File No. S38-24

e
o)
N
~
I
FE
N
Q
wn

SC21-7718-7

|
.
||!!||I|

File No. S38-24

IBM System/38

IBM System/38
COBOL
Reference Manual
and Programmer’s Guide
Program Number 5714-CB1

Eighth Edition (November 1986)
This major revision obsoletes SC21-7718-6.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions. Changes
or additions to the text and illustrations are indicated by a
vertical line to the left of the change or addition.

This edition applies to Release 8, Modification Level 0, of IBM
System/38 COBOL Program Product (Program 5714-CB1) and to
all subsequent releases and modifications until otherwise
indicated in new editions.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM’s program product may be used. Any
functionally equivalent program may be used instead.

This publication contains examples of data and reports used in
daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals,
companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader’s comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to

IBM Canada Ltd.

Information Development,

Department 849,

895 Don Mills Road,

North York, Ontario, Canada. M3C 1W3

IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation
to you.

© Copyright International Business Machines Corporation 1980,
1981, 1982, 1983, 1984, 1985, 1986

Contents

About This Manual
Purpose of This Manual
Organization of This Manual
Summary of Changes
What You Should Know
If You Need More Information
Industry Standards
Acknowledgment

.........
..................

Chapter 1. Introduction
General Description
Language Level
Compiler Features
Format Notation

.................
..................

....................

Chapter 2. Language Considerations
COBOL Program Structure
The COBOL Divisions
Clauses and Statements
Clause and Statement Specification

Order
Structure of the Language
Character-Strings
COBOL Words
Literals
PICTURE Character-Strings
Comments
Separators
Standard COBOL Format
Sequence Numbers (Columns 1-6)
Continuation Area (Column 7)
Area A (Columns 8-11) and Area B
{Columns 12-72)
Special Considerations
Division Header
Section Header
Paragraph Header, Paragraph-Name
Data Division Entries
DECLARATIVES and END
DECLARATIVES
Program Spacing
Indentation
Continuation of Lines
Comment Lines

............

..............

............

.................

.................

......

.....................

...........

.............

................

................

................ xi

xi
xi
xii
xiii
xiii
xiv
XV

1-1

Debugging Lines 2-16
Blank Lines 2-16
Overall Punctuation Rules 2-16
Identification Division 2-16
Environment Division 2-17
Data Division 2-17
Procedure Division 2-17
Methods of Data Reference 2-17
Qualification 2-17
Qualification Rules 2-19
Subscripting and Indexing 2-20
Identifier 2-20
Condition-Name 2-21
Explicit and Implicit References 2-21
Data Attribute Specification 2-21
Procedure Division Data References 2-22
Transfers of Control 2-22
Chapter 3. Identification and
Environment Divisions 3-1
IDENTIFICATION DIVISION 3-1
Coding Example 3-2
PROGRAM-ID Paragraph 3-2
Other Optional Paragraphs 3-3
ENVIRONMENT DIVISION 3-3
Coding Example 34
Configuration Section 34

SOURCE-COMPUTER Paragraph 3-6

OBJECT-COMPUTER Paragraph 3-6
MEMORY SIZE Clause 3-6
PROGRAM COLLATING SEQUENCE

Clause 3-6
SEGMENT-LIMIT Clause 3-6

SPECIAL-NAMES Paragraph 3-7
Function-Name-1 Clause 3-7
Function-Name-2 Clause 3-8
Coding Example 39
Alphabet-Name Clause 39
CURRENCY SIGN Clause 3-12
DECIMAL-POINT IS COMMA

Clause 3-12
Input-Output Section 3-12

Files 3-12

DataBase Files 3-12

Contents 111

Device Files 3-13
DDM Files 3-13
Paragraphs 3-13
File Processing Summary 3-14

Data Organization 3-14

Access Modes 3-15

Access Mode Allowed for Each File

Type ... 3-16

FILE-CONTROL Paragraph 3-16
FILE-CONTROL Paragraph — General

Considerations 3-18

SELECT Clause 3-19

ASSIGN Clause 3-19

RESERVE Clause 3-21

ORGANIZATION Clause 3-22

ACCESS MODE Clause 3-23

RECORD KEY Clause (Indexed File) 3-24

FILE STATUS Clause 3-26
I-O-CONTROL Paragraph 3-27
RERUN Clause 3-28
SAME Clause 3-28
MULTIPLE FILE TAPE Clause ... 3-29
COMMITMENT CONTROL Clause 3-29
Chapter 4. Data Division 4-1
Data Division Concepts 4-1
ExternalData 4-1
Internal Data 4-2
Data Relationships 4-2
Data Division Organization 4-2
Coding Example 4-3
Sample Data Division Entries 4-4
FileSection 4-5
Working-Storage Section 4-5
Linkage Section 4-6
File Description Entry 4-6
File-Name 4-10
BLOCK CONTAINS Clause 4-10
RECORD CONTAINS Clause 4-11
LABEL RECORDS Clause 4-12
VALUE OF Clause 4-12
DATA RECORDS Clause 413
LINAGE Clause 4-13
CODE-SET Clause 4-16
Data Description 417
Data Description Concepts 4-17
Level Concepts 4-17
Level-Numbers 4-18
Special Level-Numbers 4-20
Indentation 4-20
Classesof Data 4-20
Standard Alignment Rules 4-21
Standard Data Format 4-22
Character-String and Item Size 4-22

iv

Signed Data 4-22
Operational Signs 4-22
Editing Signs 4-22

Record Description Entry 4-23
Data Description Entry 4-23
Format1 4-25
Format2 4-26
Format3 4-26
Format 4 —Boolean Data 4-27

Level-Numbers 4-27

Data-Name or FILLER Clause 4-27

REDEFINES Clause 4-28

USAGE Clause 4-31
DISPLAY Phrase 4-31
Computational Phrases 4-32
INDEX Phrase 4-33

SIGNClause 4-35

OCCURS Clause 4-36

INDICATOR Clause 4-36

SYNCHRONIZED Clause 4-36

JUSTIFIED Clause 4-36

BLANK WHEN ZERO Clause 4-37

VALUE Clause 4-38
General Considerations 4-38
Format 1 Considerations 4-40
Format 2 Considerations 4-40

PICTURE Clause 4-41
Symbols Used in the PICTURE

Clause 4-42
PICTURE Clause Editing 4-49
RENAMES Clause 4-54
Chapter 5. Procedure Division 5-1
Procedure Division Concepts 5-1
Declaratives 5-1
Procedures 5-1
Procedure Division Organization 5-2
Categories of Sentences 5-3
Categories of Statements 5-4
Categories of Expressions 5-5
Sample Procedure Division Statements 5-6
Arithmetic Expressions 5-6
Arithmetic Operators 5-7
Conditional Expressions 5-8

Simple Conditions 59
Class Condition 5-9
Condition-Name Condition 5-10
Relation Condition 5-11
Sign Condition 5-14
Switch-Status Condition 5-14

Complex Conditions 5-15
Negated Simple Conditions 5-15
Combined Conditions 5-16

C

Abbreviated Combined Relation

Conditions 5-19
Declaratives 5-20
EXCEPTION/ERROR Declarative ... 5-21
File-Name Phrase 5-21
INPUT Phrase 5-22
OUTPUT Phrase 5-22
I-OPhrase 5-22
EXTEND Phrase 5-22
General Considerations 5-22
Programming Notes 5-23
Conditional Statements 5-23
IF Statement 5-24
Nested IF Statements 5-25
Input/Output Statements 5-27
Common Input/Output Phrases 5-27
Status Key 5-28
INVALID KEY Condition 5-28
INTO/FROM Identifier Phrase 5-28
Current Record Pointer 5-29
DB-FORMAT-NAME Special Register 5-30
ACCEPT Statement 5-30
Format 1 Considerations 5-31
Format 2 Considerations 5-33
Format 3 Considerations 5-33
Format 4 Considerations 5-34
Programming Notes 5-34
ACQUIRE Statement 5-34
CLOSE Statement 5-35
COMMIT Statement 5-39
DELETE Statement 5-40
DISPLAY Statement 5-43
Format 1 Considerations 5-44
Format 2 Considerations 5-47
DROP Statement 5-47
OPEN Statement 5-47
READ Statement 5-52
REWRITE Statement 5-61
ROLLBACK Statement 5-65
START Statement 5-66
WRITE Statement 5-72
Arithmetic Statements 5-80
Arithmetic Statement Operands 5-80
Size of Operands 5-80
Overlapping Operands 5-81
Multiple Results 5-81
Common Phrases 5-82
CORRESPONDING Phrase 5-82
GIVING Phrase 5-83
ROUNDED Phrase 5-83
SIZE ERROR Phrase 5-84
ADD Statement 5-84
COMPUTE Statement 5-85
DIVIDE Statement 5-86

MULTIPLY Statement 5-88

SUBTRACT Statement 5-89
Data Manipulation Statements 5-90
INSPECT Statement 5-90
INSPECT 5-93
TALLYING Phrase 5-94
REPLACING Phrase 5-94
BEFORE/AFTER Phrases 5-95
INSPECT Statement Examples 5-96
MOVE Statement 5-97
General Considerations 5-98
Elementary Moves 5-98
Group Moves 5-101
Format 1 Considerations 5-102
Format 2 Considerations 5-103
SET Statement 5-103
STRING Statement 5-104
STRING Statement Execution 5-105
STRING Statement Example 5-106
UNSTRING Statement 5-109
Sending Field 5-109
Data Receiving Fields 5-110
UNSTRING Statement Execution .. 5-111
UNSTRING Statement Example ... 5-114
Procedure Branching Statements 5-116
ALTER Statement 5-116
Segmentation Information 5-117
EXIT Statement 5-117
GO TO Statement 5-118
Format 1 — Unconditional GO TO .. 5-119
Format 2 —Conditional GO TO 5-119
PERFORM Statement 5-119
Format1l 5-122
Format2 5-122
Format3 5-122
Format4 5-123
Varying One Identifier 5-124
Varying Two Identifiers 5-126
Varying Three Identifiers 5-130
Segmentation Information 5-132
STOP Statement 5-133
Compiler-Directing Statements 5-134
ENTER Statement 5-134
Chapter 6. Additional Functions 6-1
TABLE HANDLING 6-1
Table Handling Concepts 6-1
Table Definition 6-2
Table References 6-4
Subscripting 6-4
Indexing 6-6
Restrictions on Subscripting and
Indexing 6-7
Table Initialization 6-7

Contents V

Data Division — Table Handling
OCCURS Clause
Fixed Length Tables
Variable Length Tables
ASCENDING/DESCENDING KEY
Phrase
INDEXED BY Phrase
USAGE IS INDEX Clause
Procedure Division —Table Handling
Relation Conditions
SEARCH Statement
Format 1
Format2
Programming Notes
SEARCH Example
SET Statement
Format 3
Format 4
SORT/MERGE
Sort/Merge Concepts
Sort Concepts
Merge Concepts
Environment Division —SORT/MERGE
File-Control Paragraph
1-O-Control Paragraph
Data Division —SORT/MERGE
Procedure Division —SORT/MERGE
MERGE Statement
SORT Statement
MERGE Statement and SORT
Statement Phrases
ASCENDING/DESCENDING KEY
Phrase
COLLATING SEQUENCE Phrase
USING Phrase
GIVING Phrase
SORT INPUT PROCEDURE Phrase
SORT/MERGE OUTPUT
PROCEDURE Phrase
SORT or MERGE INPUT/OUTPUT
PROCEDURE Control
RELEASE Statement (Sort Function
Only)
RETURN Statement
SORT/MERGE Programming Notes
SOURCE PROGRAM LIBRARY
COPY Statement
Data Field Structures
Floating Point Fields
Indicator Structures
Externally Described COPY
Statement, DDS Format, and DD
Format Considerations
REPLACING Phrase

.................

........

.........

.........

vi

6-9
6-9
6-11
6-11

6-12
6-13
6-13
6-14
6-14
6-15
6-17
6-18
6-20
6-20
6-22
6-23
6-24
6-25
6-25
6-26
6-27
6-27
6-27
6-27
6-28
6-28
6-29
6-29

6-30

6-30
6-31
6-32
6-32
6-33

6-34

6-35

6-36
6-36
6-37
6-39
6-39
6-43
6-43
6-44

COPY Statement Example
SEGMENTATION FEATURE
Segmentation Concepts

Program Segments
Fixed Segments
Independent Segments

Segmentation Logic

Segmentation Control

COBOL Source Program Considerations
Segmentation — Environment Division
Segmentation — Procedure Division .

Segmentation — Special Considerations

ALTER Statement

PERFORM Statement

SORT and MERGE Statements

Calling and Called Programs
INTER-PROGRAM COMMUNICATION

FEATURE
Inter-Program Communication Concepts

Transfers of Control

Common Data

COBOL Language Considerations
Data Division — Inter-Program

Communication
Record Description Entries
Data Item Description Entries

Procedure Division — Inter-Program

Communication
CALL Statement

USING Phrase

CPF Graphics Support

CANCEL Statement

EXIT PROGRAM Statement

STOP RUN Statement

Inter-Program Communication Feature

Examples
DEBUGGING FEATURES
COBOL Source Language Debugging ...

Compile-Time Switch

Execution-Time Switch

USE FOR DEBUGGING Declarative

DEBUG-ITEM Special Register

Debugging Lines

FIPS FLAGGER

Chapter 7. TRANSACTION Files (IBM
Extension)
Externally Described Transaction File ...
Processing an Externally Described
TRANSACTION File
Indicators
Indicators in the Record Area
Indicators in a Separate Indicator Area

6-52
6-52
6-52
6-53
6-53
6-53
6-54
6-54
6-54

6-54
6-55
6-55
6-55
6-56

6-56
6-58
6-58

6-58
6-59
6-60
6-61
6-62
6-63
6-64

6-64
6-66
6-66
6-66
6-67
6-68
6-70
6-72
6-73

C

ASSIGN Clause with Separate Indicator

Area Attribute 7-6
Data Description Entry — Boolean Data 7-6
Special Considerations 7-7

INDICATOR Attribute of the COPY
Statement, DDS Format or DD

Format 7-7
INDICATORS Phrase 7-9
Indicators in the Record Area 7-9
Indicators in a Separate Indicator Area 7-10
Indicators Sample Programs 7-10

Subfiles 7-22
Use of Subfiles 7-24
Multiple Device Files and Single Device

Files 7-28

Program Described Transaction Files ... 7-39

Environment Division 7-39
File-Control Entry 7-39

ASSIGN Clause 7-39
ORGANIZATION Clause 7-40
ACCESS MODE Clause 7-41
RELATIVE KEY Clause 7-41
FILE STATUS Clause 7-41
CONTROL-AREA Clause 7-42

Data Division 7-43
File Description Entry 7-43
Boolean Data Facilities 7-44

Procedure Division 7-44
ACCEPT Statement 7-44

Attribute Data Formats 7-45
ACQUIRE Statement 7-45
CLOSE Statement 7-46
DROP Statement 7-47
OPEN Statement 7-47
Common Processing Facilities 7-48
FORMAT Phrase 7-48
DB-FORMAT-NAME Special Register 7-48
INDICATORS Phrase 7-49
SUBFILE Phrase 7-49
TERMINAL Phrase 7-49
READ Statement 7-50
Formatl 7-50
Format2 7-55
REWRITE Statement 7-58
WRITE Statement 7-60
Format1l 7-60
Format2 7-63
USE Statement 7-66
Work Station Sample Programs 7-66

