
Z77-8153 

lf§©OOOOTI©fil~ 
TIOOW@OOJJ~Jfillf TI©OO 
§~©OOfilOO®§ 

OS/MVT PRIMER 

Mr. Philip P. Grannan 
IBM Corporation 
250 State Street 
Rochester, New York 14614 

IBM Corpowion, Technical Publications Dept., 112 E. Post Road, White Plains, N. Y. 10601 

r= 8 ~APR 19S9 . 

December 19, 1968 

A discussion of the facilities of OS/MVT and some techniques 
of correctly using them. The paper is current with OS/360 
Release 15/16. 

Far IBM Internal Use Only 



AUTHOR: Philip P. Grannan 

DATE: December 5, 1968 

TITLE: OS/MVT Primer 

ADDRESS: IBM Corporation 
250 State Street 
Rochester, New York - 14614 

* * * 

There are three programming subsystems available under the full 
Operating System (OS/360): The Primary Control Program (PCP); 
Multiprogramming with a Fixed Number of Tasks - Version II (MFT-II); 
and Multiprogramming with a Variable Number of Tasks (MVT) . 

This paper is intended to provide prospective users of OS/MVT with 
an overview of the facilities available with that option. Also, 
while the paper is devoted primarily to MVT, it should be noted 
that the other options have many of the same facilities and thus 
this paper could be used as a partial reference for them. 

Currently, the information contained in this paper is distributed 
throughout several manuals and is not available to the user in one 
source. The idea of this paper is to present this information in 
a form that is easily accessible to the user. 

OS/MVT is the largest IBM operating system and contains many facil
ities giving flexibility and power to the user. Let us now look 
at these facilities and some techniques of using them. 

I. USER SOURCE AND OBJECT LIBRARIES - To cut down on unnecessary 
card handling and to speed throughput, the user can place 
source programs and object programs in direct access libr
aries. An IBM supplied utility (IEBUPDTE)can be used to 
delete or insert statements, renumber the program, etc. 
The updating procedure is not difficult for the programmer 
to use. 

Anyone who has handled large card decks, or who has dropped 
one will see the worth of this facility. Further, it can 
speed throughput as the card reader is used much less. 

II. LOAD MODULE LIBRARIES - The storage on direct access storage 
devices (DASD) of load modules in LINKLIB or private JOBLIBS 
is a tremendous step in throughput improvement. This facility 

-1-

II. LOAD MODULE LIBRARIES - continued -

allows the user to do away with voluminous card handling and 
card reading ~nd with unnecessary compile and link editing 
steps. 

III. PROCEDURE LIBRARY - The job control language (JCL) associated 
with running a job can be stored on a DASD in SYSl.PROCLIB, 
thus enabling the user to cut down on card reading and 
handling and at the same time establish standardized compile 
procedures, reader procedures, etc~ 

The members of PROCLIB can be easily modified by using an 
IBM supplied system utility (IEBUPDTE). In fact, the JCL 
for using this utility can reside in PROCLIB. 

IV. CORE USAGE - MVT gives us the ability to vary the amount of 
core that each program step uses leaving the rest for other 
programs, system tasks, etc. When initiated, the program 
is placed in as much cor~ space as it specifies in the 
REGION = parameter of the JOB or EXEC card (there is a mini
mum size region determined by initiator/terminator consid
erations). Furthermore, during execution, the program can 
change dynamically the size of its region. Additional modules 
can be b:ought into core using overlay structures or dynamic 
structuring. MVT allows us to utilize core in a very efficient 
manner. 

V. TIME SLICING - The use of the time-slicing facilities allows 
us to keep any one program from controlling and using the 
CPU to the detriment of other jobs in the computer. The 
time-slicing facility allows the user to set a p'rocessing 
time limit on jobs in specific user determined priority groups 
(priorities will be discussed more fully later). When the 
limit is exhausted, the job must give up control of the CPU 
to the first ready job in that priority group in the CPU. 
This does not stop a higher priority job from taking control 
whenever it is posted ready. It also does not allow a lower 
priority job to gain control of the CPU from the time-sliced 
job. If there is no other equal priority job ready and no 
higher priority job becomes ready, the original time-sliced 
jo~ continues processing for another set time interval. Further, 
using the CHAP macro instruction to change priorities, a job 
can be moved out of or into a time-sliced priority during a 
phase of its execution. 

VI. CHANNEL PROGRAMMING - The use of channel programming (the 
cha~nel is a physical interface between the CPU and its I/O 
equipment) allows us to perform input-output operations at 

-2-



VI • CHANNEL PROGRAMMING - continued -

at the same· time the CPU is processing something else. Further, 
by adding conunand chaining, also known as chain scheduling, to our 
·reader and writer procedures, we can reduce the amount of IOS 
(Input/Output Supervisor) time used by I/O operations. This 
can result in a saving of CPU time and improve I/O throughput. 

VII. REENTRANT CODING.- Reentrant coded modules allow us to keep 
a single copy of a program in core, while that copy processes 
multiple sets of information. 

By definition, reentrant code (automatically generated by 
the PL/l compiler) does not alter itself during execution 
and thus ·the same copy can be used over and over and/or 
concurrently. 

