME

ar - archive and library maintainer for portable archives

SYNOPSIS

ar key [posname] afile [name] ...

DESCRIPTION

The Ar command maintains groups of files combined int.o a single archive file. Its
main use is to create and update library files as used by the link editor. It can be
used, though, for any similar purpose. The magic string and the file headers used by
ar consist of printable ASCII characters. If an archive is composed of printable files,
the entire archive is printable.

When ar creates an archive, it creates headers in a format that is portable across all
machines. The portable archive format and structure is described in detail in ar(4).
The archive symbol table (described in ar(4)) is used by the link editor (ld(l)) to
effect multiple passes over libraries of object files in an efficient manner. An archive
symbol table is only created and maintained by ar when there is at least one object
file in the archive. The archive symbol table is in a specially named file whkh is
always the first file in the archive. This file is never mentioned or accessible to the
user. \Vhenever the ar{l) command is used to create or updat.e the contents of such
an archive, the symbol table is rebuilt. The 8 option described below will force the
symbol table to be rebuilt.

Key is an optional -, followed by one character from the set drqtpmx, optionally
concatenated with one or more of vuaibcls. Afile is the archive file. The names are
constituent files in the archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used
with r, then only those files with dates of modification later than the archive
files are replaced. If an optional positioning character from the set abi is
used, then the posname argument must be present. and specifies that new files
are to be placed after (a) or before (b or i) posname. Otherwise new files are
placed at the end.

q Quickly append the named files to the end of the archive file. Optional posi­
tioning characters are invalid. The command does not check whether the
added members are already in the archive. Useful only to avoid quadratic
behavior when creating a large archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in
the archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m :Move the named files to the end of t.he archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

Icon International, Inc. 1

AR(!) USER CO~1MANDS AR(!)

Fll..ES

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

v Give a verbose file-by-file description of the making of a new archive file from
the old archive and the constituent files. When used with t, give a long list­
ing of all information about the files. When used with x, precede each file
with a name.

c Suppress the message that is produced by default when afile is created.

1 Place temporary files in the local current working directory, rather than in
the directory specified by the environment variable TMPDIR or in the default
directory /tmp.

8 Force the regeneration of the archive symbol table even if ar{l) is not
invoked with a command which will modify the archive contents. This com­
mand is useful to restore the archive symbol table after the strip(l) command
has been used on the archive.

/tmp/ar* temporaries

SEE ALSO

arcv{I), convert(I}, Id(l), lorder(l), strip(l).
t.mpnam(3S), a.out(4), ar(4) in the ICON/UXV System Programmer Reference Manual.

NOTES

BUGS

2

This archive format is new to this release. The convert{l} command can be used to
change an older archive file into an archive file that is recognized by this ar com­
mand.

If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

Icon International, Inc.

(

(--\

AS(l) USER COMMANDS AS(l)

NAME

as - common assembler

SYNOPSIS

as [-oobjfileJ [-nJ [-j] [-m] [-R] [-rJ [-[bwll] [-V] file-name

DESCRIPTION

Fn..ES

The as command assembles the named file. The following flags may be specified in
any order:

-0 objfile Put the output of the assembly in objfile. By default, the output file
name is formed by removing the .8 suffix, if there is one, from the input
file name and appending a .0 suffix.

-n

-j

-m

-R
-r

-[bwl]

-v

Turn off long/short address optimization. By default, address optimiza­
tion takes place.

Invoke the long-jump assembler (for the VAX version of the common
assembler only). The address optimization algorithm chooses between
long and short address lengths, with short lengths chosen when possible.
Often, three distinct lengths are allowed by the machine architecture; a
choice must be made between two of those lengths. \Vhen the two choices
given to the assembler exclude the largest length allowed, then some
addresses might be unrepresentable. The long-jump assembler will always
have the largest length as one of its allowable choices. If the assembler is
invoked without this option, and the case arises where an address is
unrepresentable by either of the two allowed choices, then the user will be
informed of the error, and advised to try again using the -j option.

Run the m4 macro pre-processor on the input to the assembler.

Remove (unlink) the input file after assembly is completed.

Place all assembled data (normally placed in the .data section) into the
.text section (for the VAX version of the common assembler only). This
option effectively disables the .data pseudo operation. This option is off
by default.

Create byte (b), halfword (w) or long (1) displacements for undefined sym­
bols (for the VAX version of the common assembler only). (An undefined
symbol is a reference to a symbol whose definition is external to the input
file or a forward reference.) The default value for this option is long (1)
displacemen ts.

Write the version number of the assembler being run on the standard
error output.

/usr /tmp/as[1-6JX:X:'XXXX temporary files

Icon International, Inc. 1

AS(!) USER COMlv1ANDS AS(!)

SEE ALSO

ld(l), m4(1), nm(l), strip(l).
a.out(4) in the IOON/UXV Programmer Reference Manual.

WARNING

BUGS

2

If the -m (m./ macro pre-processor invocation) option is used, keywords for m./ (see
m./(l» cannot be used as symbols (variables, functions, labels) in the input file since
m./ cannot determine which are assembler symbols and which are real m,/ macros.
Use the -b or -w option only when undefined symbols are known to refer to loca­
tions representable by the specified default displacement. Use of either option when
assembling a file containing a reference to a symbol that is to be resolved by the
loader can lead to unpredictable results, since the loader may be unable to place the
address of the symbol into the space provided.

The .align assembler directive is not guaranteed to work in the .text section when
optimization is performed.

Arithmetic expressions may only have one forward referenced symbol per expression.

Icon International, Inc.

.~ ..

~/

(

ASA(l) USER COMMANDS ASA(1)

NAME

asa - interpret ASA carriage control characters

SYNOPSIS

&sa [files 1

DESCRIPTION

Asa interprets the output of FORTRAN programs that utilize ASA carriage control
characters. It processes either the files whose names are given as arguments or the
standard input if no file names are supplied. The first character of each line is
assumed to be a control character; their meanings are:

, ,
o
1

+

(blank) single new line before printing

double new line before printing

new page before printing

overprint previous line.

Lines beginning with other than the above characters are treated as if they began
with' '. The first character of a line is not printed. If any such lines appear, an
appropriate diagnostic will appear on standard error. This program forces the first
line of each input file to start on a new page.

To view correctly the output of FORTRAN programs which use ASA carriage control
characters, asa could be used as a filter thus:

a.out I asa IIp

and the output, properly formatted and paginated, would be directed to .the line
printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO

en(l), f77(1), fsplit{l), ratfor{l}.

Icon International, Inc. 1

AT(l) USER COMMANDS AT(l)

NAME

at, batch - execute commands at a later time

SYNOPSIS

at time [date 1 [+ increment J
at -rjob .. .
at -'[fob ... J batch

DESCRIPTION

At and batch read commands from standard input to be executed at a later time. At
allows you to specify when the commands should be executed, while jobs queued with
batch will execute when system load level permits. At -r removes jobs previously
scheduled with at. The -1 option reports all jobs scheduled for the invoking user.
Standard output and standard error output are mailed to the user unless they are
redirected elsewhere. The shell environment variables, current directory, umask, and
ulimit are retained when the commands are executed. Open file descriptors, traps,
and priority are lost. Users are permitted to use at if their name appears in the file
/usr /lib/cron/at.allow. If that file does not exist, the file /usr /lib/cron/at.deny
is checked to determine if the user should be denied access to at. If neither file exists,
only root is allowed to submit a job. If either file is at.deny, global usage is permit­
ted. The alJow Ideny files consist of one user name per line. The time may be
specified as 1, 2, or 4 digits. One and two digit numbers are taken to be hours, four
digits to be hours and minutes. The time may alternately be specified as two
numbers separated by a colon, meaning hour:minute. A suffix am or pm may be
appended; otherwise a 24-hour clock time is understood. The suffix zulu may be
used to indicate GMT. The special names noon, midnight, now, and next are also
recognized. An optional date may be specified as either a month name followed by a
day number (and possibly year number preceded by an optional comma) or a day of
the week (fully spelled or abbreviated to three characters). Two special "days",
today and tomorrow are recognized. If no date is given, today is assumed if the
given hour is greater than the current hour and tomorrow is assumed if it is less. If
the given month is less than the current month (and no year is given), next. year is
assumed. The optional increment is simply a number suffixed by one of the following:
minutes, hours, days, weeks, months, or years. (The singular form is also
accepted.) Thus legitimate commands include:

at 0815am Jan 24
at 8:15am Jan 24
at now + 1 day
at 5 pm Friday

At and batch write the job number and schedule time to standard error. Batch sub­
mits a batch job. It is almost equivalent to "at now", but not. quite. For one, it
goes into a different queue. For another, "at now" will respond with the error mes­
sage too late. At -r removes jobs previously scheduled by at or batch. The job
number is the number given to you previously by the at or batch command. You can
also get job numbers by typing at -1. You can only remove your own jobs unless you

Icon International, Inc. 1

/

(-

(

AT(l) USER COMMANDS AT(l)

are the super-user.

EXAMPLES

Fn.ES

The at and batch commands read from standard input the commands to be executed
at a later time. Sh{l) provides different ways of specifying standard input. Within
your commands, it may be useful to redirect standard output.

This sequence can be used at a terminal:
batch
nroff filename >outfile
<control-D> (hold down 'control' and depress 'D')

This sequence, which demonstrates redirecting standard error to a pipe, is useful in a
shell procedure (the sequence of output redirection specificat.ions is significant):

batch «~I
nroff filename 2>&1 >outfile : mailloginid
!

To have a job reschedule itself, invoke at' from within the shell procedure, by includ­
ing code similar to the following within the shell file:

echo "sh shellfile": at 1900 thursday next week

/usr /lib/cron -
/usr /lib/cron/at.allow -
/usr /lib/cron/at.deny -
/usr /lib/cron/queue .,.
/usr /spool/cron/atjobs -

main cron directory
list of allowed users
list of denied users
sched uling information
spool area

SEE ALSO

kill{I), mail(l}, nice{I}, ps(I}, sh(l}.
cron(lM) in the ICON/l.'J..'V System Administrator Reference Afanual.

DIAGNOSTICS

Complains about various syntax errors and times out of range.

2 Icon International, Inc.

AWK(l) USER COMMANDS AWK(l)

NAME

awk - pattern scanning and processing language

SYNOPSIS

awk [-Fc 1 [prog 1 [parameters 1 [files J

DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns specified in
prog. With each pattern in prog there can be an associated action that will be per­
formed when a line of a file matches the pattern. The set of patterns may appear
literally as prog, or in a file specified as -f file. The prog string should be enclosed
in single quotes (') to protect it from the shell.

Parameters, in the form x= ... y= ... etc., may be passed to awk.

Files are read in order; if there are no files, the standard input is read. The file
name - means the standard input. Each line is matched against the pattern portion
of every pattern-action statement; the associated action is performed for each
matched pattern. (~'\

An input line is made up of fields separated by whit£' space. (This default can be
changed by using FS; see below). The fields are denoted $1, $2, ... ; $0 refers to the
entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An action
is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement 1
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement J ... }
variable == expression
print [expression-list 1 [>expression 1
printf format [, expression-list 1 [>expression 1
next -# skip remaining patterns on this input line
exit -# skip the rest of the input

Icon International, Inc. 1

\, /

(

(

AWK(l) USER COMMANDS AWK(l)

2

Statements are terminated by semicolons, new-lines, or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, /, %, and concate­
nation (indicated by a blank). The C operators ++, --, +=, -==, *=, /==, and %=
are also available in expressions. Variables may be scalars, array elements (denoted
xli)} or fields. Variables are initialized to the null string. Array subscripts may be
any string, not necessarily numeric; this allows for a form of associative memory.
String constants are quoted (W).

The print statement prints its arguments on the st.andard output (or on a file if
>expr is present), separated by the current output field separat.or,and tt'rminated
by the output record separator. The print! statement formats its expression list
according to the format (see printJ(3S)).

The built-in function length returns the length of its argumt'nt t.aken as a string, or
of the whole line if no argument. There are also built.-in functions exp, log, sqrt, and
into The last t.runcates its argument to an integer; substr(s, m, n) returns tht' n­
character substring of s that begins at posit.ion m. The function
8printflJmt, expr I expr, ...) formats the expressions according to the printJ(3S) for­
mat given by fmt and returns the resulting st.ring.

Patterns are arbitrary Boolean combinations (!, II, &.&., and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded by
slashes and are as in egrep (see grep(l)). Isolatt'd regular expressions in a pattt'rn
apply to the entire line. Regular expressions may also occur in relational exprt's­
sions. A pattern may consist of two patterns separated by a comma; in this case,
the action is performed for all lines between an occurrence of the first pattern and
the next occurrence of the second.

A relational expression is one of the following:

expression mate hop regular-expression
expression re lop expression

where a relop is any of the six relational operat.ors in C, and a mate hop is either
(for contains) or! (for does not contain). A conditional is an arithmetic expression,
a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capturt' cont.rol befort' the first
input line is read and after the last. BEGIN must be tht' first. paUt'rn, END tht' last.

A single character c may be used to separate t.he fields by st.arting the program
with:

BEGIN { FS = c }

Icon International, Inc.

AWK(l) USER COM!dANDS AWK(l)

or by using the -F c option.

Other variable names witil"l5pecial meallill-gsmclude NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, tbe name of
the current input file; OFS, the output field separator (default blank); ORS, the output
record separator (default new-line); and OFMT, the output format for numbers
(default %.6g).

EXAMPLES

Print lines longer than 72 cRana.eters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

END
{ s += $1 }
{ print "sum is", s, .. average is", s/NR }

Print fields in reverse order:

{ for (i = !\TF; i > 0; -i) print $i }

Print a'lllines between start/stop pairs:

/start/, /stop/

Print all lines whose first fi~ld is diifel"ent from previous one:

$1 != prev { print; pTev = $1 }

. Print file, filling in page nwubersstarting at 5:

/page/ { $2 = n++; }
{ print }

Icon International, Inc. 3

(

(\

AWK(I) USER COM:MANDS AWK(l)

command line: awk -C program n=5 input

SEE ALSO

4

grep(l), lex(l), sed(l).
malloc(3X) in the IOON/UXV System Programmer Reference Afanual.

IOON/UXV System Support Tools Guide.

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expres­
sion to be treated as a number add 0 to it; to force it to be treated as a string con­
catenate the null string (....) to it.

Icon International. Inc.

BANNER(l) USER CO:MMAl\TJ)S BANNER(l)

NAME

banner - make posters

SYNOPSIS

banner strings

. DESCRIPTION

Banner prints its arguments (each up to 10 characters long) in large letters on the
standard output.

SEE ALSO

echo(I).

Icon International, Inc. 1

'" J

(

(

BASENM1E (1) USER COMMANDS

NAME

basename, dirname - deliver portions of path names

SYNOPSIS

basename string I suffix J
dirname string

DESCRIPTION

BASENAME (1)

Basename deletes any prefix ending in / and the suffix (if present in string) from
string, and prints the result on the standard output. It is normally used inside sub­
stitution marks (, ,) within shell procedures.

Dirname delivers all but the last level of the pat.h name in string.

EXAMPLES

The following example, invoked with the argument /usr /src/cmd/cat.c, compiles
the named file and moves the output to a file named cat in the current directory:

cc $1
my a.out 'basename $1 ' \.c ' ,

The following example will set the shell yariable NAME to /usr /src/cmd:

SEE ALSO

sh(l).

BUGS

NAME=' dirname /usr /sre /cmd/cat.c'

The basename of / is null and is considered an error.

Icon International, Inc. 1

Be(!) USER COMMANDS BC(!)

NAME

bc - arbitrary-precision arithmetic language

SYNOPSIS

be ! -c] [-I] ! file ...]

DESCRIPTION

Be is an interactive processor for a language that resembles C but provides unlim­
ited precision arithmetic. It takes input from any files gi"en, then reads the st.an­
dard input. The -1 argument stands for the name of an arbitrary precision math
library. The syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E 1
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digit.s
scale (E) number of digits right of decimal point
L(E, ... ,E)

Operators
+ - * / % .. (% is remainder; .. is power)
++ - (prefix and postfix; apply to names)
==- <= >= != < >
==+ =- =* -/ =% ='"

Statements
E
{S; ... ; S}
if(E)S
while (E) S
Cor (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... ,L
S; ... S
return (E)

Icon International, Inc. 1

(

BC(l) USER COMMANDS BC(l)

NAME

bc - arbitrary-precision aritJimetic language

SYNOPSIS

be [~] [-I] [file ...]

DESCRIPTION

Be is an interactive processor for a language that resembles C but provides unlim­
ited precision arithmetic. It takes input from any files given, then reads the stan­
dard input. The -1 argument stands for the name of an arbitrary precision math
library. The syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in /* and */.

Names
simple variables: L
array elements: L [E]
The words "ibase", "obase", and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E) number of significant decimal digits
scale (E) number of digits right of decimal point
L(E, ... ,E)

Operators
+ - • / % A (% is Temainder; ... is power)
++ - (prefix and postfix; apply to names)
"-<=>=!=<>
= -+ =- =* =/ % =.

Statements
E
{S; ... ; S}
if(E)S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , ... , L) {

auto L, ... ,L
S; ... S
return (E)

Icon International, Inc. 1

BC(l) USER COMMANDS BC(l)

}
Functions in -1 math library

s(x) sine
c(x)
e(x)
l(x)
a(x)
j(n,x)

cosine
exponential
log
arctangent
Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is
an assignment. Either semicolons or new-lines may separate statements. Assign­
ment to 8cale influences the number of digits to be retained on arithmetic operations
in the manner of de(l). Assignments to ibase or obase set the input and output
number radix respectively.

The same letter may be used as an a.rray, a function, and a simple variable simul­
taneously. All variables are global to the program. "Auto" variables are pushed
down during functiOJl. calls. When using arrays as function arguments or defining
them as automatic variables, empty square brackets must follow the array name.

Be is actually a preprocessor for de(l), which it invokes automatically, unless the -c
(compile only) option is present. In this case the dc input is sent to the standard
output instead.

EXAMPLE

2

srale = 20
define e(x}{

}

auto a, b, c, i, s
80=1
b=l
s=l
for(i=l; 1= 1; i++){

}

a = a*x
b = b*i
c = alb
if(c 0) return(s)
s =s+c

defines a function to compute an approximate value of the exponential function and

for(i=l; i<-lO; i++) e(i)

Icon International, Inc.

(

BC(l)

Fn..ES

USER COMMANDS

prints approximate values of the exponential function of the first ten integers.

/usr/lib/lib.b mathematical library
/usr /bin/dc desk calculator proper

SEE ALSO

dc(l).

IOON/UXV Programmer Guide.

BUGS

No &&, II yet.
For statement must have all three Ets.
Quit is interpreted when read, not when executed.

Icon International, Inc.

BC(l)

3

BDIFF(1) USER COMMANDS BDIFF(1)

NAME

bdiff - big diff

SYNOPSIS

bdift' filel file2 [nJ [.....]

DESCRIPTION

Fn..ES

Bdiff is used in a manner analogous to di.D{l) to find which lines must be changed in
two files to bring them into agreement. Its purpose is to allow processing of files
which are too large for diff. Bdiff ignores lines common to the beginning of both
files, splits the remainder of each file into n-line segments, and invokes diff upon
corresponding segments. The value of n is 3500 by default. If the optional third
argument is given, and it is numeric, it is used as the value for n. This is useful in
those cases in which 3500-line segments are too large for diff, causing it to fail. If
file1 (file2) is -, the standard input is read. The optional -s (silent) argument
specifies that no diagnostics are to be printed by bdiff (note, however, that this does
not suppress possible exclamations by diff. If both optional arguments are specified,
they must appear in the order indicated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for
the segmenting of the files (that is, to make it look as if the files had been processed
whole). Note that because of the segmenting of the files, bdiff does not necessarily
find a smallest sufficient set of file differences.

/t.mp/bd?????

SEE ALSO

diff(l).

DIAGNOSTICS

Use help(l) for explanations.

Icon International, Inc. 1

(j

,/ '\

\. j

(

c

BFS(l) USER COMMANDS BFS(l)

NAME

bfs - big file scanner

SYNOPSIS

bfs [-j name

DESCRIPTION

The Bis command is (almost) like ed(l) except that it is read-only and processes
much larger files. Files can be up to 10241(bytes (the maximum possible size) and
321(lines, with up to 512 characters, including new-line, per line (255 for 16-bit
machines). Bis is usually more efficient than ed for scanning a file, since the file is
not copied to a buffer. It is most useful for identifying sections of a large file where
csplit(l) can be used to divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file writ­
ten with the w command. The optional - suppresses printing of sizes. Input is
prompt ed with * if P and a carriage return are typed as in ed. Prompting can be
turned off again by inputting another P and carriage return. Note that messages
are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular
expressions may be surrounded with two symbols besides / and?: > indicates down­
ward search without wrap-around, and < indicates upward search without wrap­
around. There is a slight difference in mark names: only the letters a through z may
be used, and all 26 marks are remembered.

The e, g, v, k, p, q, W, =, ! and null commands operate as described under ed. Com­
mands such as ---, +++-, +++=, -12, and +4p are accepted. l'\ote that 1,10p
and 1,10 will both print the first ten lines. The f command only prints the name of
the file being scanned; there is no remembered file name. The w command is
independent of output diversion, truncation, or crunching (see the xc, xt and xc
commands, below). The following additional commands are available:

xl file
Further commands are taken from the named file. When an end-of-file is
reached, an interrupt signal is received or an error occurs, reading
resumes with the file containing the xf. The xf commands may be nested
to a depth of 10.

xn List the marks currently in use (marks are set by the k command).

xo [file 1
Further output from the p and null commands is diverted to the named
file, which, if necessary, is created mode 666. If file is missing, output is
diverted to the standard output. Note that each divel'sion causes trunca­
tion or creation of the file.

Icon International, Inc. 1

BFS(I)

2

USER COMMANDS BFS(I)

: label
This positions a label in a command file. The label is terminated by new­
line, and blanks between the: and the start of the label are ignored. This
command may also be used to insert comments into a command file, since
labels need not be referenced.

(• , •)xb/reguiar expression/label
A jump (either upward or downward) is made to label if the command
succeeds. It fails under any of the following conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression does not match at least one line in the
specified range, including the first and last lines.

On success, • is set to the line matched and a jump is made to label. This
command is the only one that does not issue an error message on bad
addresses, so it may be used to test whether addresses are bad before
other commands are executed. Note that the command

xbt/ label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than
a terminal. If it is read from a pipe only a downward jump is possible.

xt number
Output from the p and null commands is truncated to at most number
characters. The initial number is 255.

xv! digit] [spaces] [value]
The variable name is the specified digit following the xv. The commands
xv5100 or xv5 100 both assign the value 100 to the variable 5. The
command Xv61,100p assigns the value 1,100p to the variable 6. To
reference a variable, put a % in front of the variable name. For exam­
ple, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line contain­
ing a match. To escape the special meaning of %, a \ must precede it.

g/".*\%[cds]/p

Icon International. Inc.

C)

(

(

BFS(l) USER COMMANDS BFS(l)

could be used to match and list lines containing print! of characters,
decimal integers, or strings.

Another feature of the xv command is that the first line of output from a
ICONfUXV system command can be stored into a variable. The only
requirement is that the first character of value be an!. For example:

.w junk
xv5!cat junk
!rm junk
!echo "%5"
xV6!expr %6 + 1

would put the current line into variable 5, print it, and increment the
variable 6 by one. To escape the special meaning of ! as the first charac­
ter of value, precede it with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from the execu­
tion of a ICON/l.:'"XV system command (!command) or nonzero value,
respectiYely, to the specified label. The two examples below both search
for the next five lines containing the string size.

xv55
: I
/size/
XY5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn 1
xy45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz 1

xc [switch]
If switch is 1, output from the p and null commands is crunched; if switch
is 0 it is not. \Vithout an argument, xc reverses switch. Initially switch is
set for no crunching. Crunched output has strings of tabs and blanks
reduced to one blank and blank lines suppressed.

Icon International, Inc. 3

BFS(l) USER C01v1MA.NDS BFS{l)

SEE ALSO

csplit(l), ed(l).
regcmp(3X) in the IOON/UXV Programmer Reference Manual.

DIAGNOSTICS

4

r for errors in commands, if prompting is turned off. Self-explanatory error messages
when prompting is on.

Icon International~ Inc.

BS(l) USER COMMANDS BS(l)

NAME

bs - a compiler/interpreter for modest-sized programs

SYNOPSIS

be [file [args 11

DESCRJPTION

Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in.
Bs is designed for programming tasks where program development time is as impor­
tant as the resulting speed of execution. Formalities of data declaration and
file/process manipulation are minimized. Line-at-a-time debugging, the trace and
dump statements, and useful run-time error messages all simplify program testing.
Furthermore, incomplete programs can be debugged; inner funct.ions can be tested
before outer functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before the
console is read. By default, statements read from the filt' argument are compiled for
later execution. Likewise, statements entered from the console are normally exe­
cuted immediately (see compile and execute below). Unless the final operation is
assignment, the result of an immediat.e expression stat.ement is printed.

Bs programs are made up of input lines. If the last character on a line is a \, the
line is continued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have
the same name.

A bs statement is either an expression or a keyword followed by zero or more expres­
sions. Some keywords (clear, compile, I, execute, include, ibase, abase, and run) are
always executed as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, a.ssignmt'nt., or function call).
The details of expressions follow the description of statement types below.

break
Break exits from the inner-most for/while loop.

Icon International, Inc. 1

BS(l)

2

USER COMMANDS BS(l)

clear
Clears the symbol table and compiled statements. Clear IS executed immedi­
ately.

compile [expression]
Succeeding sta.tements are compiled (overrides the immediate execution default).
The optional expression is evaluated and used as a file name for further input. A
clear is associated with this latter case. Compile is executed immediately.

continue
Continue transfers to the loop-continuation of the current lor/while loop.

dump I name]
The name and current value of every non-local variablt> is printed. Optionally,
only the named variable is reported. After an error or interrupt, the number oC
the last statement and (possibly). the user-Cunction trace are displayed.

exit [expression I
Return to system level. The expression is returned as process status.

execute
Cha.nge to immediate execution mode (an interrupt has a similar effect). This
statement does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression, expression, expression statement
for expression , expression , expression

next
The lor statement repetitively executes a statement (first Corm) or a group oC
statements (second form) under control of a named variable. The variable takes
on the value of the first expression, then is incremented by one on each loop, not
to exceed the value oC the second expression. The third and fourth Corms require
three expressions separated by commas. The first of these is the initialization,
the second is the test (true to continue), and the third is the loop-continuation
action (normally an increment).

fun C([a, ... J) [v, ... J

nuf
Fun defines the Cunction name, arguments, and local variables Cor a user-written
function. Up to ten arguments and local variables are a Bowed. Such na·mes can­
not be arrays, nor can they be I/O associated. Funct.ion df'finitions may not be
nested.

freturn
A way to signal the failure oC a user-written Cunction. See the interrogation
operator (1) below. If interrogation is not present, Ireturn merely returns zero.
\Vhen interrogation is active, Ireturn transfers to that expression (possibly by­
passing intermediate Cunction returns).

goto name
Control is passed to the internally stored statement with the matching la bel.

Icon International, Inc.

()

/

("-"
~_/)

(

c

BS(l) USER COMMANDS BS(l)

ibase N
Ibase sets the input base (radix) to N. The only support.ed values for N are 8, 10
(the default), and 16. Hexadecimal values 10-15 are entered as a-f. A leading
digit is required (Le., lOa must be entered as Of'Oa). Ibase (and obase, below) are
executed immediately.

if expression statement
if expression

[else
. ..]

fi
The statement (first form) or group of statements (second form) is executed if the
expression evaluates to non-zero. The strings 0 and (null) evaluate as zero. In
the second form, an optional else allows for a group of statements to be executed
when the first group is not. The only statement permitt.ed on the same line with
an else is an il; only other Ii's can be on the same line with a Ii. The elision of
else and il into an eli! is supported. Only a single Ii is required to close an ;f ...
elil . .. [else . ..] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs source
statements. Such statements become part of the program being compiled.
Include statements may not be nested.

obase N
Obase sets the output base to N (see ibase above).

onintr label
onintr

The onintr command provides program control of interrupts. In the first form,
control will pass to the label given, just as if a goto had been executed at the
time oninir was executed. The effect of the statement is cleared after each inter­
rupt. In the second form, an interrupt will cause bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a func­
tion call. If no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first internal
statement. If the run statement is contained in a file, it should be the last state­
ment.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or evalu­
ates to zero), tracing is turned off. Otherwise, a record of user-function
calls/returns will be printed. Each return decrements the trace expression value.

while expression statement
while expression

next
While is similar to lor except that only t.he condit.ional expression for loop­
continuation is given.

Icon International, Inc. 3

BS(l)

4

USER CO:M11A.I\T{)S BS(l)

! shell command
An immediate escape to the shell.

...
This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter (upper or
lower case) optionally followed by letters and digits. Only the first six characters
of a name are significant. Except for names declared in futl statements, all
names are global to the program. Names can take on numeric (double float)
values, string values, or can be associated with input/output (see the built-in
function open() below).

name ([expression [, expression J ... J)
Functions can be called by a name followed by the arguments in parentheses
separated by commas. Except for built-in functions (listed below), the name must
be defined with a fun statement. Arguments to functions are passed by value.

name [expression [, expression 1 ...]
This syntax is used to reference either arrays or tables (see built-in table func­
tions below). For arrays, each expression is truncat.ed to an integer and used as a
specifier for the name. The resulting array reference is syntactically identical to
a name; a[1,2] is the same as a[1][2]. The truncated expressions are restricted t.o
values bet.ween 0 and 32767.

number
A number is used to represent a constant value. A number is writ.ten in Fortran
style, and contains digits, an optional decimal point, and possibly a scale factor
consisting of an e followed by a possibly signed exponent.

string
Character strings are delimited by "characters. The \ escape character allows
the double quote (\"), new-line (\n), carriage return (\r), backspace (\b), and
tab (\t) characters to appear in a string. Otherwise, \ st.ands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ... J) [expression]
The bracketed expression is used as a subscript to select a comma-separated
expression from the parenthesized list. List elements are numbered from t.he left,
starting at zero. The expression:

(False, True)[a = b 1
has the value True if the comparison is true.

r expression
The interrogation operator tests for the success of the expression rather tha.n its
value. At the moment, it is useful for testing end-of-file (see examples in the
Programming Tips section below), the result. of the et'al built.-in funct.ion, and for
checking the return from user-written functions (see freturll). An interrogation
"trap" (end-of-file, etc.) causes an immediat.e t.ransfer to t.he most recent inteno­
gation, possibly skipping assignment statements or int.ervening funct.ion levels.

Icon International, Inc.

r"
~j

(

BS(l) USER COMlvfANDS BS(l)

- expression
The result is the negation of the expression.

++ name
Increments the value of the variable (or array reference).
value.

The result is the new

-name
Decrements the value of the variable. The result is the new value.

r expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments
separated by an operator denoting the function. Except for t.he assignment, con­
catenation, and relational operators, both operands are converted to numeric
form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an array ele­
ment. The result is the right operand. Assignment binds right to left, all other
operators bind left to right.

_ (underscore) is the concatenation operator.

&1
& (logical and) has result zero if either of its arguments arE' zero. It has result
one if both of its arguments are non-zero; I (logical or) has result zero if both of
its arguments are zero. It has result onE' if either of its arguments is non-zero.
Both operators treat a null string as a zero.

< <= > >= = !=

+

The relational opE'rators « less than, <= less than or equal, > grE'ater than,
>= greater than or equal, == equal to, != not equal to) rE'turn one if their argu­
ments are in the specified relation. They return zero otherwise. Relational
operators at the same le\'el extend as follows: a>b>c is the same as a>b & b>c.
A string comparison is made if both operands are st.rings.

Add and subtract.

* / %
Multiply, divide, and remainder.

A

Icon International, Inc. 5

BS(l)

6

USER COMMANDS BS(l)

Exponentiation.

Built-in Functions:

Dealing with arguments

arg(i)
is the value of the i-th aetual parameter on the CUt'n'1lt level of function call. At
level zero, arg returns the i-th command-line argument (arg(O) returns bs).

narg()
returns the nUMber of aTgUments passed. At levelftfo"tne command argument
count is returned.

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between -1r/2 and 1r/2.

cei1(x)
returns the smallest integer not less than x.

cos(x)
is the cosine of ;r (radians).

exp(x)
is the exponential function of x.

floor(x)
returns the largest integer not greater than x.

log(x)
is the natural logarithm of 7..

randO
is a uniformly distributed Tandom number between zeroJlnd one.

sin(x) .
is the sine of x (radians).

sqrt(x)
is the square root of x.

String operations

size(s)
the size (length in bytes) of s is returned.

format(r, a)
returns the formatted value of a. F is assumed to be a format specification in
the style of printJ(3S). Only the % ... r, % ... e, and % .•• s types are safe.

index(x, y)
returns the number of the first position in :r that any of the characters from y C· ~
matches. No match yields zero. .j

Icon International, Tnc.

(

c

BS(I) USER COMMANDS BS(I)

trans(s, f, t)
Translates characters of the source s from mat.ching characters in f to a charac­
ter in the same position in t. Source characters that do not appear in fare
copied to the result. If the string f is longer than t, source characters that match
in the excess portion of f do not appear in the result..

substr(s, start, width)
returns the sub-string of s defined by the starting posit.ion and width.

match(atring, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(l) command.
The characters ., [,], ... (inside brackets), * and $ art' special. The mstring func­
tion returns the n-th (I <= n <= 10) substring of the subject that occurred
between pairs of the pattern symbols \(and \) for the most recent call t.o match.
To succeed, patterns must match the beginning of the string (as if all patterns
began with "'). The function returns the numb£"r of characters mat.ched. For
example:

match("aI23abI23", ".*\([a-z]\)") = 6
mstring(l) == "b"

open(name, file, function)
close(name)

File handl£ng

The name argument must be a bs variable name (passed as a string). For t.he
open, the file argument may be 1) a 0 (zero), 1, or 2 representing standard input,
output, or error out.put, respecti"ely; 2) a st.ring represent.ing a file name; or 3) a
string beginning with an ! representing a command to be execut.ed (via sh -c).
Th£" function argument must be either r (read), w (write), W (write without
new-line), or a (append). After a close, t.he flame r£"verts to b£"ing an ordinary
variable. The initial associat.ions ar£":

open("get.", 0, "r")
(ft tft 1 " ft) open pu , , w
(" " 2 It tI) open puterr, , w

Examples are given in the following section.

access(s, m)
executes access(2).

ftype(a)
returns a single character file type indication: f for regular file, p for FIFO (i.e.,
named pipe), d for directory, b for block special, or c for character special.

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. "Subscripts"
(called keys) are strings (numbers are converted). The name argument. must be a
bs variable name (passed as a string). The size argument sets th£" minimum
number of elements to be allocated. Bs prints an error m£"ssage and stops on
table overflow.

Icon International, Inc. 7

BS(I)

8

USER COMMANDS BS{I)

item(name, i)

key 0
The item function accesses table elements sequentially (in normal use, there is no
orderly progression of key values). Where the item function accesses values, the
key function accesses the "subscript" of the previous item call. The name argu­
ment should not be quoted. Since exact table sizes are not defined, the interroga­
tion operator should be used to detect end-of-table; for example:

table{"t", 100)

If word contains "party", the following expression adds one
to the count of that word:
++t[word]

To print out the the key/value pairs:
for i = 0, ?(s = item(t, i», ++i if keyO put = keyO_":"....s

iskey(name, word)
The iskey function tests whether the key word exist.s in the table name and
returns one for true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy for
converting numeric strings to numeric int.ernal form. Evai can also be used as a ;/ "
crude form of indirection, as in: \ /

" .. name = xvz
eval("++"': name)

which increments the variable xyz. In addition, eval preceded by the interroga­
tion operator permits the user to control bs error conditions. For example:

?eval("open(\"X\", \''XXX\'', \"r\")")

returns the value zero if there is no file named "XXX" (instead of halt.ing the
user's program). The following executes a go to to the label L (if it exists):

label="L"
if !(?eval("goto "_ label» puterr = "no label"

plot(requeat, arga)
The plot function produces output on devices recognized by tplot(lG). The
requests are as follows:

Call

plot(O, term)

plot(4)

plot(2, string)

plot(3, xl, yl, x2, y2)

plot(4, x, y, r)

plot{5, xl, yl, x2, y2, x3, y3)

Function

causes further plol output to be piped into
tplot(IG) with an argument of -Tterm.

"erases" the plotter.

labels the current point with string.

draws the line between (xl,yl) and (x2,y2).

draws a circle with center (x,y) and ra.dius r.

draws an arc (counterclorkwise) with center

Icon International, Inc.

(~)

BS(l) USER COMMANDS BS(l)

plot(6)

plot(7, x, y)

plot(S, x, y)

plot(9, x, y)

plot(lO, string)

plot(n, xl, yl, x2, y2)

plot(12, xl, yl, x2, y2)

(xl,yl) and endpoints (x2,y2) and (xS,yS).

is not implemented.

makes the current point (x,y).

draws a line from the current point to (x,y).

draws a point at (x,y).

sets the line mode to string.

makes (xl,yl) the lower left corner of the
plotting area and (x2,y2) the upper right
corner of the plotting area.

causes subsequent x (y) coordinat.E's to be
multiplied by xl (yl) and then added to x2
(y2) before they are plotted. The initial scal­
ing is plot(12, 1.0, 1.0, 0.0, 0.0).

Some requests do not apply to all plotters. All requests except zero and twelve
are implemented by piping characters to tplot(IG). See plot(4) for more details.

lute)
in immediate mode, last returns the most recently comput.ed value.

PROGRAMMING TIPS

Using 6s as a calculator:

$ bs
Distance (inches) light travels in a nanosecond.
186000 * 5280 * 12 / leg
11.78496

Compound int.erest (6% for 5 years on $1,000).
int = .06 /4
bal = 1000
for i = 1 5*4 bal = bal + bal*int
bal -1000
346.855007

exit

The outline of a typical 6s program:

initialize things:
varl = 1

(n dtt tt· fil tt tt tt) open rea , 10 e, r

compute:

Icon International, Inc.

BS(l)

while ?(str = read)

next
clean up:
close("read ")

USER COMMANDS

last statement executed (exit or stop):
exit
last input line:
run

Input/Output examples:

Copy "oldfile" to "newfile".
(rt drt

" Idfil " " ") open rea ,0 e, r
open("write", "newfile", "w")

while ?(write = read)

.IJ. I " d" d" . " Tr C ose rea an WrIte:
close("read")
C ose WrIte 1 (" . to)

#: Pipe between commands.
("I " "II ." " ") open s, . s ,r
(" "'" l) h 'L· ,II " to) open pr, .pr -_ - 1St, W

while ?(pr = Is) ...

#: be sure to close (wait for) these:
close("ls")
close("pr")

BS(l)

SEE ALSO

10

edell, shell, tplot(IG}.
access(2), printf(3S), stdio(3S), plot(4) in the ICON/UAT System Programmer Refer­
ence .Manual.
See Section 3 of the ICON/UXV System Programmer Reference Manual for a further
description of the mathematical functions (pow on e.Tp(3~f) is used for exponentia­
tion); 68 uses the Standard Input/Output package.

Icon International, Inc.

/ ",
/

\" /

(

()

CAL(l) USER CO:MMANDS CAL (1)

NAME

cal - print calendar

SYNOPSIS

cal [[month] year]

DESCRIPTION

BUGS

Cal prints a calendar for the specified year. If a month is also specified, a calendar
just for that month is printed. If neither is specified, a calendar for the present
month is printed. Year can be between 1 and 9999. The month is a number between
1 and 12. The calendar produced is that for England and her colonies.

Try September 1752.

The year is always considered to start in January even though this is historically
naive.
Beware that "cal 87" refers to the early Christian era, not the 20th century.

Icon International, Inc. 1

CALENDAR (1) USERCOM:MANDS CALENDAR (1)

NAME

calendar - reminder seTVice

SYNOPSIS

calendar [-]

DESCRIPTION

Fn..ES

Calendar consults the file calendar in the current direct.ory and prints out lines that
contain today's or tomorrow's date anywhere in the line. Most. reasonable month­
day dates such as "Aug. 24," "august 24," "8/24," etc., are recognized, but not "24
August" or "24/8". On weekends "tomorrow" extends t.hrough Monday.

When an argument is present, calendar does it.s job for every user who has a file
calendar in the login directory and sends them any posit.ive results by mail{l}. Nor­
mally this is done daily by facilities in the ICONfU)..'V operating system.

/usr /lib/calprog

/etc/passwd

/tmp/cal*

to ngure out today's and tomorrow's dates

SEE ALSO

mail(l}:

BUGS

Your calendar must be public information for you to get reminder service.
Calendar's exte.nded idea of "tomorrow" does not. account. for holida.ys.

Icon International, Inc. 1

CAT(l) USER COM1\1ANDS CAT (l)

NAME

cat - concatenate and print files

SYNOPSIS

cat 1 -u 11 -s 1 [-y I-tl [-ell file ...

DESCRIPTION

Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file, and:

cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given, or if the argument - is encountered, cat reads from the stan­
dard input file. Output is buffered unless the -u option is specified. The -s option
makes cat silent about non-existent files.

The -y option causes non-printing characters (with the exception of tabs, new-lines
and form-feeds) to be printed visibly. Control characters are print.ed A X (control-x);
the DEL character (octal 0177) is printed Ar. Non-ASCII characters (with the high
bit set) are printed as M-x, where x is t.he character specified by the seven low order
bits.

\\Then used with the -y option, -t causes tabs t.o be print.ed as AI's, and -e causes
a $ character to be printed at the end of each line (prior t.o t.he new-line). The-t
and -e options are ignored if the -y option is not. specified.

WARNING

Command formats such as
cat filel file2 >filel

will cause the original data in filel to be lost; t.herefore, t.ake care when using shell
special characters.

Icon International, Inc. 1

CAT(l) USER CO~MMANDS CAT (1)

SEE ALSO o
cp(l), pg(l), pr(l).

2 Icon International, Inc.

(

c:'

CB(l) USER COMMANDS CB(1)

NAME

cb - C program beautifier

SYNOPSIS

cb I -tI] I -j II -lleng II file ... I

DESCRIPTION

Cb reads C programs either from its arguments or from the standard input and
writes them on the standard out.put with spacing and indentation that displays the
structure of the code. Under default options, cb preserns all user new-lines. Under
the -tI flag ch canonicalizes the code to the style of Kernighan and Ritchie in The C
Programming Language. The -j flag causes split lines t.o be put back toget.her. The
-1 flag causes cb to split lines that are longer than [eng.

SEE ALSO

cC(l).

The C Programming Language by B. W. Kernighan and D. M. Ritchie.

BUGS

Punctuation that is hidden in preprocessor stat.ements will cause indentation errors.

Icon International, Inc. 1

(

(

CC(l) USER COMMA.l\1J)S CC(l)

NAME

cc, pcc - C compiler

SYNOPSIS

ee [option 1 ... file .. .
pee [option J ... file .. .

DESCRIPTION

Ce is the ICON,IUX"V system C compiler. Pee is the port.able version for a PDP-ll
machine. They accept several types of arguments.

Arguments whose names end with .c are taken to be C source programs. They are
compiled, and each object program is left on the file whose name is that of the
source with .0 substit.uted for .c. The.o file is normally deleted, however, if a single
C program is compiled and loaded all at one go.

In the same way, arguments whose names end with .s are taken to be assembly
source programs and are assembled, producing a .0 file.

The following options are interpreted by ee and pee. See /d(l) for link editor options
and epp(l) for more preprocessor options.

-c Suppress the link edit phase of the compilation and force an object file to be
produced even if only one program is compiled.

-p Arrange for the compiler to produce code that counts the number of times
each routine is called; also, if link editing takes place, replace the standard
startoff routine by one that automatically calls monitor{3C) at the start
and arranges to write out a mon.out file at normal termination of execu­
tion of the object program. An execution profile can then be generated by
use of pro/(1). For the PDP-H onb', the libraries /lib/libp/libm.a (if the
-1m option is used) and /lib/libp/libc.a must be specified explicitly if the
versions reporting function call counts are to be loaded.

-f Link the object program with the floating-point interpreter for systems
without hardware floating-point.

-g Cause the compiler to generate additional information needed for the use of
sdb(l). (Not for PDP-H.)

-0

-S

-E

-P

Invoke an object-code optimizer.

Compile the named C programs and leave the assembler-language output
on corresponding files suffixed .s.

Run only cpp(l) on the named C programs and send t.he result to the stan­
dard output.

Run only cpp(l) on the named C programs and leave the result on
corresponding files suffixed .i.

Icon International, Inc. 1

CC(l) USER COMMANDS CC(l)

r-'
-Bstring ~J

FILES

2

Construct path names for substitute preprocessor, compiler, assembler and
link editor passes by concatenating string with thE' suffixes cpp, cO (or
ccom or comp, see under Fll.ES below), el, c2 (or optim), as and Id. If
,tring is empty it is taken to be /lib/o.

-t[p012al]
Find only the designated preprocessor, compiler, assembler and link editor
passes in the files whose names are constructed by a. -B option. In the
absence of a -B option, the ,tring is taken to be /lib/no The value -t ""
is equivalent to -tp012.

-We,arg1/,arge ... }
Hand oft'the argument[sJ arg; to pass c where c is one of [p012alJ indicating
preprocessor, compiler first pass, compiler second pass, optimizer, assembler,
or link editor, respectively.

Other arguments are taken to be either link edit.or option argumt'nts, C preprocessor
option arguments, or C-compatible object programs, typically produced by a·n earlier
ee or pee run, or perhaps libraries of C-compatible routines. These programs,
together with the results of any compilations specified, are linked (in the order given)
to produce an executable program with the name a.out.

The C language standard wa.s extended to include arbitrary length variable names.
This standard has been implemented on the VAX and the 3B 20 computer, but not on
the PDP-H. The option pair "-Wp,-T -WO,-XT" will cause the current compiler
(on the 3B 20 computer and the VA-X) to behave the same as previous compilers with
respect to the length of variable names.

file.c
file.o
a.out
/tmp/ctm*
/usr /tmp/ctm*
/lib/cpp
/lib/c[Ol]
/usr /lib/comp
/lib/ccom
/lib/comp
/lib/c2
/lib/optim
/usr /lib /Oc*
/bin/as
/bin/ld
/lib/crtO.o
/lib/mcrtO.o
/lib/fcrtO.o
/lib/fmcrtO.o
/lib/libc.a

input file
object file
linked output
temporary
temporary
C preprocessor epp(l}
PDP-ll compiler, ee
compiler, pee
VAX. compiler, ee
aB 20 computer compiler ee
VAX and PDP-ll optional optimizer
aB 20 computer optional optimizer
backup compiler, Oce
assembler, as(l}
link editor, Id(l)
runtime startoff
profiling startoff
ftoating-point interprt't.ation st,art.off (PDP-H)
ftoating-point. interpreta.tion and profiling start.off (PDP-H)
standard C library, set' section (3) in t.hE' ICON/UXl' System
(9) Programmer'8 Reference Manual

Icon International, Inc.

/
\./

(

CC(l) USER COMMANDS CC(l)

/lib/libp/lib*.a profiled versions oC libraries

SEE ALSO

adb(l), cpp(l), as(l), Id(l), proC(I), sdb(l).
exit(2), monitor(3C) in the IOON/UXV System Programmer Reference Manual.

The C Programming Language by B. W. Kernighan.
Programming in C-A Tutorial by B. W. Kernighan.
C Reference Manual by D. M. Ritchie.

NOTES

By default, the return value from a C program is completely random. The only two
guaranteed ways to return a specific value are to explicitly call exit(2} or to leave
the Cunction mainO with a "return expression;" const,ruct.

DIAGNOSTICS

The diagnost.ics produced by C itself are intended to be self-expla.natory. Occasional
messages may be produced by the assembler or the link edit.or. Of these, the most
mystiCying are from the PDP-ll assembler, in particular m, which means a multiply­
defined external symbol (function or data).

Icon International, Inc. 3

CD(I) USER COMMANDS CD{l}

NAME

cd - change working directory

SYNOPSIS

cd [directory J

DESCRlPTION

If directory is not specified, the value of shell parameter SHOME is used as the new
working directory. If directory specifies a complete path starting with I, " ", direc­
tory becomes the new working directory. If neither case applies, cd tries to find the
designated directory relative to one of the paths specified by t.he SCDPATH shell
variable. SCDPATH has the same syntax as, and similar semantics to, the SPATH
shell variable. Cd must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective if
it were written as a normal command; therefore, it is recognized and is internal to
the shell.

SEE ALSO

pwd(I), sh(I).
chdir(2} in the IOON/UXV System Programmer Reference Manual.

Icon International, Inc. 1

(

CDC (1) USER CO~111ANDS CDC(1)

NAME

cdc - change the delta commentary of an sees delta

SYNOPSIS

cdc -rSID [-m[mrlistlJ [-y[commentlJ files

DESCRIPTION

Cdc changes the delta commentary, for the SID specified by the -r keyletter, of each
named sees file.

Delta commentary is defined to be the Modification Request. (MR) and comment
information normally specified via the delta{l) command (-m and -y keylet.ters).

If a directory is named, cdc behaves as though each file in the direct.ory wt're
specified as a named file, except that non-sees files (last component of the path
name does not begin with s.) and unreadable files are silently ignored. If a name of
- is given, the standard input is read (see WARNINGS); each line of tht' standard
input is taken to be the name of an sees file to be processed.

Arguments to cdc, which may appear in any order, consist. of keyletter arguments
and file names.

All the described A~eyletter argument.s apply independently to each named file:

-rSID

-m[mrlistJ

Icon International, Inc.

Used to specify the sees IDentification (SID) string of a delta
for which the delta commentary is to be changt'd.

If the sees file has the v flag set (see admin(l)) then a list of
MR numbers to be added and/or deleted in the delta commt'n­
tary of the SID specified by the -r keyletter may be supplied.
A null MR list has no effect.

MR entries are added to the list. of MRs in the same manner
as that of delia(1). In order to delete an MR, precede the MR
number with the character ! (see EX4.MPLES). If the MR to
be deleted is currently in the list. of MRs, it is removed and
changed into a "comment" line. A list of all deleted MRs is
placed in the comment section of the delt,a commentary and
preceded by a comment line stating that they were deleted.

1

CDC(l) USER COM:MANDS CDC(1)

r-.',
If -m is not used and the standard input is a terminal, the ~c....-/
prompt MRs!' is issued on the standard output before the
standard input is read; if the standard input is not a terminal,
no prompt is issued. The MRs!' prompt always precedes the
comments!' prompt (see -y keylett.er).

MRs in a list are separated by blanks and/or tab characters.
An unescaped new-line character termina,t.es the MR list.

Note that if the v flag has a value (see admin{I)), it is taken
to be the name of a program (or shell procedure) which vali­
dates the correctness of the MR numbers. If a non-zero exit
status is returned from the MR number validation program,
cdc terminates and the delta commentary remains unchanged.

-y[commentJ Arbitrary text used to replace the C'omment(s) already existing
for the delta specified by the -r keyletter. The previous com­
ments are kept and preceded by a comment line stating that
they were changed. A null comment has no effect.

If -y is not specified and the standard input is a terminal, the
prompt comments!' is issued on the standard output before
the standard input is read; if the standard input is not a ter­
minal, no prompt is issued. An unescaped new-line character
terminates the comment text.

The exact permissions necessary to modify the sees file are documented in the
Source Code Conlrol System User Guide. Simply stated, they are either (I) if
you made the delta, you can change its delta commentary; or (2) if you own
the file and directory you can modify the delta commentary.

EXAMPLES

2

cdc -r1.6 -m"bI78-12345 !bl77-54321 bI79-00001" -ytrouble s.file

adds b178-12345 and bI79-00001 to the MR list, removes bI77-54321 from the MR list,
and adds the comment trouble to delta 1.6 of s.file.

cdc -rl.6 s.file
:tvffis? !b177 -54321 b178-12345 bI79-00001
comments? trouble

Icon International, Inc.

(

CDC(!) USER CO~1MANDS CDC(!)

does the same thing.

WARNINGS

If sees file names are supplied to the cdc command via the st.andard input. (- on
the command line), then the -m and -y keyletters must. also be used.

FILES

x-file (see delta(!»
z-file (see delta(!»

SEE ALSO

admin(!), delta(!), get(!), help(l), prs(l).
sccsfile(4) in the ICON/UXV System Programmer Reference Afanual.

Source Code Control System User Guide in the ICON/UXV System User Guide.

DIAGNOSTICS

Use help(!) for explanations.

Icon International, Inc. 3

(

CFLOW(l) U8ER C01v11\1..'\.1\1])8 CFLOW(l)

NAME

cflow- generate C ftowgraph

SYNOPSIS

cflow [-r] [-ix] [-L] [-<inurn] files

DESCRIPTION

Cftow analyzes a collection of c, YACC, LEX, asst'mbler, and objt'ct files and attempts
to build a graph charting the external references. Files suffixed in .y, .1, .c, and .i
are YACC'd, LEX'd, and C-preprocessed (bypassed for .i files) as appropriate and then
run through the first pass of lint(l}. (The -I, -D, and -U opt.ions of the C­
preprocessor are also understood.) Files suffixed with .8 are assembled and informa­
tion is extracted (as in .0 files) from the symbol table. The output of all t.his non­
trivial processing is collected and turned into a graph of ext.ernal references which is
displayed upon the standard output.

Each line of output begins with a reference (i.e., line) number, followed by a suitable
number of tabs indicating the level. Then the name of the global (normally only a
function not defined as an external or beginning with an underscore; see below for
the -i inclusion option) a colon and its definition. For information extracted from C
source, the definition consists of an abstract. type declaration (e.g., char *). and, del­
imited by angle brackets, the name of the source file and the line number where the
definition was found. Definitions extracted from object files indicate the file name
and location counter under which the symbol appeared (e.g., text). Leading under­
scores in C-style external names are deleted.

Once a definition of a name has been printed, subsequent references to that name
contain only the reference number of the line where the definition may be found. For
undefin~d references, only < > is printed.

As an example, given the following in file.c:

int

mainO
{

}

fO
{

}

i· I

fO;
gO;
fO;

i = hO;

Icon International, Inc. 1

CFLOW(l) USER COr-..~1Al\1J)S CFLOW(l)

the command

cHow -ix 6le.c

produces the output

1 main: intO, <61e.c 4>
2 f: intO, <file.c 11>
3 h:<>
4 i: int, <6Ie.c 1>
5 g: <>

When the nesting level becomes too deep, the -e option of pr(l) can be used to
compress the tab expansion to something less than every eight spaces.

The following options are interpreted by cftow:

-r Reverse the "caller:callee" relationship producing an inverted list,ing show­
ing the callers of each function. The listing is also sorted in lexicographical
order by callee.

-be Include external and static data symbols. The default is to include only
functions in the Howgraph.

-L Include names that begin with an underscore. The default is to exclude
these functions (and data if -ix is used).

-dnum The num decimal integer indicates the depth at which the flowgraph is cut
off. By default this is a very large number. Attempts t.o set the cutoff
depth to a non positive integer will be met with contempt.

DIAGNOSTICS

Complains about bad options. Complains about multiple definitions and only
believes the first. Other messages may come from the various programs used (e.g.,
the C-preprocessor).

SEE ALSO

BUGS

2

as(I), cc(I), cpp(I), lex(I), lint(I), nm(I), pr(l), ya('e(I).

Files produced by lex(l) and yacc(l) cause the reordering of line number declarations
which can confuse cftow. To get proper results, feed cftow the you or lex input.

Icon International, Inc.

c

CHGRP(l) USER COMMANDS CHGRP(l)

NAME

chgrp - change group

SYNOPSIS

chgrp [-f 1 group file ...

. DESCRIPTION

Chgrp changes the group-ID of the files to group. The group may be either a decimal
GID or a group name found in the group-ID file.

The user invoking chgrp must belong to the specified group and be the owner of the
file, or be the super-user.

No errors are reported when the -f (force) option is given.

FILES

fete/group

SEE ALSO

chown(2), passwd(5), group(5)

Icon International, Inc. 1

CHMOD(1) USER COMMANDS CIDvfOD (1)

(NAME

chmod - change mode

SYNOPSIS

chmod mode files

DESCRIPTION

The permissions of the named files are changed according to mode, which may be
absolute or symbolic. An absolute mode is an octal number constructed from the OR
of the following modes:

4000 set user ID on execution
2000 set group ID on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who 1 op permission [op permission 1

The who part is a combination of the letters u (for user's permissions), g (group) and
o (other). The letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file's mode, - to take away permission, or =
to assign permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (writ.e), x (execute), 8 (set
owner or group ID) and t (save text, or sticky); u, g, or 0 indicate that permission is
to be taken from the current mode. Omitting permiss,~on is only useful with = to
take away all permissions.

Multiple symbolic modes separated by commas may be giyen. Operations are per­
formed in the order specified. The letter 8 is only useful with u or g and t only
works with u.

Only the owner of a file (or the super-user) may change its mode. Only the super­
user may set the sticky bit. In order to set the group ID, the group of the file must
correspond to your current group ID.

Icon International, Inc. 1

CHMOD(l) USER CO:MMANDS CHMOD(I)

EXAMPLES

The first example denies write pernUssion to others, the second makes a file execut­
able:

SEE ALSO

1s(1).

ehmod o-w file

ehmod +x file

ehmod(2) in the IOON/UXV SgatemPrDgrammer Reference Manual.

2 Icon InternationaL Inc.

(, '\
' .. ;I

(

c

CHOWN(l) USER COMMANDS CHOWN(l)

NAME

chown, chgrp - change owner or group

SYNOPSIS

chown owner file ...

chgrp group file ...

DESCRIPTION

FIT..ES

Chown changes the owner of the files to owner. The owner may be either a decimal
user ID or a login name found in the password file.

Chgrp changes the group ID of the files to group. The group may be either a decimal
group ID or a group name found in the group file.

If either command is invoked by other than the super-user, the set-user-ID and set­
group-ID bits of the file mode, 04000 and 02000 respectively, will be cleared.

/etc/passwd
fete/group

SEE ALSO

chmod{l}.
chown(2}, group(4), passwd(4) in the ICON/[~\,Y System Programmer Reference
Manual.

Icon International, Inc. 1

CMP(l) USER COMMANDS CMP(l)

NAME

cmp - compare two files

SYNOPSIS

cmp [-1] [-8] file 1 file2

DESCRJPTION

The two files are compared. (If file1 is -, the standard input is used.) Under default
options, cmp makes no comment if the files are the same; if they differ, it announces
the byte and line number at which the difference occurred. If one file is an initial
subsequence of the other, that fact is noted.

Options:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-8 Print nothing for differing files; return codes only.

SEE ALSO

comm(l), diff(l).

DIAGNOSTICS

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible
or missing argument.

Icon International, Inc. 1

(

COL(1) USER COMMANDS COL(1)

NAME

col - filter reverse line-feeds

SYNOPSIS

col [-bfpx J

DESCRIPTION

Col reads from the standard input and writes ont.o the st.andard output. It performs
the line overlays implied by reverse line feeds (ASCII code ESC-7), and by forward
and reverse half-line feeds (ESC-9 and ESC-8). Col is particularly useful for filtering
multicolumn out.put made with the .rt command of l1roff and out.put resulting from
use of the t6/(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable of
backspacing. In this case, if two or more characters are to appear in the same place,
only the last one read will be output.

Although col accepts half-line motions in its input, it normally does not emit them
on output. Instead, text tha.t would appear between lines is moved to the next lower
full-line boundary. This treatment can be suppressed by the -f (fine) option; in this
case, the output from col may contain forward half-line f~ds (ESC-9), but will still
never contain either kind of reverse line motion.

Unless the -x option is given, col will convert, white space to tabs on output wher­
eyer possible to shorten printing time.

The ASCII control characters so (\016) and SI (\017) are assumed by col to start
and end text in an alternate character set. The character set to which each input
character belongs is remembered, and on output SI and so characters are generated
as appropriate to ensure that each character is printed in the correct character set.

On input, the only control characters accepted are space, ba.ckspace, tab, return,
new-line, SI, SO, VT (\013), and ESC followed by 7, 8, or 9. The VT character is an
alternate form of full reverse line-feed, included for compatibility with some ea rlier
programs of this type. All other non-printing characters are ignored.

Normany, col will ignore any unknown to it escape sequences found in its input; the
-p option may be used to cause col to output these sequences as regular characters,
subject to overprinting from reverse line motions. The use of this option is highly
discouraged unless the user is fully aware of the textual position of the escape
sequences.

Icon International, Inc. 1

COL(l) USER COMMANDS COL (1)

SEE ALSO

nroff(l), tbl{l).

NOTES

BUGS

2

The input format accepted by col matches the output produced by nroff with either
the -T37 or -Tip options. Use -T37 (and the -t option of col) if the ultimate
disposition of the output of col will be a device that can interpret half-line motions,
and -TIp otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the docu­
ment are ignored. As a result, the first line must not have any superscripts.

Icon International, Inc.

COMB (1) USER COMMANDS COMB (1)

NAME

comb - combine sees deltas

SYNOPSIS

comb [-0] [-8] [-psid] [-elist] files

DESCRIPTION

Comb generates a shell procedure (see sh(l)) which, when run, will reconstruct the
given sees files. The reconstructed files will, hopefully, be smaller than the original
files. The arguments may be specified in any order, but all keyletter arguments
apply to all named sees files. If a directory is named, comb behaves as though each
file in the directory were specified as a named file, except that non-sees files (last
component of the path name does not begin with s.) and unreadable files are silently
ignored. If a name of - is given, the standard input is read; each line of the input. is
taken to be the name of an sees file to be processed; non-sees files and unreadable
files are silently ignored. The generated shell procedure is written on the standard
output.

The keyletter arguments are as follows. Each is explained as though only one named
file is to be processed, but the effects of any key letter argument apply independently
to each named file.

-pSID The sees IDentification string (SID) of the oldest delta to be preserved.

-elist

-0

All older deltas are discarded in the reconstructed file.

A list (see get(l) for the syntax of a list) of deltas to be preserved. All other
deltas are discarded.

For each get -e generated, this argument causes the reconstructed file to
be accessed at the release of the delta to be C'reated, otherwise the recon­
structed tile would be accessed at the most recent ancestor. Use of the -0
keyletter may decrease the size of the reconstruct.ed sees file. It may also
alter the shape of the delta tree of the original file.

This argument causes comb to generate a shell procedure which, when run,
will produce a report giving, for each file: the file name, size (in biods)
after combining, original size (also in blocks), and percentage change com­
puted by:

100 * (original - combined) / original
It is recommended that before any sees files are act.ua.lly combined, one
should use this option to determine exactly how much space is saved by the
combining process.

Icon International, Inc. 1

COMB(!) USER COM:MANDS COMB(l)

r-'\
If no keyletter arguments are specified, comb will preserve only leaf deltas and the .~.~
minimal number of ancestors needed to preserve the tree.

F~ES

8.COMB The name of the reconstructed sees file.

comb????? Temporary.

SEE ALSO

admin(l), delta(l), get(l), he)p(l), prs(l), shell.
sccsfile(4} in the IOON/UXV System Programmer Reference Manual.

Source Code Control System User Guide in the IOON/UXV System User Guide.

DIAGNOSTICS

BUGS

2

Use help{l) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any space; in
fact, it is possible for the reconstructed file to actually be larger than the original.

Icon International, Inc.

COMM(I) USER COMMANDS COMM(l)

(- NAME

(

c

comm - select or reject lines common to two sorted files

SYNOPSIS

comm [- [123 11 filel file2

DESCRIPTION

Comm reads filet and file!!, which should be ordered in ASCII collating sequence (see
8ort(I)), and produces a three-column output: lines only in file1; lines only in file!!;
and lines in both files. The file name - means the standard input..

Flags 1, 2, or 3 suppress printing of the corresponding ('olumn. Thus comm -12
prints only the lines common to the two files; comm -23 prints only lines in the
first file but not in the second; comm -123 is a no-op.

SEE ALSO

cmp(l), diff(I), sort(l), uniq(I).

Icon International, Inc. 1

;('~' "
~ , '

\i(~j

(

(

(.. ~
/

CONVERT(l) USER COMlv1ANDS CONVERT(l)

NAME

convert - convert object and archive files to common formats

SYNOPSIS

convert [-5] infile outfile

DESCRIPTION

Convert transforms input in file to output oufji.le. Infile must be different from
oufji.le. The -5 option causes convert to work exactly as it did for UNIX System V
Release 1.0. Infile may be anyone of the following:

1) a pre-UNIX System V Release 1.0 VAX object file or link-edited (a.out)
module (only with the -5 option),

2) a pre-UNIX System V Release 1.0 VAX archive of object files or link
edited (a.out) modules (only with the -5 option),

3) a pre-UNIX System V Release 1.0 3B 20 computer archive of object
files or link edited (a.out.) modules (only wit,h t.he -5 option), or

4) a UNIX System V Release 1.0 VAX or 3B 20 computer archive file
(without the -5 option).

Cont'ert will transform in file to one of the following (respectively):

I) an equivalent UNIX System V Release 1.0 VAX object file or link edited
(a.out) module (with the -5 option),

2) an equivalent UNIX System V Release 1.0 VA",\: archive of equivalent
object files or link edited (a.out) modules (with the -5 option),

3) an equivalent UNIX System V Release 1.0 archive of unaltered 3B 20
computer object files or link edited (a.out) modules (with the -5
option) and

4) an equivalent VA-X or 3B 20 computer UNIX System V Release 2.0
portable archive containing unaltered members (without the -5
option).

All other types of input to the convert command will be passed unmodified from the
input file to the output file (along with appropriate warning messages). When
transforming archive files with the -5 option, the cOnt'ert(1) command will inform
the user that the archive symbol table has been deleted. To generate an archive
symbol table, this archive file must be transformed again by cOlwerl without the -5
option to create a UNIX System V Release 2,0 archive file. ThE'n the archive symbol
table may be created by executing the ar(l) command wit h thE' ts option. If a UNIX
Syst.em V Release 1.0 archive with an archive symbol t.able is being transformed, t.he

Icon International, Inc. 1

CONVERT(l) USER CO:MMANDS CONVERT(l)

FILES

archive symbol table will automatically be converted.

The arcr.(l} command may be used in conjunction with tlH> convert command to
transform PDP-ll archives into the UNIX System V R~ease 2.0 portable archive for­
mat. The arcv command creates a. UNIX System Release 1.0 archive which is then
transformed by convert. The conversion is useful only when the archive contains
portable information such as text files.

/tmp/conv*

SEE ALSO

ar(l), arcv(l).
a.out(4), ar(4) in the UNIX System IT Programmer Referenu lIfo1lual.

2 Icon International, Inc.

('

(

CP (1) USER COMMANDS CP (1)

NAME

cp, In, mv - copy, link or move files

SYNOPSIS

cp file! [file2 ... J target
In [-f 1 file! [file2 ... J target
In [-f -8 srcfile destfile
mv [-f J file! [file2 ... J target

. DESCRIPTION

File1 is copied (linked, moved) to target. Under no circumstance can fUe1 and target
be the same (take care when using sh{l) metacharacters). If target is a directory,
then one or more files are copied (linked, moved) to that directory. If target is a file,
its contents are destroyed.

If mv or In determines that the mode of target forbids writing, it will print the mode
(see chmod(2)), ask for a response, and read the standard input for one line; if the
line begins with y, the mvor In occurs, if permissable; if not, the command exits. No
questions are asked and the mv or In is done when the -f option is used or if the
standard input is not a terminal.

Only mv will allow fUel to be a directory, in which case the directory rename will
occur only if the two directories have the same parent; filel is renamed target. If
filel is a file and target is a link to another file with links, the other links remain and
target becomes a new file.

When using cp, if target is not a file, a new file is created which has the same mode
as file1 except that the sticky bit is not set unless you are super-user; the owner and
grou p of target are those of the user. If target is a file, copying a file in to target does
not change its mode, owner, nor group. The last modification time of target (and
last access time, if target did not exist) and the last access time of filel are set to
the time the copy was made. If target is a link to a file, all links remain and the file
is changed.

The -8 option to In causes a symbolic link to be made between srcfile and dstfile. A
symbolic link contains the name of the file to which it is linked. Symbolic links may
span file systems.

SEE ALSO

cpio(l), rm(l).
chmod(2) in the IGON/UXV System Programmer Reference Manual.

Icon International, Inc. 1

CP(l)

BUGS

2

USER COM:MANDS CP(l)

If fUel and target lie on different file systems, mv must copy the file and delete the
original. In this case any linking relationship with other files is lost.

Icon International, Inc.

/

rr-­
~ .. j

(-\

" ./

ePIO (1) USER COf\1MANDS CPIO(1)

NAME

cpio - copy file archives in and out

SYNOPSIS

epio -0 [aeBv 1

epio -i [BedmrtuvtsSb6 1 [patterns 1

epio -p [adlmruv 1 directory

DESCRIPTION

Cpio -0 (copy out) reads the standard input to obta.in a list of path names and
copies those files ont.o the standard output together with path name and status
information. Output is padded to a 512-byte boundary.

Cpio -i (copy in) extracts files from the standard input, which is assumed to be the
product of a previous epio -0. Only files with names that match patterns are
selected. Patterns are ghoen in the name-generating notation of sh(I). In patterns,
meta-characters r, *, and [...] match the slash / character. Multiple patterns may
be specified and if no patterns are specified, the default for patterns is * (i.e., select
all files). The extracted files are conditionally created and copied into the current
directory tree based upon the options described below. The permissions of the files
will be those of the previous epio -0. The owner and group of the files will be that
of the current user unless the user is super-user, which causes cpio to retain the
owner and group of the files of the previous epio -0.

Cpio -p (pass) reads the standard input to obtain a Jist of pat.h names of files that
are conditionally created and copied into the destinat.ion directory tree based upon
the options described below.

The meanings oC the available options are:

a
B

d
e
r
t
u

v

Reset access times of input files after they have be-e-n copied.
Input/output is to be blocked 5,120 bytes to the record (does not apply to the
paBB option; meaningful only with data directed to or from /dev /rmt/!!).
Directories are to be created as needed.
Write header inCormation in ASCII character form for portability.
Interactively rename files. If the user types a null line, the file is skipped.
Print a table of contents of the input. No files are crt'ated.
Copy unconditionally (normally, an older file will not replace a newer file with
the same name).
Verbose: causes a list of file names to be printed. '\~hen used with the t
option, the table of contents looks like the output of an Is -1 command (see
Is(1)).

Icon International, Inc. 1

CPIO(l) USER COMMANDS CPIO (1)

1

m

f
8

S
b
6

Whenever possible, link files rather than copying them. Usable only with the
-p option.
Retain previous file modification time. This option is ineffective on dir.ec­
tories that are being copied.
Copy in all files except those in patterns.
Swap bytes. Use only with the -i option.
Swap halfwords. Use only with the -i option.
Swap both bytes and halfwords. Use only with the -i option.
Process an old (Le., UNIX System Sixth Edition format) file. Only useful with
-i (copy in).

EXAMPLES

The first example below copies the contents of a directory into an archive; the
second duplicates a directory hierarchy:

Is I cpio -0 >/dev/mt/Om

cd olddir
find • -depth -print I cpio -pdl newdir

The trivial case "find • -depth -print I cpio -08 > /dev /rmt/Om" can be handled
more efficiently by:

find • -cpio /dev /rmt/Om

SEE ALSO

BUGS

2

ar(1), find(1}, Is(1}.
cpio(4) in the lOON/VA" System Programmer Reference Manual.

Path names are restricted to 128 characters. If there are too many unique linked
files, the program runs out of memory to keep track of them and, thereafter, linking
information is lost. Only the super-user can copy special files. The -B opt.ion does
not work with certain magnetic tape drives (see u7132(7) in the IOON/U.Yl' System
Administrator Reference Manual).

Icon International, Inc.

/\ , \

V

/

C··--\ . I
./

(

(

CP~ (1) USER COIv1MAi\TJ)S Cpp (1)

NAME

cpp - the C language preprocessor

SYNOPSIS

/lib /cpp [option ...] [ifile [ofile]]

DESCRIPTION

Cpp is the C language preprocessor which is invoked as the first pass of any C com­
pilation using the cC{l) command. Thus the output of cpp is designed to be in a
form acceptable as input to the next pass of the C compiler. As the C language
evolves, cpp and the rest of the C compilation package will be modified to follow
these changes. Therefore, the use of cpp other than in this framework is not sug­
gested. The preferred way to invoke cpp is through the cC(l) command, since the
functionality of cpp may someday be moved elsewhere. See m4(1) for a general
macro processor.

Cpp optionally accepts two file names as arguments. [file and ofile are respectively
the input and output for the preprocessor. They default to standard input and stan­
dard output if not supplied.

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information used by
the next pass of the C compiler.

-C B!' default, cpp strips C-style comments. If the -C option is specified, all
comments (except those found on cpp directive lines) are passed along.

-Uname
Remove any initial definition of name, where name is a reserved symbol that
is predefined by the particular preprocessor. The current list of these possi­
bly resen-eel symbols includes:

opera ting system:
hardware:
UNIX system variant:
lin~l):

ibm, gcos, os, tss, unix
interdata, pdpll, u370, u3b, u3b5, vax, m68k
RES, RT
lint

-Dname
-Dname=def

-T

Define name as if by a #define directive. If no =def is given, name is defined
as 1. The -D option has lower precedence than the -U option. That is, if
the same name is used in both a -U option and a -D option, the name will
be undefined regardless of the order of the options.

Except on the PDP-Il, preprocessor symbols are no longer restricteel to eight
characters. The -T option forces cpp to use only the first eight characters
for distinguishing different preprocessor names. This behavior is the same as

Icon International, Inc. 1

CPP(1) USER COMMANDS CPP (1)

f"

previous preprocessors with respect to the length of names and is included for ~J

2

backward compatability.

-Idir Change the algorithm for searching for #include files whose names do not
begin with I to look in dir before looking in the directories on the standard
list. Thus, #include files whose names are enclosed in "" will be searched
for first in the directory of the file with the #include line, then in directories
named in -I options, and last in directories on a standard list. For
#include files whose names are enclosed in <>, the directory of the file with
the #include line is not searched.

Two special names are understood by cpp. The name _J.INE __ is defined as the
current line number (as a decimal integer) as known by cpp, and _J'ILE __ is
defined as the current file name (as a C string) as known by cpp. They can be used
anywhere (including in macros) just as any other defined name.

All cpp directives start with lines begun by #. Any number of blanks and tabs are
allowed between the # and the directive. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..• , arg) token-string
Notice that there can be no space between name and the C. Replace subse­
quent instances of name followed by a (, a list of comma-separated set of
tokens, and a) by token-string, where each occurrence of an arg in the token­
string is replaced by the corresponding set of tokens in the comma-separat.ed
list. \Vhen a macro with arguments is expanded, the arguments are placed
into the expanded token-string unchanged. After the entire token-string has
been expanded, cpp re-starts its scan for names to expand at the beginning of
newly created token-string.

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#include "filename"
#include <filename>

Include at this point the contents of filename (which will then be run through
cpp). When the <filename> notation is used, filename is only searched for in
the standard places. See the -I option above for more detail.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of the C
compiler. Integer-constant is the line number of the next line and filename is
the file where it comes from. If "filename" is not given, the current file name
is unchanged.

#endif
Ends a section of lines begun by a test directive (#if, #ifdef, or #ifndef).
Each test directive must have a matching #endif.

#ifdef name
The lines following will appear in the output if and only if name has been the
subject of a previous #define without being the subject of an intervening
#undef.

#ifndef name

Icon International, Inc.

(

(

CPP(1) USER C01\1MANDS CPP (1)

FILES

The lines following will not appear in the output if and only if name has been
the subject of a previous #define without being the subject of an intervening
#undef.

#if constant-expression
Lines following will appear in the output if and only if the constant-expression
evaluates to non-zero. All binary non-assignment C operators, the 1': opera­
tor, the unary -, !, and - operators are all legal in constant-expression. The
precedence of the operators is the same as defined by the C language. There
is also a unary operator defined, which can be used in constant-expression in
these two forms: defined (name) or defined name. This allows the utility
of #ifdef and #ifndef in a #if directive. Only these operators, integer con­
stants, and names which are known by cpp should be used in constant­
expression. In particular, the sizeof operator is not available.

#else Reverses the notion of the test directive which matches this directive. So if
lines previous to this directive are ignored, the following lines will appear in
the output. And vice versa.

The test directins and the possible #ellJe directives can be nested.

/usr /include standard directory for #include files

SEE ALSO

cC(l), m4(1).

DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory. The line
number and filename where the error occurred are printed along with the diagnostic.

NOTES

When new-line characters were found in argument lists for macros to be expanded,
previous versions of cpp put out the new-lines as they were found and expanded.
The current version of cpp replaces these new-lines with blanks to alleviate problems
that the previous versions had when this occurred.

