
c

c.:

SIVIYO
• ICON

ICON/PICK
Assembly
Language
Manual

ICON INTERNATIONAL, Inc.

764 East limpanogos Parkway
Orem, Utah 84057 - 6212
Telephone: 801 225-6888
Fax: 801 226-0651
Telex: 323938 ICONSYS

o

c;

LANGUAGE MANUAL

ICON/PICK
Assembly
Language

© Copyright 1986,1987,1988,1989
Icon International. Inc.
All rights reserved worldwide.

ICON/PICK Assembler

The information contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without prior written approval from Icon
International, Inc.

Icon International, Inc. reserves the right to make changes, without notice, to the specifications
and materials contained herein, and shall not be responsible for any damages (including
consequential) caused by reliance on the material as presented, including, but not limited to,
typographical, arithmetic, and listing errors.

SA,tIYo
• ICON

ICON INTERNATIONAL. Inc.

764 East Timpanogos Parkway
Orem. Utah 84057-6212
Telephone: 801 225-6888
Fax: 801 226-0651
Telex: 323938 ICONSYS

ICON/PICK Assembly Language Manual
Edition A
September 1986

Icon Order Number: 172-041-001 (Manual Assembly, includes binder, tabs, and pages)
171-010-002 (Pages only)

Trademarks

The ICON logo is a trademark of Icon International, Inc.
SANYO is a trademark of Sanyo Electric Co., Ltd.
PICK is a registered trademark of Pick Systems, Inc.

ASM-ii ICON INTERNATIONAL

;,

ICON/PICK Assembler

Record of Changes

ICON/PICK Assembly Language Manual
Order No. 171·010·002

Date Updatet Change Entered By •

Sep. 1986

Apr. 1989

AO

Al

Initial publication of Revision A

Changed Covers, Title Page, Disclaimer Page, and Record of
Changes Page to include new corporate logo and correct copyright

t

•

An update number bas two parts: a capital letter and an Arabic numeral. (See update number AO above.) The capital letter refers to
the revision of the manual and the Arabic numeral refers to the sequence of cbanges made to that particular revision.

The first publication of all manuals is always designated as Revision A and is presented as AO. After the number of changes made
to a particular manual warrants a new edition, the revision letter is changed to the next capital letter. For example, the revision
after Revision A will be Revision B, and the publication will be represented as BO.

The second part of the update number, the Arabic numeral, gives the consecutive order of changes made to each revision. Update
number Al represents the fust change made to Revision A, update A2 is the second cbange, and so forth. When a new revision is
issued, the numbering starts over (BO, BI, B2).

The person who entered the updated pages into this manual .

ICON/PICK ASSEMBLY LANGUAGE MANUAL ASM-iii

ICON/PICK Assembler

ASM-iv ICON INTERNATIONAL

TABLE OF CONTENTS

C\ SECTION PAGE

1 THE ASSEMBLER . · · · · · · . 1
1.1 PICK ASSEMBLER 3
1.2 SOURCE LANGUAGE 3
1. 2.1 LABEL FIELD · · · · 3
1. 2. 2 OPERATOR FIELD · · · · 3
1. 2. 3 OPERAND FIELD · · . · · · · · · · · 3
1.2.3.1 OPERAND FIELD EXPRESSIONS 4
1. 2. 4 COMMENT FIELD · · · · · · · · · · · 4
1.3 ASSEMBLING SOURCE CODE : 'AS' VERB 5
1.4 LISTING ASSEMBLY PROGRAMS : 'MLIST' VERB 5
1.5 LOADING ASSEMBLED MODES : 'MLOAD' VERB 6
1.6 VERIFYING A LOADED PROGRAM MODE : 'MVERIFY' VERB 7
1.7 STRIPPING THE SOURCE CODE 'STRIP-SOURCE' VERB 8

2 MACHINE INSTRUCTIONS 9
2.1 PICK ASSEMBLY LANGUAGE 10
2.2 ARITHMETIC OPERATIONS 11
2.2.1 Load (LOAD) · · · · · · 11
2.2.2 Load Extended (LOADX) 11
2.2.3 Store (STORE) · · · · 11
2.2.4 Zero (ZERO) · · · · · 11
2.2.5 One (ONE) . · · · · · · · · 11
2.2.6 Add to Accumulator (ADD) 12
2.2.7 Add Extended (ADDX) 12

('~ 2.2.8 Increment Storage by One (INC) 12
2.2.9 Add to Storage (INC) · · · 12
2.2.10 Subtract from Accumulator (SUB) 12
2.2.11 Subtract Extended (SUBX) · · · · · · · · 12
2.2.12 Decrement Storage by One (DEC) · · · · 13
2.2.13 Subtract from Storage (DEC) 13
2.2.14 Multiply (MUL) · · · · · 13
2.2.15 Multiply Extended (MULX) 13
2.2.16 Divide (DIV) · · · · · 13
2.2.17 Divide Extended (DIVX) 14
2.2.18 Negate (NEG) · · · · · 14
2.2.19 Move (MOV) . · · · · · 14
2.3 CHARACTER INSTRUCTIONS 15
2.3.1 Move Character to Character (MCC) · · · · · 15
2.3.2 Move Character to Incrementing Character (MCI) · · · · 15
2.3.3 Move Character Incrementing and Count (MCl) 15
2.3.4 Move Incrementing Character to Character (MIC) · · 15
2.3.5 Move Incrementing Character to Incrementing Character 15

(MIl)
2.4 LOGICAL INSTRUCTIONS · · · · · · · · 16
2.4.1 Logical Or (OR) 16
2.4.2 Logical Exclusive Or (XOR) 16
2.4.3 Logical And (AND) · · · · 16
2.4.4 Shift (SHIFT) · · · · · · · · · · · 16
2.5 BRANCHING INSTRUCTIONS · · · · 17
2.5.1 Branch Unconditionally (B) · · · · · · 17

0
2.5.2 Enter External Mode (ENT) · · · · 17
2.5.3 Subroutine Call (BSL) 17
2.5.4 Return from Subroutine (RTN) · . · · · · · · 18
2.5.5 Branch character instructions · · · · · · · · 18

2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.5.13
2.5.14
2.5.15
2.5.16
2.5.17
2.5.18
2.5.19
2.5.20
2.5.21
2.5.22
2.5.23
2.5.24
2.5.25
2.5.26
2.5.27
2.5.28
2.5.29
2.5.30
2.6
2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.6.10
2.6.11
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.8
2.8.1
2.8.2
2.8.3
2.8.4
2.8.5
2.8.6
2.8.7
2.8.8
2.8.9
2.9
2.9.1
2.9.2
2.9.3
2.9.4
2.9.5
2.10
2.10.1

Branch Character Equal (BCE)
Branch Character Unequal (BCU)
Branch Character Low (BCL)
Branch Character Less than or Equal (BCLE)
Branch Character High (BCH)
Branch Character High or Equal (BCHE)
Branch Character Numeric (BCN)
Branch Character Not Numeric (BCNN)
Branch Character Hexadecimal (BCX)
Branch Character Not Hexadecimal (BCNX)
Branch Character Alphabetic (BCA)
Branch Character Not Alphabetic (BCNA)
Branch if Zero (BZ)
Branch if Not Zero (BNZ)
Branch if Less than Zero (BLZ)
Branch if Less than or Equal Zero (BLEZ)
Branch if Equal (BE)
Branch if Unequal (BU)
Branch if Less than (BL)
Branch if Less than or Equal (BLE)
Branch if High (BH)
Branch if High or Equal (BHE)
Branch Decrementing Not Zero (BDNZ)
Branch Decrementing Less than Zero (BDLZ)
Branch Decrementing Less than or Equal Zero (BDLEZ)
STRING-HANDLING INSTRUCTIONS
Scan to Delimiter
Scan to Delimiter and Count
Scan to Count
Scan to Count or Delimiter
Move String to Delimiter
Move string to Delimiter and Count
Move String to Count
Move String to Register
Move String to Count or Delimiter
Scan, Counting Delimiters (SICD)
Branch on comparing strings; BSTE and BSTU
BIT INSTRUCTIONS
Set Bit (SB)
Zero Bit (ZB)
Branch Bit Set (BBS)
Branch Bit Zero (BBZ)
REGISTER INSTRUCTIONS
Load Absolute Difference (LAO)
Increment Address Register (INC)
Decrement Address Register (DEC)
Increment Storage Register (INC)
Decrement Storage Register (DEC)
Set Register to Address (SRA)
Move Register to Register (MOV)
Exchange Register with Register (XRR)
Setup Register (SETUP)
CONVERSION INSTRUCTIONS
Move Binary to Decimal (MBD)
Move Binary to Hexadecimal (MBX and MBXN)
Move Decimal to Binary (MDB)
Move Hexadecimal to Binary (MXB)
Move Floating-Point String to Binary (MSDB and MSXB)
OTHER INSTRUCTIONS
Read Input Queue (READ)

18
18
18
19
19
19
19
19
19
20
20
20
20
20
20
20
21
21
21
21
22
22
22
22
22
23
24
24
24
24
25
25
25
25
26
27
29
30
30
30
30
30
31
31
31
31
32
32
32
32
32
33
34
34
34
34
35
35
36
36

o

2.10.2 Write to Output Queue (WRITE) · · · · · · 36
2.10.3 Release Time Quantum (RQM) 36

C 3 SUPPORT SOFTWARE 37
3.1 SYSTEM SOFTWARE · · · · 38
3.1.1 Introduction · · · · 38
3.1. 2 Address Registers 38
3.1. 3 Re-entrancy · · 39
3.1. 4 Work-spaces or Buffers · · · · · · 39
3.1.5 Defining a Separate Buffer Area 41
3.1.6 Usage of XMODE · · · · · · · · · 42
3.1. 7 Initial Conditions · · · · · · · · · 43
3.1. 8 Special PSYM Elements · 44
3.2 DOCUMENTATION CONVENTIONS 45
3.3 SYSTEM SUBROUTINES · · · · · 46
3.3.1 ATTOVF · · · · · · 46
3.3.2 BLOCK-SUB · · · · · 46
3.3.3 CONV - CONVEXIT 49
3.3.4 DLINIT · · · · · · · · 52
3.3.5 DLINIT1 · · · · · · · · · 53
3.3.6 ENGLISH INTERFACE · · · · 54
3.3.7 GETBUF - G3 60
3.3.8 GETIB - GETIBX · · · · 61
3.3.9 GETITM 62
3.3.10 GETOPT · · · · · · · · · 64
3.3.11 GETOVF 65
3.3.12 GETUPD 66
3.3.13 GNSEQI · · · · 66
3.3.14 GNTBLI · · · · 67

c: 3.3.15 HGETIB · · · · 68
3.3.16 HSISOS · · · · · · · · · · 69
3.3.17 INITTERM - RESETTERM 70
3.3.18 IROVF · · · · · · 71
3.3.19 ISINIT · · · · · · · · · 72
3.3.20 LINESUB 72
3.3.21 MD415 73
3.3.22 NEWPAGE · · · · · · · · · · · 73
3.3.23 NEXTIR - NEXTOVF · · · · · · · · 74
3.3.24 OPENPFILE · · · · · · · · · · · · · · · 75
3.3.25 PCBFID · · · · · · · · · · · · · 76
3.3.26 PCRLF 76
3.3.27 PINIT · · · · 77
3.3.28 PONOFF · · · · 78
3.3.29 PPUT (l,SPOOLADD)* · · · · · 78
3.3.30 PRIVTST1 - PRIVTST2 - PRIVTST3 · · · · · · · 79
3.3.31 PRNTHDR · · · · · · · · · · · ! 79
3.3.32 PROC User Exits 80
3.3.33 PRTERR · · · · · · · · · · · · · · · 82
3.3.34 RELBLK - RELCHN - RELOVF 84
3.3.35 RETI RETIX RETIXU · · · · · · 85
3.3.36 SETLPTR - SETTERM · · · · 86
3.3.37 SETUP TERM · · · · · · · · · · · · · 87
3.3.38 SLEEP - SLEEPSUB · · · · 88
3.3.39 SORT . · · · · · · 89
3.3.40 TCL-II MD200 MD201 90
3.3.41 TIME - DATE - TIMDATE 93

0 3.3.42 TPREAD TPWRITE 94
3.3.43 TSINIT · · · · · · 96
3.3.44 UPDITM - UPDITMX 96
3.3.45 WHOSUB · · · · · · · · · · · 98

3.3.46
3.3.47
3.3.48
3.3.49
3.3.50

4
4.1
4.1.1
4.1. 2
4.1. 3
4.1.4
4.1. 5
4.1. 6
4.1. 7
4.1. 8
4.1. 9
4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1. 20
4.1. 21
4.1. 22
4.2
4.2.1
4.3
4.3.1
4.3.2
4.3.2.1
4.3.2.2
4.4
4.5
4.6
4.6.1
4.6.2
4.7
4.8
4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5
4.9.6
4.9.7
4.9.8
4.9.9
4.9.10
4.9.11

5
5.1
5.2

WRAPUP PROCESSOR . . • . .
WRTLIN WRITOB WT2
WSINIT
WTBMS
XISOS

99
103

. . 105
106
106

SYSTEM DEBUGGER 107
OPERATION COMMANDS 108
A -- address of element 108
B -- break 108
C -- character display 109
D -- display current commands . . 109
DB -- toggle debugger availablity 109
E -- single-step control 109
END -- back to TCL 109
G -- the go command 110
H -- toggle echo bit . 110
I -- integer display . . 110
K -- kill break-points . III
L -- frame links 111
M -- modal trace III
N -- number of breaks 112
OFF -- back to logon 112
P -- toggle LISTFLG 112
R -- register 112
T -- Trace 112
U -- Untrace 113
X -- heXidecimal format . 113
Y -- data breaks 113
Z -- data unbreak . 113
OPERATION COMMANDS : ARITHMETIC UTILITIES . 114
ARITHMETIC CALCULATING FEATURES 114
DATA SPECIFICATION 115
DIRECT REFERENCE 115
INDIRECT REFERENCE 116
IMPLICIT indirect reference. 116
EXPLICIT indirect reference. 116
FORMAT SPECIFICATION 117
WINDOW SPECIFICATION . 117
OFFSET SPECIFICATION 118
Explicit offsets. . 118
Implicit offsets. 118
DISPLAY MODIFIERS 119
DISPLAY FORM . 119
DISPLAY PROMPTS 120

<CR> -- back to the command processor 120
<LF> -- the next window 120
<control-N> -- the address and the next window. . .. 120
<control-P> -- the address and the previous window. . 120
'<string> -- character data 120

INTEGER INSERTION 121
HEXIDECIMAL STRING INSERTION 121
BIT STRING INSERTION 121
CLEARING WINDOWS 122
ADDRESS DISPLAY 122
DISPLAY TYPE, WINDOW, AND OFFSET MODIFICATION 122

THE PC SYSTEM ASSEMBLER
LOADING THE ASSEMBLY ACCOUNT FLOPPY
ASSEMBLING CODE ON PC SYSTEMS

i~! C)
125

c) CHAPTER 1

Chapter 1

THE ASSEMBLER

THE PICK SYSTEM

USER'S ASSEMBLY MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a ·trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproquced in whole or part, disclosed,
divulged, or otherwise made available to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

ASSEMBLER OVERVIEW Copyright (c) 1985 PICK SYSTEMS
PAGE 1

PICK ASSEMBLY LANGUAGE

f~\ ,
PICK SYSTEMS normally assumes responsibili ty for assuring the \""' ___ '''/
compatible coexistence of the total computer system. This is based on
extensive planning and qualification testing of each component and of
the integrated system. Because user written assembly code can bypass
and disrupt normal software integrity controls, PICK SYSTEMS' cannot
ensure system integrity, compatibility, or performance once the user
adds assembly language programs to the system as supplied by PICK
SYSTEMS.

The PICK Virtual Assembly Language includes a wide range of very
powerful constructs. It has many instructions designed specifically
for data base management. There is an extensive software machine
architecture that relies heavily on massive software conventions,
because of which the virtual machine implementation is very efficient.
This interprocessor dependence also creates a fragility in the system
at the assembler code level. The inadvertant destruction of
conventional interfaces can cause widespread damage to the integrity
of the system software!!!

THIS MACHINE IS NOT WELL SUITED TO USER WRITTEN ASSEMBLY CODE!

User written assembly code is NOT SUPPORTED by PICK SYSTEMS. Time
spent locating user problems that are found to be caused by user
assembly code will be billed to the user!

CHAPTER 1 ASSEMBLER OVERVIEW Copyright (c) 1985 PICK SYSTEMS
PAGE 2

1.1

1.2

PICK ASSEMBLER

The PICK Virtual Assembler is table-driven. It will translate an
arbitrary source language into either another source language or into
object code. The source item, or "mode" is an item in any file
defined on the database. This mode can then be used to generate a
formatted listing (using the MLIST verb) or can be loaded for
execution (using the MLOAD verb). The file this item is in is
dependent on the specific implementation.

SOURCE LANGUAGE

The source language accepted by the PICK Virtual assembler is a
sequence of symbolic statements, one statement per source-item line.
Each statement consists of a label field, an operation (or op-code)
field, an operand field, and a comment field.

1.2.1 LABEL FIELD

c

The label field begins in column one of the source statement, and
is terminated by the first blank or comma; there is no limit on
its length. If the character "*" appears in the first column,
the entire statement is treated as a comment, and is ignored by
the assembler. The reserved characters *+-'= are the only ones
that may not appear in the label field. An entry in this field
is optional for all except a few opcodes. A label may not begin
with a numeric character.

1.2.2 OPERATOR·FIELD

The operator is the first non-blank field after either the
initial blank or string of blanks, or after the blank or string
of blanks after the label field. The operator string is called
an op-code. Op-codes are pre-defined in the permanent op-code
symbol file OSYM and consist of one or more alpha characters.
Op-codes are usually mnemonics for the intended operation, either
an assembly directive, an operation to be done by the target
machine, or a macro which will expand into several primitive
operators. Additionally, users may define new mnemonics or
"macros" which expand into several machine instructions. This
may be done by creating new entries in the OSYM file.

1.2.3 OPERAND FIELD

Operand field entries are optional, and vary in number according
to the needs of the associated op-code. Entries are separated by
commas and cannot contain embedded blanks (except for character
string literals enclosed by single quotes). The operand field is
terminated by the first blank encountered. The characters +-'*
have special meaning in this field.

CHAPTER 1 ASSEMBLER OVERVIEW Copyright (c) 1985 PICK SYSTEMS
PAGE 3

1.2.3.1 OPERAND FIELD EXPRESSIONS

Entries in the operand field may be a symbol, or a constant.
A symbol is a string of characters that is either defined by
a single label-field entry in the mode, or is an entry in (~"\
the pre-defined permanent symbol file (PSYM). A constant ~!
may be one of the following forms:

* Defines current value of the location counter.

N (n decimal) - A decimal constant.

X'h' (h hexadecimal) - A hexadecimal constant.

C'text'- Character string; any characters, including
blanks and commas, may appear as part of
"text"; a sequence of two single quotes (")
is used to represent one single quote in the
text.

Arithmetic operators (+,-) may be used to combine two or
more constants.

1.2.4 COMMENT FIELD

Any commentary information preceded by a blank may follow the
operand field entries.

CHAPTER 1 ASSEMBLER OVERVIEW
PAGE 4

Copyright (c) 1985 PICK SYSTEMS (~
~

1.3 ASSEMBLING SOURCE CODE 'AS' VERB

FORMAT:

AS filename itemname {(options}

The 'AS' verb will assemble the item in the file specified.

OPTION

Q

L

P

MEANING

specifies that error lines are not to be listed
at the end of the assembly.
generate a listing (equivalent to the MLIST verb)
during assembly.
routes listing to line-printer.

As the assembler processes, it will output an asterisk (*) as every
ten source statements are assembled. At the end of pass-1 a new line
is started and an asterisk is printed for each ten statements
reassembled.

1.4 LISTING ASSEMBLY PROGRAMS 'MLIST' VERB

()

FORMAT:

MLIST filename itemname {(options}

Options are separated by commas:

OPTION MEANING

P routes output to the line-printer.

M prints macro-expansions of source statements.

E prints error lines only; also suppresses the pagination
and enters EDIT at the end of the listing.

S suppress listing of the object code.

N-m restricts listing to line numbers n through m inclusive

The listing is output with a statement number, location counter,
object code and source code, with the label, op-code, operand and
comment fields aligned. A page heading is output at the top of each
new page.

Errors, if any, appear in the location
macro expans~ons appear as source code
prefixed by a plus sign (+).

counter/object code
with the operation

area;
codes

CHAPTER 1 ASSEMBLER OVERVIEW Copyright (c) 1985 PICK SYSTEMS
PAGE 5

1.5 LOADING ASSEMBLED MODES 'MLOAD' VERB

FORMAT:

MLOAD filename itemname {(options}

The assembled mode is loaded into the frame specified by the FRAME op
code statement.
If the load is successful, the message;

[216] MODE 'item-id' LOADED; FRAME = nnn SIZE sss CKSUM = cccc

is returned, where

nnn is the 3-digit number of the frame into which the mode
has been loaded. The number nnn is expressed in decimal.

sss is the number of bytes of object code loaded into the
frame, expressed in hexadecimal (base 16) notation ..

cccc is the byte check-sum for the object code in the loaded mode.

The mode will not load correctly if its size exceeds 512 bytes, or if
a FRAME statement is not the first statement assembled in the mode.
In either case, a message will be returned indicating the error.

CHAPTER 1 ASSEMBLER OVERVIEW
PAGE 6

Copyright (c) 1985 PICK SYSTEMS (""
~'

1.6 VERIFYING A LOADED PROGRAM MODE 'MVERIFY' VERB

o FORMAT:

MVERIFY filename itemname {(options}

After assembling and loading a program, the verb MVERIFY is used to
check the assembled program against the loaded program.

OPTION MEANING

A output columnar listing of all mismatches.

E output errors only.

P direct output to the printer.

EXAMPLES:

>MVERIFY SM EXAMPLI [CR]

[217] MODE 'EXAMPLl' VERIFIED FRAME

>MVERIFY SM EXAMPL2 [CR]

014 OC 18

34 SIZE 477

[218] MODE 'EXAMPL2' HAS 1 BYTES OBJECT CODE MIS-MATCHES

The first example verifies, but the second does not. In Example #2,
the system informs the user that one byte at byte address 14 should
have a value of OC, not 18.

An "A" option will cause a columnar listing of all bytes which
mismatch. Each value in the source file which mismatches will be
listed, fOllowed by the value in the executable frame.

EXAMPLE:

>MVERIFY SM EXAMPL3 (A) [CR]

LOC XX YY LOC XX YY LOC XX YY LOC XX YY
014 OC 18 015 13 17 016 OE OD 017 3A 3C

[218] MODE 'EXAMPL3' HAS 78 BYTES OBJECT CODE MIS-MATCHES

C: CHAPTER 1 ASSEMBLER OVERVIEW Copyright (c) 1985 PICK SYSTEMS
PAGE 7

1.7 STRIPPING THE SOURCE CODE 'STRIP-SOURCE' VERB

FORMAT:

STRIP-SOURCE filename item-list

The STRIP-SOURCE verb is used to remove the source code
Language programs. This frees large amounts of disc
the available space pool. Modes with source stripped
still be verified against the ABS.

from Assembly
space back to
out out can

After the verb has been invoked, the user is prompted with:

DESTINATION FILE:

The file-name where the stripped object code is to be stored should
then be entered.

EXAMPLE:

>STRIP-SOURCE PROG * [CR]
DESTINATION FILE-SPROG [CR]

Here the file PROG containing source programs is stripped and copied
to the file SPROG.

The first six lines of the source item will be copied without source
code stripping. Standard Pick Systems convention for source modes
has the "FRAME" statement in line 1, and other descriptive
information in lines 2 through 6; this information is maintained
through the STRIP-SOURCE process.

PAGE 8
Copyright (c) 1985 PICK SYSTEMS c=J CHAPTER 1 ASSEMBLER OVERVIEW

C~HAPTER 2

Chapter 2

MACHINE INSTRUCTIONS

THE PICK SYSTEM

USER'S ASSEMBLY MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made available to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 9

2.1 PICK ASSEMBLY LANGUAGE

This section lists PICK machine instructions and describes their
execution. For each assembler mnemonic, a list of the different
permutations of the instruction is given.

Some assembly instructions are actually macros. which expand to more
than one opcode, and many of the instructions use elements not
explicitly defined in the instruction. In particular, the accumulator
and R15 are used by many of the macros.

In defining the op-codes the following set of symbolic operands are
used:

SYMBOL MEANING

b BIT. A bit addressed re1ativly via a base register and a bit
displacement.

c CHARACTER. A byte addressed relatively via a base address
register and displacement. (Also known as a CHR.)

d DOUBLE-TALLY. A 4-byte field addressed relatively via a base
register and displacement. (Also known as a DTLY.)

f TRIPLE-TALLY. A 6-byte field addressed relatively via a base
register and displacement. (Also known as a FTLY.)

h HALF-TALLY. A 1-byte field addressed relatively via a base
register and displacement. (Also known as a HTLY.)

