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This paper describes a set of list-processing features 
which can be implemented on a computer to allow dynamic 
storage allocation where the elements of data contain a 

. multiple number of cells. Classical list-processing oper
ates with unit cells." Dynamic storage allocation of data 
blocks is becoming necessary in areas such as file organ
ization, time-shari{!g compiler design, Teleprocessing, . 
information processing, and engineering design, among 
others. This paper· discusses traditional list-processing, 
defines the features needed to handle multi-cell data, pre
sents programming examples,· and offers a set of FORTRAN 
subroutines which illustrate the proposed system. 
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INTRODUCTION 

In list processing a single block of storage of fixed size and 
location is used to contain data of dynamic size and structure. 

One of the tasks of an assembler or compiler is to establish 
addresses for the object time storage of data, Even though 
a variable is used in only a small portion of a program, space 
is occupied for the variable throughout the execution phase. 
This "static allocation" is acceptable as long as the amount 
of storage involved is a small part of the total storage needed. 
When large amounts of storage are involved "dynamic alloca
tion" of storage is desirable. List processing offers a means 
of obtaining dynamic allocation whereby storage is only used 
during the time the variable is needed. 

Internal storage in a computer is one-dimensional. It is num
bered 0, 1, 2, and so on up to the limit of the machine. Com
pilers and assemblers give the programmer the ability to de
fine data structures which are not one-dimensional, such as in 
a DIMENSION statement in FORTRAN, The processor con
verts references to data items in the structure into a one
dimensional mapping of addresses. In some cases there is 
no easy language word to describe a desired structure. In 
other cases the size of the structure cannot be determined 
until object time. In these instances list processing is an 
effective means of achieving the desired structuring of storage. 

DEFINITIONS 

Suppose that a programmer needs a table to store values for 
Ai, that the maximum size of the table is five entries, that 
each entry uses one word of storage, and that only three 
entries are being occupied, We might illustrate such a table 
as: 



If list processing were to be used to store the table, a 
graphic representation might be: 

In the traditional method each data element occupies a word 
of storage, all of the elements are contiguous, and all five 
words are used even though only three are needed. In the 
list approach, each data element occupies a word of storage, 
however the elements are not, in general, contiguous. Also, 
storage is needed for a header element for the list (represented 
above by TABLE A) and for pointers (depicted as arrows) which 
logically connect the data elements. -

A programmer using list processing reserves a single block 
of storage of fixed size and location, Within the block there 
can be any number of lists. For example, we might have 
lists for Ai, Bi, and Ci: 

Part of the power of list processing is that a list can contain not 
only data elements but also other lists. For example, Table A 
and Table B could be "sublists" of a list TABLE D: 

THE ELEMENTS 

To implement the kinds of lists shown, there are three kinds 
of elements which must appear in storage: A list header (such 
as TABLE A), a data element (such as Bz), and a sublist pointer 
(such as "s", above). 

Header 

A list always contains one header element. The header iden
tifies the list to the list processing routines. An "empty list" 
is defined as a list consisting of only a header element. 

Data Element 

Data elements contain the information stored in a list. For 
example A1, Az, and A3 are the values that comprise the list 
whose header is TABLE A. A list consisting of a header and one 
or more data elements is defined as a "simple list. 11 

Sublist Pointer 

A list that is part of another list is called a sublist. To represent 
the sublist relationship internally, a sublist pointer is placed in 
the higher-level list. A list may contain only sublists or both 
sublists and data elements -- in either case it is defined as a 
"complex list. " Two other important properties are: 1) A list 
may be a sublist of more than one higher-level list, and 2) A 
higher-level list may be a sublist of an even higher-level list. 

The List Label 

The three previous elements all appear in the block of storage 
used for lists. The actual storage address for each element 



is not determined until execution time. It is therefore neces-
sary that some item of information be fixed at compilation time 
to serve as a link between compile and object times. That item 
is called the "label" of a list. The use of a label is similar to a 
symbolic reference to an I/O unit whose actual address is deter
mined at run time. When a list is created at object time, the 
address of the header of the list is placed in the fixed core location 
for the list label. The list header address is technically the "name' 
of the list and therefore the label can be thought of as the "alias" 
which the programmer uses in place of the name. 