Icon International, Inc. 3

(

CRONTAB(l)

NAME

crontab - user crontab file

SYNOPSIS

c:rontab [file]
c:rontab -r
c:rontab -I

DESCRIPTION

USER COM:M.ANDS CRONTAB(l)

Crontab copies the specified file, or standard input if no file is specified, into a direc­
tory that holds all users' crontabs. The -r option removes a user's crontab from the
crontab directory. Crontab -1 will list the crontab file for the invoking user.

Users are permitted to use crontab if their names appear in the file
/usr/lib/cron/cron.allow. If that file does not exist, the file
/usr/lib/cron/cron.deny is checked to determine if the user should be denied
access to crontab. If neither file exists, only root is allowed to submit a job. If either
file is at.deny, global usage is permitted. The allow/deny files consist of one user
name per line.

A crontab file consists of lines of six fields each. The fields are separated by spaces
or tabs. The first five are integer patterns that specify the following:

minute (0-59),
hour (0-23),
day of the month (1-31),
month of the year (1-12),
day of the week (0-6 with O=Sunday).

Each of these patterns may be either an asterisk (meaning all legal values) or a list
of elements separated by commas. An element is either a number or two numbers
separa.ted by a minus sign (meaning an inclusive range). Note that the specification
of days may be made by two fields (day of the month and day of the week). If both
are specified as a list of elements, both are adhered to. For example, 0 0 1,15 * 1
would run a command on the first and fifteenth of each month, as well as on every
Monday. To specify days by only one field, the other field should be set to * (for
example, 0 0 * * 1 would run a. command only on Mondays).

The sixth field of a line in a crontab file is a string that is executed by the shell at
the specified times. A percent character in this field (unless escaped by \) is
translated to a new-line character. Only the first line (up to a % or end of line) of
the command field is executed by the shell. The other lines are made available to
the command as standard input.

Icon International, Inc. 1

CRONTAB(l) USER COMMANDS CRONTAB(l)

The shell is invoked from your tHOME directory with an argO of sh. Users who
desire to have their .profile executed must explicitly do so in the crontab file. Gron
supplies a default environment for every shell, defining HOME, LOGNAME,
SRELL{-/bin/sh), and PATH{=:/bin:/usr/bin:/usr/lbin).

NOTE: Users should remember to redirect the standard output and sta~dard error
of their commands! It this is not done, any generated output or errors will be mailed
to the user.

/usr /lib/cron
/usr /spool/cron/crontabs
/usr /lib/cron/log
/usr/lib/cron/cron.allow
Jusr /lib/cronJcron.deny

main cron directory
spool area
accounting information
list of allowed users
list of denied users

SEE ALSO

sh{l).
cron{lM) in the ICON/UXV System V Administrator Reference Manual.

2 Icon International. Inc.

(

c

CSH(1) USER COMMANDS CSH(1)

NAME

csh - a shell (command interpreter) with C-like syntax

SYNOPSIS

cah [-eefinstvVxX J [arg ...

DESCRIPTION

Osh is a first implementation of a command language interpreter incorporating a his­
tory mechanism (see History Substitutions), job control facilities (sE'e Jobs),
interactive file name and user name completion (see File Name Completion), and
a C-like syntax. So as to be able to use its job control facilities, users of csh must
(and automatically) use the new tty driver fully described in tty(4). This new tty
driver allows generation of interrupt characters from the keyboard to tell jobs to
stop. See sUy(l} for details on setting options in the new tty driver.

An instance of csh begins by executing commands from the file '.cshrc' in the home
directory of the invoker. If this is a login shell then it also executes commands from
the file '.login' there. It is typical for users on crt's to put the command "stty crt"
in their .Iogin file, and to also invoke tset(l) there.

In the normal case, the shell will then begin reading commands from the terminal,
prompting with '% '. Processing of arguments and the use of the shell to process
files containing command scripts will be described later.

The shell then repeatedly performs the following actions: a line of command input is
read and broken into words. This sequence of words is placed on the command his­
tory list and then parsed. Finally each command in the current line is executed.

"'hen a login shell terminates it executes commands from the file '.logout' in the
users home directory.

Lexical structure

The shell splits input lines into words at blanks and tabs with the following excep­
tions. The characters '&' 'I' ';' '<' '>' '(' ')' form separate words. If doubled in '&&',
'II', '«' or '»' these pairs form single words. These parser metacharacters may
be made part of other words, or prevented their special meaning, by preceding them
with '\'. A newline preceded by a '\' is equivalent to a blank.

In addition strings enclosed in matched pairs of quotations, "', ,-, or '''', form parts
of a word; metacharacters in these strings, including blanks and tabs, do not form
separate words. These quotations have semantics to be described subsequently.
'Vithin pairs of ", or '''' characters a newline preceded by a '\' gives a true newline
character.

Icon International, Inc. 1

CSH(l) USER CO:MMANDS CSH(l)

2

/~
i

When the shell's input is not a terminal, the character '#' introduces a comment ,=/
which continues to the end of the input line. It is prevented this special meaning
when preceded by 'V and in quotations using "', "', and I"'.

Commancla

A simple command is a sequence of words, the first of which specifies the command
to be executed. A simple command or a sequence of simple commands separated by
'I' characters forms a pipeline. The output of each command in a pipeline is con­
nected to the input of the next. Sequences of pipelines may be separated by';', and
are then executed sequentially. A sequence of pipelines may be executed without
immediately waiting for it to terminate by following it with an '&'.

Any of the above may be placed in '(' I)' to form a simple command (which may be a
component of a pipeline, etc.) It is also possible to separate pipelines with '1:' or
'&&' indicating, as in the C language, that the second is to be executed only if the
first fails or succeeds respectively. (See Expressions.)

Jobs

The shell associates a job with each pipeline. It keeps a table of current jobs,
printed by the jobs command, and assigns them small integer numbers. When a job
is started asynchronously with '&', the shell prints a line which looks like:

[1] 1234

indicating that the job which was started asynchronously was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the key ,. Z
(control-Z) which sends a STOP signal to the current job. The shell will then nor­
mally indicate that the job has been 'Stopped', and print another prompt. You can
then manipulate the state of this job, putting it in the background with the bg com­
mand, or run some other commands and then eventually bring the job back into the
foreground with the foreground command Jg. A "z takes effect immediately and is
like an interrupt in that pending output and unread input are discarded when it is
t.yped. There is another special key "Y which does not generate a STOP signal until
a program attempts to read(2) it. This can usefully be typed ahead when you have
prepared some commands for a job which you wish to stop after it has read them.

A job being run in the background will stop if it tries to read from the terminal.
Background jobs are normally allowed to,produce output, but this can be disabled by
giving the command "stty tostop". If you set this tty option, then background jobs
will stop when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character '%' introduces a
job name. If you wish to refer to job number 1, you can name it as '%1 '. Just nam-
ing a job brings it to the foreground; thus '%1' is a synonym for 'fg %1', bringing job ;£-',
1 back into the foreground. Similarly saying '%1 &' resumes job 1 in the ~.j

Icon International, Inc.

(

o

CSH(1) USER COMMANDS CSH(1)

background. Jobs can also be named by prefixes of the string typed in to start them,
if these prefixes are unambiguous, thus '%ex' would normally restart a suspended
ex(l) job, if there were only one suspended job whose name began with the string
'ex'. It is also possible to say '%?string' which specifies a job whose text contains
string, if there is only one such job.

The shell maintains a notion of the current and previous jobs. In output pertaining
to jobs, the current job is marked with a '+' and the previous job with a '-'. The
abbreviation '%+' refers to the current job and '%-' refers to the previous job. For
close analogy with the syntax of the history mechanism (described below), '%%' is
also a synonym for the current job.

Status reporting

This shell learns immediately whenever a process changes state. It normally informs
you whenever a job becomes blocked so that no further progress is possible, but only
just before it prints a prompt. This is done so that it does not otherwise disturb
your work. If, however, you set the shell variable notify, the shell will notify you
immediately of changes of status in background jobs. There is also a shell command
notIfy which marks a single process so that its status changes will be immediately
reported. By default notify marks the current process; simply say 'notify' after start­
ing a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that 'You
have st.opped jobs.' You may use the jobs command to see what they are. If you do
this or immediately try to exit again, the shell will not warn you a second time, and
the suspended jobs will be terminated.

File Na.me Completion

When the file name completion feature is enabled by setting the shell variable filec
(see set), csh will interactively complete file names and user names from unique
prefixes, when they are input from the terminal followed by the escape character
(the escape key, or control-[). For example, if the current directory looks like
DSC.OLD bin cmd lib xmpl.c
DSC.NEW chaosnet cmtest mail xmpl.o
bench class dev mbox xmpl.out
and the input is

% vi ch<escape>
csh will complete the prefix "ch" to the only matching file name "chaosnet", chang­
ing the input line to

% vi chaosnet
However, given

% vi D<escape>
csh will only expand the input to

% vi DSC.
and will sound the terminal bell to indicate that the expansion is incomplete, sin('e
there are two file names matching the prefix "0".

Icon International, Inc. 3

CSH(l) USER COMlviANDS CSH(l)

4

If a partial file name is followed by the tmd-of-file character (usually control-D), then,
instead of completing the name, csh will list all file names matching the prefix. For
example, the input

% vi D<control-D>
causes all tiles beginning with ~cD" to be listed:

DSC.NEW DSC.OLD
while the input line remains unchanged.

The same system of escape and end-of-file can also be used to expand partial user
names, if the word to be completed (or listed) begins with the character "-". For
example, typing

cd -ro<control-D>
may produce the expansion

cd -root

The use of the terminal bell to signal errors or multiple matches can be inhibited by
setting the variable nobeep,

Normally, all files in the particular directory are candidates for name completion.
Files with certain suffixes can be excluded from consideration by setting the variable
fignore to the list of suffixes to be ignored. Thus, if fignore is set by the command

% set fignore ::: (.o .out)
then typing

% vi x<escape>
would result in t.he completion to

% vi xmpl.c
ignoring the files "xmpl.o" and "xmpl.out", However, if the only completion possible
requires not ignoring these suffixes, then they are not ignored. In addition, fignore
does not affect the listing of fil~ names by control-D. All files are listed regardless of
their suffixes.

Substitutions

We now describe the various transformations the shell performs on the input in the
order in which they occur.

History substitutions

History substitutions place words from previous command input as portions of new
commands, making it easy to repeat eommands, repeat arguments of a previous
command in the current command, or fix spelling mistakes in the previous command
with little typing and a high degree of confidence. History substitutions begin with
the character '!' and may begin anywhere in the input stream (with the proviso
that they do not nest,) This'!' may be preceded by an '\' to prevent its special
meaning; for convenience, a 't' is passed unchanged when it is followed by a blank,
tab, newline, I:::' or '('. (History substitutions also occur when an input line begins
with '1'. This special abbreviation will be described lat.er.) Any input line which
contains history substitution is echoed on the terminal before it is executed as it
could have been typed without history substitution.

Icon International, Inc.

CSH(1) USER COM11A.NDS CSH(1)

Commands input from the terminal which consist of one or mor~ words are saved on
the history list. The history substitutions reintroduce sequences of words from these
saved commands into the input stream. The size of which is controlled by the his­
tory variable; the previous command is always retained, regardless of its value.
Commands are numbered sequentially from 1.

For definiteness, consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. It is not usually necessary to
use event numbers, but the current event number can be made part of the prompt by
placing an I!' in the prompt string.

With the current event 13 we can refer to pr~vious events by event number '!11',
relatively as in '!-2' (referring to the same event), by a prefix of a command word as
in ltd' for event 12 or '!wri' for event 9, or by a string contained in a word in the
command as in '!?mic?' also referring to event 9. These forms, without further
modification, simply reintroduce the words of the specified events, each separated by
a single blank. As a special case I!!' refers to the previous command; thus '!!' alone
is essentially a redo.

To select words from an event we can follow the event specification by a I:' and a
designator for the desired words. The words of an input line are numbered from 0,
the first (usually command) word being 0, the second word (first argument) being 1,
etc. The basic word designators are:

o first (command) word
n n'th argument
t first argument, i.e. '1'
"$ last argument
% word matched by previous ?s? search
x-y range of words
-y abbreviates 'O-y'
* abbreviates 't -$', or nothing if only 1 arg
x* abbreviates 'x-$'
x- like 'x*' but omitting word '$'

The ':' separating the event specification from the word designator can be omitted if
the argument selector begins with a It', '$', '*' '-' or '%'. After the optional word
designator can be placed a sequence of modifiers, each preceded by a I:'. The
following modifiers are defined:

h Remove trailing pathname component, leaving head.
r Remove trailing '.xxx' component, leaving root name.
e Remove all but the extension '.xxx' part.
s/I /r / Substitute I for r

Icon International, Inc. 5

CSH(l) USER COMMANDS CSH(l)

6

t
&
g
p
q
x

Remove aU leading pathname components, leaving tail.
Repeat the previous substitution.
Apply change globally, prefixing the above, e.g. 'g&'.
Print new command but do not execute it.
Quote substituted words, preventing further substitutions.
Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a 'g' the modification is applied only to the first modifiable word.
With substitutions, it is an error for no word to be applicable.

The left hand side of substitutions are not regular expressions in the sense of the edi­
tors, but rather strings. Any character may be used as the delimiter in place of '/';
a '\' quotes the delimiter into the I and r strings. The character '&' in the right
hand side is replaced by the text from the left. A '\' quotes '&' also. A null I uses
the previous string either from a lor from a contextual scan string s in '!181'. The
trailing delimiter in the substitution ma.y be omitted if a newline follows immediately
as may the trailing '1' in a contextual scan.

A history reference may be given without an event specification, e.g. '!$'. In this case
the reference is to the previous command unless a previous history reference occurred
on the same line in which case this form repeats the previous reference. Thus
'!?foo?t !$' gives the first and last arguments from the command matching '1f001'.

A special abbreviation of a history reference occurs when the first non-blank charac­
ter of an input line is a 't'o This is equivalent to '!:st' providing a convenient short­
hand for substitutions on the text of the previous line. Thus 'tlbtlib' fixes the spel­
ling of 'lib' in the previoue command. Finally, a history substitution may be sur­
rounded with '{' and I}' if necessary to insulate it from the characters which follow.
Thus, after 'Is -ld -paul' we might do '!{l}a' to do 'Is -Id -paula', while '!la' would
look for a command starting 'la'.

Quotations with • and "

The quotation of strings by ", and ,tt, can be used to prevent all or some of the
remaining substitutions. Strings enclosed in ", are prevented any further interpreta­
tion. Strings enclosed in ,tt, may be expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one
special case (see Command Substitition below) does a ,tt, quoted string yield parts of
more than one word; '" quoted strings never do.

Alias substitution

The shell maintains a list of aliases which can be established, displayed and modified
by the alias and unalia8 commands. After a command line is scanned, it is parsed
into distinct commands and the first word of each command, left-to-right, is checked

Icon International, Inc.

(-

CSH(1) USER COMMANDS CSH(1)

to see if it has an alias. If it does, then the text which is the alias for that command
is reread with the history mechanism available as though that command were t.he
previous input line. The resulting words replace the command and argument list. If
no reference is made to the history list, then the argument list is left unchanged.

Thus if the alias for 'ls' is 'Is -1' the command 'Is /usr' would map to 'Is -I /usr', the
argument list here being undisturbed. Similarly if the alias for 'lookup' was 'grep !t
/etc/passwd' then 'lookup bilr would map to 'grep bill /etc/p&sswd'.

If an alias is found, the word transformation of the input text is performed and the
aliasing process begins again on the .J'.e.formed input line. Looping is prevented if the
first word of the new text is the nme as the old by flagging it to prevent further
aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we
can 'alias print 'pr \!* : lpr" to ma.ke a command which pr's its arguments to the
line printer.

Variable substitution

The shell maintains a set of variables, each of which has as value a list of zero or
more words. Some of these variables are set by the shell or referred to by it. For
instance, the argv variable is an image of the shell's argument list, and words of this
variable's value are referred to in special ways.

The values of variables may be displayed and changed by using the set and unset
commands. Of the variables referred to by the shell a number are toggles; the shell
does not care what their value is, only whether they are set or not. For instance,
the verbose variable is a toggle which causes command input. to be echoed. The set­
ting of this variable results from the -v command line option.

Other operations treat variables numerically. The '@' command permits numeric
calculations to be performed and the Tesult assigned to a variable. Variable values
are, however, always represented as (zero or more) strings. For the purposes of
numeric operations, the null string is considered to be zero, and the second and sub­
sequent words of multiword values aTe ignored.

After the input line is aliased and pa.rsed, and before each command is executed,
variable substitution is performed keyed by '$' characters. This expansion can be
prevented by preceding the '$' with a '\' except within ''''s where it always occurs,
and within' "s where it never occurs. Strings quoted by'" are interpreted later
(see Command substitution below) so '$' substitution does not occur there until later,
if at all. A '$' is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and ent.ire argument list are
expanded together. It is thus possible for the first (command) word to this point to
generate more than one word, the first of which becomes the command name, and
the rest of which become arguments.

Icon International, Inc. 7

CSH(l) USER CO:MMANDS CSH(l)

8

Unless enclosed in ,n, or given the ':q' modifier the results of variable substitution
may eventually be command and filename substituted. Within ,n,. a variable whose
value consists of multiple words expands to a (portion of) a single word, with the
words of the variables value separated by blanks. When the ':q' modifier is applied
to a substitution the variable will expand to multiple words with each word
separated by a blank and quoted to prevent later command or filename substitution.

The following metasequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable which is not set.

Sname
S{name}

Are replaced by the words of the value of variable name, each separated by a
blank. Braces insulate name from following characters which would otherwise
be part of it. Shell variables have names consisting of up to 20 lett,ers and
digits starting with a letter. The underscore character is considered a letter.
If name is not a shell variable, but is set in the environment, then that value is
returned (but: modifiers and the other forms given below are not available in
this case).

Sname[selectorJ
S{ name [selector]}

May be used to select only some of the words from the value of name. The
selector is subjected to'S' substitution and may consist of a single number or
two numbers separated by a '-'. The first word of a variables value is num­
bered '1'. If the first number of a range is omitted it defaults to '1 '. If the last
member of a range is omitted it defaults to '$#name'. The selector '*' selects
all words. It is not an error for a range to be empty if the second argument is
omitted or in range.

$#name
${#name}

$0

Gives the number of words in the variable. This is useful for later use In a
'Iselector 1'·

Substitutes the name of the file from which command input is being read. An
error occurs if the name is not known.

Snumber
${number}

Equivalent to'Sargv[number]'.

$*
Equivalent to '$argv[*l'.

The modifiers ':h', ':t', ':r', ':q' and ':x' may be applied to the substitutions above as
may ':gh', ':gt' and ':gr'. If braces '{' '}' appear in the ('ommand form then the
modifiers must appear within the braces. The current implementation allows
only one ':' modifier on each '$' expansion.

The following substitutions may not be modified with I:' modifiers.

$?name

Icon International. Inc.

/ '\

... '" j

o

(

c

CSH(1) USER CO:MMANDS CSH(1)

${1name}
Substitutes the string '1' if name is set, '0' if it is not.

$10
Substitutes '1' if the current input filename is known, '0' if it is not.

Substitute the (decimal) process number of the (parent) shell.

$<
Substitutes a line from the standard input, with no further interpretat.ion
thereafter. It can be used to read from the keyboard in a shell script.

Command and filename substitution

The remaining substitutions, command and filename substitution, are applied selec­
tively to the arguments of builtin commands. This means that portions of expres­
sions which are not evaluated are not subjected to these expansions. For commands
which are not internal to the shell, the command name is substituted separately
from the argument list. This occurs very late, after input-output redirection is per­
formed, and in a child of the main shell.

Command substitution

Command substitution is indicated by a command enclosed in ,. '. The output from
such a command is normally broken into separate words at blanks, tabs and new­
lines, with null words being discarded, this text. then replacing the original string.
Within ''''s, only newlines force new words; blanks and tabs are preserved.

In any case, the single final newline does not force a new word. Note that it is thus
possible for a command substitution to yield only part of a word, even if the com­
mand outputs a complete line.

Filename substitution

If a word contains any of the characters '*', I?', 'f' or '{' or begins with the character
'-', then that word is a candidate for filename substitution, also known as 'globbing'.
This word is then regarded as a pattern, and replaced with an alphabetically sorted
list of file names which match the pattern. In a list of words specifying filename sub­
stitution it is an error for no pattern to match an existing file name, but it is not
required for each pattern to match. Only the metacharacters '*', I?' and 'I' imply
pattern matching, the characters ,-, and '{' being more akin to abbreviations.

In matching filenames, the character '.' at the beginning of a filename or immedi­
ately following a 'I', as well as the character 'I' must be matched explicitly. The
character '*' matches any string of characters, including the null string. The charac­
ter I?' matches any single character. The sequence '[...]' matches anyone of the
characters enclosed. Within 'I ... J', a pair of characters separated by '-' matches any
character lexically between the two.

Icon International, Inc. 9

CSH(1) USER COMMANDS CSH(1)

r~"
I

The character ,-, at the beginning of a filename is used to refer to home directories. ~J

10

Standing alone, i.e. ,-, it expands to the invokers home directory as reflected in the
value of the variable home. When followed by a name consisting of letters, digits and
'-' characters the shell searches for a user with that name and substitutes their
home directory; thus '-ken' might expand to '/usr/ken' and '-ken/chmach' to
'/usr/ken/chmach'. If the character ,-, is followed by a character other than a
letter or 'I' or appears not at the beginning of a word, it is left undisturbed.

The metanotation 'a{b,c,d}e' is a shorthand for 'abe ace ade'. Left to right order is
preserved, with results of matches being sorted separately at a low level to preserve
this order. This construct may be nested. Thus '-source/sl/{oldls,ls}.c' expands to
'/usrlsource/sl/oldls.c lusrlsource/sl/ls.c' whether or not these files exist without
any chance of error if the home directory for 'source' is '/usrlsource'. Similarly
' .. /{memo,*box}' might expand to ' .. /memo .. /box . ./mbox'. (Note that 'memo' was
not sorted with the results of matching '*box'.) .As a special case 'f, I}' and 'n' are
passed undisturbed.

Input/output

The standard input and standard output of a command may be redirected with the
following syntax:

< name
Open file name (which is first variable, command and filename expanded) as the
standard input.

« word
Read the shell input up to a line which is identical to word. Word is not sub­
jected to variable, filename or command substitution, and each input line is
compared to word before any substitutions are done on this input line. Unless
a quoting 'V, '''', ", or ,., appears in word variable and command substitution
is performed on the intervening lines, allowing '\' to quote '$', 'V and "'. Com­
mands which are substituted have all blanks, tabs, and newlines preserved,
except for the final newline which is dropped. The resultant text is placed in
an anonymous temporary file which is given to the command as standard
input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not exist then it is
created; if the file exists, its is truncated, its previous contents being lost.

If the variable noclobber is set, then the file must not exist or be a character
special file (e.g. a terminal or '/dev Inull') or an error results. This helps
prevent accidental destruction of files. In this case the 'I' forms can be used
and suppress this check.

The forms involving '&' route the diagnostic output into the specified file as
well as the standard output. Name is expanded in the same way as '<' input
filenames are.

Icon International, Inc.

(C-

(

CSH(1)

» name
»& name
»! name
»&! name

USER COMMANDS CSH(1)

Uses file name as standard output like I>' but places output at the end of the
file. If the variable noclobber is set, then it is an error for the file not to exist
unless one of the 'I' forms is given. Otherwise similar to I>'.

A command receives the environment in which the shell was invoked as modified by
the input-output parameters and the presence of the command in a pipeline. Thus,
unlike some previous shells, commands run from a file of shell commands have no
access to the text of the commands by default; rather they receive the original stan­
dard input of the shell. The '«' mechanism should be used to present inline data.
This permits shell command scripts to function as components of pipelines and
allows the shell to block read its input. Note that the default standard input for a
command run detached is not modified to be the empty file' Idev Inull'; rather the
standard input remains as the original standard input of the shell. If this is a termi­
nal and if the process attempts to read from the terminal, then the process will
block and the user will be notified (see Jobs above).

Diagnostic output may be directed through a pipe with the standard output. Simply
use the form 'I &' rather than just 'I'.

Expressions

A number of the builtin commands (to be described subsequently) take expressions,
in which the operators are similar to those of 0, with the same precedence. These
expressions appear in the @, exit, if, and while commands. The following operators
are available:

()
" && II t & <= >= < > < < > > + - * I % ! -

Here the precedence increases to the right, '=' '!=' '= -, and '!-', '<=' '>=' '<' and
I>', '«' and I»~', '+' and '-', '*' 'I' and '%' being, in groups, at the same level.
The '====' '!=' '=-' and '!-' operators compare their arguments as strings; all others
operate on numbers. The operators '=-' and '!-' are like '!=' and '==' except t.hat
the right hand side is a pattern (containing, e.g. '*'s, '?'s and instances of '[...]')
against which the left hand operand is matched. This reduces the need for use of the
switch statement in shell scripts when all that is really needed is pattern matching.

Strings which begin with '0' are considered octal numbers. Null or missing argu­
ments are considered '0'. The result of all expressions are strings, which represent
decimal numbers. It is important to note that no two components of an expression
can appear in the same word; except when adjacent to components of expressions
which are syntactically significant to the parser ('&' 'I' '<' I>' '(' I)') they should be
surrounded by spaces.

Icon International, Inc. 11

CSH(l) USER COMMANDS CSH(1)

12

Also available in expressions as primitive operands are command executions enclosed
in '{' and I}' and file enquiries of the form '-I name' where I is one of:

r read aeeess
w write aecess
x execute access
e existenee
0 ownership
z zero size
f plain file
d directory

The specified name is command and filename expanded and then tested to see if it
has the specified relationship to the real user. If the file does not exist or is inacces­
sible then all enquiries return false, i.e. '0'. Command executions succeed, returning
true, i.e. '1', if the command exits with status 0, otherwise they fail, returning false,
i.e. '0'. If more detailed status information is required then the command should be
executed outside of an expression and the variable status examined.

Control flow

The shell contains a number of commands which can be used to regulate the Bow of
control in command files (shell scripts) and (in limited but useful ways) from terminal
input. These commands all operate by forcing the shell to reread or skip in its input
and, due to the implementation, restrict the placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the If
statement require that the major keywords appear in a single simple command on an
input line as shown below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being
read and performs seeks in this internal buffer to accomplish the rereading implied
by the loop. (To the extent that this allows, backward goto's will succeed on non­
seekable inputs.)

Builtin commands

Builtin commands are executed within the shell. If a builtin command occurs as any
component of a pipeline except the last then it is executed in a subshell.

alias
alias name

alias name wordlist
The first form prints all aliases. The second form prints the alias for name.
The final form assigns the specified wordlist as the alias of name; wordlist is
command and filename substituted. Name is not allowed to be alias or unalias.

Icon International, Inc.

\.

(

c

CSH(I)

alloc

bg

USER COMMANDS CSH(l)

Shows the amount of dynamic memory acquired, broken down into used and
free memory. With an argument shows the number of free and used blocks in
each size category. The categories start at size 8 and double at each step.
This command's output may vary across system types, since systems other
than the VAX may use a different memory allocator.

bg %job ...
Puts the current or specified jobs into the background, continuing them if they
were stopped.

break
Causes execution to resume after the end of the nearest enclosing foreach or
while. The remaining commands on the current line are executed. Multi-level
breaks are thus possible by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shell's working directory to directory name. If no argument is given
then change to the home directory of the user.
If name is not found as a subdirectory of the current directory (and does not
begin with 'I', './, or ' .. /,), then each component of the variable cdpath is
checked to see if it has a subdirectory name. Finally, if all else fails but name is
a shell variable whose value begins with 'I', then this is tried to see if it is a
directory.

continue
Continue execution of the nearest enclosing whiLe or foreach. The rest of the
commands on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after
all case labels.

dire
Prints the directory stack; the top of the stack is at the left, the first directory
in the stack being the current directory.

echo wordlist
echo -n word list

The specified words are written to the shells standard output, separated by
spaces, and terminated with a newline unless the -n option is specified.

else
end
endif
endsw

See the description of the foreach, if, switch, and while statements below.

Icon International, Inc. 13

CSH(1) USER COMMANDS CSH(1)

14

eval arg ...
(As in sh(l).) The arguments are read as input to the shell and the resulting
command(s) executed in the context of the current shell. This is usually used
to execute commands generated as the result of command or va.riable substitu­
tion, since pa.rsing occurs before these substitutions. See tset(l} for an example
of using eva/.

exec command
The specified command is executed in place of the current shell.

exit
exit(expr)

fg

The shell exits either with the value of the status variable (first form) or with
the value of the specified ezpr (second form).

fg %job ...
Brings the current or specified jobs into the foreground, continuing them if they
were stopped.

foreach name (wordlist)

end
The variable name is successively set to each member of wordlist and the
sequence of commands between this command and the matching end are exe­
cuted. (Both foreach and end must appear alone on separate lines.)

The builtin command continue may be used to continue the loop prematurely
and the builtin command break to terminate it prematurely. When this com­
mand is read from the terminal, the loop is read up once prompting with '?'
before any sta tements in the loop are executed. If you make a mistake typing
in a loop at the terminal you can rub it out.

glob wordlist
Like echo but no '\' escapes are recognized and words are delimited by null
characters in the output. Useful for programs which wish to use the shell to
filename expa.nd a list of words.

goto word
The specified word is filename and command expanded to yield a string of the
form 'label'. The shell rewinds its input as much as possible and searches for a
line of the form 'label:' possibly preceded by blanks or tabs. Execution contin­
ues after the specified line.

hashstat
Print a statistics line indicating how effective the internal hash table has been
at locating commands (and avoiding exec's). An exec is attempted for each
component of the path where the hash function indicates a possible hit, and in
each component which does not begin with a'/'o

history
history n
history -r n
history -h n

Displays the history event list; if n is given only the n most recent events are
printed. The -r option reverses the order of printout to be most recent first

Icon International, Inc.

(

(

CSH(1) USER COMMANDS CSH(1)

rather than oldest first. The -h option causes the history list to be printed
without leading numbers. This is used to produce files suitable for sourceing
using the -h option to source.

if (expr) command
If the specified expression evaluates true, then the single command with argu­
ments is executed. Variable substitution on command happens early, at the
same time it does for the rest of the iJ command. Oommand must be a simple
command, not a pipeline, a command list, or a parenthesized command list.
Input/output redirection occurs even if expr is false, when command is not exe­
cuted (this is a bug).

if (expr) then

else if (expr2) then

else

endif
If the specified expr is true then the commands to the first else are executed;
otherwise if exprf is true then the commands to the second else are executed,
etc. Any number of else-iJpairs are possible; only one endiJis needed. The else
part is likewise optional. (The words else and endiJ must appear at the begin­
ning of input lines; the iJmust appear alone on its input line or after an else.)

jobs
jobs -1

Lists the active jobs; given the -I options lists process id's in addition to the
normal information.

kill %job
kill -sig %job ...
kill pid
kill -sig pid ...
kill-I

limit

Sends either the TERM (terminate) signal or the specified signal to the
specified jobs or processes. Signals are either given by number or by names (as
given in /usr/include/signal.h) stripped of the prefix "SIG"). The signal names
are listed by "kill -1". There is no default, saying just 'kill' does not send a
signal to the current job. If the signal being sent is TERM (terminate) or HUP
(hangup), then the job or process will be sent a CONT (continue) signal as well.

limit resource
limit resource maximum-use
limit -h
limit -h resource
limit -h resource maximum-use

Limits the consumption by the current process and each process it creates to
not individually exceed maximum-use on the specified resource. If no
maximum-use is given, then the current limit is printed; if no resource is given,
then all limitations are given. If the -h flag is given, the hard limits are used
instead of the current limits. The hard limits impose a ceiling on the values of
the current limits. Only the super-user may raise the hard limits, but a user
may lower or raise the current limits within the legal range.

Icon International, Inc. 15

CSH(l) USER COMMANDS CSH(l)

16

login

Resources controllable currently include cputime (the maximum number of
cpu-seconds to be used by each process), jileBize (the largest single file which
can be created), dataBize (the maximum growth of the data+stack region via
8brk(2) beyond the end of the program text), 8tacksize (the maximum size of the
automatically-extended stack region), and coredumpsize (the size of the largest
core dump that will be created).

The maximum-use may be given as a (Boating point or integer) number fol­
lowed by a scale factor. For all limits other than cputime the default scale is
'k' or 'kilobytes' (1024 bytes); a scale factor of em' or 'megabytes' may also be
used. For cputime the default scaling is 'seconds', while em' for minutes or 'h'
for hours, or a time of the form 'mm:ss' giving minutes and seconds may be
used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

Terminate a login shell, replacing it wit.h an instance of /bin/login. This is
one way to log off, included for compatibility with sh(l).

logout
Terminate a login shell. Especially useful if ignoreeof is set.

nice
nice +number
nice command
nice +number command

The first form sets the scheduling priority for this shell to 4. The second form
sets the priority to the given number. The final two forms run command at
priority 4 and number respectively. The greater the number, the less cpu the
process will get. The super-user may specify negative priority by using 'nice
-number .. .'. Command is always executed in a sub-shell, and the restrictions
placed on commands in simple if statements apply.

nohup
nohup command

The first form can be used in shell scripts to cause hangups to be ignored for
the remainder of the script. The second form causes the specified command to
be run with hangups ignored. All processes detached with '&' are effectively
nohup'ed.

notify
notify %job .,.

Causes the shell to notify the user asynchronously when the status of the
current or specified jobs changes; normally notification is presented before a
prompt. This is automatic if the shell variable notify is set.

onintr

onintr -
onintr label

Control the action of the shell on interrupts. The first form restores the
default action of the shell on interrupts which is to terminate shell scripts or to
return to the terminal command input level. The second form 'onintr -' (' ,- ./'
causes all interrupts to be ignored. The final form causes the shell to execut.e a , ,

Icon International, Inc.

(

o

CSH(l) USER COM:MA.NDS CSH(1)

'goto label' when an interrupt is received or a child process terminates because
it was interrupted.

In any case, if the shell is running detached and interrupts are being ignored,
all forms of onintr have no meaning and interrupts continue to be ignored by
the shell and all invoked commands.

popd
popd +n

Pops the directory stack, returning to the new top directory. With an argu­
ment '+n' discards the nth entry in the stack. The elements of the directory
stack are numbered from 0 starting at the top.

pushd
pushd name
pushd +n

\Vith no arguments, pushd exchanges the top two elements of the directory
stack. Given a name argument, pushd changes to the new directory (ala cd)
and pushes the old current working directory (as in csw) onto the directory
stack. With a numeric argument, rotates the nth argument of the directory
stack around to be the top element and changes to it. The members of the
directory stack are numbered from the top starting at O.

rehash
Causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in the path while you are logged in. This should only be necessary if
you add commands to one of your own directories, or if a systems programmer
changes the contents of one of the system directories.

repeat count command

set

The specified command which is subject to the same restrictions as the com­
mand in the one line if statement above, is executed count times. I/O redirec­
tions occur exactly once, even if count is O.

set name
set name ==word
set name[index]=word
set name=(wordlist)

ThE' first form of the command shows the value of all shell variables. Variables
which have other than a single word as value print as a parenthesized word
list. The second form sets name to the null string. The third form sets name
to the single word. The fourth form sets the index'th component of name to
word; this component must already exist. The final form sets name to the list
of words in wordlist. In all cases the value is command and filename expandt'd.

These arguments may be repeated to set multiple values in a single set com­
mand. Note however, that variable expansion happens for all arguments
before any setting occurs.

setenv
setenv name
setenv name value

The first form lists all current environment variables. The last form sets the
value of environment variable name to be value, a single string. The second
form sets name to an empty string. The most commonly used environmt'nt

Icon International, Inc. 17

CSH(1) USER COMMANDS CSH(1)

18

shift

variable USER, TERM, and PATH are automatically imported to and
exported from the csh variables user, term, and path; there is no need to use
setenv for these.

shift variable
The members of Grgv are shifted to the left, discarding Grgv/lj. It is an error for
Grgv not to be set or to have less than one word as value. The Second form
performs the same function on the specified variable.

source name
source -h name

stop

The shell reads commands from nGme. Source commands may be nested; if they
are nested too deeply the shell may run out of file descriptors. An error in a
Bource at any level terminates all nested source commands. Normally input
during source commands is not placed on the history list; the -h option causes
the commands to be placed in the history list without being executed.

stop %job ...
Stops the current or specified job which is executing in the background.

suspend
Causes the shell to stop in its tracks, much as if it had been sent a stop signal
with "'Z. This is most often used to stop shells started by su(l).

switch (string)
case str1:

breaksw

default:

breaksw
endsw

time

Each case label is successively matched, against the specified string which is
first command and filename expanded. The file metacharacters '.', '1' and '[...]'
may be used in the case labels, which are variable expanded. If none of the
labels match before a 'default' label is found, then the execution begins after
the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels as
in C. If no label matches and there is no default, execution continues after the
endsw.

time command
With no argument, a summary of time used by this shell and its children is
printed. If arguments are given the specified simple command is timed and a
time summary as described under the time variable is printed. If necessary, an
extra shell is created to print the time statistic when the command completes.

umask
umask value

The file creation mask is displayed (first form) or st't to the specifit'd value
(second form). The mask is given in octal. Common values for the mask are (- .. \
002 giving all access to the group and read and execute access to otht'TS or 022 ~ /

Icon International, Inc.

(

CSH(I) USER COMMANDS CSH(I)

giving all access except no write access for users in the group or others.

unalias pattern
All aliases whose names match the specified pattern are discarded. Thus all
aliases are removed by 'unalias .'. It is not an error for nothing to be
unaliased.

unhash
Use of the internal hash table to speed location of executed programs is dis­
abled.

unlimit
unlimit resource
unlimit -h
unlimit -h resource

Removes the limitation on resource. If no resource is specified, then all
resource limitations are removed. If -h is given, the corresponding hard limits
are removed. Only the super-user may do this.

unset pattern
All variables whose names match the specified pattern are removed. Thus all
variables are removed by 'unset .'; this has noticeably distasteful side-effects.
It is not an error for nothing to be unset.

unsetenv pattern

wait

Removes all variables whose name match the specified pattern from the
environment. See also the setenv command above and printenv(l).

All background jobs are waited for. It the shell is interactive, then an inter­
rupt can disrupt the wait, at which time the shell prints names and job
numbers of all jobs known to be outstanding.

while (expr)

end

%job

'While the specified expression evaluates non-zero, the commands between the
while and the matching end are evaluated. Break and continue may be used to
terminate or continue the loop prematurely. (The while and end must appear
alone on their input lines.) Prompting occurs here the first time through the
loop as for the foreach statement if the input is a terminal. '

Brings the specified job into the foreground.

%job &;
Continues the specified job in the background.

@
@name = expr
@ name [index] = expr

The first form prints the values of all the shell variables. The second form sets
the specified name to the value of expr. If the expression contains '<', I>', '&'
or 'I' then at least this part of the expression must be placed within '(' T. The
third form assigns the value of expr to the index'th argument of name. Both
name and its index'th component must already exist.

The operators '*=', '+=', etc are available as in C. The space separating the
name from the assignment operator is optional. Spaces are, however,

Icon International, Inc. 19

CSH(l) USER COMMANDS CSH(l)

20

mandatory in separating components of ezpr which would otherwise be single
words.

Special postfix '++' and '--' operators increment and decrement name respec­
tively, i.e. '@ i++'.

Pre-defined and environment variables

The following variables have special meaning to the shell. Of these, arg", cwd, home,
path, prompt, shell and statu8 are always set by the shell. Except for cwd and status
this setting occurs only at initialization; these variables will not then be modified
unless this is done explicitly by the user.

This shell copies the environment variable USER into the variable user, TERM into
term, and HOME into home, and copies these back into the environment whenever
the normal shell variables are reset. The environment variable PATH is likewise
handled; it is not necessary to worry about its setting other than in the file .cshrc as
inferior csh processes will import the definition of path from the environment, and
re-export it if you then change it.

argv Set to the arguments to the shell, it is from this variable that posi­
tional parameters are substituted, i.e. '$1' is replaced by '$argv[1]',
etc.

cdpath

cwd

echo

filec

histchars

history

home

ignoreeof

mail

Gives a list of alternate directories searched to find subdirectories
in chdir commands.

The full pathname of the current directory.

Set when the -x command line option is given. Causes each com­
mand and its arguments to be echoed just before it is executed. For
non-builtin commands all expansions occur before echoing. Builtin
commands are echoed before command and filename substitution,
since t.hese substitutions are then done selectively.

Enable file name completion.

Can be given a string value to change the characters used in history
substitution. The first character of its value is used as the history
substitution character, replacing the default character !. The
second character of its value replaces the character t in quick su b­
stitutions.

Can be given a numeric value to control the size of the history list.
Any command which has been referenced in this many events will
not be discarded. Too large values of history may run the shell out
of memory. The last executed command is always saved on the his­
tory list.

The home directory of the invoker, initialized from the environ­
ment. The filename expansion of ,-, refers to this variable.

If set the shell ignores end-of-file from input devices which are ter­
minals. This prevents shells from accidentally being killed by
control-D's.

The files where the shell checks for mail. This is done after each
command completion which will result in a prompt, if a specified

Icon International, Inc.

(,

(

o

CSH(l)

noclobber

noglob

nonomatch

notify

path

prompt

savehist

shell

USER CO:MMANDS CSH(1)

interval has elapsed. TJle shell says 'You ha.ve new mail.' if the file
exists with an aceess time not ~a~r than its modify time.

If the first word of the value of mail is numeric it specifies a
dift'erent mail checking interval, in seconds, than the default, which
is 10 minutes.

H multiple mail files are specified, then tM shell says 'New mail in
ftGme'WheD the~ is mail in the file aame.

As described in the .section on hlputloutput, restrictions are placed
on output redirection to insure that files are not accidentally des­
troyed, and that '> >' redirections refer to existing files.

If set, filename e.,aaaicms ~b~. This is most useful in shell
scripts which are not dealing with filenames, or after a list of
filenames has been obtained and further expansions are not desir­
able.

If set, it is not an error for a filename expa.nsion to not match any
existing files; nther the primitive patt.ern is returned. It is still an
error for the primitive pattern to be IDJLlformed, i.e. 'echo [' still
gives an error.

If set, the shell notifies asynchronously of job completions. The
defa.ult is to rather present job completions just before printing a
prompt.

Each word of the path variable specifies a directory in which com­
ma.nds 1l.Te to be sought for execution. A null word specifies the
'Current directory. If there is no path variable then only full path
names will execute. The usual search path is '.', 'Ibin' and
'/usr/bin', but this may vary from system to system. For the
super-user the default search path is '/etc', '/bin' and 'Iusr Ibin'. A
shell which is given neither the -c nor the -t option will normally
hash the contents of the directories in the path variable after read­
ing .cshrc, and each time the path variable is reset. If new com­
mands are added to these directories while the shell is active, it
may be necessary to .give the rehash or the commands may not be
fouDd.

The string which is printed before each command is read from an
interactive termiDal input. If a I!' appears in the string it will be
replaced by the current event Dumber unless a preceding '\' is given.
Defa.ult is '% " or '# ' lor the super-user.

is given a numeric value to control the number of entries of the his­
tory list that a.re saved in - /.history when the user logs out. Any
command which has been referenced in this many events will be
saved. During sta.rt up the shell sources -I.history into the history
list enabling history to be saved across logins. Too large values of
8avehist will slow down the shell during start up.

The file in which the shell resides. This is used in forking shells to
interpret files which have execute bits set, but which are not execut­
able by the system. (See th~ description of Non-builtin Command
Execution below.) Initialized to the (system-dependent) home of the
shell.

Icon International, Inc. 21

CSH(l)

status

time

verbose

USER COMMANDS CSH(l)

The status returned by the last command. If it terminated abnor­
mally, then 0200 is added to the status. Builtin commands which
fail return exit status '1', all other builtin commands set status '0'.

Controls automatic timing of commands. If set, then any command
which takes more than this many cpu seconds will cause a line giv­
ing user, system, and real times and a utilization percentage which
is the ratio of user plus system times to real time to be printed
when it terminates.

Set by the -v command line option, causes the words of each com­
mand to be printed after history substitution.

Non-builtin command execution

When a command to be executed is found to not be a builtin command the shell
attempts to execute the command via execve(2}. Each word in the variable path
names a directory from which the shell will attempt to eXE'cute the command. If it is
given neither a -c nor a -t option, the shell will hash the names in these directories
into an internal table so that it will only try an exec in a directory if there is a possi­
bility that the command resides there. This greatly speeds command location when
a large number of directories are present in the search path. If this mechanism has
been turned off (via utlhash), or if the shell was given a -c or -t argument, and in
any case for each directory component of path which does not begin with a 'I', the
shell concatenates with the given command name to form a path name of a file
which it then attempts to execute.

Parenthesized commands are always executed in a subshell. Thus '(cd; pwd) ; pwd'
prints the home directory; leaving you where you were (printing this after the home
directory), while 'cd; pwd' leaves you in the home directory. Parenthesized com­
mands are most often used to prevent chdir from affecting the current shell.

If t.he file has execute permissions but is not an executable binary to the system, then
it is assumed to be a file containing shell commands and a new shell is spawned to
read it.

If there is an alias for shell then the words of the alias will be prepended to the argu­
ment list to form the shell command. The first word of the alias should be the full
path name of the shell (e.g. '$shell'). Note that this is a special, late occurring, case
of alias substitution, and only allows words to be prepended to the argument list
without modification.

Argument list processing

If argument 0 to the shell is '-' then this is a login shell. The flag arguments are
interpreted as follows: (ff- "

~j

22 Icon International, Inc.

(

CSH(I) USER CO:MMANDS CSH(I)

-b This flag forces a "break" from option processing, causing any further shell
arguments to be treated as non-option arguments. The remaining arguments
will not be interpreted as shell options. This may be used to pass options to a
shell script without confusion or possible subterfuge. The shell will not run a
set-user ID script without this option.

-c Commands are read from the (single) following argument which must be
present. Any remaining arguments are placed in crg".

-e The shell exits if any invoked command terminates abnormally or yields a
non-zero exit status.

-f The shell will start faster, because it will neither search for nor execute com­
mands from the file '.cshrc' in the invoker's home directory.

-i The shell is interactive and prompts for its top-level input, even if it appears to
not be a terminal. Shells are interactive without this option if their inputs and
outputs are terminals.

-n

-8

-t

-v

-x

-v
-x

Commands are parsed, but not executed. This aids in syntactic checking of
shell scripts.

Command input is taken from the standard input.

A single line of input is read and executed. A '\' may be used to escape the
newline at the end of this line and continue onto another line.

Causes the verbose variable to be set, with the effect that command input is
echoed after history substitution.

Causes the echo variable to be set, so that commands are echoed immediately
before execution.

Causes the verbose variable to be set even before '.cshrc' is executed.

Is to -x as -V is to -v.

After processing of flag arguments, if arguments remain but none of the -c, -i, -8,

or -t options was given, the first argument is taken as the name of a file of com­
mands to be executed. The shell opens this file, and saves its na.me for possible
resubstitution by '$0'. Since many systems use either the standard version 6 or ver­
sion 7 . shells whose shell scripts are not compatible with this shell, the shell will exe­
cute such a 'standard' shell if the first character of a script is not a '#', i.e. if the
script does not start with a comment. Remaining arguments initialize the variable
argt'.

Signal handling

The shell normally ignores quit signals. Jobs running detached (either by '&' or the
bg or % ... & commands) are immune to signals generated from the keyboard, includ­
ing hangups. Other signals have the values which the shell inherited from its parent.
The shells handling of interrupts and terminate signals in shell scripts can be
controlled by onintr. Login shells catch the terminate signal; otherwise this signal is
passed on to children from the state in the shell's parent. In no case are interrupts
allowed when a login shell is reading the file '.logout'.

Icon International, Inc. 23

CSH(l) USER COMMANDS CSH(l)

AUTHOR

FILES

William Joy. Job control and directory stack features first implemented by J.E.
Kulp of I.I.A.S.A, Laxenburg, Austria, with different syntax than that used now. File
name completion code written by Ken Greer, HP Labs.

- /.cshrc
- /.login
- /.logout
/bin/sh
/tmp/sh*
/etc/passwd

Read at beginning of execution by each shell.
Read by login shell, after '.cshrc' at login.
Read by login shell, at logout.
Standard shell, for shell scripts not starting with a '#'.
Temporary file for '«'.
Source of home directories for '-name'.

LIMITATIONS

Words can be no longer than 1024 characters. The system limits argument lists to
10240 characters. The number of arguments to a command which involves filename
expansion is limited to 1/6'th the number of characters allowed in an argument list.
Command substitutions may substitute no more characters than are allowed in an
argument list. To detect looping, the shell restricts the number of alias substitutions
on a single line to 20.

To use the job control features on ICON/UA'V you must set the swtch character, see
sttY{l).

SEE ALSO

BUGS

24

'An introduction to the C shell' in the ICON/UXV User Guide.

When a command is restarted from a stop, the shell prints the directory it started in
if this is different from the current directory; this can be misleading (i.e. wrong) as
the job may have changed directories internally.

Shell builtin functions are not stoppable/restartable. Command sequences of the
form 'a ; b j c' are also not handled gracefully when stopping is attempted. If you
suspend 'b', the shell will then immediately execute 'c'. This is especially noticeable
if this expansion results from an alias. It suffices to place the sequence of commands
in O's to force it to a subshell, i.e. '(a j b ; c)'.

Control oyer tty output after processes are started is primitive; perhaps this will
inspire someone to work on a good virtual terminal interface. In a virtual terminal
interface much more interesting things could be done with output control.

Icon International, In('.

(

\.. J'

(

(

CSH(1) USER COMMANDS CSH (1)

Alias substitution is most often used to clumsily simulate shell procedures; shell pro­
cedures should be provided rather than aliases.

Commands within loops, prompted for by '1', are not placed in the history list. Con­
trol structure should be parsed rather than being recognized as built-in commands.
This would allow control commands to be placed a.nywhere, to be combined with 'I',
and to be used with '&' and I;' metasyntax.

It should be possible to use the I:' modifiers on the output of command substitutions.
All and more than one I:' modifier should be allowed on '$' substitutions.

The way the filec facility is implemented is ugly and expensive.

Icon International, Inc. 25

(

(

c'

CSPLIT(1) USER COMMANDS CSPLIT(1)

NAME

cspUt - context split

SYNOPSIS

capUt [~] [-k] [-f prefix] file argl [0 0 0 argn]

DESCRIPTION

Csplit reads file and separates it into n+l sections, defined by the arguments arglo 0 0

argn. By default the sections are placed in xxOO 0 0 0 xxn (n may not be greater
than 99). These sections get the following pieces of file:

00: From the start of file up to (but not including) the line referenced by
argl.

01: From the line referenced by argl up to the line referenced by argf.

n+l: From the line referenced by argn to the end of file.

If the fiLe argument is a - then standard input is used.

The options to esp/it are:

~ Csplit normally prints the character counts for each file created. If
the ~ option is present, esp/it suppresses the printing of all charac­
ter counts.

-k Csp/it normally removes created files if an error occurs. If the -k
option is present, csplit leaves previously created files intact.

-f prefix If the -f option is used, the created files are named prefixOO •••
prefixll. The default is xxOO • •• xxn.

The arguments (argl 0.. argn) to csplit can be a combination of the following:

/rexp/

%rexp%

A file is to be created for the section from the current line up to (but
not including) the line containing the regular expression rexp. The
current line becomes the line containing rexp. This argument may be
followed by an optional + or - some number of lines (e.g.,
/page/-5).

This argument is the same as /rexp/, except that no file is created
for the section.

Icon International, Inc. 1

CSPLIT(l) USER CO:MMANDS CSPLIT(l)

lnno A file is to be created from the current line up to (but not including)
lnno. The current line becomes Inno.

{num} Repeat argument. This argument may follow any of the above argu­
ments. If it follows a rezp type argument, that argument is applied
num more times. If it follows Inno, the file will be split every Inno
lines (num times) from that point.

Enclose all rezp type arguments that contain blanks or other characters meaningful
to the shell in the appropriate quotes. Regular expressions may not contain embed­
ded new-lines. Osplit does not affect the original file; it is the users responsibility to
remove it.

EXAMPLES

csplit -f cobol file ' /procedure division/' /par5./ /parI6./

This example creates four files, cobolOO ••• cobol03. After editing the "split" files,
they can be recombined as follows:

cat coboI0!0-3] > file

Note that this example overwrites the original file.

csplit -k file 100 {99}

This example would split the file at every 100 lines, up to 10,000 lines. The -k
option causes the created files to be retained if there are less than 10,000 lines; how­
ever, an error message would still be printed.

csplit -k prog.c '%main(%' 't}/+l' {20}

Assuming that prog.c follows the normal C coding convention of ending routines
with a } at the beginning of the line, this example will create a file containing each
separate C routine (up to 21) in prog.c.

SEE ALSO

ed(l), sh(l).
regexp(5) in the ICON/UXY Programmer Reference Manual.

2 Icon International, Inc.

C':

CSPLIT(l) USER COMMANDS CSPLIT(l)

DIAGNOSTICS

Self-explanatory except for:

arg - out of range

which means that the given argument did not reference a line between the current
position and the end of the file.

Icon International, Inc. 3

c

CTRACE(l) USERCO~S CTRACE(l)

ctrace - C program debugger

SYNOPSIS

ctrace [options 1 [file 1

.DE SCRIP TION

etrace allows you to follow the execution of a C program, statement-by-statement.
The effect is similar to executing a shell procedure with the -x option. etrace reads
the C program in file (or from standard input if you do not specify file), inserts state­
ments to print the text of each executable statement and the values of all variables
referenced or modified, and writes the modified program to the standard output.
You must put the output of ctrace into a temporary file because the cc(l} command
does not allow the use of a pipe. You then compile and execute this file. As each
statement in the program executes it will be listed at the terminal, followed by the
name and value of any variables referenced or modified in the statement, followed by
any output from the statement. Loops in the trace output are detected and tracing
is stopped until the loop is exited or a different sequence of statements within the
loop is executed. A warning message is printed every 1000 times through the loop to
help you detect infinite loops. The trace output goes to the standard output so you
can put it into a file for examination with an editor or the bfs(l} or tail(l) com­
mands. The only options you will commonly use are:
-f functions Trace only these functions.
-v functions Trace all but these functions. You may want to add to the default

-0

-x
-u
-e
-In

-t n

-p

-b

formats for printing variables. Long and pointer variables are
always printed as signed integers. Pointers to character arrays are
also printed as strings if appropriate. Char, short, and int variables
are also printed as signed integers and, if appropriate, as characters.
Double variables are printed as floating point numbers in scientific
notation. You can request that variables be printed in additional
formats, if appropriate, with these options:

Octal
Hexadecimal
Unsigned
Floating point These options are used only in special circumstances:
Check n consecutively executed statements for looping trace output, instead
of the default of 20. Use 0 to get all the trace output from loops.
Suppress redundant trace output from simple assignment statements and
string copy function calls. This option can hide a bug caused by use of the =
operator in place of the = operator.
Trace n variables per statement instead of the default of 10 (the maximum
number is 20). The Diagnostics section explains when to use this option.
Run the C preprocessor on the input before tracing it. You can also use the
-D, -I, and -U cc(l} preprocessor options. These options are used to tailor
the run-time trace package when the traced program will run in a non-UNIX
svstem environment:
Use only basic functions in the trace code, that is, those in ctype(3C),

Icon International, Inc. 1

CTRACE(l) USER COMMANDS CTRACE(l)

("
printj(3S), and string(3C). These are usually available even in cross- \",--~j
compilers for microprocessors. In particular, this option is needed when the
traced program runs under an operating system that does not have signal(2),
fflush(3S), longjmp(3C), or setjmp(3C).

-p 's' Change the trace print function from the default of 'printf('. For example,
'fprintf(stderr,' would send the trace to the standard error output.

-r f Use file / in place of the runtime.c trace function package. This lets you
change the entire print function, instead of just the name and leading argu­
ments (see the -p option).

EXAMPLE

2

If the file Ic.c contains this C program:
1 #include <stdio.h>
2 mainO /* count lines in input */
3 {
4 int c, nl;
5
6 nl = 0;
7 while « c = getchar()) != EOF)
8 if (c = '\n')
9 ++nl; 10 printf("%d\n", nl); 11 } and you enter these com-

mands and test data: cc lc.c a.out 1 (cntl-d), the program will be compiled and exe­
cuted. The output of the program will be the number 2, which is not correct
because there is only one line in the test data. The error in this program is common,
but subtle. If you invoke ctrace with these commands: ctrace lc.c >temp.c cc
temp.c a.out the output will be:
2 mainO
6 nl = 0;

/* nl = 0 */
7 while «c = getchar()) != EOF) The program is now waiting for input. If you

enter the same test data as before, the output will be:
/* c =49 or '1' */

8 if (c = '\n')
/* c == 10 or '\n' */

9 ++nl;
/* nl = 1 */

7 while « c = getchar()) != EOF)
/* c = 10 or '\n' */

8 if(c = '\n')
/* c == 10 or '\0' */

9 ++nl;
/* nl =2 */

7 while « c = getchar()) != EOF) If you now enter an eod of file character
(cntl-d) the final output will be:

/* c -1 */ 10 printf("%d\n", nl);
/* nl -- 2 */2 return

Note that the program output printed at the end of the trace line for the nl vari-
able. Also note the return comment added by ctrace at the end of the trace output. r\
This shows the implicit return at the terminating brace in the function. The trace ~j

Icon International, Inc.

(

C,
/

CTRACE(l) USER COMMANDS CTRACE(l)

output shows that variable c is assigned the value '1' in line 7, but in line 8 it has
the value '\n'. Once your attention is drawn to this if statement, you will probably
realize that you used the assignment operator (=) in place of the equal operator
(==). You can easily miss this error during code reading.

EXECUTION-TIME TRACE CONTROL

The default operation for ctrace is to trace the entire program file, unless you use
the -f or -v options to trace specific functions. This does not give you statement-by­
statement control of the tracing, nor does it let you turn the tracing off and on when
executing the traced program. You can do both of these by adding ctroff() and
ctronO function calls to your program to turn the tracing off and on, respectively, at
execution time. Thus, you can code arbitrarily complex criteria for trace control
with if statements, and you can even conditionally include this code because ctrace
defines the CTRACE preprocessor variable. For example:

#ifdef CTRACE

#endif

if (c == 'I' && i > 1000)
ctronO;

You can also call these functions from sdb(I) if you compile with the -g option. For
example, to trace all but lines 7 to 10 in the main function, enter:

sdb a.out
main:7b ctroffO
main:l1b ctronO
r

You can also turn the trace off and on by setting static variable tr_ct_ to 0 and 1,
respectively. This is useful if you are using a debugger that cannot call these func­
tions directly, such as adb(l).

DIAGNOSTICS

This section contains diagnostic messages from both efrace and cc(I), since the
traced code often gets some cc warning messages. You can get cc error messages in
some rare cases, all of which can be avoided.

Ctrace Diagnostics
warning: some variables are not traced in this statement

Only 10 variables are traced in a statement to prevent the C compiler "out
of tree space; simplify expression" error. Use the -t option to increase this
number.

warning: statement too long to trace

This statement is over 400 characters long. :Make sure that you are USlllg

Icon International, Inc. 3

CTRACE(l) USER COMMANDS CTRACE(l)

4

tabs to indent your code, not spaces.

cannot handle preprocessor code, use -P option

This is usually caused by #ifdef/#endif preprocessor statements in the mid­
dle of a C statement, or by a semicolon at the end of a #define preprocessor
statement.

'if... else if' sequence too long

. Split the sequence by removing an else from the middle.

possible syntax error, try -P option

Use the -P option to preprocess the ctraee input, along with any appropriate
-D, -I, and -U preprocessor options. If you still get the error messa.ge, check
the Warnings section below.

Cc Diagnostics
warning: floating point not implemented
warning: illegal combination of pointer and integer
warning: statement not reached
warning: sizeof returns 0

Ignore these messa.ges.

compiler takes size of function

See the ctrace "possible syntax error" message above.

yaec stack overflow

See the ctrace "'if ... else if' sequence too long" message above.

out of tree space; simplify expression

Use the -t option to reduce the number of traced variables per statement
from the default of 10. Ignore the "ctrace: too many variables to trace"
warnings you will now get.

redeclaration of signal

Either correct this declaration of signal(2), or remove it and #include
<signal.h>.

unimplemented structure assignment

This is caused by a bug in the C compiler for the PDP-ll. Use pcc(l)
instead of ce(l).

offset xxxx in control section ...

Icon International, Inc.

(

(

CTRACE(l) USER COMMANDS CTRACE(l)

This is caused by a problem in the current UNIX/370 C compiler. Use the
cc(l) -b2,2 option.

expression causes compiler loop: try simplifying

This is caused by a bug in the UNIX/370 C compiler. Unfortunately, the
only way to avoid it is to use the ctrace -v option to not trace the function
containing this line.

WARNINGS

BUGS

FILES

You will get a ctrace syntax error if you omit the semicolon at the end of the last
element declaration in a structure or union, just before the right brace (}). This is
optional in some C compilers. Defining a function with the same name as a system
function may cause a syntax error if the number of arguments is changed. Just use
a different name. Ctrace assumes that BADMAG is a preprocessor macro, and that
EOF and NULL are #defined constants. Declaring any of these to be variables, e.g.,
"int EOF;", will cause a syntax error.

Ctrace does not know about the components of aggregates like structures, unions,
and arrays. It cannot choose a format to print all the components of an aggregate
when an assignment is made to the entire aggregate. Ctrace may choose to print
the address of an aggregate or use the wrong format (e.g., %e for a structure with
two integer members) when printing the value of an aggregate. Pointer values are
always treated as pointers to character strings. The loop trace output elimination is
done separately for each file of a multi-file program. This can result in functions
called from a loop still being traced, or the elimination of trace output from one
function in a file until another in the same file is called.

runtime.c run-time trace package

SEE ALSO

signal(2), ctype(3C), ffiush(3S), longjmp(3C), printf(3S), setjmp(3C), string(3C) in the
ICON/UXV Programmer Reference Manual.

Icon International, Inc. 5

,;(­

\(_/

(

CUT(I) USER COMMANDS CUT (1)

NAME

cut - cut out selected fields of each line of a file

SYNOPSIS

cut -clist [filet file2 ... J
cut -flist [-dchar J [--sJ [filet file2 ... J

DESCRIPTION

Use cut to cut out columns from a table or fields from each line of a file; in data base
parlance, it implements the projection of a relation. The fields as specified by list
can be fixed length, i.e., character positions as on a punched card (-c option) or t.he
length can vary from line to line and be marked with a field delimiter character like
tab (-f option). Cut can be used as a filter; if no files are given, the standard input
is used.

The meanings of the options are:

list A comma-separated list of integer field numbers (in increasing order), with
optional - to indicate ranges as in the -0 option of nroff/troff for page
ranges; e.g., 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3- (short for third
through last field).

-clist The list following -c (no space) specifies character posit.ions (e.g., -c1-72
would pass the first 72 characters of each line).

-t lis t The list following -f is a list of fields assumed to be separated in the file by
a delimiter character (see -d); e.g., -fl,7 copies the first and seventh field
only. Lines with no field delimiters will be passed through intact (useful for
table subheadings), unless --s is specified.

-dchar The character following -d is the field delimiter (-f option only). Default
is tab. Space or other characters with special meaning t.o the shell must be
quoted. .

Suppresses lines with no delimiter characters in case of -f option. Unless
specified, lines with no delimiters will be passed through untouched.

Either the -c or -f option must be specified.

HINTS

Use grep(t) to make horizontal "cuts" (by context) through a file, or paste(t) to put
files t.ogether column-wise (Le., horizontally). To reorder columns in a table, use cut
and paste.

Icon International, Inc. 1

CUT(I) USER COMMANDS CUT (1)

EXAMPLES

cut -d: -fl,5 /etc/passwd mapping of user IDs to names

name==' who am i I cut -fl -d" ",
to set Dame to current login name.

DIAGNOSTICS

line too long A line can have no more than 1023 characters or fields.

bad list lor c / I option
Missing -c or -t option or incorrectly specified list. No error
occurs if a line has fewer fields than the list calls for.

no fields The list is empty.

SEE ALSO

grep(l), paste(l).

2 Icon International, Inc.

(-

(

Ci

CXREF{ 1) USER COMMANDS CXREF{l)

NAME

cxref - generate C program cross-reference

SYNOPSIS

exref [options 1 files

DESCRIPTION

Fll..ES

Cxref analyzes a collection of C files and attempts to build a cross-reference table.
Cxref utilizes a special version of epp to include #define'd information in its symbol
table. It produces a listing on standard output of all symbols (auto, static, and glo­
bal) in each file separately, or with the -e option, in combination. Each symbol con­
tains an asterisk (*) before the declaring reference.

In addition to the -D, -I and -U options (which are identical to their interpreta­
tion by ee(l)), the following options are interpreted by exref:

-e Print a combined cross-reference of all input files.

-w<num>
\Vidth option which formats output no wider than <num> (decimal)
columns. This option will default to 80 if <num> is not specified or is less
than 51.

-0 file Direct output to named file.

-s Operate silently; does not print input file names.

-t Format listing for 80-column width.

/usr /lib/xcpp special version of C-preprocessor.

SEE ALSO

cc(I).

DIAGNOSTICS

Error messages are unusually cryptic, but usually mean that you cannot compile
these files, anyway.

Icon International, Inc. 1

CXREF(l) USER COM:MANDS CXREF(l)

BUGS

2

CzreJ considers a formal argument in a #define macro definition to be a declaration
of that symbol. For example, a program that #includes ctype.h, will contain many
declarations of the variable c.

Icon International, Inc.

('
\)
""-.'

(

(-.)

(

C\
/'

DATE(l) USER COMMANDS DATE(1)

NAME

date - print and set the date

MoNt"
SYNOPSIS '0'1\'\

~ '" da.te [mmddhhmm[yy]] [+format]

DESCRIPTION

If no argument is given, or if the argument begins with +, the current date and time
are printed. Otherwise, the current date is set. The first mm is the month number;
dd is the day number in the month; hh is the hour number (24 hour system); the
second mm is the minute number; yy is the last 2 digits of the year number and is
optional. For example:

date 10080045

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is men­
tioned. The system operates in GMT. Date takes care of the conversion to and from
local standard and daylight time.

If the argument begins with +, the output of date is under the control of the user.
The format for the output is similar to that of the first argument to printJ(3S). All
out.put fields are of fixed size (zero padded if necessary). Each field descriptor is pre­
ceded by % and will be replaced in the output by its corresponding value. A single
% is encoded by %%. All other characters are copied to the output without
change. The string is always terminated with a new-line character.

Field Descriptors:

n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday = 0
a. abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/pM notation

Icon International, Inc. 1

DATE(l) USER COMMANDS

EXAMPLE

date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'

would have generated as output:

DATE: 08/01/76
TIME: 14:45:05

DIAGNOSTICS

DATE(l)

No permission if you are not the super-user and you try to change the date;
bad conversion if the date set is syntactically incorrect;
bad format character if the field descriptor is not recognizable.

FILES

/dev/kmem

SEE ALSO

printf(3S) in the ICON/UXV Programmer Reference Manual.

WARNING

It is a bad practice to change the date while the system is running multi-user.

2 Icon International, Inc.

(

c

DC(l) USER COMMANDS DC(1)

NAME

dc - desk calculator

SYNOPSIS

de [file]

. DESCRIPTION

De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of fractional
digits to be maintained. (See bc(l), a preprocessor for de that provides infix notation
and a C-like syntax that implements functions. Be also provides reasonable control
structures for programs.) The overall structure of de is a stacking (reverse Polish)
calculator. If an argument is given, input is taken from that file until its end, then
from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore (_) to input a
negative number. Numbers may contain decimal points.

+_/*%A
The top two values on the stack are added (+), subtracted (-), multiplied (*),
divided (f), remaindered (%), or exponentiated (A). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

ax The top of the stack is popped and stored into a register named x, where x
may be any character. If the 8 is capitalized, x is treated as a stack and the
value is pushed on it.

Ix The value in register x is pushed on the stack. The register x is not altered.
All registers start with zero value. If the 1 is capitalized, register x is treated
as a stack and its top value is popped onto the main stack.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value remains unchanged. P
interprets the top of the stack as an ASCII string, removes it, and prints it.

f All values on the stack are printed.

q exits the program. If executing a string, the recursion level is popped by two.
If q is capitalized, the top value on the stack is popped and the string execu­
tion level is popped by that value.

x treats the top element of the stack as a character string and executes it as a
string of de commands.

X replaces the number on the top of the stack with its scale factor.

[••.] puts the bracketed ASCII string onto the top of the stack.

Icon International, Inc. 1

DC(!) USER COMMANDS DC(l)

~.,,\

<z >z =z ~)
The top two elements of the stack are popped and compared. Register z is
evaluated if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing frac­
tional part of the argument is taken into account, but otherwise the scale fac-
tor is ignored. .

interprets the rest of the line as a UNIX sYstem command.

c All values on the stack are popped.

i The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.

o The top value on the stack is popped a.nd used as the number radix for
further output.

o pushes the output base on the top of the stack.

k the top of the stack is popped, and that value is used as a non-negative scale
factor: the appropriate number of places are printed on output, and main­
tained during multiplication, division, and exponentiation. The interaction of
scale factor, input base, and output base will be reasonable if all are changed
together.

z The stack level is pushed onto the stack.

z replaces the number on the top of the stack with its length.

Y A line of input is taken from the input source (usually the terminal) and exe­
cuted.

. . , . are used by be for array operations .

EXAMPLE

This example prints the first ten values of nl:

SEE ALSO

bc(l).

Iial +<!sa*plaIO>y Jsy
Osal
lyx

DIAGNOSTICS

:r is unimplemented
where z is an octal number.

stack empty
for not enough elements on the stack to do what was asked.

2 Icon International, Inc.

~ ..

~I

DC(l) USER COMMANDS DC(l)

(
Out oj space

when the free list is exhausted (too many digits).
Out oj headers

for too many numbers being kept around.

Out oj pushdown
for too many items on the stack.

Nesting Depth
for too many levels of nested execution.

(

Icon International, Inc. 3

DD(l) USER COMMANDS DD(l)

NAME

dd - convert and copy a file

SYNOPSIS

dd [option=value J ...

DESCRIPTION

Dd copies the specified input file to the specified output with possible conversions.
The standard input and output are used by default. The input and output block size
may be specified to take advantage of raw physical I/O.

values
input file name; standard input is default
output file name; standard output is default
input block size 11 bytes (default 512)
output block size (default 512)

opt£on
if file
of file
ibs=n
obs=n
bs=n set both input and output block size, superseding ibs and obs; also, if

no conversion is specified, it is particularly efficient since no in-core
copy need be done

cbs=71 conversion buffer size
skip=n skip n input blocks before starting copy
seek=n seek n blocks from beginning of output file before copying
count=n copy only 71 input blocks
conv=ascii convert EBCDIC to ASCII

ebcdic conyert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC
lease map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad eYer)' input block to ibs
••• , .•• several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k,
b, or w to specify multiplication by 1024, 512, or 2, respectively; a pair of numbers
may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs
characters are placed into the conversion buffer, converted to ASCII, and trailing
blanks trimmed and new-line added before sending the line to the output. In the
latter case ASCII characters are read into the conversion buffer, conyerted to
EBCDIC, and blanks added to make up an output block of size cbs.

Icon International, Inc. 1

DD(l) USER COMMANDS DD(l)

After completion, dd reports the number of whole and partial input and output
blocks.

EXAMPLE

This command will read an EBCDIC tape blocked ten 80-byte EBCDIC card images
per block into the ASCII file x:

dd if=/dev /rmt/Om of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to I/O on the raw physical
devices because it allows reading and writing in arbitrary block sizes.

SEE ALSO

cp(l).

DIAGNOSTICS

BUGS

2

f+p blocks in(ouf) numbers of full and part.ial blocks read(written)

The ASCII/EBCDIC conversion tables are taken from the 256-character standard in
the CACM Nov, 1968. The ibm conversion, while less blessed as a standard,
corresponds better to certain IBM print train conventions. There is no universal
solution.

New-lines are inserted only on conversion to ASCII; padding is done only on conver­
sion to EBCDIC. These should be separate options.

Icon International, Inc.

C"-',, "~

" ,/

DELTA(l) USER COM:MANDS DELTA(l)

(NAME

(

c:'

delta - make a delta (change) to an sees file

SYNOPSIS

delta files

. DESCRIPTION

Delta is used to permanently introduce into the named file changes that were made
to the file retrieved by get{l) (called the g-file, or generated file).

Delta makes a delta to each named file. If a directory is named, delta behaves as
though each file in the directory were specified as a named file, except that non- files
(last component of the path name does not begin with s.) and unreadable files are
silently ignored. If a name of - is given, the standard input is read (see); each line
of the standard input is taken to be the name of an file to be processed.

Delta may issue prompts on the standard output depending upon certain key letters
specified and flags (see admin(l)) that may be present in the file (see -m and -y
keyletters below).

Keyletter arguments apply independently to each named file. identifies which delta
is to be made to the file. The use of this keyletter is necessary only if two or more
outstanding gets for editing (get -e) on the same file were done by the same person
(login name). The value specified with the -r keyletter can be either the specified
on the get command line or the to be made as reported by the get command (see
get(l)). A diagnostic results if the specified is ambiguous, or, if necessary and omit­
ted on the command line. the issue, on the standard output, of the created delta's,
as well as the number of lines inserted, deleted and unchanged in the
file. g-file (normally removed at completion of delta processing). a list (see get(l)

for the definition of list) of deltas which are to be ignored when the file is accessed at
the cha.nge level 0 created by this delta. the file has the v flag set (see admin(l))
then a Modification Request 0 number must be supplied as the reason for creating
the new delta. -m is not used and the standard input is a terminal, the prompt
MRs? is issued on the standard output before the standard input is read; if the stan­
dard input is not a terminal, no prompt is issued. The MRs? prompt always precedes
the comments! prompt (see -y keyletter).

in a list are separated by blanks and/or tab characters. An unescaped new-line
character terminates the list. that if the v flag has a value (see admin(l)), it is
taken to be the name of a program (or shell procedure) which will validate the
correctness of the numbers. If a non-zero exit status is returned from number vali­
dation program, delta terminates. (It is assumed that the numbers were not all
valid.) text used to describe the reason for making the delta. A null string is con­
sidered a valid comment. -y is not specified and the standard input is a terminal,
the prompt comments! is issued on the standard output before the standard input

Icon International, Inc. 1

DELTA(l) USER CO:MMANDS DELTA(l)

FILES

is read; if the standard input is not a terminal, no prompt is issued. An unescaped
new-line character terminates the comment text. delta to print (on the standard \..,.-/)
output) the file differences before and after the delta is applied in a diff(1) format.

All files of the form ?-file are explained in the Source Code Control System User
Guide. The naming convention for these files is also described there.

g-file Existed before the execution of delta; removed after completion of
delta.

p-file Existed before the execution of delta; may exist after completion of
delta.

q-file Created during the execution of delta; removed after completion of
delta.

x-file Created during the execution of delta; renamed to file after comple­
tion of delta.

z-file Created during the execution of delta; removed during the execution
of delta.

d-file Created during the execution of delta; removed after completion of
delta.

/usr /bin/bdiff Program to compute differences between the "gotten" file and the
g-file.

WARNINGS

Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the
file unless the SOH is escaped. This character has special meaning to (see sccsfile(4)
(5)) and will cause an error.

A get of many files, followed by a delta of those files, should be avoided when the get
generates a large amount of data. Instead, multiple get/delta sequences should be
used.

If the standard input (-) is specified on the delta command line, the -m (if neces­
sary) and -y keyletters must also be present. Omission of these keyletters causes an
error to occur.

Comments are limited to text strings of at most 512 characters.

SEE ALSO

2

admin(1), bdiff(l), cdc(l), get(l), help(1), prs(1), rmdel(1}.
sccsfile(4) in the ICON/UXV Programmer Reference Manual.

Source Code Control System User Guide in the ICON/UXV User Guide.

Icon International, Inc.

DELTA (1) USER COMMANDS DELTA(l)

(. DIAGNOSTICS

Use help{l) for explanations.

(

c
Icon International, Inc. 3

(

c

DIFF(1) USER COMMANDS DIFF (1)

diff - differential file comparator

SYNOPSIS

diff [-efbh 1 file 1 file2

DESCRIPTION

Diff tells what lines must be changed in two files to bring them into agreement.. If
filet (file e) is -, the ,standard input is used. If filet (filee) is a directory, then a file
in that directory with the name filee (filel) is used. The normal output contains
lines of these forms:

nl a n9,n,(
nl,ne d 119
nl, ne c n9, n.(

These lines resemble ed commands to convert filel into filee. The numbers after the
letters pertain to filee. In fact, by exchanging a for d and reading backward one
may ascertain equally how to convert filee into filel. As in ed, identical pairs, where
nl = ne or n9 = n..(, are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by <, then all the lines that are affected in the second file flagged by >.

The -b option causes trailing blanks (spaces and tabs) to be ignored and other
strings of blanks to compare equal.