1 LABEL. A label definition local to the current program frame.

m MODE-ID. A 16-bit modal identificaton, comprised of a 4-bit
entry point and a 12-bit frame number.

n LITERAL. A literal or
assembled literal or value
which the "n" is used.

immediate value.
is dependent on

The size of the
the instruction in

r ADDRESS-REGISTER. One of the sixteen Reality address registers
(A/R' s).

s STORAGE REGISTER. A 6-byte field addressed relatively via a base
register and a 16-bit word displacement.

t TALLY. A 2-byte field relatively addressed via abase register
and displacement. (Also known as a TLY.)

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 10

2.2 ARITHMETIC OPERATIONS

The following operations perform arithmetic on binary integers.
Negative values are represented in two's complement form. One-byte
and two-byte operands are sign extended to form a double word value
before the operation is performed. The accumulator is a four-byte
field (~O) for 1, 2 and 4-byte operands; the accumulator is a six
byte field (FPO) for 6-byte operands. Storage operands may not cross
frame boundaries.

2.2.1 Load (LOAD)

LOAD d
LOAD m

LOAD f
LOAD n

LOAD h
LOAD t

The contents of the operand are loaded into the accumulator, with the
high-order bit of the operand propagated left to fill the accumalator
if necessary. One, two, and four byte operands are loaded into DO;
6-byte operands are loaded into FPO.

2.2.2 Load Extended (LOADX)

LOADX d LOADX h LOADX n
LOADX t

The high-order bit (sign bit) of the operand is propagated left until
there are 48 bits, which are loaded into the 6-byte accumulator (FPO).

(-_~.2. 3 Store (STORE)

STORE d
STORE s

STORE f
STORE t

STORE h

The contents of the accumulator (HO, TO, DO or FPO) replace the
contents of the operand. The accumulator is not changed.

2.2.4 Zero (ZERO)

ZERO c
ZERO h

ZERO d
ZERO t

ZERO f

The contents of the operand are replaced by zero.

2.2.5 One (ONE)

ONE d
ONE t

ONE f ONE h

The contents of the operand are replaced by a one.

C~HAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 11

2.2.6 Add to Accumulator (ADD)

ADDd
ADDn

ADD f
ADDt

ADDh

The contents of the operand are added to the 4- or 6-byte accumulator.
The result is placed into the accumulator.

2.2.7 Add Extended (ADDX)

ADDX d
ADDX t

ADDX h ADDX n

Same as for ADD, except that a 6-byte operand is generated by
extending the sign bit of the original operand, and the result is in
the 6-byte accumulator (FPO).

2.2.8 Increment Storage by One (INC)

INC d
INC t

INC f INC h

The contents of the operand are incremented by one.

2.2.9 Add to Storage (INC)

INC d,d
INC f,n
INC t,n

INC d,n
INC h,h
INC t,t

INC f,f
INC h,n

The contents of the first operand are incremented by the contents of
the second operand.

2.2.10 Subtract from Accumulator (SUB)

SUB d
SUB n

SUB f
SUB t

SUB h

The contents of the operand are subtracted from the accumulator. The
difference is placed into the accumulator.

2.2.11 Subtract Extended (SUBX)

SUBX d
SUBX t

SUBX h SUBX n

Same as for SUB, except that a 6-byte operand is generated by
extending the sign bit of the original operand, and the result is in
the 6-byte accumulator (FPO).

;if-""\

PAGE 12
Copyright (c) 1985 PICK SYSTEMS Vi CHAPTER 2 MACHINE INSTRUCTIONS

2.2.12 Decrement Storage by One (DEC)

DEC d
DEC t

DEC f DEC h

The contents of the operand are decremented by one.

2.2.13 Subtract from Storage (DEC)

DEC d,d
DEC f,n
DEC t,n

DEC d,n
DEC h,h
DEC t,t

DEC f,f
DEC h,n

The contents of the first operand are decremented by the contents of
the second operand.

2.2.14 Multiply (MUL)

MUL d
MUL n

MUL f
MUL t

MUL h

The contents of the accumulator are multiplied by the operand. An
8-byte result is stored in the accumulator and accumulator extension
(DO and Dl). The sign of the product is determined by the rules of
algebra, that is, if the accumulator and the operand had the same sign
before the operation, the result will be positive. Otherwise, the
result will be negative.

Multiply Extended (MULX)

MULX d
MULXt

MULX h MULX n

Same as for MUL, except that a 6-byte operand is generated by
extending the sign bit of the original operand.

2.2.16 Divide (DIV)

DIV d
DIV t

DIV h DIV n

The sign bit of the accumulator (DO) is extended into the accumulator
extension (Dl) to form a 64 bit dividend. The accumulator is then
divided by the operand, forming a 32 bit quotient and a 32 bit
remainder. The quotient replaces the contents of the accumulator and
the remainder replaces the contents of the accumulator extension. The
sign of the quotient is determined by the rules of algebra. The sign
of the remainder is the sign of the dividend. The contents of the
operand are not changed.

Note that the DIV instruction with a "f"-type operand is an extended
divide; see next.

Q""\
iHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS

PAGE 13

2.2.17 Divide Extended (DIVX)

DIVX d
DIVX t

DIVX f DIVX h

Same as for DIV, except that a 6-byte operand is generated by
extending the sign bit of the original operand; the result is in the
6-byte accumulator (FPO), and the remainder is in FPY.

2.2.18 Negate (NEG)

NEG d
NEG t

NEG f NEG h

The sign of the operand is changed (two's complement form.)

2.2.19 Move (MOV)

MOV d,d
MOV h,h
MOV n,f
MOV t,t

MOV e,e
MOV m,t
MOV n,h

MOV f,f
MOV n,d
MOV n,t

These instructions move a 1- 2- 4- or 6-byte number from one location
in storage to another.

CHAPTER 2 MACHINE INSTRUCTIONS
PAGE 14

rf(~''''

Copyright (c) 1985 PICK SYSTEMS ~~)

2.3 CHARACTER INSTRUCTIONS

C· \ .3.1

.. /

Move Character to Character (MCC)
MCC c,c MCC c,r
MCC n,c MCC n,r
MCC r,h MCC r,r

MCC h,r
MOV r,c

The byte addressed by the first operand is moved to the byte addressed
by the second operand.

2.3.2 Move Character to Incrementing Character (MCI)
MCI c,r MCI n,r MCI r,r
MCI s,r MCI s,s

The second operand is incremented to point to the next byte in
storage, and the byte addressed by the first operand is moved to the
byte addressed by the second operand.

2.3.3 Move Character Incrementing and Count (MCI)
MCI n,r,d MCI n,r,h MCI n,r,n
MCI n,r,t

The second operand is incremented to point to the next byte in
storage. The byte addressed by the first operand is moved to the byte
pointer to by the second operand. This process continues until the
number of bytes specified by the third operand has been moved. At
least one byte is always used, and if the third operand is initially
zero, 65,536 bytes will be moved. This instruction uses the
accumulator.

2.3.4 Move Incrementing Character to Character (MIC)
MIC r,c MIC r,h MIC r,r

The first operand is incremented to point to the next byte in storage,
and the byte then pointed to by the first operand is moved to the byte
addressed by the second operand.

2.3.5 Move Incrementing Character to Incrementing Character (MIl)
MIl r,r

Both operands are incremented to point to the next byte in storage,
then the byte pointed to by the first operand is moved to the byte
pointed to by the second operand.

MIl r,r,d MIl r,r,h MIl r,r,n
MIl r,r,t

Identical to the operation above, with additional functionality. This
process continues until the number of bytes specified by the third
operand has been moved. If the third operand is initially zero, no
data is moved. This instruction uses the accumulator.

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 15

2.4 LOGICAL INSTRUCTIONS

2.4.1 Logical Or (OR)

OR c,n
OR r,r

OR h,n OR r,n

The byte in storage referenced by the first operand is logically or'ed
with the mask byte referenced by the second operand. The byte
referenced by the second operand is unchanged.

2.4.2 Logical Exclusive Or (XOR)

XOR c,n XOR r,n XOR r,r

The byte in storage referenced by the first operand is logically
exc1usive-or ' ed with the mask byte referenced by the second operand.
The byte referenced by the second operand is unchanged.

2.4.3 Logical And (AND)

AND c,n AND r,n AND r,r

The byte in storage referenced by the first operand is
and'ed with the mask byte referenced by the second operand.
referenced by the second operand is unchanged.

logically
The byte

2.4.4 Shift (SHIFT)

SHIFT r,r

The byte pointed to by the first operand
zero (0) bit is shifted in on the left.
byte pointed to by the second operand,
byte if only one operand is specified.

CHAPTER 2 MACHINE INSTRUCTIONS
PAGE 16

is shifted right one bit. A
The shifted byte replaces the
or it replaces the original

Copyright (c) 1985 PICK SYSTEMS

2.5 BRANCHING INSTRUCTIONS

Branch Unconditionally (B)

B 1

A branch is taken to the label. The label must reside in the same
program in the same frame as the branch instruction.

2.5.2 Enter External Mode (ENT)

ENT m

A branch is taken to the entry point specified by the mode-id. The
high order 4 bits of the mode-id (m) are the entry point number
(0-15). The remaining 12 bits of the mode-id are the FID of the frame
to be branched to.

ENTI ENT* t

The ENTI* (Enter Indirect) instruction branches to the entry point
defined by the low order 2 byte of the accumulator (TO).

ENT* branches to the entry point specified by the operand. The
operand is loaded into TO, and an ENTI instruction is performed.

Subroutine Call (BSL)

BSL 1 BSL m

The BSL (Branch and Stack Location) instruction is used to program
subroutine calls in assembly language.

The stack pointer (element RSCWA in the process' PCB) is incremented
by 4, and the DEBUGGER is entered with a "RTN STK FULL" abort if the
stack overflows. Otherwise, the address of the instruction following
the BSL instruction, is moved to the 4-byte field in the process' PCB
pointed to by the return stack pointer. Next, a branch is taken to
the entry point (BSL m), or program label (BSL 1).

BSLI BSL* t

BSLI executes a branch and stack location which branches to the entry
point defined by the mode-id in the low order 2 bytes of -the
accumulator (TO).

BSL* executes a branch to the entry point specified by the operand.
The operand is loaded into TO, and an BSLI instruction is performed.

CCHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 17

2.5.4 Return from Subroutine (RTN)

RTN

A branch is made to the address stored in the last entry in the return
stack, and the stack is popped one entry. The stack pointer (RSCWA)
is decremented by 4, and if it underflows the stack, the DEBUGGER is
entered with a "RTN STK EMPTY" abort.

2.5.5 Branch character instructions

All the branch character instructions perform a LOGICAL comparison on
the two operands, that is, the bytes are treated as unsigned 8-bit
fields rather than signed two's complement fields. Therefore, the
lowest character in the range is X'OO' and the highest is X'FF' (the
segment mark).

2.5.6 Branch Character Equal (BCE)

BCE c,c,l
BCE r,c,l

BCE c,r,l
BCE r,n,l

BCE n,r,l
BCE r,r,l

The character (byte in storage) addressed by the first operand is
compared with the character addressed by the second operand. If the
two characters are equal, a branch is taken to the label specified by
the third operand. The label must be inside the same frame as the BCE
instruction.

2.5.7 Branch Character Unequal (BCU)

2.5.8

BCU c,c,l
BCU r,c,l

Same as BCE, except
unequal.

Branch Character

BeL c,c,l
BCL r,c,l

that the

Low (BCL)

BCU c,r,l
BCU r,n,l

branch is

BCL c,r,l
BCL r,n,l

taken if

BCU n,r,l
BCU r,r,l

the two characters

BCL n,r,l
BCL r,r,l

are

The byte in storage referenced by the first operand is compared with
the byte referenced by the second operand. Both bytes are treated as
8-bit unsigned numbers. If the byte addressed by the first operand is
numerically less than the byte addressed by the second operand, a
branch to the label ~pecified by the third operand is taken. The
label must be inside tne same frame as the BCL instruction.

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 18

2.5.9 Branch Character Less than or Equal (BCLE)

BCLE c,c,l
BCLE r,c,l

BCLE c,r,l
BCLE r,n,l

BCLE n,r,l
BCLE r,r,l

Same as BCL, except that the branch is taken if the first operand is
numerically less than or equal to the second operand.

2.5.10 Branch Character High (BCH)

BCH c,c,l
BCH r,c,l

BCH c,r,l
BCH r,n,l

BCH n,r,l
BCH r,r,l

Same as BCL, except that the branch is taken if the first operand is
numerically greater than the second operand.

2.5.11 Branch Character High or Equal (BCHE)

BCHE c,c,l
BCHE r,c,l

BCHE c,r,l
BCHE r,n,1

BCHE n,r,l
BCHE r,r,l

Same as BCH, except that the branch is taken if the first operand is
numerically higher than or equal to the second operand.

2.5.12 Branch Character Numeric (BCN)

BCN r,l

If the character pointed to by the register is numeric (i.e, between
"0" and "9" inclusive,) then a branch is taken to the label, which
must lie inside the same frame as the BCN instruction.

2.5.13 Branch Character Not Numeric (BCNN)

BCNN r,l

If the character pointed to by the register is not numeric, (i.e, not
one of the characters 0, 1, 2, ... 9,) Then a branch is taken to the
label, which must lie inside the same frame as the BCNN instruction.

2.5.14 Branch Character Hexadecimal (BCX)

BCX r,l

If the character pointed to by the register is hexadecimal, (i.e, in
the range "0" - "9" inclusive or "A" - "F" inclusive,) then a branch
is taken to the label, which must lie inside the same frame as the BCX
instruction.

MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 19

2.5.15 Branch Character Not Hexadecimal (BCNX)
BCNX r,l

If the character pointed to by the register is not hexadecimal, (i.e,
outside the range "0" - "9" inclusive or "A" - "F" inclusive,) then a (''''''
branch is taken to the label, which must lie inside the same frame as 0 1

the BCNX instruction.

2.5.16 Branch Character Alphabetic (BCA)
BCA r,l

If the character pointed to by the register is alphabetic, (i.e, in
the range of capital letters "A" - "z" inclusive, or small letters "a"
- "z" inclusive,) then a branch is taken to the label, which must lie
inside the same frame as the BCA instruction.

2.5.17 Branch Character Not Alphabetic (BCNA)
BCNA r,l

If the character pointed to by the register is not alphabetic" (i.e,
outside the range "A" - "z" inclusive or "a" - "z" inclusive,) then a
branch is taken to the label, which must lie inside the same frame as
the BCNA instruction.

2.5.18 Branch if Zero (BZ)

BZ c,l
BZ h,l

BZ d,l
BZ s,l

BZ f,l
BZ t,l

The branch is taken if the operand has a value of zero (0).

2.5.19 Branch if Not Zero (BNZ)

BNZ c,l
BNZ h,l

BNZ d,l
BNZ s,l

BNZ f,l
BNZ t,l

The branch is taken if the operand has any value other than zero (0).

2.5.20 Branch if Less than Zero (BLZ)

BLZ c,l
BLZ h,l

BLZ d,l
BLZ t,l

BLZ f,l

The branch is taken if the operand has a negative value.

2.5.21 Branch if Less than or Equal Zero (BLEZ)

BLEZ c,l
BLEZ h,l

BLEZ d,l
BLEZ t,l

BLEZ f,l

The branch is taken if the qperand has a negative or zero (0) value.

PAGE 20
Copyright (c) 1985 PICK SYSTEMS ~ CHAPTER 2 MACHINE INSTRUCTIONS

2.5.22 Branch if Equal (BE)

()
BE d,d,l BE d,n,l BE f,f,l
BE f,n,l BE h,h,l BE h,n,l
BE n,d,l BE n,f,l BE n,h,l
BE n,t,l BE t,n,l BE t,t,l

BE m,t,l BE s,s,l BE t,m,l

The branch to the label is taken if the two operands contain the same
number. The contents of both operands are treated as two's complement
integers. If the operands are of the same size, and are identical,
then the branch is taken. Otherwise, the sign bit (highest-order bit)
of the smaller operand is extended to the left until the operands are
the same size, and if the two equal size numbers are identical, then
the branch is taken.

2.5.23 Branch if Unequal (BU)

BU d,d,l BU d,n,l BU f,f,l
BU f,n,l BU h,h,l BU h,n,l
BU n,d,l BU n,f,l BU n,h,l
BU n,t,l BU t,n,l BU t,t,l

BU m,t,l BU t,n,l BU t,t,l

The branch to the label is taken if the two operands contain different
numbers. Smaller operands will be sign extended, as with BE.

(~~.5.24 Branch if Less than (BL)

BL d,d,l
BL f,n,l
BL n,d,l
BL n,t,l

BL d,n,l
BL h,h,l
BL n,f,l
BL t,n,l

BL f,f,l
BL h,n,l
BL n,h,l
BL t,t,l

The contents of both operands are treated as two's
integers. The branch is taken if the number contained in
operand is less than the number in the second operand.

2.5.25 Branch if Less than or Equal (BLE)

BLE d,d,l BLE d,n,l BLE f,f;l
BLE f,n,l BLE h,h,l BLE h,n,l
BLE n,d,l BLE n,f,l BLE n,h,l
BLE n,t,l BLE t,n,l BLE t,t,l

complement
the first

The contents of both operands are treated as two's complement
integers. Smaller operands will be sign extended to match the size of
larger operands. If the first number is less than or equal to the
second number, a branch is taken to the label.

QHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 21

2.5.26 Branch if High (BH)

BH d,d,l BH d,n,l BH f,f,l
BH f,n,l BH h,h,l BH h,n,l
BH n,d,l BH n,f,l BH n,h,l
BH n,t,l BH t,n,l BH t,t,l

A branch is taken to the label if the number contained in the first
operand is higher than the number contained in the second operand.
Both numbers are treated as two's complement integers.

2.5.27 Branch if High or Equal (BHE)

BHE d,d,l BHE d,n,l BHE f,f,l
BHE f,n,l BHE h,h,l BHE h,n,l
BHE n,d,l BHE n,f,l BHE n,h,l
BHE n,t,l BHE t,n,l BHE t,t,l

A branch to the label is taken if the number in the first operand is
higher than or equal to the number in the second operand. Both
numbers are treated as two's complement integers.

2.5.28 Branch Decrementing Not Zero (BDNZ)

BDNZ d,l
BDNZ f,l
BDNZ h,l
BDNZ t,l

BDNZ d,d,l
BDNZ f,f,l
BDNZ h,h,l
BDNZ t,t,l

BDNZ d,n,l
BDNZ f,n,l
BDNZ h,n,l
BDNZ t,n,l

The first operand is decremented by one, or by the second operand if
there are three operands. If the first operand is non-zero, then a
branch is taken to the label.

2.5.29 Branch Decrementing Less than Zero (BDLZ)

BDLZ d,l
BDLZ f,l
BDLZ h,l
BDLZ t,l

BDLZ d,d,l
BDLZ f,f,l
BDLZ h,h,l
BDLZ t,t,l

BDLZ d,n,l
BDLZ f,n,l
BDLZ h,n,l
BDLZ t,n,l

The first operand is decremented by one, or by the second operand if
there are three operands. If the first operand is decremented below
zero (0), then a branch is taken to the label.

2.5.30 Branch Decrementing Less than or Equal Zero (BDLEZ)

BDLEZ d,l BDLEZ d,d,l BDLEZ d,n,l
BDLEZ f,l BDLEZ f,f,l BDLEZ f,n,l
BDLEZ h,l BDLEZ h,h,l BDLEZ h,n,l
BDLEZ t,l BDLEZ t,t,l BDLEZ t,n,l

The first operand is decremented by one, or by the second operand if
there are three operands. If the first operand is decremented to or
below zero (0), then a branch is taken to the label.

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (C) 1985 PICK SYSTEMS
PAGE 22

o

2.6 STRING-HANDLING INSTRUCTIONS STRING-HANDLING INSTRUCTIONS

c
A string is a series of logically continuous characters in storage,
which may extend over linked frame boundaries. String instructions
can scan or move strings of variable length. Crossing of frame
boundaries and attaching and detaching of registers used ~n string
instructions is handled automatically and is transparent to the user.

Note that in the event that any of these instructions reaches an end
of linked frame condition, there is a special tally called XMODE that
may be used to intercept this exception condition and perform special
processing. Usage of XMODE is discussed in the section SYSTEM
SOFTWARE. If XMODE is zero when an end or beginning of linked frame
set is reached, a trap to the DEBUGGER is executed resulting in a
FORWARD LINK ZERO abort message.

Some of the string instructions contain an
a "variant." The variant byte controls
against preset delimiters. The format of
instructions except SICD) is as follows:

extra literal byte known as
the byte-by-byte matching

the variant byte (for all

BIT

o (Most significant)

1
2
3
4
5
6
7 (Least significant)

MEANING

1 = Stop on Match
o = Stop on Mismatch
Compare with X'FF' (SM)
Compare with X'FE' (AM)
Compare with X'FD' (VM)
Compare with X'FC' (SVM)
Compare with character in SCO
Compare with character in SCl
Compare with character in SC2

The most significant bit determines whether the instruction stops on a
"match" condition (bit is set to "1"), or on a "mismatch" condition
(bit is "0"). Only those characters whose corresponding bits (see
table above) are set are checked to determine a match or mismatch.
The first four characters are the system delimiters; the last three
characters are variable and reside in the user's PCB.

Below are examples of variant bytes and their respective match
conditions:

VARIANT

X'AO'
X'PO'
X'Ol'

X'A4'

CONDITION

Stop on attribute mark (X'FE')
Stop on SM, AM or VM
Stop on non-blank
(If there is a blank in SC2)
Stop on AM or contents of SCO

~HAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 23

2.6.1 Scan to Delimiter

SID r,n

This instruction is used to find the end of a string, or to scan a
string to find the first or last occurrence of a character in the
string. The register (r) is incremented to point to the next
character (byte) in storage, and the byte pointed to is checked for a
match using the variant byte (n). The scan continues until a match or
mismatch condition, as defined by the variant, is reached. Note that
the this instruction will alter the position of the register by at
least one location.

2.6.2 Scan to Delimiter and Count

SIne r,n

This instruction scans a string from a register to a delimiter, and
keep a count of the number of bytes scanned. The register is
incremented to point to the next byte in storage, the lQwer-order 2
bytes of the accumulator (TO) are decremented one, and the byte
addressed by the register is checked for a match or mismatch condition
as defined by the literal variant byte. The process continues until a
match condition is met, at which time the number of bytes scanned is
the difference between the value of TO before and after the
instruction. Note that this instruction will alter the position of
the register by at least one location.

2.6.3 Scan to Count

SIT r

This instruction scans the register forward the number of bytes
specified by the contents of TO. The register is incremented and TO
is decremented until TO reaches o.

This instruction is logically equivalent to the instruction "INC r,TO"
; however, the SIT instruction can be used to force usage of
exception mode processing via XMODE (see SYSTEM SOFTWARE for XMODE
usage) if it reaches the end of a linked frame set. If TO is zero at
the start of the instruction, it becomes a NO-OP and the register is
not altered.

2.6.4 Scan to Count or Delimiter

SITD r,n

This instruction combines the functions of the SIT and SID, in that
the string is scanned until EITHER a match condition, as determined by
the variant byte, is reached, OR the count in TO reaches zero. If the
instruction terminates due to the match condtion being met, the
difference in the ending and original values of TO gives the number of
bytes scanned. If TO is zero at the start of the instruction, it
becomes a NO-OP and the register is not altered.

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 24

2.6.5

(~:

2.6.6

Move String to Delimiter

MIlD r,r,n

This instruction is generally used to move a string pointed to by a
register up to and including the delimiter marking the other end of
the string. Both registers are incremented by one, and the byte
pointed to by the first register is moved to the location addressed by
the second register. The byte moved is then checked for a match,
using the variant byte. The process of incrementing, moving and
checking continues until a match condition occurs. Note that this
instruction will alter the position of the registers by at least one
location.

Move string to Delimiter and Count

MIIDC r,r,n

This instruction moves·a string from one register to the other up to a
delimiter, and keeps a count of the number of bytes scanned. Both
registers are incremented by one, and the byte addressed by the first
is moved to the location pointed to by the second; TO is decremented
by one. The byte moved is the checked for a match, using the variant
byte. This process is repeated until a match occurs. The number of
bytes moved is the difference between the original value of TO and its
value at the termination of the instruction. Note that this
instruction will alter the position of the registers by at least one
location.

Move String to Count

MIlT r,r

This instruction is used to move a string of fixed length. TO
contains a byte count (up to 65,535) defining the number of bytes to
be moved. If TO is zero when the instruction is executed, no
operation is performed. Otherwise, the registers are incremented by
one, the byte addressed by the first register is moved to the byte
addressed by the second register, and TO is decremented by one. This
process is repeated until TO reaches zero.

2.6.8 Move String to Register

MIIR: r,r

This instruction is used to move a string between the first register
and R15 to the location addressed by by the second register. The
first register is checked against R15, and if they are equal, the
instruction ends. Otherwise, the registers are both incremented to
point to the next byte in storage, and the byte pointed to by the
first register is moved to the byte pointed to by the second register.
The first register is then checked against R15, and the cycle of
compare, increment, and move is repeated until the first register and

(~ R15 are equal. Note that if R15 is not forward of and in the same
; string as the first register, this instruction will not terminate.

/CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 25

2.6.9 Move String to Count or Delimiter

MIITD r,r,n

This instruction combines the functions of the MIlD and MIlT
instructions. Both registers are incremented and a byte is moved from
the first to the second register. The lower 2 bytes of the
accumulator (TO) are decremented by one. If EITHER the byte moved
matches a delimiter, as defined by the variant byte, OR if TO is
decremented to 0, the instruction terminates. If TO 'is zero at the
start of the instruction, it becomes a No-OP and the register is not
altered.

r~",

PAGE 26
Copyright (c) 1985 PICK SYSTEMS ""j CHAPTER 2 MACHINE INSTRUCTIONS

2.6.10 Scan, Counting Delimiters (SICD)

SICD r,n

C' This instruction can scan a variable number of delimiters.

c

The function of the instruction is to position the register at a
specified point within a data structure containing several levels of
delimiters in minimial number of instructions. To accomplish this,
the register pointing to the scanned position is adjusted dependent
upon the termination mode of the instruction, i.e. The register is
decremented if the instruction terminates in the abnormal mode.

The low order 16 bits of the accumulator (TO) contain the delimiter
count. The referenced register points to the byte preceeding where
the scan is to be started. The variant byte specifies the scan mode
and the termination criteria. The scan will unconditionally stop on a
X'FF' character.

Variant byte functions:

BIT MEANING

NOTE:

° Bit set if count is to be decremented before
instruction is started. This form is for ordinal
positioning. I.e. in BASIC the first attribute within
a dynamic array (e.g. EXTRACT(ITEM,l,O,O) is logically
the beginning of the string.

1

2

3

4

5

6

7

Bit is zero if scan is to be terminated when a
character is found which is greater than the delimiter.
This format is used when scanning for system level
delimiters. Logical character compares are used, i.e.
X'FE' is > X'20'. If bit is set, scan to be terminated
only when a character is found which is greater than
the character contained in SC2. Note: if the
delimiter character is also SC2 the state of this bit
is not significant.

Scan delimiter is X'FE'

Scan delimiter is X'FD' .

Scan delimiter is X'FC' .

Scan delimiter is contained in SCO.

Scan delimiter is contained in SCI.

Scan delimiter is contained in SC2. See bit 1 above.

If more than one scan delimiter is specified, the delimiter
associated with the highest numbered bit will be used.

CiCHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 27

Upon termination of the instruction:

Normal: the count in TO will be zero designating that the specified
number of delimiters have been counted. The register is positioned on
the delimiter. If the initial count is zero (or one with bit 0 set) ('~'1
the instruction will return immediately. ~;

Abnormal: the count in TO is decremented for each delimiter found.
The count remaining in TO will be the number of delimiters which must
be inserted to create the logical data position. The register
pointing at the data position is decremented by 1 byte, thus preparing
for any subsquent string positioning commands. It should be noted
that this convention allows multiple positioning commands to be
executed without testing to determine if a data element is null, that
is assuming that the element delimiters have a monotonic relationship.

Examples:

The following structure is used for discussion ...

EO~Ell]E12~E2-E3l]E32l\E322]E4 - - - - ~

IRa\Rb \ Ire rd

Case 1

LOAD
SICD

Rc

Scan to attribute 3 - ENGLISH interface
R15 is positioned at Ra

3
R15,X'20'

AMC COUNT
SCAN TO AM DELIMITER

At completion R15 will be positioned to Rd, and TO 0

CASE 2

LOAD
SICD

Scan to attribute 6 BASIC interface
R15 is positioned at Rb

6
R15,X'AO'

AMC COUNT
SCAN TO AM DELIMITER

At completion R15 will be positioned to Re, and TO 2

CASE 3 - Scan to attribute 3 / value 2 / subvalue 1
ENGLISH interface

LOAD
SICD
LOAD
SICD
LOAD
SICD

3
R15,X'20'
2
R15,X'90'
1
R15,X'88'

AMC COUNT
SCAN TO AM DELIMITER
VALUE POSITION
SCAN TO VM DELIMITER
SUBVALUE POSITION
SCAN TO SVM DELIMITER

At completion R15 will be positioned to Rd, and TO = 0

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 28

(~;

CASE 4 Scan to 10'th occurance of character in SCI;
stop on any character which is
greater than the character in SC2.
(No data shown for this example.)

LOAD 10
SICD R15,X'42'

2.6.11 Branch on comparing strings; BSTE and BSTU

BSTE r,r,n,l BSTU r,r,n,l

This instruction compares two strings up to a delimiter, and execute
the branch if the strings are equal. The function of the variant byte
is to specify a lower boundary for the delimiter that is considered to
terminate the strings, that is, any character that is found to be
logically greater than or equal to the variant byte is considered to
terminate the string. Note that the strings do NOT have to be
terminated by the same delimiter!

Both registers are incremented by one, and the bytes addressed by them
are compared logically. If the bytes are equal, AND if the bytes are
logically lower than the variant byte specified in the instruction,
the increment and comparison is repeated. If the bytes are unequal,
AND both bytes are greater than or equal to the variant byte, the
strings are considered equal, and the instruction terminates by taking
the branch.

In other cases, the
instruction terminates
instruction.

strings are considered unequal, and the
by falling through to the next sequential

Note that a three-way branch (equal, low, high) condition on comparing
two strings can be coded by following, for example, the BSTE
instruction by a suitable BCL instruction such as:

CtHAPTER 2

BSTE
BCL

HIGH EQU

R4,R5,X'FC' ,EQUAL
R5,R4,LOW
*

MACHINE INSTRUCTIONS
PAGE 29

Copyright (c) 1985 PICK SYSTEMS

2.7 BIT INSTRUCTIONS

2.7.1 Set Bit (SB)

SB b

The referenced bit is set to an "on" (lor true) condition.

2.7.2 Zero Bit (ZB)

ZB b

The referenced bit is set to an "off" (0 or false) condition.

2.7.3 Branch Bit Set (BBS)

BBS b,l

If the referenced bit is "on" (1), then a branch is taken to the
label.

2.7.4 Branch Bit Zero (BBZ)

BBZ b,l

If the referenced bit is "off" (0), then a branch is taken to the
label.

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 30

2.8 REGISTER INSTRUCTIONS

2.8.1 Load Absolute Difference (LAD)

C)
/

LAD r,r
LAD s,s

LAD r,s LAD s,r

This instruction computes the number of bytes between the byte in
storage pointed to by the first operand and the byte pointed to by the
second operand. The result is a non-negative integer in the low order
2 bytes of the accumulator (TO).

NOTE: This instruction is valid for unlinked frames only if the
frames referenced by the two arguments are the same. The instruction
is valid for unequal frame numbers only if both frames are in the same
group of contiguously linked frames, and the difference between the
frame numbers is less than 32.

2.8.2 Increment Address Register (INC)

INC r

The address register is incremented by one causing it to point to the
next sequential byte. If the resulting address is not in the same
buffer, then either:

A crossing frame limits error occurs if the register is in unlinked
format, or

An attempt is made to attach the register to the first data byte of
the frame pointed to by the forward link of the current frame. In
this case, forward link zero and illegal frame id are errors which can
be detected if they occur.

INC r,n INC r,t

The address register is incremented by n or the number in the tally.
If the increment causes the register to cross a frame boundary, then
crossing frame limit, forward link zero or illegal frame id will be
reported as appropriate.

2.8.3 Decrement Address Register (DEC)

DEC r

The address of the register is decremented by one.

If the register is in linked format and originally pointed to the
first data byte of the frame and the backward link of the current
frame is zero, the register attaches to data byte zero of the current
frame. Otherwise, an attempt is made to attach the register to the
last data byte of the frame pointed to by the backward link of the
current frame. Illegal frame id is an error which can be detected in
this case.

DEC r,n DEC r,t
Same as the INC instruction, except that the second operand is

C. subtracted from the register address.
~
CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS

PAGE 31

2.8.4 Increment Storage Register (INC)

INC s INC s,n INC s,t
The displacement portion of the storage register is incremented by
one, or by the two's complement integer contained in the second
operand. Note that no address errors are detectable.

2.8.5 Decrement Storage Register (DEC)

DEC s
The displacement
one, or by the
operand.

DEC s,n
portion of the storage
two's complement integer

2.8.6 Set Register to Address (SRA)

SRA r,c
SRA r,h
SRA r,t

SRA r,d
SRA r,l

DEC s,t
register is decremented by
contained in the second

SRA r,f
SRA r,s

The register is set pointing to the first byte of the second operand.

2.8.7 Move Register to Register (MOV)

MOV r,r
The first operand replaces the second operand. All eight (8) bytes of
the register are copied.

MOV r,s
The effective register of the AIR replaces the contents of the SIR.
The AIR is not affected.

MOV s,r
The contents of the SIR replace the A/R. If the SIR is not legal,
address errors may be detected at this time.

MOV s,s
The contents of the first SIR replace the contents of the second SIR.
No address errrors are detectable.

2.8.8 Exchange Register with Register (XRR)

XRR r,r
The contents of the two registers are interchanged. All eight· (8)
bytes from each operand are copied to the other operand.

XRR s,r XRR s,s XRR r,s
These instructions
instructions.

expand into macros which use R15 and MOV

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 32

2.8.9

c
Setup Register (SETUP)

SETUP r,t,d SETUPO r,d SETUPl r,d
The setup instruction is similar to the move storage register to
address register instruction. The operand one address register is
'setup' to the implied storage register with the second operand as a
displacement and the third operand as a frame-id (FID).

If the SETUPO or SETUPl form is used, the SIR displacement is set to
zero or one.

OHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 33

2.9 CONVERSION INSTRUCTIONS

Conversion operations are provided to convert decimal integers
represented by ASCII characters into binary values, and to convert
hexadecimal integers into binary values, and binary values to
hexadecimal. All conversions involve a register string pointer.
Similar to other string functions, this register points one byte
before the string.

2.9.1 Move Binary to Decimal (MBD)

2.9.2

MBD d,r MBD f,r
MBD t,r MBD n,d,r
MBD n,h,r MBD n,t,r

MBD h,r
MBD n,f,r

The binary integer in the first operand is converted to an ASCII
string and stored starting one byte past the byte pointed to by the
register. If only two operands are present, MBD creates a variable
length string, storing only the significant digits. If the third
operand (n) is specified, it contains the number of characters to be
put in the string. The number will be padded on the left with blanks
if necessary, and will make the string longer than n characters if
necessary.

Move Binary to Hexadecimal (MBX and MBXN)

MBX c,r MBX d,r MBX f,r
MBX h,r MBX s,r MBX t,r
MBX n,d,r MBX n,f,r MBX n,h,r
MBX n,s,r MBX n,t,r

MBXN n,d,r MBXN n,f,r MBXN n,h,r
MBXN n,s,r MBXN n,t,r

MBX is used to output an ASCII string representing a hexadecimal
number. The MBX instruction assumes that the low order byte of the
accumulator (HO) contains the count of the number of characters to be
output. Bit B7 (high order bit of HO) is set if the string is to be
padded with leading zeroes. If the third parameter (n) is present,
the instruction expands into a macro. The macro first loads the
number n into HO, and sets B7 if the opcodes was MBXN.

2.9.3 Move Decimal to Binary (MDB)

MDB r,d MDB r,f MDB r,h
MDB r,t

The ASCII decimal character pointed to by the register is converted to
a binary number and stored into the second operand. The second
operand is multiplied by ten (10) and the binary equivalent of the
number pointed to by the register is added to the second operand.

CHAPTER 2 MACHINE INSTRUCTIONS
PAGE 34

!"~'

Copyright (c) 1985 PICK SYSTEMS ~)

2.9.4 Move Hexadecimal to Binary (MXB)

MXB r,c
MXB r,h

MXB r,d
MXB r,s

The ASCII hexadecimal character pointed to
converted to a binary number and stored into the
second operand is multiplied by sixteen (16) and
of the number pointed to by the register is
operand.

MXB r,f
MXB r,t

by the register is
second operand. The
the binary equivalent
added to the second

2.9.5 Move Floating-Point String to Binary (MSDB and MSXB)

MSDB r MSXB r

MSDB converts the signed floating point decimal string pointed to by
the register to a 6-byte binary integer, scales the number up by SCALE
(in the user's PCB,) and stores the signed integer result in the
6-byte accumulator (FPO). MSXB is identical to MSDB, except that it
converts hexadecimal numbers.

Both these instructions are macros which first zero DO and Dl, then
execute a MFD: (MSDB) or MFX: (MSXB) instruction. These
instructions (MFD: and MFX:) require that: H7 contains the
fractional digit count (0-15) in its low order 4 bits, the high order
4 bits of H7 are as follows: 0) unused 1) numeric found 2) you passed
a decimal point 3) sign bit. H6 contains the integer digit count.
The register points one byte before the string to be converted. FPO
is normally zeroed before using these instructions, since any value in
FPO will be multiplied by 10 (MSDB) or 16 (MSXB) each time a character
is converted.

The string must be at least one digit long, and must be terminated by
a system delimiter (X'FA' -- X'FF'). It may not contain more than one
decimal point, more fractional digits than are specified in H6, or any
non-numeric (MSDB) or non-hex (MSXB) characters. A leading plus sign
(+) or minus sign (-) is legal, and the result in FPO will be negative
if the string started with a minus sign. If the required number of
fractional digits are not present, FPO will be scaled upward as
necessary

After conversion, the register points to the system delimiter at the
end of the string, and NUMBIT is set to one (1), unless any of the
above conditions are violated, in which case the register points to
the last character converted, and NUMBIT is zero (0).

During execution of the instruction, H6 is decremented by one for each
digit found; if H6 goes to zero, the instruction is terminated, with
the register pointing to the last character converted, and NUMBIT set
to zero (0). In this case, the fractional digit count is ignored.

CbHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 35

2.10 OTHER INSTRUCTIONS

The following operations are used to communicate with the MONITOR.

2.10.1 Read Input Queue (READ)

READ r

The next character from the terminal input queue replaces the byte
addressed by the register. If the input queue is empty the process is
suspended until a character is received from the terminal. Characters
transmitted by the terminal are automatically queued in the PIB for
the terminal.

2.10.2 Write to Output Queue (WRITE)

WRITE r

The byte addressed by the register is placed into the terminal output
queue. If the queue is full, the process is suspended until there is
room in the queue.

2.10.3 Release Time Quantum (RQM)

RQM

Upon execution of this instruction, the process gets de-activated and
the next process is selected. This process will be reactivated after
a small delay. The instruction is useful when you need to wait a
short period for some external activity.

CHAPTER 2 MACHINE INSTRUCTIONS Copyright (c) 1985 PICK SYSTEMS
PAGE 36

c

Chapter 3

SUPPORT SOFTWARE

THE PICK SYSTEM

USER'S ASSEMBLY MANUAL

PROPRIETARY INFORMATION

This document contains information which is
proprietary to and considered a trade secret of
PICK SYSTEMS It is expressly agreed that it shall
not be reproduced in whole or part, disclosed,
divulged, or otherwise made available to any third
party either directly or indirectly. Reproduction
of this document for any purpose is prohibited
without the prior express written authorization of
PICK SYSTEMS. All rights reserved.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 37

3.1 SYSTEM SOFTWARE

3.1.1 Introduction

Assembly level programming in the PICK system is facilitated by a set of
system subroutines that allow easy interaction with the disc file
structure, terminal i/o, and other subroutines. These subroutines work
with a standard set of addressing registers, storage registers, tallies,
character registers, bits, and buffer pointers, collectively called
"functional elements." In order to use any of these routines, therefore,
it is essential that the calling routine set up the appropriate functional
elements as required by the called routine's input interface.

The standard set of functional elements is pre-defined in the permanent
symbol file (PSYM), and is therefore always available to the programmer.
Included in the PSYM are most of the mode-id's (program entry points) for
the standard system subroutines. There is no reason that a symbol
internal to an assembly program cannot have the same name as a PSYM-file
symbol, if the PSYM-file symbol is not also referenced in that program;
such symbolic usage cannot be a "forward" reference in the assembly
program. To avoid confusion, however, it is best to treat the entire set
of PSYM symbols as reserved symbols.

3.1.2 Address Registers

All data referenced in the system is made indirectly through one of the

C. \ " j

sixteen address registers (A/R' s). Registers zero and one have ,/
specifically defined meanings; the other fourteen may be considered
general-perpose registers, with the limitation that system software
conventions determine the usage of most A/R's. Registers zero and one
should never be changed in any way by assembly programs. Register two
always points to the SCB at logon time and after the debugger or the
WRAPUP processor has been entered.

Register zero always· addresses byte zero of the process's PCB; register
one always addresses byte zero of the frame in which the process is
currently executing. Thus all elements in the PCB may be relatively
addressed using register zero as a base register. The more conventional
way of setting up an A/R is to move a SIR into it. For example, the
sequences below are functionally identical:

FRMIOO ADDR O,X'lOO'

MOV FRMIOO,R15

and

DEFINE A LITERAL SIR
REFERENCING FRAME X'lOO'

SETUPO R15,X'80000100'

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 38

C"\
, I

3.1.3 Re-entrancy

In practiac11y all cases, the system software is re-entrant; that is, the O same copy of the object code may be used simultaneously by more than one
. process. For this reason, no storage internal to the program is utilized;

instead the storage space directly associated with a process is used;

0

this is part of the process's Primary, Secondary, Tertiary (Debug), and
Quadrenary Control Blocks. The Primary Control Block (PCB) is addressed
via address register zero, the SCB via address register two. The Debug
Control Block is used solely by the Debug processor, and should not be
used by any other programs. The Quadrenary Control Block has no register
addressing it; it is used by some system software (magnetic tape
routines, for example) which temporarily set up a register pointing to it;
its use is reserved for future software extensions.

A user program may utilize storage internal to the program if it is to be
used in a non-re-entrant fashion; however, in most cases it will be found
that the functional elements defined in the PSYM will be sufficient.

In some cases it may be required to set up a program to be executable by
only one process at a time; that is, the code is "locked" whi,le a process
is using it, and any other process attempting to execute the same code
waits for the first process to "unlock" it. The fo11wing sequence is
typical;

ORG 0
TEXT X' 01' INITIAL CONDITION FOR LOCK BYTE
CMNT * (NOTE USAGE OF STORAGE INTERNAL
CMNT * TO PROGRAM)

LOCK MCC X' 00' ,R2 SET "LOCKED" CODE AT R2
XCC R2,R1 EXCHANGE BYTES AT R2 AND R1
BCE R2,X'01',CONTlNUE
CMNT * OK TO CONTINUE; PROGRAM IS NOW LOCKED
RQM * WAIT (RELEASE QUANTUM)
B LOCK TRY AGAIN

UNLOCK MCC X'01',R1 UNLOCK PROGRAM

3.1.4 Work-spaces or Buffers

There is a set of work-spaces, or buffer areas, that is pre-defined and
available to each process. If the system conventions with regard to these
buffers are maintained, they should prove adequate for the majority of
assembly prograrrrrning. There are three "linked" buffers, or work-spaces,
of equal size, symbolically called the IS, the OS, and the HS. These are
at least 3000 bytes in length each; more space for each area can be
assigned to a process at LOGON time. There are five other work-spaces,
known as the BMS, CS, AF, IB, and the OB, which may vary between 50 and
140 bytes in length, and are all in one frame. There is the TS, a one
frame unlinked work-space of 512 bytes, and the PROC work-space, 2000
bytes in length which is normally used by the PROC processor alone.
Finally there are three additional frames (PCB+29 through PCB+31) that are
unused by the system, and are freely available.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 39

Each work-space is defined by a beginning pointer and an ending pointer,
both of which are storage registers (SIR'S). When the process is at the
TCL level, all these pointers have been set to an initial condition. At
other levels of processing, the beginning pointers should normally be
maintained; the ending pointers may be moved by system or user routines. C. _ \

The address registers (A/R's) that are named after these work-spaces (IS,
OS, AF, etc.) need not necessarily be maintained within their associated
work-spaces; however, specific system routines may reset the AIR to its
associated work-space. Note that, conventionally, a buffer beginning
pointer addresses one byte before the actual location where the data
starts. This is because data is usually moved into a buffer using one of
the "move incrementing" type of instructions, which increment the AIR
before the data movement.

Work
space

BMS

AF

CS

IB

OB

TS

Location
(offset
from PCB)

4
(disp.=O)

4
(disp.=50)

Size Linked? Remarks

50 No Normally contains an item-id when
communicating with the disc file ilO
routines; typically, the item-id is
copied to the BMS area, starting at
BMSBEG+l; BMSBEG may be moved to point
within any scratch area. BMSEND
normally points to the last byte of the
item-id; BMS (AIR) is freely usable
except when explicitly or implicitly
calling a disc file ilo routine

50 No This work-space is used by any system
subroutine, though the AF AIR is used
as a scratch register

4 100 No As above
(disp.=lOO)

4 0-140 No
(disp.=200)

4 0-140 No
(disp.=20l
+IBSIZE)

5 511 No

Used by terminal input routines to read
data; IBBEG may be moved to point

within any scratch area before use;
IBEND conventionally points to the
logical end of data; IB AIR is freely
usable except when explicitly or
implicitly calling a terminal input
routine

Used by terminal output routines to
write data. OBBEG and OBEND should not
be altered; they always point to the
beginning and end of the OB area; OB
(AIR) conventionally points one before
the next available location in the OB
buffer

This work-space is not used by the system
subroutines, other than those
associated with the Conversion
processor, though the TS AIR is used as
a scratch register

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 40

PROC

IS
as

6-9

10-15

16-21
22-27

2000 Yes

3000+ Yes

3000+ Yes
3000+ Yes

Used exclusively by the PROC processor
for working storage; user-exits from
PROC's may change pointers in this area

Used as a means of passing messages to
the WRAPUP processor at the conclusion
of a TCL statement; may be used as a
scratch area if there is no conflict
with the WRAPUP history-string formats;
HSBEG should not be altered; HSEND
conventionally points one byte before
the next available location in the
buffer (initial condition is
HSBEG=HSEND)

These work-spaces are used interchangeably
by some system routines since they are
of the same size (and are equal in size
to the HS); specific usage is noted
under the various system routines

ISBEG and OSBEG should not be altered,
but may be interchanged if necessary;
initially, ISEND and OSEND point 3000
bytes past ISBEG and OSBEG respectively
(not at the true end. Additional work
space is assigned at LOGON time); IS
and OS AIR's are freely usable except
when calling system subroutines that
use them.

Defining a Separate Buffer Area

If it is required to define a buffer area that is unique to a process, the
unused frames PCB+29 through PCB+31 may be used. The following sequence
of instructions is one way of setting up an AIR to a scratch buffer:

LOAD
ADD
SETUPO

ROFID
29
R6,DO

GET PCB FID
INC TO PCB + 29
SETUP R6

Register three can now be used to reference buffer areas, or functional
elements that are addressed relative to R3. None of the system
subroutines use R3, so that a program has to set up R3 only once in the
above manner. However, exit to TCL via WRAPUP WILL RESET R3 TO PCB+10.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 41

3.1.6 Usage of XMODE

In several cases, the multiple-byte move instructions can be used (say,
when building a table) even when it is not known whether there is enough
room in the current linked set to hold the data. Normally, if the end of
a linked frame set is reached, DEBUG is entered with a "forward link zero"
abort condition. However, the tally XMODE may be set up to contain the
mode-id of a user-written subroutine that will gain control under such a
condition. This subroutine can then process the end-of-frame condition,
and, by executing a RTN instruction, continue normal processing.
Instructions that can be handled by this scheme are: INC register, MCI,
MIC, MIl, MIlD, MIIR, and SID. Care should be taken in the case of MIIR
to save register R15 in the subroutine. MIlT can be handled since the
accumilator is saved in Dl by the debugger before it is used in
transfering control via XMODE; therefore, DO should be restored from Dl
before returning from the XMODE trap.

