
c sAtlYo
OICON

ICON/UXV-NET
Networking Tools.Guide

ICON
INTERNATIONAL
764 East Timpanogos Parkway
Orem, Utah 84057-6212
(801) 225-6888

(-~\

/

c

TOOLS GUIDE

ICON/UXV-NET
Networking
Software

© Copyright 1988, 1989
Icon International, Inc.
All rights reserved worldwide.

The infonnation contained within this manual is the property of Icon International, Inc. This
manual shall not be reproduced in whole nor in part without prior written approval from Icon
International, Inc.

Icon Intymational, Inc. reserves the right to make changes, without notice, to the specifications and
materials contained herein, and shall not be responsible for any damages (including consequential)
caused by reliance on the material as presented, including, but not limited to, typographical,
arithmetic, and listing errors.

Order No. 172·054·001 Al

Trademarks

The ICON logo is a trademark of Icon International, Inc.
UNIX is a registered trademark of AT&T.
Ethernet is a registered trademark of Xerox Corporation.

D ICONlUXV-NET

o

(

c

c

f?ecord of Changes

ICON/UXV ·NET
Administrator's Guide & Programmer's Reference Manual

Order No. 172·054·001

Date

Sep 1988

Mar 1989

Updatet Change Entered By *

AO Initial publication of Revision A

Al Addition of new manual pages and appendices F and G

t An update number has two parts: a capital letter and an Arabic numeral. (See update number AD above.) The capital letter refers to the
revision of the manual and the Arabic numeral refers to the sequence of changes made to that particular revision.

The first publication of all manuals is always designated as Revision A and is presented as AD. Mter the number of changes made to a
particular manual warrants a new edition, the revision letter is changed to the next capital letter. For example, the revision after
Revision A will be Revision B, and the publication will be represented as BO.

*

The second part of the update number, the Arabic numeral, gives the consecutive order of changes made to each revision. Update
number Al represents the first change made to Revision A, update A2 is the second change, and so forth. When a new revision is
issued, the numbering starts over (BO, Bl, B2).

The person who entered the updated pages into this manual.

Networking Tools Guide iii

iv ICON/UXV-NET

(

(~:

s~o
~ICON

Dear Customer,

The enclosed Update Package contains updated replacement pages
for the ICON/UXV-NET Networking Tools Guide, formerly known as
the ICON /UXV-NET Administrator Guide.

Instructions are provided to help you insert the replacement
pages. There is also a new "Record of Changes" page that provides you
with a history of the changes that have been made to this manual since
it was first published.

If you have any questions concerning this update to your
ICON/UXV-NET Networking Tools Guide, or any previous updates (as
you review the change history on the "Record of Changes" page),
please contact the Sanyo/Icon Customer Service Department toll free at
1-800-777-ICON.

:;L+
Stephen Raff
Technical Publications

ICON INTERNATIONAL, Inc.
764 East Timpanogos Parkway
Orem, UT 84057-6212
1-800-777-ICON
Fax: 801 226-0651
Telex: 323938 ICONSYS

/

(/ Change Instructions

(

Update this manual as follows:

ICON/UXV-NET
Networking Tools Guide

Order No. 172-054-001
Update Al

1. Remove the old pages and insert the new pages as indicated below.
2. For future reference, file these instructions in front of the manual after "Record of Changes."

NOTE: All holders of this manual should incorporate these changes into their copies.

Remove Old Pages

Front Cover

Front Matter, comprising the Title Page and pages ii -
vi, which includes the Copyright page, Record of
Changes page, and Table of Contents

Section 1, "Introduction", pages 1-1 through 1-4

Section 2, "Installation and Power Up", pages 2-3
through 2-6

All of Section 3, "Configuration and Maintenance"

Section 4, ''Network Setup", pages 4-3 through 4-6

The "Appendices" preface, pages A-i and A-ii

All of Appendix A, "Manual Pages"

Back Cover

Insert New Pages

Front Cover

Front Matter, comprising the Title Page and pages ii - vi,
which includes the Copyright page, Record of Changes
page, and Table of Contents

Section 1, "Introduction", pages 1-1 through 1-4

Section 2, "Installation and Power Up", pages 2-3 through
2-6

All of Section 3, "Configuration and Maintenance"

Section 4, "Network Setup", pages 4-3 through 4-6

The "Appendices" preface, pages A-i and A-ii

All of Appendix A, "Manual Pages"

Appendix F, "An Introductory Interprocess Communication
Tutorial"

Appendix G, "An Advanced Interprocess Communication
Tutorial"

Table of Contents

1 Introduction ... 1-1

Manual Overview 1 - 1
Who Should Read This Manual .. 1-1
What Is In This Manual ... 1-1

Managing The Network .. 1-3
Daemons .. 1-3
Servers ... 1-3
Configuration Files ... 1-3
User Programs ... 1-4
Administration Programs ... 1-4

Reference Manual Guide ... 1-5

2 Installation .. 2-1

Introduction ... 2-1
Overview of Installation .. 2-1

System Preparati on ... 2-1
Maintaining A System Map .. 2-2
Preparing Your ICON System For Networking .. 2-3

Ethernet Connections .. 2-4
Serial-Link Connections .. 2-4

Software Installation Information ... 2-5
Installing ICON/UXV-NET Software ... 2-5
Configuring the System for Networking .. 2-5

3 Configuration and Maintenance .. 3-1

Introduction ... 3-1
Software Configuration .. 3-1

Topology .. 3-1
The M/etc/hosts" File .. ; 3-2
The M/etc/networks File .. 3-3
The "/etc/gateways" File .. 3-4
The ·/etc/hosts.equiv" File .. 3-5
The K/etclinittab" File ... 3-6
The K/etc/rc.local" File .. 3-6
The M/etc/uxrc" File .. 3 -6
The M/usrllib/sendmail.cf" File ... 3-7

Reboot and Test .. 3-7

Networking Tools Guide v

4 Network Set Up .. 4-1

Local Subnetworks ... 4-1
Internet Broadcast Addresses .. 4-2
Routing .. 4-3
Network Servers .. 4-4
Network Data Bases ... 4-4

Regenerating "/etc/hosts" and "/etcnetworks" ... 4 -5
"/etc/hosts.equiv" .. 4 -5
"/etc/rc.local" ... 4 - 6
"/etc/ftpusers" ... 4 - 7

Appendix A - Manual Pages .. A-1

Appendix B - Internetwork Mail Routing ... 8-1

Appendix C - SENDMAIL Installation and
Operating Guide ... C-1

Appendix 0 - Introduction to the Internet Protocols 0-1

Appendix E - Networking Implementation Notes E·1

Appendix F - An Introductory Interprocess
Communication Tutorial .. F·1)

Appendix G - An Advanced Interprocess
Communication Tutorial ... G·1

vi ICON/UXV·NET

(Introduction 1
The ICON/UXV-NET product enables your ICON system running ICON/UXV to use a subset
of the networking utilities originally developed for use at the Advance Research Projects
Agency (ARPA) and the University of California at Berkeley (UCB). The utilities that
originate from UCB are based on Berkeley's Software Distribution of UNIX®, version 4.3
(4.3BSD).

These networking utilities enable you to transfer files, log into remote hosts, execute
commands remotely, and send mail to and receive mail from remote hosts on the network.

The lCONIUXV-NEI' Administrator's Guide provides specific information about the operation
and maintenance of the ICONIUXV -NET networking utilities for the ICON 2000, 3000, 4000,
and 5000 systems. This manual also provides detailed information about the internetwork mail
routing facility provided with this product, as well as supplementary documents and "manual
pages" that will prove useful to the network administrator.

Manual Overview

Who Should Read This Manual

This manual is intended to cover all aspects of the ICON/UXV-NET Networking Tools. The
following areas of interest are covered:

• network software installation and configuration
• routine network administration
• operation of network commands
• use of the networking software development library

A working knowledge of ICON/UXV commands and directory structures as well as the ability
to become a super-user and manipulate files with an editor, such as vi, is required. You should
have access to the ICON/UXV Reference Manuals and Guides and be comfortable in your
knowledge of the ICON/UXV operating system. You should also be familiar with the
Operator's Manual for your ICON computer system.

In the case of Ethernet® networking, familiarity with board installation and removal procedures
is necessary. This manual assumes that ICON/UXV, version 3.30 or later, has been installed
on the ICON systems which are networked.

What Is In This Manual

The list that follows briefly describes the contents of each section and appendix in this manual.

Introduction Change 1 - March 1989 1-1

Section 1: Introduction
The remaining part of this section provides a list of reference manuals that you may need and a ,0
quick-reference list of the daemons, libraries, security and configuration flIes that will help you 0
manage the ICONIUXV -NET utilities and services. Obtaining an Internet domain name and
obtaining information about Request for Comment documents (RFC) and Military Standards
(MIL-SID) is also explained.

Section 2: Installation
This section describes the installation of the lCONIUXV -NET utilities on an ICON system.
Information is also presented about maintaining a system networking map and the parts that
make up the Ethernet and Serial-Link network connections.

Section 3: Configuration and Maintenance
This section describes how to configure and maintain the lCON/UXV -NET network. Also
presented is a discussion on the files that must be altered to properly configure your system for
networking.

Section 4: Network Setup
This section provides general information on setting up networks using the lCONIUXV -NET
networking environment and an ICON computer system.

Appendix A - Manual Pages
This appendix provides the documentation for each of the utilities supported in the
ICON/UXV -NET product These pages are the same as the manual pages that are
electronically on-line in your ICON system.

Appendix B - SENDMAIL - An Internetwork Mail Router
This document describes sendmail, the internetwork mail routing facility provided with the
lCON/UXV -NET product Included are guidelines for deciding whether to install sendmail,
details about sendmail and its configuration file, installation instructions, and guidelines for
modifying the supplied sendmail configuration file.

Appendix C - SENDMAIL Installation and Operating Guide
This document describes how to install and operate a basic version of SENDMAIL, the
Internetwork Mail Routing program. It is a logical extension of the document found in
AppendixB.

Appendix D - Introduction to the Internet Protocols
This document provides an introduction to the facilities and capabilities of the Internet
Protocols. Information is provided that describes other documents, referred to as "RFC" and
"lEN" documents, and how to obtain a copy of those documents.

Appendix E - Networking Implementation Notes
This document describes the internal structure of the networking facilities.

Appendix F - An Introductory 4.3BSD Interprocess Communication
Tutorial. This document describes the use of pipes, socketpairs, sockets, and the use of
datagram and stream communication. The intent is to present a few simple example programs,
not to describe the networking system in full. r~

1 '

"--/

1-2 Change 1 - March 1989 ICONlUXV-NET

(

(

Appendix G - An Advanced 4.38S0 Interprocess Communication
Tutorial. This document provides an introduction to the interprocess communication
facilities included in the lCON/UXV operating system, discusses the overall model for
~terprocess communication, and introduces the interprocess communication primitives which
have been added to the system. A working knowledge of the C programming language is
expected as all examples are written in C.

Managing the Network

The daemons (server processes that run continuously, in the the background, to provide
services to users), servers, configuration fIles, user and administration programs that will help
you manage the ICON/UXV -NET utilities are briefly described in the following quick­
reference list

Daemons
letclinetd

letclrouted

letclrwhod

lusrlliblsendmail

letclsyslogd

Servers
letclftpd

letclremsJuI

letclrexecd

letclrlogind

letcltelnetd

letclntaIkd

letcltaIkd

letclt!tpd

master server process; initiates servers below

network route information server

network user information server

mail server, network mail router, local mail delivery

system error log facility

File Transfer Protocol iftp) server

remote shell server

remote program execution server

remote login server

DARPA Telnet Protocol server

new talk protocol server

old talk protocol server

Trivial File Transfer Protocol (tftp) server

Configuration Files
lusrllibl aliases

letclftpusers

letcl gateways

letclhosts

Introduction

mail alias data base

if present, contains list of users allowed to use ftp

routing information to gateway hosts

internet host address table (remote hosts)

Change 1 - March 1989 1-3

Configuration Files (Continued)

/etc/ hosts .equiv

/ etc/inetd.conj

/ etclnetworks

list of ''trusted'' hosts

inetd configuration file

networks known to this host

/etc/protocols protocols known to this host

/etc/services services available through inetd
/etclsyslog.conf syslogd configuration file

User Programs
ftp File Transfer Protocol program

mail network mail program

rep network copy program

rdist remote file distribution program

remsh run a command on a remote host

rlogin login to a remote host

ruptime provides information on length of time remote hosts have
been up, how many users, and host load average

rwho

talk

telnet

tftp

who is logged in on remote hosts

converse with a local or remote user

user interface to the TELNET protocol

Trivial File Transfer Protocol program

Administration Programs

1·4

gettable

htable

ifconfig

netstat

newaliases
ping

route

slattach
trpt

get NIC format host tables from a host

conver NIC standard format host tables

configure network interface parameters

show network status

rebuild the data base for the mail aliases file

test availability of other network hosts

manually manipulate the routing tables

attach serial lines as network interfaces

transliterate protocol trace

Change 1 - March 1989 ICONlUXV·NET

(\.
I

j

(Reference Manual Guide
For more information on the following subjects, refer to the publications listed in the right
column.

For Information On:
ICONJUXV Administration

Installing Ethernet hardware
on ICON systems

C Programming Language

ICON/UXV operating system

Read:
ICONIUXV Administrator Guide
ICONIUXV Release Docwnentation Package

ENEI' Controller Board in the ICON System
Reference Manual

The C Programming Language, Brian W.
Kernighan, Dennis M. Ritchie; Prentice-Hall, Inc.
C Programming Guide, Jack Purdum,
Que Corporation, Indianapolis, Indiana

ICONIUXV User Guide
ICONIUXV User Reference Manual
ICONIUXV Editing Guide
ICONIUXV Administrator Guide
ICONIUXV Administrator Reference Manual
ICONIUXV Programmer Guide
ICONIUXV Programmer Reference Manual
Exploring the UNIX System, Kochan & Wood,
Hayden Book Company

Details on the various protocols used in ICON/UXV-NET are discussed in technical
publications know as "Request For Comments". The following is a partial list of those
publications.

For Information On:
Address Resolution Protocol

Domain Requirements

File Transfer Protocol

Internet Control Message Protocol

Internet Protocol

Simple Mail Transfer Protocol

Introduction

Read:
RFC826

RFC920

MIL-SID 1780
RFC959

RFC792

MIL-SID 1777
RFC791

MIL-SID 1781
RFC 821

1-5

Standard for the Format of
ARPA Internet Text Messages

Telnet

RFC822

MIL-STD 1782

To obtain information about available RFCs, contact:

Network Infonnation Center (NIC)
SRI International
333 Ravenswood Avenue
Menlo Park~ CA 94025
1-800-235-3155

To obtain information about available MIL-STD specifications, contact:

Department of the Navy
Naval Publications and Forms Center
5801 Tabor Avenue
Philadelphia, PA 19120-5099

1-6 ICON/UXV-NET

<:

Installation 2
Introduction

Networking in ICON computer systems is implemented with standard hardware and software
configurations for maximum compatibility in a multi-vendor environment. Two interfaces are
currently supported: Ethernet and Serial-Link. ICON machines can support both interfaces
simultaneously if desired. The TCPIIP protocol standard is used on both Ethernet and
Serial-Link: connections.

This section includes information on how to:

• set up and maintain a network map;

• make sure the proper hardware is installed on your computer system;

• install the ICON/UXV-NETsoftware; and

• add your computer system to the network.

Overview of Installation

The list below is an overview of the installation procedure described in this section. To install
and power up the ICON/UXV network on your ICON computer system:

• set up a network map;

• make sure the network hardware is properly installed;

• install the ICON/UXV network software;

• choose an internet address and host name;

• assign host names and internet addresses.

System Preparation

Preparing your ICON system for networking requires setting up and maintaining a network
map and installing the necessary networking hardware within your system's configuration.
The rest of this section describes what you must do to set up your ICON computer system to
operate on the network.

Installation and Power Up 2-1

Maintaining a Network Map

As you install a new computer node on your network, it is important to take the time to update
your network map. If you have not previously created a map, it is strongly recommended that
you create one now. A network map provides you with information about the location and
configuration of the computers on the network. As network administrator, it is your
responsibility to keep the network map up-to-date when you add or delete computers or make
cable changes.

Your network map shouldcontaia1helocalion of:

• the coaxial cable, including terminators and repeaters;

• the network Transceiver or Fan-out Unit and Controller cables;

• the taps into the coaxial cable;

• the networking equipment; and

• each node on the network, including the:

• complete node (host) name;

• internet address;

The example shown on the next page is a sample network map using both Ethernet and Serial­
Link hookups.

2-2 ICON/UXV-NET

i
\ /

(-

c

Local Network Remote Network

Legend:

ICON ICON
3000 3000 ICON

2000

r"""O

ICON ICON
2000 2000

1 0 Mblsec Ethernet

I
I

ICON
[J .. !:.J---I 4000

56 Kblsec High Speed Modem
Serial Link

~ Fan Out Unit

CEJ Transceiver Unk

o Terminator

Figure 1. Sample Network Map

Preparing Your ICON System for Networking

SUN

"or
VAX

ICON
3000

Several components are required to prepare your ICON computer system for operation on the
network. Those components include hardware for Ethernet and Serial-Link connections and
networking software.

Setting up hardware for networking consists of configuring jumpers on boards and installing
boards and cables in the proper locations within the computer system configuration.

Ethernet Connections

The Ethernet connection for networking is made by installing the ICON ENET option (PN
840-026-(01), which includes:

• MBAl (Multibus Adapter) Board
• ENET Controller Board
• ENET Controller Cable
• ENET Transceiver Cable - 33 feet long
• ENET Transceiver (for connecting to N-type coaxial cables), or
• ENET Transceiver Fan Out Unit (for connecting up to 8 hosts on a single hub)

Installation and Power Up Change 1 - March 1989 2-3

For directions on how to install the MBAI and ENET Controller boards in your ICON system (~. '\
and how to correctly configure the necessary jumper settings, refer to the following manuals: ~ .;

• Multibus Adapter Board MBAl
• ENEI' Controller Board

Serial-Link Connections

PN 170-022-001
PN 170-024-001

Serial-Link connections for networking use conventional RS-232C cables between serial ports
on the Peripheral Communications Processor (PCPI6) board in an ICON system. Serial-Link
networks can be configured in various topologies such as stars or rings, with the understand­
ing that each physical link between two machines is considered a separate network and that a
maximum of five Serial-Links can be connected to anyone machine. Computer systems that
are not directly connected may still communicate through any number of gateway machines.
To avoid line-ringing problems, it is recommended that inter-machine serial connections not be
made until the ports that are to be connected are made non-login ports by changing the entries
for those ports in the letclinittab fIle. Systems with PCP16 boards installed should use the
PCP serial ports rather than any port on the CPU board to obtain the highest possible
performance.

Serial-Link components include:

• PCP16 Processor Board
• RS-232C Software Handshake Cable

NOTE: Although the DCS (Distributive Communication System) option provides
additional serial and parallel communication ports in an ICON computer system,
it is not recommended to be used for Serial-Link connections because of a
noticeable degradation of communication performance.

2-4 Change 1 - March 1989 ICONlUXV-NET c

(

(

Software Installation Information

Your ICON system must have version 3.30 of the ICON/UXV operating system (or later)
installed and running before the ICON/UXV -NET software can properly be installed.
ICON/UXV-NET networking software, version 3.30 or greater, provides all of the necessary
utilities to implement networking under the ICON/UXV operating system on your ICON
computer system.

You will need an internet address number for each host on your network to properly configure
your network. Unregistered, but reserved Class C internet address are available from:

Icon Customer Service
Internet Network Address Coordinator
764 East Timpanogos Parkway
Orem, UT 84057

Registered internet addresses are available from:

Network Information Center
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Unless you plan on connecting your netwrok directly to other TCPIIP networks, the default
internet addressess supplied with ICON/UXV-NET are adequate.

Installing ICON/UXV-NET Software

The software for ICON/UXV-NET is in tarfonnat. Once the release media is loaded into the
appropriate drive mechanism, log in to the operating system root account (in response to the
"login" prompt), by entering:

login: root

The login program will prompt you to enter the password to the root account. After entering
the password and receiving the login infonnation, extract the lCON/UXV -NET software from
the release media into the root account by entering:

cd I
tar xvp

(positioned in root account)
(extract software files from tape)

The contents of the release media will be extracted into the root account and all appropriate
permissions will be assigned. When the extraction, installation, and configuration process is
complete, you may log out of the root account and log back into your user account.

Installation and Power Up Change 1 - March 1989 2-5

Configuring the System for Networking

Once the lCON/UXV -NET software is on your system, it is necessary to configure your
system for networking. Chapter 3, Configuration and Maintenance, explains in detail the
nece$sary steps to take so that networking will function properly on your ICON system.

2-6 Change 1 - March 1989 ICONlUXV-NET

(

(.. ~ •.
/'

Configuration and Maintenance 3
Introduction

This section describes how to configure and maintain your ICON/UXV network, including:

• how to set up the configuration files;

• a description of network daemons and servers;

• how the security algorithms work for each network service;

• guidelines on network connections; and

• how to perform maintenance tasks.

Software Configuration

The discussion that follows describes the steps necessary to configure the ICON/UXV -NET
software on an ICON computer system for networking. The Ethernet and Serial-Link
interfaces are discussed together because much of the software configuration applies to both
and in many instances both will be present on the same machine. The files discussed below
should be altered only by a system administrator with super-user privileges on each of the
machines to be connected. Files can be changed while others are using the machines. But
ultimately, shutdown and reboot of each machine in the network configuration will be
necessary as a final step to bring up the networks.

Topology

The figure below shows a sample topology of a network configuration for the purposes of this
discussion. Three systems, with hostnames doc, sleepy, and dopey, have connections to an
Ethernet network. In addition, doc has Serial-Link connections to grumpy and sneezy.
Sneezy has, in turn, a Serial-Link to happy.

Configuration and Maintenance Change 1 - March 1989 3-1

,Figure 2. Sample Topology

The fete/hosts File

Each of the six hosts in our sample topology has an fetcfhosts file which specifies the internet
address chosen for each host, its name, and an indication of which system is the loghost
(which is simply the name of the host on which the flle resides). Each of the six hosts should
have identical information in the fetc/hosts file except for the specification of the loghost The
following is an example fetc/hosts file for doc:

* * Example hosts file

* 192.41.100.1
192.41.100.2
192.41.100.3
192.41.99.1
192.41.98.1
192.41. 97.1
127.1

*

dopey
sleepy
doc loghost
grumpy
sneezy
happy
local host

Except for the localhost entry, each host has a Class C internet address composed of four
numeric values separated by periods. The leftmost three values together (e.g., 192.41.1(0)
comprise the network number and the rightmost value is the host number.

In the Class C internet address schema, the network number may range from 192.1.1 to
223.254.254 and the host number may range from 1 to 254. If more than 254 hosts are

3-2 Change 1 - March 1989 ICONlUXV-NET

o

c

(

(~

------~-

required on a given network, class B internet addresses may be used. In this case, the leftmost
two values are the network number and range from 128.1 through 191.254, while host
numbers range from 1.1 to 254.254.

The network portion of an internet address corresponds to the network to which that host
is primarily connected. Each host has only one internet address, even if it has connections to
several other networks. In our sample case, network number 192 . 9 . 2 a a is the Ethernet
connection between doc, sleepy, and dopey. Each of the systems has the same network
number (192 .41.100) but different host numbers, dopey being "1", sleepy being "2",
and doc being" 3".

Each Serial-Link connection constitutes a separate network and therefore must have a separate
network number. Network number 192 . 4 1 . 99 is assigned to the connection between
grumpy and doc. It has been chosen as grumpy's primary connection, so the internet
address for grumpy is "192 . 4 1 . 9 9 . 1". Network number 192 . 41 . 98 . 1 is assigned to
the connection between sneezy and doc, and appears in sneezy's address. Network
number 192 .41. 97 .1 is assigned to the connection between happy and sneezy and
appears in the address for happy.

The network number also appears in the fete/networks me. Each hostname should appear only
once in the fetcflwsts me. Keep in mind that internet addresses assigned can be arbitrary within
the above constraints unless the host is attached to the "official" internet. In that case, addresses
must be obtained from the controlling authority. The entry for "127.1 localhost" is
always present in the fetcfhosts fIle.

The letelnetworks File

Each host must have an fetcfnetworks me which specifies the network names, the internet
addresses, and the networks that are directly accessible to that host. Each host system
fetcfnetworks file should have identical information except for the indications of directly
accessible networks via the localnet specifier. A sample fete/networks file for sneezy would
be as follows:

~
t~ f Example networks file

f
loopback
doc-ether
51-grumpy
51-sneezy
sl-happy
f

127
192.41.100
192.41.99
192.41. 98
192.41. 97

loca1net

1:1

III

I
::::::

11
·~b:."""::;~.::::::~~:i:-:;:,."'K~'%.~~~~w.::~:::;:;::::::::::~:::::::::::::~:::::::::::~::~:,:::f:::::{:::::::~:::::::::::::::~:::::::::~:::::~:::::::::::::::::::::::::::::::t:~i~~

Configuration and Maintenance Change 1 - March 1989 3-3

Note that the internet address for each network corresponds to the values in the tete/hosts fIle.
In this case, there are two localnet specifiers because sneezy can directly access two of the
Serial-Link networks, one to hoppy and one to doc. Similarly, the fetcfnetworks fIle on doc
will have three localnet entries and dopey will have only one. The network names are
arbitrarily chosen strings without embedded spaces. The "loopback 127" entry is always
present in the /etc/networks fIle.

The /etc/gateways File

The tete/gateways file is only necessary for systems having Serial-Link connections; Ethernet
connections do not require this file. It is required for Serial-Links because currently it is not
possible to share routing infonnation across Serial-Link interfaces as it is with Ethernet Thus,
your ICON system has no way of determining which Serial-Link interface to use to get to
another host. The routes are established when the system boots and the routed daemon begins
execution. The tete/gateways fIle is read by routed to build routing table entries for Serial-Link
connections.

There are two kinds of entries in the /etc/gateways fIle, those for hosts and those for networks.
They are distinguished by the first word in the entry, either "host" or "net". Host entries are
used to establish a route to a particular host and net entries establish routes to networks. A host
entry is of the fonn:

host hostname gateway gatename metric hopcount passive

"Hostname" is the name of the destination host, "gatename" is the name of the host
gateway, and "hopcount" is a value (0,1,2 ...) which indicates how many "hops" to the
destination host. This number does not need to be accurate, as it is only used for routing path
decisions in the case of multiple available paths to a destination. If the hopcount total exceeds
16, however, the destination will be considered "too far" and connection attempts will be
abandoned.

Systems with Serial-Link connections must have a host entry in their /etc/gateways fIle for each
non-primary Serial-Link connection. A non-primary connection is defined as any Serial-Link
connection to that host which has a network number in the /etc/networks file which is different
than the network number portion of the host's internet address as found in the fete/hosts file.
Thus, a system with only one Serial-Link connection does not require a host entry in this file
because the only connection it will have will be a primary connection. An example of this in
our sample topology is the connection to happy (see Figure 2). The primary connection for
sneezy is the link to doc, so the fete/gateways fIle on sneezy must have a host entry only for
hoppy. Routing information for a primary connection is established with the ifconfig
command in the fete/re.local file discussed later.

The "gatename" is the name of the directly connected host which will act as a gateway to get
to the destination. If the destination is a directly connected host, as is most common, the
"gatename" is the name of the host on which the /etc/gateways file resides. In other words,
you must "gateway" through "yourself' to get to an adjacent host on a non-primary network.

3-4 Change 1 - March 1989 ICON/UXV-NET

(
Net entries are of the fonn:

net netname gateway gatename metric hopcount passive

"Netname" is the name of the destination network as defined in the /etc/networks me and
"gatename" and "hopcount" are as defined above. Net entries inthe /etc/gateways me are
typically only used to establish a default routing path. This can reduce the amount of
infonnation that must be expressed in /etc/gateways. The default routing path will be used for
any destination hosts or networks not explicitly defined in /etc/gateways. A default path is
established with a net entry using the value 0 for "net name" and an accessible host to use as
the gateway in "gatename". Systems with only a single Serial-Link will usually have a single
net entry of this fonn in their /etc/gateways me. An example of this is grumpy. The
following is a sample /etc/gateways file for grumpy:

net 0 gateway doc metric 1 passive

A more complicated set of entries is required for doc. as shown below:

host grumpy gateway doc metric 0 passive
host sneezy gateway doc metric 0 passive
host happy gateway sneezy metric 1 passive

One more example is shown from snee:r;y :

host happy gateway sneezy metric 0 passive
net 0 gateway doc metric 1 passive

The letc/hosts.equiv File

The /etC/hosts.equiv me is simply a list of known and recognized hosts. These hosts will be
allowed to rlogin and exchange other services. such as rep. without password checking if an
equivalent usemame is found on the local host. In our example network. all syste\lls are
allowed these privileges, so the /etclhosts.equiv files on all six machines are the same:

doc
sleepy
dopey
grumpy
sneezy
happy

If allowing equivalent usemames free access between machines is not acceptable, password
checking for rlogin may be invoked by leaving the source hostname out of the destination's
/etc/hosts.equiv file. The root user is always restricted from performing rep commands and is
password checked with rlogin in every case.

After the /etc/hosts.equiv me is in place. running the MAKEHOSTS script in /usrlhosts will
create a set of symbolic links to remsh for each host. By placing the file /usr/hosts in your

Configuration and Maintenance Change 1 - March 1989 3-5

search path, remote execution can be invoked by simply typing the hostname on the command
line, as in:

doc troff -ms < myfile.ms

This=command invokes a "troff' on doc using "ms" macros with input from myfile.ms on the
local host. An rlogin can be invoked with just the hostname, as in:

doc
The /etc/inittab File

The letelinittab file must be configured so that all ports connected to Serial-Link networks are
non-login ports. This is done by changing the third field (fields are separated by":" (colon)
characters) in the entry for the port to "off', as in:

14:2:off:/etclgetty ttyaa 9600 dt1200 # PCP 0 line 10

which prevents a login from being allowed on port ttyaa.

The /etc/rc.local File (For ICON/UXV Software Release 3.3X Only)

The letelre.loeal file must contain commands which initialize network interfaces when the
system boots. Serial-Link interfaces each require two lines in this flIe and Ethernet interfaces
require one. The following is a sample letelre.loeal flIe entry for doc:

f example /etc/rc.local for doc
f Don't forget to change "/etc/hosts" if you change your hostname!
hostname doc
/etc/ifconfig 100 localhost
/etc/route add 'hostname' localhost 0
t Initialize the network hardware
/etc/ifconfig exO 'hostname' -trailers up # for Ethernet
/etc/slattach /dev/ttyaf 19200 f Serial-Link to grumpy
/etc/ifconfig slO doc grumpy -trailers up
/etc/slattach /dev/ttyae 19200 f Serial-Link to sneezy
/etc/ifconfig s11 doc sneezy -trailers up
f other stuff for initializing the system follows ...

The loopback interface is initialized first and then the Ethernet interface for doc is initialized.
the name of the Ethernet interface being "exO". The Serial-Link to grumpy is then allocated

3-6 Change 1 - March 1989 ICON/UXV-NET

/-~

~j

(

by the letclslattach command. The port to be used is / dey / t t ya f and the baud rate is set
to 192 a 0, the maximum baud rate available. The intetface just allocated is then configured by
the letclifconfig command. The intetface name is "slO," the connection is from doc to
grumpy, no "trailer" link-level encapsulation is supported, and the intetface is marked as
"up". The first letclslattach command sets up intetface "slO," the second, "sll," and so
on. The subsequent letclifconfig command must use the interface name for that Serial-Link.

The letc/uxrc File

The letclu.xrc file is used at system boot time to determine the modem control and hardware
handshaking configurations of each port on the PCP16 board. Nonnally, ports used for
Serial-Link connections are not set for modem control nor hardware handshaking. This is the
default setting for all ports in the ICON/UXV release. If the letcluxrc fIle has been changed
from the default, use the ICON/UXV operating system reference manuals to learn how to
adjust the file for your environment

The lusr/lib/sendmail.cf File

The lusrlliblsendmail.cffile is used to determine how to send mail among hosts. It is
somewhat cryptic and can be configured in different ways. The lusrlliblsendmail.cffile
provided with ICON/UXV-NET software is usually sufficient. Further infonnation can be
obtained by referring to the appendices.

Reboot and Test

After modifying the flles described above, the following steps must be taken:

• petform a system shutdown
• connect any yet unconnected cables
• reboot the system

The network can then be tested by attempting rlogin, remsh, netstat, and other network
commands. The ping command is also useful for testing network configurations. If any
problems are found after the above files have been configured, review the installation
procedures outlined above and make sure the entries to each file are correct. If problems still
persist, or you have questions concerning the configuration procedure, contact ICON
Customer Service on the toll-free hot-line number: 1-800-444-ICON.

Configuration and Maintenance Change 1 - March 1989 3-7

3-8 Change 1 - March 1989 ICON/UXV-NET

(

Network Setup 4
ICON/UXV provides support for the DARPA standard Internet protocols IP, ICMP, TCP, and
UDP. These protocols may be used on top of a variety of hardware devices. Network
services are split between the kernel (communication protocols) and user programs (user
services such as TELNET and FfP). This section describes how to configure your system to
use the Internet networking support.

All network interface drivers including the loopback interface, require that their host
addressees) be dermed at boot time. This is done with ifconjig(8C) commands included in the
letclrc.local file. Interfaces that are able to dynamically deduce the host part of an address may
check that the host part of the address is correct. The manual page for each network interface
describes the method used to establish a host's address. Ifconfig(8) can also be used to set
options for the interface at boot time. Options are set independently for each interface, and
apply to all packets sent using that interface. These options include disabling the use of the
Address Resolution Protocol; this may be useful if a network is shared with hosts running
software that does not yet provide this function. Alternatively, translations for such hosts may
be set in advance or "published" by a ICON/UXV host by use of the arp(8C) command. Note
that the use of trailer link-level is now negotiated between ICON/UXV hosts using ARP.

To use the pseudo tenninals just configured, device entries must be created in the /dev
directory. (These entries may already have been created on your system.) To create 32 pseudo
terminals (plenty, unless you have a heavy network load) execute the following commands.

cd /dev
MAKEDEV ptyO ptyl

More pseudo tenninals may be made by specifying pty2, pty3, etc. The kernel normally
includes support for 32 pseudo terminals unless the configuration file specifies a different
number. Each pseudo terminal really consists of two files in /dev: a master and a slave. The
master pseudo tenninal file is named /devlptyp?, while the slave side is /dev/ttyp? Pseudo
tenninals are also used by several programs not related to the network. In addition to creating
the pseudo tenninals, be sure to install them in the letclinittab fIle (with an 'off' in the third field
so no getty is started).

Local Subnetworks

NOTE: This section may be skipped on most systems.

In ICON/UXV the DARPA Internet support includes the notion of "subnetworks". This is a
mechanism by which multiple local networks may appears as a single Internet network to off­
site hosts. Subnetworks are useful because they allow a site to hide their local topology,
requiring only a single route in external gateways; it also means that local network numbers
may be locally administered. The standard describing this change in Internet addressing is
RFC-950.

Network Setup 4-1

To set up local subnetworks one must fIrSt decide how the available address space (the Internet
"host part" of the 32-bit address) is to be partitioned. Sites with a class A network number r--"
have a 24-bit address space with which to work, sites with a class B network number have a ~l
16-bit address space, while sites with a class C network number have an 8-bit address space .

. To defme local subnets you must steal some bits from the local host address space for use in
extending the network portion of the Internet address. This reinterpretation of Internet
addresses is done only for local networks; i.e. it is not visible to hosts off-site. For example,
if your site has a class B network number, hosts on this network have an Internet address that
contains the network number, 16 bits, and the host number, another 16 bits. To defme 254
local subnets, each possessing at most 255 hosts, 8 bits may be taken from the local part. (The
use of subnets 0 and all-I 's, 255 in this example, is discouraged to avoid confusion about
broadcast addresses.) These new network numbers are then constructed by concatenating the
original 16-bit network number with the extra 8 bits containing the local subnetwork number.

The existence of local subnetworks is communicated to the system at the time a network
interface is configured with the netmask option to the ifcorifig program. A "network mask" is
specified to define the portion of the Internet address that is to be considered the network part
for that network. This mask normally contains the bits corresponding to the standard network
part as well as the portion of the local part that has been assigned to subnets. If no mask is
specified when the address is set, it will be set according to the class of the network. For
example, at Berkeley (class B network 128.32) 8 bits of the local part have been reserved for
defining subnetworks; consequently the letc/rc.local file contains lines of the form

/etc/ifconfig exO netmask OxffffffOO 128.32.1.7

This specifies that for interface "exO", the upper 24 bits of the Internet address should be used
in calculating network numbers (netmask OxffffffOO), and the interface's Internet address is
"128.32.1.7" (host 7 on network 128.32.1). Hosts m on sub-network n of this network
would then have addresses of the form "128.32.n.m"; for example, host 99 on network 129
would have an address "128.32.129.99". For hosts with multiple interfaces, the network
mask should be set for each interface, although in practice only the mask of the first interface
on each network is actually used.

Internet Broadcast Addresses
The address defmed as the broadcast address for Internet networks according to RFC-919 is
the address with a host part of alII's. The address used by 4.2BSD was the address with a
host part of O. ICONIUXV uses the standard broadcast address (all 1 's) by default, but
allows the broadcast address to be set (with ifconfig) for each interface. This allows networks
consisting of both 4.2BSD and ICONIUXV hosts to coexist. In the presence of subnets, the
broadcast address uses the subnet field as for normal host addresses, with the remaining host
part set to 1 's (or O's, on a network that has not yet been converted). ICON/UXV hosts
recognize and accept packets sent to the logical-network broadcast address as well as those sent
to the subnet broadcast address, and when using an all-I 's broadcast, also recognize and
receive packets sent to host 0 as a broadcast.

4-2 ICON/UXV-NET

(Routing

If your environment allows access to networks not directly attached to your host you will need
to set up routing infonnation to allow packets to be properly routed. Two schemes are
supported by the system. The ftrst scheme employs the routing table management daemon
/etc/routed to maintain the system routing tables. 1be routing daemon uses a variant of the
Xerox Routing Information Protocol to maintain up to date routing tables in a cluster of local
area networks. By using the /etc/gateways file~ the routing daemon can also be used to
initialize static routes to distant networks (see the next section for further discussion). When
the routing daemon is started up (usually from /etc/rc) it reads /etc/gateways if it exists and
installs those routes deftned there, then broadcasts on each local network to which the host is
attached to fmd other instances of the routing daemon. If any responses are received, the
routing daemons cooperate in maintaining a globally consistent view of routing in the local
environment This view can be extended to include remote sites also running the routing
daemon by setting up suitable entries in /etc/gateways; consult the routed manual page for a
more thorough discussion.

The second approach is to defme a default or wildcard route to a smart gateway and depend on
the gateway to provide ICMP routing redirect information to dynamically create a routing data
base. This is done by adding an entry of the fonn

jete/route add default smart-gateway 1

to /etclrc; see routed(8C) for more information. The default route will be used by the system
as a "last reson" in routing packets to their destination. Assuming the gateway to which
packets are directed is able to generate the proper routing redirect messages, the system will
then add routing table entries based on the information supplied. This approach has certain
advantages over the routing daemon, but is unsuitable in an environment where there are only
bridges (i.e. pseudo gateways that, for instance, do not generate routing redirect messages).
Funher, if the smart gateway goes down there is no alternative, save manual alteration of the
routing table entry, to maintaining service.

The system always listens, and processes, routing redirect information, so it is possible to
combine both of the above facilities. For example, the routing table management process might
be used to maintain up to date infonnation about routes to geographically local networks, while
employing the wildcard routing techniques for "distant" networks. The netstat(1) program may
be used to display routing table contents 3i w.ell JIS various routing oriented statistics. For
example,

'netstat -r

will display the contents of the routing tables, while

'netstat -r -s

will show the number of routing table entries dynamically created as a result of routing redirect
messages, etc.

Network Setup Change 1 - March 1989 4-3

Network Servers
In ICON/UXV most of the server programs are started up by a "super server", the Internet
daemon. The Internet daemon, letc/inetd, acts as a master server for programs specified in its
configuration file, letC/inetd.con/, listening for service requests for these servers, and starting
up the appropriate program whenever a request is received. The configuration file contains
lines containing a service name (as found in /etc/services), the type of socket the server expects
(e.g. stream or dgram), the protocol to be used with the socket (as found in /etc/protocols),
whether to wait for each server to complete before starting up another, the user name as which
the server should run, the server program's name, and at most five arguments to pass to the
server program. Some trivial services are implemented internally in inetd, and their servers are
listed as "internal." For example, an entry for the file transfer protocol server would appear as

ftp stream tcp nowait root /etc/ftpd ftpd

Consult the inetd manual page for more detail on the format of the configuration file and the
operation of the Internet daemon.

Network Data Bases
Several data files are used by the network library routines and server programs. Most of these
files are host independent and updated only rarely.

File
/etc!hosts
/etc/networks
Jete/services
/etc/protocols
/etc!hosts.equiv
/etc/rc.local
/etc/ftpusers
/etc!hosts.lpd
/etcfmetdconf
Jete/gateways

Manual reference
hosts
networks
services
protocols
remshd
rc
ftpd
lpd
inetd
routed

Use
host names
network names
list of known services
protocol names
list of "trusted" hosts
command script for starting servers
list of "unwelcome" ftp users
list of hosts allowed to access printers
list of servers started by inetd
default router infonnation

The files distributed are set up for ARPANET or other Internet hosts. Local networks and
hosts should be added to describe the local configuration. Network numbers will have to be
chosen for each Ethernet For sites not connected to the Internet, these can be chosen more or
less arbitrarily, otherwise the formal channels mentioned in Section 2 should be used for
allocation of network numbers.

4-4 Change 1 - March 1989 ICON/UXV-NET

C)

(

(

Regenerating letc/hosts and letc/networks

NOTE: The following information applies only to those system directly
connected to the ARPA internet.

When using the host address routines that use the Internet name server, the me /etc/hosts is
only used for setting interface addresses and at other times that the server is not running, and
therefore it need only contain addresses for local hosts. There is no equivalent service for
network names yet The full host and network name data bases are sometimes derived from a
file retrieved from the Internet Network Information Center at SRI. To do this you should use
the program fetc/gettable to retrieve the NIC host data base, and the program htable(8) to
convert it to the format used by the libraries. You should change to the directory where you
maintain your local additions to the host table and execute the following commands.

I /etc/gettable sri-nic.arpa
Connection to sri-nic. arpa opened.
Host table received.
Connection to sri-nic.arpa closed.
I /etc/htable hosts.txt
Warning, no local gateways file.
I

The htable program generates three files in the local directory: hosts, networks and gateways.
If a file "localhosts" is present in the working directory its contents are first copied to the output
file. Similarly, a "localnetworks" file may be prepended to the output created by htable, and
"localgateways" will be prepended to gateways. It is usually wise to run diff{l) on the new
host and network data bases before installing them in fete. If you are using the name server for
the host name and address mapping, you only need to install networks and a small copy of
hosts describing your local machines. The full host table in this case might be placed
somewhere else for reference by users. The gateways file may be installed in /etc/gateways if
you use routed for local routing and wish to have static external routes installed when routed is
started. This procedure is essentially obsolete, however, except for individual hosts that are on
the Arpanet or Milnet and do not forward packets from a local network. Other situations
require the use of an EGP server.

If you are connected to the DARPA Internet, it is highly recommended that you use the name
server for your host name and address mapping. as this provides access to a much larger set of
hosts than are provided in the host table. Many large organization on the network, currently
have only a small percentage of their hosts listed in the host table retrieved from NIC.

letc/hosts.equiv

The remote login and shell servers use an authentication scheme based on trusted hosts. The
hosts.equiv file contains a list of hosts that are considered trusted and. under a single
administrative control. When a user contacts a remote login or shell server requesting service,
the client process passes the user's name and the official name of the host on which the client is
located. In the simple case, if the host's name is located in hosts.equiv and the user has an
account on the server's machine, then service is rendered (i.e. the user is allowed to log in, or
the command is executed). Users may expand this "equivalence" of machines by installing a

Network Setup Change 1 - March 1989 4-5

.rhosts file in their login directory. The root login is handled specially, bypassing the
hosts.equiv file, and using only the I.rhosts ftle.

Thus, to create a class of equivalent machines, the hosts.equiv file should contain the official
n~s for those machines. If you are running the name server, you may omit the domain part
of the host name for machines in your local domain. For example, several machines on our
local network are considered trusted, so the hosts.equiv fue is of the form:

dopey
doe
sneezy
happy
grumpy
sleepy

/etc/rc.local

Most network servers are automatically started up at boot time by the command file /etc/rc (if
they are installed in their presumed locations) or by the Internet daemon (see above). These
include the following:

Program
/etc/rernshd
/etc/rexecd
/etc/rlogind
letc/telnetd
letc/ftpd
letc/fmgerd
letc/tftpd
letc/rwhod
letc/syslogd
lusrllib/sendmail
letc/routOO

Server
shell server
exec server
login server
TELNET server
FfP server
Finger server
1FrP server
system status daemon
error logging server
SMTP server
routing table management daemon

Started by
inetd
inetd
inetd
inetd
inetd
inetd
inetd
/etc/rc
letc/rc
/etc/rc
letc/rc

Consult the manual pages and accompanying documentation (particularly for sendmail) for
details about their operation.

To have other network servers started up as well, the appropriate line should be added to the
Internet daemon's configuration file letclinetd.eonf, or commands of the following sort should
be placed in the ftle letelre.

4-6

if -f fete/routed]; then
fete/routed & eeho ' routed\e'

fi

Change 1 - March 1989 ICON/UXV-NET

\

~/

(

(

c

letc/ftpusers

The FfP server included in the system provides support for an anonymous FIP account.
Because of the inherent security problems with such a facility you should read this section
carefully if you consider providing such a service.

An anonymous account is enabled by creating a userftp. When a client uses the anonymous
account a chroot(2) system call is perfonned by the server to restrict the client from moving
outside that part of the file system where the user ftp home directory is located. Because a
chroot call is used, certain programs and files used by the server process must be placed in the
ftp home directory. Further, one must be sure that all directories and executable images are
unwritable. The following directory setup is recommended. (Note: The csh shell is used in
the following examples.)

cd -ftp
chmod 555 chown ftp . chgrp ftp . , . , .
mkdir bin etc pub
chown root bin etc
chmod 555 bin etc
chown ftp pub
chmod 777 pub
cd bin
cp /bin/sh /bin/ls .
chmod 111 sh Is
cd .. /etc
cp /etc/passwd fete/group .
ehmod 444 passwd group

When local users wish to place fIles in the anonymous area, they must be placed in a
subdirectory. In the setup here, the directory -ftp/pub is used.

Another issue to consider is the copy of /etc/passwd placed here. It may be copied by users
who use the anonymous account. They may then try to break the passwords of users on your
machine for further access. A good choice of users to include in this copy might be root,
daemon, uucp, and the ftp user. All passwords here should probably be "*".

Aside from the problems of directory modes and such, the ftp server may provide a loophole
for interlopers if certain user accounts are allowed. The file /etc!ftpusers is checked on each
connection. If the requested user name is located in the file, the request for service is denied.
This file nonnally has the following names:

uucp
root

Accounts with nonstandard shells should be listed in this file. Accounts without passwords
need not be listed in this file, the ftp server will not service these users.

Network Setup 4-7

4-8

1'.,

~-j

(

(

c

Appendices

The following Appendices contain manual pages pertaining to commands and utilities contained
in the ICONIUXV -NET networking package, a document on SENDMAIL, the Internetwork
Mail Sender, and documents on the Internet Protocols, SENDMAIL Installation and Operation,
and 4.3BSD Notes on Network Implementation.

Appendix A- Manual Pages

Appendix 8- Internetwork Mall Routing

Appendix C- SENOMAIL Installation and Operating Guide

Appendix 0- Introduction to the Internet Protocols

Appendix E- Networking Implementation Notes

Appendix F- An Introductory 4.38S0 Interprocess
Communication Tutorial

Appendix G- An Advanced 4.3850 Interprocess
Communication Tutorial

Appendices Change 1 - March 1989 A-i

A-ii Change 1 - March 1989 ICONlUXV-NET

(Appendix A - Manual Pages

The following appendix contains manual pages pertaining to the lCONIUXV-NETcommands
and utilities that make up the networking package described in the previous sections. The
pages are divided into four classes:

Section
User Commands
Maintenance Commands
System Calls
Subroutines
Network Functions
File Formats
Miscellaneous

Section Number
1 and 1C
1M
2
3
3N
4
5

Networking Protocol Families
Networking Protocols

7N
7P

The following is a list of the commands and utilities that are contained in each section.

User Commands
ftp

(1 and 1C)

netstat
newaliases
rcp
rdist
rlogin
remsh
ruptime
rwho
talk
telnet
tftp

Maintenance Commands
ftpd
gettable
htable
ifconfig
inetd

ARPANET file transfer program
show network status
rebuild the data base for the mail aliases file
remote file copy
remote file distribution program
remote login
remote shell
show host status of local machines
who's logged in on local machines
talk to another user
user interface to the TELNET protocol
trivial file transfer program

(1M)
DARPA Internet File Transfer Protocol server
get NIC fonnat host tables from a host
convert NIe standard format host tables
configure network interface parameters
internet "super-server"

ping
rexecd

send ICMP ECHO_REQUEST packets to network hosts
remote execution server

rlogind
route
routed
remshd
rwhod
sendmail

Manual Pages

remote login server
manually manipulate the routing tables
network routing daemon
remote shell server
system status server
send mail over the internet

Change 1 - March 1989 A-1

Maintenance Commands (1 M) (Continued)
slattach
syslogd
talkd
telnetd
tftpd
trpt

System Calls (2)
accept
bind
connect
fchmod
fchown
gethostid
gethostname
getpeername
getsockname
getsockopt
gettimeofday
listen
readv
recv
recvfrom
recvmsg
select
send
sendto
sendmsg
sethostid
sethostname
setsockopt
settimeofday
shutdown
socket
socketpair
vfork
writev

Subroutines (3)
rcmd

A-2

rexec
rresvport
ruserok

attach serial lines as network interfaces
log systems messages
remote user communication server
DARPA TELNET protocol server
DARPA Trivial File Transfer Protocol server
transliterate protocol trace

accept a connection on a socket
bind a name to a socket
initiate a connection on a socket
change mode of file
change owner and group of a file
get unique identifier of current host
get name of current host
get name of connected peer
get socket name
get options on sockets
get date and time
listen for connections on a socket
read input
receive a message from a socket
receive a message from a socket
receive a message from a socket
synchronous I/O multiplexing
send a message from a socket
send a message from a socket
send a message from a socket
set unique identifier of current host
set name of current host
set options on sockets
set date and time
shut down part of a full-duplex connection
create an endpoint for communication
create a pair of connected sockets
spawn new process in a virtual memory efficient way
write output

routines for returning a stream to a remote command
return stream to a remote command
routines for returning a stream to a remote command
routines for returning a stream to a remote command

Change 1 - March 1989 ICON/UXV-NET

.1)
\ .
"-J

c

(
Network Functions (3N)

endhostent
endnetent
endprotoent
endtservent
gethostbyaddr
gethostbyname
gethostent
getnetbyaddr
getnetbyname
getnetent
getprotoent
getprotoentbyname
getprotoentbynu mber
getservbyname
getservbyport
getservent
herror
htonl
htons
ineCaddr
inet_lnaof
inet_makeaddr
ineCnetwork
ineCnetof
inet_ntoa
ntohl
ntohs
sethostent
setnetent
setprotoent
setservent

File Formats (4)
aliases
hosts
networks
protocols
services

Miscellaneous (5)
hostname
mailaddr
resolver

Manual Pages

end network host entry
end network: entry
end protocol entry
end service entry
get network: host entry by address
get network host entry by name
get network host entry
get network: entry by address
get network: entry by name
get network entry
get protocol entry
get protocol entry by name
get protocol entry by number
get service entry by name
get service entry by port
get service entry
get network host entry error
convert values between host and network byte order
convert values between host and network byte order
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
convert values between host and network byte order
convert values between host and network byte order
set network host entry
set network entry
set protocol entry
set service entry

aliases file for sendmail
host name data base
network: name data base
protocol name data base
service name data base

host name resolution description
mail addressing description
resolver configuration fIle

Change 1 - March 1989 A-3

Networking Protocols (7N)
networking intro introductin to networking facilities

Networking Protocol
arp
icmp
ip
tcp
udp

A-4

Families (7P)
Address Resolution Protocol
Internet Control Message Protocol
Internet Protocol
Internet Transmission Control Protocol
Internet User Datagram Protocol

Change 1 ;...- March 1989 ICON/UXV-NET

FTP(IC) USER COMMANDS FrP(IC)

NAME
ftp - ARPANET file transfer program

SYNOPSIS
ftp [-v) [-d] [-i] [-n] [-g] [host)

DESCRIPTION
Ftp is the user interface to the ARPANET standard File Transfer Protocol. The program
allows a user to transfer files to and from a remote network site.

The client host with whichftp is to communicate may be specified on the command line. If
this is done, ftp will immediately attempt to establish a connection to an FTP server on that
host; otherwise, ftp will enter its command interpreter and await instructions from the user.
Whenftp is awaiting commands from the user the prompt "ftp>" is provided to the user. The
following commands are recognized by ftp :

! [command [args]]
Invoke an interactive shell on the local machine. If there are arguments, the first is
taken to be a command to execute directly, with the rest of the arguments as its argu­
ments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Argu­
ments are passed to the macro unglobbed.

account [passwd)
Supply a supplemental password required by a remote system for access to resources
once a login has been successfully completed. If no argument is included, the user
will be prompted for an account password in a non-echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left unspecified,
the local file name is used in naming the remote file after being altered by any ntrans
or nmap setting. File transfer uses the current settings for type, format, mode, and
structure.

ascii Set the file transfer type to network ASCII. This is the default type.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer.

bye Terminate the FTPsession with the remote server and exitftp. An end of file will also
terminate the session and exit.

case Toggle remote computer file name case mapping during mget commands. When case
is on (default is off), remote computer file names with all letters in upper case are
written in the local directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory .

cdup Change the remote machine working directory to the parent of the current remote
machine working directory.

close Terminate the FTP session with the remote server, and return to the command inter­
preter. Any defined macros are erased.

Icon International, Inc. 1

FfP(1C) USER COMMANDS FfP(1C)

2

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted
by a carriage retum/linefeed sequence during ascii type file transfer. When cr is on
(the default), carriage returns are stripped from this sequence to conform with the
UNIX single linefeed record delimiter. Records on non-UNIX remote systems may
contain single line feeds; when an ascii type transfer is made, these line feeds may be
distinguished from a record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified it is used to set the
debugging level. When debugging is on,/tp prints each command sent to the remote
machine, preceded by the string "-->".

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory, and, option­
ally, placing the output in local-file. If no directory is speci fied, the current working
directory on the remote machine is used. If no local file is specified, or local-file is -,
output comes to the terminal.

disconnect
A synonym for close.

form/onnat
Set the file transfer form to format. The default format is • 'file".

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local file name is not
specified, it is given the same name it has on the remote machine, subject to alteration
by the current case, ntrans, and nmap settings. The current settings for type, form,
mode, and structure are used while transferring the file.

glob Toggle filename expansion for mdelete, mget and mput. If globbing is turned off
with glob, the file name arguments are taken literally and not expanded. Globbing for
mput is done as in csh(1). For mdelete and mget, each remote file name is expanded
separately on the remote machine and the lists are not merged. Expansion of a direc­
tory name is likely to be different from expansion of the name of an ordinary file: the
exact result depends on the foreign operating system and ftp server, and can be pre­
viewed by doing 'mls remote-files - '. Note: mget and mput are not meant to transfer
entire directory subtrees of files. That can be done by transferring a tar(l) archive of
the subtree (in binary mode).

hash Toggle hash-sign ("#") printing for each data block transferred. The size of a data
block is 1024 bytes.

help [command]
Print an informative message about the meaning of command. If no argument is
given,ftp prints a list of the known commands.

Icd [directory]
Change the working directory on the local machine. If no directory is specified, the
user's horne directory is used.

Is [remote-directory] [local-file]
Print an abbreviated listing of the contents of a directory on the remote machine. If
remote-directory is left unspecified, the current working directory is used. If no local

Icon International, Inc.

(

c

FTP(IC) USER COMMANDS FTP(1C)

file is specified, or if local-file is ., the output is sent to the tenninal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a null line
(consecutive newline characters in a file or carriage returns from the tenninal) ter­
minates macro input mode. There is a limit of 16 macros and 4096 total characters in
all defined macros. Macros remain defined until a close command is executed. The
macro processor interprets '$' and '\' as special characters. A '$' followed by a
number (or numbers) is replaced by the corresponding argument on the macro invoca­
tion command line. A '$' followed by an 'i' signals that macro processor that the
executing macro is to be looped. On the first pass '$i' is replaced by the first argument
on the macro invocation command line, on the second pass it is replaced by the
second argument, and so on. A '\' followed by any character is replaced by that char­
acter. Use the '\' to prevent special treatment of the '$'.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files may be specified. If interactive prompting is
on, ftp will prompt the user to verify that the last argument is indeed the target local
file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for each file name thus
produced. See glob for details on the filename expansion. Resulting file names will
then be processed according to case, ntrans, and nmap settings. Files are transferred
into the local working directory, which can be changed with 'led directory'; new local
directories can be created with '! mkdir directory'.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like Is, except multiple remote files may be specified. If interactive prompting is on,
Itp will prompt the user to verify that the last argument is indeed the target local file
for receiving mls output.

mode [mode-name]
Set the file transfer mode to mode-name. The default mode is "stream" mode.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for each
file in the resulting list. See glob for details of filename expansion. Resulting file
names will then be processed according to ntrans and nmap settings.

nmap [in pattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the
filename mapping mechanism is unset. If arguments are speci fied, remote filenames
are mapped during mput commands and put commands issued without a speci fied
remote target filename. If arguments are specified, local filenames are mapped during
mget commands and get commands issued without a specified local target filename.
This command is useful when connecting to a non-UNIX remote computer with
different file naming conventions or practices. The mapping follows the pattern set by
inpattern and outpattern. In pattern is a template for incoming filenames (which may
have already been processed according to the ntrans and case settings). Variable

Icon International, Inc. 3

FTP(lC) USER COMMANDS FfP(lC)

4

templating is accomplished by including the sequences '$1', '$2', ... , '$9' in inpat­
tern. Use '\' to prevent this special treatment of the '$' character. All other charac­
ters are treated literally, and are used to determine the nmap in pattern variable
values. For exmaple, given in pattern $1.$2 and the remote file name "mydata.data",
$1 would have the value "mydata", and $2 would have the value "data". The outpat­
tern determines the resulting mapped filename. The sequences '$1', '$2', , '$9' are
replaced by any value resulting from the in pattern template. The sequence '$0' is
replace by the original filename. Additionally, the sequence '[seql,seq2]' is replaced
by seql if seq1 is not a null string; otherwise it is replaced by seq2. For example, the
command "nmap $1.$2.$3 [$I,$2].[$2,file]" would yield the output filename
ttmyfile.data" for input filenames "myfile.data" and "myfile.data.old", "myfile.file" for
the input filename "myfile", and "myfile.myfile" for the input filename ".myfile".
Spaces may be included in outpattern, as in the example: nmap $llsed "s/ *$/(' > $1
. Use the \' character to prevent special treatment of the '$', '[', T, and ',' characters.

ntrans [inehars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are
speci fied, the filename character translation mechanism is unset. If arguments are
specified, characters in remote filenames are translated during mput commands and
put commands issued without a specified remote target filename. If arguments are
specified, characters in local filenames are translated during mget commands and get
commands issued without a specified local target filename. This command is useful
when connecting to a non-UNIX remote computer with di:frerent file naming conven­
tions or practices. Characters in a filename matching a character in inchars are
replaced with the corresponding character in outehars. If the character's position in
inchars is longer than the length of outehars, the character is deleted from the file
name.

open host [port]

prompt

Establish a connection to the specified host FrP server. An optional port number may
be supplied, in which case,ltp will attempt to contact an FrP server at that port. If
the auto-login option is on (default),ftp will also attempt to automatically log the user
in to the FrP server (see below).

Toggle interactive prompting. Interactive prompting occurs during multiple tile
transfers to allow the user to selectively retrieve or store files. If prompting is turned
off (default is on), any mget or mput will transfer all files, and any mdelete will
delete all files.

proxy Itp-command
Execute an fip command on a secondary control connection. This command allows
simultaneous connection to two remote fip servers for transferring files between the
two servers. The first proxy command should be an open, to establish the secondary
control connection. Enter the command "proxy?" to see other ftp commands execut­
able on the secondary connection. The following commands behave di:frerently when
prefaced by proxy: open will not define new macros during the auto-login process,
close will not erase existing macro definitions, get and mget transfer files from the
host on the primary control connection to the host on the secondary control connec­
tion, and put, mput, and append transfer files from the host on the secondary control
connection to the host on the primary control connection. Third party file transfers
depend upon support of the fip protocol PASV command by the server on the secon­
dary control connection.

Icon International, Inc.

(
FTP(1C) USER COMMANDS FTP(IC)

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspeci fied, the local
file name is used after processing according to any ntrans or nmap settings in naming
the remote file. File transfer uses the current settings for type, format, mode, and
structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote argl arg2 ...
The arguments specified are sent, verbatim, to the remote FTPserver.

recv remote-file [local-file]
A synonym for get.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is specified it is sup­
plied to the server as well.

rename [from] [to]
Rename the file from on the remote machine, to the file to.

reset Clear reply queue. This command re-synchronizes command/reply sequencing with
the remote ftp server. Resynchronization may be neccesary following a violation of
the ftp protocol by the remote server.

rmdir directory-name
Delete a directory on the remote machine.

runique
Toggle storing of files on the local system with unique filenames. If a file already
exists with a name equal to the target local filename for a get or mget command, a
".1" is appended to the name. If the resulting name matches another existing file, a
".2" is appended to the original name. If this process continues up to ".99", an error
message is printed, and the transfer does not take place. The generated unique
filename will be reported. Note that runique will not atrect local files generated from
a shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default,ftp will attempt to use a PORT com­
mand when establishing a connection for each data transfer. The use of PORT com­
mands can prevent delays when performing multiple file transfers. If the PORT com­
mand fails, ftp will use the default data port. When the use of PORT commands is
disabled, no attempt will be made to use PORT commands for each data transfer.
This is useful for certain FTP implementations which do ignore PORT commands but,
incorrectly, indicate they've been accepted.

status Show the current status offtp.

struct [struct-name]
Set the file transfer structure to struct-name. By default' 'stream" structure is used.

sunique
Toggle storing of files on remote machine under unique file names. Remote ftp server
must support ftp protocol STOU command for successful completion. The remote

Icon International, Inc. 5

FI'P(lC) USER COMMANDS FI'P(IC)

server will report unique name. Default value is off.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name. If no type is specified, the current type is
printed. The default type is networlc. ASCII.

user user-name [password] [account]
Identify yourself to the remote FfP server. If the password is not specified and the
server requires it, ftp will prompt the user for it (after disabling local echo). If an
account field is not specified, and the FfP server requires it, the user will be prompted
for it If an account field is specified, an account command will be relayed to the
remote server after the login sequence is completed if the remote server did not
require it for logging in. Unless ftp is invoked with "auto-login" disabled, this pro­
cess is done automatically on initial connection to the FfP server.

verbose
Toggle verbose mode. In verbose mode, all responses from the FfP server are
displayed to the user. In addition, if verbose is on, when a file transfer completes,
statistics regarding the efficiency of the transfer are reponed. By default, verbose is
on.

? [command]
A synonym for help.

Command arguments which have embedded spaces may be quoted with quote (") marks.

ABORTING A FILE TRANSFER
To abort a file transfer, use the tenninal interrupt key (usually Ctrl-C). Sending transfers will
be immediately halted. Receiving transfers will be halted by sending a ftp protocol ABOR
command to the remote server, and discarding any further data received. The speed at which
this is accomplished depends upon the remote server's support for ABOR processing. If the
remote server does not support the ABOR command, an "ftp>" prompt will not appear until
the remote server has completed sending the requested file.

The tenninal interrupt key sequence will be ignored when ftp has completed any local pro­
cessing and is awaiting a reply from the remote server. A long delay in this mode may result
from the ABOR processing described above, or from unexpected behavior by the remote
server, including violations of the ftp protocol. If the delay results from unexpected remote
server behavior, the localftp program must be killed by hand.

FILE NAMING CONVENTIONS

6

Files specified as arguments toftp commands are processed according to the following rules.

1) If the file name "-" is specified, the stdin (for reading) or stdout (for writing) is used.

2) If the first character of the file name is "I", the remainder of the argument is inter­
preted as a shell command. Ftp then forlc.s a shell, using popen(3) with the argument
supplied, and reads (writes) from the stdout (stdin). If the shell command includes
spaces, the argument must be quoted; e.g. ""lIs -It"". A particularly useful example
of this mechanism is: "dir Imore".

3) Failing the above checks, if "globbing" is enabled, local file names are expanded

Icon International, Inc.

C
~

')

(
FfP(1C) USER COMMANDS FfP(1C)

according to the rules used in the csh(1); c.r. the glob command. If the ftp command
expects a single local file (.e.g. put), only the first filename generated by the "glob­
bing" operation is used.

4) For mget commands and get commands with unspecified local file names, the local
filename is the remote filename, which may be altered by a case, ntrans, or nmap set­
ting. The resulting filename may then be altered if runique is on.

5) For mput commands and put commands with unspecified remote file names, the
remote filename is the local filename, which may be altered by a ntrans or nmap set­
ting. The resulting filename may then be altered by the remote server if sunique is
on.

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters which may affect a file transfer. The type
may be one of "ascii", "image" (binary), "ebcdic", and "local byte size" (forPDP-lO's and
PDP-20's mostly). Ftp supports the ascii and image types of file transfer, plus local byte size
8 for tenex mode transfers.

Ftp supports only the default values for the remaining file transfer parameters: mode,form,
and struct.

OPTIONS
Options may be specified at the command line, or to the command interpreter.

The -v (verbose on) option forces ftp to show all responses from the remote server, as well as
report on data transfer statistics.

The -n option restrains ftp from attempting "auto-login" upon initial connection. If auto­
login is enabled, ftp will check the .netrc (see below) file in the user's home directory for an
entry describing an account on the remote machine. If no entry exists, ftp will prompt for the
remote machine login name (default is the user identity on the local machine), and, if neces­
sary, prompt for a password and an account with which to login.

The -i option turns off interactive prompting during multiple file transfers.

The -d option enables debugging.

The -g option disables file name globbing.

THE .netrc FILE
The .netrc file contains login and initialization infonnation used by the autO-login process. It
resides in the user's home directory. The following tokens are recognized; they may be
separated by spaces, tabs, or new-lines:

machine name
Identify a remote machine name. The auto-login process searches the" .netrc file for a
machine token that matches the remote machine speci fied on the ftp command line or
as an open command argument. Once a match is made, the subsequent .netrc tokens
are processed, stopping when the end of file is reached or another machine token is
encountered.

login name
Identify a user on the remote machine. If this token is present, the auto-login process
will initiate a login using the speci fied name.

Icon International, Inc. 7

........... _ .. __ ._ ... -----

FTP(1C) USER COMMANDS FIP(1C)

BUGS

8

!f~

password string V
Supply a password. If this token is present, the auto-login process will supply the
speci fied string if the remote server requires a password as part of the login process.
Note that if this token is present in the .netrc file,ftp will abort the auto-login process
if the .netrc is readable by anyone besides the user.

account string
Supply an additional account password. If this token is present, the auto-login pro­
cess will supply the specified string if the remote server requires an additional
account password, or the auto-login process will initiate an ACcr command if it does
not.

macdef name
Define a macro. This token functions like the ftp macdef command functions. A
macro is defined with the specified name; its contents begin with the next .netrc line
and continue until a null line (consecutive new-line characters) is encountered. If a
macro named init is defined, it is automatically executed as the last step in the auto­
login process.

Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2BSD UNIX ascii-mode transfer code
has been corrected. This correction may result in incorrect transfers of binary files to and
from 4.2BSD servers using the ascii type. A void this problem by using the binary image type.

Icon International, Inc.

(

NETS TAT (1) USER COMMANDS NETS TAT (1)

NAME
netstat - show network status

SYNOPSIS
netstat [.Aan] [·f addressJamily] [system] [core]
netstat [-himnrs] [-f address Jamily] [system] [core]
netstat [·n] [·1 interface] interval [system] [core]

DESCRIPTION
The netstat command symbolically displays the contents of various network-related data
structures. There are a number of output fonnats, depending on the options for the infonna­
tion presented. The first form of the command displays a list of active sockets for each proto­
col. The second form presents the contents of one of the other network data structures accord­
ing to the option selected. Using the third fonn, with an interval specified, netstat will con­
tinuously display the information regarding packet traffic on the configured network inter­
faces.

The options have the following meaning:

-A With the default display, show the address of any protocol control blocks associated
with sockets; used for debugging.

·a With the default display, show the state of all sockets; normally sockets used by
server processes are not shown.

-h Show the state of the IMP host table.

.j Show the state of interfaces which have been auto-configured (interfaces statically
configured into a system, but not located at boot time are not shown).

·1 interface
Show information only about this interface; used with an interval as described below.

-m Show statistics recorded by the memory management routines (the network manages
a private pool of memory buffers).

·n Show network addresses as numbers (normally nets tat interprets addresses and
attempts to display them symbolically). This option may be used with any of the
display formats.

-s Show per-protocol statistics.

·r Show the routing tables. When -s is also present, show routing statistics instead.

-f addressJamily
Limit statistics or address control block reports to those of the speci fied
address family. The following address families are recognized: inet, for AF INET,
ns, for AF _NS, and unix, for AF _UNIX. -

The arguments, system and core allow substitutes for the defaults "/vmunix" and
"/dev /krnem".

The default display, for active sockets, shows the local and remote addresses, send and
receive queue sizes (in bytes), protocol, and the internal state of the protocol. Address for­
mats are of the form "host.port" or "network.port" if a socket's address specifies a network
but no specific host address. When known the host and network addresses are displayed sym­
bolically according to the data bases /etc/hosts and /etc/networks, respectively. If a symbolic

Icon International, Inc. Last change: March 1989 1

NETS TAT (1) USER COMMANDS NETS TAT (1)

name for an address is unknown, or if the ·n option is specified, the address is printed numeri­
cally, according to the address family. For more infonnation regarding the Internet "dot for­
mat," referto inet(3N). Unspecified, or "wildcard", addresses and ports appear as "*".
The interface display provides a table of cumulative statistics regarding packets transferred,
errors, and collisions. The network addresses of the interface and the maximum transmission
unit ("mtu") are also displayed.

The routing table display indicates the available routes and their status. Each route consists
of a destination host or network and a gateway to use in forwarding packets. The flags field
shows the state of the route ("U" if "up"), whether the route is to a gateway ("G"), and
whether the route was created dynamically bya redirect ("D"). Direct routes are created for
each interface attached to the local host; the gateway field for such entries shows the address
of the outgoing interface. The refent field gives the current number of active uses of the route.
Connection oriented protocols nonnally hold on to a single route for the duration of a connec­
tion while connectionless protocols obtain a route while sending to the same destination. The
use field provides a count of the number of packets sent using that route. The interface entry
indicates the network interface utilized for the route.

When netstat is invoked with an interval argument, it displays a running count of statistics
related to network interfaces. This display consists of a column for the primary interface (the
first interface found during autoconfiguration) and a column summarizing infonnation for all

. interfaces. The primary interface may be replaced with another interface with the -/ option.
The first line of each screen of infonnation contains a summary since the system was last
rebooted. Subsequent lines of output show values accumulated over the preceding interval.

SEE ALSO
hosts(4), networks(4), protocols(4), services(4), trpt(lM)

BUGS
The notion of errors is ill-defined. Collisions mean something else for the IMP.

2 Last change: March 1989 Icon International, Inc.

(

NEW ALIASES (1) USER COMMANDS

NAME
newaliases - rebuild the data base for the mail aliases file

SYNOPSIS
newaliases

DESCRIPTION

NEW ALIASES (1)

Newaliases rebuilds the random access data base for the mail aliasesfile/usrllib/aliases.It
must be run each time /usrllib/aliases is changed in order for the change to take effect.

SEE ALSO
aliases(4), sendmai1(lM)

Icon International, Inc. Last change: March 1989 1

RCP(1C) USER COMMANDS RCP(1C)

NAME
rcp - remote file copy

SYNOPSIS
rep [-p] file 1 file2
rep [-p] [-r] file ... directory

DESCRIPTION
Rcp copies files between machines. Each file or directory argument is either a remote file
name of the fonn "rhost:path", or a local file name (containing no ':' characters, or a 'j'
before any ':'s).

If the -r option is speci fied and any of the source files are directories, rcp copies each subtree
rooted at that name; in this case the destination must be a directory.

By default, the mode and owner of file2 are preselVed if it already existed; otherwise the
mode of the source file modified by the umask(2) on the destination host is used. The -p
option causes rcp to attempt to preserve (duplicate) in its copies the modification times and
modes of the source files, ignoring the umask.

If path is not a full path name, it is interpreted relative to your login directory on rhost. A
path on a remote host may be quoted (using \ tI, or ') so that the metacharacters are interpreted
remotely.

Rep does not prompt for passwords; your current local user name must exist on rhost and
allow remote command execution via remsh(1C).

Rep handles third party copies, where neither source nor target files are on the current
machine. Hostnames may also take the form "mame@rhost" to use mame rather than the
current user name on the remote host. The destination hostname may also take the form
"rhost.mame" to support destination machines that are running 4.2BSD versions of rep.

SEE ALSO

BUGS

cp(l), fip(1C), remsh(1C), rlogin(lC)

Doesn't detect all cases where the target of a copy might be a file in cases where only a direc­
tory should be legal.
Is confused by any output generated by commands in a .login, .profile, or .cshrc file on the
remote host.

Icon International, Inc. 1

(-

(

RDIST(1) USER COMMANDS RDIST(1)

NAME
rdist - remote file distribution program

SYNOPSIS
rdist [-nqbRhivwy] [-f distfile] [-d var=value] [-m host] [name ...]

rdist [-nqbRhivwy] -c name ... [login@]host[:dest]

DESCRIPTION
Rdist is a program to maintain identical copies of files over multiple hosts. It preserves the
owner, group, mode, and mtime of files if possible and can update programs that are execut­
ing. Rdist reads commands from distfile to direct the updating of files and/or directories. If
distfile is '-', the standard input is used. If no -f option is present, the program looks first for
'distfile', then 'Distfile' to use as the input. If no names are specified on the command line,
rdist will update all of the files and directories listed in distfile. Otherwise, the argument is
taken to be the name of a file to be updated or the label of a command to execute. If label and
file names conflict, it is assumed to be a label. These may be used together to update speci fic
files using specific commands.

The -c option forces rdist to interpret the remaining arguments as a small distfile. The
equivalent distfile is as follows.

(name ...) -> [login@]host
install [dest];

Other options:

-d Define var to have value. The -d option is used to define or override variable
definitions in the distfile. Value can be the empty string, one name, or a list of names
surrounded by parentheses and separated by tabs and/or spaces.

-m Limit which machines are to be updated. Multiple -m arguments can be given to limit
updates to a subset of the hosts listed the distfile.

-n Print the commands without executing them. This option is useful for debugging
distfile.

-q Quiet mode. Files that are being modified are normally printed on standard output.
The -q option suppresses this.

-R Remove extraneous files. If a directory is being updated, any files that exist on the
remote host that do not exist in the master directory are removed. This is useful for
maintaining truely identical copies of directories.

-h Follow symbolic links. Copy the file that the link points to rather than the link itself.

-i Ignore unresolved links. Rdist will normally try to maintain the link structure of files
being transfered and warn the user if all the links cannot be found.

-v Verify that the files are up to date on all the hosts. Any files that are out of date will be
displayed but no files will be changed nor any mail sent.

-w Whole mode. The whole file name is appended to the destination directory name.
Normally, only the last component of a name is used when renaming files. This will
preserve the directory structure of the files being copied instead of flattening the
directory structure. For example, renaming a list of files such as (dirl/fl dir2/f2) to

Icon International, Inc. 1

RDIST(1) USER COMMANDS RDIST(1)

2

dir3 would create files dir3/dirl/fl and dir3/dir2/f2 instead of dir3/fl and dir3/f2.

-y Younger mode. Files are nonnally updated if their mtime and size (see stat(2»
disagree. The -y option causes rdist not to update files that are younger than the mas­
ter copy. This can be used to prevent newer copies on other hosts from being
replaced. A warning message is printed for files which are newer than the master
copy.

-b Binary comparison. Perfonn a binary comparison and update files if they differ rather
than comparing dates and sizes.

Distfile contains a sequence of entries that specify the files to be copied, the destination hosts,
and what operations to perfonn to do the updating. Each entry has one of the following for­
mats.

<variable name> '=' <name list>
[label:] <source list> '->' <destination list> <command list>
[label:] <source list> '::' <time_stamp file> <command list>

The first fonnat is used for defining variables. The second fonnat is used for distributing files
to other hosts. The third format is used for making lists of files that have been changed since
some given date. The source list specifies a list of files and/or directories on the local host
which are to be used as the master copy for distribution. The destination list is the list of
hosts to which these files are to be copied. Each file in the source list is added to a list of
changes if the file is out of date on the host which is being updated (second fonnat) or the file
is newer than the time stamp file (third fonnat).

Labels are optional. They are used to identify a command for partial updates.

Newlines, tabs, and blanks are only used as separators and are otherwise ignored. Comments
begin with '#' and end with a newline.

Variables to be expanded begin with '$' followed by one character or a name enclosed in
curly braces (see the examples at the end).