The -e option produces a script of a, c, and d commands for the editor ed, which
will recreate filee from filel. The -f option produces a similar script, not useful
with ed, in the opposite order. In connection with -e, the following shell program
may help maintain multiple versions of a file. Only an ancestral file ($1) and a chain
of version-tc;version ed scripts ($2,$3, ...) made by diff need be on hand. A "latest
version" appears on the standard output.

(shift; cat $*; echo '1,$p') led - $1

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

Option -h does a fast, half-hearted job. It works only when changed stretches are
short and well separated, but does work on files of unlimited length. Options -e and
-f are unavailable with -h.

Icon International, Inc. 1

DIFF(1) USER CO:MMANDS DIFF(1)

F~ES

/tmp/d?????
/usr/lib/diffh for -h

SEE ALSO

cmp(l), comm(l), ed(l).

DIAGNOSTICS

BUGS

Exit status is 0 for no differences, 1 for some differences, 2 for trouble.

Editing scripts produced under the -e or -f option are naive about creating lines
consist ing of a single period (.).

WARNINGS

2

Afissing newline at end of file X
indicates that the last line of file X did not have a new-line. If the lines are
different, they will be flagged and output; although the output will seem to
indicate they are the same.

Icon International, Inc.

(J

(\

(

DIFF3 (1) USER COMMANDS DIFF3 (1)

NAME

diff3 ..;.. 3-way differential file comparison

SYNOPSIS

difD [-ex3 J file! fiJe2 file3

DESCRIPTION

FILES

DiJJ9 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

=--=1

=--2

===.3

all three files differ

filel is different

file2 is different

fileS is different

The type of change suffered in converting a given range of a given file to some other
is indicated in one of these ways:

I: nl a

I: nl , n£ c

Text is to be appended after line number nl in file I, where
1= 1, 2, or 3.

Text is to be changed in the range line nl to line n2. If TIl
= n2, the range may be abbreviated to nl.

The original contents of the range follows immediately after a c indication. ~llen
the contents of two files are identical, the contents of the lower-numbered file is
suppressed.

Under the -e option, diJJS publishes a script for the editor ed that will incorporate
into filel all changes between filee and fileS, i.e., the changes that normally would be
flagged = and ==-=3. Option -x (-3) produces a script to incorporate only
changes flagged == (====3). The following command will apply the resulting
script to filel.

(cat script; echo '1,$p') I ed - file!

/tmp/d3*
/usr /lib/diff3prog

Icon International, Inc. 1

DIFF3(1)

SEE ALSO

diff{l).

BUGS

USER COM'MANDS

Text lines that consist of a single • will defeat -e.
Files longer than 641(bytes will not work.

2

DIFF3(1)

Icon International, Inc.

~

I
~/

(

DIFFMK(l) USER COM:MA.NDS DIFFMK(l)

NAME

diffmk - mark differences between files

SYNOPSIS

diffmk namel name2 name3

DESCRIPTION

Dilfmk compares two versions of a file and creates a third file that includes "change
mark" commands for nrolf or tro.D'(I}. Namel and name1? are the old and new ver­
sions of the file. Dilfmk generates nameS, which contains the lines of name1? plus
inserted formatter "change mark" (.me) requests. When nameS is formatted,
changed or inserted text is shown by I at the right margin of each line. The position
of deleted text is shov.·n by a single *.

If anyone is so inclined, dilfmk can be used to produce listings of C (or other) pro­
grams with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp I pr

where the file ma.cs contains:

.pl I

.11 7i

.nf

.eo

.nc '

The .Il request might specify a different line length, depending on the nature of the
program being printed. The .eo and .nc requests are probably needed only for C
programs.

If the characters I and * are inappropriate, a copy of dilfmk can be edited to change
them (dilfmk is a shell procedure).

SEE ALSO

diff(1), nroff(l), troff{l}.

Icon International, Inc. 1

DlFFMK(l) USER COMMANDS DIFFMK(l)

BUGS

2

Aesthetic considerations may dictate manual adjustment of some output. File
differences involving only formatting requests may produce undesirable output, i.e.,
replacing .ap by .ap 2 will produce a "change mark" on the preceding or following
line of output.

Icon International, Inc.

DIRCMP(l) USER CO:MMANDS DIRCMP(l)

dircmp - directory comparison

SYNOPSIS

dircmp [-d 1 [-s 1 [-wn 1 dirl dir2

DESCRIPTION

Dircmp examines dir 1 and dire and generates various tabulated information about
the contents of the directories. Listings of files that are unique to each directory are
generated for all the options. If no option is entered, a list is output indicating
whether the file names common to both directories have the same contents.

-d Compare the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in diJJ(l).

Suppress messages about identical files. ,

Change the width of the output line to n characters. The default width is 72. -wn

(" SEE ALSO

cmp(l), diff(l).

Icon International, Inc. 1

DIS(l) USER COMMANDS DIS (1)

NAME

dis - an mc68020 disassembler

SYNOPSIS

dis file ...

DESCRIPTION

The dis command produces an assembly language listing of each of its object file
arguments. The listing includes assembly statements and the hexadecimal objects
that produced those statements.

SEE ALSO

as(l), cC(l), Id(l).

Icon International, Inc. 1

\

)

/ "
!

DOSC(1) USER CO:MMANDS DOSC(1)

(.\ NAME

(

()

dosc - connect to Proc /286 system

SYNOPSIS

dose [partition 1

. DESCRIPTION

Fll..ES

Dosc is used to connect to one of the Multi-Link partitions. The optional partition
parameter may be specified to access a specific partition. If no partition is specified,
the command will attempt to find an available partition and connect to it. If the
terminal type is dtlfOO or pcshad, the terminal will be switched to make-break mode.
Multi-Link must be configured properly to correspond to the terminal currently in
use.

The total number of active partitions is set in the file /etc/mttys. If /etc/mttys
does not. exist dosc will attempt to access up to 8 partitions. If dosc is unable to
access a partition, a message is printed and an exit status of 10 (decimal) is
returned. A shell script could be implemented to wait for a partition to become
available.

There is one command that is responded to by the dosc program: exit. For non­
PC-compatible terminals, exit is signaled with .. \. For PC-compatible terminals, exit
is COl'iTROL-AL T-\. Exit disconnects and relinquishes the partition. Subsequent
uses of the dose command will re-use the partition and the Multi-Link session will be
as it was when the exit was done.

Make sure when entering the multiple key sequences that the CONTROL and AL T
keys are fully down before the \ key is pressed. Failing to do this can result in spuri­
ous characters being sent to the Multi-Link session.

If the screen gets overwritten with system messages it can be re-painted by issuing
AL T-r (from PC-compatible terminals) or ESC-b (from normal terminals).

/usr/spool/uucp/LCK..mtty, /d~v /mtty, /etc/mttys

SEE ALSO

whodos{l) and the ICON/UXV Administrator Guide.

Icon International, Inc. 1

DU(l) USER COMMANDS DU(l)

NAME

du - summarize disk usage

SYNOPSIS

du [-ara 1 [names]

DESCRIPTION

BUGS

Du gives the number of blocks contained in all files and (recursively) directories
within each directory and fiJe specified by the names argument. The block count
includes the indirect blocks of the file. If names is missing, • is used.

The optional argument -1!1 causes only the grand total (for each of the specified
names) to be given. The optionaJ argument -a causes an entry to be generated for
each file. Absence of either causes an entry to be generated for each directory only.

Du is normally silent about directories that cannot be read, files that cannot be
opened, etc. The -r option will cause du to generate messages in such instances.

A file with two or more links is only counted once.

If the -a option is not used, non-directories given as arguments are not listed.
If there are too many distinct linked files, du will count the excess files more than
once.
Files with holes in them will get an incorrect block count.

Icon International, Inc. 1

DUMP (1) USER COMMANDS DUMP(l)

f. NAME

(

dump - dump selected parts of an object file

SYNOPSIS

dump [-acfghlorst] [-z name] files

DESCRIPTION

The dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It processes
each file argument according to one or more of the following options:

-a

-g

-f

-0

-h
-8

-r

-1
-t

-z name

-c

Dump the archive header of each member of each archive file argu­
ment.

Dump the global symbols in the symbol table of an archive.

Dump each file header.

Dump each optional header.

Dump section headers.

Dump section contents.

Dump relocation information.

Dump line number information.

Dump symbol table entries.

Dump line number entries for the named function.

Dump the string table.

The following modifiers are used in conjunction with the options listed above to
modify their capabilities.

-d number Dump the section number or range of sections starting at number and
ending either at the last section number or number specified by +d.

+d number Dump sections in the range either beginning with first section or begin­
ning with section specified by -d.

-n name

-p

-t index

+t index

-u

Dump information pertaining only to the named entity. This modifier
applies to -h, -8, -r, -1, and -to
Supress printing of the headers.

Dump only the indexed symbol table entry. The -t used in
conjunction with +t, specifies a range of symbol table entries.

Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the entry
specified by the -t option.

Underline the name of the file for emphasis.

Icon International, Ine. 1

DUMP (1) USER COMMANDS DUMP (1)

-v Dump information in symbolic representation ra.ther than numeric
(e.g., C..8TATIC instead of OX02). This modifier can be used with all
the above options except -s and -0 options of dump.

-z name,number
Dump line number entry or ra.nge of line numbers starting at number
for the named function.

+z number Dump line numbers starting at either function name or number
specified by -z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating
the name from the number modifying the -z option may be replaced by a blank.

The dump command attempts to format the information it dumps in a meaningful
way, printing certain information in character, hex, octal or decimal representation
as appropriate.

SEE ALSO

a.out(4), ar(4) in the IOON/UXV Programmer Reference Manual.

2 Icon International, Inc.

C,
/

ECHO(l) USER CO:MMANDS ECHO (l)

NAME

echo - echo arguments

SYNOPSIS

echo [arg] ...

DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a new-line on the
standard output. It. also understands C-like escape conventions; beware of conflicts
with the shell's use of \:

\b
\c
\f
\n
\r
\t
\v
\\
\71

backspace
print line without new-line
form-feed
new-line
carriage return
tab
vertical tab
backslash
the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal
number n, which must start with a zero.

Echo is useful for producing diagnostics in command files and for sending known data
into a pipe. . ,
.. ac

SEE ALSO

sh{I).

Icon International, Inc. 1

(

ED(l) USER COMMANDS ED(l)

NAME

ed, red - text editor

SYNOPSIS

ed [- 1 [-p string J [-x 1 [file J

red [- 1 [-p string 1 [-x 1 [file 1

DESCRIPTION

Ed is the standard text editor. If the file argument is given, ed simulates an e com­
mand (see below) on t.he named file; that is to say, the file is read into ed's buffer so
that it can be edited. The optional - suppresses the printing of character counts by
e, r, and w commands, of diagnostics from e and q commands, and of the! prompt
after a !shell command. The -p option allows the user t.o specify a prompt string.
If -x is present, an x command is simulated first to handle an encrypted file. Ed
opera tes on a copy of the file it is editing; changes made to the copy have no effect
on the file until a w (writ.e) command is given. The copy of the text being edited
resides in a t.emporary file called the buffer. There is only one buffer.

Red is a restricted version of ed. It will only allow editing of files in the current
directory. It prohibits executing shell commands via !shell command. Attempts to
bypass these restrictions result in an error message (restricted shell).

Both ed and red support t.he Jspec(4) formatting capability. After including a format
specification as the first line of file and invoking ed with your terminal in
stty -tabs or stty tab3 mode (see stty(l), t.he specified tab stops will aut.omat.ically
be used when scanning file. For example, if the first line of a file contained:

<:t5,10,15 si2:>

tab stops would be set at columns 5, 10, and 15, and a maximum line length of 72
would be imposed. NOTE: while inputting text, tab characters when typed are
expanded to every eighth column as is the default.

Commands to ed have a simple and regular structure: zero, one, or two addresses fol­
lowed by a single-character command, possibly followed by parameters to that com­
mand. These addresses specify one or more lines in the buffer. Every command that
requires addresses has default addresses, so that the addresses can very often be
omitted.

In general, only one command may appear on a line. Certain commands allow the
input of text. This text is placed in the appropriate place in the buffer. While ed is
accepting text, it is said to be in input mode. In this mode, no commands are recog­
nized; all input is merely collected. Input mode is left by typing a period (.) alone at
the beginning of a line.

Icon International, Inc. 1

ED(l) USER COM:MANDS ED(l)

2

Ed supports a limited form of regular expression notation; regular expressions are
used in addresses to specify lines and in some commands (e.g., s) to specify portions
of a line that are to be substituted. A regular expression (RE) specifies a set of char­
acter strings. A member of this set of strings is said to be matched by the RE. The
REs allowed by ed are constructed as follows:

The following one-character REs match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one­
character RE that matches itself.

1.2 A backslash (\) followed by any special character is a one-character RE that
matches the special character itself. The special characters are:

a. ., *, [, and \ (period, asterisk, left square bracket, and backslash, respec­
tively), which are always special, except when they appear within square
brackets ([]; see 1.4 below).

b. (caret or circumflex), which is special at the beginning of an entire RE
(see 3.1 and 3.2 below), or when it immediately follows the left of a pair of
square brackets ([]) (see 1.4 below).

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2
below).

d. The character used to bound (Le., delimit) an entire RE, which is special
for that RE (for example, see how slash U) is used in the g command,
below.)

1.3 A period (.) is a one-character RE that matches any character except new-line.

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one­
character RE that matches anyone character in that string. If, however, the
first character of the string is a circumflex 0, the one-character RE matches
any character except new-line and the remaining characters in the string. The
has this special meaning only if it occurs first in the string. The minus (-)
may be used to indicate a range of consecutive ASCII characters; for example,
[Q-9] is equivalent to [0123456789]. The - loses this special meaning if it
occurs first (after an initial , if any) or last in the string. The right square
bracket (]) does not terminate such a string when it is the first character
within it (after an initial, if any); e.g., []a-f] matches either a right square
bracket (]) or one of the letters a through f inclusive. The four characters
listed in 1.2.a above stand for themselves within such a string of characters.

The following rules may be used to construct REs from one-character REs:

2.1 A one-character RE is a RE that matches whatever the one-character RE
matches.

2.2 A one-character RE followed by an asterisk (*) is a RE that matches zero or
more occurrences of the one-character RE. If there is any choice, the longest
leftmost string that permits a match is chosen.

2.3 A one-character RE followed by \{ m\}, \{ m, \}, or \{ 7n,n\} is a RE that
matches a range of occurrences of the one-character RE. The values of m and
n must be non-negative integers less than 256; \{ m\} matches exactly m

Icon International, Inc.

(---'
, \

i /'

ED(1) USER COM:MANDS ED(l)

(.- occurrences; \{ m, \} matches at least m occurrences; \{ m,n\} matches any
number of occurrences between m and n inclusive. Whenever a choice exists,
the RE matches as many occurrences as possible.

c

2.4 The concatenation of REs is a RE that matches the concatenation of the
strings matched by each component of the RE.

2.5 A RE enclosed between the character sequences \(and \) is a RE that matches
whatever the unadorned RE matches.

2.6 The expression \n matches the same string of characters as was matched by
an expression enclosed between \(and \) earlier in the same RE. Here n is a
digit; the sub-expression specified is that beginning with the n-th occurrence of
\(counting from the left. For example, the expression \(.*\)\1$ matches a
line consisting of two repeated appearances of the same string.

Finally, an entire RE may be constrained to match only an initial segment. or final
segment of a line (or both).

3.1 A circumflex 0 at the beginning of an entire RE constrains that RE to match
an initial segment of a line.

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to match
a final segment of a line.

The construction entire RE$ constrains the entire RE to match the entire line.

The null RE (e.g., / /) is equivalent to the last. RE encountered. See also the last
paragraph before FILES below.

To understand addressing in ed it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com­
mand; the exact effect on the current line is discussed under the description of each
command. Addresses are constructed as follows:

1. The character. addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. 'x addresses the line marked with the mark name character x, which must be a
lower-case letter. Lines are marked with the k command described below.

5. A RE enclosed by slashes (/) addresses the first line found by searching forward
from the line following the current line toward the end of the buffer and stop­
ping at the first line containing a string matching the RE. If necessary, the
search wraps around to the beginning of the buffer and continues up to and
including the current line, so that the entire buffer is searched. See also the
last paragraph before FILES below.

6. A RE enclosed in question marks (!) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the
buffer and stopping at the first line containing a st.ring matching the RE. If
necessary, the search wraps around to the end of the buffer and continues up
to and including the current line. See also the last paragraph before FILES
below.

Icon International, Inc. 3

ED(l)

4

USER COMlv1ANDS ED(l)

7. An address followed by a plus sign (+) or a minus sign (-) followed by a
decimal number specifies that address plus (respectively minus) the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with + or -, the addition or subtraction is taken with
respect to the current line; e.g, -5 is understood to mean .-5.

9. If an address ends with + or -, then 1 is added to or subtracted from the
address, respectively. As a consequence of this rule and of rule 8 immediately
above, the address - refers to the line preceding the current line. (To main­
tain compatibility with earlier versions of the editor, the character in
addresses is entirely equivalent to -.) Moreover, trailing + and - characters
have a cumulative effect, 50 -- refers to t.he current. line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semi­
colon (;) stands for the pair .,$.

Commands may require zero, one, or two addresses. Commands that require no
addresses regard the presence of an address as an error. Commands that accept one
or two addresses assume default addresses when an insufficient number of addresses
is given; if more addresses are given than such a command requires, the last one(s)
are used.

Typically, addresses are separated from each other by a comma (,). They may also
be separated by a semicolon (;). In the lat.ter case, the current line (.) is set. to the
first address, and only then is the second address calculated. This feature can be
used to determine the starting line for forward and backward searches (see rules 5.
and 6. above). The second address of any two-address sequence must correspond to
a line that follows, in the buffer, the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses.
The parentheses are not part of the address; they show that the given addresses are
the default.

It is generally illegal for more than one command to appear on a line. However, any
command (except e, j, r, or w) may be suffixed by I, n, or p in which case the current
line is either listed, numbered or print.ed, respectiYely, as discussed below under the I,
11, and p commands.

(.)a
<text>

The append command reads the given text and appends it after t.he
addressed line; • is left at the last inserted line, or, if there were none, at the
addressed line. Address 0 is legal for this command: it causes t.he "appended"
text to be placed at the beginning of t.he buffer. The maximum number of
characters that may be entered from a terminal is 256 per line (including the
new-line character).

(.)c
<text>

The change command deletes the addressed lines, then accepts input t.ext

/~

i

that replaces these lines; . is left at the last line input, or,if there were none, tI'
at the first line that was not deleted. ~~/

Icon International, Inc.

("

(

ED(l)

(., .)d

e file

E file

r file

USER COMMANDS ED(l)

The delete command deletes the addressed lines from the buffer. The line
after the last line deleted becomes the current line; if the lines deleted were
originally at the end of the buffer, the new last line becomes the current line.

The edit command causes the entire contents of the buffer to be deleted, and
then the named file to be read in; • is set to the last line of the buffer. If no
file name is given, the currently-remembered file name, if any, is used (see the
/ command). The number of characters read is typed; file is remembered for
possible use as a default file name in subsequent e, r, and w commands. If
file is replaced by!, the rest of the line is taken to be a shell (sh(l)) command
whose output is to be read. Such a shell command is not remembered as the
current file name. See also DIAGNOSTICS below.

The Edit command is like e, except that the editor does not check to see if
any changes have been made to the buffer since the last w command.

If file is given, the file-name command changes the currently-remembered file
name to file; otherwise, it prints the currently-remembered file name.

(1, $)g/RE/ command list
In the global command, the first step is to mark every line that matches the
given RE. Then, for every such line, the given command list is executed with.
initially set to that line. A single command or the first of a list of commands
appears on the same line as the global command. All lines of a multi-line list
except the last line must be ended with a \; a, i, and c commands and associ­
ated input are permitted. The. terminating input mode may be omitted if it
would be the last line of the command list. An empty command list is
equivalent to the p command. The g, G, v, and 17 commands are not permit­
ted in the command list. See also BUGS and the last paragraph before FILES
below.

(l,$)G/RE/

h

H

In the interactive Global command, the first step is to mark every line that
matches the given RE. Then, for every such line, that line is printed, . is
changed to that line, and anyone command (other than one of the a, c, i, g,
G, v, and V commands) may be input and is executed. After the execution of
that command, the next marked line is printed, and so on; a new-line acts as
a null command; an &. causes the re-execution of the most recent command
executed within the current invocation of G. Note that the commands input
as part of the execution of the G command may address and affect any lines
in the buffer. The G command can be terminated by an interrupt, signal
(ASCII DEL or BREAK).

The help command gives a short error message that explains the reason for
the most recent r diagnostic.

The Help command causes ed to enter a mode in which error messages are
printed for all subsequent r diagnostics. It will also explain the previous? if
there was one. The H command alternately turns this mode on and off; it is
initially off.

Icon International, Inc. 5

ED(l)

6

USER COMl\1ANDS ED(l)

(.)i
<text>

The insert command inserts the given text before the addressed line; • is left
at the last inserted line, or, if there were none, at the addressed line. This
command differs from the a command only in the placement of the input
text. Address 0 is not legal for this comma.nd. The maximum number of
cha.racters that may be entered from a terminal is 256 per line (including the
new-line character).

(., .+1)j

(.)kx

(• , .)1

The ioin command joins contiguous lines by removing the appropriate new­
line characters. If exactly one a.ddress is given, this command does nothing.

The mark command marks the addressed line with name x, which must be a
lower-case letter. The address IX then addresses this line; . is unchanged.

The list command prints the addressed lines in an unambiguous way: a few
non-printing characters (e.g., tab, backspace) are represented by (hopefully)
mnemonic overstrikes. All other non-printing characters are printed in octal,
and long lines are folded. An I command may be appended to any other com­
mand other than e, I, r, or w.

(.,.)ma

(.,.)n

(.,.)p

p

q

Q

The move command repositions the addressed line(s) after the line addressed
by a. Address 0 is legal for a and causes the addressed line(s) to be moved to
the beginning of the file. It is an error if address a falls within the range of
moved lines; . is left at the last line moved.

The number command prints the addressed lines, preceding each line by its
line number and a tab character; . is left at the last line printed. The n com­
mand may be appended to any other command other than e, I, r, or w.

The print command prints the addressed lines; . is left at the last line
printed. The p command may be appended to any other command other
than e, I, r, or w. For example, dp deletes the current line and prints the
new current line.

The editor will prompt with a * for all subsequent commands. The P com­
mand alternately turns this mode on and off; it is initially off.

The quit command causes ed to exit. No automatic write of a file is done
(but see DIAGNOSTICS below).

The editor exits without checking if changes have been made in the buffer
since the last w command.

($)r file
The read command reads in the given file after the addressed line. If no file
name is given, the currently-remembered file name, if any, is used (see e and I

c

commands). The currently-remembered file name is not changed unless file is r"
the very first file name mentioned since ed was invoked. Address 0 is legal ~_/

Icon International, Inc.

(

c

ED(l) USER COMMANDS ED(l)

for r and causes the file to be read at the beginning of the buffer. If the read
is successful, the number of characters read is typed; • is set to the last line
read in. If file is replaced by!, the rest of the line is taken to be a shell
(sh(1)) command whose output is to be read. For example, "Sr !Js" appends
current directory to the end of the file being edited. Such a shell command is
not remembered as the current file name.

(.,. }slRElreplacementl or
(.,.)SIRElreplacementlg or
(.,. }slRElreplacementln n = 1-512

The substitute command searches each addressed line for an occurrence of
the specified RE. In each line in which a match is found, all (non-overlapped)
matched strings are replaced by the replacement if the global replacement
indicator g appears after the command. If the global indicator does not
appear, only the first occurrence of the matched string is replaced. If a
number n appears after the command, only the n th occurrence of the
matched string on each addressed line is replaced. It is an error for the sub­
stitution to fail on all addressed lines. Any character other than space or
new-line may be used instead of I to delimit the RE and the replacement; . is
left at the last line on which a substitution occurred. See also the last para­
graph before FILES below.

An ampersand (&) appearing in the replacement is replaced by the string
matching the RE on the current line. The special meaning of & in this con­
text may be suppressed by preceding it by \. As a more general feature, the
characters \n, where n is a digit, are replaced by the text matched by the
n-th regular subexpression of the specified RE enclosed between \(and \).
\Vhen nested parenthesized subexpressions are present, n is determined by
counting occurrences of \(starting from the left. When the character % is
the only character in the replacement, the replacement used in the most
recent substitute command is used as the replacement in the current substi­
tute command. The % loses its special meaning when it is in a replacement
string of more than one character or is preceded by a \.

A line may be split by substituting a new-line character into it. The new-line
in the replacement must be escaped by preceding it by \. Such substitution
cannot be done as part of a g or v command list.

(.,.)ta

u

This command acts just like the m command, except that a copy of the
addressed lines is placed after address a (which may be 0); . is left at the last
line of the copy.

The undo command nullifies the effect of the most recent command that
modified anything in the buffer, namely the most recent a, c, d, g, i, j, m, r,
s, t, v, G, or V command.

(1 , $)v IRE I command list
This command is the same as the global command g except that the com­
mand list is executed with. initially set to every line that does not match the
RE.

Icon International, Inc. 7

ED(I) USER COMMANDS ED(l)

(l,S)V/RE/
This command is the same as the interactive global command G except that
the lines that are marked during the first step are those that do not match
the RE.

(1, S)w file
The write command writes the addressed lines into the named file. If the file
does not exist, it is created with mode 666 (readable and writable by every­
one), unless your umask setting (see sh(l» dictates otherwise. The currently­
remembered file name is not changed unless file is the very first file name
mentioned since ed was invoked. If no file name is given, the currently­
remembered file name, if any, is used (see e and f commands); • is unchanged.
If the command is successful, the number of characters written is typed. If
file is replaced by!, the rest of the line is taken to be a shell (sh(l)) command
whose standard input is the addressed lines. Such a shell command is not
remembered as the current file name.

x

8

(S)=

A key string is demanded from the standard input. Subsequent e, r, and w
commands will encrypt and decrypt the text with this key by the algorithm
of crypt(l). An explicitly empty key turns off encryption.

The line number of the addressed line is typed; . is unchanged by this com­
mand.

!shell command
The remainder of the line after the! is sent to the UNIX system shell (sh(l)) to
be interpreted as a command. Within the text of that command, the unes­
caped character % is replaced with the remembered file name; if a ! appears
as the first character of the shell command, it is replaced with the text of the
previous shell command. Thus,!! will repeat the last shell command. If any
expansion is performed, the expa.nded line is echoed; . is unchanged.

(.+1)<new-line>
An address alone on a line causes the addressed line to be printed. A new­
line alone is equivalent to .+lp; it is useful for stepping forward through the
buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ! and returns to its
command level.

Some size limitations: 512 characters per line, 256 characters per global command
list, 64 characters per file name, and 128K characters in the buffer. The limit on the
number of lines depends on the amount of user memory: each line takes 1 word.

\\Then reading a file, ed discards ASCII NUL characters and all characters after t.he
last new-line. Files (e.g., a.out) that contain characters not in the ASCII set (bit 8
on) cannot be edited by ed.

If the closing delimiter of a RE or of a replacement string (e.g., /) would be the last
character before a new-line, that delimiter may be omitted, in which case the
addressed line is printed. The following pairs of commands are equivalent:

Icon International, Inc.

(

c

ED(l)

FILES

5/51/52
g/sl
1s1

USER COMMANDS

s/sl/s2/p
g/sl/p
1511

/tmp/e# temporary; # is the process number.
ed.hup work is saved here if the terminal is hung up.

ED(l)

DIAGNOSTICS

r for command errors.
rfile for an inaccessible file.

(use the help and Help commands for detailed explanations).

If changes have been made in the buffer since the last w command that wrote the
entire buffer, ed warns the user if an attempt is made to destroyed's buffer via the e
or q commands. It prints r and allows one to continue editing. A second e or q com­
mand at this point will take effect. The - command-line option inhibits this feature.

SEE ALSO

crypt(l), grep(1), sed(l), sh(l), stty(l).
fspec(4), regexp(5) in the UNIX System Programmer Reference Manual.

UNIX System Ed£t£ng Guide.

CAVEATS AND BUGS

A ! command cannot be su bject to a 9 or a v command.
The! command and the! escape from the e, r, and w commands cannot be used if
the the editor is invoked from a restricted shell (see sh{l)).
The sequence \n in a RE does not match a new-line character.
The I command mishandles DEL.
Files encrypted directly with the crypt(l) command with the null key cannot be
edited.
Characters are masked to 7 bits on input.
If the editor input is corning from a command file (i.e., ed file < ed-cmd-file), the edi­
tor will exit at the first failure of a command that is in the command file.

Icon International, Inc. 9

(~),

\..0.

(

C;
/

EDIT (1) USER COMMANDS EDIT (1)

NAME

edit - text, editor (Yariant of ex for casual users)

SYNOPSIS

edit [-r 1 name ...

DESCRIPTION

Edit is a variant of the text editor ex recommended for new or C'asual users who wish
to use a command-oriented editor. The following brief introduction should help you
get started with edit. If you are using a CRT terminal you may want to learn about
the display editor vi.

BRIEF INTRODUCTION

To edit the contents of an existing file you begin with the command "edit name" to
the shell. Edit makes a copy of the file which you can then edit, and tells you how
many lines and characters are in the file. To create a new file, just make up a name
for the file and try to run edit on it; you will cause an error diagnostic, but do not
worry.

Edit prompts for commands with the character ':', which you should see after start­
ing the editor. If you are editing an existing file, then you will have some lines in
edit'8 buffer (its name for the copy of the file you are editing). Most commands to
edit use its "current line" if you do not tell them which line to use. Thus if you say
print (which can be abbreviated p) and hit carriage return (as you should after all
edit commands) this current line will be printed. If you delete (d) the current line,
edit will print the new current line. When you start editing, edit makes the last line
of the file the current line. If you delete this last line, then the new last line
becomes the current one. In general, after a delete, the next line in the file becomes
the current line. (Deleting the last line is a special case.)

If you start with an empty file or wish to add some new lines, then the append (a)
command can be used. After you give this command (typing a carriage return after
the word append) edit will read lines from your terminal until you give a line con­
sisting of just a ".", placing these lines after the current line. The last line you type
then becomes the current line. The command insert (i) is like append but places
the lines you give before, rather than after, the C'urrent line.

Edit numbers the lines in the buffer, with the first line haying number 1. If you give
the command "1" then ed,:t will type this first line. If you then give the command
delete edit will delete the first line, line 2 will become line 1, and edit will print the
current line (the new line 1) so you can see where you are. In general, the current
line will always be the last line affected by a command.

Icon International, Inc. 1

EDIT(l) USER COMMANDS EDIT(l)

2

r--~\

You can make a change to some text within the current. line by using the substitute ~-_)
(s) command. You say "s/old/new/" where old is replaced by the old characters you
want to get rid of and new is the new characters you want to replace it with.

The command file (f) will tell you how many lines there are in the buffer you are
editing and will say "(Modified]" if you have changed it. After modifying a file you
can put the buffer text back to replace the file by giving a write (w) command. You
can then leave the editor by issuing a quit (q) command. If you run edit on a fiJe,
but do not change it, it is not necessary (but does no harm) to write the file back. If
you try to quit from edit after modifying the buffer without writing it out, you will
be warned that there has been "No write since last change" and edit will await
another command. If you wish not to write the buffer out then you can issue
another quit command. The buffer is then irretrievably discarded, and you return to
the shell.

By using the delete and append commands, and giving line numbers to see lines in
the file you can make any changes you desire. You should learn at least a few more
things, however, if you are to use edit more than a few times.

The change (e) command will change the current line to a sequence of lines you sup­
ply (as in append you give lines up to a line consisting of only a ". "). You can tell
change to change more than one line by giving the line numbers of the lines you
want to change, i.e., "3,5change". You can print lines this way too. Thus "1,23p"
prints the first 23 lines of the file.

The undo (u) command will reverse the effect of the last command you gave which
changed the buffer. Thus if you give a substitute command which does not do what
you want, you can say undo and the old contents of the line will be restored. You
can also undo an undo command so that you can continue to change your mind.
Edit will give you a warning message when commands you do affect more than one
line of the buffer. If the amount of change seems unreasonable, you should consider
doing an undo and looking to see what happened. If you decide that the change is
ok, then you can undo again to get it back. Note that commands such as write and
quit cannot be undone.

To look at' the next line in the buffer you can just hit carriage return. To look at a
number of lines hit AD (control key and, while it is held down D key, then let up
both) rather than carriage return. This will show you a half screen of Jines on a
CRT or 12 lines on a hardcopy terminal. You can look at the text around where you
are by giving the command "z.". The current line will t.hen be t.he last linE' print.ed;
you can get back to the line where you were before the "z." command by saying
", '''. The z command can also be given other following characters "z-" prints a
screen of text (or 24 lines) ending where you a.re; "z+" prints the next screenful. If
you want less than a screenful of lines, type in "z.12" to get 12 lines total. This
method of giving counts works in general; thus you can delete 5 lines starting with
the current line with the command "delete 5".

To find things in the file, you can use line numbers if you happen to know them; since
the line numbers change when you insert and delete lines this is somewhat unreliahle. ~. ,
You can search backwards and forwards in the file for strings by giving commands of 0.

Icon International, Illc.

EDIT (1) USER COM11ANDS EDIT(l)

the form /text/ to search forward for text or rtextr to search backward for text. If
a search reaches the end of the file without finding the text it wraps, end around,
and continues to search back to the line where you are. A useful feature here is a
search of the form f'text/ which searches for text at the beginning of a line. Simi­
larly /textS/ searches for text at the end of a line. You can leave off the trailing /
or ? in these commands.

The current line has a symbolic name"."; this is most useful in a range of lines as in
''.,$print'' which prints the rest of the lines in the file. To get t.o the last line in the
file you can refer to it by its symbolic name "$". Thus the command "$ delete" or
"Sd" deletes the last line in the file, no matter which line was the current line before.
Arithmetic with line references is also possible. Thus t.he line "$-5" is the fifth
before the last, and" .+20" is 20 lines after the present.

You can find out which line you are at by doing ".=". This is useful if you wish to
move or copy a section of text within a file or between files. Find out the first and
last line numbers you wish to copy or move (say 10 to 20). For a move you can then
say "10,20delete a" which deletes these lines from the file and places them in a buffer
named a. Edit has 26 such buffers named a through z. You can la ter get these lines
back by doing "put a" to put the contents of buffer a aft.er the current line. If you
want to move or copy these lines between files you can give an edit (e) command
after copying the lines, following it with the name of the other file you wish to edit,
i.e., "edit chapter2". By changing delete to yank above you can get a pattern for
copying lines. If the text you wish to move or copy is all within one file then you can
just say "10,20move $" for example. It is not necessary to use named buffers in this
case (but you can if you wish).

SEE ALSO

eX(I), vi(I).

Icon International, Inc. 3

EFL(1) USER COMMANDS EFL(1)

('\ NAME

c

en - Extended Fortran Language

SYNOPSIS

en [options 1 [files 1

DESCRIPTION

Eft compiles a program written in the EFL language into clean Fortran on the stan­
dard output. Ell provides the C-like control constructs of ratJor{l):

statement grouping with braces.

decision-making:
if, if-else, and select-case (also known as switch-case);
while, for, Fortran do, repeat, and repeat ... until loops;
multi-level break and next.

EFL has C-like data structures, e.g.:

struct
{
integer ftags(3)
character(8) name
long real coords(2)
} table(lOO)

The language offers generic functions, assignment operators (+=, &=, etc.), and
sequentially evaluated logical operators (&& and 11). There is a uniform
input/output syntax:

write(6,x,Y:f(7,2), do i=l,lO { a(i,j),z.b(i) })

EFL also provides some syntactic "sugar":

free-form input:
multiple statements per line; automatic continuation; statement label
names (not just numbers).

comments:
:# this is a comment.

translation of relational and logical operators:
>, >=, &, etc., become .GT., .GE., .AND., etc.

return expression to caller from function:
ret urn (expression)

Icon International, Inc. 1

EFL{l) USER CO:MMANDS EFL(1)

2

defines:
define name replacement

includes:
include file

Eft understands several option arguments: -w suppresses warning messages, -#
suppresses comments in the generated program, and the default option -C causes
comments to be included in the generated program.

An argument with an embedded == (equal sign) sets an EFL option as if it had
appea.red in an option statement at the start of the program. Many options are
described in the reference manual. A set of defaults for a particular target machine
may be selected by one of the choices: system==unix, system =gcos , or
system=cray. The default setting of the system option is the same as the machine
the compiler is running on.

Icon International. Inc.

(

EFL(l) USERCO~S EFL (1)

Other specific options determine the style of input/output, error handling, continua­
tion conventions, the number of characters packed per word, and default formats.

Eft is best used with /77(1).

SEE ALSO

cc(I), f77(1), ratfor(I).

Icon International, Inc. 3

r'
i~._//

ENABLE(l) USER COMMANDS ENABLE(l)

(. NAME

(

c

enable, disable - enable/disable LP printers

SYNOPSIS

enable printers
disable [-i: 1 [-r [reason 11 prin ters

DESCRIPTION

Fll..ES

Enable activates the named printers, enabling them to print. requests taken by lp(l).
Use Ipstat(l) to find the status of printers.

Disable deactivates the named printers, disabling them from printing requests taken
by /p(l). By default, any requests that are currently printing on the designated
printers will be reprinted in their entirety either on the same printer or on another
member of the same class. Use /pstat(l) to find the status of printers. Options useful
witb disable are:

Cancel any requests that are currently printing on any of the desig­
nated printers.

-r [reason 1 Associates a reaSOfl with the deactivation of the printers. This reason
applies to all printers mentioned up to the next -r option. If the -r
option is not present or the -r option is given without a reason, then a
default reason will be used. Reason is report.ed by /pstat(l).

/usr /spool/lp/*

SEE ALSO

lp(l), lpstat(l).

Icon International, Inc. 1

ENV(l) USER COMMANDS ENV(l)

NAME

env - set environment for command execution

SYNOPSIS

env [-] [name=value] ... [command args 1

DESCRIPTION

Env obtains the current environment, modifies it according to its arguments, then
executes the command with the modified environment. Arguments of the form
name=value are merged into the inherited environment before the command is exe­
cuted. The - flag causes the inherited environment t.o be ignored completely, so
that the command is executed with exactly the environment specified by the argu­
ments.

If no command is specified, the resulting environment is printed, one name-value pair
per line.

SEE ALSO

sh(l).
exec(2), profile(4), environ(5) in the UNIX System Programmer Reference Manual.

Icon International, Inc. 1

(

(

EX(l} USER COMM.A.NDS EX(l)

NAME

ex - text editor

SYNOPSIS

ex [-] [-v] [-t tag] I -r] I -R 1 [+command J [-1 J [-x 1 name ...

DESCRIPTION

Ex is the root of a family of editors: ex and vi. Ex is a superset. of ed, with the most
notable extension being a display editing facility. Display based editing is the focus
of vi.

If you have a CRT terminal, you may wish to use a display based editor; in this case
see vi(l), which is a command which focuses on the display editing portion of ex.

DOCUMENTATION

The Ex Reference .Manual is a comprehensive and complete manual for the com­
mand mode features of ex, but you cannot learn to use the editor by reading it. For
an introduction to more advanced forms of editing using the command mode of ex
see the editing documents written by Brian Kernighan for the editor ed; the material
in the introductory and advanced documents works also with ex.

An Introduction to Display Editing with l'i introduces the display editor vi and pro­
vides reference material on vi. The l'i Quick Reference card summarizes the com­
mands of vi in a useful, functional way, and is useful with the Introduction. The v~l)
manual page can also be used as reference.

FOR ED USERS

If you have used ed you will find that ex has a number of new features useful on
CRT terminals. Intelligent terminals and high speed t.erminals are very plea.sant to
use with vi. Generally, the editor uses far more of the capabilit.ies of terminals than
ed does, and uses the terminal capability data base terminfo(-t) and the type of the
terminal you are using from the variable TERM in the environment to determine
how to drive your terminal efficiently. The editor makes use of features such as
insert and delete character and line in its visual command (which can be abbrevi­
ated vi) and which is the central mode of editing when using vi(l).

Ex contains a number of new features for easily viewing the text of the file. The z
command gives easy access to windows of text. Hitting "D causes the editor to scroll
a half-window of text and is more useful for quickly stepping through a file than just
hitting return. Of course, the screen-oriented visual mode gives constant access to
editing context.

Icon International, Inc. 1

EX(l) USER COM}.1ANDS EX(l)

Ex gives you more help when you make mistakes. The undo (u) command allows
you to reverse any single change which goes ast.ray. Ex gives you a lot of feedback,
normaUy printing changed lines, and indicates when more than a few lines are
affected by a command so that it is easy to detect when a command has affected
more lines than it should have.

The editor also normally prevents overwriting existing files unless you edited them so
that you do not accidentally clobber with a write a file other than the one you are
editing. If the system (or editor) crashes, or you accidentally hang up the telephone,
you can use the editor recover command to retrieve your work. This will get you
back to within a few lines of where you left off.

Ex has several features for dealing with more than one file at a time. You can give
it a list of files on the command line and use the next (n) command to deal with
each in turn. The next command can also be given a list of file names, or a pattern
as used by the shell to specify a new set of files to be dealt with. In general, file
names in the editor may be formed with full shell metasyntax. The metacharacter
'%' is also available in forming file names and is replaced by the name of the current
file.

For moving text between files and within a file the editor has a group of buffers,
named a through z. You can place text in these named buffers and carry it over
when you edit another file.

There is a command &; in ex which repeats the last substitute command. In addi­
tion there is a confirmed substitute command. You give a range of substitutions to
be done and the editor interactively asks whether each substitution is desired.

It is possible to ignore case of letters in searches and substitutions. Ex also allows
regular expressions which match words to be constructed. This is convenient, for
example, in searching for the word "edit" if your document also contains the word
"editor. "

Ex has a set of options which you can set to tailor it to your liking. On~ option
which is very useful is the autoi7ldenl option which allows the editor to automatically
supply leading white space to align text. You can then use the AD key as a backtab
and space and tab forward to align new code easily.

Miscellaneous new useful features include an intelligent join (j) command which sup­
plies white space between joined lines automatically, commands < and> which shift
groups of lines, and the ability to filter portions of the buffer through commands such
as sort.

INVOCATION OPTIONS

2

The following invocation options are interpreted by ex:
Suppress all interactive-user feedback. This is useful in processing
editor scripts.

Icon International, Inc.

o

c

EX(l)

-v
-t tag/R

-r file

-R
+command

-1

-x

USER COMMANDS EX(l)

Invokes vi

Edit the file containing the tag and position the editor at its
definition.

Recover file after an editor or system crash. If file is not specified a
list of all saved files will be printed.

Readonly mode set, prevents accidentally overwriting the file.

Begin editing by executing the specified editor search or positioning
command.

LISP mode; indents appropriately for lisp code, the () {} [[and]]
commands in vi are modified to have meaning for lisp.

Encryption mode; a key is prompted for allowing creation or editing
of an encrypted file.

The name argument indicates files to be edited.

Ex States

Command

Insert

Visual

Normal and initial state. Input prompted for by:. Your kill char­
acter cancels partial command.

Entered by a i and c. Arbitrary text may be entered. Insert is
normally terminated by line having only. on it,or abnormally with
an interrupt.

Entered by vi, terminates with Q or ~\.

Ex command names and abbreviations

abbrev ab next n unabbrev una
append a number nu undo u
args ar unmap unm
change c preserve pre 'versIon ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit x
file r read re yank ya
global g recover rec window z
insert i rewind rew escape !
Jom j set se lshift <
list 1 shell sh print next CR
map source 80 resubst &.
mark ma stop st rshift >
move m substitute s scroll AD

Ex Command Addresses

n line n /patnext with pat

Icon International, Inc. 3

EX(l) USER COM:MANDS EX(l)

. current fpat previous with pat
S last :D-n n before %
+ next %,1/ % through 1/

previous "% marked with %
+n n forward

,,,
previous context

% 1,$

Initializing options
EXINIT place set's here in environment var.
$HOME/.exrc editor initialization file
./.exrc editor initialization file
set % enable option
set no% disable option
set z==val give value val
set show changed options
set all show all options
set %f show value of option %

Most useful options
autoindent al supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () { } are s-exp's
list print ~I for tab, $ at end

.~

magic . [* special in patterns
number nu number lines ., . ./

paragraphs para macro names which start, ...
redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shirtwidth sw for < >, and input AD
showmatch sm to) and} as typed
showmode smd show insert mode in vi
slowopen slow stop updates during insert
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

Scanning pattern formation
.. beginning of line
S end of line
• any character
\ < beginning of word
\> end of word Istr] any char in str
t str] ... not in str
%-1/] ... between % and 1/
* any number of preceding

4 Icon International. Inc.

(

CI

EX(l) USER COM~1ANDS EX(l)

AUTHOR

FILES

Vi and ex are based on software developed by The University of California, Berkeley
California, Computer Science Division, Department of Electrical Engineering and
Computer Science.

lusr Ilib/ex??strings
lusr /lib/ex??recover
/usr/lib/ex??preserve
lusr /lib/*/*
$HOME/exrc
.f.exrc
/tmp/Exnnnnn
Itmp/Rxnnnnn
/usr/preserve

error messages
recover command
preserve command
describes capabilities of terminals
editor startup file
editor startup file
editor temporary
named buffer temporary
preservation directory

SEE ALSO

awk(l), edell, edit(l), grep(l), sed(l), vi(l).
curses(3X), term(4), terminfo(4) in the UNIX System V Programmer Reference
Afalwai.

CAVEATS AND BUGS

The version of ex that runs on the PDP-ll does not support the full command set due
to space limitations. The commands which are not supported are detailed in the
"Ex Reference Manual." The most notable commands which are missing are the
macro and abbreviation facilities. .

. The undo command causes all marks to be lost on lines changed and then restored if
the marked lines were changed.

Undo never clears the buffer modified condition.

The z command prints a number of logical rather than physical lines. More than a
screen full of output may result if long lines are present.

File input/output errors do not print a name if the command line '-' option is used.

There is no easy way to do a single scan ignoring case.

The editor does not warn if text is placed in named buffers and not used before exit­
ing the editor.

Icon International, Inc. 5

EX(l) USER COMMANDS EX(I)

Null characters are discarded in input files and cannot appear in resultant files.

6 Icon International, Inc.

f)'
~.

(!

(

EXPR(I) USER COMMANDS EXPR(1)

NAME

expr - evaluate arguments as an expression

SYNOPSIS

expr arguments

DESCRIPTION

The arguments are taken as an expression. After evaluation, the result is written on
the standa.rd output. Terms of the expression must be separated by blanks. Char­
acters special to the shell must be escaped. Note that 0 is returned to indicate a
zero value, rather than the null string. Strings containing blanks or other special
characters should be quoted. Integer-valued arguments may be preceded by a unary
minus sign. Internally, integers are treated as 32-bit, 2s complement numbers.

The operators and keywords are listed below. Characters that need to be escaped
are preceded by \. The list is in order of increasing precedence, with equal pre­
cedence operators grouped within {} symbols.

expr \ I e:rpr
returns the first expr if it is neither null nor 0, otherwise returns the second
expr.

expr \& expr
returns the first expr if neither expr is null or 0, otherwise returns o.

expr { =, \>, \>=, \<, \<=, !=} expr
returns the result of an integer comparison if both arguments are integers,
otherwise returns the result of a lexical comparison.

expr { +, - } expr
addition or subtraction of integer-valued arguments.

expr { *, I, % } expr
multiplication, division, or remainder of the integer-valued arguments.

expr: expr

EXAMPLES

The matching operator : compares the first argument with the second argu­
ment which must be a regular expression. Regular expression syntax is the
same as that of ed(l), except that all patterns are "anchored" (i.e., begin
with ..) and, therefore, .. is not a special character, in that context. Nor­
mally, the matching operator returns the number of characters matched (0
on failure). Alternatively, the \(..• \) pattern symbols can be used to return
a portion of the first argument.

1. a=expr $a + 1

Icon International, Inc. 1

EXPR(l) USER COMMANDS EXPR(l)

adds 1 to the shell variable a.

2. :# For $a equal to either "/usr/abc/file" or just "file"
expr $a : .*/\(.*\) \1 $a

returns the last segment of a path name (i.e., file). Watch out for /
alone as an argument: expr will take it as the division operator (see
BUGS below).

3. :# A better representation of example 2.
expr / /$a : .*/\(.*\)

The addition of the / / characters eliminates any ambiguity about the
division operator and simplifies the whole expression.

4. expr SV AR : .*

returns the number of characters in SVAH

SEE ALSO

ed(l), sh(1).

EXIT CODE

As a side effect of expression evaluation, expr returns the following exit values.:
o if the expression is neither null nor 0
1 if the expression is null or 0
2 for invalid expressions.

DIAGNOSTICS

BUGS

2

syntax error for operator/operand errors
non-numeric argument

if arithmetic is attempted on such a string

After argument processing by the shell, expr cannot tell the difference between an
operator and an operand except by the value. If $a is an =, the command:

Icon International, Inc.

EXPR(l) USER COMMANDS EXPR(1)

expr $a - -

looks like:

expr - --- --

as the arguments are passed to expr (and they will all be taken as the = operator).
The following works:

expr X$a = X=

Icon International, Inc. 3

(

c

F77(1) USER COMMANDS F77(1)

NAME

f77 - Fortran 77 compiler

SYNOPSIS

f77 [options 1 files

DESCRIPTION

F77 is the UNIX System Fortran 77 compiler; it accepts several types of file argu­
ments:

Arguments whose names end with .f are taken to be Fortran 77 source pro­
grams; they are compiled and each object program is left in the current
directory in a file whose name is that of the source, with .0 substituted for .f.

Arguments whose names end with .F are also taken to be Fortran 77 source
programs; these are first processed by the C preprocessor before being com­
piled by 177.

Arguments whose names end with .r or .e are taken to be RATFOR or EFL
source programs, respectively. These are first transformed by the appropri­
ate preprocessor, then compiled by 177, producing .0 files.

In the same way, arguments whose names end with .c or .8 are taken to be C
or assembly source programs and are compiled or assembled, producing .0

files.

Files whose names do not end with the suffix .f, .r, .e, .8, or .c are treated as
.0 (object) files.

The following options have the same meaning as in cC(l) [see ld(l) for link editor
options):

-c Suppress link editing and produce .0 files for each source file.
-f Compiles floating point operations to use the MC68881 floating point

coprocessor. Also switches to versions of libc.a, libm.a, libF77.a, and
libI77.a that use the floating point chip. Setting the environment
variable FP to m88881 has the same effect as specifying this flag.
Code generated with this option will cause an "Illegal instruction" trap
on machines without the floating point coprocessor.

-Dname=del
-D name Define the name to the C preprocessor, as if by '#define'. If no

definition is given, the name is defined as "I". (' .F' suffix files only).

Icon International, Inc. 1

F77(1) USER COMMANDS F77 (1)

2

-Idir

-g
-ooutput
-p
-0
-8

'#include' files whose names do not begin with II' are always sought
first in the directory or the file argument, then in directories named in
-I options, then in directories on a standard list. ('.F' suffix files only).
Generate additional information needed for the use of sdb(l).
Name the final output file output, instead of a.out.
Prepare object files for profiling (see proJ(l)].
Invoke an object-code optimizer.
Compile the named programs and leave the assembler-language output
in corresponding files whose names are suffixed with oS. (No.o files are
created.)

The following options are peculiar to /17:

-1
-66

Same as -onetrip.
This option is used to compile Fortran 66 source programs. Only syn­
tax compatible with Fortran 66 is accepted.

-i2 or -is On machines which support short integers, make the default integer

-m

constants and variables short. (-i4 is the standard value of this
option). All logical quantities will be short.
Apply the M4 preprocessor to each EFL or RATFOR source file before
transforming with the rat/or(l} or efl(l) processors.

-onetrip Compile DO loops that are performed at least once if reached. (Fortran

-u

-v
-v
-w

-c
-E

-F

77 DO loops are not performed at all if the upper limit is smaller than
the lower limit.)
Make the default type of a variable undefined, rather than using the
default Fortran rules.
Print the version number of the compiler, and the name of each pass as
it executes.
Verbose mode. Provide diagnostics for each process during compilation.
Suppress all warning messages. If the option is -w66, only Fortran 66
compatibility warnings are suppressed.
Generate code for run-time subscript range-checking.
The remaining characters in the argument are used as an EFL flag
argument whenever processing a .e file.
Apply EFL and RATFOR preprocessor to relevant files, put the result in
files whose names have their suffix changed to .r. (No.o files are
created.)

-N[qxscnlj nnn
Change size of table [qxscnl] to nnn. The compiler will provide a diag­
nostic when a table overflows. The tables and corresponding default
values for nnn are:

-R

'q'
'x'
's'
's'
'c'
'n'
'1'

150
200
401
201
20
401
125

(equivalences)
(common blocks, subroutine and function names)
(statement numbers).
(symbol table)
(depth of loops or if-then-elses)
(variable names and common block names)
labels for computed and assigned gotos
and the number of alternate returns

The remaining characters in the argument are used as a RATFOR flag

Icon International, Inc.

(

F77 (1) USER COMMANDS F77 (1)

Fn..ES

argument whenever processing a .r file.
-u Do not "fold" cases. F77 is normally a no-case language (i.e., a is equal

to A). The -U option causes /77 to treat upper and lowercases
separately.

Other arguments are taken to be either link-editor option arguments or f77-
compilable object programs (typically produced by an earlier run), or libraries of
/77-compilable routines. These programs, together with the results of any compila­
tions specified, are linked (in the order given) to produce an executable program with
the default name a.out •

file. [fFresc 1
file.o
a.out
/usr /tmp/F77 AAAa[pidj.?
/usr /lib/f77passl
/usr /lib /f77pass2
/lib/c2
/usr /lib/libF77.a
/usr /lib/libl77.a
/lib/libc.a

/usr /bin/f77
/bin/as
/bin/ld
/lib/crtO.o
/lib/mcrtO.o
/bin/sort
/usr /bin/m4
/bin/cc
/usr /bin/eft
/usr /bin/ratfor
/lib/libp/libm.a
/lib/libp/libc.a
/usr /lib/libg.a

input file
object file
linked output
temporary
compiler
pass 2
optional optimizer
intrinsic function library
Fortran I/O library
C library; see Section 3C in the
IOONI D.:\rv Programmer Reference Manual
driver and command line parser
assembler, as(l)
link editor, /d(l)
runtime startoff
profiling startoff
sort, sor~l)
m4 macro preprocessor
C compiler
EFL compiler
RA TFOR preprocessor
runtime math library
c runtime library
sdb runtime library

SEE ALSO

as(l), asa(1), cc(l), efl(l), fsplit(l), Id(l), m4(1), prof(l), ratfor(l), sdb(l).

ICON/UXV Programmer Guide.

DIAGNOSTICS

The diagnostics produced by f77 itself are intended to be self-explanatory. Occa­
sional messages may be produced by the link editor Id(l) or the assembler as(l).

Icon International, Inc. 3

f .~\

r

FACTOR(l) USER COM:MANDS FACTOR (1)

(NAME

factor - factor a number

SYNOPSIS

factor [n um ber 1

DESCRIPTION

When factor is invoked without an argument, it waits for a number to be typed in.
If you type in a positive number less than 2" (about 7.2XI018) it will factor the
number and print its prime factors; each one is printed the proper number of times.
Then it waits for another number. It exits if it encounters a zero or any non­
numeric character.

If factor is invoked with an argument, it factors the number as above and then exits.

Maximum time to factor is proportional to Vn and occurs when n is prime or the
square of a prime. It takes 1 minute to factor a prime near IOU on a PDP-H.

(- DIAGNOSTICS

"Ouch" for input out of range or for garbage input.

c
Icon International, Inc. 1

FILE (1) USER COMMANDS FILE (1)

NAME

file - determine file type

SYNOPSIS

file (-i:] [-f flile] I -m mfile 1 arg ...

DESCRIPTION

File performs a series of tests on each argument in an attempt to classify it. If an
argument appears to be ASCn, file examines the first 512 bytes and tries to guess its
language. If an argument is an executable a.out, file will print the version stamp,
provided it is greater than 0 (see Id(I».

If the -f option is given, the next argument is taken to be a file containing the
names of the files to be examined.

File uses the file fete/magic to identify files that have some sort of magic number,
that is, any file containing a numeric or string constant that indicates its type.
Commentary at the beginning of /etc/magic explains its format.

The -m option instructs file to use an alternate magic file.

The -i: flag causes file to check the magic file for format errors. This validation is
not normally carried out for reasons of efficiency. No file typing is done under -i:.

SEE ALSO

Id(I).

Icon International, Inc. 1

(

FIND (1) USER COM:MANDS FIND (1)

NAME

find - find files

SYNOPSIS

find path-name-list expression

DESCRIPTION

Find recursively descends the directory hierarchy for each path name in the path­
name-list (i.e., one or more path names) seeking files that match a boolean expres­
sion written in the primaries given below. In the descriptions, the argument n is
used as a decimal integer where +n means more than n, -n means less than nand n
means exactly n.

-name file True if file matches the current file name. Normal shell argument
syntax may be used if escaped (watch out for [, rand *).

-perm onum

-type c

-links n

-user uname

True if the file permission flags exactly match the octal number
onum (see chmod(1)). If onum is prefixed by a minus sign, more
flag bits (017777, see stat(2)) become significant and the flags are
compared.

True if the type of the file is c, where c is b, c, d, p, or f for block
special file, character special file, direct.ory, fifo (a.k.a named pipe),
or plain file respectively.

True if the file has n links.

True if the file belongs to the user uname. If uname is numeric
and does not appear as a login name in the /etc/pa.sswd file, it is
taken as a user ID.

-group gname True if the file belongs to the group gname. If gname is numeric
and does not appear in the /etc/group file, it is taken as a group
ID.

-size n[c] True if the file is n blocks long (512 bytes per block). If n is fol­
lowed by a c, the size is in characters.

-atime n True if the file has been accessed in n days. The access time of
directories in path-name-list is changed by find itself.

-mtime n True if the file has been modified in n days.

-ctime n True if the file has been changed in n days.

-exec cmd True if the executed cmd returns a zero value as exit status. The
end of cmd must be punctuated by an escaped semicolon. A
command argument {} is replaced by the current path name.

-ok cmd Like -exec except that the generated command line is print.ed
with a question mark first, and is executed only if the user
responds by typing y.

-print Always true; causes the current. path name to be printed.

Icon International, Inc. 1

FIND (1) USER COMM:ANDS FIND (1)

I

-cpio device

-newer file

-depth

(expression)

Always true; write the current file on device in cpio (4) format
(5120-byte records).

True if the current file has been modified more recently than the
argument file.

Always true; causes descent of the directory hierarchy to be done
so that all entries in a directory are acted on before the directory
itself. This can be useful when find is used with cpio(l) to transfer
files that are contained in directories without write permission.

True if the parenthesized expression is true (parentheses are spe­
cial to the shell and must be escaped).

The primaries may be combined using the following operators (in order of decreasing
precedence):

1) The negation of a primary (! is the unary not operator).

2) Concatenation of primaries (the and operation is implied by the juxtaposition of
two primaries).

3) Alternation of primaries (-0 is the or operator).

EXAMPLE

To remove all files named a.out or *.0 that have not been accessed for a week:

find / \(-name a.out -0 -name '*.0' \) -atime +7 -exec rm {} \;

F~ES

/etc/passwd, /etc/group

SEE ALSO .

chmod(l), cpio(l), sh(l), test(l).
stat(2), cpio(4), fs(4) in the UNIX System Programmer Reference !l1anual.

2 Icon International, Inc.

o

(

('\

./

FOLD(l) USER COMMANDS FOLD(l)

NAME

fold - fold long lines for finite width output device

SYNOPSIS

fold [-width 1 [file ... 1

DESCRIPTION

Fold is a filter which will fold the contents of the specified files, or the standard input
if no files are specified, breaking the lines to have maximum width width. The default
(or width is 80. Width should be a multiple of 8 if tabs are present, or the tabs
should be expanded using expand(l) before coming to fold.

SEE ALSO

expand(l)

BUGS

If underlining is present it may be messed up by folding.

Icon International, Inc. 1

FPU(l) USER CO:MMANDS FPU(1)

NAME

fpu - determine presence of the floating point coprocessor

SYNOPSIS

fpu 1-8]

-DESCRIPTION

Fpu prints whether or not the MC68881 floating point coprocessor (unit) is installed.
The -8 (silent) flag suppresses printing (except for error messages). It is used for
checking error status (in shell scripts for example).

EXAMPLE

The the following is a shell script that demonstrates the use of the -s flag:

#! /bin/esh -f
fpu -s
if ($status) then

echo No FPU installed.
else

echo FPU installed.
endif

Icon International, Inc. 1

FSPLIT(l) USER COMMANDS FSPLIT(1)

NAME

fsplit - split f77, ratfor, or en files

SYNOPSIS

'split options files

DESCRIPTION

Fsplit splits the named filers) into separate files, with one procedure per file. A pro­
cedure includes blockdata, function, main, program, and subroutine program segments.
Procedure X is put in file X.I, X.r, or X.e depending on the language option chosen,
with the following exceptions: main is put in the file MAIN.[elr] and unnamed block­
data. segments in the files blockdataN.[elr] where N is a unique integer value for each
file.

The following options pertain:

-I (default) Input files are /77.

-r

-e

Input files are rat/or.

Input files are Efl.

-s Strip /77 input lines to 72 or fewer characters with trailing blanks removed.

SEE ALSO

csplit(l), efl(I), f77(1), ratfor(l), split(l).

Icon International, Inc. 1

c

'-.- ./

GET{ 1) USER COMMANDS GET{l)

(NAME

c'

get - get a version of an SCCS file

SYNOPSIS

get [-lIp]] file •••

DESCRIPTION

Get generates an ASCn text file from each named file according to the specifications
given by its keyletter arguments, which begin with -. The arguments may be
specified in any order, but all keyletter arguments apply to all named files. If a
directory is named, get behaves as though each file in the directory were specified as
a named file, except that non- files (last component of the path name does not begin
with s.) and unreadable files are silently ignored. If a name of - is given, the stan­
dard input is read; each line of the standard input is taken to be the name of an file
to be processed. Again, non- files and unreadable files are silently ignored.

The generated text is normally written into a file called the g-file whose name is
derived from the file name by simply removing the leading s.; (see also FILES,
below).

Each of the keyletter arguments is explained below as though only one file is to be
processed, but the effects of any keyletter argument applies independently to each
named file.

-rSID The SCCS IDentification string 0 of the version (delta) of an file to be
retrieved. Table -1 below shows, for the most useful cases, what version
of an file is retrieved (as well as the of the version to be eventually
created by delta(1) if the -e keyletter is also used), as a function of the
specified.

-ccutoff Cutoff date-time, in the form:

-e

YY[MM[DD[HH[MM[SSlllll

No changes (deltas) to the file which were created after the specified
cutoff date-time are included in the generated ASCII text file. Units
omitted from the date-time default to their maximum possible values;
that is, -c7502 is equivalent to -c750228235959. Any number of
non-numeric characters may separate the various 2-digit pieces of the
cutoff date-time. This feature allows one to specify a cutoff date in the
form: "-c77/2/2 9:22:25". Note that this implies that one may use
the %E% and %U% identification keywords (see below) for nested gets
within, say the input to a send(1C) command:

-!get "-c%E% %U%" s.file

Indicates that the get is for the purpose of editing or making a change
(delta) to the file via a subsequent use of delta(1). The -e keyletter
used in a get for a particular version 0 of the file prevents further gets
for editing on the same until delta is executed or the j (joint edit) flag is

Icon International, Inc. 1

GET(l) USER COMl\1ANDS GET{l)

r'j
set in the file (see admin(I)). Concurrent use of get -e for different s is ~

2

-b

-ilist

-x list

-k

always allowed.

If the g-file generated by get with an -e keyletter is accidentally ruined
in the process of editing it, it may be regenerated by re-executing the get
command with the -k keyletter in place of the -e keyletter.

sees file protection specified via the ceiling, floor, and authorized user
list stored in the file (see admin(l» are enforced when the -e keyletter
is used.

Used with the -e keyletter to indicate that the new delta should have
an in a new branch as shown in Table 1. This keyletteris ignored if the
b flag is not present in the file (see admin{l)) or if the retrieved delta is
not a leaf delta. (A leaf delta is one that has no successors on the file
tree.)
Note: A branch delta may always be created from a non-leaf delta.

A list of deltas to be included (forced to be applied) in the creation of
the generated file. The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= I -

, the Identification of a delta, may be in any form shown in the ((
Specified" column of Table 1. Partial s are interpreted as shown in the
" Retrieved" column of Table 1.

A list of deltas to be excluded (forced not to be applied) in the creation
of the generated file. See the -i keyletter for the list format.

Suppresses replacement of identification keywords (see below) in the
retrieved text by their value. The -k keyletter is implied by the -e
keyletter.

-l[p] Causes a delta summary to be written into an I-file. If -lp is used then
an I-file is not created; the delta summary is written on the standard
output instead. See FILES for the format of the I-file.

-p Causes the text retrieved from the file to be written on the standard
output. No

Icon international, Inc ..

- ---_ .. - --~ -----~----~---.--~-- ----

/

c\

GETOPT(l) USER COMMANDS GETOPT(l)

NAME

getopt - parse command options

SYNOPSIS

set - 'cetopt optstring S.,

DESCRIPTION

Getopt is used to break up options in command lines for easy parsing by shell pro­
cedures and to check for legal options. Optstring is a string of recognized option
letters (see getopt(3C)); if a letter is followed by a colon, the option is expected to
have an argument which mayor may not be separated from it by white space. The
special option - is used to delimit the end of the options. If it is used explicitly,
getopt will recognize it; otherwise, getopt will generate it; in either case, getopt will
place it at the end of the options. The positional parameters ($1 $2 ...) of the shell
are reset so that each option is preceded by a - and is in its own positional parame­
ter; each option argument is also parsed into its own positional parameter.

EXAMPLE

The following code fragment shows how one might process the arguments for a com­
mand that can take the options a or h, as well as the option 0, which requires an
argument.:

set - 'getopt abo: $*'
if [$? != 0 1
then

fi

echo $USAGE
exit 2

for i in $*
do

case $i in
-a I -b) FLAG=$i· shift·· , "
-0) OARG=$2; shift 2;;
--) shift; break;;
esac

done

This code will accept any of the following as equivalent:

cmd -aoarg file file
cmd -a -0 arg file file
cmd -oarg -a file file

Icon International, Inc. 1

GETOPT(l) USERCO~S GETOPT(l)

cmd -a -oarg - file file

SEE ALSO

sh(l), getopt(3C).

DIAGNOSTICS

Gdopt prints an error message on the standa.rd error when it encounters an option
letter not included in optstring.

2 Icon Internat.ional, Inc.

f'. \..J ..

GREEK(l) USER COMMANDS GREEK(l)

(~-. NAME

(

greek - select terminal filter

SYNOPSIS

greek [-Tterminal]

DESCRIPTION

Fll..ES

Greek is a filter that reinterprets the extended character set, as well as the reverse
and half-line motions, of a 128-character TELETYPE~ Model 37 terminal (which is the
nroff(l) default terminal) for certain other terminals. Special characters are simu­
lated by overstriking, if necessary and possible. If the argument is omitted, greek
attempts to use the environment variable STERM (see environ(5)}. The following
terminals are recognized currently:

300
300-12
300s
3005-12
450
450-12
1620
1620-12
2621
2640
2645
4014
hp
tek

/usr /bin/300
/usr /bin/300s
/usr /bin/4014
/usr /bin/450
/usr /bin/hp

DASI300.
DASI 300 in 12-pitch.
DASI300s.
DASI 300s in 12-pitch.
DASI450.
DASI 450 in 12-pitch.
Diablo 1620 (alias DASI 450).
Diablo 1620 (alias DASI 450) in 12-pitch.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
Hewlett-Packard 2621, 2640, and 2645.
TEKTRONIX 4014.
Hewlett-Packard 2621, 2640, and 2645.
TEKTRONIX 4014.

SEE ALSO

300(1),4014(1),450(1), eqn(I), hp(1), mm(1), nroff(I), tplot(IG).
environ(5), greek(5), term(5) in the ICON/UA'li Programmer Reference Manual.

Icon International, Inc. 1

(

GREP(l) USER COMtv1ANDS GREP(l)

NAME

grep, egrep, fgrep - search a file for a pattern

SYNOPSIS

grep [option I ... expression [file I ...

egrep [option I ... [expression I [file I ...

fgrep [option I ... [strings I [file I

DESCRIPTION

Commands of the grep family search the input files (standard input default) for lines
mat.ching a pattern. Normally, each line found is copied to the standard output.
Grep patterns are limited regular expressions in the style of ex(l); it uses a compact
nondeterministic algorithm. Egrep patterns are full regular expressions; it uses a
fast deterministic algorithm that sometimes needs exponential space. Fgrep patterns
are fixed strings; it is fast and compact. The following options are recognized.

-v All lines but those matching are printed.

-x (Exact) only lines matched in their entirety are printed (fgrep only).

-c Only a count of matching lines is printed.

-1 The names of files with matching lines are listed (once) separated by new-
lines.

-n Each line is preceded by its relative line number in the file.

-b Each line is preceded by the block number on which it was found. This is
sometimes useful in locating disk block numbers by context.

-i The case of letters is ignored in making comparisons - that is, upper and
lower case are considered identical. This applies to grep and fgrep only.

-s Silent mode. Nothing is printed (except error messages). This is useful for
checking the error status.

-w The expression is searched for as a word (as if surrounded by '\<' and '\>',
see ex(l).) (grep only)

-e expression
Same as a simple expression argument, but useful when the expression begins
with a -.

-f file The regular expression (egrep) or string list (fgrep) is taken from the file.

In all cases the file name is shown if there is more than one input file. Care should
be taken when using the characters $ * [A : () and \ in the expresst"on as they are
also meaningful to the Shell. It is safest to enclose the entire expression argument in
single quotes ' '.

Icon International, Inc. 1

GREP(1) USER COMMANDS GREP(l)

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description 'character'
excludes newline:

A \ followed by a single character other than newline matches that charac­
ter.

The character ~ matches the beginning of a line.

The character $ matches the end of a line.

A • (period) matches any character.

A single character not otherwise endowed with special meaning matches that
character.

A string enclosed in brackets [1 matches any single character from the string.
Ranges of ASCII character codes may be abbreviated as in 'a-zO-9'. A 1
may occur only as the first character of the string. A literal - must be
placed where it can't be mistaken as a range indicator.

A regular expression followed by an * (asterisk) matches a sequence of 0 or
more matches of the regular expression. A regular expression followed by a +
(plus) matches a sequence of 1 or more matches of the regular expression. A
regular expression followed by a ? (question mark) matches a sequence of 0 or
1 matches of the regular expression.

Two regular expressions concatenated match a match of the first followed by
a match of the second.

Two regular exp~essions separated by : or newline match either a match for
the first or a match for the second.

A regular expression enclosed in parentheses matches a match for the regular
expression.

The order of precedence of operators at the same parenthesis level IS [l then *+?
then concatenation then: and newline.

Ideally'there should be only one grep, but we don't know a single algorithm that
spans a wide enough range of space-time tradeoffs.

SEE ALSO

eX(l), sed(l), sh(l)

DIAGNOSTICS

2

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessi­
ble files.

Icon International, InC'.

GREP(1) USER COMMANDS GREP (1)

('
BUGS

Lines are limited to 256 characters; longer lines are truncated.

(

Icon International, Inc. 3

HELP(l) USER COMMANDS HELP(l)

NAME

help - ask for help

SYNOPSIS

help [args 1

. DESCRIPTION

FILES

Help finds informa.tion to explain a message from a command or explain the use of a
command. Zero or more arguments may be supplied. If no arguments are given,
help will prompt for one.

The arguments may be either message numbers (which normally appear in
parentheses following messages) or command names, of one of the following types:

type 1

type 2

type 3

Begins with non-numerics, ends in numerics. The non-numeric
prefix is usually an abbreviation for the program or set of rou­
tines which produced the message (e.g., ge6, for messa.ge 6
from the get command).

Does not contain numerics (as a command, such as get)

Is all numeric (e.g., 212)

The response of the program will be the explanatory information related to the argu­
ment, if there is any.

\\7ben all else fails, try "help stuck".

/usr /lib/help

/usr /lib/help/helploc

directory containing files of message text.

file containing locations of help files not in
/uar/lib/help.

DIAGNOSTICS

Use help(l) for explanations.

Icon International, Inc. 1

HP(l) USER COMMANDS HP(l)

(. NAME

(

(':

hp - handle special functions of Hewlett-Packard 2640 and 2621-series terminals

SYNOPSIS

hp [-eJ [-m]

DESCRIPTION

Hp supports special functions of the Hewlett-Packard 2640 series of terminals, with
the primary purpose of producing accurate representations of most nroff output. A
typical use is:

nrofT -h files .,. I h p

Regardless of the hardware options on your terminal, hp tries to do sensible things
with underlining and reverse line-feeds. If the terminal has the "display enhance­
ments" feature, subscripts and superscripts can be indicated in distinct ways. If it
has the "mathematical-symbol" feature, Greek and other special characters can be
displayed.

The flags are as follows:
-e It is assumed that your terminal has the "display enhancements" feature,

and so maximal use is made of the added display modes. Overstruck charac­
ters are presented in the Underline mode. Superscripts are shown in Half­
bright mode, a.nd subscripts in Half-bright, Underlined mode. If this flag is
omitted, hp assumes that your terminal lacks the "display enhancements"
feature. In this case, all overstruck characters, subscripts, and superscripts
a.re displayed in Inverse Video mode, i.e., dark-on-light, rather than the usual
light-on-dark.

-m Requests minimization of output by removal of new-lines. Any contiguous
sequence of 3 or more new-lines is converted into a sequence of only 2 new­
lines; i.e., any number of successive blank lines produces only a single blank
output line. This allows you to retain more actual text on the screen.

\Vith regard to Greek and other special characters, hp provides the same set as does
900(1), except that "not" is approximated by a right arrow, and only the top half of
the integral sign is shown. The display is adequate for examining output from neqn.

DIAGNOSTICS

"line too long" if the representation of a line exceeds 1,024 (' haracters.
The exit codes are 0 for normal termination, 2 for all errors.

Icon International, Inc. 1

HP(1) USER COMMANDS HP(I)

SEE ALSO

BUGS

2

300(1), col(l), eqn(l), greek(l), nroft'(l), tbl(l).

An "overstriking sequence" is defined as a printing character followed by a back­
space followed by another printing character. In such sequences, if either printing
character is an underscore, the other printing character is shown underlined or in
Inverse Video; otherwise, only the first printing character is shown (again, underlined
or in Inverse Video). Nothing special is done if a backspace is adjacent to an ASCII
control character. Sequences of control characters (e.g., reverse line-feeds, back­
spaces) can make text "disappear"; in particular, tables generated by tbl(l} that con­
tain vertical lines will often be missing the lines of text ,that contain the "foot" of a
vertical line, unless the input to lip is piped through col(l}.
Although some terminals do provide numerical superscript characters, no attempt is
made to display them.

Icon International, Inc.

(

HYPHEN(l) USERCO~1)S HYPHEN(l)

(".. NAME

hyphen - find hyphenated words

SYNOPSIS

hypheD I files 1

DESCRIPTION

Hyphen finds all the hyphenated words ending lines in files and prints them on the
standard output. If no arguments are given, the standard input is used; thus, hyphen
may be used as a filter.

EXAMPLE

The following will allow the proofreading of nrolJ hyphenation in textfile.

mm text file I hyphen

SEE ALSO

BUGS

mm(l), nroff(l).

Hyphen cannot cope with hyphenated italic (i.e., underlined) words; it will oft.en miss
them completely, or mangle them.
Hyphen occasionally gets confused, but with no ill effects other than spurious extra
output.

Icon International, Inc. 1

10(1) USER COMMANDS ID (1)

NAME

id - print user and group IDs and names

SYNOPSIS

id

DESCRIPTION

Id writes a message on the standard output giving the user and group IDs and the
corresponding names of the invoking process. If the effect.ive and real IDs do not
match, both are printed.

SEE ALSO

logname{ 1).
getuid(2) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

/

(-

(

IPCRM(l) USER COl\1MANDS IPCRM(l)

NAME

ipcrm - remove a message queue, semaphore set or shared memory id

SYNOPSIS

ipcrm [options 1

DESCRIPTION

Jpcrm will
identifiers.

-q msqid

-m shmid

-s semid

remove one or more specified messages, semaphore or shared memory
The identifiers a.re specified hy the following options:

removes the message queue identifier msqid from the system and des­
troys the message queue and data structure associated with it.

removes the shared memory identifier shmid from the system. The
shared memory segment and data structure associated with it are des-
troyed after the last detach.

removes the semaphore identifier semid from the system and destroys
the set of semaphores and data structure associated with it.

