
Z77-6050

IBM SYSTEM/360 PROGRAMMER'S GUIDE

Mr. J. M. Bower
IBM Corporation
1439 Peachtree Street
N. E. Atlanta, Georgia 30309

f

4

IBM Corporation, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y . 10601

March 16, 1966

This paper presents a set of standards and guidelines
for systems design and programming of the System/360
using the full Operating System. These recommendations
were developed for a specific installation using a Model
40 CPU, but most of the subject matter could be applied
to the Basic Programming System or the Basic Oper­
ating System. The major topics are Assembly Language
Programming Techniques, Coding Standards, Program
Design, and Environmental Considerations. All stan­
dards are based on current pre-release specifications of
the Operating System and are, therefore, necessarily
preliminary.

Far IBM Internal Use Only

TABLE OF CONTENTS

Introduction... 1

Program Documentation..................................2

Program D esign.. 5

Environmental C onsiderations..................11

Assembly Language Programming
Techniques...18

Assembly Language Coding
S tan d ard s.. 24

«

INTRODUCTION

The purpose of this document is to establish standards and guidelines
to be used in the design and programming of data processing applica­
tions on the IBM System/3 60. This initial version is concerned pri­
marily with Assembly Language programming, but it will be extended
later to cover other programming languages, tele-processing, and
various related considerations.

The specific recommendations contained herein were developed for a
given installation—a 262K System/360 Model 40 using Operating
System/360 with option 4 and other advanced capabilities. Never­
theless, many of the standards and techniques would be equally
valuable on a smaller or larger system, or one using the Basic
Programming System or Basic Operating System.

It should be clearly understood that these standards were developed
for one reason only—to increase the productivity of the System/3 60
and the people who use it . It is not intended to restrict initiative
or discourage originality. By prescribing certain best or desirable
techniques of programming and systems design, the installation
manager encourages programmers and analysts to turn their atten­
tions to the most important aspect of their jobs—problem definition
and synthesis of a solution. When a standard no longer meets its
original objective, it should be changed, but until such time as it
is changed, it should be observed by all persons affected.

In writing this document, it is assumed that the reader has access
to all the information on the System/360 and the full Operating System.
The reader, however, need not have read all the System/360 publica­
tions to understand most of what is contained herein.

1

#>

PROGRAM DOCUMENTATION

The need for documentation of a program is as obvious as the need for
the program itself. This section, therefore, will describe two things:
(1) the typical procedure of developing a program, and (2) what is
considered acceptable documentation.

Program Preparation:

The following series of steps describes the way in which a program is
developed and brought to the functional state . It should be noted that
program documentation is developed during this process, not after the
program is in operation.

Step 1. The programmer receives, or develops, a concise
statement of the objectives of the program. Every attempt
should be made to feret out all pertinent information before
proceeding to the next logical step. Required at this point
are the standard layout of the input data sets, as well as
the format of the printed documents, punched cards, or other
data sets which are to be outputs of the program.

Step 2 . From the statement of the problem, the programmer
plans his program and draws up a logic chart which shows
the major functions to be accomplished in the program and
their sequence of occurrence. This is the point at which
the programmer should plan the sectioning and linkage of
his program and determine what pre-coded routines are to be
used, if any are applicable.

Step 3 . The programmer takes his logic chart and data set
layouts and develops a detailed flowchart of each logical
segment of the program. He continues to study and test
his logic and to revise his flowcharts as necessary until
he is satisfied that he has a complete and accurate solution
of the problem. Each block on the detailed flowchart should
be equivalent to not more than two or three instructions in
Assembly Language, or not more than one statement in PL/l,
COBOL, or FORTRAN.

Step 4 . The program is now coded, keypunched, and, if
possible, key-verified. Then the source cards are machine
listed 80-80 on plain paper. Regardless of whether the
program was key-verified, the programmer should check
the 80-80 listing against the coding sheets, line for line.

2

Program Preparation (continued)

Any uncommon or non-printing multi-punches should be verified
by personally inspecting the punched card. The programmer
should desk check the 80-80 listing for keypunch or coding
errors and should review the flowcharts for errors in logic. A
good rule is that he should desk check the program until he is
quite tired of looking at it.

Step 5 . The program can now be assembled or compiled, and,
if there are no errors, tested. If there are any errors, they
should be corrected in the source deck, and it should be re­
compiled. System/360 software facilitates re-compiling only
those sections (CSECT'S) of coding which are in error. The
Linkage Editor can then combine the old and new sections to form
an executable load module. The programmer must use his own
judgment to determine whether it is better to re-compile the
entire program or only the portion in error. A program is tested
first on a small, but representative, collection of test data
prepared by the programmer. Once it has passed this test, it
can be run on a larger volume of data, which may be the live
data set. After each test, a brief report should be prepared
which tells the name of the program and the results of the test.
Test time could best be furnished by the Operating System's
job step accounting facility.

Step 6 . With the program now checked out, the documentation
should be reviewed to insure that it documents exactly what
the program now does. The source deck can be maintained in
card, tape, or disk form, depending on the facilities available
and upon the frequency of references to the source deck. Object
modules should be cataloged and stored in the system library for
rapid call-down and execution.

Acceptable Documentation:

As previously stated, the documentation is developed as the programmer is
defining, writing, and testing the program. Some of the total documentation
will be maintained by the operations department for running the job, some
will be maintained by the programmer for history and for making subsequent
revisions, and some will be maintained by the installation manager for
purposes of planning, control, and measurement. The following list
prescribes the total documentation that is required without specifying at
this point who will keep what information.

3

Acceptable Documentation (continued)

1. Identification — the name by which the program is commonly
known, as well as the identifier under which it is cataloged
in the system, job, or private library.