The source and destination lists have the following format:

<name>
or

'(' <zero or more names separated by white-space> ')'

The shell meta-characters '[', T, '{', '}" '*', and '7' are recognized and expanded (on the
local host only) in the same way as csh(l). They can be escaped with a backslash. The ,~,
character is also expanded in the same way as csh but is expanded separately on the local and
destination hosts. When the -w option is used with a file name that begins with '~', everything
except the home directory is appended to the destination name. File names which do not
begin with 'j' or ,-, use the destination user's home directory as the root directory for the rest
of the file name.

The command list consists of zero or more commands of the following fonnat.

'install' <options> opCdescname ';'
'notify' <name list>';'
'except' <name list>';'

Icon International, Inc.

RDIST(1)

'excepcpat'
'special'

USER COMMANDS

<pattern list>';'
<name list>string ';'

RDIST(1)

The install command is used to copy out of date files and/or directories. Each source file is
copied to each host in the destination list. Directories are recursively copied in the same way.
Opt _ dest _name is an optional parameter to rename files. If no install command appears in the
command list or the destination name is not specified, the source file name is used. Direc­
tories in the path name will be created if they do not exist on the remote host. To help prevent
disasters, a non-empty directory on a target host will never be replaced with a regular file or a
symbolic link. However, under the '-R' option a non-empty directory will be removed if the
corresponding filename is completely absent on the master host. The options are '-R', '-h',
'-i', '-v', '-w', '-y', and '-b' and have the same semantics as options on the command line
except they only apply to the files in the source list. The login name used on the destination
host is the same as the local host unless the destination name is of the format "login@host".

The notify command is used to mail the list of files updated (and any errors that may have
occured) to the listed names. If no '@' appears in the name, the destination host is appended
to the name (e.g., namel@host, name2@host, ...).

The except command is used to update all of the files in the source list except for the files
listed in name list. This is usually used to copy everything in a directory except certain files.

The exceptyat command is like the except command except that pattern list is a list of regu­
lar expressions (see ed(1) for details). If one of the patterns matches some string within a file
name, that file will be ignored. Note that since '\' is a quote character, it must be doubled to
become part of the regular expression. Variables are expanded in pattern list but not shell file
pattern matching characters. To include a '$', it must be escaped with '\'.

The special command is used to specify sh(1) commands that are to be executed on the
remote host after the file in name list is updated or installed. If the name list is omitted then
the shell commands will be executed for every file updated or installed. The shell variable
'FILE' is set to the current filename before executing the commands in string. String starts
and ends with "" and can cross multiple lines in distfile. Multiple commands to the shell
should be separated by';'. Commands are executed in the user's home directory on the host
being updated. The special command can be used to rebuild private databases, etc. after a
program has been updated.

The following is a small example.

HOSTS = (matisse root@arpa)

FILES = (/bin /lib /usr/bin /usr/games
/usr/include/ { * .h, {stand,sys,vax * ,pascal,machine } /*.h}
/usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont)

${FILES} -> ${HOSTS}
install-R;

Icon International, Inc.

except /usr/lib/$ {EXLIB} ;
except /usr/games/lib ;
special /usr/lib/sendmail "/usr/lib/sendmail -bz" ;

3

RDIST(1) USER COMMANDS RDIST(1)

FILES

sres:
/usr/src/bin -> arpa

excepcpat (\\o\$/SCCS\$) ;

IMAGEN = (ips dviimp catdvi)

imagen:
/usr/local/${IMAGEN} -> arpa

install /usr/local/lib ;
notify ralph;

${FILES} :: stamp. cory
notify root@cory ;

distfile input command file
!tmp/rdist* temporary file for update lists

SEE ALSO
. sh(l), csh(l), stat(2)

DIAGNOSTICS (\
A complaint about mismatch of rdist version numbers may really stem from some problem I",

BUGS

4

with starting your shell, e.g., you are in too many groups.

Source files must reside on the local host where rdist is executed.

There is no easy way to have a special command executed after all files in a directory have
been updated.

Variable expansion only works for name lists; there should be a general macro facility.

Rdist aborts on files which have a negative mtime (before Jan I, 1970).

There should be a 'force' option to allow replacement of non-empty directories by regular
files or symlinks. A means of updating file modes and owners of otherwise identical files is
also needed.

Icon International, Inc.

('

(

RLOGIN(IC) USER COMMANDS RLOGIN(IC)

NAME
rlogin - remote login

SYNOPSIS
rlogin rhost [-e c] [-8] [-L] [-I username]
rhost [-ec] [-8] [-L] [-I username]

DESCRIPTION
Rlogin connects your terminal on the current local host system [host to the remote host system
rhost.

Each host has a file letclhosts.equiv which contains a list of rhost's with which it shares
account names. (The host names must be the standard names as described in remsh(1C).)
When you rlogin as the same user on an equivalent host, you don't need to give a password.
Each user may also have a private equivalence list in a file .rhosts in his login directory. Each
line in this file should contain an rhost and a username separated by a space, giving additional
cases where logins without passwords are to be permitted. If the originating user is not
equivalent to the remote user, then a login and password will be prompted for on the remote
machine as in login(1). To avoid some security problems, the .rhosts file must be owned by
either the remote user or root.

The remote terminal type is the same as your local terminal type (as given in your environ­
ment TERM variable). The terminal or window size is also copied to the remote system if the
server supports the option, and changes in size are reflected as well. All echoing takes place
at the remote site, so that (except for delays) the rlogin is transparent. Flow control via AS and
"Q and flushing of input and output on interrupts are handled properly. The optional argument
-8 allows an eight-bit input data path at all times; otherwise parity bits are stripped except
when the remote side's stop and start characters are other than ASrQ. The argument -L allows
the rlogin session to be run in litout mode. A line of the form "-." disconnects from the
remote host, where .. -" is the escape character. Similarly, the line "-"Z" (where "Z, control­
Z, is the suspend character) will suspend the rlogin session. Substitution of the delayed­
suspend character (normally "Y) for the suspend character suspends the send portion of the
rlogin. but allows output from the remote system. A different escape character may be
specified by the -e option. There is no space separating this option flag and the argument
character.

SEE ALSO
remsh(lC)

FILES
!usr!hosts/* for rhost version of the command

BUGS
More of the environment should be propagated.

Icon International, Inc. 1

REMSH(IC) USER COMMANDS REMSH(Ie)

NAME
remsh - remote shell

SYNOPSIS
remsh host [-I usemame] [-n] command·
host [-I usemame] [-n] command

DESCRIPTION

FILES

Rsh connects to the specified host, and executes the specified command. Rsh copies its stan­
dard input to the remote command, the standard output of the remote command to its standard
output, and the standard error of the remote command to its standard error. Interrupt, quit and
tenninate signals are propagated to the remote command; remsh nonnally terminates when
the remote command does.

The remote usemame used is the same as your local usemame, unless you specify a different
remote name with the -I option. This remote name must be equivalent (in the sense of
rlogin(lC» to the originating account; no provision is made for specifying a password with a
command.

If you omit command, then instead of executing a single command, you will be logged in on
the remote host using riogin(1C).

Shell metacharacters which are not quoted are interpreted on local machine, while quoted
metacharacters are interpreted on the remote machine. Thus the command

remsh otherhost cat remote file » local file

appends the remote file remote file to the localfile localfile, while

remsh otherhost cat remote file "»" otherremotefile

appends remote file to otherremotefile.

Host names are given in the file /etc!hosts. Each host has one standard name (the first name
given in the file), which is rather long and unambiguous, and optionally one or more nick­
names. The host names for local machines are also commands in the directory !usr!hosts; if
you put this directory in your search path then the remsh can be omined.

/etc!hosts
!usr!hosts/*

SEE ALSO
rlogin(lC)

BUGS
If you are using csh(1) and put a remsh(1C) in the background without redirecting its input
away from the terminal, it will block even if no reads are posted by the remote command. If
no input is desired you should redirect the input of remsh to /dev/null using the -n option.

You cannot run an interactive command (like rogue(6) or vi(1); use rlogin(1C).

Stop signals stop the local remsh process only; this is arguably wrong, but currently hard to
fix for reasons too complicated to explain here.

Icon International, Inc. 1

RUPTIME(Ie) USER COMMANDS RUPTIME(IC)

NAME
ruptime - show host status of local machines

SYNOPSIS
ruptirne [-a] [-r] [-I] [-t] [-u]

DESCRIPTION
Ruptime gives a status line like uptime for each machine on the local network; these are
formed from packets broadcast by each host on the network once a minute.

FILES

Machines for which no status report has been received for 11 minutes are shown as being
down.

Users idle an hour or more are not counted unless the -3 flag is given.

Normally, the listing is sorted by host name. The -I , -t , and -u flags specify sorting by load
average, uptime, and number of users, respectively. The -r flag reverses the sort order.

/usr/spooVrwho/whod.* data files

SEE ALSO
rwho(1C)

Icon International. Inc. 1

RWHO(1C) USER COMMANDS RWHO(1C)

NAME
rwho - who's logged in on local machines

SYNOPSIS
rwho [-3]

DESCRIPTION

FILES

The rwho command produces output similar to who, but for all machines on the local network.
If no report has been received from a machine for 5 minutes then rwho assumes the machine
is down, and does not report users last known to be logged into that machine.

If a users hasn't typed to the system for a minute or more, then rwho reports this idle time. If
a user hasn't typed to the system for an hour or more, then the user will be omitted from the
output of rwho unless the -a flag is given.

/usr/spooVrwho/whod.* information about other machines

SEE ALSO
ruptime(1 C), rwhod(1M)

BUGS
This is unwieldy when the number of machines on the local net is large.

fcon International, Inc. Last change: March 1989 1

(

(-

TALK(l) USER COMMANDS TALK(l)

NAME
talk - talk to another user

SYNOPSIS
talk person [ttyname]

DESCRIPTION

FILES

Talk is a visual communication program which copies lines from your terminal to that of
another user.

If you wish to talk to someone on you own machine, then person is just the person's login
name. If you wish to talk to a user on another host, then person is of the form :

host!user or
host. user or
host.·user or
user@host

though host@user is perhaps preferred.

If you want to talk to a user who is logged in more than once, the ttyname argument may be
used to indicate the appropriate terminal name.

When first called, it sends the message

Message from TalkDaemon@his_machine ...
talk: connection requested by youcname@yoUf_machine.
talk: respond with: talk youcname@your_machine

to the user you wish to talk to. At this point, the recipient of the message should reply by typ­
ing

talk your_name@youcmachine

It doesn't matter from which machine the recipient replies, as long as his login-name is the
same. Once communication is established, the two parties may type simultaneously, with
their output appearing in separate windows. Typing control L will cause the screen to be
reprinted, while your erase, kill, and word kill characters will work in talk as normal. To exit,
just type your interrupt character; talk then moves the cursor to the bottom of the screen and
restores the terminal.

Permission to talk may be denied or granted by use of the mesg command. At the outset talk­
ing is allowed. Certain commands, in particular nroffand pr(l) disallow messages in order to
prevent messy output. -

/etc!hosts
/etc/utmp

to find the recipient's machine
to find the recipient's tty

SEE ALSO
mesg(1), who(1), mail(1), write(l)

Icon International, Inc. Last change: March 1989 1

TELNET(lC) USER COMMANDS TELNET(1C)

NAME
telnet - user interface to the TELNET protocol

SYNOPSIS
telnet [host [port]]

DESCRIPTION
Telnet is used to communicate with another host using the TELNET protocol. If telnet is
invoked without arguments, it enters command mode, indicated by its prompt ("telnet>"). In
this mode, it accepts and executes the commands listed below. If it is invoked with argu­
ments, it performs an open command (see below) with those arguments.

Once a connection has been opened, telnet enters an input mode. The input mode entered will
be either "character at a time" or "line by line" depending on what the remote system sup­
ports.

In "character at a time" mode, most text typed is immediately sent to the remote host for pro­
cessing.

In "line by line" mode, all text is echoed locally, and (normally) only completed lines are
sent to the remote host. The "local echo character" (initially E") may be used to turn off
and on the local echo (this would mostly be used to enter passwords without the password

. being echoed).

In either mode, if the locaIchars toggle is TRUE (the default in line mode; see below), the
user's quit, intr, and flush characters are trapped locally, and sent as TELNET protocol
sequences to the remote side. There are options (see toggle auto flush and toggle autosynch
below) which cause this action to flush subsequent output to the terminal (until the remote
host acknowledges the TELNET sequence) and flush previous terminal input (in the case of
quit and intr).

While connected to a remote host, telnet command mode may be entered by typing the telnet
"escape character" (initially "T'). When in command mode, the normal terminal editing
conventions are available.

COMMANDS

The following commands are available. Only enough of each command to uniquely identify
it need be typed (this is also true for arguments to the mode, set, toggle, and display com­
mands).

open host [port]

close

quit

z

Open a connection to the named host. If no port number is specified, teInet will
attempt to contact a TELNET server at the default port. The host specification may
be either a host name (see hosts(5» or an Internet address specified in the "dot nota­
tion" (see inet(3N».

Close a TELNET session and return to command mode.

Close any open TELNET session and exit teinet. An end of file (in command mode)
will also close a session and exit.

Suspend telnet. This command only works when the user is using the csh(1).

Icon International, Inc. 1

/,--\

~j

(

(

TELNET(IC) USER COMMANDS TELNET(IC)

2

mode type

status

Type is either line (for "line by line" mode) or character (for "character at a time"
mode). The remote host is asked for permission to go into the requested mode. If the
remote host is capable of entering that mode, the requested mode will be entered.

Show the current status of telnet. This includes the peer one is connected to, as well
as the current mode.

display [argument ...]
Displays all, or some, of the set and toggle values (see below).

? [command]
Get help. With no arguments, te/net prints a help summary. If a command is
specified, te/net will print the help information for just that command.

send arguments
Sends one or more special character sequences to the remote host. The following are
the arguments which may be specified (more than one argument may be specified at a
time):

escape

synch

brk

ip

ao

ayt

ec

el

ga

Sends the current te/net escape character (initially "T').

Sends the TELNET SYNCH sequence. This sequence causes the remote
system to discard all previously typed (but not yet read) input. This sequence
is sent as TCP urgent data (and may not work if the remote system is a 4.2
BSD system -- if it doesn't work, a lower case "r" may be echoed on the ter­
minal).

Sends the TELNET BRK (Break) sequence, which may have significance to
the remote system.

Sends the TEL NET IP (Interrupt Process) sequence, which should cause the
remote system to abort the currently running process.

Sends the TELNET AO (Abort Output) sequence, which should cause the
remote system to flush all output from the remote system to the user's termi­
nal.

Sends the TELNET AYT (Are You There) sequence, to which the remote
system mayor may not choose to respond.

Sends the TELNET EC (Erase Character) sequence, which should cause the
remote system to erase the last character entered.

Sends the TELNET EL (Erase Line) sequence, which should cause the
remote system to erase the line currently being entered.

Sends the TELNET GA (Go Ahead) sequence, which likely has no

Icon International, Inc.

TELNET(Ie) USER COMMANDS TELNET(IC)

significance to the remote system.

nop
Sends the TELNET NOP (No OPeration) sequence.

?
Prints out help infonnation for the send command.

set argument value
Set anyone of a number of telnet variables to a specific value. The special value
"off' turns off the function associated with the variable. The values of variables may
be interrogated with the display command. The variables which may be specified
are:

echo

escape

This is the value (initially "AE") which, when in "line by line" mode, tog­
gles between doing local echoing of entered characters (for nonnal process­
ing), and suppressing echoing of entered characters (for entering, say, a pass­
word).

This is the telnet escape character (initially "T') which causes entry into tel­
net command mode (when connected to a remote system).

interrupt

quit

If telnet is in localchars mode (see toggle localchars below) and the interrupt
character is typed, a TELNET IP sequence (see send ip above) is sent to the
remote host. The initial value for the interrupt character is taken to be the
tenninal's intr character.

If telner is in localchars mode (see toggle localchars below) and the quit
character is typed, a TELNET BRK sequence (see send brk above) is sent to
the remote host. The initial value for the quit character is taken to be the
tenninal's quit character.

jiushoutput

erase

kill

eo!

Icon International, Inc.

If telnet is in localchars mode (see toggle loealehars below) and thejiushout­
put character is typed, a TELNET AO sequence (see send ao above) is sent
to the remote host. The initial value for the flush character is taken to be the
tenninal's flush character.

If teinet is in localchars mode (see toggle loealehars below), and if teinet is
operating in "character at a time" mode, then when this character is typed, a
TELNET EC sequence (see send ee above) is sent to the remote system.
The initial value for the erase character is taken to be the tenninal's erase
character.

If telnet is in Ioealehars mode (see toggle loealchars below), and if teinet is
operating in "character at a time" mode, then when this character is typed, a
TELNET EL sequence (see send el above) is sent to the remote system. The
initial value for the kill character is taken to be the tenninal' s kill character.

If teinet is operating in "line by line" mode, entering this character as the

3

c

. ¥ -'" '" ' ,.
I
~/

(

TELNET(IC) USER COMMANDS TELNET(IC)

4

first character on a line will cause this character to be sent to the remote sys­
tem. The initial value of the eof character is taken to be the tenninal's eof
character.

toggle arguments ...
Toggle (between TRUE and FALSE) various flags that control how telnet responds to
events. More than one argument may be specified. The state of these flags may be
interrogated with the display command. Valid arguments are:

localchars
If this is TRUE, then theftush, interrupt, quit, erase, and kill characters (see
set above) are recognized locally, and transformed into (hopefully) appropri­
ate TELNET control sequences (respectively ao, ip, brk, ec, and el; see
send above). The initial value for this toggle is TRUE in "line by line"
mode, and FALSE in "character at a time" mode.

autoftush
If autoftush and localchars are both TRUE, then when the ao, intr, or quit
characters are recognized (and transformed into TELNET sequences; see set
above for details), telnet refuses to display any data on the user's tenninal
until the remote system acknowledges (via a TELNET Timing Mark option)
that it has processed those TELNET sequences. The initial value for this
toggle is TRUE if the terminal user had not done an "stty noflsh", otherwise
FALSE (see stty(1)).

autosynch

crmod

debug

options

netdata

?

If autosynch and localchars are both TRUE, then when either the intr or quit
characters is typed (see set above for descriptions of the intr and quit charac­
ters), the resulting TELNET sequence sent is followed by the TEL NET
SYNCH sequence. This procedure should cause the remote system to begin
throwing away all previously typed input until both of the TEL NET
sequences have been read and acted upon. The initial value of this toggle is
FALSE.

Toggle carriage return mode. When this mode is enabled, most carriage
return characters received from the remote host will be mapped into a car­
riage return followed by a line feed. This mode does not affect those charac­
ters typed by the user, only those received from the remote host. This mode is
not very useful unless the remote host only sends carriage return, but never
line feed. The initial value for this toggle is FALSE.

Toggles socket level debugging (useful only to the superuser). The initial
value for this toggle is FALSE.

Toggles the display of some internal telnet protocol processing (having to do
with TELNET options). The initial value for this toggle is FALSE.

Toggles the display of all network data (in hexadecimal fonnat). The initial
value for this toggle is FALSE.

Displays the legal toggle commands.

Icon International, Inc.

TELNET(IC) USER COMMANDS TEL NET (IC)

BUGS
There is no adequate way for dealing with flow control.
On some remote systems, echo has to be turned offmanually when in "line by line" mode.

There is enough settable state to justify a .telnetrc file.

No capability for a .telnetrc file is provided.

In "line by line" mode, the tenninal's eo/character is only recognized (and sent to the remote
system) when it is the first character on a line.

Icon International, Inc. 5

(

(

(/

TFfP(1C) USER COMMANDS TFfP(1C)

NAME
tftp - trivial file transfer program

SYNOPSIS
trtp [host]

DESCRIPTION
Tftp is the user interface to the Internet TFrP (Trivial File Transfer Protocol), which allows
users to transfer files to and from a remote machine. The remote host may be specified on the
command line, in which case tftp uses host as the default host for future transfers (see the con­
nect command below).

COMMANDS
Once tftp is running, it issues the prompt tftp> and recognizes the following commands:

connect host-name [port]
Set the host (and optionally port) for transfers. Note that the TFrP protocol, unlike
the FfP protocol, does not maintain connections betweeen transfers; thus, the connect
command does not actually create a connection, but merely remembers what host is to
be used for transfers. You do not have to use the connect command; the remote host
can be specified as part of the get or put commands.

mode transfer-mode

put file

Set the mode for transfers; transfer-mode may be one of ascii or binary. The default
is ascii.

put local file remote file
putfilel file2 ... fileN remote-directory

Put a file or set of files to the speci fied remote fIle or directory. The destination can be
in one of two forms: a filename on the remote host, if the host has already been
specified, or a string of the form host:filename to specify both a host and filename at
the same time. If the latter form is used, the hostname specified becomes the default
for future transfers. If the remote-directory form is used, the remote host is assumed
to be a UNIX machine.

get filename
get remotename ioca/name
get filel file2 ... fileN

Get a file or set of files from the specified sources. Source can be in one of two
forms: a filename on the remote host, if the host has already been speci fied, or a
string of the form host:filename to specify both a host and filename at the same time.
If the latter form is used, the last hostname speci fied becomes the default for future
transfers.

quit Exit tftp. An end of file also exits.

verbose
Toggle verbose mode.

trace Toggle packet tracing.

status Show current status.

Icon International, Inc. 1

TFfP(lC) USER COMMANDS TFfP(lC)

BUGS

2

rexmt retransmission-timeout
Set the per-packet retransmission timeout, in seconds.

timeout total-transmission-timeout
Set the total transmission timeout, in seconds.

ascii Shorthand for "mode ascii"

binary Shorthand for "mode binary"

? [command-name ...]
Print help information.

Because there is no user-login or validation within the TFTP protocol, the remote site will
probably have some sort of file-access restrictions in place. The exact methods are specific to
each site and therefore difficult to document here.

Icon International, Inc.

1(-'
l~j.

(~/

FfPD(1M) MA~NANCECOMMANDS FfPD(1M)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
letclftpd [-d] [-I] [-ttimeout]

DESCRIPTION
Ftpd is the DARPA Internet File Transfer Prototocol server process. The server uses the TCP
protocol and listens at the port specified in the "ftp" service specification; see services (5).

If the -d option is speci fied, debugging information is written to the syslog.

If the -I option is specified, each ftp session is logged in the syslog.

The ftp server will timeout an inactive session after 15 minutes. If the -t option is speci fled,
the inactivity timeout period will be set to timeout.

The ftp server currently supports the following ftp requests; case is not distinguished.

Request
ABOR
ACCT
ALLO
APPE
CDUP
CWD
DELE
HELP
LIST
MKD
MODE
NLST
NOOP
PASS
PASV
PORT
PWD
QUIT
RETR
RMD
RNFR
RNTO
STOR
STOU
STRU
TYPE
USER
XCUP
XCWD
XMKD
XPWD
XRMD

Description
abort previous command
specify account (ignored)
allocate storage (vacuously)
append to a file
change to parent of current working directory
change working directory
delete a file
give help information
give list files in a directory (' 'Is -lg' ')
make a directory
specify data transfer mode
give name list of files in directory ("Is")
do nothing
specify password
prepare for server-to-server transfer
specify data connection port
print the current working directory
terminate session
retrieve a file
remove a directory
specify rename-from file name
specify rename-to file name
store a file
store a file with a unique name
specify data transfer structure
specify data transfer type
specify user name
change to parent of current working directory
change working directory
make a directory
print the current working directory
remove a directory

Icon International, Inc. Last change: March 1989 1

-------- --- ._.

FfPO(1M) MA~NANCECOMMANDS FrPO(1M)

The remaining ftp requests specified in Internet RFC 959 are recognized, but not imple­
mented.

The ftp seNer will abort an active file transfer only when the ABOR command is preceded by
a Telnet "Interrupt Process" (IP) signal and a Telnet "Synch" signal in the command Telnet
stream, as described in Internet RFC 959.

Ftpd interprets file names according to the "globbing" conventions used by csh(1). This
allows users to utilize the metacharacters "*?[] { } -".

Ftpd authenticates users according to three rules.

1) The user name must be in the password data base, /etc/passwd, and not have a null
password. In this case a password must be provided by the client before any file
operations may be performed.

2) The user name must not appear in the file /etc!ftpusers.

3) The user must have a standard shell returned by getusershell (3).

4) If the user name is "anonymous" or "ftp", an anonymous ftp account must be
present in the password file (user "ftp"). In this case the user is allowed to log in by
specifying any password (by convention this is given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's access privileges. The
seNer performs a chroot(2) command to the home directory of the "ftp" user. In order that
system security is not breached, it is recommended that the "ftp" subtree be constructed with
care; the following rules are recommended.

-ftp) Make the home directory owned by "ftp" and unwritable by anyone. I~

-ftp/bin) ~
Make this directory owned by the super-user and unwritable by anyone. The program
Is(1) must be present to support the list commands. This program should have mode
111.

-ftp/etc)
Make this directory owned by the super-user and unwritable by anyone. The files
passwd(4) and group(4) must be present for the Is command to work properly. These
files should be mode 444.

-ftp/pub)
Make this directory mode 777 and owned by "ftp". Users should then place files
which are to be accessible via the anonymous account in this directory.

SEE ALSO

BUGS

2

ftp(1C). getusershell(3), syslogd(1 M)

The anonymous account is inherently dangerous and should avoided when possible.

The seNer must run as the super-user to create sockets with privileged port numbers. It main­
tains an effective user id of the logged in user, reverting to the super-user only when binding
addresses to sockets. The possible security holes have been extensively scrutinized, but are
possibly incomplete.

Last change: March 1989 Icon International, Inc.

c

GETIABLE (1M) MAINTENANCE COMMANDS GETIABLE (1M)

NAME
gettable - get NIC fonnat host tables from a host

,.
SYNOPSIS

letc/gettable [-v] host [outfile]

DESCRIPTION
Gettable is a simple program used to obtain the NIC standard host tables from a "nicname"
server. The indicated host is queried for the tables. The tables, if retrieved, are placed in the
file outfile or by default, hosts .txt.

The -v option will get just the version number instead of the complete host table and put the
output in the file outfile or by default, hosts. ver.

Gettable operates by opening a TCP connection to the port indicated in the service
specification for "nicname". A request is then made for "ALL" names and the resultant
infonnation is placed in the output file.

Gettable is best used in conjunction with the htable(1M) program which converts the NIC
standard file fonnat to that used by the network library lookup routines.

NOTE: When connecting directly to the ARPA internet network, refer to the infonnation on
page 4-5, "Regenerating /etc!hosts and /etc/networks", in the ICON/UXV-NET Networking
Tools Guide.

SEE ALSO

BUGS

intro(3N), htable(1M), named(lM)

If the name-domain system provided network name mapping well as host name mapping, gett­
able would no longer be needed.

Icon International, Inc. Last change: March 1989 1

HTABLE(1M) MAThITENANCECOMMANDS HTABLE(1M)

NAME
htable - convert NIC standard format host tables

SYNOPSIS
letclhtable [-c connected-nets] [-I local-nets] file

DESCRIPTION
Htable is used to convert host files in the format specified in Internet RFC 810 to the format
used by the network library routines. Three files are created as a result of running htable:
hosts, networks, and gateways. The hosts file may be used by the gethostbyname(3N) rou­
tines in mapping host names to addresses if the nameserver, named(lM), is not used. The net­
works file is used by the getnetent(3N) routines in mapping network names to numbers. The
gateways file may be used by the routing daemon in identifying "passive" Internet gateways;
see routed(1M) for an explanation.

If any of the files localhosts, localnetworks, or localgateways are present in the current direc­
tory, the file's contents is prepended to the output file. Of these, only the gateways file is
interpreted. This allows sites to maintain local aliases and entries which are not normally
present in the master database. Only one gateway to each network will be placed in the gate­
ways file; a gateway listed in the localgateways file will override any in the input file.

If the gateways file is to be used, a list of networks to which the host is directly connected is
specified with the -c flag. The networks, separated by commas, may be given by name or in
Internet-standard dot notation, e.g. -c arpanet,128.32,local-ether-net. Htable only includes
gateways which are directly connected to one of the networks specified, or which can be

o

reached from another gateway on a connected net. ~-"

If the -I option is given with a list of networks (in the same format as for -c), these networks \,,--- /
will be treated as "local," and information about hosts on local networks is taken only from
the 10caIhosts file. Entries for local hosts from the main database will be omitted. This allows
the localhosts file to completely override any entries in the input file.

Htable is best used in conjunction with the gettable(1M) program which retrieves the NIC
database from a host.

SEE ALSO
intro(3N), gettable(IM), named(1M)

BUGS
If the name-domain system provided network name mapping well as host name mapping,
htable would no longer be needed. -

Icon International, Inc. Last change: March 1989 1

(

(-

IFCONFIG (1M) MA~NANCECOMMANDS IFCONFIG (1M)

NAME
ifconfig - configure network. interface parameters

SYOPNSIS
/etdifconfig interface address_family [address [dest _address]] [parameters]
/etdifconfig interface [protocoljamily J

DESCRIPTION
Ifconfig is used to assign an address to a network. interface and/or configure network interface
parameters. Ifconfig must be used at boot time to define the network. address of each interface
present on a machine; it may also be used at a later time to redefine an interface's address or
other operating parameters. The interface parameter is a string of the fonn "name unit", e.g.
"exO".

Since an interface may receive transmissions in differing protocols, each of which may require
separate naming schemes, it is necessary to specify the address Jami/y, which may change
the interpretation of the remaining parameters. The address families currently supported are
"inet" and "ns".

For the DARPA-Internet family, the address is either a host name present in the host name
data base, hosts (4), or a DARPA Internet address expressed in the Internet standard "dot
notation". For the Xerox Network Systems(1m) family, addresses are net:a.b.c.d.eJ, where
net is the assigned network number (in decimal), and each of the six bytes of the host number,
a throughf, are specified in hexadecimal. The host number may be omitted on lOMb/s Ether­
net interfaces, which use the hardware physical address, and on interfaces other than the first.

The following parameters may be set with ifconfig:

up Mark an interface "up". This may be used to enable an interface after an
"ifconfig down." It happens automatically when setting the first address
on an interface. If the interface was reset when previously marked down,
the hardware will be re-initialized.

down

trailers

-trailers

arp

Icon International, Inc.

Mark an interface "down". When an interface is marked "down", the sys­
tem will not attempt to transmit messages through that interface. If possi­
ble' the interface will be reset to disable reception as well. This action
does not automatically disable routes using the interface.

Request the use of a "trailer" link level encapsulation when sending
(default). If a network interface supports trailers, the system will, when
possible, encapsulate outgoing messages in a manner which minimizes the
number of memory to memory copy operations perfonned by the receiver.
On networks that support the Address Resolution Proto'col (see arp(7P);
currently, only 10 Mb/s Ethernet), this flag indicates that the system should
request that other systems use trailers when sending to this host. Similarl y ,
trailer encapsulations will be sent to other hosts that have made such
requests. Currently used by Internet protocols only.

Disable the use of a "trailer" link level encapsulation.

Enable the use of the Address Resolution Protocol in mapping between net­
work level addresses and link level addresses (default). This is currently
implemented for mapping between DARPA Internet addresses and lOMb/s
Ethernet addresses.

Last change: March 1989 1

IFCONFIG (1M) MAINTENANCE COMMANDS IFCONFIG (1 M)

-arp Disable the use of the Address Resolution Protocol.

metric n Set the routing metric of the interface to n, default O. The routing metric is
used by the routing protocol (routed(1M». Higher metrics have the effect
of making a route less favorable; metrics are counted as addition hops to
the destination network or host

debug Enable driver dependent debugging code; usually, this turns on extra con­
sole error logging.

-debug Disable driver dependent debugging code.

netmask mask (Inet only) Specify how much of the address to reserve for subdividing net­
works into sub-networks. The mask includes the network part of the local
address and the subnet part, which is taken from the host field of the
address. The mask can be specified as a single hexadecimal number with a
leading Ox, with a dot-notation Internet address, or with a pseudo-network
name listed in the network table networks (4). The mask contains 1 's for
the bit positions in the 32-bit address which are to be used for the network
and subnet parts, and O's for the host part. The mask should contain at least
the standard network portion, and the subnet field should be contiguous
with the network portion.

dstaddr Specify the address of the correspondent on the other end of a point to
point link.

broadcast (Inet only) Specify the address to use to represent broadcasts to the net­
work. The default broadcast address is the address with a host part of all
1 'so

Ifconfig displays the current configuration for a network interface when no optional parame- \,
ters are supplied. If a protocol family is specified, Ifconfig will report only the details specific
to that protocol family.

Only the super-user may modify the configuration of a network interface.

DIAGNOSTICS
Messages indicating the specified interface does not exit, the requested address is· unknown,
or the user is not privileged and tried to alter an interface's configuration.

SEE ALSO
netstat(1), intro(7N), rc(lM)

2 Last change: March 1989 Icon International, Inc.

(
INETD(1M) MAINTENANCE COMMANDS lNETD(1M)

NAME
inetd - internet "super-server"

SYNOPSIS
letclinetd [-d] [configuration file]

DESCRIPTION
[netd should be run at boot time by letclrc.local. It then listens for connections on certain
internet sockets. When a connection is found on one of its sockets, it decides what service the
socket corresponds to, and invokes a program to service the request. After the program is
finished, it continues to listen on the socket (except in some cases which will be described
below). Essentially, inetd allows running one daemon to invoke several others, reducing load
on the system.

Upon execution, inetd reads its configuration information from a configuration file which, by
default, is letclinetd.conf. There must be an entry for each field of the configuration file, with
entries for each field separated by a tab or a space. Comments are denoted by a "#" at the
beginning of a line. There must be ari entry for each field. The fields of the configuration file
are as follows:

service name
socket type
protocol
wait/nowait
user
server program
server program arguments

The service name entry is the name of a valid service in the file letclservices/. For "internal"
services (discussed below), the service name must be the official name of the service (that is,
the first entry in / etcl services).

The socket type should be one of "stream", "dgram", "raw", "rdm", or "seqpacket",
depending on whether the socket is a stream, datagram, raw, reliably delivered message, or
sequenced packet socket.

The protocol must be a valid protocol as given in /etc/protocols. Examples might be "tcp" or
"udp".

The wait/nowait entry is applicable to datagram sockets only (other sockets should have a
"nowait" entry in this space). If a datagram server connects to its peer, freeing the socket so
inetd can received further messages on the socket, it is said to be a "multi-threaded" server,
and should use the "nowait" entry. For datagram servers which process all incoming
datagrams on a socket and eventually time out, the server is said to be "single-threaded" and
should use a "wait" entry. "Comsat" ("biff") and "talk" are both examples of the latter
type of datagram server. Tftpd is an exception; it is a datagram server that establishes
pseudo-connections. It must be listed as "wait" in order to avoid a race; the server reads the
first packet, creates a new socket, and then forks and exits to allow inetd to check for nevI" ser­
vice requests to spawn new servers.

The user entry should contain the user name of the user as whom the server should run. This
allows for servers to be given less permission than root. The server program entry should
contain the pathname of the program which is to be executed by inetd when a request is found
on its socket. If inetd provides this service internally, this entry should be "internal".

Icon International, Inc. Last change: March 1989 1

lNETD(1M) MA~NANCECOMMANDS lNETD(1M)

The arguments to the server program should be just as they normally are, starting with
argv[O], which is the name of the program. If the service is provided internally, the word
"internal" should take the place of this entry.

I netd provides several "trivial" services internally by use of routines within itself. These ser­
vices are "echo", "discard", "chargen" (character generator), "daytime" (human readable
time), and "time" (machine readable time, in the form of the number of seconds since mid­
night, January I, 1900). All of these services are tcp based. For details of these services, con­
sult the appropriate RFC from the Network Information Center.

Inetd rereads its configuration file when it receives a hangup signal, SIGHUP. Services may
be added, deleted or modified when the configuration file is reread.

SEE ALSO
comsat(1M), ftpd(IM), rexecd(1M), rlogind(1M), remshd(1M), telnetd(IM), tftpd(lM)

2 Last change: March 1989 Icon International, Inc.

(,
- ~

(

c

PING(1M) MA~NANCECOMMANDS PING (1M)

NAME
ping - send ICMP ECHO_REQUEST packets to network hosts

SYNOPSIS
fetc/ping [-r] [-v] host [packetsize] [count]

DESCRIPTION
The DARPA Internet is a large and complex aggregation of network hardware, connected
together by gateways. Tracking a single-point hardware or software failure can often be
difficult. Ping utilizes the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit
an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams
("pings") have an IP and ICMP header, followed by a struct timeval, and then an arbitrary
number of "pad" bytes used to fill out the packet. Default datagram length is 64 bytes, but
this may be changed using the command-line option. Other options are:

-r Bypass the nonnal routing tables and send directly to a host on an attached network.
If the host is not on a directly-attached network, an error is returned. This option can
be used to ping a local host through an interface that has no route through it (e.g.,
after the interface was dropped by routed(1M».

-v Verbose output. ICMP packets other than ECHO RESPONSE that are received are
listed.

When using ping for fault isolation, it should first be run on the local host, to verify that the
local network interface is up and running. Then, hosts and gateways further and further away
should be "pinged". Ping sends one datagram per second, and prints one line of output for
every ECHO_RESPONSE returned. No output is produced if there is no response. If an
optional count is given, only that number of requests is sent. Round-trip times and packet loss
statistics are computed. When all responses have been received or the program times out
(with a count specified), or if the program is tenninated with a SIGINT, a brief summary is
displayed.

This program is intended for use in network testing, measurement and management. It should
be used primarily for manual fault isolation. Because of the load it could impose on the net­
work, it is unwise to use ping during nonnal operations or from automated scripts.

AUTHOR
Mike Muuss

SEE ALSO
netstat(l), ifconfig(lM)

Icon International, Inc. Last change: March 1989 1

REMSHD(lM) MAINTENANCE COMMANDS REMSHD(1M)

NAME
remshd - remote shell server

SYNOPSIS
letclremshd

DESCRIPTION
Rshd is the server for the rcmd(3) routine and, consequently, for the remsh(1 C) program. The
server provides remote execution facilities with authentication based on privileged port
numbers from trusted hosts.

Rshd listens for seIVice requests at the port indicated in the "cmd" service specification; see
services (4). When a service request is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server reads characters from the socket up to a null ("ol)') byte. The resultant
string is interpreted as an ASCII number, base 10.

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client's machine. The source port of this second connection
is also in the range 0-1023.

4)

5)

6)

The server checks the client's source address and requests the corresponding host
name (see gethostbyaddr(3N), hosts(4) and named(1M». If the hostname cannot be
determined, the dot-notation representation of the host address is used.

A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as the user identity on the client's machine.

A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as a user identity to use on the server's machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

8) Rshd then validates the user according to the following steps. The local (server-end)
user name is looked up in the password file and a chdir is performed to the user's
home directory. If either the lookup or chdir fail, the connection is terminated. If the
user is not the super-user, (user id 0), the file letclhosts.equiv is consulted for a list of
hosts considered "equivalent". If the client's host name is present in this file, the
authentication is considered successful. If the lookup fails, or the user is the super­
user, then the file .rhosts in the home directory of the remote user is checked for the
machine name and identity of the user on the client's machine. If this lookup fails,
the connection is terminated.

9) A null byte is returned on the initial socket and the command line is passed to the nor­
mal login shell of the user. The shell inherits the network connections established by
remshd.

Icon International, Inc. Last change: March 1989 1

(

(

c

REMSHD(lM) MAThnCNANCECOMMANDS REMSHD(lM)

DIAGNOSTICS
Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of 1 (0 is returned in step 9 above upon successful completion of all the steps prior to
the execution of the login shell).

"Iocuser too long"
The name of the user on the client's machine is longer than 16 characters.

"remuser too long"
The name of the user on the remote machine is longer than 16 characters.

"command too long"
The command line passed exceeds the size of the argwnent list (as configured into the sys­
tem).

"Login incorrect."
No password file entry for the user name existed.

"No remote directory."
The chdir command to the home directory failed.

"Permission denied."
The authentication procedure described above failed.

"Can't make pipe."
The pipe needed for the stderr, wasn't created.

"Try again."
A/ork by the server failed.

"<shellname>: ... "
The user's login shell could not be started. This message is returned on the connection associ­
ated with the stderr, and is not preceded by a flag byte.

SEE ALSO

BUGS

2

remsh(l C), rcmd(3)

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

A more extensible protocol should be used.

Last change: March 1989 Icon International, Inc.

REXECD(lM) MAThITENANCECOMMANDS REXECD(lM)

NAME
rexecd - remote execution server

SYNOPSIS
letclrexecd

DESCRIPTION
Rexecd is the server for the rexec(3) routine. The server provides remote execution facilities
with authentication based on user names and passwords.

Rexecd listens for service requests at the port indicated in the "exec" service specification;
see services (4). When a service request is received the following protocol is initiated:

1) The server reads characters from the socket up to a null (''0') byte. The resultant
string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to
the specified port on the client's machine.

3) A null tenninated user name of at most 16 characters is retrieved on the initial socket.

4) A null tenninated, unencrypted password of at most 16 characters is retrieved on the
initial socket.

5)

6)

7)

A null tenninated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

Rexecd then validates the user as is done at login time and, if the authentication was
successful, changes to the user's home directory, and establishes the user and group
protections of the user. If any of these steps fail the connection is aborted with a
diagnostic message returned.

A null byte is returned on the initial socket and the command line is passed to the nor­
mal login shell of the user. The shell inherits the network connections established by
rexecd.

DIAGNOSTICS
Except for the last one listed below, all diagnostic messages are returned on the initial socket,
after which any network connections are closed. An error is indicated by a leading byte with
a value of 1 (0 is returned in step 7 above upon successful completion of all the steps prior to
the command execution).

"username too long"
The name is longer than 16 characters.

"password too long"
The password is longer than 16 characters.

"command too long"
The command line passed exceeds the size of the argument list (as configured into the sys­
tem).

Icon International, Inc. Last change: May 9,1986 1

c

REXECD(1M) MAINTENANCE COMMANDS REXECD(1M)

"Login incorrect."
No password file entry for the user name existed.

"Password incorrect."
The wrong was password supplied.

"No remote directory."
The chdir command to the home directory failed.

"Try again."
A/ork by the server failed.

"<shellname>: ••• "
The user's login shell could not be started. This message is returned on the connection associ­
ated with the stderr, and is not preceded by a flag byte.

SEE ALSO
rexec(3)

BUGS

2

Indicating "Login incorrect" as opposed to "Password incorrect" is a security breach which
allows people to probe a system for users with null passwords.

A facility to allow all data and password exchanges to be encrypted should be present.

Last change: May 9,1986 Icon International, Inc.

RLOGIND (1M) MA~NANCECOMMANDS RLOGIND (1M)

NAME
rlogind - remote login seIVer

SYNOPSIS
letdrlogind [-d]

DESCRIPTION
Rlogind is the seIVer for the rlogin(lC) program. The seIVer provides a remote login facility
with authentication based on privileged port numbers from trusted hosts.

Rlogind listens for seIVice requests at the port indicated in the "login" seIVice specification;
see services (4). When a seIVice request is received the following protocol is initiated:

1) The seIVer checks the client's source port. If the port is not in the range 0-1023, the
seIVer aborts the connection.

2) The seIVer checks the client's source address and requests the corresponding host
name (see gethostbyaddr(3N), hosts(4) and named(lM». If the hostname cannot be
determined, the dot-notation representation of the host address is used.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see
pty(4», and manipulates file descriptors so that the slave half of the pseudo terminal becomes
the stdin , stdout , and stderr for a login process. The login process is an instance of the
login(l) program, invoked with the -r option. The login process then proceeds with the
authentication process as described in remshd(1M), but if automatic authentication fails, it
reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseduo terminal, operating
as an intermediary between the login process and the client instance of the rlogin program. In
normal operation, the packet protocol described in pty(4) is invoked to provide ~srQ type
facilities and propagate interrupt signals to the remote programs. The login process pro­
pagates the client terminal's baud rate and terminal type, as found in the environment vari­
able, "TERM"; see environ(7). The screen or window size of the terminal is requested from
the client, and window size changes from the client are propagated to the pseudo terminal.

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after
which any network connections are closed. An error is indicated by a leading byte with a
value of 1.

"Try again."
Afork by the seIVer failed.

"/bin/sh: .•. "
The user's login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

Icon International, Inc. Last change: March 1989 1

~
I

RLOGIND (1M) MAINTENANCE COMMANDS RLOGIND(1M)

(
A more extensible protocol should be used.

2 Last change: March 1989 Icon International, Inc.

ROU1E(1M) MAThITENANCECOMMANDS ROU1E(1M)

NAME
route - manually manipulate the routing tables

SYNOPSIS
letdroute [-f] [-n] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing tables. It normally is not
needed, as the system routing table management daemon, routed(1M), should tend to this
task.

Route accepts two commands: add, to add a route, and delete, to delete a route.

All commands have the following syntax:

letdroute command [net I host] destination gateway [metric]

where destination is the destination host or network, gateway is the next-hop gateway to
which packets should be addressed, and metric is a count indicating the number of hops to the
destination. The metric is required for add commands; it must be zero if the destination is on
a directly-attached network, and nonzero if the route utilizes one or more gateways. If adding
a route with metric 0, the gateway given is the address of this host on the common network,
indicating the interface to be used for transmission. Routes to a particular host are dis­
tinguished from those to a network by interpreting the Internet address associated with desti­
nation. The optional keywords net and host force the destination to be interpreted as a net-
work or a host, respectively. Otherwise, if the destination has a "local address part" of /'''',
INADDR_ANY, or if the destination is the symbolic name of a network, then the route is (
assumed to be to a network; otherwise, it is presumed to be a route to a host. If the routc is to ~~ .' /
a destination connected via a gateway, the metric should be greater than O. All symbolic
names speci fied for a destination or gateway are looked up first as a host name using
gethostbyname(3N). If this lookup fails, getnetbyname(3N) is then used to interpret the name
as that of a network.

Route uses a raw socket and the SIOCADDRT and SIOCDELRT ioctl's to do its work. As
such, only the super-uscr may modify the routing tables.

If the -f option is speci fled, route will "flush" the routing tables of all gateway entries. If this
is used in conjunction with one of the commands described above, the tables are flushed prior
to the command's application.

The -n option prevents attempts to print host and network names symbolically when reporting
actions.

DIAGNOSTICS
"add [host I network] %s: gateway %s flags %x"
The speci tied route is being added to the tables. The values printed are from the routing table
entry supplied in the ioctl call. If the gateway address used was not the primary address of the
gateway (the first one returned by gethostbyname), the gateway address is printed numerically
as well as symbolically.

"delete [host I network] %s: gateway %s flags %x"
As above, but when deleting an entry.

Icon International, Inc. Last change: March 1989 1

(

ROUTE (1M) MAINTENANCE COMMANDS ROUTE(1M)

"%s %s done"
When the -f flag is specified, each routing table entry deleted is indicated with a message of
this fonn.

"Network is unreachable"
An attempt to add a route failed because the gateway listed was not on a directly-connected
network. The next-hop gateway must be given.

"not in table"
A delete operation was attempted for an entry which wasn't present in the tables.

"routing table overflow"
An add operation was attempted, but the system was low on resources and was unable to allo­
cate memory to create the new entry.

SEE ALSO
intro(7N), routed(1M),

2 Last change: March 1989 Icon International, Inc.

ROUTED (1M) MAThITENANCECOMMANDS ROUTED(1M)

NAME
routed - network routing daemon

SYNOPSIS
tete/routed [-d] [-g) [-s] [-q) [-t] [logfiJe]

DESCRIPTION
Routed is invoked at boot time to manage the network routing tables. The routing daemon
uses a variant of the Xerox NS Routing Information Protocol in maintaining up to date kernel
routing table entries. It used a generalized protocol capable of use with multiple address
types, but is currently used only for Internet routing within a cluster of networks.

In normal operation routed listens on the udp(7P) socket for the route service (see ser­
vices(4)) for routing information packets. If the host is an internetwork router, it periodically
supplies copies of its routing tables to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioctl to find those directly connected inter­
faces configured into the system and marked "up" (the software loopback interface is
ignored). If multiple interfaces are present, it is assumed that the host will forward packets
between networks. Routed then transmits a request packet on each interface (using a broad­
cast packet if the interface supports it) and enters a loop, listening for request and response
packets from other hosts.

When a request packet is received, routed formulates a reply based on the information main­
tained in its internal tables. The response packet generated contains a list of known routes,
each marked with a "hop count" metric (a count of 16, or greater, is considered "infinite").
The metric associated with each route returned provides a metric relative to the sender.

Response packets received by routed are used to update the routing tables if one of the fol­
lowing conditions is satisfied:

(1) No routing table entry exists for the destination network or host, and the metric indi­
cates the destination is "reachable" (i.e. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing routing table
entry. That is, updated information is being received from the very internetwork
router through which packets for the destination are being routed.

(3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

(4) The new route describes a shorter route to the destination than the one currently
stored in the routing tables; the metric of the new route is compared against the one
stored in the table to decide this.

When an update is applied, routed records the change in its internal tables and updates the
kernel routing table. The change is reflected in the next response packet sent.

In addition to processing incoming packets, routed also periodically checks the routing table
entries. If an entry has not been updated for 3 minutes, the entry's metric is set to infinity and
marked for deletion. Deletions are delayed an additional 60 seconds to insure the invalidation
is propagated throughout the local internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds
to all directly connected hosts and networks. The response is sent to the broadcast address on
nets capable of that function, to the destination address on point-to-point links, and to the

Icon International, Inc. Last change: March 1989 1

,,.f'" ''',

~c"/

(

ROUTED(IM) MAINTENANCE COMMANDS ROUTED(IM)

2

router's own address on other networks. The normal routing tables are bypassed when send­
ing gratuitous responses. The reception of responses on each network is used to determine
that the network and interface are functioning correctly. If no response is received on an
interface, another route may be chosen to route around the interface, or the route may be
dropped ifno alternative is available.

Routed supports several options:

-d Enable additional debugging infonnation to be logged, such as bad packets received.

-g This flag is used on internetwork routers to offer a route to the •• default" destination.
This is typically used on a gateway to the Internet, or on a gateway that uses another
routing protocol whose routes are not reported to other local routers.

-s Supplying this option forces routed to supply routing infonnation whether it is acting
as an internetwork router or not. This is the default if multiple network interfaces are
present, or if a point-to-point link is in use.

-q This is the opposite of the -s option.

-t If the -t option is speci tied, all packets sent or received are printed on the standard
output. In addition, routed will not divorce itself from the controlling terminal so that
interrupts from the keyboard will kill the process.

Any other argument supplied is interpreted as the name of file in which routed's actions
should be logged. This log contains information about any changes to the routing tables and,

-if not tracing all packets, a history of recent messages sent and received which are related to
the changed route.

In addition to the facilities described above, routed supports the notion of "distant" passive
and active gateways. When routed is started up, it reads the file fetefgateways to find gate­
ways which may not be located using only information from the SIOGIFCONF ioetl. Gate­
ways speci tied in this manner should be marked passive if they are not expected to exchange
routing information, while gateways marked active should be willing to exchange routing
information (i.e. they should have a routed process running on the machine). Passive gate­
ways are maintained in the routing tables forever and information regarding their existence is
included in any routing information transmitted. Active gateways are treated equally to net­
work interfaces. Routing infonnation is distributed to the gateway and if no routing informa­
tion is received for a period of the time, the associated route is deleted. External gateways are
also passive, but are not placed in the kernel routing table nor are they included in routing
updates. The function of external entries is to inform routed that another routing process will
install such a route, and that alternate routes to that destination should not be installed. Such
entries are only required when both routers may learn of routes to the same destination.

The fetef gateways is comprised of a series oflines, each in the following format:

< net I host> name] gateway name2 metric value < passive I active I external>

The net or host keyword indicates if the route is to a network or speci fie host.

Name] is the name of the destination network or host. This may be a symbolic name located
in fetclnetworks or fetclhosts (or, if started after named(lM), known to the name server), or an
Internet address specified in "dot" notation; see inet(3N).

Name2 is the name or address of the gateway to which messages should be forwarded.

Value is a metric indicating the hop count to the destination host or network.

Last change: March 1989 Icon International, Inc.

ROUTED(lM) MA~NANCECOMMANDS ROUTED(lM)

(~-\

I

One of the keywords passive, active or external indicates if the gateway should be treated as ~

FILES

passive or active (as described above), or whether the gateway is external to the scope of the
routed protocol.

Internetwork routers that are directly attached to the Arpanet or Milnet should use the Exte­
rior Gateway Protocol (EGP) to gather routing infonnation rather then using a static routing
table of passive gateways. EGP is required in order to provide routes for local networks to the
rest of the Internet system. Sites needing assistance with such configurations should contact
the Computer Systems Research Group at Berkeley.

/etc/gateways for distant gateways

SEE ALSO

BUGS

udp(7P), htable(lM)

The kernel's routing tables may not correspond to those of routed when redirects change or
add routes. The only remedy for this is to place the routing process in the kernel.

Routed should incorporate other routing protocols, such as EGP. Using separate processes for
each requires configuration options to avoid redundant or competing routes.

Routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as
ICMP, to gather more infonnation. It does not always detect unidirectional failures in net­
work interfaces (e.g., when the output side fails).

Icon International, Inc. Last change: March 1989 3

(-

c

RWHOD(1M) MAINTENANCE COMMANDS RWHOD(lM)

NAME
rwhod - system status server

SYNOPSIS
letdrwhod

DESCRIPTION
Rwhod is the server which maintains the database used by the rwho(1C) and ruptime(1C) pro­
grams. Its operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of
information it periodically queries the state of the system and constructs status messages
which are broadcast on a network. As a consumer of information, it listens for other rwhod
servers' status messages, validating them, then recording them in a collection of files located
in the directory /usrlspoollrwho.

The server transmits and receives messages at the port indicated in the "rwho" service
speci fication; see services (5). The messages sent and received, are of the form:

struct outmp {

} ;

char out_line [8]; /* tty name */
char out_name [8]; /* user id */
long out_time; /* time on */

struct
char
char
char
int

whod {
wd vers;
wd_type;
wd_fill[2];
wd sendtime;

} ;

int wd_recvtime;
char wd_hostname [32];
int wd_loadav[3];
int wd_boottime;
struct whoent {

struct outmp we_utmp;
int we_idle;

} wd_we[1024 / sizeof (struct whoent)];

All fields are converted to network byte order prior to transmission. The load averages are as
calculated by the weI) program, and represent load averages over the 5, 10, and 15 minute
intervals prior to a server's transmission; they are multiplied by 100 for representation in an
integer. The host name included is that returned by the gethostname (2) systerp call, with any
trailing domain name omitted. The array at the end of the message contains information
about the users logged in to the sending machine. This information includes the contents of
the utmp(4) entry for each non-idle tenninalline and a value indicating the time in seconds
since a character was last received on the tenninalline.

Messages received by the rwho server are discarded unless they originated at an rwho server's
port. In addition, if the host's name, as specified in the message, contains any unprintable
ASCII characters, the message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory lusrlspoollrwho. These files contain only the

Icon International, Inc. last change: March 1989 1

RWHOD(lM) MAINTENANCE COMMANDS RWHOD(lM)

most recent message. in the fonnat described above.

Status messages are generated approximately once every 3 minutes. Rwhod perfonns an
nlist(3) on /vmunix every 30 minutes to guard against the possibility that this file is not the
system image currently operating.

SEE ALSO

BUGS

2

rwho(1C), ruptime(lC)

There should be a way to relay status infonnation between networks. Status infonnation
should be sent only upon request rather than continuously. People often interpret the server
dying or network communtication failures as a machine going down.

Last change: March 1989 Icon International, Inc.

(

SENDMAIL(1M) MAINTENANCE COMMANDS SENDMAIL(1M)

NAME
sendmail - send mail over the internet

SYNOPSIS
/usrllib/sendmail [flags] [address ...]

newaliases

mailq [-v]

DESCRIPTION
Sendmail sends a message to one or more recipients, routing the message over whatever net­
works are necessary. Sendmail does internetwork forwarding as necessary to deliver the mes­
sage to the correct place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly
front ends; sendmail is used only to deliver pre-formatted messages.

With no flags, sendmail reads its standard input up to an end-of-file or a line consisting only
of a single dot and sends a copy of the message found there to all of the addresses listed. It
determines the network(s) to use based on the syntax and contents of the addresses.

Local addresses arc looked up in a file and aliased appropriately. Aliasing can be prevented
by preceding the address with a backslash. Normally the sender is not included in any alias
expansions, e.g., if 'john' sends to 'group', and 'group' includes 'john' in the expansion, then
the letter will not be delivered to 'john'.

Flags are:

-ba

-bd

-bi

-bm

-bp

-bs

-bt

-bv

-bz

-Cjite

-dX

Icon International, Inc.

Go into ARPANET mode. All input lines must end with a CR-LF, and all
messages will be generated with a CR-LF at the end. Also, the "From:"
and "Sender:" fields are examined forthe name of the sender.

Run as a daemon. This requires Berkeley IPC. Sendmail will fork and run
in background listening on socket 25 for incoming SMTP connections.
This is normally run from /etc/rc.

Initialize the alias database.

Deliver mail in the usual way (default).

Print a listing of the queue.

Use the SMTP protocol as described in RFC82l on standard input and out­
put. This flag implies all the operations of the -ba flag that are compatible
withSMTP.

Run in address test mode. This mode reads addresses and shows the steps
in parsing; it is used for debugging configuration tables.

Verify names only - do not try to collect or deliver a message. Verify
mode is normally used for validating users or mailing lists.

Create the configuration freeze file.

Use alternate configuration file. Sendmail refuses to run as root if an alter­
nate configuration file is specified. The frozen configuration file is
bypassed.

Set debugging value to X.

Last change: March 1989 1

SENDMAIL(1M)

-Ffullname

-fname

-hN

-n
-ox value

-q[time]

-rname

-t

MA~NANCECOMMANDS SEND MAIL (1M)

Set the full name of the sender.

Sets the name of the "from" person (i.e., the sender of the mail). -f can
only be used by "trusted" users (normally root, daemon, and network) or
if the person you are trying to become is the same as the person you are.

Set the hop count to N. The hop count is incremented every time the mail
is processed. When it reaches a limit, the mail is returned with an error
message, the victim of an aliasing loop. If not specified, "Received:"
lines in the message are counted.

Don't do aliasing.

Set option x to the specified value. Options are described below.

Processed saved messages in the queue at given intervals. If time is omit­
ted, process the queue once. Time is given as a tagged number, with's'
being seconds, om' being minutes, 'h' being hours, cd' being days, and Ow'
being weeks. For example, "-qlh30m" or "-q90m" would both set the
timeout to one hour thirty minutes. If time is specified, sendmail will run
in background. This option can be used safely with -bd.

An alternate and obsolete form of the -f flag.

Read message for recipients. To:, Cc:, and Bcc: lines will be scanned for
recipient addresses. The Bcc: line will be deleted before transmission.
Any addresses in the argument list will be suppressed, that is, they will not
receive copies even if listed in the message header.

-v Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally these will only be
used by a system administrator. Options may be set either on the command line using the -0

flag or in the configuration file. These are described in detail in the Sendmaillnstallation and
Operation Guide. The options are:

Afile Use alternate alias file.

c

dx

D

ex

Fmode

f

gN

On mailers that are considered "expensive" to connect to, don't initiate
immediate connection. This requires queueing.

Set the delivery mode to x. Delivery modes are 'i' for interactive (synchro­
nous) delivery, 'b' for background (asynchronous) delivery, and 'q' for
queue only - i.e., actual delivery is done the next time the queue is run.

Try to automatically rebuild the alias database if necessary.

Set error processing to mode x. Valid modes are Om' to mail back the error
message, Ow' to "write" back the error message (or mail it back if the
sender is not logged in), 'p' to print the errors on the terminal (default), 'q'
to throwaway error messages (only exit status is returned), and 'e' to do
special processing for the BerkNet. If the text of the message is not
mailed back by modes om' or 'w' and if the sender is local to this machine,
a copy of the message is appended to the file "dead.letter" in the sender's
home directory.

The mode to use when creating temporary files.

Save UNIX-style From lines at the front of messages.

The default group id to use when calling mailers.

2 Last change: March 1989 Icon International, Inc.

(

(/

SENDMAIL(1M) MA~NANCECOMMANDS S END MAIL (1M)

Hfile The SMTP help file.

Ln

m
o

Do not take dots on a line by themselves as a message tenninator.

The log level.

Send to "me" (the sender) also ifI am in an alias expansion.

If set, this message may have old style headers. If not set, this message is
guaranteed to have new style headers (Le., commas instead of spaces
between addresses). If set, an adaptive algorithm is used that will
correctly detennine the header fonnat in most cases.

Qqueuedir

rtimeout

Select the directory in which to queue messages.

The timeout on reads; if none is set, sendmail will wait forever for a
mailer. This option violates the word (if not the intent) of the SMTP
specification, show the timeout should probably be fairly large.

Sfile Save statistics in the named file.

s Always instantiate the queue file, even under circumstances where it is not
strictly necessary. This provides safety against system crashes during
delivery.

Ttime Set the timeout on undelivered messages in the queue to the speci fled
time. After delivery has failed (e.g., because of a host being down) for this
amount of time, failed messages will be returned to the sender. The
default is three days.

tstz,dtz

uN

Set the name of the time zone.

Set the default user id for mailers.

In aliases, the first character of a name may be a vertical bar to cause interpretation of the rest
of the name as a command to pipe the mail to. It may be necessary to quote the name to keep
sendmail from suppressing the blanks from bctwecn arguments. For example, a common alias
is:

msgs: "I/usr/ucb/msgs -s"

Aliases may also have the syntax ":include:filename" to ask sendmail to read the named file
for a list of recipients. For example, an alias such as:

poets: ":include:/usr/local/lib/poets.list"

would read lusrllocalilibipoets.list for the list of addresses making up the group.

Sendmail returns an exit status describing what it did. The codes are defined in <sysexits.h>
EX_OK Successful completion on all addresses.
EX_NOUSER User name not recognized.
EX_UNAVAILABLE Catchall meaning necessary resources were not available.
EX_SYNTAX Syntax error in address.
EX_SOFfWARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as "cannot fork".
EX_NOHOST Host name not recognized.
EX_TEMPFAIL Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailq, send­
mail will print the contents of the mail queue.

Icon International, Inc. Last change: March 1989 3

S Et\TJ) MAIL (1M) MAINTENANCE COMMANDS SENDMAIL(1M)

FILES
Except for /usr/lib/sendmail.cf, these pathnames are all specified in /usr/lib/sendmai1.cf. Thus,
these values are only approximations.

/usr/lib/aliases raw data for alias names
/usr/lib/aliases.pag
/usr/li b/ali ases. dir
/usr/lib/sendmail.cf
/usr/lib/sendmail.fc
/usr/lib/sendmail.hf
/usr/lib/sendmail.st
/usr/spooVmqueue/*

data base of alias names
configuration file
frozen configuration
help file
collected statistics
temp files

SEE ALSO

4

binmail(1), mail(1), rmail(l), syslog(3), aliases(4), sendmai1.cf(4), mailaddr(5), rc(8);
DARPA Internet Request For Comments RFC819, RFC821, RFC822;
Sendmail - An Internetwork Mail Router
Sendmaillnstallation and Operation Guide

Last change: March 1989 Icon International, Inc.

c

(
,,-

SLATTACH(1M) MAINTENANCE COMMANDS SLATTACH (1M)

NAME
slattach - attach serial lines as network interfaces

SYOPNSIS
/etdslattach ttyname [baudrate]

DESCRIPTION
Slattach is used to assign a tty line to a network interface, and to define the network source
and destination addresses. The tty name parameter is a string of the fonn "ttyXX", or
"/dev/ttyXX". The optional baudrate parameter is used to set the speed of the connection. If
not specified, the default of 9600 is used.

Only the super-user may attach a network interface.

To detach the interface, use 'ifconfig interface-name down' after killing off the slattach pro­
cess. interface-name is the name that is shown by netstat(l)

EXAMPLES

DIAGNOSTICS

/etc/slattach ttyh8
/etc/slattach /dev/ttyOl 4800

Messages indicating the specified interface does not exit, the requested address is unknown,
the user is not privileged and tried to alter an interface's configuration.

SEE ALSO
rc(8). intro(7N), nctstat(1), ifconfig(lM)

Icon International, Inc. Last change: March 1989 1

SYSLOGD(1M) MAThITENANCECOMMANDS SYSLOGD(1M)

NAME
syslogd -log systems messages

SYNOPSIS
/etdsyslogd [-fconfigfile] [-rnmarkinterval] [-d]

DESCRIPTION
Syslogd reads and logs messages into a set of files described by the configuration file
letc/syslog.conf. Each message is one line. A message can contain a priority code, marked by
a number in angle braces at the beginning of the line. Priorities are defined in <sys/syslog.h>.
Syslogd reads from the UNIX domain socket /devllog, from an Internet domain socket
specified in /ete/services, and from the special device /dev/klog (to read kernel messages).

Syslogd configures when it starts up and whenever it receives a hangup signal. Lines in the
configuration file have a selector to determine the message priorities to which the line applies
and an action. The action field are separated from the selector by one or more tabs.

Selectors are semicolon separated lists of priority specifiers. Each priority has a facility
describing the part of the system that generated the message, a dot, and a level indicating the
severity of the message. Symbolic names may be used. An asterisk selects all facilities. All
messages of the specified level or higher (greater severity) are selected. More than one facil­
ity may be selected using commas to separate them. For example:

* .emerg;mail,daemon.crit

Selects all facilities at the emerg level and the mail and daemon facilities at the crit level.

Known facilities and levels recognized by syslogd are those listed in syslog(3) without the
leading "LOG_". The additional facility "mark" has a message at priority LOG_INFO sent
to it every 20 minutes (this may be changed with the -m flag). The "mark" facility is not
enabled by a facility field containing an asterisk. The level "none" may be used to disable a
particular facility. For example,

* .de bug;mail.none

Sends all messages except mail messages to the selected file.

The second part of each line describes where the message is to be logged if this line is
selected. There are four forms:

• A filename (beginning with a leading slash). The file will be opened in append mode.

• A hostname preceeded by an at sign ("@"). Selected messages are forwarded to the sys­
logd on the named host.

• A comma separated list of users. Selected messages are written to those users if they are
logged in.

• An asterisk. Selected messages are written to all logged-in users.

Blank lines and lines beginning with '#' are ignored.

For example, the configuration file:

kern,mark.debug
*.notice;mail.info
*.crit
kern.err

/dev/console
/usr/spool/adm/syslog
/usr/adm/critical
@ucbarpa

Icon International, Inc. Last change: March 1989 1

1'-"
\...~j

(

(\

SYSLOGD (1M) MAINTENANCE COMMANDS SYSLOGD (1 M)

FILES

*.emerg *
*.alert eric,kridle
*.alert;auth.warning ralph

logs all kernel messages and 20 minute marks onto the system console, all notice (or higher)
level messages and all mail system messages except debug messages into the file
lusr/spooVadm/syslog, and all critical messages into lusr/adm/critical; kernel messages of
error severity or higher are forwarded to ucbarpa. All users will be informed of any emer­
gency messages, the users "eric" and "kridle" will be informed of any alert messages, and
the user "ralph" will be informed of any alert message. or any warning message (or higher)
from the authorization system.

The flags are:

-f Specify an alternate configuration file.

-m Select the number of minutes between mark messages.

-d Tum on debugging.

Syslogd creates the file /etc/syslog.pid, if possible, containing a single line with its process id.
This can be used to kill or reconfigure syslogd.

To bring syslogd down. it should be sent a terminate signal (e.g. kill 'cat /etc/syslog.pid').

/etc/syslog.conf
/etc/syslog. pid
/dev/log
/dev/klog

the configuration file
the process id
Name of the UNIX domain datagram log socket
The kemellog device

SEE ALSO
10gger(1), syslog(3)

2 Last change: March 1989 Icon International, Inc.

TALKD(lM) MAThITENANCECOMMANDS TALKD(lM)

NAME
talkd - remote user communication server

SYNOPSIS
letcltalkd

DESCRIPTION
Talkd is the server that notifies a user that somebody else wants to initiate a conversation. It
acts a repository of invitations, responding to requests by clients wishing to rendezvous to
hold a conversation. In nonnal operation, a client, the caller, initiates a rendezvous by send­
ing a CfL_MSG to the server of type LOOK_UP (see <protoco[sltalkd.h». This causes the
server to search its invitation tables to check if an invitation currently exists for the caller (to
speak to the callee specified in the message). If the lookup fails, the caller then sends an
ANNOUNCE message causing the server to broadcast an announcement on the callee's login
POTtS requesting contact. When the callee responds, the local server uses the recorded invita­
tion to respond with the appropriate rendezvous address and the caller and callee client pro­
grams establish a stream connection through which the conversation takes place.

SEE ALSO
talk(l), write(l)

Icon International, Inc. Last change: March 1989 1

(

TELNETD (1 M) MAThITENANCECOMMANDS TELNETD (1 M)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
letdtelnetd

DESCRIPTION
Telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol.
Telnetd is invoked by the internet server (see inetd(8)), normally for requests to connect to the
TELNET port as indicated by the fetcfservices file (see services (4)).

Telnetd operates by allocating a pseudo-terminal device (see pty(4)) for a client, then creating
a login process which has the slave side of the pseudo-terminal as stdin, stdout, and stderr.
Telnetd manipulates the master side of the pseudo-terminal, implementing the TELNET pro­
tocol and passing characters between the remote client and the login process.

When a TELNET session is started up, telnetd sends TELNET options to the client side
indicating a willingness to do remote echo of characters, to suppress go ahead, and to receive
terminal type information from the remote client. If the remote client is willing, the remote
terminal type is propagated in the environment of the created login process.

Telnetd is willing to do: echo, binary, suppress go ahead, and timing mark. Telnetd is wil­
ling to have the remote client do: binary, terminal type, and suppress go ahead.

SEE ALSO
telnet(lC)

BUGS
Some TELNET commands are only partially implemented.

The TELNET protocol allows for the exchange of the number of lines and columns on the
user's terminal, but te/netd doesn't make use of them.

Because of bugs in the original 4.2 BSD telnet(lC), telnetd performs some dubious protocol
exchanges to try to discover if the remote client is, in fact, a 4.2 BSD telnet(1 C).

Binary mode has no common interpretation except between similar operating systems (Unix
in this case).

The terminal type name received from the remote client is converted to lower case.

The packet interface to the pseudo-terminal (see pty(4)) should be used for more intelligent
flushing of input and output queues.

Telnetd never sends TELNET go ahead commands.

Icon International, Inc. Last change: March 1989 1

TFTPD(1M) MAINTENANCE COMMANDS TFTPD(IM)

NAME
tftpd - DARPA Trivial File Transfer Protocol server

SYNOPSIS
letdtftpd

DESCRIPTION
Tftpd is a server which supports the DARPA Trivial File Transfer Protocol. The TFfP server
operates at the port indicated in the "tftp" service description; see services (4). The server is
nonnally started by inetd(1M).

The use of tftp does not require an account or password on the remote system. Due to the lack
of authentication infonnation, tjtpd will allow only publicly readable files to be accessed.
Files may be written only if they already exist and are publicly writable. Note that this
extends the concept of "public" to include all users on all hosts that can be reached through
the network; this may not be appropriate on all systems, and its implications should be con­
sidered before enabling tftp service. The server should have the user ID with the lowest pos­
sible privilege.

SEE ALSO
tftp(1C), inetd(1M)

Icon International, Inc. Last change: March 1989 1

(

(j

TRPT(1M) MAINTENANCE COMMANDS TRPT(1M)

NAME
trpt - transliterate protocol trace

SYNOPSIS
trpt [-a] [-s] [-t] [-f] [-j] [-p hex-address] [system [core]]

DESCRIPTION

FILES

Trpt interrogates the bufrer ofTCP trace records created when a socket is marked for "debug­
ging" (see setsockopt(2», and prints a readable description of these records. When no
options are supplied, trpt prints all the trace records found in the system grouped according to
TCP connection protocol control block (PCB). The following options may be used to alter
this behavior.

-a

-s

-t

-f

-j

-p

in addition to the nonnal output, print the values of the source and destination
addresses for each packet recorded.

in addition to the nonnal output, print a detailed description of the packet sequencing
infonnation.

in addition to the nonnal output, print the values for all timers at each point in the
trace.

follow the trace as it occurs, waiting a short time for additional records each time the
end of the log is reached.

just give a list of the protocol control block addresses for which there are trace
records.

show only trace records associated with the protocol control block, the address of
which follows.

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associ­
ated with the sockets using the -A option to netstat(l). Then run trpt with the -p option, sup­
plying the associated protocol control block addresses. The -f option can be used to follow
the trace log once the trace is located. If there are many sockets using the debugging option,
the -j option may be useful in checking to see if any trace records are present for the socket in
question.

If debugging is being perfonned on a system or core file other than the default, the last two
arguments may be used to supplant the defaults.

/vmunix
/dev/kmem

SEE ALSO
setsockopt(2), netstat(1), trsp(lM)

DIAGNOSTICS
"no namelist" when the system image doesn't contain the proper symbols to find the trace
buffer; others which should be self explanatory.

Icon International, Inc. Last change: March 1989 1

TRPT(1M) MAThITENANCECOMMANDS TRPT(1M)

BUGS

2

Should also print the data for each input or output, but this is not saved in the race record.

The output fonnat is inscrutable and should be described here.

Last change: March 1989 Icon International, Inc.

c

ACCEPT (2) SYSTEM CALLS ACCEPT (2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;
struct sockaddr *addr;
int *addrlen;

DESCRIPTION
The argument s is a socket that has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Accept extracts the first connection
on the queue of pending connections, creates a new socket with the same properties of s and
allocates a new file descriptor, ns, for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, accept blocks the caller until a connec­
tion is present. If the socket is marked non-blocking and no pending connections are present
on the queue, accept returns an error as described below. The accepted socket, ns, may not be
used to accept more connections. The original socket s remains open.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the domain in which the communication is occurring. The addrlen is a valuc­
result parameter; it should initially contain the amount of space pointed to by addr; on return
it will contain the actual length (in bytes) of the address returned. This call is used with
connection-based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE
The call returns -1 on error. If it succeeds, it returns a non-negative integer that is a descriptor
for the accepted socket.

ERRORS
The accept will fail if:

[EBADF] The descriptor is invalid.

[ENOTSOCK] The descriptor references a file, not a socket.

[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.

[EFAULT] The addr parameter is not in a writable part of the user address
space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to
be accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

Icon International, Inc. Last change: March 1989 1

BIND(2) SYSTEM CALLS BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

bind(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists
in a name space (address family) but has no name assigned. Bind requests that name be
assigned to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system that must be deleted
by the caller when it is no longer needed (using unlink(2».

The rules used in name binding vary between communication domains. Consult the manual
entries for Networking Protocols in Appendix A for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which is
further specified in the global ermo.

ERRORS
The bind call will fail if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is not a socket.

[EADDRNOTAVAIL] The specified address is not available from the local machine.

[EADDRINUSE]

[EINVAL]

The specified address is already in use.

The socket is already bound to an address.

[EACCES] The requested address is protected, and the current user has inade-
quate permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address space.

The following errors are specific to binding names in the UNIX domain.

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The patbname contains a character with the high-order bit set.

[ENAMETOOLONG]
A component of a patbname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

[ENOENT] A prefix component of the path name does not exist.

Icon International, Inc. Last change: March 1989 1

~.~ , ,

(

(~

BIND (2)

[ELOOP]

[EIO]

[EROFS]

[EISDIR]

SEE ALSO

SYSTEM CALLS BIND(2)

Too many symbolic links were encountered in translating the pathname.

An I/O error occurred while making the directory entry or allocating the
inode.

The name would reside on a read-only file system.

A null pathname was specified.

connect(2), listen(2), socket(2), getsockname(2)

2 Last change: March 1989 Icon International, Inc.

CONNECT(2) SYSTEM CALLS CONNECT(2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;
struct sockaddr *name;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call speci fies the peer
with which the socket is to be associated; this address is that to which datagrams are to be
sent, and the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, then this call attempts to make a connection to another socket. The other
socket is speci fied by name, which is an address in the communications space of the socket.
Each communications space interprets the name parameter in its own way. Generally, -stream
sockets may successfully connect only once; datagram sockets may use connect multiple
times to change their association. Datagram sockets may dissolve the association by connect­
ing to an invalid address, such as a null address.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a -1 is returned, and a
more specific error code is stored in erma.

ERRORS.
The call fails if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is a descriptor for a file, not a socket.

[EADDRNOTAVAIL] The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this
socket.

[EISCONN]

[ETIMEDOUT]

[ECONNREFUSED]

[ENETUNREACH]

[EADDRINUSE]

[EFAULT]

[EINPROGRESS]

Icon International, Inc.

The socket is already connected.

Connection establishment timed out without establishing a connec­
tion.

The attempt to connect was forcefully rejected.

The network isn't reachable from this host.

The address is already in use.

The name parameter speci ties an area outside the process address
space.

The socket is non-blocking and the connection cannot be completed
immediately. It is possible to select(2) for completion by selecting
the socket for writing.

Last change: March 1989 1

CONNECT(2) SYSTEM CALLS CONNECT(2)

[EALREADY] The socket is non-blocking and a previous connection attempt has
not yet been completed.

The following errors are specific to connecting names in the UNIX domain. These errors may
not apply in future versions of the UNIX IPC domain.

[ENOTDIR] A component of the path prefix is not a directory.

[EINVAL] The pathname contains a character with the high-order bit set.

[ENAMETOOLONG]

[ENOENT]

[EACCES]

[EACCES]

[ELOOP]

A component of a pathname exceeded 255 characters, or an entire path
name exceeded 1023 characters.

The named socket does not exist.

Search permission is denied for a component of the path prefix.

Write access to the named socket is denied.

Too many symbolic links were encountered in translating the pathname.