Chapter 8. Creating and Executing

Programscciiiiennnnans 8-1
Entering the Source Program into the
System 8-1

Using SEU to Enter Source 8-2
Using SEU to Browse through a

Compiler Listing 8-4
Compiling the Source Program 8-5
Compiler Options 8-6
Create COBOL Program Command 86
PROCESS Statement 8-13
Batch Compiles 8-15
Using COPY within the PROCESS
Statement 8-15
Compiler OQutput 8-16
Command Summary 8-16
Compiler Options 8-17
Source Listing 8-17
Verb Usage by Count Listing 8-20
Data Division Map 8-20
FIPS Messages 8-22
Cross-Reference List 8-23
Messagesvuiiinenn.. 8-24
How to Execute a COBOL Program 8-25
Chapter 9. Programmer’s Guide
Information 9-1
Device Independence/Device Dependence . 9-2
Spooling 9-4
Output Spool 9-4
InputSpool 9-4
Level Checking 9-5
File and Record Locking by COBOL 9-5
Releasing a Record Read for Update ... 9-6
Unblocking Input Records and Blocking
Output Records 9-6
Multiple Member Processing 9.7
System Override Considerations 9-7
Externally Described/Program Described
Files ..., 9-8
Externally Described Files 9-10
Record Format Specifications 9-11
AccessPath 9-15
Record Keys and Common Keys ... 9-15
COBOL Specifications for Externally
Described Files 9-16

Overriding or Adding COBOL
Functions to the External

Description 9-18
Program Described Files 9-20
Specific COBOL File Processing 9-21
Printer File Considerations 9-21
SPECIAL-NAMES Paragraph and the
ADVANCING Phrase 9-21
LINAGE Clause 9-21
FORMATFILE Files 9-22
Card File Considerations 9-29
Specifying the Function 9-29

Contents Vil

Nonassociated Card Files
Associated Card File
Stacker Selection
Hopper Selection
DISK and DATABASE File
Considerations
DATABASE versus DISK Files
Processing Methods for DISK and
DATABASE Files
Referring to a Partial Key
Logical File Considerations
File Processing Methods
Descending File Considerations
Commitment Control Considerations
Exceptions and Some of Their Causes
System/38 COBOL Programming
Considerations
Performance Considerations
Segmentation
Debugging
Data Formats
*NORANGE Option
Indicators
Commitment Control
Program Loops
Tracing a Loop in a Program
Errors That Can Cause a Loop
Recovery after a Failure
Recovery with Commitment Control
Communications Recovery
System/38 Inter-Program Communication
Considerations
Return of Control From a Called
Program
Initialization of Storage
Local Data Area
File Considerations

Chapter 10. Testing and Debugging
COBOL Programs
Using a Test Library
Testing
Normal
Job
Using Breakpoints
Example of Using Breakpoints
Considerations for Using Breakpoints
Using a Trace
Example of Using a Trace
Considerations for Using a Trace
Using a Debug Execution-Time Switch ..
File Status
Using a COBOL Formatted Dump
Reply Modes and System Reply List

viil

9-31
9-33
9-36
9-40
941
9-44
9-52

9-53
9-53
9-63
9-63
9-63
9-53
9-53
9-54
9-54
9-54
9-54
9-65
9-65
9-65

9-60

9-61
9-61
9-65
9-65

10-1
10-1
10-2
10-3
10-3
10-4
10-4
10-8
10-8
10-9

. 10-11

10-12
10-12
10-12

. 10-13

Example of Usinga Dump 10-13
Chapter 11. COBOL Problem
Determination 11-1
How to Use This Procedure 11-1
Identifying COBOL Problems 111
CallingforHelp 11-5
Appendix A. COBOL Compiler Service
Information A-1
Compiler Overview A-1
Compiler Phases A-3
Execution-Time Subroutines A-3
Major Compiler Data Areas A-3

Compiler Error Message Organization . A-3

Compiler Debugging Options A-5
DUMP Parameter A-6
ITDUMP Parameter A-6

Examples of Using Compiler Debugging
Optionscciiiiiiinnn... A-6
IRP Layout A-9

Appendix B. Summary of IBM
Extensionsccceveee.. B-1

Character-String Considerations B-1
Identification Division B-1
Environment Division B-1
Data Division B-2
Procedure Division B-2
COPY Statement— All Divisions B-4
TRANSACTION Files B4
Compiler Options B-5
Appendix C. Compile-Time Message
Descriptionccciiee... C-1
CAUTION C-2
Appendix D. Associated Card File
Processingcc0eeeeeenn D-1
Environment Division D-1
SELECT Clause D-1

ASSIGN Clausecovuvvn.. D-1

Data Division D-2
Procedure Division D-2
Appendix E. Intermediate Result
Fieldscciiiiiieeeenans E-1
Compiler Calculation of Intermediate
Results E-2
Appendix F. Sample File-Processing
Programscccceveveanens F-1
Sequential File Creation F-2

Sequential File Updating and Extension F-4

Indexed File Creation F-6
Indexed File Updating F-8
Relative File Creation F-11
Relative File Updating F-13
Relative File Retrieval F-15

Appendix G. COBOL Reserved Words G-1

Appendix H. EBCDIC and ASCII

Collating Sequences H-1
EBCDIC Collating Sequence H-2
ASCII Collating Sequence H-5

Appendix I. File Structure Support
Summary and Status Key Values ... I-1

Attribute Data Formats I-10
Display Device Attribute Data I-10
Communications Device Attribute

Data 1-10
OPEN-FEEDBACK and I-O-FEEDBACK
DataAreas I-11
OPEN-FEEDBACK I-11
I.O- FEEDBACK I-11
Appendix J. Summary of Clauses and
Statements 0000, J-1
Conventions Used for Describing
Statement Formats J-1
COBOL Program Structure J-2

Process Statement J-2

Identification Division J-2
Environment Division J-2
Data Division J-3
Procedure Division — Format
1—Declaratives Section J-3
Procedure Division—Format2 J-3
DETAILED FORMATS J-4
Identification Division Format J-4
Environment Division Formats J-b
Configuration Section J-5
Input-Output Section J-6
Data Division Formats J-9
File Section Formats J-9
Working-Storage Section J-14
Linkage Section J-16
Procedure Division Formats J-16
Procedure Division Header J-16
Procedure Division Statements J-16
Conditional Expressions J-37
Qualification of Data Reference
Formats J-39
AllDivisions J-41

Symbols Allowed in the PICTURE Clause J-43
Assignment-Names in the ASSIGN Clause J-43

Glossarycc00iiienenn GLOSS-1

Contents 1X

About This Manual

Purpose of This Manual

This reference manual describes the System/38 COBOL (Common Business
Oriented Language) compiler and language. This manual provides
reference material and programmer guide information for persons who have

some knowledge of the COBOL language and some experience in writing

COBOL programs.

Organization of This Manual

This manual is organized as follows:

Chapters 1 through 5 describe the COBOL language and each of the
four program divisions: Identification, Environment, Data, and

Procedure. The COBOL clauses and statements available to the user

are explained.

Chapter 6 describes the additional functions of the language that are

provided through the various processing modules.

Chapter 7 describes the support of work stations and interactive
communications as a function of the COBOL compiler.

Chapter 8 describes how to create and execute programs.
Chapter 9 contains programmer’s guide information.

Chapter 10 describes how to test and debug COBOL programs.
Chapter 11 contains COBOL problem determination information.
Appendix A contains compiler service information.

Appendix B summarizes IBM extensions.

Appendix C contains diagnostic level information for compiler
messages.

Appendix D describes associated card file processing.

About This Manual

xi

Appendix E describes intermediate result fields.

Appendix F contains sample file-processing programs.

Appendix G contains COBOL reserved words.

Appendix H contains the EBCDIC and ASCII collating sequences.

Appendix I contains a file structure support summary and the status
key values.

Appendix J contains a summary of the System/38 COBOL clauses and
statements for each division.

A glossary of terms and their definitions.

To aid the user, IBM provides several extensions to American National
Standard (ANS) COBOL, X3.23-1974. The more significant extensions
include:

TRANSACTION I-0: Used to send or receive records from a work
station.

Data Base I-O: The System/38 COBOL programmer can define data as
he does presently. Thus, the COBOL programmer can use standard
COBOL Environment and Data Division entries to specify file
identification, field definitions, and data structures. Clauses have been
added to the READ, WRITE, REWRITE, DELETE, and START verbs to support
the System/38 data base.

COPY: Support for externally described files.

Extended data types: Computational-3 (packed decimal), and
computational-4 (binary).

Use of apostrophe instead of quotes.

Summary of Changes

x11

The following changes have been made to this manual for COBOL release 8:

Three references have been added to the list in this prolog: one for
Distributed Data Management (DDM), one for the 3180 keyboard
template, and one for the office keyboard template.

A new section on DDM files has been added to Chapter 3.
A note on when the System/38 compiler does not generate a temporary

result field has been added to the “Arithmetic Statements” section of
Chapter 5.

9

9

e A paragraph on unexpected results during a MOVE operation has been
added to Chapter 5.

e A paragraph on replacement has been added to the “COPY Statement”
in Chapter 6.

e A description of DDM has been entered into the Glossary.

e The local data area is now defined outside the COBOL program as 1024
bytes of character data.

e Various technical and editorial changes have been made to improve the
quality and usability of this manual.

The other updates indicated in this version of the user manual identify
corrections to the previous version, or editorial changes made to the text.
Note that the way of identifying IBM extensions has changed as described
in Chapter 1.

Note: This publication follows the convention that he means he or she.

What You Should Know

Before reading this manual, you should be familiar with the IBM System/38
Control Program Facility Concepts Manual, GC21-7729, which contains the
basic concepts of the control program facility.

If You Need More Information

You may need some or all of the following information while using this
manual:

® [BM System/38 Guide to Publications, GC21-7726, which contains
information about related publications, defines terms and lists index
entries of frequently used System/38 publications.

o |BM System/38 Guide to Program Product Installation and Device
Configuration, GC21-7775, which describes how to install COBOL on
your system.

o [BM System|38 COBOL Reference Summary, SC21-7781, which outlines
clauses and statements used in System/38 COBOL.

e [BM COBOL Coding Form, GX28-1464, which is used for coding.
o [BM System|38 Source Entry Utility Reference Manual and User’s Guide,

SC21-7722, which describes how to create and update source records
using SEU.

About This Manual Xiil

X1v

IBM System/38 Control Program Facility Programmer’s Guide,
SC21-7730, which explains how to use CPF commands and data
description specifications.

IBM System/|38 Control Language Reference Manual, SC21-7731, which
describes commands and parameters that are used for various CPF
functions.

IBM System|38 Control Program Facility Reference Manual— Data
Description Specifications, SC21-7806, which describes the data
description specifications that are used for describing files.

IBM System/38 Messages Guide: COBOL, SC21-7823, which contains
additional information about COBOL messages.

IBM System|38 Concepts for the COBOL User, GC21-7855, which
introduces new extensions to COBOL for System/38.

IBM System|38 Problem Determination Guide, SC21-7876, which
contains procedures for resolving system problems that are indicated by
error messages, operator/service panel lights, interactive/batch jobs or
spooling functions that do not work as expected, or devices that do not
work as expected.

IBM System|38 Data Communications Programmer’s Guide, SC21-7825,
which describes commands, parameters, and data description
specification keywords that are used for program-to-program and
system-to-device communication functions.

IBM System|38 Operator’s Guide, SC21-7735, which explains the
operation of individual devices, system operation, and how to analyze
system problems.

IBM System/|38 CPF Graphics Reference Manual, SC21-8007 and IBM
System|38 CPF Graphics Programmer’s Guide, SC21-8006, which
describe how to use the Graphical Data Display Manager (GDDM), and
Presentation Graphics Routines (PGR).

IBM System/|38 Distributed Data Management User’s Guide, SC21-8036.
IBM System/|38 3180 Keyboard Template, GX09-1036.

IBM System|38 Office Keyboard Template, GX09-1038.

Industry Standards

(r The System/38 COBOL compiler is designed according to the following
industry standards as understood and interpreted by IBM, as of June 1980:

e The ANS COBOL, X3.23-1974 standard. ANS COBOL is identical to ISO
1989-COBOL, as approved in February 1978 by the International
Organization for Standardization. The ANS COBOL processing
modules are described in the table under “Language Level” in
Chapter 1.

e The December 1975 Federal Information Processing Standard (FIPS
PUB 21-1) low-intermediate level. Additional support is provided for
many features at higher FIPS levels.

Portions of this manual are copied from American National Standard (ANS)
COBOL, X3.23-1974. This material is reproduced with permission from
American National Standard Programming Language COBOL, X3.23-1974,
copyright 1974 by the American National Standards Institute, copies of
which can be purchased from the American National Standards Institute at
1430 Broadway, New York, New York, 10018.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

| Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as
the basis for an instruction manual or for any other purpose, is free to
do so. However, all such organizations are requested to reproduce this
section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention COBOL in
acknowledgment of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

Procedures have been established for the maintenance of COBOL. Inquiries

concerning the procedures for proposing changes should be directed to the
‘ Executive Committee of the Conference of Data Systems Languages.

About This Manual XV

xvi

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

-

Chapter 1. Introduction

General Description

COBOL (Common Business Oriented Language) is a programming language
that resembles English. As its name implies, COBOL is especially efficient
in the processing of business problems. COBOL can be used to manipulate
large files of data in a relatively simple way. That is, COBOL emphasizes
the description and handling of data items and of input/output records.

The System/38 COBOL Compiler and Library is an IBM program product
that accepts and compiles COBOL programs written in accordance with the
ANS COBOL X3.23-1974 standard. This program product also includes a
number of IBM extensions. The following sections describe the language
level implemented and the language-independent compiler features.

Language Level

The table that follows shows the support of each module provided by
System/38 COBOL. The table also describes each module.

The following example explains the notation used to identify levels of
implementation:

SEG 0, i
---Highest level available
------ Minimum level required
--------- Module identifier
............ Level supported by System/38 COBOL

Chapter 1. Introduction 1-1

System/38

COBOL

Processing

Modules Module Description

lz\hhcl}gui.) Contains the language elements necessary for internal processing.
Table Handling | Contains the language elements necessary for: (1) definition of

2 TBL 1, 2 tables; (2) identification, manipulation, and use of indexes; (3)

reference to the items within tables. Provides the ability to define
fixed-length or variable-length tables of up to three dimensions.
Items in the tables can be referred to by using a subscript or an
index.

Sequential I-O
2 SEQ 1, 2

Allows definition and access of sequentially organized external
files. IBM System/38 COBOL Sequential I-O provides all level 2
functions except for support of the RERUN clause.

Relative I-O

Provides the capability of defining and accessing disk files in

2 REL 0, 2 which records are identified by relative record numbers. A file can
be accessed randomly and sequentially in the same COBOL
program. IBM System/38 COBOL Relative I-O provides all level 2
functions except for support of the RERUN clause.

Indexed I-O Provides the capability of defining disk files in which records are

2 INX 0, 2 identified by the value of a key and accessed through an access
path. IBM System/38 COBOL Indexed I-O provides all level 2

Note: functions except for support of the ALTERNATE RECORD KEY clause,

Alternate key the RERUN clause, and the KEY IS phrase of the READ statement.

omitted.

Sort-Merge Allows the inclusion of one or more sorts in a COBOL program

2 SRT 0, 2 and use of the merge facility.

lgeﬁ)gat c\)Nri{:er Provides semiautomatic production of printed reports.

gegréleenotatié)n Provides overlaying at object time of Procedure Division sections.

%i‘IbirIaBryo) Allows inclusion of predefined COBOL text in a program.

Debug Provides for user-specification of statements and procedures for

2 DEB 0, 2 debugging.

Inter-Program Provides facilities for a program to communicate with one or more

Communication | other programs. Also provides capability to transfer control to

2 1pC 0, 2 another program known at compile time, and the ability for both
programs to have access to certain data items.

Communication | Provides the ability to access, process, and create messages or

0 CoM 0, 2 portions of messages; also provides the ability to communicate

through a Message Control System with local and remote
communication devices.