2. Narrative — a brief statement of what the program does.

3 . Data Sets — the standard names of all input, output, and
work data sets, and their format, if not documented else­
where .

4 . Logic Chart — showing each major segment of coding, its
purpose and sequence of execution.

5. Detail Flowchart — step-by-step flowchart of the entire
program, by sections. Both the flowchart and the logic
chart should be drawn using the symbols on the IBM Flow­
charting Template, Form No. X20-8020.

6. Decision Tables — if necessary, to explain the coding of
complex decisions in the program.

7. Assumptions — a list of all the significant assumptions
that were made in writing the program.

8. Sub-routines — listing of all pre-coded sub-routines used
and their source (system, job, or private library).

9. Notes — explanation of any unusual situations or exotic
techniques used. If floating point, direct control, storage
protection, or decimal arithmetic instructions are used,
this must be stated.

10. Size — maximum core storage used.

11. Program Characteristics —all the attributes of the coded
program as described in the section "Program Design."

12. Operating Information — set-up information, sample control
cards (JOB, EXEC, DD), parameter card values, explanation
of all operator messages, and normal execution time for the
program, if known.

13. History — programmer name, date assigned, date completed,
number of compilations, number of tests, date and reason
for major changes in requirements.

4

PROGRAM DESIGN

The purpose of this section is to list those attributes . which an object
program may possess that are significant to the way in which it is run,
and to provide some guidelines for designing a program so that it will
have the desired set of attributes. It is beyond the scope of this docu­
ment to explain fully the concepts and terminology discussed; further
clarification may be obtained by reading the various OS/3 60 publica­
tions. For the purpose of this discussion, a "program" is considered
to be any logically related group of coding. More precisely, it may be
a "task ," a "segment" or a "control section," but for this discussion,
the single term program is used. In addition, the term "sub-program"
is used to denote a group of coding which is so small in size or so
specialized in function that it cannot stand alone; it is used to perform
a portion of the work in a larger "program."

Types of Sub-Programs

For the purpose of standardization, three types of sub-programs are
defined for this installation: types A, B, and C .

1. A Type A sub-program is defined to be one that is avail­
able for use by any program. It shall be stored in the
System Library, and it must use standard Operating System
linkage conventions. Such programs should be generalized
in nature and must not have access to any data sets except
those made available to it by the calling program.

2. A Type B sub-program is defined to be a routine which is
restricted in use to only those programs which are in a
given application area, such as payroll, accounts receiv­
able, or inventory. A Type B sub-routine must use standard
Operating System linkage conventions, and if security of
the routine is important, it should be stored in a Job Library
for its application area. The routine should not reference
any data sets which are not within its application a r e a 0

3 . A Type C sub-program is by definition a small or specialized
routine coded by the programmer for use in one given program
only. It will be assumed to use non-standard, or Type "S"
linkage (see "LINKAGE CONVENTIONS"), and it is not to be
stored in any sub-program library. If the routine becomes

5

Program Design (Types of Sub-Programs - continued)

generalized in nature or employs standard linkage
conventions, it must be re-classified as Type A or
B. The Type C sub-routine may reference only those
data sets used by the program in which it is included.
The use of Type C sub-routines is to be discouraged
because of the non-standard linkage and the lack of
generality.

Types of Coding

There are three attributes of coding which affect its availability for
use at a given time, as determined by the Control Program.

1. Reentrable coding is that which does not modify itself
in any way during execution. All manipulation is done
in the general registers or in a work area which is
conveyed to it by the calling program. Because of this
characteristic, reentrable coding can be shared in core
by two or more tasks which are being executed concur­
rently. All sub-programs or programs which will be
executed in a multi-tasking environment should be
coded as reentrable, if there is any chance that two
or more tasks could require the same coding concur­
rently .

2. Serially Reuseable coding is coding which will com­
pletely initialize itself whenever execution begins at
its starting point. Although it cannot be shared by
multiple tasks, requests for the same coding can be
queued so that they will await completion of use of
the coding by the using task. In this way, the same
copy of the coding may be reused, and fresh copies
need not be brought in to satisfy each request for it.
In general, all coding which is not reentrable should
be serially reuseable. It takes only a small amount
of extra effort and planning to make a program or sub­
program serially reuseable when it would not be other­
wise .

3 . Non-reuseable coding can be neither shared nor reused;
a fresh copy of the coding is required each time it is
requested. This makes it of less value in a multi-tasking

6

Program Design (Types of Coding - continued)

environment. Generally speaking, the programming
counselor should approve the use of non-reuseable coding.
As stated above, only a small amount of extra effort is
required to make non-reuseable coding serially reuseable;
with a little more planning it can be reentrable.

Program Structure

The structure of the program modules may be defined as being one of
three types: simple, overlay, or dynamic.

1. A simple program structure is one in which all modules of
the program are loaded at once. Execution commences
after loading, and at program termination the entire area
occupied by the program is made available for loading of
another program. The simple program structure is the one
that is easiest to use, but the storage required at any
given time is equal to the size of the entire program. For
this reason, simple program structure should be used only
for small to moderate size programs, or those programs
which contain large tables or which, for some other reason,
cannot be easily segmented. The CALL macro is used for
linkage between sub-programs in a simple program structure.

2. An overlay program structure defines a root segment, which
resides in core during execution of the entire program. In
addition, one or more additional segments may be loaded as
required into a separate area of core. The maximum core
storage required is the sum of the sizes of the root segment
and the largest of the remaining segments of the program.
Maximum core requirement is generally less than with the
same program in a simple structure. If multiple regions of
core are reserved for program segments, it is possible to
overlap processing in the current segment with loading of
the next segment. An overlay program structure must be
carefully planned, but it has the advantage of reducing
core storage requirements as compared to the simple struc­
ture . An overlay structure can be employed to advantage
when the program has a small amount of input/output, or
when a small data set can be passed against successive
phases, or segments, of the program to develop the results
in a series of steps. The overlay structure is defined to the

7

Program Design (Program Structure - continued)

Linkage Editor by the programmer with appropriate control
cards; Linkage Editor organizes the segments for loading by the
Control Program as required. The macro instructions to load
a segment are SEGLD and SEGWT. The CALL macro is used
to link between various modules of the segments once they
are in core.