SEE ALSO
accept(2), select(2), socket(2), getsockname(2)

2 Last change: March 1989 Icon International, Inc.

FCHMOD(2) SYSTEM CALLS FCHMOD(2)

NAME
fchrnod - change mode of file

SYNOPSIS
int fchmod (fildes, mode)
int fildes;
int mode;

DESCRIPTION
Fildes is a file descriptor for an open file that may have been returned from a open(2) or
dup(2) call. Fchmod sets the access permission portion of the named file's mode according to
the bit pattern contained in mode.

Access permission bits are interpreted as follows:

center; 1111. 04000 Set user ID on execution. 02000 Set group ID on execution.
01000 Save text image after execution. 00400 Read by owner. 00200 Write by
owner. 00100 Execute (search if a directory) by owner. 00070 Read, write, exe­
cute (search) by group. 00007 Read, write, execute (search) by others.

The effective user ID of the process must match the owner of the file or be super-user to
change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000 (save text image on
execution) is cleared.

If the effective user ID of the process is not super-user and the effective group ID of the process
does not match the group ID of the file, mode bit 02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000 prevents the system from
abandoning the swap-space image of the program-text portion of the file when its last user ter­
minates. Thus. when the next user of the file executes it, the text need not be read from the
file system but can simply be swapped in, saving time.

Fchmod will fail and the file mode will be unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not super-user.

[EROFS]

[EFAULT]

RETURN VALUE

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chrnod(2), chown(2). fchown(2). mknod(2).

Icon International, Inc. Last change: March 1989 1

/ ~
/

" /

(~\

FCHOWN(2) SYSTEM CALLS FCHOWN(2)

NAME
fchown - change owner and group of a file

SYNOPSIS
int fchown (fildes, owner, group)
int fildes;
int owner, group;

DESCRIPTION
Fildes is a file descriptor for an open file that may have been returned from a open(2) or
dup(2) call. The owner ID and group ID of the named file are set to the numeric values con­
tained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user may change the
ownership of a file.

Iffchown is invoked by other than the super-user, the set-user-ID and set-group-ID bits of the
file mode, 04000 and 02000 respectively, will be cleared.

Fchown will fail and the owner and group of the named file will remain unchanged if one or
more of the following are true:

[ENOIDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

Search permission is denied on a component of the path prefix. [EACCES]

[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not super-user.

[EROFS]

[EFAULT]

RETURN VALUE

The named file resides on a read-only file system.

Path points outside the allocated address space of the process.

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), fchmod(2).
chown(l) in the ICONIUXV User Reference Manual.

Icon International, Inc. Last change: March 1989 1

GETHOSTID (2) SYSTEM CALLS

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostid = gethostidO
long hostid;

sethostid(hostid)
long hostid;

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor that is intended to be unique
among all UNIX systems in existence. This is nonnally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is nonnally perfonned at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
gethostname(2)

Icon International, Inc. Last change: March 1989 1

(

(

c

GETHOSTNAME (2) SYSTEM CALLS GETHOSTNAME (2)

NAME
gethostname, sethosUlame - get/set name of current host

SYNOPSIS
gethostname(name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char *name;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned name
is null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
. If the call succeeds a value of 0 is returned. If the call fails, then a value of -1 is returned and
an error code is placed in the global location ermo.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid address.

[EPERM] The caller tried to set the hosUlame and was not the super-user.

SEE ALSO
gethostid(2)

BUGS
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h» characters,
currently 64.

Icon International, Inc. Last change: March 1989 1

GETPEERNAME(2) SYSTEM CALLS GETPEERNAME (2)

NAME
getpeername - get name of connected peer

SYNOPSIS
getpeernarne(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con­
tains the actual size of the name returned (in bytes). The name is truncated if the buffer pro­
vided is too small.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perfonn the opera­
tion.

[EFAULT]

SEE ALSO

The name parameter points to memory not in a valid part of the process
address space.

accept(2), bind(2), socket(2), getsockname(2)

Icon International, Inc. Last change: March 1989 1

(

GETSOCKNAME (2) SYSTEM CALLS GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen)
int s;
struct sockaddr *name;
int *namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it con­
tains the actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perfonn the opera­
tion.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

bind(2), socket(2)

Names bound to sockets in the UNIX domain are inaccessible; getsockname returns a zero
length name.

Icon International, Inc. Last change: March 1989 1

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt(s, level, optname, optval, optJen)
int s, level, optnarne;
char *optval;
int *optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optnarne;
char *optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppennost "socket" level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the "socket" level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the
appropriate protocol controlling the option is supplied. For example, to indicate that an
option is to be interpreted by the TCP protocol, level should be set to the protocol number of
TCP; see getprotoent(3N).

The parameters optval and optlen are used to access option values for setsockopt. For get­
sockopt they identify a buffer in which the value for the requested option(s) are to be returned.
For getsockopt, optlen is a value-result parameter, initially containing the size of the buffer
pointed to by optval, and modified on return to indicate the actual size of the value returned.
If no option value is to be supplied or returned, optval may be supplied as O.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <syslsocket.h> contains definitions for "socket"
level options, described below. Options at other protocol levels vary in fonnat and name;
consult the appropriate manual entries for section 7P in Appendix A.

Most socket-level options take an int parameter for optval. For setsockopt, the parameter
should non-zero to enable a boolean option, or zero if the option is to be disabled.
SO_LINGER uses a struct linger parameter, defined in <syslsocket.h>, which specifies the
desired state of the option and the linger interval (see below).

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt and set with setsockopt .

SO_DEBUG
SO_REUSEADDR
SO_KEEPALIVE
SO_DONTROUTE
SO_LINGER

Icon International, Inc.

toggle recording of debugging infonnation
toggle local address reuse
toggle keep connections alive
toggle routing bypass for outgoing messages
linger on close if data present

Last change: March 1989 1

(

(

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

SO_BROADCAST
SO_OOBINLINE
SO_SNDBUF
SO_RCVBUF
SO_TYPE
SO_ERROR

toggle permission to transmit broadcast messages
toggle reception of out-of-band data in band
set buffer size for output
set buffer size for input
get the type of the socket (get only)
get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(2) call should allow
reuse of local addresses. SO _KEEP ALIVE enables the periodic transmission of messages on
a connected socket. Should the connected party fail to respond to these messages, the con­
nection is considered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facil­
ities. Instead, messages are directed to the appropriate network interface according to the net­
work portion of the destination address.

SO_LINGER controls the action taken when unsent messags are queued on socket and a
close (2) is perfonned. If the socket promises reliable delivery of data and SO _LINGER is set,
the system will block the process on the close attempt until it is able to transmit the data or
until it decides it is unable to deliver the infonnation (a timeout period, tenned the linger
interval, is specified in the setsockopt call when SO_LINGER is requested). If SO_LINGER
is disabled and a close is issued, the system will process the close in a manner that allows the
process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast datagrams on the
socket. Broadcast was a privileged operation in earlier versions of the system. With proto­
cols that support out-of-band data, the SO_OOBINLINE option requests that out-of-band data
be placed in the nonnal data input queue as received; it will then be accessible with reev or
read calls without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF are options to
adjust the nonnal buffer sizes allocated for output and input buffers, respectively. The buffer
size may be increased for high-volume connections, or may be decreased to limit the possible
backlog of incoming data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with setsoekopt. SO_TYPE returns the
type of the socket, such as SOCK_STREAM; it is useful for servers that inherit sockets on
startup. SO_ERROR returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram sockets or for other
asynchronous errors.

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS

2

The call succeeds unless:

[EBADF]

[ENOTSOCK]

[ENOPROTOOPT]

[EFAULT]

The argument s is not a valid descriptor.

The argument s is a file, not a socket.

The option is unknown at the level indicated.

The address pointed to by optval is not in a valid part of the process
address space. For getsockopt. this error may also be returned if
optlen is not in a valid part of the process address space.

Last change: March 1989 Icon International, Inc.

GETSOCKOPT (2) SYSTEM CALLS GETSOCKOPT (2)

SEE ALSO
ioct1(2), socket(2), getprotoent(3N)

BUGS
Several of the socket options should be handled at lower levels of the system.

Icon International, Inc. Last change: March 1989 3

(-

(

GETTIMEOFDAY (2) SYSTEM CALLS GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday - get/set date and time

SYNOPSIS
#include <sys/time.h>

gettimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

settimeofday(tp, tzp)
struct timeval *tp;
struct timezone *tzp;

DESCRIPTION
The system's notion of the current Greenwich time and the current time zone is obtained with
the gettimeofday call, and set with the settimeofday call. The time is expressed in seconds
and microseconds since midnight (0 hour), January 1, 1970. The resolution of the system
clock is hardware dependent, and the time may be updated continuously or in "ticks." If tzp
is zero, the time zone information will not be returned or set.

The structures pointed to by tp and tzp are defined in <sysltime.h> as:

struct timeval {
long tv _sec;
long tv _usee;

} ;

/* seconds since Jan. 1, 1970 */
/* and microseconds */

struct timezone {
int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

};

The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies
locally during the appropriate part ofthe year. .

Only the super-user may set the time of day or time zone.

RETURN
A 0 return value indicates that the call succeeded. A -1 return value indicates an error
occurred, and in this case an error code is stored into the global variable ermo.

ERRORS
The following error codes may be set in ermo;

[EFAULT] An argument address referenced invalid memory.

[EPERM] A user other than the super-user attempted to set the time.

SEE ALSO
date(I), ctime(3)

Icon International, Inc. Last change: March 1989 1

LISTEN(2) SYSTEM CALLS LISTEN (2)

NAME
listen - listen for connections on a socket

SYNOPSIS
listen(s, backlog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a willingness to accept incom­
ing connections and a queue limit for incoming connections are specified with listen(2), and
then the connections are accepted with accept(2). The listen call applies only to sockets of
type SOCK_STREAM or SOCK_SEQPACKET.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client may receive an error
with an indication of ECONNREFUSED, or, if the underlying protocol supports retransmis­
sion, the request may be ignored so that retries may succeed.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

SEE ALSO

The argument s is not a valid descriptor.

The argument s is not a socket.

The socket is not of a type that supports the operation listen.

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to 5.

Icon International, Inc. Last change: March 1989 1

(

READV(2) SYSTEM CALLS READV(2)

NAME
readv - read input

SYNOPSIS
#include <sysltypes.h>
#include <sysluio.h>

cc = readv(d, iov, iovcnt)
int cc, d;
struct iovec *iov;
int iovcnt;

DESCRIPTION
Readv perfonns the same action. but scatters the input data into the iovcnt buffers specified by
the members of the iov array: iov[O]. iov[l] iov[iovcnt -1].

For readv. the iovec structure is defined as

struct iovec {
caddct iov _base;
int iov _len;

} ;

Each iovec entry speci fies the base address and length of an area in memory where data
should be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking. the read starts at a position given by the pointer associated
with d (see iseek(2)). Upon return from read, the pointer is incremented by the number of
bytes actually read.

Objects that are not capable of seeking always read from the current position. The value of
the pointer associated with such an object is undefined.

Upon successful completion. readv returns the number of bytes actually read and placed in
the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a nonnal file that has that many bytes left before the end-of-file, but in no other
case.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful. the number of bytes actually read is returned. Otherwise. a -1 is returned and
the global variable ermo is set to indicate the error.

FRRORS
Readv will fail if one or more of the following are true:

[EBADF] D is not a valid file or socket descriptor open for reading.

[EIO] An I/O error occurred while reading from the file system.

[EINTR] A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

[EINVAL] The pointer associated with d was negative.

Icon International, Inc. Last change: March 1989 1

READV(2) SYSTEM CALLS READV(2)

[EWOULDBLOCK]
The file was marked for non-blocking I/O, and no data were ready to be
read.

In addition, ready may return one of the following errors:

[EINVAL] lovcnt was less than or equal to 0, or greater than 16.

[EINVAL] One of the iov_len values in the iov array was negative.

[EINVAL] The sum of the iov _len values in the iov array overflowed a 32-bit integer.

[EFAULT] Part of the iov points outside the process's allocated address space.

SEE ALSO
dup(2), fcnt1(2), open(2), pipe(2), select(2), socket(2), socketpair(2)

2 Last change: March 1989 Icon International, Inc.

(

RECV (2) SYSTEM CALLS RECV (2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <syS/socket.h>

cc = recv(s, buf, len, flags)
int cc, s;
char *buf;
int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;
char *buf;
int len, flags;
struct sockaddr *from;
int *from)en;

cc = recvrnsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

DESCRIPTION
Recv, reevfrom, and recvmsg are used to receive messages from a socket.

The reev call is normally used only on a connected socket (see eonneet(2», while reev/rom
and recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated withfrom, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in
cc. If a message is too long to fit in the supplied buffer, excess bytes may be discarded
depending on the type of socket the message is received from (see soeket(2».

If no messages are available at the socket, the receive call waits for a message to arrive,
unless the socket is nonblocking (see ioctl(2» in which case a ce of -1 is returned with the
external variable ermo set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.

Theflags argument to a recv call is formed by or'ing one or more of the values,

#define MSG OOB Oxl /* process out-of-band data */
#define MSG PEEK Ox2 /* peek at incoming message */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied param­
eters. This structure has the following form, as defined in <sys/soeket.h>:

Icon International, Inc. Last change: March 1989 1

RECV(2)

struct msghdr
caddr t
int
struct
int
caddr t
int

} ;

SYSTEM CALLS RECV(2)

msg_name; /* optional address */
msg_namelen; /* size of address */
iovec *msg_iov; /* scatter/gather array */
msg_iovlen; /* * elements in msg iov */
msg_accrights; /* access rights sent/received */
msg_accrightslen;

Here msg_name and msg_namelen specify the destination address if the socket is uncon­
nected; msg_name may be given as a null pointer if no names are desired or required. The
msg_iov and msg_iovlen describe the scatter gather locations, as described in readv(2). A
buffer to receive any access rights sent along with the message is specified in msg_accrights,
which has length msg_accrightslen. Access rights are currently limited to file descriptors,
which each occupy the size of an int.

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred.

ERRORS
The calls fail if:

[EBADF] The argument s is an invalid descriptor.

I~
I

~

[ENOTSOCK] The argument s is not a socket. (

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would \,,~J'
block.

[EINTR]

[EFAULT]

The receive was interrupted by delivery of a signal before any data
was available for the receive.

The data was speci fied to be received into a non-existent or protected
part of the process address space.

SEE ALSO
fcntl(2), read(2), send(2), select(2), getsockopt(2), socket(2)

(f~\

\ '

~'

2 Last change: March 1989 Icon International, Inc.

(

SELECT(2) SYSTEM CALLS SELECT(2)

NAME
select - synchronous I/O multiplexing

SYNOPSIS
#include <sysltypes.h>
#include <sysltime.h>

nfound = select(nfds, readfds, writefds, exceptfds, timeout)
int nfound, nfds;
fd set *readfds, *writefds, *exceptfds;
struct timeval *timeout;

FD SET(fd, &fdset)
FD - CLR(fd, &fdset)
FD -ISSET(fd, &fdset)
FD -ZERO(&fdset)
int Cd;
fd _ set fdset;

DESCRIPTION
Select examines the I/O descriptor sets whose addresses are passed in readfds, writefds, and

. exceptfds to see if some of their descriptors are ready for reading, are ready for writing, or
have an exceptional condition pending, respectively. The first nfds descriptors are checked in
each set; i.e. the descriptors from 0 through nfds-l in the descriptor sets are examined. On
return, select replaces the given descriptor sets with subsets consisting of those descriptors
that are ready for the requested operation. The total number of ready descriptors in all the sets
is returned in nfound.

The descriptor sets are stored as bit fields in arrays of integers. The following macros are pro­
vided for manipulating such descriptor sets: FD _ ZERO(&fdset) initializes a descriptor set
fdset to the null set. FD _SET(fd, &fdset) includes a particular descriptor fd in fdset.
FD _CLR(fd, &fdset) removes fd from fdset. FD JSSET(fd, &fdset) is nonzero if fd is a
member of fdset, zero otherwise. The behavior of these macros is undefined if a descriptor
value is less than zero or greater than or equal to FD _SET'SIZE, which is normapy at least
equal to the maximum number of descriptors supported by the system.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero-valued timeval structure.

Any of readfds, writefds, and exceptfds may be given as zero pointers if no descriptors are of
interest.

RETURN VALUE
Select returns the number of ready descriptors that are contained in the descriptor sets, or -1 if
an error occurred. If the time limit expires then select returns O. If select returns with an
error, including one due to an interrupted call, the descriptor sets will be unmodified.

Icon International, Inc. Last change: March 1989 1

SELECT(2) SYSTEM CALLS SELECT(2)

ERRORS
An error return from select indicates:

[EBADF] One of the descriptor sets specified an invalid descriptor.

[EINTR]

[EINVAL]

A signal was delivered before the time limit expired and before any of the
selected events occurred.

The specified time limit is invalid. One of its components is negative or
too large.

SEE ALSO
accept(2), connect(2), read(2), write(2), recv(2), send(2)

2 Last change: March 1989 Icon International, Inc.

(

SEND (2) SYSTEM CALLS SEND(2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc = send(s, msg, len, flags)
int cc, s;
char *msg;
int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;
char *msg;
int len, flags;
struct sockaddr *to;
int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;
struct msghdr msg[];
int flags;

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another socket. Send may be
used only when the socket is in a connected state, while sendto and sendmsg may be used at
any time.

The address of the target is given by to with tolen specifying its size. The length of the mes­
sage is given by len. If the message is too long to pass atomically through the underlying pro­
tocol, then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted, then
send normally blocks, unless the socket has been placed in non-blocking I/O mode. The
select(2) call may be used to determine when it is possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB Oxl /* process out-of-band data */
#define MSG_DONTROUTE Ox4 /* bypass routing, use direct interface */

The flag MSG_OOB is used to send "out-of-band" data on sockets that support this notion
(e.g. SOCK_STREAM); the underlying protocol must also support "out-of-band" data.
MSG_DONTROUTE is usually used only by diagnostic or routing programs ..

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

Icon International, Inc. Last change: March 1989 1

SEND(2) SYSTEM CALLS SEND(2)

ERRORS
[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

[EFAULT] An invalid user space address was specified for a parameter.

[EMSGSlZE] The socket requires that message be sent atomically, and the size of
the message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation
would block.

[ENOBUFS] The system was unable to allocate an internal buffer. The operation
may succeed when buffers become available.

[ENOBUFS] The output queue for a network interface was full. This generally
indicates that the interface has stopped sending, but may be caused
by transient congestion.

SEE ALSO
fcnt1(2). recv(2), select(2), getsockopt(2), socket(2), write(2)

2 Last change: March 1989 Icon International, Inc.

(\
\ /
~

(

(;

SHUTDOWN (2) SYSTEM CALLS

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a full-duplex connection on the socket associated with
s to be shut down. If how is 0, then further receives will be disallowed. If how is 1, then
further sends will be disallowed. If how is 2, then further sends and receives will be disal­
lowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

Icon International, Inc. Last change: March 1989 1

SOCKET(2) SYSTEM CALLS SOCKET(2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

s = socket(domain, type, protocol)
int s, domain, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which communication will
take place; this selects the protocol family which should be used. The protocol family gen­
erally is the same as the address family for the addresses supplied in later operations on the
socket. These families are defined in the include file <sys/socket.h>. The currently under­
stood formats are

(UNIX internal protocols),
(ARPA Internet protocols),

The socket has the indicated type, which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism may be supponed. A
SOCK_DGRAM socket supports datagrams (connectionless, unreliable messages of a fixed
(typically small) maximum length). SOCK_RAW sockets provide access to internal network
protocols and interfaces. The types SOCK_RAW, which is available only to the super-user, is
not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a sin­
gle protocol exists to support a particular socket type within a given protocol family. How­
ever, it is possible that many protocols may exist, in which case a particular protocol must be
specified in this manner. The protocol number to use is particular to the "communication
domain" in which communication is to take place.

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connec­
tion to another socket is created with a connect(2) call. Once connected, data may be
transferred using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls.
When a session has been completed a close (2) may be performed. Out-of-band data may also
be transmitted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be
successfully transmitted within a reasonable length of time, then the connection is considered
broken and calls will indicate an error with -1 returns and with ETIMEDOUT as the speci fic

Icon International, Inc. Last change: March 1989 1

(

(

(.. ~~ ..

/

SOCKET(2) SYSTEM CALLS SOCKET(2)

code in the global variable ermo. The protocols optionally keep sockets "walTIl" by forcing
transmissions roughly every minute in the absence of other activity. An error is then indi­
cated if no response can be elicited on an otherwise idle connection for a extended period
(e.g. 5 minutes). A SIGPIPE signal is raised if a process sends on a broken stream; this causes
naive processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents
named in send(2) calls. Datagrams are generally received with recvjrom(2), which returns
the next datagram with its return address.

The operation of sockets is controlled by socket level options. These options are defined in
the file <sys/socket.h>. Setsockopt(2) and getsockopt(2) are used to set and get options,
respecti vel y.

RETURN VALUE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

[EPROTONOSUPPORT]

[EMFILE]

[ENFILE]

[EACCESS]

[ENOBUFS]

The protocol type or the specified protocol is not supported within
this domain.

The per-process descriptor table is full.

The system file table is full.

PelTIlission to create a socket of the specified type and/or protocol is
denied.

Insufficient buffer space is available. The socket cannot be created
until sufficient resources are freed.

SEE ALSO

2

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), read(2),
recv(2), select(2), send(2), shutdown(2), socketpair(2), write(2)
"Appendix F: An Introductory 4.3BSD Interprocess Communication Thtorial." "Appendix
G: An Advanced 4.3BSD Interprocess Communication Thtorial.' ,

Last change: March 1989 Icon International, Inc.

SOCKETPAIR (2) SYSTEM CALLS SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include <sysltypes.h>
#include <syslsocket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int sv[2];

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d,
of the specified type, and using the optionally specified protocol. The descriptors used in
referencing the new sockets are returned in sv[O] and sv[1]. The two sockets are indistin­
guishable.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The speci fied protocol does not support creation of socket pairs.

[EFAULT] The address sv does not specify a valid part of the process address
space.

SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

Icon International, Inc. Last change: March 1989 1

VFORK(2) SYSTEM CALLS VFORK(2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid = vforkO
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur­
pose of fork (2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent's memory and thread of control until a call to
execve (2) or an exit (either by a call to exit(2) or abnormally.) The parent process is
suspended while the child is using its resources.

Vfork returns 0 in the child's context and (later) the pid of the child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to return while running
in the childs context from the procedure that called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exit rather
than exit if you can't execve , since exit will flush and close standard I/O channels, and thereby
mess up the parent processes standard I/O data structures. (Even withfork it is wrong to call
exit since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are imple­
mented. Users should not depend on the memory sharing semantics of vfork as it will, in that
case, be made synonymous to fork.

To avoid a possible deadlock situation, processes that are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

Icon International, Inc. Last change: March 1989 1

WRITEV(2) SYSTEM CALLS WRlTEV(2)

NAME
writev - write output

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>

ee = writev(d, iov, iovent)
int ee, d;
struet iovee *iov;
int ioveDt;

DESCRIPTION
Writev perfonns the same action, but gathers the output data from the iovcnt buffers specified
by the members of the iov array: iov[O], iov[I], ... , iov[iovcnt -1].

For writev, the iovec structure is defined as

struct iovee {
caddct iov _base;
int iov _len;

};

Each iovec entry sped fies the base address and length of an area in memory from which data
should be written. Writev will always write a complete area before proceeding to the next.

On objects capable of seeking, the write starts at a position given by the pointer associated
with d, see Iseek(2). Upon return from write, the pointer is incremented by the number of
bytes actually written.

Objects that are not capable of seeking always write from the current position. The value of
the pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
owned by the super-user.

When using non-blocking I/O on objects such as sockets that are subject to flow control, write
and writev may write fewer bytes than requested; the return value must be noted, and the
remainder of the operation should be retried when possible.

RETURN VALUE
Upon successful completion the number of bytes actually written is returned. Otherwise a -1
is returned and the global variable errno is set to indicate the error.

ERRORS
Write and writev will fail and the file pointer will remain unchanged if one or more of the fol­
lowing are true:

[EBADF]

[EPIPE]

[EPIPE]

Icon International, Inc.

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any
process.

An attempt is made to write to a socket of type SOCK_STREAM that is

Last change: March 1989 1

(

WRITEV(2) SYSTEM CALLS WRITEV(2)

[EFBIG]

[EFAULT]

[EINVAL]

[ENOSPC]

[EDQUOT]

not connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size limit
or the maximum file size.

Part of iov or data to be written to the file points outside the process's allo­
cated address space.

The pointer associated with d was negative.

There is no free space remaining on the file system containing the file.

The user's quota of disk blocks on the file system containing the file has
been exhausted.

[EIO] An I/O error occurred while reading from or writing to the file system.

[EWOULDBLOCK]
The file was marked for non-blocking I/O, and no data could be written
immediately.

In addition, wrirev may return one of the following errors:

[EINVAL] lovcnt was less than or equal to 0, or greater than 16.

[EINVAL]

[EINVAL]

One of the iov _len values in the iov array was negative.

The sum of the iov _len values in the iov array overflowed a 32-bit integer.

SEE ALSO
fcnt1(2), Iseek(2), open(2), pipe(2), select(2)

2 Last change: March 1989 Icon International, Inc.

("I
r I

'~

RCMD(3) SUBROUTINES RCMD(3)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rem = rcmd(ahost, inport, locuser, remuser, cmd, fd2p);
char **ahost;
int inport;
char *Iocuser, *remuser, *cmd;
int *fd2p;

s = rresvport(port);
int *port;

ruserok(rhost, superuser, ruser, luser);
char *rhost;
int superuser;
char *ruser, *Iuser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rresvport is a routine which returns a

. descriptor to a socket with an address in the privileged port space. Ruserok is a routine used
by servers to authenticate clients requesting service with rcmd. All three functions are
present in the same file and are used by the rshd(1M) server (among others).

Rcmd looks up the host *ahost using gethostbyname(3N), returning -1 if the host does not
exist. Otherwise *ahost is set to the standard name of the host and a connection is established
to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If jd2p is non­
zero, then an auxiliary channel to a control process will be set up, and a descriptor for it will
be placed in *jd2p. The control process will return diagnostic output from the command (unit
2) on this channel, and will also accept bytes on this channel as being UNIX signal numbers.
to be forwarded to the process group of the command. Ifjd2p is 0, then the stderr (unit 2 of
the remote command) will be made the same as the stdout and no provision is made for send­
ing arbitrary signals to the remote process, although you may be able to get its attention by
using out-of-band data.

The protocol is described in detail in rshd(lM).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This
socket is suitable for use by rcmd and several other routines. Privileged Internet ports are
those in the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a
socket.

Ruserok takes a remote host's name, as returned by a gethostbyaddr(3N) routine, two user
names and a flag indicating whether the local user's name is that of the super-user. It then
checks the files letclhosts.equiv and, possibly, .rhosts in the current working directory
(nonnally the local user's home directory) to see if the request for service is allowed. A 0 is
returned if the machine name is listed in the "hosts.equiv" file, or the host and remote user
name are found in the ".rhosts" file; otherwise ruserok returns -1. If the superuser flag is 1,
the checking of the "host.equiv" file is bypassed. If the local domain (as obtained from
gethostname (2» is the same as the remote domain, only the machine name need be sped fied.

Icon International, Inc. Last change: March 1989 1

RCMD(3) SUBROUTINES RCMD(3)

SEE ALSO
rlogin(lC), rsh(IC), intro(2), rexec(3), rexecd(lM), rlogind(IM), rshd(IM)

DIAGNOSTICS

2

Rcmd returns a valid socket descriptor on success. It returns -Ion error and prints a diagnos­
tic message on the standard error.

Rresvport returns a valid, bound socket descriptor on success. It returns -Ion error with the
global value errna set according to the reason for failure. The error code EAGAIN is over­
loaded to mean •• All network ports in use."

Last change: March 1989 Icon International, Inc.

(

(

REXEC(3) SUBROUTINES REXEC(3)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char **ahost;
int inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION
Rexec looks up the host *ahost using gethostbyname (3N), returning -1 if the host does not
exist. Otherwise *ahost is set to the standard name of the host. If a username and password
are both specified, then these are used to authenticate to the foreign host; otherwise the
environment and then the user's .netrc file in his home directory are searched for appropriate
infonnation. If all this fails, the user is prompted for the infonnation.

The port inport specifies which well-known DARPA Internet port to use for the connection;
the call "getservbyname("exec", "tcp")" (see getservent(3N) will return a pointer to a struc­
ture, which contains the necessary port. The protocol for connection is described in detail in
rexecd(1M).

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If Jd2p is non­
zero, then an auxiliary channel to a control process will be setup, and a descriptor for it will
be placed in *Jd2p. The control process will return diagnostic output from the command (unit
2) on this channel, and will also accept bytes on this channel as being UNIX signal numbers,
to be forwarded to the process group of the command. The diagnostic infonnation returned
does not include remote authorization failure, as the secondary connection is set up after
authorization has been verified. If Jd2p is 0, then the stderr (unit 2 of the remote command)
will be made the same as the stdout and no provision is made for sending arbitrary signals to
the remote process, although you may be able to get its attention by using out -of-band data.

SEE ALSO
rcmd(3), rexecd(1M)

Icon International, Inc. Last change: March 1989 1

(

:(

INTRO(3N) NETWORK FUNCTIONS INTRO(3N)

NAME
intro - introduction to the networking library

SYNOPSIS
cc [flags] file [••.] -Inet [...]

DESCRIPTION
The networking library contains the following facilities:

Routine

endhostent
endnetent
endprotoent
endservent
htonl
htons
gethostbyaddr
gethostbyname
gethostent
getnetbyaddr
getnetbyname
getnetent
getprotobyname
getprotobynurnber
getprotoent
getservbyname
getserv byport
getservent
herror
inecaddr
ineClnaof
inecmakeaddr
inecnetof
inecnetwork
inecntoa
ntohl
ntohs
sethostent
setnetent
setprotoent
setservent

Man Page

GETHOSTBYNAME (3N)
GETNETENT (3N)
GETPROTOENT (3N)
GETSERVENT (3N)
BYTEORDER (3N)
BYTEORDER (3N)
GETHOSTBYNAME (3N)
GETHOSTBYNAME (3N)
GETHOSTBYNAME (3N)
GETNETENT (3N)
GETNETENT (3N)
GETNETENT (3N)
GETPROTOENT (3N)
GETPROTOENT (3N)
GETPROTOENT (3N)
GETSERVENT (3N)
GETSERVENT (3N)
GETSERVENT (3N)
GETHOSTBYNAME (3N)
INET (3N)
INET (3N)
INET (3N)
INET (3N)
INET (3N)
INET (3N)
BYTEORDER (3N)
BYTEORDER (3N)
GETHOSTBYNAME (3N)
GETNETENT (3N)
GETPROTOENT (3N)
GETSERVENT (3N)

Description

end network host entry
end network entry
end protocol entry
end service entry
convert host and network byte order values
convert host and network byte order values
get network host entry by address
get network host entry by name
get network host entry
get network entry by address
get network entry by name
get network entry
get protocol entry by name
get protocol entry by number
get protocol entry
get service entry by name
get service entry by port
get service entry
get network host entry error message
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
Internet address manipulation routine
convert host and network byte order values
convert host and netwo* byte order values
set network host entry
set network entry
set protocol entry
set service entry

The above synopsis applies to all of the networking library facilities. Please note this as you
refer to the man pages and use the facilities in your networking routines.

Icon International, Inc. Last change: March 1989 1

BYTEORDER (3N) NE1WORK FUNCTIONS BYTEORDER (3N)

NAME
htonl. htons. mohl. ntohs - convert values between host and network byte order

SYNOPSIS
#include <sysltypes.h>
#include <netinetlin.h>

netJong = htonJ(hostJong);
uJong netlong, hostlong;

netshort = htons(hostshort);
u_short netshort, hostshort;

hostlong = ntohl(netlong);
u Jong hostlong, netlong;

hostshort = ntohs(netshort);
u _short hostshort, netshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as ICON. these routines are defined as null macros in the include
file <netinetiin.h>.

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostbyname(3N) and getservent(3N).

SEE ALSO
gethostbyname(3N). getservent(3N)

Icon International, Inc. Last change: March 1989 1

(

(

GETHOSTBYNAME(3N) NETWORK FUNCTIONS GETHOSTBYNAME (3N)

NAME
gethostbyname, gethostbyaddr, gethostent, sethostent, endhostent, herror - get network host
entry

SYNOPSIS
#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(name)
char *name;

struct hostent *gethostbyaddr(addr, len, type)
char *addr; int len, type;

struct hostent *gethostentO

sethostent(stayopen)
int stayopen;

endhostentO

herror(string)
char *string;

DESCRIPTION
Gethostbyname and gethostbyaddr each return a pointer to an object with the following struc­
ture describing an internet host referenced by name or by address, respectively. This structure
contains either the infonnation obtained from the name server, named(lM), or broken-out
fields from a line in /ete/hosts. If the local name server is not running these routines do a
lookup in / etc/hosts.

struct hostent {

char *h_name; /* official name of host */
char **h aliases; /* alias list */
int h _addrtype; /* host address type */
int h _length; /* length of address */
char **h addr list; /* list of addresses from name server */ - -

} ;

#defineh addr h_addr_list[O]/* address, for backward compatibility */

The members of this structure are:

Official name of the host.

h_aliases A zero tenninated array of alternate names for the host.

h_addrtype The type of address being returned; currently always AF _INET.

The length, in bytes, of the address.

h_addr_list A zero tenninated array of network addresses for the host. Host
addresses are returned in network byte order.

h_addr The first address in h_addr_list; this is for backward compatiblity.

When using the nameserver, gethostbyname will search for the named host in the current
domain and its parents unless the name ends in a dot. If the name contains no dot, and if the
environment variable "HOSTALIASES" contains the name of an alias file, the alias file will
first be searched for an alias matching the input name. See hostname(5) for the domain search

Icon International, Inc. Last change: March 1989 1

GETHOSTBYNAME (3N) NETWORK FUNCTIONS GETHOSTBYNAME (3N)

procedure and the alias file format.

Sethostent may be used to request the use of a connected TCP socket for queries. If the stayo­
pen flag is non-zero, this sets the option to send all queries to the name server using TCP and
to retain the connection after each call to gethostbyname or gethostbyaddr. Otherwise,
queries are performed using UDP datagrams.

Endhostent closes the TCP connection.

DIAGNOSTICS

FILES

Error return status from gethostbyname and gethostbyaddr is indicated by return of a null
pointer: The external integer h_errno may then be checked to see whether this is a temporary
failure or an invalid or unknown host. The routine herror can be used to print an error mes­
sage describing the failure. If its argument string is non-NULL, it is printed, followed by a
colon and a space. The error message is printed with a trailing newline.

h_errno can have the following values:

HOST _NOT _FOUND No such host is known.

TRY_AGAIN This is usually a temporary error and means that the local
server did not receive a response from an authoritative
server. A retry at some later time may succeed.

NO_RECOVERY Some unexpected server failure was encountered. This is a
non-recoverable error.

/etc!hosts

The requested name is valid but does not have an IP address;
this is not a temporary error. This means that the name is
known to the name server but there is no address associated
with this name. Another type of request to the name server
using this domain name will result in an answer; for exam­
ple, a mail-forwarder may be registered for this domain.

SEE ALSO
resolver(3), hosts(4), hostname(5), named(IM)

CAVEAT

BUGS

2

Gethostent is defined, and sethostent and endhostent are redefined, when libc is built to use
only the routines to lookup in fetcfhosts and not the name server.

Gethostent reads the next line of fetcfhosts, opening the file if necessary.

Sethostent is redefined to open and rewind the file. If the stayopen argument is non-zero, the
hosts data base will not be closed after each call to gethostbyname or gethostbyaddr. Endhos­
tent is redefined to close the file.

All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet address format is currently understood.

Last change: March 1989 Icon International, Inc.

(-
GETNETENT(3N) NETWORK FUNCTIONS GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#include <netdb.h>

struct netent *getnetentO

struct netent *getnetbyname(name)
char *name;

struct netent *getnetbyaddr(net, type)
long net;
int type;

setnetent(stayopen)
int stayopen;

endnetentO

DESCRIPTION

FILES

Getnetent, getnetbyname , and getnetbyaddr each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network data base, fetclnetworks.

struct
char
char
int

netent {

unsigned long
} ;

*n name;
**n aliases;
n_addrtype;
n_net;

The members of this structure are:

/* official name of net */
/* alias list */
/* net number type */
/* net number */

The official name of the network.

A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF _INET.

n_net The network number. Network numbers are returned in machine byte
order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getnetbyname or getnetbyaddr .

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a
matching net name or net address and type is found, or until EOF is encoun~ered. Network
numbers are supplied in host order.

/etc/networks

Icon International, Inc. Last change: March 1989 1

GETNETENT(3N)

SEE ALSO
networks(4)

DIAGNOSTICS

NETWORK FUNCTIONS

Null pointer (0) returned on EOF or error.

BUGS

GETNETENT (3N)

All infonnation is contained in a static area so it must be copied if it is to be saved. Only
Internet network numbers are currently understood. Expecting network numbers to fit in no
more than 32 bits is probably naive.

2 Last change: March 1989 Icon International, Inc.

GETPROTOENT (3N) NETWORK FUNCTIONS GETPROTOENT (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoentO

struct protoent *getprotobyname(name)
char *name;

struct protoent *getprotobynumber(proto)
int proto;

setprotoent(stayopen)
int stayopen

endprotoentO

DESCRIPTION

FILES

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with
the following structure containing the broken-out fields of a line in the network protocol data
base, fetc/protocols.

struct
char
char
int

} i

protoent {
*p_namei
**p_aliases i
pyrotoi

The members of this structure are:

/* official name of protocol */
/* alias list */
/* protocol number */

p_name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p_proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getprotobyname or getprotobynumber .

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file
until a matching protocol name or protocol number is found, or until EOF is encountered.

/etc/protocols

SEE ALSO
protoco!s(4)

Icon International, Inc. Last change: March 1989 1

GETPROTOENT (3N) NETWORK FUNCTIONS GETPROTOENT (3N)

DIAGNOSTICS

BUGS

2

Null pointer (0) returned on EOF or error.

All infonnation is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

Last change: March 1989 Icon International, Inc.

['\
(. o

(

(

GETSERVENT (3N) NETWORK FUNCTIONS GETSERVENT(3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
#include <netdb.h>

struct servent *getserventO

struct servent *getservbynarne(narne, proto)
char *narne, *proto;

struct servent *getservbyport(port, proto)
int port; char *proto;

setservent(stayopen)
int stayopen

endserventO

DESCRIPTION

FILES

Getservent, getservbyname, and getservbyport each return a pointer to an object with the fol­
lowing structure containing the broken-out fields of a line in the network services data base,
/etc/services.

struct
char
char
int
char

} ;

servent {
*s_name;
**s_aliases;
syort;
*syroto;

The members of this structure are:

/* official name of service */
/* alias list */
/* port service resides at */
/* protocol to use */

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned
in network byte order. .

s_proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getservbyname or .IR getservbyport .

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a
matching protocol name or port number is found, or until EOF is encountered. If a protocol
name is also supplied (non-NULL), searches must also match the protocol.

/etc/services

Icon International, Inc. Last change: March 1989 1

GETSERVENT(3N) NElWORK FUNCTIONS GETSERVENT (3N)

SEE ALSO
getprotoent(3N), services(4)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All infonnation is contained in a static area so it must be copied if it is to be saved. Expecting
port numbers to fit in a 32 bit quantity is probably naive.

2 Last change: March 1989 Icon International, Inc.

o

()

INET(3N) NETWORK FUNCTIONS INET(3N)

NAME
inecaddr, inecnetwork, inecntoa, inecmakeaddr, ineclnaof, inecnetof - Internet address
manipulation routines

SYNOPSIS
#include <sys/socket.h>
#include <netinetlin.h>
#include <arpa/inet.h>

unsigned long inet_addr(cp)
char *cp;

unsigned long inet_network(cp)
char *cp;

char *inet ntoa(in)
struct in _ a-ddr in;

struct in addr inet makeaddr(net, Ina)
int net, Ina; -

int inet Inaof(in)
struct io_addr in;

int inet netof(in)
struct io_addr in;

DESCRIPTION
The routines inet _ addr and inet _network each interpret character strings representing
numbers expressed in the Internet standard "." notation, returning numbers suitable for use
as Internet addresses and Internet network numbers, respectively. The routine inet_ntoa takes
an Internet address and returns an ASCII string representing the address in "." notation. The
routine inet makeaddr takes an Internet network number and a local network address and
constructs an Internet address from it. The routines inet _ neto! and inet _lnao! break apart
Internet host addresses, returning the network number and local network address part, respec­
tively.

All Internet address are returned in network order (bytes ordered from left to right). All net­
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. This makes the three part address
fonnat convenient for specifying Class B network addresses as "128.net.host".