-Q msgkey removes the message queue identifier, created with key msgkey, from
the system and destroys the message queue and data structure associ­
ated with it.

-M shmkey removes the shared memory identifier, created with key shmkey, from
the system. The shared memory segment and data structure associ­
ated with it are destroyed after the last detach.

-S semkey removes the semaphore identifier, created with key semkey, from the
system and destroys the set of semaphores and data structure associ­
ated with it.

The deta.ils of t,he removes are described in msgctl(2), shmctl(2), and semctl(2). The
identifiers and keys may be found by using ipcs(l).

SEE ALSO

ipcs(l).
msgctl(2), msgget(2), msgop(2), semctl(2), semget(2), semop(2), shmctl(2), shmget(2),
shmop(2) in the IOON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(

(~.

IPCS (1) USER COM:MA.NDS IPCS (1)

NAME

ipcs - report inter-process communication facilities status

SYNOPSIS

ipC8 [options 1

DESCRIPTION

[pcs prints certain information about active inter-process communication facilities.
Without options, information is printed in short format for message queues, shared
memory, and semaphores that are currently active in the system. Otherwise, the
information that is displayed is controlled by the following options:

-q Print information about active message queues.
-m Print information about active shared memory segments.
-s Print information about active semaphores.

If any of the options -q, -m, or -s ar~ specified, information about only those indi­
cated will be printed. If none of these three are specified, information about all
three will be printed.

-b Print biggest allowable size information. (Maximum number of bytes in mes­
sages on queue for message queues, size of segments for shared memory, and
number of semaphores in each set for semaphores.) See below for meaning of
columns in a listing.

-c Print creator's login name and group name. See below.
-0 Print information on outstanding usage. (Number of messages on queue and

total number of bytes in messages on queue for message queues and number
of processes attached to shared me-mory segments.)

-p Print process number information. (Process ID of last process to send a mes­
sage and process ID of last process to receive a message on message queues
and process ID of creating process and process ID of last process to attach or
detach on shared memory segments) See below.

-t Print time information. (Time of the last control operation that changed the
access permissions for all facilities. Time of last msgsnd and last msgrcv on
message queues, last shmat and last shmdt on shared memory, last semop(2)
on semaphores.} See below.

-a Use all print options. (This is a shorthand notation for -b, -c, -0, -p, and
-t.) .

-C corefile
Use the file corefile in place of /dev /kmem.

-N namelist
The argument will be taken as the name of an alternate nameiist (lunix IS

the default).

Icon International, Inc. 1

IPCS(1) USER COMMANDS IPCS(1)

2

The column headings a.nd the mea.ning of the columns in an ipcs listing are given
below; the letters in parentheses indicate the options that cause the corresponding
heading to appear; aU means that the heading always appears. Note that these
options only determine what information is provided for each facility; they do not
determine which facilities will be listed.

T (all) Type of the facility:

ID
KEY

MODE

q message queue;
m shared memory segment;
• semaphore.

(all) The identifier for the facility entry.
(all) The key used as an argument to msgget, semget, or shmgel to

create the facility entry. (Note: The key of a shared memory seg­
ment is changed to IPCYRIVATE when the segment has been
removed until all processes attached to the segment detach it.)

(all) The facility access modes and flags: The mode consists of 11 char­
acters that are interpreted as follows:

The first two characters are:

R if a process is waiting on a msgrcv;
S if a process is waiting on a msgsnd;
D if the associated shared memory segment has been

removed. It will disappear when the last process
attached to the segment detaches it;

C if the associated shared memory segment is to be
cleared when the first attach is executed;
if the corresponding special flag is not set.

The next 9 characters are interpreted as three sets of three bits
each. The first set refers to the owner's permissions; the next to
permissions of others in the user-group of the facility entry; and
the last to all others. Within each set, the first character indi­
cates permission to read, the second character indicates permission
to write or alter the facility entry, and the last character is
currently unused.
The permissions are indicated as follows:

r if read permission is granted;
w if write permission is granted;
a if alter permission is granted;

if the indicated permission is not granted.

OWNER (all)
GROUP (all)
CREATOR (a,c)
CGROUP (a,e)
CBYTES (a,o)

The login name of the owner of the facility entry.
The group name of the group of the owner of the facility entry.
The login name of the creator of the facility entry.
The group name of the group of the creat.or of the facility entry.
The number of bytes in messages currently outstanding on t.he
associated message queue.

Icon International, Inc.

/'\
~~-~/

(-

(C

c

IPCS(1) USER COMMANDS IPes (1)

FTI..ES

QNUM

QBYTES

LSPID

LRPID

STIME
RTIME
CTIME
NATTCH

SEGSZ
CPID
LPID

ATIME

DTlME

NSEMS

OTIME

(a,o)

(a,b)

(a,p)

(a,p)

(a,t)
(a,t)
(a,t)
(a,o)

(a,b)
(a,p)
(a,p)

(a,t)

(a,t)

(a,b)

(a,t)

The number of messages currently outstanding on the associated
message queue.
The maximum number of bytes allowed in messages outstanding
on the associated message queue.
The process ID of the last process to send a message to the associ­
ated queue.
The process ID of the last process to receive a message from the
associated queue.
The time the last message was sent to the associated queue.
The time the last message was received from the associated queue.
The time when the associated entry was created or changed.
The number of processes attached to the associated shared
memory segment.
The size of the associated shared memory segment.
The process ID of the creator of the shared memory entry.
The process ID of the last process to attach or detach the shared
memory segment.
The time the last attach was completed to the associated shared
memory segment.
The time the last detach was completed on the associated shared
memory segment.
The number of semaphores in the set associated with the sema­
phore entry.
The time the last semaphore operation was completed on the set
associated with the semaphore entry.

/unix
/dev/kmem
/etc/passwd
fete/group

system namelist
memory
user names
group names

SEE ALSO

BUGS

msgop(2), semop(2), shmop(2) in the ICONjUXV Programmer Reference Manual.

Things can change while ipcs is running; the picture it gives is only a close approxi­
mation to reality.

Icon International, Inc. 3

,/"
I

~_/

JOIN (1) USER COMMANDS JOIN (1)

('~.. NAME

('

join - relational database operator

SYNOPSIS

join I options] file! file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines
of file1 and filee. If file1 is -, the standard input is used.

File1 and filee must be sorted in increasing AScn collat.ing sequence on the fields on
which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file1 and filee that have
identical join fields. The output line normally consists of the common field, then the
rest of the line from file1, then the rest of the line from filee.

The default input field separators are blank, tab, or new-line. In this case, multiple
separators count as one field separator, and leading separators are ignored. The
default output field separator is a blank.

Some of the below options use the argument n. This argument should be a 1 or a 2
referring to either file! or filee, respectively. The following options are recognized:

-an In addition to the normal output, produce a line for each unpairable line in
file n, where n is 1 or 2.

-e 8 Replace empty output fields by string 8.

-jn m Join on the mth field of file n. If n is missing, use the mth field in each file.
Fields are numbered starting with 1.

-0 list Each output line comprises the fields specified in list, each element. of which
has the form n.m, where n is a file number and m is a field number. The
common field is not printed unless specifically requested.

-tc Use character c as a separator (tab character). Every appearance of c in a
line is significant. The character c is used as the field separator for both
input and output.

EXAMPLE

The following command line will join the password file and the group file, matching
on the numeric group ID, and outputting the login name, the group name and the
login directory. It is assumed that the files have been sorted in ASCII collating
sequence on the group ID fields.

Icon International, Inc. 1

JOIN(l) USER COMMANDS JOIN(l)

join -jl 4 -j2 3 -0 1.1 2.1 1.6 -t: /etc/passwd /etc/group
i

SEE ALSO

BUGS

2

awk(I), comm(I), sort(I), uniq(I).

With default field separation, the collating sequence is that of sort -bj with -t, the
sequence is that of a plain sort.

The conventions of join, sort, comm, uniq and awk(l} are wildly incongruous.
Filenames that are numeric may cause conflict. when the -0 option is used right
before listing filenames.

Icon International, Inc.

,

KERl\lIT(l) USER COM:MANDS KERMIT(l)

(NAME

(-

kermit - kermit file transfer

SYNOPSIS

kermit [option ... J [file ... J

DESCRIPTION

Kermit is a public domain file transfer program that allows files to be moved
between machines of many different operating systems and architectures. This man
page describes version 4C of the program.

Arguments are optional. If Kermit is executed without arguments, it will enter com­
mand mode. Otherwise, kermit will read the arguments off the command line and
interpret them.

The following notation is used in command descriptions:

In

lu1

rln

rlnl

n

c

cc

A Unix file specification, possibly containing either of the "wildcard" charac­
ters '.' or '1' ('.' matches all character strings, '?' matches any single char­
acter).

A Unix file specification which may not contain '.' or '1'.

A remote file specification in the remote system's own syntax, which may
denote a single file or a group of files.

A remote file specification which should denote only a single file.

A decimal number between 0 and 94.

A decimal number between 0 and 127 representing the value of an ASCII
character.

A decimal number between 0 and 31, or else exactly 127, representing the
value of an ASCII control character.

[] Any field in square braces is optional.

{x,y,z} Alternatives are listed in curly braces.

Kermit command line options may specify either actions or settings. If Kermit is
invoked with a command line that specifies no actions, then it will issue a prompt
and begin interactive dialog. Action options specify either protocol transactions or
terminal connection.

Icon International, Inc. 1

KERMIT(l) USER CO:M:MA.NDS KERMIT(l)

2

COMMAND LINE OPTIONS
..... In Send the specified file or files. If In contains wildcard (meta) characters, the

Unix shell expands it into a list. If In is '-' then Kermit sends from standard
input, which must come from a file:

kermit -s - < foo.bar

or a parallel process:

Is -11 kermit -s -

You cannot use this mechanism to send terminal typein. If you want to
send a file whose name is ft_ .. you can precede it with a path name, as in

kermit -s .j-
-r Receive a file or files. Wait passively for files to arrive.

-k Receive (passively) a file or files, sending them to standard output. This
option can be used in several ways:

kermit -k

Displays the incoming files on your screen; to be used only in "local mode"
(see below).

kermit -k > rnI

Sends the incoming file or files to the named file, In1. If more than one file
arrives, all are concatenated together into the single file In1.

kermit -k : command

Pipes the incoming data (single or multiple files) to the indicated command,
as in

kermit -k : sort> sorted.stuff

-a Inl If you have specified a file transfer option, you may specify an alternate
name for a single file with the -a option. For example,

kermit -s foo -a bar

sends the file foo telling the receiver that its name is bar. If more than one
file arrives or is sent, only the first file is affected by the -a option:

kermit -ra baz

stores the first incoming file under the name baz.

-x Begin server operation. May be used in either local or remote mode.

Before proceeding, a few words about remote and local operation are necessary.
Kermit is "local" if it is running on a PC or workstation that you are using directly,
or if it is running on a multiuser system and transferring files over an external
communication line - not your job's controlling termina.I or console. Kermit is
remote if it is running on a multiuser system and tra.nsferring files over its own con­
trolling terminal's communication line, connected to your PC or workstation.

Icon International, Inc.

("
/

KERMIT(l) USER COMMANDS KERMIT(l)

If you are running Kermit on a PC, it is in local mode by deCault, with the "back
port" designated for file transfer and terminal connection. If you are running Kermit
on a multiuser (timesha.ring) system, it is in remote mode unless you explidt.ly point
it at an external line for file transfer or terminal connection. The following com­
mand sets Kermit's "mode":

-1 dev Line - Spec iCy a terminal line to use Cor file transCer and terminal connec­
tion, as in

kermit -I /dev /ttyi5

When an external line is being used, you might also need some additional options for
successful communication with the remote system:

-b n Ba.ud - Specify the baud rate (or the line given in the -1 option, as in

kermit -I /dev /ttyi5 -b 9600
This option should always be included with the -1 option, since the speed of
an external line is not necessarily what you expect.

-p x Parity - e, 0, m, 8, D (even, odd, mark, space, or none). If parity is other
than none, then the 8th-bit prefixing mechanism will be used Cor transferring
8-bit binary data, provided the opposite Kermit agrees. The default parity is
none.

-t Specifies half duplex, line turnaround with XON as the handshake character.

The following commands may be used only with a Kermit which is local - either by
default or else because the -1 option has been specified.

-g rln Actively request a remote server to send the named file or files; rln is a file
specification in the remote host's own syntax. If In happens to contain any
special shell characters, like '*', these must be quoted, as in

kermit -g x*.\,!,

-r Send a 'finish' command to a remote server.

-c Establish a terminal connection over the specified or default communication
line, before any protocol transaction takes pla.ce. Get back to the local sys­
tem by typing the escape character (normally Control-Backslash) followed
by the letter 'c'.

-D Like -c, but after a protocol transaction takes place; -c and -D may both
be used in the same command. The use of -D and -c is illustrated below.

On a timesharing system, the -I and -b options will also have to be included with
the -r, -k, or -8 options if the other Kermit is on a remote system.

If kermit is in local mode, the screen (stdout) is continously updated to show the pr~
gress of the file transer. A dot is printed for every four data packets, other packets

Icon International, Inc. 3

KERMIT{l) USER COMMANDS KERMIT(l)

4

are shown by type (e.g. 'S' Cor Send-Init), 'T' is printed when there's a timeout, and
'%' Cor each retransmission. In addition, you may type (to stdin) certain "interrupt"
commands during file transCer:

Control-F: Interrupt the current File, and go on to the next (iC any).

Control-B: Interrupt the entire Batch oC files, terminate the transaction.

Control-R: Resend the current packet

Control-A: Display a status report Cor the current transaction.

These interrupt characters differ from the ones used in other Kermit implementa­
tions to avoid conflict with Unix shell interrupt characters. With System III and
System V implementations oC Unix, interrupt commands must be preceeded by the
escape character (e.g. control-\).

Several other command-line options are provided:

-i Specifies that files should be sent or received exactly "as is" with no conver­
sions. This option is necessary Cor transmitting binary files. It may also be
used to slightly boost efficiency in Unix-to-Unix transCers oC text files by
eliminating CRLF /newline conversion.

-w Write-Protect - Avoid filename collisions for incoming files.

-q Quiet - Suppress screen update during file transfer, for instance to allow a
file transfer to proceed in the background.

-d Debug - Record debugging inCormation in the file debug.log in the current
directory. Use this option if you believe the program is misbehaving, and
show the resulting log to your local Kermit maintainer.

-h Help - Display a brief synopsis of the command line options.

The co~mand lline may contain no more than one protocol action option.

INTERACTIVE OPERATION

Kermit's interactive command prompt is nC-Kermit>". In response to this prompt,
you may type any valid command. Kermit executes the command and then prompts
you for another command. The process continues until you instruct the program to
terminate.

Commands begin with a keyword, normally an English verb, such as "send". You
may omit trailing characters from any keyword, so long as you specify sufficient
characters to distinguish it from any other keyword valid in that field. Certain
commonly-used keywords (such as "send", "receive", "connect") have spedaJ non­
unique abbreviations ("s" for "send", "r" for "receive", "c" for "connect").

Icon International, Inc.

\'T-_ ~/

(

KERMIT(l) USER COMMANDS KERMIT(l)

Certain characters have special functions in interactive commands:

r Question mark, typed at any point in a command, will produce a message
explaining what is possible or expected at that point. Depending on the
context, the message may be a brief phrase, a menu of keywords, or a list of
files.

ESC (The Escape or Altmode key) - Request completion of the current keyword
or filename, or insertion of a default value. The result will be a beep if the
requested operation fails.

DEL

AW

AU

AR
SP

CR

\

(The Delete or Rubout key) - Delete the previous character from the com­
mand. You may also use BS (Backspace, Control-H) for this function.

(Control-W) - Erase the rightmost word from the command line.

(Control-U) - Erase the entire command.

(Control-R) - Redisplay the current command.

(Space) - Delimits fields (keywords, filenames, numbers) within a command.
HT (Horizontal Tab) may also be used for this purpose.

(Carriage Return) - Enters the command for execution. LF (Linefeed) or
FF (formfeed) may also be used for this purpose.

(Backslash) - Enter any of the above characters into the command,
literally. To enter a backslash, type two backslashes in a row (\\). A sin­
gle backslash immediately preceding a carriage return allows you to con­
tinue the command on the next line.

You may type the editing characters (DEL, AW, etc) repeatedly, to delete all the
way back to the prompt. No action will be performed until the command is entered
by typing carriage return, linefeed, or formfeed. If you make any mistakes, you will
receive an informative error message and a new prompt - make liberal use of '?'
and ESC to feel your way through the commands. One important command is
"help" - you should use it the first time you run Kermit.

Interactive Kermit accepts commands from files as well as from the keyboard. When
you enter interactive mode, Kermit looks for the file .kermrc in your home or current
directory (first it looks in the home directory, then in the current one) and executes
any commands it finds there. These commands must be in interactive format, not
Unix command-line format. A "take" command is also provided for use at any time
during an interactive session. Command files may be nested to any reasonable
depth.

Here is a brief list of Kermit interactive commands:

bye

close

connect

Execute a Unix shell command.

Terminate and log out a remote Kermit server.

Close a log file.

Establish a terminal connection to a remote system.

Icon International, Inc. 5

KERMIT(l) USER COMMANDS KERMIT(l)

6

cwd

dial

directory

echo

exit

finish

get

help

log

quit

receive

remote

script

send

server

set

show

space

statistics

Change Working Directory.

Dial a telephone number.

Display a directory listing.

Display arguments literally.

Exit from the program, closing any open logs.

Instruct a remote Kermit server to exit, but not log out.

Get files from a remote Kermit server.

Display a help message for a given command.

Open a log file - debugging, packet, session, transaction.

Same as 'exit'.

Passively wait for files to arrive.

Issue file management commands to a remote Kermit server.

Execute a login script with a remote system.

Send files. •

Begin server operation.

Set various parameters.

Display values of 'set' parameters.

Display current disk space usage.

Display statistics about most recent transaction.

take Execute commands from a file.

The 'set' parameters are:

block-cheek Level of packet error detection.

delay

duplex

escape-character

file

flow-control

handshake

line

modem-dialer

parity

prompt

How long to wait before sending first packet.

Specify which side echoes during 'connect'.

Character to prefix "escape commands" during 'connect'.

Set various file parameters.

Communication line full-duplex flow control.

Communication line half-duplex turnaround character.

Communication line device name.

Type of modem-dialer on communication line.

Communication line character parity.

Change the Kermit program's prompt.

Icon International, Inc.

(

(

KERMIT(l) USER C011MANDS KERMIT (1)

FILES

receive

send

speed

Set various parameters for inbound packets.

Set various pa.rameters for outbound packets.

Communication line speed.

The 'remote' commands are:

cwd Change remote working directory.

delete Delete remote files.

directory Display a listing of remote file names.

help Request help from a remote server.

host Issue a command to the remote host in its own command language.

space Display current disk space usage on remot.e system.

type Display a. remote file on your screen.

who Display who's logged in, or get information about a user.

$HOMEf.kermrc Kermit initialization commands
./kermrc more Kermit initialization commands

SEE ALSO

cU(l), uucp(l)
Frank da Cruz and Bill Catchings, Kermit User's Guide, Columbia University, 6th
Edit.ion

DIAGNOSTICS

BUGS

The diagnostics produced by Kermit itself are intended to be self-explanatory.

See recent issues of the Info-Kermit digest (on ARPANET or Usenet), or the file
ckuker.bwr, for a list of bugs.

COPYRIGHT

Copyright (C) 1985, Trustess of Columbia University in the City of New York. Per­
mission is granted to any individual or institution to use, copy, or redistribute this

Icon International, Inc. 7

KERMIT(l) USER CO:MMANDS KERMIT(l)

// '\
(Kermit) software so long as it is not sold for profit, provided this copyright notice is ~j
retained.

8 Icon International, Inc.

(

c

KILL (1) USER COM1v1ANDS KILL (1)

NAME

kill - terminate a process

SYNOPSIS

kill [-signo] PID ...

DESCRIPTION

Kill sends signal 15 (terminate) to the specified processes. This will normally kill
processes that do not catch or ignore the signal. The process number of each asyn­
chronous process started with & is reported by the shell (unless more than one pre­
cess is started in a pipeline, in which case the number of the last process in the pipe­
line is reported). Process numbers can also be found by using ps(l).

The details of the kill are described in kill(2). For example, if process number 0 is
specified, all processes in the process group are signaled.

The killed process must belong to the current user unless he is the super-user.

If a signal number preceded by - is given as first argument, that signal is sent
instead of terminate (see signal(2)). In particular "kill -9 ... " is a sure kill.

SEE ALSO

ps(1), sh(1).
kill(2), signal(2) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(..
'."

-.

c

LD(l) USER COMMANDS LD(l)

NAME

ld - link editor for common object files

SYNOPSIS

Id [options] filename

DESCRIPTION

The Id command combines several object files into one, performs relocation, resolves
external symbols, and supports symbol table information for symbolic debugging. In
the simplest case, the names of several object programs are given, and ld combines
them, producing an object module that can either be executed or used as input for a
subsequent ld run. The output of ld is left in a.out. By default this file is executable
if no errors occurred during the load. If any input file, filename, is not an object file,
ld assumes it is either an archive library or a text file containing link editor direc­
tives. (See the Link Editor User Guide in the IOONI UXV User Guide for a discussion
of input directives.)

If any argument is a library, it is searched exactly once at the point it is encoun­
tered in the argument list. Only those routines defining an unresolved external refer­
ence are loaded. The library (archive) symbol table [see ar(4)] is searched sequen­
tially with as many passes as are necessary to resolve external references which can
be satisfied by library members. Thus, the ordering of library members is unimpor­
tant.

The following options are recognized by ld.

-a Produce an absolute, executable file; give warnings for undefined references.
This option is available only on the 3B5 and 3B2 computers. Relocation infor­
mation is stripped from the output file unless the -r option is given. The -r
option is needed only when an absolute file should retain its relocation infor­
mation (not the normal case). If neither -a nor -r is given, -a is assumed.

-e epsym
Set the default entry point address for the output file to be that of the sym­
bol epsym.

-f fill Set the default fill pattern for "holes" within an out.put section as well as ini­
tialized bss sections. The argument fill is a two-byte constant.

-Ix Search a library libx.a, where x is up to seven characters. A library is
searched when its name is encountered, so the placement of a -I IS

significant. By default, libraries are located in /lib and /usr/lib/.

-m Produce a map or listing of the input/output sections on the standard out­
put.

-ooutfile
Produce an output object file by the name outfile. The name of the default
object file is a.out.

Icon International, Inc. 1

LD(l)

FILES

-r

USER COMMANDS LD(l)

Retain relocation entries in the outP'ut object file. Relocation entries must be
saved if the output file is to become an input file in a subsequent ld run. The
link editor will not complain about unresolved references, and the output file
will not be executed.

--s Strip line number entries and symbol table information from the output
object file.

-t Turn off the warning about multiply-defined symbols that are not the same
SIze.

-u symname
Enter symname as an undefined symbol in the symbol table. This is useful for
loading entirely from a library, since initially the symbol table is empty and
an unresolved reference is needed to force the loading of the first routine.

-x Do not preserve local (non-.globl) symbols in the output symbol table; enter
external and static symbols only. This option saves some space in the output
file.

-z Do not bind anything to address zero. This option will allow runtime detec­
tion of null pointers.

-L dir
Change the algorithm of searching for libx.a to look in dir before looking in
/lib and /usr /lib. This option is effective only if it precedes the -I option
on the command line.

-M Output a message for each multiply-defined external definition. However, if
the objects being loaded include debugging information, extraneous output is

.r\
I J o

produced [see the -g option in cc(1)J. \. /
-N Put the data section immediately following the text in the output file.

-v Output a message giving information about the version of Id being used.

-VSnum
Use Dum as a decimal version stamp identifying the a.out file that is pro­
duced. The version stamp is stored in the optional header.

/Iib/libx.a
/usr /lib/libx.a
a.out

libraries
libraries
output file

SEE ALSO

as(1), cc(l).
exit(2), end(3C), a.out(4), ar(4) in the ICON/UXV Programmer Reference Manual.

ICON/UXV Programmer Guide.

Link Editor User Guide in the ICON/UXV User Guide.

2 Icon International, Inc.

LD(l) USER COMMANDS LD(l)

('. CAVEATS

(

Through its options and input directives, the common link editor gives users great
flexibility; however, those who use the input directives must assume some added
responsibilities. Input directives and options should insure the following properties
for programs:

C defines a zero pointer as null. A pointer to which zero has been assigned
must not point to any object. To satisfy this, users must not place any object
at virtual address zero in the data space.

When the link editor is called through cc(l), a startup routine is linked with
the user's program. This routine calls exit() [see exit(2)] after execution of the
main program. If the user calls the link editor directly, then the user must
insure that the program always calls exit() rather than falling through the end
of the entry routine.

The symbols etext, edata, and end [see end{3C)] are reserved and are defined by the
link editor. It is erroneous for a user program to redefine them.

If the link editor does not recognize an input file as an object file, it will assume that
it contains link editor directives and will attempt to parse it. This will occasionally
produce an error message complaining about "syntax errors".

Icon International, Inc. 3

(

(.. ~.
-'

LEX (1) USER COMMANDS LEX (1)

NAME

lex - generate programs for simple lexical tasks

SYNOPSIS

lex [-rctvn 1 [file] ...

DESCRIPTION

Lex generates programs to be used in simple lexical analysis of text.

The input files (standard input default) contain strings and expressions to be
searched for, and C text to be executed when strings are found.

A file lex.yy.c is generated which, when loaded with the library, copies the input to
the output except when a string specified in the file is found; t.hen the corresponding
program text is executed. The actual string matched is left in yytext, an external
character array. Matching is done in order of the strings in the file. The strings
may contain square brackets to indicate character classes, as in [abx-z] to indicate
a, b, x, y, and z; and the operators *, +, and r mean respect.ively any non-negative
number of, any positive number of, and either zero or one occurrence of, the previous
character or character class. The character • is the class of all ASCII characters
except new-line. Parentheses for grouping and vertical bar for alternation are also
supported. The notation r{ d,e} in a rule indicates between d and e instances of reg­
ular expression r. It has higher precedence than :, but lower than *, ?, +, and con­
catenation. The character ... at the beginning of an expression permits a successful
match only immediately after a new-line, and the character S at the end of an
expression requires a trailing new-line. The character / in an expression indicates
trailing context; only the part of the expression up to the slash is returned in yytext,
but the remainder of the expression must follow in the input stream. An operator
character ma.y be used as an ordinary symbol if it is within It symbols or preceded by
\. Thus [a-zA-Z]+ matches a string of letters.

Three subroutines defined as macros are expected: inputO to read a. charact.er;
unput(c) to replace a character read; and output(c) to place an output character.
They are defined in terms of the standard streams, but you can override them. The
program generated is named yylex(), and the library contains a mainO which caUs
it. The action REJECT on the right side of the rule causes this match to be rejected
and the next suitable match executed; the function yymoreO accumulates addi­
tional characters into the same yyte:et; and the function yyless(p) pushes back the
portion of the string matched beginning at p, which should be between yytext and
yytext+yyleng. The macros input and output use files yyin and yyout to read from
and write to, defaulted to stdin and stdout, respectively.

Any line beginning with a blank is assumed to contain only C text and is copied; if it.
precedes %% it is copied into the external definition area of t.he lex.yy.c file. All
rules should follow a %%, as in YACC. Lines preceding %% which begin with a

. Icon International, Inc. 1

LEX(l) USER CO:M:MANDS LEX(l)

2

non-blank character define the string on the left to be the remainder of the line; it
can be called out later by surrounding it with O. Note that curly brackets do not
imply parentheses; only string substitution is done.

Icon International, InC'.

C)

/

(

LEX(l)

EXAMPLE

D
%%
if
[a-zl+
O{D}+
{D}+
"++"
"+"
"/*"

USER COM:MANDS

[0-9J

prin tf("1F sta temen t \n ");
printf("tag, value o/os\n ",yytext);
prin tf(" octal n um ber %s \n II ,yytext);
printf("decimal number o/os\n II ,yy text);
prin tf("unary op \n ");
prin tf("binary op \n ");
{ loop:

while (inputO != '*');
switch (input())

}

{
case 'I': break;
case '*': unput('*');
default: go to loop;
}

The external names generated by lex all begin with the prefix yy or YY.

LEX (1)

The flags must appear before any files. The flag -r indicates RATFOR actions, -c
indicates C actions and is the default, -t causes the lex.yy.c program to be written
instead to standard output, -v provides a one-line summary of statistics of the
machine generated, -n will not print out the - summary. Multiple files are treated
as a single file. If no files are specified, standard input is used.

Certain ta.ble sizes for the resulting finite state machine can be set in the definitions
section:

%p n number of positions is n (default 2000)

%n n number of states is n (500)

%t n number of parse tree nodes is n (1000)

%a n number of transitions is n (3000)

The use of one or more of the above automatically implies the -v option, unless the
-n option is used.

SEE ALSO

yacc(l).
malloc(3X) in the UNIX System V Programmer Reference Manual.

Icon International, Inc. 3

LEX(l) USER COMMANDS LEX(l)

BUGS

The -r option is not yet fully operational.

4 Icon International, Inc.

LlNE(I) USER COMMANDS LINE (1)

NAME

line - read one line

SYNOPSIS

line

DESCRIPTION

Line copies one line (up to a new-line) from the standard input and writes it on the
standard output. It returns an exit code of 1 on EOF and always prints at. least a
new-line. It is often used within shell files to read from the user's terminal.

SEE ALSO

sh(l).
read(2) in the IOONjUXV Programmer Reference Manual.

Icon International, Inc. 1

\

./

(

LINT (1) USER COMMANDS LINT (1)

NAME

lin t - a C program checker

SYNOPSIS

lint ! option 1 ... file ...

DESCRIPTION

Lint attempts to detect features of the C program files that are likely to be bugs,
non-portable, or wasteful. It also checks type usage more strictly than the com­
pilers. Among the things that are currently detected are unreachable statements,
loops not entered at. the top, automatic variables declared and not used, and logical
expressions whose value is constant. Moreover, the usage of functions is checked to
find functions that return values in some places and not in others, functions called
with varying numbers or types of arguments, and functions whose values are not
used or whose values are used but none returned.

Arguments whose names end with .c are taken to be C source files. Arguments
whose names end with .In are taken to be the result of an earlier invocation of lint
with either the -c or the -0 option used. The .In files are analogous to .0 (object)
files that are produced by the cC(l) command when given a .c file as input. Files
with other suffixes are warned about and ignored.

Lint will take all the .c,.In, and llib-lx.In (specified by -Ix) files and process them in
their command line order. By default, lint appends the standard C lint library (llib­
lc.ln) to the end of the list of files. However, if the -p option is used, the portable C
lint library (llib-port.ln) is appended instead. When the -c option is not used, the
second pass of lint checks this list of files for mutual compatibility. When the -c
option is used, the .In and the llib-lx.ln files are ignored.

Any number of lint options may be used, in any order, intermixed with file-name
arguments. The following options are used to suppress certain kinds of complaints:

-a Suppress complaints about assignments of long values to variables that are
not long.

-b Suppress complaints about break statements that cannot be reached. (Pro­
grams produced by lex or yacc will often result in many such complaints).

-h Do not apply heuristic tests that attempt to intuit bugs, improve style, and
reduce waste.

-u Suppress complaints about functions and external variables used and not
defined, or defined and not used. (This option is suitable for running l£nt on a
subset of files of a larger program).

-v Suppress complaints about. unused arguments in functions.

-x Do not report variables referred to by external declarations but never used.

Icon International, Inc. 1

LINT(l) USER COMMANDS LINT (1)

2

The following arguments alter lint's behavior:

-Ix Include additional lint library nib-Ix.ln. For example, you can include a lint
version of the Math Library nib-lm.In by inserting -1m on the command
line. This argument does not suppress the default use of nib-Ie.ln. These
lint libraries must be in the assumed directory. This option can be used to
reference local lint libraries and is useful in the development of multi-file pro­
jects.

-n Do not check compatibility against either the standard or the portable lint
library.

-p Attempt to check portability to other dialects (mM and GOOS) of C. Along
with stricter checking, this option causes all non-external names to be trun­
cated to eight characters and all external names to be truncated to six char­
acters and one case.

-c Cause lint to produce a .In file for every .e file on the command line. These
.In files are the product of lint's first pass only, and are not checked for
inter-function compatibility.

-0 lib Cause lint to create a lint library with the name llib-llib.ln. The -c option
nullifies any use of the -0 option. The lint library produced is the input that
is given to lint's second pass. The -0 option simply causes this file t.o be
saved in the named lint library. To produce a llib-llib.ln without extraneous
messages, use of the -x option is suggested. The -v option is useful if the
source file(s) for the lint library are just external interfaces (for example, the
way the file llib-le is written). These option settings are also available
through the use of "lint comments" (see below).

The -D, -U, and -1 options of cpp(l) and the -g and -0 options of cc(l) are also
recognized as separate arguments. The -g and -0 options are ignored, but, by
recognizing these options, lint's behavior is closer to that of the cc(l) command.
Other options are warned about and ignored. The pre-processor symbol "lint" is
defined to allow certain questionable code to be altered or removed for lint. There­
fore, the symbol "lint" should be thought of as a reserved word for all code that is
planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREAOHED*/
at appropriate points stops comments about unreachable code. (This
comment is typically placed just after calls to functions like exit(2».

/*VARARGSn*/
suppresses the usual checking for variable numbers of arguments in
the following function declaration. The data types of the first n argu­
ments are checked; a missing n is taken to be O.

/*ARGSUSED*/
turns on the -v option for the next function.

/*LINTLmRARY*/
at the beginning of a file shuts off complaints about unused functions
and function arguments in this file. This is equivalent to using the -v
and -x options.

Icon International, Inc.

(

LINT (1) USER COMMANDS LINT (1)

FILES

Lint produces its first output on a per-source-file basis. Complaints regarding
included files are collected and printed after all source files have been processed.
Finally, if the -c option is not used, information gathered from all input files is col­
lected and checked for consistency. At this point, if it is not clear whether a com­
plaint stems from a given source file or from one of its included files, the source file
name will be printed followed by a question mark.

The behavior of the -c and the -0 options allows for incremental use of lint on a
set of C source files. Generally, one invokes lint once for each source file with the -c
option. Each of these invocations produces a .In file which corresponds to the .c file,
and prints all messages that are about just that source file. After all the source files
have been separately run through lint, it is invoked once more (without the -c
option), listing all the .In files with the needed -Ix options. This will print all the
inter-file inconsistencies. This scheme works well with make(!); it allows make to be
used to lint only the source files that have been modified since the last time the set
of source files were linted.

/usr /lib

/usr /lib/lint[12J
/usr /lib /llib-Ic.ln

/usr /lib/llib-port.ln

/usr /lib/llib-lm.ln

/usr /tmp/*lint*

the directory where the lint libraries specified by the -Ix option
must exist
first and second passes
declarations for C Library functions (binary format; source is in
/usr /lib /llib-Ie)
declarations for portable functions (binary format; source is in
/usr /lib /llib-port)
declarations for Math Library functions (binary format; source
is in /usr/lib/llib-Im)
temporaries

SEE ALSO

BUGS

cc(l), cpp(l), make(I).

exit(2), longjmp(3C), and other functions that do not return are not understood; this
causes various lies.

Icon Int.ernational, Inc. 3

()

LOGIN(1) USER COMMANDS LOGIN(I)

NAME

login - sign on

SYNOPSIS

login I name I env-var ... 11

DESCRIPTION

The login command is used at the beginning of each terminal session and allows you
to identify yourself to the system. It may be invoked as a command or by the sys­
tem when a connection is first established. Also, it is invoked by the system when a
previous user has terminated the initial shell by typing a cntrl-d to indicate an
"end-of-file." (See How to Get Started at the beginning of this volume for instruc­
tions on how to dial up initially.)

If login is invoked as a command it must replace the initial command interpreter.
This is accomplished by typing:

exec login

from the initial shell.

Login asks for your user name (if not supplied as an argument), and, if appropriate,
your password. Echoing is turned off (where possible) during the typing of your pass­
word, so it will not appear on the written record of the session.

At some installations, an option may be invoked that will require you to enter a
second "dialup" password. This will occur only for dial-up connections, and will be
prompted by the message "dialup password:". Both passwords are required for a
successful login.

If you do not complete the login successfully within a certain period of time (e.g., one
minute), you are likely to be silently disconnected.

After a successful login, accounting files are updated, the procedure /etc/profile is
performed, the message-of-the-day, if any, is printed, the user-ID, the group-ID, the
working directory, and the command interpreter (usually sh(l)) is initialized, and the
file .profile in the working directory is executed, if it exists. These specifications are
found in the /etc/passwd file entry for the user. The name of the command inter­
preter is - followed by the last component of the interpreter's path name (i.e., -sh).
If this field in the password file is empty, then the default command interpret.er,
/bin/sh is used. If this field is "*", then a chroot(2) is done to the directory named
in the directory field of the entry. At that point login is re-executed at the new It-vel
which must have its own root structure, including /etc/login and /etc/passwd.

Icon International, Inc. 1

LOGIN(l) USER COMMANDS LOGIN(I)

Fn...ES

The basic environment (see environ(5)) is initialized to:

HOME==your-login-directory
PATH=:/bin:/usr /bin
SHELL=last-jield-of-passwd-entry
MAlL-/usr Imaill your-login-name
TZ==timezone-specijication

The environment may be expanded or modified by supplying additional arguments to
login, either at execution time or when login requests your login name. The argu­
ments may take either the form :tX% or zu==yyy. Arguments without an equal sign
are placed in the environment as

Ln=xxx

where n is a number starting at 0 and is incremented each time a new variable name
is required. Variables containing an = are placed into the environment without
modification. If they already appear in the environment, then they replace the older
value. There are two exceptions. The variables PATH and SHELL cannot be
changed. This prevents people, logging into restricted shell environments, from
spawning secondary shells which are not restricted. Both login and getty understand
simple single-character quoting conventions. Typing a backslash in front of a char­
acter quotes it and allows the inclusion of such things as spaces ~nd tabs.

letc/utmp
letc/wtmp
/usr Imail/your-name
letc/motd
letc/passwd
letc/profile
.profile

accounting
accounting
mailbox for user your-name
message-of-the-day
password file
system profile
user's login profile

SEE ALSO

maBel), newgrp(l), shell, su(l).
passwd(4), profile(4), environ(5) in the IOON/UXV Programmer Reference Manual.

DIAGNOSTICS

2

Login incorrect if the user name or the password cannot be matched.
No shell, cannot open password file, or no directory: consult a UNIX system program­
ming counselor.
No utmp entry. You must exec "login" from the lowest level "sh". if you attempted to

Icon International, Inc.

./

(

LOGIN(1) USER COM:MANDS LOGIN(l)

execute login as a command without using the shell's exec internal command or from
other than the initial shell.

Icon International, Inc. 3

I", /

LOGNAME(I) USER COMMANDS LOGNAME(l)

(NAME

(

logname - get login name

SYNOPSIS

logname

DESCRIPTION

Logname returns the contents of the environment variable SLOGNAME, which is set
when a user logs into the system.

FlLES

Jete Jprofile

SEE ALSO

env(l), login(1).
logname(3X), environ(5) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

LORDER(l) USER COMMANDS LORDER(l)

NAME

lorder - find ordering relation for an object library

SYNOPSIS

lorder file ...

DESCRIPTION

FILES

The input is one or more object or library archive files (see ar(l)). The standard
output is a list of pairs of object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The output may be processed by
tsort(l) to find an ordering of a library suitable for one-pass access by ld(l}. Note
that the link editor (except on the PDP-H) ld(l) is capable of multiple passes over an
archive in the portable archive format (see ar(4)) and does not require that lorder(l}
be used when building an archive. The usage of the lorder(l} command may, how­
ever, allow for a slightly more efficient access of the archive during the link edit pro­
cess.

The following example builds a new library from existing .0 files.

ar cr library lorder *.0 I tsort

*symref, *symdef temporary files

SEE ALSO

BUGS

ar(l), ld(l}, tsort(l}.
ar(4) in the ICON I u.xv Programmer Reference Manual.

Object files whose names do not end with .0, even when contained in library
archives, are overlooked. Their global symbols and references are attributed to some
other file.

Icon International, Inc. 1

(~,

I

\ -_./

.(.,
LP (1) USER COMMANDS LP(l)

NAME

lp, cancel - send/cancel requests to an LP line printer

SYNOPSIS

lp [-c] f~dest] [-m] [-nnumber] [-ooption] [-11] [-ttitle] [-wI files
cancel ids J [printers]

DESCRIPTION

Lp arranges for the named files and associated information (collectively called a
request) to be printed by a line printer. If no file names are mentioned, the standard
input is assumed. The file name - stands for the standard input and may be sup­
plied on the command line in conjunction with named files. The order in which files
appear is the same order in which they will be printed.

Lp associates a unique id with each request and prints it on the standard output.
This id can be used later to cancel (see cancel) or find the status (see Ipstat(l)) of the
request.

The following options to Ip may appear in any order and may be intermixed with file
names:

-c Make copies of the files to be printed immediately when Ip is invoked.
Normally, files will not be copied, but will be linked whenever possible.
If the -c option is not given, then the user should be careful not to
remove any of the files before the request has been printed in its
entirety. It should also be noted that in the absence of the -c option,
any changes made to the named files after the request is made but
before it is printed will be reflected in the printed output.

-ddest Choose dest as the printer or class of printers that is to do the printing.
If dest is a printer, then the request will be printed only on that specific
printer. If dest is a class of printers, then the request will be printed on
the first available printer that is a member of the class. Under certain
conditions (printer unavailability, file space limitation, etc.), requests for
specific destinations may not be accepted (see accept(IM) and Ipstat(1)).
By default, dest is taken from the environment variable LPDEST (if it is
set). Otherwise, a default destination (if one exists) for the computer
system is used. Destination names vary between systems (see Ipstat(I)).

-m Send mail (see mail{l}} after the files have been printed. By default, no
mail is sent upon normal completion of the print request.

-nnumber Print number copies (default of 1) of the output.

-0 option Specify printer-dependent or class-dependent options. Several such
options may be collected by specifying the -0 keyletter more than once.
For more information about what is valid for options, see Models in
Ipadmin(lM).

-11 Suppress messages from Ip(l) such as "request id is

Icon International, Inc. 1

LP(l)

Fn.ES

USER COMMANDS LP(l)

-ttille Print title on the banner page of the output.

-w Write a message on the user's terminal after the files have been printed.
If the user is not logged in, then mail will be sent instead.

Oancel cancels line printer requests that were made by the Ip(l) command. The
command line arguments may be either request ids (as returned by Ip(l)) or printer
names (for a complete list, use Ipstat(l». Specifying a request id cancels the associ­
ated request even if it is currently printing. Specifying a printer cancels the request
which is currently printing on that printer. In either case, the cancellation of a
request that is currently printing frees the printer to print its next available request.

/usr /spool/lp/*

SEE ALSO

2

enable(l), lpstat(l), mail(l).
accept(lM), Ipadmin(lM), Ipsched(lM) in the ICON/UXV Administrator Reference
Manual.

Icon International, Inc.

C)

LPR(1) USER COMlv,IANDS LPR(1)

NAME

lpr - off line print

SYNOPSIS

Ipr I-Pprinter /I-#num ll-C class ll-J job I ! -T title 1 [-i numcols III -1234 font ll-wnum 1
-pltndgvcfrmhs I [name ... J

DESCRIPTION

Lpr is a simulation of the. ICON/UXB /p''I' command. It is provided for use with pro­
grams that expect the ICON/lJA"B print spooler interface. Lpr uses a spooling dae­
mon to print the named files when facilities become available. If no names appear,
the standard input is assumed. The -P option may be used to force output to a
specific printer. Normally, the default printer is used (site dependent), or the value
of the environment variable PRINTER is used. The following single letter options
are used to notify the line printer spooler that the files are not standard text files.
The spooling daemon will use the appropriate filters to print the data accordingly.

-p Use pr(l) to format the files (equh'alent to print).

-1 Use a filter which allows control characters to be printed and suppresses page
breaks.

-t The files are assumed to contain data from troff(l) (cat phototypesetter com-
mands).

-n The files are assumed to contain data from ditroff (device independent troff).

-d The files are assumed to contain data from tex(l) (DVI format from Stanford).

-g The files are assumed to contain standard plot data as produced by the
plot(3X) routines (see also plot(l G) for the filters used by the printer spooler).

-v The files are assumed to contain a raster image for devices like the Benson
Varian.

-c The files are assumed to contain data produced by czlp/ot(l).

-f Use a filter which interprets the first character of each line as a standard FOR-
TRAN carriage control character. The remaining single letter options have
the following meaning.

-r Remove the file upon completion of spooling or upon completion of printing
(with the -s option).

-m Send mail upon completion.

-h Suppress the printing of the burst page.

-s Use symbolic links. Usually files are copied to the spool directory. The -C
option takes the following argument as a job classification for use on the burst
page. For example,

lpr -C EECS foo.c causes the system name (the name returned by host­
name{l)) to be replaced on the burst page by EECS, and the file foo.c to be
printed. The -J option takes the following argument as the job name to print

Icon International, Inc. 1

LPR(l) USER CO:MMANDS LPR(1)

FILES

on the burst page. Normally, the first file's name is used. The -T option uses
the next argument as the title used by prell instead of the file name. To get
multiple copies of output, use the -#num option, where num is the number of
copies desired of each file named. For example,

lpr -#3 foo.c bar.c more.c would result in 3 copies of the file foo.c, fol­
lowed by 3 copies of the file bar.c, etc. On the other hand,

cat foo.c bar.c more.c llpr -#3 will give three copies of the concatena­
tion of the files. The -i option causes the output to be indented. If the next
argument is numeric, it is used as the number of blanks to be printed before
each line; otherwise, 8 characters are printed. The -w option takes the
immediately following number to be the page width for pro The -s option will
use 8ymlink{2} to link data files rather than trying to copy them so large files
can be printed. This means the files should not be modified or removed until
they have been printed. The option -1234 Specifies a font to be mounted on
font position i. The daemon will construct a .rajlmag file referencing
/usr/lib/vJont/name.size.

/etc/passwd
/etc/printcap
/usr /lib/lpd*
/usr /spool/*
/usr /spool/*/cf*
/usr/spool/*/df*
/usr /spool/* /tf *

personal identification
printer capabilities data base
line printer daemons
directories used for spooling
daemon control files
data files specified in "cf" files
temporary copies of "cf" files

SEE ALSO

lpq(l), Iprm(1), pr(l), symlink(2), printcap(5), Ipc(8), Ipd(8), cleanlpd(8)

DIAGNOSTICS

BUGS

2

If you try to spool too large a file, it will be truncated. Lpr will object to printing
binary files. If a user other than root prints a file and spooling is disabled, lpr will
print a message saying so and will not put jobs in the queue. If a connection to lpd
on the local machine cannot be made, lpr will say that the daemon cannot be
started. Diagnostics may be printed in the daemon's log file regarding missing spool
files by lpd. If lpd is not configured properly or has become out of sync with it's lock
files, cleanlpd(8) may be used to restart lpd in a new environment.

Fonts for troff and tex reside on the host with the printer. It is currently not. possible
to use local font libraries.

Icon International, Inc.

c

(

(.)
-'

LPSTAT(l) USER COMMANDS LPSTAT(l)

NAME

lpstat - print LP status information

SYNOPSIS

lpstat [options]

DESCRIPTION

Lpstat prints information about the current status of the LP line printer system.

If no options are given, then Ipstat prints the status of all requests made to Ip(l) by
the user. Any arguments that are not options are assumed to be request ids (as
returned by /p). Lpstat prints the status of such requests. Options may appear in
any order and may be repeated and intermixed with other arguments. Some of the
key letters below may be followed by an optional list that can be in one of two forms:
a list of items separated from one another by a comma, or a list of items enclosed in
double quotes and separated from one another by a comma and/or one or more
spaces. For example:

-u"userl, user2, user3"

The omission of a list following such keyletters causes all information relevant to the
keyletter to be printed, for example:

lpstat -0

prints the status of all output requests.

-at list] Print acceptance status (with respect to /p) of destinations for requests.
List is a list of intermixed printer names and class names.

-e[list] Print class names and their members. List is a list of class names.

-d Print the system default destination for lp.

~[list] Print the status of output requests. List is a list of intermixed printer
names, class names, and request ids.

-pI list] Print the status of printers. List is a list of printer names.

-r Print the status of the LP request scheduler

-s Print a status summary, including the status of the line printer scheduler,
the system default destination, a list of class names and their members,
and a list of printers and their associated devices.

-t Print all status information.

-u[list] Print status of output requests for users. List is a list of login names.

Icon International, Inc. 1

LPSTAT(l) USER COM:MANDS LPSTAT(l)

()
-v[list] Print the names of printers and the path names of the devices associated ~j

with them. List is a list of printer names.

FILES

/usr/spool/lp/*

SEE ALSO

enable(l), lp(l).

2

.." j

Icon International, Inc.

(

LS(l) USER CO:MMANDS LS(l)

NAME

Is -list contents of directory

SYNOPSIS

Is [-RadCxmlnogrtucpFbqisfL] [names]

DESCRIPTION

For each directory argument, Is lists the contents of the directory; for each file argu­
ment, Is repeats its name and any other information requested. The output is sorted
alphabetically by default. When no argument is given, the current directory is
listed. When several arguments are given, the arguments are first sorted appropri­
ately, but file arguments appear before directories and their contents.

There are three major listing formats. The default format is to list one entry per
line, the -C and -x options enable multi-column formats, and the -m option
enables stream output format in which files are listed across the page, separated by
commas. In order to determine output formats for the -C, -x, and -m options, Is
uses an environment variable, COLUMNS, to determine the number of character
positions available on one output line. If this variable is not set, the terminfo data­
base is used to determine the number of columns, based on the environment variable
TERM. If this information cannot be obtained, 80 columns are assumed.

There are an unbelievable number of options:

-R Recursively list subdirectories encountered.

-a List all entries; usually entries whose names begin with a period (.) are not
listed.

-d If an argument is a directory, list only its name (not its contents); often used
with -I to get the status of a directory.

-C Multi-column output with entries sorted down the columns.

-x Multi-column output with entries sorted across rather than down the page.

-m Stream output format.

-I List in long format, giving mode, number of links, owner, group, size in bytes,
and time of last modification for each file (see below). If the file is a special
file, the size field will instead contain the major and minor device numbers
rather than a size. If the file is a symbolic link the pathname of the linked-to
file is printed preceded by "->".

-n The same as -1, except that the owner's UTI) and group's GID numbers are
printed, rather than the associated character strings.

-0 The same as -I, except that the group is not printed.

-g

-r

The same as -I, except that the owner is not printed.

Reverse the order of sort to get reverse alphabetic or oldest first as appropri­
ate.

Icon International, Inc. 1

LS(l)

2

USER CO:MMANDS LS(l)

-t Sort by time modified (latest first) instead of by name.

-u Use time of last access instead of last modification for sorting (with the -t
option) or printing (with the -1 option).

-c Use time of last modification of the i-node (file created, mode changed, etc.)
for sorting (-t) or printing (-1).

-p Put a slash (/) after each filename if that file is a directory.

-F Put a slash (/) after each filename if that file is a directory, put an "at" sign
(@) after each filename if that file is a symbolic link, and put an asterisk (*)
after each filename if that file is executable.

-b Force printing of non-graphic characters to be in the octal \ddd notation.

-,..q . Force printing of non-graphic characters in file· names as the character (1).

-i For each file, print the i-number in the first column of the report.

-8 Give size in blocks, including indirect blocks, for each entry.

-f Force each argument to be interpreted as a directory and list the name found
in each slot. This option turns off -1, -t, -8, and -r, and turns on -a; the
order is the order in which entries appear in the directory.

-L If the argument is a symbolic link, list the file or directory the link references
rather than the link itself.

The mode printed under the -1 option consists of 10 characters that are interpreted
as follows:

The first character is:

d if the entry is a directory;
b if the entry is a block special file;
e if the entry is a character special file;
p if the entry is a fifo (a.k.a. "named pipe") special file;

if the entry is an ordinary file.

The next 9 characters are interpreted as three sets of three bits each. The
first set refers to the owner's permissions; the next to permissions of others in
the user-group of the file; and the last to all others. Within each set, the
three characters indicate permission to read, to write, and to execute the file
as a program, respectively. For a directory, "execute" permission is inter­
preted to mean permission to search the directory for a specified file.
The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as 8 if the file has set-group­
ID mode; likewise, the user-execute permission character is given as 8 if the
file has set-user-ID mode. The last character of the mode (normally x or -) is
t if the 1000 (octal) bit of the mode is on; see chmod(1) for the meaning of
this mode. The indications of set-ID and 1000 bits of the mode are

Icon International, Inc.

(

c'

LS(l)

Fil.JES

USER COM1v1ANDS LS(l)

capitalized (S and T respectively) if the corresponding execute permission is
not set.

When the sizes of the files in a directory are listed, a total count of blocks, including
indirect blocks, is printed.

/etc/passwd
/etc/group
/usr/lib/terminfo/*

to get user IDs for Is -1 and Is -0.

to get group IDs for Is -1 and Is -g.
to get terminal information.

SEE ALSO

chmod(l), find(l).

BUGS

Unprintable characters in file names may confuse the columnar output options.

Icon International, Inc. 3

(.. -.
...

('

M4(1) USER COMMANDS M4(1)

NAME

m4 - macro processor

SYNOPSIS

m4 [options] [files]

DESCRIPTION

M4 is a macro processor intended as a front end for Ratfor, C, and other languages.
Each of the argument files is processed in order; if there are no files, or if a file name
is -, the standard input is read. The processed text is written on ~he standard out­
put.

The options and their effects are as follows:

-e Operate interactively. Interrupts are ignored and the output is unbuffered.

-s Enable line sync output for the C preprocessor (#line ...)

-Bint Change the size of the push-back and argument collection buffers from the
default of 4,096.

-Hint Change the size of the symbol table hash array from the default of 199. The
size should be prime.

-Sint Change the size of the call stack from the default of 100 slots. Macros take
three slots, and non-macro arguments take one.

-Tint Change the size of the token buffer from the default of 512 bytes.

To be effective, these flags must appear before any file names and before any -D or
-U flags:

-Dname[=val]
Defines name to valor to null in val's absence.

-Uname
undefines name.

Macro calls have the form:

name(argl,arg2, ... , argn)

The (must immediately follow the name of the macro. If the name of a defined
macro is not followed by a (, it is deemed to be a call of that macro with no argu­
ments. Potential macro names consist of alphabetic letters, digits, and underscore _.
where the first character is not a digit.

Icon International, Inc. 1

M4(1) USER COMMANDS M4(l)

2

Leading unquoted blanks, tabs, and new-lines are ignored while collecting arguments.
Left and right single quotes are used to quote strings. The value of a quoted string
is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. If fewer arguments are supplied than are in the macro
definition, the trailing arguments are taken to be null. Macro evaluation proceeds
normally during the collection of the arguments, and any commas or right
parentheses which happen to turn up within the value of a nested call are as
effective as those in the original input text. Mter argument collection, the value of
the macro is pushed back onto the input stream and rescanned.

M-I makes available the following built-in macros.
this is done the original meaning is lost. Their
stated.

They may be redefined, but once
values are null unless otherwise

define

undefine

defn

pushdef

popdef

ifdef

shift

changequote

changecom

divert

the second argument is installed as the value of the macro whose name
is the first argument. Each occurrence of $n in the replacement text,
where n is a digit, is replaced by the n-th argument. Argument 0 is the
name of the macro; missing arguments are replaced by the null string;
$# is replaced by the number of arguments; $* is replaced by a list of
all the arguments separated by commas; $@ is like $*, but each argu­
ment is quoted (with the current quotes).

removes the definition of the macro named in its argument.

returns the quoted definit.ion of its argument.(s}. It is useful for renam­
ing macros, especially built.-ins.

like define, but saves any previous definition.

removes current definition of its argument(s), exposing the previous
one, if any.

if the first argument is defined, the value is the second argument, oth­
erwise the third. If there is no third argument, the value is null. The
word unix is predefined on UNIX system versions of m-l.

returns all but its first argument. The other arguments are quoted and
pushed back with commas in between. The quoting nullifies the effect
of the extra scan that will subsequently be performed.

change quote symbols to the first and second arguments. The symbols
may be up to five characters long. Changequote without arguments
restores the original values (i.e.,).

change left and right comment markers from the default # and new­
line. With no arguments, the comment mechanism is effect.ively dis­
abled. With one argument, the left marker becomes the argument. and
the right marker becomes new-line. With two arguments, both mark­
ers are affected. Comment markers may be up to five characters long.

m-l maintains 10 output streams, numbered 0-9. The final output. is
the concatenation of the streams in numerical order; initially stream 0
is the current stream. The divert macro changes the current output
stream to its (digit-string) argument. Output diverted to a stream
other than 0 through 9 is discarded.

Icon International, Inc.

C)

(
I~

{"

(

M4(1)

undivert

divnum

dnl

ifelse

incr

deer

eval

len

index

substr

translit

include

sinclude

syscmd

sysval

USER CO:MMANDS M4(1)

causes immediate output of text from diversions named as arguments,
or all diversions if no argument. Text may be undiverted into another
diversion. Undiverting discards the diverted text.

returns the value of the current output stream.

reads and discards characters up to and including the next new-line.

has three or more arguments. If the first argument is the same string
as the second, then the value is the third argument. If not, and if there
are more than four arguments, the process is repeated with arguments
4, 5, 6 and 7. Otherwise, the value is either the fourth string, or, if it is
not present, null.

returns the value of its argument incremented by 1. The value of the
argument is calculated by interpreting an initial digit-string as a
decimal number.

returns the value of its argument decremented by 1.

evaluates its argument as an arithmetic expression, using 32-bit arith­
metic. Operators include +, -, *, /, %, .. (exponentiation), bitwise &,
I, ", and -; relationals; parentheses. Octal and hex numbers may be
specified as in C. The second argument specifies the radix for the
result; the default is 10. The third argument may be used to specify
the minimum number of digits in the result.

returns the number of characters in its argument.

returns the position in its first argument where the second argument
begins (zero origin), or -1 if the second argument does not occur.

returns a substring of its first argument. The second argument is a
zero origin number selecting the first character; the third argument
indicates the length of the substring. A missing third argument is
taken to be large enough to extend to the end of the first string.

transliterates the characters in its first argument from the set given by
the second argument to the set given by the third. No abbreviations
are permitted.

returns the contents of the file named in the argument.

is identical to include, except that it says nothing if the file is inaccessi­
ble.

executes the UNIX system command given in the first argument. No
value is returned.

is the return code from the last call to syscmd.

maketemp fills in a string of xx:xxx in its argument with the current process ID.

m4exit causes immediate exit from m . .f. Argument 1, if given, is the exit code;
the default is O.

m4wrap argument 1 will be pushed back at final EOF; example:
m4wrap(cleanup())

err print

dumpdef

traceon

prints its argument on the diagnostic output file.

prints current names and definitions, for the named items, or for all if
no arguments are giyen.

with no arguments, turns on tracing for all macros (including built-ins).

Icon International, Inc. 3

M4(1)

traceoff

SEE ALSO

cc(l), cpp(l).

USER COMMA.l\lJ)S M4(1)

Otherwise, turns on tracing for named macros.

turns off trace globally and for any macros specified. Macros
specifically traced by traceon can be untraced only by specific calls to
trace off.

The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie.

4 Icon International, Inc.

c)

/

(

MAlL(I) USER COMMANDS MA1L(I)

NAME

mail, rmail - send mail to users or read mail

SYNOPSIS

mail [-epqr 1 I -f file 1

mail [-t 1 persons

rmail I -t 1 persons

DESCRIPTION

Mail without arguments prints a user's mail, message-by-message, in last-in, first-out
order. For each message, the user is prompted with a r, and a line is read from the
standard input to determine the disposition of the message:

<new-line>
+
d
p

s [files 1
W [files 1

m [persons 1

q
EOT (control-d)
x
!command

*

Go on to next message.
Same as <new-line>.
Delete message and go on to next message.
Print message again.
Go back to previous message.
Save message in the named files (mbox is default).
Save message, without its header, in the named files (mbox
is default).
Mail the message to the named persons (yourself is
default).
Put undeleted mail back in the mailfile and stop.
Same as q.
Put all mail back in the mail file unchanged and stop.
Escape to the shell to do command. .
Print a command summary.

The optional arguments alter the printing of the mail:

-e

-p
-q

-r
-lfile

causes mail not to be printed. An exit value of 0 is returned if the user has
mail; otherwise, an exit value of 1 is returned.
causes all mail to be printed without prompting for disposition.
causes mail to terminate after interrupts. Normally an interrupt only causes
the termination of the message being printed.
causes messages to be printed in first-in, first-out order.
causes mail to use file (e.g., mbox) instead of the default mailfile.

When persons are named, mail takes the standard input up to an end-of-file (or up
to a line consisting of just a.) and adds it to each person's mailfile. The message is

Icon International, Inc. 1

MAIL(I) USER COMrv1ANDS MAIL(I)

FlLES

2

preceded by the sender's name and a postmark. Lines that look like postmarks in
the message, (i.e., "From ... ") are preceded with a >. The -t option causes the
message to be preceded by all persons the mail is sent to. A person is usually a user
name recognized by login{l). If a person being sent mail is not recognized, or if mail
is interrupted during input, the file dead.letter will be saved to allow editing and
resending. Note that this is regarded as a temporary file in that it is recreated
every time needed, erasing the previous contents of dead.letter.

To denote a recipient on a remote system, prefix person by the system name and
exclamation mark (see uucp(lC»). Everything after the first exclamation mark in
persons is interpreted by the remote system. In particular, if persons contains addi­
tional exclamation marks, it can denote a sequence of machines through which the
message is to be sent on the way to its ultimate destination. For example, specifying
a!h!cde as a recipient's name causes the message to be sent to user h!cde on system
a. System a will interpret that destination as a request to send the message to user
cde on system h. This might be useful, for instance, if the sending system can access
system a but not system h, and system a has access to system h. Mail will not use
uucp if the remote system is the local system name (i.e., localsystem!user).

The mailfile may be manipulated in two ways to alter the function of mail. The
other permissions of the file may be read-write, read-only, or neither read nor write
to allow different levels of privacy. If changed to other than the default, the file will
be preserved even when empty to perpetuate the desired permissions. The file may
also contain the first line:

Forward to person

which will cause all mail sent to the owner of the mailfile to be forwarded to person.
This is especially useful to forward all of a person's mail to one machine in a multi­
ple machine environment. In order for forwarding to work properly the mailfile
should have "mail" as group ID, and the group permission should be read-write.

Rmail only permits the sending of mail; uucp(IC) uses rmail as a security precaution.

When a user logs in, the presence of mail, if any, is indicated. Also, notification is
made if new mail arrives while using mail.

/etc/passwd
/usr /mail/ user
$HOME/mbox
SMAlL
/tmp/ma*
/usr /mail/*.lock
dead.letter

to identify sender and locate persons
incoming mail for user; i.e., the mailfile
saved mail
variable containing path name of mailfile
temporary file
lock for mail directory
unmailable text

Icon International, Inc.

(

MAIL(l) USER COMMANDS MAIL(l)

SEE ALSO

login(l), mailx{l), uucp{l C), write(l).

BUGS

Conditions sometimes result in a failure to remove a lock file.
After an interrupt, the next message may not be printed; printing may be forced by
typing a p.

Icon International, Inc. 3

c

MAlLX(1) USER COMMANDS MAILX(l)

(_. __ .;, NAME

mailx - interactive message processing system

SYNOPSIS

mailx [options] Iname ...]

DESCRIPTION

The command mailx provides a comCortable, flexible environment Cor sending and
receiving messages electronically. '\Then reading mail,
provides commands to Cacilitate saving, deleting, and responding to messages.

When sending mail,
allows editing, reviewing and other modification of the message as it is entered.

Incoming mail is stored in a standard file for each user, called the system for that
user. When is called to read messages, the is the default place to find them. As
messages are read, they are marked to be moved to a secondary file for storage,
unless specific action is taken, so that the messages need not be seen again. This
secondary file is called the and is normally located in the user's HO:ME directory (see
"MBOX" 0 for a description of t.his file). Messages remain in this file until forcibly
removed.

On the command line, options start with a dash (-) and any other arguments are
taken to be destinations (recipients). If no recipients are specified,
will attempt to read messages from the. Command line options are:

-d

-f []

-F

-h

-H
-i
-n
-N
-r address

-s subject
-u user

-u

Icon International, Inc.

Turn on debugging output. Neither particularly interesting
nor recommended.
Test for presence of mail. Mailx prints nothing and exits with
a successful return code if there is mail to read.
Read messages from instead of. If no is specified, the is
used.
Record the message in a file named after the first recipient.
Overrides the "record" variable, if set (see).
The number of network "hops" made so far. This is provided
for network software to avoid infinite delivery loops.
Print header summary only.
Ignore interrupts. See also "ignore" O.
Do not initialize from the system default Mailx.rc file.
Do not print initial header summary.
Pass address to network delivery software. All tilde com­
mands are disabled.
Set the Subject header field to subject.
Read user's This is only effective if user's
is not read protected.

Convert uucp style addresses to internet standards.

1

MAILX(l) USER COMMANDS MAILX(1)

2

Overrides the "conv" environment variable.

When reading mail,
is in command mode. A header summary of the first several messages is displayed,

followed by a prompt indicating can accept regular commands (see below). When
sending mail,
is in input mode. If no subject is specified on the command line, a prompt for the

subject is printed. As the message is typed,
will read the message and store it in a temporary file. Commands may be entered

by beginning a line with the tilde C) escape character followed by a single command
letter and optional arguments. See for a summary of these commands.

At any time, the behavior of is governed by a set of environment variables. These
are flags and valued parameters which are set and cleared via the set and unset
commands. See below for a summary of these parameters.

Recipients listed on the command line may be of three types: login names, shell
commands, or alias groups. Login names may be any network address, including
mixed network addressing. If the recipient name begins with a pipe symbol (:), the
rest of the name is taken to be a shell command to pipe the message through. This
provides an automatic interface with any program that reads the standard input,
such as lp(l) for recording outgoing mail on paper. Alias groups are set by the alias
command (see below) and are lists of recipients of any type.

Regular commands are of the form

[command 1 [msglist 1 [arguments 1

If no command is specified in command mode, print is assumed. In input mode, com­
mands are recognized by the escape character, and lines not treated as commands
are taken as input for the message.

Each message is assigned a sequential number, and there is at any time the notion of
a 'current' message, marked by a '>' in the header summary. Many commands take
an optional list of messages 0 to operate on, which defaults to the current message.
A is a list of message specifications separated by spaces, which may include:

n Message number n.
The current message.
The first undeleted message.

S The last message.
* All messages.
n-m An inclusive range of message numbers.
user All messages from user.
/string All messages with string in the subject line (case ignored).
:c All messages of type c, where c is one of:

d deleted messages

Icon International, Inc.

MAILX(l)

n
o
r
u

USER COMMANDS

new messages
old messages
read messages
unread messages

MAILX(1)

Note that the context of the command determines whetl1er this type
of message specification makes sense.

Other arguments are usually arbitrary strings whose usage depends on the command
involved. File names, where expected, are expanded via the normal shell conventions
(see sh(l)). Special characters are recognized by certain commands and are docu­
mented with the commands below.

At start-up time,
reads commands from a system-wide file (/usr /lib /maiIx/maiIx.rc) to initialize

certain parameters, then from a private start-up file ($HOME/.maiIrc) for person­
alized variables. Most regular commands are legal inside start-up files, the most
common use being to set up initial display options and alias lists. The following
commands are not legal in the start-up file: !, Copy, edit, followup, Followup, hold,
mail, preserve, reply, Reply, shell, and visual. Any errors in the start-up file cause
the remaining lines in the file to be ignored.

The following is a complete list of commands:

Escape to the shell. See "SHELL" O. Null command (comment). This may be useful
in files. Print the current message number. Prints a summary of commands.
Declare an alias for the given names. The names will be substituted when
is used as a recipient. Useful in the file. Declares a list of alternate names for your

login. When responding to a message, these names are removed from the list of reci­
pients for the response. With no arguments, alternates prints the current· list of
alternate names. See also "aHnet" O. Change directory. If is not specified, $HOME
is used. Copy messages to the file without marking the messages as saved. Other­
wise equivalent to the save command. Save the specified messages in a file whose
name is derived from the author of the message to be saved, without marking the
messages as saved. Otherwise equivalent to the Save command. Delete messages
from the. If "autoprint" is set, the next message after the last one deleted is printed
(see). Suppresses printing of the specified header fields when displaying messages on
the screen. Examples of header fields to ignore are "status" and "cc." The fields are
included when the message is saved. The Print and Type commands override this
command. Delete the specified messages from the and print the next message after
the last one deleted. Roughly equivalent to a delete command followed by a print
command. Echo the given strings (like echo(l)). Edit the given messages. The mes­
sages are placed in a temporary file and the "EDITOR" variable is used t.o get the
name of the editor (see). Default editor is ed(l). Exit from, without changing the.
No messages are saved in the (see also quit). Quit from the current file of messages
and read in the specified file. Several special characters are recognized when used as

Icon International, Inc. 3

MAILX(l) USER CO:MMANDS MAILX(1)

4

file names, with the Collowing substitutions:

% the current.
%user

the Cor user.
the previous file.
& the current.

DeCault file is the current.

Print the names of the files in the directory set by the "Colder" variable (see).
Respond to a message, recording the response in a file whose name is derived from
the author of the message. Overrides the "record" variable, if set. See also the Fol­
lowup, Save, and Copy commands and "outfolder" O. Respond to the first message
in the , sending the message to the author of each message in the . The subject line
is taken from the first message and the response is recorded in a file whose name is
derived from the author of the first message. See also the followup, Save, and Copy
commands and "outfolder" O. Prints the header summary for the specified messages.
Declare an alias for the given names. The names will be substituted when
is used as a recipient. Useful in the file. Prints the page of headers which includes

the message specified. The "screen" variable sets the number of headers per page
(see). See also the z command. Prints a summary of commands. Holds the
specified messages in the. Conditional execution, where 8 will execute following s, up
to an else or endif, if the program is in send mode, and r causes the s to be executed
only in receive mode. Useful in the file. Suppresses printing of the specified header
fields when displaying messages on the screen. Examples of header fields to ignore
are "status" and "cc." All fields are included when the message is saved. The Print
and Type commands override this command. Prints all commands available. No
explanation is given. Mail a message to the specified users. Arrange for the given
messages to end up in the standard save file when terminates normally. See
"MBOX" 0 for a description of this file. See also the exit and quit commands. Go
to next message matching. A may be specified, but in this case the first valid mes­
sage in the list is the only one used. This is useful for jumping to the next message
from a specific user, since the name would be taken as a command in the absence of
a real command. See the discussion of s above for a description of possible message
specifications. Pipe the message through the given . The message is treated as if it
were read. If no arguments are given, the current message is piped through the com­
mand specified by the value of the "cmd" variable. If the "page" variable is set, a
form feed character is inserted after each message (see). Preserve the specified mes­
sages in the. Print the specified messages on the screen, including all header fields.
Overrides suppression of fields by the ignore command. Print the specified messages.
If "crt" is set, the messages longer than the number of lines specified by the "crt"
variable are paged through the command specified by the "PAGER" variable. The
default command is pg(l) (see). Exit from, storing messages that were read in and
unread messages in the . Messages that have been explicitly saved in a file are
deleted. Send a response to the author of each message in the . The subject line is
taken from the first message. If "record" is set to a file name, the response is saved
at the end of that file (see). Reply to the specified message, including all other reci­
pients of the message. If "record" is set to a file name, the response is saved at the
end of that file (see). Save the specified messages in a file whose name is derived
from the author of the first message. The name of the file is taken to be the
author's name with all network addressing stripped off. See also the Copy, fol,lowup,

Icon International, Inc. .

o

/

(;
./

MAILX(l) USER COMMANDS MAILX(l)

and Followup commands and "outfolder" O. Save the specified messages in the given
file. The file is created if it does not exist. The message is deleted from the when
terminates unless "keepsave" is set (see also and the exit and quit commands).

Define a variable called. The variable may be given a null, string, or numeric value.
Set by itself prints all defined variables and their values. See for detailed descrip­
tions of the variables. Invoke an interactive shell (see also "SHELL" ()). Print the
size in characters of the specified messages. Read commands from the given file and
return to command mode. Print the top few lines of the specified messages. If the
"toplines" variable is set, it is taken as the number of lines to print (see). The
default is 5. Touch the specified messages. If any message in is not specifically
saved in a file, it will be placed in the upon normal termination. See exit and quit.
Print the specified messages on the screen, including all header fields. Overrides
suppression of fields by the ignore command. Print the specified messages. If "crt" is
set, the messages longer than the number of lines specified by the "crt" variable are
paged through the command specified by the "PAGER" variable. The default com­
mand is pg(l) (see). Restore the specified deleted messages. \Vill only restore mes­
sages deleted in the current mail session. If "autoprint" is set, the last message of
those restored is printed (see). Causes the specified variables to be erased. If the
variable was imported from the execution environment (i.e., a shell variable) then it
cannot be erased. Prints the current version and release date. Edit the given mes­
sages with a screen editor. The messages are placed in a temporary file and the
"VISUAL" variable is used to get the name of the editor (see). Write the given mes­
sages on the specified file, minus the header and trailing blank line. Otherwise
equivalent to the save command. Exit from, without changing the. No messages
are saved in the (see also quit). Scroll the header display forward or backward one
screen-full. The number of headers displayed is set by the "screen" variable (see).

The following commands may be entered only from input mode, by beginning a line
with the tilde escape character C). See "escape" 0 for changing this special charac­
t.er.

Escape to the shell. Simulate end of file (terminate message input).

Perform the command-level request. Valid only when sending a message while read­
ing mail. Print a summary of tilde escapes. Insert the autograph string "Sign" into
the message (see). Insert the autograph string "sign" into the message (see). Add
the s to the blind carbon copy (Bcc) list. Add the s to the carbon copy (Oc) list.
Read in the file. See "DEAD" 0 for a description of this file. Invoke the editor on
the partial message. See also "EDITOR" O. Forward the specified messages. The
messages are inserted into the message, without alteration. Prompt for Subject line
and To, Cc, and Bcc lists. If the field is displayed with an initial value, it may be
edited as if you had just typed it. Insert the value of the named variable into the
text of the message. For example, -A is equivalent to '-i Sign.' Insert the specified
messages into the letter, shifting the new text to the right one tab stop. Valid only
when sending a message while reading mail. Print the message being entered. Quit
from input mode by simulating an interrupt. If the body of the message is not null,
the partial message is saved in. See "DEAD" 0 for a description of this file.

Icon International, Inc. 5

MAILX(l) USER COMMANDS MAILX(l)

6

("

Read in the specified file. If the argument begins with an exclamation point (!), the 0'
rest of the string is taken as an arbitrary shell command and is executed, with the
standard output inserted into the message. Set the subject line to. Add the given s
to the To list. Invoke a preferred screen editor on the partial message. See also
"VISUAL" O. Write the partial message onto the given file, without the header.
Exit as with -q except the message is not saved in. Pipe the body of the message
through the given. If the returns a successful exit status, the output ~f the com-
mand replaces the message.

The following are environment variables taken from the execution environment and
are not alterable within . The user's base of operations. The name of the start-up
file. Default is $HOME/.mailrc.

The following variables are internal variables. They may be imported from the exe­
cution environment or set via the set command at any time. The unset command
may be used to erase variables. All network names whose last component (login
name) match are treated as identical. This causes the message specifications to
behave similarly. Default is noallnet. See also the alternates command and the
"me too" variable. Upon termination, append messages to the end of the file instead
of prepending them. Default is noappend. Prompt for the Cc list after message is
entered. Default is noaskcc. Prompt for subject if it is not specified on the com­
mand line with the -s option. Enabled by default. Enable automatic printing of
messages after delete and undelete commands. Default is noautoprint. Enable the
special-casing of exclamation points (!) in shell escape command lines as in vi(l).
Default is nobang. Set the default command for the pipe command. No default
value. Convert uucp addresses to the specified address style. The only valid conver­
sion now is internet, which requires a mail delivery program conforming to the
RFC822 standard for electronic mail addressing. Conversion is disabled by default.
See also "sendmail" and the -U command line option. Pipe messages having more
than number lines through the command specified by the value of the ''pAGER'' vari­
able (pg(l) by default). Disabled by default. The name of the file in which to save
partial letters in case of untimely interrupt or delivery errors. Default is
$HOME/dead.letter. Enable verbose diagnostics for debugging. Messages are not
delivered. Default is nodebug. Take a period on a line by itself during input from a
terminal as end-of-file. Default is nodot. The command to run when the edit or - e
command is used. Default is ed(l). Substitute c for the - escape character. The
directory for saving standard mail files. User-specified file names beginning with a
plus (+) are expanded by preceding the file name with this directory name to obtain
the real file name. If does not start with a slash (f), $HOME is prepended to it. In
order to use the plus (+) construct on a
command line, "folder" must be an exported sh environment variable. There is no

default for the "folder" variable. See also "outfolder" below. Enable printing of the
header summary when entering. Enabled by default. Preserve all messages that
are read in the instead of putting them in the standard save file. Default is
nobold. Ignore interrupts while entering messages. Handy for noisy dial-up lines.
Default is noignore. Ignore end-of-file during message input. Input must be ter­
minated by a period (.) on a line by itself or by the -. command. Default. is noig-
noreeof. See also "dot" above. When the is empty, truncate it to zero length I'
instead of removing it. Disabled by default. Keep messages that have been saved in ' "'-.