For example:

!XXX

*
OK

*

MOV
CMNT
MIl
CMNT
ZERO

EQU
MOV
SRA
BCE
MOV
ENT
CMNT

SETUP
CMNT
CMNT

XXX,XMODE SET UP XMODE FOR NEXT
* INSTRUCTION
R12,R13,SR4 COpy FROM R12 TO R13,
* TILL R12=SR4
XMODE

* ENTRY POINT FOR SUBROUTINE
R15,SR1 SAVE R15
R15,ACF SET TO SAVE REGISTER NUMBER
X'OD',R15,OK ENSURE TRAP WAS DUE TO R13
O,XMODE PREVENT DEBUG RE-ENTRY;

5,DBI NO! RE-ENTER DEBUG TO PRINT
* "FORW LNK ZERO" MESSAGE

R13,500,R13FID RESET DISPLACEMENT FIELD OF
* R13, SINCE FIRMWARE HAS LEFT
* IT IN A STRANGE STATE

* HANDLE END-OF-FRAME CONDITION HERE
*

MOV
BSL
MOV
RTN
CMNT

R13FID,RECORD SET UP INTERFACE
GETS PC GET ANOTHER OVERFLOW FRAME
SR1,R15 RESTORE R15
* RETURN TO CONTINUE EXECUTION
* OF MIl INSTRUCTION

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 42

/1

3.1.7 Initial Conditions

At any level in the system, the following elements are assumed to be set

(
) up; they should not be altered by any programs:

MBASE D + Contain the base-FID, modulo, and

o

MMOD T + separation of the M/DICT associated with
MSEP T + the process

USER

CHAPTER 3

T Used to indicate the status of the
process, as follows:

-1 Indicates the spooler process
o Indicates process not logged on
1 Indicates the file-restore process
2 Indicates a process which has been

logged off, and must release
work-space and go to MDO

3 Indicates a process which must go
to LOGOFF after WRAPUP processing

5 Indicates normal logged-on process.

SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 43

3.1.8 Special PSYM Elements

Certain elements have a "global" significance to the system;
to those described above, they include the following:

Element

HO H

Description

+
+ Overlay the accumulator and
+ H7 is the high-order byte of
+ The low-order byte of DO

H7 H +

extension;
Dl; HO is

in addition

INHIBITH H If non zero, the "BREAK" key on the terminal
is inhibited; used by processes that
should not be interrupted. Conventionally, any
process can increment INHIBITH to prevent
BREAK KEY interuption. The subrouine DECINHIB
should be used to decrement the inhibit half tally.

OVRFLCTR D Used by WRAPUP

RSCWA T Return-stack current word address;
contains the address one byte past the
current entry in the stack; the stack is
null if RSCWA=X'184,

SYSPRIVl B Indicates system privileges, level one,
if set

SYSPRIV2 B Indicates system privileges, level two,
if set along with SYSPRIVl

TO T +

T3

XMODE

+
+ Overlay the accumulator and extension
+

T +

T May be set to the rnode-id of a
subroutine that is to gain control when
a "forward link zero" condition occurs

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 44

>~v..//

3.2 DOCUMENTATION CONVENTIONS

In the system software documentation, each routine is listed along with

C\ its entry point (as would be used in a DEFM statement); if the entry
.) point is included in the standard PSYM file, it is followed by an asterisk

(*). Unless otherwise specified, routines are meant to be called as
subroutines, using a BSL instruction, and they return to the calling

c

c

program via a RTN instruction. Be aware that there is no particular
reason to believe that the referenced routine currently has the specified
interface, name or location, or that it exists.

The Functional Description section for each routine briefly describes the
action taken. The Input Interface, Output Interface, and Element Usage
sections describe the functional elements used by the routine. The single
letter following an element name describes its type: B=bit, C=character,
H=half tally, T=tally (word), D=double tally, F=triple tally, R=address
register, S=storage register. Even if not specified, the following
elements may be destroyed by any routine.

Tallies

Double Tallies

Registers

Storage Registers

T4, T5

Accumulator and extension (DO,
Dl), D2

R14, R15

SYSRO, SYSR1, SYSR2

If no description follows an element name, it indicates that the
is used as a scratch element.

The system delimiters are symolically referred to as follows:

Hex. Value Name and Description

FF SM Segment Mark
FE AM Attribute Mark
FD VM Value Mark
FC SVM Secondary Value Mark
FB SB Start Buffer

element

CHAPTER 3 SUPPORT' SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 45

3.3 SYSTEM SUBROUTINES

3.3.1 ATTOVF

ATTOVF is used to obtain a frame from the overflow space pool and to link
it to the frame specified in double tally RECORD. The forward link field
of the frame specified in RECORD is set to point to the overflow frame
obtained, the backward link field of the overflow frame is set to the
value of RECORD, and the other link fields of this overflow frame are
zeroed.

Input Interface

RECORD D

Output Interface

OVRFLW D

Element Usage

R15 R

INHIBITH B +

Contains the FID of the frame to which
an overflow frame is to be linked

Contains the FID of the overflow frame
if obtained, or zero if no more frames
are available

Utility

DO D + Used by GETOVF
R14 R +

Subroutine Usage

GETOVF

Two additional levels of subroutine linkage required

3.3.2 BLOCK-SUB

This routine prints block letters on the terminal or line printer. It is
used, for instance, by the TCL verbs "BLOCK-TERM" and "BLOCK-PRINT"; for
more information, see the discussion of these verbs in the SYSTEM COMMANDS
documentation.

Input Interface

IS

ZBIT

R Points one before the first character to
be output; the end of data is marked by
the character pair SM Z (no space after
the SM); if any element in the data
string contains a SM, it must be
terminated by a SB (see MDIB
documentation, "Editing Features")

B If set, output is directed to the
terminal, otherwise output is passed to
the spooler for line printer listing or
other use

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 46 o

c

C:

OBSIZE

OB

SBO

AFBEG
BMSBEG
HSEND

LISTFLAG
SMCONV
NOBLNK
LFDLY
PAGSIZE
PAGSKIP
PAGFRMT

T Contains the maximum number of
characters on each output line

R =OBBEG

B If set, no test for terminal or printer
output is made, terminal or printer
characteristics are not initialized, the
output device is not advanced to
top-of-form, and the heading is not set
null; all these actions take place if
SBO is reset

S +
S + Point to scratch areas
S +

B +
B +
B +
T + As required by WRTLIN
T +
T +
B +

Output Interface

OB R

PAGINATE B

PAGHEAD S

Element Usage

BITS C
SCO C
SCI C
SC2 C
REJCTR T
Cl T
CTR16 T
CTR17 T
CTR18 T
CTR19 T
DO D
D1 D
BASE D
MODULO T
SEPAR T
IR R
UPD R
BMS R
AF R
OB R
CS R
TS R

+
+
+
+
+
+
+
+
+
+
+
+
+

=OBBEG

=1

Points to a null page heading (SM) at
HSEND if SBO=O

+ Utility
+
+
+
+
+
+
+
+

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 47

. .. --.. ~ _._---_ ..

R15 R +
SR4 S +

.
SR22 S +

CTRI T Used by CVTNIR

R14 R Used by RETIX

T7 T + Used by WRTLIN
SYSRl S +

Subroutine Usage

RETIX; GBMS if the system file "BLOCK-CONVERT" is found; CVTNIR;
WRTLIN; NEWPAGE if required; PRNTHDR if SBO=O; PCLOSEALL and
SETLPTR if SBO=O and ZBIT=O; SETTERM if SBO=l or ZBIT=l

Six additional levels of subroutine linkage required if "BLOCK
CONVERT" is a "Q"-code item in the master dictionary, otherwise five
levels required

Error Conditions

BLOCK-SUB exits to WRAPUP (MD995 or MD99) under the following
conditions:

Error Number

520

521

522

523

524

525

Error type

Null input data

Too many characters (more than nine) in
a word to block

BLOCK-CONVERT file missing or improperly
defined in the master dictionary

Block output would exceed page width

An input character
BLOCK-CONVERT file

is not in the

An input character is improperly
formatted in the BLOCK-CONVERT file

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 48

C;

3.3.3 CONY - CONVEXIT

These entry points are used to call the entire conversion processor C\as a subroutine, which will perform any and all valid conversions
'specified in the conversion string. Other entry points may be used to
perform certain specific conversions. Multilple conversion codes are
separated by VM's in the conversion string. Conversion is called by
the ENGLISH pre-processor to perform conversions on "input" data
(in selection criteria), and by the LIST/SORT processor to perform
"output" conversion.

CONY is the usual mode-id used to invoke conversion processing.
CONVEXIT is the entry point to which any part of the conversion
processor returns in order to check if more conversion is required
(further VM's and conversion codes in the conversion string).

Input Interface

TSBEG

IS

MBIT

DBIT
DAFI

XBIT

S

R

B

Points one before the value to be
converted; the value is converted "in
place", and the buffer is used for
scratch space; therefore it must be
large enoughto contain the converted
value; the value to be converted is
terminated by any of the standard system
delimiters (SM, AM, VM, or SVM)

Points to the first character of the
conversion code specification string for
CONY; for CONVEXIT, points at least one
before the next conversion code (after a
VM) or AM at the end of the string, or
to the AM; the code string must end with
an AM; initial semicolons (;) are
ignored

Set if "input" conversion is to be
performed; reset for "output" conversion

B + As required by TRANSLATE (see TRANSLATE
B + documentation)

B As required by
documentation)

CFUNC (see CFUNC

Output Interface

TSBEG

TS
TSEND

IS

CHAPTER 3

S Points one before the converted value

R + Point to the last character of the
S + converted value; a SM is also placed one

past this location; TS=TSEND=TSBEG if a
null value is returned

R Points to the
conversion code(s)

SUPPORT SOFTWARE

AM terminating the

Copyright (c) 1985 PICK SYSTEMS
PAGE 49

Element Usage

Element Conversions Where Used

DBIT B F,T r\
XBIT B F \"-,)
GMBIT B F
WMBIT B F
SBIO B All
SB12 B All
DAFI B T
DAF9 B T
SC2 C C,D,F,T
T3 T F,MD
T4 T D,F,MD,MT
T5 T D,F,MD,MT
T6 T D,F,M
T7 T F,MD
CTRI T C,F,G,T
CTR12 T F
CTR13 T F
CTR20 T All
CTR2l T D,MD,T
CTR22 T D
CTR23 T D,MD
CTR28 T T
Dl D C,F,MT,T
D2 D D,F,MD,MT
D3 D MT
D7 D F
D8 D F
D9 D F
FPO F F,MD -J "

FPl F F,MD
FP2 F F,MD
FP3 F F
FP4 F F
FP5 F F
FPX F F,MD,T
(SYSRO)
FPY F F,MD
BASE D T
MODULO T T
SEPAR T T
RECORD D T
SIZE T T
NNCF H T
FRMN D T
FRMP D T
NPCF H T
XMODE T C,F,MT,T
IR R T
BMS R T
R14 R D,MD,MT,MX,T
R15 R All
SYSRI S T
SYSR2 S T

?~'" , '

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS (I

PAGE 50 ~~j

("' \
"r"

(

S4 S T
S5 S F
S6 S C,T
S7 S All
SRO S C,F
SRI S F
SR4 S C,T

Subroutine Usage

CVTHIS for "u" conversions; GCORR for "G" conversions; TRANSLATE
for "T" conversions; CONCATENATE for "C" conversions; additional
subroutines as used by routines listed under "Exits" below, and by
user-written routines

The number of additonal levels of subroutine linkage required
on the conversions performed - see the documentation for the
conversion routines for more specific information; note that
conversions, CFUNC may call CONV recursively

depends
various
for "F"

User Conversion Processing

Exits

The conversion processor will pass control to a user-written routine
if a "Uxxxx" code is found in the conversion string, where "xxxx" is
the hexadecimal mode-id of the user routine. This routine can then
perform special conversion before returning. The input interface for
the user routine will be identical to that described in the preceding
section; after performing the conversion the user routine should set
up the output interface elements to be compatible with CONVEXIT, and
then exit via an external branch to that point to continue the
conversion process if multiple conversions are specified.
Alternately, a RTN may be executed if this is not needed, or to
prevent further conversions from being performed. Elements used by
the regular conversion routines may safely be used by user routines;
however, if additional elements are needed, a complete knowledge of
the processor that called CONV (LIST, SELECTION, etc.) will be
necessary.

To IOATE for "0" conversions on input (MBIT=l); to OOATE for "0"
conversions on output; to ICONVMD or OCONVMD for "MO" conversion on
input or output; to CFUNC for "F" conversions; to TIMECONV for "MT"
converS1.0nSi to HEXCONV for "MX" conversions; all these routines,
however, return to CONVEXIT

For output conversion, a null value returned causes an immediate end
of conversion processing.

Error Conditions

CONV exits to WRAPUP after setting RMOOE to zero under the following
conditions:

705 Illegal conversion code

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 51

706

707

Illegal
incorrect,
etc.

"T" conversion:
filename cannot be

DL/ID cannot be found
conversion file

for

format
found,

a "T"

WRAPUP is also entered without setting RMODE to zero under the
following error conditions:

708

339

3.3.4 DLINIT

Value cannot be converted by a "T"
conversion

Invalid format for input data conversion

DLINIT is used to obtain a block of contiguous overflow space for a file.
After checking the input parameters and obtaining the necessary number
of frames, if available, it enters DLINITl to initialize the frames
(see DLINITl documentation). If not enough space is available for the
file, DLINIT calls NOSPACE to find out if processing should be
aborted (see NOSPACE documentation).

Input Interface

MODULO
SEPAR

T + Contain the modulo and separati~n
T + parameters for the file; if MODULO lS

initially less than or equal to zero, it
is set to eleven; if SEPAR is initially
less than or equal to zero, it is set to
one, and if initially greater than 127
it is set to 127

Output Interface

BASE D

OVRFLW D

RMBIT B

Element Usage

R14 R +

Contains the beginning FID of a
contiguous block of size MODULO*SEPAR if
the space is available, otherwise
unchanged

=BASE if the requested
available, otherwise =0

space is

Set if the requested space is obtained,

R15 R + Used by GETBLK
INHIBITSV2 B +
DO D +

Subroutine Usage

GETBLK; NOSPACE if the requested space is unavailable

Three additional levels of subroutine linkage required

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 52

----- - ---- -_ ... --- ------------

Exits

o
To DLINITl if the requested space is obtained; to NSPCQ (WRAPUP)
from NOSPACE if the space is unavailable and processing is aborted by
the user

3.3.5 DLINITl

()

DLINITl initializes the link fields of a file as specified by its base,
modulo, and separation parameters, and sets each group empty by adding an
AM at the beginning (in the first data byte).

Input Interface

BASE
MODULO
SEPAR

D + Contain the base, modulo, and separatio
T + of the file; note - one frame is linked
T + even if MODULO is less than or equal to

zero

Output Interface

R14

R15

RECORD

NNCF

R

R

D

H

Points to the first data byte in the
first frame of the last group in the
file (set by LINK)

Points to the last byte of the last
frame of the last group in the file (set
by LINK)

=one greater than the FID of the last
frame of the last group in the file

=SEPAR-l

Frames are initialized as described above

Element Usage

CTRl

FRMN
FRMP
NPCF

T Utity

D +
D + Used by LINK
H +

Subroutin.im 5 LINK

One additional level of subroutine linkage required

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 53

3.3.6 ENGLISH INTERFACE

Summary

It is possible to interface with the ENGLISH processor at several levels. AO
typical LIST or SORT statement passes through the Preprocessor and Selection-.)
processor before entering the LIST processor. All statements must pass through
the first two stages, but control can be transferred to user-written programs
from that point onward.

General Conventions

The ENGLISH processors use a compiled string that is stored in the IS work
space. String elements are separated by SM's. There is one file-defining
element in each string, one element for each attribute .specified in the
original statement, and special elements pertaining to selection criteria,
sort-keys, etc. The formats of various string elements are as follows:

File Defining Element, at ISBEG+l:

SM D file-name AM base VM modulo VM separ AM conv AM
correl AM type AM just AM SM

Attribute Defining Element:

SM c attribute-name AM amc AM conv AM cor reI AM
type AM just AM SM

c = A - regular or D2 attribute
Q - DI attribute
Bx- SORT-BY, SORT-BY-DSND, etc.; "x" is from

attribute one of the connective

Explicit Item-id's:

SM I item-id SM

End-of-string ELEMENT:

SM Z

The Selection Processor

This performs the actual retrieval of items which pass the selection criteria,
if specified. Every time an item is retrieved, the processor at the next level
is entered with bit RMBIT set; a final entry with RMBIT zero is also made
after all items have been retrieved. If a sorted retrieval is required, the
Selection processor passes items to the GOSORT mode, which builds up the sort
keys preparatory to sorting them. After sorting, GOSORT then retrieves the
items again, in the requested sorted sequence.

A user program may get control directly from the Selection processor (or GOSORT
if a sorted retrieval is required); the formats of the verbs are:

Line nl.Unber

1
2

CHAPTER 3

Non-sorted

PA
35

SUPPORT SOFTWARE

Sorted

PA
35

PAGE
Copyright (c) 1985 PICK SYSTEMS

54

3 ~ 76
4 ~

where "xxxx" represents the mode-id of the user program. Note that in this Cthod of interface, only item retrieval has taken place; none of the
~version and correlative processing has been done. For functional element

~nterface, the column headed "Selection Processor" in the table shown later
must be used.

Exit Convention: On all but the last entry, the user routine should exit
indirectly via RMODE (using an ENT* RMODE instruction); on the last entry, the
routine should exit to one of the WRAPUP entry points. Processing may be
aborted at any time by setting RMODE to zero and entering WRAPUP. Bit SBO must
also be set on the first entry.

Special Exit From The LIST Processor

A user program may also gain control in place of the normal LIST
perform special formatting. The advantage here is that all
correlatives, etc. Have been processed, and the resultant output
stored in the history string (HS area). The formats of the verbs

Line number Non-sorted Sorted

1 PA PA
2 35 35
3 4D 4E
4 xxxx ~

where "~" is the mode-id of the user program.

formatter, to
conversions,

data has been
then are:

Output data is stored in the HS area; data from each attribute is stored in
the string, delimited by AM's; multiple values and sub-mu1tip1e-va1ues are O?-limited within an element by VM's and SVM's, respectively. Since the HS may
ontain data other than the retrieved item, the user program should scan from

HSBEG, looking for a segment preceded by an "X"; all segments except the first
are preceded by a SM. The format is:

X item-id AM value one AM ... AM value n AM SM Z

The program must reset the history string pointer HSEND as items are taken out
of the string. In special cases, data may not be used until, say, four items
are retrieved, in which case HSEND is reset on every fourth entry only. HSEND
must be reset to point one byte before the next available spot in the HS work
space, normally one before the first "X" code found.

The exit convention for the LIST processor is the same as for the Selection
processor (see above).

Example: The following program is an example of one which prints item-id's
(only) four at a time across the page.

001
002
003
004 * FIRST
005
006
007 *

C08 NOTF

) CHAPTER 3

FRAME 504
ZB SB30
BBS SBO,NOTF

TIME SETUP
MOV 4,CTR32
SB SBO

BBZ RMBIT,PRINTIT

SUPPORT SOFTWARE

INTERNAL FLAG
NOT FIRST TIME

LAST ENTRY

Copyright (c) 1985 PICK SYSTEMS
PAGE 55

009 BDNZ CTR32,RETURN NOT YET 4 ITEMS OBTAINED
010 MOV 4,CTR32 RESET
011 PRINTIT MOV HSBEG,R14
012 LOOP INC R14
013 BCE C'X',R14,STOREIT FOUND AN ITEM (~'~ 014 BCE C'Z',R14,ENDHS END OF HS STRING
015 SCANSM SCD R14,X'CO' SCAN TO NEXT SM ~/

016 B LOOP
017 STOREIT BBS SB30,COPYIT NO FIRST ID FOUND
018 SB SB30 FLAG FIRST ID FOUND
019 MOV R14,SR28 SAVE LOCATION OF FIRST
020 CMNT * "X"
021 COPYIT MIlD R14,OB,X'AO' COPY ITEM-ID TO OB
022 MCC C' , ,OB OVERWRITE AM
023 INC OB,5 INDEX
024 B SCANSM
025 ENDHS BSL WRTLIN PRINT A LINE
026 MOV SR28,HSEND RESTORE HS TO FIRST
027 CMNT * "X" CODE
028 DEC HSEND BACK UP ONE BYTE
029 BBZ RMBIT,QUIT
030 RETURN ENT* RMODE RETURN TO SELECTION
031 CMNT * PROCESSOR
032 QUIT ENT MD999 TERMINATE PROCESSING
033 END

Element Usage

The following table summarizes the functional element usage by the Selection
and LIST processors. Only the most important usage is described; elements
that have various usages are labeled "scratch." a "" (blank) indicates that
the processor does not use the element. Since the LIST processor is called bYC---'o,
the Selectin processor, any element used for "memory" purposes (not to be used ,//
by others) in the former is indicated by a blank usage in the latter column.

In general, user routines may freely use the following elements:

Bits SB20 upwards
Tallies : CTR30 upwards
Double tallies: D3-D8
SIR's SR20 upwards

SBO and SBl have a special connotation: they are zeroed by the Selection
processor when it is first entered, and not altered thereafter. They are
conventionally used as first-time switches for the next two levels of
processing. SBO is set by the LIST processor when it is first entered, and
user programs that gain control directly from Selection should do the same.
SBO may be used as a first-entry switch by user programs that gain control from
the LIST processor.

An ENGLISH verb is considered an "update" type of verb if
(from line one of the verb definition) is B, C, D, E, G,
characters of B, C, D, and I are reserved for future ENGLISH

the SCP character
H, I, or J. SCP
update verbs.

Bits Selection Processor LIST Processor

ABIT
BBIT
CBIT
DBIT

CHAPTER 3

scratch
first entry flag
scratch
scratch

SUPPORT SOFTWARE
PAGE

non-columnar list flag

scratch
dummy control-break

Copyright (c) 1985 PICK SYSTEMS
56

-------------------~----------------~-------- -

EBIT
FBIT

d BIT BIT
tBIT

JBIT

KBIT
LBIT
MBIT

NBIT
OBIT

PBIT
QBIT
RBIT

SBIT

TBIT
UBIT
VBIT
WElT
XBIT
YBIT

ZBIT

()BO

SB1

SB2
SB4
through
SB17
VOBIT

COLHDRSUPP
OBLSPC
HDRSUPP
IOSUPP
OETSUPP
LPBIT
TPBIT
CBBIT
PAGFRMT
RMBIT

WMBIT
GMBIT
BKBIT
DAF1

(~\

CHAPTER 3

reserved
reserved
reserved
reserved
explicit item-id's
specified
reserved

by-exp flag
scratch
CONY interface;
zero
scratch
selection test on
item-id
scratch
scratch
fu11-fi1e-retrieva1
flag
selection on values
(WITH)
scratch
scratch
reserved
scratch
scratch
left-justified
value being tested
left-justified
item-id
unavailable

unavailable

reserved; zero

control-break flag
scratch
scratch
scratch

D2 attribute in
process
by-exp flag
left-justified field
zero

scratch

scratch
scratch

print limiter flag
reserved
scratch
reserved
reserved
left-justified print
limiter test

first entry flag,
level one
first entry flag,
level two

scratch or reserved scratch or reseved

set for WRAPUP
interface
set if the corre
sponding connective
was found in the
input statement

set on exit if an
item was retrieved;
zero on final exit
FUNC interface
FUNC intrface
scratch
set if SCP=B, C, D,
E, G, H, I, or J

SUPPORT SOFTWARE
PAGE

FUNC interface
FUNC interface
scratch

Copyright (c) 1985 PICK SYSTEMS
57

DAF8

Tallies

C1;C3-C7
C2
CTR1-CTR4
CTR5

CTR6
CTR7

CTR8
CTR9
CTR10
CTR11
CTR12

CTR13
CTR14
CTR15
CTR16
CTR17
CTR18
CTR19
CTR20-CTR23
CTR24
CTR25
CTR26
CTR27
CTR28

Other storage

D9

D7
FPI-FP5
RMODE

SIZE
SBASE
SMOD
SSEP
DBASE
DMOD
DSEP

SIR's

Sl

S2-S9
SRO

SR1

set if accessing a
dictionary
Selection processor LIST processor

scratch
contents of MODEID2
scratch
scratch

reserved
reserved

reserved
reserved
reserved
reserved
FUNC interface

FUNC interface
reserved
reserved
reserved
reserved
reserved
reserved
CONV interface
reserved
reserved
reserved
reserved
reserved

scratch

scratch
AMC of the current
element in the IS
scratch
AMC corresponding
to IR
scratch
scratch
scratch
scratch
current sub-value counter
count
current value count
scratch
item size
scratch
reserved
scratch
sequence no for by-exp
CONV interface
scratch
scratch
scratch
current max-length
scratch

Selection processor LIST processor

count of retrieved
items
FUNC interface
FUNC interface
return mode-id
(MD3)
item-size
file base, modulo,
and separation

dictionary base,
modulo, and
separation

FUNC interface
FUNC interface

scratch

Selection processor LIST Processor

points to t~e next
explicit item-id
scratch scratch
points one before
the item count field
points to the current correlative
correlative field segment in the IS

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 58

---~-~---~-.-~---.~~--~--- - - -----.--~-----~-----~--~----------- --~--~--

()

f~'''\

'~oj

SR2
SR3
SR4

Q~~

scratch
reserved
points to the last
AM of the item
reserved

scratch
scratch

points to the next
current conversion
field

SR7
SR8-SR12
SR13

points to the
conversion field
reserved
reserved
GOSORT only: next
sort-key

scratch
reserved
reserved

SR14-SR19
PAGHEAD

reserved
heading in the HS
if HEADING was
specified

reserved
generated heading in
the HS

A/R's

AF
BMS

CS
IB
OB
IS
OS
TS
UPD
IR

Selection Processor LIST Processor

scratch
within the BMS
area

scratch
scratch

scratch
scratch
output data line

compiled string compiled string
scratch

within the TS area within the TS area
within the HS area

within the item within the item

O'~~ork Space
sage Selection Processor LIST processor

AF
BMS
CS
IB
IS
OS
HS

TS

scratch
contains the item-id
control break value string
output line
compiled string
scratch
heading data heading data;

attribute data for
special exits

scratch current value in
process

Additional Notes

C-"'.
. /

1. If a full-file-retrieval is specified, the
additional internal elements as used by GETITM
will be used. If explicit item-id's are
specified, RETIX is used for retrieval of each
item.