Icon International, Inc. Last change: March 1989 1

~~~~ ~c> __ > _._ .c ______ _ 



lNET(3N) NETWORK FUNCTIONS lNET(3N) 

When a two pan address is supplied, the last pan is interpreted as a 24-bit quantity and placed 
in the right most three bytes of the network address. - This makes the two pan address fonnat 
convenient for specifying Qass A network addresses as "net.host". 

When only one pan is given, the value is stored directly in the network address without any 
byte rearrangement. 

All numbers supplied as "parts" in a "." notation may be decimal, octal, or hexadecimal, as 
specified in the C language (Le., a leading Ox or OX implies hexadecimal; otherwise, a leading 
o implies octal; otherwise, the number is interpreted as decimal). 

SEE ALSO 
gethostbyname(3N), getnetent(3N), hosts(4), networks(4), 

DIAGNOSTICS 

BUGS 

2 

The value -1 is returned by inet _ addr and inet _network for malfonned requests. 

A simple way to specify Class C network addresses in a manner similar to that for Class B 
and Class A is needed. The string returned by inet_ntoa resides in a static memory area. 
Inecaddr should return a struct in_addr. 

Last change: March 1989 Icon International, Inc. 



(~\ 

ALIASES (4) FILE FORMATS ALIASES (4) 

NAME 
aliases - aliases file for sendmail 

SYNOPSIS 
lusrlIib/aliases 

DESCRIPTION 
This file describes user id aliases used by /usrllib/sendmail. It is fonnatted as a series of lines 
of the fonn 

name: name_I, name2, name_3, ... 
The name is the name to alias, and the name _ n are the aliases for that name. Lines beginning 
with white space are continuation lines. Lines beginning with • # ' are comments. 

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to 
any person more than once. 

After aliasing has been done, local and valid recipients who have a ".forward" file in their 
home directory have messages forwarded to the list of users defined in that file. 

This is only the raw data file; the actual aliasing infonnation is placed into a binary fonnat in 
the files /usrllib/a/iases.dir and /usrllib/aliases.pag using the program newaliases (1). A 
newaliases command should be executed each time the aliases file is changed for the change 
to take effect. 

SEE ALSO 

BUGS 

newaliases(I), sendmail(IM) 
SENDMAIL Installation and Operation Guide. 
SENDMAIL An Internetwork Mail Router. 

Because of restrictions in the database routines, a single alias cannot contain more than about 
1000 bytes of infonnation. You can get longer aliases by "chaining"; that is, make the last 
name in the alias be a dummy name which is a continuation alias. 

Icon International, Inc. Last change: March 1989 1 



HOSTS (4) FILE FORMATS HOSTS (4) 

NAME 
hosts - host name data base 

DESCRIPTION 

FILES 

The hosts file contains infonnation regarding the known hosts on the DARPA Internet. For 
each host a single line should be present with the following infonnation: 

official host name 
Internet address 
aliases 

Items are separated by any number of blanks and/or tab characters. A "#" indicates the 
beginning of a comment; characters up to the end of the line are not interpreted by routines 
which search the file. This file is nonnally created from the official host data base maintained 
at the Network Infonnation Control Center (NIC), though local changes may be required to 
bring it up to date regarding unofficial aliases and/or unknown hosts. 

Network addresses are specified in the conventional"." notation using the inet_addrO rou­
tine from the Internet address manipulation library, inet(3N). Host names may contain any 
printable character other than a field delimiter, newline, or comment character. 

/etc/hosts 

SEE ALSO 
gethostent(3N) 

BUGS 
A name server should be used instead of a static file. A binary indexed file fonnat should be 
available for fast access. 

Icon International, Inc. Last change: March 1989 1 

(~ 
i ) 
',_J 



( 

(" 

NETWORKS ( 4 ) FILE FORMATS NETWORKS ( 4 ) 

NAME 
networks - network name data base 

DESCRIPTION 

FILES 

The networks file contains information regarding the known networks which comprise the 
DARPA Internet. For each nelwoIX a single line should be present with the following infor­
mation: 

official network name 
network number 
aliases 

Items are separated by any number of blanks and/or tab characters. A "#" indicates the 
beginning of a comment; characters up to the end of the line are not interpreted by routines 
which search the file. This file is normally created from the official network data base main­
tained at the Network Information Control Center (NIC), though local changes may be 
required to bring it up to date regarding unofficial aliases and/or unknown networks. 

Network number may be specified in the conventional "." notation using the inet_networkO 
routine from the Internet address manipulation library, inet(3N). Network names may contain 
any printable character other than a field delimiter, newline, or comment character. 

/etc/networks 

SEE ALSO 
getnetent(3N) 

BUGS 
A name server should be used instead of a static file. 

Icon International, Inc. Last change: March 1989 1 



PROTOCOLS ( 4 ) Fll..E FORMATS PROTOCOLS ( 4 ) 

NAME 
protocols - protocol name data base 

DESCRIPTION 

FILES 

The protocols file contains infonnation regarding the known protocols used in the DARPA 
Internet. For each protocol a single line should be present with the following infonnation: 

official protocol name 
protocol number 
aliases 

Items are separated by any number of blanks and/or tab characters. A "#" indicates the 
beginning of a comment; characters up to the end of the line are not intetpreted by routines 
which search the file. 

Protocol names may contain any printable character other than a field delimiter, newline, or 
comment character. 

/etc/protocols 

SEE ALSO 
getprotoent(3N) 

BUGS 
A name seNer should be used instead of a static file. A binary indexed file fonnat should be 
available for fast access. 

Icon International, Inc. Last change: March 1989 1 

.~ 
r 
\ , 
"--/ 

c 

I 



( 

( 

RESOLVER ( 4) Fll..E FORMATS RESOLVER (4) 

NAME 
resolver - resolver configuration file 

SYNOPSIS 
/etc/resolv.conf 

DESCRIPTION 

FILES 

The resolver configuration file contains information that is read by the resolver routines the 
first time they are invoked by a process. The file is designed to be human readable and con­
tains a list of name-value pairs that provide various types of resolver information. 

On a normally configured system this file should not be necessary. The only name server to 
be queried will be on the local machine and the domain name is retrieved from the system. 

The diffurent configuration options are: 

nameserver 

domain 

followed by the Internet address (in dot notation) of a name server that the resolver 
should query. At least one name server should be listed. Up to MAXNS (currently 3) 
name servers may be listed, in that case the resolver library queries tries them in the 
order listed. If no nameserver entries are present, the default is to use the name 
server on the local machine. (The algorithm used is to try a name server, and if the 
query times out, try the next, until out of name servers, then repeat trying all the name 
servers until a maximum number of retries are made). 

followed by a domain name, that is the default domain to append to names that do not 
have a dot in them. Ifno domain entries are present, the domain returned by gethost­
name (2) is used (everything after the first' .'). Finally, if the host name does not con­
tain a domain part, the root domain is assumed. 

The name value pair must appear on a single line, and the keyword (e.g. nameserver) must 
start the line. The value follows the keyword, separated by white space. 

/ etc/ resolv .con! 

SEE ALSO 
gethostbyname(3N), resolver(3), named(1M) 

Icon International, Inc. Last change: March 1989 1 



SERVICES ( 4 ) FILE FORMATS SERVICES ( 4 ) 

NAME 
services - service name data base 

DESCRIPTION 

FILES 

The services file contains infonnation regarding the known services available in the DARPA 
Internet. For each service a single line should be present with the following infonnation: 

official service name 
port number 
protocol name 
aliases 

Items are separated by any number of blanks and/or tab characters. The port number and pro­
tocol name are considered a single item; a "/" is used to separate the port and protocol (e.g. 
"S12/tcp"). A "#" indicates the beginning of a comment; characters up to the end of the line 
are not interpreted by routines which search the file. 

Service names may contain any printable character other than a field delimiter, newline, or 
comment character. 

/etc/services 

SEE ALSO 
getservent(3N) 

BUGS 
A name server should be used instead of a static file. 

Icon International, Inc. Last change: March 1989 1 

c 



( 

( 

HOSTNAME (5 ) MISCELLANEOUS HOSTNAME (5 ) 

NAME 
hostname - host name resolution description 

DESCRIPTION 
Hostnames are domains, where a domain is a hierarchical, dot-separated list of subdomains; 
for example, the machine monet, in the Berkeley subdomain of the EDU subdomain of the 
ARPANET would be represented as 

monet.Berke1ey.EDU 
(with no trailing dot). 

Hostnames are often used with network client and server programs, which must generally 
translate the name to an address for use. (This function is generally performed by the library 
routine gethostbyname(3).) Hostnames are resolved by the internet name resolver in the fol­
lowing fashion. 

If the name consists of a single component, i.e. contains no dot, and if the environment vari­
able "HOSTALIASES" is set to the name of a file, that file is searched for an string matching 
the input hostname. The file should consist of lines made up of two white-space separated 
strings, the first of which is the hostname alias, and the second of which is the complete host­
name to be substituted for that alias. If a case-sensitive match is found between the hostname 
to be resolved and the first field of a line in the file, the substituted name is looked up with no 

. further processing. 

If the input name ends with a trailing dot, the trailing dot is removed, and the remaining name 
is looked up with no further processing. 

If the input name does not end with a trailing dot, it is looked up in the local domain and its 
parent domains until either a match is found or fewer than 2 components of the local domain 
remain. For example, in the domain CS.Berkeley.EDU, the name lithium.CChem will be 
checked first as lithium.CChem.CS.Berkeley.EDU and then as 
lithium.CChcm.Bcrkelcy.EDU. Lithium.CChem.EDU will not be tried, as the there is only 
one component remaining from the local domain. 

SEE ALSO 
gethostbyname(3), resolver(4), mailaddr(5), namcd(1M), RFC883 

Icon International, Inc. Last change: March 1989 1 



MAlLADDR (5 ) MISCELLANEOUS MAlLADDR (5 ) 

NAME 
mailaddr - mail addressing description 

DESCRIPTION 
Mail addresses are based on the ARPANET protocol listed at the end of this manual page. 
These addresses are in the general format 

uset@domain 

where a domain is a hierarchical dot separated list of subdomains. For example, the address 

eric@monet.Berkeley.ARPA 

is normally interpreted from right to left: the message should go to the ARPA name tables 
(which do not correspond exactly to the physical ARPANET), then to the Berkeley gateway, 
after which it should go to the local host monet. When the message reaches monet it is 
delivered to the user "eric". 

Unlike some other forms of addressing, this does not imply any routing. Thus, although this 
address is speci fled as an ARPA address, it might travel by an alternate route if that were 
more convenient or efficient. For example, at Berkeley the associated message would prob­
ably go directly to monet over the Ethernet rather than going via the Berkeley ARPANET 
gateway. 

Abbreviation. 

Under certain circumstances it may not be necessary to type the entire domain name. In gen­
eral anything following the first dot may be omitted if it is the same as the domain from which 
you are sending the message. For example, a user on "calder.Berkeley.ARP A" could send to 
"eric@monet" without adding the" .Berkeley.ARPA" since it is the same on both sending 
and receiving hosts. 

Certain other abbreviations may be permitted as special cases. For example, at Berkeley 
ARPANET hosts can be referenced without adding the" . ARPA" as long as their names do 
not conflict with a local host name. 

Compatibility. 

Certain old address formats are converted to the new format to provide compatibility with the 
previous mail system. In particular, 

hostuser 

is converted to 

usct@host 

to be consistent with the rep (1 C) command. 

Also, the syntax: 

host!user 

is converted to: 

uset@host.UUCP 

This is normally converted back to the "host!user" form before being sent on for compatibil­
ity with older UUCP hosts. 

Icon International, Inc. Last change: March 1989 1 

./ --" 



( 

( 

MAILADDR (5 ) MISCELLANEOUS MAILADDR (5 ) 

2 

The current implementation is not able to route messages automatically through the UUCP 
network. Until that time you must explicitly tell the mail system which hosts to send your 
message through to get to your final destination. 

Cast: Distinctions. 

Domain names (Le., anything after the "@" sign) may be given in any mixture of upper and 
lower case with the exception of UUCP hostnames. Most hosts accept any combination of 
case in user names, with the notable exception ofMULTICS sites. 

Differences with ARPA Protocols. 

Although the UNIX addressing scheme is based on the ARPA mail addressing protocols, 
there are some significant differences. 

At the time of this writing DARPA is converting to real domains. The following rules may be 
useful: 

• The syntax "user@host.ARPA" is being split up into "user@host.COM", 
"user@host.GOV", and "user@host.EDU" for commercial, government, and educational 
insti tutions respecti vel y . 

• The syntax "user@host" (with no dots) has traditionally referred to the ARPANET. In the 
future this semantic will not be continued - instead, the host will be assumed to be in your 
organization. You should start using one of the syntaxes above. 

• Host names ofthe fonn "ORG-NAME" (e.g., MIT-MC or CMU-CS-A) will be changing to 
"NAME.ORG.XXX" (where 'XXX' is COM, GOV, or EDU). For example, MIT-MC will 
change to MC.MIT.EDU. In some cases names will be split apart even if they do not have 
dashes. For example, USC-ISIF will probably change to F.ISI.USC.EDU. 

Route-addrs. 

Under some circumstances it may be necessary to route a message through several hosts to 
get it to the final destination. Nonnally this routing is done automatically, but sometimes it is 
desirable to route the message manually. Addresses which show these relays are tenned 
"route-addrs." These use the syntax: 

<@hosta,@hostb:user@hostc> 

This specifies that the message should be sent to hosta, from there to hostb, and finally to 
hostc. This path is forced even if there is a more efficient path to hostc. 

Route-addrs occur frequently on return addresses, since these are generally augmented by the 
software at each host. It is generally possible to ignore all but the "user@host" part of the 
address to determine the actual sender. 

Postmaster. 

Every site is required to have a user or user alias designated "postmaster" to which problems 
with the mail system may be addressed. 

Other Networks. 

Some other networks can be reached by giving the name of the network as the last component 
of the domain. This is not a standard feature and may not be supported at all sites. For exam­
ple, messages to CSNET or BITNET sites can often be sent to "user@host.CSNET" or 
"user@host.BITNET" respectively. 

Last change: March 1989 Icon International, Inc. 



MAll..ADDR (5 ) MISCELLANEOUS MAll..ADDR (5 ) 

BUGS 
The RFC822 group syntax ("group:userl,user2,user3;") is not supported except in the special 
case of "group:;" because of a conflict with old berknet-style addresses. 

Route-Address syntax is grotty. 

UUCP- and ARPANET-style addresses do not coexist politely. 

SEE ALSO 
mail(l), sendmail(lM); Crocker, D. H., Standard for the Format of Arpa Internet Text Mes­
sages, RFC822. 

Icon International, Inc. Last change: March 1989 3 



( 

( 

i (/ 

INTRO(7N) NETWORKING PROTOCOL FAMILIES INTRO(7N) 

NAME 
networking - introduction to networking facilities 

SYNOPSIS 
#include <sys/socket.h> 
#include <netlroute.h> 
#include <net/if.h> 

DESCRIPTION 
This section briefly describes the networking facilities available in the system. Documenta­
tion in this part of section 4 is broken up into two areas: protocol/amilies (domains), and pro­
tocols. Entries describing a protocol family are marked "7N," while entries describing proto­
col use are marked' '7P." 

All network protocols are associated with a specific protocol/ami/yo A protocol family pro­
vides basic services to the protocol implementation to allow it to function within a speci fic 
network environment. These services may include packet fragmentation and reassembly, 
routing, addressing, and basic transport. A protocol family may support multiple methods of 
addressing, though the current protocol implementations do not. A protocol family is nor­
mally comprised of a number of protocols, one per socket(2) type. It is not required that a 
protocol family support all socket types. A protocol family may contain multiple protocols 
supporting the same socket abstraction. 

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol 
may be accessed either by creating a socket ofthe appropriate type and protocol family, orby 
requesting the protocol explicitly when creating a socket. Protocols normally accept only one 
type of address format, usually determined by the addressing structure inherent in the design 
of the protocol family/network architecture. Certain semantics of the ba~;:jc socket ~IL~:,lrac­
tions are protocol specific. All protocols are expected to support the basic model for their par­
ticular socket type, but may, in addition, provide non-standard facilities or extensions to a 
mechanism. For example, a protocol supporting the SOCK_STREAM abstraction may allow 
more than one byte of out-of-band data to be transmitted per out-of-band message. 

A network interface is similar to a device interface. Network interfaces comprise the lowest 
layer of the networking subsystem, interacting with the actual transport hardware. An inter­
face may support one or more protocol families and/or address formats. The SYNOPSIS sec­
tion of each network interface entry gives a sample specification of the related drivers for use 
in providing a system description to the config(1M) program. The DIAGNOSTICS section 
lists messages which may appear on the console and/or in the system error log, 
lusrladmlmessages (see syslogd(1M», due to errors in device operation. 

PROTOCOLS 
The system currently supports the DARPA Internet protocols. Raw socket interfaces are pro­
vided to the IP protocol layer of the DARPA Internet, and to the IMP link layer (1822). Con­
sult the appropriate manual pages in this section for more information regarding the support 
for each protocol family. 

ADDRESSING 
Associated with each protocol family is an address format. The following address formats are 
used by the system (and additional formats are defined for possible future implementation): 

Icon International, Inc. Last change: March 1989 1 



INTRO(7N) NE1WORKING PROTOCOL FAMILIES INTRO(7N) 

#define 
#define 
#define 
#define 
#define 
#define 

AF UNIX 
AF INET 
AF IMP LINK 
AF PUP 
AF NS 
AF HYLINK 

1 /* local to host (pipes, portals) */ 
2 /* internet~ork: UDP, TCP, etc. */ 
3 /* arpanet imp addresses */ 
4 /* pup protocols: e.g. BSP */ 
6 /* Xerox NS protocols */ 
15 /* NSC Hyperchannel */ 

ROUTING 

2 

The network facilities provided limited packet routing. A simple set of data structures 
comprise a "routing table" used in selecting the appropriate network interface when transmit­
ting packets. This table contains a single entry for each route to a specific network or host. A 
user process, the routing daemon, maintains this data base with the aid oftwo socket-speci fie 
ioetl(2) commands, SIOCADDRT and SIOCDELRT. The commands allow the addition and 
deletion of a single routing table entry, respectively. Routing table manipulations may only 
be carried out by super-user. 

A routing table entry has the following form, as defined in <netlroute.h>; 

struct rtentry { 
u_long rt hash; 

} ; 

struct sockaddr rt_dst; 
struct 
short 
short 
u_long 
struct 

sockaddr rt_gateway; 
rt_flags; 
rt_refcnt; 
rt use; 
ifnet *rt_ifp; 

with rtJags defined from, 

#define RTF UP Oxl /* route usable */ 
#define RTF GATEWAY Ox2 /* destination is a gateway */ 
#define RTF HOST Ox4 /* host entry (net otherwise) */ 
#define RTF DYNAMIC OxlO /* created dynamically (by redirect) */ 

Routing table entries come in three flavors: for a specific host, for all hosts on a specific net­
work, for any destination not matched by entries of the first two types (a wildcard route). 
When the system is booted and addresses are assigned to the network interfaces, each proto­
col family installs a routing table entry for each interface when it is ready for traffic. Nor­
mally the protocol specifies the route through each interface as a "direct" connection to the 
destination host or network. If the route is direct, the transport layer of a protocol family usu­
ally requests the packet be sent to the same host specified in the packet. Otherwise, the inter­
face is requested to address the packet to the gateway listed in the routing, entry (Le. the 
packet is forwarded). 

Routing table entries installed by a user process may not specify the hash, reference count, 
use, or interface fields; these are filled in by the routing routines. If a route is in use when it is 
deleted (rtJelent is non-zero), the routing entry will be marked down and removed from the 
routing table, but the resources associated with it will not be reclaimed until all references to 
it are released. The routing code returns EEXIST if requested to duplicate an existing entry, 

Last change: March 1989 Icon International, Inc. 

( •. ". 
~ 



INTRO(7N) NETWORKING PROTOCOL FAMILIES INTRO(7N) 

ESRCH if requested to delete a non-existent entry, or ENOBUFS if insufficient resources 
were available to install a new route. User processes read the routing tables through the 
/devlkmem device. The rt_use field contains the number of packets sent along the route. 

When routing a packet, the kernel will first attempt to find a route to the destination host. 
Failing that, a search is made for a route to the network of the destination. Finally, any route 
to a default ("wildcard") gateway is chosen. If multiple routes are present in the table, the 
first route found will be used. If no entry is found, the destination is declared to be unreach­
able. 

A wildcard routing entry is specified with a zero destination address value. Wildcard routes 
are used only when the system fails to find a route to the destination host and network. The 
combination of wildcard routes and routing redirects can provide an economical mechanism 
for routing traffic. 

INTERFACES 
Each network interface in a system corresponds to a path through which messages may be 
sent and received. A network interface usually has a hardware device associated with it, 
though certain interfaces such as the loopback interface, /0(4), do not. 

The following ioetl calls may be used to manipulate network interfaces. The ioetl is made on 
a socket (typically of type SOCK_DGRAM) in the desired domain. Unless specified other­
wise, the request takes an ifrequest structure as its parameter. This structure has the form 

struct 
char 
union 

ifreq { 
ifr_name[16]; /* name of interface (e.g. "ecO") */ 

struct sockaddr ifru_addr; 
struct sockaddr ifru_dstaddri 
struct sockaddr ifru_broadaddr; 
short ifru_flagsi 
int ifru_metric; 

/* address */ #define 
#define 
#define 
#define 
#define 
} i 

ifr_ifru; 
ifr addr 
ifr dstaddr 

ifr ifru.ifru addr 
ifr ifru.ifru dstaddr 

ifr broadaddr ifr ifru.ifru broadaddr 
/* other end of p-to-p link */ 
/* broadcast address */ - -

ifr_flags ifr_ifru.ifru_flags /* flags */ 
ifr metric ifr ifru.ifru metric /* routing metric */ 

SIOCSIFADDR 
Set interface address for protocol family. Following the address assignment, the "ini­
tialization " routine for the interface is called. 

SIOCGIFADDR 
Get interface address for protocol family. 

SIOCSIFDSTADDR 
Set point to point address for protocol family and interface. 

SIOCGIFDSTADDR 
Get point to point address for protocol family and interface. 

SIOCSIFBRDADDR 

Icon International, Inc. Last change: March 1989 3 



INTRO(7N) NETWORKING PROTOCOL FAMILIES INTRO(7N) 

Set broadcast address for protocol family and interface. 

SIOCGIFBRDADDR 
Get broadcast address for protocol family and interface. 

SIOCSIFFLAGS 
Set interface flags field. If the interface is marked down, any processes currently rout­
ing packets through the interface are notified; some interfaces may be reset so that 
incoming packets are no longer received. When marked up again, the interface is 
reinitialized. 

SIOCGIFFLAGS 
Get interface flags. 

SIOCSIFMETRIC 
Set interface routing metric. The metric is used only by user-level routers. 

SIOCGIFMETRIC 
Get interface metric. 

SIOCGIFCONF 
Get interface configuration list. This request takes an ifconf structure (see below) as a 
value-result parameter. The ifc _len field should be initially set to the size of the 
buffer pointed to by ifc_buf. On return it will contain the length, in bytes, of the 
configuration list. 

/* 
* Structure used in SIOCGIFCONF request. 
* Used to retrieve interface configuration 
* for machine (useful for programs which 
* must know all networks accessible). 
*/ 

struct ifconf { 
int ifc len; /* size of associated buffer */ 
union { 

caddr t 
struct ifreq *ifcu_req; 

} ifc_ifcu; 
#define ifc buf ifc ifcu.ifcu buf 
#define ifc_req ifc_ifcu.ifcu_req 
} ; 

/* buffer address */ 
/* array of structures returned */ 

SEE ALSO 
socket(2), ioctl(2), config(1M), routed(1M) 

4 Last change: March 1989 Icon International, Inc. 



( 

( 

(/ 

ARP(7P) NETWORKING PROTOCOLS ARP(7P) 

NAME 
arp - Address Resolution Protocol 

SYNOPSIS 
pseudo-device ether 

DESCRIPTION 
ARP is a protocol used to dynamically map between DARPA Internet and lOMb/s Ethernet 
addresses. It is used by all the lOMb/s Ethernet interface drivers. It is not specific to Internet 
protocols or to lOMb/s Ethernet, but this implementation currently supports only that combi­
nation. 

ARP caches Internet-Ethernet address mappings. When an interface requests a mapping for 
an address not in the cache, ARP queues the message which requires the mapping and broad­
casts a message on the associated network requesting the address mapping. If a response is 
provided, the new mapping is cached and any pending message is transmitted. ARP will 
queue at most one packet while waiting for a mapping request to be responded to; only the 
most recently "transmitted" packet is kept. 

To facilitate communications with systems which do not use ARP, ioctl s are provided to enter 
and delete entries in the Internet-to-Ethernet tables. Usage: 

#include <sys/ioctl.h> 
#include <sys/socket.h> 
#include <net/if.h> 
struct arpreq arpreq; 

ioctl(s, SIOCSARP, (caddr _t)&arpreq); 
ioctl(s, SIOCGARP, (caddr _t)&arpreq); 
ioctl(s, SIOCDARP, (caddr _t)&arpreq); 

Each iOCll takes the same structure as an argument. SIOCSARP sets an ARP entry, 
SIOCGARP gets an ARP entry, and SIOCDARP deletes an ARP entry. These ioctls may be 
applied to any socket descriptor s, but only by the super-user. The arpreq structure contains: 

/* 
* ARP ioctl request 
*/ 

struct arpreq { 
struct sockaddr 

} ; 

struct sockaddr 
int 

arpya; 
arp_ha; 
arp_flags; 

/* arp_flags field values */ 

/* protocol address */ 
/* hardware address */ 
/* flags */ 

#define ATF COM Ox02 
#define ATF PERM Ox04 

/* completed entry (arp_ha.valid) */ 
/* permanent entry */ 

#define ATF PUEL Ox08 
#define ATF USETRAILERS OxlO 

/* publish (respond for other host) */ 
/* send trailer packets to host */ 

The address family for the arp ya sockaddr must be AF _INET; for the arp _ ha sockaddr it 
must be AF _UN SPEC. The only flag bits which may be written are ATF _PERM, ATF _PUBL 
and ATF _USETRAILERS. ATF _PERM causes the entry to be permanent if the iOCll call 
succeeds. The peculiar nature of the ARP tables may cause the ioctl to fail if more than 8 
(permanent) Internet host addresses hash to the same slot. ATF _PUBL specifies that the ARP 

Icon International, Inc. Last change: March 1989 1 



ARP(7P) NETWORKING PROTOCOLS ARP(7P) 

code should respond to ARP requests for the indicated host coming from other machines. 
This allows a host to act as an "ARP server," which may be useful in convincing an ARP­
only machine to talk to a non-ARP machine. 

ARP is also used to negotiate the use of trailer lP encapsulations; trailers are an alternate 
encapsulation used to allow efficient packet alignment for large packets despite variable-sized 
headers. Hosts which wish to receive trailer encapsulations so indicate by sending gratuitous 
ARP translation replies along with replies to IP requests; they are also sent in reply to IP 
translation replies. The negotiation is thus fully symmetrical, in that either or both hosts may 
request trailers. The ATF _USETRAILERS flag is used to record the receipt of such a reply, 
and enables the transmission of trailer packets to that host. 

ARP watches passively for hosts impersonating the local host (Le. a host which responds to an 
ARP mapping request for the local host's address). 

DIAGNOSTICS 
duplicate IP address!! sent from ethernet address: %x:%x:%x:%x:%x:%x. ARP has 
discovered another host on the local network which responds to mapping requests for its own 
Internet address. 

SEE ALSO 

BUGS 

2 

. inet(7P), arp(1M), ifconfig(1M) 
"An Ethernet Address Resolution Protocol," RFC826, Dave Plummer, Network Information 
Center, SRI. 
"Trailer Encapsulations," RFC893, S.J. Leffler and MJ. Karels, Network Information Center, 
SRI. 

ARP packets on the Ethernet use only 42 bytes of data; however, the smallest legal Ethernet 
packet is 60 bytes (not including CRC). Some systems may not enforce the minimum packet 
size, others will. 

Last change: March 1989 Icon International, Inc. 



( 

( 

ICMP(7P) NETWORKING PROTOCOLS ICMP(7P) 

NAME 
icmp - Internet Control Message Protocol 

SYNOPSIS 
#include <sys/sockeLh> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_RAW, proto); 

DESCRIPTION 
ICMP is the error and control message protocol used by IP and the Internet protocol family. It 
may be accessed through a "raw socket" for network monitoring and diagnostic functions. 
The proto parameter to the socket call to create an ICMP socket is obtained from 
getprotobyname (3N). ICMP sockets are connectionless, and are normally used with the 
sendto and recvfrom calls, though the connect(2) call may also be used to fix the destination 
for future packets (in which case the read(2) or recv(2) and write(2) or send(2) system calls 
may be used). 

Outgoing packets automatically have an IP header prepended to them (based on the destina­
tion address). Incoming packets are received with the IP header and options intact. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a socket which already has one, or 
when trying to send a datagram with the destination address speci tied and 
the socket is already connected; 

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and 
the socket hasn't been connected; 

[ENOBUFS] when the system runs out of memory for an internal data structure; 

[EADDRNOTAVAIL] 
when an attempt is made to create a socket with a network address for 
which no network interface exists. 

SEE ALSO 
send(2), recv(2), intro(7N), inet(7P), ip(7P) 

Icon International, Inc. Last change: March 1989 1 



IP(7P) NETWORKING PROTOCOLS IP(7P) 

NAME 
ip - Internet Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinetlin.h> 

s = socket(AF _INET, SOCK_RAW, proto); 

DESCRIPTION 
IP is the transport layer protocol used by the Internet protocol family. Options may be set at 
the IP level when using higher-level protocols that are based on IP (such as TCP and UDP). It 
may also be accessed through a "raw socket" when developing new protocols, or special pur­
pose applications. 

A single generic option is supported at the IP level, IP _OPTIONS, that may be used to pro­
vide IP options to be transmitted in the IP header of each outgoing packet. Options are set 
with setsockopt(2) and examined with getsockopt(2). The format oflP options to be sent is 
that specified by the IP protocol specification, with one exception: the list of addresses for 
Source Route options must include the first-hop gateway at the beginning of the list of gate­
ways. The first-hop gateway address will be extracted from the option list and the size 
adjusted accordingly before use. IP options may be used with any socket type in the Internet 
family. 

Raw IP sockets are connectionless, and are normally used with the sendto and recvfrom calls, 
though the connect(2) call may also be used to fix the destination for future packets (in which 
case the read(2) or recv(2) and write (2) or send(2) system calls may be used). 

If proto is 0, the default protocol IPPROTO_RAW is used for outgoing packets, and only 
incoming packets destined for that protocol are received. If proto is non-zero, that protocol 
number will be used on outgoing packets and to filter incoming packets. 

Outgoing packets automatically have an IP header prepended to them (based on the destina­
tion address and the protocol number the socket is created with). Incoming packets are 
received with IP header and options intact. 

DIAGNOSTICS 
A socket operation may fail with one ofthe following errors returned: 

[EISCONN] when trying to establish a connection on a socket which already has one, or 
when trying to send a datagram with the destination address specified and 
the socket is already connected; 

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and 
the socket hasn't been connected; 

[ENOBUFS] when the system runs out of memory for an internal data structure; 

[EADDRNOTAVAIL] 
when an attempt is made to create a socket with a network address for 
which no network interface exists. 

The following errors specific to IP may occur when setting or getting IP options: 

[EINVAL] An unknown socket option name was given. 

Icon International, Inc. Last change: March 1989 1 

c 



( 

IP (7P) 

[EINVAL] 

SEE ALSO 

NETWORKING PROTOCOLS IP (7P) 

The IP option field was improperly formed; an option field was shorter than 
the minimum value or longer than the option buffer provided. 

getsockopt(2), send(2), recv(2), intro(7N), icmp(7P), inet(7P) 

2 Last change: March 1989 Icon International, Inc. 



TCP(7P) NETWORKING PROTOCOLS TCP(7P) 

NAME 
tcp - Internet Transmission Control Protocol 

SYNOPSIS 
#include <sys!socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_STREAM, 0); 

DESCRIPTION 
The TCP protocol provides reliable, flow-controlled, two-way transmission of data. It is a 
byte-stream protocol used to support the SOCK_STREAM abstraction. TCP uses the stan­
dard Internet address fonnat and, in addition, provides a per-host collection of • 'port 
addresses". Thus, each address is composed of an Internet address specifying the host and 
network, with a specific TCP port on the host identifying the peer entity. 

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets initiate 
connections to passive sockets. By default TCP sockets are created active; to create a passive 
socket the listen (2) system call must be used after binding the socket with the bind(2) system 
call. Only passive sockets may use the accept(2) call to accept incoming connections. Only 
active sockets may use the connect(2) call to initiate connections. 

Passive sockets may "underspecify" their location to match incoming connection requests 
from multiple networks. This technique, tenned "wildcard addressing", allows a single 
server to provide service to clients on multiple networks. To create a socket which listens on 
all networks, the Internet address INADDR_ANY must be bound. The TCP port may still be 
specified at this time; if the port is not specified the system will assign one. Once a connec­
tion has been established the socket's address is fixed by the peer- entity's location. The 
address assigned the socket is the address associated with the network interface through 
which packets are being transmitted and received. Nonnally this address corresponds to the 
peer entity's network. 

TCP supports one socket option which is set with setsockopt(2) and tested with getsockopt(2). 
Under most circumstances, TCP sends data when it is presented; when outstanding data has 
not yet been acknowledged, it gathers small amounts of output to be sent in a single packct 
once an acknowledgement is received. For a small number of clients, such as window sys­
tems that send a stream of mouse events which receive no replies. this packetization may 
cause significant delays. Therefore, TCP provides a boolean option, TCP _NODELAY (from 
<netinet/tcp.h> • to defeat this algorithm. The option level for the setsockopt call is the proto­
col number for TCP, available from getprotobyname (3N). 

Options at the IP transport level may be used with TCP; see ip(4P). Incoming connection 
requests that are source-routed are noted, and the reverse source route is used in responding. 

DIAGNOSTICS 
A socket operation may fail with one of the following errors returned: 

[EISCONN] when trying to establish a connection on a socket which already has 
one; 

[ENOBUFS] 

[ETIMEDOUT] 

[ECONNRESET] 

Icon International, Inc. 

when the system runs out of memory for an internal data structure; 

when a connection was dropped due to excessive retransmissions; 

when the remote peer forces the connection to be closed; 

Last change: March 1989 1 



( 
TCP(7P) NETWORKING PROTOCOLS TCP(7P) 

[ECONNREFUSED] when the remote peer actively refuses connection establishment 
(usually because no process is listening to the pon); 

[EADDRINUSE] when an attempt is made to create a socket with a port which has 
already been allocated; 

[EADDRNOTAVAIL] when an attempt is made to create a socket with a network address 
for which no network interface exists. 

SEE ALSO 
getsockopt(2), socket(2), intro(7N), inet(7P), ip(7P) 

2 Last change: March 1989 Icon International, Inc. 



UDP(7P) NETWORKING PROTOCOLS UDP(7P) 

NAME 
udp - Internet User Datagram Protocol 

SYNOPSIS 
#include <sys/socket.h> 
#include <netinet/in.h> 

s = socket(AF _INET, SOCK_DGRAM, 0); 

DESCRIPTION 
UDP is a simple, unreliable datagram protocol which is used to support the SOCK_DGRAM 
abstraction for the Internet protocol family. UDP sockets are connectionless, and are nor­
mally used with the sendto and recvfrom calls, though the connect(2) call may also be used to 
fix the destination for future packets (in which case the recv(2) or read(2) and send(2) or 
write(2) system calls may be used). 

UDP address formats are identical to those used by TCP. In particular UDP provides a port 
identifier in addition to the normal Internet address format. Note that the UDP port space is 
separate from the TCP port space (Le. a UDP port may not be "connected' , to a TCP port). In 
addition broadcast packets may be sent (assuming the underlying network supports this) by 
using a reserved "broadcast address"; this address is network interface dependent. 

Options at the IP transport level may be used with UDP; see ip(4P). 

DIAGNOSTICS 
A socket operation may fail with one ofthe following errors returned: 

[EISCONN] when trying to establish a connection on a socket which already has one, or 
when trying to send a datagram with the destination address specified and 
the socket is already connected; 

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and 
the socket hasn't been connected; 

[ENOBUFS] when the system runs out of memory for an internal data structure,; 

[EADDRINUSE] when an attempt is made to create a socket with a port which has already 
been allocated; 

[EADDRNOTAVAIL] 

SEE ALSO 

when an attempt is made to create a socket with a network address for 
which no network interface exists. 

getsockopt(2), recv(2), send(2), socket(2), intro(7N), inet(7P), ip(7P) 

Icon International, Inc. Last change: March 1989 1 

,6'--, 

',j 



( Appendix B -SENDMAIL - An 
Internetwork Mail Router 

The following appendix contains a document by Eric ARman titled "SENDMAIL - An 
Internetwork Mail Router". Thisdocumentpmvides and overview of the SENDMAIL 
program as well as the functional1heory behind the program as it was originally developed for 
use at the University of California at Berkeley. 

This document is taken in whole from the System Manager's Manual for the 4.3BSD version 
of the UNIX® operating systemt which is a subset of the ICONIUXV implementation of 
AT&T's UNIX System V operating system. 

Internetwork Mail Router B-1 



B-Ii ICONlUXV-NET 



(-

c 

SENDMAIL - An Internetwork Mail Router 

Eric Allmant 

Britton-Lee, Inc. 
1919 Addison Street, Suite 105. 

Berkeley, Oalifornia 94704. 

ABSTRACT 

Routing mail through a heterogenous internet presents many new problems. Among 
the worst of these is that of address mapping. Historically, this has been handled on 
an ad hoc basis. However, this approach has become unmanageable as internets grow. 

Sendmail acts a unified "post office" to which all mail can be submitted. Address 
interpretation is controlled by a production system, which can parse both domain­
based addressing and old-style ad hoc addresses. The production system is powerful 
enough to rewrite addresses in the message header to conform to the standards of a 
number of common target networks, including old (NCP jRFC733) Arpanet, new 
(TCP jRFC822) Arpanet, UUCP, and Phonenet. Sendmail also implements an SMTP 
server, message queueing, and aliasing. 

Sendmail implements a general internetwork mail routing facility, featuring aliasing and 
forwarding, automatic routing to network gateways, and flexible configuration. 

In a simple network, each node has an address, and resources can be identified with a 
host-resource pair; in particular, the mail system can refer to users using a host-username pair. 
Host names and numbers have to be administered by a central authority, but usernames can be 
assigned locally to each host. 

In an internet, multiple networks with different characterstics and managements must 
communicate. In par.ticular, the syntax and semantics of resource identification change. Cer­
tain special cases can be handled trivially by ad hoc techniques, such as providing network 
names that appE'ar local to hosts on other networks, as with the Ethernet at Xerox P ARC. 
However, the g( 'leral case is extremely complex. For example, some networks require point-to­
point routing, \'; hich simplifies the database update problem since only adjacent hosts must be 
entered into the system tables, while others use end-to-end addressing. Some networks use a 
left-associative syntax and others use a right-associative syntax, causing ambiguity in mixed 
addresses. 

Internet standards seek to eliminate these problems. Initially, these proposed expanding 
the address pairs to address triples, consisting of {network, host, resource} triples. Network 
numbers must be universally agreed upon, and hosts can be assigned locally on each network. 
The user-level presentation was quickly expanded to address domains, comprised of a local 
resource identification and a hierarchical domain specification with a common static root. The 
domain technique separates the issue of physical versus logical addressing. For example, an 
address of the form "eric@a.cc.berkeley.arpa" describes only the logical organization of the 
address space. 

tA considerable part of this work was done while under the employ of the INGRES Project at the University of 
California at Berkeley. 

Appendix B - Internetwork Mall Router B·1 



SENDMAIL - An Internetwork Mail Router 

Sendmail isintended,to help bridge the gap between the totally ad hoc world of networks 
that know nothing of each other and the clean, tightly-coupled world of unique network 
numbers. It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics 
specified by the system administrator, as well as domain-based addressing. It helps guide the 
conversion of message formats between disparate networks. In short, sendmail is designed to 
assist a graceful transition to consistent internetwork addressing schemes. 

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the basic 
functions of the system. In section 3, details of usage are discussed. Section 4 compares send­
mail to other internet mail routers, and an evaluation of sendmail is given in section 5, including 
future plans. 

1. DESIGN GOALS 

Design goals for sendmail include: 

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver­
sion 7 mail [UNIX83], Berkeley Mail [Shoens79j, BerkNet mail [Schmidt79j, and hope­
fully UUCP mail [Nowitz78a, Nowitz78b}. ARPANET mail [Crocker77a, Postel77} was 
also required. 

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or at 
least brought to the attention of a human for correct disposal; no message should ever 
be completely lost. This goal was considered essential because of the emphasis on mail 
in our environment. It has turned out to be one of the hardest goals to satisfy, espe­
cially in the face of the many anomalous message formats produced by various 
ARPANET sites. For example, certain sites generate improperly formated addresses, 
occasionally causing error-message loops. Some hosts use blanks in names, causing 
problems with UNIX mail programs that assume that an address is one word. The 
semantics of some fields are interpreted slightly differently by different sites. In sum­
mary, the obscure features of the ARPANET mail protocol really are used and are 
difficult to support, but must be supported. 

(3) Existing software to do actual delivery should be used whenever possible. This goal 
derives as much from political and practical considerations as technical. 

(4) Easy expansion to fairly complex environments, including multiple connections to a sin­
gle network type (such as with multiple UUCP or Ether nets [Metcalfe76]). This goal 
requires consideration of the contents of an address as well as its syntax in order to 
determine which gateway to use. For example, the ARPANET is bringing up the TCP 
protocol to replace the old NCP protocol. No host at Berkeley runs both TOP and 
Nap, so it is necessary to look at the ARPANET host name to determine whether to 
route mail to an NCP gateway or a TOP gateway. 

(5) Configuration should not be compiled into the code. A single compiled program should 
be able to run as is at any site (barring such basic changes as the CPU type or the 
operating system). We have found this seemingly unimportant goal to be critical in 
real life. Besides the simple problems that occur when any program gets recompiled in 
a different environment, many sites like to "fiddle" with anything that they will be 
recompiling anyway. 

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let 
individuals specify their own forwarding, without modifying the system alias file. 

B·2 

(7) Each user should be able to specify which mailer to execute to process mail being 
delivered for him. This feature allows users who are using specialized mailers that use 
a different format to build their environment without changing the system, and facili­
tates specialized functions (such as returning an "I am on vacation" message). 

ICON/UXV·NET 

, ) 

~j 

G 



(' 

SENDMAIL - An Internetwork Mail Router 

(8) Network traffic should be minimized by batching addresses to a single host where possi­
ble, without assistance from the user. 

These goals motivated the architecture illustrated in figure 1. The user interacts with 
a mail generating and sending program. When the mail is created, the generator calls send­
mail, which routes the message to the correct mailer(s). Since some of the senders may be 
network servers and some of the mailers may be network clients, sendmail may be used as an 
internet mail gateway. 

2. OVERVIEW 

2.1. System Organization 

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it 
collects a message generated by a user interface program (UIP) such as Berkeley Mail, 
MS [Crocker77b], or MIl [Borden79J, edits the message as required by the destination net­
work, and calls appropriate mailers to do mail delivery or queueing for network transmis­
sion l . This discipline allows the insertion of new mailers at minimum cost. In this sense 
sendmail resembles the Message Processing Module (MPM) of [PosteI79b]. 

2.2. Interfaces to the Outside World 

There are three ways sendmail can communicate with the outside world, both in 
receiving and in sending mail. These are using the conventional UNIX argument 
vector freturn status, speaking SMTP over a pair of UNIX pipes, and speaking SMTP 

senderl sender2 sender3 

send mail 

mailerl mailer2 mailer3 

Figure 1 - Sendmail System Structure. 

lexcept when mailing to a file, when 8endmail does the delivery directly. 

Appendix B - Internetwork Mall Router B·3 



SENDMAIL - An Internetwork Mail Router 

over an interprocess( or) channel. 

2.2.1. Argument vector/exit status 

This technique is the standard UNIX method for communicating with the pro­
cess. A list of recipients is sent in the argument vector, and the message body is sent 
on the standard input. Anything that the mailer prints is simply collected and sent 
back to the sender if there were any problems. The exit status from the mailer is col­
lected after the message is sent, and a diagnostic is printed if appropriate. 

2.2.2. SMTP over pipes 

The SMTP protocol [posteI82] can be used to run an interactive lock-step inter­
face with the mailer. A subprocess is still created, but no recipient addresses are 
passed to the mailer via the argument list. Instead, they are passed one at a time in 
commands sent to the processes standard input. Anything appearing on the standard 
output must be a reply code in a special format. 

2.2.3. SMTP over an IPC connection 

This technique is similar to the previous technique, except that it uses a 4.2bsd 
IPC channel [UNIX83]. This method is exceptionally flexible in that the mailer need 
not reside on the same machine. It is normally used to connect to a sendmail process 
on another machine. 

2.3. Operational Description 

When a sender wants to send a message, it issues a request to sendmail using one of 
the three methods described above. Sendmail operates in two distinct phases. In the first 
phase, it collects and stores the message. In the second phase, message delivery occurs. 
If there were errors during processing during the second phase, sendmail creates and 
returns a new message describing the error and/or returns an status code telling what 
went wrong. 

2.3.1. Argument processing and address parsing 

If sendmail is called using one of the two subprocess techniques, the arguments 
are first scanned and option specifications are processed. Recipient addresses are then 
collected, either from the command line or from the SMTP RCPT command, and a 
list of recipients is created. Aliases are expanded at this step, including mailing lists. 
As much validation as possible of the addresses is done at this step: syntax is 
checked, and local addresses are verified, but detailed checking of host names and 
addresses is deferred until delivery. Forwarding is also performed as the local 
addresses are verified. 

Sendmail appends each address to the recipient list after parsing. When a name 
is aliased or forwarded, the old name is retained in the list, and a flag is set that tells 
the delivery phase to ignore this recipient. This list is kept free from duplicates, 
preventing alias loops and duplicate messages deliverd to the same recipient, as might 
occur if a person is in two groups. 

2.3.2. Message collection 

Sendmail then collects the message. The message should have a header at the 
beginning. No formatting requirements are imposed on the message except that they 
must be lines of text (i.e., binary data is not allowed). The header is parsed and 
stored in memory, and the body of the message is saved in a temporary file. 

B-4 ICON/UXV-NET 



( 

( 

SENDMAIL - An Internetwork Mail Router 

To simplify the program interface, the message is collected even if no addresses 
were valid. The message will be returned with an error. 

2.3.3. Message delivery 

For each unique mailer and host in the recipient list, sendmail calls the 
appropriate mailer. Each mailer invocation sends to all users receiving the message 
on one host. Mailers that only accept one recipient at a time are handJed properly. 

The message is sent to the mailer using one of the same three interfaces used to 
submit a message to sendmail. Each copy of the message is prepended by a custom­
ized header. The mailer status code is caught and checked, and a suitable error mes­
sage given as appropriate. The exit code must conform to a system standard or a 
generic message ("Service unavailable") is given. 

2.3.4. Queueing for retransmission 

If the mailer returned an status that indicated that it might be able to handle 
the mail later, sendmail will queue the mail and try again later. 

2.3.5. Return to sender 

If errors occur during processing, sendmail returns the message to the sender for 
retransmission. The letter can be mailed back or written in the file "dead.letter" in 
the sender's home directory2. 

2.4. Message Header Editing 

Certain editing of the message header occurs automatically. Header lines can be 
inserted under control of the configuration file. Some lines can be merged; for example, a 
"From:" line and a "Full-name:" line can be merged under certain circumstances. 

2.5. Configuration File 

Almost all configuration information is read at runtime from an ASCII file, encoding 
macro definitions (defining the value of macros used internally), header declarations (tel­
ling sendmail the format of header lines that it will process specially, i.e., lill(~5 that it 
will add or reformat), mailer definitions (giving informatio, I such as the location and 
characteristics of each mailer), and address rewriting rules (., iimited production system 
to rewrite addresses which is used to parse and rewrite the addresses). 

To improve performance when reading the configuration file, a memory image can 
be provided. This provides a "compiled" form of the configuration file. 

3. USAGE AND IMPLEMENTATION 

3.1. Arguments 

Arguments may be flags and addresses. Flags set various processing options. Fol­
lowing flag arguments, address arguments may be given, unless we are running in SMTP 
mode. Addresses follow the syntax in RFC822 [Crocker82] for ARPANET address for­
mats. In brief, the format is: 

(1) Anything in parentheses is thrown away (as a comment). 

2obviously, if the site giving the error is not the originating site, the only reasonable option is to mail back to 
the sender. Also, there are many more error disposition options, but they only effect the error message - the "return 
to sender" function is always handled in one of these two ways. 

Appendix B - Internetwork Ma" Router B·5 



SENDMAIL - An Internetwork Mail Router 

(2) Anything in angle brackets ("< >") is preferred over anything else. This rule 
implements the ARPANET standard that addresses of the form 

user name <machine-address> 

will send to the electronic "machine-address" rather than the human "user name." 

(3) Double quotes ( " ) quote phrases; backslashes quote characters. Backslashes are 
more powerful in that they will cause otherwise equivalent phrases to compare 
differently - for example, user and "user" are equivalent, but \ user is different from 
either of them. 

Parentheses, angle brackets, and double quotes must be properly balanced and 
nested. The rewriting rules control remaining parsing3. 

3.2. Mail to Files and Programs 

Files and programs are legitimate message recipients. Files provide archival storage 
of messages, useful for project administration and history. Programs are useful as reci­
pients in a variety of situations, for example, to maintain a public repository of systems 
messages (such as the Berkeley msgs program, or the MARS system [Sattley78]). 

Any address passing through the initial parsing algorithm as a local address (Le, 
not appearing to be a valid address for another mailer) is scanned for two special cases. 
If prefixed by a vertical bar (":") the rest of the address is processed as a shell command. 
If the user name begins with a slash mark ("I") the name is used as a file name, instead 
of a login name. 

Files that have setuid or setgid bits set but no execute bits set have those bits 
honored if sendmail is running as root. 

3.3. Aliasing, Forwarding, lneJusion 

B-6 

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding 
allows each user to reroute incoming mail destined for that account. Inclusion directs 
sendmail to read a file for a list of addresses, and is normally used in conjunction with 
aliasing. 

3.3.1. Aliasing 

Aliasing maps names to address lists using a system-wide file. This file is 
indexed to speed access. Only names that parse as local are allowed as aliases; this 
guarantees a unique key (since there are no nicknames for the local host). 

3.3.2. Forwarding 

Mter aliasing, recipients that are local and valid are checked for the existence 
of a ".forward" file in their home directory. If it exists, the message is not sent to 
that user, but rather to the list of users in that file. Often this list will contain only 
one address, and the feature will be used for network mail forwarding. 

Forwarding also permits a user to specify a private incoming mailer. For exam­
ple, forwarding to: 

If: lusr Ilocalfnewmail myname" 

will use a different incoming mailer. 

SDisclaimer: Some special processing is done after rewriting local names; see below. 

ICON/UXV-NET 

c 



( 

( 

SENDMAIL - An Internetwork Mail Router 

3.3.3. Inclusion 

Inclusion is specified in RFC 733 [Crocker77a] syntax: 

:Include: pathname 

An address of this form reads the file specified by pathname and sends to all users 
listed in that file. 

The intent is not to support direct use of this feature, but rather to use this as a 
subset of aliasing. For example, an alias of the form: 

project: :include:/usr /project/userlist 

is a method of letting a project maintain a mailing list without interaction with the 
system administration, even if the alias file is protected. 

It is not necessary to rebuild the index on the alias database when a :include: 
list is changed. 

3.4. Message Collection 

Once all recipient addresses are parsed and verified, the message is collected. The 
message comes in two parts: a message header and a message body, separated by a 
blank line. 

The header is formatted as a series of lines of the form 

field-name: field-value 

Field-value can be split across lines by starting the following lines with a space or a tab. 
Some header fields have special internal meaning, and have appropriate special process­
ing. Other headers are simply passed through. Some header fields may be added 
automatically, such as time stamps. 

The body is a series of text lines. It is completely uninterpreted and untouched; 
except that lines beginning with a dot have the dot doubled when transmitted over an 
SMTP channel. This extra dot is stripped by the receiver. 

3.5. Message Delivery 

The send queue is ordered by receiving host before transmission to implement mes­
sage batching. Each address is marked as it is sent so rescanning the list is safe. An 
argument list is built as the scan proceeds. Mail to files is detected during the scan of 
the send list. The interface to the mailer is performed using one of the techniques 
described in section 2.2. 

After a connection is established, sendmail makes the per-mailer changes to the 
header and sends the result to the mailer. If any mail is rejected by the mailer, a flag is 
set to invoke the return-to-sender function after all delivery completes. 

3.6. Queued Messages 

If the mailer returns a "temporary failure" exit status, the message is queued. A 
control file is used to describe the recipients to be sent to and various other parameters. 
This control file is formatted as a series of lines, each describing a sender, a recipient, the 
time of submission, or some other salient parameter of the message. The header of the 
message is stored in the control file, so that the associated data file in the queue is just 
the temporary file that was originally collected. 

3.7. Configuration 

Configuration is controlled primarily by a configuration file read at startup. Send­
mail should not need to be recomplied except 

Appendix 8 - Internetwork Mall Router 8·7 



SENDMAIL - An Internetwork Man Router 

8-8 

(1) To change operating systems (V6, V7/32V, 4BSD). 

(2) To remove or insert the DBM (UNIX database) lihTary. 

(3) To change ARPANET reply codes. 

(4) To add headers fields requiring special processing. 

Adding mailers or changing parsing {i.e.., I",ewriting} « routing information does not 
require recompilation. 

If themaiLisbeing.smt.byaJocal_DSer~.Mldthefile ••• mailef .. exists in the sender's 
home directory, that file is read as a conJiguratiOll file after the ·system configuration file. 
The primary use of this feature is to add header lines. 

The configuration file encodes macro definitions, header definitions, mailer 
definitions, rewriting rules, and options. 

3.7.1. Macros 

Macros can be used in three ways. Certain macros transmit unstructured tex­
tual information into the mail system, such as the name sendmail will use to identify 
itself in error messages. Other macros transmit information from sendmail to the 
configuration file for use in creating other fields (such as argument vectors to mailers); 
e.g., the name of the sender, and the host and user of the reeil'if'nt. Other macros are 
unused internally, and can be used as shorthand in the configu.ration file. 

3.7.2. Header declarations 

Header declarations inform8en4mtlil of the fOTmat of known header lines. 
Knowledge of a few header lines it> built into sendmail, such as the "From:" and /\ 
"Date:" lines. 

Most configured headers will be automatically inserted in the outgoing message 
if they don't exist in the incoming message. Certain headers are suppressed by some 
mailers. 

3.7.3. Mailer declarations 

Mailer declarations tell 8endmail of the various mailers available to it. The 
definition specifies the internal name of the mailer, the pathname of the program to 
call, some flags associated with the mailer, and .anargument vector to be used on the 
call; this vector is macro-expanded before use. 

3.7.4. Address rewriting rules 

The heart of address parsing in 8enflmail is a set of rewriting rules. These are 
an ordered list of pattern-replacement rules, (somewhat like a production system, 
except that order is critieal), which are applied to each address. The address is 
rewritten textually until it is either rewritten into a special canonical form (i.e., a 
(mailer, host, user) 3-tuple, such as {arpanet, use-isif, postel} representing the address 
"postel@usc-isif"), or it falls off the end. When a pattern matches, the rule is reap­
plied until it fails. 

The configuration file also supports the editing of· addresses into different for­
mats. For example, an address of the form: 

ucsfcgl!tef 

might be mapped into: 

tef@Ucsfcgl.UUCP . " 

to conform to the domain syntax. Translations can also be done in the other 

ICON'UXV·NET 



( 

( 

SENDMAIL - An Internetwork Mail Router 

direction. 

3.7.5. Option setting 

There are several options that can be set from the configuration file. These 
include the pathnames of various support files, timeouts, default modes, etc. 

4. COMPARISON WITH OTHER MAILERS 

4.1. Delivermail 

Sendmail is an outgrowth of delivermail. The primary differences are: 

(1) Configuration information is not compiled in. This change simplifies many of the 
problems of moving to other machines. It also allows easy debugging of new 
mailers. 

(2) Address parsing is more flexible. For example, delivermail only supported one gate­
way to any network, whereas sendmail can be sensitive to host names and reroute 
to different gateways. 

(3) Forwarding and :include: features eliminate the requirement that the system alias 
file be writable by any user (or that an update program be written, or that the sys­
tem administration make all changes). 

(4) Sendmail supports message batching across networks when a message is being sent 
to multiple recipients. 

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately 
but can potentially be delivered later is stored in this queue for a later retry. The 
queue also provides a buffer against system crashes; after the message has been col­
lected it may be reliably redelivered even if the system crashes during the initial 
delivery. 

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct inter­
face networks such as the ARPANET and/or Ethernet using SMTP (the Simple 
Mail Transfer Protocol) over a TCP /IP connection. 

4.2. MMDF 

M11DF [Crocker79j spans a wider problem set than sendmail. For example, the 
domain of MMDF includes a "phone network" mailer, whereas sendmail calls on preexist­
ing mailers in most cases. 

MMDF and sendmail both support aliasing, customized mailers, message batching, 
automatic forwarding to gateways, queueing, and retransmission. MMDF supports two­
stage timeout, which sendmail does not support. 

The configuration for MMDF is compiled into the code4. 

Since MMDF does not consider backwards compatibility as a design goal, the 
address parsing is simpler but much less flexible. 

It is somewhat harder to integrate a new channelo into MMDF. In particular, 
MMDF must know the location and format of host tables for all channels, and the chan­
nel must speak a special protocol. This allows MMDF to do additional verification (such 
as verifying host names) at submission time. 

4Dynamic configuration tables are currently being considered for MMDF; allowing the installer to select either 
compiled or dynamic tables. 

&rhe MMDF equivalent of a aendmoil "mailer." 

Appendix B - Internetwork Man Router B·9 



SENDMAIL - An Internetwork Mail Router 

MMDF strictly separates the submission and delivery phases. Although 8endmail 
has the concept of each of these stages, they are integrated into one program, whereas in 
MMDF they are split into two programs. 

4.3. Message Processing Module 

The Message Processing Module (MPM) discussed by Postel [PosteI79b] matches 
8endmail closely in terms of its basic architecture. However, like MMDF, the MPM 
includes the network interface software as part of its domain. 

MPM also postulates a duplex channel to the receiver, as does MMDF, thus allow­
ing simpler handling of errors by the mailer than is possible in 8endmail. When a message 
queued by 8endmail is sent, any errors must be returned to the sender by the mailer itself. 
Both MPM and MMDF mailers can return an immediate error response, and a single 
error processor can create an appropriate response. 

MPM prefers passing the message as a structured object, with type-length-value 
tuples6• Such a convention requires a much higher degree of cooperation between mailers 
than is required by 8endmail. MPM also assumes a universally agreed upon internet 
name space (with each address in the form of a net-host-user tuple), which 8endmail does 
not. 

5. EVALUATIONS AND FUTURE PLANS 

Sendmail is designed to work in a nonhomogeneous environment. Every attempt is 
made to avoid imposing unnecessary constraints on the underlying mailers. This goal has 
driven much of the design. One of the major problems has been the lack of a uniform 
address space, as postulated in [Poi;teI79a] and [posteI79bJ. 

A nonuniform address space implies that a path will be specified in all addresses, either 
explicitly (as part of the address) or implicitly (as with implied forwarding to gateways). 
This restriction has the unpleasant effect of making replying to messages exceedingly 
difficult, since there is no one "address" for any person, but only a way to get there from 
wherever you are. 

Interfacing to mail programs that were not initially intended to be applied in an inter­
net environment has been amazingly successful, and has reduced the job to a manageable 
task. 

Sendmail has knowledge of a few difficult environments built in. It generates 
ARPANET FTP/SMTP compatible error messages (prep ended with three-digit numbers 
[Neigus73, Postel74, Postel82]) as necessary, optionally generates UNIX-style "From" lines on 
the front of messages for some mailers, and knows how to parse the same lines on input. 
Also, error handling has an option customized for BerkNet. 

The decision to avoid doing any type of delivery where possible (even, or perhaps espe­
cially, local delivery) has turned out to be a good idea. Even with local delivery, there are 
issues of the location of the mailbox, the format of the mailbox, the locking protocol used, 
etc., that are best decided by other programs. One surprisingly major annoyance in many 
internet mailers is that the location and format of local mail is built in. The feeling seems 
to be that local mail is so common that it should be efficient. This feeling is not born out by 
our experience; on the contrary, the location and format of mailboxes seems to vary widely 
from system to system. 

The ability to automatically generate a response to incoming mail (by forwarding mail 
to a program) seems useful ("I am on vacation until late August .... ") but can create prob­
lems such as forwarding loops (two people on vacation whose programs send notes back and 

"This is similar to the NBS standard. 

B·10 ICON/UXV·NET 



( 

( 

SENDMAIL - An Internetwork Mail Router 

forth, for instance) if these programs are not well written. A program could be written to do 
standard tasks correctly, but this would solve the general case. 

It might be desirable to implement some form of load limiting. I am unaware of any 
mail system that addresses this problem, nor am I aware of any reasonable solution at this 
time. 

The configuration file is currently practically inscrutable; considerable convenience 
could be realized with a higher-level format. 

It seems clear that common protocols will be changing soon to accommodate changing 
requirements and environments. These changes will include modifications to the message 
header (e.g., [NBS80]) or to the body of the message itself (such as for multimedia messages 
[PosteI80]). Experience indicates that these changes should be relatively trivial to integrate 
into the existing system. 

In tightly coupled environments, it would be nice to have a name server such as Grap­
vine [Birre1l82] integrated into the mail system. This would allow a site such as "Berkeley" 
to appear as a single host, rather than as a collection of hosts, and would allow people to 
move transparently among machines without having to change their addresses. Such a facil­
ity would require an automatically updated database and some method of resolving conflicts. 
Ideally this would be effective even without all hosts being under a single management. 
However, it is not clear whether this feature should be integrated into the aliasing facility or 
should be considered a "value added" feature outside sendmail itself. 

As a more interesting case, the CSNET name server [Solomon81] provides an facility 
that goes beyond a single tightly-coupled environment. Such a facility would normally exist 
outside of sendmail however. 

ACKNOWLEDGEMENTS 

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice, Bill 
Joy for pointing me in the correct direction (over and over), and Mark Horton for more advice, 
prodding, and many of the good ideas. Kurt and Eric Schmidt are to be credited for using 
delivermail as a server for their programs (Mail and BerkNet respectively) before any sane per­
son should have, and making the necessary modifications promptly and happily. Eric gave me 
considerable advice about the perils of network software which saved me an unknown amount of 
work and grief. Mark did the original implementation of the DBM version of aliasing, installed 
the VFORK code, wrote the current version of rmail, and was the person who really convinced 
me to put the work into delivermail to turn it into sendmail. Kurt deserves accolades for using 
sendrnail when I was myself afraid to take the risk; how a person can continue to be so 
enthusiastic in the face of so much bitter reality is beyond me. 

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have reviewed this paper, 
giving considerable useful advice. 

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at 
Britton-Lee, who both knowingly allowed me to put so much work into this project when there 
were so many other things I really should have been working on. 

Appendix B - Internetwork Mall Router B·11 



[Birrell82 ] 

[Borden79] 

[Crocker77a] 

[Crocker77b] 

[Crocker79] 

[Crocker82] 

[Metcalfe76] 

[Feinler78] 

[NBS80] 

[Neigus73] 

[Nowitz78a] 

[Nowitz78b] 

[PosteI74] 

[Postel77] 

[poste179a] 

[PosteI79b] 

REFERENCES 

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D., "Gra­
pevine: An Exercise in Distributed Computing." In Oomm. A.O.M 25, 
4, April 82. 

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Message Handling 
System: Users' Manual. R-2367-PAF. Rand Corporation. October 
1979. 

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A. Jr., 
Standard for the Format of ARPA Network Text Messages. RFC 733, 
NIC 41952. In [Feinler78]. November 1977. 

Crocker, D. H., Framework and Functions of the MS Personal Message 
System. R-2134-ARPA, Rand Corporation, Santa Monica, Oalifornia. 
1977. 

Orocker, D. H., Szurkowski, E. S., and Farber, D. J., An Internetwork 
Memo Distribution Facility - MMDF. 6th Data Communication Sympo­
sium, Asilomar. November 1979. 

Crocker, D. H., Standard for the Format of Arpa Internet Text Messages. 
RFC 822. Network Information Center, SRI International, Menlo Park, 
California. August 1982. 

Metcalfe, R., and Boggs, D., "Ethernet: Distributed Packet Switching 
for Local Computer Networks", Oommunications of the AOM 19, 7. 
July 1976. 

Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook. NIO 
7104, Network Information Center, SRI International, Menlo Park, Oali­
fornia. 1978. 

National Bureau of Standards, Specification of a Draft Message Format 
Standard. Report No. ICST/CBOS 80-2. October 1980. 

Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542, 
NIC 17759. In [Feinler78]. Augu~t, 1973. 

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Systems. 
Bell Laboratories. In UNIX Programmer's Manual, Seventh Edition, 
Volume 2. August, 1978. 

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories. In 
UNIX Programmer's Manual, Seventh Edition, Volume 2. October, 
1978. 

Postel, J., and Neigus, N., Revised FTP Reply Codes. RFC 640, NIO 
30843. In [Feinler78]. June, 1974. 

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977. . 
Postel, J., Internet Message Protocol. RFC 753, IEN 85. Network Infor­
mation Center, SRI International, Menlo Park, California. March 1979. 

Postel, J. B., An Internetwork Message Structure. In Proceedings of the 
Sixth Data Oommunications Symposium, IEEE. New York. November 
1979. 

SENDMAIL - An Internetwork Mail Router 

c 

\ / 

(\, 
,,*-j 

I 



( 

( 

[posteI80] 

[PosteI82] 

[Schmidt79) 

[Shoens79] 

[Sluizer81] 

[Solomon81] 

[Su82] 

[UNIX83] 

SENDMAIL - An Internetwork Mail Router 

Postel, J. B., A Structured Format for Transmission of Multi-Media 
Documents. RFO 767. Network Information Center, SRI International, 
Menlo Park, Oalifornia. August 1980. 

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting 
RF0788). Network Information Oenter, SRI International, Menlo Park, 
California. August 1982. 

Schmidt, E., An Introduction to the Berkeley Network. University of 
California, Berkeley California. 1979. 

Shoens, K., Mail Reference Manual. University of Oalifornia, Berkeley. 
In UNIX Programmer's Manual, Seventh Edition, Volume 20. 
December 1979. 

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFO 780. Net­
work Information Oenter, SRI International, Menlo Park, California. 
May 1981. 

Solomon, M., Landweber, L., and Neuhengen, D., "The Design of t.he 
CSNET Name Server." OS-DN-2, University of Wisconsin, Madison. 
November 1981. 

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for 
Internet User Applications. RF0819. Network Information Oenter, SRI 
International, Menlo Park, California. August 1982. 

The UNIX Programmer's Manual, Seventh Edition, Virtual VAX-u Ver­
sion, Volume 1. Bell Laboratories, modified by the University of Cali­
fornia, Berkeley, California. March, 1983. 

Appendix 8 - Internetwork Mall Router 8-13 



SENDMAIL - An Internetwork Mail Router 

_/ 

B·14 ICON/UXV·NET 



( 

( 

Appendix C - SENDMAIL 
Installation and Operating Guide 

The following appendix contains a document by Eric Allman, from the University of California 
at Berkeley, title "SENDMAIL Installation and Operating Guide". This document provides 
information on how to install a basic version of sendmail, the Internetwork mail routing 
program. This document is a logical extension of the document "SENDMAa - An 
Internetwork Mail Router" found in Appendix B. 

SENDMAIL Installation and Operation C-I 



() 

C-II ICON/UXV-NET 



( 

SENDMAIL 

INSTALLATION AND OPERATION GUIDE 

Eric Alh;nan 
Britton-Lee, Inc. 

Version 5.8 

Sendmail implements a general purpose internetwork mail routing facility under the 
UNIX* operating system. It is not tied to anyone transport protocol - its function may be 
likened to a crossbar switch, relaying messages from one domain into another. In the process, it 
can do a limited amount of message header editing to put the message into a format that is 
appropriate for the receiving domain. All of this is done under the control of a configuration 
file. 

Due to the requirements of flexibility for sendmail, the configuration file can seem some­
what unapproachable. However, there are only a few basic configurations for most sites, for 
which standard configuration files have been supplied. Most other configurations can be built by 
adjusting an existing configuration files incrementally. 

Although sendmail is intended to run without the need for monitoring, it has a number of 
features that may be used to monitor or adjust the operation under unusual circumstances. 
These features are described. 

Section one describes how to do a basic sendmail installation. Section two explains the 
day-to-day information you should know to maintain your mail system. If you have a relatively 
normal site, these two sections should contain sufficient information for you to install sendmail 
and keep it happy. Section three describes some parameters that may be safely tweaked. Sec­
tion four has information regarding the command line arguments. Section five contains the 
nitty-gritty information about the configuration file. This section is for masochists and people 
who must write their own configuration file. The appendixes give a brief but detailed explana­
tion of a number of features not described in the rest of the paper. 

The references in this paper are actually found in the companion paper Sendmail - An 
Internetwork Mail Router. This other paper should be read before this manual to gain a basic 
understanding of how the pieces fit together. 

*UNIX is a trademark of Bell Laboratories. 

Appendix C - SENDMAIL In8tallatlon and Operation C·1 



Sendmail Installation and Operation Guide 

TABLE OF CONTENTS 

1. BASIC INSTALLATION .................................................................................................... . 
1.1. Off-The-Shelf Configurations ..................................................................................... . 
1.2. Installation Using the Makefile ................................................................................ .. 
1.3. Installation by Hand ................................................................................................. .. 

1.3.1. lib/libsys.a _ ........................................................................................................ . 

1.3.2. /usr/lib/sendmail ............................................................................................... . 
1.3.3. /usr/lib/sendmail.cf ......................................................... : ................................. .. 

1.3.4. /usr/ucb/newaliases ......................................................................................... .. 
1.3.5. /usr/spool/mqueue ............................................................................................. . 
1.3.6. /usr/lib/aliases* ................................................................................................ .. 
1.3.7. /usr/lib/sendmail.fc .......................................................................................... .. 
1.3.8. /etc/rc ................................................................................................................ . 
1.3.9. /usr/lib/sendmail.hf .......................................................................................... . 
1.3.10. /usr /lib/sendmail.st ........................................................................................ .. 
1.3.11. /usr/ucb/newaliases ........................................................................................ . 

1.3.12. /usr/ucb/mailq ................................................................................................. . 
2. NORMAL OPERATIONS .................................................................................................. . 

2.1. Quick Configuration Startup ..................................................................................... . 
2.2. The System Log .......................................................................................................... . 

2.2.1. Format ................................................................................................................ . 
2.2.2. Levels .................................................................................................................. . 

5 

5 

6 

6 

6 

6 

7 

7 
7 

7 

7 

7 

8 

8 

8 

8 

8 

8 

9 

9 

9 

2.3. TheMail Queue ........................................................................................................... 9 

2.3.1. Printing the queue .............................................................................................. 9 

2.3.2. Format of queue files .......................................................................................... 9 
2.3.3. Forcing the queue ............................................................................................... 10 

2.4. The Alias Database ..................................................................................................... 11 
2.4.1. Rebuilding the alias database ........................................................................... 11 
2.4.2. Potential problems ......................................... :.................................................... 12 
2.4.3. List owners .......................................................................................................... 12 

2.5. Per-User Forwarding (.forward Files) ........................................................................ 12 
2.6. Special Header Lines ................................................................................................... 12 

2.6.1. Return-Receipt-To: ............................................................................................ 13 

2.6.2. Errors-To: ........................................................................................................... 13 

2.6.3. Apparently-To: .................................................................................................. 13 
3. ARGUMENTS ...................................................................................................................... 13 

3.1. Queue Interval ............................................................................................................ . 

3.2. Daemon Mode ............................................................................................................ .. 
3.3. Forcing the Queue ...................................................................................................... . 
3.4. Debugging .................................................................................................................... . 
3.5. Trying a Different Configuration File ......................... ; ............................................ .. 
3.6. Changing the Values of Options ............................................................................... . 

4. TUNING .............................................................................................................................. . 

13 
13 

13 
13 
14 
14 
14 

C-2 ICO N/UXV-N ET 

C' .",; . ./ 



( 

Sendmail Installation and Operation Guide 

4.1. Timeouts ...................................................................................................................... . 14 

4.1.1. Queue interval .................................................................................................... 14 

4.1.2. Read time outs ..................................................................................................... 15 

4.1.3. Message timeouts ................................................................................................ 15 

4.2. Forking During Queue Runs ....................................................................................... 15 

4.3. Queue Priorities ........................................................................................................... 15 

4.4. Load Limiting .............................................................................................................. 16 

4.5. Delivery Mode .............................................................................................................. 16 

4.6. Log Level ...................................................................................................................... 16 

4.7. File Modes .................................................................................................................... 16 

4.7.1. To suid or not to suid? ...................................................................................... 17 

4.7.2. Temporary file modes ......................................................................................... 17 

4.7.3. Should my alias database be writable? ........................................................... 17 

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE ................ ....................... .... 17 

5.1. The Syntax ................................................................................................................... 17 

5.1.1. Rand S - rewriting rules .................................................................................. 18 

5.1.2. D - define macro ................................................................................................ 18 

5.1.3. C and F - define classes .................................................................................... 18 

5.1.4. M - define mailer ............................................................................................... 19 

5.1.5. H - define header ............................................................................................... 19 

5.1.6. 0 - set option ..................................................................................................... 19 

5.1. 7. T - define trusted users .................................................................................... . 

5.1.8. P - precedence definitions ................................................................................ . 

5.2. The Semantics ............................................................................................................ . 

19 

19 

20 

5.2.1. Special macros, conditionals .............................................................................. 20 

5.2.2. Special classes ..................................................................................................... 21 

5.2.3. The left hand side ............................................................................................... 22 

5.2.4. The right hand side ............................................................................................ 22 

5.2.5. Semantics of rewriting rule sets ........................................................................ 23 

5.2.6. Mailer Bags etc. ................................................................................................. 24 

5.2.7. The "error" mailer .............................................................................................. 24 

5.3. Building a Configuration File From Scratch ............................................................. 24 

5.3.1. What you are trying to do ................................................................................. 24 

5.3.2. Philosophy ........................................................................................................... 24 

5.3.2.1. Large site, many hosts - minimum information .............. ~...................... 25 

5.3.2.2. Small site - complete information ........................................................... 25 

5.3.2.3. Single host ................................................................................................... 25 

5.3.3. Relevant issues .................................................................................................... 26 

5.3.4. How to proceed ................................................................................................... 26 

5.3.5. Testing the rewriting rules - the -bt Bag ....................................................... 26 

5.3.6. Building mailer descriptions ............................................................................... 27 

Appendix A. OOMMAND LINE FLAGS ........................................................... , .... ...... ....... ... 29 

Appendix B. OONFIGURATION OPTIONS ........................................................................ . 

Appendix O. MAILER FLAGS ............................................................................................... . 

Appendix C - SENDMAIL Inatallatlon and Operation 

30 

32 

C·3 



Sendmail Installation and Operation Guide 

Appendix D. OTHER CONFIGURATION .......................................................................... .. 
Appendix E. SUMMARY OF SUPPORT FILES ................................................................. .. 

34 

38 

C·4 ICO N/UXV·N ET 

!/'\. 

\_-j 



( 

( 

(' 

Sendmail Installation and Operation Guide 

1. BASIC INSTALLATION 

There are two basic steps to installing sendmail. The hard part is to build the 
configuration table. This is a file that sendmail reads when it starts up that describes the 
mailers it knows about, how to parse addresses, how to rewrite the message header, and the 
settings of various options. Although the configuration table is quite complex, a 
configuration can usually be built by adjusting an existing o~the-shelf configuration. The 
second part is actually doing the installation, i.e., creating the necessary files, etc. 

The remainder of this section will describe the installation of send mail assuming you 
can use one of the existing configurations and -that the standard installation parameters are 
acceptable. All pathnames and examples are given from the root of the sendmail subtree, 
normally /'I/,sr/sre/'I/,sr.lib/sendmail on 4.3BSD. 

1.1. Off-The-Shelf Configurations 

The configuration files are all in the subdirectories ef.named and ef.hosttable of the 
sendmail directory. The directory -efnamed contains configuration files that have been 
tailored for the name server named(8). These are the configuration files currently being 
used at Berkeley. The configuration files in efhosttable are some typical ones and the old 
Berkeley versions from before the name server was being used. You should create a sym­
bolic link from ef to the directory that you are going to use. For example, to use the 
name server: 

In -s cf.named cf 

The ones used at Berkeley are in m4 (1) format; files with names ending ".m4" are m4 
include files, while files with names ending" .mc" are the master files. Files with names 
ending ".cf" are the m4 processed versions of the corresponding ".mc" file. 

Three off the shelf configurations are supplied to handle the basic cases: 

(1) Arpanet (TCP) sites not running the name server can use efhosttable/arpaproto.cf. 
For simple sites, you should be able to use this file without modification. This file is 
not in m4 format. 

(2) UUCP sites can use cf.hosttable/'I/,'I/,cpproto.ef. If your UUCP node name is not the 
same as your system name (as printed by the hostname(l) command) you may have 
to modify the U macro. This file is not in m4 format. 

(3) A group of machines at a single site connected by an ethernet with (only) one host 
connected to the outside world via UUCP is represented by two configuration files: 
ef.hosttable/lanroot.me should be installed on the host with outside connections and 
cf.hosttable/lanleaf me should be installed on all other hosts. These will require 
slightly more configuration. First, in both files the D macro and D class must be 
adjusted to indicate your local domain. For example, if your company is known as 
''Muse'' you will want to change both of those accordingly. (As distributed, they 
are called XXX.) Second, in lanleaf.me you will have to change the R macro to the 
name of the root host, that is, the host that runs lq,nroot.me. For example, they 
might appear as: 

DDMuse 
CDLOCAL Muse 

DRErato 

Internally, the root host will be known as "Erato.Muse" and other hosts will be 
known as "Thalia.Muse", "Clio.Muse", etc. 

The file you need should be copied to a file with the same name as your system, e.g., 

Appendix C - SENDMAIL Installation and Operation C-s 



Sendmail Installation and Operation Guide 

cp uucpproto.cf ucsfcgl.cf 

This file is now ready for installation as /'I/,sr/lib/sendmail.cf. 

1.2. Installation Using the Makefile 

A makefile exists in the root of the sendmail directory that will do all of these steps 
for a 4.3BSD system. It may have to be slightly tailored for use on other systems. 

Before using this makefile, you should create a symbolic link from cf to the direc­
tory containing your configuration files. You should also have created your configuration 
file and left it in the file "ef/system.ef" where system is the name of your system (i.e., 
what is returned by hostname(l». If you do not have hostname you can use the declara­
tion "HOST=system" on the make{l) command line. You should also examine the file 
md/ config. m4 and change the m4 macros there to reflect any libraries and compilation 
flags you may need. 

The basic installation procedure is to type: 

make 
make install 
make installcf 

in the root directory of the sendmail distribution. This will make all binaries and install 
them in the standard places. The second and third make commands must be executed as 
the superuser (root). 

1.3. Installation by Hand 

C-6 

Along with building a configuration file, you will have to install the sendmail 
startup into your UNIX system. If you are doing this installation in conjunction with a 
regular Berkeley UNIX install, these steps will already be complete. Many of these steps 
will have to be executed as the superuser (root). 

1.3.1. lib/libsys.a 

The library in lib/libsys.a contains some routines that should in some sense be 
part of the system library. These are the system logging routines and the new direc­
tory access routines (if required). If you are not running the 4.3BSD directory code 
and do not have the compatibility routines installed in your system library, you 
should execute the command: 

(cd lib; make ndir) 

This will compile and install the 4.3 compatibility routines in the library. You should 
then type: 

(cd lib; make) 

This will recompile and fill the library. 

1.3.2. /usr/lib/sendmail 

The binary for sendmail is located in lusr /lib. There is a version available in 
the source directory that is probably inadequate for your system. You should plan on 
recompiling and installing the entire system: 

ICON/UXV-NET 



Sendmaillnstallation and Operation Guide 

cd src 
make clean 
make 
cp send mail /usr /lib 
chgrp kmem /usr/lib/sendmail 

1.3.3. /usr /lib/sendmail.ef 

The configuration file that you created earlier should be installed In 

/usr /lib/sendmail.cf: 

cp ef/ system.cf /usr /lib/sendmail.ef 

1.3.4. /usr /ueb/newaliases 

If you are running delivermail, it is critical that the newaliases command be 
replaced. This can just be a link to sendmail: 

rm -f /usr/ucb/newaliases 
In /usr /lib /sendmail /usr juc b /newaliases 

1.3.5. /usr /spool/mqueue 

The directory /usrjspool/mqueue should be created to hold the mail queue. This 
directory should be mode 777 unless sendmail is run setuid, when mqueue should be 
owned by the sendmail owner and mode 755. 

1.3.6. /usr/lib/aliases· 

The system aliases are held in three files. The file "/usr/libjaliases" is the mas­
ter copy. A sample is given in "lib/aliases" which includes some aliases which must be 
defined: 

cp lib/aliases /usr /lib/aliases 

You should extend this file with any aliases that are apropos to your system. 

Normally sendmail looks at a version of these files maintained by the dbm (3) 
routines. These are stored in "/usr/lib/aliases.dir" and "/usr/lib/aliases.pag." These 
can initially be created as empty files, but they will have to be initialized promptly. 
These should be mode 666 if you are running a reasonably relaxed system: 

cp /dev/null/usr/lib/aliases.dir 
cp jdev /null /usr /lib/aliases.pag 
chmod 666 /usr/lib/aliases.* 
newaliases 

1.3.7. /usr/lib/sendmail.fe 

If you intend to install the frozen version of the configuration file (for quick 
startup) you should create the file /usr/lib/sendmaiUc and initialize it. This step 
may be safely skipped. 

cp /dev jnull /usr /lib/sendmail.fc 
/usr/lib/sendmail -bz 

1.3.8. /ete/re 

It will be necessary to start up the send mail daemon when your system reboots. 
This daemon performs two functions: it listens on the SMTP socket for connections 

Appendix C - SENDMAIL Installation and Operation C·7 



Sendmail Installation and Operation Guide 

(to receive mail from a remote system) and it processes the queue periodically to 
insure that mail gets delivered when hosts come up. 

Add the following lines to "/etc/rc" (or "/etc/rc.local" as appropriate) in the 
area where it is starting up the daemons: 

if [ -f /usr/lib/sendmail ]; then 

fi 

(cd /usr /spool/mqueuej rm -f [lnx]f*) 
/usr/lib/sendmail -bd -q30m & 
echo -n ' sendmail' > /dev /console 

The "cd" and "rm" commands insure that all lock files have been removed; extrane­
ous lock files may be left around if the system goes down in the middle of processing a 
message. The line that actually invokes 8endmail has two flags: "-bd" causes it to 
listen on the SMTP port, and "-q30m" causes it to run the queue every half hour. 

If you are not running a version of UNIX that supports Berkeley TCP jIP, do 
not include the -bd flag. 

1.3.9. /usr /lib/sendmail.hf 

This is the help file used by the SMTP HELP command. It should be copied 
from "lib/sendmail.hf": 

cp lib/sendmail.hf /usr/lib 

1.3.10. /usr /lib/sendmail.st 

If you wish to collect statistics about your mail traffic, you should create the file 
"jusr /lib/sendmail.st": 

cp /dev/null /usr/lib/sendmail.st 
chmod 666 /usr /lib /sendmail.st 

This file does not grow. It is printed with the program "aux/mailstats." 

1.3.11. /usr /ucb/newaliases 

If 8endmail is invoked as "newaliases," it will simulate the -bi flag (i.e., will 
rebuild the alias database; see below). This should be a link to /usr/lib/sendmail. 

1.3.12. /usr/ucb/mailq 