1-2

C

Compiler Features

The following language-independent features are made available with
System/38 COBOL:

e Syntax-checking compilation saves machine time while debugging
source syntax errors. The source program is scanned for syntax errors
and associated error messages are generated, but no executable or
nonexecutable program is produced.
® The sorted cross-reference option provides a listing of each Data
Division name and Procedure Division procedure-name, and indicates
the statement numbers of each reference or change to the item.
e Inter-program calls allow programs written in System/38 COBOL to call
or be called by other programs written in System/38 COBOL, System/38
RPG IIi, or System/38 control language.
o Multiple printer files allow the user to define and use multiple printer
files in the same program.
o Diagnostic messages below a user-specified level can be suppressed.
e The FIPS flagger, depending on the compiler option chosen, identifies
source statements and clauses that do not conform to 1975 FIPS
COBOL. 1975 FIPS (Federal Information Processing Standard) COBOL
is a compatible subset of 1974 Standard COBOL. A program must
conform to one of the four levels of 1975 FIPS COBOL processing: full,
high-intermediate, low-intermediate, or low. Refer to the Messages
Guide: COBOL for information on the messages flagged by FIPS.
Figure 1-1 shows the 1974 Standard COBOL processing modules
included in each of the levels of 1975 FIPS COBOL.
High- Low-
1974 ANS Intermediate | Intermediate
Module Name | Full FIPS FIPS FIPS Low FIPS
Nucleus 2 NUC 1,2 2 NUC 1,2 1 NUC 1,2 1 NUC 1,2
Table 2 TBL 1,2 2 TBL 1,2 1 TBL 1,2 1 TBL 1,2
Handling
Sequential I-O |2 SEQ 1,2 2 SEQ 1,2 1 SEQ 1,2 1 SEQ 1,2
Relative I-O 2 REL 0,2 2 REL 0,2 1 REL 0,2 0 REL 0,2
Indexed I-O 2 INX 0,2 0 INX 0,2 0 INX 0,2 0 INX 0,2
Sort-Merge 2 SRT 0,2 1 SRT 0,2 0 SRT 0,2 0 SRT 0,2
Report Writer | O RPW 0,1 |0 RPW 0,1 0 RPW 0,1 0 RPW 0,1
Segmentation 2 SEG 0,2 1 SEG 0,2 1 SEG 0,2 0 SEG 0,2
Library 2 LIB 0,2 1 LIB 0,2 1 LIB 0,2 0 LIB 0,2
Debug 2 DEB 0,2 2 DEB 0,2 1 DEB 0,2 0 DEB 0,2

Figure 1-1 (Part 1 of 2).

Levels

1974 American National Standard and FIPS

Chapter 1. Introduction 1-3

High- Low-
1974 ANS Intermediate | Intermediate
Module Name | Full FIPS FIPS FIPS Low FIPS
Inter-Program 2 IPC 0,2 2 IPC 0,2 1 IPC 0,2 0 IPC 0,2
Communication
Communications| 2 COM 0,2 2 COM 0,2 0 COM 0,2 0 COM 0,2
Key:

SEG 0, T
T ---Highest level available in 1974 ANS COBOL
------ Minimum Tevel required by 1974 ANS COBOL
--------- Module identifier
------------ Level supported

Figure 1-1 (Part 2 of 2). 1974 American National Standard and FIPS
Levels

Format Notation

In COBOL, basic formats are prescribed for the various elements of the
language. In this manual, these formats are presented in a uniform system
of notation that is explained in the following paragraphs. This notation is
designed to assist the programmer in writing COBOL source statements.

o Reserved words are printed entirely in CAPITAL LETTERS. These words
have preassigned meanings in COBOL. If any reserved word is
misspelled, it is not recognized as a reserved word and can cause an
error in the program. The two types of reserved words are keywords
and optional words.

— Keywords are required by the syntax of the format unless the
portion of the format containing them is optional. In formats,
keywords are shown in UNDERLINED CAPITAL LETTERS. A missing
keyword is considered an error in the program.

— Optional words are included only for readability. They can be
included or omitted without changing the syntax of the program.
Optional words are CAPITALIZED but not underlined.

e Words printed in lowercase letters represent information to be supplied
by the user. All such words are defined in the text of this manual.

e For easier text reference, some user-defined words are followed by a
hyphen and a digit or letter. This suffix does not change the syntactical
definition of the word.

e Braces ({}) enclosing listed items indicate (1) that exactly one of the
enclosed stacked items must be specified, and/or (2) when followed by
an ellipsis, that the enclosed unit or item must be specified at least
once.

1-4

Square brackets ([]) indicate that the enclosed item or unit can be used
or omitted, as required for the program. When two or more items are
stacked within brackets, one or none of them can be specified. When
followed by an ellipsis, the item or unit can be repeated.

The ellipsis (...) indicates that the immediately preceding unit can occur
once or any number of times in succession. A unit can be a single
lowercase word or a group of lowercase words and one or more reserved
words enclosed in brackets and/or braces. When repetition is used,
everything enclosed within the immediately preceding brackets or
braces must be repeated.

The arithmetic and logical operators (+, -, <, >, =) that appear in
formats are required although they are not underlined.

All punctuation and other special characters appearing in formats
(except braces, brackets, ellipsis, commas, and semicolons) are required
by the syntax of the format when they are shown,; if they are omitted,
an error occurs in the program. Additional punctuation can be
specified, according to the punctuation rules given later in this manual.

The required clauses and (when written) optional clauses must be
written in the sequence shown in the format except where the
accompanying text states otherwise.

Comments, restrictions, and clarifications on the use and meaning of

every format are contained in the description following the format.

IBM extensions to American National Standard COBOL, X3.23-1”9.'f4,
that are part of a command syntax are boxed like this sentence.

o | COBOL clauses and statements that are syntax-checked, but are treated 1

| as documentation by the System/38 COBOL compiler, are boxed like
Lthis sentence.

IBM extensions

F

IBM Extension |

IBM extensions to American National Standard (ANS) COBOL, X3.23-1974,
that are part of the text description begin with the paragraph heading, IBM
Extension and are separated from the regular text as is this paragraph.
Note that Chapter 7 consists only of IBM extensions; the entire chapter is
boxed like this paragraph.

End of IBM Extension |

Chapter 1. Introduction 1-5

1-6

Chapter 2. Language Considerations

COBOL Program Structure

Every COBOL source program is divided into four divisions. Each division
must begin with a division header and each must be placed in proper
sequence. (Appendix J shows the general structure of every COBOL source
program.)

The following chapters contain the rules for writing COBOL source
programs and the methods of data reference.

The COBOL Divisions

The following paragraphs describe the four divisions of a COBOL source
program and their functions in solving a data processing problem.

Identification Division: The Identification Division names the program
and, optionally, documents the date the program was written, the
compilation date, and other pertinent information.

Environment Division: The Environment Division describes the
computer(s) to be used and specifies the machine(s) and equipment features
used by the program. This description defines the relationship of data files
and input/output devices.

Data Division: The Data Division defines the nature and characteristics
of all data the program processes: data used in input/output operations and
data developed for internal processing.

Procedure Division: The Procedure Division consists of executable

statements that process the user-defined data. Statements are executed in
the order they are written unless another order is defined by the user.

Chapter 2. Language Considerations 2-1

Clauses and Statements

Every COBOL source program is written in clauses and statements, each
describing a solution to some specific aspect of the data processing problem.

e C(lauses, written in the Environment and Data Divisions, specify an
attribute of an entry. A series of clauses ending with a period is defined
as an entry.

e Statements, written in the Procedure Division, specify an action to be
taken by the object program. A series of statements ending with a
period is defined as a sentence.

Each clause or statement in the program can be subdivided into smaller
syntactical units called phrases. A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion of a COBOL
clause or statement. A phrase provides the programmer with required or
optional wording, depending on the desired meaning.

Clauses, entries, statements, and sentences can be combined into
paragraphs or sections. Each paragraph and section defines some larger
part of the data processing problem solution. Specific rules for the
formation of each element are given in the documentation for each division
of the COBOL program.

Clause and Statement Specification Order

When specified, each required or optional clause and statement (including
those treated as documentation) must be written in the sequence shown in
the format unless the associated rules explicitly state otherwise. The
COBOL program hierarchy for each division is:

e In the Identification, Environment, and Data Divisions:

Division
Section(s)
Entry(s)
Clause(s)
Phrase(s).

e In the Procedure Division:

Division
Section(s)
Sentence(s)
Statement(s)
Phrase(s).

9

C

Structure of the Language

In COBOL, the indivisible unit of data is the character. In System/38
COBOL, 51 EBCDIC (extended binary-coded decimal interchange)
characters form the COBOL character set: the 26 letters of the alphabet, the
10 Arabic numerals, and 15 special characters.

Individual COBOL characters are put together to form character-strings
and separators.

A character-string is a character or sequence of contiguous characters that
form a word, a literal, a PICTURE character-string, or a comment. A
character-string can be delimited only by a separator.

A separator is a contiguous string of one or more punctuation characters.
A separator can be placed next to another separator, or next to a
character-string.

Except for comments and nonnumeric literals (which can use any character
in the EBCDIC set), the 51 characters are the only characters valid in a
COBOL program. Figure 2-1 shows the valid COBOL characters in
ascending EBCDIC sequence and their usage in a COBOL program.

| IBM Extension]

The apostrophe can be used in place of the quotation mark. See “Compiler
Options” in Chapter 8.

| End of IBM Extension

COBOL
Character Meaning Use
Space Punctuation character
Decimal point; Editing character;
period punctuation character
< Less than Relation character
(Left parenthesis Punctuation character
+ Plus symbol Arithmetic operator;
sign; editing character
$ Dollar sign Editing character
* Asterisk Arithmetic operator;
editing character
) Right parenthesis Punctuation character
; Semicolon Punctuation character

Figure 2-1 (Part 1 of 2). COBOL Characters and Their Meanings

Chapter 2. Language Considerations 2-3

Character-Strings

2-4

COBOL
Character Meaning Use
- Minus symbol, Arithmetic operator;
hyphen sign; editing character
/ Stroke or slash Arithmetic operator;
editing character
, Comma Punctuation character;
editing character
> Greater than Relation character
= Equal sign Relation character;
punctuation character
“or' Quotation mark or Punctuation character
apostrophe
A-Z Alphabet Alphabetic character
0-9 Arabic numerals Numeric character

Figure 2-1 (Part 2 of 2). COBOL Characters and Their Meanings

Notes:

1. Throughout this manual, the quotation mark is used because it is the
default option. In all cases, the apostrophe can be used only if the default
option is overriden.

2. All COBOL characters are considered to be alphanumeric.

COBOL character-strings form words, literals, PICTURE character-strings,
and comments. Each is described in the following paragraphs.

COBOL Words

A COBOL word can be a user-defined word, a system-name, or a reserved
word. A COBOL word can belong to only one of these classes.

The maximum length of a COBOL word is 30 characters.

User-Defined Words: A user-defined word is a COBOL word supplied by
the programmer. Valid characters in a user-defined word are:

e A through Z
e 0 through 9
e - (hyphen).

The hyphen cannot appear as the first or last character in a user-defined
word.

A list of user-defined word sets, together with rules for their formation, is
given in Figure 2-2. The function of each user-defined word in a particular
clause or statement is included in the text describing each clause or
statement.

User-Defined

Word Sets Rules for Formation

Alphabet-Name Must contain at least one alphabetic character.
Condition-Name Within each set, the name must be unique either
Data-Name because no other word is made up of an identical
Record-Name character-string, or because it can be made unique
File-Name through qualification. (See “Methods of Data
Index-Name Reference” later in this chapter.)

Mnemonic-Name
Routine-Name

Library-Name

Text-Name

Program-Name

Paragraph-Name Need not contain an alphabetic character. Other
Section-Name rules as in first paragraph.

Level-Numbers: Must be a 1- or 2-digit integer. Need not be unique.

01-49, 66, 77, 88

Segment-Numbers: | Must be a 1- or 2-digit integer. Need not be unique.
00-99

Figure 2-2. User-Defined Word Sets and Rules for Formation

System-Names: A system-name is an IBM-defined name that is used to
communicate with the system. A system-name can be:

e A computer-name
e A language-name
e An implementor-name
— A function-name
— An assignment-name

— A user-name.

The function of each system-name is described with the format in which it
appears; each system-name is defined in the Glossary.

Reserved Words: A reserved word is a COBOL word with fixed
meaning(s) in a COBOL source program. A reserved word must not be
specified as a user-defined word or as a system-name. Reserved words can
be used only as specified in the formats for a COBOL source program.
Appendix G gives a complete list of COBOL reserved words. “Format
Notation” in Chapter 1 gives the conventions used to represent reserved
words in this manual.

There are six types of reserved words:

e Keywords

Chapter 2. Language Considerations 2-5

e Optional words

e Connectives J

e Special registers

e Special-character words

e Figurative constants.

Each type is described in the following paragraphs.

Keywords are words that are required within a given clause, entry, or
statement. There are three types of keywords:

o Verbs, such as ADD, READ, WRITE

o Required words, which appear in clause, entry, or statement formats,
such as the word USING in the MERGE statement

e Words with a specific functional meaning, such as NEGATIVE or
SECTION.

Optional Words are words that can be included in a clause, entry, or
statement. When an optional word is omitted, the meaning of the COBOL
program is unchanged.

There are three types of connectives: qualifier, series, and logical. ’

® Qualifier connectives (OF, IN) associate a data-name, condition-name,
text-name, or paragraph-name with its qualifier.

e Series connectives (the comma and semicolon) optionally link two or
more consecutive operands. (An operand is a data item or literal that is
acted upon by the COBOL program.)

e Logical connectives (AND, OR, AND NOT, OR NOT) are used to specify
conditions.

Special registers are compiler-generated storage areas used primarily to
store information produced through one of the specific COBOL features.
Each such storage area has a fixed name and need not be further defined
within the program. These special registers include the following:

[IBM Extension |

e [DB-FORMAT-NAME

(See “Common Input/Output Phrases” under “Input/Output Statements”
in Chapter 5.)

| End of IBM Extension |)

e [DEBUG-ITEM (see “DEBUGGING FEATURES” in Chapter 6).

e LINAGE-COUNTER (see “LINAGE Clause” in Chapter 4).
e DATE, DAY, TIME (see “ACCEPT Statement” in Chapter 5).

Special-character words are arithmetic operators (+ - * / **) or relation
characters (< > =). Arithmetic operators are described under “Arithmetic
Expressions” in Chapter 5. Relation characters are described in the
relation condition description under “Conditional Expressions” in

Chapter 5.

Figurative constants name and refer to specific constant values.
The reserved words and meanings for figurative constants are:

e 7ZERO, ZEROS, ZEROES: Represents the value 0 or one or more
occurrences of the character 0, and is numeric or nonnumeric,
depending on context. For example, ZERO is considered to be
nonnumeric when it is compared to an alphanumeric data item in a
relational expression.

e SPACE, SPACES: Represents one or more blanks or spaces, and is
always considered to be a nonnumeric literal.

e HIGH-VALUE, HIGH-VALUES: Represents one or more occurrences of
the character with the highest value in the collating sequence used.
For the EBCDIC (NATIVE) collating sequence, the character is hex FF;
for other collating sequences, the character used depends on the
collating sequence. When used in a COBOL program, HIGH-VALUE is
treated as a nonnumeric literal.

e | OW-VALUE, LOW-VALUES: Represents one or more occurrences of the
character with the lowest value in the collating sequence used. For the
EBCDIC (NATIVE) collating sequence, the character is hex 00; for
other collating sequences, the character used depends on the collating
sequence. When used in a COBOL program, LOW-VALUE is treated as a
nonnumeric literal.

e (QUOTE, QUOTES: Represents one or more occurrences of the quotation
mark character and is nonnumeric. The word QUOTE (QUOTES) cannot
be used in place of a quotation mark or an apostrophe to enclose a
nonnumeric literal.

| IBM Extension

When APOST is specified as a compiler option, the figurative constant
QUOTE has the EBCDIC value of an apostrophe.

| End of IBM Extension

e ALL literal: Represents one or more occurrences of the string of
characters composing the literal and is nonnumeric. The literal must
be either a nonnumeric literal, Boolean literal, or a figurative constant
other than the ALL literal. When a figurative constant is used, the word
ALL is redundant and is used for readability only. The figurative

Chapter 2. Language Considerations 2-7

2-8

constant, ALL literal, cannot be used with the DISPLAY, INSPECT,
STRING, STOP, or UNSTRING statements.