2. Most elements used by the CONV and FUNC processors
have been shown ip the table; both may be called
either by the Selection processor or the LIST
processor.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 59

3. Since the ISTAT and SUM/STAT processes are
independently driven by the Selection processor,
the element usage of these processors is not
shown.

4. The section of the IS and OS used by the Selection
and LIST processors is delimited by ISEND and
OS END respectively. The buffer space beyond these
pointers is available for use by other programs.

3.3.7 GETBUF - G3 GETBUF - G3

These routines accept input data from the terminal and perform
some editing on the characters obtained. GETBUF also prints
an initial prompt character at the terminal before reading input.
Control is returned when a non-editing control character is input,
or when the number of characters specified in TO or Tl are input.

Editing Features

Control-H

Control-X

Control-R

Rubout

Control-shift-K
Control-shift-L
Control-shift-M
Control-shift-N
Control-shift-O

Logically backspaces the buffer
pointer; echoes character in BSPCH

Logically deletes the entire input
buffer; echoes a CR/LF, and prints
the prompt character

Retypes the input line

Ignored; the character is echoed,
but is not stored in the buffer

These characters are converted to
the internal delimiters SB, SVM,
VM, AM, and SM, respectively; they
echo as the characters [, /,], -
and

Note: the high order bit of all characters input is zeroed.

Input Interface

BSPCH

PRMPC

TO

Tl

C

C

Contains the character to be echoed to
the terminal when the back space key is
pressed; required by G3

Character output as a "prompt" when
input is first requested by GETBUF, and
after certain editing operations by both
GETBUF and G3

T Contains the maximum number of
Characters accepted (for GETBUF only)

T Contains the maximum number of
characters to be accepted (for G3 only)

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 60

o

~~"-.,'..\

V

Rl4 R

() Rl5 R

Output Interface

Rl5 R

Element Usage

DO

Points one byte before the beginning of
the input buffer area (for GETBUF only)

Points one byte before the beginning of
the input buffer area (for G3 only)

Points to the control character causing
return to the calling routine

3.3.8 GETIB - GETIBX GETIB - GETIBX

GETIB and GETIBX are the standard termianal input routines.
Register IBBEG points to a buffer area where the routine will input the
data. Input continues to this area until either a carriage return
or line feed is encountered, or until a number of characters equal
to the count stored in IBSIZE have been input. The carriage return or
line feed terminating the input line is overwritten with a segment
mark (SM), and register IBEND points to this character on return.
If the input is terminated because the maximum number of characters
has been input, a SM will be added at the end of the line.

This routine calls GETBUF to read input data from the terminal, and
then determines if the last character was a carriage return or line

. feed, and echoes a CR/LF to the terminal. If the last character
(~~as a control character (see GETBUF documentation), GETIB/GETIBX

jeither accepts or deletes the character, depending on the value
of bit CCDEL, and calls GETBUF again.

The entry GETIB also provides the facility for taking input from
a stack instead of directly from the terminal (see below). This
feature is used, for example, by the PROC processor to store
input lines which are returned to requesting processors as if
they originated at the terminal. If the last character in a
stacked line is a " ", it is replaced with a SM. Terminal input
resumes when the stacked input is exhausted. GETIBX does not
test for stacked input.

Input Interface

CCDEL B

IBBEG S

IBSIZE T

If set, control characters are deleted
from terminal input

Points one byte before the buffer area
where input is to be stored; the buffer
must be two bytes greater than IBSIZE

Contains
characters

the maximum
accepted for

number
input

of

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 61

LFDLY T

PRMPC C

BSPCH C

STKFLG B

STKINP

Output Interface

IB

IBEND

STKFLG

STKINP

Element Usage

R14

R15

Subroutine Usage

S

R

S

B

S

R

R

Contains
number of
be issued
terminal;

Terminal
GETBUF

(in the low-order byte) the
"fill" characters (nulls) to
after a CR/LF echo to the

required by PCRLF

prompt character; required by

Contains the character to be echoed to
the terminal when the back space key is
pressed; required by G3

If set, GETIB tests for "stacked" input;
terminal input will not be requested
until stacked input is exhausted

Points to the next "stacked" input line;
lines are deliminated by AM's, with a SM
indicating the end of the stack

=IBBEG

Points to a SM one byte past the end
of input data (overwrites the CR or LF)

Zeroed if the end of stacked input was
reached; not changed if initially zero

Points to the next line of stacked input
(or end of stack) if stacked input is
being processed

If no stacked input: GETBUF, G3, PCRLF (if CCDEL=l)

One additional level of subroutine linkage required

Error Conditions

if a stacked input line exceeds IBSIZE, the line is truncated at IBSIZEi
the remainder of the line is lost.

3.3.9 GETITM GETITM

This routine sequentially retrieves all items in a file. It is called
repetitively to obtain items one at a time until all items have been retrieved.
The order in which the items are returned is the same as the storage sequence.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 62

If the items retrieved are to be updated by the calling routine (using routine
UPDITM) , this should be flagged to GETITM by setting bit DAFI. For updating,
GETITM performs a two-stage retrieval process by first storing all item-ids

C. per group) in a table, and then using this table to actually retrieve the
~tems on each call. This is necessary because, if the calling routine updates
an item, the data within this group shifts around; GETITM cannot simply
maintain a pointer to the next item in the group, as it does if the "update"
option is not flagged.

An initial entry condition must also be flagged to GETITM by zeroing bit DAF7
before the first call. GETITM then sets up and maintains certain pointers
which should not be altered by calling routines until all the items in the file
have been retrieved (or DAF7 is zeroed again).

Note the functional equivalence of the output interface elements with those of
RETIX.

Input Interface

DAF7

DAFI

DBASE
DMOD
DSEP

BMSBEG

B Initial entry flag; must be zeroed on
the first call to GETITM

B If set, the "update" option is in effect

D + Contain the base, modulo, and separation
T + of the file
T +

R Points one prior to an area where the
item-id of the item retrieved on each
call may be copied

OVRFLCTR D Meaningful only if DAFI is set; if
non-zero, the value is used as the
starting FID of the overflow space table
where the list olrbem-ids is stored; if
zero, GETS PC is called to obtain space
for the table

Output Interface

RMBIT
SIZE
R14
IR
SR4
XMODE

SRO

BMS

BMSEND S

B +
T +
R + (See RETIX documentation)
R +
S +
T +

S =R14 if DAFI is set, otherwise as set by
GNSEQI

R As set by RETIX if DAFI is set,
otherwise as set by GNSEQI

=BMS if DAFI is set, otherwise unchanged

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 63

DAF9

Element Usage

BASE
MODULO
SEPAR
RECORD
NNCF
FRMN
FRMP
NPCF

OVRFLW

B

D +
T +
T +

=0

D + Used by GETITM and other subroutines for
H + accessing file data
D +
D +
H +

D Used by GETS PC if DAFl is set and
OVRFLCTR is initially zero

The following elements should not be altered by any other routine while
GETITM is used:

DAFl
DAF7

DBASE

DMOD

DSEP

SBASE
SMOD
SSEP

B + (See Input Interface)
B +

D

T

T

Contains the beginning FID of
current group being processed

the

Contains the number of groups left to be
processed

(Unchanged)

D + Contain the saved values of DBASE, DMOD,
T + and DSEP when the routine was first
T + called

NXTITM S Points one before the next item-id in
the pre-stored table if DAFl is set,
otherwise points to the last AM of the
item previously returned

OVRFLCTR D

Subroutine Usage

Contains the starting FID of the
overflow space table if DAFl is set,
otherwise unchanged

RCREC, GNSEQli GNTBLI (local), RETIX, and GETSPC (if OVRFLCTR =0) if DAFl
is set

BMSOVF used with XMODE

Four additional levels of subroutine linkage required

Error Conditions

See RETIX documentation ("Exits")i GETITM, however, continues retrieving
items until no more are present even after the occurance of errors

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 64

C'" , \
f

3.3.10 GETOPT GETOPT

This routine processes an option string consisting of single alphabetic OCharacters and/or a numeric option, separated by commas. A numeric option
. consists of a numeric character or a pair of numeric characters separated by a

hyphen. If the option string contains more than one numeric option, the last
one will be used. Alphabetic options set the corresponding bits ("A" sets
ABIT, etc.), but these bits are not zeroed upon entry. The option string
begins one past the address pointed to by register IS, and must end with a
right parenthesis (")").

Input Interface

IS R Points one before the option string

Output Interface

ABIT B +
+
+ Set as described above
+

ZBIT B +

NOBIT B Set if a numeric option is found,
otherwise zeroed

RMBIT B Set if no errors are found in the option
format, otherwise unchanged

C·
D4 D =value of the first number in a numeric

option, if found, otherwise unchanged

D5 D =value of the second number in a numeric
option, if found; =D4 if a numeric
option consists of a single number;
otherwise unchanged

IS R Points to the last character processed
(=") II if no format errors are found)

RMODE T =0 if a format error is found

Element Usage

DO and Dl

Subroutine Usage

CVTNIS if a numeric option is found

Two additional levels of subroutine linkage required

Exits

To MD995 with error 209 if a format error is found

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 65

3.3.11 GETOVF GETOVF
GETBLK
GETS PC

These routines obtain overflow frames from the overflow space pool maintained~\
by the system. GETOVF and GETS PC are used to obtain a single frame; GETBLK is .
used to obtain a block of contiguous space (used mainly by the CREATE-FILE
processor). Note that the link fields of the frame(s) obtained by a call to
GETBLK are not reset or initialized in any way - this is a function of the
calling routine. GETOVF and GETSPC zero all the link fields of the frame they
return.

These routines cannot be interrupted until processing is complete.

Input Interface

DO D

Output Interface

OVRFLW D

Element Usage

INHIBITSV2 B +

Contains the number of frames needed
(block size), for GETBLK only

If the needed space is obtained, this
element contains the FID of the frame
returned (for GETOVF and GETSPC) or the
FID of the first frame in the block
returned (for GETBLK); if the space is
unavailable, OVRFLW=O

DO D + Utility
R14 R +
R15 R +

Subroutine Usage

SYSGET (but not used by GETOVF if a frame
frame block in the system overflow table);
GETOVF called by GETSPC; NOS PACE called
available

is obtained from a multiple
three internal subroutines;

by GETS PC if no frames are

One additional level of subroutine linkage required by GETOVF and GETBLK;
three levels required by GETS PC

Exits

For GETSPC: to NSPCQ if no more frames are available and processing is
aborted by the user; this is a function of NOSPACE

3.3.12 GETUPD GETUPD

GETUPD initializes the UPD register triad to point to the UFD work space (frame
PCB+28) .

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 66

Input Interface

None

~utPut Interface

UPD
UPDBEG

R + Point to the first data byte of the
S + frame 28 frames after the process's PCB

UPDEND S

3.3.13 GNSEQI

Points to the last byte of the above
frame

GNSEQI

This routine gets the next sequential item from a file. If its pointer
into the file (register NXTITM) is at the end of a group, it returns
with bit RMBIT zero; otherwise it copies the item-id into the area
specified by register BMS, updates NXTITM, sets RMBIT,
sets registers pointing to the beginning and end of the item, and returns
the item size in tally SIZE. If a non-hexadecimal digit is found
in the item count field, or the computed item size is negative or
zero, GNSEQI immediately returns to the routine which called it.

Input Interface

NXTITM s

BMS R

Output Interface

RMBIT B

NXTITM S

BMS R

SRO S

SR4 S

IR R

(j

Points one before the beginning of the
next item to be retrieved (or the AM at
the end of the group)

Points one before the area to which the
item-id is to be copied

Set if an item was successfully
retrieved, otherwise zeroed

Points one before the
end-of-group AM if
otherwise unchanged

following item or
RMBIT is set,

Points to an AM after the copied item-id
if the item was retrieved, otherwise
unchanged

=the initial value
the end of the
unchanged

=NXTITM if RMBIT
unchanged

of NXTITM if not at
group, otherwise

is set, otherwise

Points to the AM after the item-id if
RMBIT is set; points to the AM before
the item-id if SIZE is zero onegative;
points to the AM indicating end of group
data if there were no more items in the
group when the routine was called;
points to the character in error if a
non-hexadecimal character is found in

SIZE

XMODE

3.3.14 GNTBLI

T

D

the item count field

Contains the value of the item count
field if RMBIT is set

=0

GNTBLI

This routine retrieves the next entry from a table consisting of
strings (typically item-ids) separated by AMs, and terminated by
a SM. On each call, the routine checks if its pointer (register
NXTITM) is at the end of the table. If it is, the routine exits
with bit RMBIT zero; otherwise the next table element is copied
into the buffer specified by register BMS, NXTITM is set
pointing to the following element, and RMBIT is set.

Input Interface

NXTITM S

BMS R

Output Interface

NXTITM S

IR R

BMS R

RMBIT B

Points one before the next table entry
(or SM)

Points one before the area to which the
table entry is to be copied

Points to the AM following the entry
which was copied, if one was copied,
otherwise one before the SM at the end
of the table

=NXTITM if an element was
otherwise NXTITM+l

copied,

Points to an attribute mark one past the
end of the entry copy, if present,
otherwise unchanged

Zeroed if NXTITM points to
table when the routine
otherwise set

the end·of the
is called,

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 67

3.3.15 HGETIB

This routine accepts a line of input from the terminal, like GETIB,

Cnd also handles tabs if bit STKFLG is zero. A table of preset tab
,bsi tions, in increasing order of column numbers, is assumed to be

'set up in tallies CTR8-CTR15. Up to 16 tab positions may be stored,
two per tally, with unused positions set to zero. When a horizontal
tab character (control-I, X'09') is encountered in the input
string, the cursor is positioned according to the tab table, and the
input line is filled with the appropriate number of blanks.

Input Interface

STKFLG

IBBEG

IBSIZE

LFDLY

(~
PRMPC

BSPCH

CCDEL

STKINP

CTR8

CTR15

B

S

T

T

C

C

B

enters
tab
for
not

If set, the routine immediately
GETIB, without processing
characters; if set, GETIB tests
"stacked" input; terminal input will
be requested until stacked input
exhausted (see GETIB documentation)

is

Points one byte before the buffer area
where input is to be stored; the buffer
must be two bytes greater than IBSIZE

contains
characters

Contains
number of
be issued
terminal;

the maximum
accepted for

number
input

of

(in the low-order byte) the
"fill" characters (nulls) to
after a CR/LF echo to the

required by TCRLF (and PCRLF)

Contains the terminal prompt character;
required by GETBUF

Contains the character to be echoed to
the terminal when the back space key is
pressed; required by G3

If set, control characters are deleted
from terminal input

S Points to the next "stacked" input line;
lines are de1iminated by AM's, with a SM
indicating the end of the stack;
meaningful only if STKFLG is set

T +
+
+ Contain tab positions as described above
+

T +

c CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 68

Output Interface

IB R

I BEND S

STKFLG B

STKINP S

Element Usage

DO D
Dl D
R14 R
R15 R
IB R
CTR7 T
CTR16 T

Subroutine Usage

GETBUF; TCRLF;

+
+
+

=IBBEG

Points to a SM one byte past the end
of input data (overwrites the CR or LF)

Zeroed if the end of stacked input was
reached; not changed if initially zero

Points to the next line of stacked input
(or end of stack) if stacked input is
being processed

+ Utility
+
+
+

G3

Two additional levels of subroutine linkage required

3.3.16 HSISOS

This routine sets up the register triads for the HS, IS, and OS work spaces as
described below. It does not link frames in the work spaces.

Input Interface

None

Output Interface

R2

HS
HSBEG
HSEND

IS
ISBEG

I SEND

OS
OSBEG

CHAPTER 3

R Points to the Secondary Control Block
(PCB+l)

R + Point to the beginning of the HS work
S + space (PCB+10)
S +

R + Point to the beginning of the IS work
S + space (PCB+16)

S Points to the last data byte in the
primary OS work space (3000 bytes past
ISBEG)

R + Point to the beginning of the OS work
S + space (PCB+22)

SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 69

OSEND S Points
primary
OSBEG)

to the last data byte in the
os work space (3000 bytes past

C;The first byte in each work space is set to X'OO'.

Element Usage

DO

3.3.17 INITTERM - RESET TERM

These routines are used to initialize terminal and line printer
characteristics. RESET TERM is called from WRAPUP before reentering
TCL; INITTERM is called from LOGON.

Input Interface

OBSIZE T

OBBEG S

Contains the value of the output (OB)
buffer (RESETTERM only)

Points to the start of the OB buffer

Output Interface

C

o

TOBSIZE T +
TPAGSIZE T +
POBSIZE T + Initialized to default values, as by
PPAGSIZE T + SETUP TERM (INITTERM only)
PAGSKIP T +
LFDLY T +
BSPCH C +

CCDEL B +
SMCONV B +
STKFLG B +
PAGINATE B +
NOBLNK B +
LPBIT B + =0
TPAGNUM T +
TLINCTR T +
PPAGNUM T +
PLINCTR T +
PAGNUM T +
LINCTR T +

PAGHEAD S Contains zero in the frame field

OB R =OBBEG
OBSIZE T =TOBSIZE

R14 R + =OBBEG+QBSIZE
OBEND S +

The area from the address pointed to by OBBEG to that pointed to by OBEND
is filled with blanks

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 70

3.3.18 IROVF

These routines can be used to handle end-of-1inked-frames conditions
when using register IR with MCI, MIl, or MIlD instructions. By
setting tally XMODE to the mode-id of one of these routines before ,~~~
executing the instruction, the routine will be entered automatically \~)
if an end-of-1inked-frames (forward link zero) condition occurs.
A warning message will be printed and control will pass to the instruction
following the MCI, MIl, or MIlD instruction. Additionally, bit
DAF9 may be set to truncate group data so that the condition does
not arise again. The only difference between the two IROVF entry
points is that the one in SYSTEM-SUBS-II initializes register R14
to be compatible with routines such as GNSEQI, and then branches to
the code in WSPACES-II.

Input Interface

IR R

DAF9 B

R14 R

OBBEG S

NXTITM S

Output Interface

Points into the frame whose forward link
is zero

If set, group data is terminated at the
address specified by R14 (UPDITM, for
instance, uses this feature); otherwise
the warning message is printed but the
data is unchanged

Points to the address at which group
data is to be truncated if DAF9 is set,
typically the end of the last good item
in the group; an AM is stored in the
byte addressed by R14, marking the end
of an item, and another AM is stored in
the following byte, marking the end of a
group

Points one prior to an output buffer for
printing an error message (required by
WRTLIN)

Contains the value to be used in R14 for
group data truncation (SYSTEM-SUBS-I
entry only)

IR R Points to the last byte of the frame

R14 R + =IR-1
SR4 S +

RMBIT B +
LISTFLAG B + =0
SIZE T +
XMODE T +

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 71

The message "*GROUP FORMAT ERROR xxxx" is printed, where "xxxx" is the
number of the frame pointed to by IR

Clement Usage

R15 R

T4 T +
T5 T + Used by MBDSUB
Dl D +
D2 D +

Subroutine Usage

MBDSUB; WRTLIN

BMSOVF used with XMODE if DAF9=1

Five additional levels of subroutine linkage required if LPBIT is set (for
WRTLIN); Four levels required if DAF9 is set and BMSOVF is entered to
obtain another overflow frame (using ATTOVF) - this would occur if R14
were also pointing at the end of a set of linked frames when IROVF was
entered; one level always required for MBDSUB

3.3.19 ISINIT

ISINIT simply invokes WSINIT and HSISOS to initialize all the process work
space pointers.

Jnput and Output Interfaces

C\ See WSINIT and HSISOS documentation.

Element Usage
DO

Subroutine Usage
WSINIT, HSISOS
Three additional levels of subroutine linkage required

3.3.20 LINESUB

This routine returns the line number of the calling process in the
accumulator

Input Interface
None

Output Interface
DO D

Element Usage
Dl D

Subroutine Usage

Contains the line number associated with
the process

C·\ GPCBO
) One additional level of subroutine linkage required

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 72

3.3.21 MD4l5

This routine is used to pick up numeric parameters from a string
addressed by register lB. Parameters may be either a single string
of numeric characters, or two such strings separated by a hyphen.

Input Interface

IB R

SC2 C

Output Interface

C3 T

C4 T

IB R

3.3.22 NEWPAGE

Points at least one before the first
non-blank character of the parameter
string, or to a SM indicating no
parameters

Contains a blank

Contains the value of the first numeric
parameter if one is converted, otherwise
set to zero

Contains the value of the second numeric
parameter except under the following
conditions: if zero or one parameters
are present, C4 is set to X'7FFF'; if
the second parameter is less than the
first, C4 is set equal to C3

Points to the first non-blank character
after the converted parameter string,
but unchanged if originally pointing to
a SM

This routine is used to skip to a new page on the terminal or line printer
and print a heading. No action is performed, however, if bit PAGINATE
or tally PAGSIZE is zero.

Input Interface

As for WRTLIN, except OB is first set equal to OBBEG by this routine
Output Interface

Same as for WRTLIN

Element Usage

Same as for WRTLIN

Subroutine Usage

WRTLIN and routines called by it, if PAGINATE is set and PAGSIZE is
greater than zero

Additional subroutine linkage required only if WRTLIN
WRTLIN documentation for the number of additional
required, and add 1

is called; see
levels of linkage

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 73

()

rr~~\

~)

3.3.23 NEXTIR - NEXTOVF

NEXTIR obtains the forward linked frame of the frame to which register IR (R6)

O~urrentlY points; if the forward link is zero, the routine attempts to obtain
n available frame from the system overflow space pool and link it up

appropriately (see ATTOVF documentation). In addition, if a frame is obtained,
the IR register triad is set up before return, using routine RDREC.

NEXTOVF may be used in a special way to handle end-of-linked-frame conditions
automatically when using register IR with single- or multiple-byte move or scan
instructions (MIlD, MIl, or MCI). Tally XMODE should be set to the mode-id of
NEXTOVF before the instruction is executed; if the instruction causes IR to
reach an end-of-linked-frame condition (forward link zero), the system will
generate a subroutine call to NEXTOVF, which will attempt to obtain and link up
an available frame, and then resume execution of the interrupted instruction
(assuming a frame was gotten). If there are no more frames in the overflow
space pool, NOSPACE is called. Note that the "increment register by tally"
instruction cannot be handled in this manner.

NEXTOVF is also used by UPDITM with register TS (Rl3). If NEXTOVF is entered
with TS at an end-of-linked-frames condition, a branch is taken to a point
inside UPDITM. Under any other condition (other than IR or TS end-of-linked
frame), NEXTOVF immediately enters the DEBUGGER.

Input Interface

IR

ACF

R

H

Points into the frame whose
forward-linked frame is to be obtained
(displacement unimportant)

For NEXTOVF only, must contain X'06' for
IR end-of-linked-frame handling (set
automatically by MIlD, MIl, and MCI
instructions)

Output Interface

C 1 ~/

IR
IRBEG
I REND

RECORD

R15
NNCF
FRMN
FRMP
NPCF

OVRFLW

R + Point to the first data byte of the
S + forward linked frame
S Points to the last byte of the forward

linked frame

D

R +
H +

Contains the FID of the frame to which
IR points

D + As set by RDLINK for the FID in RECORD
D +
H +

D =RECORD if
unchanged

ATTOVF called, otherwise

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 74

Element Usage

R14 R Used by RDLINK

~;~ents used by ATTOVF if a frame is obtained from the overflow space (~)

Subroutine Usage

RDLINK; ATTOVF if a frame must be obtained from the overflow space pool;
NOSPACE if ATTOVF cannot find any more frames

Three additional levels of subroutine linkage required

Exits

Normally returns via
NOSPACE documentation);

RDREC; possibly to NSPCQ if NOSPACE used (see
to 5,DBl if ACF not X'06' or X'OD' (NEXTOVF only)

3.3.24 OPENPFILE

This routine retrieves the base, modulo, and separation parameters of the
system file POINTER-FILE, and bypasses the normal lock-code tests in doing so.

Input Interface

BMSBEG S

Output Interface

BASE D
MODULO T
SEPAR T

Element Usage

R15 R
BMS R

CTRl T

RECORD D
SIZE T
NNCF H
FRMN D
FRMP D
NPCF H
IR R
R14 R
BMSEND S
SR4 S
XMODE T
DAF9 B

Points to an area where the POINTER-FILE
file-name may be copied, for RETIX

+ Contain the POINTER-FILE base, modulo,
+ and separation
+

+ Utility
+

Used to save the value of tally USER

+
+
+
+
+
+ Used by RETIX
+
+
+
+
+
+

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 75

- .. ~-~----- ~------ ------~----------------------.--------- "------- -""--"--------- ~~~~~~~~~~-

SYSRO
SYSRl

.. SYSR2

QUbroutine

S
S
S

Usage

+ Used by GBMS if the POINTER-FILE item in
+ the SYSTEM dictionary is a "Q" code item
+

GMMBMSi RETIXi GBMS unless the POINTER-FILE entry in the SYSTEM
dictionary is missing

Six additional levels of subroutine linkage required if the POINTER-FILE
entry in the SYSTEM dictionary is a "Q" code item, otherwise four levels
required

Exits

To MD994 with message 201 (value in Cl) if the POINTER-FILE entry in the
SYSTEM dictionary is missing or in improper format

3.3.25 PCBFID

This routine returns the FID of the PCB for the process as a string of four
hexadecimal digits in the TS work space.