If 8endmail is invoked as "mailq," it will simulate the -bp flag (i.e., 8endmail 
will print the contents of the. mail queue; see below). This should be a link to 
/usr/lib/seIidmail. 

2. NORMAL OPERATIONS 

2.1. Quick Configuration Startup 

c-s 

A fast version of the configuration file may be set up by using the -bz flag: 

/usr/lib/sendmail -bz 

This creates the file /u8T/lib/8endmail./c ("frozen configuration"). This file is an image of 
8endmail's data space after reading in the configuration file. If this file exists, it is used 
instead of /usT/lib/8endmail.c/ 8endmail.fc must be rebuilt manually every time 
8endmail. c/ is changed. 

The frozen configuration file will be ignored if a -C flag is specified or if sendmail 
detects that it is out of date. However, the heuristics are not strong so this should not be 

ICO N/UXV-N ET 

'" - / 



(-

( 

(~ 

Sendmail Installation and Operation Guide 

trusted. 

2.2. The System. Log 

The system log is supported by the s1/s1ogd(8) program. 

2.2.1. Form.at 

Each line in the system log consists of a timestamp, the name of the machine 
that generated it (for logging from several machines over the ethernet), the word 
"sendmail:", and a message. 

2.2.2. Levels 

IT you have s1/s1ogd(8) or an equivalent installed, you will be able to do logging. 
There is a large amount of information that can be logged. The log is arranged as a 
succession of levels. At the lowest level only extremely strange situations are logged. 
At the highest level, even the most mundane and uninteresting events are recorded for 
posterity. As a convention, log levels under ten are considered "useful;" log levels 
above ten are usually for debugging purposes. 

A complete description of the log levels is given in section 4.6. 

2.3. TheMail Queue 

The mail queue should be processed transparently. However, you may find that 
manual intervention is sometimes necessary. For example, if a major host is down for a 
period of time the queue may become clogged. Although sendmail ought to recover 
gracefully when the host comes up, you may find performance unacceptably bad in the 
meantime. 

2.3.1. Printing the queue 

The contents of the queue can be printed using the maz'lq command (or by speci­
fying the -bp flag to sendmail): 

mailq 

This will produce a listing of the queue id's, the size of the message, the date the mes­
sage entered the queue, and the sender and recipients. 

2.3.2. Form.at of queue files 

All queue files have the form zfAA99999 where AA99999 is the id for this file 
and the z is a type. The types are: 

d The data file. The message body (excluding the header) is kept in this file. 

I The lock file. IT this file exists, the job is currently being p·rocessed, and a queue 
run will not process the file. For that reason, an extraneous If file can cause a 
job to apparently disappear (it will not even time out!). 

n This file is created when an id is being created. It is a separate file to insure 
that no mail can ever be destroyed due to a race condition. It should exist for 
no more than a few milliseconds at any given time. 

q The queue control file. This file contains the information necessary to process 
the job. 

t A temporary file. These are an image of the qf file when it is being rebuilt. It 
should be renamed to a qf file very quickly. 

Appendix e - SENDMAIL Installation and Operation e-g 



Sendmail Installation and Operation Guide 

C-10 

x A transcript file, existing during the life of a session showing everything that 
happens during that session. 

The qf file is structured as a series of lines each beginning with a code letter. 
The lines are as follows: 

D The name of the data file. There may only be one of these lines. 

H A header definition. There may be any number of these lines. The order is 
important: they represent the order in the final message. These use the same 
syntax as header definitions in the configuration file. 

R A recipient address. This will normally be completely aliased, but is actually 
realiased when the job is processed. There will be one line for each recipient. 

S The sender address. There may only be one of these lines. 

E An error address. IT any such lines exist, they represent the addresses that 
should receive error messages. 

T The job creation time. This is used to compute when to time out the job. 

P The current message priority. This is used to order the queue. Higher numbers 
mean lower priorities. The priority changes as the message sits in the queue. 
The initial priority depends on the message class and the size of the message. 

M A message. This line is printed by the mailq command, and is generally used to 
store status information. It can contain any text. 

As an example, the following is a queue file sent to "mckusick@calder" and 
"wnj": 

DdfA13557 
Seric 
T404261372 
P132 
Rmckusick@calder 
Rwnj 
H?D?date: 23-0ct-82 15:49:32-PDT (Sat) 
H?F?from: eric (Eric Allman) 
H?x?full-name: Eric Allman 
Hsubject: this is an example message 
Hmessage-id: <8209232249.13557@UCBARPA.BERKELEY.ARPA> 
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82]) 

id A13557; 23-0ct-82 15:49:32-PDT (Sat) 
HTo: mckusick@calder, wnj 

This shows the name of the data file, the person who sent the message, the submission 
time (in seconds since January 1, 1970), the message priority, the message class, the 
recipients, and the headers for the message. 

2.3.3. Forcing the queue 

Sendmail should run the queue automatically at intervals. The algorithm is to 
read and sort the queue, and then to attempt to process all jobs in order. When it 
attempts to run the job, sendmail first checks to see if the job is locked. IT so, it 
ignores the job. 

There is no attempt to insure that only one queue processor exists at any time, 
since there is no guarantee that a job cannot take forever to process. Due to the 
locking algorithm, it is impossible for one job to freeze the queue. However, an 
uncooperative recipient host or a program recipient that never returns can 

ICON/UXV-NET 



( 

Sendmail Installation and Operation Guide 

accumulate many processes in your system. Unfortunately, there is no way to resolve 
this without violating the protocol. 

In some cases, you may find that a major host going down for a couple of days 
may create a prohibitively large queue. This will result in sendma£l spending an inor­
dinate amount of time sorting the queue. This situation can be fixed by moving the 
queue to a temporary place and creating a new queue. The old queue can be run 
later when the offending host returns to service. 

To do this, it is acceptable to move the entire queue directory: 

cd /usr /spool 
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue 

You should then kill the existing daemon (since it will still be processing in the old 
queue directory) and create a new daemon. 

To run the old mail queue, run the following command: 

/usr /lib/sendmail -oQ/usr /spool/omqueue -q 

The -oQ flag specifies an alternate queue directory and the -q flag says to just run 
every job in the queue. If you have a tendency toward voyeurism, you can use the -v 
flag to watch what is going on. 

When the queue is finally emptied, you can remove the directory: 

rmdir /usr /spool/omqueue 

2.4. The Alias Database 

The alias database exists in two forms. One is a text form, maintained in the file 
/usr/lib/ aliases. The aliases are of the form 

name: namel, name2, ... 

Only local names may be aliased; e.g., 

eric@mit-xx: eric@berkeley.EDU 

will not have the desired effect. Aliases may be continued by starting any continuation 
lines with a space or a tab. Blank lines and lines beginning with a sharp sign ("#") are 
comments. 

The second form is processed by the dbm(3) library. This form is in the files 
/usr/lib/al£ases.dir and /usr/lib/aliases.pag. This is the form that sendmail actually uses 
to resolve aliases. This technique is used to improve performance. 

2.4.1. Rebuilding the alias database 

The DBM version of the database may be rebuilt explicitly by executing the 
command 

newaliases 

This is equivalent to giving sendmail the -bi flag: 

/usr/lib/sendmail -bi 

If the "D" option is specified in the configuration, sendmail will rebuild the alias 
database automatically if possible when it is out of date. The conditions under which 
it will do this are: 

(1) The DBM version of the database is mode 666. -or-

(2) Sendmail is running setuid to root. 

Appendix C - SENDMAIL Inatallatlon and Operation C-11 



Sendmail Installation and Operation Guide 

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if it 
might take more than five minutes to rebuild the database, there is a chance that 
several processes will start the rebuild process simultaneously. 

2.4.2. Potential problems 

There are a number of problems that can occur with the alias database. They 
all result from a 8endmail process accessing the DBM version while it is only partially 
built. This can happen under two circumstances: One process accesses the database 
while another process is rebuilding it, or the process rebuilding the database dies (due 
to being killed or a system crash) before completing the rebuild. 

Sendmail has two techniques to try to relieve these problems. First, it ignores 
interrupts while rebuilding the database; this avoids the problem of someone aborting 
the process leaving a partially rebuilt database. Second, at the end of the rebuild it 
adds an alias of the form 

@:@ 

(which is not normally legal). Before send mail will access the database, it checks to 
insure that this entry exists!. Sendmail will wait for this entry to appear, at which 
point it will force a rebuild itself!. 

2.4.3. List owners 

If an error occurs on sending to a certain address, say "x", 8endmail will look for 
an alias of the form "owner-x" to receive the errors. This is typically useful for a 
mailing list where the submitter of the list has no control over the maintenance of the 
list itself; in this case the list maintainer would be the owner of the list. For example: 

unix-wizards: eric@Ucbarpa, wnj@monet, nosuchuser, 
sam@matisse 

owner-unix-wizards: eric@Ucbarpa 

would cause "eric@Ucbarpa" to get the error that will occur when someone sends to 
unix-wizards due to the inclusion of "nosuchuser" on the list. 

2.5. Per-User Forwarding (.forward Files) 

As an alternative to the alias database, any user may put a file with the name 
".forward" in his or her home directory. If this file exists, sendmail redirects mail for 
that user to the list of addresses listed in the .forward file. For example, if the home 
directory for user "mckusick" has a .forward file with contents: 

mckusick@ernie 
kirk@calder 

then any mail arriving for "mckusick" will be redirected to the specified accounts. 

2.6. Special Header Lines 

Several header lines have special interpretations defined by the configuration file. 
Others have interpretations built into 8endmail that cannot be changed without changing 
the code. These builtins are described here. 

IThe "a." option is required in the configura.tion for this a.ction to occur. This should norma.lly be specified unless 
you a.re running delivermail in pa.ra.llel with 8endmlJu. 

~ote: the "D" option must be specified in the configura.tion file for this opera.tion to occur. If the "D" option is 
not specified, a wa.rning message is generated a.nd 8endmail continues. 

c-n ICON/UXV-NET 

(.~. 

~/ 



( 

( 

Sendmail Installation and Operation Guide 

2.6.1. Return-Receipt-To: 

If this header is sent, a message will be sent to any specified addresses when the 
final delivery is complete, that is, when successfully delivered to a mailer with the I 
flag (local delivery) set in the mailer descriptor. 

2.6.2. Errors-To: 

If errors occur anywhere during processing, this header will cause error messages 
to go to the listed addresses rather than to the sender. This is intended for mailing 
lists. 

2.6.3. Apparently-To: 

If a message comes in with no recipients listed in the message {in a To:, Cc:, or 
Bcc: line} then sendmail will add an "Apparently-To:" header line for any recipients 
it is aware of. This is not put in as a standard recipient line to warn any recipients 
that the list is not complete. 

At least one recipient line is required under RFC 822. 

3. ARGUMENTS 

The complete list of arguments to sendmail is described in detail in Appendix A. Some 
important arguments are described here. 

3.1. Queue Interval 

The amount of time between forking a process to run through the queue is defined 
by the -q flag. If you run in mode f or a this can be relatively large, since it will only be 
relevant when a host that was down comes back up. If you run in q mode it should be 
relatively short, since it defines the maximum amount of time that a message may sit in 
the queue. 

3.2. Daemon Mode 

If you allow incoming mail over an IPC connection, you should have a daemon run­
ning. This should be set by your /etc/rc file using the -bd flag. The -bd flag and the 
-q flag may be combined in one call: 

/usr/lib/sendmail -bd -q30m 

3.3. Forcing the Queue 

In some cases you may find that the queue has gotten clogged for some reason. You 
can force a queue run using the -q flag (with no value). It is entertaining to use the -v 
flag (verbose) when this is done to watch what happens: 

/usr/lib/sendmail -q -v 

3.4. Debugging 

There are a fairly large number of debug flags built into sendmail. Each debug flag 
has a number and a level, where higher levels means to print out more information. The 
convention is that levels greater than nine are "absurd," i.e., they print out so much 
information that you wouldn't normally want to see them except for debugging that par­
ticular piece of code. Debug flags are set using the -d option; the syntax is: 

Appendix C - SENDMAIL Installation and Operation C·13 



Sendmail Installation and Operation Guide 

debug-flag: -:-d debug-list 
debug-list: debug-option [ , debug-option J 
debug-option: debug-range [ . debug-level J 
debug-range: integer: integer - integer 
debug-level: integer 

where spaces are for reading ease only. For example, 

-d12 Set flag 12 to level 1 
-d12.3 Set flag 12 to level 3 
-d3-17 Set flags 3 through 17 to level 1 
-d3-17,4 Set flags 3 through 17 to level 4 

For a complete list of the available debug flags you will have to look at the code (they 
are too dynamic to keep this documentation up to date). 

3.5. Trying a Different Configuration File 

An alternative configuration file can be specified using the -C flag; for example, 

/usr/lib/sendmaiI -Ctest.cf 

uses the configuration file test.e! instead of the default /usrflib/sendmail.cf. If the -C 
flag has no value it defaults to sendmail. c! in the current directory. 

3.6. Changing the Values of Options 

Options can be overridden using the -0 flag. For example, 

/usr/lib/sendmaiI -oT2m 

sets the T (timeout) option to two minutes for this run only. 

4. TUNING 

There are a number of configuration parameters you may want to change, depending 
on the requirements of your site. Most of these are set using an option in the configuration 
file. For example, the line "OT3d" sets option "T" to the value "3d" (three days). 

Most of these options default appropriately for most sites. However, sites having very 
high mail loads may find they need to tune them as appropriate for their mail load. In par­
ticular, sites experiencing a large number of small messages, many of which are delivered to 
many recipients, may find that they need to adjust the parameters dealing with queue priori­
ties. 

4.1. Timeouts 

C·14 

All time intervals are set using a scaled syntax. For example, "10m" represents ten 
minutes, whereas "2h30m" represents two and a half hours. The full set of scales is: 

s seconds 
m minutes 
h hours 
d days 
w weeks 

4.1.1. Queue interval 

The argument to the -q flag specifies how often a subdaemon will run the 
queue. This is typically set to between fifteen minutes and one hour. 

ICON/UXV·NET 

(\. 
\~~ 



( 

( 

Sendmail Installation and Operation Guide 

4.1.2. Read timeouts 

It is possible to time out when reading the standard input or when reading from 
a remote SMTP server. Technically, this is not acceptable within the published pro­
tocols. However, it might be appropriate to set it to something large in certain 
environments (such as an hour). This will reduce the chance of large numbers of idle 
daemons piling up on your system. This timeout is set using the r option in the 
configuration file. 

4.1.3. Message timeouts 

Mter sitting in the queue for a few days, a message will time out. This is to 
insure that at least the sender is aware of the inability to send a message. The 
timeout is typically set to three days. This timeout is set using the T option in the 
configuration file. 

The time of submission is set in the queue, rather than the amount of time left 
until timeout. & a result, you can flush messages that have been hanging for a short 
period by running the queue with a short message timeout. For example, 

/usr/lib/sendmail -oTld -q 

will run the queue and flush anything that is one day old. 

4.2. Forking During Queue Runs 

By setting the Y option, 8endmail will fork before each individual message while 
running the queue. This will prevent 8endmail from consuming large amounts of memory, 
so it may be useful in memory-poor environments. However, if the Y option is not set, 
8endmail will keep track of hosts that are down during a queue run, which can improve 
performance dramatically. 

4.3. Queue Priorities 

Every message is assigned a priority when it is first instantiated, consisting of the 
message size (in bytes) offset by the message class times the "work class factor" and the 
number of recipients times the "work recipient factor." The priority plus the creation 
time of the message (in seconds since January 1, 1970) are used to order the queue. 
Higher numbers for the priority mean that the message will be processed later when run­
ning the queue. 

The message size is included so that large messages are penalized relative to small 
messages. The. message class allows users to send "high priority" messages by including a 
"Precedence:" field. in their message; the value of this field is looked up in the P lines of 
the configuration file. Since the number of recipients affects the amount of load a mes­
sage presents to the system, this is also included into the priority. 

The recipient and class factors can be set in the configuration file using the y and z 
options respectively. They default to 1000 (for the recipient factor) and 1800 (for the 
class factor). The initial priority is: 

pri = size - (class * z) + (nrcpt * y) 

(Remember, higher values for this parameter actually mean that the job will be treated 
with lower priority.) 

The priority of a job can also be adjusted each time it is processed (that is, each 
time an attempt is made to deliver it) using the "work time factor," set by the Z option. 
This is added to the priority, so it normally decreases the precedence of the job, on the 
grounds that jobs that have failed many times will tend to fail again in the future. 

Appendix C - SENDMAIL Inatallatlon and Operation C·15 



Sendmail Installation and Operation Guide 

4.4. Load Limiting 

Sendmail can be asked to queue (but not deliver) mail if the system load average 
gets too high using the x option. When the load average exceeds the value of the x 
option, the delivery mode is set to q (queue only) if the Queue Fador (q option) divided 
by the difference in the current load average and the x option plus one exceeds the prior­
ity of the message - that is, the message is queued iff: 

.> QF 
pr. LA -2:+1 

The q option defaults to 10000, so each point of load average is worth 10000 priority 
points (as described above, that is, bytes + seconds + offsets). 

For drastic cases, the X option defines a load average at which sendmail will refuse 
to accept network connections. Locally generated mail (including incoming UUOP mail) 
is still accepted. 

4.5. Delivery Mode 

There are a number of delivery modes that sendmail can operate in, set by the "d" 
configuration option. These modes specify how quickly mail will be delivered. Legal 
modes are: 

i deliver interactively (synchronously) 
b deliver in background (asynchronously) 
q queue only (don't deliver) 

There are tradeoffs. Mode "i" passes the maximum amount of information to the sender, 
but is hardly ever necessary. Mode "q" puts the minimum load on your machine, but 
means that delivery may be delayed for up to the queue interval Mode "b" is probably 
a good compromise. However, this mode can cause large numbers of processes if you have 
a mailer that takes a long time to deliver a message. 

4.6. Log Level 

The level of logging can be set for sendmail. The default using a standard 
configuration table is level 9. The levels are as follows: 

o No logging. 

1 Major problems only. 

2 Message collections and failed deliveries. 

3 Successful deliveries. 

4 Messages being deferred (due to a host being down, etc.). 

5 Normal message queueups. 

6 Unusual but benign incidents, e.g., trying to process a locked queue file. 

9 Log internal queue id to external message id mappings. This can be useful for trac­
ing a message as it travels between several hosts. 

12 Several messages that are basically only of interest when debugging. 

16 Verbose information regarding the queue. 

4.7. File Modes 

C·16 

There are a number of files that may have a number of modes. The modes depend 
on what functionality you want and the level of security you require. 

ICON/UXV-NET 



( 

( 

Sendmail Installation and Operation Guide 

4.7.1. To suid or not to suid? 

Sendmail can safely be made setuid to root. At the point where it is about to 
exec (2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and 
groupid to a default (set by the u and g options). (This can be overridden by setting 
the S flag to the mailer for mailers that are trusted and must be called as root.) 
However, this will cause mail processing to be accounted (using sa(8» to root rather 
than to the user sending the mail. 

4.7.2. Temporary file modes 

The mode of all temporary files that sendmail creates is determined by the "F" 
option. Reasonable values for this option are 0600 and 0644. If the more permissive 
mode is selected, it will not be necessary to run sendmail as root at all (even when 
running the queue). 

4.7.3. Should my alias database be writable? 

At Berkeley we have the alias database (lusr/lib/aliases*) mode 666. There are 
some dangers inherent in this approach: any user can add him-/her-self to any list, or 
can "steal" any other user's mail. However, we have found users to be basically 
trustworthy, and the cost of having a read-only database greater than the expense of 
finding and eradicating the rare nasty person. 

The database that sendmail actually used is represented by the two files 
aiiases.dir and aliases.pag (both in /usr/lib). The mode on these files should match 
the mode on /usr/lib/aliases. If aliases is writable and the DBM files (aliases.dir and 
aliases.pag) are not, users will be unable to reflect their desired changes through to the 
actual database. However, if aliases is read-only and the DBM files are writable, a 
slightly sophisticated user can arrange to steal mail anyway. 

If your DBM files are not writable by the world or you do not have auto-rebuild 
enabled (with the "D" option), then you must be careful to reconstruct the alias data­
base each time you change the text version: 

newaliases 

If this step is ignored or forgotten any intended changes will also be ignored or forgot­
ten. 

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE 

This section describes the configuration file in detail, including hints on how to write 
one of your own if you have to. 

There is one point that should be made clear immediately: the syntax of the 
configuration file is designed to be reasonably easy to parse, since this is done every time 
sendmail starts up, rather than easy for a human to read or write. On the "future project" 
list is a configuration-file compiler. 

An overview of the configuration file is given first, followed by details of the semantics. 

5.1. The Syntax 

The configuration file is organized as a series of lines, each of which begins with a 
single character defining the semantics for the rest of the line. Lines beginning with a 
space or a tab are continuation lines (although the semantics are not well defined in 
many places). Blank lines and lines beginning with a sharp symbol ('#') are comments. 

Appendix C - SENDMAIL Installation and Operation C·17 



Sendmail Installation and Operation Guide 

6.1.1. Rand S - rewriting rules 

The core of address parsing are the rewriting rules. These are an ordered pro­
duction system. Sendmail scans through the set of rewriting rules looking for a match 
on the left hand side (LHS) of the rule. When a rule matches, the address is replaced 
by the right hand side (RHS) of the rule. 

There are several sets of rewriting rules. Some of the rewriting sets are used 
internally and must have specific semantics. Other rewriting sets do not have 
specifically assigned semantics, and may be referenced by the mailer definitions or by 
other rewriting sets. 

The syntax of these two commands are: 

Sn 

Sets the current ruleset being collected to n. If you begin a ruleset more than once it 
deletes the old definition. 

R/hs rhs comments 

The fields must be separated by at least one tab character; there may be embedded 
spaces in the fields. The Ihs is a pattern that is applied to the input. If it matches, 
the input is rewritten to the rhs. The comments are ignored. 

6.1.2. D - define macro 

Macros are named with a single character. These may be selected from the 
entire ASCII set, but user-defined macros should be selected from the set of upper case 
letters only. Lower case letters and special symbols are used internally. 

The syntax for macro definitions is: 

Dxval 

where x is the name of the macro and val is the value it should have. Macros can be 
interpolated in most places using the escape sequence $x. 

6.1.3. C and F - define classes 

Classes of words may be defined to match on the left hand side of rewriting 
rules. For example a class of all local names for this site wight be created so that 
attempts to send to oneself can be eliminated. These can either be defined directly in 
the configuration file or read in from another file. Classes may be given names from 
the set of upper case letters. Lower case letters and special characters are reserved 
for system use. 

The syntax is: 

Cc wqrdl word2 ... 
Fcfile 

The first form defines the class c to match any of the named words. It is permissible 
to split them among multiple lines; for example, the two forms: 

and 

CHmonet ucbmonet 

CHmonet 
CHucbmonet 

are equivalent. The second form reads the elements of the class c from the named 
file. 



( 

Sendmail Installation and Operation Guide 

5.1.4. M - define mailer 

Programs and interfaces to mailers are defined in this line. The format is: 

Mname, {/ield=value}* 

where name is the name of the mailer (used internally only) and the "field=name" 
pairs define attributes of the mailer. Fields are: 

Path The pathname of the mailer 
Flags Special flags for this mailer 
Sender A rewriting set for sender addresses 
Recipient A rewriting set for recipient addresses 
Argv An argument vector to pass to this mailer 
Eol The end-of-line string for this mailer 
Maxsize The maximum message length to this mailer 

Only the first character of the field name is checked. 

5.1.5. H - define header 

The format of the header lines that send mail inserts into the message are 
defined by the H line. The syntax of this line is: 

H[? mftags?] hname: htemplate 

Continuation lines in this spec are reflected directly into the outgoing message. The 
htemplate is macro expanded before insertion into the message. If the mftags (sur­
rounded by question marks) are specified, at least one of the specified flags must be 
stated in the mailer definition for this header to be automatically output. If one of 
these headers is in the input it is reflected to the output regardless of these flags. 

Some headers have special semantics that will be described below. 

5.1.6. 0 - set option 

There are a number of "random" options that can be set from a configuration 
file. Options are represented by single characters. The syntax of this line is: 

00 value 

This sets option 0 to be value. Depending on the option, value may be a string, an 
integer a boolean (with legal values "t" "T" "f" or "F"· the default is TRUE) or a , , '" , 
time interval. 

5.1.7. T - define trusted users 

Trusted users are those users who are permitted to override the sender address 
using the -f flag. These typically are "root," "uucp," and "network," but on some 
users it may be convenient to extend this list to include other users, perhaps to sup­
port a separate UUCP login for each host. The syntax of this line is: 

Tuser 1 user2 ... 

There may be more than one of these lines. 

5.1.8. P - precedence definitions 

Values for the "Precedence:" field may be defined using the P rontrolline. The 
syntax of this field is: 

Pname=num 

When the name is found in a "Precedence:" field, the message class is set to num. 
Higher numbers mean higher precedence. Numbers less than zero have the special 

Appendix C - SENDMAIL Instanatlon and Operation C-19 



Sendmail Installation and Operation Guide 

property that error messages will not be returned. The default precedence is zero. 
For example, our list of precedences is: 

Pfirst-class=O 
Pspecial-delivery=100 
Pjunk=-lOO 

5.2. The Semantics 

C-20 

This section describes the semantics of the configuration file. 

5.2.1. Special macros, conditionals 

Macros are interpolated using the construct Ix, where x is the name of the 
macro to be interpolated. In particular, lower case letters are reserved to have spe­
cial semantics, used to pass information in or out of sendmail, and some special char­
acters are reserved to provide conditionals, etc. 

Conditionals can be specified using the syntax: 

$?x text! $: text2 $. 

This interpolates textl if the macro $x is set, and text2 otherwise. The "else" ($:) 
clause may be omitted. 

The following macros must be defined to transmit information into sendmail: 

e The SMTP entry message 
j The "official" domain name for this site 
I The format of the UNIX from line 
n The name of the daemon (for error messages) 
o The set of "operators" in addresses 
q default format of sender address 

The $e macro is printed out when SMTP starts up. The first word must be the $j 
macro. The $j macro should be in RFC821 format. The $1 and $n macros can be 
considered constants except under terribly unusual circumstances. The $0 macro con­
sists of a list of characters which will be considered tokens and which will separate 
tokens when doing parsing. For example, if "@" were in the $0 macro, then the input 
"a@b" would be scanned as three tokens: "a," "@," and lib." Finally, the $q macro 
specifies how an address should appear in a message when it is defaulted. For exam­
ple, on our system these definitions are: 

De$j Sendmail $v ready at $b 
DnMAILER-DAEMON 
DlFrom $g $d 
DO.:%@!A=/ 
Dq$g$?x ($x)$. 
Dj$H.$D 

An acceptable alternative for the $q macro is "$?x$x $.<$g>". These correspond to 
the following two formats: 

eric@Berkeley (Eric Allman) 
Eric Allman <eric@Berkeley> 

Some macros are defined by sendmail for interpolation into argv's for mailers or 
for other contexts. These macros are: 

ICON/UXV-NET 



( 

( 

Sendmail Installation and Operation Guide 

a The origination date in Arpanet format 
b The current date in Arpanet format 
c The hop count 
d The date in UNIX (ctime) format 
f The sender (from) address 
g The sender address relative to the recipient 
h The recipient host 

The queue id 
p Sendmail's pid 
r Protocol used 
s Sender's host name 
t A numeric representation of the current time 
u The recipient user 
v The version number of sendmail 
w The hostname of this site 
x The full name of the sender 
z The home directory of the recipient 

There are three types of dates that can be used. The $a and $b macros are in 
Arpanet format; $a is the time as extracted from the "Date:" line of the message (if 
there was one), and $b is the current date and time (usrrl for postmarks). If no 
"Date:" line is found in the incoming message, $a is set to tb, "urrent time also. The 
$d macro is equivalent to the Sa macro in UNIX (ctime) form. It. 

The $f macro is the id of the sender as originally detenl1illed; when mailing to a 
specific host the Sg macro is set to the address of the sender relative to the recipient. 
For example, if I send to "bollard@matisse" from the machine "ucbarpa" the $f 
macro will be "eric" and the $g macro will be "eric@ucbarpa." 

The $x macro is set to the full name of the sender. This can be determined in 
several ways. It can be passed as flag to sendmail. The second choice is the value of 
the "Full-name:" line in the header if it exists, and the third choice is the comment 
field of a "From:" line. If all of these fail, and if the message is being originated 
locally, the full name is looked up in the /etc/passwd file. 

When sending, the Sh, $u, and $z macros get set to the host, user, and home 
directory (if local) of the recipient. The first two are set from the $@ and $: part of 
the rewriting rules, respectively. 

The $p and $t macros are used to create unique strings (e.g., for the ''Message­
Id:" field). The $i macro is set to the queue id on this host; if put into the timestamp 
line it can be extremely useful for tracking messages. The $v macro is set to be the 
version number of sendmail; this is normally put in timestamps and has been proven 
extremely useful for debugging. The Sw macro is set to the name of this host if it can 
be determined. The Sc field is set to the "hop count," i.e., the number of times this 
message has been processed. This can be determined by the -h flag on the command 
line or by counting the timestamps in the message. 

The $r and $s fields are set to the protocol used to communicate with sendmail 
and the sending hostnamej these are not supported in the current version. 

5.2.2. Special classes 

The class $=w is set to be the set of all names this host is known by. This can 
be used to delete local hostnames. 

Appendix C - SENDMAIL Instanatlon and Operation C·21 



Sendmail Installation and Operation Guide 

.C-22 

5.2.3. The lett hand side 

The left hand side of rewriting rules contains a pattern. Normal words are sim­
ply matched directly. Metasyntax is introduced using a dollar sign. The m~tasymbols 
are: 

$* Match zero or more tokens 
$+ Match one or more tokens 
$- Match exactly one token 
$=x Match any token in class x 
$-x Match any token not in class x 

If any of these match, they are assigned to the symbol $n for replacement on the right 
hand side, where n is the index in the LHS. For example, if the LHS: 

$-:$+ 

is applied to the input: 

UCBARP A:eric 

the rule will match, and the values passed to the RHS will be: 

$1 UCBARPA 
$2 eric 

5.2.4. The right hand side 

When the left hand side of a rewriting rule matches, the input is deleted and 
replaced by the right hand side. Tokens are copied directly from the RHS unless they 
begin with a dollar sign. Metasymbols are: 

In Substitute indefinite token n from LHS 
$[nameS] Canonicalize name 
$>n "CaU" ruleset n 
$#mailer Resolve to mailer 
$@host Specify host 
$:user Specify user 

The $n syntax substitutes the corresponding value from a $+, $-, $*, $=, or $­
match on the LHS. It may be used anywhere. 

A host name enclosed between $[ and S] is looked up using the gethostent(3) rou­
tines and replaced by the canonical name. For example, "$[csam$]" would become 
"lbl-csam.arpa" and "$[[128.32.130.2J$]" would become "vangogh.berkeley.edu." 

The $>n syntax causes the remainder of the line to be substituted as usual and 
then passed as the argument to ruleset n. The final value of ruleset n then becomes 
the substitution for this rule. 

The S# syntax should only be used in ruleset zero. It causes evaluation of the 
ruleset to terminate immediately, and signals to sendmail that the address has com­
pletely resolved. The complete syntax is: 

$# mailer$@hostS:user 

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer. If the 
mailer is local the host part may be omitted. The mailer and host must be a single 
word, but the user may be multi-part. 

A RHS may also be preceded by a $@ or a $: to control evaluation. A $@ 
prefix causes the ruleset to return with the remainder of the RHS as the value. A $: 
prefix causes the rule to terminate immediately, but the ruleset to continue; this can (" 
be used to avoid continued application of a rule. The prefix is stripped before ~j 

ICON/UXV-NET 



Sendmail Installation and Operation Guide 

continuing. 

The $@ and $: prefixes may precede a $> spec; Cor example: 

R$+ $:$>7$1 

matches anything, passes that to ruleset seven, and continues; the $: is necessary to 
avoid an infinite loop. 

Substitution occurs in the order described, that is, parameters Crom the LHS are 
substituted, hostnames are canonicalized, "subroutines" are called, and finally $#, 
$@, and $: are processed. 

5.2.5. Semantics of rewriting rule sets 

There are five rewriting sets that have specific semantics. These are related as 
depicted by figure 2. 

Ruleset three should turn the address into "canonical Corm." This Corm should 
have the basic syntax: 

local-part@host-domain-spec 

If no "@" sign is specified, then the host-domain-spec may be appended Crom the 
sender address (iC the C flag is set in the mailer definition corresponding to the send­
ing mailer). Ruleset three is applied by sendmail beCore doing anything with any 
address. 

Ruleset zero is applied aCter ruleset three to addresses that are going to actually 
specify recipients. It must resolve to a {mailer, host, user} triple. The mailer must be 
defined in the mailer definitions from the configuration file. The host is defined into 
the $h macro Cor use in the argv expansion of the specified mailer. 

Rulesets one and two are applied to all sender and recipient addresses respec­
tively. They are applied beCore any specification in the mailer definition. They must 
never resolve. 

addr 

resolved address 

Figure 2 - Rewriting set semantics 
D - sender domain addition 
S - mailer-specific sender rewriting 
R - mailer-specific recipient rewriting 

Appendix C - SENDMAIL Inatanatlon and Operation 

msg 

C-23 



Sendmail Installation and Operation Guide 

Ruleset four is applied to all addresses in the message. It is typically used to 
translate internal to external form. 

5.2.6. Mailer flags etc. 

There are a number of flags that may be associated with each mailer, each 
identified by a letter of the alphabet. Many of them are assigned semantics inter­
nally. These are detailed in Appendix C. Any other flags may be used freely to con­
ditionally assign headers to messages destined for particular mailers. 

5.2.7. The "error" mailer 

The mailer with the special name "error" can be used to generate a user error. 
The (optional) host field is a numeric exit status to be returned, and the user field is a 
message to be printed. For example, the entry: 

$#error$:Host unknown in this domain 

on the RHS of a rule will cause the specified error to be generated if the LHS 
matches. This mailer is only functional in ruleset zero. 

5.3. Building a Configuration File From Scratch 

C·24 

Building a configuration table from scratch is an extremely difficult job. For­
tunately, it is almost never necessary to do so; nearly every situation that may come up 
may be resolved by changing an existing table. In any case, it is critical that you under­
stand what it. is that you are trying to do and come up with a philosophy for the 
configuration table, This section is intended to explain what the real purpose of a 
configuration table is and to give you some ideas for what your philosophy might be. 

5.3.1. What you are trying to do 

The configuration table has three major purposes. The first and simplest is to 
set up the environment for sendmail. This involves setting the options, defining a few 
critical macros, etc. Since these are described in other places, we will not go into 
more detail here. 

The second purpose is to rewrite addresses in the message. This should typically 
be done in two phases. The first phase maps addresses in any format into a canonical 
form. This should be done in ruleset three. The second phase maps this canonical 
form into the syntax appropriate for the receiving mailer. Sendmail does this in three 
subphases. Rulesets one and two are applied to all sender and recipient addresses 
respectively. After this, you may specify per-mailer rulesets for both sender and reci­
pient addresses; this allows mailer-specific customization. Finally, ruleset four is 
applied to do any default conversion to external form. 

The third purpose is to map addresses into the actual set of instructions neces­
sary to get the message delivered. Ruleset zero must resolve to the internal form, 
which is in turn used as a pointer to a mailer descriptor. The mailer descriptor 
describes the interface requirements of the mailer. 

5.3.2. Philosophy 

The particular philosophy you choose will depend heavily on the size and struc­
ture of your organization. I will present a few possible philosophies here. 

One general point applies to all of these philosophies: it is almost always a mis­
take to try to do full name resolution. For example, if you are trying to get names of 
the form "user@host" to the Arpanet, it does not pay to route them to 
"xyzvax!decvax!ucbvax!c70:user@host" since you then depend on several links not 

ICON/UXV·NET 



( 

( 

Sendmail Installation and Operation Guide 

under your control. The best approach to this problem is to simply forward to 
"xyzvax!user@host" and let xyzvax worry about it from there. In summary, just get 
the message closer to the destination, rather than determining the full path. 

5.3.2.1. Large site, many hosts - minimum information 

Berkeley is an example of a large site, i.e., more than two or three hosts and 
multiple mail connections. We have decided that the only reasonable philosophy 
in our environment is to designate one host as the guru for our site. It must be 
able to resolve any piece of mail i.t receives. The other sites should have the 
minimum amount of information they can get away with. In addition, any infor­
mation they do have should be hints rather than solid information. 

For example, a typical site on our local ether network is "monet." When 
monet receives mail for delivery, it checks whether it knows that the destination 
host is directly reachable; if so, mail is sent to that host. If it receives mail for 
any unknown host, it just passes it directly to "ucbvax," our master host. Ucbvax 
may determine that the host name is illegal and reject the message, or may be 
able to do delivery. However, it is important to note that when a new mail con­
nection is added, the only host that must have its tables updated is ucbvax; the 
others may be updated if convenient, but this is not critical. 

This picture is slightly muddied due to network connections that are not 
actually located on ucbvax. For example, some UUOP connections are currently 
on "ucbarpa." However, monet does not know about this; the information is hid­
den totally between ucbvax and ucbarpa. Mail going from monet to a UUOP host 
is transferred via the ethernet from monet to ucbvax, then via the ethernet from 
ucbvax to ucbarpa, and then is submitted to UUOP. Although this involves some 
extra hops, we feel this is an acceptable tradeoff. 

An interesting point is that it would be possible to update monet to send 
appropriate UUOP mail directly to ucbarpa if the load got too high; if monet 
failed to note a host as connected to ucbarpa it would go via ucbvax as before, 
and if monet incorrectly sent a message to ucbarpa it would still be sent by 
ucbarpa to ucbvax as before. The only problem that can occur is loops, for exam­
ple, if ucbarpa thought that ucbvax had the UUOP connection and vice versa. 
For this reason, updates should always happen to the master host first. 

This philosophy results as much from the need to have a single source for the 
configuration files (typically built using m4 (I) or some similar tool) as any logical 
need. Maintaining more than three separate tables by hand is essentially an 
impossible job. 

5.3.2.2. Small site - complete information 

A small site (two or three hosts and few external connections) may find it 
more reasonable to have complete information at each host. This would require 
that each host know exactly where each network connection is, possibly including 
the names of each host on that network. As long as the site remains small and the 
the configuration remains relatively static, the update problem will probably not 
be too great. 

5.3.2.3. Single host 

This is in some sense the trivial case. The only major issue is trying to 
insure that you don't have to know too much about your environment. For exam­
ple, if you have a UUOP connection you might find it useful to know about the 
names of hosts connected directly to you, but this is really not necessary since this 

Appendix C - SENDMAIL Installation and Operation C·25 



Sendmail Installation and Operation Guide 

C·26 

may be determined from the syntax. 

5.3.3. Relevant issues 

The canonical form you use should almost certainly be as specified in the 
Arpanet protocols RFC819 and RFC822. Copies of these RFC's are included on the 
sendmail tape as doc/rfc819.lpr and doc/rfc822.lpr. 

RFC822 describes the format of the mail message itself. Sendmail follows this 
RFC closely, to the extent that many of the standards described in this document can 
not be changed without changing the code. In particular, the following characters 
have special interpretations: 

<>()"\ 
Any attempt to use these characters for other than their RFC822 purpose in addresses 
is probably doomed to disaster. 

RFC819 describes the specifics of the domain-based addressing. This is touched 
on in RFC822· as well. Essentially each host is given a name which is a right-to-left 
dot qualified pseudo-path from a distinguished root. The elements of the path need 
not be physical hosts; the domain is logical rather than physical. For example, at 
Berkeley one legal host might be "a.CC.Berkeley.EDU"; reading from right to left, 
"EDU" is a top level domain comprising educational institutions, "Berkeley" is a logi­
cal domain name, "cc" represents the Computer Center, (in this case a strictly logi­
cal entity), and "a" is a host in the Computer Center. 

Beware when reading RFC819 that there are a number of errors in it. 

5.3.4. How to proceed 

Once you have decided on a philosophy, it is worth examlDlDg the available 
configuration tables to decide if any of them are close enough to steal major parts of. 
Even under the worst of conditions, there is a fair amount of boiler plate that can be 
collected safely. 

The next step is to build ruleset three. This will be the hardest part of the job. 
Beware of doing too much to the address in this ruieset, since anything you do will 
reflect through to the message. In particular, stripping of local domains is best 
deferred, since this can leave you with addresses with no domain spec at all. Since 
sendmail likes to append the sending domain ·to addresses with 110 domain, this can 
change the semantics of addresses. Also try to avoid fully qualifying domains in this 
ruleset. Although technically legal, this can lead to unpleasantly and unnecessarily 
long addresses reflected into messages. The Berkeley configuration files define ruleset 
nine to qualify domain names and strip local domains. This is called from ruleset zero 
to get all addresses into a cleaner form. 

Once you have ruleset three finished, the other rulesets should be relatively 
trivial. If you need hints, examine the supplied configuration tables. 

5.3.5. Testing the rewriting rules - the -bt flag 

When you build a configuration table, you can do a certain amount of testing 
using the "test mode" of sendmail. For example, you could invoke sendmail as: 

sendmail -bt -Ctest.cf 

which would read the configuration file "test.cfl! and enter test mode. In this mode, 
you enter lines of the form: 

rwset address 

ICON/UXV·NET 

./ 

;r--­

("'-9) 



( 

(~. 

Sendmail Installation and Operation Guide 

where rwset is the rewriting set you want to use and address is an address to apply 
the set to. Test mode shows you the steps it takes as it proceeds, finally showing you 
the address it ends up with. You may use a comma 'separated list of rwsets for 
sequential application of rules to an input; ruleset three is always applied first. For 
example: 

1,21,4 monet:bollard 

first applies ruleset three to the input "monet:bollard." Ruleset one is then applied to 
the output of ruleset three, followed similarly by rulesets twenty-one and four. 

If you need more detail, you can also use the "-d21" flag to turn on more 
debugging. For example, 

sendmail -bt -d21.99 

turns on an incredible amount of information; a single word address is probably going 
to print out several pages worth of information. 

5.S.6. Building mailer descriptions 

To add an outgoing mailer to your mail system, you will have to define the 
characteristics of the mailer. 

Each mailer must have an internal name. This can be arbitrary, except that 
the names "local" and "prog" must be defined. 

The pathname of the mailer must be given in the P field. If this mailer should 
be accessed via an IPO connection, use the string "[IPO]" instead. 

The F field defines the mailer flags. You should specify an "f" or "r" flag to 
pass the name of the sender as a -f or -r flag respectively. These flags are only 
passed if they were passed to sendmail, so that mailers that give errors under some 
circumstances can be placated. If the mailer is not picky you can just specify "-f $g" 
in the argv template. If the mailer must be called as root the "S" flag should be 
given; this will not reset the userid before calling the mailer3• If this mailer is local 
(i.e., will perform final delivery rather than another network hop) the "1" flag should 
be given. Quote characters (backslashes and" marks) can be stripped from addresses 
if the "s" flag is specified; if this is not given they are passed through. If the mailer is 
capable of sending to more than one user on the same host in a single transaction the 
"m" flag should be stated. If this flag is on, then the argv template containing $u will 
be repeated for each unique user on a given host. The "e" flag will mark the mailer 
as being "expensive," which will cause sendmail to defer connection until a queue run4• 

An unusual case is the "0" flag. This flag applies to the mailer that the mes­
sage is received from, rather than the mailer being sent to; if set, the domain spec of 
the sender (i.e., the "@host.domain" part) is saved and is appended to any addresses 
in' the message that do not already contain a domain spec. For example, a message of 
the form: 

From: eric@Ucbarpa 
To: wnj@monet, mckusick 

will be modified to: 

From: eric@Ucbarpa 
To: wnj@monet, mckusick@Ucbarpa 

if and only if the "0" flag is defined in the mailer corresponding to "eric@Ucbarpa." 

8Sendmail must be running setuid to root for this to work. 

"The Ole" configuration option must be given for this to be effective. 

Appendix C - SENDMAIL Inatallatlon and Operation C·27 



Sendmail Installation and Operation Guide 

c-n 

Other flags are described in Appendix C. 

The Sand R fields in the mailer description are per-mailer rewriting sets to be 
applied to sender and recipient addresses respectively. These are applied after the 
sending domain is appended and the general rewriting sets (numbers one and two) are 
applied, but before the output rewrite (ruleset four) is applied. A typical use is to 
append the current domain to addresses that do not already have a domain. For 
example, a header of the form: 

From: eric 

might be changed to be: 

From: eric@Ucbarpa 

or 

From: ucbvax!eric 

depending on the domain it is being shipped into. These sets can also be used to do 
special purpose output rewriting in cooperation with ruleset four. 

The E field defines the string to use as an end-of-line indication. A string con­
taining only newline is the default. The usual backslash escapes (\r, \n, \f, \b) may 
be used. 

Finally, an argv template is given as the E field. It may have embedded spaces. 
If there is no argv with a Su macro in it, 8endmail will speak SMTP to the mailer. If 
the pathname for this mailer is "[IPC]," the argv should be 

IPC $h [ port j 

where port is the optional port number to connect to. 

For example, the specifications: 

Mlocal, P=/bin/mail, F=rlsm 8=10, R=20, A=mail -d $u 
Mether,P=[IPOj, F=meO, 8=11, R=21, A=IPC $h, M=100000 

specifies a mailer to do local delivery and a mailer for ethernet delivery. The first is 
called "local," is located in the file "/bin/mail," takes a picky -r flag, does local 
delivery, quotes should be stripped from addresses, and multiple users can be delivered 
at once; ruleset ten should be applied to sender addresses in the message and ruleset 
twenty should be applied to recipient addresses; the argv to send to a message will be 
the word "mail," the word "-d," and words containing the name of the receiving 
user. If a -r flag is inserted it will be between the words "mail" and "-d." The 
second mailer is called "ether," it should be connected to via an IPO connection, it 
can handle multiple users at once, connections should be deferred, and any domain 
from the sender address should be appended to any receiver name without a domain; 
sender addresses should be processed by ruleset eleven· and recipient addresses by 
ruleset twenty-one. There is a 100,000 byte limit on messages passed through this 
mailer. 

ICON/UXV-NET 

'\ 

-/ 

[-" 

\\( j 



( 

APPENDIX A 

COMMAND LJNE FLAGS 

Arguments must be presented witJdlags before a-ddresses.The flags are: 

-f addr The sender's machine address is addr. This flag is ignored unless the real user is 
listed as a "trusted user" or if addr contains an exclamation point (because of 
certain restrictions in lJUCP). 

-r addr An obsolete form of -f. 

-h cnt 

-Fname 

-n 

-t 

-bx 

-qt£me 

-Cfile 

-dlevel 

-ox value 

Sets the "hop count" to cnt. This represents the number of times this message 
has been processed by sendmail (to the extent that it is supported by the under­
lying networks). Gnt is incremented during processing, and if it reaches MAX­
HOP (currently 30) sendmail throws away the message with an error. 

Sets the full name of this user to name. 

Don't do aliasing or forwarding. 

Read the header for "'fo:", "Oe:", and "~:" iines, and send to everyone listed 
in those lists. The "Bee:" line will be deleted before sending. Any addresses in 
the argument vector will be deleted from the send list. 

Set operation mode to x. Operation modes are: 

m Deliver ma.il (default) 
a Run in arpanet mode (see below) 
s Speak SMTP on input side 
d Run as a daemon 
t Run in test mode 
v Just verify addresses, don't collect or deliver 

Initialize the alias database 
p Print the mail queue 
z Freeze the configuration .file 

The special processing for the ARPANET ineludes reading the "From:" line 
from the header to find the sender, printing ARPANET style messages (preceded 
by three digit reply codes for compatibility with the FTP protocol [Neigus73, 
Postel74, PosteI77]), and ending lines or error messages with <CRLF>. 

Try to process the queued up mail. If the time is given, a send mail will run 
through the queue at the speeified interva.l to deliver queued mail; otherwise, it 
only runs once. 

Use a different configuration file. Sentlmail runs as the invoking user (rather 
than root) when this flag is specified. 

Set debugging level. 

Set option x to the specified value. These options are described in Appendix B. 

There are a number of options that may be specified ail primitive flags (provided for com­
patibility with delivermaiQ. These are the e, i, m, and v options. Also, the f option may be 
specified as the -s flag. 

Appendix C - SENDMAIL Installation and Operation C·29 



APPENDIX B 

CONFIGURATION OPTIONS 

The following options may be set using the -0 flag on the command line or the 0 line in 
the configuration file. Many of them cannot be specified unless the invoking user is trusted. 

Afile Use the named file as the alias file. If no file is specified, use aliases in the 
current directory. 

aN 

Bc 

c 

dx 

D 

ex 

Fn 
f 

gn 

Hfile 

Ln 

Mxvalue 

m 

Nnetname 

C·30 

If set, wait up to N minutes for an "@:@" entry to exist in the alias database 
before starting up. If it does not appear in N minutes, rebuild the database (if 
the D option is also set) or issue a warning. 

Set the blank substitution character to c. Unquoted spaces in addresses are 
replaced by this character. 

If an outgoing mailer is marked as being expensive, don't connect immediately. 
This requires that queueing be compiled in, since it will depend on a queue run 
process to actually send the mail. 

Deliver in mode x. Legal modes are: 

i Deliver interactively (synchronously) 
b Deliver in background (asynchronously) 
q Just queue the message (deliver during queue run) 

If set, rebuild the alias database if necessary and possible. If this option is not 
set, 8endmail will never rebuild the alias database unless explicitly requested 
using -hi. 

Dispose of errors using mode x. The values for x are: 

p Print error messages (default) 
q No messages, just give exit status 
m Mail back errors 
w Write back errors (mail if user not logged in) 
eMail back errors and give zero exit stat always 

The temporary file mode, in octal. 644 and 600 are good choices. 

Save Unix-style "From" lines at the front of headers. Normally they are 
assumed redundant and discarded. 

Set the default group id for mailers to run in to n. 

Specify the help file for SMTP. 

Ignore dots in incoming messages. 

Set the default log level to n. 

Set the macro x to value. This is intended only for use from the command line. 

Send to me too, even if I am in an alias expansion. 

The name of the home network; "ARPA" by default. The the argument of an 
SMTP "HELO" command is checked against "hostname.netname" where host­
name is requested from the kernel for the current connection. If they do not 

ICON/UXV·NET 



( 

( 

o 

Qdir 

qfactor 

rtime 

Sfile 

s 

Ttime 

tS,D 

un 

v 

xLA 

XLA 

yfact 

y 

zfact 

Zfact 

Sendmail Installation and Operation Guide 

match, "Received:" lines are augmented by the name that is determined in this 
manner so that messages can be traced accurately. 

Assume that the headers may be in old format, i.e., spaces delimit names. This 
actually turns on an adaptive algorithm: if any recipient address contains a 
comma, parenthesis, or angle bracket, it will be assumed that commas already 
exist. If this flag is not on, only commas delimit names. Headers are always 
output with commas between the names. 

Use the named dir as the queue directory. 

Use factor as the multiplier in the map function to decide whe:p. to just queue up 
jobs rather than run them. This value is divided by the difference between the 
current load average and the load average limit (x flag) to determine the max­
imum message priority that will be sent. Defaults to 10000. 

Timeout reads after time interval. 

Log statistics in the named file. 

Be super-safe when running things, i.e., always instantiate the queue file, even if 
you are going to attempt immediate delivery. Sendmail always instantiates the 
queue file before returning control the the client under any circumstances. 

Set the queue timeout to time. After this interval, messages that have not been 
successfully sent will be returned to the sender. 

Set the local time zone name to S for standard time and D for daylight time; 
this is only used under version six. 

Set the default userid for mailers to n. Mailers without the S flag in the mailer 
definition will run as this user. 

Run in verbose mode. 

When the system load average exceeds LA, just queue messages (Le., don't try 
to send them). 

When the system load average exceeds LA, refuse incoming SMTP connections. 

The indicated factor is added to the priority (thus lowering the priority of the 
job) for each recipient, i.e., this value penalizes jobs with large numbers of reci­
pients. 

If set, deliver each job that is run from the queue in a separate process. Use 
this option if you are short of memory, since the default tends to consume con­
siderable amounts of memory while the queue is being processed. 

The indicated factor is multiplied by the message class (determined by the Pre­
cedence: field in the user header and the P lines in the configurat.ion file) and 
subtracted from the priority. Thus, messages with a higher Priority: will be 
favored. 

The factor is added to the priority every time a job is processed. Thus, each 
time a job is processed, its priority will be decreased by the indicated value. In 
most environments this should be positive, since hosts that are down are all too 
often down for a long time. 

Appendix C - SENDMAIL Installation and Operation C·31 



APPENDIX C 

MAILER FLAGS 

The following Bags may be set in the mailer description. 

f The mailer wants a -f from Bag, but only if this is a network forward operation (i.e., the 
mailer will give an error if the executing user does not have special permissions). 

r Same as f, but sends a -r Bag. 

S Don't reset the userid before calling the mailer. This would be used in a secure environ­
ment where aendmail ran as root. This could be used to avoid forged addresses. This Bag is 
suppressed if given from an "unsafe" environment (e.g, a user's mail.cf file). 

n Do not insert a UNIX-style "From" line on the front of the message. 

This mailer is local (i.e., final delivery will be performed). 

s Strip quote characters off of the address before calling the mailer. 

m This mailer can send to multiple users on the same host in one transaction. When a $u 
macro occurs in the argv part of the mailer definition, that field will be repeated as neces­
sary for all qualifying users. 

F This mailer wants a "From:" header line. 

D This mailer wants a "Date:" header line. 

M This mailer wants a ''Message~Id:'' header line. 

x This mailer wants a "Full-Name:" header line. 

P This mailer wants a "Return-Path:" line. 

u Upper case should be preserved in user names for this mailer. 

h Upper case should be preserved in host names for this mailer. 

A This is an Arpanet-compatible mailer, and all appropriate modes should be set. 

U This mailer wants Unix-style "From" lines with· the ugly UUOP-style "remote from 
<host>" on the end. 

e This mailer is expensive to connect to, so try to avoid connecting normally; any necessary 
connection will occur during a queue run. 

X This mailer want to use the hidden dot algorithm as specified in RF0821; basically, any line 
beginning with a dot will have an extra dot prepended (to be stripped at the other end). 
This insures that lines in the message containing a dot will not terminate the message 
prematurely. . 

L Limit the line lengths as specified in RF0821. 

P Use the return-path in the SMTP ''MAIL FROM:" command rather than just the return 
address; although this is required in RF0821, many hosts do not process return paths prop­
erly. 

I This mailer will be speaking SMTP to another aendmail - as such it can use special proto­
col features. This option is not required (Le., if this option is omitted the transmission will 
still operate successfully, although perhaps not as efficiently as possible). 

C-32 ICON/UXV-NET 



( 

( 

Sendmail Installation and Operation Guide 

o If mail is received from a mailer with this flag set, any addresses in the header that do not 
have an at sign ("@") after being rewritten by ruleset three will have the "@domain" 
clause from the sender tacked on. This allows mail with headers of the form: 

From: usera@hosta 
To: userb@hostb, userc 

to be rewritten as: 

From: usera@hosta 
To: userb@hostb, userc@hosta 

automatically. 

E Escape lines beginning with "From" in the message with a ">' sign. 

Appendix C - SENDMAIL Installation and Operation C-33 



APPENDIX D 

OTHER CONFIGURATION 

There are some configuration changes that can be made by recompiling 8endma£l. These 
are located in three places: 

md/config.m4 These contain operating-system dependent descriptions. They are interpolated 
into the Makefiles in the 8rc and aux directories. This includes information 
about what version of UNIX you are running, what libraries you have to 
include, etc. 

sre/eonf.h 

sre/eonf.e 

Oonfiguration parameters that may be tweaked by the installer are included in 
conf.h. 

Some special routines and a few variables may be defined in conf.c. For the 
most part these are selected from the settings in conf.h. 

Parameters in md/config.m4 

The following compilation flags may be defined in the m400NFIG macro in md/config.m4 
to define the environment in which you are operating. 

V6 If set, this will compile a version 6 system, with 8-bit user id's, single character 
tty id's, etc. 

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.1BSD, including the 
vfork(2) system call, special types defined in <sys/types.h> (e.g, u_ehar), etc. 

If none of these flags are set, a version 7 system is assumed. 

You will also have to specify what libraries to link with 8endmail in the m4LIBS macro. 
Most notably, you will have to include if you are running a 4.1BSD system. 

Parameters in sre/conf.h 

Parameters and compilation options are defined in conr.h. Most of these need not nor­
mally be tweaked; common parameters are all in sendmail.cf. However, the sizes of certain 
primitive vectors, etc., are included in this file. The numbers following the parameters are their 
default value. 

MAXLINE [1024] 

MAXNAME [256] 

MAXFIELD [2500J 

MAXPV [40] 

MAXHOP [17] 

C-34 

The maximum line length of any input line. If message lines exceed this 
length they will still be processed correctly; however, header lines, 
configuration file lines, alias lines, etc., must fit within this limit. 

The maximum length of any name, such as a host or a user name. 

The maximum total length of any header field, including continuation lines. 

The maximum number of parameters to any mailer. This limits the number 
of recipients that may be passed in one transaction. 

When a message has been processed more than this number of times, send­
mail rejects the message on the assumption that there has been an aliasing 
loop. This can be determined from the -h flag or by counting the number of 
trace fields (i.e, "Received:" lines) in the message header. 

ICON/UXV-NET 

/ 
./ 



( 

( 

(~. 

Sendmaillnstallation and Operation Guide 

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example, 
the address "eric@Berkeley" is three atoms. 

MAXMAILERS [25] 
The maximum number of mailers that may be defined in the configuration 
file. 

MAXRWSETS [30] The maximum number of rewriting sets that may be defined. 

MAXPRIORITIES [25] 
The maximum number of values for the "Precedence:" field that may be 
defined (using the P line in sendmail.cf). 

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T line 
in sendmail.cf). 

MAXUSERENVIRON [40] 
The maximum number of items in the user environment that will be passed 
to subordinate mailers. 

QUEUESIZE [600J The maximum number of entries that will be processed in a single queue run. 

A number of other compilation options exist. These specify whether or not specific code should 
be compiled in. 

DBM 

NDBM 

DEBUG 

LOG 

QUEUE 

SMTP 

DAEMON 

UGLYUUOP 

NOTUNIX 

If set, the "DBM" package in UNIX is used (see dbm{9X) in [UNIX80J). If not 
set, a much less efficient algorithm for processing aliases is used. 

If set, the new version of the DBM library that allows multiple databases will be 
used. "DBM" must also be set. 

If set, debugging information is compiled in. To actually get the debugging out­
put, the -d flag must be used. 

If set, the sgs/og routine in use at some sites is used. This makes an informa­
tional log record for each message processed, and makes a higher priority log 
record for internal system errors. 

This flag should be set to compile in the queueing code. If this is not set, 
mailers must accept the mail immediately or it will be returned to the sender. 

If set, the code to handle user and server SMTP will be compiled in. This IS 

only necessary if your machine has some mailer that speaks SMTP. 

If set, code to run a daemon is compiled in. This code is for 4.2 or 4.3BSD. 

If you have a UUOP host adjacent to you which is not running a reasonable 
version of rmail, you will have to set this flag to include the "remote from 
sysname" info on the from line. Otherwise, UUOP gets confused about where 
the mail came from. 

If you are using a non-UNIX mail format, you can set this flag to turn off spe­
cial processing of UNIX-style "From" lines. 

Configuration in sre/eonf.e 

Not all header semantics are defined in the configuration file. Header lines that should 
only be included by certain mailers (as well as other more obscure semantics) must be specified 
in the Hdrlnfo table in con! c. This table contains the header name (which should be in all 
lower case) and a set of header control flags (described below), The flags are: 

H~OHEOK Normally when the check is made to see if a header line is compatible with a 
mailer, sendmai/ will not .delete an existing line. If this flag is set, sendmail will 
delete even existing header lines. That is, if this bit is set and the mailer does 
not have flag bits set that intersect with the required mailer flags in the header 

Appendix C - SENDMAIL Inatallatlon and Operation C-35 



Sendmail Installation and Operation Guide 

HJ;OH 

HYORCE 

ILTRACE 

H...RCPT 

HYROM 

definition in sendmail.cf, the header line is always deleted. 

If this header field is set, treat it like a blank line, i.e., it will signal the end of 
the header and the beginning of the message text. 

Add this header entry even if one existed in the message before. If a header 
entry does not have this bit set, sendmail will not add another header line if a 
header line of this name already existed. This would normally be used to stamp 
the message by everyone who handled it. 

If set, this is a timestamp (trace) field. If the number of trace fields in a mes­
sage exceeds a preset amount the message is returned on the assumption that it 
has an aliasing loop. 

If set, this field contains recipient addresses. This is used by the -t flag to 
determine who to send to when it is collecting recipients from the message. 

This flag indicates that this field specifies a sender. The order of these fields in 
the Hdrln/o table specifies sendmail's preference for which field to return error 
messages to. 

Let's look at a sample Hdrln/o specification: 

struct hdrinfo HdrInfoO = 
{ 

/* originator fields, most to least significant * / 
"resent-sender", HYROM, 
"resent-from", HYROM, 
"sender", HYROM, 
"from", HYROM, 
"full-name", ~CHECK, 

/* destination fields * / 
"to", H...RCPT, 
"resent-to", H...RCPT, 
"cc", H...RCPT, 

/* message identification and control * / 
"message", ll.-EOH, 
"text", ll.-EOH, 

1* trace fields * / 
"received", H_TRACEIHYORCE, 

NULL, 0, 
}j 

This structure indicates that the "To:", "Resent-To:", and "Cc:" fields all specify recipient 
addresses. Any "Full-Name:" field will be deleted unless the required mailer flag (indicated in 
the configuration file) is specified. The ''Message:'' and "Text:" fields will terminate the 
header; these are specified in new protocols [NBS80j or used by random dissenters around the 
network world. The "Received:" field will always be added, and can be used to trace messages. 

There are a number of important points here. First, header fields are not added automati­
cally just because they are in the Hdrln/o structurej they must be specified in the configuration 
file in order to be added to the message. Any header fields mentioned in the configuration file 
but not mentioned in the Hdrln/o structure have default processing performed; that is, they are 
added unless they were in the message already. Second, the Hdrln/o structure only specifies 
cliched processing; certain headers are processed specially by ad hoc code regardless of the 
status specified in Hdrln/o. For example, the "Sender:" and "From:" fields are always scanned 
on ARPANET mail to determine the sender; this is used to perform the "return to sender" func­
tion. The "From:" and "Full-Name:" fields are used to determine the full name of the sender 

C-36 ICON/UXV-NET 

_/ 



( 

c 

Sendmail Installation and Operation Guide 

if possible; this is stored in the macro Sx and used in a number of ways. 

The file conf.c also contains the specification of ARPANET reply codes. There are four 
classifications these fall into: 

char Arpa-lnfo[] = 
char Arpa_TSyserr[] = 
char ArpaYSyserr[] = 
char Arpa_Usrerr[] ... 

"050"; 
"455"; 
"554"; 
"554"; 

1* arbitrary info * / 
1* some (transient) system error * / 
1* some (permanent) system error * / 
1* some (fatal) user error * / 

The class ArpaJnJo is for any information that is not required by the protocol, such as forward­
ing information. ArpLTSY8err and ArpaYSY8err. is printed by the 8Y8err routine. TSyserr is 
printed out for transient errors, that is, errors that are likely to go away without explicit action 
on the part of a systems administrator. PSyserr is printed for permanent errors. The distinc­
tion is made based on the value of errno. Finally, ArpLU8rerr is the result of a user error and 
is generated by the U8rerr routine; these are generated when the user has specified something 
wrong, and hence the error is permanent, i.e., it will not work simply by resubmitting the 
request. 

If it is necessary to restrict mail through a relay, the checkcompat routine can be modified. 
This routine is called for every recipient address. It can return TRUE to indicate that the 
address is acceptable and mail processing will continue, or it can return FALSE to reject the 
recipient. If it returns false, it is up to checkcompat to print an error message (using u8rerr) say­
ing why the message is rejected. For example, checkcompat could read: 

bool 
checkcompat( to) 

{ 

} 

register ADDRESS *to; 

if (MsgSize > 50000 && to->q.JIlailer != LocalMailer) 
{ 

} 

usrerr("Message too large for non-local delivery"); 
NoReturn = TRUE; 
return (FALSE); 

return (TRUE); 

This would reject messages greater than 50000 bytes unless they were local. The NoReturn flag 
can be sent to suppress the return of the actual body of the message in the error return. The 
actual use of this routine is highly dependent on the implementation, and use should be limited. 

Configuration in sre/daemon.e 

The file 8rcl daemon. c contains a number of routines that are dependent on the local net­
working environment. The version supplied is specific to 4.3 BSD. 

The routine mapho8tname is called to convert strings within $[ ... $) symbols. It can be 
modified if you wish to provide a more sophisticated service, e.g., mapping UUOP host names to 
full paths. 

Appendix C - SENDMAIL Installation and Operation C·37 



APPENDIX E 

SUMMARY OF SUPPORT FILES 

This is a summary of the support files that 8endmail creates or generates. 

/usr /lib /sendmail 
The binary of 8endmail. 

/usr /bin/newaliases 
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running 
this program is completely equivalent to giving 8endmail the -hi flag. 

/usr/bin/mailq Prints a listing of the mail queue. This program is equivalent to using the -bp 
flag to 8endmail. 

/usr /lib /sendmail.cf 
The configuration file, in textual form. 

/usr /lib /sendmail.fc 
The configuration file represented as a memory image. 

/usr /lib/sendmail.hf 
The SMTP help file. 

/usr /lib /sendmail.st 
A statistics file; need not be present. 

/usr /lib / aliases The textual version of the alias file. 

/usr/lib/aliases.{pag,dir} . 
The alias file in dbm (3) format. 

/usr /spool/mqueue 
The directory in which the mail queue and temporary files reside. 

/usr /spool/mqueue/qf* 
Control (queue) files for messages. 

/usr /spooljmqueue/ df* 
Data files. 

/usr /spool/mqueue /If* 
Lock files 

/usr /spool/mqueue/tf* 
Temporary versions of the qf files, used during queue file rebuild. 

/usr /spool/mqueue/nf* 
A file used when creating a unique id. 

/usr /spooljmqueue/xf* 
A transcript of the current session. 

C-38 ICON/UXV-NET 



(~ .. 
./ 

Appendix D - Introduction to the 
Internet Protocols 

The following appendix contains a document from RUTGERS, the State University of New 
Jersey, titled "Introduction to the Internet Protocols". The document provides an introduction 
to TCPIIP, giving a reasonable explanation of the capabilities of the Internet Protocols. 
References are made to "RFC" and "lEN" documents throughout this document. Information 
is provided to allow you to request copies of the referenced documents 

Internet Protocols D-I 



( " 
\ / 

D-tl ICONlUXV-NET 



( 

~ ... 

Introduction 
to 

the Internet Protocols 

C R 

C S 
Computer Science Facilities Group 

C I 

L S 

RUTGERS 
The State University of New Jersey 

Center for Computers and Information Services 
Laboratory for Computer Science Research 



This is an introduction to the Internet networking protocols (TCP lIP). It includes a summary 
of the facilities available and brief descriptions of the major protocols in the family. 

© Copyright 1987, Charles L. Hedrick. 

Anyone may reproduce' this document, in whole or in part, provided that: 

(1) any copy or republication of the entire document must show Rutgers University as the 
source, and must include this notice; and 

(2) any other use of this material must reference this manual and Rutgers University, and the 
fact that the material is copyright by Charles Hedrick and is used by permission. 

t Unix is a trademark of AT&T Technologies, Inc. 

J 
/ 

I 



Introduction to Internet Protocols 

This document is a brief introduction to TCP lIP, followed 
by advice on what to read for more information. This is 
not intended to be a complete description. It can give you 
a reasonable idea of the capabilities of the protocols. But 
if you need to know any details of the technology, you will 
want to read the standards yourself. Throughout the 
text, you will find references to the standards, in the form 
of "RFC" or "lEN" numbers. These are document 
numbers. The final section of this document tells you how 
to get copies of those standards. 

Appendix D - Internet Protocols D·III 



Introduction to Internet Protocols 

TABLE OF CONTENTS 

What is TCP lIP? ..................................................................................................................... 1 
General description of the TCP fIP protocols ......................................................................... 4 
The TCP level ... ...... ... ........ .......... .... ........... ...... ........... ... ... ......... ..... ...... .......... ... .......... ............. 6 

The IP level ..... ...... ..... .... ........ ... ....... ............. ..... .......... ......... .... .......... ....... ..... ................... ........ 9 
The Ethernet level..... ..................... ...... ....... ........ .... ............ ........... ........ ........... ........ ...... .......... 11 
Well-known sockets and the applications layer ...................................................................... 13 
An example application: SMTP ............................................................................................... 16 
Protocols other than TCP: UDP and ICMP ........................................................................... 18 
Keeping track of names and information: the domain system ............................................. 19 
Routing ....................................................................................................................................... 20 
Details about Internet addresses: subnets and broadcasting ................................................ 21 
Datagram fragmentation and reassembly .............................................................................. 23 
Ethernet encapsulation: ARP ............................................................................... ....... ............. 24 
Getting more information .................................................................................................... ..... 25 

D·lv ICQN/UXV·NET 



( 

Introduction to Internet Protocols 

1. What is TOP lIP? 

TCP liP is a set of protocols developed to allow cooperating computers to share resources 
across a network. It was developed by a community of researchers centered around the 
ARPAnet. Certainly the ARPAnet is the best-known TCP liP network. However as of June, 
87, at least 130 different vendors had products that support TCP liP, and thousands of net­
works of all kinds use it. 

First some basic definitions. The most accurate name for the set of protocols we are describing 
is the "Internet protocol suite". TCP and IP are two of the protocols in this suite. (They will 
be described below.) Because TCP and IP are the best known of the protocols, it has become 
common to use the term TCP fIP or IP ITCP to refer to the whole family. It is probably not 
worth fighting this habit. However this can lead to some oddities. For example, I find myself 
talking about NFS as being based on TCP liP, even though it doesn't use TCP at all. (It does 
use IP. But it uses an alternative protocol, UDP, instead of TCP. All of this alphabet soup 
will be unscrambled in the following pages.) 

The Internet is a collection of networks, including the Arpanet, NSFnet, regional networks such 
as NYsernet, local networks at a number of University and research institutions, and a number 
of military networks. The term "Internet" applies to this entire set of networks. The subset of 
them that is managed by the Department of Defense is referred to as the "DDN" (Defense Data 
Network). This includes some research-oriented networks, such as the Arpanet, as well as 
more strictly military ones. (Because much of the funding for Internet protocol developments 
is done via the DDN organization, the terms Internet and DDN can sometimes seem 
equivalent.) All of these networks are connected to each other. Users can send messages from 
any of them to any other, except where there are security or other policy restrictions on access. 
Officially speaking, the Internet protocol documents are simply standards adopted by the Inter­
net community for its own use. More recently, the Department of Defense issued a MILSPEC 
definition of TCP lIP. This was intended to be a more formal definition, appropriate for use in 
purchasing specifications. However most of the TCP lIP community continues to use the Inter­
net standards. The MIL SPEC version is intended to be consistent with it. 

Whatever it is called, TCP lIP is a family of protocols. A few provide "low-level" functions 
needed for many appli~ations. These include IP, TCP, and UDP. (These will be described in a 
bit more detail later.) Others are protocols for doing specific tasks, e.g. transferring files 
between computers, sending mail, or finding out who is logged in on another computer. Ini­
tially TCP lIP was used mostly between minicomputers or mainframes. These machines had 
their own disks, and generally were self-contained. Thus the most important "traditional" 
TCP liP services are: 

• file transfer. The file transfer protocol (FTP) allows a user on any computer to get files 
from another computer, or to send files to another computer. Security is handled by 
requiring the user to specify a user name and password for the other computer. Provi­
sions are made for handling file transfer between machines with different character set, 
end of line conventions, etc. This is not quite the same thing as more recent "network file 
system" or "netbios" protocols, which will be described below. Rather, FTP is a utility 
that you run any time you want to access a file on another system. You use it to copy 
the file to your own system. You then work with the local copy. {See RFC 959 for 

Appendix D - Internet Protocol. D·1 



Introduction to Internet Protocols 

specifications for FTP.) 

• remote login. The network terminal protocol (TEL NET) allows a user to log in on any 
other computer on the network. You start a remote session by specifying a computer to 
connect to. From that time until you finish the session, anything you type is sent to the 
other computer. Note that you are really still talking to your own computer. But the 
telnet program effectively makes your computer invisible while it is running. Every 
character you type is sent directly to the other system. Generally, the connection to the 
remote computer behaves much like a dialup connection. That is, the remote system will 
ask you to log in and give a password, in whatever manner it would normally ask a user 
who had just dialed it up. When you log off of the other computer, the telnet program 
exits, and you will find yourself talking to your own computer. Microcomputer implemen­
tations of telnet generally include a terminal emulator for some common type of terminal. 
(See RFC's 854 and 855 for specifications for telnet. By the way, the telnet protocol 
should not be confused with Telenet, a vendor of commercial network services.) 

• computer mail. This allows you to send messages to users on other computers. Originally, 
people tended to use only one or two specific computers. They would maintain "mail files" 
on those machines. The computer mail system is simply a way for you to add a message 
to another user's mail file. There are some problems with this in an environment where 
microcomputers are used. The most serious is that a micro is not well suited to receive 
computer mail. When you send mail, the mail software expects to be able to open a con­
nection to the addressee's computer, in order to send the mail. If this is a microcomputer, 
it may be turned off, or it may be running an application other than the mail system. For 
this reason, mail is normally handled by a larger system, where it is practical to have a 
mail server running all the time. Microcomputer mail software then becomes a user inter­
face that retrieves mail from the mail server. (See RFC 821 and 822 for specifications for 
computer mail. See RFC 937 for a protocol designed for microcomputers to use in reading 
mail from a mail server.) 

These services should be present in any implementation of TCP /IP, except that micro-oriented 
implementations may not support computer mail. These traditional applications still play a 
very important role in TCP /IP-based networks. However more recently, the way in which net­
works are used has been changing. The older model 6f a number of large, self-sufficient com­
puters is beginning to change. Now many installations have several kinds of computers, includ­
ing microcomputers, workstations, minicomputers, and mainframes. These computers are 
likely to be configured to perform specialized tasks. Although people are still likely to work 
with one specific computer, that computer will call on other systems on the net for specialized 
services. This has led to the "server/client" model of network services. A server is a system 
that provides a specific service for the rest of the network. A client is another system that 
uses that service. (Note that the server and client need not be on different computers. They 
could be different programs running on the same computer.) Here are the kinds of servers typi­
cally present in a modern computer setup. Note that these computer services can all be pro­
vided within the framework of TCP jIP. 

• 

0·2 

network file systems. This allows a system to access files on another computer in a some­
what more closely integrated fashion than FTP. A network file system provides the illu­
sion that disks or other devices from one system are directly connected to other systems. 
There is no need to use a special network utility to access a file on another system. Your 

ICON/UXV·NET 



( 

• 

• 

Introduction to Internet Protocols 

computer simply thinks it has some extra disk drives. These extra "virtual" drives refer 
to the other system's disks. This capability is useful for several different purposes. It lets 
you put large disks on a few computers, but still give others access to the disk space. 
Aside from the obvious economic benefits, this allows people working on several computers 
to share commOD files. It makes system maintenance and backup easier, because you 
don't have to worry about updating and backing up copies on lots of different machines. 
A number of vendors now offer high-performance diskless computers. These computers 
have no disk drives at alL They are entirely dependent upon disks attached to common 
"file servers". (See RFC's'1001'and 1002 for a description of PC-oriented NetBIOS over 
TCP. In the workstation and minicomputer area, Sun's Network File System is more 
likely to be used. Protocol specifications for it are available from Sun Microsystems.) 

remote pr£nt£ng. This allows you to access printers on other computers as if they were 
directly attached to yours. (The most commonly used protocol is the remote lineprinter 
protocol from Berkeley Unix. Unfortunately, there is no protocol document for this. How­
ever the C code is easily obtained from Berkeley, so implementations are common.) 

remote execut£on. This allows you to request that a particular program be run on a 
different computer. This is useful when you can do most of your work on a small com­
puter, but a few tasks require the resources of a larger system. There are a number of 
different kinds of remote execution. Some operate on a command by command basis. 
That is, you request that a specific command or set of commands should run on some 
specific computer; (More sophisticated versions will choose a system that happens to 
be free.) However there are also "remote procedure call" systems that allow a program to 
call a subroutine that will run' on another computer. (There are many protocols of this 
sort. Berkeley Unix contains two servers to execute commands remotely: rsh and rexec. 
The man pages describe the protocols that they use. The user-contributed software with 
Berkeley 4.3 contains a "distributed shell" that will distribute tasks among a set of sys­
tems, depending upon load. Remote procedure call mechanisms have been a topic for 
research for a number of years, so many organizations have implementations of such facil­
ities. The most widespread commercially-supported remote procedure call protocols seem 
to be Xerox's Courier and Sun's RPC. Protocol documents are available from Xerox and 
Sun. There is a public implementation of Courier over TCP as part of the user­
contributed software with Berkeley 4.3. An implementation of RPC was posted to Usenet 
by Sun, and also appears as part of the user-contributed software with Berkeley 4.3.) 

• name servers. In large installations, there are a number of different collections of names 
that have to be managed. This includes users and their passwords, names and network 
addresses for computers, and accounts. It becomes very tedious to keep this data up to 
date on all of the computers. Thus the databases are kept on a small number of systems. 
Other systems access the data over the network. (RFC 822 and 823 describe the name 
server protocol used to keep track of host names and Internet addresses on the Internet. 
This is now a required part of any TCP jIP implementation. lEN 116 describes an older 
name server protocol that is used by a few terminal servers and other products to look up 
host names. Sun's Yellow Pages system is designed as a general mechanism to handle user 
names, file sharing groups, and other databases commonly used by Unix systems. It is 
widely available commercially. Its protocol definition is available from Sun.) 

• term£nal servers. Many installations no longer connect terminals directly to computers . 
Instead they connect them to terminal servers. A terminal server is simply a small com­
puter that only knows how to run telnet (or some other protocol to do remote login). If 

Appendix D - Internel Prolocol. D-3 



Introduction to Internet Protocols 

your terminal is eonnected to one of these, you simply type the name of a computer, and /'" 
you are connected to it. Generally it is possible to have active connections to more than ~. 
one computer at the same time. The terminal server will have provisions to switch 
between connections rapidly, and to notify you when output is waiting for another connec-
tion. (Terminal servers use the telnet protocol, already mentioned. However any real ter-
minal server will also have to support name service and a number of other protocols.) 

• network-oriented window systems. Until recently, high-performance graphics programs had 
to execute on a computer that had a bit-mapped graphics screen directly attached to it. 
Network window systems allow a program to use a display on a different computer. Full­
scale network window systems provide an interface that lets you distribute jobs to the 
systems that are best suited to handle them, but still give you a single graphically-based 
user interface. (The most widely-implemented window system is X. A protocol descrip­
tion is available from MIT's Project Athena. A reference implementation is public ally 
available from MIT. A number of vendors are also supporting NeWS, a window system 
defined by Sun. Both of these systems are designed to use TCP lIP.) 

Note that some of the protocols described above were designed by Berkeley, Sun, or other 
organizations. Thus they are not officially part of the Internet protocol suite. However they 
are implemented using TCP lIP, just as normal TCP lIP application protocols are. Since the 
protocol definitions are not considered proprietary, and since commercially-support implemen­
tations are widely available, it is reasonable to think of these protocols as being effectively part 
of the Internet suite. Note that the list above is simply a sample of the sort of services avail­
able through TCP lIP. However it does contain the majority of the "major" applications. The 
other commonly-used protocols tend to be specialized facilities for getting information of vari­
ous kinds, such as who is logged in, the time of day, etc. However if you need a facility that is 
not listed here, we encourage you to look through the current edition of Internet Protocols 
(currently RFC 1011), which lists all of the available protocols, and also to look at some of the 
major TCP lIP implementations to see what various vendors have added. 

2. General description of the TOP lIP protocols 

TCP lIP is a layered set of protocols. In order to understand what this means, it is useful to 
look at an example. A typical situation is sending mail. First, there is a protocol for mail. 
This defines a set of commands which one machine sends to another, e.g. commands to specify 
who the sender of the message is, who it is being sent to, and then the text of the message. 
However this protocol assumes that there is a way to communicate reliably between the two 
computers. Mail, like other application protocols, simply defines a set of commands and mes­
sages to be sent. It is designed to be used together with TCP and IP. TCP is responsible for 
making sure that the commands get through to the other end. It keeps track of what is sent, 
and retransmitts anything that did not get through. If any message is too large for one 
datagram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure 
that they all arrive correctly. Since these functions are needed for many applications, they are 
put together into a separate protocol, rather than being part of the specifications for sending 
mail. You can think of TCP as forming a library of routines that applications can use when 
they need reliable network communications with another computer. Similarly, TCP calls on 

/ 

the services of IP. Although the services that TCP supplies are needed by many applications, (,\ 
\..j 

D-4 ICON/UXV-NET 



( 
Introduction to Internet Protocols 

there are still some kinds of applications that don't need them. However there are some ser­
vices that every application needs. So these services are put together into IP. As with TCP, 
you can think of IP as a library of routines that TCP calls on, but which is also available to 
applications that don't use TCP. This strategy of building several levels of protocol is called 
"layering". We think of the applications programs such as mail, TCP, and IP, as being 
separate "layers", each of which calls on the services of the layer below it. Generally, TCP lIP 
applications use 4 layers: 

• an application protocol such as mail 

• a protocol such as TCP that provides services need by many applications 

• IP, which provides the basic service of getting datagrams to their destination 

• the protocols needed to manage a specific physical medium, such as Ethernet or a point to 
point line. 

TCP lIP is based on the "catenet model". (This is described in more detail in lEN 48.) This 
model assumes that there are a large number of independent networks connected together by 
gateways. The user should be able to access computers or other resources on any of these net­
works. Datagrams will often pass through a dozen different networks before getting to their 
final destination. The routing needed to accomplish this should be completely invisible to the 
user. As far as the user is concerned, all he needs to know in order to access another system is 
an "Internet address". This is an address that looks like 128.6.4.194. It is actually a 32-bit 
number. However it is normally written as 4 decimal numbers, each representing 8 bits of the 
address. (The term "octet" is used by Internet documentation for such 8-bit chunks. The term 
"byte" is not used, because TCP lIP is supported by some computers that have byte sizes other 
than 8 bits.) Generally the structure of the address gives you some information about how to 
get to the system. For example, 128.6 is a network number assigned by a central authority to 
Rutgers University. Rutgers uses the next octet to indicate which of the campus Ethernets is 
involved. 128.6.4 happens to be an Ethernet used by the Computer Science Department. The 
last octet allows for up to 254 systems on each Ethernet. (It is 254 because a and 255 are not 
allowed, for reasons that will be discussed later.) Not,e that 128.6.4.194 and 128.6.5.194 would 
be different systems. The structure of an Internet address is described in a bit more detail 
later. 

Of course we normally refer to systems by name, rather than by Internet address. When we 
specify a name, the network software looks it up in a database, and comes up with the 
corresponding Internet address. Most of the network software deals strictly in terms of the 
address. (RFC 882 describes the name server technology used to handle this lookup.) 

TCP lIP is built on "connectionless" technology. Information is transfered as a sequence of 
"datagrams". A datagram is a collection of data that is sent as a single message. Each of 
these datagrams is sent through the network individually. There are provisions to open con­
nections (i.e. to start a conversation that will continue for some time). However at some level, 
information from those connections is broken up into datagrams, and those datagrams are 
treated by the network as completely separate. For example, suppose you want to transfer a 
15000 octet file. Most networks can't handle a 15000 octet datagram. So the protocols will 
break this up into something like 30 500-0ctet datagrams. Each of these datagrams will be 

Appendix D - Internet Protocol. D·5 



Introduction to Internet Protocols 

sent to the other end. At that point, they will be put back together into the 15000-octet file. r" 
. However while those datagrams are in transit, the network does~'t know that there is any con- j 