3 . A dynamic program structure is one in which various additional
modules of coding may be requested at any time, and in any
sequence, by the calling program, whereas an overlay program
structure requires that a certain pattern be established for the
overlays. Dynamic program design is the most flexible program
design of the three possible organizations of the program modules.
It requires less core than the corresponding program in a simple
design, but loading of additional modules generally is not as
efficient as in overlay design. Using LOAD, CALL, and DELETE
macros, however, the dynamic program can operate in the same
manner as an overlay program. The LINK, XCTL, and ATTACH
macros provide the additional flexibility of searching the library
for a load module if it is not in core and available. ATTACH
will create a task associated with the coding it requests, and
DETACH may be used to terminate the task and release the core
occupied by the coding.

Linkage Conventions:

For use at this installation, there shall be two acceptable conventions for
program linkage — standard and non-standard.

1. "Standard" linkage is that defined by the Operating System.
There are four types: I, II, III, and IV. Types III and IV are
for system use, and the programmer need not concern himself
with their mechanics.

a. Type I, or direct, linkage is used to link two sub­
programs of the users program when both sub-programs
are in core. Although linkage could be hand-coded,
standard for this installation will be the CALL macro.
If a parameter list is passed, it should be treated as
a variable length lis t, even though it actually may be
of fixed length. When it is necessary to communicate
to the called sub-program a given option, this should
be done by means of the binary calling sequence identi­
fier, if practical. The called sub-program shall begin
with the macro SAVE (14, 12) to save all general regis­
ters. At the conclusion of the called sub-program,

Program Design (Linkage Conventions - continued)

control can be passed back to the calling sub-program
by the RETURN macro. To indicate what action was
taken by the called sub-program, a binary return code
can be inserted in register 15. If the code is already
loaded in 15, the macro should be RETURN (14, 12),
T, RC = (15). To supply the return code (designated
here by n), the macro would be written RETURN (14,
12), T, RC = n. The return code should be a multiple
of 4 in the range of 0 to 4092. It is written as a
decimal number in the macro, but appears in binary
format in register 15.

b. Type II, or supervisor-assisted, linkage is used to
link a sub-program of the users program to another
sub-program. If the called sub-program is in core and is
reentrable or serially reuseable, control is passed to it
there; otherwise, it is located in the library, is loaded,
and then control is passed. Type II linkage is used
only in a dynamic program, and the macros applicable
are LINK, XCTL, and ATTACH. Detailed standards on
the use of these macros will be published at a later
date.

2. "Non-standard" linkage is linkage which does not use the full
conventions of the Operating System. For this installation,
there will be only one "non-standard" format which will be
acceptable. This is designated "Type S" linkage and is
illustrated by the following example:

* CALLING SUB-PROGRAM

*
LA 15, ENTRYPT
BAL
4

14, 0 (15)

* CALLED
f

SUB-PROGRAM
?

ENTRYPT ST 14, SAVE 14
T
L 14, SAVE 14
BR 14

SAVE 14 DS F

9

Program Design (Linkage Conventions - continued)

The called sub-program saves register 14 for return linkage.
It may use registers 0 - 2 destructively without saving them.
If more registers are required, if variable information is passed
to the called sub-program, or if the called sub-program becomes
general in nature, the linkage should be changed to "standard"
Type I or Type II linkage.

In summary, all Type A or B sub-programs will use "standard" linkage,
which will be either Type I or II depending on whether the called sub­
program is called dynamicly. Type C sub-programs are by nature small or
specialized, such as printer overflow routine, and they will use the pre­
scribed "non-standard," or Type S linkage. The objective of Type S linkage
is to simplify linkage to certain frequently used routines which are applicable
to one program only. However, any large or complex sub-program should use
a form of "standard" linkage, even though it might be used only in one program.

Program Sectioning:

A load module is composed of one or more related control sections (CSECT),
and a control section is simply a group of related coding as defined by the
programmer. To insure the most efficient use of core storage, the programmer
should design his program such that the load module will be relocatable, as
well as scatter loadable, and each control section will be no larger than 4095
bytes in length. The sole exception is the overlay program design in which
linkage editor constructs a program that is block loadable by segments,
where each segment is composed of those modules which must be in core
at the same time.

10

ENVIRONMENTAL CONSIDERATIONS

Program Parameters: Program parameters such as dates, factors,
constants, e t c . , may best be entered in card form in the input job stream.
The programmer must not rely on the operator to key in information at the
console when the same data can be entered through the card reader or
applicable system input device. The Operating System permits up to
40 bytes of data to be entered as the PARM= option in the job control
EXEC card. Standard procedure for this installation shall be to enter
all parameters for a given program in this manner, if the parameters
can be contained in 39 bytes or le ss . A lozenge) shall precede the
list of parameters to positively indentify the list to the users program.
In addition, it is recommended that commas be used as delimiting
characters between the parameters in the lis t. As an example, if it is
desired to enter a date to be used in printing payroll checks, as well as
another program parameter of $1 ,200 .00 , the EXEC card might be coded
as follows:

//EXEC PGM=PAYCHK, PARM=£T031767, 120000, ACCT=. . .