Input Interface

TSBEG S

(~putPut Interface

/ TS R
TSEND S

R15 R

Element Usage

DO

Points one before the area where the
returned value is to be stored

+ Point to the last character
+ returned value, at TSBEG+l

Points to a SM placed at TS+l

of the

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 76

3.3.26 PCRLF
FFDLY

PCRLF prints a carriage return and line feed on the terminal and
enters FFDLY, which prints a specified number of delay characters
(X' 00') .
Input Interface

LFDLY H

TO T

Output Interface
None

Element Usage
R14 R

3.3.27 PINIT

Contains
only)

the delay count (for PCRLF

Contains the delay count (for FFDLY
only)

PINIT is used for process initialization. Pointers are set up to
all work spaces; links are set up in frames of linked work spaces
(HS, IS, OS, and PROC). All elements in the primary, secondary,
and tertiary (DEBUG) control blocks are zeroed, except as noted
below.

Input Interface
RO R Points to the PCB of the process to be

initialized
Output Interface

R2 R Points to the process's SCB (PCB+l)

HS
HSBEG
HSEND

IS
ISBEG
ISEND

OS
OSBEG
OSEND

IBSIZE

OBSIZE

TTLY

INHIBIT

R + he beginning of the HS work
S + space (PCB+lO)
S +

R
S
S

R
S
S

T

T

+ POINT
+ space
+

+ Point
+ space
+

=140

=100

TO THE BEGINNING OF THE
(PCB+16)

to the beginning of the
(PCB+22)

T =0 (For DEBUG use)

B =1

other elements as initialized by wsinit.

IS work

OS work

Address registers, and the PCB elements PRMPC, SCO, SCI, and SC2 (all
characters) are not zeroed. In addition, the tertiary control block is
initialized for the debugger by setting the corresponding INDEBUG bit to
1, and setting the corresponding Rl and return stack elements to execute
debugger code.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 77

Element Usage

(Functional elements initialized as described)

C::Aubroutine Usage

WSINIT (local), LINK

Three additional levels of subroutine linkage required

3.3.28 PONOFF

PONOFF is used to reverse the setting of bit LISTFLAG before entering the
WRAPUP processor. When LISTFLAG is set, all output to the terminal is
suppressed by the standard output routines (see WRTLIN documentation). After
reversing this bit, PONOFF exits to MD99.

3.3.29 PPUT (l,SPOOLADD)*

PPUT is used to output a line of data to the spooler process, which will then
print it on the line printer or take other action depending on the process's
entry in the spool assignment table (see spooler documentation).

Input Interface

OBBEG S

OB R

C' NOBLNK B

Output Interface

OB R

RMODE T

Points one before the first character of
the output data

Points to the last character of the
output data

if set, the output buffer is not filled
with blanks after the data is output

=OBBEG

=0 if processing is aborted due to no
more overflow space available

The output buffer is filled with blanks (through the address originally
pointed to by OB) unless NOBLNK is set

Element Usage

R8 R +
R14 R +
R15 R +
INHIBITSVI B + Utility
CHO C +
Dl D +
RECORD D +

OVRFLW D Used if ATTOVF is called

~ubroutine Usage

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 78

ASG. TBL; two local subroutines; ATTOVF if more overflow space is needed
to store data; 2,SPOOLINIT and CHANCE2 if ATTOVF cannot find any more
space

Three additional levels of subroutine linkage required

Exits

To LINE if line-at-a-time spooler output is specified in the assignment
table entry; to MD999 if processing aborted due to no more overflow space
available

3.3.30 PRIVTSTI - PRIVTST2 - PRIVTST3

These routines check to see if the calling process has appropriate system
privilege levels. If not, bits PQFLG and LISTFLAG and tally RMODE are set to
zero, the history string is set null (HSEND=HSBEG), tally REJCTR is set to 82
(an error message number), and an exit is taken to MD99. Otherwise the
routines return normally.

Entry

PRIVTSTI

PRIVTST2

PRIVTST3

3.3.31 PRNTHDR

Bit tested (error if not set)

SYSPRIVI

SYSPRIV2

RO;B245

NPAGE

These are entry points into the system routine for pagination and heading
control of output (also used by WRTLIN, WT2, and WRITOB when pagination is
specified). PRNTHDR is used to initialize bit PAGINATE to 1, and tallies
LINCTR and PAGNUM to zero and one, respectively. PRNTHDR then falls
immediately into NPAGE, which outputs a header message.

A page heading, if present, must be stored in a buffer defined by register
PAGHEAD. The header message is a string of data terminated by a SM; system
delimiters in the message invoke special processing as follows:

SM (X'FF')

AM (X'FE')

VM (X'FD')

SVM (X'FC')

Terminates the header line with a CR/LF

Inserts the current page number into the
heading

Prints one line of the heading and
starts a new line

Singly, inserts the current time and
date into the heading, but two SVM's in
succession insert the date only

SB (X' FB') Inserts data from one of various buffers
into the l1eading; if the character -:f~"
following the SB is 'I', data is copied ~. J;

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS .~
PAGE 79

from the area beginning one byte past
the address specified by register
BMSBEG; if the character is ' A ' ,
register AFBEG is used; for any other
character, data is copied from the area
beginning three bytes past the address
specified by register ISBEG; data to be
copied can be terminated by any system
delimiter

Carriage returns, line feeds, and form feeds should not be included in
header messages, or the automatic pagination will not work properly.

Input Interface

()

PAGINATE B

LINCTR T

PAGNUM T

=1 (NPAGE only; set automatically by
PRNTHDR)

Contains the number of the line to be
printed on the current page (NPAGE only;
set to zero automatically by PRNTHDR)

Contains the current
only; set to one
PRNTHDR)

page number (NPAGE
automatically by

Other parameters as for WT2 (see WRTLIN dcumentation),xcept for
PAGINATE and PAGNUM (see above) and OB (initialized to OBBEG by NPAGE);
note that the buffer where the translated heading message is built
(specified by register OBBEG) must be at least two bytes greater than the
longest line output in the translated heading (not necessarily the total
heading size, if the original heading string contains any VMs), in order
to accomodate a trailing crlf.

Output Interface

Same as for WT2

Element Usage
Same as for WT2

Subroutine Usage
Same as for WT2

Exits
To WT2

3.3.32 PROC User Exits

Summary

PROC User Exits

A user-written program can gain control during execution of a PROC by using the
Uxxxx or Pxxxx command in the PROC, where "xxxx" is the hexadecimal mode-id of
the user routine. The routine can perfor special procsing, and then return
control to the PROC processor. Necessarily, certain elements used by the PROC
processor are maintained by the user program; these elements are marked with

Oan asterisk in the table below.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 80

Input Interface

* BASE
*MODULO
*SEPAR

*PQBEG

*PQEND

PQCUR
IR

D + Contain the base, modulo, and separation
T + of the master dictionary
T +

S

S

Points one prior to the first PROC
statement

Points to the terminal AM of the PROC

S + Point to the AM following the uxxxx or
R + Pxxxx statement

*PBUFBEG S Points to the buffer containing the
primary and secondary (if any) input
buffers; buffer format is SB

* ISBEG S

*STKBEG S

IB R

*SR35 S

*SBIT B

*ZBIT B

*SC2 C

IS R

UPD R

Primary input ... SM SB Secondary
input ... SM

Points to the buffer containing the
primary output line

Points to the buffer containing "stacked
input" (secondary output)

Is the current input buffer pointer (may
point within either the primary or
secondary input buffers)

Points to the beginning of the current
input buffer

Set if a ST ON command is in effect

Reset to identify the PROC processor in
certain system subroutines

Contains a blank

SBIT on

Points to the last
byte moved into
the secondary
output buffer

Points to the last
byte moved into
the primary output
buffer

SBIT off

Points to the last
byte moved into
the primary output
buffer

Points to the last
byte moved into
the secondary
output buffer

Output Interface

IR

CHAPTER 3

R Points to the AM preceding the next PROC
statement to be executed; may be altered
to change PROC execution

SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 81

-----~~--.-- -----~~--~~~~~~~~- ._----_ .. _-----

IS R
UPD R
IB R o

+ May be altered as needed to alter data
+ within the input and output buffers, but
+ the formats described above must be

maintained

Exit Convention

The normal method of returning control to the PROC processor is to execute an
external branch instruction (ENT) to 2,PROC-I. To return control and also
reset the buffers to an empty condition, entry l,PROC-I may be used. If it is
necessary to abort PROC control and exit to WRAPUP, bit PQFLG should be reset
before branching to any of the WRAPUP entry points (see WRAPUP documentation).

Note that when a PROC eventually transfers control to TCL (via the "P"
operator), certain elements are expected to be in an initial condition.
Therefore, if a user routine uses these elements, they should be reset before
returning to the PROC, unless the elements are deliberately set up as a means
of passing parameters to other processors. Specifically, the bits ABIT through
ZBIT are expected to be zero be the TCL-II and ENGLISH processors. It is best
to avoid usage of these bits in PROC user exits. Also, the scan character
registers SCO, SCI, and SC2 must contain a SB, a blank, and a blank,
respectively.

3.3.33 PRTERR

PRTERR is used to retrieve and print a message from the system file ERRMSG. A
parameter string may be passed to the routine, in which case the parameters are
formatted and inserted according to the codes in the message item.

(
tems in the ERRMSG file consist of an arbitrary number of lines (where a line

. \s delimited by an AM), with each line containing a code letter in column one,
ossibly followed by a string or numeric parameter (numeric parameters enclosed

in parentheses). The possible codes and their meanings are listed below.
(Brackets indicate optional parameters.)

()

A [(dec. #)] Parameter insertion code; the next
parameter from the parameter string, if
any, is placed into the ouput buffer; if
"dec. #" Is specified, the parameter is
left-justified in a blank field of that
length

R [(dec. #)]

H string

E [string]

L [(dec. #)]

Like A, only the parameter is
right-justified, in a field of "dec. #"
Blanks if "dec. #" Is specified

The character string is placed in the
output buffer (no blank is necessary
between the code letter and the
beginning of the string)

The message
brackets, is

item-id, surrounded by
placed into the outpur-t

The output buffer is printed, and the
specified number of line feeds is output
(one if "dec. #" Is not specified)

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 82

bu

S [(dec. #)] The pointer to the current position in
the output buffer is repositioned to the
specified column (column one if
"dec. #" Is not present)

X (dec. #)

T

D

Input Interface

The pointer to the current position in
the output buffer is incremented by the
specified number of spaces; if the end
of a line is reached (see below), the
buffer is printed and a new line is
started

The system time in HH:MM:SS is added to
the output buffer

The system date in DD MMM YYYY format is
added to the output buffer

TS R Points one prior to the message item-id,
which must be terminated by an AM;
parameters optionally follow, being
delimited by AM's; the parameter string
must end with a SM

EBASE
EMOD
ESEP

MBASE
MMOD
MSEP

OBSIZE

OBBEG
OBEND

D + Used as the base, modulo, and separation
T + for the message file if EBASE is
T + non-zero; if EBASE is zero, PRTERR

D
T
T

T

S
S

attempts to set EBASE, EMOD, and ESEP to
the parameters for the system file
ERRMSG, and exits abnormally if unable
to do so

+ Used as the parameters for the
+ dictionary if necessary to set up
+ EMOD, and ESEP, but PRTERR

abnormally if MBASE is zero

master
EBASE,
exits

Contains the maximum number of
characters to be output on a line
(normally set at logon time)

+ Point to the beginning and end
+ output buffer (normally set at

time)

of the
logon

Other elements as required by WRTLIN (see WRTLIN documentation)

Output Interface
TS R Points to the AM after the message

item-id if no parameters are processed,
otherwise to the AM or SM after the last
parameter processed

EBASE
EMOD
ESEP

CHAPTER 3

D + Contain the base, modulo, and separation
T + parameters for the system file ERRMSG if
T + EBASE was originally zero (and the file

was successfully retrieved)
SUPPORT SOFTWARE Copyright (c) 1985

PAGE 83
PICK SYSTEMS

LINCTR
PAGNUM

~)lement Usage

SB60
SB61
CTRO
T6
BASE
MODULO
SEPAR
AF
IR
BMS
BMSBEG
OB
Rl4
SR4

CTRl

SYSRl

INHIBIT

T + Updated if bit PAGINATE is set
T +

B +
B +
T +
T +
D +
T +
T + Utility
R +
R +
R +
S +
R +
R +
S +

T Used with "R" code messages

S Used with "s" code messages

B Set during retrieval of file
EBASE is originally zero,

ERRMSG, if
and reset

afterwords to the value on entry

All elements used by WRTLIN (unless PRTERR exits abnormally), and elements

('C'; used by GBMS if PRTERR attempts retrieval of the system file ERRMSG

~$ubroutine Usage

RETIX, WRTLIN, TILD, DATE (for "D" code messages), TIME (for "T" code
messages), GBMS (for retrieving ERRMSG)

Six additional
retrieval of an
levels required

levels of subroutine linkage
ERRMSG file which is a "Q"

required if GBMS attempts
code item, otherwise four

Exits

To 2,ABSL if EBASE and MBASE are both zero

3.3.34 RELBLK - RELCHN - RELOVF

These routines are used to release frames to the overflow space pool. RELOVF
is used to release a single frame, RELBLK is used to release a block of
contiguous frames, and RELCHN is used to release a chain of linked frames
(which mayor may not be contiguous). A call to RELCHN specifies the first FID
of a linked set of frames; the routine will release all frames in the chain
until a zero forward link is encountered.

Input Interface
OVRFLW D

j

Contains the FID of
released (for RELOVF) ,
of the block or chain
(for RELBLK and RELCHN, C~'·

CHAPTER 3 SUPPORT SOFTWARE

the frame to be
or the first FID
to be released

respectively)
Copyright (c) 1985

PAGE 84
PICK SYSTEMS

DO D contains the number of frames (block
size) to be released, for RELBLK only

Output Interface

None

Element Usage

OVRFLW
R14
R15

DO
Dl
D2

D +
R + Utility
R +

D +
D + Used by SYSREL
D +

Subroutine Usage

SYSREL; two internal subroutines

Two additional levels of subroutine linkage required

3.3.35 RETI RETIX RETIXU

These are the entry points to the standard system routine for retrieving an
item from a file. The item-id is explicitly specified to the routine, as are
the file parameters base, modulo, and separation. Additionally, the number of
the first frame in the group in which the item may be stored must be specified
if the entry RETIXX is used. The other entries perform a "hashing" algorithm ~
to determine the group (see HASH documenta tion) . The group is searched/,r'''-\
sequentially for a matching item-id. If the routine finds a match, it returns\ .. , __ /
pointers to the beginning and end of the item, and the item size (from the item
count field). If entry RETIXU is used, the group is locked during processing,
preventing other programs from accessing (and possibly changing) the data.

The item-id is specified in a buffer defined by
is used, register BMS must point to the last
will be appended to it by the routine. For all
must already be terminated by an AM.

register BMSBEG; if entry RETI
byte of the item-id, and an AM

other entry points, the item-id

Input Interface

BMSBEG

BMS

BASE

MODULO
SEPAR

RECORD

S Points one byte before the item-id

R Points to the last character of the
item-id, for RETI, RETIXX, and UPRETIX
only

D + Contain the base, modulo, and separation

T + of the file to be searched
T +

D Contains the beginning FID of the group
to be searched, for RETIXX only

Output Interface

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 85

BMS
BMSEND

RECORD

NNCF
FRMN
FRMP
NPCF

XMODE

RMBIT

SIZE

R14

IR

C' SR4

B

T

R

R

S

Element Usage

R + Point to the last character of the
S + item-id

D Contains the beginning FID of the group
to which the item-id hashes (set if HASH
is called)

H +
D + Contain the link fields of the frame
D + specified in RECORD; set by RDREC
H +

T =0

Item Found:

=1

=value of item
count field

Points one prior
to the item count
field

Points to the
first AM of the
item

Points to the
last AM of the
item

Item Not Found:

=0

=0

Points to the last
AM of the last item
in the group

Points to the AM
indicating end of
group data (=R14+l)

=R14

None (except DO, Dl, and R15)

Subroutine Usage

RDREC (local), HASH (except for RETIXX; local), GLOCK (RETlXU only),
IROVF (for IR overflow space handling and error conditions)

Three
GLOCK;

Exits

additional levels of subroutine linkage required
RDREC and HASH require one level)

(for IROVF and

If the data in the group is bad - premature end of linked frames, or non
hexadecimal character encountered in the count field - the message

GROUP FORMAT ERROR xxxxxx

is returned (where xxxxxx is the FID indicating where the error was
found), and the routine returns with an "item not found" condition. Data
is not destroyed, and the group format error will remain.

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 86

3.3.36 SETLPTR - SETTERM

These routines are used to set output characteristics such as line width, page
depth, etc., to the previously-specified values for either the terminal or the
line printer. In addition, the current line number and page number are saved,f\
so that when switching from terminal to line printer output, say, and then \~j
switching back, pagination will continue automatically from the previous
values.

Input Interface

LPBIT

LINCTR

PAGNUM

OBSIZE

B

T

T

T

TPAGSIZE T
or
PPAGSIZE T

TOBSIZE
or
POBSIZE

TLINCTR
or
PLINCTR

TPAGNUM
or
PPAGNUM

T

T

T

T

T

T

Reset by SETTERM; set by SETLPTR

Contains the current line number

Contains the current page number

Contains the size of the OB buffer

Contains the number of printable lines
per page for the terminal or line
printer

Contains the size of the output (OB)
buffer for the terminal or line printer

Contains the current line number for the
terminal or lineprinter

Contains the current page number for the
terminal or line printer

Note: TPAGSIZE, TOBSIZE, TLINCTR, and TPAGNUM are required only by
SETTERMi PPAGSIZE, POBSIZE, PLINCTR, and PPAGNUM are required only by
SETLPTR

output Interface

PAGSIZE T +
OBSIZE T + set to the appropriate characteristics
LINCTR T + for terminal or line printer output
PAGNUM T +

TLINCTR T =LINCTR; TLINCTR set by SETLPTR, PLINCTR
or set by SETTERM
PLINCTR T

OBSIZE T =79 if originally zero

R14 R + =OBBEG+OBSIZE
OBEND S +

The area from the address pointed to by OBBEG to that pointed to by Obend
is filled with blanks

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 87

3.3.37 SETUPTERM

This routine sets
Ciharacteristics (as

Input Interface

BSPCH C

LFDLY T

TOBSIZE T

TPAGSIZE T

POBSIZE T

PPAGSIZE T

PAGSKIP T

Output Interface

the default values
used by INITTERM).

for terminal

Contains the character to be echoed for
a backspace

and

Contains the number of "fill" characters
to be output after a CR/LF in the lower
byte; if the upper byte is greater than
one, a form feed is output before each
page of paginated output, and that
number of "fill" characters is output

Countains the terminal line width

Contains the terminal page depth

Contains the printer line width

Contains the printer page depth

Contains the number of lines to be
skipped at the bottom of each page

C"'",: Default values initialized as described

3.3.38 SLEEP - SLEEPSUB SLEEP - SLEEP SUB

line printer

These routines cause the calling process to go into an inactive state for a
specified amount of time. If SLEEPSUB is used, either the amount of time to
sleep or the time at which to wake up may be specified.

Input Interface

DO

RMBIT

D

B

Contains the number of seconds to sleep,
up to 86400 (one day), or, for SLEEPSUB,
the time to wake up (number of seconds
past midnight) if RMBIT is reset

For SLEEPSUB only, set if DO contains
the number of seconds to sleep, and
reset if it contains the time to wake up

Output Interface

None

Element Usage

T2
D2

CHAPTER 3

T + Used by SLEEPSUB only, on a monitor call
D + to get system time

SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 88

Subroutine Usage

SLEEP used by SLEEP SUB

One additional level of subroutine linkage required by SLEEPSUB, none by
SLEEP

3.3.39 SORT SORT

This routine sorts an arbitrarily long string of keys in ascending sequence
only; the calling program must complement the keys if a descending sort is
required. The keys are separated by SM's when presented to SORT; they are
returned separated by SB's. Any character, including system delimiters other
than the SM and SB may be present within the keys.

An n-way polyphase sort-merge sorting algorithm is used. The original unsorted
key string may "grow" by a factor of 10%, and a separate buffer is required for
the sorted key string, which is about the same length as the unsorted key
string. The "growth" space is contiguous to the end of the original key
string; the second buffer may be specified anywhere. SORT automatically
obtains and links overflow space whenever needed. Due to this, one can follow
standard system convention and build the entire unsorted string in an overflow
table with OVRFLCTR containing the beginning FID; the setup is then:
start of end of "growth" start of
unsorted keys unsorted keys space second buffer
<----------/- -/----------> <-------------> <----------/-.

The second buffer pointer then is merely set at the end of the "growth" space,
and SORT is allowed to obtain additional space as required.

Al ternately, the entire set of buffers may be in the IS or OS workspace if they ~''''\
are large enough. i '

\,,~.,./

Input Interface
SRl S

SR2 S

SR3 S

Output Interface
SRl S

Element Usage
HBIT B
LBIT B
SBl B
SC2 C
XMODE T
DO D
IS R

+
+
+
+
+
+
+

Points to the SM preceding the first key

Points to the SM terminating the last
key

Points to the beginning of the second
buffer

Points before the SB preceding the first
sorted key (the exact offset varies from
case to case); the end of the sorted
keys (separated by SB's) is marked by a
SM

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 89

----_._----- ----

OS R +
BMS R +
TS R + utility

C~: CS R +
R14 R +
R15 R +
Sl S +
S2 S +
S3 S +
S5 S +
S7 S +
S8 S +
S9 S +

Subroutine Usage

COMP

GWS used with XMODE

Four additional levels of subroutine linkage required

3.3.40 TCL-II MD200 MD201 TCL-II MD200 MD201

These are the entry points (not subroutines) into the TCL-II processor, used
whenever a verb requires access to a file, or to all or explicitly specified
items within a file. MD200 is entered from the TCL-I processor after decoding
the verb (primary mode-id = 2). MD201 is used by TCL-II itself to regain
control from WRAPUP under certain conditions (see below). TCL-II exits to the
processor whose mode-id is specified in MODEID2i typically processors such as

C-\he EDITOR, ASSEMBLER, LOADER, etc. Use TCL-II to feed them the set of items
~ich was specified in the input data.

On entry, TCL-II checks the verb difinition for a set of option characters in
attribute 5; verb options are single characters in any sequence and
combination, and are listed below (all other characters are ignored).

Option

C

E

F

N

o CHAPTER 3

Meaning

Copy - items retrieved are copied to the
IS workspace

Expand - items retrieved are expanded
and copied to the IS work space (see
EXPAND documentation); ignored if the
"C" option is not present

File access only - file parameters are
set up but any item-list is ignored by
TCL-II; if this option is present, any
others are ignored

New npm acceptable if the item
specified is not on gile, the secondary
processor still gets control (the
EDITOR, for example, can process a new
item)

SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS
PAGE 90

P

U

Z

Print - on a full file retrieval (all
items), the item-id of each item is
printed as it is retrieved

Updating sequence flagged - if items are
to updated as retrieved, this option is
mandatory

Final entry required the secondary
processor will be entered once more
after all items have been retrieved (the
COpy processor, for instance, uses this
option to print a message)

The input data string to TCL-II consists of the file-name (optionally preceded
by the modifier "DICT", which specifies access to the dictionary of the file),
followed y a list of items, or an asterisk ("*") specifying retrieval of all
items in the file. The item-list may be followed by an option list (options
for the secondary processor), which must be enclosed in parentheses; see
GETOPT documentation for further information about options.