nection between them: It. is perfectly possible that datagram 14 will actually arrive before 
, datagram 13. It is also possible that somewhere in the network, an error will occur, and some 

datagram won't get through at all. In that case, that datagram has to be sent again. 

Note by the way that the terms "datagram" and "packet" often seem to be nearly interchang­
able. Technically, datagram is the right word to use when describing TCP lIP. A datagram is 
a unit of data, which is what the protocols deal with. A packet is a physical thing, appearing 
on an Ethernet or some wire. In most cases a packet simply contains a datagram, so there is 
very little difference. However they can differ. When TOP lIP is used on top of X.25, the X.25 
interface breaks the datagrams up into 128-byte packets. This is invisible to IP, because the 
packets are put back together into a single datagram at the other end before being processed 
by TCP lIP. So in this case, one IP datagram would be carried by several packets. However 
with most media, there are efficiency advantages to sending one datagram per packet, and so 
the distinction tends to vanish. 

2.1. The TOP level 

Two separate protocols are involved in handling TOP lIP datagrams. TOP (the "transmission 
control protocol") is responsible for breaking up the message into datagrams, reassembling 
them at the other end, resending anything that gets lost, and putting things back in the right 
order. IP (the "internet protocol") is responsible for routing individual datagrams. It may 
seem like TOP is doing all the work. And in small networks that is true. However in the 
Internet, simply getting a datagram to its destination can be a complex job. A connection may 
require the datagram to go through several networks at Rutgers, a serial line to the John von 
Neuman Supercomputer Center, a couple of Ethernets there, a series of 56Kbaud phone lines to 
another NSFnet site, and more Ethernets on another campus. Keeping track of the routes to 
all of the destinations and handling incompatibilities among different transport media turns 
out to be a complex job. Note that the interface between TOP and IP is fairly simple. TOP 
simply hands IP a datagram with a destination. IP doesn't know how this datagram relates to 
any datagram before it or after it. 

It may have occurred to you that something is missing here. We have talked about Internet 
addresses, but not about how you keep track of multiple connections to a given system. 
Clearly it isn't enough to get a datagram to the right destination. TCP has to know which 
connection this datagram is part of. This task is referred to as "demultiplexing." In fact, 
there are several levels of demultiplexing going on in TCP lIP. The information needed to do 
this demultiplexing is contained in a series of "headers". A header is simply a few extra octets 
tacked onto the beginning of a datagram by some protocol in order to keep track of it. It's a 
lot like putting a letter into an envelope and putting an address on the outside of the envelope. 
Except with modern networks it happens several times. It's like you put the letter into a little 
envelope, your secretary puts that into a somewhat bigger envelope, the campus mail center 
puts that envelope into a still bigger one, etc. Here is an overview of the headers that get 
stuck on a message that passes through a typical TCP lIP network: 

D·6 ICON/UXV·NET 



(-

Introduction to Internet Protocols 

We start with a single data stream, say a file you are trying to send to some other computer: 

TOP breaks it up into manageable chunks. (In order to do this, TOP has to know how large a 
datagram your network can handle. Actually, the TCP's at each end say how big a datagram 
they can handle, and then they pick the smallest size.) 

TCP puts a header at the front of each datagram. This header actually contains at least 20 
octets, but the most important ones are a source and destination "port number" and a 
"sequence number". The port numbers are used to keep track of different conversations. Sup­
pose 3 different people are transferring files. Your TCP might allocate port numbers 1000, 
1001, and 1002 to these transfers. When you are sending a datagram, this becomes the 
"source" port number, since you are the source of the datagram. Of course the TCP at the 
other end has assigned a port number of its own for the conversation. Your TCP has to know 
the port number used by the other end as well. (It finds out when the connection starts, as we 
will explain below.) It puts this in the "destination" port field. Of course if the other end sends 
a datagram back to you, the source and destination port numbers will be reversed, since then 
it will be the source and you will be the destination. Each datagram has a sequence number. 
This is used so that the other end can make sure that it gets the datagrams in the right order, 
and that it hasn't missed any. (See the TCP specification for details.) TCP doesn't number 
the datagrams, but the octets. So if there are 500 octets of data in each datagram, the first 
datagram might be numbered 0, the second 500, the next 1000, the next 1500, etc. Finally, I 
will mention the Checksum. This is a number that is computed by adding up all the octets in 
the datagram (more or less - see the TCP spec). The result is put in the header. TCP at the 
other end computes the checksum again. If they disagree, then something bad happened to the 
datagram in transmission, and it is thrown away. So here's what the datagram looks like now. 

+-+-+-+-+-+-+-+-+-+- I I I I I I + I I I I I I +-+-+-+-+ I I I I 

i+ 
Source Port Destination Port 

I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 1 I 1-+ 

i+ 

Appendix D - Internet Protocols D·7 



Introduction to Internet Protocols 

Sequence Number 
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +-+-+ 

i+ 
Acknowledgment Number 

+-+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-+-+ 

i+ 

I Data I IUIAIPIRISIFI 
I Offsetl Reserved IRICISISIYIII Window 

IGIKIHITININI 
+-+-+-+-+-+- 1 1 1 1 1 +-+-+-+-+-+ 1 1 1 1 1 1-+-+-+-+-+ 1 1 1-+ 

i+ 

Checksum Urgent Pointer 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 1 1 1 1 1-+-+-+-+-+-+-+-+-+ 

i+ 

your data ... next 500 octets 

If we abbreviate the TCP header as "T", the whole file now looks like this: 

T.... T.... T.... T.... T.... T.... T .... 

You will note that there are items in the header that I have not described above. They are 

D·8 ICON/UXV·NET 



( 

Introduction to Internet Protocols 

generally involved with managing the connection. In order to make sure the datagram has 
arrived at its destination, the recipient has to send back an "acknowledgement". This is a 
datagram whose "Acknowledgement number" field is filled in. For example, sending a packet 
with an acknowledgement of 1500 indicates that you have received all the data up to octet 
number 1500. If the sender doesn't get an acknowledgement within a reasonable amount of 
time, it sends the data again. The window is used to control how much data can be ~n transit 
at anyone time. It is not practical to wait for each datagram to be acknowledged before send­
ing the next one. That would slow things down too much. On the other hand, you can't just 
keep sending, or a fast computer might overrun the capacity of a slow one to absorb data. 
Thus each end indicates how much new data it is currently prepared to absorb by putting the 
number of octets in its "Window" field. As the computer receives data, the amount of space 
left in its window decreases. When it goes to zero, the sender has to stop. As the receiver 
processes the data, it increases its window, indicating that it is ready to accept more data. 
Often the same datagram can be used to acknowledge receipt of a set of data and to give per­
mission for additional new data (by an updated window). The "Urgent" field allows one end to 
tell the other to skip ahead in its processing to a particular octet. This is often useful for han­
dling asynchronous events, for example when you type a control character or other command 
that interrupts output. The other fields are beyond the scope of this document. 

2.2. The IP level 

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet address of 
the computer at the other end. Note that this is all IP is concerned about. It doesn't care 
about what is in the datagram, or even in the TCP header. IP's job is simply to find a route 
for the datagram and get it to the other end. In order to allow gateways or other intermedi­
ate systems to forward the datagram, it adds its own header. The main things in this header 
are the source and destination Internet address (32-bit addresses, like 128.6.4.194), the protocol 
number, and another checksum. The source Internet address is simply the address of your 
machine. (This is necessary so the other end knows where the datagram came from.) The des­
tination Internet address is the address of the other machine. (This is necessary so any gate­
ways in the middle know where you want the datagram to go.) The protocol number tells IP 
at the other end to send the datagram to TCP. Although most IP traffic uses Tep, there are 
other protocols that can use IP, so you have to tell IP which protocol to send the datagram to. 
Finally, the checksum allows IP at the other end to verify that the header wasn't damaged in 
transit. Note that TCP and IP have separate checksums. IP needs to be able to verify that 
the header didn't get damaged in transit, or it could send a message to the wrong place. For 
reasons not worth discussing here, it is both more efficient and safer to have TCP compute a 
separate checksum for the TCP header and data. Once IP has tacked on its header, here's 
what the message looks like: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1-+-+-+-+-+-+-+-+-+-+ 

Appendix 0 - Internet Protocols 0-9 



Introduction to Internet Protocols 

i+ 
:Version: IHL IType of Service: Total Length 
+-1 I I I I I I I I I II I I I I I I I I I I +-+-+-+-+-1 I I I 

i+ 
Identification IFlags: Fragment Offset 

+ I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 

i+ 
Time to Li ve: Protoco I Header Checksum 

+ 1 I 1 1 -+-+-+-:-+-+ 1 1 1 1 1 +-+-+ I 1 1 1 1-+-+-+-+-+-+-+-+ 

i+ 
Source Address 

+-+-+-+-+-1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 I +-+-+-+ I I 1-+-+-+-+ 

i+ 
Destination Address 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

i+ 
TCP header, then your data ..... . 

D·10 ICON/UXV·NET 



( 

Introduction to Internet Protocols 

If we represent the IP header by an "I", your file now looks like this: 

IT.... IT.... IT.... IT.... IT.... IT.... IT .... 

Again, the header contains some additional fields that have not been discussed. Most of them 
are beyond the scope of this document. The flags and fragment offset are used to keep track 
of the pieces when a datagram has to be split up. This can happen when datagrams are for­
warded through a network for which they are too big. (This will be discussed a bit more 
below.) The time to live is a number that is decremented whenever the datagram passes 
through a system. When it goes to zero, the datagram is discarded. This is done in case a loop 
develops in the system somehow. Of course this should be impossible, but well-designed net­
works are built to cope with "impossible" conditions. 

At this point, it's possible that no more headers are needed. If your computer happens to have 
a direct phone line connecting it to the destination computer, or to a gateway, it may simply 
send the datagrams out on the line (though likely a synchronous protocol such as HDLO would 
be used, and it would add at least a few octets at the beginning and end). 

2.3. The Ethernet level 

However most of our networks these days use Ethernet. So now we have to describe Ethernet's 
headers. Unfortunately, Ethernet has its own addresses. The people who designed Ethernet 
wanted to make sure that no two machines would end up with the same Ethernet address. 
Furthermore, they didn't want the user to have to worry about assigning addresses. So each 
Ethernet controller comes with an address builtin from the factory. In order to make sure that 
they would never have to reuse addresses, the Ethernet designers allocated 48 bits for the Eth­
ernet address. People who make Ethernet equipment have to register with a central authority, 
to make sure that the numbers they assign don't overlap any other manufacturer. Ethernet is 
a "broadcast medium". That is, it is in effect like an old party line telephone. When you send 
a packet out on the Ethernet, every machine on the n~twork sees the packet. So something is 
needed to make sure that the right machine gets it. As you might guess, this involves the Eth­
ernet header. Every Ethernet packet has a 14-octet header that includes the source and desti­
nation Ethernet address, and a type code. Each machine is supposed to pay attention only to 
packets with its own Ethernet address in the destination field. (It's perfectly possible to cheat, 
which is one reason that Ethernet communications are not terribly secure.) Note that there is 
no connection between the Ethernet address and the Internet address. Each machine has to 
have a table of what Ethernet address corresponds to what Internet address. (We will describe 
how this table is constructed a bit later.) In addition to the addresses, the header contains a 
type code. The type code is to allow for several different protocol families to be used on the 
same network. So you can use TOP lIP, DECnet, Xerox NS, etc. at the same time. Each of 
them will put a different value in the type field. Finally, there is a checksum. The Ethernet 
controller computes a checksum of the entire packet. When the other end receives the packet, 
it recomputes the checksum, and throws the packet away if the answer disagrees with the ori­
ginal. The checksum is put on the end of the packet, not in the header. The final result is 
that your message looks like this: 

Appendix D - Internet Protocoll D·11 



Introduction to Internet Protocols 

+-+-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-+ 

i+ 
Etherne~ destination address (first 32 bits) 

1 1 1 II+-I 1 1 1 1 1 II+-I 1 1 1 1 1 1 1 1 I +-+-+-+-+-+-+ 

i+ 
Ethernet dest (last 16 bits) :Ethernet source (first 16 bits): 

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1-+-+-+-+-+-+-+-+-+ 

i+ 
Ethernet source address (last 32 bits) 

+-+-+-+-+ 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 II+-+-+-+ 1 1 I I 

i+ 
Type code 

I I I 1 1 I 1 I 1 1 I I 1 1 I I I I 1 I 1 I I I 1 I 1 1 1 1 1 

i+ 
IP header, then TOP header, then your data 

ICONtUXV·NET 

\ 

"\ 



( 

( 

(' 

Introduction to Internet Protocols 

end of your data 
+ I I I I +-+-+-+ I I I I I I 1-+-+-+-+-+-+ I I I I +-+-+-+-+-+ 

i+ 
Ethernet Checksum 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

i+ 

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file 
now looks like this: 

EIT .... C EIT .... C EIT .... C EIT .... C EIT .... C 

When these packets are received by the other end, of course all the headers are removed. The 
Ethernet interface removes the Ethernet header and the checksum. It looks at the type code. 
Since the type code is the one assigned to IP, the Ethernet device driver passes the datagram 
up to IP. IP removes the IP header. It looks at the IP protocol field. Since the protocol type 
is TCP, it passes the datagram up to TCP. TCP now looks at the sequence number. It uses 
the sequence numbers and other information to combine all the datagrams into the original 
file. 

The ends our initial summary of TCP lIP. There are still some crucial concepts we haven't 
gotten to, so we'll now go back and add details in several areas. (For detailed descriptions of 
the items discussed here see, RFC 793 for TCP, RFC 791 for IP, and RFC's 894 and 826 for 
sending IP over Ethernet.) 

3. Well-known sockets and the applications layer 

So far, we have described how a stream of data is broken up into datagrams, sent to another 
computer, and put back together. However something more is needed in order to accomplish 
anything useful. There has to be a way for you to open a connection to a specified computer, 
log into it, tell it what file you want, and control the transmission of the file. (If you have a 
different application in mind, e.g. computer mail, some analogous protocol is needed.) This is 
done by "application protocols". The application protocols run "on top" of TCP lIP. That is, 
when they want to send a message, they give the message to TCP. TCP makes sure it gets 

Appendix 0 - Internet Protocols 0·13 



Introduction to Internet Protocols 

delivered to the other end. Because TOP and IP take care of all the networking details, the 
applications protocols can treat a network connection as if it were a simple byte stream, like a 
terminal or phone line. 

Before going into more details about applications programs, we have to describe how you find 
an application. Suppose you want to send a file to a computer whose Internet address is 
128.6.4.7. To start the process, you need more than just the Internet address. You have to 
connect to the FTP server at the other end. In general, network programs are specialized for a 
specific set of tasks. Most systems have separate programs to handle file transfers, remote ter­
minal logins, mail, etc. When you connect to 128.6.4.7, you have to specify that you want to 
talk to the FTP server. This is done by having "well-known sockets" for each server. Recall 
that TOP uses port numbers to keep track of individual conversations. User programs nor­
mally use more or less random port numbers. However specific port numbers are assigned to 
the programs that sit waiting for requests. For example, if you want to send a file, you will 
start a program called "ftp". It will open a connection using some random number, say 1234, 
for the port number on its end. However it will specify port number 21 for the other end. This 
is the official port number for the FTP server. Note that there are two different programs 
involved. You run ftp on your side. This is a program designed to accept commands from your 
terminal and pass them on to the other end. The program that you talk to on the other 
machine is the FTP server. It is designed to accept commands from the network connection, 
rather than an interactive terminal. There is no need for your program to use a well-known 
socket number for itself. Nobody is trying to find it. However the servers have to have well­
known numbers, so that people can open connections to them and start sending them com­
mands. The official port numbers for each program are given in "Assigned Numbers". 

Note that a connection is actually described by a set of 4 numbers: the Internet address at 
each end, and the TOP port number at each end. Every datagram has all four of those 
numbers in it. (The Internet addresses are in the IP header, and the TOP port numbers are in 
the TOP header.) In order to keep things straight, no two connections can have the same set 
of numbers. However it is enough for anyone number to be different. For example, it is per­
fectly possible for two different users on a machine to be sending files to the same other 
machine. This could result in connections with the following parameters: 

center,allbox; 
c c c. 

Internet addresses' TCP ports 
connection 1 128.6.4.194, 128.6.4.7 1234, 21 
connection 2 128.6.4.194, 128.6.4.7 1235, 21 

Since the same machines are involved, the Internet addresses are the same. Since they are 
both doing file transfers, one end of the connection involves the well-known port number for 
FTP. The only thing that differs is the port number for the program that the users are run­
ning. That's enough of a difference. Generally, at least one end of the connection asks the 
network software to assign it a port number that is guaranteed to be unique. Normally, it's 
the user's end, since the server has to use a well-known number. 

Now that we know how to open connections, let's get back to the applications programs. As 
mentioned earlier, once TOP has opened a connection, we have something that might as well 

D·14 ICON/UXV·NET 



( 

~ .. 

Introduction to Internet Protocols 

be a simple wire. All the hard parts are handled by TCP and IP. However we still need some 
agreement as to what we send over this connection. In effect this is simply an agreement on 
what set of commands the application will understand, and the format in which they are to be 
sent. Generally, what is sent is a combination of commands and data. They use context to 
differentiate. For example, the mail protocol works like this: Your mail program opens a con­
nection to the mail server at the other end. Your program gives it your machine's name, the 
sender of the message, and the recipients you want it sent to. It then sends a command saying 
that it is starting the message. At that point, the other end stops treating what it sees as 
commands, and starts accepting the message. Your end then starts sending the text of the 
message. At the end of the message, a special mark is sent (a dot in the first column). After 
that, both ends understand that your program is again sending commands. This is the sim­
plest way to do things, and the one that most applications use. 

File transfer is somewhat more complex. The file transfer protocol involves two different con­
nections. It starts out just like mail. The user's program sends commands like "log me in as 
this user", "here is my password", "send me the file with this name". However once the com­
mand to send data is sent, a second connection is opened for the data itself. It would certainly 
be possible to send the data on the same connection, as mail does. However file transfers often 
take a long time. The designers of the file transfer protocol wanted to allow the user to con­
tinue issuing commands while the transfer is going on. For example, the user might make an 
inquiry, or he might abort the transfer. Thus the designers felt it was best to use a separate 
connection for the data and leave the original command connection for commands. (It is also 
possible to open command connections to two different computers, and tell them to send a file 
from one to the other. In that case, the data couldn't go over the command connection.) 

Remote terminal connections use another mechanism still. For remote logins, there is just one 
connection. It normally sends data. When it is necessary to send a command (e.g. to set the 
terminal type or to change some mode), a special character is used to indicate that the next 
character is a command. If the user happens to type that special character as data, two of 
them are sent. 

We are not going to describe the application protocols in detail in this document. It's better to 
read the RFC's yourself. However there are a couple of common conventions used by applica­
tions that will be described here. First, the common network representation: TCP lIP is 
intended to be usable on any computer. Unfortunately, not all computers agree on how data is 
represented. There are differences in character codes (ASCII vs. EBCDIC), in end of line con­
ventions (carriage return, line feed, or a representation using counts), and in whether terminals 
expect characters to be sent individually or a line at a time. In order to allow computers of 
different kinds to communicate, each applications protocol defines a standard representation. 
Note that TCP and IP do not care about the representation. TCP simply sends octets. How­
ever the programs at both ends have to agree on how the octets are to be interpreted~ The 
RFC for each application specifies the standard representation for that application. Normally 
it is "net ASCII". This uses ASCII characters, with end of line denoted by a carriage return 
followed by a line feed. For remote login, thE(re is also a definition of a "standard terminal", 
which turns out to be a half-duplex terminal with echoing happening on the local machine. 
Most applications also make provisions for the two computers to agree on other representa­
tions that they may find more convenient. For example, PDP-lO's have 36-bit words. There is 

Appendix D - Internet Protocols D-15 



Introduction to Internet Protocols 

a way that two PDP-10's can agree to send a 36-bit binary file. Similarly, two systems that 
prefer full-duplex terminal conversations can agree on that. However each application has a 
standard representation, which every machine must support. 

3.1. An example application: SMTP 

In order to give a bit better idea what is involved in the application protocols, I'm going to 
show an example of SMTP, which is the mail protocol. (SMTP is "simple mail transfer proto­
col.) We assume that a computer called TOPAZ.RUTGERS.EDU wants to send the following 
message. 

Date: Sat, 27 Jun 87 13:26:31 EDT 
From: hedrick@topaz.rutgers.edu 
To: levy@-ed.rutgers.edu 
Subject: meeting 

Let's get together Monday at 1pm. 

First, note that the format of the message itself is described by an Internet standard (RFC 
822). The standard specifies the fact that the message must be transmitted as net ASCII (i.e. 
it must be ASCII, with carriage return/linefeed to delimit lines). It also describes the general 
structure, as a group of header lines, then a blank line, and then the body of the message. 
Finally, it describes the syntax of the header lines in detail. Generally they consist of a key­
word and then a value. 

Note that the addressee is indicated as LEVY@RED.RUTGERS.EDU. Initially, addresses were 
simply "person at machine". However recent standards have made things more flexible. There 
are now provisions for systems to handle other systems' mail. This can allow automatic for­
warding on behalf of computers not connected to the Internet. It can be used to direct mail 
for a number of .systems to one central mail server. Indeed there is no requirement that an 
actual computer by the name of RED.RUTGERS.EDU even exist. The name servers could be 
set up so that you mail to department names, and each department's mail is routed automati­
cally to an appropriate computer. It is also possible that the part before the @ is something 
other than a user name. It is possible for programs to be set up to process mail. There are 
also provisions to handle mailing lists, and generic names such as "postmaster" or "operator". 

The way the message is to be sent to another system is described by RFC's 821 and 974. The 
program that is going to be doing the sending asks the name server several queries to deter­
mine where to route the message. The first query is to find out which machines handle mail 
for the name RED.RUTGERS.EDU. In this case, the server replies that RED.RUTGERS.EDU 
handles its own mail. The program then asks for the address of RED.RUTGERS.EDU, which is 
128.6.4.2. Then the mail program opens a TCP connection to port 25 on 128.6.4.2. Port 25 is 
the well-known socket used for receiving mail. Once this connection is established, the mail 
program starts sending commands. Here is a typical conversation. Each line is labelled as to 
whether it is from TOPAZ or RED. Note that TOPAZ initiated the connection: 

D·18 ICON/UXV·N ET 



( 

(' 

Introduction to Internet Protocols 

RED 220 RED.RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:18 EDT 
TOPAZ HELO topaz.rutgers.edu 
RED 250 RED.RUTGERS.EDU - Hello, TOPAZ.RUTGERS.EDU 
TOPAZ MAIL From:<hedrick@topaz.rutgers.edu> 
RED 250 MAIL accepted 
TOPAZ RCPT To:<levy@red.rutgers.edu> 
RED 250 Recipient accepted 
TOPAZ DATA 
RED 354 Start mail input; end with <CRLF>.<CRLF> 
TOPAZ Date: Sat, 27 Jun 87 13:26:31 EDT 
TOPAZ From: hedrick@topaz.rutgers.edu 
TOPAZ To: levy@red.rutgers.edu 
TOPAZ Subject: meeting 
TOPAZ 
TOPAZ Let's get together Monday at Ipm. 
TOPAZ 
RED 250 OK 
TOPAZ qUIT 
RED 221 RED.RUTGERS.EDU Service closing transmission channel 

First, note that commands all use normal text. This is typical of the Internet standards. 
Many of the protocols use standard ASCII commands. This makes it easy to watch what is 
going on and to diagnose problems. For example, the mail program keeps a log of each conver­
sation. If something goes wrong, the log file can simply be mailed to the postmaster. Since it 
is normal text, he can see what was going on. It also allows a human to interact directly with 
the mail server, for testing. (Some newer protocols are complex enough that this is not practi­
cal. The commands would have to have a syntax that would require a significant parser. 
Thus there is a tendency for newer protocols to use binary formats. Generally they are struc­
tured like C or Pascal record structures.) Second, note that the responses all begin with 
numbers. This is also typical of Internet protocols. The allowable responses are defined in the 
protocol. The numbers allow the user program to respond unambiguously. The rest of the 
response is text, which is normally for use by any human who may be watching or looking at a 
log. It has no effect on the operation of the programs. (However there is one point at which 
the protocol uses part of the text of the response.) The commands themselves simply allow the 
mail program on one end to tell the mail server the information it needs to know in order to 
deliver the message. In this case, the mail server could get the information by looking at the 
message itself. But for more complex cases, that would not be safe. Every session must begin 
with a HELO, which gives the name of the system that initiated the connection. Then the 
sender and recipients are specified. (There can be more than one RCPT command, if there are 
several recipients.) Finally the data itself is sent. Note that the text of the message is ter­
minated by a line containing just a period. (If such a line appears in the message, the period is 
doubled.) After the message is accepted, the sender can send another message, or terminate 
the session as in the example above. 

Generally, there is a pattern to the response numbers. The protocol defines the specific set of 
responses that can be sent as answers to any given command. However programs that don't 
want to analyze them in detail can just look at the first digit. In general, responses that begin 

Appendix D - In,ternet Protocol, D-17 



Introduction to Internet Protocols 

with a 2 indicate success. Those that begin with 3 indicate that some further action is needed, 
as shown above. 4 and 5 indicate errors. 4 is a "temporary" error, such as a disk filling. The 
message should be saved, and tried again later. 5 is a permanent error, such as a non-existent 
recipient. The message should be returned to the sender with an error message. 

(For more details about the protocols mentioned in this section, see RFO's 821/822 for mail, 
RFO 959 for file transfer, and RFO's 854/855 for remote logins. For the well-known port 
numbers, see the current edition of Assigned Numbers, and possibly RFO 814.) 

4. Protocols other than TCP: UDP and ICMP 

So far, we have described only connections that use TOP. Recall that TOP is responsible for 
breaking up messages into datagrams, and reassembling them properly. However in many 
applications, we have messages that will always fit in a single datagram. An example is name 
lookup. When a user attempts to make a connection to another system, he will generally 
specify the system by name, rather than Internet address. His system has to translate that 
name to an address before it can do anything. Generally, only a few systems have the data­
base used to translate names to addresses. So the user's system will want to send a query to 
one of the systems that has the database. This query is going to be very short. It will cer­
tainly fit in one datagram. So will the answer. Thus it seems silly to use TOP. Of course 
TOP does more than just break things up into datagrams. It also makes sure that the data 
arrives, resending datagrams where necessary. But for a question that fits in a single 

/' - '. , \ 

datagram, we don't need all the complexity of TOP to do this. If we don't get an answer after "-
a few seconds, we can just ask again. For applications like this, there are alternatives to TOP. 

The most common alternative is UDP ("user datagram protocol"). UDP is designed for appli­
cations where you don't need to put sequences of datagrams together. It fits into the system 
much like TOP. There is a UDP header. The network software puts the UDP header on the 
front of your data, just as it would put a TOP header on the front of your data. Then UDP 
sends the data to IP, which adds the IP header, putting UDP's protocol number in the protocol 
field instead of TOP's protocol number. However UDP doesn't do as much as TOP does. It 
doesn't split data into multiple datagrams. It doesn't keep track of what it has sent so it can 
resend if necessary. About all that UDP provides is port numbers, so that several programs 
can use UDP at once. UDP port numbers are used just like TOP port numbers. There are 
well-known port numbers for servers that use UDP. Note that the UDP header is shorter than 
a TOP header. It still has source and destination port numbers, and a checksum, but that's 
about it. No sequence number, since it is not needed. UDP is used by the protocols that han­
dle name lookups (see lEN 116, RFO 882, and RFO 883), and a number of similar protocols. 

Another alternative protocol is IOMP ("Internet control message protocol"). IOMP is used for 
error messages, and other messages intended for the TOP lIP software itself, rather than any 
particular user program. For example, if you attempt to connect to a host, your system may 
get back an IOMP message saying "host unreachable". IOMP can also be used to find out some 
information about the network. See RFO 792 for details of IOMP. IOMP is similar to UDP, in 
that it handles messages that fit in one datagram. However it is even simpler than UDP. It 
doesn't even have port numbers in its header. Since all IOMP messages are interpreted by the 

ICON/UXV·NET 



(~ 

Introduction to Internet Protocols 

network software itself, no port numbers are needed to say where a ICMP message is supposed 
to go. 

5. Keeping track of names and information: the domain system 

As we indicated earlier, the network software generally needs a 32-bit Internet address in order 
to open a connection ~r send a datagram. However users prefer to deal with computer names 
rather than numbers. Thus there is a database that allows the software to look up a name 
and find the corresponding number. When the Internet was small, this was easy. Each system 
would have a file that listed all of the other systems, giving both their name and number. 
There are now too many computers for this approach to be practical. Thus these files have 
been replaced by a set of name servers that keep track of host names and the corresponding 
Internet addresses. (In fact these servers are somewhat more general than that. This is just 
one kind of information stored in the domain system.) Note that a set of interlocking servers 
are used, rather than a single central one. There are now so many different institutions con­
nected to the Internet t.hat it would be impractical for them to notify a central authority 
whenever they installed or moved a computer. Thus naming authority is delegated to indivi­
dual institutions. The name servers form a tree, corresponding to institutional structure. The 
names themselves follow a similar structure. A typical example is the name 
BORAX.LCS.MIT.EDU. This is a computer at the Laboratory for Computer Science (LCS) at 
MIT. In order to find its Internet address, you might potentially have to consult 4 different 
servers. First, you would ask a central server (called the root) where the EDU server is. EDU 
is a server that keeps track of educational institutions. The root server would give you the 
names and Internet addresses of several servers for EDU. (There are several servers at each 
level, to allow for the possibly that one might be down.) You would then ask EDU where the 
server for MIT is. Again, it would give you names and Internet addresses of several servers for 
MIT. Generally, not all of those servers would be at MIT, to allow for the possibility of a gen­
eral power failure at MIT. Then you would ask MIT where the server for LCS is, and finally 
you would ask one of the LCS servers about BORAX. The final result would be the Internet 
address for BORAX.LCS.MIT.EDU. Each of these levels is referred to as a "domain". The 
entire name, BORAX.LCS.MIT.EDU, is called a "domain name". (So are the names of the 
higher-level domains, such as LCS.MIT.EDU, MIT.EDU, and EDU.) 

Fortunately, you don't really have to go through all of this most of the time. First of all, the 
root name servers also happen to be the name servers for the top-level domains such as EDU. 
Thus a single query to a root server will get you to MIT. Second, software generally 
remembers answers that it got before. So once we look up a name at LCS.MIT.EDU, our 
software remembers where to find servers for LCS.MIT.EDU, MIT.EDU, and EDU. It also 
remembers the translation of BORAX.LCS.MIT.EDU. Each of these pieces of information has 
a "time to live" associated with it. Typically this is a few days. After that, the information 
expires and has to be looked up again. This allows institutions to change things. 

The domain system is not limited to finding out Internet addresses. Each domain name is a 
node in a database. The node can have records that define a number of different properties. 
Examples are Internet address, computer type, and a list of services provided by a computer. 
A program can ask for a specific piece of information, or all information about a given name. 
It is possible for a nod~ in the database to be marked as an "alias" (or nickname) for another 

Appendix 0 - Internet Protocols 0·19 



Introduction to Internet Protocols 

node. It is also possible to use the domain system to store information about users, mailing 
lists, or other objects .. 

There is an Internet standard defining the operation of these databases, as well as the proto­
cols used to make queries of them. Every network utility has to be able to make such queries, 
since this is now the official way to evaluate host names. Generally utilities will talk to a 
server on their own system. This server will take care of contacting the other servers for them. 
This keeps down the amount of code that has to be in each application program. 

The domain system is particularly important for handling computer mail. There are entry 
types to define what computer handles mail for a given name, to specify where an individual is 
to receive mail, and to define mailing lists. 

(See RFC's 882, 883, and 973 for specifications of the domain system. RFC 974 defines the use 
of the domain system in sending mail.) 

6. Routing 

The description above indicated that the IP implementation is responsible for getting 
datagrams to the destination indicated by the destination address, but little was said about 
how this would be done. The task of finding how to get a datagram to its destination is 
referred to as "routing". In fact many of the details depend upon the particular implementa­
tion. However some general things can be said. 

First, it is necessary to understand the model on which IP is based. IP assumes that a system 
is attached to some local network. We assume that the system can send datagrams to any 
other system on its own network. (In the case of Ethernet, it simply finds the Ethernet address 
of the destination system, and puts the datagram out on the Ethernet.) The problem comes 
when a system is asked to send a datagram to a system on a different network. This problem 
is handled by gateways. A gateway is a system that connects a network with one or more 
other networks. Gateways are often normal computers that happen to have more than one 
network interface. For example, we have a Unix machine that has two different Ethernet 
interfaces. Thus it is connected to networks 128.6.4 and 128.6.3. This machine can act as a 
gateway between those two networks. The software on that machine must be set up so that it 
will forward datagrams from one network to the other. That is, if a machine on network 
128.6.4 sends a datagram to the gateway, and the datagram is addressed to a machine on net­
work 128.6.3, the gateway will forward the datagram to the destination. Major communica­
tions centers often have gateways that connect a number of different networks. (In many 
cases, special-purpose gateway systems provide better performance or reliability than general­
purpose systems acting as gateways. A number of vendors sell such systems.) 

Routing in IP is based entirely upon the network number of the destination address. Each 
computer has a table of network numbers. For each network number, a gateway is listed. 
This is the gateway to be used to get to that network. Note that the gateway doesn't have to 
connect directly to the network. It just has to be the best place to go to get tlJ(:re. For exam­
ple at Rutgers, our interface to NSFnet is at the John von Neuman Supercomputer Center 

D·20 ICON/UXV·NET 



( 

Introduction to Internet Protocols 

(JvNC). Our connection to JvNC is via a high-speed serial line connected to a gateway whose 
address is 128.6.3.12. Systems on net 128.6.3 will list 128.6.3.12 as the gateway for many off­
campus networks. However systems on net 128.6.4 will list 128.6.4.1 as the gateway to those 
same off-campus networks. 128.6.4.1 is the gateway between networks 128.6.4 and 128.6.3, so 
it is the first step in getting to JvNC. 

When a computer wants to send a datagram, it first checks to see if the destination address is 
on the system's own local network. If so, the datagram can be sent directly. Otherwise, the 
system expects to find an entry for the network that the destination address is on. The 
datagram is sent to the gateway listed in that entry. This table can get quite big. For exam­
ple, the Internet now includes several hundred individual networks. Thus various strategies 
have been developed to reduce the size of the routing table. One strategy is to depend upon 
"default routes". Often, there is only one gateway out of a network. This gateway might con­
nect a local Ethernet to a campus-wide backbone network. In that case, we don't need to have 
a separate entry for every network in the world. We simply define that gateway as a 
"default". When no specific route is found for a datagram, the datagram is sent to the default 
gateway. A default gateway can even be used when there are several gateways on a network. 
There are provisions for gateways to send a message saying "I'm not the best gateway -- use 
this one instead." (The message is sent via ICMP. See RFC 792.) Most network software is 
designed to use these messages to add entries to their routing tables. Suppose network 128.6.4 
has two gateways, 128.6.4.59 and 128.6.4.1. 128.6.4.59 leads to several other internal Rutgers 
networks. 128.6.4.1 leads indirectly to the NSFnet. Suppose we set 128.6.4.59 as a default 
gateway, and have no other routing table entries. Now what happens when we need to send a 
datagram to MIT? MIT is network 18. Since we have no entry for network 18, the datagram 
will be sent to the default, 128.6.4.59. As it happens, this gateway is the wrong one. So it will 
forward the datagram to 128.6.4.1. But it will also send back an error saying in effect: "to get 
to network 18, use 128.6.4.1". Our software will then add an entry to the routing table. Any 
future datagrams to MIT will then go directly to 128.6.4.1. (The error message is sent using 
the ICMP protocol. The message type is called "ICMP redirect. ") 

Most IP experts recommend that individual computers should not try to keep track of the 
entire network. Instead, they should start with default gateways, and let the gateways tell 
them the routes, as just described. However this doesn't say how the gateways should find out 
about the routes. The gateways can't depend upon this strategy. They have to have fairly 
complete routing tables. For this, some sort of routing protocol is needed. A routing protocol 
is simply a technique for the gateways to find each other, and keep up to date about the best 
way to g'et to every network. RFC 1009 contains a review of gateway design and routing. 
However rip.doc is probably a better introduction to the subject. It contains some tutorial 
material, and a detailed description of the most commonly-used routing protocol. 

7. Details about Internet addresses: subnets and broadcasting 

As indicated earlier, Internet addresses are 32-bit numbers, normally written as 4 octets (in 
decimal), e.g. 128.6.4.7. There are actually 3 different types of address. The problem is that 
the address has to indicate both the network and the host within the network. It was felt that 
eventually there would be lots of networks. Many of them would be small; but probably 24 bits 
would be needed to represent all the IP networks. It was also felt that some very big networks 

Appendix 0 - Internet Protocol. 0·21 



Introduction to Internet Protocols 

might need 24 bits to represent all of their hosts. This would seem to lead to 48 bit addresses. l' 
But the designers really wanted to use 32 bit addresses. So they adopted a kludge. The .~./ 
assumption is that most of the networks will be small. So they set up three different ranges of 
address. Addresses beginning with 1 to 126 use only the first octet for the network number. 
The other three octets are available for the host number. Thus 24 bits are available for hosts. 
These numbers are used for large networks. But there can only be 126 of these very big net-
works. The Arpanet is one, and there are a few large commercial networks. But few normal 
organizations get one of these "class A" addresses. For normal large organizations, "class B" 
addresses are used. Class B addresses use the first two octets for the network number. Thus 
network numbers are 128.1 through 191.254. (We avoid 0 and 255, for reasons that we see 
below. We also avoid addresses beginning with 127, because that is used by some systems for 
special purposes.) The last two octets are available for host addesses, giving 16 bits of host 
address. This allows for 64516 computers, which should be enough for most organizations. (It 
is possible to get more than one class B address, if you run out.) Finally, class C addresses use 
three octets, in the range 192.1.1 to 223.254.254. These allow only 254 hosts on each network, 
but there can be lots of these networks. Addresses above 223 are reserved for future use, as 
class D and E (which are currently not defined). 

Many large organizations find it convenient to divide their network number into "subnets". 
For example, Rutgers has been assigned a class B address, 128.6. We find it convenient to use 
the third octet of the address to indicate which Ethernet a host is on. This division has no sig­
nificance outside of Rutgers. A computer at another institution would treat all datagrams 
addressed to 128.6 the same way. They would not look at the third octet of the address. Thus 
computers outside Rutgers would not have different routes for 128.6.4 or 128.6.5. But inside 
Rutgers, we treat 128.6.4 and 128.6.5 as separate networks. In effect, gateways inside Rutgers 
have separate entries for each Rutgers subnet, whereas gateways outside Rutgers just have one 
entry for 128.6. Note that we could do exactly the same thing by using a separate class C 
address for each Ethernet. As far as Rutgers is concerned, it would be just as convenient for us 
to have a number of class C addresses. However using class C addresses would make things 
inconvenient for the re'st of the world. Every institution that wanted to talk to us would have 
to have a separate entry for each one of our networks. If every institution did this, there 
would be far too many networks for any reasonable gateway to keep track of. By subdividing 
a class B network, we hide our internal structure from everyone else, and save them trouble. 
This subnet strategy requires special provisions in the network software. It is described in 
RFC 950. 

o and 255 have special meanings. 0 is reserved for machines that don't know their address. In 
certain circumstances it is possible for a machine not to know the number of the network it is 
on, or even its own host address. For example, 0.0.0.23 would be a machine that knew it was 
host number 23, but didn't know on what network. 

255 is used for "broadcast". A broadcast is a message that you want every system on the net­
work to see. Broadcasts are used in some situations where you don't know who to talk to. 
For example, suppose you need to look up a host name and get its Internet address. Sometimes 
you don't know the address of the nearest name server. In that case, you might send the 
request as a broadcast. There are also cases where a number of systems are interested in 
information. It is then less expensive to send a single broadcast than to send datagrams 

D·n ICON/UXV·NET 



( 

Introduction to Internet Protocols 

individually to each host that is interested in the information. In order to send a broadcast, 
you use an address that is made by using your network address, with all ones in the part of the 
address where the host number goes. For example, if you are on network 128.6.4, you would 
use 128.6.4.255 for broadcasts. How this is actually implemented depends upon the medium. It 
is not possible to send broadcasts on the Arpanet, or on point to point lines. However it is pos­
sible on an Ethernet. If you use an Ethernet address with all its bits on (all ones), every 
machine on the Ethernet is supposed to look at that datagram. 

Although the official broadcast address for network 128.6.4 is now 128.6.4.255, there are some 
other addresses that may be treated as broadcasts by certain implementations. For conveni­
ence, the standard also allows 255.255.255.255 to be used. This refers to all hosts on the local 
network. It is often simpler to use 255.255.255.255 instead of finding out the network number 
for the local network and forming a broadcast address such as 128.6.4.255. In addition, certain 
older implementations may use 0 instead of 255 to form the broadcast address. Such imple­
mentations would use 128.6.4.0 instead of 128.6.4.255 as the broadcast address on network 
128.6.4. Finally, certain older implementations may not understand about subnets. Thus they 
consider the network number to be 128.6. In that case, they will assume a broadcast address 
of 128.6.255.255 or 128.6.0.0. Until support for broadcasts is implemented properly, it can be a 
somewhat dangerous feature to use. 

Because 0 and 255 are used for unknown and broadcast addresses, normal hosts should never 
be given addresses containing 0 or 255. Addresses should never begin with 0, 127, or any 
number above 223. Addresses violating these rules are sometimes referred to as "Martians", 
because of rumors that the" Central University of Mars is using network 225. 

8. Datagram fragmentation and reassembly 

TCP lIP is designed for use with many different kinds of network. Unfortunately, network 
designers do not agree about how big packets can be. Ethernet packets can be 1500 octets 
long. Arpanet packets have a maximum of around 1000 octets. Some very fast networks have 
much larger packet sizes. At first, you might think that IP should simply settle on the smal­
lest possible size. Unfortunately, this would cause serious performance problems. \Vhen 
transferring large files, big packets are far more efficient than small ones. So we want to be 
able to use the largest packet size possible. But we also want to be able to handle networks 
with small limits. There are two provisions for this. First, TCP has the ability to "negotiate" 
about datagram size. When a TCP connection first opens, both ends can send the maximum 
datagram size they can handle. The smaller of these numbers is used for the rest of the con­
nection. This allows two implementations that can handle big datagrams to use them, but also 
lets them talk to implementations that can't handle them. However this doesn't completely 
solve the problem. The most serious problem is that the two ends don't necessarily know 
about all of the steps in between. For example, when sending data between Rutgers and 
Berkeley, it is likely that both computers will be on Ethernets. Thus they will both be 
prepared to handle 1500-0ctet datagrams. However the connection will at some point end up 
going over the Arpanet. It can't handle packets of that size. For this reason, there are provi­
sions to split datagrams up into pieces. (This is referred to as "fragmentation".) The IP 
header contains fields indicating the a datagram has been split, and enough information to let 
the pieces be put back together. If a gateway connects an Ethernet to the Arpanet, it must be 

Appendix D - Internet Protocol. D·23 



Introduction to Internet Protocols 

prepared to take 1500-0ctet Ethernet packets and split them into pieces that will fit on the 
Arpanet. Furthermore, every host implementation of TCP fIP must be prepared to accept 
pieces and put them back together. This is referred to as "reassembly". 

TCP lIP implementations differ in the approach they take to deciding on datagram size. It is 
fairly common for implementations to use 576-byte datagrams whenever they can't verify that 
the entire path is able to handle larger packets. This rather conservative strategy is used 
because of the number of implementations with bugs in the code to reassemble fragments. 
Implementors often try to avoid ever having fragmentation occur. Different implementors take 
different approaches to deciding when it is safe to use large datagrams. Some use them only 
for the local network. Others will use them for any network on the same campus. 576 bytes is 
a "safe" size, which every implementation must support. 

9. Ethernet encapsulation: ARP 

There was a brief discussion earlier about what IP datagrams look like on an Ethernet. The 
discussion showed the Ethernet header and checksum. However it left one hole: It didn't say 
how to figure out what Ethernet address to use when you want to talk to a given Internet 
address. In fact, there is a separate protocol for this, called ARP ("address resolution proto­
col"). (Note by the way that ARP is not an IP protocol. That is, the ARP datagrams do not 
have IP headers.) Suppose you are on system 128.6.4.194 and you want to connect to system 
128.6.4.7. Your system will first verify that 128.6.4.7 is on the same network, so it can talk 
directly via Ethernet. Then it will look up 128.6.4.7 in its ARP table, to see if it already knows 
the Ethernet address. If so, it will stick on an Ethernet header, and send the packet. But sup­
pose this system is not in the ARP table. There is no way to send the packet, because you 
need the Ethernet address. So it uses the ARP protocol to send an ARP request. Essentially 
an ARP request says "I need the Ethernet address for 128.6.4.7". Every system listens to ARP 
requests. When a system sees an ARP request for itself, it is required to respond. So 128.6.4.7 
will see the request, and will respond with an ARP reply saying in effect "128.6.4.7 is 
8:0:20:1:56:34". (Recall that Ethernet addresses are 48 bits. This is 6 octets. Ethernet 
addresses are conventionally shown in hex, using the punctuation shown.) Your system will 
save this information in its ARP table, so future packets will go directly. Most systems treat 
the ARP table as a cache, and clear entries in it if they have not been used in a certain period 
of time. 

Note by the way that ARP requests must be sent as "broadcasts". There is no way that an 
ARP request can be sent directly to the right system. After all, the whole reason for sending 
an ARP request is that you don't know the Ethernet address. So an Ethernet address of all 
ones is used, i.e. ff:ff:ff:ff:ff:ff. By convention, every machine on the Ethernet is required to pay 
attention to packets with this as an address. So every system sees every ARP requests. They 
all look to see whether the request is for their own address. If so, they respond. If not, they 
could just ignore it. (Some hosts will use ARP requests to update their knowledge about other 
hosts on the network, even if the request isn't for them.) Note that packets whose IP address 
indicates broadcast (e.g. 255.255.255.255 or 128.6.4.255) are also sent with an Ethernet address 
that is all ones. 

D·24 ICON/UXV·NET 



f 

Introduction to Internet Protocols 

10. Getting more information 

This directory contains documents describing the major protocols. There are literally hundreds 
of documents, so we have chosen the ones that seem most important. Internet standards are 
called RFC's. RFC stands for Request for Comment. A proposed standard is initially issued as 
a proposal, and given an RFC number. When it is finally accepted, it is added to Official 
Internet Protocols, but it is still referred to by the RFC number. We have also included two 
lEN's. (lEN's used to be a separate classification for more informal documents. This classifi­
cation no longer exists -- RFC's are now used for all official Internet documents, and a mailing 
list is used for more informal reports.) The convention is that whenever an RFC is revised, the 
revised version gets a new number. This is fine for most purposes, but it causes problems with 
two documents: Assigned Numbers and Official Internet Protocols. These documents are being 
revised all the time, so the RFC number keeps changing. You will have to look in rfc-index.txt 
to find the number of the latest edition. Anyone who is seriously interested in TCP /IP should 
read the RFC describing IP (791). RFC 1009 is also useful. It is a specification for gateways 
to be used by NSFnet. As such, it contains an overview of a lot of the TCP /IP technology. 
You should probably also read the description of at least one of the application protocols, just 
to get a feel for the way things work. Mail is probably a good one (821/822). TCP (793) is of 
course a very basic specification. However the spec is fairly complex, so you should only read 
this when you have the time and patience to think about it carefully. Fortunately, the author 
of the major RFC's (Jon Postel) is a very good writer. The TCP RFC is far easier to read than 
you would expect, given the complexity of what it is describing. You can look at the other 
RFC's as you become curious about their subject matter. 

Appendix D - Internet Prot~col. 0·25 



Introduction to Internet Protocols 

Here is a list of the documents you are more likely to want: 

rfc-index list of all RFO's 

rfc1012 

rfc1011 

rfclOlO 

rfcl009 

rfclOOl/2 

rfc973 

rfc959 

rfc950 

rfc937 

rfc894 

rfc882/3 

rfc854/5 

rfc826 

rfc821/2 

rfc814 

rfc793 

rfc792 

rfc791 

rfc768 

rip.doc 

ien-1l6 

ien-48 

somewhat fuller list of all RFO's 

Official Protocols. It's useful to scan this to see what tasks protocols 
have been built for. This defines which RFO's are actual standards, as 
opposed to requests for comments. 

Assigned Numbers. If you are working with TOP lIP, you will probably 
want a hardcopy of this as a reference. It's not very exciting to read. It 
lists all the offically defined well-known ports and lots of other things. 

NSFnet gateway specifications. A good overview of IP routing and 
gateway technology. 

netBIOS: networking for PO's 

update on domains 

FTP (file transfer) 

subnets 

POP2: protocol for reading mail on PO's 

how IP is to be put on Ethernet, see also rfc825 

domains (the database used to go from host names to Internet address 
and back -- also used to handle UUOP these days). See also rfc973 

telnet - protocol for remote logins 

ARP - protocol for finding out Ethernet addresses 

mail 

names and ports - general concepts behind well-known ports 

TOP 

IOMP 

IP 

UDP 

details of the most commonly-used routing protocol 

old name server (still needed by several kinds of system) 

the Oatenet model, general description of the philosophy behind TOP lIP 

ICON/UXV·NET 



( .. 

Introduction to Internet Protocols 

The following documents are somewhat more specialized. 

rfc813 window and acknowledgement strategies in TCP 

rfc815 datagram reassembly techniques 

rfc816 

rfc817 

rfc879 

rfc896 

rfc827 ,888,904,97 5,985 

fault isolation and resolution techniques 

modularity and efficiency in implementation 

the maximum segment size option in TCP 

congestion control 

EGP and related issues 

To those of you who may be reading this document remotely instead of at Rutgers: The most 
important RFC's have been collected into a three-volume set, the DDN Protocol Handbook. It 
is available from the DDN Network Information Center, SRI International, 333 Ravenswood 
Avenue, Menlo Park, California 94025 (telephone: 800-235-3155). You should be able to get 
them via anonymous FTP from sri-nic.arpa. File names are: 

RFC's: 
rfc:rfc-index.txt 
rfc:rfcxxx.txt 

lEN's: 
ien:ien-index. txt 
ien:ien-xxx. txt 

rip.doc is available by anonymous FTP from topaz.rutgers.edu, as /pub/tcp-ip-docs/rip.doc. 

Sites with access to UUCP but not FTP may be able to retreive them via UUCP from UUCP 
host rutgers. The file names would be 

RFC's: 
/topaz /pu b /pu b /tcp-ip-docs /rf c-index. txt 
/topaz /pu b /pu b /tcp-ip-docs/rfcxxx. txt 

lEN's: 
/topaz/pub /pub /tcp-ip-docs/ien-index. txt 
/topaz /pu b /pu b /tcp-ip-docs/ien-xxx. txt 

/topaz /pu b /pu b /tcp-ip-docs/rip.doc 

Note that SRI-NIC has the entire set of RFC's and lEN's, but rutgers and topaz have only 
those specifically mentioned above. 

Appendix D - Internet Protocols D·27 



Introduction to Internet Protocols 

D·28 ICON/UXV·NET 

'", .. / 

/ 

\ , , / 

} 



c 

Appendix E - Networking 
Implementation Notes 

The following appendix contains a document produced by Samuel J. Leffler, William N. Joy, 
Robert S. Fabry, and Michael J. Karels of the Computer Systems Research Group, Computer 
Science Division, Department of Electrical Engineering and Computer Science at the University 
of California, Berkeley, titled "Networking Implementation Notes, 4.3BSD Edition". The 
document describes the internal structure of the networking facilities developed at U. C. 
Berkeley for the 4.3BSD version of the UNIX® operating system. 

Network Implementation Notes E-I 



E .. II ICONlUXV-NET 

I 



Networking Implementation Notes 
4.3BSD Edition 

Samuel J. Leffler, William N. Joy, Robert S. Fabry, and Michael J. Karels 

Computer Systems Research Group 
Computer Science Division 

Department of Electrical Engineering and Computer Science 
University of California, Berkeley 

Berkeley, CA 94720 

ABSTRACT 

This report describes the internal structure of the networking facilities 
developed for the 4.3BSD version of the C;-JIX* operating system for the V AXt. 
These facilities are based on several central abstractions which structure the 
external (user) view of network communication as well as the internal (system) 
implementation. 

The report documents the internal structure of the networking system. 
The "Berkeley Software Architecture Manual, 4.3BSD Edition" (PS1:6) provides 
a description of the user interface to the networking facilities. 

Revised June 5, 1986 

* UNIX is a trademark of Bell Laboratories. 
t DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation. 

Appendix E - Networking Not .. E·1 



Networking Implementation Notes 

TABLE OF CONTENTS 

1. Introduction 

2. Overview 

3. Goals 

4. Internal address representation 

5. Memory management 

6. Internal layering 
6.1. Socket layer 
6.1.1. Socket state 
6.1.2. Socket data queues 
6.1.3. Socket connection queuing 
6.2. Protocollayer(s) 
6.3. Network-interface layer 
6.3.1. UNIBUS interfac'es 

7. Socket/protocol interface 

8. Protocol/protocol interface 
8.1. pr_output 
8.2. prjnput 
8.3. pr_ctlinput 
8.4. pLctloutput 

9. Protocol/network-interface interface 
9.1. Packet transmission 
9.2. Packet reception 

10. Gateways and routing issues 
10.1. Routing tables 
10.2. Routing table interface 
10.3. User level routing policies 

11. Raw sockets 
11.1. Control blocks 
11.2. Input processing 
11.3. Output processing 

12. Buffering and congestion control 
12.1. Memory management 
12.2. Protocol buffering policies 
12.3. Queue limiting 
12.4. Packet forwarding 

13. Out of band data 

14. Trailer protocols 

Acknowledgements 

References 

E·2 

,_ .. ,/ 

ICON/UXV·NET 



Networking Implementation Notes 

1. Introduction 
This report describes the internal structure of facilities added to the 4.2BSD version of the 

UNIX operating system for the VAX, as modified in the 4.3BSD release. The system facilities 
provide a uniform user interface to networking within UNIX. In addition, the implementation 
introduces a structure for network communications which may be used by system implementors 
in adding new networking facilities. The internal structure is not visible to the user, rather it is 
intended to aid implementors of communication protocols and network services by providing a 
framework which promotes code sharing and minimizes implementation effort. 

The reader is expected to be familiar with the C programming language and system inter­
face, as described in the Berkeley Software Architecture Manual, 4.9BSD Edition [Joy86J. Basic 
understanding of networ:k communication concepts is assumed; where required any additional 
ideas are introduced. 

The remainder of this document provides a description of the system internals, avoiding, 
when possible, those portions which are utilized only by the interprocess communication facili­
ties. 

2. Overview 
If we consider the International Standards Organization's (ISO) Open System Interconnec­

tion (OSI) model of network communication [IS081J [Zimmermann80J, the networking facilities 
described here correspond to a portion of the session layer (layer 3) and all of the transport and 
network layers (layers 2 and 1, respectively). 

The network layer provides possibly imperfect data transport services with minimal 
addressing structure. Addressing at this level is normally host to host, with implicit or explicit 
routing optionally supported by the communicating agents. 

At the transport layer the notions of reliable transfer, data sequencing, flow control, and 
service addressing are normally included. Reliability is usually managed by explicit ack­
nowledgement of data delivered. Failure to acknowledge a transfer results in retransmission of 
the data. Sequencing may be handled by tagging each message handed to the network layer by 
a sequence number and maintaining state at the endpoints of communication to utilize received 
sequence numbers in reordering data which arrives out of order. 

The session layer facilities may provide forms of addressing which are mapped into for­
mats required by the transport layer, service authentication and client authentication, etc. 
Various systems also provide services such as data encryption and address and protocol transla­
tion. 

The following sections begin by describing some of the common data structures and utility 
routines, then examine the internal layering. The contents of each layer and its interface are 
considered. Certain of the interfaces are protocol implementation specific. For these cases 
examples have been drawn from the Internet [Cerf78J protocol family. Later sections cover 
routing issues, the design of the raw socket interface and other miscellaneous topics. 

3. Goals 
The networking system was designed with the goal of supporting multiple protocol fam£lies 

and addressing styles. This required information to be "hidden" in common data structures 
which could be manipulated by all the pieces of the system, but which required interpretation 
only by the protocols which "controlled" it. The system described here attempts to minimize 
the use of shared data structures to those kept by a suite of protocols (a protocol family), and 
those used for rendezvous between "synchronous" and "asynchronous" portions of the system 
(e.g. queues of data packets are filled at interrupt time and emptied based on user requests). 

A major goal of the system was to provide a framework within which new protocols and 
hardware could be easily be supported. To this end, a great deal of effort has been extended to 
create utility routines which hide many of the more complex and/or hardware dependent chores 

Appendix E - Networking Not .. E·3 



Networking Implementation Notes 

of networking. Later sections describe the utility routines and the underlying data structures 
they manipulate. 

4. Internal address representation 
Common to all portions of the system are two data structures. These structures are used 

to represent addresses and various data objects. Addresses, internally are described by the 
sockaddr structure, 

struct sockaddr { 
short 
char 

}i 

saJamilYi 
sa_data[14]i 

1* data format identifier * / 
1* address * / 

All addresses belong to one or more address families which define their format and interpreta­
tion. The sa...Jamily field indicates the address family to which the address belongs, and the 
sa_data field contains the actual data value. The size of the data field, 14 bytes, was selected 
based on a study of current address formats.* Specific address formats use private structure 
definitions that define the format of the data field. The system interface supports larger address 
structures, although address-family-independent support facilities, for example routing and raw 
socket interfaces, provide only 14 bytes for address storage. Protocols that do not use those 
facilities (e.g, the current Unix domain) may use larger data areas. 

5. Memory management 
A single mechanism is used for data storage: memory buffers, or mbufs. An mbuf is a 

structure of the form: 

struct mbuf { 
struct 
ujong 
short 
short 
u_char 
struct 

}i 

mbuf *ID-llextj 
ID-offj 
mjenj 
ID-type; 
ID-dat [MLEN]; 
mbuf *ID-actj 

1* next buffer in chain * / 
1* offset of data * / 
1* amount of data in this mbuf * / 
/* mbuf type (accounting) * / 
1* data storage * / 
1* link in higher-level mbuf list * / 

The m_next field is used to chain mbufs together on linked lists, while the m_act field allows lists 
of mbuf chains to be accumulated. By convention, the mbufs common to a single object (for 
example, a packet) are chained together with the m_next field, while groups of objects are linked 
via the m_act field (possibly when in a queue). 

Each mbuf has a small data area for storing information, m_dat. The m_/en field indi­
cates the amount of data, while the m_offfield is an offset to the beginning of the data from the 
base of the mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbuf to a 
pointer to the data stored in the mbuf, has the form 

#define mtod(x,t) ((t)((int)(x) + (x)->ID-off)) 

(note the t parameter, a C type cast, which is used to cast the resultant pointer for proper 
assignment ). 

In addition to storing data directly in the mbuf's data area, data of page size may be also 
be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for 
this purpose and manipulate a private page map for such pages. An mbuf with an external 
data area may be recognized by the larger offset to the data area; this is formalized by the 
macro MJIASCL(m), which is true if the mbuf whose address is m has an external page cluster. 
An array of reference counts on pages is also maintained so that copies of pages may be made 

* Later versions of the system may support variable length addresses. 

ICONIUXV·NET 



Networking Implementation Notes 

without core to core copying (copies are created simply by duplicating the reference to the data 
and incrementing the associated reference counts for the pages). Separate data pages are 
currently used only when copying data from a user process into the kernel, and when bringing 
data in at the hardware level. Routines which manipulate mbufs are not normally aware 
whether data is stored directly in the mbuf data array, or if it is kept in separate pages. 

The following may be used to allocate and free mbufs: 

m = IlLget(wait, type); 
MGET(m, wait, type); 

The subroutine m_get and the macro MGET each allocate an mbuf, placing its address in 
m. The argument wait is either ~WAIT or M....DONTWAIT according to whether alloca­
tion should block or fail if no mbuf is available. The type is one of the predefined mbuf 
types for use in accounting of mbuf allocation. 

MCLGET(m); 
This macro attempts to allocate an mbuf page cluster to associate with the mbuf m. If 
successful, the length of the mbuf is set to CLSIZE, the size of the page cluster. 

n = mJree(m); 
W'REE(m,n); 

The routine m-free and the macro MFREE each free a single mbuf, m, and any associated 
external storage area, placing a pointer to its successor in the chain it heads, if any, in n. 

mJreem(m); 
This routine frees an mbuf chain headed by m. 

The following utility routines are available for manipulating mbuf chains: 

m = IlLcopy(mO, off, len); 
The m_copy routine create a copy of all, or part, of a list of the mbufs in mO. Len bytes 
of data, starting off bytes from the front of the chain, are copied. ·Where possible, refer­
ence counts on pages are used instead of core to core copies. The original mbuf chain 
must have at least off + len bytes of data. If len is specified as ~COPYALL, all the 
data present, offset as before, is copied. 

IILcat(m, n); 
The mbuf chain, n, is appended to the end of m. Where possible, compaction is performed. 

m_adj(m, diff); 
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are 
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed from 
back to front. No space is reclaimed in this operation; alterations are accomplished by 
changing the m_len and m_off fields of mbufs. 

m = IlLpullup(mO, size); 
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is 
guaranteed to have at least size bytes of data in contiguous memory within the data area 
of the mbuf (allowing access via a pointer, obtained using the mtod macro, and allowing 
the mbuf to be located from a pointer to the data area using dtom, defined below). If the 
original data was less than size bytes long, len was greater than the size of an mbuf data 
area (112 bytes), or required resources were unavailable, m is ° and the original mbuf 
chain is deallocated. 

This routine is particularly useful when verifying packet header lengths on reception. For 
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid 
packet header are present at the head of the list of mbufs representing the packet, the 
remaining 8 bytes may be "pulled up" with a single m_pullup call. If the call fails the 
invalid packet will have been discarded. 

By insuring that mbufs always reside on 128 byte boundaries, it is always possible to 
locate the mbuf associated with a data area by masking off the low bits of the virtual address. 

Appendix E - Networking Not .. E·5 



Networking Implementation Notes 

This allows modules to store data structures in mbufs and pass them around without concern 
for locating the original mbuf when it comes time to free the structure. Note that this works 
only with objects stored in the internal data buffer of the mbuf. The dtom macro is used to con­
vert a pointer into an mbuf's data area to a pointer to the mbuf, 

#define dtom(x) ((struct mbuf *)((int)x & -(MSIZE-l))) 

Mbufs are used for dynamically allocated data structures such as sockets as well as 
memory allocated for packets and headers. Statistics are maintained on mbuf usage and can be 
viewed by users using the netstat(l) program. 

6. Internal layering 
The internal structure of the network system is divided into three layers. These layers 

correspond to the services provided by the socket abstraction, those provided by the communi­
cation protocols, and those provided by the hardware interfaces. The communication protocols 
are normally layered into two or more individual cooperating layers, though they are collec­
tively viewed in the system as one layer providing services supportive of the appropriate socket 
abstraction. 

The following sections describe the properties of each layer in the system and the inter­
faces to which each must conform. 

6.1. Socket layer 

The socket layer deals with the interprocess communication facilities provided by the sys­
tem. A socket is a bidirectional endpoint of communication which is "typed" by the semantics 
of communication it supports. The system calls described in the Berkeley Software Architecture 
Manual [Joy86] are used to manipulate sockets. 

A socket consists of the following data structure: 

struct socket { 
short so_type; /* generic type * / 
short so_options; 1* from socket call * / 
short soJinger; /* time to linger while closing * / 
short so.....state; /* internal state flags * / 
caddr_t so_pcb; /* protocol control block * / 
struct protosw *so_proto; /* protocol handle * / 
struct socket *soJtead; 1* back pointer to accept socket * / 
struct socket *so_qO; /* queue of partial connections * / 
short so_qOlen; /* partials on so_qO * / 
struct socket *so_q; 1* queue of incoming connections * / 
short so_qlen; 1* number of connections on so_q * / 
short so_qlimit; 1* max number queued connections * / 
struct sockbuf SOJCV; 1* receive queue * / 
struct sockbuf so.....snd; 1* send queue * / 
short so_timeo; 1* connection timeout * / 
u.....short so_error; 1* error affecting connection * / 
u.....short so_oobmark; /* chars to oob mark * / 
short so_pgrp; 1* pgrp for signals * / 

}; 

Each socket contains two data queues, so_rcv and so_snd, and a pointer to routines which 
provide supporting services. The type of the socket, so_type is defined at socket creation time 
and used in selecting those services which are appropriate to support it. The supporting proto­
col is selected at socket creation time and recorded in the socket data structure for later use. 
Protocols are defined by a table of procedures, the protosw structure, which will be described in 
detail later. A pointer to a protocol-specific data structure, the "protocol control block," is also 

E·6 ICON/UXV·NET 



Networking Implementation Notes 

present in the socket structure. Protocols control this data structure, which normally includes a 
back pointer to the parent socket structure to allow easy lookup when returning information to 
a user (for example, placing an error number in the so_error field). The other entries in the 
socket structure are used in queuing connection requests, validating user requests, storing socket 
characteristics (e.g. options supplied at the time a socket is created), and maintaining a 
socket's state. 

Processes "rendezvous at a socket" in many instances. For instance, when a process 
wishes to extract data from a socket's receive queue and it is empty, or lacks sufficient data to 
satisfy the request, the process blocks, supplying the address of the receive queue as a "wait 
channel' to be used in notification. When data arrives for the process and is placed in the 
socket's queue, the blocked process is identified by the fact it is waiting "on the queue." 

6.1.1. Socket state 

A socket's state is defined from the following: 

#define SS-fiOFDREF 
#define SSJSCONNECTED 
#define SSJSCONNECTING 
#define SSJSDISCONNECTING 
#define SS_CANTSENDMORE 
#define SS_CANTRCVMORE 
#define SS-RCVATMARK 

#define SSYRN 
#define SS-fiBIO 
#define SS....ASYNC 

OxOOI 
Ox002 
Ox004 
Ox008 
OxOlO 
Ox020 
Ox040 

Ox080 
OxlOO 
Ox200 

1* no file table ref any more *1 
1* socket connected to a peer * / 
1* in process of connecting to peer *1 
1* in process of disconnecting * / 
1* can't send more data to peer *1 
1* can't receive more data from peer * / 
1* at mark on input *1 

1* privileged *1 
1* non-blocking ops * / 
1* async i/o notify * / 

The state of a socket is manipulated both by the protocols and the user (through system 
calls). When a socket is created, the state is defined based on the type of socket. It may 
change as control actions are performed, for example connection establishment. It may also 
change according to the type of input/output the user wishes to perform, as indicated by 
options set with fcntl. "Non-blocking" 1/0 implies that a process should never be blocked to 
await resources. Instead, any call which would block returns prematurely with the error 
EWOULDBLOCK, or the service request may be partially fulfilled, e.g. a request for more data 
than is present. 

If a process requested "asynchronous" notification of events related to the socket, the 
SIGIO signal is posted to the process when such events occur. An event is a change in the 
socket's state; examples of such occurrences are: space becoming available in the send queue, 
new data available in the receive queue, connection establishment or disestablishment, etc. 

A socket may be marked "privileged" if it was created by the super-user. Only privileged 
sockets may bind addresses in privileged portions of an address space or use "raw" sockets to 
access lower levels of the network. 

6.1.2. Socket data queues 

A socket's data queue contains a pointer to the data stored in' the queue and other entries 
related to the management of the data. The following structure defines a data queue: 

Appendix E - Networking Not •• 



Networking Implementation Notes 

struct sockbuf { 
uJhort 
UJhort 
UJhort 
UJhort 
UJhort 
short 
struct 
struct 
short 

}; 

sb_cc; 
sb~iwat; 
sb_mbcntj 
sb-IDbmaxj 
sbJowatj 
sb_timeoj 
mbuf *sb-IDbj 
proc *sbJel; 
sbJlagsj 

1* actual chars in buffer * / 
1* max actual char count * / 
/* chars of mbufs used * / 
1* max chars of mbufs to use * / 
1* low water mark * / 
/* timeout * / 
/* the mbuf chain * / 
/* process selecting read/write * / 
/* flags, see below * / 

Data is stored in a queue as a chain of mbufs. The actual count of data characters as 
well as high and low water marks are used by the protocols in controlling the flow of data. The 
amount of buffer space (characters of mbufs and associated data pages) is also recorded along 
with the limit on buffer allocation. The socket routines cooperate in implementing the flow con­
trol policy by blocking a process when it requests to send data and the high water mark has 
been reached, or when it requests to receive data and less than the low water mark is present 
(assuming non-blocking I/O has not been specified).* 

When a socket is created, the supporting protocol "reserves" space for the send and 
receive queues of the socket. The limit on buffer allocation is set somewhat higher than the 
limit on data characters to account for the granularity of buffer allocation. The actual storage 
associated with a socket queue may fluctuate during a socket's lifetime, but it is assumed that 
this reservation will always allow a protocol to acquire enough memory to satisfy the high water 
marks. 

The timeout and select values are manipulated by the socket routines in implementing 
various portions of the interprocess communications facilities and will not be described here. 

Data queued at a socket is stored in one of two styles. Stream-oriented sockets queue 
data with no addresses, headers or record boundaries. The data are in mbufs linked through 
the m_next field. Buffers containing access rights may be present within the chain if the under­
lying protocol supports passage of access rights. Record-oriented sockets, including datagram 
sockets, queue data as a list of packets; the sections of packets are distinguished by the types of 
the mbufs containing them. The mbufs which comprise a record are linked through the m_next 
field; records are linked from the m_act field of the first mbuf of one packet to the first mbuf of 
the next. Each packet. begins with an mbuf containing the "from" address if the protocol pro­
vides it, then any buffers containing access rights, and finally any buffers containing data. If a 
record contains no data, no data buffers are required unless neither address nor access rights are 
present. 

A socket queue has a number of flags used in synchronizing access to the data and in 
acquiring resources: 

#define SRLOOK 
# define SB_ W ANT 
#define SB_ W AIT 
# define SB3EL 
#define SB_COLL 

OxOl 
OX02 
Ox04 
OX08 
OxlO 

1* lock on data queue (SOJCV only) * / 
/* someone is waiting to lock * / 
/* someone is waiting for data/space * / 
/* buffer is selected * / 
/* collision selecting * / 

The last two flags are manipulated by the system in implementing the select mechanism. 

* The low-water mark is always presumed to be 0 in the current implementa.tion. 

&·8 ICON/UXV·NET 



( 

Networking Implementation Notes 

6.1.3. Socket connection queuing 

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two ends are con­
sidered distinct. One end is termed active, and generates connection requests. The other end is 
called passive and accepts connection requests. 

From the passive side, a socket is marked with SO.-ACCEPTCONN when a listen call is 
made, creating two queues of sockets: so_qO for connections in progress and so_q for connections 
already made and awaiting user acceptance. As a protocol is preparing incoming connections, it 
creates a socket structure queued on so_qO by calling the routine sonewconnO. When the con­
nection is established, the socket structure is then transferred to so_q, making it available for 
an accept. 

If an SO.-ACCEPTCONN socket is closed with sockets on either so_qO or so_q, these sock­
ets are dropped, with notification to the peers as appropriate. 

6.2. Protocollayer(s)· 

Each socket is created in a communications domain, which usually implies both an 
addressing structure (address family) and a set of protocols which implement various socket 
types within the domain (protocol family). Each domain is defined by the following structure: 

struct domain { 

}i 

int domJamilYi 1* PF....:xxx * / 
char *doIlLIlamei 
int (*donLinit)(); 1* initialize domain data structures * / 
int (*doIILexternalize)Oi /* externalize access rights * / 
int (*dOIILdispose)Oi /* dispose of internalized rights * / 
struct protosw *doIILprotosw, *doIILprotoswNPROTOSWi 
struct domain *doIlLIlexti 

At boot time, each domain configured into the kernel is added to a linked list of domain. 
The initialization procedure of each domain is then called. After that time, the domain struc­
ture is used to locate protocols within the protocol family. It may also contain procedure refer­
ences for externalization of access rights at the receiving socket and the disposal of access rights 
that are not received. 

Protocols are described by a set of entry points and certain socket-visible characteristics, 
some of which are used in deciding which socket type(s) they may support. 

An entry in the "protocol switch" table exists for each protocol module configured into the 
system. It has the following form: 

Appendix E - Networking Notes E·9 



Networking Implementation Notes 

struct protosw { 
short pLtype; 
struct domain *pr_domain; 
short pLprotocol; 
short prJlags; 

1* protocol-protocol hooks * / 
int (*pLinput )0; 
int (*pr_output)(); 
int (*pr_ctlinput )0; 
int (*pLctloutput )0; 

1* user-protocol hook * / 
int (*pLusrreq)O; 

1* utility hooks * / 
int (*prjnit )0; 
int (*prJasttimo)O; 
int (*pr....slowtimo )0; 
int (*pr_drain)O; 

}; 

/* socket type used for * / 
1* domain protocol a member of * / 
/* protocol number * / 
1* socket visible attributes * / 

/* input to protocol (from below) * / 
1* output to protocol (from above) * / 
/* control input (from below) * / 
1* control output (from above) * / 

/* user request * / 

/* initialization routine * / 
/* fast timeout (200ms) * / 
/* slow timeout (500ms) * / 
/* flush any excess space possible * / 

A protocol is called through the pr_init entry before any other. Thereafter it is called 
every 200 milliseconds through the pr-faBttimo entry and every 500 milliseconds through the 
pr_Blowtimo for timer based actions. The system will call the pr_drain entry if it is low on space 
and this should throwaway any non-critical data. 

Protocols pass data between themselves as chains of mbufs using the pr_input and 
pr_output routines. Pr_input passes data up (towards the user) and pr_output passes it down 
(towards the network); control information passes up and down on pr_ctlinput and pr_ctloutput. 
The protocol is responsible for the space occupied by any of the arguments to these entries and 
must either pass it onward or dispose of it. (On output, the lowest level reached must free 
buffers storing the arguments; on input, the highest level is responsible for freeing buffers.) 

The pr_uBrreq routine interfaces protocols to the socket code and is described below. 

The pr-flagB field is constructed from the following values: 

#define PRATOMIO OxOl /* exchange atomic messages only * / 
#define PR.-AJ)DR Ox02 1* addresses given with messages * / 
#define PR_OONNREQUIRED Ox04 1* connection required by protocol * / 
#define PR_ W ANTROVD Ox08 /* want PRU-.ROVD calls * / 
#define PR-.RIGHTS OxlO 1* passes capabilities * / 

Protocols which are connection-based specify the PR_OONNREQUIRED flag so that the socket 
routines will never attempt to send data before a connection has been established. If the 
PR_WANTROVD flag is set, the socket routines will notify the protocol when the user has 
removed data from the socket's receive queue. This allows the protocol to implement ack­
nowledgement on user receipt, and also update windowing information based on the amount of 
space available in the receive queue. The PR.-AJ)DR field indicates that any data placed in the 
socket's receive queue will be preceded by the address of the sender. The PRATOMIO flag 
specifies that each UBer request to send data must be performed in a single protocol send request; 
it is the protocol's responsibility to maintain record boundaries on data to be sent. The 
PR-.RIGHTS flag indicates that the protocol supports the passing of capabilities; this is 
currently used only by the protocols in the UNIX protocol family. 

When a socket is created, the socket routines scan the protocol table for the domain look­
ing for an appropriate protocol to support the type of socket being created. The pctype field 
contains one of the possible socket types (e.g. SOOK~TREAM), while the pr_domain is a back 
pointer to the domain structure. The pr_protoco/ field contains the protocol number of the pro­
tocol, normally a well-known value. 

1·10 ICON/UXV·NET 



( 

Networking Implementation Notes 

6.3. Network-interface layer 

Each network-interface configured into a system defines a path through which packets 
may be sent and received. Normally a hardware device is associated with this interface, though 
there is no requirement for this (for example, all systems have a software "loopback" interface 
used for debugging and performance analysis). In addition to manipulating the hardware dev­
ice, an interface module is responsible for encapsulation and decapsulation of any link-layer 
header information required to deliver a message to its destination. The selection of which 
interface to use in delivering packets is a routing decision carried out at a higher level than the 
network-interface layer. An interface may have addresses in one or more address families. The 
address is set at boot time using an ioctl on a socket in the appropriate domain; this operation 
is implemented by the protocol family, after verifying the operation through the device ioctl 
entry. 

An interface is defined by the following structure, 

struct ifnet { 
char *ifJlame; /* name, e.g. "en" or "10" * / 
short iLunit; /* sub-unit for lower level driver * / 
short iLmtu; 1* maximum transmission unit * / 
short iLflags; 1* up/down, broadcast, etc. * / 
short iLtimer; 1* time 'til iLwatchdog called * / 
struct ifaddr *iLaddrlist; /* list of addresses of interface * / 
struct ifqueue if....snd; 1* output queue * / 
int (*iLinit )0; /* init routine * / 
int (*iLoutput )0; 1* output routine * / 
int (*iLioctl)O; 1* ioctl routine * / 
int (*ifJeset )0; /* bus reset routine * / 
int (*iLwatchdog)O; 1* timer routine * / 
int iLipackets; 1* packets received on interface * / 
int iLierrors; 1* input errors on interface * / 
int iLopackets; 1* packets sent on interface * / 
int iLoerrors; 1* output errors on interface * / 
int iLcollisions; 1* collisions on csma interfaces * / 
struct ifnet *ifJlextj 

}; 

Each interface address has the following form: 

struct ifaddr { 

}j 

struct sockaddr ifa_addr; 1* address of interface * / 
union { 

struct sockaddr ifu_broadaddrj 
struct 

} ifajfuj 
sockaddr ifu_dstaddr; 

struct ifnet *ifajfp; 
struct ifaddr *ifaJlext; 

/* back-pointer to interface * / 
/* next address for interface * / 

#define ifa_broadaddr ifajfu.iflLbroadaddr 1* broadcast address * / 
#define ifa_dstaddr ifajfu.ifu_dstaddr 1* other end of p-to-p link * / 

The protocol generally maintains this structure as part of a larger structure containing addi­
tional information concerning the address. 

Each interface has a send queue and routines used for initialization, if_in it, and output, 
if_output. If the interface resides on a system bus, the routine if_reset will be called after a bus 
reset has been performed. An interface may also specify a timer routine, if_watchdog; if if_timer 
is non-zero, it is decremented once per second until it reaches zero, at which time the watchdog 
routine is called. 

Appendix E - Networking Not .. E·11 



Networking Implementation Notes 

The state of an interface and certain characteristics are stored in the if-flags field. The 
following values are possible: 

#define IFF_UP 
#define IFF ...BROADOAST 
#define IFF -DEBUG 
# define IFF -.LOOPBAOK 
#define IFF J'OINTOPOINT 
# define IFF~OTRAlLERS 
#define IFF ....RUNNING 
# define IFF~OARP 

Oxl 
Ox2 
Ox4 
Ox8 
Oxl0 
Ox20 
Ox40 
Ox80 

1* interface is up * / 
1* broadcast is possible * / 
1* turn on debugging * / 
/* is a loopback net * / 
1* interface is point-to-point link * / 
/* avoid use of trailers * / 
1* resources allocated * / 
1* no address resolution protocol * / 

If the interface is connected to a network which supports transmission of broadcast packets, the 
IFF ...BROADOAST flag will be set and the ifa_broadaddr field will contain the address to be 
used in sending or accepting a broadcast packet. If the interface is associated with a point-to­
point hardware link (for example, a DEO DMR-ll) , the IFFJ'OINTOPOINT flag will be set 
and ifa_dstaddr will contain the address of the host on the other side of the connection. These 
addresses and the local address of the interface, if_addr, are used in filtering incoming packets. 
The interface sets IFF ....RUNNING after it has allocated system resources and posted an initial 
read on the device it manages. This state bit is used to avoid multiple allocation requests when 
an interface's address is changed. The IFF -.NOTRAlLERS flag indicates the interface should 
refrain from using a trailer encapsulation on outgoing packets, or (where per-host negotiation of 
trailers is possible) that trailer encapsulations should not be requested; trailer protocols are 
described in section 14. The IFF-.NOARP flag indicates the interface should not use an 
"address resolution protocol" in mapping internetwork addresses to local network addresses. 

Various statistics are also stored in the interface structure. These may be viewed by users 
using the netstat(l) program. 

The interface address and flags may be set with the SIOOSIF ADDR and SIOOSIFFLAGS 
ioctls. SIOOSIFADDR is used initially to define each interface's address; SIOGSIFFLAGS can 
be used to mark an interface down and perform site-specific configuration. The destination 
address of a point-to-point link is set with SIOCSIFDSTADDR. Oorresponding operations exist 
to read each value. Protocol families may also support operations to set and read the broad­
cast address. In addition, the SIOOGIFOONF ioctl retrieves a list of interface names and 
addresses for all interfaces and protocols on the host. 

6.3.1. UNIBUS interfaces 

All hardware related interfaces currently reside on the UNIBUS. Consequently a common 
set of utility routines for. dealing with the UNIBUS has been developed. Each UNIBUS interface 
utilizes a structure of the following form: 

struct 

}; 

ifubinfo { 
short 
short 
struct 
short 

ifLuban; 
ifLhlen; 
uba.J'egs *ifLuba; 
ifLflags; 

1* uba number * / 
1* local net header length * / 
1* uba regs, in vm * / 
1* used during uballoc's * / 

Additional structures are associated with each receive and transmit buffer, normally one each 
per interface; for read, 

E·n ICON/UXV·NET 

~J 



struct ifrw { 
caddr_t 
short 
short 

#define IFRW _ W 
int 
int 
struct 

}; 

and for write, 

struct ifxmt { 
struct 
caddLt 
struct 
struct 
short 
short 

}; 
#define ifw_addr 
#define ifw_bdp 
#define ifw JIags 
#define ifwjnfo 
#define ifw_proto 
#define ifw JIlr 

Networking Implementation Notes 

ifrwJddr; 
ifrw_bdpi 
ifrwJIags; 
OxOl 
ifrwjnfoj 
ifrw_proto; 
pte *ifrw_mrj 

ifrw ifrwj 
ifw_basej 
pte ifw_wmap[IF....MAXNVBAMR]j 
mbuf *ifwJtofreej 
ifwJswapd; 
ifwJlmrj 

ifrw.ifrw_addr 
ifrw .ifrw _bdp 
ifrw.ifrwJIags 
ifrw .ifrw jnfo 
ifrw .ifrw _proto 
ifrw .ifrw_mr 

1* virt addr of header * 1 
1* unibus bdp *1 
1* type, etc. *1 
1* is a transmit buffer *1 
1* value from ubaalloc *1 
1* map register prototype *1 
1* base of map registers *1 

1* virt addr of buffer * 1 
1* base pages for output *1 
1* pages being dma'd out *1 
1* mask of clusters swapped *1 
1* number of entries in wmap *1 

One of each of these structures is conveniently packaged for interfaces with single buffers for 
each direction, as follows: 

struct ifuba { 

}; 

struct 
struct 
struct 

#define ifu_uban 
#define ifuJllen 
#define ifu_uba 
#define ifuJIags 
#define ifu_w 
#define ifUJtofree 

ifubinfo ifujnfo; 
ifrw ifuJ'; 
ifxmt ifuJmt; 

ifujnfo.iff_uban 
ifujnfo.iff.Jllen 
ifujnfo.iff_uba 
ifujnfo.ifLflags 
ifuJmt.ifrw 
ifuJmt.ifwJtofree 

The if_ubinfo structure contains the general information needed to characterize the I/O­
mapped buffers for the device. In addition, there is a structure describing each buffer, including 
UNIBUS resources held by the interface. Sufficient memory pages and bus map registers are 
allocated to each buffer upon initialization according to the maximum packet size and header 
length. The kernel virtual address of the buffer is held in ifrw_addr, and the map registers begin 
at ifrw_mr. UNIBUS map register ifrw_mr[-l] maps the local network header ending on a page 
boundary. UNIBUS data paths are reserved for read and for write, given by ifrw_bdp. The pro­
totype of the map registers for read and for write is saved in ifrw_proto. 

When write transfers are not at least half-full pages on page boundaries, the data are just 
copied into the pages mapped on the UNIBUS and the transfer is started. If a write transfer is 
at least half a page long and on a page boundary, UNIBUS page table entries are swapped to 
reference the pages, and then the initial pages are remapped from ifw_wmap when the transfer 
completes. The mbufs containing the mapped pages are placed on the ifw_xtofree queue to be 
freed after transmission. 

Appendix E - Networking Not .. E·13 



Networking Implementation Notes 

When read transfers give at least half a page of data to be input, page frames are allo­
cated from a network page list and traded with the pages already containing the data, mapping 
the allocated pages to replace the input pages for the next UNffiUS data input. 

The following utility routines are available for use in writing network interface drivers; all 
use the structures described above. 

iLubaminit(ifubinfo, uban, hlen, nmr, ifr, nr, ifx, nx}; 
iLubainit(ifuba, uban, hlen, nmr}; 

z"f_ubamz"nt"t allocates resources on UNffiUS adapter uban, storing the information in the 
ifubt"nfo, ifrw and ifxmt structures referenced. The ifr and if x parameters are pointers to 
arrays of ifrw and ifxmt structures whose dimensions are nr and nx, respectively. 
if_ubaint"t is a simpler, backwards-compatible interface used for hardware with single 
buffers of each type. They are called only at boot time or after a UNffiUS reset. One 
data path (buffered or unbuffered, depending on the ifu-ftags field) is allocated for each 
buffer. The nmr parameter indicates the number of UNffiUS mapping registers required to 
map a maximal sized packet onto the UNffiUS, while hlen specifies the size of a local net­
work header, if any, which should be mapped separately from the data (see the description 
of trailer protocols in chapter 14). Sufficient UNffiUS mapping registers and pages of 