The commas and lozenge must be counted in considering the 40 character
limit for this option. The users program must interpret and edit the entire
list of parameters, and it is recommended that this routine be overlaid
when completed. The Operating System communicates this data to the
users program by storing it in core preceded by a binary half-word giving
length of the list in bytes. The address of the half-word is stored in
register 1 before passing control from the Operating System to the users
initial sub-program.

When the program parameters cannot be contained in 39 bytes, the programmer
shall define an appropriate format for a data set and enter all the parameters
in card form following a DD* card in the input job stream.

All parameters should assume a default, or normal, value when they are
not specifically supplied in the input job stream for a given execution of
the program.

Program to Program Communication: There are several ways to communicate
information automatically from program to program. Large volumes ó f data
can be communicated as a passed data set on tape or, preferably, direct
access. The Operating System, however, provides a convenient means of
passing information that can be contained in 12 bits. When a job step, or
program, terminates with the RETURN macro, the low order 12 bits of
register 15 will be considered as the return code issued by that job step.
All subsequent job steps in the same job can interogate that code by
means of the COND. stepname = option of the 11 EXEC card. A job

11

step should issue a return code of zero to signify a normal completion,
or no unusual situations encountered. The Operating System will
either execute or bypass a job step depending on the value of the return
codes it interogates; the return code does not actually pass to succeeding
job steps.

Tob Step Accounting and Statistics: The installation accounting routine
should maintain the following information by jobs and job steps: elapsed
clock time, active CPU time, I/O devices utilized. On the basis of this
information, accounting costs can be assigned to each job, and system
throughput can be measured more precisely, particularly when multi­
programming. Each program, or job step, should maintain any statistics
which are pertinent to it such as counts of records processed by types,
turnaround time per transaction on-line, etc. These statistics can be
written in the system log with a WTL macro instruction at the time of
job step completion.

Operator Communication: Generally speaking, it is unnecessary for the
problem program to communicate with the system operator via the console.
Program parameters or options should be entered in the input job stream,
and the Operating System will provide standard messages for conditions,
such as I/O devices not ready that require the operators attention. Run
documentation can be written in the system log with tne WTL macro
instruction.

If it is necessary to communicate with the operator, the macro WTO may
be used to write a message on the console, and WTOR to write a message
and receive a reply. A message shall consist of a six character message code
followed by two blank spaces and the text of the message in 72 characters
or le s s .

Messages should be kept as brief as possible. If 72 characters are not
enough to explain the situation, the explanation shall be found in the
operators guide book. This book will list and describe, in sequence by
message code, all messages issued directly by user programs at this
installation. Message codes are composed of either 5 or 6 characters, defined as
follows:

character 1:

2-3:

4-5:
6:

application code (alphabetic); assigned by programming
counselor.
program number (numeric); assigned by programming
counselor.
message number (numeric); assigned by programmer,
the character A if a reply is required of the operator.

12

Operator replies should be kept short, preferably one character. Message
codes should be so chosen that they do not duplicate any codes used by
the Operating System or other IBM-supplied software.

Job Control Cards: The job control cards JOB, EXEC, and DD should
be coded with the same card column conventions as assembly language
program statements. The installation standards for assembly language
coding are stated elsewhere in this publication. When a name field is
coded on a JOB, EXEC, or DD card, the name should be 6 characters
long, although an 8 character name may be used, if necessary, to provide
uniqueness.

Catalogued Procedures: All regular production jobs, and common utility
procedures such as compile, link edit, and execute should be catalogued
in the system library. The entire procedure should be catalogued so that
only a JOB card and an EXEC card will be required to execute the program
or series of programs as they are normally run. Each EXEC or DD card
that is catalogued should have an identifying name so that it will be
possible to override the options in it by supplying an appropriate card
with the same name in the input job stream.

DASD Allocation: In general, space should be allocated on direct
access storage devices by relative blocks of so many cylinders or
tracks. Actual assignment of given addresses should be left to the
Operating System except in those special situations where throughput
can be improved by controlling the actual areas assigned. In the latter
case, the concurrence of the programming counselor is required, as the
addresses assigned must be consistent with other device assignments
of the installation.

Design of Input Data Sets: In designing card input data sets for the
S/360, it should be considered that the data will always be read by the
Reader/Interpreter module of the Operating System and not by the problem
program. This imposes two restrictions: (1) data must be in EBCDIC
format, and (2) selective stacking of input cards is not permitted. All
input cards will be stacked in the same pocket of the card reader. To
facilitate programming and to simplify record design, card types should
be identified by numeric codes, normally one or two digits. The
practice of coding special conditions by means of X punches is to be
discouraged at all costs except for one situation only. A numeric
field shall be considered negative if it has an X punch over its units
position. If the field is positive, there shall be no zone punch in the
units position. All other conditions should be coded with numeric
digits in a fixed location in the card.

13

Design of Output Data Sets: Data sets which are to be printed or
punched by the system should be designed as though they will always
be processed by the Output Writer module(s) of the Operating System
and will never be printed or punched on-line by the problem program.
The purpose of this section is to set standards for form design and
programming that will insure that this requirement is met and that will
provide maximum efficiency of system operation.

I . Punched Cards: Data sets which are to be punched
shall consist of one or more fixed length logical records
per block. The format of each logical record shall be
as follows:

1 byte - control character for Output Writer
80 bytes - data in EBCDIC mode

3 bytes - blanks (hexadecimal 40)
The control character controls the pocket into v\hich
the punched card is selected. For the 2540 reader/punch
the allowable characters are:

binary decimal hexadecimal
00000001 1 01 - stacker PI
01000001 65 41 - stacker P2
10000001 129 81 - stacker RP3

(The CNTRL macro must never be used to control stacker
selection.) Unless cards must be separated, all
punched cards should be selected to pocket, or stacker,
P2. If a card punch error occurs, the card is automatically
selected to pocket PI on the 2540. When the output data
set is blocked, the blocking factor should be a multiple
of 2 if possible. Physical record size will then be a
multiple of 8 bytes in length, and maximum selector
channel performance will be assured for any current
model of System/360. The only absolute limitation on
blocking is that physical record size cannot exceed
the size of the buffers allocated for the Output Writer.
Normally this buffer size is 512 bytes; the exact size
for this installation will be specified later.