The singular and plural forms of a figurative constant are equivalent and
can be used interchangeably. For example, if DATA-NAME-1is a
five-character data item, either of the following statements will fill
DATA-NAME-1 with five spaces:

MOVE SPACE TO DATA-NAME-1.
MOVE SPACES TO DATA-NAME-1.

In any format, a figurative constant can be substituted for a nonnumeric
literal; only the figurative constant ZERO (ZEROS, ZEROES) can be
substituted for a numeric literal.

| IBM Extension

The figurative constant ZERO can be used as a Boolean literal.

| End of IBM Extension

The length of a figurative constant depends on the context of the program.
The following rules apply:

e When a figurative constant is associated with a data item, the length of
the figurative constant character-string is equal to the length of the
associated data item. This rule applies, for example, when a figurative
constant is moved to, or compared with, another item.

e When a figurative constant is not associated with another data item,
the length of the character-string is one character. This rule applies,
for example, in the DISPLAY, INSPECT, STRING, STOP, and UNSTRING
statements.

Literals .

A literal is a character-string whose value is specified either by the ordered
set of characters of which it is composed, or by specification of a figurative
constant. The three types of literals are Boolean, nonnumeric, and
numeric.

| IBM Extension

Boolean Literals: A Boolean literal is a character-string delimited on the
left by the separator B" and on the right by the quotation mark separator.
The character-string consists only of the character 0 or 1. The value of a
Boolean literal is the character itself, excluding the delimiting separators.
All Boolean literals are of the category Boolean.

| End of IBM Extension

9

J

Nonnumeric Literals: A nonnumeric literal is a character-string that can
contain any allowable character from the EBCDIC set.

| IBM Extension

A nonnumeric literal can contain a maximum of 160 characters.

| End of IBM Extension

A nonnumeric literal must be enclosed by quotation marks (or apostrophes,
if the APOST option is in effect). The enclosing quotation marks are not
part of the literal.

Any punctuation characters included within a nonnumeric literal are part
of the value of the literal. An embedded quotation mark must be
represented by two adjacent quotation marks (" "); one quotation mark (")
is then part of the value of the literal.

Every nonnumeric literal is in the alphanumeric data category. Data
categories are defined under “PICTURE Clause” in Chapter 4.

Numeric Literals: A numeric literal is a character-string whose
characters are selected from the digits 0 through 9, the sign characters (+
or -), and the decimal point. The following rules apply:

e 1 to 18 digits are allowed.

® Only one sign character is allowed. If a sign character is included, it
must be the leftmost character of the literal. If the literal is unsigned,
it is considered to have a positive value.

e Only one decimal point is allowed. If a decimal point is included, it
is treated as an assumed decimal point (not considered a character
position in the literal). The decimal point can appear anywhere within
the literal except as the rightmost character. If the literal contains no
decimal point, it is considered to be an integer. The word integer
appearing in a format represents a numeric literal of nonzero value that
contains no sign and no decimal point; any other restrictions are
included with the description of the format.

The value of a numeric literal is the algebraic quantity expressed by the
characters in the literal. The size of a numeric literal in standard data

format characters is equal to the number of digits specified by the user.

If a literal conforms to the rules for the formation of numeric literals, but is
enclosed in quotation marks, it is a nonnumeric literal.

Chapter 2. Language Considerations 2-9

PICTURE Character-Strings

A PICTURE character-string consists of COBOL characters used as symbols
in the PICTURE clause.

The choice of symbols determines whether the user-supplied name is
numeric, alphabetic, or alphanumeric. The character-string can also be
used to define edited output fields.

Comments

A comment is a character-string containing any combination of characters
from the EBCDIC set. A comment serves only as documentation. Comments
take two forms:

e A comment entry in the Identification Division: For a further
description of a comment entry, see “IDENTIFICATION DIVISION” in
Chapter 3.

e A comment line (preceded by an asterisk or a slash in Column 7) in any

division of the program: For a further description of a comment line,
see “Standard COBOL Format” later in this chapter.

Separators

A separator is a string of one or more punctuation characters or B" when
used to delimit a Boolean literal. The characters are shown in Figure 2-3.

Punctuation
Character Meaning
Space
Period
(Left parenthesis
) Right parenthesis
H Semicolon
s Comma
= Equal sign
" Quotation mark
' Apostrophe
B" Delimiter for Boolean literal

Figure 2-3. Punctuation Characters

The following rules apply to the formation of separators:

e A space is always a separator except when the space appears within a
nonnumeric literal. When contained between the opening and closing
quotation marks of a nonnumeric literal, the space is considered part of
the literal. Wherever a space is used as a separator, more than one
space can be used.

2-10

J

9

C

e A comma, semicolon, or period immediately followed by a space is a
separator. These separators can appear only where explicitly allowed
by COBOL rules.

o The left and right parentheses are separators. Parentheses must appear
as balanced pairs of left and right parentheses to delimit subscripts,
indexes, arithmetic expressions, or conditions.

® The quotation mark is a separator. An opening quotation mark must
be immediately preceded by a space or a left parenthesis. A closing
quotation mark must be immediately followed by one of the following
separators: space, comma, semicolon, period, or right parenthesis.
Quotation marks must appear as balanced pairs delimiting nonnumeric
literals except when the literal is continued.

e The pseudo-text delimiter (= =) is a separator. An opening pseudo-text
delimiter must be immediately preceded by a space. A closing
pseudo-text delimiter must be immediately followed by one of the
following separators: space, comma, semicolon, or period. Pseudo-text
delimiters must appear as balanced pairs delimiting pseudo-text.

| IBM Extension |

e B" is a separator when it is used to describe a Boolean literal. The B
must immediately precede the quotation mark.

| End of IBM Extension |

Standard COBOL Format

COBOL programs must be written in the standard COBOL format, described
in the following discussion. The format is described in terms of an
80-character line. The output listing of the source program is printed in
this same format. The COBOL coding form is shown in Figure 2-4.

Sequence Numbers (Columns 1-6)

Sequence numbers are written in columns 1 through 6. A sequence number
numerically identifies each line to be compiled by the COBOL compiler.
Sequence numbers are optional. A sequence number, if used, must consist
of six digits in the sequence number area, (including the preprinted digits in
columns 4 and 5).

If sequence numbers are used in the source program, they must be in
ascending order. If sequence numbers are out of sequence, the compiler
accepts them in the order read and generates a warning message.

[IBM Extension I

The user can suppress sequence checking at compile time by specifying
NOSEQUENCE.

Chapter 2. Language Considerations 2-11

If the NUMBER option is specified, the sequence numbers from columns 1

through 6 are used; otherwise the source sequence numbers provided in the)
source file are used.

| End of IBM Extension I

IBM COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS] PAGE OF
RAM
PROG GRAPHIC CARD FORM # .
PROGRAMMER l DATE PUNCH
T T
SEQUENCE [z | COBOL STATEMENT | ibenTIFICATION
(PAGE} JSERIAL e I
2 s eDTH k] LS i) % K| L} Y S - S N & 72 76
CONHRNEE! | !
} — i |
0/2 | | ! \
CONIEE " !
T T]
Ol [; Pl !

Columns 1-6 represent the sequence number area.
Column 7 is the continuation area.

Columns 8-11 represent Area A "
Columns 12.72 represent Area E i Used for writing COBOL source statements.

Columns 73-80 are used to identify the program.
Figure 2-4. IBM COBOL Coding Form and Standard COBOL Format

Continuation Area (Column 7) J

The continuation area is used to indicate the continuation of words and
nonnumeric literals from the previous line onto the current line, to specify
debugging lines, or to indicate that the text on this line is to be treated as a
comment.

Area A (Columns 8-11) and Area B (Columns 12-72)

COBOL elements that can begin in Area A and specific COBOL elements
that can follow them are shown in Figure 2-5.

The basic skeleton of a COBOL program is shown in Figure 2-6.

2-12

C

C

Elements That
Must Begin in
Area A

Must Be
Followed
Immediately By

Placement of
Following
Elements

Division header

(In Procedure Division)
USING phrase

Section header, paragraph header,
paragraph-name, or (in Procedure
Division) keyword DECLARATIVES

Same or next line
(Area B)

Next line (Area A)

Section header

(In Declaratives section)
USE statement

Paragraph header,
paragraph-name, (after USE, if
specified), level indicator, or
level-number

Same or next line
(Area B)

Next line (Area A)

paragraph-name

Paragraph header or

Identification Division entry,
Environment Division entry, or
Procedure Division sentence

Same or next line
(Area B)

01 and 77

Level indicator, level-numbers

Data-name

Same or next line
(Area B)

Keyword DECLARATIVES

Declaratives section-name

Next line (Area A)

Keywords END DECLARATIVES

Section header

Next line (Area A)

Figure 2-5. Sequence of Elements in Area A and Area B

SEQUENCE |5 !

FASE ISERIAg ?!: !: ™ — —
o[1jo) ;l’gFHﬂﬂFlt Tl Vit sl
0l2jof | &
ojsld E T,_Init vilsy
040 €O TiION SECT|IIONI.
ofsipl | | T [K |
olsjo] |1 NPT lolulTirluTT] [SEICHT] ON.
ol7/df [l kIE-Iclo .

0305 | ¢
oloid piafyia [Di1M1s[1loN.
100] |ED LE, [SEICTIION.
1ol F -
1210 nNG-[S'T | ISEkerr))
130 ES| 1
1[4 nig
150 | ! $
160 |PROCIED \v)i[s]y
17101 Dl AR VES].
1/s)0] | !
100] | | T IVELS].
200} | - sleiclrirlo
0l | - NAME;
Sl.
CENNES ~ STlA Tisl,
o | *TElsir] g Al

Figure 2-6. Basic Skeleton of a COBOL Program

Chapter 2. Language Considerations

2-13

Special Considerations

2-14

Some lines in a COBOL program require additional rules. A discussion of
each follows.

Division Header

A division header must be immediately followed by a period except when a
USING phrase is specified with a Procedure Division header. Except for the
USING phrase, no text can appear on the same line.

Section Header

A section header must be immediately followed by a period except when
Procedure Division segment numbers are specified. In the Environment and
Procedure Divisions, a section consists of paragraphs. In the Data Division,
a section consists of Data Division entries.

Paragraph Header, Paragraph-Name

In both the Identification Division and the Environment Division, a
paragraph consists of a paragraph header followed by one or more entries
in Area B. An entry consists of one or more clauses. In the Procedure
Division, a paragraph consists of a paragraph-name followed by one or more
sentences in Area B. A sentence consists of one or more statements; a
statement is a syntactically valid combination of a COBOL verb and its
operands. Entries and sentences must be ended with a period followed by a
space.

Successive entries or sentences begin in Area B. The entries are either on
the same line as the last entry or sentence, or they are on the next
succeeding nonblank noncomment line.

Data Division Entries

Each Data Division entry begins with a level indicator or level-number
followed by a space. On the same line is a data-name in Area B, followed by
a sequence of independent clauses describing the item. Each clause, except
the last, is followed by a space (or optionally by a comma or semicolon and
a space). The last clause in the entry must be ended with a period followed
by a space.

Successive clauses begin in Area B. The clauses are either on the same line
as the preceding clause, or on the next succeeding nonblank noncomment
line.

A level indicator (FD, SD) must begin in Area A and be followed by a space.
For a further description of level indicators, see “Data Division
Organization” in Chapter 4.

A level-number is a 1- or 2-digit integer with one of the following values: 1
through 49, 66, 77, or 88. At least one space must follow the level-number.

9

9

Program Spacing

Level-numbers 01 and 77 must begin in Area A. The associated record-name
or item-name must appear in Area B. Level-numbers 02 through 49, 66, and
88 can begin in either Area A or Area B.

DECLARATIVES and END DECLARATIVES

In the Procedure Division, the keywords DECLARATIVES and END
DECLARATIVES begin and end the Declaratives portion of the source
program. Both of these keywords must begin in Area A and be followed
immediately by a period. No other text can appear on the same line. After
the keyword END DECLARATIVES, no text can appear before the following
section header.

In writing a COBOL program, rules for indentation, continued lines,
comment lines, debugging lines, and blank lines must be observed.

Indentation

Within an entry or sentence, successive lines in Area B can have the same
format or can be indented to clarify program logic. The output listing is
indented only if the input statements are indented. Indentation does not
affect the syntax of the program. The amount of indentation can be chosen
by tke user, subject only to the restrictions on the width of Area B.

Continuation of Lines

Any sentence, entry, clause, or phrase that requires more than one line can
be centinued in Area B of the next succeeding noncomment line. The line
being continued is called the continued line; the succeeding lines are
continuation lines. Area A of a continuation line must contain only spaces.

If there is no hyphen in the continuation area (Column 7) of a line, the last
charzcter of the preceding line is assumed to be followed by a space.

If there is a hyphen in the continuation area of a line, the first nonblank
charzcter of this continuation line immediately follows the last nonblank
charzcter of the continued line without any intervening space. However,
this restriction does not apply to nonnumeric literals.

If the continued line contains a nonnumeric literal without a closing
quotation mark, all spaces at the end of the continued line (through
Column 72) are considered to be part of the literal. The continuation line
must contain a hyphen in the continuation area, and the first nonblank
character in Area B must be a quotation mark. The continuation of the
literal begins with the character immediately following the quotation mark.

A pair of quotation marks indicating a single quotation mark in the value

of the literal must occur on the same line. Likewise, both characters
composing the separator = = or B" must be on the same line.

Chapter 2. Language Considerations 2-15

Comment Lines

A comment line is any line with an asterisk or slash in the continuation
area of the line. The comment may be written anywhere in Area A and
Area B of that line. The comment may consist of any combination of
characters from the EBCDIC set.

If an asterisk is placed in the continuation area, this comment line is
printed in the output listing immediately following the last preceding line.

If the slash is placed in the continuation area, the current page of the
output listing is ejected, and the comment line is printed on the first line of

the next page.

The asterisk or slash and the comment are produced only on the output
listing. They are treated as documentation by the compiler.

Successive comment lines are allowed. Each must begin with an asterisk or
slash in the continuation area.

Comment lines are not allowed before the Identification Division header.
Debugging Lines
A debugging line is any line with a D coded in the continuation area.

Rules for the formation of debugging lines are given under “DEBUGGING
FEATURES” in Chapter 6.

Blank Lines

Blank lines contain nothing but spaces from Column 7 through Column 72.
A blank line may appear anywhere in a program except immediately
preceding a continuation line.

Overall Punctuation Rules

2-16

Any punctuation character included in a PICTURE character-string, a
comment character-string, or a nonnumeric literal is not considered to be a
punctuation character but rather is considered to be part of the
character-string or literal.

A comma, period, or semicolon followed by a space in or at the end of a
PICTURE character-string is a separator and terminates the PICTURE

character-string. The comma and semicolon are used only for readability.

Punctuation rules for each division of the COBOL source program follow.

Identification Division

Commas and semicolons can be used in the comment-entries. The
PROGRAM-ID paragraph must end with a period followed by a space.

»ee

9

9

Environment Division

Commas or semicolons can separate successive clauses and successive
operands within clauses. The SOURCE-COMPUTER, OBJECT-COMPUTER,
SPECIAL-NAMES, and I-0-CONTROL paragraphs must each end with a period
followed by a space. In the FILE-CONTROL paragraph, each file-control
entry must end with a period followed by a space.

Data Division

Commas or semicolons may separate successive clauses and operands
within clauses. File (FD), Sort/Merge file (SD), and data description entries
must each end with a period followed by a space.