memory are allocated to initialize the input data path for an initial read. For the output 
data path, mapping registers and pages of memory are also allocated and mapped onto 
the UNffiUS. The pages associated with the output data path are held in reserve in the 
event a write requires copying non-page-aligned data (see if_wubaput below). If if_ubainit 
is called with memory pages already allocated, they will be used instead of allocating new 
ones (this normally occurs after a UNffiUS reset). A 1 is returned when allocation and ini­
tialization are successful, 0 otherwise. 

m = iLubaget(ifubinfo, ifr, totlen, off 0, ifp}; 
m = iLrubaget(ifuba, totlen, 000, ifp}; 

if_ubaget and if_rubaget pull input data out of an interface receive buffer and into an mbuf 
chain. The first interface passes pointers to the ifubinfo structure for the interface and the 
ifrw structure for the receive buffer; the second call may be used for single-buffered devices. 
tot/en specifies the length of data to be obtained, not counting the local network header. 
If off 0 is non-zero, it indicates a byte offset to a trailing local network header which should 
be copied into a separate mbuf and prepended to the front of the resultant mbuf chain. 
When the data amount to at least a half a page, the previously mapped data pages are 
remapped into the mbufs and swapped with fresh pages, thus avoiding any copy. The 
receiving interface is recorded as ifp, a pointer to an ifnet structure, for the use of the 
receiving network protocol. A 0 return value indicates a failure to allocate resources. 

iLwubaput(ifubinfo, ifx, m}; 
iLwubaput(ifuba, m}; 

if_ubaput and if_wubaput map a chain of mbufs onto a network interface in preparation 
for output. The first interface is used by devices with multiple transmit buffers. The 
chain includes any local network header, which is copied so that it resides in the mapped 
and aligned I/O space. Page-aligned data that are page-aligned in the output buffer are 
mapped to the UNIBUS in place of the normal buffer page, and the corresponding mbuf is 
placed on a queue to be freed after transmission. Any other mbufs which contained non­
page-sized data portions are copied to the I/O space and then freed. Pages mapped from 
a previous output operation (no longer needed) are unmapped. 

ICON/UXV·NET 

r, 



f 

(~ 

Networking Implementation Notes 

7. Socket/protocol interface 
The interface between the socket routines and the communication protocols is through the 

pr_usrreq routine defined in the protocol switch table. The following requests to a protocol 
module are possible: 

#define PRU-ATTACH 0 1* attach protocol * / 
#define PRU....DETACH 1 1* detach protocol * / 
#define PRUJ3IND 2 1* bind socket to address * / 
#define PRU-LISTEN 3 1* listen for connection * / 
#define PRU_CONNECT 4 1* establish connection to peer * / 
#define PRU-ACCEPT 5 1* accept connection from peer * / 
#define PRU....DISCONNECT 6 /* disconnect from peer * / 
#define PRU-1)HUTDOWN 7 /* won't send any more data * / 
# define PRU-R,CVD 8 1* have taken data; more room now * / 
#define PRU-1)END 9 1* send this data * / 
#define PRU...ABORT 10 1* abort (fast DISCONNECT, DETATCH) * / 
#define PRU_CONTROL 11 1* control operations on protocol * / 
#define PRU-1)ENSE 12 1* return status into m * / 
# define PRU-R,CVOOB 13 1* retrieve out of band data * / 
# define PRU_SENDOOB 14 1* send out of band data * / 
#define PRU_SOCKADDR 15 1* fetch socket's address * / 
#define PRUYEERADDR 16 1* fetch peer's address * / 
#define PRU_CONNECT2 17 1* connect two sockets * / 
1* begin for protocols internal use * / 
#define PRUY ASTTIM:O 18 1* 200ms timeout * / 
#define PRU-1)LOWTIM:O 19 1* 500ms timeout * / 
#define PRUYROTORCV 20 /* receive from below * / 
#define PRUYROTOSEND 21 1* send to below * / 

A call on the user request routine is of the form, 

error = (*protosw[].pr_usrreq)(so, req, m, addr, rights); 
int error; struct socket *so; int req; struct mbuf *m, *addr, *rights; 

The mbuf data chain m is supplied for output operations and for certain other operations where 
it is to receive a result. The address addr is supplied for address-oriented requests such as 
PRU....BIND and PRU_CONNECT. The rights parameter is an optional pointer to an mbuf 
chain containing user-specified capabilities (see the sendmsg and recvmsg system calls). The pro­
tocol is responsible for disposal of the data mbuf chains on output operations. A non-zero 
return value gives a UNIX error number which should be passed to higher level software. The 
following paragraphs describe each of the requests possible. 

PRU-ATTACH 
When a protocol is bound to a socket (with the socket system call) the protocol module is 
called with this request. It is the responsibility of the protocol module to allocate any 
resources necessary. The "attach" request will always precede any of the other requests, 
and should not occur more than once. 

PRU....DETACH 
This is the antithesis of the attach request, and is used at the time a socket is deleted. 
The protocol module may deallocate any resources assigned to the socket. 

PRUJ3IND 
When a socket is initially created it has no address bound to it. This request indicates 
that an address should be bound to an existing socket. The protocol module must verify 
that the requested address is valid and available for use. 

PRU-LISTEN 
The "listen" request indicates the user wishes to listen for incoming connection requests on 

Appendix E - Networking Notu E·15 



Networking Implementation Notes 

the associated socket. The protocol module should perform any state changes needed to 
carry out this request (if possible). A "listen" request always precedes a request to accept 
a connection. 

PRU_OONNEOT 
The "connect" request indicates the user wants to a establish an association. The addr 
parameter supplied describes the peer to be connected to. The effect of a connect request 
may vary depending on the protocol. Virtual circuit protocols, such as TOP [posteI81b], 
use this request to initiate establishment of a TOP connection. Datagram protocols, such 
as UDP [posteI80], simply record the peer's address in a private data structure and use it 
to tag all outgoing packets. There are no restrictions on how many times a connect 
request may be used after an attach. If a protocol supports the notion of multi-casting, it 
is possible to use m:ultiple connects to establish a multi-cast group. Alternatively, an asso­
ciation may be broken by a PRU-DISOONNEOT request, and a new association created 
with a subsequent connect request; all without destroying and creating a new socket. 

PRU.AOOEPT 
Following a successful PRU..LISTEN request and the arrival of one or more connections, 
this request is made to indicate the user has accepted the first connection on the queue of 
pending connections. The protocol module should fill in the supplied address buffer with 
the address of the connected party. 

PRU-DISOONNEOT 
Eliminate an association created with a PRU_OONNEOT request. 

PRU~HUTDOWN 
This call is used to indicate no more data will be sent and/or received (the addr parameter 
indicates the direction of the shutdown, as encoded in the soshutdown system call). The 
protocol may, at its discretion, deallocate any data structures related to the shutdown 
and/or notify a connected peer of the shutdown. 

PRU..R,OVD 
This request is made only if the protocol entry in the protocol switch table includes the 
PR_WANTROVD flag. When a user removes data from the receive queue this request will 
be sent to the protocol module. It may be used to trigger acknowledgements, refresh win­
dowing information, initiate data transfer, etc. 

PRU~END 
Each user request to send data is translated into one or more PRU~END requests (a pro­
tocol may indicate that a single user send request must be translated into a single 
PRU_SEND request by specifying the PR.ATOMIO flag in its protocol description). The 
data to be sent is presented to the protocol as a list of mbufs and an address is, option­
ally, supplied in the addr parameter. The protocol is responsible for preserving the data in 
the socket's send queue if it is not able to send it immediately, or if it may need it at some 
later time (e.g. for retransmission). 

PRU.ABORT 
This request indicates an abnormal termination of service. The protocol should delete any 
existing associa tion( s ). 

PRU_OONTROL 
The "control" request is generated when a user performs a UNIX ioctl system call on a 
socket (and the ioctl is not intercepted by the socket routines). It allows protocol-specific 
operations to be provided outside the scope of the common socket interface. The addr 
parameter contains a pointer to a static kernel data area where relevant information may 
be obtained or returned. The m parameter contains the actual ioctl request code (note the 
non-standard calling convention). The rights parameter contains a pointer to an i/net 
structure if the ioctl operation pertains to a particular network interface. 

PRU_SENSE 
The "sense" request is generated when the user makes an /stat system call on a socket; it 

E·16 ICON/UXV·NET 

,- / 



( 

Networking Implementation Notes 

requests status of the associated socket. This currently returns a standard stat structure. 
It typically contains only the optimal transfer size for the connection (based on buffer size, 
windowing information and maximum packet size). The m parameter contains a pointer 
to a static kernel data area where the status buffer should be placed. 

PRU~OVOOB 
Any "out-of-band" data presently available is to be returned. An mbuf is passed to the 
protocol module, and the protocol should either place data in the mbuf or attach new 
mbufs to the one supplied if there is insufficient space in the single mbuf. An error may be 
returned if out-of-band data is not (yet) available or has already been consumed. The 
addr parameter contains any options such as MSGYEEK to examine data without con­
suming it. 

PRU_SENDOOB 
Like PRU_SEND, but for out-of-band data. 

PRU~OOKADDR 
The local address of the socket is returned, if any is currently bound to it. The address 
(with protocol specific format) is returned in the addr parameter. 

PRUYEERADDR 
The address of the peer to which the socket is connected is returned. The socket must be 
in a SSJSOONNEOTED state for this request to be made to the protocol. The address 
format (protocol specific) is returned in the addr parameter. 

PRU_OONNEOT2 
The protocol module is supplied two sockets and requested to establish a connection 
between the two without binding any addresses, if possible. This call is used in implement­
ing the system call. 

The following requests are used internally by the protocol modules and are never gen­
erated by the socket routines. In certain instances, they are handed to the pcusrreq routine 
solely for convenience in tracing a protocol's operation (e.g. PRU_SLOWTIMO). 

PRUY ASTTIMO 
A "fast timeout" has occurred. This request is made when a timeout occurs 10 the 
protocol's pr-fastimo routine. The addr parameter indicates which timer expired. 

PRU~LOWTIMO 

A "slow timeout" has occurred. This request is made when a timeout occurs in the 
protocol's pr_slowtimo routine. The addr parameter indicates which timer expired. 

PRUYROTOROV 
This request is used in the protocol-protocol interface, not by the routines. It requests 
reception of data destined for the protocol and not the user. No protocols currently use 
this facility. 

PRU,..PROTOSEND 
This request allows a protocol to send data destined for another protocol module, not a 
user. The details of how data is marked "addressed to protocol" instead of "addressed to 
user" are left to the protocol modules. No protocols currently use this facility. 

Appendix E - Networking Note. E·17 



Networking Implementation Notes 

8. Protocol/protocol interface 
The interface between protocol modules is through the pr_'U8rreq, pr_input, pcoutput, 

pr_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_u8rreq routine 
are expected to be specific to the protocol modules and are not guaranteed to be consistent 
across protocol families. We will examine the conventions used for some of the Internet proto­
cols in this section as an example. 

8.1. pr_output 

The Internet protocol UDP uses the convention, 

error = udp_output(inp, m); 
int error; struct inpcb *inp; struct mbuf *m; 

where the inp, "internet protocol control block", passed between modules conveys per connec­
tion state information, and the mbuf chain contains the data to be sent. UDP performs con­
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on. 
UDP is based on the Internet Protocol, IP (posteI81a], as its transport. UDP passes a packet to 
the IP module for output as follows: 

error = ip_output(m, opt, ro, flags); 
int error; struct mbuf *m, *opt; struct route *ro; int flags; 

The call to IP's output routine is more complicated than that for UDP, as befits the addi­
tional work the IP module must do. The m parameter is the data to be sent, and the opt 
parameter is an optional list of IP options which should be placed in the IP packet header. The 
ro parameter is is used in making routing decisions (and passing them back to the caller for use 
in subsequent calls). The final parameter, ftag8 contains flags indicating whether the user is 
allowed to transmit a broadcast packet and if routing is to be performed. The broadcast flag 
may be inconsequential if the underlying hardware does not support the notion of broadcasting. 

All output routines return 0 on success and a UNIX error number if a failure occurred 
which could be detected immediately (no buffer space available, no route to destination, etc.). 

8.2. pr_input 

Both UDP and TOP use the following calling convention, 

(void) (*protoswD.prjnput )(m, ifp); 
struct mbuf *m; struct ifnet *ifp; 

Each mbuf list passed is a single packet to be processed by the protocol module. The interface 
from which the packet was received is passed as the second parameter. 

The IP input routine is a VAX software interrupt level routine, and so is not called with 
any parameters. It instead communicates with network interfaces through a queue, ipintrq, 
which is identical in structure to the queues used by the network interfaces for storing packets 
awaiting transmission. The software interrupt is enabled by the network interfaces when they 
place input data on the input queue. 

8.S. pr_ctlinput 

This routine is used to convey "control" information to a protocol module (Le. information 
which might be passed to the user, but is not data). 

The common calling convention for this routine is, 

(void) (*protoswD.pr_ctlinput)(req, addr); 
int req; struct sockaddr *addr; 

The req parameter is one of the following, 

E-18 ICO N/UXV-N ET 



( 

Networking Implementation Notes 

#define PRCJFDOWN 0 1* interface transition * / 
#define PRC-ROUTEDEAD 1 1* select new route if possible * / 
#define PRC_QUENCH 4 1* some said to slow down * / 
#define PRC...MSGSIZE 5 /* message size forced drop * / 
#define PRCJlOSTDEAD 6 1* normally from IMP * / 
#define PRCJlOSTUNREACH 7 /* ditto * / 
# define PRC_UNREACH-.NET 8 1* no route to network * / 
#define PRC_UNREACHJIOST 9 1* no route to host * / 
# define PRC_UNREACHLPROTOCOL 10 /* dst says bad protocol * / 
#define PRC_UNREACH-PORT 11 1* bad port # * / 
#define PRC_UNREACH-.NEEDFRAG 12 1* IP ....DF caused drop * / 
#define PRC_UNREACELSRCF~ 13 /* source route failed * / 
#define PRC-REDIRECT-.NET 14 /* net routing redirect * / 
# define PRC-REDIRECTJlOST 15 1* host routing redirect * / 
#define PRC-REDIRECT_TOSNET 14 1* redirect for type of service & net * / 
#define PRC-REDIRECT_TOSHOST 15 /* redirect for tos & host * / 
#define PRC_T~CEEDJNTRANS 18 /* packet lifetime expired in transit * / 
#define PRC_T~CEED-REASS 19 /* lifetime expired on reass q * / 
#define PRC-P ARAMPROB 20 1* header incorrect * / 

while the addr parameter is the address to which the condition applies. Many of the requests 
have obviously been derived from ICMP (the Internet Control Message Protocol [posteI81c]), 
and from error messages defined in the 1822 host/IMP convention [BBN78]. Mapping tables 
exist to convert control requests to UNIX error codes which are delivered to a user. 

8.4. pr_ctloutput 

This is the routine that implements per-socket options at the protocol level for getsockopt 
and setsockopt. The calling convention is, 

error = (*protoswO.pr_ctloutput)(op, so, level, optname, mp)j 
int Opj struct socket *SOj int level, optnamej struct mbuf **mpj 

where op is one of PRCO_SETOPT or PRCO_GETOPT, so is the socket from whence the call 
originated, and level and optname are the protocol level and option name supplied by the user. 
The results of a PRCO_GETOPT call are returned in an mbuf whose address is placed in mp 
before return. On a PRCO_SETOPT call, mp contains the address of an mbuf containing the 
option dataj the mbuf should be freed before return. 

9. Protocol/network-interface interface 
The lowest layer in the set of protocols which comprise a protocol family must interface 

itself to one or more network interfaces in order to transmit and receive packets. It is assumed 
that any routing decisions have been made before handing a packet to a network interface, in 
fact this is absolutely necessary in order to locate any interlace at all (unless, of course, one uses 
a single "hardwired" interface). There are two cases with which to be concerned, transmission 
of a packet and receipt of a packetj each will be considered separately. 

9.1. Packet transmission 

Assuming a protocol has a handle on an interface, .lp, a (struct ifnet *), it transmits a 
fully formatted packet with the following call, 

error = (*ifp->iLoutput)(ifp, m, dst) 
int errorj struct ifnet *ifpj struct mbuf *mj struct sockaddr *dstj 

The output routine for the network interface transmits the packet m to the dst address, or 
returns an error indication (a UNIX error number). In reality transmission may not be immedi­
ate or successful; normally the output routine simply queues the packet on its send queue and 

Appendix E - Networking Notu 



Networking Implementation Notes 

primes an interrupt driven routine to actually transmit the packet. For unreliable media, such 
as the Ethernet, "successful" transmission simply means that the packet has been placed on the 
cable without a collision. On the other hand, an 1822 interface guarantees proper delivery or 
an error indication for each message transmitted. The model employed in the networking sys­
tem attaches no promises of delivery to the packets handed to a network interface, and thus 
corresponds more closely to the Ethernet. Errors returned by the output routine are only those 
that can be detected immediately, and are normally trivial in nature (no buffer space, address 
format not handled, etc.). No indication is received if errors are detected after the call has 
returned. 

9.2. Packet reception 

Each protocol family must have one or more "lowest level" protocols. These protocols 
deal with internetwork addressing and are responsible for the delivery of incoming packets to 
the proper protocol processing modules. In the PUP model [Boggs78] these protocols are termed 
Level 1 protocols, in the ISO model, network layer protocols. In this system each such protocol 
module has an input packet queue assigned to it. Incoming packets received by a network inter­
face are queued for the protocol module, and a VAX software interrupt is posted to initiate pro­
cessing. 

Three macros are available for queuing and dequeuing packets: 

IF ~NQUEUE(ifq, m) 
This places the packet m at the tail of the queue ifq. 

IF -.DEQUEUE(ifq, m) 
This places a pointer to the packet at the head of queue ifq in m and removes the packet 
from the queue. A zero value will be returned in m if the queue is empty. 

IF-.DEQUEUEIF(ifq, m, ifp) 
Like IF -.DEQUEUE, this removes the next packet from the head of a queue and returns it 
in m. A pointer to the interface on which the packet was received is placed in ifp, a 
(struct ifnet *). . 

IF YREPEND(ifq, m) 
This places the packet m at the head of the queue ifq. 

Each queue has a maximum length associated with it as a simple form of congestion con­
trol. The macro IF _QFULL(ifq) returns 1 if the queue is filled, in which case the macro 
IF -.DROP(ifq) should be used to increment the count of the number of packets dropped, and the 
offending packet is dropped. For example, the following cose fragment is commonly found in a 
network interface's input routine, 

E·20 

if (IF _QFULL(inq)) { 
IF -.DROP(inq); 
mJreem(m); 

} else 
IF ~NQUEUE(inq, m); 

ICON/UXV·NET 



Networking Implementation Notes 

10. Gateways and routing issues 
The system has been designed with the expectation that it will be used in an internetwork 

environment. The "canonical" environment was envisioned to be a collection of local area net­
works connected at one or more points through hosts with multiple network interfaces (one on 
each local area network), and possibly a connection to a long haul network (for example, the 
ARPANET). In such an environment, issues of gatewaying and packet routing become very 
important. Certain of these issues, such as congestion control, have been handled in a simplistic 
manner or specifically not addressed. Instead, where possible, the network system attempts to 
provide simple mechanisms upon which more involved policies may be implemented. .Af5 some of 
these problems become better understood, the solutions developed will be incorporated into the 
system. 

This section will describe the facilities provided for packet routing. The simplistic 
mechanisms provided for congestion control are described in chapter 12. 

10.1. Routing tables 

The network system maintains a set of routing tables for selecting a network interface to 
use in delivering a packet to its destination. These tables are of the form: 

struct rtentry { 
ujong 

}; 

struct 
struct 
short 
short 
uong 
struct 

rLhash; 
sockaddr rLdst; 
sockaddr rLgateway; 
rtJlags; 
rLrefcnt; 
rLuse; 
ifnet *rtjfp; 

1* hash key for lookups * / 
/* destination net or host * / 
1* forwarding agent * / 
1* see below * / 
1* no. of references to structure * / 
/* packets sent using route * / 
1* interface to give packet to * / 

The routing information is organized in two separate tables, one for routes to a host and 
one for routes to a network. The distinction between hosts and networks is necessary so that a 
single mechanism may be used for both broadcast and multi-drop type networks, and also for 
networks built from point-to-point links (e.g DECnet [DEC80)). 

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calcu­
lated by routines defined for each address family; one based on the destination being a host, and 
one assuming the target is the network portion of the address. Each hash value is used to 
locate a hash chain to search (by taking the value modulo the hash table size) and the entire 
32-bit value is then used as a key in scanning the list of routes. Lookups are applied first to the 
routing table for hosts, then to the routing table for networks. If both lookups fail, a final 
lookup is made for a "wildcard" route (by convention, network 0). The first appropriate route 
discovered is used. By doing this, routes to a specific host on a network may be present as well 
as routes to the network. This also allows a "fall back" network route to be defined to a 
"smart" gateway which may then perform more intelligent routing. 

Each routing table entry contains a destination (the desired final destination), a gateway 
to which to send the packet, and various flags which indicate the route's status and type (host 
or network). A count of the number of packets sent using the route is kept, along with a count 
of "held references" to the dynamically allocated structure to insure that memory reclamation 
occurs only when the route is not in use. Finally, a pointer to the a network interface is kept; 
packets sent using the route should be handed to this interface. 

Routes are typed in two ways: either as host or network, and as "direct" or "indirect". 
The host/network distinction determines how to compare the rCd8t field during lookup. If the 
route is to a network, only a packet's destination network is compared to the rCd8t entry stored 
in the table. If the route is to a host, the addresses must match bit for bit. 

AppendIx E - NetworkIng Note. E·21 



Networking Implementation Notes 

The distinction between "direct" and "indirect" routes indicates whether the destination is 
directly connected to the source. This is needed when performing local network encapsulation. 
If a packet is destined for a peer at a host or network which is not directly connected to the 
source, the internetwork packet header will contain the address of the eventual destination, 
while the local network header will address the intervening gateway. Should the destination be 
directly connected, these addresses are likely to be identical, or a mapping between the two 
exists. The RTF_GATEWAY flag indicates that the route is to an "indirect" gateway agent, 
and that the local network header should be filled in from the rLgateway field instead of from 
the final internetwork destination address. 

It is assumed that multiple routes to the same destination will not be present; only one of 
multiple routes, that most recently installed, will be used. 

Routing redirect control messages are used to dynamically modify existing routing table 
entries as well as dynamically create new routing table entries. On hosts where exhaustive 
routing information is too expensive to maintain (e.g. work stations), the combination of wild­
card routing entries and routing redirect messages can be used to provide a simple routing 
management scheme without the use of a higher level policy process. Current connections may 
be rerouted after notification of the protocols by means of their pr_ctlinput entries. Statistics 
are kept by the routing table routines on the use of routing redirect messages and their affect on 
the routing tables. These statistics may be viewed using 

Status information other than routing redirect control messages may be used in the future, 
but at present they are ignored. Likewise, more intelligent "metrics" may be used to describe 
routes in the future, possibly based on bandwidth and monetary costs. 

10.2. Routing table interface 

A protocol accesses the routing tables through three routines, one to allocate a route, one 
to free a route, and one to process a routing redirect control message. The routine rtalloc per­
forms route allocation; it is called with a pointer to the following structure containing the 
desired destination: 

struct route { 
struct 
struct 

}; 

rtentry *roJt; 
sockaddr ro_dst; 

The route returned is assumed "held" by the caller until released with an rtfree call. Protocols 
which implement virtual circuits, such as TCP, hold onto routes for the duration of the circuit's 
lifetime, while connection-less protocols, such as UDP, allocate and free routes whenever their 
destination address changes. 

The routine rtredirect is called to process a routing redirect control message. It is called 
with a destination address, the new gateway to that destination, and the source of the redirect. 
Redirects are accepted only from the current router for the destination. If a non-wildcard route 
exists to the destination, the gateway entry in the route is modified to point at the new gateway 
supplied. Otherwise, a new routing table entry is inserted reflecting the information supplied. 
Routes to interfaces and routes to gateways which are not directly accessible from the host are 
ignored. 

10.3. User level routing policies 

Routing policies implemented in user processes manipulate the kernel routing tables 
through two ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing 
entries, respectively; the tables are read through the /dev /kmem device. The decision to place 
policy decisions in a user process implies that routing table updates may lag a bit behind the 
identification of new routes, or the failure of existing routes, but this period of instability is nor­
mally very small with proper implementation of the routing process. Advisory information, such 
as IGMP error messages and IMP diagnostic messages, may be read from raw sockets (described 

E·n ICON/UXV·NET 



( 

Networking Implementation Notes 

in the next section). 

Several routing policy processes have already been implemented. The system standard 
"routing daemon" uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to 
maintain up-to-date routing tables in our local environment. Interaction with other existing 
routing protocols, such as the Internet EGP (Exterior Gateway Protocol), has been accom­
plished using a similar process. 

11. Raw sockets 
A raw socket is an objeCt which allows users direct access to a lower-level protocol. Raw 

sockets are intended for knowledgeable processes which wish to take advantage of some protocol 
feature not directly accessible through the normal interface, or for the development of new pro­
tocols built atop existing lower level protocols. For example, a new version of TOP might be 
developed at the user level by utilizing a raw IP socket for delivery of packets. The raw IP 
socket interface attempts to provide an identical interface to the one a protocol would have if it 
were resident in the kernel. 

The raw socket support is built around a generic raw socket interface, (possibly) aug­
mented by protocol-specific processing routines. This section will describe the core of the raw 
socket interface. 

11.1. Control blocks 

Every raw socket has a protocol control block of the following form: 

struct rawcb { 
struct 

}; 

struct 
struct 
struct 
struct 
struct 
caddLt 
struct 
struct 
short 

rawcb *rcbJlext; 
rawcb *rcb_prev; 
socket *rcb~ocket; 
sockaddr rcbJaddr; 
sockaddr rcb.Jaddr; 
sockproto rcb_proto; 
rcb_pcb; 
mbuf *rc b_options; 
route rcb.J"oute; 
rcbJIags; 

/* doubly linked list * / 

/* back pointer to socket * / 
1* destination address * / 
/* socket's address * / 
/* protocol family, protocol * / 
/* protocol specific stuff * / 
/* protocol specific options * / 
/* routing information * / 

All the control blocks are kept on a doubly linked list for performing lookups during packet 
dispatch. Associations may be recorded in the control blOCK and used by the output routine in 
preparing packets for transmission. The rcLproto structure contains the protocol family and 
protocol number with which the raw socket is associated. The protocol, family and addresses 
are used to filter packets on input; this will be described in more detail shortly. If any 
protocol-specific information is required, it may be attached to the control block using the 
rcLpcb field. Protocol-specific options for transmission in outgoing packets may be stored in 
rcLoption8. 

A raw socket interface is datagram oriented. That is, each send or receive on the socket 
requires a destination address. This address may be supplied by the user or stored in the con­
trol block and automatically installed in the outgoing packet by the output routine. Since it is 
not possible to determine whether an address is present or not in the control block, two flags, 
RAW...LADDR and RAW....F ADDR, indicate if a local and foreign address are present. Routing 
is expected to be performed by the underlying protocol if necessary. 

11.2. Input processing 

Input packets are "assigned" to raw sockets based on a simple pattern matching scheme. 
Each network interface or protocol gives unassigned packets to the raw input routine with the 
call: 

AppendIx E - NetworkIng Not .. E·23 



Networking Implementation Notes 

rawJnput(m, proto, src, dst} 
struct mbuf *mj struct sockproto *proto, struct sockaddr *src, *dstj 

The data packet then has a generic header prepended to it of the form 

struct rawJteader { 
struct sockproto raw_protoj 
struct sockaddr raw_dstj 
struct sockaddr raw.....srCj 

}j 

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from 
this queue are copied into any raw sockets that match the header according to the following 
rules, 

1) The protocol family of the socket and header agree. 

2) If the protocol number in the socket is non-zero, then it agrees with that found in the 
packet header. 

3) If a local address is defined for the socket, the address format of the local address is the 
same as the destination address's and the two addresses agree bit for bit. 

4) The rules of 3) are applied to the socket's foreign address and the packet's source address. 

A basic assumption is that addresses present in the control block and packet header (as con­
structed by the network interface and any raw input protocol module) are in a canonical form 
which may be "block compared". 

11.3. Output processing 

On output the raw pc'Usrreq routine passes the packet and a pointer to the raw control 
block to the raw protocol output routine for any processing required before it is delivered to the 
appropriate network interface. The output routine is normally the only code required to imple­
ment a raw socket interface. 

12. Buffering and congestion control 
One of the major factors in the performance of a protocol is the buffering policy used. 

Lack of a proper buffering policy can force packets to be dropped, cause falsified windowing 
information to be emitted by protocols, fragment host memory, degrade the overall host perfor­
mance, etc. Due to problems such as these, most systems allocate a fixed pool of memory to the 
networking system and impose a policy optimized for "normal" network operation. 

The networking system developed for UNIX is little different in this respect. At boot time 
a fixed amount of memory is allocated by the networking system. At later times more system 
memory may be requested as the need arises, but at no time is memory ever returned to the sys­
tem. It is possible to garbage collect memory from the network, but difficult. In order to per­
form this garbage collection properly, some portion of the network will have to be "turned off" 
as data structures are updated. The interval over which this occurs must kept small compared 
to the average inter-packet arrival time, or too much traffic may be lost, impacting other hosts 
on the network, as well as increasing load on the illterconnecting mediums. In our environment 
we have not experienced 'a need for such compaction, and thus have left the problem unresolved. 

The mbuf structure was introduced in chapter 5. In this section a brief description will be 
given of the allocation mechanisms, and policies used by the protocols in performing connection 
level buffering. ' 

12.1. Memory management 

The basic memory allocation routines manage a private page map, the size of which deter­
mines the maximum amount of memory that may be allocated by the network. A small amount 

E·24 ICON/UXV·NET 

/ 



( 

Networking Implementation Notes 

of memory is allocated at boot time to initialize the mbuf and mbuf page cluster free lists. 
\\Then the free lists are exhausted, more memory is requested from the system memory allocator 
if space remains in the map. If memory cannot be allocated, callers may block awaiting free 
memory, or the failure may be reflected to the caller immediately. The allocator will not block 
awaiting free map entries, however, as exhaustion of the page map usually indicates that buffers 
have been lost due to a "leak." The private page table is used by the network buffer manage­
ment routines in remapping pages to be logically contiguous as the need arises. In addition, an 
array of reference counts parallels the page table and is used when multiple references to a page 
are present. 

Mbufs are 128 byte structures, 8 fitting in a IKbyte page of memory. When data is placed 
in mbufs, it is copied or remapped into logically contiguous pages of memory from the network 
page pool if possible. Data smaller than half of the size of a page is copied into one or more 112 
byte mbuf data areas. 

12.2. Protocol buffering policies 

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation 
time. These amounts define the high and low water marks used by the socket routines in decid­
ing when to block and unblock a process. The reservation of space does not currently result in 
any action by the memory management routines. 

Protocols which provide connection level flow control do this based on the amount of space 
in the associated socket queues. That is, send windows are calculated based on the amount of 
free space in the socket's receive queue, while receive windows are adjusted based on the 
amount of data awaiting transmission in the send queue. Care has been taken to avoid the 
"silly window syndrome" described in [Clark82] at both the sending and receiving ends. 

12.3. Queue limiting 

Incoming packets from the network are always received unless memory allocation fails. 
However, each Levell protocol input queue has an upper bound on the queue's length, and any 
packets exceeding that bound are discarded. It is possible for a host to be overwhelmed by 
excessive network traffic (for instance a host acting as a gateway from a high bandwidth net­
work to a low bandwidth network). .As a "defensive" mechanism the queue limits may be 
adjusted to throttle network traffic load on a host. Consider a host willing to devote some per­
centage of its machine to handling network traffic. If the cost of handling an incoming packet 
can be calculated so that an acceptable "packet handling rate" can be determined, then input 
queue lengths may be dynamically adjusted based on a host's network load and the number of 
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a 
problem such as this (simply dropping packets is likely to increase the load on a network); the 
queue lengths were incorporated mainly as a safeguard mechanism. 

12.4. Packet forwarding 

When packets can not be forwarded because of memory limitations, the system attempts 
to generate a "source quench" message. In addition, any other problems encountered during 
packet forwarding are also reflected back to the sender in the form of ICMP packets. This 
helps hosts avoid unneeded retransmissions. 

Broadcast packets are never forwarded due to possible dire consequences. In an early 
stage of network development, broadcast packets were forwarded and a "routing loop" resulted 
in network saturation and every host on the network crashing. 

Appendix E - Networking Not .. E·25 



Networking Implementation Notes 

13. Out of band data 
Out of band data is a facility peculiar to the stream socket abstraction defined. Little 

agreement appears to exist as to what its semantics should be. TCP defines the notion of 
"urgent data" as in-line, while the NBS protocols [Burruss811 and numerous others provide a 
fully independent logical transmission channel along which out of band data is to be sent. In 
addition, the amount of the data which may be sent as an out of band message varies from pro­
tocol to protocol; everything from 1 bit to 16 bytes or more. 

A stream socket's notion of out of band data has been defined as the lowest reasonable 
common denomi~ator (at least reasonable in our minds); clearly this is subject to debate. Out 
of band data is expected to be transmitted out of the normal sequencing and flow control con­
straints of the data stream. A minimum of 1 byte of out of band data and one outstanding out 
of band message are expected to be supported by the protocol supporting a stream socket. It is 
a protocol's prerogative to support larger-sized messages, or more than one outstanding out of 
band message at a time. 

Out of band data is maintained by the protocol and is usually not stored in the socket's 
receive queue. A socket-level option, SO_OOBll"IT-INE, is provided to force out-of-band data to 
be placed in the normal receive queue when urgent data is received; this sometimes amelioriates 
problems due to loss of data when multiple out-of-band segments are received before the first 
has been passed to the user. The PRU_SENDOOB and PRU-RCVOOB requests to the 
pr_usrreq routine are used in sending and receiving data. 

14. Trailer protocols 
Core to core copies can be expensive. Consequently, a great deal of effort was spent in 

minimizing such operations. The VAX architecture provides virtual memory hardware organ­
ized in page units. To cut down on copy operations, data is kept in page-sized units on page­
aligned boundaries whenever possible. This allows data to be moved in memory simply by 
remapping the page instead of copying. The mbuf and network interface routines perform page 
table manipulations where needed, hiding the complexities of the VAX virtual memory hardware 
from higher level code. 

Data enters the system in two ways: from the user, or from the network (hardware inter­
face). When data is copied from the user's address space into the system it is deposited in pages 
(if sufficient data is present). This encourages the user to transmit information in messages 
which are a multiple of the system page size. 

Unfortunately, performing a similar operation when taking data from the network is very 
difficult. Consider the format of an incoming packet. A packet usually contains a local net­
work header followed by one or more headers used by the high level protocols. Finally, the data, 
if any, follows these headers. Since the header information may be variable length, DMA'ing 
the eventual data for the user into a page aligned area of memory is impossible without a priori 
knowledge of the format (e.g., by supporting only a single protocol header format). 

To allow variable length header information to be present and still ensure page alignment 
of data, a special local network encapsulation may be used. This encapsulation, termed a 
trailer protocol [Leffier84j, places the variable length header information after the data. A fixed 
size local network header is then prepended to the resultant packet. The local network header 
contains the size of the data portion (in units of 512 bytes), and a new trailer protocol header, 
inserted before the variable length information, contains the size of the variable length header 
information. The following trailer protocol header is used to store information regarding the 
variable length protocol header: 

struct { 
short 
short 

}; 

E·26 

protocol; 
length; 

1* original protocol no. * / 
/* length of trailer * / 

ICON/UXV·N ET 



( 

Networking Implementation Notes 

The processing of the trailer protocol is very simple. On output, the local network header 
indicates that a trailer encapsulation is being used. The header also includes an indication of 
the number of data pages present before the trailer protocol header. The trailer protocol 
header is initialized to contain the actual protocol identifier and the variable length header size, 
and is appended to the data along with the variable length header information. 

On input, the interface routines identify the trailer encapsulation by the protocol type 
stored in the local network header, then calculate the number of pages of data to find the begin­
ning of the trailer. The trailing information is copied into a separate mbuf and linked to the 
front of the resultant packet. 

Clearly, trailer protocols require cooperation between source and destination. In addition, 
they are normally cost effective only when sizable packets are used. The current scheme works 
because the local network encapsulation header is a fixed size, allowing Dl\1A operations to be 
performed at a known offset from the first data page being received. Should the local network 
header be variable length this scheme fails. 

Statistics collected indicate that as much as 200Kb/s can be gained by using a trailer pro­
tocol with lKbyte packets. The average size of the variable length header was 40 bytes (the 
size of a minimal TCP lIP packet header). If hardware supports larger sized packets, even 
greater gains may be realized. 

Acknow ledgements 
The internal structure of the system is patterned after the Xerox PUP architecture 

[Boggs79], while in certain places the Internet protocol family has had a great deal of influence 
in the design. The use of software interrupts for process invocation is based on similar facilities 
found in the VMS operating system. Many of the ideas related to protocol modularity, memory 
management, and network interfaces are based on Rob Gurwitz's TCP lIP implementation for 
the 4.1BSD version of UNIX on the VAX [Gurwitz81). Greg Chesson explained his use of trailer 
encapsulations in Datakit, instigating their use in our system. 

References 

[Boggs79] 

[BBN78) 

[Cerf78] 

[Clark82) 

[DEC80] 

[Gurwitz81] 

[IS081] 

[Joy86] 

Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An Inter­
network Architecture. Report CSL-79-1O. XEROX Palo Alto Research 
Center, July 1979. 

Bolt Beranek and Newman; Specification for the Interconnection of Host 
and IMP. BBN Technical Report 1822. May 1978. 

Cerf, V. G.; The Catenet Model for Internetworking. Internet Working 
Group, IEN 48. July 1978. 

Clark, D. D.; Window and Acknowledgement Strategy in TCP, RFC-813. 
Network Information Center, SRI International. July 1982. 

Digital Equipment Corporation; DEOnet DIGITAL Network Architecture 
- General Description. Order No. AA-KI79A-TK. October 1980. 

Gurwitz, R. F.; VAX-UNIX Networking Support Project - Implementa­
tion Description. Internetwork Working Group, IEN 168. January 1981. 

International Organization for Standardization. ISO Open Systems Inter­
connection - Basic Reference Model. ISO ITC 97/SC 16 N 719. August 
1981. 

Joy, W.; Fabry, R.; LeIDer, S.; McKusick, M.; and Karels, M.; Berkeley 
Software Architecture Manual, 4.3BSD Edition. UNIX Programmer's 
Supplementary Documents, Vol. 1 (PS1:6). Computer Systems Research 
Group, University of California, Berkeley. May, 1986. 

Appendix E - Networking Not .. E·27 



Networking Implementation Notes 

[Leffier84] 

[PosteI80] 

[PosteI81a] 

[PosteI81b] 

[PosteI81c] 

[Xerox81] 

[Zimmermann80] 

Leffler, S.J. and Karels, M.J.; Trailer Encapsulations, RFC-893. Network 
Information Center, SRI International. April 1984. 

Postel, J. User Datagram Protocol, RFC-768. Network Information 
Center, SRI International. May 1980. 

Postel, J., ed. Internet Protocol, RFC-791. Network Information Center, 
SRI International. September 1981. 

Postel, J., ed. Transmission Control Protocol, RFC-793. Network Infor­
mation Center, SRI International. September 1981. 

Postel, J. Internet Control Message Protocol, RFC-792. Network Infor­
mation Center, SRI International. September 1981. 

Xerox Corporation. Internet Transport Protocols. Xerox System Integra­
tion Standard 028112. December 1981. 

Zimmermann, H. OSI Reference Model - The ISO Model of Architecture 
for Open Systems Interconnection. IEEE Transactions on Communica­
tions. Com-28(4)i 425-432. April 1980. 

ICON/UXV·NET 



(~ 

( 

Appendix F - An Introductory 
Interprocess Communication Tutorial 

The following appendix contains a document produced by Stuart Sechrest of the Computer 
Science Research Group, Computer Science Division, Department of Electrical Engineering 
and Computer Science at the University of California, Berkeley, titled "An Introductory 
4.3BSD Interprocess Communication Tutorial". The document describes in a simple way the 
use of pipes, socketpairs, sockets, and the use of datagram and stream communication. The 
intent of this document is to present a few simple example programs, not to describe the 
networking system in full. 

Introductory Interprocess Communication Tutorial Change 1 - March 1989 F-i 



F-ii Change 1 - March 1989 ICON/UXV-NET 



Introductory IPe Tutorial 

An Introductory 4.3BSD 
Interprocess Communication Tutorial 

Stuart Sechrest 

Computer Science Research Group 
Computer Science Division 

Department of Electrical Engineering and Computer Science 
University of California. Berkeley 

ABSTRACT 

Berkeley UNIXt 4.3BSD offers several choices for interprocess communication. To aid the programmer 
in developing programs which are comprised of cooperating processes, the different choices are discussed 
and a series of example programs are presented. These programs demonstrate in a simple way the use of 
pipes, socketpairs, sockets and the use of datagram and stream communication. The intent of this docu­
ment is to present a few simple example programs, not to describe the networking system in full. 

1. Goals 

Facilities for interprocess communication (IPC) and networking were a major addition to UNIX in 
the Berkeley UNIX 4.2BSD release. These facilities required major additions and some changes to the 
system interface. The basic idea of this interface is to make IPC similar to file I/O. In UNIX a process has 
a set of I/O descriptors, from which one reads and to which one writes. Descriptors may refer to normal 
files, to devices (including terminals), or to communication channels. The use of a descriptor has three 
phases: its creation, its use for reading and writing, and its destruction. By using descriptors to write files, 
rather than simply naming the target file in the write call, one gains a surprising amount of flexibility. 
Often, the program that creates a descriptor will be different from the program that uses the descriptor. For 
example the shell can create a descriptor for the output of the 'Is' command that will cause the listing to 
appear in a file rather than on a terminal. Pipes are another form of descriptor that have been used in 
UNIX for some time. Pipes allow one-way data transmission from one process to another; the two 
processes and the pipe must be set up by a common ancestor. 

The use of descriptors is not the only communication interface provided by UNIX. The signal 
mechanism sends a tiny amount of information from one process to another. The signaled process receives 
only the signal type, not the identity of the sender, and the number of possible signals is small. The signal 
semantics limit the flexibility of the signaling mechanism as a means of interprocess communication. 

The identification of IPC with I/O is quite longstanding in UNIX and has proved quite successful. 
At first, however, IPC was limited to processes communicating within a single machine. With Berkeley 
UNIX 4.2BSD this expanded to include IPC between machines. This expansion has necessitated some 
change in the way that descriptors are created. Additionally, new possibilities for the meaning of read and 
write have been admitted. Originally the meanings, or semantics, of these terms were fairly simple. When 
you wrote something it was delivered. When you read something, you were blocked until the data arrived. 
Other possibilities exist, however. One can write without full assurance of delivery if one can check later 
to catch occasional failures. Messages can be kept as discrete units or merged into a stream. One can ask 

t UNIX is a trademark of AT&T Bell Laboratories. 

Networking Tools Guide Last Change: March 1989 Appendix F·1 



Introductory IPe Tutorial 

to read, but insist on not waiting if nothing is immediately available. These new possibilities are allowed 
in the Berkeley UNIX IPC interface. 

Thus Berkeley UNIX 4.3BSD offers several choices for IPC. This paper presents simple examples 
that illustrate some of the choices. The reader is presumed to be familiar with the C programming 
language [Kernighan & Ritchie 1978), but not necessarily with the system calls of the UNIX system or 
with processes and interprocess communication. The paper reviews the notion of a process and the types 
of communication that are supported by Berkeley UNIX 4.3BSD. A series of examples are presented that 
create processes that communicate with one another. The programs show different ways of establishing 
channels of communication. Finally, the calls that actually transfer data are reviewed. To clearly present 
how communication can take place, the example programs have been cleared of anything that might be 
construed as useful work. They can, therefore, serve as models for the programmer trying to construct pro­
grams which are comprised of cooperating processes. 

2. Processes 

A program is both a sequence of statements and a rough way of referring to the computation that 
occurs when the compiled statements are run. A process can be thought of as a single line of control in a 
program. Most programs execute some statements, go through a few loops, branch in various directions 
and then end. These are single process programs. Programs can also have a point where control splits into 
two independent lines, an action called forking. In UNIX these lines can never join again. A call to the 
system routine fork(), causes a process to split in this way. The result of this call is that two independent 
processes will be running, executing exactly the same code. Memory values will be the same for all values 
set before the fork, but, subsequently, each version will be able to change only the value of its own copy of 
each variable. Initially, the only difference between the two will be the value returned by fork(). The 
parent will receive a process id for the child, the child will receive a zero. Calls tofork(), therefore, typi­
cally precede, or are included in, an if-statement. 

A process views the rest of the system through a private table of descriptors. The descriptors can 
represent open files or sockets (sockets are communication objects that will be discussed below). Descrip­
tors are referred to by their index numbers in the table. The first three descriptors are often known by spe­
cial names, stdin, stdout and stderr. These are the standard input, output and error. When a process forks, 
its descriptor table is copied to the child. Thus, if the parent's standard input is being taken from a termi­
nal (devices are also treated as files in UNIX), the child's input will be taken from the same terminal. 
Whoever reads first will get the input. If, before forking, the parent changes its standard input so that it is 
reading from a new file, the child will take its input from the new file. It is also possible to take input from 
a socket, rather than from a file. 

3. Pipes 

Most users of UNIX know that they can pipe the output of a program "prog!" to the input of 
another, "prog2," by typing the command "progJ / prog2." This is called "piping" the output of one 
program to another because the mechanism used to transfer the output is called a pipe. When the user 
types a command, the command is read by the shell, which decides how to execute it. If the command is 
simple, for example, "progJ ," the shell forks a process, which executes the program, prog!, and then dies. 
The shell waits for this termination and then prompts for the next command. If the command is a com­
pound command, "progJ/ prog2," the shell creates two processes connected by a pipe. One process runs 
the program, prog!, the other runs prog2. The pipe is an I/O mechanism with two ends, or sockets. Data 
that is written into one socket can be read from the other. 

Since a program specifies its input and output only by the descriptor table indices, which appear as 
variables or constants, the input source and output destination can be changed without changing the text of 
the program. It is in this way that the shell is able to set up pipes. Before executing prog!, the process can 
close whatever is at stdout and replace it with one end of a pipe. Similarly, the process that will execute 
prog2 can substitute the opposite end of the pipe for stdin. 

Appendix F·2 Last Change: March 1989 ICON/UXV·NET 



o 

Introductory IPe Tutorial 

#include <stdio.h> 

tdefine DATA "Bright star, would I were steadfast as thou art . . 

/* 
* This program creates a pipe, then forks. The child communicates to the 
* parent over the pipe. Notice that a pipe is a one-way communications 
* device. I can write to the output socket (sockets[l), the second socket 
* of the array returned by pipe()) and read from the input socket 
* (sockets[O)), but not vice versa. 
*/ 

main () 
{ 

int sockets[2), child; 

/* Create a pipe */ 
if (pipe (sockets) < 0) { 

perror("opening stream socket pair"); 
exit (10) ; 

if ((child = fork()) == -1) 
perror (" fork") ; 

else if (child) { 
char buf[1024]; 

/* This is still the parent. It reads the child's message. *1 
close(sockets[l)); 
if (read(sockets[O), buf, 1024) < 0) 

perror("reading message"); 
printf("-->%s\n", buf); 
close(sockets[O])i 

else { 
/* This is the child. It wIites a message to its parent. */ 
close(sockets[O])i 
if (write(sockets[l], DATA, siz~of(DATA)) < 0) 

perror ("writing message") i 

close(sockets[l])i 

Figme 1 Use of a pipe 

Let us now examine a program that creates a pipe for communication between its child and itself -
(Figure 1). A pipe is created by a parent process, which then forks. When a process forks, the parent's 
descriptor table is copied into the child's. 

In Figure 1, the parent process makes a call to the system routine pipeO. This routine creates a pipe 
and places descriptors for the sockets for the two ends of the pipe in the process's descriptor table. Pipe() 
is passed an array into which it places the index numbers of the sockets it created. The two ends are not 
equivalent. The socket whose index is returned in the low word of the array is opened for reading only, 
while the socket in the high end is opened only for writing. This corresponds to the fact that the standard 
input is the first descriptor of a process's descriptor table and the standard output is the second. After 

Networking Tools Guide Last Change: March 1989 Appendix F·3 



Introductory IPe Tutorial 

creating the pipe, the parent creates the child with which it will share the pipe by calling forkO. Figure 2 
illustrates the effect of a fork. The parent process's descriptor table points to both ends of the pipe. After 
the fork, both parent's and child's descriptor tables point to the pipe. The child can then use the pipe to 
send a message to the parent 

Just what is a pipe? It is a one-way communication mechanism, with one end opened for reading 
and the other end for writing. Therefore, parent and child need to agree on which way to turn the pipe, 
from parent to child or the other way around. Using the same pipe for communication both from parent to 
child and from child to parent would be possible (since both processes have references to both ends), but 
very complicated. If the parent and child are to have a two-way conversation, the parent creates two pipes, 
one for use in each direction. (In accordance with their plans, both parent and child in the example above 
close the socket that they will not use. It is not required that unused descriptors be closed, but it is good 

( )¢:::J PIPE) 

child 

¢:::J PIPE ) 

Figure 2 Sharing a pipe between parent and child 

Appendix F·4 Last Change: March 1989 ICON/UXV·NET 

/ 



Introductory IPe Tutorial 

practice.) A pipe is also a stream communication mechanism; that is, all messages sent through the pipe 
are placed in order and reliably delivered. When the reader asks for a certain number of bytes from this 
stream, he is given as many bytes as are available, up to the amount of the request. Note that these bytes 
may have come from the same call to write() or from several calls to write() which were concatenated. 

4. Socketpairs 

Berkeley UNIX 4.3BSD provides a slight generalization of pipes. A pipe is a pair of connected 
sockets for one-way stream communication. One may obtain a pair of connected sockets for two-way 
stream communication by calling the routine socketpair(). The program in Figure 3 calls socketpair() to 
create such a connection. The program uses the link for communication in both directions. Since socket­
pairs are an extension of pipes, their use resembles that of pipes. Figure 4 illustrates the result of a fork fol­
lowing a call to socketpair(). 

Socketpair() takes as arguments a specification of a domain, a style of communication, and a proto­
col. These are the parameters shown in the example. Domains and protocols will be discussed in the next 
section. Briefly, a domain is a space of names that may be bound to sockets and implies certain other con­
ventions. Currently, socketpairs have only been implemented for one domain, called the UNIX domain. 
The UNIX domain uses UNIX path names for naming sockets. It only allows communication between 
sockets on the same machine. 

Note that the header files <syslsocket.h> and <sysltypes.h>. are required in this program. The con­
stants AF_UNIX and SOCK_STREAM are defined in <syslsocket.h> , which in turn requires the file 
<sysltypes.h> for some of its definitions. 

S. Domains and Protocols 

Pipes and socketpairs are a simple solution for communicating between a parent and child or 
between child processes. What if we wanted to have processes that have no common ancestor with whom 
to set up communication? Neither standard UNIX pipes nor socketpairs are the answer here, since both 
mechanisms require a common ancestor to set up the communication. We would like to have two 
processes separately create sockets and then have messages sent between them. This is often the case 
when providing or using a service in the system. This is also the case when the communicating processes 
are on separate machines. In Berkeley UNIX 4.3BSD one can create individual sockets, give them names 
and send messages between them. 

Sockets created by different programs use names to refer to one another; names generally must be 
translated into addresses for use. The space from which an address is drawn is referred to as a domain. 
There are several domains for sockets. Two that will be used in the examples here are the UNIX domain 
(or AF _UNIX, for Address Format UNIX) and the Internet domain (or AF _INET). UNIX domain IPC is 
an experimental facility in 4.2BSD and 4.3BSD. In the UNIX domain, a socket is given a path name 
within the file system name space. A file system node is created for the socket and other processes may 
then refer to the socket by giving the proper pathname. UNIX domain names, therefore, aIIow communi­
cation between any two processes that work in the same file system. The Internet domain is the UNIX 
implementation of the DARPA Internet standard protocols IPffCP/UDP. Addresses in the Internet domain 
consist of a machine network address and an identifying number, called a port. Internet domain names 
allow communication between machines. 

Communication follows some particular "style." Currently, communication is either through a 
stream or by datagram. Stream communication implies several things. Communication takes place across 
a connection between two sockets. The communication is reliable, error-free, and, as in pipes, no message 
boundaries are kept. Reading from a stream may result in reading the data sent from one or several calls to 
write() or only part of the data from a single call, if there is not enough room for the entire message, or if 
not all the data from a large message has been transferred. The protocol implementing such a style will 
retransmit messages reeeived with errors. It will also return error messages if one tries to send a message 
after the connection has been broken. Datagram communication does not use connections. Each message 
is addressed individually. If the address is correct, it will generally be received, although this is not 

Networking Tools Guide Last Change: March 1989 Appendix F-5 



Introductory IPe Tutorial 

finclude <sys/types.h> 
finclude <sys/socket.h> 
~include <stdio.h> 

fdefine DATAl "In Xanadu, did Kublai Khan . . 
fdefine DATA2 "A stately pleasure dome decree 

/* 

" 

* This program creates a pair of connected sockets then forks and 
* communicates over them. This is very similar to communication with pipes, 
* however, socketpairs are two-way communications objects. Therefore I can 
* send messages in both directions. 
*/ 

main () 
( 

int sockets(2), child; 
char buf(1024); 

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) < 0) ( 
perror("opening stream socket pair"); 
exit (1) ; 

if «child = fork(» == -1) 
perror("fork"); 

else if (child) ( /* This is the parent. */ 
close(sockets[O); 
if (read(sockets[l), buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
if (write(sockets[l), DATA2, sizeof(DATA2» < 0) 

perror("writing stream message"); 
close(sockets[l); 

else ( /* This is the child. */ 
close(sockets[l); 
if (write(sockets[O), DATAl, sizeof(DATA1» < 0) 

perror("writing stream message"): 
if (read(sockets[O), buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
close(sockets[O): 

Figure 3 Use of a socketpair 

Appendix F-6 Last Change: March 1989 ICON/UXV-NET 



i .• C' 

Introductory IPe Tutorial 

parent 

0 ------->0 -('------

...................................................... 
child 

0 ------------> 0 
~-----------

Figure 4 Sharing a socketpair between parent and child 

guaranteed. Often datagrarns are used for requests that require a response from the recipient. If no 
response arrives in a reasonable amount of time, the request is repeated. The individual dalagrams will be 
kept separate when they are read, that is, message boundaries are preserved. 

The difference in performance between the two styles of communication is generally less important 
than the difference in semantics. The performance gain that one might find in using datagrams must be 
weighed against the increased complexity of the program, which must now concern itself with lost or out 
of order messages. If lost messages may simply be ignored, the quantity of traffic may be a consideration. 
The expense of setting up a connection is best justified by frequent use of the connection. Since the per­
formance of a protocol changes as it is tuned for different situations, it is best to seek the most up-la-date 
information when making choices for a program in which performance is crucial. 

A protocol is a set of rules, data formats and conventions that regulate the transfer of data between 
participants in the communication. In general, there is one protocol for each socket type (stream, 
datagram, etc.) within each domain. The code that implements a protocol keeps track of the names that are 

Networking Tools Guide Last Change: March 1989 Appendix F-7 



Introductory IPC Tutorial 

bound to sockets, sets up connections and transfers data between sockets, perhaps sending the data 
across a network. This code also keeps track of the names that are bound to sockets. It is possible for 
several protocols, differing only in low level details, to implement the same style of communication within 
a particular domain. Although it is possible to select which protocol should be used, for nearly all uses it 
is sufficient to request the default protocol. This has been done in all of the example programs. 

One specifies the domain, style and protocol of a socket when it is created. For example, in Figure 
5a the call to socketO causes the creation of a datagram socket with the default protocol in the UNIX 
domain. 

6. Datagrams in the UNIX Domain 

Let us now look at two programs that create sockets separately. The programs in Figures 5a and 5b 
use datagram communication rather than a stream. The structure used to name UNIX domain sockets is 
defined in the file <sys/un.h>. The definition has also been included in the example for clarity. 

Each program creates a socket with a call to socketO. These sockets are in the UNIX domain. Once 
a name has been decided upon it is attached to a socket by the system call bindO. The program in Figure 
5a uses the name' 'socket", which it binds to its socket. This name will appear in the working directory of 
the program. The routines in Figure 5b use its socket only for sending messages. It does not create a name 
for the socket because no other process has to refer to it. 

Names in the UNIX domain are path names. Like file path names they may be either absolute (e.g. 
"/dev/imaginary") or relative (e.g. "socket"). Because these names are used to allow processes to ren­
dezvous, relative path names can pose difficulties and should be used with care. When a name is bound 
into the name space, a file (inode) is allocated in the file system. If the inode is not deallocated, the name 
will continue to exist even after the bound socket is closed. This can cause subsequent runs of a program 
to find that a name is unavailable, and can cause directories to fill up with these objects. The names are 
removed by calling unlinkO or using the rm (1) command. Names in the UNIX domain are only used for 
rendezvous. They are not used for message delivery once a connection is established. Therefore, in con­
trast with the Internet domain, unbound sockets need not be (and are not) automatically given addresses 
when they are connected. 

There is no established means of communicating names to interested parties. In the example, the 
program in Figure 5b gets the name of the socket to which it will send its message through its command 
line arguments. Once a line of communication has been created, one can send the names of additional, 
perhaps new, sockets over the link. Facilities will have to be built that will make the distribution of names 
less of a problem than it now is. 

7. Datagrams in the Internet Domain 

The examples in Figure 6a and 6b are very close to the previous example except that the socket is in 
the Internet domain. The structure of Internet domain addresses is defined in the file <netinet/in.h>. Inter­
net addresses specify a host address (a 32-bit number) and a delivery slot, or port, on that machine. These 
ports are managed by the system routines that implement a particular protocol. Unlike UNIX domain 
names, Internet socket names are not entered into the file system and, therefore, they do not have to be 
unlinked after the socket has been closed. When a message must be sent between machines it is sent to the 
protocol routine on the destination machine, which interprets the address to determine to which socket the 
message should be delivered. Several different protocols may be active on the same machine, but, in gen­
eral, they will not communicate with one another. As a result, different protocols are allowed to use the 
same port numbers. Thus, implicitly, an Internet address is a triple including a protocol as well as the port 
and machine address. An association is a temporary or permanent specification of a pair of communicat­
ing sockets. An association is thus identified by the tuple <protocol, local machine address. local port. 
remote machine address. remote port>. An association may be transient when using datagram sockets; the 
association actually exists during a send operation. 

The protocol for a socket is chosen when the socket is created. The local machine address for a 
socket can be any valid network address of the machine, if it has more than one, or it can be the wildcard 

Appendix F·8 Last Change: March 1989 ICON/UXV·NET 

\ 



( 

c 

Introductory IPC Tutorial 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 

/* 
* In the included file <sys/un.h> a sockaddr un is defined as follows 
* struct sockaddr_un { 

* 
* 
* }; 
*/ 

short sun_family; 
char sun-path[108]; 

#include <stdio.h> 

#define NAME "socket" 

/* 
* This program creates a UNIX domain datagram socket, binds a name to it, 
* then reads from the socket. 
*/ 

main () 
{ 

int sock, length; 
struct sockaddr un name; 
char buf[1024]; 

/* Create socket from which to read. */ 
sock = socket {AF_UNIX, SOCK DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit (1) ; 

/* Create name. */ 
name. sun_family = AF_UNIX; 
strcpy(name.sun-path, NAME); 
if (bind(sock, &name, sizeof{struct sockaddr_un») 

perror{nbinding name to datagram socket"); 

exit (1) ; 

printf("socket -->%s\n", NAME); 
/* Read from the socket */ 
if (read(sock, buf, 1024) < 0) 

perror("receiving datagram packet"); 

printf("-->%s\n", buf); 
close(sock); 
unlink (NAME) ; 

Figure Sa Reading UNIX domain datagrams 

Networking Tools Guide Last Change: March 1989 Appendix F·9 



#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

Introductory IPC Tutorial 

tdefine DATA "The sea is calm tonight, the tide is full . . " 

1* 
* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is udgramsend pathname 
*1 

main (argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr_un name; 

1* Create socket on which to send. *1 
sock = socket(AF_UNIX, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit (1) ; 

1* Construct name of socket to send to. *1 
name.sun_family = AF_UNIX; 
strcpy(name.sun-path, argv[l]); 
1* Send message. *1 
if (sendto(sock, DATA, sizeof(DATA), 0, 

&name, sizeof(struct sockaddr_un» < 0) 
perror("sending datagram message"); 

close(sock); 

Figure 5b Sending a UNIX domain datagrams 

Appendix F·10 Last Change: March 1989 ICON/UXV-NET 

( 
~/ 



c 

Introductory IPe Tutorial 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 

/* 
* In the included file <netinet/in.h> a sockaddr in is defined as follows: 
* struct sockaddr_in { 

* 
* 
* 
* 
* }; 
* 

short sin_family; 
u_short sin-port; 
struct in_addr sin_addr; 
char sin_zero[8]; 

* This program creates a datagram socket, binds a name to it, then reads 
* from the socket. 
*/ 

main () 
{ 

int sock, length; 
struct sockaddr in name; 
char buf(l024]; 

/* Create socket from which to read. */ 
sock = socket (AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit (1) ; 

/* Create name with wildcards. */ 
name.sin_familY = AF_INET; 
name.sin_addr.s_addr = INADDR_ANY; 
name.sin-port = 0; 
if (bind(sock, &name, sizeof(name») 

perror("binding datagram socket"); 
exit (1) ; 

/* Find assigned port value and print it out. */ 
length = sizeof(name); 
if (getsockname(sock, &name, &length» 

perror("getting socket name"); 
exit(l); 

printf("Socket has port #%d\n", ntohs(name.sin-port»; 
/* Read from the socket */ 
if (read(sock, buf, 1024) < 0) 

perror("receiving datagram packet"); 
printf("-->%s\n", buf); 
close(sock); 

Figure 6a Reading Internet domain datagrams 

Networking Tools Guide Last Change: March 1989 Appendix F-11 



Introductory IPC Tutorial 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
(include <netdb.h> 
#include <stdio.h> 

#define DATA "The sea is calm tonight, the tide is full . . 

/* 

" 

* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is dgramsend hostname 
* portnumber 
*/ 

main (argc, argv) 
int argc; 
char *argv[); 

int sock; 
struct sockaddr in name; 
struct hostent *hp, *gethostbyname(); 

1* Create socket on which to send. *1 
sock = socket (AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

1* 

perror("opening datagram socket"); 
exit(l) ; 

* Construct name, with no wildcards, of the socket to send to. 
* Getnostbyname() returns a structure including the network address 
* of the specified host. The port number is taken from the command 
* line. 
*/ 

hp = gethostbyname(argv[l); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l)i 
exit (2) ; 

bcopy(hp->h_addr, &name.sin_addr, hp->h_length); 
name. sin_family = AF_INETi 
name.sin-port = htons(atoi(argv[2]»; 
/* Send message. */ 
if (sendto(sock, DATA, sizeof(DATA) , 0, &name, sizeof(name» < 0) 

perror("sending datagram message"); 
close(sock); 

Figure 6b Sending an Internet domain datagram 

value IN AD DR_ANY. The wildcard value is used in the program in Figure 6a. If a machine has several 
network addresses, it is likely that messages sent to any of the addresses should be deliverable to a socket. 
This will be the case if the wildcard value has been chosen. Note that even if the wildcard value is chosen, 
a program sending messages to the named socket must specify a valid network address. One can be 

Appendix F-12 Last Change: March 1989 ICON/UXV-NET 

c 



( 

( 

Introductory IPC Tutorial 

willing to receive from "anywhere," but one cannot send a message "anywhere." The program in Figure 
6b is given the destination host name as a command line argument. To determine a network address to 
which it can send the message, it looks up the host address by the call to gethostbyname(). The returned 
structure includes the host's network address, which is copied into the structure specifying the destination 
of the message. 

The port number can be thought of as the number of a mailbox, into which the protocol places one's 
messages. Certain daemons, offering certain advertised services, have reserved or "well-known" port 
numbers. These fall in the range from 1 to 1023. Higher numbers are available to general users. Only 
servers need to ask for a particular number. The system will assign an unused port number when an 
address is bound to a socket. This may happen when an explicit bind call is made with a port number of 0, 
or when a connect or send is performed on an unbound socket. Note that port numbers are not automati­
cally reported back to the user. After calling bind(), asking for port 0, one may call getsockname() to dis­
cover what port was actually assigned. The routine getsocknameO will not work for names in the UNIX 
domain. 

The format of the socket address is specified in part by standards within the Internet domain. The 
specification includes the order of the bytes in the address. Because machines differ in the internal 
representation they ordinarily use to represent integers, printing out the port number as returned by get­
sockname() may result in a misinterpretation. To print out the number, it is necessary to use the routine 
nlOhsO (for network to host: short) to convert the number from the network representation to the host's 
representation. On some machines, such as 68000-based machines, this is a null operation. On others, 
such as VAXes, this results in a swapping of bytes. Another routine exists to convert a short integer from 
the host format to the network format, called hlOns(); similar routines exist for long integers. For further 
information, refer to the entry for byteorder in section 3 of the manual. 

8. Connections 

To send data between stream sockets (having communication style SOCK_STREAM), the sockets 
must be connected. Figures 7a and 7b show two programs that create such a connection. The program in 
7a is relatively simple. To initiate a connection, this program simply creates a stream socket, then calls 
connect(), specifying the address of the socket to which it wishes its socket connected. Provided that the 
target socket exists and is prepared to handle a connection, connection will be complete, and the program 
can begin to send messages. Messages will be delivered in order without message boundaries, as with 
pipes. The connection is destroyed when either socket is closed (or soon thereafter). If a process persists 
in sending messages after the connection is closed, a SIGPIPE signal is sent to the process by the operating 
system. Unless explicit action is taken to handle the signal (see the manual page for signal or sigvec), the 
process will terminate and the shell will print the message' 'broken pipe." 

Forming a connection is asymmetrical; one process, such as the program in Figure 7a, requests a 
connection with a particular socket, the other process accepts connection requests. Before a connection 
can be accepted a socket must be created and an address bound to it. This situation is illustrated in the top 
half of Figure 8. Process 2 has created a socket and bound a port number to it. Process 1 has created an 
unnamed socket. The address bound to process 2's socket is then made known to process 1 and, perhaps to 
several other potential communicants as well. If there are several possible communicants, this one socket 
might receive several requests for connections. As a result, a new socket is created for each connection. 
This new socket is the endpoint for communication within this process for this connection. A connection 
may be destroyed by closing the corresponding socket. 

The program in Figure 7b is a rather trivial example of a server. It creates a socket to which it binds 
a name, which it then advertises. (In this case it prints out the socket number.) The program then calls 
listen() for this socket. Since several clients may attempt to connect more or less simultaneously, a queue 
of pending connections is maintained in the system address space. ListenO marks the socket as willing to 
accept connections and initializes the queue. When a connection is requested, it is listed in the queue. If 
the queue is full, an error status may be returned to the requester. The maximum length of this queue is 
specified by the second argument of listen()~ the maximum length is limited by the system. Once the listen 

Networking Tools Guide Last Change: March 1989 Appendix F-13 



Introductory IPe Tutorial 

'include <sys/types.h> 
'include <sys/socket.h> 
'include <netinet/in.h> 
'include <netdb.h> 
'include <stdio.h> 

#define DATA "Half a league, half a league . . 

/* 

" 

* This program creates a socket and initiates a connection with the socket 
* given in the command line. One message is sent over the connection and 
* then the socket is closed, ending the connection. The form of the command 
* line is streamwrite hostname portnumber 
*/ 

main (argc, argv) 
int argc; 
char *argv [1 ; 

int sock; 
struct sockaddr in server; 
struct hostent *hp, *gethostbyname(); 
char buf[1024]; 

/* Create socket */ 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit (1) ; 

/* Connect socket using name specified by command line. */ 
server.sin_family = AF_INET; 
hp = gethostbyname(argv[l]); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit (2) ; 

bcopy(hp->h_addr, &server.sin_addr, hp->h_length); 
server.sin-port = htons(atoi(argv[2]»; 

if (connect (sock, &server, sizeof(server» < 0) { 
perror("connecting stream socket"); 
exit(l); 

if (write (sock, DATA, sizeof(DATA» < 0) 
perror("writing on stream socket") ; 

close(sock); 

Figure 7a Initiating an Internet domain stream connection 

Appendix F-14 Last Change: March 1989 ICON/UXV·NET 

\ -
,~/ 



( 

c' 

Introductory IPe Tutorial 

tinclude <sys/types.h> 
tinclude <sys/socket.h> 
tinclude <netinet/in.h> 
#include <netdb.h> 
tinclude <stdio.h> 
idefine TRUE 1 

/* 
* This program creates a socket and then begins an infinite loop. Each time 
* through the loop it accepts a connection and prints out messages from it. 
* When the connection breaks, or a termination message comes through, the 
* program accepts a new connection. 
*/ 

main () 
{ 

int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[1024]; 
int rval; 
int i; 

/* Create socket */ 
sock = socket(AF_INET, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

/* Name socket using wildcards */ 
server.sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin-port = 0; 
if (bind(sock, &server, sizeof(server») 

perror("binding stream socket"); 
exit (1) ; 

/* Find out assigned port number and print it out */ 
length = sizeof(server); 
if (getsockname(sock, &server, &length» 

perror("getting socket name"); 
exit (1) ; 

printf("Socket has port t%d\n", ntohs(server.sin-port»; 

/* Start accepting connections */ 
listen(sock, 5); 
do { 

msgsock = accept (sock, 0, 0); 
if (msgsock == -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof(buf»i 

Networking Tools Guide Last Change: March 1989 Appendix F-15 



Introductory IPe Tutorial 

1* 

if «rval = read (msgsock, buf, 1024» < 0) 
perror("reading stream message") : 

i = 0: 
if (rval == 0) 

printf("Ending connection\n"}: 
else 

prihtf("-->%s\n", buf): 
while (rval != O): 

close(msgsock): 
while (TRUE); 

* Since this program has an infinite loop, the socket "sock" is 
* never explicitly closed. However, all sockets will be closed 
* automatically when a process is killed or terminates normally. 
*1 

Figure 7b Accepting an Internet domain stream connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/time.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 
#define TRUE 1 

/* 
* This program uses select() to check that someone is trying to connect 
* before calling accept() . 
*/ 

main () 
( 

int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[l024]; 
int rval: 
fd_set ready: 
struct timeval to: 

1* Create socket *1 
sock = socket(AF_INET, SOCK_STREAM, 0): 
if (sock < 0) { 

perror("opening stream socket") : 
exit(l): 

/* Name socket using wildcards *1 
server.sin_family = AF_INETi 
server.sin_addr.s_addr = INADDR_ANY: 
server.sin-port = 0: 
if (bind (sock, &server, sizeof(server») 

Appendix F-16 Last Change: March 1989 ICON/UXV·NET 



( 

c 

Introductory IPC Tutorial 

perror("binding stream socket"); 
exit (1) ; 

/* Find out assigned port number and print it out */ 
length = sizeof(server); 
if (getsockname(sock, &server, &length)) 

perror("getting socket name"); 
exit(l); 

printf("Socket has port f%d\n", ntohs(server.sinyort)); 

/* Start accepting connections */ 
listen (sock, 5); 
do ( 

FD_ZERO(&ready) ; 
FD_SET(sock, &ready); 
to. tv_sec = 5; 
if (select (sock + 1, &ready, 0, 0, &to) < 0) ( 

perror("select"); 
continue; 

if (FD_ISSET(sock, &ready)) { 

else 

msgsock = accept (sock, (struct sockaddr *) a, (int *) 0) ; 
if (msgsock == -1) 

perror("accept"); 
else do ( 

bzero(buf, sizeof(buf)); 
if «rval = read (msgsock, bUf, 1024)) < 0) 

perror("reading stream messagen); 
else if (rval == 0) 

printf(nEnding connection\nn); 
else 

printf(n-->%s\nn, buf); 
while (rval > 0); 

close(msgsock); 

printf("Do something else\nn); 
while (TRUE); 

Figure 7c Using selectO to check for pending connections 

Networking Tools Guide Last Change: March 1989 Appendix F-17 



Introductory IPC Tutorial 

Process 1 Process 2 

o 
Process 1 Process 2 

O""::·:>~O ......... 
~ o 

Figure 8 Establishing a stream connection 

call has been completed, the program enters an infinite loop. On each pass through the loop, a new con­
nection is accepted and removed from the queue, and, hence, a new socket for the connection is created. 
The bottom half of Figure 8 shows the result of Process 1 connecting with the named socket of Process 2, 
and Process 2 accepting the connection. After the connection is created, the service, in this case printing 
out the messages, is performed and the connection socket closed. The accept() call will· take a pending 
connection request from the queue if one is available, or block waiting for a request. Messages are read 
from the connection socket. Reads from an active connection will normally block until data is available. 
The number of bytes read is returned. When a connection is destroyed, the read call returns immediately. 
The number of bytes returned will be zero. 

The program in Figure 7c is a slight variation on the server in Figure 7b. It avoids blocking when 
there are no pending connection requests by calling select() to check for pending requests before calling 
accept(). This strategy is useful when connections may be received on more than one socket, or when data 
may arrive on other connected sockets before another connection request. 

Appendix F-18 Last Change: March 1989 ICON/UXV·NET 

\ 
I 

./ 

(' 



( 

( 

Introductory IPC Tutorial 

The programs in Figures 9a and 9b show a program using stream communication in the UNIX 
domain. Streams in the UNIX domain can be used for this sort of program in exactly the same way as 
Internet domain streams, except for the form of the names and the restriction of the connections to a single 
file system. There are some differences, however, in the functionality of streams in the two domains, not­
ably in the handling of out-oj-band data (discussed briefly below). These differences arc beyond the scope 
of this paper. 

9. Reads, Writes, Recvs, etc. 

UNIX 4.3BSD has several system calls for reading and writing information. The simplest calls are 
read() and write(). Write() takes as arguments the index of a descriptor, a pointer to a buffer containing the 
data and the size of the data. The descriptor may indicate either a file or a connected socket. "Connected" 
can mean either a connected stream socket (as described in Section 8) or a datagram socket for which a 
conneetO call has provided a default destination (see the connectO manual page). ReadO also takes a 
descriptor that indicates either a file or a socket. WriteO requires a connected socket since no destination 
is specified in the parameters of the system call. ReadO can be used for either a connected or an uncon­
nected socket. These calls are, therefore, quite flexible and may be used to write applications that require 
no assumptions about the source of their input or the destination of their output. There arc variations on 
read() and write() that allow the source and destination of the input and output to use several separate 
buffers, while retaining the flexibility to handle both files and sockets. These are readvO and writev() , for 
read and write vector. 

It is sometimes necessary to send high priority data over a connection that may have unread low 
priority data at the other end. For example, a user interface process may be interpreting commands and 
sending them on to another process through a stream connection. The user interface may have filled the 
stream with as yet unprocessed requests when the user types a command to cancel all outstanding requests. 
Rather than have the high priority data wait to be processed after the low priority data, it is possible to 
send it as out-oj-band (OOB) data. The notification of pending OOB data results in the generation of a 
SIGURG signal, if this signal has been enabled (see the manual page for signal or sigvee). See [Lefller 
1986] for a more complete description of the OOB mechanism. There are a pair of calls similar to read 
and write that allow options, including sending and receiving OOB information; these are send() and 
recv(). These calls are used only with sockets; specifying a descriptor for a file will result in the return of 
an error status. These calls also allow peeking at data in a stream. That is, they allow a process to read 
data without removing the data from the stream. One use of this facility is to read ahead in a stream to 
determine the size of the next item to be read. When not using these options, these calls have the same 
functions as read() and write(). 

To send datagrams, one must be allowed to specify the destination. The call sendtoO takes a desti­
nation address as an argument and is therefore used for sending datagrams. The call reevJrom() is often 
used to read datagrams, since this call returns the address of the sender, if it is available, along with the 
data. If the identity of the sender does not matter, one may use read() or reev(). 

Finally, there are a pair of calls that allow the sending and receiving of messages from multiple 
buffers, when the address of the recipient must be specified. These are sendmsg() and reevmsg(). These 
calls are actually quite general and have other uses, including, in the UNIX domain, the transmission of a 
file descriptor from one process to another. 

The various options for reading and writing are shown in Figure 10, together with their parameters. 
The parameters for each system call reflect the differences in function of the different calls. In the exam­
ples given in this paper, the calls read() and writeO have been used whenever possible. 

10. Choices 

This paper has presented examples of some of the forms of communication supported by Berkeley 
UNIX 4.3BSD. These have been presented in an order chosen for ease of presentation. It is useful to 
review these options emphasizing the factors that make each attractive. 

Networking Tools Guide Last Change: March 1989 Appendix F-19 



#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

#define DATA "Half a league, half a league . . 

/* 

Introductory IPe Tutorial 

" 

* This program connects to the socket named in the command line and sends a 
* one line message to that socket. The form of the command line is 
* ustreamwrite pathname 
*/ 

main (argc, argv) 
int argc; 
char *argv [] ; 

int sock; 
struct sockaddr un server; 
char buf[l024]; 

/* Create socket */ 
sock = socket(AF_UNIX, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

/* Connect socket using name specified by command line. */ 
server.sun_family = AF_UNIX; 
strcpy(server.sun-path, argv[l]); 

if (connect (sock, &server, sizeof(struct sockaddr_un» < 0) { 
close(sock); 
perror("connecting stream socket"); 
exit (1) ; 

if (write(sock, DATA, sizeof(DATA» < 0) 
perror("writing on stream socket"); 

Figure 9a Initiating a UNIX domain stream connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

#define NAME "socket" 

/* 
* This program creates a socket in the UNIX domain and binds a name to it. 
* After printing the socket's name it begins a loop. Each time through the 
* loop it accepts a connection and prints out messages from it. When the 

Appendix F·20 Last Change: March 1989 ICON/UXV·NET 



( 

Introductory IPC Tutorial 

* connection breaks, or a termination message comes through, the program 
* accepts a new connection. 
*1 

main () 
{ 

int sock, msgsock, rval; 
struct sockaddr un server; 
char buf[1024]; 

1* Create socket *1 
sock = socket(AF_UNIX, SOCK_STREAM, 0); 
if (sock < 0) { 

perror ("opening stream socket"); 
exit(l); 

1* Name socket using file system name *1 
server. sun_family = AF_UNIX; 
strcpy(server.sun-path, NAME); 
if (bind(sock, &server, sizeof(struct sockaddr_un») 

perror("binding stream socket"); 
exit(l); 

printf("Socket has name %s\n", server.sun-path); 
1* Start accepting connections *1 
listen (sock, 5); 
for (;;) { 

1* 

msgsock = accept (sock, 0, 0); 
if (msgsock == -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof(buf»; 
if «rval = read (msgsock, buf, 1024» < 0) 

perror("reading stream message"); 
else if (rval == 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval > 0); 

close (msgsock) ; 

* The following statements are not executed, because they follow an 
* infinite loop. However, most ordinary programs will not run 
* forever. In the UNIX domain it is necessary to tell· the file 
* system that one is through using NAME. In most programs one uses 
* the call unlink() as below. Since the user will have to kill this 
* program, it will be necessary to remove the name by a command from 
* the shell. 
*1 

close(sock); 
unlink (NAME) ; 

Figure 9b Accepting a UNIX domain stream connection 

Networking Tools Guide Last Change: March 1989 Appendix F·21 



Introductory IPe Tutorial 

/* 
* The variable descriptor may be the descriptor of either a file 
* or of a socket. 
*/ 

cc = read(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

/* 
* An iovec can include several source buffers. 
*/ 

cc = readv(descriptor, iov, iovcnt) 
int cc, descriptor; struct iovec *iov; int iovcnt; 

cc = write(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

cc = writev(descriptor, iovec, ioveclen) 
int cc, descriptor; struct iovec *iovec; int ioveclen; 

/* 
* The variable "sock" must be the descriptor of a socket. 
* Flags may include MSG_OOB and MSG PEEK. 
*/ 

cc = send(sock, msg, len, flags) 
int cc, sock; char *msg; int len, flags; 

cc = sendto(sock, msg, len, flags, to, tolen) 
int cc, sock; char *msg; int len, flags; 
struct sockaddr *to; int tolen; 

cc = sendmsg(sock, msg, flags) 
int cc, sock; struct msghdr msg[]; int flags; 

cc = recv(sock, buf, len, flags) 
int cc, sock; char *buf; int len, flags; 

cc = recvfrom(sock, buf, len, flags, from, fromlen) 
int cc, sock; char *buf; int len, flags; 
struct sockaddr *from; int *fromlen; 

cc = recvmsg(sock, msg, flags) 
int cc, socket; struct msghdr msg[]; int flags; 

Figure 10 Varieties of read and write commands 

Pipes have the advantage of portability, in that they are supported in all UNIX systems. They also 
are relatively simple to use. Socketpairs share this simplicity and have the additional advantage of allow­
ing bidirectional communication. The major shortcoming of these mechanisms is that they require com­
municating processes to be descendants of a common process. They do not allow intermachine communi­
cation. 

The two communication domains, UNIX and Internet, allow processes with no common ancestor to 
communicate. Of the two, only the Internet domain allows communication between machines. This 
makes the Internet domain a necessary choice for processes running on separate machines. 

Appendix F-22 Last Change: March 1989 ICON/UXV-NET 



( 
Introductory IPe Tutorial 

The choice between datagrams and stream communication is best made by carefully considering the 
semantic and performance requirements of the application. Streams can be both advantageous and disad­
vantageous. One disadvantage is that a process is only allowed a limited number of open streams, as there 
are usually only 64 entries available in the open descriptor table. This can cause problems if a single 
server must talk with a large number of clients. Another is that for delivering a short message the stream 
setup and teardown time can be unnecessarily long. Weighed against this are the reliability built into the 
streams. This will often be the deciding factor in favor of streams. 

11. What to do Next 

Many of the examples presented here can serve as models for multiprocess programs and for pro­
grams distributed across several machines. In developing a new multiprocess program, it is often easiest to 
first write the code to create the processes and communication paths. After this code is debugged, the code 
specific to the application can be added. 

An introduction to the UNIX system and programming using UNIX system calls can be found in 
[Kernighan and Pike 1984]. Further documentation of the Berkeley UNIX 4.3BSD IPC mechanisms can 
be found in [Leffler et al. 1986]. More detailed information about particular calls and protocols is provided 
in sections 2, 3 and 4 of the UNIX Programmer's Manual [CSRG 1986]. In particular the following 
manual pages are relevant: 

creating and naming sockets 
establishing connections 
transferring data 
addresses 
protocols 

Acknowledgements 

socket(2), bind(2) 
listen(2). accept(2). connect(2) 
read(2), write(2), send(2), recv(2) 
inet(4F) 
tcp(4P). udP(4P). 

I would like to thank Sam Leffler and Mike Karels for their help in understanding the IPC 
mechanisms and all the people whose comments have helped in writing and improving this report. 

This work was sponsored by the Defense Advanced Research Projects Agency (DoD), ARPA 
Order No. 4031, monitored by the Naval Electronics Systems Command under contract No. N00039-
C-023S. The views and conclusions contained in this document are those of the author and should not 
be interpreted as representing official policies, either expressed or implied, of the Defense Research 
Projects Agency or of the US Government. 

Networking Tools Guide Last Change: March 1989 Appendix F·23 



References 

B.W. Kernighan & R. Pike, 1984, 
The UNIX Programming Environment. 
Englewood Cliffs, NJ.: Prentice-Hall. 

B.W. Kernighan & D.M. Ritchie, 1978, 
The C Programming Language. 
Englewood Cliffs, N J.: Prentice-Hall. 

SJ. Leffier, R.S. Fabry, WN. Joy, P. Lapsley, S. Miller & C. Torek, 1986, 
An Advanced 4.3BSD Interprocess Communication Tutorial. 
Computer Systems Research Group, 
Department of Electrical Engineering and Computer Science, 
University of California, Berkeley. 

Computer Systems Research Group, 1986, 
UNIX Programmer's Manual. 4.3 Berkeley Software Distribution. 
Computer Systems Research Group, 
Department of Electrical Engineering and Computer Science, 
University of California, Berkeley. 

Appendix F-24 Last Change: March 1989 

Introductory IPC Tutorial 

ICON/UXV·NET 



( 

C: 

Appendix G - An Advanced 
Interprocess Communication Tutorial 

The following appendix contains a document produced by Samuel J. Leffler, Robert S. Fabry, 
William N. Joy, and Phil Lapsley of the Computer Systems Research Group, Department of 
Electrical Engineering and Computer Science at the University of California, Berkeley, and 
Steve Miller and Chris Torek of the Heterogeneous Systems Laboratory, Department of 
Computer Science at the University of Maryland, College Park, Maryland, titled "An Advanced 
43BSD Interprocess Communication Tutorial". The document provides an introduction to the 
interprocess communication facilities included in the 4.3BSD release of the UNIX® system. It 
discusses the overall model for interprocess communication and introduces the interprocess 
communication primitives which have been added to the system. 

Advanced Interprocess Communication Tutorial Change 1 - March 1989 



G-ii Change 1 - March 1989 ICONlUXV-NET 