II. Printed Documents: Data sets which are to be printed
shall consist of one or more fixed length logical records
per block. The format of each logical record shall be as
follows:

1 byte - control character for Output Writer
132 bytes - data in EBCDIC mode

3 bytes - blanks (hexadecimal 40)

14

Since logical record length is a multiple of 8 bytes,
any blocking factor may be chosen, provided block size
does not exceed the size of the buffers allocated to the
Output Writer(s).

The control character controls printer spacing for each
print line. The allowable control characters for a 1443
printer or any model of the 1403 printer are:

binary decimal hexadecimal
00000001 1 01 - suppress spacing after print
00001001 9 09 - space 1 line after print
00010001 17 11 - space 2 lines after print
00011001 25 19 - space 3 lines after print
10001001 137 89 - skip to channel 1 after print
10010001 145 91 - skip to channel 2 after print
10011001 153 99 - skip to channel 3 after print
10100001 161 A1 - skip to channel 4 after print
10101001 169 A9 - skip to channel 5 after print
10110001 177 B1 - skip to channel 6 after print
10111001 185 B9 - skip to channel 7 after print
11000001 193 Cl - skip to channel 8 after print
11001001 201 C9 - skip to channel 9 after print
11010001 209 D1 - skip to channel 10 after print
11011001 217 D9 - skip to channel 11 after print
11100001 225 El - skip to channel 12 after print

It is evident from the above that all spacing is to be
controlled in terms of spacing after print rather than before.
If spacing of more than 3 lines is required, it may be
necessary to put out blank lines to get the additional
spacing, but this should be avoided if possible. In
any event, all spacing is to be controlled with the
control character; the CNTRL macro is not permitted,
since it forces printing to be "on-line." For the same
reason, PRTOV macro is not permitted. Page overflow
must be determined by the programmer, who will main­
tain a line counter to keep track of the line on which
he is now printing. An 11 inch form provides 66 lines
at 6 lines per inch, and 88 lines at 8 lines per inch.

All documents which are printed on 11 inch long stock
paper (regardless of number of parts) shall be designed
to use a common carriage tape which shall be known as
"S/360 Standard 11 inch." This one tape is applicable

15

to both 6 and 8 lines per inch spacing on any stock
form 11 inches long, and it will provide considerable
savings in operator setup time and effort.

The standard tape is 11" long, punched as follows:

Line No. at 6 per inch Line No. at 8 per inch Channel Punched
6 8 1
9 12 3

15 20 4
24 32 5
33 44 6
36 48 7
45 60 8
51 68 9
54 72 10
57 76 11
60 80 2
63 84 12

The tape is punched with all channel punches to prevent
the possibility of runaway forms, and the programmer has
11 possible predetermined lines to which he can skip for
headings, first detail line, total lines, page footings,
etc. Channel 1 will normally denote the first print line.
The programmer can simplify his own programming effort
by limiting the number of channels to which he will skip,
preferably using only channel 1 . Since spacing and the line
counter are directly related to whether spacing is 6 or 8
lines per inch, it is recommended that line spacing be a
parameter of the program that can be supplied for each
execution. Similarly, it may be desirable to easily change
spacing of the detail lines to single, double, or triple,
and this, too, could be a program parameter.

Reports on stock paper with one heading line only should
normally have the following information in the heading in
this order: title, date, page number. Date would normally
be written as dd/mm/yy, and page number would appear as
PAGE mmmm, where mmmm is the page number, 4 digits long
with high order digits suppressed. The first page should be
numbered 1, not 0 . However, since theprinter must be
restored to channel 1 to begin printing, the programmer may
find it convenient to make the first line of output a heading
line with page number 0 and control character of 89 in hex.
This will indicate the name of the document somewhere on the
first sheet and will restore the printer to begin printing of the
output.

16

Design of System Data Sets: System data sets are considered to be
those data sets which reside on a high speed I/O device such as a
drum, disk, or tape. These data sets may be designed to use any
record format and access method which is supported by Operating
System/360, except that FORM U records will not be permitted in
this installation except for specialized applications, and then only
with the concurrence of the programming counselor. Blocking, if
supported, is left to the discretion of the programmer, and it may
be easily changed if it is made a DOB option in the DD card. Logical
record length should be a multiple of 4 bytes, and it is preferable
that blocking factor be so chosen that physical record size will be a
multiple of 8 bytes. This will insure maximum selector channel
performance on any current model of System/3 60.

The choice of data management access method may be simplified by a
few generalizations which will cover most cases.

1 . BSAM or QSAM should be used for data sets which
are processed sequentially only.

2. BDAM should be considered for a data set which can
be or is always processed non-sequentially.

3. BISAM or QISAM should generally be used for data
sets which must be processed both sequentially and
non-sequentially.

4. BPAM is intended to handle certain special situations
such as library residence, and would not normally be
used in the average problem program.

5. BTAM and QTAM are specifically designed to handle
telecommunications input/output only.

Allowable Character Sets: Tne characters which are allowable in
input and output are determined by the input/output devices used. All
EBCDIC characters are acceptable to disks, drums, and 9-track tapes
(or 7-track with data conversion feature), but other I/O devices have
a character set usually consisting of about 45 of the 88 EBCDIC graphics.
The programmer should determine the allowable character set from the
IBM manual describing the appropriate devices if in doubt.

Equipment Configuration: The exact configuration of System/360
installed at this installation will be printed in this section at a later
date.