Procedure Division

Commas or semicolons may separate successive statements within a
sentence and successive operands within a statement. Each sentence and
each procedure must end with a period followed by a space.

Methods of Data Reference

Qualification

Every user-specified name defining an element in a COBOL program must
be unique, either because no other name has a character-string of the same
value or because it can be made unique through qualification, subscripting,
or indexing. In addition, references to data and procedures can be either
explicit or implicit. The rules for qualification and for explicit and implicit
references follow.

A name can be made unique if it exists within a hierarchy of names, and
the name can be identified by specifying one or more higher-level names in
the hierarchy. The higher-level names are called qualifiers, and the process
by which such names are made unique is called qualification.

Qualification is specified by placing one or more phrases after a
user-specified name. Each phrase consists of the word OF or IN followed by
a qualifier. (OF and IN are logically equivalent.) The three formats for
references are references to Data Division names, references to Procedure
Division names, and references to COPY libraries.

Format 1

data-name-1 OF
. — Y data-name-2 | . ..
condition-name IN

Chapter 2. Language Considerations 2-17

2-18

Format 2

OF .
paragraph-name N section-name

Format 3
OF .
text-name I—I\T library-name

In Data Division references, all qualifying data-names must be associated
with a level indicator or level-number. Therefore, two identical data-names
must not appear as subordinate entries in a group item unless they can be
made unique through qualification. Names associated with a level
indicator (FD and SD) are the highest level in the hierarchy. Next highest
are those associated with level-number 01. Names associated with
level-numbers 02 through 49 are at successively lower levels in the
hierarchy.

In the Procedure Division, two identical paragraph-names must not appear
in the same section. A section-name is the highest and only qualifier
available for a paragraph-name.

The following example illustrates the use of identical names in a section
hierarchy:

01 FIELD-A
02 FIELD-B
05 SUBIL
07 SuB2
02 FIELD-C
07 SUB1

A hierarchy includes all subordinate entries to the next equal or higher
level-number. Therefore, in the above example all entries are in the
hierarchy of FIELD-A. All entries from FIELD-B to, but not including,
FIELD-C are in the hierarchy of FIELD-B.

In the hierarchy of FIELD-A, SUB1 can be used twice; once as subordinate
to FIELD-B and once as subordinate to FIELD-C. In references to SUB-1, it
must be qualified as SUB-1 OF FIELD-B or SUB-1 OF FIELD-C. Within
FIELD-B or FIELD-C, SUB1 cannot be subordinate to itself.

In any hierarchy, the name associated with the highest level must be
unique and cannot be qualified.

No matter what qualification is available, no name can be both a data-name
and a procedure-name.

Enough qualification must be specified to make the name unique; however,
it may not be necessary to specify all the levels of the hierarchy. For

9

example, if more than one file has records that contain the field
EMPLOYEE-NO but only one of the files has a record named MASTER-RECORD,
then specifying EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid
but unnecessary.

Qualification Rules
The following rules for qualification apply:

e Each qualifier must be of a successively higher level and must be within
the same hierarchy as the name it qualifies.

e The same name must not appear at two levels in a hierarchy unless it
can be qualified.

e If a data-name or condition-name is assigned to more than one data
item, the data item must be qualified each time it is referenced, with
this exception: in the REDEFINES clause, qualification is unnecessary
and must not be used.

e A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION must
not appear. A paragraph-name need not be qualified when referred to
within the section in which it appears.

e Library-name must be unique in the system. Therefore, the first 10
characters of library-name must be unique.

e Text-name (member-name) must be qualified by the
file-name-library-name in which it resides. If no library is specified, the
*_ IBL list is searched.

[IBM Extension I

File-name is optional for the COPY statement, format 1. If file-name is
not specified, the default is QCBLSRC.

| End of IBM Extension

e When a data-name is being used as a qualifier, it cannot be subscripted.
o A name can be qualified even when it does not need qualification.

e If more than one combination of qualifiers ensures uniqueness, then any
of these combinations can be used.

e Duplicate section-names are not allowed.

e A data-name cannot be the same as a section-name or a
paragraph-name.

e A section-name cannot be the same as a paragraph-name.

Chapter 2. Language Considerations 2-19

e If a data-name cannot be made unique by qualification, duplication of
this data-name is not allowed.]

o The complete list of qualifiers for one data-name must not be the same
as a partial list of qualifiers for another data-name.

o A maximum of 48 qualifiers (49 qualifiers for file data) can be specified.
e | INAGE-COUNTER must be qualified each time it is referenced if more

than one file description entry containing a LINAGE clause has been
specified in the source program.

Subscripting and Indexing
Subscripts and indexes can be used only when reference is made to an
individual element within a table of elements that have not been assigned

individual data-names. Subscripting and indexing are explained under
“TABLE HANDLING” in Chapter 6.

Identifier
An identifier is a term used to reflect that a data-name, if not unique in a
program, must be followed by some syntactically correct combination of

qualifiers, subscripts, or indexes sufficient to ensure uniqueness. The
general formats for identifiers are as follows:

Format 1 ’

OF . .)
data-name-1 [{E{—}data-nameQ] een [(subscr|pt-1 [, subscript-2 [, subscrlpt-3]])]

Format 2

OF index-name-1 [<i> Iitera|-2]
data-name-1 [{N}data-nameQ e (

literal-1

| K P11

Restrictions on qualification, subscripting, and indexing follow:

e A data-name must not be subscripted or indexed when that data-name is
being used as an index, subscript or qualifier.)

2-20

C

Condition-Name

e Indexing is not permitted when subscripting is not permitted.

® An index can be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAGE IS INDEX clause permit
the values associated with index-names to be stored as a binary
occurrence number. Such data items are called index data items.

o Literal-1, literal-3, literal-5 in the above format must be positive
numeric integers. Literal-2, literal-4, literal-6 must be unsigned numeric
integers.

A condition-name is a user-defined word that is assigned a specific value or
range of values. The value assigned is contained in the set of values that a
conditional variable may possess. A condition-name can alternatively be a
user-defined word that is assigned the status of an IBM-defined switch or
device.

Each condition-name must be unique, or it must be made unique through
qualification, and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the associated
conditional variable may be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable or the
conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting,
then references to any of its condition-names also require the same
combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names are the same as that for
identifiers except that data-name-1 is replaced by condition-name-1.

In the general formats, condition-name refers to a condition-name that is
qualified, indexed, or subscripted as necessary.

Explicit and Implicit References

COBOL source program references can be either explicit or implicit in
three instances: data attribute specification, Procedure Division data
references, and transfers of control.

Data Attribute Specification

Explicit attributes are specified in COBOL coding. If a data attribute is not
specified in COBOL coding, it takes on a default value. These default
values are implicit attributes.

For example, the ACCESS MODE clause in the file-control entry need not be

specified. If the clause is omitted, the compiler provides the default value,
ACCESS MODE IS SEQUENTIAL. This clause is then an implicit attribute. If

Chapter 2. Language Considerations 2-21

2-22

this same attribute, ACCESS MODE IS SEQUENTIAL, is specified in the
COBOL coding, it is an explicit attribute.

Procedure Division Data References

Procedure Division statements can refer to data items either explicitly or
implicitly.

An explicit reference occurs when the data-name of the item is written in a
COBOL statement or when the data-name is copied into the program
through a COPY statement. An implicit reference occurs when the
data-name is referred to by a COBOL statement without the name being
written in that statement.

For example, when USE AFTER STANDARD EXCEPTION/ERROR PROCEDURE ON
INPUT is specified, an implicit reference is made to each file-name that
identifies an input file. See “EXCEPTION/ERROR Declarative” in
Chapter 5 for a further description.

Transfers of Control

In the Procedure Division, program flow transfers control from statement to
statement in the order they are written unless an explicit control transfer is
specified or no next executable statement exists. (See the note below.) This
normal program flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive
statements, implicit transfer of control also occurs when the normal flow is
altered without the execution of a procedure branching statement. COBOL
provides implicit transfers of control that override the
statement-to-statement transfers of control under the following conditions:

e After execution of the last statement of a procedure being executed
under control of another COBOL statement. COBOL statements that
control procedure execution are MERGE, PERFORM, SORT, and USE.

e During SORT or MERGE statement execution when control is transferred
to any input or output procedure.

e During execution of any COBOL statement that causes execution of a
Declarative procedure.

e At the end of execution of any Declarative procedure.

COBOL also provides explicit transfers of control through the execution of
a procedure branching or conditional statement. Lists of procedure
branching and conditional statements are given under “Procedure Division
Organization” in Chapter 5.

Note: The term next executable statement refers to the next COBOL
statement to which control is transferred according to the rules given
above. No next executable statement can follow:

The last statement in a Declarative procedure that is not being executed
under control of another COBOL statement.

The last statement in a COBOL program when the paragraph in which
it appears is not being executed under control of another COBOL
statement.

Chapter 2. Language Considerations 2-23

2-24

Chapter 3. Identification and Environment Divisions

IDENTIFICATION DIVISION

The Identification Division must be the first division in every COBOL
source program. This division names the source program and the object
program. (A source program is the user-written COBOL program. An object
program is the output from a compilation.)

The user may also include the date the program was written, the date of
compilation, and other such documentary information about the program in

the Identification Division.

Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

AUTHQOR. [comment-entry] ..]

INSTALLATION. [commententry] . .]

LDATE-WRITTEN. [comment-entry] ..]

DATE-COMPILED. [[commententry J . .]

SECURITY. [comment-entrv] ..]

The Identification Division must begin with the words IDENTIFICATION
DIVISION followed by a period and a space.

Chapter 3. Identification and Environment Divisions 3-1

Coding Example

SEQUENCE ;'IA s

(PAGE) |SERIAL| 8‘ |

1 3|4 6 Ta }|2 16 pi 24 28 n K

old1lo["Igl |1 Iplelnt [FltelaT) lnhlv:.s*mﬁ.

([o]2d p - [0l

) osidl | . P .

\ [olsd) L]

[l lolsQ | - oM 79.

\[[o]e NAGEAR /179

¥ (0710 |SIECURNTY! o .
o8 | |

PROGRAM-ID Paragraph

3-2

The first paragraph of the Identification Division must be the PROGRAM-1D
paragraph. The PROGRAM-ID paragraph specifies the name by which the
program is known to the system.

The name by which the program is known to the system can be overridden
by the PGM parameter of the CRTCBLPGM command. See Chapter 8 for more
information on the PGM parameter.

Program-name is a user-defined word that identifies the object program to
the system. A program-name must include at least one alphabetic
character. The system uses the first 10 characters of program-name as the
identifying name of the program; these first 10 characters, therefore, should
be a unique program-name. :

The system expects the first character of program-name to be alphabetic; if
it is numeric, it is converted as follows:

e 0 is converted to J

e 1 through 9 is converted to A through I

The system does not include the hyphen as an allowable character;
therefore, if any of the second through tenth characters are hyphens, they

are converted to zeros.

To avoid such conversions, the user should not specify program-names with
leading numerics or embedded hyphens.

C

Other Optional Paragraphs

The other paragraphs are optional; however, if they are written, they must
appear in the order shown in the format.

The comment-entries serve only as documentation and do not affect the
syntax of the program. The comment-entries in the optional paragraphs
may be any combination of characters from the EBCDIC set and may be
written in Area B on one or more lines. A hyphen is not permitted in the
continuation area of Identification Division statements.

The DATE-COMPILED paragraph provides the compilation date of the source
listing. When the comment-entry is specified, the entire entry is replaced
with the current date. When the comment-entry is omitted, the compiler
adds the current date to the DATE-COMPILED paragraph.

ENVIRONMENT DIVISION

The Environment Division, the second division of all COBOL source
programs, identifies the following:

o The computer on which the source program is to be compiled
e The computer on which the object program is to be executed
o The specific main storage size required to execute the object program

o The linkage between the logical concept of the files and their records,
and the physical aspects of the devices on which data is stored.

The Environment Division has two sections: the Configuration Section and
the Input-Output Section.

The following shows the general format of the sections and paragraphs in

the Environment Division, and defines the order of presentation in the
source program.

Chapter 3. Identification and Environment Divisions 3-3

Coding Example

Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. abject-computer-entry

[SPECIA L-NAMES. special~names-entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-controlentry } . . .

[I-O-CONTROL. input-output-control-entry]]

The Environment Division must begin with the words ENVIRONMENT
DIVISION followed by a period and a space.

SEQUENCE ;iA I|B
(‘PAGEa}EemAg 8 Iz il 20 73 i 7] 36
olol2[0[1o] elniv]1] | ol vliis|i loln].

0j30] | -Lo . ural -S3B

ol40| piBl EleTl- Il mhi- 38.

o5l0] SPEK) AL- . S| pPAGE-TOP
\[[olslo |1 NPur~ SECT]1 O

070/ FlILE-« 0

030! S T

0/9/0] 0| LZAT] oM <
Tl T i

Configuration Section

The Configuration Section describes the computer that compiles ‘the source
program and the computer that executes the object program. This section
optionally relates IBM-defined function names to user-defined
mnemonic-names, specifies the collating sequence to be used, specifies a
substitution for the currency sign, and/or interchanges the functions of the
comma and the period.

In the Configuration Section, the comma or semicolon can optionally
separate successive clauses within a paragraph. In each paragraph, there
must be one period; the period must be placed immediately after the last
entry in the paragraph.

Format

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] .

OBJECT-COMPUTER. computer-name

I WORDS

Il , MEMORY SIZE integer { CHARACTERS
} MODULES

[N

[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number] .

[SPECIAL-NAMES. [function-name-1 §mnemonic-name] ..

[function-name-2
rﬁ mnemonic-name , ON STATUS 1S condition-name-1 [, OFF STATUS ﬁcondition-name-2])
IS mnemonic-name , OFF STATUS |S condition-name-2 [, ON STATUS §condition-name-1]

ON STATUS |S condition-name-1 [, OFF STATUS IS condition-name-2]

OFF STATUS |S condition-name-2 [, ON STATUS_I_§condition-name-1]

~ y

[STANDARD-1

NATIVE
'{———THROUGH} literal-2

literal-1 THRU

s alphabet-name IS¢ " | ALSO literal-3 [,ALso Iiteral-4] - >

§ {_—THROUGH} literal-6
literal-5 | | THRU
| ALSOQ literal-7 [, ALSO literal-8] . . .

[CURRENCY SIGN IS literal-9]

[, DECIMALPOINT IscomMmA]]

Chapter 3. Identification and Environment Divisions 3-5

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph describes the computer that compiles the
source program. The computer name should be coded as: IBM-S38.

With the exception of the WITH DEBUGGING MODE clause, the
SOURCE-COMPUTER paragraph is syntax-checked, but is treated as
documentation. The WITH DEBUGGING MODE clause is described under
“DEBUGGING FEATURES” in Chapter 6.

OBJECT-COMPUTER Paragraph

3-6

The OBJECT-COMPUTER paragraph identifies the computer that executes the
object program. Computer-name must be the first entry in the
OBJECT-COMPUTER paragraph. The other clauses can be specified in any
order. The computer-name should be coded as: IBM-S38.

MEMORY SIZE Clause

The MEMORY SIZE clause is syntax-checked, but is treated as documentation.

PROGRAM COLLATING SEQUENCE Clause

The PROGRAM COLLATING SEQUENCE clause specifies the collating sequence
used in a program. The collating sequence associated with the specified
alphabet-name must be defined in the SPECIAL-NAMES paragraph. The
program collating sequence applies to the following nonnumeric
comparisons:

e Those comparisons explicitly specified in IF, PERFORM, and SEARCH
statements

e Those comparisons implicitly specified in STRING, INSPECT, and
UNSTRING statements

e Those comparisons implicitly specified in MERGE or SORT statements
that do not specify a COLLATING SEQUENCE phrase.

When the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC

collating sequence is used. See Appendix H for the complete EBCDIC
collating sequence.