Let us take the example of an inquiry type of program used 
by a teleprocessing control program which brings in the in
quiry program for certain requests. 

·Multiple inquiries can be processed simultaneously by this 
single copy of the program. The requests treat the inquiry 
program as if each request had its own copy in core. 

The core and time saving due to this facility are very real 
and important. Compare the above method with having to actu
ally bring in and use multiple copies of the inquiry program 
or, having core limitations, being forced to process the 
requests in a sequential manner. 

VIII. ATTACH - The ATTACH macro instruction allows one task to create 
another task which can now compete for control independently 
with all other tasks in the system. This facility allows the 
programmer, through his program, to actually create new tasks 
in his region without the use of the initiator. This is a 
very important but as yet little used (by progranuner) ability 
of OS/MVT which gives tremendous flexibility to the progranuner. 

IX. ROLLOUT/ROLLIN - This is a method whereby a program attempting 
to dynamically gain additional core and finding none free can 
cause another program to halt execution and be placed temporarily 
in a DASO. When this program frees the extra core, the rolled 
out program is returned and resumes execution. This facility 
must be carefully regulated by programming standards to pre-
vent indiscriminate use. 

-3-

x. JOB QUEUE - This facility allows us to build a list of jobs 
on a DASD or in core (the programs are kept on a DASD) so 
that the operating system, using a priority scheduler, can 
select jobs for execution. This allows us to perform batch 
processing and multiprogramm.ing. The benefit using the option 
is increased execution speed -- sequential schedulers are 
tied to the speed of the job stream input device which is 
usually a card reader. Using multiprogramming, we can be 
placing jobs on the job queue as we1·1 as performing other 
work in the computer concurrently. 

XI. STORAGE PROTECTION - Storage protection is actually a combi
nation hardware and software feature of OS/360. It prevents 
one task from altering the region belonging to another problem 
program or the supervisor. It should be noted that ATTACHED 
programs have the same storage protection key as the ATTACHing 
program. 

XII. JOB CLASS - Categories of jobs can be determined by the system 
analyst and each category can be assigned a job class name 
(up to 15 different class names) • Then certain class types 
can be assigned to specific INITIATORS (up to eight classes per 
initiator) in order to control the job in the CPU. An example 
of this would be to assign all CPU bound jobs to class A and 
all I/O bound jobs to class B. Starting two initiators, one 
to class A and one to class B would insure that a Class· A and 
a Class B job would share the CPU. 

In the actual production environment, this job class breakdown 
would be much more extensive, and also very important as we musi 
optimize the job mix in the CPU to fully utilize the CPU and 
its I/O equipment. 

It should be noted that the initiator is assigned priorities 
for each class associated with it, while priorities within 
class is the scheduling priority discussed later. Thus an 
initiator associated with classes A, B and C would initiate 
all class A jobs, first, according to their scheduling prior
ity, then class B Jobs and finally all class C jobs. 

XIII. JOB PRIORITY - Job priority is another important facility of 
MVT. Scheduling priority determines position on the job queue 
within job class (assigned by PRTY = , default to reader pro
cedure or can be modified from the console). Once selected, 
dispatching priority (initially based on scheduling priority) 
determines the job's priority in the system. 

-4-



XIII. JOB PRIORITY - continued -

Furthermore, by use of the CHAP macro instruction, dispatching 
priorities can be altered by the program itself. Thus a pro

.gram can CHAP itself a higher priority (upper limit is its 
initial dispatching or limit priority) for an I/O portion 
and then CHAP down for a long computational (CPU bound) portion. 

Also, ATTACHed tasks can vary their priority in their region. 
The initial limit and dispatching priorities can be established 
in the ATTACH marco or default to the limit and dispatching 
priorities (at ATTACH macro execution) of the ATTACHing pro
gram. By careful use of priorities and the CHAP macro, the 
system can be made to run more efficiently and more effectively. 

Used with the CLASS facility, the PRIORITY facility can be 
used to insure both proper job mix and ?ro~er execi..:.tion prior
ities. 

XIV. ENQ-DEQ - This facility helps guarantee data set integrit;. 
At job initiation, the initiator ENQ's i..:.pon each data set 
name used in the program and blocks out all other programs 
for the duration of the job if DISP=OLD is coded. DISP=S~~ 
can be used on read-cr:::!..:y jobs and will allow other programs 
with DISP=SHR to get at the data set. If, however, the ENQ 
is issued, other progrdJTl~ ~•ith DISP=SHR or DISP=OLD ca:;-,not 
be initiated until the terminator DEQ's on the rla-i:a set 
names. 

The purpose of this facility is to allow a data set to be 
used by only one program at a time if the data set is to be 
modified but to allow several programs to use :m unrr:odified 
resource concurrently. Inadvertent use of DISP=OLD in a 
read only job can block out initiation (and tie up a~ initiator) 
of another read-only job. Of course, using ~:SP=SHR incor
rectly can also cause problems. 

ENQ and DEQ are also macro instruction that can be issued from 
an executing problem program. This macro facility allows 
ENQing on any system resource (progrcu-n, date. set, ::::--=core!.; 
track, etc.). 