Input Interface
IR R

SR4 S

MODEID2 T

BMSBEG S

ISBEG S

Points to the AM before attribute 5 of
the verb

Points to the AM at the end of the verb

Contains the mode-id of the processor to
which TCL-II transfers control (assuming
no error conditions are encountered)

Points one prior to an area where the
file name is to be copied, if the "F"
option is present, otherwise one prior
to an area where item-ids are to be
copied

Points one prior to an area where items
are to be copied, if the "c" option is
present

Elements as required by GETFILE

Output Interface
DAFI B Set if the "U" option is specified

DAF2 B Set if the "C" option is specified

DAF3 B Set if the "P" option is specified

DAF4 B Set if the "N" option is specified

DAF5 B Set if the "Z" option is specified

DAF6 B Set if the "F" option is specified, or
if a f~ll file retrieval is specified
(no "F" option)

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985
PAGE 91

~~~~- -------------- - ------

PICK SYSTEMS 



C\ 
i 

. ..,,/ 

DAFIO B 

DAFll B 

Set if more than one item is specified 
in the input data, but not a full file 
retrieval ("*") 

Set if the "E" option is specified 

Note: the above bits are not initialized to zero 

DAF8 

DAF9 

IS 

ISBEG 
BMSBEG 

RMBIT 

SBASE 
SMOD 
SSEP 

BASE 
MODULO 
SEPAR 

DBASE 
DMOD 
DSEP 

SCO 

B 

B 

R 

Set if a file dictionary is being 
accessed, otherwise reset (from GETFILE) 

=0 

Points one past the 
in the input string 
present; points to 
copied item if 
present, otherwise 
input string 

end of the file name 
if the "F" option is 
the last AM in the 

the "c" option is 
to the end of the 

S + Unchanged 
S + 

B Set if the file is successfully 
retrieved if the "F" option is present 

D + Contain the base, modulo, and separation 
T + of the file being accessed 
T + 

D + =SBASE, SMOD, SSEP on the first exit 
T + only (from MD200) 
T + 

D + Contain the base, modulo, and separation 
T + of the dictionary of the file being 
T + accessed if the "F" option is present 

C Contains a SB if the last item-id in the 
input string is enclosed in quote marks, 
otherwise contains a blank 

The following specifications are meaningful only when the "F" option is 
not present: 

SRO S Points one prior to the count field of 
the retrieved item 

SIZE T Contains the value of the count field of 
the retrieved item 

SR4 S Points to the last AM of the retrieved 
item 

I SEND S =IS if th~ "c" option is present 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 92 



IR R Points to the last AM of the retrieved 
item to be copied, if the "C" option is 
present, otherwise points to the AM 
following the item-id 

RMODE T ""MD201 if items are left to be 
processed, otherwise=O 

XMODE T =0 

Elements as set up by GETOPT if the input data contains an option string 

Element Usage 

Cl T Used for error messages 

Elements used by the various subroutines below 

Subroutine Usage 

GETFILE; if no "F" option: GETOPT if the input data contains an option 
string, GETITM for full file retrieval, RETIX and one internal subroutine 
if not full file retrieval, GETS PC if more than one item (but not "*") 
specified, EXPAND if the "E" option is present, WRTLIN if the "P" option 
is present 

MD20lonly: WSINIT; GNTBLI if more than one item (but not "*") specified 

MD995 and BMSOVF used with XMODE 

Seven additional levels of subroutine linkage required by MD200; five 
additional levels required by MD201 for full file retrieval, otherwise 
three levels required 

Error Conditions 

The following conditions cause an exit to the WRAPUP processor with the 
error number indicated: 

Error Condition 
13 DL/ID item not found, or in bad format 

199 

200 

201 

202 

203 

209 

IS work space not big enough when the 
"c" option is specified 

No file name specified 

File name illegal or incorrectly defined 
in the M/DICT 

Item not on file; all messages of 
type are stored until all items 
been processed; items which are on 
are still processed 

No item list specified 

this 
have 
file 

The format of the option list is bad 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 93 



3.3.41 TIME - DATE - TIMDATE 

These routines return the system time and/or the system date, and store .C .. ~ts in the buffer area specified by register R15. The time is returned 
~ on a 24-hour clock. 

Entry 

TIME 

DATE 

TIMDATE 

Input Interface 

R15 R 

Output Interface 

R15 R 

R14FID D 

Element Usage 

D + 

Buffer size 
required (bytes) 

9 

12 

22 

Format 

HH:MM:SS 

DD MMM. YYYY 

HH:MM:SS DD MMM. YYYY 

Points one prior to the buffer area 

Points to the last byte of the data 
stored; the byte immediately following 
contains a blank 

=0 (DATE and TIMDATE only) 

DO 
Dl 
D2 
D3 

D + Used by TIME and TIMDATE only 
D + 
D + 

Subroutine Usage 

TIME used by TIMDATE; MBDSUB used by TIME 

Two additional levels of subroutine linkage required by TIMDATE, one level 
required by TIME, none by DATE 

3.3.42 TPREAD TPWRITE 

TPREAD reads a specified number of bytes from the tape into a buffer pointed to 
by R15 at entry to the routine. 

TPWRITE writes a specified number of bytes from the buffer pointed to by R15 to 
the tape. 

Both TPREAD and TPWRITE are using a virtual tapedrive with common routines. 
The initial execution of either entry point causes initialization of two 
buffers of a size sufficient to contain TPRECL, which is assigned during 
execution of the T-ATT verb, or is obtained by execution of the RDLBL verb from 
the tape record size included i the standard R77 tape label. These buffers 
are released during WRAP-UP processing after RMODE and WMODE processing are 
completed. The process then returns to TCL or the CHAIN or PROC analogs to 
TCL. 

4C:) CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 94 



At all times after initialization R7 points into the current ad or write 
location in the tape buffers and must be saved and restored if R7 is to be used 
for other purposes between reads or writes. In both cases the contents of the 
accumulator, DO, is the number of characters to transfer to or from the tape 
buffer. The alignment of R7 in the buffer and the relative size of TPRECL and 0","'", (' 
DO do not need to be considered. 

,j 

If DO is zero on a read, then TPREAD will return to the calling routine with R7 
pointing one before the next string to be read, XMODE will be set to the tape 
handler routine, and the old XMODE, if any, will be in YMODE. This allows 
transparant tape reading using MIlD or MIlT R7,XX. A forward link zero fault 
on R7 will cause the next tape record to be read into the last buffer, R7 to be 
reset to the beginning of the current buffer; and execution then continues in 
the MIl instruction. The user is responsible for handling an end-of-file 
condition when reading the tape. When this occurs, the EOFBIT will be set. 

If DO is zero on a write, then TPWRITE will fill the rest of the tape buffer 
with the character pointed to by R15, which will cause the buffer to be written 
to tape. This is recommended in order to send the last partial tape record to 
the tape, after which WEOF should be executed. 

Input Interface 

ATTACH 
TPRECL 
Rl5 

R7 

DO 

B 
T 
R 

R 

D 

Must be set. Use T-ATT verb. 
As above. 
Points to one byte before the source or 
destination buffer start location. 
Must be the same at the beginning of the 
next tape operation as it was at the end of 
the last tape operation. Initialized by TPREAD 
TPWRITE on first-time call. 
Co$2Yns the number of bytes to be transferred 
to or from the tape buffers. 

Output Interface. 

R15 

DO 
EOFBIT 
EOTBIT 

Element Usage. 

R 

D 
B 
B 

Points at the end of the source or destination 
buffer if DO was non-zero; unchanged if DO was zero. 
Is zero. 
Indicates end-of-file on read if set. 
Indicates end-of-tape if set; the 
tape handler will rewind the tape and 
tell the operator to mount the next tape, 
however. This may be executed in the 
middle of an MIl instruction, as above, 
which will then continue to execute when the 
new reel in mounted and the label handled. 

The tape handler will stack and restore most of the elements which it uses. 
The following elements are modified, however. 

T5 
T6 
T7 
YMODE 
D2 

CHAPTER 3 

T " 
T " 
T " 
T For any current XMODE 
D Temporary strage 
SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 

PAGE 95 



C " 

R7 
R2;HO 
R4 

R14 
R15 

R 
H 
R 

R 
R 

Subroutine usage. 

As the tape buffer pointer 
For a flag 
Is used as a pointer to the text block 
in the write-label routine. 
Globally 
As noted above. 

TPREAD and TPWRITE use an extensive set of internal subroutines in such a way 
that element usage is transparant outside of the above set. Both may go to 
seven levels of subroutine usage if either encounters a parity error while 
handling a label on the second and following reels in a set of tapes. 

Error conditions are sent to the terminal by the tape handler by means of the 
PRINT, CRLFPRINT and PCRLF routines for attention by the operator in a manner 
transparant to the calling routine. They include no write ring, parity error 
after ten retries, tape not ready, and block transfer incomplete messages and 
recovery alternatives. 

3.3.43 TSINIT 

This routine initializes the register triad associated with the TS work space. 

Input Interface 

None 

Output Interface 

TS R + Point to the beginning of the TS work 
TSBEG S + space (PCB+5) 
(R14 R) + 

TSEND S + Point to the last byte of the TS work 
(R15 R) + space (511 bytes past TSBEG); note this 

is an unlinked work space 

the first byte of the work space is set to x'OO'. 

Element Usage 

DO 

Subroutine Usage 

One internal subroutine 

One additional level of subroutine linkage required 

3.3.44 UPDITM - UPDITMX 

UPDITM and UPDITMX perfo~ updates to a disc file defined by its base FID, 
modulo, and separation. If the item is to be deleted, the routines compress 
the remainder of the data in the group in which the item resides; if the item 
is to be added, it is added at the end of the current data in the group; if 

Cthe item is to be replaced, it is replaced in place, sliding the remaining 
'items in the group to the left or right as necessary. 
f CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 

PAGE 96 



If the update causes the data in the group to reach the end of the linked 
frames, NEXTOVF is entered to obtain another frame from the overflow space pool 
and link it to the previous linked set; as many frames as required are added. 
If the deletion or replacement of an item causes an empty frame at the end of _~ 
the linked frame set, and that frame is not in the "primary" area of the group, ( '\ 
it is released to the overflow space pool. \,~,",,/ 

Entry UPDITM uses PRETIXU to retrieve the item to be updatedlocking the group. 

Once item is retrieved, processing cannot be interrupted until completed. 

Input Interface 

BMSBEG 

TS 

CH8 

BASE 
MODULO 
SEPAR 

S Points one prior to the item-id of the 
item to be updated; the item-id must be 
terminated by an AM 

R Points one prior to the item body to be 
added or replaced (no item-id or count 
field); not needed for deletions; the 
item body must be terminated by a SM 

C Contains the character 'D' for item 
deletion; lUI for item addition or 
replacement; 'G' if no group unlock. 

D + Contain the base, modulo, and separation 
T + of the file being updated 
T + 

The following specifications are meaningful only for UPDITMX: 

RMBIT B 

R14 R 

RECORD D 

Output Interface 

Set if the item to be updated exists in 
the file, otherwise reset 

Points one prior to the item count field 
if the item exists, otherwise points to 
the last AM of the last item in the 
group 

Contains the beginning FID of the group 
containing the item 

Remainder of the last frame in the group filled with blanks 

Element Usage 

D3 D + 
D4 D + 
NNCF H + Utility 
FRMN D + 
FRMP D + 
NPCF H + 

Elements used by the various subroutines below 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 97 



Subroutine Usage 

RDREC; HASH, GLOCK, and RETIXU RELCHN if overflow frames returned; 

C.""I WTLINK if data ends in the last frame of "prime" space, or in overflow 
, ; space; COPYALL if the item is on file; BKUPD; GUNLOCK 

NEXTOVF, BMSOVF, and IROVF used with XMODE 

Four additional levels of subroutine linkage required by UPDITM, three by 
UPDITMX 

Error Conditions 

1. If the group data is bad (premature end of linked 
frames, or non-hexadecimal character found in an item 
count field), IROVF is entered to print a warning 
message, and the group data is terminated at the end of 
the last good item before processing continues 

3.3.45 WHOSUB 

This routine returns the line number and current account name associated 
with the process as a string in the TS work space. 

Input Interface 

TSBEG S 

BMSBEG S 

Output Interface 

TSBEG S 

TS R 

TSEND S 

D3 D 

BMSBEG S 

Points one before the area where the 
returned string is to be stored 

Points one before an area which RETIX 
can use in retrieving an item from the 
system file ACC 

Points one before the returned string, 
which consists of the line number (in 
decimal digits), a space, and the 
account name as found in the system file 
ACC for the associated PCB; if the ACC 
entry is not found, "UNKNOWN" is 
returned 

Points to the last character in the 
returned string 

Points to a SM placed at TS+l 

Contains the line number associated with 
the process 

Points one before the item-id 
accessing the ACC file, if the 
present; the item-id consists 
characters representing the 
hexadecimal digits 

used in 
file is 
of four 

PCB in 

o CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 98 



BMS 

RMBIT 

Element Usage 

R 

B 

Points to the last character of the 
above item-id if the ACC file is 
present; set by RETI 

Set if the ACC file 
appropriate item is 
reset 

is present and the 
found, otherwise 

R15 R + Utility 
S4 S + 

T4 T + 
T5 T + 
DO D + Used by MBDSUB 
Dl D + 
D2 D + 
R14 R + 

BASE D + 
MODULO T + 
SEPAR T + Used by GETACBMS 
T6 T + 
BMS R + 
SRl S + 

RECORD D + 
NNCF H + 
FRMN D + 
FRMP D + 
NPCF H + Used by RETI (and GETACBMS if the ACC 
XMODE T + file is a "Q" item) 
DAF9 B + 
SIZE T + 
IR R + 
SR4 S + 

Subroutine Usage 

LINESUB; MBDSUB; GETACBMS; GPCBO if the ACC file is found; RETI if the 
ACC entry for the process is found 

Five aditional levels of subroutine linkage required 

3.3.46 WRAPUP PROCESSOR WRAPUP PROCESSOR 

MD99 MD993 MD994 MD995 MD999 

C) 

These are the entry points into the system routine which "wraps up" the 
processing initiated by a TCL statement, performs disk updates and prints 
messages as required, and reinitializes functional elements for processing 
another TCL statement. WRAPUP may also be treated as a subroutine (except when 
entered at TCLXIT or NSPCQ) by setting tally RMODE to the mode-id of the 
routine to which WRAPUP should return control after it is done. Note, however, 
that WRAPUP always set the return stack to a null or empty condition before 
~ti~. r~ 

CHAPTER 3 SUPPORT SOFTWARE Copyright (C) 1985 PICK SYSTEMS ~/ 
PAGE 99 



The various entry points are provided to simplify the interface requirements 
when WRAPUP is used to store or print messages from the ERRMSG file; the 

(-~eatures of each can be seen in the following table: 

. -,..I MD993 Cl contains a message number; C2 
contains a numeric parameter; the value 

MD994 

MD995 

MD99 

MD999 

TCLXIT 

NSPCQ 

Input Interface 

HSBEG 
HSEND 

S 
S 

in C1, converted to an ASCII string, is 
used as the item-id of an item to be 
retrieved from the message file 
(normally ERRMSG); the message is set up 
in the history string (see below), and 
control passes to MD99 

Cl contains a message number; IS points 
one before the beginning of a string 
parameter, which is terminated by an AM 
or SM; the message is set up in the 
history string and control passes to 
MD99 

Like MD994, except the 
is stored at BMSBEG+1 
SM 

string parameter 
through an AM or 

Message numbers (without any parameters) 
may be stored in REJCTR, REJO, and REJ1 
(no action is taken if zero); if RMODE 
is zero, messages are printed regardless 
of the value of VOBIT (see below); the 
messages are set up in the history 
string and control passes to MD999 

The history string is processed, and 
process work spaces are reinitialized; 
control passes to TCL if RMODE is zero, 
otherwise to the routine specified by 
RMODE 

The history string is set null, PROC 
control is unconditionally reset, and 
control passes to TCL (this entry point 
is used by the DEBUG "END" command) 

In addition to the functions performed 
at TCLXIT, all disk group locks 
associated with the process are 
unlocked, and the overflow management 
routine in mode OF1 is unlocked if 
currently locked by the process 

+ Point one before the 
+ the end, respectively, 

string; if HSBEG=HSEND, 
null 

beginning and to 
of the history 
the string is 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 100 

~----.------."-"------



Three types of history string elements are recognized by WRAPUP; all 
others are ignored. The type of processing done for each element depends 
on the second, and possibly third character of the element string. (The 
quote marks in the following examples are not part of the strings.) 

1. Output message 

SM "0" AM message-id AM (parameter AM ... ) SM 

where "message-id" is the item-id (normally a decimal numeric) of an 
item in the message file 

The parameter string is passed to PRTERR for message formatting (see 
PRTERR documentation) 

2. Disk Update/Delete 

SM "DU" AM base VM modulo VM separation AM item-id 
AM item-body AM SM 

SM "DD" AM base VM modulo VM separation AM item-id 
AM SM 

where "DU" causes the item in the file specified by "base", "modulo", 
and "separation" to be replace, and "DD" deletes it 

3. (End of history string) 

SM "z" 

Conventionally, a process wishing to add data to the history string begins 
at HSEND+l; after the additional elements have been added, the string is 
terminated (once again) by a SM and "Z", and HSEND is set pointing to this 
SM. 

WMODE 

RMODE 

VOBIT 

REJCTR 
REJO 
REJI 

T 

T 

B 

If non-zero, the value is used as the 
mode-id for an indirect subroutine call 
(BSLI *) executed immediately after the 
history string has been processed, and 
before work space and printer 
characteristics are reset; this allows 
special processing to be done on any 
entry into WRAPUP 

If non-zero, WRAPUP exits to the 
specified mode-id instead of to TCL 

If set, and RMODE is non-zero, messages 
are stored in the history string, for 
output on a later entry into WRAPUP with 
RMODE zero 

T + May contain message numbers which do not 
T + require parameters; REJCTR is always 
T + tested first, then REJO, and then REJl; 

no action is taken on a zero value; a 
value of 9999 is used internally by 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 101 



C 

c 

WRAPUP to identify which messages have 
been processed, and should not normally 
be used as an input value for REJO or 
RID 1 

Cl T + (See MD993, MD994 , and MD995 above) 
C2 T + 

LPBIT B If set, all open spool files are closed 

OVRFLCTR D If non-zero, used as the starting FID of 
a linked set of overflow frames which is 
released to the system overflow space 
pool; used by SORT, for instance, to 
store the beginning FID of a sorted 
table, in which case the overflow space 
used by SORT is always released, even if 
processing is aborted by an "END" 
command from DEBUG 

USER T 

Output Interface 

HSEND S 

VOBIT B 
LPBIT B 
WMODE T 
REJCTR T 
REJO T 
REJl T 

Return stack 

RMODE T 

INHIBIT B 

+ 
+ 

Used to control the final exit from 
WRAPUP when RMODE=O; see "exits" 

=HSBEG except when messages are stored 
instead of printed 

+ =0 
+ 
+ 
+ 

Null: RSEND=X'OlBO', RSCWA=X'0184', and 
the rest of the return stack is filled 
with X'FF' 

Set to zero by TCLXIT and NSPCQ 

Set to zero by NSPCQ 

Elements as initialized by WSINIT (and ISINIT if RMODE=O) 

The following elements are set up only if RMODE=O: 

XMODE T + =0 
OVRFLCTR T + 

IBSIZE T =140 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 102 



Element Usage 

UPD R 

BASE 
MODULO 
SEPAR 
CH8 

R15 

o + 
T + Used in disk updates 
T + 
C + 

R Used by NSPCQ 

Elements used by the subroutines below 

Subroutine Usage 

WSINIT; MBDSUB for message numbers; PRTERR to print messages; CVTNIS 
and UPDITM to do disk updates; CRLFPRINT if a format error is found in a 
"DO" or "DU" history string element; PCLOSEALL if LPBIT=l; if RMODE=O: 
ISINIT, RESETTERM, RELSP (if USER=2), RELCHN (if OVRFLCTR is non-zero); 
UNLOCK. GLOCK, GUNLOCK. LINE , and TILD by NSPCQ 

Maximum of seven additional levels of subroutine 
RELCHN must print an error message; maximum of six 
PRTERR; four levels required for UPDITM; three 
ISINIT; two levels always needed for WSINIT 

Exits 

linkage required if 
levels required for 
levels required for 

To the entry point specified in RMODE if non-zero; to LOGOFF if USER=3 
(set, for instance, by the DEBUG "OFF" command); to MOO if USER=2 (set by 
the LOGOFF processor); otherwise to MOl 

Error Conditions 

If a format error is found in a "DO" or "DU" history string element, the 
message 

DISK-UPD STRING ERR 

is displayed, and processing continues with the next element 

3.3.47 WRTLIN WRITOB WT2 

These are the star-2d routines for outputting data to the terminal or line 
printer. Entry WRTLIN deletes trailing blanks from the data and then enters 
WT2. WT2 adds a trailing carriage return and line feed, increments LINCTR, and 
enters WRITOB, which outputs the data. 

The data to be output is pointed to by OBBEG, and continues through the address 
pointed to by OB. Output is routed to the terminal if bit LPBIT is off, 
otherwise it is stored in the printer spooling area. Pagination and page
heading routines are invo~ed automatically if bit PAGINATE is set. If it is 
set, then when the number of lines output in the current page (in LINCTR) 
exceeds the page size (in PAGSIZE), the following actions take place: 1) The 
number of lines specified in PAGSKIP are skipped, 2) The page number in PAGNUM 
is incremented, and 3) A new heading is printed (see PRNTHDR documentation). A 
value of zero in PAGSIZE suppresses pagination, however, regardless of the 
setting of PAGINATE .~, 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS ~, 
PAGE 103 

---- --------"------- ._--- ----- --- -------



Input Interface 

c' 

o 

OBBEG S 

OB R 

LPBIT B 

LISTFLAG B 

NOBLNK B 

LFDLY T 

PAGINATE B 

PFILE T 

Points one byte prior to the output data 
buffer 

Points to the last character in the 
buffer; the buffer must extend at least 
one character beyond this location 

If set, output is routed to the spooler 
(Note: routine SETLPTR should be used to 
set this bit so printer characteristics 
are set up correctly) 

If set, all output to the terminal is 
suppressed 

If set, blanking of the output buffer is 
suppressed 

Lower byte contains the number of "fill" 
characters to be output after a CR/LF 

If set, pagination and page-headings are 
invoked 

contains the print file number for PPUT; 
meaningful only if LPBIT is set 

The following specifications are meaningful only if PAGINATE is set: 
PAGHEAD S Points one byte before the beginning of 

the page-heading message; if the frame 
field of this register is zero, no 
heading is printed 

PAGHEAD S Points to the location of the 
page-heading message 

PAGSIZE T Contains the number of printable lines 
per page 

PAGSKIP T Contains the number of lines to be 
skipped at the bottom of each page 

PAGNUM T Contains the current page number 

PAGFRMT B If set, the process pauses at the end of 
each page of output until some terminal 
input (even just a carriage return) is 
entered 

LFDLY T If the upper byte is greater than one, 
and output is to the terminal, a 
form-feed (X I OC I) is output at the top 
each page, and the number in the upper 
byte is used as the number of "fill" 
characters output after the form-feed 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 104 



Output Interface 

OB R =OBBEG 

The following specifications are meaningful only if PAGINATE is set: 

LINCTR T + Reset appropriately 
PAGNUM T + 

T7 T Contains the original value of PAGNUM 

Element Usage 

R14 R + 
R15 R + Scratch 
SYSRl S + 

R8 R + 
RECORD T + Used by PPUT (when LPBIT is set) 
OVRFLW T + 

SYSR2 S Used if PAGINATE is set and the header 
message contains aVM 

T4 T + 
T5 T + Used if PAGINATE is set and the header 
D2 D + message contains a SVM 
D3 D + 

All elements used by ATTOVF (called by PPUT if more disk space needed) 

SUBROUTINE USAGE 

FFDLY, PPUT (if LPBIT set), WT2 (if PAGINATE set and the header message 
contains a VM), TIMDATE (if PAGINATE set and the header message contains a 
SVM), DATE (if PAGINATE set and the header message contains two SVMs in 
succession) 

Four additional levels of subroutine linkage required if LPBIT is set; 
three levels required for TIMDATE; one level always required for LFDLY 

3.3.48 WSINIT WSINIT 

This routine initializes the following process work space pointer triads: BMS, 