Icon International, Inc.

(

f

MAU.X(l) USER COMMANDS MAILX(1)

Fll..ES

other files in the instead of deleting them. Default is nokeepsave. The name of the
file to save messages which have been read. The xit command overrides this func­
tion, as does saving the message explicitly in another file. Default is $HOME/mbox.
If your login appears as a recipient, do not delete it from the list. Default is nome­
too. The command (and options) to use when listing the contents of the "folder"
directory. The default is 18(1). When responding to a message that was originally
sent to several recipients, the other recipient addresses are normally forced to be
relative to the originating author's machine for the response. This flag disables
alteration of the recipients' addresses, improving efficiency in a network where all
machines can send directly to all other machines (i.e., one hop away). Causes the
files used to record outgoing messages to be located in the directory specified by the
"folder" variable unless the path name is absolute. Default is nooutfolder. See
"folder" above and the Save, Copy, followup, and Followup commands. Used with
the pipe command to insert a form feed after each message sent through the pipe.
Default is nopage. The command to use as a filter for paginating output. This can
also be used to specify the options to be used. Default is pg(l). Set the command
mode prompt to. Default is "1 It. Refrain from printing the opening message and
version when entering. Default is noquiet. Record all outgoing mail in. Disabled
by default. See also "outfolder" above. Enable saving of messages in on interrupt
or delivery error. See "DEAD" for a description of this file. Enabled by default.
Sets the number of lines in a screen-full of headers for the headers command.
Alternate command for delivering messages. Default is mail(l). Wait for back­
ground mailer to finish before returning. Default is nosendwait. The name of a
preferred command interpreter. Default is sh(1). When displaying the header sum­
mary and the message is from you, print the recipient's name instead of the author's
name. The variable inserted into the text of a message when the -a (autograph)
command is given. No default (see also -i ()). The variable inserted into the text of
a message when the -A command is given. No default (see also -i ()). The number
of lines of header to print with the top command. Default is 5. The name of a pre­
ferred screen editor. Default is vi(1).

$HOME f.mailrc
$HOME/mbox
/usr /mail/*
/usr /lib/mailx/mailx.help*
/usr /lib /mailx/mailx.rc
/tmp/R[emqsx]*

personal start-up file
secondary storage file
post office directory
help message files
global start-up file
temporary files

SEE ALSO

BUGS

mail(1), pg(l), Is(1).

Where is shown as valid, arguments are not always allowed. Experimentation IS

recommended.

Icon International, Inc. 7

MAILX(I) USER COf\.1MANDS MAILX(1)

8

Internal variables imported from the execution environment cannot be unset.

The full internet addressing is not fully supported by . The new standards need
some time to settle down.

Attempts to send a message having a line consisting only of a It." are treated as the
end of the message by mai~l) (the standard mail delivery program).

Icon International, Inc.

(

MAKE(l) USER COMMANDS MAKE(l)

NAME

make - maintain, update, and regenerate groups of programs

SYNOPSIS

make [-I makefileJ [-pJ !-i] I-k] [-8] I-r] [-n] I-b] l-e] I-m] [-t] [-d] l-q]
Inames]

DESCRIPTION

The following is a brief description of all options and some special names:

-r makefile Description file name. Makefile is assumed to be the name of a descrip­
tion file. A file name of - denotes the standard input. The contents of
makefile override the built-in rules if they are present.

-p

-i

-k

-r

-n

-b

Print out the complete set of macro definitions and target descriptions.

Ignore error codes returned by invoked commands. This mode is
entered if the fake target name .IGNORE appears in the description
file.

Abandon work on the current entry, but continue on other branches
that do not depend on that entry.

Silent mode. Do not print command lines before executing. This mode
is also entered if the fake target name .SILENT appears in the descrip­
tion file.

Do not use the built-in rules.

No execute mode. Print commands, but do not execute them. Even
lines beginning with an @ are printed.

Compatibility mode for old makefiles.

-e Environment variables override assignments within makefiles.

-m Print a memory map showing text, data, and stack. This option is a

-t

-d

-q

no-operation on systems without the getu system call.

Touch the target files (causing them to be up-to-date) rather than issue
the usual commands.

Debug mode. Print out detailed information on files and times exam­
ined.

Question. The make command returns a zero or non-zero status code
depending on whether the target file is or is not up-to-date .

• DEF AULT If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name .DEFAULT are
used if it exists .

• PRECIOUS
Dependents of this target will not be removed when quit or interrupt
are hit.

Icon International, Inc. 1

MAKE {I} USER COMMANDS MAKE{I}

2

.SILENT Same effect as the -s option .

• IGNORE Same effect as the -i option.

Make executes commands in makefile to update one or more target names. Name is
typically a program. If no -t option is present, makefile, Makefile, 8.makefile,
and 8.Makefile are tried in order. If make file is -, the standard input is taken.
More than one - make file argument pair may appear.

Make updates a target only if its dependents are newer than the target. All prere­
quisite files of a target are added recursively to the list of targets. Missing files are
deemed to be out-of-date.

Makefile contains a sequence of entries that specify dependencies. The first line of an
entry is a blank-separated, non-null list of targets, then a :, then a (possibly null) list
of prerequisite files or dependencies. Text following a ; and all following lines that
begin with a tab are shell commands to be executed to update the target. The first
line that does not begin with a tab or #- begins a new dependency or macrb
definition. Shell commands may be continued across lines with the
<backslash><new-line> sequence. Everything printed by make (except the initial
tab) is passed directly to the shell as is. Thus,

echo 80\

b

will produce

ab

exactly the same as the shell would.

Sharp (#-) and new-line surround comments.

The following makefile says that pgm depends on two filt's a.o andb.o, and that
they in turn depend on their corresponding source files (a.c and b.c) and a common
file incl.h:

pgm: 80.0 h.o
cc a.o b.o -0 pgm

80.0: incl.h a.c
cc -c a.c

b.o: incl.h h.c
cc -c b.c

Command lines are executed one at a time, each by its own shell. The first one or
two characters in a command can be the following: -, @, -@, or @-. If @ is

Icon International, Inc.

(

l\1AKE(1) USER COMMANDS MAKE(l)

present, printing of the command is suppressed. If - is present, make ignores an
error. A line is printed when it is executed unless the --s option is present, or the
entry .SILENT: is in makefile, or unless the initial character sequence contains a @.
The -n option specifies printing without execution; however, if the command line
has the string S(MAKE) in it, the line is always executed (see discussion of the
MAKEFLAGS macro under Environment). The -t (touch) option updates the
modified date of a file without executing any commands.

Commands returning non-zero status normally terminate make. If the -i option is
present, or the entry .IGNORE: appears in makefile, or the initial character
sequence of the command contains -. the error is ignored. If the -k option is
present, work is abandoned on the current entry, but continues on other branches
that do not depend on that entry.

The -b option allows old makefiles (those written for the old version of make) to run
without errors. The difference between the old version of make and this version is
that this version requires all dependency lines to have a (possibly null or implicit)
command associated with them. The previous version of make assumed, if no com­
mand was specified explicitly, that the command was null.

Interrupt and quit cause the target to be deleted unless the target is a dependent of
the special name .PRECIOUS.

Environment
The environment is read by make. All variables are assumed to be macro definitions
and processed as such. The environment variables are processed before any makefile
and after the internal rules; thus, macro assignments in a makefile override environ­
ment variables. The -e option causes the environment to override the macro assign­
ments in a makefile.

The MAKEFLAGS environment variable is processed by make as containing any
legal input option (except -f, -p, and -d) defined for the command line. Further,
upon invocation, make "invents" the variable if it is not in the environment, puts the
current options into it, and passes it on to invocations of commands. Thus,
MAKEFLAGS always contains the current input options. This proves very useful
for "super-makes". In fact, as noted above, when the -n option is used, the com­
mand $(MAKE) is executed anyway; hence, one can perform a make -n recursively
on a whole software system to see what would have been executed. This is because
the -n is put in MAKEFLAGS and passed to further invocations of $(MAKE).
This is one way of debugging all of the makefiles for a software project without actu­
ally doing anything.

Macros
Entries of the form stringl = string2 are macro definitions. String2 is defined as all
characters up to a comment character or an unescaped new-line. Subsequent
appearances of $(stringl [:substl=[subst2]]) are replaced by string2. The parentheses
are optional if a single character macro name is used and there is no substitute
sequence. The optional :substl=8ubstf is a substitute sequence. If it is specified, all

Icon International, Inc. 3

MAKE(l) USER CO:MMANDS MAKE(l)

4

non-overlapping occurrences of 8ubstl in the named macro are replaced by subst!!.
Strings (for the purposes of this type of substitution) are delimited by blanks, tabs,
new-line characters, and beginnings of lines. An example of the use of the substitute
sequence is shown under Libraries.

Internal Macros
There are five internally maintained macros which are useful for writing rules for
building targets.

$* The macro $* stands for the file name part of the current dependent with the
suffix deleted. It is evaluated only for inference rules.

$@ The $@ macro stands for the full target name of the current target. It is
evaluated only for explicitly named dependencies.

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It
is the module which is out-of-date with respect to the target (i.e., the
"manufactured" dependent file name). Thus, in the .c.o rule, the $< macro
would evaluate to the .c file. An example for making optimized .0 files from .c
files is:

.c.o:

or:

.c.o:
cc -c -0 $<

$1' The $1' macro is evaluated when explicit rules from the makefile are evaluated.
It is the list of prerequisites that are out-of-date with respect to the target;
essentially, those modules which must be rebuilt.

$% The $% macro is only evaluated when the target is an archive library member
of the form lib(file.o). In this case, $@ evaluates to lib and $% evaluates to
the library member, file.o.

Four of the five macros can have alternative forms. When an upper case D or F is
appended to any of the four macros, the meaning is changed to "directory part" for
D and "file part" for F. Thus, $(@D) refers to the directory part of the string $@.
If there is no directory part, ./ is generated. The only macro excluded from this
alternative form is sr. The reasons for this are debatable.

Suffixes
Certain names (for instance, those ending with .0) have inferable prerequisites such
as .c, .S, etc. If no update commands for such a file appear in makefile, and if an
inferable prerequisite exists, that prerequisite is compiled to make the target. In this
case, make has inference rules which allow building files from other files by examining
the suffixes and determining an appropriate inference rule to use. The current

Icon International, Inc.

/

i

/

MAKE(l) USER COM:MANDS

default inference rules are:

.c .c - .sh .sh - .c.o .c -.0 .c -.c .s.o .s .0 .y.o .y .0 .1.0 r.o

.y.c .y-.c .I.c .c.a .c-.a .s-.a .h-.h

MAKE(l)

The internal rules for make are contained in the source file rules.c for the make pr<r
gram. These rules can be locally modified. To print out the rules compiled into the
make on any machine in a form suitable for recompilation, the following command is
used:

make -fp - 2> /dev /null </dev /null

The only peculiarity in this output is the (nUll) string which printJ(3S) prints when
handed a null string.

A tilde in the above rules refers to an sees file (see sccsfile(4)). Thus, the rule .c-.o
would transform an sees C source file into an object file (.0). Because the s. of the
sees files is a prefix, it is incompatible with make's suffix point of view. Hence, the
tilde is a way of changing any file reference into an sees file reference.

A rule with only one suffix (i.e., .c:) is the definition of how to build x from x.c. In
effect, the other suffix is null. This is useful for building targets from only one source
file (e.g., shell procedures, simple C programs).

Additional suffixes are given as the dependency list for .SUFFIXES. Order is
significant; the first possible name for which both a file and a rule exist is inferred as
a prerequisite. The default list is:

.SUFFIXES: .0 .c .y .I .s

Here again, the above command for printing the internal rules will display the list of
suffixes implemented on the current machine. Multiple suffix lists accumulate; .SUF­
FIXES: with no dependencies clears the list of suffixes.

Inference Rules
The first example can be done more briefly.

pgm: a.o b.o
cc a.o b.o -0 pgm

a.o b.o: incl.h

This is because make has a set of internal rules for building files. The user may add
rules to this list by simply putting them in the makefile.

Icon International, Inc. 5

~- ----_._-- -----

MAKE(l) USER COMMANDS MAKE(l)

6

Certain macros are used by the default inference rules to permit the inclusion of
optional matter in any resulting commands. For example, CFLAGS, LFLAGS, and
YFLAGS are used for compiler options to ee(l), lex(l), and yaee(l), respectively.
Again, the previous method for examining the current rules is recommended.

The inference of prerequisites can be controlled. The rule to create a file with suffix
.0 from a file with suffix .C is specified as an entry with .c.o: as the target and no
dependents. Shell commands associated with the target define the rule for making a
.0 file from a .c file. Any target that has no slashes in it and starts with a dot is
identified as a rule and not a true target.

Libraries
If a target or dependency name contains parentheses, it is assumed to be an archive
library, the string within parentheses referring to a member within the library. Thus
lib(file.o) and $(Lm)(file.o) both refer to an archive library which contains file.o.
(This assumes the LIB macro has been previously defined.) The expression
*(Lm)(file1.o file2.o) is not legal. Rules pertaining to archive libraries have the
form .XX.a where the XX is the suffix from which the archive member is to be made.
An unfortunate byproduct of the current implementation requires the XX to be
different from the suffix of the archive member. Thus, one cannot have lib(file.o)
depend upon file.o explicitly. The most common use of the archive interface follows.
Here, we assume the source files are aU C type source:

lib:

.c.a:

lib(filel.o) lib(file2.0) lib{file3.0)
@?echo lib is now up-to-date

$(CC) -<: $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In fact, the .c.a rule listed above is built into make and is unnecessary in this exam­
ple. A more interesting, but more limited example of an archive library maintenance
construction follows:

lib: lib(filel.o) lib(file2.0) lib(file3.0)
$(CC) -<: $(CFLAGS) $(?:.o=.c)
ar rv lib $?
rm $? @!echo lib is now up-to-date

.c.a:j

Here the substitution mode of the macro expansions is used. The $1 list is defined
to be the set of object file names (inside lib) whose C source files are out-of-date.
The substitution mode translates the .0 to .c. (Unfortunately, one cannot as yet
transform to .c-j however, this may become possible in the future.) Note also, the
disabling of the .c.a: rule, which would have created each object file, one by one.
This particular construct speeds up archive library maintenance considerably. This

()
~-

type of construct becomes very cumbersome if the archive library contains a mix of /
assembly programs and C programs. ~_

Icon International, Inc.

MAKE(l) USER CO:M:MANDS MAKE(l)

FILES

[Mm]akefile and s.[Mm]akefile

SEE ALSO

BUGS

cC(I), cd(l), lex(l), shell, yacc(l).
printf(3S), sccsfile(4) in the ICON/UXV Programmer Reference Manual.

Some commands return non-zero status inappropriately; use -i to overcome the
difficulty. File names with the characters = : @ will not work. Commands that are
directly executed by the shell, notably cd(l), are ineffectual across new-lines in make.
The syntax (lib(filel.o file2.o file3.o) is illegal. You cannot build lib(file.o) from
file.o. The macro $(a:.o=.c-) does not work.

Icon International, Inc. 7

MAKEKEY(l) USER C011MANDS MAKEKEY(l)

NAME

makekey - generate encryption key

SYNOPSIS

lusr llib Imakekey

DESCRIPTION

Makekey improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space. It reads 10 bytes
from its standard input, and writes 13 bytes on its standard output. The output
depends on the input in a way intended to be difficult to compute (i.e., to require a
substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The
last two (the salt) are best chosen from the set of digits, ., I, and upper- and lower­
case letters. The salt characters are repeated as the first two characters of the out­
put. The remaining 11 output characters are chosen from the same set as the salt
and constitute the output key.

The transformation performed is essentially the following: the salt is used to select
one of 4,096 cryptographic machines all based on the National Bureau of Standards
DES algorithm, but broken in 4,096 different ways. Using the input key as key, a con­
stant string is fed into the machine and recirculated a number of times. The 64 bits
that come out are distributed into the 66 output key bits in the result.

Makekey is intended for programs that perform encryption (e.g., ed(l) and crypt(l)).
Usually, its input and output will be pipes.

SEE ALSO

crypt(l), ed(I).
passwd(4) in the IGONjUXV Programmer Reference Manual.

Icon International, Inc. 1

(

MAN(l) USER COMMANDS MAN(l)

NAME

man - print entries in this manual

SYNOPSIS

man [options 1 [section 1 titles

DESCRIPTION

Man locates and prints the entry of this manual named title in the specified section.
(For historical reasons, the word "page" is often used as a synonym for "entry" in
this context.) The title is entered in lower case. The section number may not have a
letter suffix. If no section is specified, the whole manual is searched for title and all
occurrences of it are printed. Options and their meanings are:

-Tterm

-w

-d

-k

-b

-e

Print the entry as appropriate for terminal type term. For a list of
recognized values of term, type help term2. The default value of term
is 450.
Print on the standard output only the path names of the entries, relative
to /usr /man, or to the current directory for -d option.
Search the current directory rather than /usr /catman; requires the full
file name (e.g., eu.1e, rather than just eu).
When given the option -k and a set of keywords, man prints out a one
line synopsis of each manual sections whose listing in the table of con­
tents contains that keyword.
With the -b option specified, man will pipe the output through more (1)
to stop after each page on the screen. Hit a space to continue, a
control-D to scroll 11 more lines when the output stops.
Causes man to invoke col(l); note that col(l) is invoked automatically
by man unless term is one of 300, 300s, 450, 37, 4000a, 382, 4014,
tek, 1620, and X.

Man examines the environment variable 'TERM (see environ(5)) and attempts to
select options that adapt the output to the terminal being used. The -Tterm
option overrides the value of'TERM; in particular, one should use -TIp when send­
ing the output of man to a line printer.

Section may be changed before each title.

As an example:

man man

would reproduce on the terminal this entry, as well as any other entries named man
that may exist in other sections of the manual.

Icon International, Inc. 1

MAN(l) USER COMMANDS MAN(l)

FILES

/usr/catman/Lman/man[1-8]/* Preformatted manual entries

SEE ALSO

term(5) in the ICON/UXV Programmer Reference Manual.

CAVEAT

2

The man command prints manual entries that were formatted by nroff when the
UNIX system was installed. Entries are originally formatted with terminal type 37,
and are printed using the correct terminal filters as derived from the -Tterm and
STERM settings. Typesetting or other non-standard printing of manual entries
requires installation of the ICON/UXV system Documenter's Workbench.

Icon International, Inc.

(

MCONF(l) USER COMMANDS MCONF(l)

NAME

mconf - provide machine configurtion

SYNOPSIS

meonf [-dt[0-3]h[0-31,40-47]s[0-7]fp[0-3]m[0-7]vy[1-2]z

DESCRIPTION

Meon! is usually used in shell scripts to tell whether certain peripherals are installed
on machine. Meon! may also be used without arguments to print out the current
machine configuration. The options are as follows:

-d

-t[0-3]
indicate presence of PROC286

indicate presence of tape drives:
0: 4-track cassctte
1: 9-track cassctte
2: cartridge
3: 1/2" reel

-h[0-31,40-47]

-s[0-9]

-f

-p[0-3]

indicate presence of HSMD drives/controllers:
0-31: HSMD drives 0-31
40-47: HS:MD controllers 0-7

indicate presence of SCSI devices:
0: hard disk 0
1: hard disk 1
2: reserved
3: reserved
4: reserved
5: reserved
6: reserved
7: Imbedded SCSI disk 0
8: Imbedded SCSI disk 1
9: Imbedded SCSI disk 2

indicate presence of floating point coprocessor

indicate presence of PCP's 0-3

Icon International, Inc. 1

MCONF(l) USER COMMANDS MCONF(l)

-m[0-7]

-v

-y[I-2]

indicate presence of multibus adaptors
0: ex (ethernet)
1: reserved
2: reserved
3: ssi (3270 communications board)
4: rhp (DCS terminals)
5: rhp (DCS terminals)
6: rhp (DCS terminals)
7: rhp (DCS terminals)

print ICON/UXB kernel names, locations, and version

indicate type of machine
1: ICON 2000
2: ICON 3000jICON 4000

RESULTS

Meon! returns 0 if the indicated peripheral is present, 1 if it is not present.

SEE ALSO

csh(l), sh(l)

NOTES

2

Afcon! without options prints other information besides the information indicated
above: machine type (2000, 3000, etc), clock speed, additional memory (disk and
main), and sizes of attached drives.

Not all peripherals are available on every machine type.

Icon International, Inc.

o

(

("

MESG(I) USER COMMANDS MESG(l)

NAME

mesg - permit or deny messages

SYNOPSIS

mesg [D 1 [y 1

. DESCRJPTION

Mesg with argument D forbids messages via write{l) by revoking non-user write per­
mission on the user's terminal. Mesg with argument y reinstates permission. All by
itself, mesg reports the current state without changing it.

Fn..ES

Ide\" /tty*

SEE ALSO

write{l).

DIAGNOSTICS

Exit status is 0 if messages are receivable, 1 if not, 2 on error.

Icon International, Inc. 1

MKDffi(l) USER COMMANDS MKDIR(l)

NAME

mkdir - make a directory

SYNOPSIS

mkdir dirname ...

DESCRIPTION

Mkdir creates specified directories in mode 777 (possibly altered by umask{l)}. Stan­
dard entries, ., for the directory itself, and .. , for its parent, are made automatically.

Mkdir requires write permission in the parent directory.

SEE ALSO

sh(1), rm{l), umask{l}.

DIAGNOSTICS

J.fkdir returns exit code 0 if all directories were successfully made; otherwise, it
prints a diagnostic and returns non-zero.

Icon International, Inc. 1

--~ ~----~--~--~~-~- ~-

(

MORE(l) USER COMMANDS MORE (1)

NAME

more, page - file perusal filter for crt viewing

SYNOPSIS

more [-cdflsu 1 [-n 1 [+linenumber 1 [+/pattern 1 [name ...

page more options

,DESCRIPTION

Afore is a filter which allows examination of a continuous text one screenful at a
time on a soft-copy terminal. It normally pauses after each screenful, printing -­
More-- at the bottom of the screen. If the user then types a carriage return, one
more line is displayed. If the user hits a space, another screenful is displayed. Other
possibilities are enumerated later.

The command line options are:

-n An integer which is the Slze (in lines) of the window which more will use
instead of the default.

-c More will draw each page by beginning at the top of the screen and erasing
each line just before it draws on it. This avoids scrolling the screen, making
it easier to read while more is writing. This option will be ignored if the ter­
minal does not have the ability to clear to the end of a line.

-d More will prompt the user with the message "Hit space to continue, Rubout
to abort" at the end of each screenful. This is useful if more is being used as
a filter in some setting, such as a class, where many users may be unsophisti­
cated.

-f This causes more to count. logical, rather than screen lines. That is, long
lines are not folded. This option is recommended if nroff output is being
piped through ul, since the latter may generate escape sequences. These
escape sequences contain characters which would ordinarily occupy screen
positions, but which do not print when they are sent to the terminal as part
of an escape sequence. Thus more may think that lines are longer than t.hey
actually are, and fold lines erroneously.

-1 Do not treat ~L (form feed) specially. If this option is not given, more will
pause after any line that contains a AL, as if the end of a screenful had been
reached. Also, if a file begins with a form feed, the screen will be cleared
before the file is printed.

-s

-u

Squeeze multiple blank lines from the output, producing only one blank line.
Especially helpful when viewing nroff output, this option maximizes the useful
information present on the screen.

Normally, more will handle underlining such as produced by nroff in a
manner appropriate to the particular terminal: if the t.erminal can perform
underlining or has a stand-out mode, more will output appropriate escape

Icon International, Inc. 1

MORE(l) USER COMMANDS MORE(l)

2

sequences to enable underlining or stand-out mode for underlined information
in the source file. The -u option suppresses this processing.

+linenumber
Start up at linenumber.

+/pattern
Start up two lines before the line containing the regular expression: pattern.

If the program is invoked as page, then the screen is cleared before each screenful is
printed (but only if a full screenful is being printed), and k - 1 rather than k - 2
lines are printed in each screenful, where k is the number of lines the terminal can
display.

More looks in the file /etc/termcap to determine terminal characteristics, and to
determine the default window size. On a terminal capable of displaying 24 lines, the
default window size is 22 lines.

Afore looks in the environment variable MORE to pre-set any flags desired. For
example, if you prefer to view files using the -c mode of operation, the csh command
setenv MORE -c or the sh command sequence MORE-'-e' ; export MORE would
cause all invocations of more, including invocations by programs such as man and
msgs , to use this mode. Normally, the user will place the command sequence which
sets up the MORE environment variable in the .eshrc or .profile file.

If more is reading from a file, rather than a pipe, then a percentage is displayed
along with the --More-- prompt. This gi\'es the fraction of the file (in characters, not
lines) that has been read so far.

Other sequences which may be typed when more pauses, and their effects, are as fol­
lows (i is an optional integer argument, defaulting to 1) :

i<space>
display i more lines, (or another screenful if no argument is given)

~D display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i.

d same as ~D (control-D)

iz same as typing a space except that a, if present, becomes the new window
size.

as skip i lines and print a screenful of lines

if skip i screenfuls and print a screenful of lines

q or Q Exit from more.

Icon International, Inc.

MORE(l) USER COMMANDS MORE(l)

Display the current line number.

v Start up the editor vi at the current line.

h Help command; give a description of all the more commands.

i /expr search for the i-th occurrence of the regular expression expr. If there are less
than i occurrences of expr, and the input is a file (rather than a pipe), then
the position in the file remains unchanged. Otherwise,a screenful is
displayed, starting two lines before the place where the expression was found.
The user's erase and kill characters may be used to edit the regular expres­
sion. Erasing back past the first column cancels the search command.

an search for the i-th occurrence of the last regular expression entered.

(single quote) Go to the point from which the last search started. If no
search has been performed in the current file, this command goes back to the
beginning of the file.

!command
invoke a shell with command. The characters '%' and 'I' in "command" are
replaced with the current file name and the previous shell command respec­
tively. If there is no current file name, '%' is not expanded. The sequences
"\%" and "\!" are replaced by "%" and "!" respectively.

r:n skip to the i-th next file given in the command line (skips to last file if n
doesn't make sense)

i:p skip to the i-th previous file given in the command line. If this command is
given in the middle of printing out a file, then more goes back to the begin­
ning of the file. If i doesn't make sense, more skips back to the first file. If
°more is not reading from a file, the bell is rung and nothing else happens.

:f display the current file name and line number.

:q or:Q
exit from more (same as q or Q).

(dot) repeat the previous command.

The commands take effect immediately, i.e., it is not necessary to type a carriage
return. Up to the time when the command character itself is given, the user may hit
the line kill character to cancel the numerical argument being formed. In addition,
the user may hit the erase character to redisplay the --More--(xx%) message.

At any time when output is being sent to the terminal, the user can hit the quit key
(normally control-\). More will stop sending output, and will display the usual --

Icon International, Inc. 3

MORE(l) USER COMMANDS MORE(l)

More-- prompt. The user may then enter one of the above commands in the normal
manner. Unfortunately, some output is lost when this is done, due to the fact that
any characters waiting in the terminal's output queue are flushed when the quit sig­
naloccurs.

The terminal is set to noecho mode by this program so that the output can be con­
tinuous. What you type will thus not show on your terminal,except for the I and !
commands.

If the standa.rd output is not a teletype, then more a.cts just like cat, except that a
header is printed before each file (if there is more than one).

A sample usage of more in previewing nroff output would be

nroff -ms +2 doc.n : more -s

AUTHOR

FILES

Eric Shienbrood, minor revisions by John Foderaro and Geoffrey Peck

letc/termcap
lusr /lib/more.help

Terminal data base
Help file

SEE ALSO

csh(l), sh(l), environ(.5)

4 Icon International, Inc.

(

(

MT(l) USER COMMANDS MT(l)

NAME

mt - magnetic tape manipulating program

SYNOPSIS

mt [-f tapename 1 command [count 1

DESCRIPTION

FILES

Mt is used to give commands to the cassette tape drive. If a tape name is not
specified, the environment variable TAPE is used; if TAPE does not exist, mt uses
the device /dev/rctO. By default mt performs the requested operation once. Opera­
tions may be performed multiple times by specifying count.

The available commands are listed below. Only as many characters as are required
to uniquely identify a command need be specified.

eof, weof
Write count end-of-file marks at the current position on the tape. Note that
is currently necessary to write end-of-file marks to separate multiple files on
the same tape.

fsf Forward space count files.

fsr

fseof

Forward space count records.

Forward space to end of tape. End of tape is defined as the last position
written on tape. Note that it is necessary to issue t,his command (instead of
fsf) to add data to a tape.

rewind
Rewind the tape (Count is ignored.)

status
Print status information about the tape unit.

Mt returns a 0 exit status when the operation(s) were successful, 1 if the command
was unrecognized, and 2 if an operation failed.

/dev /rct* Cassette tape interface

SEE ALSO

mtio(4), dd{l), ioctl(2), environ(7)

Icon International, Inc. 1

(

NEWFORM(l) USER COMMANDS NEWFORM(l)

NAME

newform - change the format of a text file

SYNOPSIS

newform [-iI] [-itabspec] [-otabspec] [-bn] [-en] [-pn] [-an] [-f] [-echar] [-In]
[files 1

DESCRIPTION

New/orm reads lines from the named files, or the standard input if no input file is
named, and reproduces the lines on the standard output. Lines are reformatted in
accordance with command line options in effect. Except for -ii, command line
options may appear in any order, may be repeated, and may be intermingled with
the optional files. Command line options are processed in the order specified. This
means that option sequences like "-e15 -160" will yield results different from "-160
-e15". Options are applied to all files on the command line.

-itabspec Input tab specification: expands tabs to spaces, according to the tab
specifications given. Tabspec recognizes all tab specification forms
described in tabs(l). In addition, tabspec may be --, in which new/orm
assumes that the tab specification is to be found in the first line read
from the standard input (see /spec(4)). If no tabspec is given, tabspec
defaults to -8. A tabspec of -{) expects no tabs; if any are found, they
are treated as -1.

-otabspec Output tab specification: replaces spaces by tabs, according to the tab
specifications given. The tab specifications are the same as for -itabspec.
If no tabspec is given, tabspec defaults to -8. A tabspec of -{) means that
no spaces will be converted to tabs on output.

-In Set the effective line length to n characters. If n is not entered, -1
defaults to 72. The default line length without the -I option is 80 char­
acters. Note that tabs and backspaces are considered to be one charac­
ter (use -i to expand tabs to spaces).

-bn Truncate n characters from the beginning of the line when the line length
is greater than the effective line length (see -In). Default is to truncate
the number of characters necessary to obtain the effective line length.
The default value is used when -b with no n is used. This option can be
used to delete the sequence numbers from a COBOL program as follows:

-en

-ck

newform -11 -b7 file-name

The -11 must be used to set the effective line length shorter than any
existing line in the file so that the -b option is activated.

Same as -bn except that characters are truncated from the end of the
line.
Change the prefix/append character to k. Default character for k is a
space.

Icon International, Inc. 1

NEWFORM(l) USER COMMANDS NEWFORM(l)

-pn Prefix n characters (see -ek) to the beginning of a line when the line
length is less than the effective line length. Default is to prefix the
number of characters necessary to obtain the effective line length.

-an Same as -pn except characters are appended to the end of a line.

-f Write the tab specification format line on the standard output before any
other lines are output. The tab specification format line whi~h is printed
will correspond to the format specified in the last -0 option. If no -0

option is specified, the line which is printed will contain the default
specification of -8.

-s Shears off leading characters on each line up to the first tab and places
up to 8 of the sheared characters at the end of the line. If more than 8
characters (not counting the first tab) are sheared, the eighth charact.er
is replaced by a * and any characters to the right of it are discarded.
The first tab is always discarded.

An error message and program exit will occur if this option is used on a
file without a tab on each line. The characters sheared off are saved
internally until all other options specified are applied to that line. The
characters are then added at the end of the processed line.

For example, to convert a file with leading digits, one or more tabs, and
text on each line, to a file beginning with the text, all tabs after the first
expanded to spaces, padded with spaces out to column 72 (or truncated
to column 72), and the leading digits placed starting at column 73, the
command would be:

newform -s -i -1 -a -e file-name

DIAGNOSTICS

All diagnostics are fatal.
usage: ...
not -s format
can't open file
internal line too long

tabspec in error

tabspec indirection illegal

EXIT CODES

2

0- normal execution
1 - for any error

Newform was called with a bad option.
There was no tab on one line.
Self-explanatory.
A line exceeds 512 characters after being expanded in the
internal work buffer.
A tab specification is incorrectly formatted, or specified
tab stops are not ascending.
A tabspec read from a file (or standard input) may not con­
tain a tabspec referencing another file (or standard input).

Icon International, Inc.

/

(

(

NEWFORM(l) USER COMMANDS NEWFORM(l)

SEE ALSO

BUGS

csplit(l), tabs(l).
fspec(4) in the IOON/UXV Programmer Re/erence Manual.

New/orm normally only keeps track of physical characters; however, for the -i and
-0 options, new/orm will keep track of backspaces in order to line up tabs in the
appropriate logical columns.

New/orm will not prompt the user if a tabspec is to be read from the standard input
(by use of -i- or -0--).

If the -f option is used, and the last -0 option specified was -0--, and was pre­
ceded by either a -0-- or a -i--, the tab specification format line will be
incorrect.

Icon International, Inc. 3

/
'~

(.

..•

..

NEWGRP(l) USER COMMANDS NEWGRP(l)

NAME

newgrp - log in to a new group

SYNOPSIS

newgrp [-] [group]

DESCRIPTION

FILES

Newgrp changes a user's group identification. The user remains logged in and the
current directory is unchanged, but calculations of access permissions to files are per­
formed with respect to the new real and effective group IDs. The user is always given
a new shell, replacing the current shell, by newgrp, regardless of whether it ter­
minated successfully or due to an error condition (i.e.,
unknown group).

Exported variables retain their values after invoking newgrp; however, all unex­
ported variables are either reset to their default value or set to null. Syst.em vari­
ables (such as PSI, PS2, PATH, MAIL, and HOME), unless exported by the syst.em
or explicitly exported by the user, are reset to default values. For example, a user
has a primary prompt string (PSI) other than $ (default) and has not exported PSI.
After an invocation of newgrp , successful or not, their PSI will now be set to the
default prompt string $. Note that the shell command export (see sh(l)) is the
method to export variables so that they retain their assigned value when invoking
new shells.

\Vith no arguments, newgrp changes the group identification back to the group
specified in the user's password file entry.

If the first argument to newgrp is a -, the environment is changed to what would be
expected if the user actually logged in again.

A password is demanded if the group has a password and the user does not, or if the
group has a password and the user is not listed in /etc/group as being a member of
that group.

/etc/group
/etc/passwd

system's group file
system's password file

SEE ALSO

login(l), sh(l) .

Icon International, Inc. 1

NEWGRP(l) USER COMMANDS NEWGRP(l)

BUGS

2

group(4), passwd(4), environ(5) in the ICON/UXV Programmer Reference Manual.

There is no convenient way to enter a password into tete/group. Use of group
passwords is not encouraged, because, by their very nature, they encourage poor
security practices. Group passwords may disappear in the future.

Icon International, Inc.

c/

(-
NEWS(!) USER COMMANDS NEWS(l)

NAME

news - print news items

SYNOPSIS

news [-a 1 [-n 1 [-s 1 [items 1

DESCRIPTION

Fn.ES

News is used to keep the user informed of current events. By convention, these
events are described by files in the directory /usr /news.

'When invoked without arguments, news prints the contents of all current files in
/uer /news, most recent first, with each preceded by an appropriate header. News
stores the ((currency" time as the modification date of a file named .news_time in
the user's home directory (the identity of this directory is determined by the environ­
ment variable SHOME); only files more recent than this currency time are considered
"current."

The -a option causes news to print all items, regardless of currency. In this case,
the stored time is not changed.

The -n option causes news to report the names of the current items without print­
ing their contents, and without changing the stored time.

The -s option causes news to report how many current items exist, without printing
their names or contents, and without changing the stored time. It is useful to
include such an invocation of news in one's .profile file, or in the system's
/etc/profile.

All other arguments are assumed to be specific news items that are to be printed.

If a delete is typed during the printing of a news item, printing stops and the next
item is started. Another delete within one second of the first causes the program to
terminate.

/etc /profile
/usr /news/*
SHOME/.news_time

Icon International, Inc. 1

NEWS(l) USER CO:MMANDS NEWS(l)

SEE ALSO

profile(4), environ(5) in the IOON/UXV Programmer Reference Manual.

2 Icon International, Inc.

NICE (1) USER COMMANDS NICE(l)

NAME

nice - run a command at low priority

SYNOPSIS

nice [-increment 1 command [arguments 1

DESCRIPTION

Nice executes command with a lower CPU scheduling priority. If the increment argu­
ment (in the range 1-19) is given, it is used; if not, an increment of 10 is assumed.

The super-user may run commands with priority higher than normal by using a
negative increment, e.g., --10.

SEE ALSO

nohup{I).
nice(2) in the IGON/W(V Programmer Reference Manual.

DIAGNOSTICS

Nice returns the exit status of the subject command.

BUGS

An inc'rement larger than 19 is equivalent to 19.

Icon International, Inc. 1

(

NL(l) USER COMMANDS NL(l)

NAME

nl - line numbering filter

SYNOPSIS

nI [-htype] [-htypej [-ftype] [-vstart#l [-iincr] [-p] [-Inurn] [-ssep] [-wwidth]
[-nformat] [-ddelim file

DESCRIPTION

Nl reads lines from the named file or the standard input if no file is named and
reproduces the lines on the standard output. Lines are numbered on the left in
accordance with the command options in effect. Nl views the text it reads in terms
of logical pages. Line numbering is reset at the start of each logical page. A logical
page consists of a header, a body, and a footer section. Empty sections are valid.
Different line numbering options are independently available for header, body, and
footer (e.g., no numbering of header and footer lines while numbering blank lines only
in the body). The start of logical page sections are signaled by input lines containing
nothing but the following delimiter character(s):

Line contents Start of

\:\:\: header

\:\: body

\: footer

Unless optioned otherwise, nl assumes the text being read is in a single logical page
body. Command options may appear in any order and may be intermingled with an
optional file name. Only one file may be named. The options are:

-htype Specifies which logical page body lines are to be numbered. Recognized
types and their meaning are: a, number all lines; t, number lines with
printable text only; n, no line numbering; pstring, number only lines that
contain the regular expression specified in string. Default type for logical

-htype

-ftype

page body is t (text lines numbered).

Same as -htype except for header. Default type for logical page header
is n (no lines numbered).

Same as -htype except for footer. Default for logical page footer is n (no
lines numbered).

-p Do not restart numbering at logical page delimiters.
-vstart# Start# is the initial value used to number logical page lines. Default is 1.

-iincr

-ssep

Incr is the increment value used to number logical page lines. Default is
1.

Sep is the character(s) used in separating the line number and the
corresponding text line. Default sep is a tab.

Icon International, Inc. 1

l\1L (1)

--- .. -.-"-----~--------

USER COM:MANDS NL(l)

-wwidth Width is the number of characters to be used for the line number.
Default width is 6.

-nformat Format is the line numbering format. Recognized values are: In, left
justified, leading zeroes suppressed; rn, right justified, leading zeroes
supressed; rz, right justified, leading zeroes kept. Default format is rn
(right justified).

-Inum Num is the number of blank lines to be considered as one. For example,
-12 results in only the second adjacent blank being numbered (if the
appropriate -ha, -ba, and/or -fa option is set). Default is 1.

-dxx The delimiter characters specifying the start of a logical page section
may be changed from the default characters {\:} to two user-specified
characters. If only one character is entered, the second character
remains the default character (:). No space should appear between the
-d and the delimiter characters. To enter a backslash, use two
backslashes.

EXAMPLE

The command:

nl -vlO -ilO -d!+ filel

will number filel starting at line number 10 with an increment of ten. The logical
page delimiters are I+.

SEE ALSO

pr(l }.

2 Icon International, Inc.

NM(l) USER COM11A.NDS NM(l)

NAME

nm - print name list of common object file

SYNOPSIS

nm [4)J [-xJ [-hJ [-v] [-n] [--e] [-f] [-uJ [-V] [-TJ file-names

DESCRIPTION

The nm command displays the symbol table of each common object file file-name.
File-name may be a relocatable or absolute common object file; or it may be an
archive of relocatable or absolute common object files. For each symbol, the follow­
ing information will be printed:

Name The name of the symbol.

Value Its value expressed as an offset or an address depending on its storage
class.

Cla88

Type

Size

Its storage class.

Its type and derived type. If the symbol is an instance of a structure or of
a union then the structure or union tag will be given following the type
(e.g., struct-tag). If the symbol is an array, then the array dimensions will
be given following the type (e.g., char [n][m]). Note that the object file
must have been compiled with the -g option of the cC(I) command for
this information to appear.

Its size in bytes, if available. Note that the object file must have been
compiled with the -g option of the cc(l) command for this information to
appear.

Line The source line number at which it is defined, if available. Note that the
object file must have been compiled with the -g option of the cC(I) com­
mand for this information to appear.

Section For storage classes static and external, the object file section containing
the symbol (e.g., text, data or bss).

The output of nm may be controlled using the following options:

-0 Print the value and size of a symbol in octal instead of decimal.

-x Print the value and size of a symbol in hexadecimal instead of decimal.

-h Do not display the output header data.

-v Sort external symbols by value before they are printed.

Icon International, Inc. 1

NM(l) USER CO:MMANDS NM(l)

FILES

-n Sort external symbols by name before they are printed.

-e Print only external and static symbols.

-f Produce full output. Print redundant symbols (.text, .data and . bss) , nor­
mally suppressed.

-u Print undefined symbols only.

-v Print the version of the nm command executing on the standard error out­
put.

-T By default, nm prints the entire name of the symbols listed. Since object
files can have symbols names with an arbitrary number of characters, a
name that is longer than the width of the column set aside for names will
overflow its column, forcing every column after the name to be misaligned.
The -T option causes nm to truncate every na~which would otherwise
overflow its column and place an asterisk as the Jast character in the
displayed name to mark it as truncated.

Options may be used in any order, either singly or in combination, and may appear
anywhere in the command line. Therefore, both nm na~ -e -y and nm -ye
name print the static and external symbols in name, with ~xternal symbols sorted
by value.

/usr /tmp/nm??????

CAVEATS

'¥hen all the symbols are printed, they must be printed in the order they appear in
the symbol table in order to preserve scoping information. Therefore, the -y and
-n options should be used only in conjunction with the -e option.

SEE ALSO

as(l), cC(l), ld(l).
a.out(4}, ar(4} in the IOONjUXV Programmer Reference ManuaL

DIAGNOSTICS

"nm: name: cannot open"
if name cannot be read.

Icon International, Inc. 2

NM(l) USER COMMANDS NM(l)

"nm: name: bad magic"
if name is not an appropriate common object file.

"nm: name: no symbols"
if the symbols have been stripped from name.

(

Icon International, Inc. 3

NOHUP(l) USER COM:MANDS NOHUP(l)

NAME

nohup - run a command immune to hangups and quits

SYNOPSIS

nohup command [arguments]

DESCRIPTION

Nohup executes command with hangups and quits ignored. If output is not re­
directed by the user, both standard output and standard error are sent to
nohup.out. If nohup.out is not writable in the current directory, output is
redirected to 'HOME/nohup.out.

EXAMPLE

It is frequently desirable to apply nohup to pipelines or lists of commands. This can
be done only by placing pipelines and command lists in a single file, called a shell
procedure. One can then issue:

nohup sh file

and the nohup applies to everything in file. If the shell procedure file is to be exe­
cuted often, then the need to type sh can be eliminated by giving file execute permis­
sion. Add an ampersand and the contents of file are run in the background with
interrupts also ignored (see sh(l)):

nohup file &

An example of what the contents of file could be is:

tbl ofile I eqn I nroff > nfile

SEE ALSO

chmod(l), nice(l), sh{l).
signal(2) in the IOON/UXV Programmer Reference Manual.

Icon International, Inc. 4

NOHUP(l) USER COMMANDS NOHUP(l)

WARNINGS

nohup commandl; command2----- nohup applies only to commandl
nohup {commandl; command2} is syntactically incorrect.

Be careful of where standard error is redirected. The following command may put
error messages on tape, making it unreadable:

nohup cpio -0 <list> /dev /rmt/lm&
while

nohup cpio -0 <list> /dev /rmt/lm 2>errors&

puts the error messages into file errors.

Icon International, Inc. 5

OD(l) USER CO:MMANDS OD(l)

NAME

od - octal dump

SYNOPSIS

od [-bed08x J [file J [[+ Joffset[• H b 11

DESCRIPTION

Od dumps file in one or more formats as selected by the first argument. If the first
argument is missing, -0 is default. The meanings of the format options are:

-b Interpret bytes in octal.

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes:
null=\O, backspace=\b, form-feed=\f, new-line=\n, return=\r, tab=\t; oth­
ers appear as 3-digit octal numbers.

-d Interpret words in unsigned decimal.

-0 Interpret words in octal.

--s Interpret 16-bit words in signed decimal.

-x Interpret words in hex.

The file argument specifies which file IS to be dumped. If no file argument is
specified, the standard input is used.

The offset argument specifies the offset in the file where dumping is to commence.
This argument is normally interpreted as octal bytes. If. is appended, the offset is
interpreted in decimal. If b is appended, the offset is interpreted in blocks of 512
bytes. If the file argument is omitted, the offset argument must be preceded by +.

Dumping continues until end-of-file.

SEE ALSO

dump(l).

Icon International, Inc. 6

/',
, \
I, i

"-/'

('"

,

PACK(l) USER COM:MANDS PACK(l)

NAME

pack, pcat, unpack - compress and expand files

SYNOPSIS

pack [-] [-f 1 name ...

peat name ...

unpack name ...

DESCRIPTION

Pack attempts to store the specified files in a compressed form. Wherever possible
(and useful), each input file name is replaced by a packed file name.z with the same
access modes, access and modified dates, and owner as those of name. The -f option
will force packing of name. This is useful for causing an entire directory to be
packed even if some of the files will not benefit. If pack is successful, name will be
removed. Packed files can be restored to their original form using unpack or pcat.

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the
argument is used, an internal flag is set that causes the number of times each byte is
used, its relative frequency, and the code for the byte to be printed on the standard
output. Additional occurrences of - in place of name will cause the internal flag to
be set and reset.

The amount of compression obtained depends on the size of the input file and the
character frequency distribution. Because a decoding tree forms the first part of
each .z file, it is usually not worthwhile to pack files smaller than three blocks, unless
the character frequency distribution is very skewed, which may occur with printer
plots or pictures.

Typically, text files are reduced to 60-75% of their original size. Load modules,
which use a larger character set and have a more uniform distribution of characters,
show little compression, the packed versions being about 90% of the original size.

Pack returns a value that is the number of files that it failed to compress.

No packing will occur if:

the file appears to be already packed;
the file name has more than 12 characters;
the file has links;
the file is a directory;
the file cannot be opened.;

Icon International, Inc. 7

PACK(l) USER COMMANDS

no disk storage blocks will be saved by packing;
a file called name.z already exists;
the .1 file cannot be created;
an I/O error occurred during processing.

PACK(l)

The last segment of the file name must contain no more than 12 characters to allow
space for the appended .1 extension. Directories cannot be compressed. .

Peat does for packed files what eat{l} does for ordinary files, except that peat cannot
be used as a filter. The specified files are unpacked and written to the standard out­
put. Thus to view a packed file named name.1 use:

pcat name.z

or just:

pcat name

To make an unpacked copy, say nnn, of a packed file named name.1 (without des­
troying name.z) use the command:

peat name >nnn

Peat returns the number of files it was unable to unpack. Failure may occur if:

the file name (exclusive of the .z) has more than 12 characters;
the file cannot be opened;
the file does not appear to be the output of pack.

Unpack expands files created by pack. For each file name specified in the command,
a search is made for a file called name.z (or just name, if name ends in .z). If this
file appears to be a packed file, it is replaced by its expanded version. The new file
has the .1 suffix stripped from its name, and has the same access modes, access and
modification dates, and owner as those of the packed file.

Unpack returns a value that is the number of files it was unable to unpack. Failure
may occur for the same reasons that it may in peat, as well as for the following:

SEE ALSO

cat{I).

a file with the "unpacked" name already exists;
if the unpacked file cannot be created.

Icon International, Inc. 8

(

(

PASSWD(l) USER COM:MANDS PASSWD(l)

NAME

passwd - change login password

SYNOPSIS

passwd [name]

DESCRIPTION

Fll..ES

This command changes or installs a password associated with the login name. Ordi­
nary users may change only the pasSword which corresponds to their login name.
Passwd prompts ordinary users for their old password, if any. It then prompts for
the new password twice. The first time the new password is entered passwd checks to
see if the old password has "aged" sufficiently. If "aging" is insufficient the new pass­
word is rejected and passwd terminates; see passwd(4). Assuming "aging" is
sufficient, a check is made to insure that the new password meets construction
requirements. When the new password is entered a second time, the two copies of
the new password are compared. If the two copies are not identical the cycle of
prompting for the new password is repeated for at most two more times. Passwords
must be constructed to meet the following requirements:

Each password must have at least six charact.ers. Only the first eight char­
acters are significant. Each password must contain at least two alphabetic
characters and at least one numeric or special character. In this case,
"alphabetic" means upper and lower case letters. Each password must differ
from the user's login name and any reverse or circular shift of that login
name. For comparison purposes, an upper case letter and its corresponding
lower case letter are equivalent. New passwords must differ from the old by
at least three characters. For comparison purposes, an upper case letter and
its corresponding lower case letter are equivalent.

One whose effective user ID is zero is called a super-user; see id(l), and sU(l).
Super-users may change any password; hence, passwd does not prompt super-users
for the old password. Super-users are not forced to comply with password aging and
password construction requirements. A super-user can create a null password by
entering a carriage return in response to the prompt for a new password.

/etc/passwd

SEE ALSO

login(l), id(l), sU(l).
crypt(3C), passwd(4) in the IOON/UXV Programmer Reference Manual.

Icon International, Inc. 6

/--

t

.'j
/

\
"'-...

(

(

PASTE(l) USER COMMANDS

NAME

paste - merge same lines of several files or subsequent lines of one file

SYNOPSIS

paste file! file2 ...
paste -d list file! file2 ...
paste __ [-d list] file! file2 ...

DESCRIPTION

PASTE (1)

In the first two forms, paste concatenates corresponding lines of the given input files
filet, fileE, etc. It treats each file as a column or columns of a table and pastes them
together horizontally (parallel merging). If you will, it is the counterpart of caf{!)
which concatenates vertically, i.e., one file after the other. In the last form above,
paste replaces the function of an older command with the same name by combining
subsequent lines of the input file (serial merging). In all cases, lines are glued
together with the tab character, or with characters from an optionally specified list.
Output is to the standard output, so it can be used as the start of a pipe, or as a
filter, if - is used in place of a file name.

The meanings of the options are:

-d Without this option, the new-line characters of each but the last file (or last
line in case of the -s option) are replaced by a tab character. This option
allows replacing the tab character by one or more alternate characters (see
below).

list One or more characters immediately following -d replace the default tab as
the line concatenation character. The list is used circularly, i.e., when
exhausted, it is reused. In parallel merging (i.e., no -s option), the lines from
the last file are always terminated with a new-line character, not from the
list. The list may contain the special escape sequences: \n (new-line), \t
(tab), \ \ (backslash), and \0 (empty string, not a null character). Quoting
may be necessary, if characters have special meaning to the shell (e.g., to get
one backslash, use -d"'" '").

-s Merge subsequent lines rather than one from each input file. Use tab for con­
catenation, unless a list is specified with -d option. Regardless of the list,
the very last character of the file is forced to be a new-line.

May be used in place of any file name, to read a line from the standard input.
(There is no prompting).

EXAMPLES

Is I paste -d" " -

Is I paste - - - -
paste -s -d '" t' n" file

Icon International, Inc.

list directory in one column

list directory in four columns
combine pairs of lines into lines

1

PASTE(l)

SEE ALSO

cut(l), grep(l), pr(l).

DIAGNOSTICS

2

line too long

too many files

USER COMMANDS PASTE (1)

Output lines are restricted to 511 characters.

Except for -s option, no more than 12 input
files may be specified.

Icon International, Inc.

/

PATCH(l) USER C011MANDS PATCH (1)

NAME

patch - a program for applying a diff file to an original

SYNOPSIS

patch [options] orig patchfile [+ [options] orig]

but usually just

patch <patchfile

DESCRIPTION

Patch will take a patch file containing any of the three forms of difference listing pro­
duced by the diff program and apply those differences to an original file, producing a
patched version. By default, the patched version is put in place of the original, with
the original file backed up to the same name with the extension" .orig" or "-,, , or as
specified by the -b switch. You may also specify where you want the output to go
with a -0 switch. If patchfile is omitted, or is a hyphen, the patch will be read from
standard input.

Upon startup, patch will attempt to determine the type of the diff listing, unless
over-ruled by a -c, -e, or -n switch. Context diffs and normal diffs are applied by the
patch program itself, while ed diffs are simply fed to the ed editor via a pipe.

Patch will try to skip any leading garbage, apply the diff, and then skip any trailing
garbage. Thus you could feed an article or message containing a diff listing to patch,
and it should work. If the entire diff is indented by a consistent amount, this will be
taken into account.

With context diffs, and to a lesser extent with normal diffs, patch can detect when
the line numbers mentioned in the patch are incorrect, and will attempt to find the
correct place to apply each hunk of the patch. As a first guess, it takes the line
number mentioned for the hunk, plus or minus any offset used in applying the previ­
ous hunk. If that is not the correct place, patch will scan both forwards and back­
wards for a set of lines matching the context given in the hunk. First patch looks for
a place where all lines of the context match. If no such place is found, and it's a
context diff, and the maximum fuzz factor is set to 1 or more, then another scan
takes place ignoring the first and last line of context. If that fails, and the max­
imum fuzz factor is set to 2 or more, the first two and last two lines of context are
ignored, and another scan is made. (The default maximum fuzz factor is 2.) If patch
cannot find a place to install that hunk of the patch, it will put the hunk out to a
reject file, which normally is the name of the output file plus" .rej" or "#". (Note
that the rejected hunk will come out in context diff form whether the input patch
was a context diff or a normal diff. If the input was a normal diff, many of the con­
texts will simply be null.) The line numbers on the hunks in the reject file may be
different than in the patch file: they reflect the approximate location patch thinks
the failed hunks belong in the new file rather than the old one.

Icon International, Inc. 1

PATCH{l) USER C01v1MA.NDS PATCH { 1)

2

A15 each hunk is completed, you will be told whether the hunk succeeded or failed,
and which line (in the new file) patch thought the hunk should go on. If this i&
different from the line number specified in the diff you will be told the offset. A sin­
gle large offset MAY be an indication that a hunk was installed in the wrong place.
You will also be told if a fuzz factor was used to make the match, in which case you
should also be slightly suspicious.

If no original file is specified on the command line, patch will try to figure out from
the leading garbage what the name of the file to edit is. In the header of a context
diff, the filename is found from lines beginning with "***" or "---", with the shortest
name of an existing file winning. Only context diffs have lines like that, but if there
is an "Index:" line in the leading garbage, patch will try to use the filename from
that line. The context diff header takes precedence over an Index line. If no
filename can be intuited from the leading garbage, you will be asked for the name of
the file to patch.

(If the original file cannot be found, but a suitable sees or Res file is handy, patch
will attempt to get or check out the file.)

Additionally, if the leading garbage contains a "Prereq: " line, patch will take the
first word from the prerequisites line (normally a version number) and check the
input file to see if that word can be found. If not, patch will ask for confirmation
before proceeding.

The upshot of all this is that you should be able to say, while in a news interface, the
following:

I patch -d /usr /src/local/blurfi

and patch a file in the blurf!. directory directly from the article containing the patch.

If the patch file contains more than one patch, patch will try to apply each of them
as if they came from separate patch files. This means, among other things, that it is
assumed that the name of the file to patch must be determined for each diff listing,
and that the garbage before each diff listing will be examined for interesting things
such as filenames and revision level, as mentioned previously . You can give switches
(and another original file name) for the second and subsequent patches by separating
the corresponding argument lists by a '+'. (The argument list for a second or subse­
quent patch may not specify a new patch file, however.)

Patch recognizes the following switches:

-b causes the next argument to be interpreted as the backup extension, to be used
in place of ".orig" or "-".

-B causes the next argument to be interpreted as a prefix to the backup file name.
If this argument is specified any argument from -b will be ignored. This argu­
ment is an extension to Larry \Vall's patch v2.0.1.4, patchlevel 8, made by M.
Greim (greim@6bsvax.uucp).

-e forces patch to interpret the patch file as a context diff.

-d causes patch to interpret the next argument as a directory, and cd to it before
doing anything else.

Icon International, Inc.

(

PATCH(I) USER COMMANDS PATCH (I)

-Dcauses patch to use the "#ifdef...#endif" construct to mark changes. The argu­
ment following will be used as the differentiating symbol. Note that, unlike the
C compiler, there must be a space between the -D and the argument.

-e forces patch to interpret the patch file as an ed script.

-f forces patch to assume that the user knows exactly what he or she is doing, and
to not ask any questions. It does not suppress commentary, however. Use-s
for that.

-F<number>
sets the maximum fuzz factor. This switch only applies to context diffs, and
causes patch to ignore up to that many lines in looking for places to install a
hunk. Note that a larger fuzz factor increases the odds of a faulty patch. The
default fuzz factor is 2, and it may not be set to more than the number of lines
of context in the context diff, ordinarily 3.

-1 causes the pattern matching to be done loosely, in case the tabs and spaces
have been munged in your input file. Any sequence of whitespace in the pat­
tern line will match any sequence in the input file. Normal characters must
still match exactly. Each line of the context must still match a line in the
input file.

-n forces patch to interpret the patch file as a normal diff.

-N causes patch to ignore patches that it thinks are reversed or already applied.
See also -R .

-0 causes the next argument to be interpreted as the output file name.

-p<number>
sets the pathname strip count, which controls how pathnames found in the
patch file are treated, in case the you keep your files in a different directory
than the person who sent out the patch. The strip count specifies how many
slashes are to be stripped from the front of the pathname. (Any intervening
directory names also go away.) For example, supposing the filename in the
patch file was

/u/howard/src /blurfl/blurfl.c

setting -p or -pO gives the entire pathname unmodified, -pI gives

u/howard/src /blurfl/blurfl.c

without the leading slash, -p4 gives

blurfl/blurfl.c

and not specifying -p at all just gives you "blurfl.c". Whatever you end up
with is looked for either in the current directory, or the directory specified by
the -d switch.

-r causes the next argument to be interpreted as the reject file name.

-R tells patch that this patch was created with the old and new files swapped.
(Yes, I'm afraid that does happen occasionally, human nature being what it is.)
Patch will attempt to swap each hunk around before applying it. Rejects will
come out in the swapped format. The -R switch will not work with ed diff
scripts because there is too little information to reconstruct the reverse

Icon International, Inc. 3

PATCH(l) USER COM:MANDS PATCH(l)

operation.

If the first hunk of a patch fails, patch will reverse the hunk to see if it can be
applied that way. If it can, you will be asked if you want to have the -R
switch set. If it can't, the patch will continue to be applied normally. {Note:
this method cannot detect a reversed patch if it is a normal diff and if the first
command is an append (i.e. it should have been a delete) since appends always
succeed, due to the fact that a null context will match anywhere. Luckily,
most patches add or change lines rather than delete them, so most reversed
normal diffs will begin with a delete, which will fail,triggering the heuristic.)

-s makes patch do its work silently, unless an error occurs.

-S causes patch to ignore this patch from the patch file, but continue on looking
for the next patch in the file. Thus

patch -S + -S + <patchfile

will ignore the first and second of three patches.

-v causes patch to print out it's revision header and patch level.

-x<number>
sets internal debugging flags, and is of interest only to patch patchers.

ENVmONMENT

No environment variables are used by patch.

FIT..,ES

/tmp/patch*

SEE ALSO

diff{l)

NOTES FOR PATCH SENDERS

4

There are several things you should bear in mind if you are going to be sending out
patches. First, you can save people a lot of grief by keeping a patchlevel.h file which
is patched to increment the patch level as the first diff in the patch file you send out.
If you put a Prereq: line in with the patch, it won't let them apply patches out of
order without some warning. Second, make sure you've specified the filenames right,
either in a context diff header, or with an Index: line. If you are patching something
in a subdirectory, be sure to tell the patch user to specify a -p switch as needed.
Third, you can create a file by sending out a diff that compares a null file to the file
you want to create. This will only work if the file you want to create doesn't exist
already in the target directory. Fourth, take care not to send out reversed patches, r
since it makes people wonder whether they already applied the patch. Fifth, while '~

Icon International, Inc.

(

(

PATCH(l) USER COMMANDS PATCH (1)

you may be able to get away with putting 582 diff listings into one file, it is probably
wiser to group related patches into separate files in case something goes haywire.

DIAGNOSTICS

Too many to list here, but generally indicative that patch couldn't parse your patch
file.

The message "Hmm ... " indicates that there is unprocessed text in the patch file and
that patch is attempting to intuit whether there is a patch in that text and, if so,
what kind of patch it is.

Patch will exit with a non-zero status if any reject files were created. When applying
a set of patches in a loop it behooves you to check this exit status so you don't apply
a later patch to a partially patched me.

CAVEATS

BUGS

Patch cannot tell if the line numbers are off in an ed script, and can only detect bad
line numbers in a normal diff when it finds a "change" or a "delete" command. A
context diff using fuzz factor 3 may have the same problem. Until a suitable interac­
tive interface is added, you should probably do a context diff in these cases to see if
the changes made sense. Of course, compiling without errors is a pretty good indica­
tion that the patch worked, but not always.

Patch usually produces the correct results, even when it has to do a lot of guessing.
However, the results are guaranteed to be correct only when the patch is applied to
exactly the same version of the file that the patch was generated from.

Could be smarter about partial matches, excessively deviant offsets and swapped
code, but that would take an extra pass.

If code has been duplicated (for instance with #ifdef OLD CODE ... #else ... #endif),
patch is incapable of patching both versions, and, if it works at all, will likely patch
the wrong one, and tell you that it succeeded to boot.

If you apply a patch you've already applied, patch will think it is a reversed patch,
and offer to un-apply the patch. This could be construed as a feature.

Icon International, Inc. 5

(

PG(l) USER COMMANDS PG(l)

NAME

pg - file perusal filter for soft-copy terminals

SYNOPSIS

pg [-number] [-p string] [--cefns] [+linenumber] [+/pattern/] [files ...]

DESCRIPTION

The pg command is a filter which allows the examination of files one screenful at a
time on a soft-copy terminal. (The file name - and/or NULL arguments indicate
that pg should read from the standard input.) Each screenful is followed by a
prompt. If the user types a carriage return, another page is displayed; other possi­
bilities are enumerated below.

This command is different from previous paginators in that it allows you to back up
and review something that has already passed. The method for doing this is
explained below.

In order to determine terminal attributes, pg scans the terminfo(4) data base for the
terminal type specified by the environment variable TERM. If TERM is not defined,
the terminal type dumb is assumed.

The command line options are:

-number
An integer specifying the size (in lines) of the window that pg is to use instead
of the default. (On a terminal containing 24 lines, the default window size is
23).

-p string
Causes pg to use string as the prompt. If the prompt string contains a "%d",
the first occurrence of "%d" in the prompt will be replaced by the current
page number when the prompt is issued. The default prompt string is ":".

--c Home the cursor and clear the screen before displaying each page. This
option is ignored if clear Jcreen is not defined for this terminal type in the
terminfo(4) data base.

-e Causes pg not to pause at the end of each file.

-f Normally, pg splits lines longer than the screen width, but some sequences of
characters in the text being displayed (e.g., escape sequences for underlining)
generate undesirable results. The -f option inhibits pg from splitting lines.

-n Normally, commands must be terminated by a <newline> character. This
option causes an automatic end of command as soon as a command letter is
entered.

-s Causes pg to print all messages and prompts in standout mode (usually
inverse video).

+l£nenumber

Icon International, Inc. 1

PG(l) USER COMlv1A.NDS PG(l)

2

Start up at linenumber.

+/pattern/
Start up at the first line containing the regular expression pattern.

The responses that may be typed when pg pauses can be divided into three
categories: those causing further perusal, those that search, and those that modify
the perusal environment.

Commands which cause further perusal normally take a preceding address, an
optionally signed number indicating the point from which further text should be
displayed. This address is interpreted in either pages or lines depending on the com­
mand. A signed address specifies a point relative to the current page or line, and an
unsigned address specifies an address relative to the beginning of the file. Each com­
mand has a default address that is used if none is provided.

The perusal commands and their defaults are as follows:

(+I)<newline> or <blank>
This causes one page to be displayed. The address is specified in pages.

(+1) 1 With a relative address this causes pg to simulate scrolling the screen, for­
ward or backward, the number of lines specified. With an absolute address
this command prints a screenful beginning at the specified line.

(+1) d or AD

;'- ...
, ,
~)

Simulates scrolling half a screen forward or backward. '/'

The following perusal commands take no address .
• or AL

Typing a single period causes the current page of text to be redisplayed.

$ Displays the last windowful in the file. Use with caution when the input is a
pipe.

The following commands are available for searching for text patterns in the text.
The regular expressions described in ed(l) are available. They must always be ter­
minated by a <newline>, even if the -n option is specified.

i/pattern/
Search forward for the ith (default i=l) occurrence of pattern. Searching
begins immediately after the current page and continues to the end of the
current file, without wrap-around.

i"pattern"
i?pattern?

Search backwards for the ith (default i=l) occurrence of pattern. Searching
begins immediately before the current page and continues to the beginning of
the current file, without wrap-around. The" notation is useful for Adds 100
terminals which will not properly handle the 1.

After searching, pg will normally display the line found at the top of the screen. (
This can be modified by appending m or b to the search command to leaye the line ., .

Icon International, Inc.

PG(l) USER CO:MMANDS PG(l)

found in the middle or at the bottom of the window from now on. The suffix t can
be used to restore the original situation.

The user of pg can modify the environment of perusal with the following commands:

in Begin perusing the ith next file in the command line. The i is an unsigned
number, default value is 1.

'P Begin perusing the ith previous file in the command line. t IS an unsigned
number, default is 1.

aw Display another window of text. If i is present, set the window size to i.

s filename
Save the input in the named file. Only the current file being perused is saved.
The white space between the s and filename is optional. This command must
always be terminated by a <newline>, even if the -n option is specified.

h Help by displaying an abbreviated summary of available commands.

qor Q
Quit pg.

!command
Command is passed to the shell, whose name is taken from the SHELL
environment variable. If this is not available, the default shell is used. This
command must always be terminated by a <newline>, even if the -n option
is specified.

At any time when output is being sent to the terminal, the user can hit the quit key
(normally control- \) or the interrupt (break) key. This causes pg to stop sending out­
put, and display the prompt. The user may then enter one of the above commands
in the normal manner. Unfortunately, some output is lost when this is done, due to
the fact that any characters waiting in the terminal's output queue are flushed when
the quit signal occurs.

If the standard output is not a terminal, then pg acts just like cat(l), except that a
header is printed before each file (if there is more than one).

EXAMPLE

A sample usage of pg in reading system news would be

news I pg -p "(Page %d):"

NOTES

While waiting for terminal input, pg responds to BREAK, DEL, and ... by terminat­
ing execution. Between prompts, however, these signals interrupt pg's current task
and place the user in prompt mode. These should be used with caution when input is
being read from a pipe, since an interrupt is likely to terminate the other commands

Icon International, Inc. 3

PG(l) USER COMMANDS PG(l)

Fll..ES

in the pipeline.

Users of Berkeley's more will find that the z and f commands are available, and that
the terminal /, A, or ? may be omitted from the searching commands.

/usr /lib/terminfo/*
Terminal information data base

/tmp/pg*
Temporary file when input is from a pipe

SEE ALSO

BUGS

4

crypt(l), ed(l), grep(l).
terminfo(4) in the IOONjUXV Programmer Reference Manual.

If terminal tabs are not set every eight positions, undesirable results may occur.

When using pg as a filter with another command that changes the terminal I/O
options (e.g., crypt(l)), terminal settings may not be restored correctly.

Icon International, Inc.

(

PR(l) USER COMMANDS PR(l)

NAME

pr - print files

SYNOPSIS

pr [options 1 [files 1

DESCRIPTION

Pr prints the named files on the standard output. If file is -, or if no files are
specified, the standard input is assumed. By default, the listing is separated into
pages, each headed by the page number, a date and time, and the name of the file.

By default, columns are of equal width, separated by at least one space; lines which
do not fit are truncated. If the -s option is used, lines are not truncated and
columns are separated by the separation character.

If the standard output is associated with a terminal, error messages are withheld
until pr has completed printing.

The below options may appear singly or be combined in any order:

+k Begin printing with page k (default is 1).

-k Produce k-column output (default is 1). The options -e and -i are assumed
for multi-column output.

-a Print multi-column output across the page.

-m Merge and print all files simultaneously, one per column (overrides the -k,
and -a options).

-d Double-space the output.

-eck Expand input tabs to character positions k+l, 2*k+1, 3*k+1, etc. If k is 0 or
is omitted, default tab settings at every eighth position are assumed. Tab
characters in the input are expanded into the appropriate number of spaces.
If c (any non-digit character) is given, it is treated as the input tab character
(default for c is the tab character).

-ick In output, replace white space wherever possible by inserting tabs to charac­
ter positions k+1, 2*k+1, 3*k+1, etc. If k is 0 or is omitted, default tab set­
tings at every eighth position are assumed. If c (any non-digit character) is
given, it is treated as the output tab character (default for c is the tab char­
acter).

-nck Provide k-digit line numbering (default for k is 5). The number occupies the
first k+1 character positions of each column of normal output or each line of
-m output. If c (any non-digit character) is given, it is appended to the line
number to separate it from whatever follows (default for c is a tab).

-wk Set the width of a line to k character positions (default is 72 for equal-width
multi-column output, no limit otherwise).

Icon International, Inc. 1

PR(l) USER COMMANDS PR(l)

-ok Offset each line by k character positions (default is 0). The number of char·
acter positions per line is the sum of the width and offset.

-lk Set the length of a page to k lines (default is 66).

-h Use the next argument as the header to be printed instead of the file name.

-p Pause before beginning each page if the output is directed to a terminal (pr
will ring the bell at the terminal and wait for a carriage return). .

-f Use form·feed character for new pages (delault is to use a sequence of line·
leeds). Pause before beginning the first page if the standard output is associ·
ated with a terminal.

-r Print no diagnostic reports on failure to open files.

-t Print neither the five· line identifying header nor the five· line trailer normally
supplied for each page. Quit printing after the last line of each file without
spacing to the end of the page.

-sc Separate columns by the single character c instead of by the appropriate
number of spaces (default for c is a tab).

EXAMPLES

Print file! and file2 as a double-spaced, three-column listing headed by "file list":

pr -3dh "file list" file1 file2

Write file! on file2, expanding tabs to columns 10, 19, 28, 37, ... :

pr -e9 -t <file1 >file2

FILES

/dev/tty* to suspend messages

SEE ALSO

cat{l).

2 Icon International, Inc.

(-,

(

PROF(l) USER CO:MMANDS PROF(l)

NAME

prof - display profile data

SYNOPSIS

prof [-tcan] [-ox] [-g] [-z] [-h] [--s] [-m mdata] [prog]

DESCRIPTION

Prof interprets a profile file produced by the monitor(3C) function. The symbol table
in the object file prog (a.out by default) is read and correlated with a profile file
(mon.out by default). For each external text symbol the percentage of time spent
executing between the address of that symbol and the address of the next is printed,
together with the number of times that function was called and the average number
of milliseconds per call.

The mutually exclusive options t, c, a, and D determine the type of sorting of the
output lines:

-t Sort by decreasing percentage of total time (default).

-a
-D

Sort by decreasing number of calls.

Sort by increasing symbol address.

Sort lexically by symbol name.

The mutually exclusive options 0 and x specify the printing of the address of each
symbol monitored:

-0 Print each symbol address (in octal) along with the symbol name.

-x Print each symbol address (in hexadecimal) along with the symbol name.

The following options may be used in any combination:

-g Include non-global symbols (static functions).

-z Include all symbols in the profile range (see monitor(3C)), even if associated
with zero number of calls and zero time.

-h Suppress the heading normally printed on the report. (This is useful if t.he
report is to be processed further.)

--s Print a summary of several of the monitoring parameters and statistics on
the standard error output.

-m mdata
Use file mdata instead of mOD.out as the input profile file.

A program creates a profile file if it has been loaded with the -p option of a(1).
This option to the cc command arranges for calls to mont·tor(3C) at the beginning
and end of execution. It is the call to monitor at the end of execution that causes a
profile file to be written. The number of calls to a function is tallied if the -p

Icon International, Inc. 1

PROF(l) USER COMMANDS PROF (1)

FILES

option was used when the file containing the function was compiled.

The name of the file created by a profiled program is controlled by the environment
variable PROFDffi. If PROFDIR does not exist, "mon.out" is produced in the directory
current when the program terminates. If PROFDIR = string, "string/pid.progname"
is produced, where progname consists of argv[O] with any path prefix removed, and
pid is the program's process id. If PROFDIR = nothing, no profiling output is prcr
duced.

A single function may be split into subfunctions for profiling by means of the MARK
macro (see proJ(5)).

mOD.out for profile
a.out for namelist

SEE ALSO

cC(l}.
exit(2), profil(2}, monitor(3C), prof(5) in the ICON/UXV Programmer Reference
:Manual.

WARNING

BUGS

2

The times reported in successive identical runs may show variances of 20% or more,
because of varying cache-hit ratios due to sharing of the cache with other processes.
Even if a program seems to be the only one using the machine, hidden background or
asynchronous processes may blur the data. In rare cases, the clock ticks initiating
recording of the program counter may "beat" with loops in a program, grossly dis­
torting measurements.

Call counts are always recorded precisely, however.

Only programs that call exit(2) or return from main will cause a profile file to be
produced, unless a final call to monitor is explicitly coded.

The use of the -p option cc(l} to invoke profiling imposes a limit of 600 (300 on the
PDP-ll) functions that may have call counters established during program execution.
For more counters you must call monitor(3C} directly. If this limit is exceeded, other
data will be overwritten and the mon.out file will be corrupted. The number of call
counters used will be reported automatically by the prof command whenever the

Icon International, Inc.

PROF(l) USER COMMANDS PROF(l)

number exceeds 5/6 of the maximum.

(/
"

Icon International, Inc. 3

(

PRS(I) USER COM:MANDS PRS(1)

NAME

prs - print an sees file

SYNOPSIS

prs files

DESCRIPTION

Prs prints, on the standard output, parts or all of an file (see sccsfile(4)) in a user­
supplied format. If a directory is named, prs behaves as though each file in the
directory were specified as a named file, except that non- files (last component of the
path name does not begin with s.), and unreadable files are silently ignored. If a
name of - is given, the standard input is read; each line of the standard input is
taken to be the name of an file or directory to be processed; non- files and unread­
able files are silently ignored.

Arguments to prs, which may appear in any order, consist of keyletter arguments,
and file names.

All the described keyletter arguments apply independently to each named file: to
specify the output data specification. The dataspec is a string consisting of file data
keywords (see DATA KEYWORDS) interspersed with optional user supplied text. to
specify the sees IDentification 0 string of a delta for which information is desired.
If no is specified, the of the most recently created delta is assumed. information for
all deltas created earlier than and including the delta designated via the -r
key letter or the date given by the -e option. information for all deltas created later
than and including the delta designated via the -r key letter or the date given by
the -e option.
is in the form:

YY[MM[DD [IDI[MM[SSlllll

Units omitted from the date-time default to their maximum possible values; that is,
-e7502 is equivalent to -c750228235959. Any number of non-numeric characters
may separate the various 2-digit pieces of the cutoff date in the form: "-e77/2/2
9:22:25". printing of information for both removed, i.e., delta type = R, (see
rmdeJ(l)) and existing, i.e., delta type = D, deltas. If the -a keyletter is not
specified, information for existing deltas only is provided.

DATA KEYWORDS

Data keywords specify which parts of an file are to be retrieved and output. All
parts of an file (see sccsfile(4)) have an associated data keyword. There is no limit
on the number of times a data keyword may appear in a dataspec.