SEGMENT-LIMIT Clause

The SEGMENT-LIMIT clause is described under “SEGMENTATION
FEATURE” in Chapter 6.

9

C

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates IBM-specified function-names to
user-specified mnemonic-names. This paragraph specifies a collating
sequence that is associated with an alphabet-name, a substitute character
for the currency sign, and the interchange of the comma and decimal point
in PICTURE clauses and numeric literals. The clauses can be specified in
any order.

Function-Name-1 Clause

Function-name-1 specifies system devices or standard system actions taken
by the compiler.

The associated mnemonic-name is required. The mnemonic-name is formed
according to the rules for a user-defined word and must contain at least one
alphabetic character.

Programming Note: The SEU Syntax Checker requires that the first clause
be entered on the same line as the SPECIAL-NAMES entry.

Figure 3-1 shows the actions that are associated with mnemonic-names for
function-name-1. Each of these functions can appear only once in the
SPECIAL-NAMES paragraph.

Function-name-1| Statement where | Usage
mnemonic-name
associated with
function-name
is used

csp WRITE Suppress spacing when printing a line. Use only
when PRINTER is the device. See
“FILE-CONTROL Paragraph” later in this
chapter.

co1 WRITE Skip to the next page. Use only when
PRINTER is the device. See “FILE-CONTROL
Paragraph” later in this chapter.

501, S02, SO03, |WRITE Select stackers on a card punch file. S01

S04, 505 through S04 select stackers 1 through 4, and S05
selects stacker 1 on the IBM 5424. Use only
when PUNCH, PUNCHPRINT, or PRINT is the
device. See “FILE-CONTROL Paragraph” later
in this chapter.

ATTRIBUTE-DATA | ACCEPT Retrieve attribute data about a program device
acquired by a TRANSACTION file, but only when
the file is open. See “ACCEPT Statement” in
Chapter 7.

Figure 3-1 (Part 1 of 2).

Choices of Function-Name-1 and Action Taken

Chapter 3. Identification and Environment Divisions

3-7

Function-name-1| Statement where | Usage
mnemonic-name
associated with
function-name
is used
I-0-FEEDBACK ACCEPT Give information about the last I-O operation on
a file, but only when the file is open. See
“ACCEPT Statement” in Chapter 5.
OPEN-FEEDBACK ACCEPT Give information about a file, but only when the
file is open. See “ACCEPT Statement” in
Chapter 5.
CONSOLE, ACCEPT,DISPLAY | Communicate with the system operator’s
SYSTEM-CONSOLE message queue (QSYSOPR).
LOCAL-DATA ACCEPT,DISPLAY | Retrieve data from, or moves data to the local
data area created by the system for every job.
See “ACCEPT Statement” and “DISPLAY
Statement” in Chapter 5.
REQUESTOR ACCEPT,DISPLAY | Communicate with the user work station
(interactive jobs) or the batch input stream or
job log (batch jobs).

Figure 3-1 (Part 2 of 2). Choices of Function-Name-1 and Action Taken

3-8

Function-Name-2 Clause

Function-name-2 can be defined as UPSI-0 through UPSI-7 or as
SYSTEM-SHUTDOWN.

User Program Status Indicator (UPSI): Function-name-2 can define
eight 1-byte program switches, UPSI-0 through UPSI-7.

Each UPSI is a User Program Status Indicator switch. At least one
condition-name must be associated with each UPSI switch specified. UPSI-0
through UPSI-7 are COBOL names that identify program switches defined
outside the COBOL program at object time. Their contents are considered
to be alphanumeric. A value of zero is off; a value of one is on.

Each switch represents one byte from the 8-character SWS parameter of the
control language CHGJOB, SBMJOB, JOB, and JOBD commands as follows:

UPSI-0 First byte (leftmost)
UPSI-1 Second byte
UPSI-2 Third byte

UPSI-7 Eighth byte (rightmost)

One condition-name must be associated with each function-name-2; a second
condition-name is optional. One condition-name can be associated with the
ON status; another can be associated with the OFF status. Establishing
condition-names for the ON or OFF status of a switch permits testing the
setting of that switch.

9

Each condition-name is formed according to the rules for a user-defined
word, and the condition-name must contain at least one alphabetic
character.

In the Procedure Division, the UPSI switch status is tested through the
associated condition-name(s). Each condition-name is the equivalent of a
level-88 item. The associated mnemonic-name, if specified, is considered the
conditional variable and can be used for qualification.

Programming Notes: UPSI switches are useful for processing special
conditions within a program, such as year-beginning or year-ending
processing. At the beginning of the Procedure Division, an UPSI switch can
be tested; if it is ON, the special branch is taken.

SYSTEM-SHUTDOWN: SYSTEM-SHUTDOWN is an internal switch that is
set to ON status when the system operator causes the system to be in a
shutdown-pending state or when the job is being canceled in a controlled
manner. The associated ON or OFF condition-names can be referenced
anywhere a condition-name is valid. Their status cannot be altered by the
program.

Coding Example

This coding example assigns mnemonic-names to some commonly used
function-names in the SPECIAL-NAMES paragraph.

SPECIAL-NAMES. SYSTEM-CONSOLE IS SYSTM,
REQUESTOR IS WORK-STATION,
COl IS NEXT-PAGE,
LOCAL-DATA IS LOCAL-DATA-AREA,
ATTRIBUTE-DATA IS ATTRB-DATA,
SYSTEM-SHUTDOWN IS SHUTDOWN-SWITCH,
ON STATUS IS SHUTDOWN-PENDING,
UPSI-0 IS UPSI-SWITCH-O,
ON STATUS IS UO-ON,
OFF STATUS 1S UQO-OFF,
UPSI-1 IS UPSI-SWITCH-1,
ON STATUS IS U1-ON,
OFF STATUS_IS Ul-OFF,
IBM-ASCIT IS STANDARD-1,
CURRENCY-SIGN IS "Y"

Alphabet-Name Clause

The alphabet-name clause provides a means of relating an alphabet-name to
a specified character code set or collating sequence.

The alphabet-name specifies a collating sequence in one of the following:

o The PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER
paragraph

® The COLLATING SEQUENCE phrase of the SORT or MERGE statement.

The EBCDIC collating sequence is used when NATIVE is specified or when
the alphabet-name clause is omitted.

Chapter 3. Identification and Environment Divisions 3-9

3-10

The ASCII (American National Standard Code for Information Interchange)
collating sequence is used when STANDARD-1 is specified.

Literal Phrase: The literal phrase of the alphabet-name clause processes
internal data in collating sequences other than NATIVE or STANDARD-1.

When the literal phrase is specified, the collating sequence to be used is
specified by the user according to the following rules:

o The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

e Each numeric literal specified must be an unsigned integer and must
have a value from 1 through 256 (the maximum number of characters in
the EBCDIC character set). The value of each literal specifies the
relative position of a character within the EBCDIC character set. For
example, the literal 112 represents the EBCDIC character ?, the literal
234 represents the EBCDIC character Z, the literal 241 represents the
EBCDIC numeric character 0.

e Each character in a nonnumeric literal represents that character in the
EBCDIC set. If the nonnumeric literal contains more than one
character, each character, starting with the leftmost, is assigned a
successively ascending position within this collating sequence.

e Any EBCDIC characters not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified
characters. The relative order of the unspecified characters within the
EBCDIC set remains unchanged.

e Within one alphabet-name clause, a given character must not be
specified more than once.

e Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be one character in length.

e When the THROUGH phrase is specified, the contiguous EBCDIC
characters beginning with the character specified by literal-1 and
ending with the character specified by literal-2 are assigned
successively ascending positions in this collating sequence. This
sequence may be either ascending or descending within the original
EBCDIC sequence. For example, if the characters Z through S are

specified, then for this collating sequence the ascending values are:
ZYXWVUTS

® When the ALSO phrase is specified, the EBCDIC characters specified as
literal-1, literal-3, literal-4, and so on are assigned to the same position
in this collating sequence. For example, if “D” ALSO “N” ALSO 112
ALSO “%” is specified, then for this collating sequence the characters D,
N, 2, and % are all considered to be in the same position in the
collating sequence.

If specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with hex 00 and hex
FF respectively.

After all clauses in the SPECIAL-NAMES paragraph are processed, the
character having the highest ordinal position in this collating sequence is
associated with the figurative constant HIGH-VALUE. If more than one
character has the highest position because the ALSO phrase is specified, the
last character specified is considered to be the HIGH-VALUE character for
procedural statements such as DISPLAY, or as the sending field in a MOVE
statement. If the ALSO phrase example given above were specified as the
high-order characters of the collating sequence, then the HIGH-VALUE
character would be %.

After all clauses in the SPECIAL-NAMES paragraph are processed, the
character having the lowest ordinal position in this collating sequence is
associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position because the ALSO phrase is specified, the
first character specified is the LOW-VALUE character. If the ALSO phrase
example given above were specified as the low-order characters of the
collating sequence, then the LOW-VALUE character would be D.

Alphabet-Name Clause Examples: The following examples illustrate
some uses for the alphabet-name clause.

If PROGRAM COLLATING SEQUENCE IS USER-SEQUENCE; if the alphabet-name
clause is specified as USER-SEQUENCE IS “D”, “E”, “F”; and if two Data
Division items are defined as follows:

01 ITEM-1 PIC X(3) VALUE "ABC".
01 ITEM-2 PIC X(3) VALUE "DEF".

then the comparison IF ITEM-1 > ITEM-2 is true.

Characters D, E, and F are in ordinal positions 1, 2, and 3 of this collating
sequence. Characters A, B, and C are in ordinal positions 197, 198, and 199
of this collating sequence.

If the alphabet-name clause is USER-SEQUENCE IS 1 THRU 247, 251 THRU
256, “7”, ALSO “8”, ALSO “97; if all 256 EBCDIC characters have been
specified; and if the two Data Division items are specified as follows:

01 ITEM-1 PIC X(3) VALUE HIGH-VALUE.
01 ITEM-2 PIC X(3) VALUE "787".

then both of the following comparisons are true:
IF ITEM-1 = ITEM-2 . . .
IF ITEM-2 = HIGH-VALUE .

They compare as true because the values “7”, “8”, and “9” all occupy the
same position (HIGH-VALUE) in this USER-SEQUENCE collating sequence.

If the alphabet-name clause is specified as USER-SEQUENCE IS “E”, “D”,
“F” and a table in the Data Division is defined as follows:

Chapter 3. Identification and Environment Divisions 3-11

05 TABLE A OCCURS 6 ASCENDING KEY IS
KEY-A INDEXED BY INX-A.
10 FIELD-A .
10 KEY-A

and if the contents in ascending sequence of each occurrence of KEY-A are
A, B, C, D, E, G, then the results of the execution of a SEARCH ALL
statement for this table will be invalid because the contents of KEY-A are
not in ascending order. The proper ascending order would be E, D, A, B, C,

G.

CURRENCY SIGN Clause

The literal that appears in the CURRENCY SIGN clause defines the currency
symbol to be used in the PICTURE clause. The literal must be a
one-character nonnumeric literal and must not be any of the following
characters:

e Digits 0 through 9
e Alphabetic characters A B C D L P R S V X Z or the space
e Special characters . (+ *) ; - / , = "

When the CURRENCY SIGN clause is omitted, only the dollar sign ($) may be
used as the PICTURE symbol for the currency sign.

DECIMAL-POINT IS COMMA Clause

When the DECIMAL-POINT IS COMMA clause is specified, the functions of the
period and the comma are exchanged in PICTURE character-strings and in
numeric literals.

Input-Output Section

Files

3-12

The Input-Output Section defines each file, identifies its external storage
medium, assigns the file to one or more input/output devices, and also
specifies information needed for efficient transmission of data between the
external medium and the COBOL program.

System/38 has two categories of files: data base files and device files.

Data Base Files

Data base files allow information to be permanently stored on the system.
Multiple programs can access this information in different ways.

A data base file is subdivided into groups of records called members. Every
file has at least one member.

9

DDM Files

Paragraphs

There are two types of data base files: physical files and logical files.

Physical Files: A physical file is a file that actually contains data
records. This makes physical files similar to disk files on other systems. A
physical file can contain only fixed-length records, all of which have the
same format.

Logical Files: A logical file is a data base file through which data from
one or more physical files can be accessed. The format and organization of
this data is different from that of the data in the physical file(s). Each
logical file can define a different access path (index) for the data in the
physical file(s). Each logical file can exclude and reorder the fields defined
in the physical file(s).

Device Files

A device file reads from or writes to a device attached to the system. A
device file controls the transfer of data between the physical device and the
program.

This manual uses the term file as a device file or a member in a data base
file.

Distributed Data Management (DDM) allows you to access data files that
reside on remote IBM System/3€ and System/38 systems. DDM files are
supported by the COBOL compiler. You can retrieve, add, update or delete
data records in a file that resides on another system. In addition, a remote
system can access your System/38 data base for record retrieval.

For more information about accessing remote files, refer to the IBM
System|38 Distributed Data Management User’s Guide.

The Input-Output Section is divided into two paragraphs: the FILE-CONTROL
paragraph, which names and associates the files with the external media,
and the I-0-CONTROL paragraph, which defines special input/output
techniques to be used.

Format

ENPUT-OUTPUT SECTION.

FILE-CONTROL. (file-control-entry} e

[l»O-CONTROL. input-output»contro|-entry]]

Chapter 3. Identification and Environment Divisions 3-13

The exact contents of the Input-Output Section depend on the file
organization and access methods used to process the file. The following
summary gives some background for the file processing techniques
available in System/38 COBOL.

File Processing Summary

3-14

The method used to process a file in a COBOL program depends on the data
organization of the file and on the access mode used.

Appendix J summarizes which clauses and statements are required and
which clauses and statements are optional for each access mode and device.

The following paragraphs describe both the types of data organization, and
the access modes available in COBOL. See Chapter 9 for information about
COBOL file processing in relation to System/38 file processing.

Data Organization

In a COBOL program, data organization can be sequential, indexed,
relative, or TRANSACTION.

Records can be fixed or variable in length. For all files other than tape,
variable length records are stored as fixed length records of the maximum
size specified for the file.

Sequential Organization: With this organization, records are placed in
the file consecutively, without keys, in the order they are written (arrival
sequence). Once established, this relationship does not change, with the
exception that a file can be extended. Both data base files and device files
can have sequential organization.

Indexed Organization: With this organization, each record in the file has
one embedded key that is associated with an index. The index provides a
logical path to the data records according to the contents of the associated
embedded record key data item (key sequence).

When records are inserted, updated, or deleted, they are identified solely by
the value of their record key. Thus, the value in each record key data item
must be unique and must not be changed when the record is updated. The
key used for any specific input/output request is known as the key of
reference.

Only data base files can have indexed organization.

| IBM Extension I

A logical file that is opened for OUTPUT does not remove all records in the
physical file on which it is based. Instead, the file is opened to allow only
write operations, and the records are added to the file.

| End of IBM Extension

Relative Organization: With this organization, each record in the file is
identified by its relative record number. The file can be thought of as a
serial string of areas, each of which can contain one record. Each of these
areas is identified by a relative record number; record storage and retrieval
are based on this number. For example, the first record area is addressed
by relative record number 1, and the tenth is addressed by relative record
number 10, whether or not records have been written in the second through
ninth record areas. Relative files must be assigned to DISK or DATABASE.

New relative files opened for OUTPUT are initialized with all records
deleted. In the absence of command language override, the number of
records in a newly created file is the number of records specified at file
creation time including all increments. Any attempt to extend a relative
file beyond its current size results in a boundary violation.

Relative record number processing can be used for a physical file or for a
logical file that is based on only one physical file.

| IBM Extension |

TRANSACTION Organization: Work station and data communication
files can have TRANSACTION organization. See Chapter 7 for a discussion of
this organization.

I End of IBM Extension

Access Modes

Access mode is a COBOL term that defines the manner in which data in a
logical or physical file is to be processed. The three access modes are
sequential, random, and dynamic.