In the case of a mother i:.ask (.a "mother task" ".'1\.t taches" 
"Daughter" tasks) which could possibly tie up many resources 
with a DISP=OLD, the use of the macros shoulCi. be investigated. 
In fact, most long running programs should use DISP~SSR and 
the ENQ-DEQ macros. Again, this is ar1 area f'.)r syst.-~;;, pro
grammer study. 

Inc0rrect use of ENQ-DEQ can often Cduse st:.btle problems. 
Therefore, a well defined set cf standards is necessary if 
we are to keep all initiators running and ENQ only on specific 
resources for the time that we actually neec them. 

-5-

XV. CORE RESIDENT FUNCTIONS - This is a facility which allows 
the user to decrease or eliminate DASD access time required 
to obtain records and/or routines commonly used during oper
ation. These £unctions can be load modules of non-resident 
SVC routines, other reentrant load modules from LINKLIB and 
SVCLIB, and a table (BLDL table) containing directory entries 
of load modules in LINKLIB. These functions, specified at 
SYSGEN time, can be respecified at IPL time. They are kept 
in an area of core storage called the LINK PACK AREA (LPA) . 

This facility allows us to save access time on frequently 
used functions. Of course, we are trading core storage (for 
the LPA} for this time saving. Therefore, it is important 
that the system prcgram.~er review the contents of his LPA 
~n relation to the job stream his installation is runniLg. 
.-::o!!Sideraticn should be given to varying the contents of the 
LPA cy Re-IPLing for specific portions of the job stream to 
speed throughput. 

XI. BLOCKING - The blocking of input and output data sets is 
vital ~c~ efficient machine utilization. Blocking has a 
triple P.ffect: 

It speeds up the processing problem by reducing con
tention on DASD; less IOS time is required for large input 
and output block sizes; and with blocking more records can 
be pr~sented to the processing program faster. 

As !cefcrE:, ws have the core storage versus speed conflict 
•:;:,ere ·.-;e trade core storage for processing speE:d. Further, 
other f::i.ctors such as chain scheduling (OPTCD=C) and number 
cf buffers (BUFNO=) combine to make the decisior. quite complex. 

Also, different processors have v~rying maximum block sizes 
which they can accept. This makes it impossible to have a 
standarc reader that blocks IEFDATA (disk resident input data 
set created by the reader) for al:!.. jcbs to a standard block 
sizes. Release 16 allows blocking as a job stream to be coL
trolled by the SYSIN DD card. Fer exa~ple; 

// SYSIN DD *, DCB = ~:::..:s..::::::L = S~;, RZCFM = F:S, 
:OLXSIZE = 16}l!ZI) 

S:i5FRIN1' cari !:>..:: tlcr.:~~ej (to differc:1t degrees) for compilE:rs 
.:md the. LD~:Kll.CE EDITOP.. S:t:-~cify the blocking parameters i::-1 
the SYSPRINT DD cc.rd. For example: 

// SYSPRINT DD SYSOUT = A, DCB = (LREC~ = 121, 
RECF~ = FBA, BLKSIZZ 

-6-

3;125) 



XI. BLOCKING - continued -

SYSLIN and LINKAGE EDITOR output can also be blocked within 
certain limits. 

What makes this so important is that blocking can have a tre
mendous effect on throughput, perhaps the greatest effect on 
throughput other than multiprogranuning. Therefore, prograrruning 
standards must specify blocking as determined by the system 
prograromer-weTghing the combined effects of core size, speed, 
buffer number, chain scheduling and arm contention on DASD. 

XVII. DATA SET ALLOCATION - Data set allocation is especially 
important in MVT since it uses DASD input and output, thus 
creating additional data sets requiring servicing by the 
system. Contention can occur between reader and writer 
data sets, system data sets, scratch data sets and user data 
sets. 

As for the reader and writer data sets, generic names specified 
at SYSGEN time and used in the RDR and WTR procedures can place 
these data sets on separate sets of volumes. 

There should be a minimum of contention between SYSl.SYSJOBQE, 
SYSl.SVCLIB, SYSl.LINKLIB and between these and other data 
sets. 

User data sets should also be allocated with discretion so 
as to avoid causing contention. Thought should be put into 
providing multiple DASD packs for prograrruner use and careful 
planning and scrutiny should be used in placing user data 
sets. 

The use of split cylinders can reduce conflict caused by· 
scratch data sets. 

In installations where there are different types of DASD 
(23¢1, 2314, 2311), frequently used files or frequently used 
portions should be on the faster device. An example might be 
an ISAM file with just its indices on a drum (23~1). 

XVIII. MULTIPLE INITIATORS - The use of multiple initiators can 
insure that an effective combination of jobs is run together 
to fully utilize the system. Thus the number and class desig
nations for initiators is determined by such CPU resources 
as CPU time, I/O devices and available core. 

Since access to the job queue is sequential, a job stream 
consisting of short running jobs benefits little from multiple 
initiators. With longer running jobs, multiple initiators can 
be used to balance CPU resource use. 

-7-