THE ELEMENT PREFIX 

We now turn our attention to the manner in which list elements 
are linked together. Linkage is accomplished by prefixing 
each element in the list with three fields -- an identification 
code (ID) and two pointers. The ID is used to indicate which 
kind of element is being prefixed -- header, data, or sublist 
pointer. The pointers in the prefix are used to indicate the 
addresses of the logically-adjacent elements in the list. Normally 
one pointer indicates the next element in the list and the other 
pointer indicates the previous element; however, there are two 
special uses for the pointers: 1) In a list header the pointers 
are used to point to the first element in the list and the last 
element of the list, and 2) The last element in a list points to 
the previous list element and all the way back to the list header. 
Defining pointers in this fashion makes it possible to traverse a 
list either forward or backward from any element of the list to 
any other element, an ability particularly important for dynamic 

storage allocation. 

The internal representation of the prefix is strongly machine
dependent. On a binary machine, the ID value could be repre
sented in two bit positions of a word. On a decimal character 
machine the ID could be stored in a single core position. On a 
binary machine a pointer could be stored in sixteen bits, giving 
a maximum range of 65, 536. On a decimal machine a pointer 
might be stored in three character positions. The total prefix 
would then be stored on a 36-bit binary machine in a single word 
and on a decimal character machine in seven core locations. 

Suppose that a list consists of three data elements A, B, 
and C; furthermore that the prefixes for the elements are 
located at core addresses 1720, 1764, and 1782, Then B's 
pointers could be the actual machine addresses 1720 and 
17 82 or the pointers could be values directly convertible to 
machine addresses. For example, the pointers might have 
the values 20 and 82 and the value 1700 could be stored in a 
register, representing the beginning core address of the list 
area, 

The list programmer must often assign a name to a pointer 
value returned to him by a list subroutine. A pointer value 
has attributes different from those of fixed-point numbers, 
floating point numbers, or character strings. In the FORTRAN 
implementation presented later in this paper, pointer values 
are treated as quasi-integers and so are given integer names, 
such as MARK, L4, and IADVD. 

CELLS 

Different computers often have different storage structures. 
To store a given integer may take one word, four characters, 
or two bytes of storage. To avoid storage-dependent terms, 
we will use the word "cell" in this paper to mean a sufficient 
amount of core to store a value. That value might be an integer, 
a floating-point number, or a pointer. Some systems use more 
core locations for floating-point numbers than for integers. The 
implications of such a system are discussed later in the paper. 

In traditional list processing all of the data elements occupy 
single data cells. In the example above the entries A1, A2, 
and A3 were each singl~ data values in the list called TABLE A. 
This paper presents a system which allows the data entries in 
a list to consist of any number of data cells. In such an imple
mentation, the entry A1 could itself be an array of many data 
values. Within a given list each data element contains the same 
number of cells, but the number may vary from list to list. 



USING LIST PROCESSING 

None of the prevalent programming languages have statements for 
list processing. List processing has traditionally been implemented 
by adding subroutines to a standard language. In this paper are 
presented language statements that call upon FORTRAN list pro
cessing subprograms, both Subroutines and Functions. (The coding 
of the subprograms is shown later in this paper). The statements 
offered give a basic capability for using list processing with multi
cell data elements. No attempt is made to completely survey the 
many special purpose subroutines that can be added to a list pro
cessing system. For such information, the reader can turn to 
the documents listed in the bibliography. 

In the following sections, statements are shown for creating a list, 
adding and deleting items from a list, forming sublists, and ex
tracting data from lists. Each section is divided into two parts -
Externals and Internals. The externals are concerned with the use 
and format of a list statement. This information is what the list 
programmer must know. The systems programmer is concerned 
with the internal mechanisms that occur as a result of the given 
list statement. 

INITIALIZATION 

Externals 

Before any list processing can be done, it is necessary to initialize 
the system. The purpose of the initialization is to inform the list 
subroutines of the address of the block of storage reserved for 
lists and the total amount of storage reserved. In this paper, we 
will arbitrarily decide that the list area is at the beginning of the 
FORTRAN COMMON area and we need, therefore, communicate 
only the amount of storage being reserved. 