The information printed by prs consists of: (1) the user-supplied text; and (2)
appropriate values (extracted from the file) substituted for the recognized data'

Icon International, Inc. 1

PRS(l) USER COMMANDS PRS(1)

/~~

keywords in the order of appearance in the dataspec. The format of a data keyword
',,--/

value is either Simple (8), in which keyword substitution is direct, or Multi-line (M),
in which keyword substitution is followed by a carriage return.

User-supplied text is any text other than recognized data keywords.
A tab is specified by \t and carriage return/new-line is specified by \n. The default
data keywords are:

":Dt:\t:DL:\nMRs:\n:MR:COMMENTS:\n:C:"

TABLE 1. SCCS Files Data Keywords
Ke1/word Data Item File Section Value Format

:Dt: Delta information Delta Table See below. S
:DL: Delta line statistics .. :Li:/:Ld:/:Lu: S
:Li: Lines inserted by Delta .. DDnnn S
:Ld: Lines deleted by Delta .. nnnnn S
:Lu: Lines unchanged by Delta .. nnnnn S
:DT: Delta type .. D-or-R S

:1: SCCS ID string (SID) .. :R:.:L:.:B:.:S: S
:R: Release number .. nnnn S
:L: Level number .. nnnn S
:B: Branch number .. nnnn S
IS: Sequence number .. nnnn S
:D: Date Delta created .. :Dy:/:Dm:/:Dd: S

:Dy: Year Delta created .. nn S
:Dm: Month Delta created .. nn S
:Dd: Day Delta created 10 nn S '.
:T: Time Delta created .. :Th:::Tm:::Ts: S

:Th: Hour Delta created .. nn S
:Tm: Minutes Delta created .. nn S
:TII: Seconds Delta created .. nn S
:P: Programmer who created Delta .. logname S

:DS: Delta sequence number .. nnnn S
:DP: Predecessor Delta seq-no. 10 nnnn S
:DI: Seq-no. of deltas incl., exel., ignored .. :Dn:/:Dx:/:Dg: S
:DD: Deltas included (seq #-) II :DS:-:DS: ••• S
:Dx: Deltas excluded (seq #-) II :DS:-:DS: ••• S
:Dg: Deltas ignored (seq #-) .. :DS:-:DS: ••• S
:MR: MR numbers for delta .. text M
:0: Comments for delta .. text M

:UN: Ueer names User Names text M
:FL: Flag list Flags text M
:Y: Module type flag .. text S

:MF: MR validation flag .. 1/es-or-no S
:MP: MR validation pgm name .. text S
:KF: Keyword error/warning flag .. yes-or-no S
:KV: Keyword validation string .. . text S
:BF: Branch flag .. yes-01'- no S
:J: Joint edit flag .. yes-01'-no S

:LK: Locked releases II :R: ••• S
User-defined keyword .. text S oQ. . .

:M: Module name II text S
:FB: Floor boundary .. :R: S
:CB: Ceiling boundary .. :R: S
:Ds: Delault SID .. :1: S .~
:ND: Null delta flag .. yes-or-no S

2 Icon International, Inc.

(_i

(

PRS(l) USER COMMANDS PRS (1)

:FD: File descriptive text Comments text M
:BD: Body Body text M
:GB: Gotten body .. text M
:W: A form of what(!) string N/A ·Z··M·\t+ S
:A: A form of what(!) string N/A :Z::Y:-:M:-:I::Z: S
:Z: what(!) string delimiter N/A @(:fI:) s
:F: secs file name N/A text S

:PN: sces file path name N/A text S

• :Dt:-=-:DT:-:I:-:D:-:T:-:P:-:DS:-:DP:

EXAMPLES

FILES

prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file

may produce on the standard output:

Users and/or user IDs for s.file are:
xyz
131
abc

prs -d"Newest delta for pgm :M:: :1: Created :D: By :P:" -r s.file

may produce on the standard output:

Newest delta for pgm main.c: 3.7 Created 77/12/1 By cas

As a special case:

prs s.file

may produce on the standard output:

D 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000
MRs:
b178-12345
b179-54321
COMMENTS:
this is the comment line for s.file initial delta

for each delta table entry of the tiD" type. The only key letter argument allowed to
be used with the special case is the -a keyletter.

/tmp/pr?????

Icon International, Inc. 3

PRS(l) USER COM1.1ANDS PRS(1)

SEE ALSO

admin{l), delta{l), get(l), help(l}.
sccsfile(4) in the IOON/UXV Programmer Reference Manual.

Source Oode Control SY8tem User Guide in the UNIX System V User Guide.

DIAGNOSTICS

Use help(l} for explanations.

4 Icon International, Inc.

(

("

---- --------.-------.. --.-.-.~.-~-----~-.- ------------- ---

PS(l) USER COMMANDS PS(l)

NAME

ps - report process status

SYNOPSIS

ps [options 1

DES CRJP TION

Ps prints certain information about active processes. 'Vithout options, information
is printed about processes associated with the current terminal. The output consists
of a short listing containing only the process ID, terminal identifier, cumulative exe­
cution time, and the command name. Otherwise, the information that is displayed is
controlled by the selection of options.

Options using lists as arguments can have the list specified in one of two forms: a list
of identifiers separated from one another by a comma, or a list of identifiers enclosed
in double quotes and separated from one another by a comma and/or one or more
spaces.

The options are:

--e
-d
-a

-f

-1
-c corefile
~ swapdev

-n namelist

-t termlist

-p prociist

-u uidlist

-g grplist

Print information about all processes.
Print information about all processes, except process group leaders.
Print information about all processes, except process group leaders and
processes not associated with a terminal.
Generate a full listing. (See below for meaning of columns in a full list­
ing).
Generate a long listing. See below.
Use the file corefile in place of /dev /mem.
Use the file swapdev in place of /dev /swap. This is useful when exa­
mining a corefile; a swapdev of /dev /null will cause the user block to
be zeroed out.
The argument will be taken as the name of an alternate system name/­
ist file in place of /unix.
Restrict listing to data about the processes associated with the termi­
nals given in termlist. Terminal identifiers may be specified in one of
two forms: the device's file name (e.g., tty04) or if the device's file
name starts with tty, just the digit identifier (e.g., 04).
Restrict listing to data about processes whose process ID numbers are
given in proclist.
Restrict listing to data about processes whose user ID numbers or login
names are given in uidlist. In the listing, the numerical user ID will be
printed unless the -f option is used, in which case the login name will
be printed.
Restrict listing to data about processes whose process group leaders are
given in grpiist.

Icon International, Inc. 1

(

PS(l)

(-

(~-

2

USER COMMANDS PS(l)

The column headings and the meaning of the columns in a ps listing are given below;
the letters rand 1 indicate the option (full or long) that causes the corresponding
heading to appear; all means that the heading always appears. Note that these two
options determine only what information is provided for a process; they do not deter­
mine which processes will be listed.

F (1) Flags (octal and additive) associated with the process:

0 swapped;
1 m core;
2 system process;
4 locked-in core (e.g., for physical I/O);

10 being swapped;
20 being traced by another process;
40 another tracing flag;

100 3B 20 computer: swapin segment expansion;
VAX-ll/780: text pointer valid;

200 3B 20 computer: process is child (during fork swap);
VAX-ll/780: process is partially swapped.

S (I) The state of the process:

0 non-existen t;
S sleeping;
W waiting;
R runnmg;
I intermediate;
Z terminated;
T stopped;
X growmg.

urn (f,l) The user ID number of the process owner; the login name is printed
under the -f option.

PID (all) The process ID of the process; it is possible to kill a process if you
know this datum.

PPID (f,l) The process ID of the parent process.
C (f,l) Processor utilization for scheduling.
PRI (I) The priority of the process; higher numbers mean lower priority.
NI (I) Nice value; used in priority computation.
ADDR (I) The memory address of the process (a pointer to the segment table

array on the 3B 20 computer), if resident; otherwise, the disk
address.

SZ (1) The size in blocks of the core image of the process.
WCHAN (I) The event for which the process is waiting or sleeping; if blank, the

process is running.
STIME (f) Starting time of the process.
TTY (all) The controlling terminal for the process.
TIME (all) The cumulative execution time for the process.
CMD (all) The command name; the full command name and its arguments

are printed under the -f option.

Icon International, Inc.

PS(l)

FILES

USER COMMANDS PS(l)

A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct>.

Under the -f option, ps tries to determine the command name and arguments given
when the process was created by examining memory or the swap area. Failing this,
the command name, as it would appear without the -f option, is printe.d in square
brackets.

/unix
/dev/mem
/dev/swap
/etc/passwd
/etc/ps_data
/dev

system namelist
memory
the default swap device
supplies UID information
internal data structure
searched to find terminal ("tty") names

SEE ALSO

BUGS

acctcom(l), kill(l), nice(l}.

Things can change while ps is running; the picture it gives is only a close approxima­
tion to reality. Some data printed for defunct processes are irrelevant.

Icon International, Inc. 3

()',
,-,

(

PTX(l) USER COMMANDS PTX(l)

NAME

ptx - permuted index

SYNOPSIS

ptx [options] [input [output]]

DESCRIPTION

Ptx generates the file output that can be processed with a text formatter to produce
a permuted index of file input (standard input and output default). It has three
phases: the first does the permutation, generating one line for each keyword in an
input line. The keyword is rotated to the front. The permuted file is then sorted.
Finally, the sorted lines are rotated so the keyword comes at the middle of each line.
Ptx output is in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx is assumed to be an nrolf or tro.ff(l) macro provided by the user, or pro­
vided by the mptx(5) macro package. The before keyword and keyword and affer
fields incorporate as much of the line as will fit around the keyword when it is
printed. Tail and head, at least one of which is always the empty string, are
wrapped-around pieces small enough to fit in the unused space at the opposite end of
the line.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter.

-w n Use the next argument, n, as the length of the output line. The default
line length is 72 characters for nrolf and 100 for trolf.

-g n Use the next argument, n, as the number of characters that ptx will
reserve in its calculations for each gap among the four parts of the line
as finally printed. The default gap is 3.

-0 only Use as keywords only the words given in the only file.

-i ignore Do not use as keywords any words given in the ignore file. If the -i and
-0 options are missing, use /usr /lib feign as the ignore file.

-b break Use the characters in the break file to separate words. Tab, new-line,
and space characters are always used as break characters.

-r Take any leading non-blank characters of each input line to be a
reference identifier (as to a page or chapter). separate from the text of
the line. Attach that identifier as a 5th field on each output line.

The index for this manual was generated using ptx.

Icon International, Inc. 1

."-. /

(-

(

PTX(l) USER COM:MANDS PTX(1) .

Fn..ES

/bin/sort
/usr /lib / eign
/usr /lib /tmac /tmac. ptx

SEE ALSO

nroff(l), troff(!).
mm(5), mptx(5) in the IOON/UXV Programmer Reference Manual.

BUGS

Line length counts do not account for overstriking or proportional spacing.
Lines that contain tildes C) are botched, because ptx uses that character internally.

2 Icon International, Inc.

PWD(l} USER COMMANDS

NAME

pwd - working directory name

SYNOPSIS

pwd

DES CRlP TION

Pwd prints the path name of the working (current) directory.

SEE ALSO

cd(l).

DIAGNOSTICS

PWD(l)

"Cannot open .. " and "Read error in .. " indicate possible file system troll ble and
should be referred to a UNIX system programming counselor.

Icon International, Inc. 1

f
~ ..

(-

(

c)

RATFOR(l) USER COMMANDS RATFOR(l)

NAME

ratfor - rational Fortran dialect

SYNOPSIS

ratfor [options 1 [files 1

DESCRIPTION

Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Rat­
for provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-making:

loops:

if (condition) statement [else statement 1
switch (integer value) {

case integer: statement

}
[default: 1 statement

while (condition) statement
for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition) 1
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment.

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return expression to caller from function:
return (expression)

define:
define name replacement

include:
include file

Icon International, Inc. 1

/

(

(

RATFOR(l) USER COMJMANDS RATFOR(l)

The option -h causes quoted strings to be turned into 27H constructs. The -0
option copies comments to the output and attempts to format it neatly. Normally,
continuation lines are marked with a &, in column I; the option -6x makes the con­
tinuation character x and places it in column 6.

Ratfor is best used with f77{I).

SEE ALSO

efl(I), f77(1).

B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

2 Icon International, Inc.

REGCMP(l) USER COMMANDS REGCMP(l)

NAME

regcmp - regular expression compile

SYNOPSIS

regcmp [-] files

DESCRIPTION

Regcmp, in most cases, precludes the need for calling regcmp(3X) from C programs.
This saves on both execution time and program size. The command regcmp compiles
the regular expressions in file and places the output in file.i. If the - option is used,
the output will be placed in file.c. The format of entries in file is a name (C vari­
able) followed by one or more blanks followed by a regular expression enclosed in
double quotes. The output of regcmp is C source code. Compiled regular expressions
are represented as extern char vectors. File.i files may thus be included into C pro­
grams, or file.c files may be compiled and later loaded. In the C program which uses
the regcmp output, regex(abc,line) will apply the regular expression named abc to
line. Diagnostics are self-explanatory.

EXAMPLES

name "([A-Za-zJlA-Za-zO-9_1*)$O"

telno "\({0,1}([2-9][01][1-9])$O\){O,I} *"
"([2-9j[0-9]{2})$1 [-HO,I}"
"([0-9 {4 })$2"

In the C program that uses the regcmp output,

regex(telno, line, area, exch, rest)

will apply the regular expression named telno to line.

SEE ALSO

regcmp(3X) in the IOON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(

(:

RETEN(l) USER COMMANDS RETEN(l)

NAME

reten - program to change the autoJetension flag for quarter-inch cartridges.

SYNOPSIS

reten -on : -off

DESCRIPTION

reten is used to change the autoJetension flag for quarter-inch cartridges. If the -on
flag is used, each quarter-inch cartridge will be retensioned the first time it is
inserted into the drive. If the -off is used, the tape will not be automatically reten­
sioned and the user should insure that tapes which need retensioning are retensioned
before they are accessed. This may be done with the mt (1) command. If a tape
name is not specified, the environment variable TAPE is used; if TAPE does not
exist, mt uses the device / dev/rctO. By default mt performs the requested operation
once. Operations may be performed multiple times by specifying count.

Fn.ES

The available commands are listed below. Only as many characters as are required
to uniquely identify a command need be specified.

eof, weof
Write count end-of-file marks at the current position on the tape. Note that
is currently necessary to write end-of-file marks to separate multiple files on
the same tape.

fsf Forward space count files.

fsr Forward space count records.

fseof Forward space to end of tape. End of tape is defined as the last position
written on tape. Note that it is necessary to issue this command (instead of
fsf) to add data to a tape.

rewind
Rewind the tape (Count is ignored.)

status
Print status information about the tape unit.

Mt returns a 0 exit status when the operation(s) were successful, 1 if the command
was unrecognized, and 2 if an operation failed.

/dev /rct* Cassette tape interface

Icon International, Inc. 1

(
~-

(

· ~-----------------

RETEN(l) USER COMMANDS RETEN(l)

SEE ALSO

mtio(4), dd(l), ioctl(2), environ(5)

2 Icon International, Inc.

RM(l) USER COMMANDS RM(l)

NAME

rm, rmdir - remove Jiles or directories

SYNOPSIS

rm [-fri] file ...

rmdir dir ...

DESCRIPTION

Rm removes the entries for one or more files from a directory. If an entry was the
last link to the file, the file is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions
are printed and a line is read from the standard input. If that line begins with y the
file is deleted, otherwise the file remains. No questions are asked when the -f option
is given or if the standaTd input is not a terminal.

If a designated file is a directory, an error comment is printed unless the optional
argument -r has been used. In that case, rm recursively deletes the entire contents
of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and,
under -r, whether to examine each directory.

Rmdir removes entries for the named directories, which must be empty.

SEE ALSO

unlink(2) in the UNIX System Programmer Reference Manual.

DIAGNOSTICS

Generally self-explanatory. It is forbidden to remove the file •. merely to avoid the
antisocial consequences of inadvertently doing something like:

rm -r.*

Icon International, Inc. 1

.~

(\

~)

('

RMDEL(l) USER COMMANDS RMDEL(l)

NAME

rmdel - remove a delta from an sees file

SYNOPSIS

rmdel -rSID files

DESCRIPTION

FILES

Rmdel removes the delta specified by the SID from each named sees file. The delta
to be removed must be the newest (most recent) delta in its branch in the delta
chain of each named sees file. In addition, the specified must not be that of a ver­
sion being edited for the purpose of making a delta (i. e., if a p-file (see get(I)) exists
for the named sees file, the specified must not appear in any entry of the p-file).

If a directory is named, rmdel behaves as though each file in the directory were
specified as a named file, except that non-sees files (last component of the path
name does not begin with 8.) and unreadable files are silently ignored. If a name of
- is given, the standard input is read; each line of the standard input is taken to be
the name of an sees file to be processed; non-sees files and unreadable files are
silently ignored.

The exact permissions necessary to remove a delta are documented in the Source
Code Control System User Guide. Simply stated, they are either (1) if you make a
delta you can remove it; or (2) if you own the file and directory you can remove a
delta.

x.file (see delta(1))
z.file (see delta(1))

SEE ALSO

delta(I), get(I), help(I), prs(I).
sccsfile(4) in the ICON/UXV Programmer Reference Manual.

Source Code Control System User Guide in the ICON/ UXV User Guide.

DIAGNOSTICS

Use help(l) for explanations.

Icon International, Inc. 1

RMDffi(l) USER COMMANDS RMDffi(l)

NAME

rmdir, rm - remove (unlink) directories or files

SYNOPSIS

rmdir dir ...

rm [-f 1 [-r 1 (-i 1 I - J file ...

DESCRIPTION

Rmdir removes entries for the named directories, which must be empty.

Rm removes the entries for one or more files from a directory. If an entry was the
last link to the file, the file is destroyed. Removal of a file requires write permission
in its directory, but neither read nor write permission on the file itself.

If a file has no write permission and the standard input is a terminal, its permissions
are printed and a line is read from the standard input. If that line begins with 'y'
the file is deleted, otherwise the file remains. No questions are asked and no errors
are reported when the -f (force) option is given. /

If a designated file is a directory, an error comment is printed unless the optional
argument -r has been used. In that case, rm recursively deletes the entire contents
of the specified directory, and the directory itself.

If the -i (interactive) option is in effect, rm asks whether to delete each file, and,
under -r, whether to examine each directory.

The null option - indicates that all the arguments following it are to be treated as
file names. This allows the specification of file names starting with a minus.

SEE ALSO

rm(l), unlink(2), rmdir(2}

Icon International, Inc. 1

(

(

SACT(l) USER COMMANDS SACT(1)

NAME

sact - print current sees file editing activity

SYNOPSIS

sact files

DESCRIPTION

Sact informs the user of any impending deltas to a named sees file. This situation
occurs when get(l) with the -e option has been previously executed without. a subse­
quent execution of delta(l}. If a directory is named on the command line, sact
behaves as though each file in the directory were specified as a named file, except
that non-sees files and unreadable files are silently ignored. If a name of - is given,
the standard input is read with each line being taken as the name of an sees file to
be processed. The output for each named file consists of five fields separated by
spaces.

SEE ALSO

Field 1

Field 2

Field 3

Field 4

Field 5

specifies the SID of a delta that currently exists in the sees file to
which changes will be made to make the new delta.

specifies the SID for the new delta to be created.

contains the logname of the user who will make the delta (i.e.,
executed a get for editing).

contains the date that get -e was executed.

contains the time that get -e was executed.

delta{l), get{l), unget(l).

DIAGNOSTICS

Use help(l) for explanations.

Icon International, Inc. 1

SAR(l) USER CO:MMANDS SAR(1)

NAME

sar - system activity reporter

SYNOPSIS

sar [-ubdycwaqvmprA] [-0 file] t [n]

sar [-ubdycwaqvmprA] [-s time 1 [-e time 1 [-i sec 1 [-f file 1

DESCRIPTION

Sar, in the first instance, samples cumulative activity counters in the operating sys­
tem at n intervals of t seconds. If the -0 option is specified, it saves the samples in
file in binary format. The default value of n is 1. In the second instance, with no
sampling interval specified, sar extracts data from a previously recorded file, either
the one specified by -f option or, by default, the standard system activity daily data
file /usr /adm/sa/sadd for the current day dd. The starting and ending times of
the report can be bounded via the -s and -e time arguments of the form
hh[:mm[:ssl]. The -i option selects records at sec second intervals. Otherwise, all
intervals found in the data file are reported.

In either case, subsets of data to be printed are specified by option:

-u Report CPU utilization (the default):
%usr, %sys, %wio, %idle - portion of time running in user mode, running in
system mode, idle with some process waiting for block I/O, and otherwise idle.

-b Report buffer activity:
bread/s, bwrit/s - transfers per second of data between system buffers and
disk or other block devices;
lread/s, lwrit/s - accesses of system buffers;
%rcache, '%wcache - cache hit ratios, e. g., 1 - bread/lread;
pread/s, pwrit/s - transfers via raw (physical) device mechanism.

-d Report activity for each block device, e. g., disk or tape drive:
%busy, avque - portion of time device was busy servicing a transfer request,
average number of requests outstanding during that time;
r+w Is, blks/s - number of data transfers from or to device, number of bytes
transferred in 512-byte units;
avwait, avserv - average time in ms. that transfer requests wait idly on queue,
and average time to be serviced (which for disks includes seek, rotational
latency and data transfer times).

-y Report TTY device activity:
rawch/s, canch/s, outch/s - input character rate, input character rate
processed by canon, output character rate;
rcvin/s, xmtin/s, mdmin/s - receive, transmit and modem interrupt rates.

-c Report system calls:

('\
, I

.... /

scall/s - system calls of all types; f
sread/s, swrit/s, fork/s, exec/s - specific system calls; \..
rchar Is, wchar /5 - characters transferred by read and write system calls.

Icon International, Inc. 1

(

SAR(1) USER COMMANDS SAR(1)

-w Report system swapping and switching activity:
swpin/s, swpot/s, bswin/s, bswot/s - number of transfers and number of 512-
byte units transferred for swapins and swapouts (including initial loading of
some programs);
pswch/s - process switches.

-a Report use of file access system routines:
iget/s, namei/s, dirblk/s.

-q Report average queue length while occupied, and % of time occupied:
runq-sz, %runocc - run queue of processes in memory and runnable;
swpq-sz, %swpocc - swap queue of processes swapped out but ready to run.

-v Report status of process, i-node, file, record lock and file header tables:
proc-sz, inod-sz, file-sz, lock-sz, fhdr-sz - entries/size for each table, evaluated
once at sampling point;
ov - overflows that occur between sampling points for each table.

-m Report message and semaphore activities:
msg/s, sema/s - primitives per second.

-p Report paging activity:
vflt/s, pflt/s, pgfil/s, rclm/s -number of address translation faults, protection
faults, page-ins from file system and page reclaims occurring per second.

-r Report free swap and memory space:
freemem - number of free pages of memory; freeswp - number of free blocks of
swap space; the free space reported is necessarily contiguous.

-A Report all data. Equivalent to -udqbwcayvmpr.

EXAMPLES

Fll..ES

To see today's CPU activity so far:

sar

To watch CPU activity evolve for 10 minutes and save data:

sar -0 temp 60 10

To later review disk and tape activity from that period:

sar -d -f temp

/usr /adm/sa/sadd daily data file, where dd are digits representing the day of the
month.

SEE ALSO

sag(lG).
sar(lM) in the ICON/UXV Administrator Reference Manual.

2 Icon International, Inc.

SCC(l) USER COMMANDS SCC(1)

NAME

sec - C compiler for stand-alone programs

SYNOPSIS

BCC [+[lib 1] [option) ... [file 1 ...

DESCRIPTION

FILES

See prepares the named files for stand-alone execution. The option and file argu­
ments may be anything that can legally be used with the ee command; it should be
noted, though, that the -p (profiling) option, as well as any object module that con­
tains system calls, will cause the executable not to run.

See defines the compiler constant, STANDALONE, so that sections of C programs
may be compiled conditionally when the executable will be run stand-alone.

The first argument specifies an auxiliary library that defines the device configuration
of the PDP-ll computer for which the stand-alone executable is being prepared. Lib
may be one of the following:

A RP04/05/06 disk and TU16 magnetic tape, or equivalent on the PDP-ll plus
RM05 and RM80 disks, and TU78 and TSll tapes, or equivalent on the VAX

B RKll/RK05 disk, RPlljRP03 disk, and TMll/TUI6 magnetic tape, or
equivalent

If no +lib argument is specified, +A is assumed. If the + argument is specified
alone, no configuration library is loaded unless the user supplies his own.

/lib/crt2.0
/usr /lib/lib2.a
/usr /lib /lib2A.a
/usr /lib/lib2B.a

execution start-off
stand-alone library
+A configuration library
+B configuration library

(PDP-II only)
(PDP-II only)

SEE ALSO

cc(I), Id(l).
a.out(4) in the IOON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(

("!

SCCSDIFF (1) USER COMMANDS SCCSDIFF (1)

NAME

sccsdiff - compare two versions of an sees file

SYNOPSIS

8ccsdiff -rSIDl -rSID2 [-p] [-sn] files

DESCRIPTION

Sccsdiff compares two versions of an sees file and generates the differences between
the two versions. Any number of sees files may be specified, but arguments apply to
all files.

-rSID?

-p

-sn

SIDl and SID2 specify the deltas of an sees file that are to be
compared. Versions are passed to bdiff(l) in the order given.

pipe output for each file through pr(l).

n is the file segment size that bdiff will pass to diff(l). This is
useful when diff fails due to a high system load.

(Fn..ES

/tmp/get????? Temporary files

SEE ALSO

bdiff(l), get(l), help(l), pr(l).

Source Code Control System User Guide in the ICON/U).'V User Guide.

DIAGNOSTICS

"file: No differences" If the two versions are the same.

Use help{l) for explanations.

Icon International, Inc. 1

SDB(1) USER COMMANDS SDB(1)

NAME

sdb - symbolic debugger

SYNOPSIS

.db [-wl [-Wl [objfil [corfil [directory-list 111

DESCRIPTION

Sdb is a symbolic debugger that can be used with C and F77 programs. It may be
used to examine their object files and core files and to provide a controlled environ­
ment for their execution.

Objfil is normally an executable program file which has been compiled with the -g
(debug) option; if it has not been compiled with the -g option, or if it is not an exe­
cutable file, the symbolic capabilities of sdb will be limited, but the file can still be
examined and the program debugged. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing objfil; the default for corfil
is core. The core file need not be present. A - in place of corfil will force sdb to
ignore any core image file. The colon separated list of directories (directory-list) is
used to locate the source files used to build objfil.

It is useful to know that at any time there is a current line and current file. If corfil
exists then they are initially set to the line and file containing the source statement
at which the process terminated. Otherwise, they are set to the first line in main().
The current line and file may be changed with the source file examination com­
mands.

By default, warnings are provided if the source files used in producing objfil cannot
be found, or are newer than objfil. This checking feature and the accompanying
warnings may be disabled by the use of the -W flag.

Names of variables are written just as they are in Cor F77. Note that names in C
are now of arbitrary length, sdb will no longer truncate names. Variables local to a
procedure may be accessed using the form procedure:variable. If no procedure name
is given, the procedure containing the current line is used by default. It is also possi­
ble to refer to structure members as variable.member, pointers to structure members
as variable->member and array elements as variab/e[number]. Pointers may be
dereferenced by using the form pointer[O]. Combinations of these forms may also be
used. F77 common variables may be referenced by using the name of the common
block instead of the structure name. Blank common variables may be named by the
form • variable. A number may be used in place of a structure variable name, in
which case the number is viewed as the address of the structure, and the template
used for the structure is that of the last structure referenced by sdb. An unqualified
structure variable may also be used with various commands. Generally, sdb will
interpret a structure as a set of variables. Thus, sdb will display the values of all
the elements of a structure when it is requested to display a structure. An exception

Icon International, Inc. 1

c

SDB(1) USER COMMANDS SDB(1)

2

to this interpretation occurs when displaying variable addresses. An entire structure
does have an address, and it is this value sdb displays, not the addresses of individual
elements. Elements of a multidimensional array may be referenced as
variable [number][number) ••• , or as variable[number,number, ...]. In place of number,
the Corm number;number may be used to indicate a range of values, * may be used
to indicate all legitimate values for that subscript, or subscripts may be omitted
entirely if they are the last subscripts and the Cull range of values is desired. As
with structures, sdb displays all the values of an array or of the section of an array if
trailing subscripts are omitted. It displays only the address of the array itself or of
the section specified by the user if subscripts are omitted. A multidimensional
parameter in an F77 program cannot be displayed as an array, but· it is actually a
pointer, whose value is the location of the array. The array itself can be accessed
symbolically from the calling function. A particular instance of a variable on the
stack may be referenced by using the form procedure:variable,number. All the varia­
tions mentioned in naming variables may be used. Number is the occurrence of the
specified procedure on the stack, counting the top, or most current, as the first. If no
procedure is specified, the procedure currently executing is used by default.

It is also possible to specify a variable by its address. All forms of integer constants
which are valid in C may be used, so that addresses may be input in decimal, octal
or hexadecimal.

Line numbers in the source program are referred to as file-name:number or
procedure:number. In either case the number is relative to the beginning of the file.
If no procedure or file name is given, the current file is used by default. If no number
is given, the first line of the named procedure or file is used.

While a process is running under sdb, all addresses refer to the executing program;
otherwise they refer to objfil or corfil. An initial argument of -w permits overwrit­
ing locations in objfil.

Addresses
The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (bl, el, /1) and
(be, ee, Ie) and the file address corresponding to a written address is calculated as
follows:

bladdress<el

file address=address+/l-bl

otherwise

beaddress<e2

file address=address+/2-b2,

Icon International, Inc.

SDB(l) USER COMMANDS SDB(1)

otherwise, the requested address is not legal. In some cases (e.g., for programs with
separated I and D space) the two segments for a file may overlap.

The initial setting of both mappings is suitable for normal a.out and core files. If
either file is not of the kind expected then, for that file, 61 is set to 0, e1 is set to the
maximum file size, and /1 is set to 0; in this way the whole file can be examined with
no address translation.

In order for 8d6 to be used on large files, all appropriate values are kept as signed
32-bit integers.

Commands

The commands for examining data in the program are:

t Print a stack trace of the terminated or halted program.

T Print the top line of the stack trace.

vara"able / elm
Print the value of variable according to length I and format m. A numeric
count c indicates that a region of memory, beginning at the address implied by
var£able, is to be displayed. The length specifiers are:

b one byte
h two bytes (half word)
1 four bytes (long word)

Legal values for mare:

c character
d decimal
u decimal, unsigned
o octal
x hexadecimal
r 32-bit single precision floating point
g 64-bit double precision floating point
s Assume variable is a string pointer and print characters starting

at the address pointed to by the variable.
a Print characters starting at the variable's address. This format

may not be used with register variables.
p pointer to procedure
i disassemble machine-language instruction with addresses printed

numerically and symbolically.
I disassemble machine-language instruction with addresses just

printed numerically.

The length specifiers are only effective with the formats c, d, u, 0 and x. Any
of the specifiers, c, 1, and m, may be omitted. If all are omitted, sdb choses a
length and a format suitable for the variable's type as declared in the program.

Icon International, Inc. 3

(

--~----~-----~--~-----~ --,-

SDB(1) USER COMMANDS SDB(1)

4

If m is specified, then this format is used for displaying the variable. A length
specifier determines the output length of the value to be displayed, sometimes
resulting in truncation. A count specifier c tells sdb to display that many units
of memory, beginning at the address of variable. The number of bytes in one
such unit of memory is determined by the length specifier " or if no length is
given, by the size associated with the variable. If a count specifier is used for
the 8 or a command, then that many characters are printed. Otherwise suc­
cessive characters are printed until either a null byte is reached or 128 charac­
ters are printed. The last variable may be redisplayed with the command .f.

The sh(l) metacharacters * and f may be used within procedure and variable
names, providing a limited form of pattern matching. If no procedure name is
given, variables local to the current procedure and global variables are
matched; if a procedure name is specified then only variables local to that pro­
cedure are matched. To match only global variables, the form :pattern is used.

linenumberf 1m
variable:f 1m

Print the value at the address from a.out or I space given by linenumber or
variable (procedure name), according to the format 1m. The default format is
Ii' .

variable=lm
linenumber=lm
number=lm

Print the address of variable or linenumber, or the value of number, in the for­
mat specified by 1m. If no format is given, then Ix is used. The last variant of
this command provides a convenient way to convert between decimal, octal
and hexadecimal.

variable! value
Set variable to the given value. The value may be a number, a character con­
stant or a variable. The value must be well defined; expressions which produce
more than one value, such as structures, are not allowed. Character constants
are denoted ·character. Numbers are viewed as integers unless a decimal point
or exponent is used. In this case, they are treated as having the type double.
Registers are viewed as integers. The variable may be ail expression which
indicates more than one variable, such as an array or structure name" If the
address of a variable is given, it is regarded as the address of a variable of type
into C conventions are used in any type conversions necessary to perform the
indicated assignment.

x Print the machine registers and the current machine-language instruction.

X Print the current machine-language instruction.

The commands for examining source files are:

e procedure
e file-name
e directory/
e directory file-name

The first two forms set the current file to the file containing procedure or to

Icon International, Inc.

I

SDB(l) USER CO:M:MANDS SDB(1)

file-name. The current line is set to the first line in the named procedure or
file. Source files are assumed to be in directory. The default is the current
working directory. The latter two forms change the value of directory. If no
procedure, file name, or directory is given, the current procedure name and file
name are reported.

/regular expression/ .
Search forward from the current line for a line containing a string matching
regular expression as in ed{l). The trailing / may be deleted.

rregular expressionr
Search backward from the current line for a line containing a string matching
regular expression as in ed{l). The trailing r may be deleted.

p Print the current line.

z Print the current line followed by the next 9 lines. Set the current line to the
last line printed.

w Window. Print the 10 lines around the current line.

number
Set the current line to the given line number. Print the new current line.

count+
Advance the current line by count lines. Print the new current line.

count-
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count r args
count R

Run the program with the given arguments. The r command with no argu­
ments reuses the previous arguments to the program while the R command
runs the program with no arguments. An argument beginning with < or >
causes redirection for the standard input or output, respectively. If count is
given, it specifies the number of breakpoints to be ignored.

linenumber c count
linenumber C count

Continue after a breakpoint or interrupt. If count is given, it specifies the
breakpoint at which to stop after ignoring count - 1 breakpoints. C continues
with the signal which caused the program to stop reactivated and c ignores it.
If a line number is specified then a temporary breakpoint is placed at the line
and execution is continued. The breakpoint is deleted when the command
finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line. If count
is given, it specifies the number of breakpoints to be ignored.

s count
S count

Single step the program through count lines. If no count is given then the pro­
gram is run for one line. S is equivalent to s except it steps through procedure
calls.

Icon International, Inc. 5

(
'-- /

(-

(-

SDB(l) USER COM:MA.NDS SDB(1)

6

i
I Single step by one machine-language instruction. I steps with the signal which

caused the program to stop reactivated and i ignores it.

variable$m count
addres8."IIl count

Single step (as with 8) until the specified location is modified with a new value.
If count is omitted, it is effectively infinity. Variable must be accessible from
the current procedure. Since this command is done by software, it can be very
slow.

level v
Toggle verbose mode, for use when single stepping with S, II or m. If level is
omitted, then just the current source file and/or subroutine name is printed
when either changes. If level is 1 or greater, each C source line is printed
before it is executed; if level is 2 or greater, each assembler statement is also
printed. A v turns verbose mode off if it is on for any level.

k Kill the program being debugged.

proced ure(argI ,arg2, ...)
procedure(argI,arg2, ...)/m

Execute the named procedure with the given arguments. Arguments can be
integer, character or string constants or names of variables accessible from the
current procedure. The second form causes the value returned by the pro­
cedure to be printed according to format m. If no format is given, it defaults
to d.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line number
is given (e.g., "proc:"), a breakpoint is placed at the first line in the procedure
even if it was not compiled with the -g option. If no linenumber is given, a
breakpoint is placed at the current line. If no commands are given, execution
stops just before the breakpoint and control is returned to sdb. Otherwise the
commands are executed when the breakpoint is encountered and execution con­
tinues. Multiple commands are specified by separating them with semicolons.
If k is used as a command to execute at a breakpoint, control returns to sdb,
instead of continuing execution.

B Print a list of the currently active breakpoints.

linenumber d
Delete a breakpoint at the given line. If no linenumber is given then the break­
points are deleted interactively. Each breakpoint location is printed and a line
is read from the standard input. If the line begins with a y or d then the
breakpoint is deleted.

D Delete all breakpoints.

I Print the last executed line.

linenumber a
Announce. If linenumber is of the form proc:number, the command effectively
,does a linenumber b 1. If linenumber is of the form proc:, the command
effectively does a proc: b T.

Miscellaneous commands:

!command

Icon International, Inc.

SDB(l) USER COM.MANDS SDB(l)

Fn:..ES

The command is interpreted by sh(l).
new-line

If the previous command printed a source line, then advance the current line
by one line and print the new current line. If the previous command displayed
a memory location, then display the next memory location.

eontrol-D
Scroll. Print the next 10 lines of instructions, source or data depending on
which was printed last.

< filename
Read commands from filename until the end of file is reached, and then con­
tinue to accept commands from standard input. When sdb is told to display a
variable by a command in such a file, the variable name is displayed along with
the value. This command may not be nested; < may not appear as a com­
mand in a file.

M Print the address maps.

M [?/ll*J be/
Record new values for the address map. The arguments rand / specify the
text and data maps, respectively. The first segment (bt, et, /1) is changed
unless * is specified, in which case the second segment (bl, et, /1) of the map­
ping is changed. If fewer than three values are given, the remaining map
parameters are left unchanged.

" string
Print the given string. The C escape sequences of the form \character are
recognized, where character is a nonnumeric character.

q Exit the debugger.

The following commands also exist and are intended only for debugging the
debugger:

V Print the version number.
Q Print a list of procedures and files being debugged.
Y Toggle debug output.

a.out
core

SEE ALSO

cc(l), £17(1), sh(l).
a.out(4), core(4) in the ICON/UXV Programmer Reference :Manual.

Icon International, Inc. 7

C)

,/

SDB(l) USER COMMANDS SDB(1)

WARNINGS

BUGS

8

On the VAX-il, C variables are identified internally with an underscore prepended.
User variables which differ by only an initial underscore cannot be distinguished, as
sdb recognizes both internal and external names.

When sdb prints the value of an external variable for which there is no debugging
information, a warning is printed before the value. The value is assumed to be int
{integer}.

Data which are stored in text sections are indistinguishable from functions.

Line number information in optimized functions is unreliable, and some information
may be missing.

If a procedure is called when the program is not stopped at a breakpoint (such as
when a core image is being debugged), all variables are initialized before the pro­
cedure is started. This makes it impossible to use a procedure which formats data
from a core image.

The default type for printing F77 parameters is incorrect. Their address is printed
instead of their value.

Tracebacks containing F77 subprograms with multiple entry points may print too
many arguments in the wrong order, but their values are correct.

The range of an F77 array subscript is assumed to be 1 to n, where n is the dimen­
sion corresponding to that subscript. This is only significant when the user omits a
subscript, or uses * to indicate the full range. There is no problem in general with
arrays -having subscripts whose lower bounds are not 1.

On the 3B 20 computer there is no hardware trace mode and single-stepping is
implemented by setting pseudo breakpoints where possible. This is slow. The s, S, i,
and I commands do not always convert on the 3B 20 computer due to pseudo­
breakpointing. Thus sdb will not allow single-stepping from an indirect jump, a
switch instruction, or a switdt instruction.

The entry point to an optimized function cannot be found on the 3B 20 computer.
Setting a breakpoint at the beginning of an optimized function may cause the middle
of some instruction within the function to be overwritten. This problem can be
circumvented by disassembling the first few instructions of the function, and manu­
ally setting a breakpoint at the first instruction after the stack pointer is adjusted.

Icon International, Inc.

SDIFF(l) USER CO:MMANDS SDIFF (1)

NAME

sdiff - side-by-side difference program

SYNOPSIS

sdifl' [options ... 1 filel file2

DESCRIPTION

Sdiff uses the output of diff(l) to produce a side-by-side listing of two files indicating
those lines that are different. Each line of the two files is printed with a blank
gutter between them if the lines are identical, a < in the gutter if the line only
exists in filel, a > in the gutter if the line only exists in filet!, and a I for lines that
are different.

For example:

x y
a a
b <
c <
d d

> c

The follmving options exist:

-w n Use the next argument, n, as the width of the output line. The default
line length is 130 characters.

-1

-s

Only print the left side of any lines that are identical.

Do not print identical lines.

-0 output Use the next argument, output, as the name of a third file that is
created as a user-controlled merging of file1 and filet!. Identical lines of
filel a.nd filet! are copied to output. Sets of differences, as produced by
diff(l), are printed; where a set of differences share a common gutter
character. Mter printing each set of differences, sdiff prompts the user
with a. % and waits for one of the following user-typed commands:

1 append the left column to the output file

r append the right column to the output file

s turn on silent mode; do not print identical lines

v turn off silent mode

e 1 call the editor with the left column
e r call the editor with the right column

Icon International, Inc. 1

~ ..

SDIFF (1)

SEE ALSO

diff(l), ed(l).

(-

2

USER COMMANDS SDIFF(1)

e b call the editor with the concatenation of left and right

e call the editor with a zero length file

q exit from the program

On exit from the editor, the resulting file is concatenated on the end of
the output file.

Icon International, Inc.

SED(l) USER COMMANDS SED(l)

NAME

sed - stream editor

SYNOPSIS

sed [-n] [-e script] [-t sfile] [files]

DESCRIPTION

Sed copies the named files (standard input default) to the standard output, edited
according to a script of commands. The -f option causes the script to be taken
from file sfile; these options accumulate. If there is just one -e option and no -f
options, the flag -e may be omitted. The -n option suppresses the default output.
A script consists of editing commands, one per line, of the following form:

[address [, address J J function [arguments J

In normal operation, sed cyclically copies a line of input into a pattern space (unless
there is something left after a D command), applies in sequence all commands whose
addresses select that pattern space, and at the end of the script copies the pattern
space to the standard output (except under -n) and deletes the pattern space.

Some of the commands use a hold space to save all or part of the pattern space for
subsequent retrieval.

An address is either a decimal number that counts input lines cumulatively across
files, a $ that addresses the last line of input, or a context address, i.e., a/regular
expression/ in the style of ed(l) modified thus:

In a context address, the construction \?regular expression?, where? is any
character, is identical to /regular expression/. Note that in the con­
text address \xabc \xdefx, the second x stands for itself, so that the
regular expression is abcxdef.

The escape sequence \n matches a new-line embedded in the pattern space.
A period. matches any character except the terminal new-line of the pattern

space.
A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches

the address.
A command line with two addresses selects the inclusive range from the first

pattern space that matches the first address through the next pattern
space that matches the second. (If the second address is a number
less than or equal to the line number first selected, only one line is
selected.) Thereafter the process is repeated, looking again for the
first address.

Icon International, Inc. 1

(-

(

SED(l) USER COMMANDS SED (1)

2

Editing commands can be applied only to non-selected pattern spaces by use of the
negation function! (below).

In the following list of functions the maximum number of permissible addresses for
each function is indicated in parentheses.

The text argument consists of one or more lines, all but the last of which end with \
to hide the new-line. Backslashes in text are treated like backslashes in the replace­
ment string of an 8 command, and may be used to protect initial blanks and tabs
against the stripping that is done on every script line. The rfile or wfile argument
must terminate the command line and must be preceded by exactly one blank. Each
wfile is created before processing begins. There can be at most 10 distinct wfile
arguments.

(l)a\
text Append. Place text on the output before reading the next input line.
(2) b label Branch to the: command bearing the label. If label is empty, branch to

the end of the script.
(2)c\
text

(2)d
(2)D

(2)g

(2)G
(2)h

(2)H
(1) i\
text
(2}1

(2}n

(2}N

(2)p
(2}P

Change. Delete the pattern space. With 0 or 1 address or at the end of
a 2-address range, place text on the output. Start the next cycle.
Delete the pattern space. Start the next cycle.
Delete the initial segment of the pattern space through the first new-line.
Start the next cycle.
Replace the contents of the pattern space by the contents of the hold
space.
Append the contents of the hold space to the pattern space.
Replace the contents of the hold space by the contents of the pattern
space.
Append the contents of the pattern space to the hold space.

Insert. Place text on the standard output.
List the pattern space on the standard output in an unambiguous form.
Non-printing characters are spelled in two-digit ASCII and long lines are
folded.
Copy the pattern space to the standard output. Replace the pattern
space with the next line of input.
Append the next line of input to the pattern space with an embedded
new-line. (The current line number changes.)
Print. Copy the pattern space to the standard output.
Copy the initial segment of the pattern space through the first new-line
to the standard output.

(l)q Quit. Branch to the end of the script. Do not start a new cycle.
(2) r rfile Read the contents of rfile. Place them on the output before reading the

next input line.
(2) 8/ regular expression/replacement/flags

Substitute the replacement string for instances of the regular expression
in the pattern space. Any character may be used instead of /. For a
fuller description see ed(I}. Flags is zero or more of:

Icon International, Inc.

SED(1) USER COMMANDS SED(l)

n n- 1 - 512. Substitute for just the n th occurrence of the
regular ezpression.

g Globat :Substitute for all nonoverlapping instances of the
Tegular·e%pf'ession rather than just the first one.

p Print the pattern space if a replacement was made.
w wfile

Write. Append the pattern space to wfile if a replacement
w.asmade.

(2)t label Test. Branch to the : command bearing the label if any substitutions
have been made .sin~ ·tile most recent reading of an input line or execu­
tion of a t. If label is empty, branch to the end of the script.

(2) w wfile Write. Append the pattern space to wfile.
(2)x Exchange the contents of the pattern and hold spaces.
(2) y / stringl / string!!/

Transform. Replace all occurrences of characters in stringl with the
corresponding character in string!!. The lengths of stringl and string!!
must be equal.

(2)! function
Don't. Apply the function (or group, if function is {) only to lines not
selected by the address(es).

(0): label This command does nothing; it bears a label for band t commands to

(1)=
(2){

(0)
(0)#

SEE-ALSO

branch to.
Place the current line number on the standard output as a line.
Execute the following commands through a matching } only when the
pattern space is seleeted.
An empty comma.nd is ignored.
If a #= appears as the :first character on the first line of a script file, then
that entire line is treated as a comment, with one exception. If the char-
acter after the "# is an 'n', then the default output will be suppressed.
The rest of the line after #n is also ignored. A script file must contain at
least one non-comment line.

awk(I), ed(I), grep(I).

Icon International, Inc. 3

(

MACHID(l) USER COMMANDS MACHID(l)

NAME

machid, m68k - provide truth value about your processor type

SYNOPSIS

m6Sk

DESCRIPTION

The following commands will return a true value (exit code of 0) if you are on a pro­
cessor that the command name indicates.

m6Sk True if you are on a ICON m68k family computer.

pdpU True if you are on a PDP-ll/45 or PDP-ll/70.

u3b True if you are on a 3B 20 computer.

u3b5 True if you are on a 3B 5 computer.

vax True if you are on a VAX-ll/750 or VAX-ll/780.

The commands that do not apply will return a false (non-zero) value. These com­
mands are often used within make(l) makefiles and shell procedures to increase por­
tability.

SEE ALSO

make(1), sh(l), test(l), true{l).

Icon International, Inc. 1

o

(

(I

SHe!) USER COMMANDS

NAME

sh, rsh - shell, the standard/restricted command programming language

SYNOPSIS

.h [-acefhiknr&tuvx] I aygs]
reh [-acefhiknrstuvx J [args J

DESCRIPTION

SHe!)

Sh is a command programming language that executes commands read from a termi­
nal or a file. Rsh is a restricted version of the standard command interpreter sh; it
is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. See invoaation below for the mean­
ing of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of lettens, digits, or underscores
beginning with a letter or underscore. A parameter is a name, a digit, or any of the
characters *, @,#, r, -, $, and !.

Commands
A sz"mple-command isa sequence of non-blank words separated by blanks. The first
word specifies the name of the command to be executed. Except as specified below,
the remaining words are passed as arguments to the invoked command. The com­
mand name is passed as argument 0 (see exec(2)). The value of a simple-command is
its exit status if it terminates normally, or (octal) 200+staiJls if it terminates abnor­
mally (see signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separa'ted by I (or, for historical
compatibility, by"'). The standard output of each command but the last is con­
nected by a pipe(2) to the standard input of the next command. Each command is
run as a. separate process; the shell waits for the last command to terminate. The
exit sta.tus of a pipeline is the exit status of the last command.

A list is a sequence of one or more pipelines separated by;, 1£, 1£1£, or II, and
optionally terminated by ; or 1£. Of these four symbols, ; a.nd 1£ have equal pre­
cedence, which is lower than that of 1£1£ and II. The symbols 1£1£ and II also have
equal precedence. A semicolon (;) causes sequential execution of the preceding pipe­
line; an ampersand (1£) causes asynchronous execution of the preceding p'ipeline (i.e.,
the shell does not wait for that pipeline to finish). The symbol 1£1£ (10 causes the
list following it to be executed only if the preceding pipeline returns a zero (non-zero)
exit status. An arbitrary number of new-lines may appear in a list, instead of semi­
colons, to delimit commands.

A command is either a simple-command or one of the following. Unless otherwise
stated, the value returned by a command is that of the last smple-command

Icon International, Inc. 1

SH(l)

2

USER COM:MANDS SHe!)

executed in the command.

for name in word ... do list done
Each time a for command is executed, name is set to the next word taken
from the in word list. If in word ... is omitted, then the for command exe·
cutes the do list once for each positional parameter that is set (see Parameter
Substitution below). Execution ends when there are no more words in the list.

case word in pattern I pattern ...) list;; ... esac
A case command executes the list associated with the first pattern that
matches word. The form of the patterns is the same as that used for file­
name generation (see File Name Generation) except that a slash, a leading
dot, or a dot immediately following a slash need not be matched explicitly.

if list then list elif list then list ... else list fi
The list following if is executed and, if it returns a zero exit status, the list
following the first then is executed. Otherwise, the list following elif is exe­
cuted and, if its value is zero, the list following the next then is executed.
Failing that, the else list is executed. If no else list or then list is executed,
then the if command returns a zero exit status.

while list do list done

(list)

{ list;}

A while command repeatedly executes the while list and, if the exit status of
the last command in the list is zero, executes the do list; otherwise the loop
terminates. If no commands in the do list are executed, then the while com·
mand returns a zero exit status; until may be used in place of while to
negate the loop termination test.

Execute list in a sub-shell.

list is simply executed.
name 0 {list;}

Define a function which is referenced by name. The body of the function is
the list of commands between { and }. Execution of functions is described
below (see Execution).

The following words are only recognized as the first word of a command and when
not quoted:

if then else elif fi case esac for while until do done { }

Comments
A word beginning with #= causes that word and all the following characters up to a
new· line to be ignored.

Command Substitution
The standard output from a command enclosed in a pair of grave accents () may be
used as part or all of a word; trailing new· lines are removed.

Icon International, Inc.

(

(,

SH(l) USER COMMANDS SH(1)

Parameter Substitution
The character $ is used to introduce substitutable parameters. There are two types
of parameters, positional and keyword. If parameter is a digit, it is a positional
parameter. Positional parameters may be assigned values by set. Keyword parame­
ters (also known as variables) may be assigned values by writing:

name=value

name=value

Pattern-matching is not performed on value. There cannot be a function and a vari­
able with the same name.

${parameter}
The value, if any, of the parameter is substituted. The braces are required
only when parameter is followed by a letter, digit, or underscore that is not to
be interpreted as part of its name. If parameter is * or @, all the positional
parameters, starting with $1, are substituted (separated by spaces). Parame­
ter $0 is set from argument zero when the shell is invoked.

${parameter:-word}
If parameter is set and is non-null, substitute its value; otherwise substitute
word.

${parameter:=word}
If parameter is not set or is null set it to word; the value of the parameter is
substituted. Positional parameters may not be assigned to in this way.

${parameter:!word}
If parameter is set and is non-null, substitute its value; otherwise, print word
and exit from the shell. If word is omitted, the message "parameter null or
not set" is printed.

${parameter:+word}
If parameter is set and is non-null, substitute word; otherwise substitute noth­
ing.

In the above, word is not evaluated unless it is to be used as the substituted string,
so that, in the following example, pwd is executed only if d is not set or is null:

echo ${d:-pwd}

If the colon (:) is omitted from the above expressions, the shell only checks whether
parameter is set or not.

The following parameters are automatically set by the shell:

Icon International, Inc. 3

SH(l)

4

r

• !

USER COMMANDS SH(1)

The number of positional parameters in decimal.
Flags supplied to the shell on invocation or by the set command.
The decimal value returned by the last synchronously executed com­
mand .
The process number of this shell.
The process number of the last background command invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd command.
PATH The search path for commands (see Execution below). The user may

not change PATH if executing under rsh.
CD PATH

The search path for the cd command.
MAll.. If this parameter is set to the name of a mail file and the MAILP ATH

parameter is not set, the shell informs the user of the arrival of mail
in the specified file.

MAll..CHECK
This parameter specifies how often (in seconds) the shell will check for
the arrival of mail in the files specified by the MAILP ATH or MAIL
parameters. The default value is 600 seconds (10 minutes). If set to
0, the shell will check before each prompt.

MAll..PATH
A colon (:) separated list of file names. If this parameter is set, the
shell informs the user of the arrival of mail in any of the specified files.
Each file name can be followed by % and a message that will be
printed when the modification time changes. The default message is
you have mail.

PSI Primary prompt string, by default "$ ".
PS2 Secondary prompt string, by default "> ".
IFS Internal field separators, normally space, tab, and new-line.
SHACCT

If this parameter is set to the name of a file writable by the user, the
shell will write an accounting record in the file for each shell pro­
cedure executed. Accounting routines such as acctcom(l) and
acctcms(IM) can be used to analyze the data collected.

SHELL 'Vhen the shell is invoked, it scans the environment (see Environment
below) for this name. If it is found and there is an 'r' in the file name
part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PSI, PS2, MAIL CHECK and IFS. HOME
and MAIL are set by login(l).

Blank Interpretation
Mter parameter and command substitution, the results of substitution are scanned
for internal field separator characters (those found in IFS) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or) are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

Icon International, Inc.

------- ------

(

('

SH(I) USER COMMANDS SH(I)

File N a.me Genera.tion
Following substitution, each command word is scanned for the characters *, 1, and.
If one of these characters appears the word is regarded as a pattern. The word is
replaced with alphabetically sorted file names that match the pattern. If no file
name is found that matches the pattern, the word is left unchanged. The character
• at the start of a file name or immediately following a /, as well as the character /
itself, must be matched explicitly.

* Matches any string, including the null string.
r Matches any single character.

Quoting

Matches anyone of the enclosed characters. A pair of characters
separated by - matches any character lexically between the pair,
inclusive. If the first character following the opening "" is a"!"
any character not enclosed is matched.

The following characters have a special meaning to the shell and cause termination
of a word unless quoted:

Ii£, () I A < > new-line space tab

A character may be quoted (i.e., made to stand for itself) by preceding it with a \.
The pair \new-line is ignored. All characters enclosed between a pair of single
quote marks (), except a single quote, are quoted. Inside double quote marks (""),
parameter and command substitution occurs and \ quotes the characters \, , ", and
$. "$*" is equivalent to "$1 $2 ., ,", whereas "$@" is equivalent to "$1" "$2" , ...

Prompting
When used interactively, the shell prompts with the value of PSl before reading a
command. If at any time a new-line is typed and further input is needed to complete
a command, the secondary prompt (i,e., the value of PS2) is issued.

Input/Output
Before a command is executed, its input and output may be redirected using a spe­
cial notation interpreted by the shell. The following may appear anywhere in a
simple-command or may precede or follow a command and are not passed on to the
invoked command; substitution occurs before word or digit is used:

<word
>word

Use file word as standard input (file descriptor 0).
Use file word as standard output (file descriptor I), If the file does
not exist it is created; otherwise, it is truncated to zero length.

»word Use file word as standard output. If the file exists output is
appended to it (by first seeking to the end-or-file); otherwise, the file
is created.

«-word The shell input is read up to a line that is the same as word, or to an
end-or-file. The resulting document becomes the standard input. If
any character or word is quoted, no interpretation is placed upon the

Icon International, Inc. 5

SH(l)

6

USER COMMANDS SH(l)

characters of the document; otherwise, parameter and command sub­
stitution occurs, (unescaped) \new-line is ignored, and \ must be
used to quote the characters \, $, , and the first character of word.
If - is appended to «, all leading tabs are stripped from word and
from the document.

<&diglt Use the file associated with file descriptor digit as standard input.
Similarly for the standard output using >&:digit.

<&- The standard input is closed. Similarly for the standard output
using >&:-.

If any of the above is preceded by a digit, the file descriptor which will be associated
with the file is that specified by the digit (instead of the default 0 or 1). For exam­
ple:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates
redirections left-to-right. For example:

... l>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the
file associated with file descriptor 1 (Le., xxx). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

If a command is followed by &: the default standard input for the command is the
empty file /dev /null. Otherwise, the environment for the execution of a command
contains the file descriptors of the invoking shell as modified by input/output
specifications.

Redirection of output is not allowed in the restricted shell.

Environment .
The environment (see environ(5)) is a list of name-value pairs that is passed to an
executed program in the same way as a normal argument list. The shell interacts
with the environment in several ways. On invocation, the shell scans the
environment and creates a parameter for each name found, giving it the correspond­
ing value. If the user modifies the value of any of these parameters or creates new
parameters, none of these affects the environment unless the export command is
used to bind the shell's parameter to the environment (see also set -a). A parameter
may be removed from the environment with the unset command. The environment
seen by any executed command is thus composed of any unmodified name-value pairs

Icon International, Inc.

(.. ~
..

SH(1) USER COMMANDS SH(1)

originally inherited by the shell, minus any pairs removed by unset, plus any
modifications or additions, all of which must be noted in export commands.

The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. Thus:

TERM=450 cmd and
(export TERM; TERM=450; cmd)

are equivalent (as far as the execution of cmd is concerned).

If the -k flag is set, all keyword arguments are placed in the environment, even if
they occur after the command name. The following first prints a=b c and c:

echo a-b c
set -k
echo a=b c

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the com­
mand is followed by &; otherwise signals have the values inherited by the shell from
its parent, with the exception of signal 11 (but see also the trap command below).

Execution
Each time a command is executed, the above substitut.ions are carried out.. If the
command name mat.ches one of the Special Commands listed below, it is executed in
the shell process. If the command name does not match a Special Command, but
matches the name of a defined function, the function is executed in the shell process
(note how this differs from the execution of shell procedures). The positional param­
eters $1, $2, are set to the arguments of the function. If the command name
matches neither a Special Command nor the name of a defined function, a new pro­
cess is created and an attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the
command. Alternative directory names are separated by a colon (:). The default
path is :/bin:/usr Ibin (specifying the current directory, Ibin, and luer /bin, in
that order). Note that the current directory is specified by a null path name, which
can appear immediately after the equal sign or between the colon delimiters any­
where else in the path list. If the command name contains a I the search path is not
used; such commands will not be executed by the restricted shell. Otherwise, each
directory in the path is searched for an executable file. If the file has execute per­
mission but is not an a.out file, it is assumed to be a file containing shell commands.
A sub-shell is spawned to read it. A parenthesized command is also executed in a
sub-shell.

Icon International, Inc. 7

SH(l)

8

USER COMMANDS SH(1)

/ '\

The location in the search path where a command was found is remembered by the \",-.-J
shell (to help avoid unnecessary ezecs later). If the command was found in a relative
directory, its location must be Te·determined whenever the current directory
changes. The shell forgets all Temembered locations whenever the PATH variable is
changed or the hash -r command.is executed (see below).

Special Commands
Input/output redirection is now permitted for these commaads. File descriptor 1 is
the default output location.

No effect; the command does nothing. A zero exit code is returned .
• file Read and execute commands from file and return. The search path specified

by PATH is used to find the directory containing file.
break n

Exit from the enclosing for or while loop, if any. If n is specified break n
levels.

continue n

cd arg

Resume the next iteration of the enclosing for or while loop. If n is specified
resume at the n·th enclosing loop.

Change the current directory to argo The shell parameter HOME is the
default argo The shell parameter CD PATH defines the search path for the
directory containing argo Alternative directory nam-es are separated by a
colon (:). The default path is <null> (specifying the current directory).
Note that the current directory is specified by a null path name, which can
appear immediately after the equal sign or between the colon delimit.ers any­
where else in the path list. If arg begins with a / the search path is not used.
Otherwise, each directory in the path is searched for argo The cd command
may not be executed by rsh.

echo arg ...
Echo arguments. See echo(l) for usage and description.

eval arg ...
The arguments are read as input to the shell and the resulting command(s)
executed.

exec arg ...

exit n

The command specified by the arguments is execut.ed in place of this shell
without creating a new process. Input/output arguments may appear and, if
no other arguments are given, cause the shell input/output to be modified.

Causes a shell to exit with the exit status specified by n. If n is omitted the
exit status is that of the Jast command executed (an end·of·file will also cause
the shell to exit.)

export name ...
The given names are marked for automatic export to the environment of
subsequently·executed commands. If no arguments are given, a list of all
names that are exported in this shell is printed. Function names may not be
exported.

hash -r name . ..
For each name, the location in the search path of the command specified by
name is determined and remembered by the shell. The -r option causes the
shell to forget all remembered locations. If no arguments are given, informa-
tion about remembered commands is presented. Hits is the number of times ~'

Icon International, Inc.

(-~

SHe!) USER COMMANDS SHe!)

a command has been invoked by the shell process. Cost is a measure of the
work required to locate a command in the search path. There are certain
situations which require that the stored location of a command be recalcu­
lated. Commands for which this will be done are indicated by an asterisk (*)
adjacent to the hits information. Cost will be incremented when the recalcu­
lation is done.

newgrp arg ...
Equivalent to exec newgrp arg See newgrp(l) for usage and description.

pwd Print the current working directory. See pwd(l) for usage and description.
read name ...

One line is read from the standard input and the first word is assigned to the
first name, the second word to the second name, etc., with leftover words
assigned to the last name. The return code is 0 unless an end-of-file is
encountered.

readonly name ...
The given names are marked readonly and the values of the these names may
not be changed by subsequent assignment. If no arguments are given, a list
of all readonly names is printed.

return n
Causes a function to exit with the return value specified by n. If n is omit­
ted, the return status is that of the last command executed.

set --aetnkntuvx arg ...

-a
-e
-f
-h

-k

-n
-t
-u
-v
-x

Mark variables which are modified or created for export.
Exit immediately if a command exits with a non-zero exit status.
Disable file name generation
Locate and remember function commands as functions are defined
(function commands are normally located when the function is exe­
cuted).
All keyword arguments are placed in the environment for a command,
not just those that precede the command name.
Read commands but do not execute them.
Exit after reading and executing one command.
Treat unset variables as an error when substituting.
Print shell input lines as they are read.
Print commands and their arguments as they are executed.
Do not change any of the flags; useful in setting $1 to -.

Using + rather than - causes these flags to be turned oft'. These flags can
also be used upon invocation of the shell. The current set of flags may be
found in $-. The remaining arguments are positional parameters and are
assigned, in order, to $1, $2, If no arguments are given the values of all
names are printed.

shift n

test

times

The positional parameters from $n+l ... are renamed $1 If n is not
given, it is assumed to be 1.

Evaluate conditional expressions. See test(l) for usage and description.

Print the accumulated user and system times for processes run from the shell.
trap arg n ...

The command arg is to be read and executed when the shell receives signal(s)

Icon International, Inc. 9

SH(l)

10

USER COMMANDS SHU)

n. (Note that arg is scanned once when the trap is set and once when the
trap is taken.) Trap commands are executed in order of signal number. Any
attempt to set a trap on a signal that was ignored on entry to the current
shell is ineffective. An attempt to trap on signal 11 (memory fault) produces
an error. If arg is absent all trap(s) n are reset to their original values. If
org is the null string this signal is ignored by the shell and by the commands
it invokes. If n is 0 the command arg is executed on exit from the shell. The
trap command with no arguments prints a list of commands associated with
each signal number.

type name ...
For each name, indicate how it would be interpreted if used as a command
name.

ulimit -rp n
imposes a size limit of n

-r imposes a size limit of n blocks on files written by child processes (files
of any size may be read). With no argument, the current limit is
printed.

-p changes the pipe size to n (UNIX system/RT only).

If no option is given, -r is assumed.

umask nnn
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted,
the current value of the mask is printed.

unset name ...
For each name, remove the corresponding variable or function. The variables
PATH, PSI, PS2, MAILCHECK and IFS cannot be unset.

wait n
Wait for the specified process and report its termination status. If n is not
given all currently active child processes are waited for and the return code is
zero.

Invocation
If the shell is invoked through exec{2} and the first character of argument zero is -,
commands are initially read from /etc/profile and from SHOME/.profile, if such
files exist. Thereafter, commands are read as described below, which is also the case
when the shell is invoked as /bin/sh. The flags below are interpreted by the shell
on invocation only; Note that unless the -c or -s flag is specified, the first argument
is assumed to be the name of a file containing commands, and the remaining argu­
ments are passed as positional parameters to that command file:

-c string If the -c flag is present commands are read from string.
-s If the -s flag is present or if no arguments remain commands are read

from the standard input. Any remaining arguments specify the positional
parameters. Shell output (except for Special Commands) is written to file
descriptor 2.

-i If the -i flag is present or if the shell input and output are attached to a
terminal, this shell is interactive. In this case TERMINATE is ignored (so
that kill 0 does not kill an interactive shell) and INTERRUPT is caught
and ignored (so that wait is interruptible). In all cases, QUIT is ignored
by the shell.

Icon International, Inc.

(

(

SH(I) USER COM:MANDS SH(I)

-r If the -r Hag is present the shell is a restricted shell.

The remaining Hags and arguments are described under the set command above.

Rsh Only
Rsh is used to set up login names and execution environments whose capabilities are
more controlled than those of the standard shell. The actions of rsh are identical to
those of sh, except that the following are disallowed:

changing directory (see cd(l)),
setting the value of SPATH,
specifying path or command names containing I,
redirecting output (> and»).

The restrictions above are enforced after .profile is interpreted.

When a command to be executed is found to be a shell procedure, rsh invokes sh to
execute it. Thus, it is possible to provide to the end-user shell procedures that have
access to the full power of the standard shell, while imposing a limited menu of com­
mands; this scheme assumes that the end-user does not have write and execute per­
missions in the same directory.

The net effect of these rules is that the writer of the .profile has complete control
over user actions, by performing guaranteed setup actions and leaving the user in an
appropriate directory (probably not the login directory).

The system administrator often sets up a directory of commands (i.e., lusr Irbin)
that can be safely invoked by rsh. Some systems also provide a restricted editor red.

EXIT STATUS

FILES

Errors detected by the shell, such as syntax errors, cause the shell to return a non­
zero exit status. If the shell is being used non-interactively execution of the shell file
is abandoned. Otherwise, the shell returns the exit status of the last command exe­
cuted (see also the exit command above).

letc/profile
SHOME/.profile
Itmp/sh*
/dev /null

Icon International, Inc. 11

SH(l) USER COM:MA.NDS SH(1)

SEE ALSO

acctcom(l), cd(l), echo(l), env(l), login(l), newgrp(l), pwd(l), test(l), umask(l).
acctcms(lM) in the IOON/UXV Administrator Reference Manual.
dup(2), exec(2), fork(2), pipe(2), signal(2), ulimit(2), umask(2), wait(2), a.out(4),
profile(4), environ(5) in the IOON/UXV Programmer Reference Manual.

CAVEATS

12

If a command is executed, and a command with the same name is installed in a
directory in the search path before the directory where the original command was
found, the shell will continue to exec the original command. Use the hash command
to correct this situation.

If you move the current directory or one above it, pwd may not give the correct
response. Use the cd command with a full path name to correct this situation.

Icon International, Inc.

(

(

SHL(1) USER COMMANDS SHL (1)

NAME

shl - shell layer manager

SYNOPSIS

shl

DESCRIPTION

Shl allows a user to interact with more than one shell from a single terminal. The
user controls these shells, known as layers, using the commands described below.
The current layer is the layer which can receive input from the keyboard. Other
layers attempting to read from the keyboard are blocked. Output from multiple
layers is multiplexed onto the terminal. To have the output of a layer blocked when
it is not current, the sUy option loblk may be set within the layer. The stty charac­
ter swtch (set to AZ if NUL) is used to switch control to shl from a layer. Shl has its
own prompt, »>, to help distinguish it from a layer. A layer is a shell which has
been bound to a virtual tty device (/dev /sxtrrr). The virtual device can be mani­
pulated like a real tty device using stty(l) and ioctl(2). Each layer has its own pro­
cess group id.

Definitions
A name is a sequence of characters delimited by a blank, tab or new-line. Only the
first eight characters are significant. The names (1) through (7) cannot be used
when creating a layer. They are used by shl when no name is supplied. They may
be abbreviated to just the digit.

Commands
The following commands may be issued from the shl prompt level. Any unique prefix
is accepted.

create name
Create a layer called name and make it the current layer. If no argument is
given, a layer will be created with a name of the form (#) where # is the last
digit of the virtual device bound to the layer. The shell prompt variable PSI
is set to the name of the layer followed by a space. A maximum of seven
layers can be created.

block name [name ... 1
For each name, block the output of the corresponding layer when it is not the
current layer. This is equivalent to setting the sttyoption loblk within the
layer.

delete name name ...
For each name, delete the corresponding layer. All processes in the process
group of the layer are sent the SIGHUP signal (see signal(2)).

help (or r)
Print the syntax of the shl commands.

layers -I name . ..
For each name, list the layer name and its process group. The -1 option

Icon International, Inc. 1

SHL(I) USER COMMANDS SHL(1)

Fll..ES

produces a pS{l}-like listing. If no arguments are given, information is
presented for all existing layers.

resume name
Make the layer referenced bY1'Wme the current layer. If no argument is
given, the last existing current layer will be resumed.

toggle Resume the layer that was current before the last current layer.
unblock name [name ... J

For each name, do not block th~output of the corresponding layer when it is
not the current layer. This is ~quivalent to setting the stty option loblk
within the layer.

quit Exit shl. All layers are sent the SIGHUP signal.
name Make the layer referenced by name the current layer.

/dev /sxt???
$SHELL

Virtual tty devices
Variable containing path name of the shell to use (default is
/bin/sh). The 8M command will not work if tcsh is used for this
variable.

SEE ALSO

2

sh(l), stty(l).
ioctl(2), signal(2) in the IGON/UXV Programmer Reference Manual.
sxt(7) in the IGON/UXV Administrator Reference Manual.

Icon International, Inc.

SIZE (1) USER CO:MN.IANDS SIZE (1)

NAME

size - print section sizes of common object files

SYNOPSIS

size [-0] [-x] [-V] files

DESCRIPTION

The size command produces section size information for each section in the common
object files. The size of the text, data and bss (uninitialized data) sections are
printed along with the total size of the object file. If an archive file is input to the
size command the information for all archive members is displayed.

Numbers will be printed in decimal unless either the -0 or the -x option is used, in
which case they will be printed in octal or in hexadecimal, respectively.

The -V flag will supply the version information on the size command.

(SEE ALSO

as(l), cc(l), ld(l).
a.out(4), ar(4) in the IOON/UXV P,·ogrammer Reference ~Manual.

DIAGNOSTICS

slze: name: cannot open
if name cannot be read.

size: name: bad magic
if name is not an appropriate common object file.

(}

Icon International, Inc. 1

SLEEP(l) USER COMMANDS SLEEP (1)

NAME

sleep - suspend execution for an interval

SYNOPSIS

sleep time

DESCRIPTION

Sleep suspends execution for time seconds. It is used to execute a command after a
certain amount of time, as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true
do

done

command
sleep 37

SEE ALSO

alarm(2), sleep(3C) in the IOON/UXV Programmer Reference Manual.

BUGS

On the PDP-ll, time is interpreted modulo 65536 seconds.

Icon International, Inc. 1

o

./

(

SNO(l) USER COMMANDS SNO(1)

NAME

sno - SNOBOL interpreter

SYNOPSIS

ano I files 1

DESCRIPTION

Sno is a SNOBOL compiler and interpreter (with slight differences). Sno obtains input
from the concatenation of the named files and the standard input. All input through
a statement containing the label end is considered program and is c'~mpiled. The
rest is available to syspit.

Sno differs from SNOBOL in the following ways:

There are no unanchored searches. To get the same effect:

a ** b
a *x* b = x c

unanchored search for b.
unanchored assignment

There is no back referencing.

x = "abc"
a *x* x is an unanchored search for abe.

Function declaration is done at compile time by the use of the (non-unique)
label define. Execution of a function call begins at the statement following
the define. Functions cannot be defined at run time, and the use of the
name define is preempted. There is no provision for automatic variables
other than parameters. Examples:

define f()
define f(a, b, c)

All labels except define (even end) must have a non-empty statement.

Icon International, Inc. 1

SNO(l)

SEE ALSO

awk(l).

2

USER COM:MANDS SNO(l)

Labels, fuuetions and variables must all have distinct names. In particular,
the non-empty statement on end cannot merely name a label.

If staTt is a label in the program, program execution will start there. If not,
execution begins with the first executable statement; define is not an execut­
able statement.

There are no built-in functions.

Parentheses for arithmetic are not needed. Normal precedence applies.
Because of this, the arithmetic operators I and * must be set off by spaces.

The right side of assignments must be non-empty.

Either I or " may be used for literal quotes.

The pseudo-variable sysppt is not available.

Icon International, Inc.

("-.

..... -'

(" .
. . ~

SORT(l) USER COMMANDS SORT (1)

NAME

sort - sort and/or merge files

SYNOPSIS

sort [-emu] [-ooutput] [-ykmem] [-zrecsz] [-dfiMnr] [-btx] [+posl [-pos2]]
[files]

DESCRIPTION

Sort sorts lines of all the named files together and writes: the result on the standard
output. The standard input is read if - is used as a file name or no input files are
named.

Comparisons are based on one or more sort keys extracted from each line of input.
By default, there is one sort key, the entire input line, and ordering is lexicographic
by bytes in machine collating sequence.

The following options alter the default behavior:

-e Check that the input file is sorted according to the ordering rules; give no out-
put unless the file is out of sort.

-m Merge only, the input files are already sorted.

-u Unique: suppress all but one in each set of lines having equal keys.

-ooutput
The argument given is the name of an output file to use instead of the stan­
dard output. This file ma.y be the same as one of the inputs. There may be
optional blanks between -0 and output.

-ykmem
The amount of main memory used by the sort has a large impact on its perfor­
mance. Sorting a small file in a large amount of memory is a waste. If this
option is omitted, sort begins using a system default memory size, and contin­
ues to use more space as needed. If this option is presented with a value,
kmem, sort will start using that number of kilobytes of memory, unless the
administrative minimum or maximum is violated, in which case the correspond­
ing extremum will be used. Thus, -yO is guaranteed to start with minimum
memory. By convention, -y (with no argument) starts with maximum
memory.

-zrecsz
The size of the longest line read is recorded in the sort phase so buffers can be
allocated during the merge phase. If the sort phase is omitted via the -e or
-m options, a popular system default size will be used. Lines longer than the
buffer size will cause sort to terminate a.bnormally. Supplying the actual
num ber of bytes in the longest line to be merged (or some larger value) will
prevent abnormal termination.

Icon International, Inc. 1

SORT(l) USER COMMANDS SORT(l)

2

The following options override the default ordering rules.

-d "Dictionary" order: only letters, digits and blanks (spaces and tabs) are
significant in comparisons.

-f Fold lower case letters into upper case.

-i Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons.

-M Compare as months. The first three non-blank characters of the field are
folded to upper case and compared so that "JAN" < "FEB" < ... < "DEC".
Invalid fields compare low to "JAN". The -M option implies the -b option
(see below).

-n An initial numeric string, consisting of optional blanks, optional minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic
value. The -n option implies the -b option (see below). Note that the -b
option is only effective when restricted sort key specifications are in effect.

-r Reverse the sense of comparisons.

When ordering options appear before restricted sort key specifications, the requested
ordering rules are applied globally to all sort keys. When attached to a specific sort
key (described below), the specified ordering options override all global ordering
options for that key.

The notation +posl -pos2 restricts a sort key to one beginning at posl and ending
at pos2. The characters at positions posl and pos2 are included in the sort key (pro­
vided that pos2 does not precede posl). A missing -pos2 means the end of the line.

Specifying posl and pos2 involves the notion of a field, a minimal sequence of charac­
ters followed by a field separator or a new-line. By default, the first blank (space or
tab) of a sequence of blanks acts as the field separator. All blanks in a sequence of
blanks are considered to be part of the next field; for example, all blanks at the
beginning of a line are considered to be part of the first field. The treatment of field
separators can be altered using the options:

-tx Use x as the field separator character; x is not considered to be part of a field
(although it may be included iIi a sort key). Each occurrence of x is significant
(e.g., xx delimits an empty field).