( 

c! 

An Advanced 4.3BSD Interprocess Communication Tutorial 

Samuel J. Leffler 

Robert S. Fabry 

William N. Joy 

Phil Lapsley 

Computer Systems Research Group 
Department of Electrical Engineering and Computer Science 

University of California, Berkeley 
Berkeley, California 94720 

Steve Miller 

Chris Torek 

Heterogeneous Systems Laboratory 
Department of Computer Science 

University of Maryland, College Park 
College Park, Maryland 20742 

ABSTRACT 

This document provides an introduction to the interprocess communication facili­
ties included in the 4.3BSD release of the UNIX* system. 

It discusses the overaIl model for interprocess communication and introduces the 
interprocess communication primitives which have been added to the system. The 
majority of the document considers the use of these primitives in developing applica­
tions. The reader is expected to be familiar with the C programming language as all 
examples are written in C. 

* lJ:\JX is a Trademark of Bell Laboratories. 

Networking Tools Guide Last Change: March 1989 Appendix G-1 



Advanced IPe Tutorial 

1. INTRODUCTION 

One of the most important additions to UNIX in 4.2BSD was interprocess communication. These facilities 
were the result of more than two years of discussion and research. The facilities provided in 4.2BSD 
incorporated many of the ideas from current research, while trying to maintain the UNIX philosophy of 
simplicity and conciseness. The current release of Berkeley UNIX, 4.3BSD, completes some of the IPC 
facilities and provides an upward-compatible interface. It is hoped that the interprocess communication 
facilities included in 4.3BSD will establish a standard for UNIX. From the response to the design, it 
appears many organizations carrying out work with UNIX are adopting it. 

UNIX has previously been very weak in the area of interprocess communication. Prior to the 4BSD 
facilities, the only standard mechanism which allowed two processes to communicate were pipes (the mpx 
files which were part of Version 7 were experimental). Unfortunately, pipes are very restrictive in that the 
two communicating processes must be related through a common ancestor. Further, the semantics of pipes 
makes them almost impossible to maintain in a distributed environment. 

Earlier attempts at extending the !PC facilities of UNIX have met with mixed reaction. The major­
ity of the problems have been related to the fact that these facilities have been tied to the UNIX file sys­
tem, either through naming or implementation. Consequently, the !PC facilities provided in 4.3BSD have 
been designed as a totally independent subsystem. The 4.3BSD !PC allows processes to rendezvous in 
many ways. Processes may rendezvous through a UNIX file system-like name space (a space where all 
names are path names) as well as through a network name space. In fact, new name spaces may be added 
at a future time with only minor changes visible to users. Further, the communication facilities have been 
extended to include more than the simple byte stream provided by a pipe. These extensions have resulted 
in a completely new part of the system which users will need time to familiarize themselves with. It is 
likely that as more use is made of these facilities they will be refined; only time will tell. 

This document provides a high-level description of the IPC facilities in 4.3BSD and their usc. It is 
designed to complement the manual pages for the IPC primitives by examples of their use. The remainder 
of this document is organized in four sections. Section 2 introduces the !PC-related system calls and the 
basic model of communication. Section 3 describes some of the supporting library routines users may find 
useful in constructing distributed applications. Section 4 is concerned with the client/server model used in 
developing applications and includes examples of the two major types of servers. Section 5 delves into 
advanced topics which sophisticated users are likely to encounter when using the IPC facilities. 

Appendix G-2 Last Change: March 1989 ICON/UXV-NET 

( ' 
'. / . ----" 



( 

Advanced IPC Tutorial 

2. BASICS 

The basic building block for communication is the socket. A socket is an endpoint of communica­
tion to which a name may be bound. Each socket in use has a type and one or more associated processes. 
Sockets exist within communication domains. A communication domain is an abstraction introduced to 
bundle common properties of processes communicating through sockets. One such property is the scheme 
used to name sockets. For example, in the UNIX communication domain sockets are named with UNIX 
path names; e.g. a socket may be named "/dev/foo". Sockets normally exchange data only with sockets in 
the same domain (it may be possible to cross domain boundaries, but only if some translation process is 
performed). The 4.3BSD IPC facilities support three separate communication domains: the UNIX 
domain, for on-system communication; the Internet domain, which is used by processes which communi­
cate using the the DARPA standard communication protocols; and the NS domain, which is used by 
processes which communicate using the Xerox standard communication protocols*. The underlying com· 
munication facilities provided by these domains have a significant influence on the internal system imple­
mentation as well as the interface to socket facilities available to a user. An example of the latter is that a 
socket "operating" in the UNIX domain sees a subset of the error conditions which are possible when 
operating in the Internet (or NS) domain. 

2.1. Socket types 

Sockets are typed according to the communication properties visible to a user. Processes arc 
presumed to communicate only between sockets of the same type, although there is nothing that prevents 
communication between sockets of different types should the underlying communication protocols support 
this. 

Four types of sockets currently are available to a user. A stream socket provides for the bidirec­
tional, reliable, sequenced, and un duplicated flow of data without record boundaries. Aside from the 
bidirectionality of data flow, a pair of connected stream sockets provides an interface nearly identical to 
that of pipest. 

A datagram socket supports bidirectional flow of data which is not promised to be sequenced, reli­
able, or unduplicated. That is, a process receiving messages on a datagram socket may find messages 
duplicated, and, possibly, in an order different from the order in which it was sent. An important charac­
teristic of a datagram socket is that record boundaries in data are preserved. Datagram sockets closely 
model the facilities found in many contemporary packet switched networks such as the Ethernet. 

A raw socket provides users access to the underlying communication protocols which support 
socket abstractions. These sockets are normally datagram oriented, though their exact characteristics are 
dependent on the interface provided by the protocol. Raw sockets are not intended for the general user; 
they have been provided mainly for those interested in developing new communication protocols, or for 
gaining access to some of the more esoteric facilities of an existing protocol. The use of raw sockets is 
considered in section S. 

A sequenced packet socket is similar to a stream socket, with the exception that record boundaries 
are preserved. This interface is provided only as part of the NS socket abstraction, and is very important in 
most serious NS applications. Sequenced-packet sockets allow the user to manipulate the SPP or IDP 
headers on a packet or a group of packets either by writing a prototype header along with whatever data is 
to be sent, or by specifying a default header to be used with all outgoing data, and allows the user to 
receive the headers on incoming packets. The use of these options is considered in section S. 

Another potential socket type which has interesting properties is the reliably delivered message 
socket. The reliably delivered message socket has similar properties to a datagram socket, but with 

* See Internet Transport Protocols, Xerox System Integration Standard (XSIS)028112 for more infonnation. This 
document is almost a necessity for one trying to write NS applications. 
t In the lnI.'IX domain, in fact, the semantics are identical and, as one might expect, pipes have been implemented 
internally as simply a pair of connected stream sockets. 

Networking Tools Guide Last Change: March 1989 Appendix G-3 



Advanced IPC Tutorial 

reliable delivery. There is currently no support for this type of socket, but a reliably delivered message 
protocol similar to Xerox's Packet Exchange Protocol (PEX) may be simulated at the user level. More 
information on this topic can be found in section 5. 

2.2. Socket creation 

To create a socket the socket system call is used: 

s = socket(domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of the specified type. A par­
ticular protocol may also be requested. If the protocol is left unspecified (a value of 0), the system will 
select an appropriate protocol from those protocols which comprise the communication domain and which 
may be used to support the requested socket type. The user is returned a descriptor (a small integer 
number) which may be used in later system calls which operate on sockets. The domain is specified as one 
of the manifest constants defined in the file <sys/socket.h>. For the UNIX domain the constant is 
AF _UNIX*; for the Internet domain AF _!NET; and for the NS domain, AF _NS. The socket types are also 
defined in this file and one of SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, or SOCK_SEQPACKET 
must be specified. To create a stream socket in the Internet domain the following call might be used: 

s = socket(AF _!NET, SOCK_STREAM, 0); 

This call would result in a stream socket being created with the TCP protocol providing the underlying 
communication support. To create a datagram socket for on-machine use the call might be: 

s = socket(AF _UNIX, SOCK_DGRAM, 0); 

The default protocol (used when the protocol argument to the socket call is 0) should be correct for 
most every situation. However, it is possible to specify a protocol other than the default; this will be 
covered in section 5. 

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of memory 
(ENOBUFS), a socket request may fail due to a request for an unknown protocol (EPROTONOSUP­
PORD, or a request for a type of socket for which there is no supporting protocol (EPROTOTYPE). 

2.3. Binding local names 

A socket is created without a name. Until a name is bound to a socket, processes have no way to 
reference it and, consequently, no messages may be received on it. Communicating processes are bound 
by an association. In the Internet and NS domains, an association is composed of local and foreign 
addresses, and local and foreign ports, while in the UNIX domain, an association is composed of local and 
foreign path names (the phrase "foreign pathname" means a pathname created by a foreign process, not a 
pathname on a foreign system). In most domains, associations must be unique. In the Internet domain 
there may never be duplicate <protocol, local address, local port, foreign address, foreign port> tuples. 
UNIX domain sockets need not always be bound to a name, but when bound there may never be duplicate 
<protocol, local pathname, foreign path name> tuples. The pathnames may not refer to files already exist­
ing on the system in 4.3; the situation may change in future releases. 

The bind system call allows a process to specify half of an association, <local address, local port> 
(or <local pathname», while the connect and accept primitives are used to complete a socket's associa­
tion. 

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it is usually 
not necessary to specifically bind an address and port number to a socket, because the connect and send 
calls will automatically bind an appropriate address if they are used with an unbound socket. The process 
of binding names to NS sockets is similar in most ways to that of binding names to Internet sockets. 

The bind system call is used as follows: 

* The manifest constants are named AF _whatever as they indicate the "address format" to use in interpreting names. 

Appendix G·4 Last Change: March 1989 ICON/UXV·NET 

.",,- / 



( 

Advanced IPe Tutorial 

bind(s, name, namelen); 

The bound name is a variable length byte string which is interpreted by the supporting protocol(s). Its 
interpretation may vary from communication domain to communication domain (this is one of the proper­
ties which comprise the "domain"). As mentioned, in the Internet domain names contain an Internet 
address and port number. NS domain names contain an NS address and port number. In the UNIX 
domain, names contain a path name and a family, which is always AF_UNIX. If one wanted to bind the 
name "/tmp/foo" to a UNIX domain socket, the following code would be used*: 

#include <sys/un.h> 

struct sockaddr_un addr; 

strcpy(addr.sun_path, "/tmp/foo"); 
addr.sun_family = AF _UNIX; 
bind(s, (struct sockaddr *) &addr, strlen(addr.sun_path) + 

sizeof (addr.sunjamily»; 

Note that in determining the size of a UNIX domain address null bytes are not counted, which is why 
strlen is used. In the current implementation of UNIX domain IPC under 4.3BSD, the file name referred to 
in addr.sun yath is created as a socket in the system file space. The caller must, therefore, have write per­
mission in the directory where addr.sunyath is to reside, and this file should be deleted by the caller when 
it is no longer needed. Future versions of 4BSD may not create this file. 

In binding an Internet address things become more complicated. The actual call is similar, 

#include <sys/types.h> 
#include <netinet/in.h> 

struct sockaddr_in sin; 

bind(s, (struct sockaddr *) &sin, sizeof (sin»; 

but the selection of what to place in the address sin requires some discussion. We will come back to the 
problem of formulating Internet addresses in section 3 when the library routines used in name resolution 
arc discussed. 

Binding an NS address to a socket is even more difficult, especially since the Internet library rou­
tines do not work with NS hostnames. The actual call is again similar: 

#include <sys/types.h> 
#include <netns/ns.h> 

struct sockaddr_ns sns; 

bind(s, (struct sockaddr *) &sns, sizeof (sns»; 

Again, discussion of what to place in a "struct sockaddr_ns" will be deferred to section 3. 

2.4. Connection establishment 

Connection establishment is usually asymmetric, with one process a "client" and the other a 
"server". The server, when willing to offer its advertised services, binds a socket to a well-known address 
associated with the service and then passively "listens" on its socket. It is then possible for an unrelated 
process to rendezvous with the server. The client requests services from the server by initiating a "con­
nection" to the server's socket. On the client side the connect call is used to initiate a connection. Using 

* Note that, although the tendency here is to call the Haddr" structure "sun", doing so would cause problems if the code 
were ever poned to a Sun worutation. 

NetworkIng Tools GuIde Last Change: March 1989 AppendIx G-5 



the UNIX domain, this might appear as, 

struct sockaddr_un server; 

connect(s, (struct sockaddr *)&server, strlen(server.sun-path) + 
sizcof (server. sun_family) ); 

while in the Internet domain, 

struct sockaddr_in server; 

connect(s, (struct sockaddr *)&server, sizeof (server»; 

and in the NS domain, 

struct sockaddr_ns server; 

connect(s, (struct sockaddr *)&server, sizeof (server»; 

Advanced IPe Tutorial 

where server in the example above would contain either the UNIX pathname, Internet address and port 
number, or NS address and port number of the server to which the client process wishes to speak. If the 
client process's socket is unbound at the time of the connect call, the system will automaticaIly select and 
bind a name to the socket if necessary; c.f. section 5.4. This is the usual way that local addresses are 
bound to a socket. 

An error is returned if the connection was unsuccessful (any name automaticaIly bound by the sys­
tem, however, remains). Otherwise, the socket is associated with the server and data transfer may begin. 
Some of the more common errors returned when a connection attempt fails are: 

ETIMEDOUT 
After failing to establish a connection for a period of time, the system decided there was no point in 
retrying the connection attempt any more. This usually occurs because the destination host is down, 
or because problems in the network resulted in transmissions being lost. 

ECONNREFUSED 
The host refused service for some reason. This is usually due to a server process not being present at 
the requested name. 

ENETDOVfJNor EHOSTDOvrN 
These operational errors are returned based on status information delivered to the client host by the 
underlying communication services. 

ENETUNREACHmEHOSTUNREACH 
These operational errors can occur either because the network or host is unknown (no route to the 
network or host is present), or because of status information returned by intermediate gateways or 
switching nodes. Many times the status returned is not sufficient to distinguish a network being 
down from a host being down, in which case the system indicates the entire network is unreachable. 

For the server to receive a client's connection it must perform two steps after binding its socket. The 
first is to indicate a willingness to listen for incoming connection requests: 

listen(s, 5); 

The second parameter to the listen call specifies the maximum number of outstanding connections which 
may be queued awaiting acceptance by the server process; this number may be limited by the system. 
Should a connection be requested while the queue is full, the connection will not be refused, but rather the 
individual messages which comprise the request will be ignored. This gives a harried server time to make 
room in its pending connection queue while the client retries the connection request. Had the connection 
been returned with the ECONNREFUSED error, the client would be unable to tell if the server was up or 
not. As it is now it is still possible to get the ETIMEDOUT error back, though this is unlikely. The back­
log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con­
nections on anyone queue. This avoids the problem of processes hogging system resources by setting an 
infinite backlog, then ignoring all connection requests. 

Appendix G-6 last Change: March 1989 ICON/UXV·NET 



( 

Advanced IPe Tutorial 

With a socket marked as listening, a server may accept a connection: 

struct sockaddr_in from; 

fromlen = sizeof (from); 
newsock = accept(s, (struct sockaddr *)&from, &fromlen); 

(For the UNIX domain, from would be declared as a struct sockaddr un, and for the NS domain, from 
would be declared as a struct sockaddr _ ns, but nothing different would need to be done as far as fromle n is 
concerned. In the examples which follow, only Internet routines will be discussed.) A new descriptor is 
returned on receipt of a connection (along with a new socket). If the server wishes to find out who its 
client is, it may supply a buffer for the client socket's name. The value-result parameter fromlen is initial­
ized by the server to indicate how much space is associated with from, then modified on return to reflect 
the true size of the name. If the client's name is not of interest, the second parameter may be a null 
pointer. 

Accept normally blocks. That is, accept will not return until a connection is available or the system 
call is interrupted by a signal to the process. Further, there is no way for a process to indicate it will accept 
connections from only a specific individual, or individuals. It is up to the user process to consider who the 
connection is from and close down the connection if it does not wish to speak to the process. If the server 
process wants to accept connections on more than one socket, or wants to avoid blocking on the accept 
call, there are alternatives; they will be considered in section 5. 

2.5. Data transfer 

With a connection established, data may begin to flow. To send and receive data there are a number 
of possible calls. With the peer entity at each end of a connection anchored, a user can send or receive a 
message without specifying the peer. As one might expect, in this case, then the normal read and write 
system calls are usable, 

write(s, buf, sizeof (but); 
read(s, buf, sizeof (but); 

In addition to read and write, the new calls send and recv may be used: 

send(s, buf, sizeof (but), flags); 
recv(s, buf, sizeof (but), flags); 

While send and recv are virtually identical to read and write, the extra flags argument is important. The 
flags, defined in <sys/socket.h>, may be specified as a non-zero value if one or more of the following is 
required: 

MSG_OOB 
MSG]EEK 
MSG_DONTROUTE 

send/receive out of band data 
look at data without reading 
send data without routing packets 

Out of band data is a notion specific to stream sockets, and one which we will not immediately consider. 
The option to have data sent without routing applied to the outgoing packets is currently used only by the 
routing table management process, and is unlikely to be of interest to the casual user. The ability to pre­
view data is, however, of interest. When MSG_PEEK is specified with a recv call, any data present is 
returned to the user, but treated as still "unread". That is, the next read or recv call applied to the socket 
will return the data previously previewed. 

2.6. Discarding sockets 

Once a socket is no longer of interest, it may be discarded by applying a close to the descriptor, 

c1ose(s); 

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a close 
takes place, the system will continue to attempt to transfer the data. However, after a fairly long period of 

Networking Tools Guide Last Change: March 1989 Appendix G-7 

.. ---I 



Advanced IPC Tutorial 

time, if the data is still undelivered, it will be discarded. Should a user have no use for any pending data. it 
may perform a shutdown on the socket prior to closing it This call is of the form: 

shutdown(s. how); 

where how is 0 if the user is no longer interested in reading data, 1 if no more data will be sent. or 2 if no 
data is to be sent or received. 

2.7. Connectionless sockets 

To this point we have been concerned mostly with sockets which follow a connection oriented 
model. However, there is also support for connectionless interactions typical of the datagram facilities 
found in contemporary packet switched networks. A datagram socket provides a symmetric interface to 
data exchange. While processes are still likely to be client and server. there is no requirement for connec­
tion establishment. Instead. each message includes the destination address. 

Datagram sockets are created as before. If a particular local address is needed. the bind operation 
must precede the first data transmission. Otherwise, the system will set the local address and/or port when 
data is first sent. To send data. the sendto primitive is used, 

sendto(s, buf, buften, flags, (struct sockaddr *)&10, tolen); 

The s, buf, bufien. andfiags parameters are used as before. The to and tolen values are used to indicate the 
address of the intended recipient of the message. When using an unreliable datagram interface, it is 
unlikely that any errors will be reported to the sender. When information is present locally to recognize a 
message that can not be delivered (for instance when a network is unreachable), the call will return -1 and 
the global value ermo will contain an error number. 

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided: 

recvfrom(s, buf, buften, flags, (struct sockaddr *)&from, &fromlen); 

Once again, the fromlen parameter is handled in a value-result fashion, initially containing the size of the 
from buffer, and modified on return to indicate the actual size of the address from which the datagram was 
received. 

In addition to the two calls mentioned above, datagram sockets may also use the connect call to 
associate a socket with a specific destination address. In this case, any data sent on the socket will 
automatically be addressed to the connected peer, and only data received from that peer will be delivered 
to the user. Only one connected address is permitted for each socket at one time; a second connect will 
change the destination address, and a connect to a null address (family AF _UNSPEC) will disconnect. 
Connect requests on datagram sockets return immediately, as this simply results in the system recording 
the peer's address (as compared to a stream socket. where a connect request initiates establishment of an 
end to end connection). Accept and listen are not used with datagram sockets. 

While a datagram socket socket is connected, errors from recent send calls may be returned asyn­
chronously. These errors may be reported on subsequent operations on the socket, or a special socket 
option used with getsockopt, SO_ERROR, may be used to interrogate the error status. A select for reading 
or writing will return true when an error indication has been received. The next operation will return the 
error. and the error status is cleared. Other of the less important details of datagram sockets are described 
in section 5. 

2.8. Input/Output multiplexing 

One last facility often used in developing applications is the ability to multiplex i/o requests among 
multiple sockets and/or files. This is done using the select call: 

Appendix G-a Last Change: March 1989 ICON/UXV·NET 

(" 
, I ""-/ 



( 

( 

c 

Advanced IPe Tutorial 

#include <sys/time.h> 
#include <sys/types.h> 

fd_set readmask, writemask, exceptmask; 
struct timeval timeout; 

select(nfds, &readmask, &writemask, &exceptmask, &timeout); 

Select takes as arguments pointers to three sets, one for the set of file descriptors for which the caller 
wishes to be able to read data on, one for those descriptors to which data is to be written, and one for 
which exceptional conditions are pending; out-of-band data is the only exceptional condition currently 
implemented by the socket If the user is not interested in certain conditions (i.e., read, write, or excep­
tions), the corresponding argument to the select should be a null pointer. 

Each set is actually a structure containing an array of long integer bit masks; the size of the array is 
set by the definition FD_SETSIZE. The array is be long enough to hold one bit for each ofFD_SETSIZE 
file descriptors. 

The macros FD_SET(fd. &mask) and FD_CLR(fd. &mask) have been provided for adding and 
removing file descriptor fd in the set mask. The set should be zeroed before use, and the macro 
FD_ZERO(&mask) has been provided to clear the set mask. The parameter nfds in the select call specifies 
the range of file descriptors (i.e. one plus the value of the largest descriptor) to be examined in a set. 

A timeout value may be specified if the selection is not to last more than a predetermined period of 
time. If the fields in timeout are set to 0, the selection takes the form of a poll, returning immediately. If 
the last parameter is a null pointer, the selection will block indefinitely*. Select normally returns the 
number of file descriptors selected; if the select call returns due to the timeout expiring, then the value 0 is 
rcturned. If the select terminates because of an error or interruption, a -1 is returned with the error number 
in ermo, and with the file descriptor masks unchanged. 

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read 
from, written to, or have exceptional conditions pending. The status of a file descriptor in a select mask 
may be tested with the FD JSSETifd. &mask) macro, which returns a non-zero value if fd is a member of 
the set mask, and 0 if it is not. 

To determine if there are connections waiting on a socket to be used with an accept call, select can 
be used, followed by a FD JSSETifd. &mask) macro to check for read readiness on the appropriate socket. 
If FD JSSET returns a non-zero value, indicating permission to read, then a connection is pcnding on the 
socket. 

As an example, to read data from two sockets, s1 and s2 as it is available from each and with a one­
second timeout, the following code might be used: 

* To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received by the caller, 
inlerrupting the sySlem call. 

Networking Tools Guide Last Change: March 1989 Appendix G·g 



#include <sys/time.h> 
#include <sys/types.h> 

fd_set read_template; 
struct timeval wait; 

for (;;) ( 
waittv_sec = 1; 
wait.tv _usec = 0; 

/* one second * / 

FD_SET(sl, &read_template); 
FD_SET(s2, &read_template); 

Advanced IPC Tutorial 

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait); 
if(nb <= 0) { 

An error occurred during the select, or 
the select timed out. 

if (PD _ISSET(s 1, &read_template» { 
Socket #1 is ready to be read/rom. 

if (FD _ISSET(s2, &read_template» { 
Socket #2 is ready to be read/rom. 

In 4.2, the arguments to select were pointers to integers instead of pointers to /d _sets. This type of 
call will still work as long as the number of file descriptors being examined is less than the number of bits 
in an integer; however, the methods illustrated above should be used in all current programs. 

Select provides a synchronous multiplexing scheme. Asynchronous notification of output comple­
tion, input availability, and exceptional conditions is possible through use of the SIGIO and SIGURG sig­
nals described in section 5. 

Appendix G-10 Last Change: March 1989 ICON/UXV-NET 



( 

( 

Advanced IPC Tutorial 

3. NETWORK LIBRARY ROUTINES 

The discussion in section 2 indicated the possible need to locate and construct network addresses 
when using the interprocess communication facilities in a distributed environment. To aid in this task a 
number of routines have been added to the standard C run-time library. In this section we will consider the 
new routines provided to manipulate network addresses. While the 4.3BSD networking facilities support 
both the DARPA standard Internet protocols and the Xerox NS protocols, most of the routines presented in 
this section do not apply to the NS domain. Unless otherwise stated, it should be assumed that the routines 
presented in this section do not apply to the NS domain. 

Locating a service on a remote host requires many levels of mapping before client and server may 
communicate. A service is assigned a name which is intended for human consumption; e.g. "the login 
server on host monet". This name, and the name of the peer host, must then be translated into network 
addresses which are not necessarily suitable for human consumption. Finally, the address must then used 
in locating a physical location and route to the service. The specifics of these three mappings are likely to 
vary between network architectures. For instance, it is desirable for a network to not require hosts to be 
named in such a way that their physical location is known by the client host. Instead, underlying services 
in the network may discover the actual location of the host at the time a client host wishes to communi­
cate. This ability to have hosts named in a location independent manner may induce overhead in connec­
tion establishment, as a discovery process must take place, but allows a host to be physically mobile 
without requiring it to notify its clientele of its current location. 

Standard routines are provided for: mapping host names to network addresses, network names to 
network numbers, protocol names to protocol numbers, and service names to port numbers and the 
appropriate protocol to use in communicating with the server process. The file <netdb.h> must be 
included when using any of these routines. 

3.1. Host names 

An Internet host name to address mapping is represented by the hostem structure: 

struct hostent { 
char *h_name; 
char **h_aliases; 
int h_addrtype; 
iot h_Iength; 
char **h_addr_Iist; 

} ; 

/* official name of host * / 
/* alias list * / 
/* host address type (e.g., AF _INET) */ 
/* length of address * / 
/* list of addresses, null terminated * / 

/* first address, network byte order * / 
The routine gethostbyname(3N) takes an Internet host name and returns a hostem structure, while the rou­
tine gethostbyaddr(3N) maps Internet host addresses into a hostent structure. 

The official name of the host and its public aliases are returned by these routines, along with the 
address type (family) and a null terminated list of variable length address. This list of addresses is 
required because it is possible for a host to have many addresses, all having the same name. The h_addr 
definition is provided for backward compatibility, and is defined to be the first address in the list of 
addresses in the hostent structure. 

The database for these calls is provided either by the file letclhosts (hosts (5», or by use of a 
nameserver, named (8). Because of the differences in these databases and their access protocols, the infor­
mation returned may differ. When using the host table version of gethostbyname, only one address will be 
returned, but all listed aliases will be included. The nameserver version may return alternate addresses, 
but will not provide any aliases other than one given as argument. 

Unlike Internet names, NS names are always mapped into host addresses by the use of a standard NS 
Clearinghouse service, a distributed name and authentication server. The algorithms for mapping NS 

Networking Tools Guide Last Change: March 1989 Appendix G·11 



Advanced IPC Tutorial 

names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the stan­
dard libraries. The user-contributed Courier (Xerox remote procedure call protocol) compiler contains 
routines to accomplish this mapping; see the documentation and examples provided therein for more infor­
mation. It is expected that almost all software that has to communicate using NS will need to use the facil­
ities of the Courier compiler. 

An NS host address is represented by the following: 

union ns_host { 
u_char 
u_short 

} ; 

union ns_net { 
u_char 

}; 

struct ns_addr { 

c_host[6]; 
s_host[3]; 

c_net[4]; 
s_net[2]; 

union ns_net x_net; 
union ns_host x_host; 
u_short x_port; 

} ; 

The following code fragment inserts a known NS address into a ns _addr: 

Appendix G·12 Last Change: March 1989 ICON/UXV·NET 



Advanced IPC Tutorial 

#include <sys/types.h> 
#include <sys/socketh> 
#include <netns/ns.h> 

u_Iong netnum; 
struct sockaddr_ns dst; 

bzero«char *)&dst, sizeof(dst»; 

1* 
* There is no convenient way to assign a long 
* integer to a "union ns_net" at present; in 
* the future, something will hopefully be provided, 
* but this is the portable way to go for now. 
* The network number below is the one for the NS net 
* that the desired host (gyre) is on. 
*/ 
netnum = htonl(2266); 
dst.sns_addr.x_net = *(union ns_net *) &netnum; 
dst.snsjamily = AF _NS; 

/* 
* host 2.7.1.0.2a.18 == "gyre:Computer Science:UotMaryland" 
*/ 

dst.sns_addr.x_host.c_host[O] = Ox02; 
dst.sns_addr.x_host.c_host[I] = Ox07; 
dst.sns_addr.x_host.c_host[2] = OxOl; 
dst.sns_addr.x_host.c_host[3] = OxOO; 
dst.sns_addr.x_host.c_host[4] = Ox2a; 
dst.sns_addr.x_host.c_host[5] = OxI8; 
dSl.sns_addr.x_port = htons(75); 

3.2. Network names 

As for host names, routines for mapping network names to numbers, and back, are provided. These 
routines return a netent structure: 

/* 
* Assumption here is that a network number 
* fits in 32 bits -- probably a poor one. 
*/ 
struct netent ( 

char *n_name; 
**n_aliases; 
n_addrtype; 

/* official name of net * / 
1* alias list * / 
/* net address type * / 

char 
int 
int /* network number, host byte order */ 

) ; 

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network counterparts to 
the host routines described above. The routines extract their information from fetc/networks. 

NS network numbers are determined either by asking your local Xerox Network Administrator (and 
hard coding the information into your code), or by querying the Clearinghouse for addresses. The internet­
work router is the only process that needs to manipulate network numbers on a regular basis; if a process 
wishes to communicate with a machine, it should ask the Clearinghouse for that machine's address (which 
will include the net number). 

Networking Tools Guide Last Change: March 1989 Appendix G-13 



Advanced IPC Tutorial 

3.3. Protocol names 

For protocols, which are defined in /etc/protocols, the protoent structure defines the protocol-name 
mapping used with the routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N): 

struct protoent { 
char 

}; 

char 
int 

*p_name; 
**p_aliases; 
p_proto; 

/* official protocol name * / 
/* alias list * / 
/* protocol number * / 

In the NS domain, protocols are indicated by the "client type" field of a IDP header. No protocol 
database exists; see section 5 for more information. 

3.4. Service names 

Information regarding services is a bit more complicated. A service is expected to reside at a 
specific "port" and employ a particular communication protocol. This view is consistent with the Internet 
domain, but inconsistent with other network architectures. Further, a service may reside on multiple ports. 
If this occurs, the higher level library routines will have to be bypassed or extended. Services available 
are contained in the file /etc/services. A service mapping is described by the servent structure, 

struct servent { 
char 

} ; 

char 
int 
char 

*s_name; 
* * s_aliases; 
s_port; 
*s_proto; 

/* official service name * / 
/* alias list * / 
/* port number, network byte order */ 
/* protocol to use * / 

The routine getservbyname(3N) maps service names to a servent structure by specifying a service name 
and, optionally, a qualifying protocol. Thus the call 

sp = getservbyname("telnet", (char *) 0); 

returns the service specification for a telnet server using any protocol, while the call 

sp = getservbyname("telnet", "tcp"); 

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N) and 
getservent(3N) are also provided. The getservbyport routine has an interface similar to that provided by 
getservbyname; an optional protocol name may be specified to qualify lookups. 

In the NS domain, services are handled by a central dispatcher provided as part of the Courier 
remote procedure call facilities. Again, the reader is referred to the Courier compiler documentation and 
to the Xerox standard* for further details. 

3.5. Miscellaneous 

With the support routines described above, an Internet application program should rarely have to 
deal directly with addresses. This allows services to be developed as much as possible in a network 
independent fashion. It is clear, however, that purging all network dependencies is very difficult. So long 
as the user is required to supply network addresses when naming services and sockets there will always 
some network dependency in a program. For example, the normal code included in client programs, such 
as the remote login program, is of the form shown in Figure 1. (This example will be considered in more 
detail in section 4.) 

If we wanted to make the remote login program independent of the Internet protocols and addressing 
scheme we would be forced to add a layer of routines which masked the network dependent aspects from 
the mainstream login code. For the current facilities available in the system this does not appear to be 

.. Courier: The Remote Procedure Call Protocol, XSIS 038112. 

Appendix G-14 Last Change: March 1989 ICON/UXV·NET 



Advanced IPC Tutorial 

worthwhile. 

Aside from the address-related data base routines, there are several other routines available in the 
run-lime library which are of interest to users. These are intended mostly to simplify manipulation of 
names and addresses. Table 1 summarizes the routines for manipulating variable length byte strings and 
handling byte swapping of network addresses and values. 

Call Synopsis 

bcmp(sl, s2, n) compare byte-strings; 0 if same, not 0 otherwise 
bcopy(sl, s2, n) copy n bytes from sl to s2 
bzero(base, n) zero-fill n bytes starting at base 
htonl(val) convert 32-bit quantity from host to network byte order 
htons(val) convert 16-bit quantity from host to network byte order 
ntohl(val) convert 32-bit quantity from network to host byte order 
ntohs(val) convert 16-bit quantity from network to host byte order 

Table 1. C run-time routines. 

The byte swapping routines are provided because the operating system expects addresses to be sup­
plied in network order. On some architectures, such as the VAX, host byte ordering is different than net­
work byte ordering. Consequently, programs are sometimes required to byte swap quantities. The library 
routines which return network addresses provide them in network order so that they may simply be copied 
into the structures provided to the system. This implies users should encounter the byte swapping problem 
only when interpreting network addresses. For example, if an Internet port is to be printed out the follow­
ing code would be required: 

printf("port number %d\n", ntohs(sp->s_port»; 

On machines where unneeded these routines are defined as null macros. 

Networking Tools Guide Last Change: March 1989 Appendix G·15 



#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 
#include <netdb.h> 

main(argc, argv) 

Appendix G-16 

int argc; 
char *argv[]; 

struct sockaddr_in server; 
struct servent *sp; 
struct hostent *hp; 
int s; 

sp = getservbyname("Iogin ", "tcp"); 
if (sp == NULL) { 

) 

fprintf(stderr, "rlogin: tcp/login: unknown service\n"); 
exit(l); 

hp = gethostbyname(argv[l]); 
if (hp == NULL) { 

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]); 
exit(2); 

bzero«char *)&server, sizeof (server»; 
bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_Ienglh); 
server.sin_family = hp->h_addrtype; 
server.sin_port = sp->s_port; 
s = socket(AF _INET, SOCK_STREAM, 0); 
if (s < 0) { 

perror("rlogin: socket"); 
exit(3); 

/* Connect does the bindO for us * / 

if (connect(s, (char *)&server, sizeof (server» < 0) { 
perror("rlogin: connect"); 
exit(5); 

Figure 1. Remote login client code. 

Last Change: March 1989 

Advanced IPC Tutorial 

ICON/UXV-NET 



( 

Advanced IPe Tutorial 

4. CLIENT/SERVER MODEL 

The most commonly used paradigm in constructing distributed applications is the client/server 
model. In this scheme client applications request services from a server process. This implies an asym­
metry in establishing communication between the client and server which has been examined in section 2. 
In this section we will look more closely at the interactions between client and server, and consider some 
of the problems in developing client and server applications. 

The client and server require a well known set of conventions before service may be rendered (and 
accepted). This set of conventions comprises a protocol which must be implemented at both ends of a con­
nection. Depending on the situation, the protocol may be symmetric or asymmetric. In a symmetric proto­
col, either side may play the master or slave roles. In an asymmetric protocol, one side is immutably 
recognized as the master, with the other as the slave. An example of a symmetric protocol is the 1ELNET 
protocol used in the Internet for remote terminal emulation. An example of an asymmetric protocol is the 
Internet file transfer protocol, FrP. No matter whether the specific protocol used in obtaining a service is 
symmetric or asymmetric, when accessing a service there is a "client process" and a "server process". 
We will first consider the properties of server processes, then client processes. 

A server process normally listens at a well known address for service requests. That is, the server 
process remains dormant until a connection is requested by a client's connection to the server's address. 
At such a time the server process "wakes up" and services the client, performing whatever appropriate 
actions the client requests of it. 

Alternative schemes which use a service server may be used to eliminate a flock of server processes 
clogging the system while remaining dormant most of the time. For Internet servers in 4.3BSD, this 
scheme has been implemented via inetd, the so called "internet super-server." Inetd listens at a variety of 
ports, determined at start-up by reading a configuration file. When a connection is requested to a port on 
which inetd is listening, inetd executes the appropriate server program to handle the client. With this 
method, clients are unaware that an intermediary such as inetd has played any part in the connection. 
Ineld will be described in more detail in section 5. 

A similar alternative scheme is used by most Xerox services. In general, the Courier dispatch pro­
cess (if used) accepts connections from processes requesting services of some sort or another. The client 
processes request a particular <program number, version number, procedure number> triple. If thc 
dispatcher knows of such a program, it is started to handle the request; if not, an error is reported to thc 
client. In this way, only one port is required to service a large variety of different requests. Again, the 
Courier facilities are not available without the use and installation of the Courier compiler. The informa­
tion presented in this section applies only to NS clients and services that do not use Courier. 

4.1. Servers 

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domain names. For 
example, the remote login server's main loop is of the form shown in Figure 2. 

The first step taken by the server is look up its service definition: 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) ( 

fprintf(stderr, "rlogind: tcp/login: unknown service\n"); 
exit(l); 

The result of the getservbyname call is used in later portions of the code to define the Internet port at 
which it listens for service requests (indicated by a connection). 

Networking Tools Guide Last Change: March 1989 Appendix G-17 



Advanced JPC Tutorial 

main(argc, argv) 
int argc; 
char *argvO; 

int f; 
struct sockaddr_in from; 
struct servent *sp; 

sp = getservbyname(ltloginlt, Ittcplt); 
if (sp == NULL) ( 

fprintf(stderr, Itrlogind: tcp/login: unknown service\nlt); 
exit(l); 

#ifndef DEBUG 

#endif 

Appendix G-18 

/* Disassociate server from controlling terminal * / 

sin.sin....Port = sp->s...POrt; /* Restricted port -- see section 5 */ 

if (bind(f, (struct sockaddr *) &sin, sizeof (sin» < 0) ( 

listen(f, 5); 
for (;;) { 

int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *) &from, &len); 
if (g < 0) { 

} 

if (errno != EINTR) 
syslog(LOG_ERR, Itrlogind: accept: %mlt); 

continue; 

if (forkO == 0) ( 
close(t); 

} 
close(g); 

doit(g, &from); 

Figure 2. Remote login server. 

Last Change: March 1989 ICON/UXV-NET 

'''---



( 

( 

c' 

Advanced IPe Tutorial 

Step two is to disassociate the server from the controlling terminal of its invoker: 

for (i = 0; i < 3; ++i) 
close(i); 

open("!",O_RDONLY); 
dup2(O, 1); 
dup2(0, 2); 

i = open("/dev/uy", O_RDWR); 
if(i >= 0) ( 

ioctl(i, TIOCNOTfY,O); 
c1ose(i); 

This step is important as the server will likely not want to receive signals delivered to the process group of 
the controlling terminal. Note, however, that once a server has disassociated itself it can no longer send 
reports of errors to a terminal, and must log errors via sys/og. 

Once a server has established a pristine environment, it creates a socket and begins accepting ser­
vice requests. The bind call is required to insure the server listens at its expected location. It should be 
noted that the remote login server listens at a restricted port number, and must therefore be run with a 
user-id of root. This concept of a "restricted port number" is 4BSD specific, and is covered in section 5. 

The main body of the loop is fairly simple: 

for (;;) ( 
int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from, &len); 
if (g < 0) { 

if (ermo != EINTR) 
syslog(LOG_ERR, "rlogind: accept %m"); 

continue; 
} 
if (forkO == 0) ( /* Child * / 

close(f); 

} 
close(g); 

doit(g, &from); 

/* Parent */ 

An accept call blocks the server until a client requests service. This call could return a failure status if the 
call is interrupted by a signal such as SIGCHLD (to be discussed in section 5). Therefore, the return value 
from accept is checked to insure a connection has actually been established, and an error report is logged 
via sys/og if an error has occurred. 

With a connection in hand, the server then forks a child process and invokes the main body of the 
remote login protocol processing. Note how the socket used by the parent for queuing connection requests 
is closed in the child, while the socket created as a result of the accept is closed in the parent. The address 
of the client is also handed the doit routine because it requires it in authenticating clients. 

4.2. Clients 

The client side of the remote login service was shown earlier in Figure 1. One can see the separate, 
asymmetric roles of the client and server clearly in the code. The server is a passive entity, listening for 
client connections, while the client process is an active entity, initiating a connection when invoked. 

Let us consider more closely the steps taken by the client remote login process. As in the server pro­
cess, the first step is to locate the service definition for a remote login: 

Networking Tools Guide Last Change: March 1989 Appendix G-19 



sp = getservbyname(tllogin tI, tltcp"); 
if (sp == NULL) ( 

fprintf(stderr, tlrlogin: tcp/login: unknown service\ntl); 
exit(1); 

Next the destination host is looked up with a gethostbyname call: 

hp = gethostbyname(argv[l]); 
if (hp == NULL) ( 

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]); 
exit(2); 

Advanced IPe Tutorial 

With this accomplished, all that is required is to establish a connection to the server at the requested host 
and start up the remote login protocol. The address buffer is cleared, then filled in with the Internet 
address of the foreign host and the port number at which the login process resides on the foreign host: 

bzero«char *)&server, sizeof (server»; 
bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_Iength); 
server.sinjamily = hp->h_addrtype; 
server. sin_port = sp->s-port; 

A socket is created, and a connection initiated. Note that connect implicitly performs a bind call, since s is 
unbound. 

s = socket(hp->h3ddrtype, SOCK_STREAM, 0); 
if (s < 0) ( 

perrorCtlrlogin: socket"); 
exit(3); 

if (connectCs, (struct sockaddr *) &server, sizeof (server» < 0) ( 
perror(tlrlogin: connect"); 
exit(4); 

The details of the remote login protocol will not be considered here. 

4.3. Connection less servers 

While connection-based services are the norm, some services are based on the use of datagram sock­
ets. One, in particular, is the "rwho" service which provides users with status information for hosts con­
nected to a local area network. This service, while predicated on the ability to broadcast information to all 
hosts connected to a particular network, is of interest as an example usage of datagram sockets. 

A user on any machine running the rwho server may find out the current status of a machine with the 
ruptime(l) program. The output generated is illustrated in Figure 3. 

Status information for each host is periodically broadcast by rwho server processes on each 
machine. The same server process also receives the status information and uses it to update a database. 
This database is then interpreted to generate the status information for each host. Servers operate auto­
nomously, coupled only by the local network and its broadcast capabilities. 

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must process each mes­
sage, whether or not using an rwho server. Unless such a service is sufficiently universal and is frequently 
used, the expense of periodic broadcasts outweighs the simplicity. 

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per­
formed by the server. The first task is to act as a receiver of status information broadcast by other hosts on 
the network. This job is carried out in the main loop of the program. Packets received at the rwho port are 

Appendix G-20 last Change: March 1'989 ICON/UXV-NET 



( 

Advanced IPC Tutorial 

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31 
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59 
calder up 10:10, o users, load 0.27, 0.15, 0.14 
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65 
degas up 25+09:48, o users, load 1.49, 1.43, 1.41 
ear up 5+00:05, o users, load 1.51, 1.54, 1.56 
ernie down 0:24 
esvax down 17:04 
ingres down 0:26 
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11 
matisse up 3+06:18, o users, load 0.03, 0.03, 0.05 
medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50 
merlin down 19+15:37 
miro up 1+07:20, 7 users, load 4.59, 3.28, 2.12 
monet up 1+00:43, 2 users, load 0.22. 0.09, 0.07 
oz down 16:09 
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86 
ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28 

Figure 3. ruptime output. 

interrogated to insure they've been sent by another rwho server process, then are time stamped with their 
arrival time and used to update a file indicating the status of the host. When a host has not been heard 
from for an extended period of time, the database interpretation routines assume the host is down and indi­
cate such on the status reports. This algorithm is prone to error as a server may be down while a host is 
actually up, but serves our current needs. 

The second task performed by the server is to supply information regarding the status of its host. 
This involves periodically acquiring system status information, packaging it up in a message and broad­
casting it on the local network for other rwho servers to hear. The supply function is triggered by a timer 
and runs off a signal. Locating the system status information is somewhat involved, but uninteresting. 
Deciding where to transmit the resultant packet is somewhat problematical, however. 

Status information must be broadcast on the local network. For networks which do not support the 
notion of broadcast another scheme must be used to simulate or replace broadcasting. One possibility is to 
enumerate the known neighbors (based on the status messages received from other rwho servers). This, 
unfortunately. requires some bootstrapping information. for a server will have no idea what machines are 
its neighbors until it receives status messages from them. Therefore. if all machines on a net are freshly 
booted, no machine will have any known neighbors and thus never receive, or send, any status informa­
tion. This is the identical problem faced by the routing table management process in propagating routing 
status information. The standard solution, unsatisfactory as it may be, is to inform one or more servers of 
known neighbors and request that they always communicate with these neighbors. If each- server has at 
least one neighbor supplied to it, status information may then propagate through a neighbor to hosts which 
are not (possibly) directly neighbors. If the server is able to support networks which provide a broadcast 
capability, as well as those which do not. then networks with an arbitrary topology may share status infor­
mation*. 

It is important that software operating in a distributed environment not have any site-dependent 
information compiled into it. This would require a separate copy of the server at each host and make 
maintenance a severe headache. 4.3BSD attempts to isolate host-specific information from applications by 
providing system calls which return the necessary information*. A mechanism exists, in the form of an 

* One must, however, be concerned about "loops". That is, if a host is connected to multiple networks, it will receive 
status information from itself. This can lead to an endless, wasteful, exchange of information. 
* An example of such a system call is the ge/hos/name(2) call which returns the host's "official" name. 

Networking Tools GuIde Last Change: March 1989 Appendix G-21 



mainO 
{ 

Appendix G·22 

Advanced IPe Tutorial 

sp = getservbyname("who", "udp"); 
net = getnetbyname("localnet"); 
sin.sin_addr = inet_makeaddr(INADDR_ANY, net); 
sin.sin...,POrt = sp->s...,POrt; 

on= 1; 
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof(on» < 0) ( 

syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m"); 
exil(l); 

bind(s, (struct sockaddr *) &sin, sizeof (sin»; 

signal(SIGALRM,onalrm); 
onalrmO; 
for (;;) { 

struct whod wd; 
int cc, whod,len = sizeof (from); 

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), 0, 
(struct sockaddr *)&from, &len); 

if (cc <= 0) { 
if (cc < 0 && ermo != EINTR) 

syslog(LOG_ERR, "rwhod: recv: %m"); 
continue; 

if (from.sin_port != sp->s...,POrt) { 
syslog(LOG_ERR, "rwhod: %d: bad from port", 

ntohs(from.sin_port) ); 
continue; 

if (!verify(wd.wd_hostname» { 
syslog(LOG_ERR, "rwhod: malformed host name from %x", 

ntohl(from.sin_addr.s_addr) ); 
continue; 

) 
(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_hostname); 
whod = open(path, 0_ WRONLY I O_CREAT I O_TRUNC, 0666); 

(void) time(&wd.wdJecvtime); 
(void) write(whod, (char *)&wd, cc); 
(void) close(whod); 

Figure 4. rwho server. 

Last Change: March 1989 ICON/UXV-NET 



() 

Advanced IPe Tutorial 

ioetl call, for finding the collection of networks to which a host is directly connected. Further, a local net­
work broadcasting mechanism has been implemented at the socket level. Combining these two features 
allows a process to broadcast on any directly connected local network which supports the notion of broad­
casting in a site independent manner. This allows 4.3BSD to solve the problem of deciding how to pro­
pagate status information in the case of rwho, or more generally in broadcasting: Such status information 
is broadcast to connected networks at the socket level, where the connected networks have been obtained 
via the appropriate ioell calls. The specifics of such broadcastings are complex, however, and will be 
covered in section 5. 

Networking Tools Guide Last Change: March 1989 Appendix G·23 



Advanced IPC Tutorial 

5. ADVANCED TOPICS 

A number of facilities have yet to be discussed. For most users of the !PC the mechanisms already 
described will suffice in constructing distributed applications. However, others will find the need to utilize 
some of the features which we consider in this section. 

5.1. Out of band data 

The stream socket abstraction includes the notion of "out of band" data. Out of band data is a logi­
cally independent transmission channel associated with each pair of connected stream sockets. Out of 
band data is delivered to the user independently of normal data. The abstraction defines that the out of 
band data facilities must support the reliable delivery of at least one out of band message at a time. This 
message may contain at least one byte of data. and at least one message may be pending delivery to the 
user at anyone time. For communications protocols which support only in-band signaling (i.e. the urgent 
data is delivered in sequence with the normal data), the system normally extracts the data from the normal 
data stream and stores it separately. This allows users to choose between receiving the urgent data in order 
and receiving it out of sequence without having to buffer all the intervening data. It is possible to "peek" 
(via MSG_PEEK) at out of band data. If the socket has a process group, a SIGURG signal is generated 
when the protocol is notified of its existence. A process can set the process group or process id to be 
informed by the SIGURG signal via the appropriate fcntl call, as described below for SIGlO. If multiple 
sockets may have out of band data awaiting delivery, a select call for exceptional conditions may be used 
to determine those sockets with such data pending. Neither the signal nor the select indicate the actual 
arrival of the out-of-band data, but only notification that it is pending. 

In addition to the information passed, a logical mark is placed in the data stream to indicate the point 
at which the out of band data was sent. The remote login and remote shell applications use this facility to 
propagate signals between client and server processes. When a signal flushs any pending output from the 
remote process(es), all data up to the mark in the data stream is discarded. 

To send an out of band message the MSG_OOB flag is supplied to a send or sendto calls, while to 
receive out of band data MSG_OOB should be indicated when performing a recvfrom or recv call. To find 
out if the read pointer is currently pointing at the mark in the data stream, the SIOCATMARK ioetl is pro­
vided: 

ioctl(s, SIOCATMARK, &yes); 

If yes is a I on return, the next read will return data after the mark. Otherwise (assuming out of band data 
has arrived), the next read will provide data sent by the client prior to transmission of the out of band sig­
nal. The routine used in the remote login process to flush output on receipt of an interrupt or quit signal is 
shown in Figure 5. It reads the normal data up to the mark (to discard it), then reads the out-of-band byte. 

A process may also read or peek at the out-of-band data without first reading up to the mark. This is 
more difficult when the underlying protocol delivers the urgent data in-band with the normal data. and only 
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the 
Internet domain). With such protocols, the out-of-band byte may not yet have arrived when a recv is done 
with the MSG_OOB flag. In that case, the call will return an error of EWOULDBLOCK. Worse, there 
may be enough in-band data in the input buffer that normal flow control prevents the peer from sending the 
urgent data until the buffer is cleared. The process must then read enough of the queued data that the 
urgent data may be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multiple urgent signals 
(e.g., telnet (IC» need to retain the position of urgent data within the stream. This treatment is available 
as a socket-level option, SO_OOBINLINE; see setsockopt (2) for usage. With this option, the position of 
urgent data (the "mark") is retained, but the urgent data immediately follows the mark within the normal 
data stream returned without the MSG_OOB flag. Reception of multiple urgent indications causes the 
mark to move, but no out-of-band data are lost. 

Appendix G·24 Last Change: March 1989 ICONfUXV·NET 



( 

Advanced IPe Tutorial 

#include <sys/ioctl.h> 
#include <sys/file.h> 

oob() 
{ 

int out = FWRITE; 
char waste[BUFSIZ], mark; 

/* flush local terminal output * / 
ioctI(1, TIOCFLUSH, (char *)&out); 
for (;;) { 

if (ioctI(rem, SIOCATMARK, &mark) < 0) { 
perror("ioctI"); 
break; 

} 
if (mark) 

break; 
(void) read(rem, waste, sizeof (waste»; 

} 
if (recv(rem, &mark, I, MSG_OOB) < 0) { 

perror("recv") ; 

Figure 5. Hushing terminal I/O on receipt of out of band data. 

5.2. Non-Blocking Sockets 

It is occasionally convenient to make use of sockets which do not block; that is, I/O requests which 
cannot complete immediately and would therefore cause the process to be suspended awaiting completion 
are not executed, and an error code is returned. Once a socket has been created via the socket call, it may 
be marked as non-blocking by Icntl as follows: 

#include <fcntI.h> 

int s; 

if (fcntl(s, F _SElFL, FNDELAY) < 0) 
perror("fcntI F _SElFL,FNDELAylI); 
exit(l); 

When performing non-blOCking I/O on sockets, one must be careful to check for the error 
EWOULDBLOCK (stored in the global variable errno), which occurs when an operation would normally 
block, but the socket it was performed on is marked as non-blocking. In particular, accept, connect, send, 
recv, read, and write can all return EWOULDBLOCK, and processes should be prepared to deal with such 
return codes. If an operation such as a send cannot be done in its entirety, but partial writes are sensible 
(for example, when using a stream socket), the data that can be sent immediately will be processed, and 
the return value will indicate the amount actually sent. 

Networking Tools Guide Last Change: March 1989 Appendix G-2S 



Advanced IPC Tutorial 

5.3. Interrupt driven socket I/O 

The SIGIO signal allows a process to be notified via a signal when a socket (or more generally, a file 
descriptor) has data waiting to be read. Use of the SIGIO facility requires three steps: First, the process 
must set up a SIGIO signal handler by use of the signal or sigvec calls. Second, it must set the process id 
or process group id which is to receive notification of pending input to its own process id, or the process 
group id of its process group (note that the default process group of a socket is group zero). This is accom­
plished by use of an fcntl call. Third, it must enable asynchronous notification of pending I/O requests 
with another fcntl call. Sample code to allow a given process to receive information on pending I/O 
requests as they occur for a socket s is given in Figure 6. With the addition of a handler for SIGURG, this 
code can also be used to prepare for receipt of SIGURG signals. 

#include <fcntl.h> 

int io_handlerO; 

signal(SIGIO, io_handler); 

/* Set the process receiving SIGIO/SIGURG signals to us * / 

if (fcntl(s, F _SETOWN, getpidO) < 0) ( 
perror("fcntl F _SETOWN"); 
exit(l); 

/* Allow receipt of asynchronous I/O signals * / 

if (fcntl(s, F _SETFL, FASYNC) < 0) ( 
perror("fcntl F _SETFL, FASYNC"); 
exit(l); 

Figure 6. Use of asynchronous notification of I/O requests. 

5.4. Signals and process groups 

Due to the existence of the SIGURG and SIGIO signals each socket has an associated ptocess 
number, just as is done for terminals. This value is initialized to zero, but may be redefined at a later time 
with the F_SETOWNfcntl, such as was done in the code above for SIGIO. To set the socket's process id 
for signals, positive arguments should be given to the fcntl call. To set the socket's process group for sig­
nals, negative arguments should be passed tofcntl. Note that the process number indicates either the asso­
ciated process id or the associated process group; it is impossible to specify both at the same time. A simi­
lar fcntl, F _GETOWN, is available for determining the current process number of a socket. 

Another signal which is useful when constructing server processes is SIGCIll...D. This signal is 
delivered to a process when any child processes have changed state. Normally servers use the signal to 
"reap" child processes that have exited without explicitly awaiting their termination or periodic polling 
for exit status. For example, the remote login server loop shown in Figure 2 may be augmented as shown 
in Figure 7. 

If the parent server process fails to reap its children, a large number of "zombie" processes may be 
created. 

5.5. Pseudo terminals 

Many programs will not function properly without a terminal for standard input and output. Since 
sockets do not provide the semantics of terminals, it is often necessary to have a process communicating 
over the network do so through a pseudo-terminal. A pseudo- terminal is actually a pair of devices, master 

Appendix G-26 Last Change: March 1989 ICON/UXV-NET 

",. 

l 



C"/ 
/ 

Advanced IPC Tutorial 

int reaperO; 

signal(SIGCI-ll..D, reaper); 
listen(f, 5); 
for (;:) { 

int g, len = sizeof (from); 

g = accept(f, (struct sockaddr *)&from, &len,); 
if (g < 0) { 

if (ermo != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %m"); 

continue; 

#include <wait.h> 
reaperO 
{ 

union wait status; 

while (wait3(&status, WNOHANG, 0) > 0) 

Figure 7. Use of the SIGCI-ll..D signal. 

and slave, which allow a process to serve as an active agent in communication between processes and 
users. Data written on the slave side of a pseudo-terminal is supplied as input to a process reading from 
the master side, while data written on the master side are processed as terminal input for the slave. In this 
way, the process manipulating the master side of the pseudo-terminal has control over the information read 
and written on the slave side as if it were manipulating the keyboard and reading the screen on a real ter­
minal. The purpose of this abstraction is to preserve terminal semantics over a network connection- that 
is, the slave side appears as a normal terminal to any process reading from or writing to it 

For example, the remote login server uses pseudo-terminals for remote login sessions. A user log­
ging in to a machine across the network is provided a shell with a slave pseudo-terminal as standard input, 
output, and error. The server process then handles the communication between the programs invoked by 
the remote shell and the user's local client process. When a user sends a character that generates an inter­
rupt on the remote machine that flushes terminal output, the pseudo-terminal generates a control message 
for the server process. The server then sends an out of band message to the client process to-signal a flush 
of data at the real terminal and on the intervening data buffered in the network. 

Under 4.3BSD, the name of the slave side of a pseudo-terminal is of the form Idevlttyxy, where x is a 
single letter starting at 'p' and continuing to 't'. y is a hexadecimal digit (i.e., a single character in the 
range 0 through 9 or 'a' through 'f). The master side of a pseudo-terminal is Idevlptyxy, where x and y 
correspond to the slave side of the pseudo-terminal. 

In general, the method of obtaining a pair of master and slave pseudo-terminals is to find a pseudo­
terminal which is not currently in use. The master half of a pseudo-terminal is a single-open device; thus, 
each master may be opened in turn until an open succeeds. The slave side of the pseudo-terminal is then 
opened, and is set to the proper terminal modes if necessary. The process then forks; the child closes the 
master side of the pseudo-terminal. and execs the appropriate program. Meanwhile, the parent closes the 
slave side of the pseudo-terminal and begins reading and writing from the master side. Sample code mak­
ing use of pseudo-terminals is given in Figure 8; this code assumes that a connection on a socket sexists, 
connected to a peer who wants a service of some kind, and that the process has disassociated itself from 

Networking Tools Guide Last Change: March 1989 Appendix G·27 



any previous controlling terminal. 

gotpty = 0; 
for (c = 'p'; !gotpty && c <= 's'; c++) { 

line = "/dev/ptyXX"; 
line[sizeof("/dev/pty")-I] = c; 
line[sizeof("/dev/ptyp")-I] = '0'; 
if (stat(line, &statbut) < 0) 

} 

break; 
for (i = 0; i < 16; i++) { 

line[sizeof("/dev/ptyp")-I] = "0123456789abcdef'[i]; 
master = open(line, O_RDWR); 
if (master> 0) { 

gotpty = I; 
break; 

if (! gotpty) { 
syslog(LOG_ERR, "All network ports in use"); 
exit(1); 

line[sizeof("/dev/")-l] = 't'; 
slave = open(line, O_RDWR); /* slave is now slave side */ 
if (slave < 0) { 

syslog(LOG_ERR, "Cannot open slave pty %s", line); 
exit(I); 

ioctl(slave, TIOCGE1P, &b); 1* Set slave tty modes *1 
b.s&-fiags = CRMODIXTABSIANYP; 
ioctl(slave, TIOCSETP, &b); 

i = forkO; 
if (i < 0) { 

syslog(LOG_ERR, "fork: %m"); 
exit(l); 

} else if (i) { 1* Parent *1 
close(slave); 

} else { 1* Child *1 
(void) close(s); 
(void) close(master); 
dup2(slave, 0); 
dup2(slave, 1); 
dup2(slave, 2); 
if (slave> 2) 

(void) c1ose(slave); 

Figure 8. Creation and use of a pseudo terminal 

Appendix G·28 Last Change: March 1989 

Advanced IPe Tutorial 

~-, ( , 

~ 

ICON/UXV-NET 



(-
Advanced IPC Tutorial 

5.6. Selecting specific protocols 

If the third argument to the socket call is 0, socket will select a default protocol to use with the 
returned socket of the type requested. The default protocol is usually correct, and alternate choices are not 
usually available. However, when using "raw" sockets to communicate directly with lower-level proto­
cols or hardware interfaces, the protocol argument may be important for setting up demultiplexing. For 
example, raw sockets in the Internet family may be used to implement a new protocol above IP, and the 
socket will receive packets only for the protocol specified. To obtain a particular protocol one determines 
the protocol number as defined within the communication domain. For the Internet domain one may use 
one of the library routines discussed in section 3, such as getprolobyname: 

#include <sys/types.h> 
#inc1ude <sys/socketh> 
#inc1ude <netinet/in.h> 
#include <netdb.h> 

pp = getprotobyname("newtcp"); 
s = socket(AF _INET, SOCK_STREAM, pp->p_proto); 

This would result in a socket s using a stream based connection, but with protocol type of "newtcp" 
instead of the default "tcp." 

In the NS domain, the available socket protocols are defined in <netns/ns.h>. To create a raw socket 
for Xerox Error Protocol messages, one might use: 

#inc1ude <sys/types.h> 
#inc1ude <sys/socket.h> 
#include <netns/ns.h> 

5.7. Address binding 

As was mentioned in section 2, binding addresses to sockets in the Internet and NS domains can be 
fairly complex. As a brief reminder, these associations are composed of local and foreign addresses, and 
local and foreign ports. Port numbers are allocated out of separate spaces, one for each system and one for 
each domain on that system. Through the bind system call, a process may specify half of an association, 
the <local address, local port> part, while the connect and accept primitives are used to complete a 
socket's association by specifying the <foreign address, foreign port> part. Since the association is 
created in two steps the association uniqueness requirement indicated previously could be violated unless 
care is taken. Further, it is unrealistic to expect user programs to always know proper values to use for the 
local address and local port since a host may reside on multiple networks and the set of allocated port 
numbers is not directly accessible to a user. 

To simplify local address binding in the Internet domain the notion of a "wildcard" address has 
been provided. When an address is specified as INADDR_ANY (a manifest constant defined in 
<netinet/in.h», the system interprets the address as "any valid address". For example, to bind a specific 
port number to a socket, but leave the local address unspecified, the following code might be used: 

Networking Tools Guide Last Change: March 1989 Appendix G-29 



#include <sys/types.h> 
#include <netinet/in.h> 

struct sockaddr_in sin; 

s = socket(AF _INET, SOCK_STREAM, 0); 
sin.sin_family = AF _INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY); 
sin.sin.JX)rt = htons(MYPORT); 
bind(s, (struct sockaddr *) &sin, sizeof (sin»; 

Advanced IPC Tutorial 

Sockets with wildcarded local addresses may receive messages directed to the specified port number, and 
sent to any of the possible addresses assigned to a host. For example, if a host has addresses 128.32.0.4 
and 10.0.0.78, and a socket is bound as above, the process will be able to accept connection requests which 
are addressed to 128.32.0.4 or 10.0.0.78. If a server process wished to only allow hosts on a given network 
connect to it, it would bind the address of the host on the appropriate network. 

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the system 
will select an appropriate port number for it. This shortcut will work both in the Internet and NS domains. 
For example, to bind a specific local address to a socket, but to leave the local port number unspecified: 

hp = gethostbyname(hostname); 
if (hp == NULL) { 

} 
bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length); 
sin.sin.JX)rt = htons(O); 
bind(s, (struct sockaddr *) &sin, sizeof (sin»; 

The system selects the local port number based on two criteria. The first is that on 4BSD systems, Internet 
ports below IPPORT_RESERVED (1024) (for the Xerox domain, 0 through 30(0) are reserved for 
privileged users (Le., the super user); Internet ports above IPPORT_USERRESERVED (50000) are 
reserved for non-privileged servers. The second is that the port number is not currently bound to some 
other socket. In order to find a free Internet port number in the privileged range the rresvport library rou­
tine may be used as follows to return a stream socket in with a privileged port number: 

int lport = IPPORT_RESERVED - 1; 
int s; 
s = rresvport(&lport); 
if (s < 0) ( 

if (erma == EAGAIN) 
fprintf(stderr, "socket all ports in use\n"); 

else 
perror("rresvport socket"); 

The restriction on allocating ports was done to allow processes executing in a "secure" environment to 
perform authentication based on the originating address and port number. For example, the rlogin(l) com­
mand allows users to log in across a network without being asked for a password, if two conditions hold: 
First, the name of the system the user is logging in from is in the file letclhosts.equiv on the system he is 
logging in to (or the system name and the user name are in the user's .rhosts file in the user's home direc­
tory), and second, that the user's rlogin process is coming from a privileged port on the machine from 
which he is logging. The port number and network address of the machine from which the user is logging 
in can be determined either by the from result of the accept calJ, or from the getpeername call. 

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an 
application. This is because associations are created in a two step process. For example, the Internet file 

Appendix G·30 Last Change: March 1989 ICON/UXV·NET 



( 

Advanced IPe Tutorial 

transfer protocol, FfP, specifies that data connections must always originate from the same local port. 
However, duplicate associations are avoided by connecting to different foreign ports. In this situation the 
system would disallow binding the same local address and port number to a socket if a previous data 
connection's socket still existed. To override the default port selection algorithm, an option call must be 
perfonned prior to address binding: 

int on = 1; 

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on»; 
bind(s, (struct sockaddr *) &sin, sizeof (sin»; 

With the above call, local addresses may be bound which are already in use. This does not violate the 
uniqueness requirement as the system still checks at connect time to be sure any other sockets with the 
same local address and port do not have the same foreign address and port. If the association already 
exists, the error EADDRINUSE is returned. 

5.8. Broadcasting and determining network configuration 

By using a datagram socket, it is possible to send broadcast packets on many networks supported by 
the system. The network itself must support broadcast; the system provides no simulation of broadcast in 
software. Broadcast messages can place a high load on a network since they force every host on the net­
work to service them. Consequently, the ability to send broadcast packets has been limited to sockets 
which are explicitly marked as allowing broadcasting. Broadcast is typically used for one of two reasons: 
it is desired to find a resource on a local network without prior knowledge of its address, or important 
functions such as routing require that information be sent to all accessible neighbors. , 

To send a broadcast message, a datagram socket should be created: 

s = socket(AF _INET, SOCK_DGRAM, 0); 

or 

s = socket(AF _NS, SOCK_DGRAM, 0); 

The socket is marked as allowing broadcasting, 

int on = 1; 

setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on»; 

and at least a port number should be bound to the socket 

sin.sin_family = AF _INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY); 
sin.sin...,port = htons(MYPORT); 
bind(s, (struct sockaddr *) &sin, sizeof (sin»; 

or, for the NS domain, 

sns.sns_family = AF _NS; 
netnum = htonl(net); 
sns.sns_addr.x_net = *(union ns_net *) &netnum; /* insert net number */ 
sns.sns_addr.x_port = htons(MYPORT); 
bind(s, (struct sockaddr *) &sns, sizeof (sns»; 

The destination address of the message to be broadcast depends on the network(s) on which the message is 
to be broadcast. The Internet domain supports a shorthand notation for broadcast on the local network, the 
address INADDR_BROADCAST (defined in <netinetlin.h>. To detennine the list of addresses for all 
reachable neighbors requires knowledge of the networks to which the host is connected. Since this infor­
mation should be obtained in a host-independent fashion and may be impossible to derive, 4.3BSD pro­
vides a method of retrieving this information from the system data structures. The SIOCGIFCONF ioctl 

Networking Tools Guide Last Change: March 1989 Appendix G·31 



Advanced IPC Tutorial 

call returns the interface configuration of a host in the form of a single ifeonf structure; this structure con­
tains a "data area" which is made up of an array of of ifreq structures, one for each network interface to 
which the host is connected. These structures are defined in <netlif.h> as follows: 

struct ifconf { 
int ifc_Ien; 
union { 

caddct ifcu_buf; 
struct ifreq *ifcu_req; 

} ifc_ifcu; 
}; 

#define ifc_buf ifc_ifcu.ifcu_buf 
#define ifc_req ifc_ifcu.ifcu_req 

#define TIRN~SIZ 16 

struct ifreq { 
char 
union ( 

ifr_name[IFNAMSIZ); 

} ; 

struct 
struct 
struct 
short 
caddr_t 

} ifr_ifru; 

sockaddr ifru_addr; 
sockaddr ifru_dstaddr; 
sockaddr ifru_broadaddr; 
ifru_flags; 
ifru_data; 

#define ifr_addr ifr_ifru.ifru_addr /* address */ 

/* size of associated buffer * / 

/* buffer address * / 
/* array of structures returned */ 

/* if name, e.g. "enO" */ 

#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of p-to-p link * / 
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */ 
#define ifr_flags ifr_ifru.ifru_flags /* flags * / 
#define ifr_data ifr_ifru.ifru_data /* for use by interface */ 

The actual call which obtains the interface configuration is 

struct ifconf ifc; 
char buf[BUFSIZ); 

ifc.ifc_Ien = sizeof (but); 
ifc.ifc_buf = buf; 
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) { 

Mter this call buf will contain one ifreq structure for each network to which the host is connected, and 
ife .ife _len will have been modified to reflect the number of bytes used by the ifreq structures. 

For each structure there exists a set of "interface flags" which tell whether the network correspond­
ing to that interface is up or down, point to point or broadcast, etc. The SIOCGIFFLAGS ioell retrieves 
these flags for an interface specified by an ifreq structure as follows: 

Appendix G-32 Last Change: March 1989 ICON/UXV-NET 



Advanced IPC Tutorial 

struct ifreq *ifr; 

ifr = ifc.ifc_req; 

for (n = ifc.ifc_Ien / sizeof (struct ifreq); -on >= 0; ifr++) { 
/* 
* We must be careful that we don't use an interface 
* devoted to an address family other than those intended; 
* if we were interested in NS interfaces, the 
* AF _INET would be AF _NS. 
*/ 
if (ifr->ifr_addr.sa3amily != AF _INET) 

continue; 
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) { 

/* 
* Skip boring cases. 
*/ 
if «ifr->ifr_flags & IFF_UP) == 0 II 

(ifr->ifr_flags & IFF _LOOPBACK) II 
(ifr->ifr_flags & (IFF_BROADCAST I IFF _POINTTOPOINT» == 0) 

continue; 

Once the flags have been obtained, the broadcast address must be obtained. In the case of broadcast 
networks this is done via the SIOCGIFBRDADDR ioetl, while for point-to-point networks the address of 
the destination host is obtained with SIOCGIFDSTADDR. 

struct sockaddr dst; 

if (ifr->ifr_flags & IFF _POINTTOPOINT) { 
if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) { 

} 
bcopy«char *) ifr->ifr_dstaddr, (char *) &dst, sizeof (ifr->ifr_dstaddr»; 

} else if (ifr->ifr_flags & IFF_BROADCAST) { 
if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) { 

} 
bcopy«char *) ifr->ifr_broadaddr, (char *) &dst, sizeof (ifr->ifr_broadaddr»; 

After the appropriate ioctl's have obtained the broadcast or destination address (now in dst), the 
sendto call may be used: 

sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst»; 

In the above loop one sendto occurs for every interface to which the host is connected that supports the 
notion of broadcast or point-to-point addressing. If a process only wished to send broadcast messages on a 
given network, code similar to that outlined above would be used, but the loop would need to find the 
correct destination address. 

Received broadcast messages contain the senders address and port, as datagram sockets are bound 
before a message is allowed to go out. 

Networking Tools Guide Last Change: March 1989 Appendix G-33 



Advanced IPC Tutorial 

5.9. Socket Options 

It is possible to set and get a number of options on sockets via the setsockopt and getsockopt system 
calls. These options include such things as marking a socket for broadcasting, not to route, to linger on 
close" etc. The general forms of the calls are: 

set.sockopt(s, level, optname, optval, optlen); 

and 

getsockopt(s, level, optname, optval, optlen); 

The parameters to the calls are as follows: s is the socket on which the option is to be applied. Level 
specifies the protocol layer on which the option is to be applied; in most cases this is the "socket level", 
indicated by the symbolic constant SOL_SOCKET, defined in <sys/socket.h>. The actual option is 
specified in optname, and is a symbolic constant also defined in <sys/socket.h>. Optval and Optlen point 
to the value of the option (in most cases, whether the option is to be turned on or oft), and the length of the 
value of the option, respectively. For getsockopt, optlen is a value-result parameter, initially set to the size 
of the storage area pointed to by optval, and modified upon return to indicate the actual amount of storage 
used. 

An example should help clarify things. It is sometimes useful to determine the type (e.g., stream, 
datagram, etc.) of an existing socket; programs under inetd (described below) may need to perform this 
task. This can be accomplished as follows via the SO_TYPE socket option and the getsockopt call: 

#include <sys/types.h> 
#include <sys/socket.h> 

int type, size; 

size = sizeof (int); 

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char *) &type, &size) < 0) ( 

After the getsockopt call, type will be set to the value of the socket type, as defined in <syslsocket.h>. If, 
for example, the socket were a datagram socket, type would have the value corresponding to 
SOCK_DGRAM. 

5.10. NS Packet Sequences 

The semantics of NS connections demand that the user both be able to look inside the network 
header associated with any incoming packet and be able to specify what should go in certain fields of an 
outgoing packet. Using different calls to setsockopt, it is possible to indicate whether prototype headers 
will be associated by the user with each outgoing packet (SO_HEADERS_ON_OUTPUT), to indicate 
whether the headers received by the system should be delivered to the user (SO_HEADERS_ON_INPUT), 
or to indicate default information that should be associated with all outgoing packets on a given socket 
(SO _DEFAULT_HEADERS). 

The contents of a SPP header (minus the IDP header) are: 

Appendix G-34 Last Change: March 1989 ICON/UXV-NET 

/' 



(~ 

c 

Advanced IPC Tutorial 

struct sphdr { 
u_char sp_cc; 

#define SP _SP Ox80 
#define SP _SA Ox40 
#define SP _OB Ox20 
#define SP _EM Ox 10 

}; 

u_char sp_dt; 
u_short sp_sid; 
u_short sp_did; 
u_short sp_seq; 
u_short sp_ack; 
u_short sp_alo; 

/* connection control */ 
1* system packet * / 
/* send acknowledgement * / 
/* attention (out of band data) */ 
/* end of message * / 
/* datastrearn type * / 
/* source connection identifier */ 
/* destination connection identifier */ 
/* sequence number */ 
/* acknowledge number */ 
/* allocation number * / 

Here, the items of interest are the datastream type and the connection control fields. The semantics of the 
datastream type are defined by the application(s) in question; the value of this field is, by default, zero, but 
it can be used to indicate things such as Xerox's Bulk Data Transfer Protocol (in which case it is set to 
one). The connection control field is a mask of the flags defined just below it. The user may set or clear 
the end-of-message bit to indicate that a given message is the last of a given substream type, or may 
set/clear the attention bit as an alternate way to indicate that a packet should be sent out-of-band. As an 
example, to associate prototype headers with outgoing SPP packets, consider: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 
#include <netns/sp.h> 

struct sockaddr_ns sns, to; 
int s, on = 1; 
struct databuf { 

} buf; 

struct sphdr proto_spp; 
char buf[534]; 

/* prototype header * / 
/* max. possible data by Xerox std. */ 

s = socket(AF _NS, SOCK_SEQPACKET, 0); 

bind(s, (struct sockaddr *) &sns, sizeof (sns»; 
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &on, sizeof(on»; 

buf.proto_spp.sp_dt = 1; 1* bulk data * / 
buf.proto_spp.sp_cc = SP _EM; 1* end-of-message */ 
strcpy(buf.buf, "hello world\n"); 
sendto(s, (char *) &buf, sizeof(struct sphdr) + strlen("hello world\n"), 

(struct sockaddr *) &to, sizeof(to»; 

Note that one must be careful when writing headers; if the prototype header is not written with the data 
with which it is to be associated, the kernel will treat the first few bytes of the data as the header, with 
unpredictable results. To tum off the above association, and to indicate that packet headers received by the 
system should be passed up to the user, one might use: 

Networking Tools Guide Last Change: March 1989 Appendix G·35 



like: 

#include <sys/types.h> 
#include <sys/sockelh> 
#include <netns/ns.h> 
#include <netns/sp.h> 

struct sockaddr sns; 
int s, on = 1, off = 0; 

s = socket(AF _NS, SOCK_SEQPACKET, 0); 

bind(s, (struct sockaddr *) &sns, sizeof (sns»; 

Advanced IPe Tutorial 

setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_OUTPUT, &off, sizeof(oft); 
setsockopt(s, NSPROTO_SPP, SO_HEADERS_ON_lNPUT, &on, sizeof(on»; 

Output is handled somewhat differently in the lOP world. The header of an lOP-level packet looks 

struct idp ( 

} ; 

u_short idp_sum; 
u_short idp_Ien; 
u3har idp_tc; 
u_char idp_pt; 
struct ns_addr idp_dna; 
struct ns_addr idp_sna; 

/* Checksum * / 
/* Length, in bytes, including header * / 
/* Transport Control (Le., hop count) * / 
/* Packet Type (Le., level 2 protocol) */ 
/* Destination Network Address * / 
/* Source Network Address */ 

The primary field of interest in an lOP header is the packet type field. The standard values for this field are 
(as defined in <netnsfns.h»: 

#define NSPROTO_RI 1 /* Routing Information */ 
#define NSPROTO_ECHO 2 /* Echo Protocol */ 
#define NSPROTO_ERROR 3 /* Error Protocol */ 
#define NSPROTO]E 4 /* Packet Exchange */ 
#define NSPROTO_SPP 5 /* Sequenced Packet */ 

For SPP connections, the contents of this field are automatically set to NSPROTO_SPP; for lOP packets, 
this value defaults to zero, which means "unknown". 

Setting the value of that field with SO_DEfAULT_HEADERS is easy: 

Appendix G-36 Last Change: March 1989 ICON/UXV-NET 

(f 
.,-



Advanced IPC Tutorial 

#include <sys/types.h> 
#include <sys/sockeLh> 
#include <netns/ns.h> 
#include <netns/idp.h> 

struct sockaddr sns; 
struct idp proto_idp; 
int s, on = 1; 

/* prototype header * / 

bind(s, (struct sockaddr *) &sns, sizeof (sns»; 
proto_idp.idp-pt = NSPROTO_PE; /* packet exchange */ 
setsockopt(s, NSPROTO_IOP, SO_DEFAULT_HEADERS, (char *) &proto_idp, 

sizeof(proto_idp) ); 

Using SO_HEADERS_ON OUTPUT is somewhat more difficult. When 
SO_HEADERS_ON_OUTPUT is turned on for an lOP socket, the socket becomes (for all intents and pur­
poses) a raw socket. In this case, all the fields of the prototype header (except the length and checksum 
fields, which are computed by the kernel) must be filled in correctly in order for the socket to send and 
receive data in a sensible manner. To be more specific, the source address must be set to that of the host 
sending the data; the destination address must be set to that of the host for whom the data is intended; the 
packet type must be set to whatever value is desired; and the hopcount must be set to some reasonable 
value (almost always zero). It should also be noted that simply sending data using write will not work 
unless a connect or sendto call is used, in spite of the fact that it is the destination address in the prototype 
header that is used, not the one given in either of those calls. For almost all lOP applications , using 
SO_DEFAULT_HEADERS is easier and more desirable than writing headers. 

5.11. Three-way Handshake 

The semantics of SPP connections indicates that a three-way handshake, involving changes in the 
datastrearn type, should - but is not absolutely required to - take place before a SPP connection is 
closed. Almost all SPP connections are "well-behaved" in this manner; when communicating with any 
process, it is best to assume that the three-way handshake is required unless it is known for certain that it is 
not required. In a three-way close, the closing process indicates that it wishes to close the connection by 
sending a zero-length packet with end-of-message set and with datastrearn type 254. The other side of the 
connection indicates that it is OK to close by sending a zero-length packet with end-of-message set and 
datastream type 255. Finally, the closing process replies with a zero-length packet with substream type 
255; at this point, the connection is considered closed. The following code fragments are simplified exam­
ples of how one might handle this three-way handshake at the user level; in the future, support for this type 
of close will probably be provided as part of the C library or as part of the kernel. The first code fragment 
below illustrates how a process might handle three-way handshake if it sees that the process it is communi­
cating with wants to close the connection: 

Networking Tools Guide Last Change: March 1989 Appendix G-37 



Advanced IPC Tutorial 

#include <sys/types.h> 
#include <sys/socketh> 
#include <neblslns.h> 
#include <nebls/sp.h> 

#llndefSPPSST_E~ 

#define SPPSST_E~ 254 
#define SPPSST_E~REPLY 255 
#endif 
struct sphdr proto_sp; 
int s; 

read(s, buf, BUFSIZE); 
if «(struct sphdr *)buf)->sp_dt == SPPSST_END) { 

1* 
* SPPSST_END indicates that the other side wants to 
* close. 
*/ 

proto_sp.sp_dt = SPPSST_ENDREPLY; 
proto_SP.sp3c = SP _EM; 
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp, 

sizeof(proto_sp) ); 
write(s, buf, 0); 
1* 
* Write a zero-length packet with datastream type = SPPSST_ENDREPLY 
* to indicate that the close is OK with us. The packet that we 
* don't see (because we don't look for it) is another packet 
* from the other side of the connection, with SPPSST_ENDREPLY 
* on it it, too. Once that packet is sent, the connection is 
* considered closed; note that we really ought to retransmit 
* the close for some time if we do not get a reply. 
*/ 

close(s); 

To indicate to another process that we would like to close the connection, the following code would 
suffice: 

Appendix G-38 Last Change: March 1989 ICON/UXV·NET 

~-

( 



( ','" 

I 

Advanced IPC Tutorial 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netns/ns.h> 
#include <netns/sp.h> 

#tlndefSPPSST_E~ 

#define SPPSST_E~254 
#define SPPSST_E~REPLY 255 
#endif 
struct sphdr proto_sp; 
int s; 

proto_sp.sp_dt = SPPSST_E~; 
proto_sp.sp_cc = SP _EM; 
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp, 

sizeof(proto_sp»; 
write(s, buf, 0); /* send the end request * / 
proto_sp.sp_dt = SPPSST_E~REPLY; 
setsockopt(s, NSPROTO_SPP, SO_DEFAULT_HEADERS, (char *)&proto_sp, 

sizeof(proto_sp) ); 
/* 
* We assume (perhaps unwisely) 
* that the other side will send the 
* ENDREPLY, so we'll just send our final ENDREPLY 
* as if we'd seen theirs already. 
*/ 
write(s, buf, 0); 
close(s); 

5.12. Packet Exchange 

The Xerox standard protocols include a protocol that is both reliable and datagram-oriented. This 
protocol is known as Packet Exchange (PEX or PE) and, like SPP, is layered on top of lOP. PEX is impor­
tant for a number of things: Courier remote procedure calls may be expedited through the use of PEX, and 
many Xerox servers are located by doing aPEX "BroadcastForServers" operation. Although there is no 
implementation of PEX in the kernel, it may be simulated at the user level with some clever coding and the 
use of one peculiar getsockopt. A PEX packet looks like: 

/* 
* The packet-exchange header shown here is not defined 
* as part of any of the system include files. 
*/ 

struct pex { 

}; 

struct idp p_idp; 
u_short ph_id[2]; 
u_short ph_client; 

/* idp header * / 
/* unique transaction 10 for pex * / 
/* client type field for pex * / 

The ph_id field is used to hold a "unique id" that is used in duplicate suppression; the ph_client field indi­
cates the PEX client type (similar to the packet type field in the lOP header). PEX reliability stems from 
the fact that it is an idempotent (' 'I send a packet to you, you send a packet to me") protocol. Processes on 
each side of the connection may use the unique id to detennine if they have seen a given packet before 
(the unique id field differs on each packet sent) so that duplicates may be detected, and to indicate which 
message a given packet is in response to. If a packet with a given unique id is sent and no response is 

Networking Tools Guide Last Change: March 1989 Appendix G-39 



Advanced IPC Tutorial 

received in a given amount of time, the packet is retransmitted until it is decided that no response will ever 
be received. To simulate PEX, one must be able to generate unique ids -- something that is hard to do at 
the user level with any real guarantee that the id is really unique. Therefore, a means (via getsockopt) has 
been provided for getting unique ids from the kernel. The following code fragment indicates how to get a 
unique id: 

long uniqueid; 
int s, idsize = sizeof(uniqueid); 

/* get id from the kemel-- only on lOP sockets */ 
getsockopt(s, NSPROTO_PE, SO_SEQNO, (char *)&uniqueid, &idsize); 

The retransmission and duplicate suppression code required to simulate PEX fully is left as an exercise for 
the reader. 

5.13. Inetd 

One of the daemons provided with 4.3BSD is inetd, the so called "internet super-server." [netd is 
invoked at boot time, and determines from the file letclinetd.conf the servers for which it is to listen. Once 
this information has been read and a pristine environment created, inetd proceeds to create one socket for 
each service it is to listen for, binding the appropriate port number to each socket. 

[netd then performs a select on all these sockets for read availability, waiting for somebody wishing 
a connection to the service corresponding to that socket. [netd then performs an accept on the socket in 
question, forks, dups the new socket to file descriptors 0 and 1 (stdin and stdout), closes other open file 
descriptors, and execs the appropriate server. 

Servers making use of ineld are considerably simplified, as inetd takes care of the majority of the 
IPC work required in establishing a connection. The server invoked by inetd expects the socket connected 
to its client on file descriptors 0 and I, and may immediately perform any operations such as read, write, 
send, or recv. Indeed, servers may use buffered I/O as provided by the "stdio" conventions, as long as as 
they remember to usefflush when appropriate. 

One call which may be of interest to individuals writing servers under inetd is the getpeername call, 
which returns the address of the peer (process) connected on the other end of the socket. For example, to 
log the Internet address in "dot notation" (e.g., "128.32.0.4") of a client connected to a server under 
inetd, the following code might be used: 

struct sockaddr_in name; 
int namelen = sizeof (name); 

if (getpeername(O, (struct sockaddr *)&name, &namelen) < 0) ( 
syslog(LOG_ERR, "getpeername: %m"); 
exit(1); 

} else 
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr»; 

While the getpeername call is especially useful when writing programs to run with inetd, it can be used 
under other circumstances. Be warned, however, that getpeername will fail on UNIX domain sockets. 

Appendix G-40 Last Change: March 1989 ICON/UXV-NET 





Printed In,'Ihe·· U.S.A. 

COOpyright 1988,1989 
ICON INTERNATIONAL, Inc. 
All rights reserved worldwide. 

172-054-001 A1 