To initialize the system, call a subroutine INTAS and supply it with 
a count. Also write a COMMON statement for the list area, for 
example: 

COMMON KORE ( l 000) 
CALL INTAS (1000) 

Internals 

The INTAS subroutine reserves part of the list area for its own 
use. Core is used to store the number of core locations left in 
the list area. Some core is used to point to the first core location 
available for lists. Finally, an empty list is created for the 
"delete" list. Whenever the programmer deletes an item, that 
item will be added to the delete list. 

CREATING AN EMPTY LIST 

Externals 

Creating an empty list has two purposes: 

1. The programmer assigns his own label to the list, and 

2. The programmer designates the number of data cells 
that will be required for each data element in the list. 

To create an empty list, use the function LIST and supply it with 
the number of data cells desired. The value of the function is the 
name of the list. For example, the following statement will create 
an empty list that can contain data elements of five cells in length: 

MINE = LIST (5) 

The label MINE is a variable name created by the programmer and 
represents the name of the list. 

Internals 

The LIST function must obtain sufficient contiguous storage to contain 
the following fields: 

1. 

2. 

The prefix. 

The value, N, supplied by the programmer for 
the number of data cells in each data element. 

3. A field to store a pointer in case this list is made 
a sublist of another list. 



Into the prefix is placed an ID of 1 to indicate a header element. 
Both pointers address the header itself to facilitate later pro
cessing. The programmer's input parameter is stored in the 
cell for N. The last field is set to zero. If the list later becomes 
a sublist then this field will point upward to the higher-level list. 
Lastly, the address of the header element is returned to the pro
grammer's label. 

PLACING DATA ON A LIST 

Externals 

Two statements are used to place data on a list - one statement 
is used to reserve a data element in the list and another statement 
is used to load data into the various cells in the element. 

To reserve a data element, use the function NEXT and supply the 
label of the list. The value of the function is a pointer to the 
data element. For example, to reserve a data element on the 
list labeled MINE, write: 

MARK = NEXT (MINE) 

The variable MARK is a user-created name that points to the data 
element. MARK is subsequently used to load data into the element. 

To place a data value into a data element, call the subroutine LOAD 
and supply: 

1. The pointer to the data element; 

2. The number of the data cell to be loaded; 

3. The data value or name. 

For example, to place the value 32 in the first cell of data element 
MARK, write: 

CALL LOAD (MARK, 1, 32) 

Internals 

The function NEXT is supplied the label of a list. 
the list is retrieved and the value N is extracted. 

The header of 
NEXT must then 

obtain sufficient contiguous storage to hold the prefix for the data 
element plus the number of data cells desired. Using information 
from the list header, the prefix pointers are set to address the 
previous last item in the list and the list header. The ID is set 
to 2. The header for the list is changed to indicate the new last 
item in the list. To the programmer is returned the address 
of the data element just created. 

The subroutine LOAD is supplied the address of the data element. 
This address points to the prefix of the element. Knowing the 
number of core locations required by the prefix and each data 
cell, the subroutine can calculate the address for data storage. 
The inputted data is then moved to the calculated address. Note 
that in a FORTRAN system using different amounts of storage 
for real and integer variables that it is necessary to have two 
separate loading routines, perhaps LOADR and LOAD!. 

FORMING SUBLISTS 

Externals 

To add a sublist to a list, call the subroutine JOIN and supply 
the labels of the major list and the sublist, as in: 

CALL JOIN (MINE, L4) 

MINE and L4 are the labels of previously created lists. Calling 
the subroutine JOIN makes L4 a sublist of MINE. 

Internals 

The JOIN subroutine obtains sufficient contiguous storage for a 
sublist pointer. This element is to contain a prefix and a pointer 
to the header of the sublist. An ID of 3 is placed in the prefix. 
One pointer addresses the previous last element in the main 
list and the other pointer addresses the main list header. The 
main list header is updated to show that the sublist pointer is 
now the last element of the list. Finally, a pointer is placed 



in the header of the sublist. This pointer addresses the sublist 
element just created and is used later to move upward from a 
sublist into the main list. Notice that since a list can be a 
sublist of more than one list, the upward pointer will indicate 
the last list to which the sublist was joined. 

READING LISTS 

Externals 

List structures are used to store data. The previously discussed 
subroutines make it possible to create structures and insert 
data into the lists. The programmer also needs the ability 
to extract data from lists. The process of retrieving previously 
stored information is called "reading" a list. To read a list, the 
programmer needs statements to move through a list structure 
to a desired data element and then extract data from that element. 