Operating System Configuration: The configuration of the Operating
System, including available options, will be printed in this section at
a later date.

17

ASSEMBLY LANGUAGE PROGRAMMING TECHNIQUES

Register Assignments

The System/360 processing unit contains 16 general purpose registers
and, optionally, 4 floating point registers. The floating point registers
may be used interchangeably at the programmer's discretion to perform
the various floating point arithmetic functions. There are, however,
certain restrictions and conventions which apply to the use of the
general purpose registers. The purpose of this section is to enumerate
those restrictions and conventions and to develop the installation
standards for general register usage. "Restrictions" are considered
to be those limitations imposed by the architecture of System/360
hardware, while "conventions" are considered to be the limitations
imposed by the linkage conventions of the full Operating System soft­
ware .

1. Restrictions: General register may not be used as a base
register or an index register. In addition, when 0 appears as
operand R2 of a BALR, BCR, or BCTR instruction, branching is
suppressed, regardless of the contents of register 0 . General
register 1 may contain a 24 bit address stored as a result of a
TRT or EDMK instruction, and general register 2 may contain a
byte of data which is stored in its low order 8 bits as a result
of a TRT instruction. The foregoing restrictions are the only
ones which apply to specific registers; however, the following
instructions always require an even/odd pair of (adjacent)
registers: MR, M, DR, D, SLDA, SRDA, SLDL, SRDL. The
instructions BXH and BXLE may be programmed to use either
2 or 3 registers. When 2 registers are used, they are R-̂
(any register), and R3 (an odd-numbered register). For the
care of 3 registers, we have R̂ (any register) and an even/
odd pair of registers represented by R3 (odd) and R3 + 1 (even),
respectively.

2. Conventions: IBM supplied macros will use registers 0 and 1
as required in the macro expansion. The initial contents of
these registers will not be saved prior to use by the macro,
nor will they be cleared after use. The following describes
the functions of the registers that are used for Type I and II
linkages under the Operating System:

18

Register 0 — When the calling sub-program passes 8 or fewer
bytes to the called sub-program, these are passed in registers
0 and 1 .

Register 1 — contains data passed explicitely in conjunction
with register 0 if the passed parameters are 8 bytes or less .
If a list of parameters is passed, register 1 contains the high
order address of the parameter lis t.

Register 13 — contains the address of the save area in the
calling sub-program.

Register 14 — contains the return point, or address in the
calling sub-program to which control is to be passed after
the called sub-program is executed.

Register 15 — contains the address of the entry point of the
called sub-program when it is called. When the called sub­
program returns control to the calling sub-program, register
15 may contain, at the programmer's option, a binary return code
in its low-order 12 bits.

3. Standards: When using the Operating System, it is theoretically
possible to use all 16 general purpose registers if one observes
the hardware restrictions outlined previously, and if one saves
and restores all registers. (The standards of this installation
require saving and restoring all registers except when using
non-standard "Type S" linkage.) The following standards restrict,
but simplify, the choice of general registers. The objective is to
prevent unforeseen destruction or modification of the contents of
a register.

A. Register 0 - 2 : These registers should be by the
programmer only after all others are exhausted. They
can be used for simple fixed point arithmetic sequences
such as load, add, store, providing there are no inter­
vening macro instructions. When TRT or EDMK instruc­
tions are used, registers 1 and 2 should be reserved for
storage of addresses or data by these instructions, as
noted under "Restrictions."

B. Registers 3 - 12: These registers should be assigned in
sequential blocks for any of the following uses the
programmer may make of them: fixed point arithmetic,
data manipulation, branching and loop control, index
registers, base registers. The number of registers

Register Assignments (continued)

19

Register Assignments (continued)

reserved for base registers should not be greater than 3,
even in the largest program. Lastly, all registers that
are used should be assigned so that they can be initialized
with a single load multiple instruction.

C. Register 13: Register 13 should not be disturbed except to
insert the address of a save area when calling a sub-program
with standard linkage.

D. Register 14: This register may contain only one thing—the
address of the return point in the calling sub-program.

E. Register 15: Register 15 has only two uses which are
allowable: (1) to contain the entry point address of a
sub-program that is being called, or (2) to contain a
12-bit binary return code passed back to the calling sub­
program.

As a final note, it should be clearly understood that the linkage and regis­
ter conventions used by the Operating System are not the same as those
used by the Basic Programming System and the Basic Operating System.
BPS and BOS differ primarily in that they reserve registers 12 and 13 for
the use of the Interrupt Supervisor. These differences are important if, for
example, a program is tested with BOS and run with OS, or if it were run
first under BPS, then adapted to OS.

Program Switches

Programmer defined switches shall be of two types, character switches and
bit switches. If a sub-program or sub-routine requires only one switch, or
if the switch may have more than two possible values, the programmer
should define a one-byte character switch. The instruction to set the
switch to a given value would be MVI. To test the switch one would use
the instructions CLI and BC or CLC and BC. The most compact and most
flexible two-way switch is the bit switch. One byte can be defined as
eight switches, each individually addressable. By convention, a one-bit
shall be defined as the "on" value of the switch, a zero bit as the "off"
value. To set a switch on, the programmer should use an appropriate form
of the OR instruction with an operand of one. To set the switch off, he
would use a form of the AND instruction with an operand of zero. To
reverse the setting of the switch, irrespective of its current setting, the
programmer can use a form of the EXCLUSIVE OR instruction with an
operand of one.