-b Ignore leading blanks when determining the starting and ending positions of a
restricted sort key. If the -b option is specified before the first +posl argu­
ment, it will be applied to all +posl arguments. Otherwise, the b flag may be
attached independently to each +posl or -pos2 argument (see below).

Posl and pos2 each have the form m.n optionally followed by one or more of the
flags bdflnr. A starting position specified by +m.n is interpreted to mean the n+1st
character in the m+1st field. A missing .n means .0, indicating the first character of
the m+1st field. If the b flag is in effect n is counted from the first non-blank in the
m+1st field; +m.Ob refers to the first non-blank character in the m+1st field.

A last position specified by -m.n is interpreted to mean the nth character (including
separators) after the last character of the m th field. A missing .n means .0, indicat­
ing the last character of the mth field. If the b flag is in effect n is counted from the

Icon International, Inc.

c

SORT (1) USER COMMANDS SORT(l)

last leading blank in the m+lst field; -m.l b refers to the first non-blank lD the
m+lst field.

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all bytes
significant.

EXAMPLES

Fll.ES

Sort the contents of infile with the second field as the sort key:

sort +1 -2 infile

Sort, in reverse order, the contents of infilel and infilee, placing the output in outfile
and using the first character of the second field as the sort key:

sort -r -0 outfile +1.0 -1.2 infilel infile2

Sort, in reverse order, the contents of infilel and infilee using the first non-blank
character of the second field as the sort key:

sort -r +1.0b -Lib infilel infile2

Print the password file (passwd(4)) sorted by the numerIC user ID (the third colon­
separated field):

sort -t: +2n -3 /etc/passwd

Print the lines of the already sorted file infile, suppressing all but the first occurrence
of lines having the same third field (the options -urn with just one input file make
the choice of a unique representative from a set of equal lines predictable):

sort -um +2 -3 infile

/usr/tmp/stm???

SEE ALSO

comm(l), join(l), uniq(l).

DIAGNOSTICS

Comments and exits with non-zero status for various trouble conditions (e.g., when
input lines are too long), and for disorder discovered under the -e option. When the
last line of an input file is missing a new-line character, sort appends one, prints a
warning message, and continues.

Icon International, Inc. 3

(

SPELL(l) USER COMMANDS SPELL (1)

NAME

spell, hashmake, spellin, hashcheck - find spelling errors

SYNOPSIS

spell [-v] [-b] [-x] ! -1] [-i] [+locaLfile] ! files]

/uer /lib/spell/hashmake

/usr /lib /spell/spellin n

/usr /lib /spell/hashcheck spellingJist

DESCRIPTION

Spell collects words from the named files and looks them up in a spelling list. Words
that neither occur among nor are derivable (by applying certain inflections, prefixes,
and/or suffixes) from words in the spelling list are printed on the standard output. If
no files are named, words are collected from the standard input.

Spell ignores most troff(l), tbl(l), and eqn(l) constructions.

Under the -v option, all words not literally in the spelling list are printed, and plau­
sible derivations from the words in the spelling list are indicated. (Not available on
PDP-H.)

Under the -b option, British spelling is checked. Besides preferring centre, colour,
programme, speciality, travelled, etc., this option insists upon -ise in words like stan­
dardise, Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with = for each word.

By default, spell (like deroff(l)) follows chains of included files (.so and .nx troff(l)
requests), unless the names of such included files begin with /usr /lib. Under the -1
option, spell will follow the chains of all included files. Under the -i option, spell will
ignore all chains of included files.

Under the +local-file option, words found in local..Jile are removed from spell's out­
put. Localjile is the name of a user-provided file that contains a sorted list of
words, one per line. With this option, the user can specify a set of words that are
correct spellings (in addition to spell's own spelling list) for each job.

The spelling list is based on many sources, and while more haphazard than an ordi­
nary dictionary, is also more effective with respect to proper names and popular
technical words. Coverage of the specialized vocabularies of biology, medicine, and

Icon International, Inc. 1

~~ -~-~-~~ ---------------------

SPELL(l) USER COM:MANDS SPELL(l)

chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings (see FILES). Copies of all output are accumulated in the history
file. The stop list filters out misspellings (e.g., thier thy-y+ier) that would other­
wise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and writes the
corresponding nine-digit hash code on the standard output.

apellin n Reads n hash codes from the standard input and writes a compressed
spelling list on the standard output. Information about the hash cod­
ing is printed on standard error.

hashcheck Reads a compressed spellz'ng_list and recreates the nine-digit hash
codes for all the words in it; it writes these codes on the standard out­
put.

EXAMPLES

FILES

The following example creates the hashed spell list hlist and checks the result by
comparing the two temporary files; they should be equal.

cat goodwds I /usr/lib/spell/hashmake I sort -u >tmpl
cat tmpl I /usr /lib/spell/spellin 'cat tmpl I wc -1' >hlist
cat hlist I /usr /lib/spell/hashcheck >tmp2
diff tmpl tmp2

D..sPELL-/usr/lib/spell/hlist[ab]
S..sPELL-/usr/lib/spell/hstop
ILSPELL-/usr/lib/spell/spellhist
/usr /lib /spell/spellprog

hashed spelling lists, American & British
hashed stop list
history file
program

SEE ALSO

BUGS

2

deroff(l), eqn(l), sed(l), sort(l), tbl(l), tee(l), troff(l).

The spelling list's coverage is uneven; new installations will probably wish to monitor
the output for several months to gather local additions; typically, these are kept in a
separate local file that is added to the hashed spelling_list via spellin.
The British spelling feature was done by an American.

Icon International, Inc.

(

(

(

(

SPLIT (1) USER COM:MANDS SPLIT (1)

NAME

split - split a file into pieces

SYNOPSIS

split [-n 1 [file I name 11

DESCRIPTION

Split reads file and writes it in n-line pieces (default 1000 lines) onto a set of output
files. The name of the first output file is name with aa appended, and so on lexico­
graphically, up to zz (a maximum of 676 files). Name cannot be longer than 12 char­
acters. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is
used.

SEE ALSO

bfs(l), csplit(l).

Icon International, Inc. 1

(

(

STRIP (1) USER CO:MMANDS STRIP (1)

NAME

strip - strip symbol and line number information from a common object file

SYNOPSIS

strip [-IJ [-xJ [-rJ [-V] filename

DESCRIPTION

FfiJES

The strip command strips the symbol table and line number infOTmation from com­
mon object files, including archives. Once this has been done, no symbolic debugging
access will be available for that file; therefore, this command is normally run only on
production modules that have been debugged and tested.

The amount of information strippedl from the symbol table can .be controlled hy
using any of the following options:

-1

-x

-r

-V

Strip line number information only; do not strip any BJmbol table informa­
tion.

Do not strip static or external symbol information.

Reset the relocation indexes imto the symbol table.

Print the version of the strip comman.u. executing on the standard error
output.

If there are any relocation entries in the object file and any symbol table information
is to be stripped, strip will complain and terminate without stripping file-name unless
the -r flag is used.

If the strip command is executed on a CDmmon archive file (see ar(4)) the archile
symbol table will be removed. The arehi1'e symbol table must k .restored by execut­
ing the ar(l) command with the soptionbefore the archive cu be iink-edited by the
/d(l) command. Strip will instruct the user with appropriate warning messages when
this situation arises.

The purpose of this command is to reduce the file storage overhead taken by the
object file.

lusr Itmp/strp??????

Icon International, Inc. 1

STRIP(l) USER COMMANDS STRIP(l)

SEE ALSO

ar(I), as(I), cc(I), Id(I).
a.out(4), ar(4) in the IOON/UXV System Programmer Reference Manual.

DIAGNOSTICS

2

strip: name: cannot open
if name cannot be read.

strip: name: bad magic
if name is not an appropriate common object file.

strip: name: relocation entries present; cannot strip
if name contains relocation entries and the -r flag is not

used, the symbol table information cannot be stripped.

Icon International, Inc.

C)

(

STTY(l) USER COMMANDS STTY(l)

NAME

stty - set the options for a terminal

SYNOPSIS

.tty I -a J I -g J I options 1

DESCRIPTION

Stty sets certain terminal I/O options for the device that is the current standard
input; without arguments, it reports the settings of certain optiODS; with the -a
option, it reports all of the option settings; with the -g option, it reports current
settings in a form that can be used as an argument to another stty command.
Detailed information about the modes listed in the ntst five groups below may be
found in termio(7) for asynchronous lines, or in stermio(7) for synchronous lines in
the UNIX System Administrator Reference Manual. Options m the last group are
implemented using options in the previous groups. Note that many combinations of
options make no sense, but no sanity checking is performed. The options are
selected from the following:

Control Modes
paren b (-parenb) enable (disable) parity generation and detection.
parodd (-parodd) select odd (even) parity.
cs5 cs6 cs7 cs8 select character size (see termio(7».
o hang up phone line immediately.
5075 110 134150200300600 1200 1800240048009600 exta extb

Set terminal baud rate to the number given" if possible. (All
speeds are not supported by all hardware interfaces.)

hupcl (-hupcl) hang up (do not hang up) DATA-PHONE~ connection on last
close.

hup (-hup) same as hupcl (-hupcl).
cstopb (-cstopb) use two (one) stop bits per character.
cread (-cread) enable (disable) the receiver.
clocal (-clocal) n assume a line without (with) modem control.
loblk (-loblk) block (do not block) output from a non-current layer.

Input Modes
ignbrk (-ignbrk)
brkint (-brkint)
ignpar (-ignpar)
parmrk (-parmrk)
inpck (-inpck)
istrip (-istrip)
inlcr (-inlcr)
igncr (-igncr)
icrnl (-icrnl)

ignore (do not ignore) break on input.
signal (do not signal) INTR on break.
ignore (do not ignore) parity errors.
mark (do not mark) parity errors (see termio(7)).
enable (disable) input parity checking.
strip (do not strip) input characters to seven bits ..
map (do not map) NL to CR on input.
ignore (do not ignore) CR on input.
map (do not map) CR to NL on input.

iuclc (-iuclc) map (do not map) upper-case alphabetics to lower case on
input.

Icon International, Inc. 1

~---~ ------

STTY(l) USER COMMANDS STTY(1)

2

ixon (-ixon)

ixany (-ixany)
ixofl' (-ixoff)

Output Modes
op08t (-opost)

olcuc (-olcuc)

onlcr (-onlcr)
ocrnl (-ocrnl)
onocr (-onocr)
onlret (-onlret)

enable (disable) START/STOP output control. Output is
stopped by sending an ASCTI DC3 and started by sending an
ASCnDCl.
allow any character (only DCI) to restart output.
request that the system send (not send) START/STOP charac­
ters when the input queue is nearly empty/full.

post~process output (do not post-process output; Ignore all
other output modes).
map (do not map) lower-case alphabetics to upper case on
output.
map (do not map) NL to CR-NL on output.
map (do not map) OR to NL on output.
do not (do) output CRs at. column zero.
on the terminal NL performs (does not perform) the CR func­
tion.

0611 (-0611) use fill characters (use timing) for delays.
ordel (-ordel) fill characters are DELs (NULs).
crO crl cr2 cr3 select style of delay for carriage returns (see termio(i».
nlO nIl select style of delay for line-feeds (see termio(7».
tabO tabl tab2 tab3

bsO bsl
ft'O ffl
vtO vtl

Local Modes
isig (-isig)

ieanon (-icanon)
xcase (-xcase)
echo (-echo)
echoe (-echoe)

echok (-echok)
ltkc (-lfkc)
echonl (-echonl)
noflsh (-noflsh)
stwrap (-stwrap)

stflush (-stftush)

stappl (-stappl)

select style of delay for horizontal tabs (see termio(7) or ster­
mio(7».
select style of delay for backspaces (see termio(7».
select style of delay for form-feeds (see termio(7».
select style of delay for vertical tabs (see termio(7)).

enable (disable) the checking of characters against the special
control characters INTR, QUIT, and SWTCH.
enable (disable) canonical input (ERASE and KILL processing).
canonical (unprocessed) upper/lower-case presentation.
echo back (do not echo back) every character typed.
echo (do not echo) ERASE character as a backspace-space­
backspace string. Note: this mode will erase the ERASEed
character on many CRT terminals; however, it does not keep
track of column position and, as a result, may be confusing on
escaped characters, tabs, and backspaces.
echo (do not echo) NL after KILL character.
the same as echok (-echok); obsolete.
echo (do not echo) NL.
disable (enable) flush after INTR, QUIT, or SWTCH.
disable (enable) truncation of lines longer than 79 characters
on a synchronous line.
enable (disable) flush on a synchronous line after every
write(2).
use application mode (use line mode) on a synchronous line.

Control Assignments
control-character c set control-character to c, where control-character is erase,

kill, intr, quit, swtch, eor, ctab, min, or time (ctab is used

Icon International, Inc.

(

(:

STTY(1) USER COlv.1MANDS STTY(1)

with -stappl; see stermio(7)) , (min and time are used with
-icanon; see termio(7). If c is preceded by an (escaped from
the shell) caret (A), then the value used is the corresponding
CTRL character (e.g., ""d" is a CTRL-d); ""1" is interpreted
as DEL and "A_" is interpreted as undefined.

line i set line discipline to i (0 < i < 127).

Combination Modes
evenp or parity enable parenb and es7.
oddp enable parenb, cs7, and parodd.
-parity, ~venp, or -oddp

disable parenb, and set cs8.
raw (-raw or cooked)

enable (disable) raw input and output (no ERASE, KILL, INTR,
QUIT, SWTCH, EOT, or output post processing).

nl (-nl) unset (set) iernl, onler. In addition -nl unsets inler, igner,
oernl, and onlret.

lease (-lease) set (unset) xease, iuclc, and oleue.
LCASE (-LeASE) same as lease (-lease).
ta.bs (-ta.bs or tab3)

preserve (expand to spaces) tabs when printing.
ek reset ERASE and KILL characters back to normal #= and @.
sane resets all modes to some reasonable values.
term set all modes suitable for the terminal type term, where term

is one of tty33, tty37, vt05, tn300, ti700, or tek.

SEE ALSO

tabs(l).
ioctl(2) in the ICON/UXV Programmer Reference Manual.
stermio(7), termio(7) in the !CON/UXV Adm£nistrator Reference Manual.

Icon International, Inc. 3

... ----~-~~~~~~~-

/
I

'"

(

SUe!) USER COMMANDS SU(!)

su - become super-user or another user

SYNOPSIS

su [- J [name [arg ... 11

DESCRIPTION

Su allows one to become another user without logging off. The default user name is
root (i.e., super-user).

To use su, the appropriate password must be supplied (unless one is already root) .
. If the password is correct, su will execute a new shell with the real and effective user

ID set to that of the specified user. The new shell will be the optional program
named in the shell field of the specified user's password file entry (see passwd(4)), or
/bin/sh if none is specified (see sh(l)). To restore normal user ID privileges, type an
EOF (cntrl-d) to the new shell.

Any additional arguments given on the command line are passed to the program
invoked as the shell. When using programs like sh(l), an arg of the form -c stn"ng
executes string via the shell and an arg of -r will give the user a restricted shell.

The following statements are true only if the optional program named in the shell
field of the specified user's password file entry is like sh(l). If the first argument to
su is a -, the environment will be changed to what would be expected if the user
actually logged in as the specified user. This is done by invoking the program used
as the shell with an argO value whose first character is -, thus causing first the
system's profile (fete/profile) and then the specified user's profile (.profile in the
new HOME directory) to be executed. Otherwise, the environment is passed along
with the possible exception of SPATH, which is set to /bin:/ete:/usr /bin for root.
Note that if the optional program used as the shell is /bin/sh, the user's .profile
can check argO for -1!h or -1!U to determine if it was invoked by login(I) or sU(l),
respectively. If the user's program is other than /bin/sh, then .profile is invoked
with an argO of -program by both login(I) and sU(l).

All attempts to become another user using su are logged in the log file
/usr /adm/sulog.

EXAMPLES

To become user bin while retaining your previously exported environment, execute:

su bin

Icon International, Inc. 1

SU(l)

Fn.ES

USER CO:M:MANDS SU(l)

. I
(-'"

To become user bin but change the environment to what would be expected if bin '~'
had originally logged in, execute:

su - bin

To execute command with the temporary environment and permissions of user bin,
type:

su - bin -e "command args"

/etc/passwd
jete/profile
SHOME/·profile
/usr /adm/sulog

system's password file
system's profile
user's profile

log file

SEE ALSO

env(l), login(l), sh(l).
passwd(4), profile(4), environ(5) in the ICONIUXV Programmer Reference Manual.

2 Icon International, Inc.

(

SUM(l) USER COMMANDS SUM (1)

NAME

sum - print checksum and block count of a file

SYNOPSIS

sum [-r 1 file

DESCRIPTION

Sum calculates and prints a I6-bit checksum for the named file, and also prints the
number of blocks in the file. It is typically used to look for bad spots, or to validate

"a file communicated over some transmission line. The option -r causes an alternate
algorithm to be used in computing the checksum.

SEE ALSO

wC(I).

DIAGNOSTICS

"Read error" is indistinguishable from end of file on most devices; check the block
count.

Icon International, Inc. 1

SYNC(l) USER COMMANDS SYNC(l)

NAME

sync - update the super block

SYNOPSIS

sync

. DESCRIPTION

Sync executes the sync system primitive. If the system is to be stopped, sync must
be called to insure file system integrity. It will flush all previously unwritten system
buffers out to disk, thus assuring that all file modifications up to that point will be
saved. See sync{2} for details.

SEE ALSO

sync(2} in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

/
r

\..

(

TABS(I) USER COMMANDS TABS (1)

NAME

tabs - set tabs on a terminal

. SYNOPSIS

tabs [tabspec J [+mn J [-Ttype J

DESCRIPTION

Tabs sets the tab stops on the user's terminal according to the tab specification
tabspec, after clearing any previous settings. The user's terminal must have
remotely-set table hardware tabs.

Users of GE TermiNet terminals should be aware that they behave in a different way
than most other terminals for some tab settings. The first number in a list of tab
settings becomes the left margin on a TermiNet terminal. Thus, any list of tab
numbers whose first element is other than 1 causes a margin to be left on a Ter­
miNet, but not on other terminals. A tab list beginning with 1 causes the same
effect regardless of terminal type. It is possible to set a left margin on some other
terminals, although in a different way (see below).

Four types of tab specification are accepted for tabspec: "canned," repetitive, arbi­
trary, and file. If no tabspec is given, the default value is -8, i.e., UNIX system
"standard" tabs. The lowest column number is 1. Note that for tabs, column 1
always refers to the leftmost column on a terminal, even one whose column markers
begin at 0, e.g., the DAB! 300, DAB! 3005, and DAB! 450.

-code Gives the name of one of a set of "canned" tabs. The legal codes and their
meanings are as follows:

-a 1,10,16,36,72
Assembler, IDM 8/370, first format

-a2 1,10,16,40,72
Assembler, IDM 8/370, second format

-c 1,8,12,16,20,55
COBOL, normal format

-c2 1,6,10,14,49
COBOL compact format (columns 1-6 omitted). Using this code, the first
typed character corresponds to card column 7, one space gets you to
column 8, and a tab reaches column 12. Files using this tab setup should
include a format specification as follows:

-c3

<:t-c2 m6 866 d:>

1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
COBOL compact format (columns 1-6 omitted), with more tabs than -c2.
This is the recommended format for COBOL. The appropriate format

Icon International, Inc. 1

--~-----~---~---- -----------------

TABS(l) USER COMMANDS TABS (1)

2

specification is:

<:t-c3 m6 s66 d:>

-f 1,7,11,15,19,23
FORTRAN

-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
PL/I

-s 1,10,55
SNOBOL

-u 1,12,20,44
UNIVAC 1100 Assembler

In addition to these "canned" formats, three other types exist:

-n A repetitive specification requests tabs at columns l+n, 1+2*n, etc. Note
that such a setting leaves a left margin of n columns on TermiNet termi­
nals only. Of particular importance is the value -8: this represents the
UNIX system "standard" tab setting, and is the most likely tab setting to
be found at a terminal. It is required for use with the nroff -h option for
high-speed output. Another special case is the value -0, implying no tabs
at all.

nl,n2, ... The arbitrary format permits the user to type any chosen set of numbers,
separated by commas, in ascending order. Up to 40 numbers are allowed.
If any number (except the first one) is preceded by a plus sign, it is taken as
an increment to be added to the previous value. Thus, the tab lists
1,10,20,30 and 1,10,+10,+10 are considered identical.

-file If the name of a file is given, tabs reads the first line of the file, searching
for a format specification. If it finds one there, it sets the tab stops accord­
ing to it, otherwise it sets them as -8. This type of specification may be
used to make sure that a tabbed file is printed with correct tab settings,
and would be used with the pr(l) command:

tabs - file; pr file

Any of the following may be used also; if a given flag occurs more than once, the last
value given takes effect:

-Ttype Tabs usually needs to know the type of terminal in order to set tabs and
always needs to know the type to set margins. Type is a name listed in
term(5). If no -T flag is supplied, tabs searches for the 'TERM value in the
environment (see environ(5)). If no type can be found, tabs tries a sequence
that will work for many terminals.

+mn The margin argument may be used for some terminals. It causes all tabs to
be moved over n columns by making column n+l the left margin. If +m is
given without a value of n, the value assumed is 10. For a TermiNet, the

Icon International, Inc.

(

TABS(l) USER COMMANDS TABS (1)

first value in the tab list should be l, or the margin will move even further
to the right. The normal (leftmost) margin on most terminals is obtained
by +mO. The margin for most terminals is reset only when the +m flag is
given explicitly.

Tab and margin setting is performed via the standard output.

DIAGNOSTICS

illegal tabs
illegal increment

unknown tab code
can't open
file indirection

when arbitrary tabs are ordered incorrectly.
when a zero or missing increment is found in '&.n arbitrary
specification.
wben a "canned" code cannot be found.
if -file option used, and file can't be opened.
if -file option used and the specification in that tiUe points to
yet another file. Indirection of this form is not permitted.

SEE ALSO

pr(l).

BUGS

environ(5), term(5) in the ICON/U)'tV Programmer Reference Manual.

There is no consistency among different terminals regarding ways of clearing tabs
and setting the left margin.
It is generally impossible to usefully change the left margin without also setting tabs.
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set
64.

Icon International, Inc. 3

(~
\,)
,",_c/

(

TAIL(l) USER COMMANDS TAIL (1)

NAME

tail - deliver the last part of a file

SYNOPSIS

tail [±[number][lhc[f]]] [file]

DESCRIPTION

Tail copies the named file to the standard output beginning at a designated place. If
no file is named, the standard input is used.

Copying begins at distance +number from the beginning, or -number from the end
of the input (if number is null, the value 10 is assumed). Number is counted in units
of lines, blocks, or characters, according to the appended option I, h, or c. When no
units are specified, counting is by lines.

'With the -f ("follow") option, if the input file is not a pipe, the program will not
terminate after the line of the input file has been copied, but will enter an endless
loop, wherein it sleeps for a second and then attempts to read and copy further
records from the input file. Thus it may be used to monitor the growth of a tile that
is being written by some other process. For example, the command:

tail -f fred

will print the last ten lines of the file fred, followed by any lines that are appended
to fred between the time tail is initiated and killed. As another example, the com­
mand:

tail -15cf fred

will print the last 15 characters of the tile fred, followed by any lines that are
appended to fred between the time tail is initiated and killed.

SEE ALSO

BUGS

dd(l).

Tails relative to the end of the file are treasured up in a buffer, and thus are limited
in length. Various kinds of anomalous behavior may happen with character special

Icon International, Inc. 1

TAIL(l) USER COMMANDS TAlL (1)

files.

2 Icon International, Inc.

(

TAR (1) USER COMMANDS TAR (1)

NAME

tar - tape file archiver

SYNOPSIS

tar [key 1 [files 1

DESCRIPTION

Tar saves and restores files on magnetic tape. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter
and possibly one or more function modifiers. Other arguments to the command are
files (or directory names) specifying which files are to be dumped or restored. In all
cases, appearance of a directory name refers to the files and (recursively) subdirec­
tories of that directory.

The function portion of the key is specified by one of the following letters:

r

x

t
u

c

The named files are written on the end of the tape. The e function implies
this function.
The named files are extracted from the tape. If a named file matches a
directory whose contents had been written onto the tape, this directory is
(recursively) extracted. If a named file on tape does not exist on the sys­
tem, the file is created with the same mode as the one on tape except that
the set-user-ID and set-group-ID bits are not set unless you are super-user.
If the files exist, their modes are not changed except for the bits described
above. The owner, group, and modification time are restored (if possible).
If no files argument is given, the entire content of the tape is extracted.
Note that if several files with the same name are on the tape, the last one
overwrites all earlier ones.
The names of all the files on the tape are listed.
The named files are added to the tape if they are not already there, or
have been modified since last written on that tape.
Create a new tape; writing begins at the beginning of the tape, instead of
after the last file. This command implies the r function.

The following characters may be used in addition to the letter that selects the
desired function:

v

w

Where # is a tape drive number (0, ... ,7), and 8 is the density (I - low (800
bpi), m - medium (1600 bpi), or h - high (6250 bpi)). This modifier selects
the drive on which the tape is mounted. The default is Om.
Normally, tar does its work silently. The v (verbose) option causes it to
type the name of each file it treats, preceded by the function letter. \\lith
the t function, v gives more information about the tape entries than just
the name.
Causes tar to print the action to be taken, followed by the name of the file,

Icon International, Inc. 1

TAR(1) USER COMMANDS TAR(l)

Fll..ES

f

and then wait for the user's confirmation. If a word beginning with y is
given, the action is performed. Any other input means "no".
Causes tar to use the next argument as the name of the archive instead of
/dev/mt/rr. If the name of the file is -, tar writes to the standard output
or reads from the standard input, whichever is appropriate. Thus, tar can
be used as the head or tail of a pipeline. Tar can also be used to move
hierarchies with the command:

cd fromdir; tar cf - • I (cd todir; tar xf -)

b Causes tar to use the next argument as the blocking factor for tape records.
The default is 1, the maximum is 20. This option should only be used with
raw magnetic tape archives (see r above). The block size is determined
automatically when reading tapes (key letters x and t).

1 Tells tar to complain if it cannot resolve all of the links to the files being
dumped. If 1 is not specified, no error messages are printed.

m Tells tar not to restore the modification times. The modification time of
the file will be the time of extraction.

o Causes extracted files to take on the user and group identifier of the user
running the program rather than those on the tape.

/dey/mt/*
/tmp/tar*

DIAGNOSTICS

BUGS

2

Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

There is no way to ask for the n-th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The
current magnetic tape driver cannot backspace raw magnetic tape. If the archive is
on a disk file, the b option should not be used at all, because updating an archive
stored on disk can destroy it.
The current limit on file-name length is 100 characters.
Note that tar cOm is not the same as tar cmO.

Icon International, Inc.

/' " (..

~j

(

(.. ~ .
. /

TEE(l) USER COMMANDS TEE(l)

NAME

tee - pipe fitting

SYNOPSIS

tee [-i 1 [-& 1 [file 1 ...

DESCRIPTION

Tee transcribes the standard input to the standard output and makes copies in the
files. The -i option ignores interrupts; the -a option causes the output to be
appended to the files rather than overwriting them.

Icon International, Inc. 1

C)

r
(
\

(

(C

[

TEST (1) USER COM:MANDS

NAME

test - condition evaluation command

SYNOPSIS

test expr
[expr)

DESCRIPTION

TEST (1)

Te8t evaluates the expression expr and, if its value is true, returns a zero (true) exit
status; otherwise, a non-zero (false) exit status is returned; te8t also returns a non­
zero exit status if there are no arguments. The following primitives are used to con­
struct expr:

-r file true if file exists and is readable.

-w file

-x file

-f file

-d file

-c file

-b file

-p file

-u file

-g file

-k file

-s file

-t [filde8 J

-z 81

-n 81

81 = 8£

81 != 8£

81

n1 ~q ne

true if file exists and is writable.

true if file exists and is executable.

true if file exists and is a regular file.

true if file exists and is a directory.

true if file exists and is a character special file.

true if file exists and is a block special file.

true if file exists and is a named pipe (fifo).

true if file exists and its set-user-ID bit is set.

true if file exists and its set-group-ID bit is set.

true if file exists and its sticky bit is set.

true if file exists and has a size greater than zero.

true if the open file whose file descriptor number is filde8 (1 by default)
is associated with a terminal device.

true if the length of string 81 is zero.

true if the length of the string 81 is non-zero.

true if strings 81 and 8e are identical.

true if strings 81 and 8£ are not identical.

true if 81 is not the null string.

true if the integers n1 and n£ are algebraically equal. Any of the com­
parisons -ne, -gt, -ge, -It, and -Ie may be used in place of ~q.

These primaries may be combined with the following operators:

unary negation operator.

-a binary and operator.

-0 binary or operator (-a has higher precedence than -0).

Icon International, Inc. 1

------------------- -

TEST(l) USER CO:MM:ANDS TEST (l)

(expr) parentheses for grouping.

Notice that all the operators and 8ags are separate arguments to test. Notice also
that parentheses are meaningful to the shell and, therefore, must be escaped.

SEE ALSO

find{l), sh{l}.

WARNING

2

In the second form of the command (i.e., the one that uses n, rather than the word
test), the square brackets must be delimited by blanks.
Some UNIX systems do not recognize the second form of the command.

Icon International, Inc.

('

TIME (1) . USER COMMANDS TIME(l)

NAME

time - time a command

SYNOPSIS

time command

DESCRIPTION

The command is executed; after it is complete, time prints the elapsed time during
the command, the time spent in the system, and the time spent in execution of the
command. Times are reported in seconds.

The times are printed on standard error.

SEE ALSO

timex(l).
times(2) in the IOON/UXV Programmer Reference Manual.

CAVEATS

\Vhen time is used on a 3B 20A dual computer system the sum of system and user
time could be greater than real time. This is the result when command is a multi­
threaded task running on a 3B 20A computer system with both processors active.

Icon International, Inc. 1

(

('"

. /

TIMEX(I) USER COMMANDS TIMEX(I)

NAME

timex - time a command; report process data and system activity

SYNOPSIS

timex [options 1 command

DESCRIPTION

The given command is executed; the elapsed time, user time and system time spent
in execution are reported in seconds. Optionally, process accounting data for the
command and all its children can be listed or summarized, and total system activity
during the execution interval can be reported. The output of timex is written on
standard error. Options are:

-p List process accounting records for command and all its children. Suboptions f,
h, k, m, r, and t modify the data items reported, as defined in acctcom(l).
The number of blocks read or written and the number of characters
transferred are always reported.

--0 Report the total number of blocks read or written and total characters
transferred by command and all its children.

--s Report total system activity (not just that due to command) that occurred
during the execution interval of command. All the data items listed in sar{l)
are reported.

SEE ALSO

acctcom(l), sar(l).

CAVEATS

When timex is used on a 3B 20A dual computer system the sum of system and user
time could be greater than real time. This is the result when command is a multi­
threaded task runing on a 3B 20A computer system with both processors active.

WARNING

Process records associated with command are selected from the accounting file
/usr /adm/pacct by inference, since process genealogy is not available. Background
processes having the same user-id, terminal-id, and execution time window will be
spuriously included.

Icon International, Inc. 1

TIMEX(l) USER COrvlMANDS TIMEX(l)

EXAMPLES

A simple example:

timex -ops sleep 60

A terminal session of arbitrary complexity can be measured by timing a sub-shell:

timex -opskmt sh

session commands

EOT

2 Icon International, Inc.

(
\.

(

(,

TOUCH(l) USER COMMANDS TOUCH(l)

NAME

touch - update access and modification times of a file

SYNOPSIS

touch [-amc] [mmddhhmm[yyJ] files

DESCRIPTION

Touch causes the access and modification times of each argument to be updated.
The file name is created if it does not exist. If no time is specified (see date(l)) the
current time is used. The -a and -m options cause touch to update only the access
or modification times respectively (default is -am). The -c option silently prevents
touch from creating the file if it did not previously exist.

The return code from touch is the number of files for which the times could not be
successfully modified (including files that did not exist and were not created).

SEE ALSO

date(l).
utime(2} in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(

(

(

TPUT(l) USER COMMANDS TPUT(l)

NAME

tput - query terminfo database

SYNOPSIS

tput [-Ttype] capname

DESCRIPTION

Tput uses the termin/aU) database to make terminal-dependent capabilities and
information available to the shell. Tput outputs a string if the attribute (capability
name) is of type string, or an integer if the attribute is of type integer. If the attri­
bute is of type boolean, tput simply sets the exit code (0 for TRUE, 1 for FALSE),
and does no output.

-Ttype indicates the type of terminal. Normally this flag is unnecessary, as the
default is taken from the environment variable STERM.

Capname indicates the attribute from the terminfo database. See termin/o{4}.

EXAMPLES

Fll..ES

tput clear
tput eols
tput -T4S0 cols
bold='tput smso'

tput he

/etc/term/?/*

Echo clear-screen sequence for the current terminal.
Print the number of columns for the current terminal.
Print the number of columns for the 450 teTminal.
Set shell variable "bold" to stand-out mode sequence for current
terminal. This might be followed by a prompt:
echo "${bold}Please type in your name: \e"
Set exit code to indicate if current terminal is a hardcopy termi­
nal.

/usr /include/term.h
/usr /include/curses.h

Terminal descriptor files
Definition files

DIAGNOSTICS

Tput prints error messages and returns the following error codes on error:
-1 Usage error.
-2 Bad terminal type.
-3 Bad capname.

In addition, if a capname is requested for a terminal that has no value for that cap­
name (e.g., tput -T4S0 lines), -1 is printed.

Icon International, Inc. 1

TPUT(l)

SEE ALSO

stty(l).

USER CO:MMANDS TPUT(l)

terminfo(4) in the IOON/UXV Programmer Reference Manual.

2 Icon International, Inc.

(
I

~

(

TR(l) USER COMMANDS TR(1)

NAME

tr - translate characters

SYNOPSIS

tr [-cds 1 [stringl [string2 11

DESCRIPTION

Tr copies the standard input to the standard output with substitution or deletion of
selected characters. Input characters found in stringl are mapped into the
corresponding characters of stringe. Any combination of the options -cds may be·
used:

-c Complements the set of characters in stringl with respect to the universe of
characters whose ASCII codes are 001 through 377 octal.

-d Deletes all input characters in stringl.

-8 Squeezes all strings of repeated output characters that are in stringe to sin-
gle characters.

The following abbreviation conventions may be used to introduce ranges of charac­
ters or repeated characters into the strings:

[a-z] Stands for the string of characters whose ASCII codes run from character a
to character z, inclusive.

[a*n] Stands for n repetitions of a. If the first digit of n is 0, n is considered
octal; otherwise, n is taken to be decimal. A zero or missing n is taken to
be huge; this facility is useful for padding stringe.

The escape character \ may be used as in the shell to remove special meaning from
any character in a string. In addition, \ followed by 1, 2, or 3 octal digits stands for
the character whose ASCII code is given by those digits.

The following example creates a list of all the words in filel one per line in filee,
where a word is taken to be a maximal string of alphabetics. The strings are quoted
to protect the special characters from· interpretation by the shell; 012 is the ASCII
code for newline.

tr -(!s "[A-ZJ[a-zJ" "[\012*]" <file1 >file2

SEE ALSO

ed(l), sh(l).
ascii(5) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

TR(l) USER COMMANDS TR(l)

BUGS

Will not handle ASCII NUL in stringl or stringf; always deletes NUL from input.

(

2 Icon International, Inc.

(,.1

(

TRUE(l) USER COM:MANDS TRUE (1)

NAME

true, false - provide truth values

SYNOPSIS

true

faIse

DESCRIPTION

True does nothing, successfully. False does nothing, unsuccessfully. They are typi­
cally used in input to sh(l) such as:

SEE ALSO

sh(l).

while true
do

command

done

DIAGNOSTICS

True has exit status zero, false nonzero.

Icon International, Inc. 1

TSORT(I) USER COMMANDS TSORT(I)

NAME

tsort - topological sort

SYNOPSIS

tsort [file J

'DESCRIPTION

Tsort produces on the standard output a totally ordered list of items consistent with
a partial ordering of items mentioned in the input file. If no file is specified, the
standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of
different items indicate ordering. Pairs of identical items indicate presence, but not
ordering.

SEE ALSO

lorder{l).

DIAGNOSTICS

Odd data: there is an odd number of fields in the input file,

BUGS

Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library
archive file. -

Icon International, Inc. 1

(

(

TTY(l) USER COMMANDS TTY (1)

NAME

tty - get the name of the terminal

SYNOPSIS

tty [-1] [-8]

DESCRIPTION

Tty prints the path name of the user)s terminal. The -1 option prints the synchro­
nous line number to which the user)s terminal is connected, if it is on an active syn­
chronous line. The -8 option inhibits printing of the terminal path name, allowing
one to test just the exit code.

EXIT CODES

2 if invalid options were specified,
o if standard input is a terminal,
1 otherwise.

DIAGNOSTICS

"not on an active synchronous line" if the standard input is not a synchronous termi­
nal and -1 is specified.
"not a tty" if the standard input is not a terminal and -8 is not specified.

Icon International, Inc. 1

UMASK(l) USER COMMANDS UMASK(l)

NAME

umask - set file-creation mode mask

SYNOPSIS

umask [000 1

DESCRIPTION

The user file-creation mode mask is set to 000. The three octal digits refer to
read/write/execute permissions for owner, group, and others, respectively (see
chmod(2) and umask(2)). The value of each specified digit is subtracted from the
corresponding "digit» specified by the system for the creation of a file (see creat(2)).
For example, umask 022 removes group and others write permission (files normally
created with mode 777 become mode 755; files created with mode 666 become mode
644).

If 000 is omitted, the current value of the mask is printed.

Umask is recognized and executed by the shell.

SEE ALSO

chmod(l), sh(l).
chmod(2), creat(2), umask(2) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(
I

"'-

UNAME(l) USER COMMANDS UNAME(l)

(," NAME

(

uname - print name of current UNIX system

SYNOPSIS

uname [-snrvmaS 1 [systemname 1

DESCRIPTION

Uname prints the current system name of the UNIX system on the standard output
file. It is mainly useful to determine which system one is using. The options cause
selected information returned by uname(2) to be printed:

-s print the system name (default).

-n print the nodename (the nodename may be a name that the system is known
by to a communications network).

-r print the operating system release.

-v print the operating system version.

-m print the machine hardware name.

-a print all the above information.

-S Allows Super-User to set the system name with the systemname argument,

SEE ALSO

uname(2) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

UNGET(l) USER COMMANDS UNGET(l)

NAME

unget - undo a previous get of an sees file

SYNOPSIS

unget [-rSIDJ [-.J [-nJ files

DESCRIPTION

Unget undoes the effect of a get -e done prior to creating the intended new delta.
If a directory is named, unget behaves as though each file in the directory were
specified as a named file, except that non-SeeS files and unreadable files are silently
ignored. If a name of - is given, the standard input is read with each line being
taken as the name of an sees file to be processed. Keyletter arguments apply
independently to each named file.

-rSID

-s

-n

SEE ALSO

Uniquely identifies which delta is no longer intended. (This would
have been specified by get as the "new delta"). The use of this
keyletter is necessary only if two or more outstanding gets for
editing on the same sees file were done by the same person (login
name). A diagnostic results if the specified SID is ambiguous, or if
it is necessary and omitted on the command line.

Suppresses the printout, on the standard output, of the intended
delta's SID.

Causes the retention of the gotten file which would normally be
removed from the current directory.

delta(i), get{l), help{l), sact{l).

DIAGNOSTICS

Use help{l) for explanations.

Icon International, Inc. 1

(

(."".

,/

UNIQ(l) USER COM"MANDS UNIQ(1)

NAME

uniq - report repeated lines in a file

SYNOPSIS

uniq [-udc [+n 1 [-n 11 [input [output 11

DESCRIPTION

Uniq reads the input file comparing adjacent lines. In the normal case, the second
and succeeding copies of repeated lines are removed; the remainder is written on the
output file. Input and output should always be different. Note that repeated lines
must be adjacent in order to be found; see sort(l}. If the -u flag is used, just the
lines that are not repeated in the original file are output. The -d option specifies
that one copy of just the repeated lines is to be written. The normal mode output is
the union of the -u and -d mode outputs.

The -c option supersedes -u and -d and generates an output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initial portion of each line in the comparison:

-n The first n fields together with any blanks before each are ignored. A field
is defined as a string of non-space, non-tab characters separated by tabs
and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO

comm(l), sort(l).

Icon International, Inc. 1

(
\

(

UNITS(l) USER COM:MANDS UNITS (1)

NAME

units - conversion program

SYNOPSIS

units

DESCRIPTION

Units converts quantities expressed in various standard scales to their equivalents in
other scales. It works interactively in this fashion:

You have:--inch
You want:--cm

* 2.540000e-tOO
/ 3.937008e-Ql

A quantity is specified as a multiplicative combination of units optionally preceded
by a numeric multiplier. Powers are indicated by suffixed positive integers, division
by the usual sign:

You have:--15 lbs force/in2
You want:--atm

* l.02068ge-tOO
/ 9.79729ge-Ql

Units only does multiplicative scale changes; thus it can convert Kelvin to Rankine,
but not Celsius to Fahrenheit. Most familiar units, abbreviations, and metric
prefixes are recognized, together with a generous leavening of exotica and a few con­
stants of nature including:

pi
c
e
g
force
mole
water
au

ratio of circumference to diameter,
speed of light,
charge on an electron,
acceleration of gravity,
same as g,
Avogadro's number,
pressure head per unit height of water,
astronomical unit.

Icon International, Inc. 1

UNITS(l) USER COMMANDS UNITS (1)

FILES

2

Pound is not recognized as a unit of massj lb is. Compound names are run
together, (e.g., light year). British units that differ from their U.S. counterparts are
prefixed thus: brgallon. For a complete list of units, type:

cat /usr/lib/unittab

/usr /lib/unittab

Icon International, Inc.

(

(_ ..
-~

VAL(l)

NAME

val - validate sees file

SYNOPSIS

val­
val files

DESCRIPTION

USER COMMANDS VAL(l)

Val determines if the specified file is an file meeting the characteristics specified by
the optional argument list. Arguments to val may appear in any order. The argu­
ments consist of key letter arguments, which begin with a -, and named files.

Val has a special argument, -, which causes reading of the standard input until an
end-of-file condition is detected. Each line read is independently processed as if it
were a command line argument list.

Val generates diagnostic messages on the standard output for each command line
and file processed, and also returns a single 8-bit code upon exit as described below.

The key letter arguments are defined as follows. The effects of any keyletter argu­
ment apply independently to each named file on the command line. presence of this
argument silences the diagnostic message normally generated on the standard output
for any error that is detected while processing each named file on a given command
line. argument value

(sees IDentification String) is an delta number. A check is made to determine if
the

is ambiguous (e. g., rl is ambiguous because it physically does not exist but implies
1.1, 1.2, etc., which may exist) or invalid (e. g., rI.O or r1.1.0 are invalid because nei­
ther case can exist as a valid delta number). If the

is valid and not ambiguous, a check is made to determine if it actually exists. argu­
ment value name is compared with the %M% keyword in file. argument value type
is compared with the %Y% keyword in file.

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can be
interpreted as a bit string where (moying from left to right) set bits are interpreted
as follows:

bit 0 = missing file argument;
bit 1 = unknown or duplicate key letter argument;
bit 2 = corrupted file;
bit 3 = cannot open file or file not ;

Icon International, Inc. 1

VAL(l) USER COMMANDS VAL(l)

bit 4 == is invalid or ambiguous;
bit 5 == does not exist;
bit 6 == %Y%, -y mismatch;
bit 7 == %M%, -m mismatch;

Note that val can process two or more files on a given command line and in turn can
process multiple command lines (when reading the standard input). In these cases an
aggregate code is returned - a logical OR of the codes generated for each command
line and file processed.

SEE ALSO

admin{l), delta{l), get{l), help{l), prs{l).

DIAGNOSTICS

BUGS

2

Use help{l) for explanations.

l'al can process up to 50 files on a single command line. Any number above 50 will
produce a core dump.

Icon International, Inc.

(

VC(l) USER COMMANDS VC(l)

(. NAME

(

vc - version control

SYNOPSIS

vc [keyword=value ... keyword=value]

DESCRIPTION

The tJc command copies lines from the standard input to the standard output under
control of its arguments and control statements encountered in the standard input.
In the process of performing the copy operation, user declared keywords may be
replaced by their string value when they appear in plain text and/or control state­
ments.

The copying of lines from the standard input to the standard output is conditional,
based on tests (in control statements) of keyword values specified in control state­
ments or as vc command arguments.

A control statement is a single line beginning with a control character, except as
modified by the -t keyletter (see below). The default control character is colon (:),
except as modified by the -c keyletter (see below). Input lines beginning with a
backslash (\) followed by a control character are not control lines and are copied to
the standard output with the backslash removed. Lines beginning with a backslash
followed by a non-control character are copied in their entirety.

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A
value is any ASCII string that can be created with ed(l); a numeric value is an
unsigned string of digits. Keyword values may not contain blanks or tabs.

Replacement of keywords by values is done whenever a keyword surrounded by con­
trol characters is encountered on a version control statement. The -a keyletter (see
below) forces replacement of keywords in all lines of text. An uninterpreted control
character may be included in a value by preceding it with \. If a literal \ is desired,
then it too must be preceded by \.

Keyletter Arguments replacement of keywords surrounded by control characters
with their assigned value in all text lines and not just in tJc statements. characters
from the beginning of a line up to and including the first tab character are ignored
for the purpose of detecting a control statement. If one is found, all characters up to
and including the tab are discarded. a control character to be used in place of :.
warning messages (not error) that are normally printed on the diagnostic output.

Version Control Statements

Icon International, Inc. 1

VC(l) USER COMMANDS ve(!)

2

:dcl keyword[, "" keyword]
Used to declare keywords. All keywords must be declared.

:asg keyword =value
Used to assign values to keywords. An asg statement overrides the assignment
for the corresponding keyword on the fie command line and all previous asg's
for that keyword. Keywords declared, but not assigned values have null
values.

:if condition

:end

Used to skip lines of the standard input. If the condition is true all lines
between the if statement and the matching end statement are copied to the
standard output. If the condition is false, all intervening lines are discarded,
including control statements. Note that intervening if statements and match­
ing end statements are recognized solely for the purpose of maintaining the
proper if-end matching.
The syntax of a condition is:

<cond>
<or>
<and>
<exp>
<op>
<value>

::= ["not"] <or>
::= <and> I <and> "I" <or>
::= <exp> I <exp> "&" <and>
::= "(" <or> ")" I <value> <op> <value>
::= "=" I "!=" I "<It I ">"
::= <arbitrary ASCII string> I <numeric string>

The available operators and their meanings are:

!=
&
I
>
<
()
not

equal
not equal
and
or
greater than
less than
used for logical groupings
may only occur immediately after the if, and
when present, inverts the value of the
entire condition

The> and < operate only on unsigned integer values (e.g., : 012 > 12 is false).
All other operators take strings as arguments (e.g., : 012 != 12 is true). The
precedence of the operators (from highest to lowest) is:

= != > < all of equal precedence
&
1

Parentheses may be used to alter the order of precedence.
Values must be separated from operators or parentheses by at least one blank
or tab.

Icon International, Inc.

(

VC(l) USER COMMANDS VC(1)

::text
Used for keyword replacement on lines that are copiild to the standard output.
The two leading control charactilTs a.re removed, and keywords surrounded by
control characters in text are replac~d by their valne before the line is copied
to the output file. Thls a.ction js independent of the -a keyletter.

:on

:off
Turn on or off keyword replacement on all lines.

:ctl char
Change the control character to char.

:msg message
Prints the given message on the diagnostic output.

:err message
Prints the given message followed by:

ERROR: err statement on line •.• (915)
on the diagnostic output. Vc halts execution, and returns an exit code of 1.

SEE ALSO

ed(I), help(1).

DIAGNOSTICS

Use help(l) for explanations.

EXIT CODES

0- normal
1 - any error

Icon International, Inc. 3

--~~~--- --- -----------

VERS(l) USER COMMANDS VERS(l)

NAME

vers - print version number of the kernel and utilities

SYNOPSIS

vera [-v 1

DESCRIPTION

Vers prints the version number of the currently running UNIX kernel and its associ­
ated utilities. Note that the kernel release number is independent of the release
number of the utilities. It prints the same message that is seen at boot time. The
-v (verbose) flag is used to determine the actual pathname of the kernel com­
ponents.

Icon International, Inc. 1

... ...

(

(.

VJ(1) USER COMMANDS VJ(1)

NAME

vi - screen-oriented (visual) display editor based on ex

SYNOPSIS

vi [-k file I [-t tag] [-r file] [-1] [-wn] [-x] [-R] [+command] name ...
view [-k file] [-t tag] [-r file] [-I] [-wn] [-x] [-R] [+command I name

vedit [-k file] [-t tag] [-r file] [-I] [-wn] [-x] [-R] [+command] name

DESCRIPTION

Vi (visual) is a display-oriented text editor based on an underlying line editor ex(l).
It is possible to use the command mode of ex from within vi and vice-versa.

When using vi, changes you make to the file are reflected in what you see on your
terminal screen. The position of the cursor on the screen indicates the position
within the file. The Vi Quick Reference card and the ICON/UXV Editing Guide pro­
vide full details on using vi.

(INVOCATION

The following invocation options are interpreted by vi:

-k file Read the commands in file before beginning this edit session.

-t tag Edit the file containing the tag and position the editor at its

-rfile

-1

-wn

-x

-R

+command

definition.

Recover file after an editor or system crash. If file is not specified a
list of all saved files will be printed.

LISP mode; indents appropriately for lisp code, the 0 {} [[and]]
commands in vi and open are modified to have meaning for lisp.

Set the default window size to n. This is useful when using the edi­
tor over a slow speed line.

Encryption mode; a key is prompted for allowing creation or editing
of an encrypted file.

Read only mode; the readonly flag is set, preventing accidental
overwriting of the file.

The specified ex command is interpreted before editing begins.

The name argument indicates files to be edited.

The view invocation is the same as vi except that the readonly flag is set.

Icon International, Inc. 1

VI(1) USER CO:MMANDS VI(1)

The vedit invocation is intended .for beginners. The report flag is set to 1, and the
show mode and novice flags are set. These defaults make it easier to get started
learning the editor.

VI MODES

Command

Input

Last line

Normal and initial mode. Other modes return to command mode
upon completion. ESC (escape) is used to cancel a partial com­
mand.

Entered by a i A I 0 0 c C s S R. Arbitrary text may then be
entered. Input mode is normally terminated with ESC character, or
abnormally with interrupt.

Reading input for: / r or !; terminate with CR to execute, inter­
rupt to cancel.

COMMAND SUMMARY

2

Sample commands
+-It-+
hjkl
itextESC
cwnewESC
easESC
x
dw
dd
3dd
u
ZZ
:q!CR
/textCR
AUAD
:ex cmdCR

arrow keys move the cursor
same as arrow keys
insert text abc
change word to new
pluralize word
delete a character
delete a word
delete a line
... 3 lines
undo previous change
exit vi, saving changes
quit, discarding changes
search for text
scroll up or down
any ex or ed command

Counts before vi commands
Numbers may be typed as a prefix to some commands.
of these ways.
line/column number
scroll amount
repeat effect

z G I I AD AU
most of the rest

Interrupting, canceling
ESC end insert or incomplete cmd
A l' (delete or rubout) interrupts
"L reprint screen if A1' scrambles it
AR reprint screen if AL is -+ key

They are interpreted in one

Icon International, Inc.

()
''---../

(-
VI (1) USER COMMANDS VI(1)

File manipulation
:wCR write back changes
:qCR . quit
:q!CR quit, discard changes
:e nameCR edit file name
:e!CR reedit, discard changes
:e + nameCR edit, starting at end
:e +nCR edit starting at line n
:e =#CR edit alternate file

synonym for :e =#
:w nameCR write file name
:w! nameCR overwrite file name
:shCR run shell, then return
:!cmdCR run cmd, then return
:nCR edit next file in arglist
:n argsCR specify new arglist
AG show current file and line
:ta tagCR to tag file entry tag
A] :ta, following word is tag

In general, any ex or ed command (such as substitute or global) may be typed, pre­
ceded by a colon and followed by a CR.

Positioning within file
AF
AB
AD
AU
G
/pat
?pat
A

Aa

n
N
/pat/+n
?pat?-n

H
(

t
}
%

forward screen
backward screen
scroll down half screen
scroll up half screen
go to specified line (end default)
next line matching pat
prev line matching pat
search for the next occurance of the word under the cursor
search for the previous occurance of the word under the cursor
repeat last /,?, A _. or "a
reverse last /,!, A _, or Aa
nth line after pat
nth line before pat
next section/function
previous section/function
beginning of sentence
end of sentence
beginning of paragraph
end of paragraph
find matching () { or }

Adjusting the screen
"L clear and redraw
"R retype, eliminate @ lines
zCR redraw, current at window top
z-CR ... at bottom
z .CR ... at center

Icon International, Inc. 3

VI(!) USER COMMANDS VI(1)

(-

/pat/z-OR pat line at bottom \ '!
"'-./'

zn.OR use n line window
"'E scroll window down 1 line
"'Y scroll window up 1 line

Marking and returning move cursor to previous context
... at first non-white in line

mx mark current position with letter x
x move cursor to mark x

'x ... at first non-white in line

Line positioning
H top line on screen
L last line on screen
M middle line on screen
+ next line, at first non-white

previous line, at first non-white
OR return, same as +
lor j next line, same column
tor k previous line, same column

Oharacter positioning
'" first non white
0 beginning of line
$ end of line '-

h or-+ forward
lor +- backwards
AH same as +-
space same as-+
fx find x forward
Fx f backward
tx upto x forward
Tx back upto x

repeat last f F t or T
, inverse of ;
I to specified column I
% find matching ({) or }

VVords, sentences, paragraphs
w word forward
b back word
e end of word

} to next sentence
to next paragraph

~ back sentence
back paragraph

VV blank delimited word
B back VV
E to end of VV ('

\

4 Icon International, Inc.

(

(~

VIC 1) USER CO:MMANDS

Commands for LISP Mode

l
~

Forward s-expression
... but do not stop at atoms
Back s-expression
... but do not stop at atoms

Corrections during insert
"'H erase last character
"'W erase last word
erase your erase, same as "'H
kill your kill, erase input this line
\ quotes "'H, your erase and kill
ESC ends insertion, back to command
Ar interrupt, terminates insert
AD backtab over autoindent
tAD kill autoindent, save for next
O"'D ... but at margin next also
"v quote non-printing character

Insert and replace
a append after cursor
i insert before cursor
A append at end of line
I insert before first non-blank
o open line below
o open above
rx replace single char with x
RtextESC replace characters

Operators

VIC 1)

Operators are followed by a cursor motion, and affect all text that would have been
moved over. For example, since w moves over a word, dw deletes the word that
would be moved over. Double the operator, e.g., dd to affect whole lines.
d delete
c change
y yank lines to buffer
< left shift
> right shift

filter through command
indent for LISP

Miscellaneous Operations
C change rest of line (c$)
D delete rest of line (d$)
8 substitute chars (el)
S substitute lines (cc)
J join lines
x delete characters (dl)
X ... before cursor (db)
Y yank lines (yy)

Icon International, Inc. 5

V1(1) USER COM:MANDS V1(1)

r\
Yank and Put ~;j
Put inserts the text most recently deleted or yanked. However, if a buffer is named,
the text in that buffer is put instead.

p put back text after cursor
P put before cursor
"xp put from buffer x
"xy yank to buffer x
"xci delete into buffer x

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
"d p retrieve d'th last delete

AUTHOR

Vi and ex were developed by The University of California, Berkeley California, Com­
puter Science Division, Department of Electrical Engineering and Computer Science.

SEE ALSO

ex (1).

Vi Quick Reference Card.
IOON/UXV Editing Guide.

CAVEATS AND BUGS

6

The PDP-II version of vi does not support the full command set due to space limita­
tions. The commands which are not supported are detailed in "An Introduction to
Display Editing with Vi". The most notable commands which are missing are the
macro and abbreviation facilities, and the vedit invocation. (Since arrow keys are
done with macros, arrow keys do not work on the PDP-H.)

Software tabs using A T work only immediately after the autoindent.

Left and right shifts on intelligent terminals do not make use of insert and delete
character operations in the terminal.

There should be an interactive help facility and a tutorial suited for beginners.

Icon International, Inc.

(

VPR(l) USER COMMANDS VPR(1)

NAME

vpr - Versatec printer spooler

SYNOPSIS

vpr [options 1 [files 1

DESCRIPTION

Vpr causes the named files to be queued for printing on a Versatec printer. If no
names appear, the standard input is assumed; thus "pr may be used as a filter.

The following options may be given (each as a separate argument and in any order)
before any file name arguments:

-c Make a copy of the file to be sent before returning to the user.
-r Remove the file after sending it.
-m When printing is complete, report that fact by mail(l).
-n Do not report the completion of printing by mail(l). This is the default

option.
-ffile Use file as a dummy file name to report back in the maiL (This is useful for

distinguishing multiple runs, especially when "pr is being used as a filter).
-p [-e raster 1

Use the plot filter uplot to output files produced by graph(lG). The -e
option will cause a previously scan converted file raster to be sent to the
Versatec.

EXA.M:PLES

FILES

Two common uses are:

pr [options 1 file I vpr

and

graph [options 1 file I vpr -p

/etc/passwd
/usr /spool/vpd/*
/usr /lib /vpd

user identification and accounting data
spool area
line printer daemon

Icon International, Inc. 1

VPR(l)

/usr/lib/vpd.pr
/usr /lib/vplot

SEE ALSO

USER COM:MANDS

print filter
plot filter

dpr(lC), lpr(l), mail(l), tplot(lG).

2

VPR(1)

Icon International, Inc.

(

W(l) USER COMMANDS W(1)

NAME

w - who is on and what they are doing

SYNOPSIS

W [-h 1 [-11 1 [user 1

DESCRIPTION

W prints a summary of the current activity on the system, including what each user
is doing. The heading line shows the current time of day, how long the system has
been up, the number of users logged into the system, and the load averages. The
load average numbers give the number of jobs in the run queue averaged over 1, 5
and 15 minutes.

FILES

The fields output are: the users login name, the name of the tty the user is on, the
time of day the user logged on, the number of minutes since the user last typed any­
thing, the CPU time used by all processes and their children on that terminal, the
CPU time used by the currently active processes, the name and arguments of the
current process.

The -h flag suppresses the heading. The -11 flag asks for a short form of output. In
the short form, the tty is abbreviated, the login time and cpu times are left off, as
are the arguments to commands. -1 gives the long output, which is the default.

If a user name is included, the output will be restricted to that user.

/etc/utmp
/dev/kmem

SEE ALSO

who(I), ps(l)

AUTHOR

Mark Horton

Icon International, Inc. 1

W(l)

BUGS

2

USER COMMANDS W(l)

The notion of the "current process" is muddy. The current algorithm is "the highest
numbered process on the terminal that is not ignoring interrupts, or, if there is none,
the highest numbered process on the terminal". This fails, for example, in critical
sections of programs like the shell and editor, or when faulty programs running in
the background fork and fail to ignore interrupts. (In cases where no process can be
found, w prints "-".)

The CPU time is only an estimate, in particular, if someone leaves a background
process running after logging out, the person currently on that terminal is "charged"
with the time. .

Background processes are not shown, even though they account for much of the load
on the system.

Sometimes processes, typically those in the background, are printed with null or gar­
baged arguments. In these cases, the name of the command is printed in
parentheses.

W does not know about the new conventions for detection of background jobs. It
will sometimes find a background job instead of the right one.

Icon International, Inc.

(-

(

WAlT(l) USER COMMANDS WAlT(l)

NAME

wait - await completion of process

SYNOPSIS

wait

DESCRIPTION

Wait until all processes started with &. have completed, and report on abnormal ter­
minations.

Because the wait{2} system call must be executed in the parent process, the shell
itself executes wait, without creating a new process.

SEE ALSO

BUGS

sh(l}.
wait(2} in the ICON/UXV Programmer Reference Manual.

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus
cannot be waited for.

Icon International, Inc. 1

WC(l) USER COMMANDS WC(l)

NAME

wc - word count

SYNOPSIS

we [-lwc 1 [names 1

DESCRIPTION

We counts lines, words, and characters in the named files, or in the standard input if
no names appear. It also keeps a total count for all named files. A word is a maxi­
mal string of characters delimited by spaces, tabs, or new-lines.

The options 1, w, and c may be used in any combination to specify that a subset of
lines, words, and characters are to be reported. The default is -lwc.

When names are specified on the command line, they will be printed along with the
counts.

Icon International, Inc. 1

C)

--",/

(

WHAT(l) USER COM:MANDS WHAT (1)

NAME

what - identify sees files

SYNOPSIS

wha.t [--s] files

DESCRIPTION

What searches the given files for all occurrences of the pattern that get{l) substitutes
for %Z% (this is @(#) at this printing) and prints out what follows until the first -,
>, new-line, \, or null character. For example, if the C program in file r.c contains

char ident[] = "@#)identification information ";

and r.c is compiled to yield r.o and a.out" then the command

what f.c f.o a.out

will print

f.c:
identification information

f.o:
identification information

a.out:
identification information

What is intended to be used in conjunction with the command get{l), which
automatically inserts identifying information, but it can also be used where the
information is inserted manually. Only one option exists: after finding the first
occurrence of pattern in each file.

SEE ALSO

get{l), help{l}.

Icon International, Inc. 1

WHAT(l) USER COMMANDS WHAT(l)

DIAGNOSTICS

BUGS

2

Exit status is 0 if any matches are found, otherwise 1. Use help(l) for explanations.

It is possible that an unintended occurrence of the pattern @(#) could be found just
by chance, but this causes no harm in nearly all cases.

Icon International, Inc.

(

WHICH(l) USER COMMANDS WHICH(l)

NAME

which - locate a program file including aliases and paths (csh only)

SYNOPSIS

which [name 1 ...

DESCRIPTION

FILES

Which takes a list of names and looks for the files which would be executed had these
names been given as commands. Each argument is expanded if it is aliased, and
searched for along the user's path. Both aliases and path are taken from the user's
.cshrc file.

- /.cshrc source of aliases and path values

DIAGNOSTICS

BUGS

A diagnostic is given for names which are aliased to more than a single word, or if
an executable file with the argument name was not found in the path.

Must be executed by a csh, since only csh's know about aliases.

ICOll International, Inc. 1

(

WHO(I) USER COMMANDS WHOP)

NAME

who - who is on the system

SYNOPSIS

'\Yho [-uTHlpdbrtasq] [file]

who am i

who am I

DESCRIPTION

Who can list the user's name, terminal line, login time, elapsed time since activity
occurred on the line, and the process--ID of the command interpreter (shell) for each
current UNIX system user. It examines the /etc/utmp file to obtain its information.
If file is given, that file is examined. Usually, file will be /etc/wtmp, which contains
a history of all the logins since the file was last created.

Who with the am i or am I option identifies the invoking user.

Except for the default ~ option, the general format for output entries is:

name [state 1 line time activity pid [comment 1 [exit 1

With options, who can list logins, logoffs, reboots, and changes to the system clock, as
well as other processes spawned by the init process. These options are:

-u This option lists only those users who are currently logged in. The name is
the user's login name. The line is the name of the line as found in the direc­
tory /dev. The time is the time that the user logged in. The activity is the
number of hours and minutes since activity last occurred on that particular
line. A dot (.) indicates that the terminal has seen activity in the last minute
and is therefore "current". If more than twenty-four hours have elapsed or
the line has not been used since boot time, the entry is marked old. This field
is useful when trying to determine whether a person is working at the termi­
nal or not. The pid is the process-ID of the user's shell. The comment is the
comment field associated with this line as found in /etc/inittab (see init­
tab(4)). This can contain information about where the terminal is located, the
telephone number of the dataset, type of terminal if hard-wired, etc.

-T This option is the same as the -u option, except that the state of the termi­
nal line is printed. The state describes whether someone else can write to that
terminal. A + appears if the terminal is writable by anyone; a - appears if it
is not. Root can write to all lines having a + or a - in the state field. If a
bad line is encountered, a r is printed.

Icon International, Inc. 1

WHO(l) USER COM:MANDS WHO(l)

Fn..ES

-1 This option lists only those lines on which the system is waiting for someone
to login. The name field is LOGIN in such cases. Other fields are the same as
for user entries except that the state field does not exist.

-H This option will print column headings above the regular output.

-q This is a quick who, displaying only the names and the number of users
currently logged on. When this option is used, all other options are. ignored.

-p This option lists any other process which is currently active and has been pre­
viously spawned by init. The name field is the name of the program executed
by init as found in /etc/inittab. The state, line, and activity fields have no
meaning. The comment field shows the id field of the line from /etc/inittab
that spawned this process. See inittab(4).

-d This option displays all processes that have expired and not been respawned
by init. The exit field appears for dead processes and contains the termina­
tion and exit values (as returned by wait(2)), of the dead process. This can be
useful in determining why a process terminated.

-b This option indicates the time and date of the last reboot.

-r This option indicates the current run-level of the init process.

-t This option indicates the last change to the system clock (via the date(l) com-
mand) by root. See su(l).

-a This option processes /ete/utmp or the named file with all options turned
on.

-s This option is the default and lists only the name, line, and time fields.

/etc/utmp
/etc/wtmp
/etc/inittab

SEE ALSO

2

date(l}, 10gin(1), mesg(l), su(l).
wait(2), inittab(4), utmp(4) in the ICON/UXV Programmer Reference Manual.
init(lM} in the ICON/UXV Administrator Reference Manual.

Icon International, Inc.

(

WRODOS(l) USER COMMANDS WHODOS(l)

NAME

whodos - display information about dosc users

SYNOPSIS

whodo8

DESCRIPTION

FILES

Whodos is used to display information about dose partition usage. It displays the
Multi-link partition number, the dose process PID, the tty line of the dose user, the
time the process started, and the user name for each available partition. The file
jetcjmttys tells the total number of available partitions.

jusr jspool/uucp/LCK..mtty, /etc/mttys

SEE ALSO

dosc(I)

NOTE

If a dose process is terminated other than by exiting, it may leave a lock file in
/usr /spool/uucp. This file must be deleted before the part,ition can be reused. If you
suspect this has happened, verify that the PIO for each partition reported as active
by whodos is listed as an active process by ps(l). If the PID does not exist, you may
safely remove the lock file to allow the partition to be reused.

Icon International, Inc. 1

(

c··.·
./

WRITE(l) USER COMMANDS WRITE (1)

NAME

write - write to another user

SYNOPSIS

write user [line 1

DESCRIPTION

Write copies lines from your terminal to that of another user. When first called, it
sends the message:

Message from yourname (tty??) [date] •••

to the person you want to talk to. When it has successfully completed the connec­
tion, it also sends two bells to your own terminal to indicate that what you are typ­
ing is being sent.

The recipient of the message should write back at this point. Communication con­
tinues until an end of file is read from the terminal, an interrupt is sent, or the reci­
pient has executed "mesg n". At that point write writes EDT on the other terminal
and exits.

If you want to write to a user who is logged in more than once, the line argument
may be used to indicate which line or terminal to send to (e.g., ttyOO); otherwise,
the first writable instance of the user found in /etc/utmp is assumed and the fol­
lowing message posted:

user is logged on more than one place.
You are connected to "terminal".
Other locations are:
terminal

Permission to write may be denied or granted by use of the mesg{l} command.
Writing to others is normally allowed by default. Certain commands, in particular
nroff(l) and pr(l) disallow messages in order to prevent interference with their out­
put. However, if the user has super-user permissions, messages can be forced onto a
write-inhibited terminal.

If the character! is found at the beginning of a line, write calls the shell to execute
the rest of the line as a command.

The following protocol is suggested for using write: when you first write to another
user, wait for them to write back before starting to send. Each person should end a

Icon International, Inc. 1

WRITE(l) USER COM'.MANDS WRITE(l)

F~ES

message with a distinctive signal (i.e., (0) for "over") so that the other person knows
when to reply. The signal (00) (for "over and out") is suggested when conversation
is to be terminated.

/etc/utmp
/bin/sh

to find user
to execute!

SEE ALSO

. mail(l), mesg{l), nroff{l), pr(l), sh(l), who(l).

DIAGNOSTICS

2

"user is not logged on" if the person you are trying to write to is not logged on.
"Permission denied" if the person you are trying to write to denies that permission

(with mesg).
"Warning: cannot respond, set mesg -y" if your terminal is set to mesg n and the

recipient cannot respond to you.
"Can no longer write to user" if the recipient has denied permission (mesg n) after

you had started writing.

Icon International, Inc.

XARGS(l) USER CO:MMANDS XARGS(l)

(NAME

xargs - construct argument list(s) and execute command

SYNOPSIS

xargs [flags 1 [command [initial-arguments 11

DESCRIPTION

Xargs combines the fixed initial-arguments with arguments read from standard input
to execute the specified command one or more times. The number of arguments read
for each command invocation and the manner in which they are combined are deter­
mined by the flags specified.

Command, which may be a shell file, is searched for, using one's SPATH. If com­
mand is omitted, /bin/echo is used.

Arguments read in from standard input are defined to be contiguous strings of char­
acters delimited by one or more blanks, tabs, or new-lines; empty lines are always
discarded. Blanks and tabs may be embedded as part of an argument if escaped or
quoted. Characters enclosed in quotes (single or double) are taken literally, and the
delimiting quotes are removed. Outside of quoted strings a backslash (\) will escape
the next character.

Each argument list is constructed starting with the initial-arguments, followed by
some number of arguments read from standard input (Exception: see -i flag). Flags
-i, -1, and -n determine how arguments are selected for each command invocation.
When none of these flags are coded, the initial-arguments are followed by arguments
read continuously from standard input until an internal buffer is full, and then com­
mand is executed with the accumulated args. This process is repeated until there
are no more args. When there are flag conflicts (e.g., -I vs. -n), the last flag has
precedence. Flag values are:

-Inumber Command is executed for each non-empty number lines of
arguments from standard input. The last invocation of com­
mand will be with fewer lines of arguments if fewer than
number remain. A line is considered to end with the first
new-line unless the last character of the line is a blank or a
tab; a trailing blank/tab signals continuation through the
next non-empty line. If number is omitted, 1 is assumed.
Option -x is forced.

-ireplstr

Icon International, Inc.

Insert mode: command is executed for each line from
standard input, taking the entire line as a single arg, inserting
it in initial-arguments for each occurrence of replstr. A max­
imum of 5 arguments in initial-arguments may each contain
one or more instances of replstr. Blanks and tabs at the
beginning of each line are thrown away. Constructed argu­
ments may not grow larger than 255 characters, and option

1

XARGS(l) USER CO:MMANDS XARGS(l)

--nnumber

-t

-p

-x

-8size

-eeo/str

-x is also forced. {} is assumed for replstr if not specified.

Execute command using as many standard input arguments as
possible, up to number arguments maximum. Fewer argu­
ments will be used if their total size is greater than size char­
acters, and for the last invocation if there are fewer than
number arguments remaining. If option -x is also coded, each
number arguments must fit in the size limitation; else xargs
terminates execution.

Trace mode: The command and each constructed argument
list are echoed to file descriptor 2 just prior to their execution.

Prompt mode: The user is asked whether to execute command
each invocation. Trace mode {-t} is turned on to print the
command instance to be executed, followed by a ! ... prompt.
A reply of y (optionally followed by anything) will execute the
command; anything else, including just a carriage return,
skips that particular invocation of command.

Causes xargs to terminate if any argument list would be
greater than size characters; -x is forced by the options -i
and -I. When neither of the options -i, -1, or -n are coded,
the total length of all arguments must be within the size limit.

The maximum total size of each argument list is set to size
characters; size must be a positive integer less than or equal
to 470. If -8 is not coded, 470 is taken as the default. Note
that the character count for size includes one extra character
for each argument and the count of characters in the com­
mand name.

Eo/str is taken as the logical end-or-file string. Und£>rbar (_)
is assumed for the logical EOF string if -e is not coded. The
value -e with no eo/str coded turns off the logical EOF string
capability (underbar is taken literally). Xargs reads standard
input until either end-of-file or the logical EOF string is
encoun tered.

Xargs will terminate if either it receives a return code of -1 from, or if it cannot
execute, command. When command is a shell program, it should explicitly exit (see
sh{l)} with an appropriate value to avoid accidentally returning with -1.

EXAMPLES

2

The following will move all files from directory $1 to directory $2, and echo each
move command just before doing it:

Is $1 : xargs -i -t mv $1/{} $2/{}

The following will combine the output of the parenthesized commands onto one line,
which is then echoed to the end of file log:

Icon International, Inc.

r
I

~.

(.. "
/

XARGS(l) USER COMMANDS XARGS(l)

(logname; date; echo $0 $*) I xargs »log

The user is asked which files in the current directory are to be archived and archives
them into arch (1.) one at a time, or (2.) many at a time.

1. Is I xargs -p -1 ar r arch
2. Is I xargs -p -1 I xargs ar r arch

The following will execute diff(l) with successive pairs of arguments originally typed
as shell arguments:

SEE ALSO

sh(l).

DIAGNOSTICS

echo $* I xargs -n2 diff

Self-explanatory.

Icon International, Inc. 3

('
\

i
;

,,/

YACC(l) USER COMMANDS YACC(1)

NAME

yacc - yet another compiler-compiler

SYNOPSIS

yacc [-vdlt 1 grammar

DESCRIPTION

Fn.ES

Yacc converts a context-free grammar into a set of tables for a simple automaton
which executes an LR(l) parsing algorithm. The grammar may be ambiguous;
specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with the lexical analyzer program, yylex, as
well as main and yyerror, an error handling routine. These routines must be sup­
plied by the user; /ex(l) is useful for creating lexical analyzers usable by yacc.

If the -v flag is given, the file y.output is prepared, which contains a description of
the parsing tables and a report on conflicts generated by ambiguities in the gram­
mar.

If the -d flag is used, the file y.tab.h is generated with the #define statements
that associate the yacc-assigned "token codes" with the user-declared "token
names". This allows source files other than y .tab.e to access the token codes.

If the -1 flag is given, the code produced in y.tab.e will not contain any #line con­
structs. This should only be used after the grammar and the associated actions are
fully debugged.

Runtime debugging code is always generated in y.tab.c under conditional compila­
tion control. By default, this code is not included when y.tab.c is compiled. How­
ever, when yacc's -t option is used, this debugging code will be compiled by default.
Independent of whether the -t option was used, the runtime debugging code is under
the control of YYDEBUG, a pre-processor symbol. If YYDEBUG has a non-zero
value, then the debugging code is included. If its value is zero, then the code will not
be included. The size and execution time of a program produced without the run­
time debugging code will be smaller and slightly faster.

y.output
y.tab.c
y.tab.h
yacc.tmp,

defines for token names

Icon International, Inc. 1

YACC(l) USER COMMANDS YACC(l)

yace.debug, yacc.acts temporary files
/usr /lib/yacepar parser prototype for C programs

SEE ALSO

lex{l).
malloc{3X) in the IOON/UXV Programmer Reference Manual.

YAOO-Yet Another Compiler Compiler in the IOON/UXV User Guide.

DIAGNOSTICS

BUGS

2

The number of reduce-reduce and shift-reduce confticts is reported on the standard
error output; a more detailed report is found in the y.output file. Similarly, if some
rules are not reachable from the start symbol, this is also reported.

Because file names are fixed, at most one yacc process can be active in a given direc­
tory at a time.

Icon International, Inc.

:r
\,- '

(

CT(IC) USER COM:MANDS CT(IC)

NAME

ct - spawn getty to a remote terminal

SYNOPSIS

ct [-h 1 [-v 1 [-wn] [-sspeed] teino ...

DESCRIPTION

Fn..ES

Ot dials the phone number of a modem that is attached to a terminal, and spawns a
getty process to that terminal. Telno is a telephone number, with equal signs for
secondary dial tones and minus signs for delays at appropriate places. If more than
one telephone number is specified, ct will try each in succession until one answers;
this is useful for specifying alternate dialing paths.

Ot will try each line listed in the file /usr/lib/uucpfL-devices until it finds an
available line with appropriate attributes or runs out of entries. If there are no free
lines, ct will ask if it should wait for one, and if so, for how many minutes it should
wait before it gives up. Ot will continue to try to open the dialers at one-minute
intervals until the specified limit is exceeded. The dialogue may be overridden by
specifying the -wn option, where n is the maximum number of minutes that ct is to
wait for a line.

Normally, ct will hang up the current line, so that that line can answer the incoming
call. The -h option will prevent this action. If the -v option is used, ct will send a
running narrative to the standard error output stream.

The data rate may be set with the -s option, where speed is expressed in baud. The
default rate is 300.

After the user on the destination terminal logs out, ct prompts, Reconnect! If the
response begins with the letter n the line will be dropped; otherwise, getty will be
started again and the login: prompt will be printed.