Moving through a list is accomplished by using the function IADVD 
to advance to a data element and the function IADVS to advance to 
a sublist. In either case the programmer supplies the function 
with a pointer to a beginning element and a count of the number of 
elements to be traversed. 

For example, to advance to the first data element in the list labelled MINE, 
write: 

K = IADVD (MINE, 1) 

The value of the function, K, is a pointer to the prefix of the data 
element desired. To advance to the third sublist in the list NAL, 
write: 

MARKL = IADVS (NAL, 3) 

To advance from a current element to the next element in the list, one 
could write: 

IMA T IA DVD (IMA T, 1) 

To advance backward through a list the count value is made minus. 
For example, to move from a current element to the previous ele
ment in the list, write: 

IMAT = IADVD (IMAT, -1) 

To extract data from a data element, use the function KONT and 
supply as parameters the pointer to the data element and the number 
of the data cell desired. For example, to obtain the fourth data 
value from the element IMA T, write: 

NUM=KONT (IMA T, 4) 

This statement will cause the desired data to be stored in NUM. The 
function KONT retrieves integers. To retrieve floating-p.oint numbers, 
write: 

FNUM = CONT (IMA T, 4) 

Internals 

The function IADVD works in the following manner. Depending upon the 
sign of the count specified, the routine extracts either the forward or 
backward pointer from the beginning element. The ID of the next 
element is examined. If the ID indicates a data element, then a counter 
is incremented and checked for an equal with the count specified by the 
programmer. If the values are equal the address of the current element 
is returned to the programmer. If the ID indicates a sublist pointer, 
the element is ignored and the routine moves to the next element. If 
the ID indicates a header, then the list has been exhausted and a value 
of zero is returned to the programmer. 

The function IADVS works in the following manner. The ID of the next 
element is examined. If the ID indicates a data element the routine moves 
to the next element. If the ID indicates a header, then the list has been 
exhausted and a value of zero is returned to the programmer. When the 
ID indicates a sublist pointer, a counter is incremented and checked for 
an equal with the count specified by the programmer. If the values ar~ 



unequal the routine moves to the next element. If the values are 
equal then the pointer value is extracted from the sublist entry 
and returned to the programmer. This pointer value is the 
address of the sublist header. To complete processing, the 
routine places the address of the sublist element into the sublist 
header. The purpose of this action is to allow the programmer 
to later ascend from the sublist back into the main list. (In that 
case, the programmer uses the function IPOP which returns the 
programmer to the main list). 

The two functions KONT and CONT extract data from an element. 
The address of the data element and the desired cell number are 
inputs to the routine. Knowing the number of storage locations 
occupied by a prefix and each data cell, the routine can calculate 
the address of the desired cell. The data value at that address is 
obtained and returned to the programmer. 

DELETIONS 

Externals 

When a list or part of a list is no longer needed, the programmer 
can delete the unneeded elements, making their core locations 
available to new data. 

To delete an item, call the subroutine REMOV and supply the pointer 
to the element. For example, to delete the element at MARK, write: 

CALL REMOV (MARK) 

Internals 

The REMOV routine first checks to see if the input parameter points 
to a data element or a list header. 

If the ID indicates a data element, the following actions are performed. 
From the given element the list is traversed until the list header is 
reached. The count of the number of data cells in each element is 
obtained from the header. This value is placed into the first data cell 
of the element being deleted. Next, the pointers in the elements before 
and after the deleted item are updated. The removed element is then 

added to the delete list. Later, when some routine requests 
a storage area, an internal subroutine will check the original 
storage block for sufficient storage. If the original block is 
exhausted, the delete list is traversed in search of an item of 
sufficient length. Notice that the delete list is one wherein each 
element can be of a different length and that the length is the first 
data word of each element. 

If the argument for removal is a list header, the entire list is 
deleted. The REMOV subroutine moves to each data element 
in the list and places the count value into the first data cell. 
The entire list is then attached to the end of the delete list. 



PROGRAMMING EXAMPLES 

PROBLEM 1 

Construct a simple list containing 20 data elements, each of which 
holds 10 data values. The values are obtained from 20 cards of 10 
fields each. 