20

Choice of Arithmetic Formats

Inasmuch as the various System/360 processing units have different
relative speeds of execution for fixed point, floating point, and decimal
arithmetic, the choice of arithmetic format will depend upon processing
unit as well as application. In the case of commercial programming on
the System/360 Model 40, floating point is not particularly suitable
because of the problem of conversion to and from floating point format.
When a typical commercial problem is coded in fixed point and in decimal
it will be found that the two solutions are approximately equal in speed
and in core storage required. There are, however, several advantages
of decimal arithmetic which favor its use for commercial type computa­
tions:

1) EBCDIC data can be converted to or from packed decimal
format in one instruction; binary conversion requires an
additional instruction in both cases.

2) The Edit and Edit and Mark instructions require that
data be in the packed decimal format.

3) Packed decimal numbers will always appear as the
equivalent decimal number on a hexadecimal storage
printout, thus facilitating debugging.

4) Decimal fractions can be manipulated easily.

5) Field size may be as great as 31 digits, whereas
a full word binary number can have a maximum equiva­
lent size of only 9 decimal digits.

For this installation, decimal arithmetic and packed decimal format shall
be standard for handling such numeric data as codes, quantities, prices,
dates, e tc . Fixed point arithmetic should be used only in those situations
where it is particularly suitable, such as address manipulation, loop
control, counting, and linkage call and return codes. Whenever fixed-
point arithmetic is used, every effort should be made to use the half­
word instructions to save core storage and reduce execution time.

Loop Control

The key to efficient programming of the System/3 60 lies in making ,*full
use of the general registers, and loop control is no exception. Basically, *
it is a matter of using RR format instructions instead of RX, and of using
powerful looping instructions such as BCT, BXH, and BXLE instead of
more lengthy sequences of instructions as coded on previous computers.

21

Loop Control (continued)

The following example illustrates a loop with both forward and backward
branching, coded with RX, then RR format branch instructions. The RR
format branch is about twice as fast as the RX format, yet the second
sequence of coding is only two bytes longer than the first.

TEST1 CLI CODE, C T
BC

<
7, TEST2

TEST2 CLI CODE, C'2'
B TEST1

LA 3, TEST2
BALR 4,jef

TEST1 CLI CODE, C l '
BCR

c
7,3

TEST2
)

CLI CODE, C 2 '
BR 4

Miscellaneous Instructions:

The following examples describe the best way to do various manipulations
of the general registers. The usual criterion is minimum execution time.

1) To clear register n: SR n,n.
2) To load or store more than one register: LM or STM.
3) To load an unsigned 8-bit binary number as positive:

SR n,n
IC n, DATA

4) To store an 8-bit binary number:
STC n, DATA

5) To increment (decrement) register n by a value contained
in register p:

AR n,p (SR n,p)
6) To load register n with a value V not exceeding 4095:

LA n,V(0)
7) To increment register n by a value V which is not con­

tained in a register and which does not exceed 4095:
LA n,V(n)

In situations where storage to storage operations involve only one character,
execution time and core storage can be saved by using the SI format instruc­
tions: NI, CLI, XI, MVI, and OI instead of SS format instructions with a
length of 1 (NC, CLC, XC, MVC , and OC).

DCB MACRO: To insure a maximum degree of device independence, and to
provide flexibility in selecting buffers, blocking, e t c . , at run time, the
DCB macro should be coded with only that information that cannot be sup­
plied conveniently from the DD card or data set label. In general this
information will consist of symbolic name of the DCB, data set organization,
and macro type code (MACRF=. . .) . The remainder of the pertinent DCB

22

options should be supplied in the job control DD card, which should be
stored in the system in a catalogued procedure. Changes to the DCB
specifications in the catalogued DD card can be made by introducing a
DD card in the input job stream, containing only those options which are
to be changed.

23

ASSEMBLY LANGUAGE CODING STANDARDS

The following standards are intended to prescribe the details of coding
an Assembly Language program. Considerations such as instruction usage
and linkage conventions are covered in other sections of this publication;
the objective of this section is to describe how to fill out a coding sheet
for a given program.

1. Coding Form — The most recent revision of IBM Form No.
X28-6509, "System/360 Assembler Coding Form," is to be
used for coding of all Assembly Language programs. The
Assembly Language statement ICTL is not to be used to
change card format from that shown on the coding form.

2. Coding of Characters — For the sake of accurate keypunch­
ing, it is essential that characters be coded legibly and in
a unique fashion. There are a number of pairs of characters
whose coding can lead to confusion. Some of these are 0
and 0, V and U, B and 8, Z and 2, 0 and D, P and D, S and
5 ,1 and I . The standard coding of numeric characters is
as follows:

jaf, 1, 2, 3, 4 or4/, 5, 6 , 7, 8 , 9.

Alphabetic characters are to be coded as follows:

A, B, C , D, E, F, G, H, I, J , K, L, M, N, O, P, Q,
R, S, T, U, V, W, X, Y, Z.

All alphabetic characters are to be coded as upper-case
letters. (The use of the EBCDIC lower case letters, though
possible on S/360, is not envisioned for this installation at
this time.) Special characters are to be coded as nearly as
possible like the EBCDIC symbols shown on the "System/360
Reference Data" card. Form No. X20-1703. The programmer
is specifically cautioned, however, that not all the EBCDIC
special characters are acceptable to all System/360 input/
output units. The specific special characters that may be
used will depend, therefore, upon the I/O units with which
the job is to be run. There is no character set limitation im­
posed by magnetic tape or direct access storage devices;
limitations of the other I/O devices are defined in this pub­
lication under "ALLOWABLE CHARACTER SETS."