Sequential Access Mode: This access method allows records of a file to be
read and written in a serial manner. The order of reference is implicitly
determined by the position of a record in the file.

Random Access Mode: This access method allows records to be read and
written in a user-specified manner. The control of successive references to
the file is expressed by specifically defined keys supplied by the user.

Dynamic Access Mode: This access method allows a specific input/output

request to determine the access mode. Thus records can be processed
sequentially and/or randomly.

Chapter 3. Identification and Environment Divisions 3-15

Access Mode Allowed for Each File Type

Sequential Files: Files with sequential organization can be accessed only
sequentially. The sequence in which records are accessed is the order in
which the records were originally written (arrival sequence).

Indexed Files: All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is determined by the RECORD KEY value.

In the random access mode, the sequence in which records are accessed is
controlled by the user. The desired record is accessed by placing the value
of its record key in the RECORD KEY data item defined for that file.

In the dynamic access mode, the user can change from sequential access to
random access by using appropriate input/output statements.

Relative Files: All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the relative record numbers of all records that
currently exist within the file.

In the random access mode, the sequence in which records are accessed is
controlled by the user. The desired record is accessed by placing its
relative record number in a RELATIVE KEY data item.

In the dynamic access mode, the user can change from sequential access to
random access by using appropriate input/output statements.

TRANSACTION Files: See Chapter 7 for a discussion of access mode

considerations for TRANSACTION files.

FILE-CONTROL Paragraph

3-16

The FILE-CONTROL paragraph contains one or more file-control entries. A
file-control entry associates a file in the COBOL program with an external
medium, and this entry allows specification of file organization, access
mode, and other information. The format of a file-control entry varies with
the type of file described. The formats for the FILE-CONTROL paragraph are
as follows:

Format 1—Sequential File Entries (READER, PUNCH,
PUNCHPRINT, PRINT, PRINTER, TAPEFILE, DISKETTE,
FORMATFILE, DISK, DATABASE)

SELECT [OPTIONAL]fiIe-name

= T
ASSIGN TO assignment~name-1l[s assignment-name-Z] o
— —

(—— —— = ——— =

=
| _ . [AREA |
| RESERVE integer-1 AREAS |

it

L e e o e e e —
[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[FiLE STATUS IS data-name-1] .

Format 2—Indexed File Entries (DISK, DATABASE)

SELECT file-name

b
T . AREA 7!
|| RESERVE integer-1 AREAS |
e = __ = =
ORGANIZATION IS INDEXED
SEQUENTIAL
ACCESS MODE IS ¢4 RANDOM }

DYNAMIC

= — — — 7 9 1
ASSIGN TO assignment—name-1:—[_ assignment-name-?] ce I

EXTERNALLY-DESCRIBED-KEY
data-name-2

RECORD KEY IS {

[FiLe sTATUS IS dataname-1] .

Chapter 3. Identification and Environment Divisions 3-17

Format 3— Relative File Entries (DISK, DATABASE)

SELECT file-name J

_———————
ASSIGN TO assignment-name- 1|[assignment-name- 2]

M-
| . AREA
L RESERVE integer-1 AREAS

ORGANIZATION IS RELATIVE

—

SEQUENTIAL [, RELATIVE KEY IS data-name-3]
ACCESS MODE IS

{RANDOM

DYNAMIC} , RELATIVE KEY IS data-name-3

[FILE STATUS IS data-name-1] .

Format 4— Sort or Merge File Entries

| IBM Extension j

Format 5 - TRANSACTION File Entries (WORKSTATION))
See Chapter 7 for a discussion of this format.

| End of IBM Extension I

FILE-CONTROL Paragraph — General Considerations

Each file described in an FD or SD entry in the Data Division must be
described in only one entry in the FILE-CONTROL paragraph. Each file
specified in a file-control entry must have a file description in the Data
Division.

The keyword FILE-CONTROL can appear only once, at the beginning of the
FILE-CONTROL paragraph. The word FILE-CONTROL must begin in Area A,
and it must be followed by a period and a space.

Each file-control entry must begin in Area B with a SELECT clause. The
order in which other clauses appear is not significant.

Each clause within a file-control entry can optionally be separated from the

next by a comma or semicolon followed by a space. Each file-control entry
ends with a period and a space.

Each data-name must appear in a Data Division data description entry.
Each data-name can be qualified but cannot be subscripted or indexed.)

3-18

SELECT Clause

Each file-name specified in a SELECT clause must have an FD or SD entry in
the Data Division. A file-name must conform to the rules for a COBOL
user-defined name, must contain at least one alphabetic character, and must
be unique within this program.

Sequential File Considerations: The OPTIONAL phrase can be specified
only for input files with sequential organization. It must be specified for
input files that are not necessarily present each time the program is
executed.

ASSIGN Clause

The ASSIGN clause associates a file with an external medium. The
assignment-name makes the association between the file and the external
medium. For sort or merge files (associated with an SD entry), no external
medium is used. The related ASSIGN clause is only validity checked. It is
not actually used for I-O.

Assignment-name consists of 3 parts:
® Device

o System/38 file name

o Attribute.

It has the following general structure:

Device [— System/38 file name [— attributg]

Device: This part of assignment-name specifies the type of device that the
file will use. The compiler can then check whether the file is described and
used in a consistent manner. See “Device Independence/Device
Dependence” in Chapter 9 for further information.

The compiler does not check whether the device associated with the
external file is of the type specified in the device portion of
assignment-name. For example, assighment-name could be TAPEFILE-ABCD
and ABCD could be created with a Create Card File (CRTCRDF) CL command.
The compiler would provide no diagnostics unless the I-O verbs were used
in an inconsistent manner for TAPEFILE. At execution time, CPF (control
program facility) could either issue an escape message or ignore the
function if it was not applicable to the device. See the CPF Programmer’s
Guide for further information on overriding files.

Chapter 3. Identification and Environment Divisions 3-19

3-20

The device type can be changed at execution time with the DEV parameter

of the OVRxxxF CL command. To ensure consistent results, the device type
associated with the DEV parameter should be the same as that specified for
assignment-name.

IBM Extension

End of IBM Extension

I

Device can be any of the following:

Device Associated File

READER Card file

PUNCH Card file

PUNCHPRINT Card file

PRINT Card file

PRINTER! Printer file

FORMATFILE? | Printer file

TAPEFILE Tape file

DISKETTE Diskette file

DISK? Any physical data base file or single format logical
data base file

DATABASE* Any data base file

WORKSTATION Display file, communications file, binary
synchronous communications file, or mixed file.

For more information on how to use externally described printer files see

"FORMATFILE Files” in Chapter 9.

Note: See "DISK and DATABASE File Considerations” in Chapter 9 for
further information.

System/38 File Name: This part of assignment-name must be an

unhyphenated, 1- through 10-character system name of the actual external
file (physical or logical data base, or device). This external file has to be

created before compiling the program only when it is used by a COPY

statement, DDS (data description specifications) or DD format, within this

program.

For data base files, the member name cannot be specified in the program. If

a member other than the first member is to be specified, the Override with

1 PRINTER should be specified for program described printer files only.

2 FORMATFILE should be specified for externally described printer files only.

3 When DISK is the device, data base extensions cannot be used.

4 When DATABASE is the device, externally described data and data base
extensions can be used.

9

Data Base File (OVRDBF) CL command must be used at execution time to
specify the member name.

This System/38 file name is the name of the CPF object that is displayed by
the Display Program References (DSPPGMREF) command. Since no external

medium is used for an SD file, the DSPPGMREF command does not list any
files defined for an SD file.

The System/38 file name can be changed at execution time with the TOFILE
parameter of the OVRxxxF CL command. To ensure consistent results, the
device type associated with the TOFILE parameter should be the same as
that specified for assignment-name.

Attribute: This part of assignment-name can be one of the following:

e — hopper [— association]
e —SIL

Hopper must be either P or S to specify the primary or secondary hopper for
card device files. If neither P nor S is specified for a card device file, the
HOPPER parameter on the Create Card File (CRTCRDF) or Change Card File
(CHGCRDF) CL commands is used.

Association must be any single-digit number from 0 through 9. It can be
used only if the primary (P) hopper is specified for the file. All unit record
card files that have the same association number are assigned to the same
unit record card device, and must use the same external file name (see
Appendix D).

SI indicates that a separate indicator area has been specified in the DDS
for a FORMATFILE or WORKSTATION file. See “Indicators” in Chapter 7 for

more information on the use of the SI attribute.

See “Device Independence/Device Dependence” in Chapter 9 for further
information on the ASSIGN clause.

The valid entries for each field of the assignment-name vary with the
device. The valid combinations of fields are shown in Figure 3-2.

In formats 1, 2, and 3, the second and subsequent assignment-names are

syntax-checked, but are treated as documentation. In format 4, the entire
ASSIGN clause is syntax-checked, but is treated as documentation.

RESERVE Clause

The RESERVE clause is syntax-checked, but is treated as documentation.

Chapter 3. Identification and Environment Divisions 3-21

3-22

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of the file. The file J
organization is established at the time the file is created and cannot

subsequently be changed. When the ORGANIZATION clause is omitted,
ORGANIZATION IS SEQUENTIAL is assumed.

IBM Extension

|

For data base files, the ORGANIZATION clause indicates the current program

usage of the file in the program. Therefore, the same data base file can use
SEQUENTIAL, INDEXED (assuming a keyed sequence access path exists), or
RELATIVE in the ORGANIZATION clause. This is true regardless of what is

specified in other programs that use this file.

End of IBM Extension

Note: A keyed sequence access path is always created when a key is

specified in the DDS that was used as input to the Create Physical File

(CRTPF) or the Create Logical File (CRTLF) CL command.

System/38 | Default
File System/38
Device Name File Name | Hopper | Association| SI
READER 0 QCARD96 0 0 N
PUNCH 0 QCARD96 0 0 N
PUNCHPRINT 0 QCARD96 0 0 N
PRINT 0 QCARD96 0 0 N
PRINTER 0 QPRINT N N N
FORMATFILE R N N 0
TAPEFILE 0 QTAPE N N N
DISKETTE 0 QDKT N N N
DISK R N N N
DATABASE R N N N
WORKSTATION R N N 0
R=Required
0=Optional
N=Not Allowed

Figure 3-2. Valid Entries for the Assignment-Name

Sequential File Considerations: When ORGANIZATION IS SEQUENTIAL is
specified or implied, a predecessor-successor relationship of the records in
the files is established by the order in which records are placed in the file

when it is created or extended (arrival sequence access path).

9

Indexed File Considerations: When ORGANIZATION IS INDEXED is
specified, the position of each logical record in the file is determined by the
key sequence access path created with the file and maintained by the
system. The access path is based on an embedded key within the file’s
records.

Relative File Considerations: When ORGANIZATION IS RELATIVE is
specified, the position of each record in the file is determined by its relative
record number within the arrival sequence access path.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which the records of the file
are made available for processing. When this clause is omitted, ACCESS IS
SEQUENTIAL is assumed.

Sequential File Considerations: For files with sequential organization,
records in the file are accessed in the order they are written when the file is
created or extended (arrival sequence). Whether ACCESS IS SEQUENTIAL is
specified or omitted, sequential access is always assumed.

Indexed File Considerations: For files with indexed organization, the
access mode can be SEQUENTIAL, RANDOM, or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied, records in the file are
accessed in the sequence of ascending record key values within the index.

| IBM Extension |

When using an externally described file, if the DDS keyword DESCEND is
used when the field is specified as a key field, the records in the file are
accessed in the sequence of descending record key values within the index.
Either the DESCEND keyword, or the ASCEND keyword (if DESCEND is not
specified) appears under the heading RETRIEVAL in a comment table in the
COBOL source program listing.

| End of IBM Extension |

When ACCESS IS RANDOM is specified, the value placed in the RECORD KEY
data item specifies the record to be accessed.

When ACCESS IS DYNAMIC is specified, records in the file can be accessed
sequentially or randomly, depending on the form of the specific
input/output request.

Relative File Considerations: For files with relative organization, the
access mode can be SEQUENTIAL, RANDOM, or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied, records in the file are
accessed in the ascending sequence of relative record numbers in the

arrival sequence access path.

When ACCESS IS RANDOM is specified, the value placed in the RELATIVE
KEY data item specifies the record to be accessed.

Chapter 3. Identification and Environment Divisions 3-23

When ACCESS IS DYNAMIC is specified, records in the file can be accessed
sequentially or randomly, depending on the form of the specific
input/output request.

RELATIVE KEY Phrase: The RELATIVE KEY phrase specifies the relative
record number for a specific record in a relative file.

Data-name-3 is the RELATIVE KEY data item. It must be defined as an
unsigned integer data item and must not be defined in a record description
entry associated with this relative file. That is, the RELATIVE KEY is not
part of the record.

When ACCESS IS SEQUENTIAL is specified, the RELATIVE KEY phrase need
not be specified unless the START statement is used. When the START
statement is used, the system uses the contents of the RELATIVE KEY data
item to determine the record at which sequential processing is to begin.

If a value is placed in the RELATIVE KEY data item and a START statement
is not used, the value is ignored and processing begins with the first record
in the file.

[IBM Extension |

When the file is opened, the POSITION parameter on the OVRDBF CL
command can be used to set the current record pointer. This causes

processing to begin with a record other than the first record. See the CL
Reference Manual for further information. '

| End of IBM Extension |

When ACCESS 1S RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE
KEY phrase must be specified. For each random processing request, the
contents of the RELATIVE KEY data item are used to communicate a relative
record number to the system.

TRANSACTION File Considerations: See Chapter 7.

RECORD KEY Clause (Indexed File)

The RECORD KEY clause must be specified for an indexed file. The RECORD
KEY clause specifies the data item within the record that is the record key
for an indexed file. The values contained in the record key data item must
be unique among records in the file.

| IBM Extension j

The DUPLICATES phrase can only be specified for files assigned to DATABASE.
This allows the file to have keys with the same values. If the file has
multiple formats, two keys in different formats have the same values only
when the key lengths and the contents of the keys are the same.

For example, given a file with the following two formats: J

3-24

Format F1 with keys A, B, C
Format F2 with keys A, B, D.

If fields C and D are the same length, have the same data type, and have
the same values, the file would contain two records with a duplicate key.
The term duplicate key applies only to a complete record key for the format.
A record key for the format consists of the key field(s) defined for a DDS
format for records residing on the data base. The term does not apply to
the common key for the file (only fields A and B in the above example).

Users can indicate DUPLICATES on the RECORD KEY clause. A file status of
95 is returned after a successful open when:

e The DUPLICATES phrase is specified in the COBOL program and the file
was created with UNIQUE specified in DDS.

e The DUPLICATES phrase is not specified in the COBOL program and the
file was created allowing nonunique keys.

Processing files when either of these conditions exist can cause
unpredictable results.

To ensure that the proper duplicate record is updated or deleted in a file
that allows duplicates and is processed randomly, the last input/output
statement executed prior to the execution of the REWRITE or DELETE
statement must be a successfully executed READ statement for the record
to be deleted or rewritten.

If the DDS file level keyword LIFO (last-in-first-out) is specified, the
duplicate records within a physical file are retrieved in a last-in-first-out
order.

| End of IBM Extension

Data-name-2 is the RECORD KEY data item. It must be described as a
fixed-length alphanumeric item within a record description entry associated
with the file. The length of the record key is restricted; the key length, in
characters, plus the number of fields cannot exceed 120. See the CPF
Reference Manual— DDS for more information.

| IBM Extension I

The RECORD KEY data item, data-name-2, can be a numeric item when the
file is assigned to a DATABASE device type. The numeric item can have a
usage of DISPLAY, COMP (COMP-3), or COMP-4.