LIST A=LIST ( 1 O) 

2 DO 6 J=l, 20 

3 MARK=NEXT (LISTA) 

4 READ ( ) (A(I), l=, 10) 

5 DO 6 I=l, 10 

6 CALL LOAD (MARK, I, A(I)) 

Statement 1 creates an empty list labelled LISTA. Each data element 
in the list can contain ten data cells. Statement 2 counts 20 cards. 
Statement 3 reserves a data element for each new card. Statement 
4 reads ten values from a card. Statement 5 counts the loading 
of ten values into the list element. Statement 6 is executed ten times 
for each card, thereby placing all of the input values onto the list. 

PROBLEM 2 

Print the values stored in the list created in Problem 1. Print 20 
lines of 10 fields each. 

MB=LISTA 

2 DO 6 J=l, 20 

3 MB=IADVD(MB, l) 

4 DO 5I=l, 10 

5 B(I)=CONT(MB, I) 

6 WRITE ( ) (B(I), I= 1, l O) 

Statement 1 initializes a pointer value at the beginning of the list. 
Statement 2 counts 20 print lines. Statement 3 is used to advance 
through the list. The function IADVD is instructed to move from 
the element at MB to the next data element in the list. Ten values, 
counted by statement 4, are extracted from the element at MB 
by the function CONT in statement 5. The values are then printed 
by statement 6. 

PROBLEM 3 

Read and store a matrix of variable size. Use a list of one data 
element with sufficient cells to contain the matrix. A single card 
contains the number of rows and columns in the matrix. This card 
is followed by a set of cards, each of which contains one row of the 
matrix. 

READ ( ) NR, NC 

2 LISTM=LIST (NR*NC) 

3 MARK=NEXT (LISTM) 

4 K=O 

5 DO 9 J=l, NR 

6 READ ( ) (VAL(I),I=l, NC) 

7 DO 8 I=l, NC 

8 CALL LOAD (MARK, K+I, VAL (I)) 

9 K=K+NC 



The card with the number of rows and columns is read by statement l. 
Statement 2 creates a list labelled LISTM. The product of the number 
of rows and columns is the amount of data that will be stored in the 
list. In statement 3 a data element is reserved and is pointed to by 
MARK. The variable K, initialized in statement 4, is used to locate 
each row of the matrix. Statement 5 controls processing all of the 
rows of the matrix. Each row of the matrix is read by statement 6. 
Statement 7 counts the loading of each column entry. All data values 
are loaded by the LOAD subroutine in statement 8 . MARK is the 
pointer to the single data element of the list. The sum "K+I" positions 
data in the list element. The value of I represents the column number 
and K represents the beginning of each row of the matrix. K is updated 
for each row in statement 9. 

Any value in the matrix can be retrieved by using the row and column 
numbers. For example, if the desired numbers are represented by 
MYR and MYC, write: 

N=MYC+NC*(MYR-1) 

VALUE=CONT(MARK, N) 

When the matrix is no longer needed it can be deleted from storage by 
writing: 

CALL REMOV(LISTM) 

PROBLEM 4 

Construct a list containing data elements followed by sublists. Input to 
the program is a deck of cards. Each card contains a code and a value. 
Each time the code changes place the code's value into a data element 
of the main list. Place all values with the same code into a sublist. 

LIST M• LIST (1) 

2 TYP0=9999. 

3 READ ( ) TYPN, VAL 

4 IF(TYPN-TYPO) 5, 9, 5 

5 CALL LOAD (NEXT(LISTM), 1, TYPN) 

6 LISTS=LIST ( 1) 

7 CALL JOIN (LISTM, LISTS) 

8 TYPO=TYPN 

Q MARK=NEXT(LISTS) 

10 CALL LOAD(MARK, 1, VAL) 

11 GO TO 3 

Statement 1 creates the main list. The control code is initialized by 
statement 2. Statement 3 reads a card with a code and a value. 
Statement 4 checks for a control break. For each new code, state
ment 5 loads the code into a new data element of the main list. 
Each new sublist is created in statement 6. Statement 7 joins the 
two lists, forming a sublist of LISTS. The new code is saved by 
statement 8. A new data element is reserved in the sublist by 
statement 9. In statement 10 each input value is placed into a 
data element of the sublist. Statement 11 returns to continue card 
reading. 