BMSBEG, BMSEND; CS, CSBEG, CSEND; AF, AFBEG, AFEND; TS, TSBEG, TSEND; IB, 
IBBEG, IBEND; OB, OBBEG, OBEND; also PBUFBEG and PBUFEND. In each case, the 
"beginning" storage register (and associated address register, if present) is 
set pointing to the first byte of the work space, and the "ending" storage 
register is set pointing to the last data byte. All work spaces except the 
last (PROC) are contained in one frame; PBUFBEG and PBUFEND define a 4-frame 
linked work space. 

WORK SPACE 

BMSBEG-BMSEND 

SIZE (BYTES) 

50 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 105 

C·.~, _/f' 



AFBEG-AFEND 50 

CSBEG-CSEND 100 

o IBBEG-IBEND Contents of IBSIZE; max. 140 

OBBEG-OBEND Contents of OBSIZE; max. 140 

TSBEG-TSEND 511 

PBUFBEG-PBUFEND 20000 (4 linked frames) 

Input Interface 

IBSIZE T Size of IB buffer 

OBSIZE T Size of OB buffer 

Output Interface 

Registers are set up as described above. The first byte of each work 
space, except the OB, is set to x'OO'. The OB work space is filled with 
blanks (x'20'). IBSIZE and OBSIZE are set to 140 if initially greater. 

Element Usage 

R14 R 

R15 R 

~,ubroutine Usage 

TSININIT (local), and one internal subroutine 

Two additional levels of subroutine linkage required 

3.3.49 WTBMS 

This routine converts base, modulo, and separation file parameters to 
an ASCII string. 

Input Interface 

BASE 
MODULO 
SEPAR 

TS 

D + 
T + Contain values to be converted 
T + 

R Points one before the output area 

output Interface 

c;: 
TS R + Point to an AM at the end of the output 
R15 R + string; the form of the string is BASE 

VM MODULO VM SEPAR AM (no spaces around 
delimiters) 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 106 



Element Usage 

DO D + 
D1 D + 
D2 D + 
T4 T + Used by MBDSUB 
T5 T + 
R14 R + 
R15 R + 

Subroutine Usage 

MBDSUB; one internal subroutine 

Two additional levels of subroutine linkage required 

3.3.50 XISOS 

XISOS simply exchanges the contents of the IS/ISBEG/ISEND and OS/OSBEG/OSEND 
register triads. 

CHAPTER 3 SUPPORT SOFTWARE Copyright (c) 1985 PICK SYSTEMS 
PAGE 106 



(~ .. 

/ 

Chapter 4 

SYSTEM DEBUGGER 

THE PICK SYSTEM 

USER'S ASSEMBLY MANUAL 

PROPRIETARY INFORMATION 

This document contains information which is 
proprietary to and considered a trade secret of 
PICK SYSTEMS It is expressly agreed that it shall 
not be reproduced in whole or part, disclosed, 
divulged, or otherwise made available to any third 
party either directly or indirectly. Reproduction 
of this document for any purpose is prohibited 
without the prior express written authorization of 
PICK SYSTEMS. All rights reserved. 

CHAPTER 4 SYSTEM DEBUGGER Copyright (c) 1985 PICK SYSTEMS 
PAGE 107 



4.1 OPERATION COMMANDS 

NOTE: The form <data specification) is used to indicate a pattern 
discussed in the section on data specification. 

4.1.1 A -- address of element 

FORMAT: 
A 

will display the current instruction location of the virtual code in 
the form 

I ff.dd 

where ff is the frame number in decimal and dd is the displacement in 
hex. 

A<data specification) 

will display the address of the data specified in the form 

f.dd 

immediately following the command. The leading format 
part of the data specification is meaningless and will 
response 

ILLGL SYM 

immediately after the command. 

4.1.2 B -- break 

FORMAT: 
Bff.dd 

specification 
generate the 

will cause a break-point to be set at ff.dd. The command 

Bff or Bff.O 

will cause every instruction in the frame ff to be a break-point. 

The command line for B may contain one or two numeric fields only. 
They may be in hex or decimal. A + will be emitted on successful 
completion of the instruction, or the message "TBL FULL" will be 
emitted. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 108 



4.1.3 C -- character display 

FORMAT: 

c C<data specification) 

will cause the display to be in character. Any window is allowable. 
The command is invalid with the A and L commands. The command is part 
of the data specification section. 

C 

4.1. 4 D -- display current commands 

FORMAT: 
D 

will cause the break-points, traces and data break-point 
specifications currently in effect to be displayed. 

4.1.5 DB -- toggle debugger availablity 

FORMAT: 
DB 

will toggle the debugger availablity flag. It must be executed from 
SYSPROG. This is a system wide security feature that can be used to 
disable most degugger commands. 

4.1.6 E -- single-step control 

FORMAT: En 

where n (1-250), will cause a break and entry to the debug command 
processor on every nth instruction in the virtual code. 

FORMAT: 
E 

will turn off the single-step function. 

4.1.7 END -- back to TCL 

FORMAT: 
END or end 

will cause the process to cleanup and return to TCL. 

o CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 109 



4.1.8 G -- the go command 

FORMAT: 
G 

will cause the process to continue execution at its current address, 
if entry to the debugger was not caused by a system abort. 

FORMAT: 
Gff.dd 

will cause the process to commence execution at address dd in frame 
ff, where dd and ff are in either hex or decimal. No other variations 
in the syntax are allowed. If the debugger considers the address 
specified invalid, either because aG has been issued after an error 
occured, or because of an error in the syntax of the statement, the 
message, 

ADDR 

will occur. 

4.1.9 H -- toggle echo bit 

FORMAT: 
H 

will toggle the echo bit of the virtual process. 

4.1.10 I -- integer display 

FORMAT: 
I<data specification> 

will cause the format of the display to be in integer. This form will 
be generated by any reference to a symbol of types H, T, D, or F. Any 
window specification greater than 6 bytes will default to 1 byte. The 
command is invalid with the A and L commands. This command is part of 
the data specification section. 

FORMAT: 
I 

will cause further output to be in integer form. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 110 



4.1.11 K -- kill break-points 

o 
FORMAT: 

K 

will cause all break-points set by a B command to be terminated. 
will emit a -

FORMAT: 
Kff.dd 

It 

will kill the break-point ff.dd and emit a hyphen, if it is in the 
table; or it will emit the message "NOT IN TBL" if the break-point is 
not in the table. 

FORMAT: 
Kff or Kff.O 

is used in the case that a break was set for all instructions in frame 
ff. No other variations on the syntax are allowed. 

4.1.12 L -- frame links 

FORMAT: 
L<data specification> 

will emit the link fields of the frame implied by the data 
specification. Format specifications C, I, or X in the data 
specification are meaningless and will cause an error message. 

There is no device for modification of the link fields other than the 
traditional display-and-modifiy. 

4.1.13 M -- modal trace 

FORMAT: 
M 

will toggle the modal trace condition. 

o CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE III 



4.1.14 N -- number of breaks 

FORMAT: 
Nn 

where n is a tally, will cause the debugger to print the instuction 
address and other characteristics of n breaks of any kind before it 
enters the debug command state. If a real error is encountered, the 
debug command state will be entered immediately. 

FORMAT: 
N 

cancels this such that all breaks will enter the debug command state. 

4.1.15 OFF -- back to logon 

FORMAT: 
OFF 

will clean up and log the process off. 

4.1.16 P -- toggle LISTFLG 

FORMAT: 
P 

will toggle the bit that controls whether output is output or whether 
it is tossed into the bit bucket. 

4.1.17 R -- register 

FORMAT: 
Rn 

where n (0-15), if it is encounterd in the primary parse, specifies 
indirect addressing off Rn. It is part of the data specification 
section. 

4.1.18 T -- Trace 

FORMAT: 
T<data specification> 

caused the data element specified to be emitted, along with its 
address on each break, whether the command state is entered or not. T 
must be the first character in the command string. A + will be 
emitted if the command is successful, or the message "TBL FULL" will 
be emitted. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 112 



4.1.19 U -- Untrace 

FORMAT: 
U 

will cause all traces set by a T command to be canceled. It will emit 
a hyphen. 

FORMAT: 
U<data specification> 

will cause the trace of the specified element to be canceled if it is 
in the table, and a hyphen will be emitted. If it is not in the 
table, then the message "NOT IN TBL" will be emitted. 

4.1.20 X -- heXidecimal format 

FORMAT: 
X<data specification> 

will cause the data to be displayed in hex. Any window is allowable. 
The command is invalid with the A and L commands. 

4.1.21 Y -- data breaks 

C: 
FORMAT: 

Y<data specification> 

will cause the process to break each time the data specified changes. 
Y must be the first letter in the command. This makes things run very 
slowly. Note that the current value of the data is kept with the 
address data, so that the table element size will change with varying 
sizes of data. Note that the current data is stored in aligned words. 
Successful completion will terminate with a +; or the message "TBL 
FULL" will be emitted. 

4.1.22 Z -- data unbreak 

C) 
/ 

FORMAT: 
Z 

will cancel all data-data break commands. A hyphen will be emitted. 

FORMAT: 
Z<data specification> 

will cancel the data break specified. It will emit a hyphen or the 
message "NOT IN TBL". 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 113 



4.2 OPERATION COMMANDS ARITHMETIC UTILITIES 

4.2.1 ARITHMETIC CALCULATING FEATURES 

FORMATS: 

ADDD n n 

SUED n n 

MULD n n 

DIVD n n 

ADDX n n 

SUEX n n 

MULX n n 

DIVX n n 

XTD n 

XTD n n 

DTX n 

DTX n n 

do the same things as the related verbs, where XTD (=> RTD and DTX (=> 
DTR. The numeric arguments, n, are strings without punctuation. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 114 



4.3 DATA SPECIFICATION 

Data may be referenced directly or indirectly. It may be 
numerically or symbolically. Window or offset may be 
Display type, C, I, X, or B may be specified. 

4.3.1 DIRECT REFERENCE 

FORMAT: 
ff.dd 

will reference the data field at dd in frame ff. 

FORMAT: 
dd 

referenced 
specified. 

will reference the data field at dd in the PCB. The frame will be 
taken to be unlinked. 

FORMAT: 
/ff.dd 

will take ff to be a linked frame. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 115 



4.3.2 INDIRECT REFERENCE 

Indirect reference includes all cases wherein a live register is 
specified, including all symbolic references, or where an *SR form is 
specified. 

4.3.2.1 IMPLICIT indirect reference. 

FORMAT: 
Rn 

where n (0-15) will reference the data to which Rn points. 

FORMAT: 
/symbo1-name 

where symbol-name is in the PSYM or TSYM, and the PSYM and TSYM 
are "set", will generate the regsiter number, displacement, 
format type and window of the symbol. It will be referenced 
through the implicitly-specified register and displacement. 

4.3.2.2 EXPLICIT indirect reference. 

FORMAT: 
* symbol-name 

will reference the data which the register Rn, if the symbol name 
is Rn, or the storage register at symbol-name, points. 

FORMAT: 
Rn.dd 

will apply the displacement, dd, to the location pointed to by Rn 
in order to obtain a storage register, with which to address the 
desired data. 

FORMAT: 
*ff.dd or *dd 

will take the location specified to be a storage register, and 
behave as above. The displacement, dd, will be applied to the 
frame address in order to find the address of the storage 
register. 

FORMAT: 
**symbo1-name or **ff.dd or *dd 

will do the same in the second order. They reference the storage 
at which the storage register at which the referenced storage 
register points, with the one condition: That if the first byte 
of the medial storage register is X'82', then the element is 
taken to be a BASIC indirect string element and the storage 
register is taken from two bytes beyond this location. If any of 
the data fields are invalid as storage registers, then the 
message "ERR!" will be emitted. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 116 



4.4 FORMAT SPECIFICATION 

If any of the above forms are preceeded by the character C, I, or X, 
then that will control the format of the display. 

C CHARACTER display format 
I INTEGER display format 
X HEXADECIMAL display format 

4.5 WINDOW SPECIFICATION 

o 

If the above location specifications are succeded by a semi-colon, 
then a window is to be set by the form 

;n 

where n is a tally for display or a half-tally for the Trace and Y
trace. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 117 

--~----------



4.6 OFFSET SPECIFICATION 

The offset specification occurs in conjunction with the window. It 
has an explicit form and an data-field form. 

4.6.1 Explicit offsets. 

FORMAT: 
iO,W 

where 0 is a positive or negative tally, and w is a positive number, 
as above, then 0 will be an offset from the location specified in the 
data reference section of data specification. W will be the window 
used. This form works for traces, except in the case that the 
location is an indirect reference from a storage register whose 
location is specified by the form ff.dd. 

4.6.2 Implicit offsets. 

FORMAT: 
iCO or iCO,W 

where 0 and ware as above, and C e[B,H,C,T,D,F,S,R), will cause the 
offset to be taken as the number of fields. The field width is 1 bit 
in the case of B, 1 byte in the case of Hand C, 2 in the case of T, 4 
in the case of D, 6 in the case of F and S, and 8 in the case of R. 0 
may be positive or negative. If the window is not inluded, then the 
implicit window deriving from the field type is used, else the 
specified window is used. '~ 

There are further side-effects to this form. The case of 

iC 

where C is as above, will take an offset of zero, the implied window 
and the display type. Note that symbolic reference to data fields has 
the same effect. 

The display-type may be superceeded by a leading format specification 
of the set C, I, or X. 

In the specific case of bits, the form 

iBo,W 

will cause the display to be in bits, starting at bit 0, the offset 
from the addressing base, for a width of w bits. Bits and bit fields 
may be traced with either trace. There is a further asymmetry here. 
The displacement specified for a symbollically-addressed bit is in 
bits. Therefore, the form ff.dd will treat dd as a bit-count in the 
direct-reference form. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 118 c 



4.7 DISPLAY MODIFIERS 

In general, the display modifiers 
exibit some excentric behavior 
functional colisions. 

which follow the semi-colon 
because of various logical 

may 
and 

4.8 DISPLAY FORM 

The character @ is used to indicate null. The general forms work for 
the display form, and, mostly, with the trace forms. 

T U Y Z @ 

X C I @ 

/ * ** 

dd .dd 

ff.dd ff,dd 
. ff.dd .ff,dd 

ff .ff 
symbol-name 

in i • n 
iO,n io.n 
i .o,n i .o.n 
i-o,n i-o.n 
iB 
iBo 
iBo,n 
iB,n 
iC 
iH 
iCo,n 
iT 
iTo 
iTo,n 
iT,n 
iD 
iDo 
iDo,n 
is 
iF 
iSO 
iR 
iRo 

Trace conunands 

Format specifiers 

symbolic, indirect references 

PCB direct reference E, N, ME conunands 

direct reference 
(frame in hex) 

D, G, L, A 
conunands 

D conunand only 
with / or * or ** I L, A conunands 
window, offset and type specifiers. 
window must be positive, offset may be negative. 
the format specifier at the beginning of the 
string will superceed the type specifier. 

window specification: n bytes 
offset, 0 bytes, window, n bytes, decimal or hex 

bit display, offset 0, window 1 bit 
ibid, offset 0 
offset 0, window n, in bits 
offset 0, window n, in bits 
character type, window 1, offset 0 
integer type, window 1, offset 0 
window n, offset 0 bytes, et cetera. 
integer type, window 2, offset 0 
window 2, offset 0 tallys = 2*0 bytes. 
window n, offset 0 tallys. 
window n, offset 0 
integer, window 4 
window 4, offset 0 dtlys 
window 4, offset 0 dtlys 
type X, length 6 
integer type, length 6 

4*0 bytes 
4*0 bytes 

window 6, offset 0 ftlys = 6*0 bytes 
hex type, length 8 
window 8, offset 0 = 8*0 bytes 

FORMAT: of the suffix is the same in all cases. 
permutations are left out due to redundancy. 

A number of 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 119 



4.9 DISPLAY PROMPTS 

The value of data fields are changed after they have been displayed 
using the devices in the previous section. This section considers the 
actions avaliable at the '=' prompt given by the display prosessor. 

4.9.1 <CR> -- back to the command processor 

FORMAT: 
<CR> 

carriage-return will return to the command processor. 

4.9.2 <LF> -- the next window 

FORMAT: 
<LF> 

line-feed, will display the next window of data, on the same line. 

4.9.3 <control-N> -- the address and the next window. 

4.9.4 

FORMAT: 
<control-N> 

will display the address of the next window and the next window on the 
next line. 

(control-P> -- the address and the previous window. 

FORMAT: 
<control-P> 

will display the address of the previous window and the previous 
window on the next line. 

4.9.5 '(string> character data 

FORMAT: 
'<string> 

will cause the characters in the <string> to be placed in the data 
area starting at the beginning of the displayed window for the length 
of <string>, which will not exceed 40 bytes. The string must 
terminate with CR, LF, control-N, or contro1-P. The string 
terminators noted hereinafter have the same effect as the same 
character used as the only response to the display prompt. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 120 



4.9.6 INTEGER INSERTION 

FORMAT: 
<decimal number> 

will cause the value of <decimal number> to be placed 
displayed, filling from the right, if the window is 
bytes in length, and does not cross a frame boundary, 
message will occur. The string must terminate with CR, 
or contro1-P. 

in the window 
1, 2, 4, or 6 
else an error 
LF, contro1-N, 

4.9.7 HEXIDECIMAL STRING INSERTION 

FORMAT: 
. <hex string> 

will cause the value of the data area beginning at the left of the 
window displayed to be replaced by the hex string. The string must 
contain an even number of characters, and must contian only hex 
characters. The string will not have more than 38 hex characters in 
it. The string must terminate with CR, LF, contro1-N or contro1-P. 

4.9.8 BIT STRING INSERTION 

c 

If the display type is bit, 

FORMAT: 
<binary string> 

where <binary string> is a sequence of l's and 0' less than 40 
characters long, will cause the bits starting from the first bit in 
the displayed window to be replaced by the bits in the string. The 
string must terminate with CR, LF, contro1-N or contro1-P. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 121 



4.9.9 CLEARING WINDOWS 

FORMAT: 
o 

will have the effect of clearing the window to null, if the type is 
not bit. It must be followed by CR, LF, control-N or control-Po 

4.9.10 ADDRESS DISPLAY 

FORMAT: 
A 

will display the address of the last window, and redisplay the last 
window. 

4.9.11 DISPLAY TYPE, WINDOW, AND OFFSET MODIFICATION 

FORMAT: 
C or Cn or Co,n 

will change the display type, window and offset, if specified, and 
redisplay either the original field with the new type or window 
specification, or the resultant field if the offset is modified. The 
string must be followed by a CR or LF, both of which leave one in the 
display mode, and on the next line. 

The legal display types are C, character, I, integer, x, hexidecimal, 
and B, bit. Transfers to and from bit have the effect of byte
alignment in either direction, and retaining the numerical size of the 
window, which is then interpreted either in bits or bytes. 

The window specification sets the window at the new size. 

The offset specification is in bytes or bits, depending on the type 
specified, may be positive or negative, in hex or decimal, and simply 
redirects the data specification pointer to a new location. 

The intent of this is to mainpulate type and window in display mode 
quickly and simply. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1985 PICK SYSTEMS 
PAGE 122 

o 



Chapter 5 

THE PC SYSTEM ASSEMBLER 

CAUTION *** CAUTION *** CAUTION 

USE EXTREME CAUTION IN CREATING AND LOADING ASSEMBLY CODE!!! 

Improper user written assembly code can cause severe problems on your 
system including loss of data, group format errors, and system 
crashes. PICK SYSTEMS cancels ALL warranties on any computer system 
that is running user written assembly code. 

o CHAPTER 5 

CAUTION *** CAUTION *** CAUTION 

PROPRIETARY INFORMATION 

This document contains information which is 
proprietary to and considered a trade secret of 
PICK SYSTEMS It is expressly agreed that it shall 
not be reproduced in whole or part, disclosed, 
divulged, or otherwise made available to any third 
party either directly or indirectly. Reproduction 
of this document for any purpose is prohibited 
without the prior express written authorization of 
PICK SYSTEMS. All rights reserved. 

PC SYSTEM ASSEMBLER Copyright (c) 1985 PICK SYSTEMS 
PAGE 123 



5.1 LOADING THE ASSEMBLY ACCOUNT FLOPPY 

.The PICK PC SYSTEM ASSEMBLER floppy contains an account which has all 
theflles necessary to : 

- CREATE 

- ASSEMBLE 

and 

- LOAD 

PICK Assembler Code for the PC SYSTEM. 

Follow these instructions to install the assembler account 

1. Logto' SYSPROG' . 

2. The Assembler account requires a m1nLmUID 700 disk frames. 
Ensure 700 frames of available disk space, by keying 
in at TCL 'POVF' <CR>. 

3. Mount floppy in diskette drive "A". 

4. Type 'T-ATT' <CR> and note that your terminal 
did indeed attach the tape drive. 

5. Type 'T-REW' <CR>. 

6. Type 'ACCOUNT-RESTORE ASSEMBLER' <CR>. 

7. The System prompts with Account Name on Tape? 
Type 'ASSEMBLER' <CR>. 

8. Assembler files display as loaded. 

9. System returns to TCL. 

r~\. 

CHAPTER 5 PC SYSTEM ASSEMBLER Copyright (c) 1985 PICK SYSTEMS ~r' 
PAGE 124 



5.2 ASSEMBLING CODE ON PC SYSTEMS 
,.t,.i . . , ...• < 

c' 

The PICK Assembler for PC SYSTEMS uses the same PICK sourceccide, ,.,(1.s 
all other PICK systems, but the physical procedures are a 'little 
different (simplified). 

Follow these instructions to assemble and load your assembly code 

1. Put your assembly source code into the file "APSM" . 

2. Use the PROC "AS" to either -

a. ' AS item. name' assemble one program 

or 

b. 'GET-LIST list. name , and then 
assemble a list of programs. 

3. Assembled object code is stored in the file "ASM" . 

AS 

4. Since PC SYSTEMS are software machines you must ensure that 
your code had no errors, and that the total frame size is 
less than 2K. 

Both the APSM and the ASM file should be checked by typing: 

MLIST APSM item. name (E 
MLIST ASM item. name (E 

Also check that the total resultant object frame size is less 
than 2K. To determine the size type: 

LIST ASM 'item.name' SIZE 

5. Load the assembled code by using the standard command -
'MLOAD ASM item. name' 

C CHAPTER 5 
.. 

PC SYSTEM ASSEMBLER Copyright (c) '1985 PICK SYSTEMS 
PAGE 125 





ADD 12 GNTBLI 67 
ADDX 12 HGETIB 68 

(",' AND 16 HSISOS 69 
ATTOVF 46 INC 12,31,32 
B 17 INITTERM 70 
BBS 30 IROVF 71 
BBZ 30 ISINIT 72 
BCA 20 LAD 31 
BCE 18 LINESUB 72 
BCH 19 LOAD 11 
BCHE 19 LOADX 11 
BCL 18 MBD 34 
BCLE 19 MBX 34 
BCN 19 MBXN 34 
BCNA 20 MCC 15 
BCNN 19 MCI 15 
BCNX 20 MD200 90 
BCU 18 MD201 90 
BCX 19 MD415 73 
BDLEZ 22 MD99 99 
BDLZ 22 MD993 99 
BDNZ 22 MD994 99 
BE 21 MD995 99 
BH 22 MD999 99 
BHE 22 MDB 34 
BL 21 MFD: 35 
BLE 21 MFX: 35 
BLEZ 20 MIC 15 

( 
BLOCK-SUB 46 MIl 15 
BLZ 20 MIlD 25 
BNZ 20 MIIDC 25 
BSL 17 MIIR: 25 
BSL* 17 MIlT 25 
BSLI 17 MOV 14 
BSTE 29 MSDB 35 
BSTU 29 MSXB 35 
BU 21 MUL 13 
BZ 20 MULX 13 
CONY 49 MXB 35 
CONVEXIT 49 NEG 14 
DATE 93 NEWPAGE 73 
DEC 13,31,32 NEXTIR 74 
DIV 13 NEXTOVF 74 
DIVX 14 NPAGE 79 
DLINITI 53 NSPCQ 99 
ENGLISH 54 ONE 11 
ENT 17 OPENPFILE 75 
ENT* 17 OR 16 
ENTI 17 PCBFID 76 
FFDLY 76 PCRLF 76 
G3 60 PINIT 77 
GETBLK 65 PONOFF 78 
GETBUF 60 PPUT 78 
GETIB 61 PRIVTSTI 79 
GETIBX 61 PRIVTST2 79 

(~\ GETITM 62 PRIVTST3 79 
GETOPT 64 PRNTHDR 79 

.-/ 

INDEX 



GETOVF 65 PROC 80 
GETSPC 65 PRTERR 82 
GETUPD 66 READ 36 
GNSEQI 66 RELBLK 84 "r", 

RELCHN 84 TCL 90 C .. ,) RELOVF 84 TCL-I 90 
RESETTERM 70 TCL-II 90 
RETI 85 TCLXIT 99 
RETIX 85 TIMDATE 93 
RETIXU 85 TIME 93 
ROM 36 TPREAD 94 
RTN 18 TPWRITE 94 
SB 30 TSINIT 96 
SDD 24 UPDITM 96 
SETLPTR 86 UPDITMX 96 
SET TERM 86 WHOSUB 98 
SETUP 33 WRAPUP 99 
SETUP TERM 87 WRITE 36 
SHIFT 16 WRITOB 103 
SID 24 WRTLIN 103 
SIT 24 WSINIT 105 
SITD 24 WT2 103 
SLEEP 88 WTBMS 106 
SLEEP SUB 88 XISOS 106 
SORT 89 XOR 16 
SRA 32 XRR 32 
STORE 11 ZB 30 
SUB 12 ZERO 11 
SUBX 12 

INDEX 

---------



c· 

fJ r 

'( A 

;;01 
.JI 
~F 

(:. 

,. 

("'ff1r" I w ... \,';I', 

~~:·.:I.8 ~r~·\7 
.?;(')~~ :~~ 

," 

'IVOT3:8 
:YF::':'3:8 
nqTJT28 
IQ3SV18 
MH:::>J3fl 
TvOJ35! 

.filH3:TT2235I 
IT35i 

XIT35I 
crllTI351 

MOB. 
WJ:'.S1 

88 
GCl2 

'T.!TQJT3:8 
t/illS!TI~~2 

(~~], "',': C~ 
~J1Jl~1ITqGT3. ~~ 

!:2~"'1 I f!~ 
(::L2 
'TT i: 

~1T:I~:~ 

q3::-ilI8 
81J 2 ~~I 7f :IJ 2 

~ (,:: ~~:: 
,.":. ll. ..... 



.... _ .. _ .. 

lOON . 

AI ......... 

~'m~1 0-002 A 1 