Of course, the destination terminal must be attached to a modem that can answer
the telephone.

/usr /lib /u ucp /L-devices
/usr /adm/ctlog

Icon International, Inc. 1

CT(lC) USER CO:MMANDS CT(lC)

SEE ALSO

cu(lC), login(l), uucp(lC).

(

2 Icon International, Inc.

(

(

CU(lC) USER COMMANDS CU(lC)

NAME

cu - call another UNIX systfim

SYNOPSIS

cu [-ilspeed I [-lline I [-h] [-t] {-d I [-m I [~l [-e] [-n 1 telno I system name
I dir

DESCRIPTION

Cu calls up another UNIX system, a terminal, or possibly a non-UNIX system. It
manages an interactive conversation with possible transfers of ASCII files.

cu accepts the follomg optioBS and a.rguments.

-ilspeed
Specifies the transmission speed(llO, 150, 300, 600, 1200, 4800, 9600); 300 is
the default value. Mast. modems a.Te either 300 or 1200 baud. Directly con­
nected lines may be set to a speed higher than 1200 baud.

-lline Specifies a device name to use as the communication line. This can be used to
override searching for the first avail:a.ble line having the right speed. When
the -1 option is used without the -s option, the speed of a line is taken from
the file /usr /lib/uucp/L-devices. When the -I and -s options are used simul­
taneously, cu will search the L-devices file to check if the requested speed for
the requested line is available. If so, the connection will be made at the
requested speed; otherwise an error message will be printed and the call will
not be made. The specified device is generally a directly connected asynchro­
nous line (e.g., /dev/ttyab), in this case a telephone number is not required
but the string dir may be use to specify a null acu. If the specified device is
associated with an auto dialer, a telephone number must be provided.

-h Emulates local echo, "Supporting calls to other computer systems which expect
terminals to be set to half-duplex mode.

-t Used when dialing an ASCII terminal which has been set to auto answer.
Appropriate mapping of carriage-return to carriage-return-line-feed pairs is
set.

--d Causes dia.gnastic traces to be printed.

-e Designates that even parity is to be generated for data sent to the remote.

-0 Designates that odd parity is to be generated for data sent to the remote.

-m Designates a direct line which has modem control.

-n Will request the telephone number to be dialed from the user rather than
taking it from the command line.

telno When using an automatic dialer the argument is the teletelephone number
with equal signs for secondary dial tone or minus signs for delays, at
appropriate places.

systemname
A uucp system name may be used rather than a telephone number; in t.his

Icon International, Inc. 1

CU(lC) USER COMMANDS CU(IC)

(~\

case, cu will obtain an appropriate direct line or telephone number from - ~ ,,'

2

/usr/lib/uucp/L.sys (the appropriate baud rate is also read along with
telephone numbers). Cu will try each telephone number or direct line for SY8-
temname in the L.sys file until a connection is made or all the entries are
tried.

dir Using dir insures that cu will use the line specified by the -1 option. After
making the connection, cu runs as two processes: the transmit process reads
data from the standard input and, except for lines beginning with -, passes it
to the remote system; the receive process accepts data from the remote sys­
tem and, except for lines beginning with -, passes it to the standard output.
Normally, an automatic DC3/DCI protocol is used to control input from the
remote so the buffer is not overrun. Lines beginning with - have special
meanings.

The transmit process interprets the following:

terminate the conversation.

-!cmd .. .

-Scmd .. .

- %take from [to]

-%put from [to 1

-%break

-%nostop

escape to an interactive shell on the local system.

run cmd on the local system (via 8h --e).
run cmd locally and send its output to the remote system.

change the directory on the local system. NOTE: -lcd will
cause the command to be run by a sub-shell; probably
not what was intended.

copy file from (on the remote system) to file to on t.he local
system. If to is omitted, the from argument is used in both
places.

copy file from (on local system) to file to on remote system. If
to is omitted, the from argument is used in both places.

send the line -... to the remote system.

transmit a BREAK to the remote system.

toggles between DC3/DCI input control protocol and no input
control. This is useful in case the remote system is one which
does not respond properly to the DC3 and DCI characters.

The receive process normally copies data from the remote system to its standard
output. A line from the remote that begins with -> initiates an output diversion to
a file. The complete sequence is:

->[>J:file
zero or more lines to be written to file
->

Data from the remote is diverted (or appended, if » is used) to file. The trailing
-> terminates the diversion.

The use of -%put requires stty(l} and cat{l} on the remote side. It also requires
that the current erase and kill characters on the remote system be identical to the

Icon International, Inc.

(

(

("

CU(lC) USER COMMANDS CU(lC)

current ones on the local system. Backslashes are inserted at appropriate places.

The use of -%take requires the existence of echo(l) and cat(l) on the remote sys­
tem. Also, stty tabs mode should be set on the remote system if tabs are to be
copied without expansion.

When cu is used on system X to connect to system Y and subsequently used on sys­
tem Y to connect to system Z, commands on system Y can be executed by using --.
For example, uname can be executed on Z, X, and Yas follows:

uname
Z
-!uname
X
--!uname
y
In general, - causes the command to be executed on the original machine, -- causes
the command to be executed on the next machine in the chain.

EXAMPLES

To dial a system whose number is 9 201 555 1212 using 1200 baud:

cu ·sl2oo 9=2015551212

If the speed is not specified, 300 is the default value.

To login to a system connected by a direct line:

cu -I /dev/ttyXX dir

To dial a system with the specific line and a specific speed:

cu ·sI200 ·1 /dev /ttyX:X dir

To dial a system using a specific line:

cu ·1 /dev /culXX 2015551212

To use a system name:

cu YYYZZZ

Icon International, Inc. 3

CU(lC)

FILES

lUST /lib/uucp/L.sys
lUST /lib/uucp/L-devices

USER COMMANDS

/usr /spool/u ucp /LCK .. (tty-device)
/dev/null

SEE ALSO

cat(l}, ct(lC), echo(l}, stty{l), uname{l), uucp(lC).

DIAGNOSTICS

CU(lC)

Exit code is zero for normal exit, non-zero (various values) otherwise.

BUGS

4

Cu buffers input internally.
There is an artificial slowing of transmission by cu during the -%put operation so
that loss of data is unlikely.
You cannot use cu from the 3B 20 computer system console.

Icon International, Inc.

(

(

C)
./

KERMIT(lC) USER COMMANDS KERMIT(lC)

NAME

kermit - kermit file transfer

SYNOPSIS

kermit [option ... J [file ... J

DESCRIPTION

Kermit is a file transfer program that allows files to be moved between machines of
many different operating systems and architectures. This man page describes ver­
sion 4E(068) of the program. See the C-Kermit documentation (ckuker.doc) or the
Kermit book for further information.

Arguments are optional. If Kermit is executed without arguments, it will enter com­
mand mode. Otherwise, kermit will read the arguments off the command line and
interpret them.

The following notation is used in command descriptions:

fn A Unix file specification, possibly containing either of the "wildcard" charac­
ters '*' or '1' ('*' matches all character strings, '1' matches any single char­
acter).

fnl A Unix file specification which may not contain '*' or '1'.

rfn A remote file specification in the remote system's own syntax, which may
denote a single file or a group of files.

rfnl A remote file specification which should denote only a single file.

n A decimal number, in most cases between 0 and 94.

c A decimal number between 0 and 127 representing the value of an ASCII
character.

cc A decimal number between 0 and 31, or else exactly 127, representing the
value of an ASCII control character.

[] Any field in square braces is optional.

{x,y,z} Alternatives are listed in curly braces.

Kermit command line options may specify either actions or settings. If Kermit is
invoked with a command line that specifies no actions, then it will issue a prompt
and begin interactive dialog. Action options specify either protocol transactions or
terminal connection.

Icon International, Inc. 1

KERMIT(lC) USER COMMANDS KERMIT(lC)

2

COMMAND LINE OPTIONS
-s In Send the specified file or files. If In contains wildcard (meta) characters, the

Unix shell expands it into a list. If In is '-' then Kermit sends from standard
input, which may come from a file:

kermit -s - < foo.bar

or a parallel process:

Is -11 kermit -s -

You cannot use this mechanism to send terminal typein. If you want to
send a file whose name is "-" you can precede it with a path name, as in

kermit -s .f-
-r Receive a file or files. Wait passively for files to arrive.

-k Receive (passively) a file or files, sending them to standard output. This
option can be used in several ways:

kermit -k

Displays the incoming files on your screen; to be used only in "local mode"
(see below).

kermit -k > fnl

Sends the incoming file or files to the named file, Jn1. If more than one file
arrives, all are concatenated together into the single fileJnl.

kermit -k I command

Pi~es the incoming data (single or multiple files) to the indicated command,
as m

kermit -k I sort> sorted.stuff

-a Jnl If you have specified a file transfer option, you may specify an alternate
name for a single file with the -a option. For example,

kermit -s foo -a bar

sends the file foo telling the receiver that its name is bar. If more than one
file arrives or is sent, only the first file is affected by the -a option:

kermit -ra baz

stores the first incoming file under the name baz.

-x Begin server operation. May be used in either local or remote mode.

Before proceeding, a few words about remote and local operation are necessary.
Kermit is "local" if it is running on a PC or workstation that you are using directly,
or if it is running on a multiuser system and transferring files over an external
communication line - not your job's controlling terminal or console. Kermit is
remote if it is running on a multiuser system and transferring files over its own con­
trolling terminal's communication line, connected to your PC or workstation.

Icon International, Inc.

KERMIT(lC) USER CO:MMANDS KERMIT(lC)

If you are running Kermit On most systems, Kermit runs in remote mode by default,
so on a PC or workstation, you will have to put it into local mode. The following
command sets Kermit's "mode":

-1 dev Line - Specify a terminal line to use for file transfer and terminal connec­
tion, as in

kermit -1 /dev /ttyi5

When an external line is being used, you might also need some additional options for
successful communication with the remote system:

-b n Baud - Specify the baud rate for the line given in the -1 option, as in

kermit -1 /dev/ttyi5 -b 9600

This option should always be included with the -1 option, since the speed of
an external line is not necessarily what you might expect.

-p x Parity - e, 0, m, s, n (even, odd, mark, space, or none). If parity is other
than none, then the 8th-bit prefixing mechanism will be used for transferring
8-bit binary data, provided the opposite Kermit agrees. The default parity is
none.

-t Specifies half duplex, line turnaround with XON as the handshake character.

The following commands may be used only with a Kermz"t which is local - either by
default or else because the -1 option has been specified.

-g rln Actively request a remote server to send the named file or files; rln is a file
specification in the remote host's own syntax. If In happens to contain any
special shell characters, like '*', these must be quoted, as in

kermit -g x*.\?

-f Send a 'finish' command to a remote server.

-c Establish a terminal connection over the specified or default communication
line, before any protocol transaction takes place. Get back to the local sys­
tem by typing the escape character (normally Control-Backslash) followed
by the letter 'c'.

-n Like -c, but after a protocol transaction takes place; -e and -n may both
be used in the same command. The use of -n and -c is illustrated below.

On a timesharing system, the -1 and -b options will also have to be included with
the -r, -k, or -s options if the other Kermit is on a remote system.

If kermit is in local mode, the screen (stdout) is continously updated to show the pro­
gress of the file transer. A dot is printed for every four data packets, other packets
are shown by type (e.g. 's' for Send-Init), 'T' is printed when there's a timeout, and
'%' for each retransmission. In addition, you may type (to stdin) certain "interrupt"
commands during file transfer:

Icon International, Inc. 3

KERMIT(lC) USER CO:M:MANDS KERMIT(lC)

4

Control-F: Interrupt the current File, and go on to the next (if any).

Control-B: Interrupt the entire Batch of files, terminate the transaction.

Control-R: Resend the current packet

Control-A: Display a status report for the current transaction.

These interrupt characters differ from the ones used in other Kermit implementa­
tions to avoid conflict with Unix shell interrupt characters. With System III and
System V implementations of Unix, interrupt commands must be preceeded by the
escape character (e.g. control-\).

Several other command-line options are provided:

-i Specifies that files should be sent or received exactly "as is" with no conver­
sions. This option is necessary for transmitting binary files. It may also be
used to slightly boost efficiency in Unix-to-Unix transfers of text files by
eliminating CRLF /newline conversion.

-e n Specifies the (extended) receive-packet length, a number between 10 and
about 1000 (depending on the system). Lengths of 95 or greater require
that the opposite Kermit support the long packet protocol extension.

-w Write-Protect - Avoid filename collisions for incoming files.

-q Quiet - Suppress screen update during file transfer, for instance to allow a
file transfer to proceed in the background.

-d Debug - Record debugging information in the file dcbug.log in the current
directory. Use this option if you believe the program is misbehaving, and
show the resulting log to your local Kermit maintainer.

-h Help - Display a brief synopsis of the command line options.

The command line may contain no more than one protocol action option.

INTERACTIVE OPERATION

Kermit's interactive command prompt is "C-Kermit>". In response to this prompt,
you may type any valid command. Kermit executes the command and then prompts
you for another command. The process continues until you instruct the program to
terminate.

Commands begin with a keyword, normally an English verb, such as "send". You
may omit trailing characters from any keyword, so long as you specify sufficient
characters to distinguish it from any other keyword valid in that field. Certain
commonly-used keywords (such as "send", "receive", "connect") have special non-

. bb' t' (tt .. t' .. d" .. " t' .. .,,"" t''' ") umque a revla Ions s Jor sen , r Jor receIve, c Jor connect .

Icon International, Inc.

(

(

KERMIT(lC) USER COMMANDS KERMIT(lC)

Certain characters have special functions in interactive commands:

ESC

DEL

"'W
AU
AR
SP

CR

\

Question mark, typed at any point in a command, will produce a message
explaining what is possible or expected at that point. Depending on the
context, the message may be a brief phrase, a menu of keywords, or a list of
files.

(The Escape or Altmode key) - Request completion of the current keyword
or filename, or insertion of a default value. The result will be a beep if the
requested operation fails.

(The Delete or Rubout key) - Delete the previous character from the com­
mand. You may also use BS (Backspace, Control-H) for this function.

(Control-W) - Erase the rightmost word from the command line.

(Control-U) - Erase the entire command.

(Control-R) - Redisplay the current command.

(Space) - Delimits fields (keywords, filenames, numbers) within a command.
HT (Horizontal Tab) may also be used for this purpose.

(Carriage Return) - Enters the command for execution. LF (Linefeed) or
FF (formfeed) may also be used for this purpose.

(Backslash) - Enter any of the above characters into the command,
literally. To enter a backslash, type two backslashes in a row (\ \). A sin­
gle backslash immediately preceding a carriage return allows you to con­
tinue the command on the next line.

You may type the editing characters (DEL, AW, etc) repeatedly, to delete all the
way back to the prompt. No action will be performed until the command is entered
by typing carriage return, linefeed, or formfeed. If you make any mistakes, you will
receive an informative error message and a new prompt - make liberal use of '?'
and ESC to feel your way through the commands. One important command is
"help" - you should use it the first time you run Kermit.

Interactive Kermit accepts commands from files as well as from the keyboard. Upon
startup, Kermit looks for the file .kermrc in your home or current directory (first it
looks in the home directory, then in the current one) and executes any commands it
finds there. These commands must be in interactive format, not Unix command-line
format. A "take" command is also provided for use at any time during an interac­
tive session. Command files may be nested to any reasonable depth.

Here is a brief list of Kermit interactive commands:

! command Execute a Unix shell command. A space is required after after the !.

% text

bye

close

connect

A comment. Useful in take-command files.

Terminate and log out a remote Kermit server.

Close a log file.

Establish a terminal connection to a remote system.

Icon International, Inc. 5

KERMIT(lC) USER COM:MA.NDS KERMIT(lC)

6

cwd

dial

directory

echo

exit

finish

get

help

log

quit

receive

remote

script

send

server

set

show

space

statistics

take

Change Working Directory.

Dial a telephone number.

Display a directory listing.

Display arguments literally . Useful in take-command files.

Exit from the program, closing any open logs.

Instruct a remote Kermit server to exit, but not log out.

Get files from a remote Kermit server.

Display a help message for a given command.

Open a log file - debugging, packet, session, transaction.

Same as 'exit'.

Passively wait for files to arrive.

Issue file mana.gement commands to a remote Kermit server.

Execute a login script with a remote system.

Send files.

Begin server operation.

Set various parameters.

Display values of 'set' parameters, program version, etc.

Display current disk space usage.

Display statistics about most recent transaction.

Execute commands from a file.

The 'set' parameters are:

block-check Level of packet error detection.

delay How long to wait before sending first packet.

duplex

escape-character

file

Specify which side echoes during 'connect'.

Character to prefix "escape commands" during 'connect'.

Set various file parameters.

flow-control

handshake

line

modem-dialer

parity

prompt

Communication line full-duplex flow control.

Communication line half-duplex turnaround character.

Communication line device name.

Type of modem-dialer on communication line.

Communication line character parity.

Change the Kermit program's prompt.

Icon International, Inc.

(

KERMIT(lC)

receive

retry

send

speed

USER COMMANDS

Set various parameters for inbound packets.

Set the packet retransmission limit.

Set various parameters for outbound packets.

Communication line speed.

The 'remote' commands are:

cwd Change remote working directory.

delete Delete remote files.

directory Display a listing of remote file names.

help Request help from a remote server.

KERMIT(lC)

host Issue a command to the remote host in its own command language.

space Display current disk space usage on remote system.

type Display a remote file on your screen.

who Display who's logged in, or get information about a user.

(FILES

C:i

$HOME/.kermrc Kermit initialization commands
Ikermrc more Kermit initialization commands

SEE ALSO

cu(lC), uucp{lC)
Frank da Cruz, Kermit User's Guide, Columbia University, 6th Edition

Frank da Cruz,
Kermit, A File Transfer Protocol, Digital Press (1987)

The file ckuker.doc.

DIAGNOSTICS

The diagnostics produced by Kermit itself are intended to be self-explanatory.

BUGS

See recent issues of the Info-Kermit digest (on ARPANET or Usenet), or the file
ckuker.bwr, for a list of bugs.

Icon International, Inc. 7

KERMIT(lC) USER COM:MANDS KERMIT(lC)

COPYRIGHT

8

Copyright (C) 1985, Trustess of Columbia University in the City of New York. Per­
mission is granted to any individual or institution to use, copy, or redistribute this
(Kermit) software so long as it is not sold for profit, provided this copyright notice is
retained.

Icon International, Inc.

. / ..

I ')

~/

(

(

NET (lC) USER COMMANDS NET(IC)

NAME

net - execute a command on the POL network

SYNOPSIS

net system [command [args 11

DESCRIPTION

Net provides a bi-directional connection to another UNIX system. The first argu­
ment is the name of the remote system. The second argument is a command to be
executed. If command is not given, then an interactive shell (/bin/sh -i) on the
remote system is created and an initial working directory of I is established. Any
remaining arguments are passed to the given command as arguments.

Net reads the standard input, thus allowing command to be part of a "pipeline", if
command reads the standard input also.

EXAMPLES

Execute the who{l} command on system A and return the output to your terminal:

net A who

Copy a directory structure from system A to the local system:

cd Idir lon/localsys
net A "cd /dir/on/A; find. -print I cpio -oe" I cpio -ieda

Copy one file from system A to the local system:

net A "eat /file/on/A" > lfile/on/localsys

Send a directory structure from the local system to system A (this uses the
command's ability to read standard input):

find. -print I cpio -0 I net A "cd /dir IonIA; cpio -id"

Icon International, Inc. 1

NET(lC) USER COM:MANDS NET(lC)

Fn..ES

/dev /pcl/?[0-7] PCL channel interfaces for system ?
/dev /pcl/ctrl peL control channel.
/usr /adm/pcllog

activity log.

SEE ALSO

cpio{l), cu{lC), find{l), passwd(l), sh(l), sU(l), who{l).

DIAGNOSTICS

net: cannot open channel to system
A connection can not be made to the requested system.

connection broken
A non-recoverable write error occurred.

write error
A recoverable write error occurred. The write will be retried until it com­
pletes successfully without losing data.

Caf1not fork reader process
Net is unable to create a reader process and a writer process.

WARNINGS

BUGS

2

A successful invocation of net reads at least 2 blocks of the standard input, if
present, even if command does not use standard input. The standard input must
be explicitly closed (via <&-) or redirected (such as from /dev /null) if this feature
is not desired.

The user's command environment is not carried forward to the remote system except
for the effective user ID.

Executing commands that do "funny" things with your terminal (i.e., cU(l e),
passwd(l), 8u(1), etc.) do not work as expected.

Icon International, Inc.

('
. \
~

(

c

SEND(lC) USER COMMANDS SEND(lC)

NAME

send, gath - gather files and/or submit RJE jobs

SYNOPSIS

gath [-ih] file •••

send argument ••.

DESCRIPTION

Gath
Gath concatenates the named files and writes them to the standard output. Tabs
are expanded into spaces according to the format specification for each file (see
fspec(4)). The size limit and margin parameters of a format specification are also
respected. Non-graphic characters other than tabs are identified by a diagnostic
message and excised. The output of gath contains no tabs unless the -h flag is set,
in which case the output is written with standard tabs (every eighth column).

Any line of any of the files which begins with - is interpreted by gath as a control
line. A line beginning "-# " (tilde,space) specifies a sequence of files to be included
at that point. A line beginning -! specifies a UNIX system command; that command
is executed, and its output replaces the -! line in the gath output.

Setting the -i flag prevents control lines from being interpreted and causes them to
be output literally.

A file name of - at any point refers to standard input, and a control line consisting
of -. is a logical EOF. Keywords may be defined by specifying a replacement string
which is to be substituted for each occurrence of the keyword. Input may be col­
lected directly from the terminal, with several alternatives for prompting. In fact,
all of the special arguments and flags recognized by the send command are also
recognized and treated identically by gath. Several of them only make sense in the
context of submitting an RJE job.

Send

Send is a command-level interface to the RJE subsystems. It allows the user to col­
lect input from various sources in order to create a run stream consisting of card
images, and submit this run stream for transmission to an IBM host computer.
Output from the IBM system may be returned to the user in either ASCII text form or
EBCDIC punch format (see pnch (4)). How output is to be disposed of once it returns
from the host is determined by a "usr=" specification which should be embedded in
each job that a user submits for transmission. A detailed description of RJE opera­
tion and the "usr=" specification is given in UNIX Remote Job Entry User Gtdde.

Icon International, Inc. 1

SEND(lC) USER COMMANDS SEND(lC)

2

Possible sources of input to Bend are: ordinary files, standard input, the terminal,
and the output of a. comma.nd or shell file. Each source of input is treated as a vir­
tual file, and no distinction is made based upon its origin. Typical input is an ASCII
text file of the sort that is created by the editor ed(l). An optional format
specification appearing in the first line of a file (see /Bpec(4» determines the settings
according to which tabs are expanded into spaces, In addition, lines that begin with
- are normally interpreted as commands controlling the execution of Bend. They
may be used to set or reset flags, to define keyword substitutions, and to open new
sources of input in the midst of the current source. Other text lines are translated
one-for-one into card images of the run stream.

The run stream that results from this collection is treated as one job by the RJE sub­
systems. Send prints the card count of the run stream, and the queuer that is
invoked prints the name of the temporary file that holds the job while it is awaiting
transmission. The initial card of a job submitted to a host must have all in the
first column. Any cards preceding this card will be excised. If a host computer is
not specified before the first card of the runstream is ready to be sent, send will
select a reasonable default. All cards beginning with 1*$ will be excised from the
runstream, because they are HASP command cards.

The arguments that Bend accepts are described below. An argument is interpreted
according to the first pattern that it matches. Preceding a character with \ causes
it to loose any special meaning it might otherwise have when matching against an
argument pattern.

+
:spec:

:message

-:prompt

+:prompt

-flags

+flags

flags

!command

$line

@directory

Close the current source.

Open standard input as a new source.

Open the terminal as a new source.

Establish a default format specification for included
sources,
e.g., :m6t-12:

Print message on the terminal.

Open standard input and, if it is a terminal, print prompt.

Open the terminal and print prompt.

Set the specified flags, which are described below.

Reset the specified flags.

Restore the specified flags to their state at the previous
level.

Execute the specified UNIX system command via the one­
line shell, with input redirected to Idev Inull as a default.
Open the standard output of the command as a new
source.

Collect contiguous arguments of this form and write them
as consecutive lines to a temporary file; then have the file
executed by the shell. Open the standard output of the
shell as a new source.

The current directory for the send process is changed to

Icon International, Inc.

(

(

C:

SEND(lC) USER COMMANDS SEND(lC)

directory. The original directory will be restored at the
end of the current source.

-comment

r:keyword

Ignore this argument.

Prompt for a definition of keyword from the terminal
unless keyword has an existing definition.

r keyword=· xx Define the keyword as a two-digit hexadecimal character
code unless it already has a non-null replacement.

r keyword==string Define the keyword in terms of a replacement string unless
it already has a non-null replacement.

=:keyword

keyword=· xx

keyword=string

host

Prompt for a definition of keyword from the terminal.

Define keyword as a two-digit hexadecimal character code.

Define keyword in terms of a replacement string.

The host machine that the job should be submitted to. It
can be any name that corresponds to one in the first
column of the RJE configuration file (/usr /rje/lines).

file-name Open the specified file as a new source of input.

'When commands are executed via $ or ! the shell environment (see environ(5)) will
contain the values of all send keywords that begin with $ and have the syntax of a
shell variable.

The flags recognized by send are described in terms of the special processing that
occurs when they are set:

-1

-q

-c
-t

-k

-r

-i

-11

-y
-g

-h
-p
-m

List card images on standard output. EBCDIC characters are translated
back to ASCII.

Do not output card images.

Do not fold lower case to upper.

Trace progress on diagnostic output, by announcing the opening of input
sources.

Ignore the keywords that are active at the previous level and erase any
keyword definitions that have been made at the current level.

Process included sources in raw mode; pack arbitrary 8-bit bytes one per
column (80 columns per card) until an EOF.

Do not interpret control lines in included sources; treat them as text.

Make keyword substitutions before detecting and interpreting control
lines.

Suppress error diagnostics and submit job anyway.
Gather mode, qualifying -1 flag; list text lines before converting them to
card images.

Write listing with standard tabs.

Prompt with * when taking input from the terminal.

When input returns to the terminal from a lower level, repeat the prompt,

Icon International, Inc. 3

SEND(lC) USER COMMANDS SEND(lC)

4

if any.

-a Make -k flag propagate to included sources, thereby protecting them from
keyword substitutions.

~ List controlliDaon dn.:goostic output.

-d Extend the CUl'l'eIlt set of keyword definitions by adding those active at the
end of included sources.

-x This flag guarantees that the job will be transmitted in the order of sub­
mission (relative to othel' jobs sent with this flag).

Control lines are input lines that begin with -. In the default mode +ir, they
are interpreted as commands to send. Normally they are detected immediately
and read literally. The -s flag forces keyword substitutions to be made before
control lines are intercepted and interpreted. This can lead to unexpected
results if a control line uses a keyword which is defined within an immediately
preceding -$ sequence. Arguments appearing in control lines are handled
exactly like the command ar8uments to send, except that they are processed at
a nested level of input.

The two possible formats for a control line are: "-argument" and W Hargu­
ment# ••• ". In the .first case, where the - is not followed by a space, the
remainder of the line is taken as a single argument to send. In the second case,
the line is parsed to obtain a sequence of arguments delimited by spaces. In this
case the quotes' and" may be employed to pass embedded spaces.

The interpretation of the argument • is chosen so that an input line consisting
of -. is treated asa logical EOF. The following example illustrates some of the
above conventions:

send## -
- ##argument ...

This sequence of three lines is equivalent to the command synopsis at the begin­
ning of this description. In fact, the - is not even required. By convention, the
send command reads standard input if no other input source is specified. Send
may therefore be employed as a filter with side-effects.

The execution of the send command is controlled at each instant by a current
environment, which includes the format specification for the input source, a
default format specification for included sources, the settings of the mode flags,
and the active set of keyword definitions. This environment can be altered
dynamically. When a control line opens a new source of input, the current
environment is pushed onto a stack, to be restored when input resumes from the
old source. The initial format specification for the new source is taken from the
first line of the file. If none is provided, the established default is used or, in its
absence, standard tabs. The initial mode settings and active keywords are
copied from the old environment. Changes made while processing the new
source will not affect the environment of the old source, with one exception: if

Icon International, Inc.

C':

SEND (IC) USER COMMANDS SEND(IC)

-d mode is set in the old environment, the old keyword context will be aug­
mented by those definitions that are active at the end of the new source.

When send first begins execution, all mode flags are reset, and the values of the
shell environment variables become the initial values for keywords of the same
name with a $ prefixed.

The initial reset state for all mode flags is the + state. In general, special pro­
cessing associated with a mode N is invoked by flag -N and is revoked by flag
+N. Most mode settings have an immediate effect on the processing of the
current source. Exceptions to this are the -r and -i flags, which apply only to
included source, causing it to be processed in an uninterpreted manner.

A keyword is an arbitrary 8-bit ASCII string for which a replacement has been
defined. The replacement may be another string or the hexadecimal code for a
single 8-bit byte. At any instant, a given set of keyword definitions is active.
Input text lines are scanned, in one pass from left to right, and longest matches
are attempted between substrings of the line and the active set of keywords.
Characters that do not match are output, subject to folding and the standard
translation. Keywords are replaced by the specified hexadecimal code or
replacement string, which is then output character by character. The expansion
of tabs and length checking, according to the format specification of an input
source, are delayed until substitutions have been made in a line.

All of the keywords definitions made in the current source may be deleted by
setting the -k flag. It then becomes possible to reuse them. Setting the -k
flag also causes keyword definitions active at the previous source level to be
ignored. Setting the +k flag causes keywords at the previous level to be ignored
but does not delete the definitions made at the current level. The -k argument
reactivates the definitions of the previous level.

When keywords are redefined, the previous definition at the same level of source
input is lost, however the definition at the previous level is only hidden, to be
reactivated upon return to that level unless a -d flag causes the current
definition to be retained.

Conditional prompts for keywords, !:A,/p which have already been defined at
some higher level to be null or have a replacement will simply cause the
definitions to be copied down to the current level; new definitions will not be sol­
icited.

Keyword substitution is an elementary macro facility that is easily explained
and that appears useful enough to warrant its inclusion in the send command.
More complex replacements are the function of a general macro processor
(m4(1), perhaps). To reduce the overhead of string comparison, it is recom­
mended that keywords be chosen so that their initial characters are unusual.
For example, let them all be upper case.

Icon International, Inc. 5

SEND(lC) USER COMMANDS SEND(le)

/-
I '1

Send performs two types of error checking on input text lines. Primarily, only ~J
. ASCII graphics and tabs are permitted in input text. Secondly, the length of a

text line, after substitutions have been made, may not exceed 80 bytes. The
length of each line may be additionally constrained by a size parameter in the
format specification for an input source. Diagnostic output provides the loca­
tion of each erroneous line, by line number and input source, a description of the
error, and the card image that results. Other routine errors that are announced
are the inability to open or write files, and abnormal exits from the shell. Nor­
mally, the occurrence of any error causes Bend, before invoking the queuer, to
prompt for positive affirmation that the suspect run stream should be submit­
ted.

Before submitting a job to a host, Bend translates 8-bit ASCII characters into
their EBCDIC equivalents. The conversion for 8-bit ASCII characters in the octal
range 040-176 is based on the character set described in "Appendix H" of IBM
System/970 Principles of Operation (IBM SRL GA22-7000). Each 8-bit ASCII
character in the range 040-377 possesses an EBCDIC equivalent into which it is
mapped, with five exceptions:# - into .." 0345 into -, 0325 into ¢, 0313 into I,
0177 (DEL) is illegal. In listings requested from send and in printed output
returned by the subsystem, the reverse translation is made with the qualification
that EBCDIC characters that do not have valid 8-bit ASCII equivalents are
translated into".

Additional control over the translation process is afforded by the -f flag and
hexadecimal character codes. As a default, send folds lower-case letters into
upper case. Setting the -f flag inhibits any folding. Non-standard character
codes are obtained as a special case of keyword substitution. The users should
check with the remote IBM system to be sure the special processing will be
accepted.

SEE ALSO

BUGS

6

m4(1), rjestat(IC), sh(I).
Iseek(2), fspec(4), pnch(4), ascii(5), environ(5) in the IOON/UXV Programmer Refer­
ence Manual.

IOON/UXV Remote Job Entry User Guide in the IOON/UXV User Guide.

Standard input is read in blocks, and unused bytes are returned via Iseek(2). If stan­
dard input is a pipe, multiple arguments of the form - and -:prompt should not be
us,·, nor should the logical EOF C.).

Icon International, Inc.

(

(~

c

UUCP(lC) USER COMMANDS UUCP(lC)

NAME

uucp, uulog, uuname - UNIX system to UNIX system copy

SYNOPSIS

Ul1Cp [options] source-files destination-file

uulog [options]

uuname [-I] [-v]

DESCRIPTION

Uucp
Uucp copies files named by the source-file arguments to the destination-file argu­
ment. A file name may be a path name on your machine, or may have the form:

system-name!path-name

where system-name is taken from a list of system names which uucp knows about.
The system-name may also be a list of names such as

system-name!system-name! ... !system-name!path-name

in which case an attempt is made to send the file via the specified route, and only to
a destination in PUBom (see below). Care should be taken to insure that intermedi­
ate nodes in the route are willing to foward information.

The shell metacharacters r, * and [••.] appearing in path-name will be expanded on
the appropriate system.

Path names may be one of:

(1) a full path name;

(2) a path name preceded by - user where user is a login name on the
specified system and is replaced by that user's login directory;

(3) a path name preceded by - luser where user is a login name on the
specified system and is replaced by that user's directory under PUB­
om;

(4) anything else is prefixed by the current directory.

Icon International, Inc. 1

UUCP(lC) USER COMMANDS UUCP(lC)

2

If the result is an erroneous path name for the remote system the copy will fail. If
the destination-file is a directory, the last part of the source-file name is used.

Uucp preserves execute permissions across the transmission and gives 0666 read and
write permissions (see chmod(2)).

The following options are interpreted by uucp:

-d Make all necessary directories for the file copy (default).

-f Do not make intermediate directories for the file copy.

-c Use the source file when copying out rather than copying the file to the spool
directory (default).

-0 Copy the source file to the spool directory.

-mfile
Report status of the transfer in file. If file is omitted, send mail to the reques­
ter when the copy is completed.

-nuSer
Notify user on the remote system that a file was sent.

-f!SYS Send the uucp command to system sys to be executed there. (Note: this will
only be successful if the remote machine allows the uucp command to be exe­
cuted by /usr/lib/uuep/uuxqt.)

-r Queue job but do not start the file transfer process. By default a file transfer
process is started each time uucp is evoked.

-j Control writing of the uucp job number to standard output (see below).

Uucp associates a job number with each request. This job number can be used by
uustat to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the listing
of the uucp job number on standard output. If the environment variable JOBNO is
undefined or set to OFF, the job number will not be listed (default). If uucp is then
invoked with the -j option, the job number will be listed. If the environment vari­
able JOBNO is set to ON and is exported, a job number will be written to standard
output each time uucp is invoked. In this case, the -j option will supress output of
the job number.

Uulog

Uulog queries a summary log of uucp and uux(lC) transactions in the file

/usr /spool/uuep/LOGFJLE.

The options cause uulog to print logging information:

-ssys Print information about work involving system sys. If sys is not specified,
then logging information for all systems will be printed.

Icon International, Inc.

(

(

UUCP(IC) USER COMMANDS UUCP(IC)

FILES

-uuser
Print information about work done for the specified, user. If user IS not
specified then logging information for all users will be printed.

Uuname

Uuname lists the uucp names of known systems. The -1 option returns the local sys­
tem name. The -v option will print additional information about each system. A
description will be printed for each system that has a line of information in
/usr/lib/uucp/ADMIN. The format of ADMIN is: 81/sname tab description tab.

/usr /spool/uucp spool directory
/usr /spooljuucppublic public directory for receiving and sending (PUBDm)
/usr /lib/uucp/* other data and program files

SEE ALSO

mail(l), uux{lC).
chmod(2) in the IOON/UXV Programmer Reference Manual.

WARNING

The domain of remotely accessible files can (and for obvious security reasons, usually
should) be severely restricted. You will very likely not be able to fetch files by path
name; ask a responsible person on the remote system to send them to you. For the
same reasons, you will probably not be able to send files to arbitrary path names.
As distributed, the remotely accessible files are those whose names begin
/usr /spool/uucppublic (equivalent to -nuucp or just -).

NOTES

BUGS

In order to send files that begin with a dot (e.g., .profile) the files must by qualified
with a dot. For example: .profile, . prof* , .profil? are correct; whereas *prof*, ?profile
are incorrect.

Uucp will not generate a job number for a strictly local transaction.

All files received by uucp will be owned by uucp.
The -m option will only work sending files or receiving a single file. Receiving mul­
tiple files specified by special shell characters r * [...] will not activate the -m
option.

Icon International, Inc. 3

UUCP(lC) USER COMMANDS UUCP(lC)

4

The -m option will not work if all transactions are local or if uucp is executed
remotely via the -e option.
The -D option will function only when the source and destination are not on the
same machine.
Only the first six characters of a system-name are significant. Any excess characters
are ignored.

Icon International, Inc.

'(.~
j

c··.· . /

(

UUSTAT(1C) USER COMMANDS UUSTAT(lC)

NAME

uustat - uucp status inquiTy and job control

SYNOPSIS

uustat [options J

DESCRIPTION

Uustat will display the status of, or cancel, previously specified uuep commands, or
provide general status on uuep connections to other systems. The following options
are recognized:

-jjobn

-kjobn

-rjobn

-chour

-Utlser
-ssys

-oltour
-yhour
-mmeh

-Mmch

-0

-q

Report th~ .status of the uuep request jobn. If all is used for jobn, the
status of all uuep requests is reported. An argument must be supplied;
otherwise, the usage message will be printed and the request will fail.
Kill the uuep request whose job number is jobn. The killed uuep request
must belong to the person issuing the uustat command unless one is the
super-user.
Rejuvenate jobn. That is, jobn is touched so that its modification time is
set to the current time. This prevents uuclean from deleting the job until
the jobs modification time reaches the limit imposed by uuclean.
Remove the status entries which are older than hour hours. This admin­
istrative option can only be initiated by the user uucp or the super-user.
Report the status of all uuep requests issued by user.
Report the status of all uucp requests which communicate with remote
system sys.
Report the status of all uucp requests which are older than hour hours.
Report the status of all uucp requests which are younger than hour hours.
Report the status of accessibility of machine meh. If meh is specified as
all, th~ll the status of all machines known to the local uucp are provided.
This is the same as the -m option except that two times are printed.
The time that the last status was obtained and the time that the last
successful transfer to that system occurred.
Report the uuep status using the octal status codes listed below. If this
option is not specified, the verbose description is printed with each uucp
request.
List the numbeT of jobs and other control files queued for each machine
and the time of the oldest and youngest file queued for each machine. If
a lock file exists for that system, its date of creation is listed.

\Vhen no options are given, 1lustat outputs the status of all uuep requests issued by
the current user. Note that only one of the options -j, -m, -k, -c, -r, can be
used with the rest of the other options.

Icon International, Inc. 1

UUSTAT(lC) USER COM:MANDS UUSTAT(lC)

FILES

For example, the command:

uustat -uhdc -smhtsa -y72

will print the status of all uuep requests that were issued by user hde to communi­
cate with system mhtsa within the last 72 hours. The meanings of the job request
status are:

job-number user remote-system command-time status-time status

where the status may be either an octal number or a verbose description. The octal
code corresponds to the following description:

OCTAL
000001
000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

STATUS
the copy failed, but the reason cannot be determined
permission to access local file is denied
permission to access remote file is denied
bad uucp command is generated
remote system cannot create temporary file
cannot copy to remote directory
cannot copy to local directory
local system cannot create temporary file
cannot execute uuep
copy (partially) succeeded
copy finished, job deleted
job is queued
job killed (incomplete)
job killed (complete)

The meanings of the machine accessibility status are:

system-name time status

where time is the latest status time and status is a self-explanatory description of
the machine status.

/usr /spool/uucp spool directory
/usr/lip/uucp/LJtat system status file
/usr /lib/uucp/RJtat

request status file

SEE ALSO

uucp(lC).

2 Icon International, Inc.

',--

(

C)
./

UUTO(IC) USER COMMANDS

,NAME

uuto, uupick - public UNIX-t~UNIX system file copy

SYNOPSIS

uuto [options] source-files destination
uupick [-15system]

DESCRIPTION

UUTO(lC)

Uuto sends source-files to destination. Uuto uses the uucp(lC) facility to send files,
while it allows the local system to control the file access. A source-file name is a
path name on your machine. Destination has the form:

system!user

where system is taken from a list of system names that uucp knows about (see
uuname). User is the login name of someone on the specified system.

Two options are available:

-p Copy the source file into the spool directory before transmission.
-m Send mail to the sender when the copy is complete.

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where
PUBDIR is a public directory defined in the uucp source. Specifically the files are sent
to

PUBDm./receive / user / mysystem/files.

The destined recipient is notified by mail(l) of the arrival of files.

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick
searches PUBDIR for files destined for the user. For each entry (file or directory)
found, the following message is printed on the standard output:

from system: [file file-name] [dir dirname] !

Uupick then reads a line from the standard input to determine the disposition of the
file:
<new-line>
d

Icon International, Inc.

Go on to next entry.
Delete the entry.

1

UUTO(lC) USER COMMANDS UUTO(lC)

FIJ,.ES

m [dir J

a [dir 1
p

q

Move the entry to named directory dir. If dir is not specified as a
complete path name (in which $HOME is legitimate), a destination
relative to the current directory is assumed. If no destination is
given, the default is the current directory.

Same as m except moving all the files sent from system.

Print the content of the file.

Stop.

EOT (control-d) Same as q.

!command Escape to the shell to do command.

* Print a command summary.

Uupick invoked with the -s system option will only search the PUBDIR for files sent
from system.

PUBDffi lusr Ispool/uucppublic public directory

NOTES

In order to send files that begin with a dot (e.g., .profile) the files must by qualified
with a dot. For example: .profile, .prof*, .profil? are correct; whereas *proh, ?profile
are incorrect.

SEE ALSO

mail(l), uucp(lC), uustat(lC), uux(lC), uucleanup(lM).

2 Icon International, Inc.

(\

(

c:

UUX(IC) USER COMMANDS UUX(Ie)

NAME

uux - UNIX-to-UNIX system command execution

SYNOPSIS

uux [options 1 command-string

DESCRIPTION

Uux will gather zero or more files from various systems, execute a command on a
specified system and then send standard output to a file on a specified system. Note
that, for security reasons, many installations will limit the list of commands execut­
able on behalf of an incoming request from uux. Many sites will permit little more
than the receipt of mail (see mail(l)) via uux.

The command-string is made up of one or more arguments that look like a shell com­
mand line, except that the command and file names may be prefixed by system­
name!. A null system-name is interpreted as the local system.

File names may be one of

(1) a full path name;

(2) a path name preceded by -xxx where xxx is a login name on the specified
system and is replaced by that user's login directory;

(3) anything else is prefixed by the current directory.

As an example, the command

uux "!diff usg!/usr/dan/fl pwba!/a4/dan/fl > !fl.diff"

will get the.f! files from the "usg" and "pwba" machines, execute a diff command
and put the results in f1.diff in the local directory.

Any special shell characters such as <>;1 should be quoted either by quoting the
entire command-string, or quoting the special characters as individual arguments.

Uux will attempt to get all files to the execution system. For files which are output
files, the file name must be escaped using parentheses. For example, the command

uux a!uucp bl/usr/file \{c!/usr/file\}

will send a uucp command to system "a" to get /usr /file from system "b" and send
it to system "c".

Uux will notify you if the requested command on the remote system was disallowed.
The response comes by remote mail from the remote machine. Executable

Icon International, Inc. 1

UUX(lC) USER COMMANDS UUX(lC)

Fll..ES

commands are listed in /usr/lib/uuep/L.cmds on the remote system. The format
of the L.cmds file is:

cmd,machine 1 ,machine2, ...

If no machines are specified, then any machine can execute emd. If machines are
specified, only the listed machines can execute cmd. If the desired command is not
listed in L.sys then no machine can execute that command. .

Redirection of standard input and output is usually restricted to files in PUBDIR.
Directories into which redirection is allowed must be specified in
/uer/lib/uucp/USERFn.E by the system administrator. See the UUOP Administra­
tor Manual in the IOON/UXV Administrator Guide.

The following options are interpreted by uux:

The standard input to uux is made the standard input to the command­
string.

-n Send no notification to user.

-mfile
Report status of the transfer in file. If file is omitted, send mail to the reques­
ter when the copy is completed.

-j Control writing of the uucp job number to standard output.

UUX associates a job number with each request. This job number can be used by
uustal to obtain status or terminate the job.

The environment variable JOBNO and the -j option are used to control the listing
of the uux job number on standard output. If the environment variable JOBNO is
undefined or set to OFF, the job number will not be listed (default). If uuco is then
invoked with the -j option, the job number will be listed. If the environment vari­
able JOBNO is set to ON and is exported, a job number will be written to standard
output each time !lUX is invoked. In this case, the -j option will suppress output of
the job number.

lusr Ispool/uucp
lusr Ispool/uucppublic
lusr Ilib/uucp/*

spool directory
public directory (PUBOIR)
other data and programs

SEE ALSO

mail{l), uuclean{lM), uucp{l C).

2 Icon International, Inc.

UUX(lC) USER CO:MMANDS UUX(IC)

(~. BUGS

(~ .•

Only the first command of a shell pipeline may have a system-name!. All other com­
mands are executed on the system of the first command.
The use of the shell metacharacter * will probably not do what you want it to do.
The shell tokens «and» are not implemented.
Only the first six characters of the system-name are significant. Any excess charac­
ters are ignored.

Icon International, Inc. 3

C)

GDEV(lG) USER COMMANDS GDEV(lG)

(NAME

(

(~I

gdev, hpd, erase, hardcopy, tekset, td - graphical device routines and filters

SYNOPSIS

h pd [-options J [GPS - file - .•• J
erase
hardcopy
tekset
td [-eurn] [GPS-file-••• J

DESCRIPTION

All of the commands described below reside in /usr/bin/graf (see graphics(lG)).

hpd Hpd translates a GPS (see gps(4)), to instructions for the Hewlett­
Packard 7221A Graphics Plotter. A viewing window is computed from
the maximum and minimum points in file unless the -u or -r option is
provided. If no file is given, the standard input is assumed. Options are:

erase

cn

pn

rn

sn

u

xdn

xvn

ydn

yvn

Select character set n, n between 0 and 5 (see the HP7221A Plotter
Operating and Programming Manual, Appendix A).

Select pen numbered n, n between 1 and 4 inclusive.

Window on CPS region n, n bet.ween 1 and 25 inclusive.

Slant characters n degrees clockwise from the vertical.

Window on the entire GPS universe.

Set x displacement of the viewport's lower left corner to n inches.

Set width of viewport to n inches.

Set y displacement of the viewport's lower left corner to n inches.

Set height of viewport to n inches.

Erase sends characters to a TEKTRONIX 4010 series storage terminal to
erase the screen.

hardcopy When issued at a TEKTRONIX display terminal with a hard copy unit,
hardcopy generates a screen copy on the unit.

tekset Teksct sends characters to a TEKTRONIX terminal to clear the display
screen, set the display mode to alpha, and set characters to the smallest
font.

td Td translates a CPS to scope code for a TEKTRONIX 4010 series storage
terminal. A viewing window is computed from the maximum and
minimum points in file unless the -u or -r opt£on is provided. If no file
is given, the standard input is assumed. Options are:

e Do not erase screen before initiating display.

Icon International, Inc. 1

_____ • __ 0 ___ ._ • ____ ~~ ___ ~_

GDEV (IG) USER COMMANDS

SEE ALSO

rn Displa.y GPS region n, n between 1 and 25 inclusive.

u Display the entire GPS universe.

ged(lG), graphics(lG).
gps(4) in the ICON/UXV Programmer Reference Manual.

GDEV(IG)

2 Icon International, Inc.

(

('

GED(lG) USER COMMANDS GED(lG)

NAME

ged - graphical editor

SYNOPSIS

ged [-euRrn] [GPS-flle - ••• J

DESCRIPTION

Ged is an interactive graphical editor used to display, construct, and edit GPS files
on TEKTRONIX 4010 series display terminals. If GPS file(s) are given, ged reads
them into an internal display buffer and displays the buffer. The GPS in the buffer
can then be edited. If - is given as a file name, ged reads a GPS from the standard
input.

Ged accepts the following command line options:

e Do not erase the screen before the initial display.

rn Display region number n.

u

R
Display the entire GPS universe.

Restricted shell invoked on use of !.

A GPS file is composed of instances of three graphical objects: lines, arc, and text.
Arc and lines objects have a start point, or object-handle, followed by zero or more
points, or point-handles. Text has only an object-handle. The objects are positioned
within a Cartesian plane, or universe, having 64K (-32K to +32K) points, or
universe-units, on each axis. The universe is divided into 25 equal sized areas called
regions. Regions are arranged in five rows of five squares each, numbered 1 to 25
from the lower left of the universe to the upper right.

Ged maps rectangular areas, called windows, from the universe onto the display
screen. Windows allow the user to view pictures from different locations and at
different magnifications. The universe-window is the window with minimum
magnification, i.e., the window that views the entire universe. The home-window is
the window that completely displays the contents of the display buffer.

COMMANDS

Ged commands are entered in stages. Typically each stage ends with a <cr>
(return). Prior to the final <cr> the command may be aborted by typing rubout.
The input of a stage may be edited during the stage using the erase and kill charac­
ters of the calling shell. The prompt * indicates that ged is waiting at stage 1.

Icon International, Inc. 1

GED(lG) USER COMMANDS GED(lG)

2

Each command consists of a subset of the following stages:

1. Command line.

2. Text

A command line consists of a command name followed by argument(s}
followed by a <cr>. A command name is a single character. Com­
mand arguments are either option(s) or a file-name. Options are indi~
cated by a leading -.

Text is a sequence of characters terminated by an unescaped <cr>
(120 lines of text maximum).

3. Points Points is a sequence of one or more screen locations (maximum of 30)
indicated either by the terminal crosshairs or by name. The prompt
for entering point8 is the appearance of the crosshairs. When the
crosshairs are visible, typing:

4. Pivot

sp (space) enters the current location as a point. The point IS

identified with a number.

$n enters the previous point numbered n.

>x labels the last point entered with the upper case letter x.

$x enters the point labeled x.

establishes the previous points as the current points. At the start
of a command the previous points are those locations given with
the previous command.

= echoes the current points.

$.n enters the point numbered n from the previous points.

erases the last point entered.

@ erases all of the points entered.

The pivot is a single location, entered by typing <cr> or by using the
$ operator, and indicated with a *.

5. Destination
The destination is a single location entered by typing <cr> or by using
$.

COMMAND SUMMARY
In the summary, characters typed by the user are printed in bold. Command stages
are printed in italic8. Arguments surrounded by brackets "[]" are optional.
Parentheses "()" surrounding arguments separated by "or" means that exactly one
of the arguments must be given.

Construct commands:

Arc

Box

Circle

[-echo,style,weight] points

[-echo,style,weightj points

[-echo,style,weight] points

Icon International, Inc.

(,

(

(

GED(lG) USER COMMANDS GED(lG)

Hardware

Lines

Text

Edit commands:

[-echo] text points

[-echo,style,weightj points

[-angle,echo,height,mid-point,right-point,text,weight] text points

(- (universe or view) or points) Delete

Edit [-angle,echo,height,style,weightj (- (universe or view) or points

Kopy

Move

Rotate

Scale

View commands:

coordinates

erase

new-display

)
[-echo,points,x] points pivot destination

[-echo,points,xj points pivot destination

[-angle,echo,kopy,xj points pivot destination

[-echo,factor,kopy,xj points pivot destination

points

object-handles (- (universe or view) or points)

point-handles (- (labelled-points or universe or view) or points)

Vlew (- (home or universe or region) or [-x] pivot destination)

x [-view] points

zoom [-out] points

Other commands:

quit or Quit

read

set

write

!command

Icon International, Inc.

[-angle,echo,height,mid-point,right-point,text,weight
file-name [destination]

[-angle,echo,factor ,heigh t,kopy ,mid-poin t,points,
right-point,style,text,weight,xj

file-name

3

GED(lG) USER COMMANDS GED(lG)

4

Options:
Options specify parameters used to construct, edit, and view graphical objects. If a
parameter used by a command is not specifed as an option, the default value for the
parameter will be used (see set below). The format of command options is:

-option [,option 1
where option is keyletter[value]. Fla.gs ta.ke on the values of true or false indicated by
+ and - respectively. If no value is given with a flag, true is assumed.

Object options:

anglen

echo

f'actorn

heightn

kopy

mid-point

points

right-point

styletype

text

weight type

Area options:

home

out

regionn

universe

view

x

Angle of n degrees.

When true, echo additions to the display buffer.

Scale factor is n percent.

Height of text is n universe-units (0< n< 1280).

When true, copy rather than move.

When true, mid-point is used to locate text string.

When true, operate on points; otherwise operate on objects.

When true, right-point is used to locate text string.

Line style set to one of following types:
so solid
da dashed
dd dot-dashed
do dotted
Id long-dashed

When false, text strings are outlined rather than drawn.

Sets line weight to one of following types:
n narrow
m medium
b bold

Reference the home-window.

Reduce magnification.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

Indicate the center of the referenced area.

Icon International, Inc.

(- ..

c

GED{lG) USER COlvfMANDS GED{lG)

COMMAND DESCRIPTIONS

Construct commands:

Arc and Lines
behave similarly. Each consists of a command line followed by points. The
first point entered is the object-handle. Successive points are point-handles.
Lines connect the handles in numerical order. Arc fits a curve to the handles
(currently a maximum of 3 points will be fit with a circular arc; splines will be
added in a later version).

Box and Circle
are special casesoT Lines ··~1lrc,TeSp-e"Ctively. Box generates a rectangle
with sides panllelto the universe axes. A diagonal of the rectangle would con­
nect the first point entered with the last point. The first point is the object­
handle. Point-handles "are created at each of the vertices. Circle generates a
circular arc centered about the point numbered zero and passing through the
last point. The circle's object-handle coincides with the last point. A point­
handle is generated 180 degr~s around the circle from the object-handle.

Text and Hardwar~
generate text objects. Each consists of a command line, text and points. Text
is a sequence of characters delimit~d by <cr>. Multiple lines of text may be
entered by preceding a u with a backslash (i.e., \cr). The Text command
creates software-generated characters. Each line of software text is treated as
a separate text object. Th~ first point ent~red is the object-handle for the first
line of text. The Hardware command sends the characters in text uninter­
preted to the terminal.

Edit commands:

Edit commands operat~ on portions of tM display buffer called defined areas. A
defined area is refereneed either with an ar~a option or interactively. If an area
option is not given, the perimeter of the defined area is indicated by points. If no
point is entered, a small defin.ed area is built around the location of the <cr>. This
is useful to reference a single point. II only one point is entered, the location of the
<cr> is taken in conjunction with the point to indicate a diagonal of a rectangle. A
defined area referenced by points will be outlined with dotted lines.

Delete
removes all objects whose object-handle lies within a defined area. The
universe option·n:moves alh)bjects and erases the screen.

Edit modifies the parameters of the objects within a defined area. Parameters that
can be edited are:

angle angle of text
height height of text
style sty~ of lines and arc
weight weight of lines, an, and text.

Kopy (or Move)
copies (or moves) object- and/or point-handles within a defined area by the dis­
placement from the pivot to the destination.

Icon International, Inc. 5

GED{ IG) USER CO:MMANDS GED{lG)

6

~I
~~ ~

Scale

rotates objects within a defined area around the pivot. If the kopy flag is true
then the objects are copied rather than moved.

For objects whose object handles are within a defined area, point displacements
from the pivot a.re scaled by tactor percent. If the kopy flag is true then the
objects a.re copied rather than moved.

View commands:

coordinates
prints the location of point(s) in universe- and screen-units.

erase
clears the screen (but not the display buffer).

new-display
erases the screen then displays the display buffer.

object-handles (or point-handles)
labels object-handles (and/or point-handles) that lie within the defined area
with 0 (or Pl. Point-handles identifies labeled points when the labelled-points
flag is true.

view moves the window so that the universe point corresponding to the pivot coin­
cides with the screen point corresponding to the destination. Options for home,
universe, and region display particular windows in the universe. /

x indicates the center of a defined area. Option view indicates the center of the \,,-­
screen.

zoom
decreases (zoom out) or increases the magnification of the viewing window
based on the defined area. For increased magnification, the window is set to
circumscribe the defined area. For a decrease in magnification the current win­
dow is inscribed within the defined area.

Other commands:

quit or Quit
exit from ged. Quit responds with r if the display buffer has not been written
since the last modification.

read inputs the contents of a file. If the file contains a GPS it is read directly. If
the file contains text it is converted into text object(s). The first line of a text
fiJe begins at destination.

8et when given option(s) resets default parameters, otherwise it prints current
default values.

write
outputs the contents of the display buffer to a file.

escapes ged to execute a ICON{UXV system command.

lists ged commands.

Icon International, Inc.

GED(IG) USER COMMANDS GED(lG)

(.. SEE ALSO

(

c

gdev{lG), graphics{lG), sh{l).
gps(4) in the ICON/UXV Programmer Manual.

An Introduction to the Graphical Editor in the UNIX System V Graphics Guide.

WARNING

See Appendix A of the TEKTRONIX -101-1 Computer Display Terminal User's Manual
for the proper terminal strap options.

Icon International, Inc. 7

GRAPH(lG) USER COMMANDS GRAPH(lG)

(NAME

(j

c

graph - draw a graph

SYNOPSIS

graph [options 1

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas
and ordinates of a graph. Successive points are connected by straight lines. The
graph is encoded on the standard output for display by the tplot(lG) filters.

If the coordinates of a point are followed by a non-numeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with quotes ",
in which case they may be empty or contain blanks and numbers; labels never con­
tain new-lines.

The following options are recognized, each as a separate argument:

-a.

-b
--c
-g

-1
-m

-s
-x [1 J

-y [1 J
-h
-w
-r
-u
-t

Supply abscissas automatically (they are missing from the input); spacing
is given by the next argument (default 1). A second optional argument is
the starting point for automatic abscissas (default 0 or lower limit given
by -x).
Break (disconnect) the graph after each label in the input.
Character string given by next argument is default label for each point.
Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid
(default).
Next argument is label for graph.
Next argument is mode (style) of connecting lines: 0 disconnected, 1 con­
nected (default). Some devices give distinguishable line styles for other
small integers (e.g., the TEKTRONIX 4014: 2==dotted, 3==dash-dot,
4=short-dash, 5 long-dash).
Save screen, do not erase before plotting.
If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower
(and upper) x limits. Third argument, if present, is grid spacing on x
axis. Normally these quantities are determined automatically.
Similarly for y.
Next argument is fraction of space for height.
Similarly for width.
Next argument is fraction of space to move right before plotting.
Similarly to move up before plotting.
Transpose horizontal and vertical axes. (Option -x now applies to the
vertical axis.)

A legend indicating grid range is produced with a grid unless the -s option IS

present. If a specified lower limit exceeds the upper limit, the axis is reversed.

Icon International, Inc. 1

GRAPH(lG) USER COMMANDS GRAPH(1G)

SEE ALSO

BUGS

2

graphics(lG), spJine(lG), tpJot(lG).

Graph stores all points internally and drops those for which there is no room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

Icon International, Inc.

o

(

(

GRAPHICS (IG) USER COM:M.ANDS GRAPHICS (1 G)

NAME

graphics - access graphical and numerical commands

SYNOPSIS

graphics [-r 1

DESCRIPTION

Graphics prefixes the path name /usr/bin/graf to the current SPATH value,
changes the primary shell prompt to "', and executes a new shell. The directory
/un /bin/graf contains all of the Graphics subsystem commands. If the -r option
is given, access to the graphical commands is created in a restricted environment;
that is, SPATH is set to

:/usr /bin/graf:/rbin:/usr /rbin

and the restricted shell, rsh, is invoked. To restore the environment that existed
prior to issuing the graphics command, type EOT (control.d on most terminals). To
logoff from the graphics environment, type quit.

The command line format for a command in graphics is command name followed by
argumen~s). An argument may be a file name or an option string. A file name is the
name of any UNIX system file except those beginning with -. The file name - is the
name for the standard input. An option string consists of - followed by one or more
option(s). An option consists of a key letter possibly followed by a value. Options
may be separated by commas.

The graphical commands have been partitioned into four groups.

Commands that manipulate and plot numerical data; see stat{lG}.

Commands that generate tables of contents; see toc{lG).

Commands that interact with graphical devices; see gdev{lG) and ged{lG).

A collection of graphical utility commands; see gutil(lG).

A list of the graph£cs commands can be generated by typing whatis in the graphics
environment.

SEE ALSO

gdev{lG), ged{lG), gutil{lG), stat{lG), toc{lG}.
gps(4) in the 100NIUXV Programmer Reference Manual.

100NI U.¥V User Guide.

Icon International, Inc. 1

GUTll.,(lG) USER COMMANDS GUTll.,(lG)

(.. NAME

(

gutil - graphical utilities

SYNOPSIS

command-name [options] [files]

DESCRU>TION

Below is a list of miscellaneous device independent utility commands found in
/usr /bin/graf. If no files are given, input is from the standard input. All output is
to the standard output. Graphical data is stored in GPS format; see gps(4).

bel - send bel character to terminal

cvrtopt [=sstring fstring istring tstring) [args) - options converter
Cvrtopt reformats args (usually the command line arguments of a calling
shell procedure) to facilitate processing by shell procedures. An arg is
either a file name (a string not beginning with a -, or a - by itself) or an
option string (a string of options beginning with a -). Output is of the
form:

-option -option . .. file name{s)
All options appear singularly and preceding any file names. Options that
take values (e.g., -rI.1) or are two letters long must be described through
options to cvrtopt.

Cvrtopt is usually used with set in the following manner as the first line of
a shell procedure:

set - cvrtopt =[options] $@
Options to cvrtopt are: .

sstring

fstring

istring

tstring

String accepts string values.

String accepts floating point numbers as values.

Str£ng accepts integers as values.

String is a two-letter option name that takes no value.

String is a one- or two-letter option name.

gd [GPS files] - GPS dump
Gd prints a human readable listing of GPS.

gtop [-rn u 1 [GPS files 1 - GPS to plot(4) filter
Gtop transforms a GPS into plot(4) commands displayable by plot filters.

Icon International, Inc. 1

GUTIL(lG) USERCO~S GUT~(lG)

GPS objects are translated if they fall within the window that CIr­

cumscribes the first file unless an option is given.
Options:

rn translate objects in GPS region n.

u translate all objects in the GPS universe.

pd [plot(S} files 1 - plot(4} dump
Pd prints a human readable listing of plot(4) format graphical commands.

ptog [plot(S) files J - plot(4) to GPS filter
Ptog transforms plot(4) commands into a GPS.

quit - terminate session

remcom [files 1 - remove comments

whatis

Remcom copies its input to its output with comments removed. Com­
ments are as defined in C (i.e., /* comment */).

[-0 J [names J - brief on-line documentation
Whatis prints a brief description of each name given. If no name is given,
then the current list of description names is printed. The command
whatis * prints out every description.
Option:

o just print command options

yoo file - pipe fitting
Yoo is a piping primitive that deposits the output of a pipeline into a file
used in the pipeline. Note that, without goo, this is not usually successful
as it causes a read and write on the same file simultaneously.

SEE ALSO

graphics(l G).
gps(4), plot(4) in the IOONjUXV Programmer Reference Manual.

2 Icon International, Inc.

',--

()

SAG(lG) USER COM:MANDS SAG(lG)

NAME

sag - system activity graph

SYNOPSIS

sag I options J

DESCRIPTION

Sag graphically displays the system activity data stored in a binary data file by a
previous sar(l) run. Any of the sar data items may be plotted singly, or in combina­
tion; as cross plots, or versus time. Simple arithmetic combinations of data may be
specified. Sag invokes sar and finds the desired data by string-matching the data
column header (run sar to see what is available). These options are passed through
to sar:

-s time Select data later than time in the form hh [:mm J. Default is 08:00.

--e time Select data up to time. Default is 18:00.

-i sec Select data at intervals as close as possible to sec seconds.

-f file Use file as the data source for sar. Default is the current daily data file
lusr ladm/sa/sadd. Other options:

-T term Produce output suitable for terminal term. See tplot(lG) for known termi­
nals. If term is vpr, output is processed by vpr -p and queued to a Ver­
satec printer. Default for term is 'TERM.

-x spec x axis specification with spec in the form:

"name top name] ... 110 hi]"

-y spec y axis specification with spec in the same form as above. Name is either a
string that will match a column header in the sar report, with an optional
device name in square brackets, e.g., r+w Is [dsk-l], or an integer value.
Op is + - * or I surrounded by blanks. Up to five names may be
specified. Parentheses are not recognized. Contrary to custom,

+ and - have precedence over * and /. Evaluation is left to right.
Thus A I A + B * 100 is evaluated (A/(A+B))*l00, and
A + B / C + D is (A+B)/(C+D). Lo and hi are optional numeric scale
limits. If unspecified, they are deduced from the data. A single spec is
permitted for the x axis. If unspecified, time is used. Up to 5 spec's
separated by ; may be given for -yo Enclose the -x and -y arguments
in "" if blanks or \ <CR> are included. The -y default is:

-y "%usr 0 100; %usr + %sys 0 100; %usr + %sys + %wio 0 100"

•

Icon International, Inc. 1

SAG(lG) USER COM:MA.NDS

EXAMPLES

FILES

To see today's CPU utilization:

sag

To see activity over 15 minutes of all disk drives:

TS=date +%H:%M
sar -0 tempfile 60 15
TE=date +%H:%M
sag -f tempfile -s $TS -e $TE -y "r+wjs[dsk]"

/usr /adm/sa/sadd daily data file for day dd.

SEE ALSO

sar{l), tplot{IG).

2

SAG(lG)

Icon International, Inc.

c

SPLlNE(lG) USER COMMANDS SPLlNE(lG)

spline - interpolate smooth curve

SYNOPSIS

spline [options 1

DESCRIPTION

Spline takes pairs of numbers from the standard input as abscissas and ordinates of
a function. It produces a similar set, which is approximately equally spaced and
includes the input set, on the standard output. The cubic spline output (R. W. Ham­
ming, Numerical Methods for Scientists and Engineers, 2nd ed., pp. 349ft') has two
continuous derivatives, and sufficiently many points to look smooth when plotted, for
exa·mple by graph(lG).

The following options are recognized, each as a separate argument:

-a Supply abscissas automatically (they are missing from the input); spacing is
given by the next argument, or is assumed to be 1 if next argument is not a
number.

-k The constant k used in the boundary value computation:

is set by the next argument (default k = 0).

-n Space output points so that approximately n intervals occur between the
lower and upper x limits (default n = 100).

-p Make output periodic, i.e., match derivatives at ends. First and last input
values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally, these lim­
its are calculated from the data. Automatic abscissas start at lower limit
(default 0).

SEE ALSO

graph(lG).

DIAGNOSTICS

When data is not strictly monotone in x, spline reproduces the input without inter­
pol a ting extra points.

Icon International, Inc. 1

SPLlNE(lG) USER COMMANDS SPLlNE(lG)

BUGS (~
A limit of 1,000 input points is enforced silently.

/"

(/

2 Icon International, Inc.

(

o

STAT(lG) USER CO:MMANDS STAT(lG)

NAME

stat - statistical network useful with graphical commands

SYNOPSIS

node-name [options] [files]

DESCRIPTION

Stat is a collection of command level functions (nodes) that can be interconnected
using sh(l} to form a statistical network. The nodes reside in /usr /bin/graf (see
graphics(lG)}. Data is passed through the network as sequences of numbers (vec­
tors), where a number is of the form:

[sign] (d i gi ts)(. d igi ts) [e [sign Jdigits]

evaluated in the usual way. Brackets and parentheses surround fields. All fields are
optional, but at least one of the fields surrounded by parentheses must be present.
Any character input to a node that is not part of a number is taken as a delimiter.

Stat nodes are divided into four classes.

Transformers, which map input vector elements into output vector ele­
ments;

Summarizers,

Translators,

Generators,

which calculate statistics of a vector;

which convert among formats; and

which are sources of definable vectors.

Below is a list of synopses for stat nodes. Most nodes accept options indicated by a
leading minus (-). In general, an option is specified by a character followed by a
value, such as e5. This is interpreted as e := 5 (e is assigned 5). The following keys
are used to designate the expected type of the value:

c characters,

I integer,

f Boating point or integer,

file file name, and

string string of characters, surrounded by quotes to include a shell argument
delimiter.

Icon International, Inc. 1

STAT(lG) USERCO~S STAT(lG)

2

Options without keys are flags. All nodes except generators accept files as input,
hence it is not indicated in the synopses.

Transformer8:

abs

at

ceil

cusum

exp

floor

gamma

list

log

mod

pair

power

root

round

siline

sin

subset

Summarizers:

[--c:i} - absolute value
columns (similarly for --c: options that follow)

[--c:i tv} - arithmetic function
titled output, verbose

[--c:i] - round up to next integer

[--c:i] - cumulative sum

[--c:i] - exponential

[--c:i] - round down to next integer

[--c:i] - gamma
[--c:i d8tring] - list vector elements
delimiter(s)

[--c:i bf 1 - logarithm
base

[--c:i mJ] - modulus
modulus

[--c:i F file xi] - pair elements
File containing base vector, x group size

[--c:i pf] - raise to a power
power

[--c:i rfl - take a root
root

[-cipisi 1 - round to nearest integer, .5 rounds to 1
places after decimal point, significant digits

[-ci ifnisf J - generate a line given slope and intercept
intercept, number of positive integers, slope

[-ci]- sine

[-af bf ci F file ii If nl np pf si til - generate a subset
above, below, File with master vector, interval, leave, master con­
tains element numbers to leave, master contains element numbers
to pick, pick, start, terminate

bucket [-ai ci Ffile hfii Ifni] - break into buckets
average size, File containing bucket boundaries, high, interval, low,
number
Input data should be sorted

cor [-F file] - correlation coefficient
File containing base vector

Icon International, Inc.

(

()

STAT(lG)

hilo

Ireg

mean

point

prod

qsort

rank

total

var

Translators:

bar

hist

label

pie

plot

USER CO:MMANDS STAT(lG)

[- h 10 ox oy]- find high and low values
high only, low only, option form, option form with x prepended,
option form with y prepended

[-F file i 0 8] - linear regression
File containing base vector, intercept only, option form for siline,
slope only

[-ffni pf] - (trimmed) arithmetic mean
fraction, number, percent

[-ffni pf s] - point from empirical cumulative density function
fraction, number, percent, sorted input

- internal product

[-ci] - quick sort

- vector rank

- sum total

- variance

[-a b fg riwixfxa yfya ylfyhf]- build a bar chart
suppress axes, bold, suppress frame, suppress grid, region, width in
percent, x origin, suppress x-axis label, y OrIgm, suppress y-axis
label, y-axis lower bound, y-axis high bound
Data is rounded off to integers.

[-a b f g rixfxa yfya ylfyhf]- build a histogram
suppress axes, bold, suppress frame, suppress grid, region, x origin,
suppress x-axis label, y origin, suppress y-axis label, y-axis lower
bound, y-axis high bound

[-b c Ffile h p ri x xu y yr J -label the axis of a GPS file
bar chart input, retain case, label File, histogram input, plot input,
rotation, x-axis, upper x-axis, y-axis, right y-axis

[-b 0 p pni ppi ri v xi yi] - build a pie chart
bold, values outside pie, value as percentage(:=l00), value as
percentage(:=i), draw percent of pie, region, no values, x origin. y
origin
Unlike other nodes, input is lines of the form

[< i e fcc >] value [label]
ignore (do not draw) slice, explode slice, fill slice, color slice
c=(black, red, green, blue)

[-a b cstring d f Ffile g m ri xfxa xifxhf xl/xnixt yfya
yifyhfylfyniyt]- plot a graph
suppress axes, bold, plotting characters, disconnected, suppress
frame, File containing x vector, suppress grid, mark points, region,
x origin, suppress x-axis label, x interval, x high bound, x low
bound, number of ticks on x-axis, suppress x-axis title, y origin,

Icon International, Inc. 3

STAT(lG) USER COMMANDS STAT(lG)

suppress y-axis label, y interval, y high bound, y low bound,
number of ticks on y-axis, suppress y-axis title

title ! -b c Istring v string ustring] - title a vector or a GPS
title bold, retain case, lower title, upper title, vector title

Generators:

gas

prime

rand

! -ci if ni sf tf] - generate additive sequence
interval, number, start, terminate

[-ci hi Ii ni] - generate prime numbers
high, low, number

[-ci hf 11 ml ni ss"] - generate random sequence
high, low, multiplier, number, seed

RESTRICTIONS

Some nodes have a limit on the size of the input vector.

SEE ALSO

graphics(lG).
gps(4) in the ICON/UXV System Programmer ,Reference Manual.

•

4 Icon International, Inc.

(.. ~ .. :
~/

TOC(lG) USER COMMANDS TOC(lG)

NAME

toc - graphical table of contents routines

SYNOPSIS

dtoc [directory J
ttoc mm-file
vtoc [-cdhnimsvn] [TTOe file]

DESCRIPTION

All of the commands listed below reside in /usr/hin/graf (see graphics(IG)).

dtoc Dtoc makes a textual table of contents, TTOe, of all subdirectories begin­
ning at directory (directory defaults to .). The list has one entry per
directory. The entry fields from left to right are level number, directory
name, and the number of ordinary readable files in the directory. Dtoc is
useful in making a visual display of all or parts of a file system. The fol­
lowing will make a visual display of all the readable directories under /:

ttoc

vtoc

dtoc / I vtoc I td

Output is the table of contents generated by the .TC macro of mm(l)
translated to TToe format. The input is assumed to be an mm file that
uses the .H family of macros for section headers. If no file is given, the
standard input is assumed.

Vtoe produces a GPS describing a hierarchy chart from a TToe. The
output drawing consists of boxes containing text connected in a tree
structure. If no file is given, the standard input is assumed. Each TToe
entry describes one ",x and has the form:

id [line-weight,l£ne-style] "text" [mark]
where:

id is an alternating sequence of numbers and dots. The id
specifies the position of the entry in the hierarchy. The id
o. is the root of the tree.

line-weight is either:

line-style

text

is either:

n, normal-weight; or
m, medium-weight; or
h, bold-weight.

so, solid-line;
do, dotted-line;
dd, dot-dash line;
da, dashed-line; or
ld, long-dashed

is a character string surrounded by quotes. The characters
between the quotes become the contents of the box. To
include a quote within a box it must be escaped (\ ").

Icon International, Inc. 1

TOC(lG)

SEE ALSO

USER COMMANDS TOC(lG)

mark is a character string (surrounded by quotes if it contains
spaces), with included dots being escaped. The string is put
above the top right corner of the box. To include either a
quote or a dot within a mark it must be escaped.

Entry example: 1.1 b,da "ABC" DEF
Entries may span more than one line by escaping the new-line (\new­
line).

Comments are surrounded by the /*,* / pair. They may appear any­
where in a TTOC.

Options:

c Use text as entered (default is all upper case).

d Connect the boxes with diagonal lines.

hn Horizontal interbox space is n% of box width.

i Suppress the box id.

m Suppress the box mark.

8 Do not compact boxes horizontally.

vn Vertical interbox space is n% of box height.

graphics(lG).
gps(4) in the ICONIUXV Programmer Reference Manual.

2 Icon International, Inc.

TPLOT(lG) USER COMMANDS TPLOT(IG)

NAME

tplot - graphics filters

SYNOPSIS

tplot [-Tterminal [-e ra.ster J J

DESCRIPTION

FILES

These commands read plotting instructions (see plot(4)) from the standard input and
in general produce, on the standard output, plotting instructions suitable for a par­
ticular terminal. If no terminal is specified, the environment parameter STERM (see
environ(5)) is used. Known terminals are:

300
300S
450
4014
ver

DASI300.
DASI300s.
DASI450.
TEKTRONIX 4014.
Versatec DI200A. This version of plot places a scan-converted image in
/usr /tmp/raster$$ and sends the result directly to the plotter device,
rather than to the standard output. The -e option causes a previously
scan-converted file raster to be sent to the plotter.

/usr /lib/t300
/usr /lib/t300s
/usr /lib/t450
/usr/lib/t4014
/usr /lib/vplot
/usr/tmp/raster$$

SEE ALSO

plot(3X), plot(4), term(5) in the ICON/UXV Programmer Reference Manual.

Icon International, Inc. 1

(
I

''''--

(~I

c

. ,.; .•.. ~,.P()PYright198~··
. 't~t,:lnterOationaJ.·lnc~·.

All rights reserved wOrld~e.
. :. . . ~,

.. ..
fl
'--

...