PROBLEM 5 

Read a value from the list created in Problem 4. The value is the 
last entry in the sublist for a code read from an input card. 

READ ()TYPE 

2 MH""LISTM 

3 MH=IADVD(MH, l) 

4 IF (MH) 5, 5, 6 

5 STOP 

6 IF(CONT(MH, l)-TYPE)3, 7, 3 



7 MS=IADVS(MH, 1) 

8 VALUE=CONT(IADVD(MS, -1), 1) 

Statement 1 reads the code field. MH, the pointer for reading the 
main list, is initialized in statement 2. Statement 3 advances to 
the next element of data in the main list. A check is made to ensure 
that the list has not been exhausted by comparing for a zero value 
in statement 4. If a data element exists, its stored value is com
pared to the input code. When an unequal occurs, a branch is made 
to statement 3 which continues traversing the list. Statement 7 
advances to the sublist immediately following the proper code in 
the main list. Statement 8 advances to the last element in the 
sublist and extracts the data item desired. 

FORTRAN SUBPROGRAMS 

The following pages contain listings of subroutines and functions 
discussed in this paper along with the subroutines called internally 
by the major subprograms. 

These subroutines are not meant to be universally applicable. 
Indeed, the last page of listings contains the subroutines which 
should be written in assembler language in order to take advantage 
of the core structure of the machine of implementation. 

An attempt has been made to keep the subprograms free of idioms 
unique to any of the FORTRAN dialects. To make processing more 
efficient, no subprogram ever goes deeper than one level into 
internal processing routines. 

The basic unit of storage in this scheme is a FORTRAN integer word. 
The entire list area is a single-dimensional array (KORE). Thus, 
all pointers in this system are not machine addresses, but subscript 
values for each word in the array. 

SUBROUTINE INTAS(NJ 
COMMON KORE<lOJ 

C NOe OF WORDS LEFT IN BLOCK 
KORElll•N-8 

C AOOR OF FIRST AVAILABLE WORD 
KORE(2J=9 

C SET UP EMPTY DELETE LlSTtVARIABLE LENGTH 
lDUMY•LlSH-l J 

c 

c 

c 

c 

c 

RETURN 
ENO& 

SUBROUTINE OBTAN<NtlAODRl 
COMMON KORE(l0) 

UPDATE NO• OF WORDS LEFT 
KOREll)~KORE(l)-N 

IS THERE ROOM lN MAIN 6i-OCK. 
IF lKORE(lll2•ltl 

YES• SAVE ITS ADDRESS 
l KORE(3J•KORE<2l 

1AOOR•KORE(3) 
UPDATE NEXT AVAILABLE WORD ADDR 

KORE(2l•KORE<2l+N 
RETURN 

SEARCH DELETE LIST FOR SUFFICIENT 
2 KORE<lJ•KORE(l)+N 

CALL SCANL(NtlADDRJ 
RETURN 
END& 

FUNCTION NEXT(NAMEl 
COMMON K.OREllOl 

CORE 

C GET NO• OF WORDS OF DATA IN EACH ENTRY 
NWDS•KONTCNAMEtll 

C GET A BLOCK. OF FREE STORA~E 
CALL OBTANlNWDS+31NXAOJ 

C GET ADDR UF LAST ENTRY IN LIST 
LAST•KPRA(NAME> 

C LOAD DATA IDt FWD POINTER AND BACK POINTER 
CALL STORL(21NAMEtLASTJ 

C UPDATE LAST POINTER IN LIST HEADER 
CALL LPRA(NAMEtNXAOl 

C UPDATE PREVIOUS LAST ENTRY TO POINT TO THIS NEW ENTRY 
CALL LNXAILASTtNXAOl 
NEXT•NXAD 
HE TURN 
END&-



FUNCTION LISTINWDSI 
COMMON KOREllOl 

C GET 5 WOROS OF FREE STORAGE 
CALL 06TANt5tNLlSTl 
L.lST•NLIST 

C S~i IO ANO TWO POINTERS 
CALL STORLlltLISTtLIST> 

C LOAD THE NO. OF WORDS PER ITEM 
CALL LOADCLISTtltNWDSI 

C LOAD A LERO INTO SUBLIST UP-POINTER 
CALL LOADlLlSTt2tOI 
RETURN 
ENDtr 

SUBROUTINE JOINlMAINtISUB) 
COMMON K.OREllO> 

C GET AOOR OF LAST ENTRY IN MAIN 
L.AST•KPRA<MAINJ 

C GET 4 WORDS OF FREE STORAGE 
CALL 06TANl4tlSLP) 