24

Assembly Language Coding Standards (continued)

3 . Labels — All programmer assigned labels, or symbols,
must begin with an alphabetic character and may not be
greater than 8 characters in length. The following
conventions are to be observed by the programmer in
assigning various types of labels in a program.

a. External Symbols — All symbols which will be
placed in the External Symbol Dictionary (ESD)
by the Assembler (e .g ., the label of a CSECT
statement) must be 6 to 8 characters in length,
of which 1 or 2 characters may be numeric, the
rest alphabetic. The first, or entry point, label
in every Class A or B sub-routine is to be assigned
according to this convention. Class A and B sub­
routines are defined in this publication under "Types of
Sub-Programs. "External symbols must be unique
within the context in which the coding is used.
Thus, a sub-routine which may be used by the
entire installation must have external symbols
which are absolutely unique (different from all
other external symbols in use in the installation),
while a sub-routine used only on payroll programs
will have external symbols which need only be unique
within the scope of all payroll programs. The unique­
ness of a symbol can be tested by reviewing the ESD
in the assembly listings of all subroutines and sub­
programs that are in the same scope of application
as the proposed symbol.

b. Labels of Procedural Steps — The labels of all in­
structions or macros which are not assigned according
to the convention for external symbols (see "a" above)
shall consist of two alphabetic characters (which
identify the segment of coding) and four digits (identi­
fying the statement within the segment of code). The
symbols are to be assigned initially by the programmer
as he needs them, spaced by intervals of ten. Thus,
the initial assembly of a source module ALPHA contain­
ing two logical segments of coding might have the
following sequence of labels — ALPHA01, AA0010,
APi0020, AA0030, BB0010, BB0020. Labels of procedural
steps must be unique within a given assembly. This
convention facilitates providing the required uniqueness.

25

Assembly Language Coding Standards (continued)

c . Labels of Data — The programmers shall assign
labels to data and work areas at his discretion,
using the following suggestions as guidelines. . .

To facilitate providing the required uniqueness
within the assembly, data labels should be at
least 5 characters long. The label itself should
be descriptive of the field it names, preferably
all alphabetic. Coding of the program may be
easier if corresponding fields in different records
or work areas are assigned labels which differ
only by a single character prefix such as I for
input, O for output, M for master, T for trans­
action, W for work area, H for hold area. Thus,
one can sequence check IACCTNO and HACCTNO,
or add TAMOUNT to MAMOUNT and move the
result to OAMOUNT.

4. Operation — The operation field of the coding form is used
for the instruction and macro mnemonics, as well as other
assembly language statements such as DS, DC, ORG,
TITLE, CSECT, e tc . In the case of the Branch On Condi­
tion instruction, the programmer should use the extended
mnemonic codes provided by the assembler whenever they
are applicable. This will improve the readability of the
program in addition to simplifying the construction of the
appropriate mask for the Branch On Condition instruction.
The productive programmer will use all the facilities of
the Assembler to minimize his coding effort and the possi­
bility of error.

5. Operand — The following conventions are to be followed in
coding the OPERAND portion of a statement, instruction, or
macro.

a . All core storage is to be addressed symbolicly so
that all object modules will be relocatable. Actual
core addresses will not be permitted, nor are they
needed.

b. Character adjustment of addresses is to be avoided
whenever possible because of the possibility of error
in computing the adjustment. Branching by means of

26

Assembly Language Coding Standards (continued)

the location counter and a character adjustment
is likewise a questionable technique that should
be avoided.

c . General and floating point registers are not to be
assigned symbolic names. They should always be
addressed by their actual number in 1 or 2 digit
form as needed. The mnemonic op code of the
instruction is sufficient to indicate that the numbers
represent general or aloating point registers.

d. Base registers are not to be coded in actual form
except in instructions which manipulate the base
register value, such as Load, Add, BXLE. The
USING and DROP statements are to be used to
denote the base registers that may be used by the
assembler, as well as their assumed values.

e . The use of literals is encouraged to reduce coding
effort. With fixed-point arithmetic, half-word
literals should be used where possible to reduce
execution time and core storage required.

6 . Comments — If comments are to be included in the same
card as a statement, instruction, or macro, they should
be coded beginning in card column 41 and extending to
card column 71. If the text of the comment is a continua­
tion from the comments portion of the previous card
(regardless of whether a continuation indicator character
was punched in column 72 of the previous card), the
comment should be coded and punched beginning in
column 43. In general, frequent comments are desirable.
Comments on instructions help explain what is being done
or how; comments on DC or DS statements are useful to
explain the contents of the field, particularly if it is not
evident from the label of the field.

7 . Identification — A three-character program deck identifi­
cation will be punched in card columns 73-75. The first
two columns will contain a two-digit number which is
assigned by the programmer when the program is under­
taken. Column 75 will contain an alphabetic character
designating the programmer. A given programmer, then,
might identify his assemblies (programs or sub-routines)

27

Assembly Language Coding Standards (continued)

as EJ2fl, E02, E03, etc. The programmer — identifying
character will be assigned to each programmer in the
installation by the person designated as the program­
ming counselor.

8 . Sequence — Card columns 76-80 will contain a program
card sequence number consisting of a two-digit page
number followed by a three-digit line number. The last
digit of line number should be 0 initially to allow for
insertions. In planning his program, the programmer
should allocate one block of page numbers for instruc­
tions and one block for data definitions and work areas,
in order that instructions and data defining statements
can be assembled together as only two separate groups
of coding. When a program is assembled, the statement
ISEQ 73, 80 is to be used to sequence check all the cards
in the source deck.

9. Comments Cards - - Lengthy comments can be included in
the program by coding an asterisk in card column 1 and
the comment in columns 4-71. If the text of a particular
paragraph extends beyond one card, the comments cards
after the first should have the continued text coded in
columns 6-71. The programmer should include comments
cards at the beginning of each assembly to identify the
source module, programmer and date, and at the beginning
of each group of coding to briefly describe what it does
and any special situations or unusual techniques. Comments
cards should describe at the beginning of a routine what each
general purpose register is used for and its initial or normal
contents. Usage of the floating point registers should be
described in those routines which use the floating point
instructions.

28

l

t