C LOAD ID• FWD POINTER AND THE BACK. POl~TER 
CALL STORL(3tMAINtLAST> 

C LOAD POINTER TO SUBLIST 
CALL LOADlISLPtltlSU8) 

C UPDATE LAST ENTRY IN MAIN LIST HEADER 
CALL LPRAlMAINtlSLPI 

C UPDATE PREVIOUS LAST ENTRY 
CALL LNXAILASTtISLP> 

C PLACE UP-POINTER IN SUBLIST HEADER 
CALL LOAOllSUBt2tlSLPI 
RETURN 
t:NDi-

SUBROUTINE L.OADtMARK.tNtlDATA> 
COMMON 11\0REllOI 

C COMPUTE ADDR TO LOAD DATA 
1S•MARK.+N+2 

C LOAD THE DESIRED DATA 
K.OREllSl•lDATA 
RETURN 
END6r 

FUNCTION KONTIMARKtNl 
COMMON KORE<lO> 

C COMPUTt ADDR OF UATA DESIRED 
1S•MARK+N+2 

C EXTRACT THE DATA 
KONT•K.ORECIS> 
RETURN 
ENOi-

FUNCTION lADVOIMARKtNI 
COMMON KOREllOI 
lAM=MAkK 
KOUr-.Ta:O 
KDIR=l 
NABS=N 
IF<Nllt7t3 

1 NASS=IABSINI 
KDIR=2 

2 GO TO l3t8ltKDlR 
3 IAM•K.NXA(IAM> 
4 lD•lOOFC IAMI 

GO TO l5t6t2>tl0 
5 IADVO•O 

RETURN 
o KOUNT•KOUNT+l 

1FlK.OUNT-NABS12t7t7 
1 lADVU•IAM 

RETURN 
S lAM•t<.PRAllAM) 

GO TO 4 
ENDi-

FUNCTION lADVSlMARKtNI 
COMMON KOREtlOl 
IAM•MARK 
KOUNT•O 
KDIR•l 
NABS=N 
lFINll•i13 

l NASS•lABSINJ 
KDIR•2 

2 GO TO 13t81tKDlR 
3 IAM•K.NXA<IAM> 
4 10 s 1 OOF C 1 AM > 

GO TO 15t2tlbJtlD 
5 IADVS•O 

RETURN 
lo KOUNT•KOUNT+l 

lF(KOUNT-NABSl2t7t7 
1 lADVS•KONTllAMtll 

CALL LOADIIADVStZtlAMl 
RETURN 

8 IAM•KPRAl IAMI 
GO TO 4 

9 IADVS•MARK 
RETURN . 
ENDtr 



SUBROUTINE STORLlID,NEXT,LAST> 
COMMON KOREllO> 

C GET ADDRESS OF NEW ENTRY 
lS•KOREl3> 

C STORE THE IO, THE N~XT ADDR• AND THE PREV AOOR 
KORE<IS>•ID 
KORt.llS+l>•NEXT 
KOREllS+2>•LAST 
RETURN 
ENOfr 

SUBROUTINE LNXA (MARK•IAOR> 
COMMON KOREllO> 

C LOAD NEXT AODR POINTER 
KORECMARK+lJ•IAOR 
RETURN 
ENOt. 

SUBROUTINE LPRA(MARK•IADR> 
COMMON KORE llO > 

C LOAD PREVIOUS AOOR POINTER 
KORECMARK+2J•IAOR 
RETURN 
ENOfr 

FUNCTION IOOFCMARK> 
COMMOl~ KORE ( 10 > 

C EXTRACT THE 10 CODE 
IOOF•KORElMARK> 
RETURN 
ENOfr 

FUNCTION KNXA<MARK) 
COMMON KOREllO> 

C EXTRACT NEXT ADOR POINTER 
KNXA•KORElMARK+l) 
RETURN 
ENDtr 

FUNCTION KPRAlMARK> 
COMMON KOREllO) 

C EXTHACT PREVIOUS AODR POINTER 
KPRA•KORElMARK+2> 
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