Depending on the keywords specified for the data item in DDS, the keyed
sequence access path can be by algebraic value. See the ABSVAL, DIGIT,
SIGNED, and ZONE keywords in the CPF Reference Manual— DDS. If one of
these keywords is specified, its name appears in a comment table in the
COBOL source listing under the heading TYPE. If no keyword is specified,
the table entry is the data type specified in DDS. The table entry AN
indicates that the data type is alphanumeric (specified in DDS as A). The

Chapter 3. Identification and Environment Divisions 3-25

table entry N indicates that the data type is numeric (specified in DDS as P,

S, or B). '

The keywords specified for the data item in DDS can modify record
sequence. See the ALTSEQ, DIGIT, and ZONE keywords in the CPF
Reference Manual— DDS. If none of these keywords are specified, the
records are ordered according to the EBCDIC collating sequence.

I End of IBM Extension |

The data description of data-name-2 and its relative location within the
record must be the same as the ones used when the file was defined in DDS.

The record description that defines data-name-2 will always be used to
access the record key field for the I-O operation.

| IBM Extension I

The reserved word EXTERNALLY-DESCRIBED-KEY can specify that the key(s)
for this file are those that are externally described in DDS. The keys are
determined by the record formats that are copied by the COPY statement,
DDS or DD format, under the FD for this file.

The key can start at different offsets within the buffer for each format. In

this situation, care must be used when changing from one record format to

another, using a random READ or START statement. The key must be placed

in the record format at the correct offset in the format that will be used in J
the random access of the file. Unpredictable results can occur if the key for

the desired record is based on data that was part of the last record read.

This is because the movement of the data to the key field can involve

overlapping fields.

The key within a format can be made up of multiple, noncontiguous (not
adjacent) fields. When using EXTERNALLY-DESCRIBED-KEY for a logical file,
the key fields defined for a record format in DDS must also be fields defined
in that format. Therefore, fields renamed in DDS, or fields that are part of
concatenated fields in DDS cannot be used as keys. Only those record
formats copied in within the FD for the file should be referenced by the
FORMAT phrase. If a format is referenced that is defined within the file, but
that format has not been copied into the program, the key is built using the
key field(s) defined for the first record format that was copied. This can
cause unpredictable results.

| End of IBM Extension

3-26

FILE STATUS Clause

L The FILE STATUS clause allows the user to monitor the execution of each
input/output request for the file.

Data-name-1 is the status key data item. Data-name-1 must be defined in
the Data Division as a two-character alphanumeric item and must not be
defined in the File Section.

When the FILE STATUS clause is specified, the system moves a value into
the status key data item after each input/output request that explicitly or
implicitly refers to this file. The value indicates the execution status of the
statement. When the compiler generates code to block output records or
unblock input records, file status values that are caused by CPF exceptions
are set only when a block is processed. See Appendix I for a description of
the possible values. See Chapter 9 for more information on blocking output
records and unblocking input records.

I IBM Extension |

An extended file status data item may be specified for TRANSACTION file
processing. See Chapter 7 for more information.

| End of IBM Extension

L I-O-CONTROL Paragraph

The I-0-CONTROL paragraph specifies when checkpoints are to be taken and
what storage areas are to be shared by different files and optimization
techniques. The 1-0-CONTROL paragraph is optional in a COBOL program.

Chapter 3. Identification and Environment Divisions 3-27

Format

[I-O-CONTROL.
{ERERUN ON assignment-name _=
|
| EVERY integer-1 RECORDS OF file-name-1] -
- -~

RECORD
SAME | SORT]AREA FOR file-name-2 {, file-name-3)} . .. |. . .
SORT-MERGE

F————— ——— ——_— —_—. —— ———
[MULTIPLE FILE TAPE CONTAINS

file-name-4 [POSITION integer-2]

[fue-name-s [[POSITION integer-3]] .] ce

: [COMMITMENT CONTROL FOR

file-name-6

o]]]

The keyword 1-0-CONTROL can appear only once, at the beginning of the
I-0-CONTROL paragraph. The word 1-0-CONTROL must begin in Area A, and
it must be followed by a period followed by a space.

Each clause within the I-0-CONTROL entry can optionally be separated from
the next by a comma or semicolon followed by a space. The clauses, when
present, must be specified in the order shown. Clauses can be specified on

the same line as the 1-0-CONTROL paragraph header, or on separate lines.
The 1-0-CONTROL entry ends with a period followed by a space.

RERUN Clause

The RERUN clause is syntax-checked, but is treated as documentation.

Assignment-Name: This name can be any user-defined word.

3-28

SAME Clause

The SAME clause specifies that two or more files are to use the same main
storage area during processing. The files named in a SAME clause need not
have the same organization or access.

The following discussion describes only the SAME RECORD AREA and SAME
AREA clauses. The SAME SORT AREA and SAME SORT-MERGE AREA clauses
are discussed under “SORT/MERGE” in Chapter 6.

The SAME RECORD AREA clause and SAME AREA clause are intended to make
efficient use of main storage. However, the virtual storage architecture of
System/38 eliminates the need for these clauses, and the clauses are
supported for compatibility rather than for performance. Use of the SAME
RECORD AREA actually degrades performance.

The SAME RECORD AREA clause specifies that two or more files are to use
the same main storage area for processing the current record. All the files
can be open at the same time. A record in the shared storage area is
considered to be both a record of each opened output file in this SAME
RECORD AREA clause, and a logical record of the most recently read input
file in this SAME RECORD AREA clause.

More than one SAME RECORD AREA clause can be included in a program;
however, the following restriction applies:

o A specific file-name must not appear in more than one SAME RECORD
AREA clause.

The SAME AREA clause is syntax-checked, but is treated as documentation.
However, the following restrictions apply:

® A specific file-name must not appear in more than one SAME AREA
clause.

e If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in that SAME RECORD AREA clause. However, that SAME RECORD
AREA clause can contain additional file-names that do not appear in that
SAME AREA clause.

® Only one of the files for which the SAME AREA clause is specified can be
open at one time. This rule takes precedence over the SAME RECORD
AREA rule that all the files can be open at the same time.

Programming Notes: The SAME RECORD AREA clause allows transfer of data
from one file to another with no explicit data manipulation because the
input/output record areas of named files are identical, and all are available
to the user.

Chapter 3. Identification and Environment Divisions 3-29

3-30

MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause is syntax-checked, but is treated as
documentation. This clause specifies that two or more files share the same
reel of tape. The function is provided by the system through the use of
command language. See CRTTAPF, CHGTAPF, and OVRTAPF commands in
the CL Reference Manual.

COMMITMENT CONTROL Clause

The COMMITMENT CONTROL clause specifies the files that will be placed
under commitment control when they are opened. These files will then be
affected by the COMMIT and ROLLBACK statements. The COMMIT statement
allows the synchronization of changes to data base records while
preventing other jobs from modifying those records until the COMMIT is
complete. The ROLLBACK statement provides a method of cancelling
changes made to data base files when those changes should not be made
permanent.

The COMMITMENT CONTROL clause can specify only files assigned to a device
type of DATABASE. Files under commitment control may have an
organization of sequential, relative or indexed, and may have any access
mode valid for a particular organization.

The system locks records contained in files under commitment control when
these records are accessed. Records remain locked until released by a
COMMIT or ROLLBACK statement. For more information about record locking
for files under commitment control, see “Commitment Control
Considerations” in Chapter 9.

Programming Note: Always try to use files in a consistent manner to avoid
record locking problems, and to avoid reading records that have not yet
been permanently committed to the data base. Typically, a file should
either always be accessed under commitment control or never be accessed
under commitment control.

J

J

Chapter 4. Data Division

Data Division Concepts

The Data Division of a COBOL source program describes all the data to be
processed by the object program. Two types of data can be processed:
external data and internal data.

External Data

External data is contained in files. A file is a collection of data records
existing on some input/output device. A file can be thought of as a group of
physical records; it can also be thought of as a group of logical records.

The Data Division source statements describe the relationship between
physical and logical records. (See the Glossary for definitions of these
items.)

A physical record is a unit of data that is treated as an entity when it is
moved into or out of auxiliary storage. The size of a physical record is
determined by the particular input/output device on which it is stored. The
size does not necessarily have a direct relationship to the size or content of
the logical information contained in the file.

A logical record is a unit of data whose subdivisions have a logical
relationship. A logical record can itself be a physical record (that is, be
contained completely in one physical unit of data), or several logical
records can be contained within one physical record.

Record description entries, which follow the FD (file description) entry for a
specific file, describe the logical records in the file. These entries also
describe the category and format of data within each field of the logical
record and different values the data might be assigned.

The FD entry specifies the physical aspects of the data such as the size
relationship between physical and logical records, the size and name(s) of
the logical record(s), and labeling information.

Once the relationship between physical and logical records has been
established, only logical records are made available to the COBOL program.
Thus, in this manual, a reference to records means logical records unless
the term physical records is used.

Chapter 4. Data Division 4-1

Internal Data

Program logic can develop additional data within storage. Such data is
called internal data.

The concept of logical records applies to internal data as well as to external
data. Internal data can thus be grouped into logical records and be defined

by a series of record description entries. Items that need not be so grouped

can be defined in independent data entries.

Data Relationships

The relationships of all data to be used in a program are defined in the
Data Division through a system of level indicators and level-numbers.

A level indicator, together with its descriptive entry, identifies each file
description in a program. Level indicators are the highest level of any data
hierarchy with which they are associated.

A level-number, together with its descriptive entry, indicates the properties
of specific data. Level-numbers can be used to describe a data hierarchy.
They can indicate that this data has a special purpose, and while they can
be associated with and be subordinate to level indicators, they can also be
used independently to describe internal data or data common to two or
more programs.

Data Division Organization

4-2

The Data Division is divided into three sections: the File Section, the
Working-Storage Section, and the Linkage Section. Each section has a
specific logical function within a COBOL source program, and each can be
omitted from the source program when that logical function is not needed.

9

Format

DATA DIVISION,

[FILE SECTION.
[file-description-entry, {record-description-entry) ..] .

[sort-merge-fiIe-description-entry, (record-description-entry) ..] ..]

[WORKING-STORAGE SECTION.,

[data-description-entry] . e

E’ecord-description-entry] ..]

[LINKAGE SECTION.
[data-description-entry] e

[record-description-entry] ..]

The Data Division must begin with the words DATA DIVISION followed by a
period and a space.

In the source program, the Data Division sections must appear in the order

shown.
Coding Example

SEQUENCE |t IIB

o AR

oloi3o] o] pAT I 1 .
o2l F T
0300 Fip| | 1 1 lel~
olalo] | in NN
0501‘

| 050[J CORD! =

0|7 | 1

{lJolslol, [|| \paT RECORD! S| P,
oslol @il | | LTI ON.
10‘ - S|IEcTi) s
11Q N ~ L P ION.
120 pal || Pl

HEDENIEREN

Chapter 4. Data Division 4-3

Sample Data Division Entries

4-4

I A
BLOCK CONTAINS 1 RECORDS

RECORD CONTAINS 80 CHARACTERS

LABEL RECORDS ARE STANDARD

DATA RECORDS ARE GEN-INFO SALES-DATA.
01 GEN-INFO,

03 EMPLOYEE=-NAME.

05 FIRST-NAME

05 LAST-NAME
03 SOC-SEC-NUMBER
03 CHECK-SSN

REDEFINES SOC-SEC-NUMBER
03 AGE

03 BIRTH-DATE.
05 B-MONTH
05 B-DAY
05 B-YEAR
03 ANNUAL-SALARY
03 CHECK-SALARY
REDEFINES ANNUAL-SALARY
THIS REDEFINES WILL BE USED TO SEE I
03 RECORD-I
03 FILLER
01 SALES DATA.
SALES-SSN
03 SALES-LOCATION
88 MICHIGAN VALUE IS "MI"
88 EASTERN-REGION VALUES ARE "PA" "NY"
88 HEADQUARTERS VALUES ARE "BA"™ THRU "BZ".

SO O
~ ~ NN
- N N

bt bt —t — —— —

~ ~ALVLOVW WO~ ~~~
<<
o
w

H

—_——
OO OO0 OO0 OO OO0

X XXmM>X WVWWOWW WX WX

WY UYUMUYU UUUU UU O©UUU
~ — N

SO W MmN o - -

——
>~ o~

03 TOTAL-COMMISSION PIC 9(5)V99.
03 RECORD-CODE PIC X.
FILLER PIC X(61).

03
FD REPORT-0UT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 132 CHARACTERS
LINAGE IS 66 LINES
FOOTING 6 LINES AT _TOP 4 LINES AT BOTTOM 4
DATA RECORD IS PRINT-OUT.

01 PRINT-QUT X(132).
WORKING-STORAGE SECTION.
01 RECORDS-IN PIC 9(6) VALUE ZEROS.
01 DECLARATIVE-ERRORS PIC 9(4) VALUE ZEROS
01 EOF-SW PIC X VALUE ZERO.
01 BAD-DATA-COUNTER PIC 9(3) VALUE ZEROS.
01 CHECK-IT PIC XX.
01 PRINT-FIELDS-EDITED.
03 FILLER PIC X(14) VALUE SPACES.
03 TOTAL-SALARY PIC $$%,$%$$ 99BB.
03 COMMISSION-COSTS PIC $*% Hkk *k*x QB
03 FILLER PIC X(65) VALUE ALL "-"
03 FILLER PIC X(12)
VALUE "---END---JOB".
01 SALARY-COUNTER PIC 9(6)V99 VALUE ZEROS.
01 COMMISSION-COUNTER PIC 9(6)V99 VALUE ZEROS

ELD IS BLANK.
).

File Section

(The File Section contains a description of all externally stored data (FD)
and a description of each sort-merge file (SD) used in the program.

The File Section must begin with the header FILE SECTION followed by a
period. The File Section contains file description entries and sort-merge
file description entries. Each entry is followed by its associated record
description entry (or entries).

In a COBOL program, the file description entries (beginning with the level
indicators FD and SD) represent the highest level of organization in the File
Section. The file description entry provides information about the physical
structure and identification of a file, and gives the record-name(s)
associated with that file. For further description of the format and the
clauses required in a file description entry, see “File Description Entry” in
this chapter. See “Data Division —SORT/MERGE” in Chapter 6 for a
complete discussion of the sort-merge file description entry.

The record description entry consists of a set of data description entries
that describe the records contained within a particular file. More than one
record description entry can be specified; each is an alternative description
of the same storage area. For the format and the clauses required within
the record description entry, see “Data Description” in this chapter.

I IBM Extension

| - The record description entry for a file can be specified using the COPY
statement, DDS cr DD format. This allows the field descriptions for a record
format to be exactly as defined in DDS. Also, programs are easier to write
because the record format description is maintained in only one place. See
“SOURCE PROGRAM LIBRARY” in Chapter 6 for further information on
the COPY statement, DDS or DD format.

| End of IBM Extension

Data areas described in the File Section should not be considered available
for processing unless the file containing the data area is open.

Working-Storage Section

The Working-Storage Section can contain description records that are not
part of data files but are developed and processed internally. These records
are used for report description, counters, and other functions necessary in
processing data.

The Working-Storage Section must begin with the section header
WORKING-STORAGE SECTION followed by a period. The Working-Storage
Section contains record description entries and data description entries for
noncontiguous data items.

Chapter 4. Data Division 4-5

Data elements in the Working-Storage Section that bear a definite
hierarchical relationship to one another must be grouped into records
structured by level-number.

Noncontiguous items in this section that bear no hierarchical relationship
to one another need not be grouped into records provided they do not need
to be further subdivided. Instead, they are classified and defined as
noncontiguous elementary items. Each is defined in a separate data
description entry that begins with the special level-number 77 or
level-number 01. The format of the data description entry is the same as
the format for the record description entry.

Linkage Section
The Linkage Section describes data made available from another program.

Record description entries and data description entries in the Linkage
Section provide names and descriptions, but storage within the program is
not reserved because the data area exists elsewhere. Any data description
clause can be used to describe items in the Linkage Section with one
exception: the VALUE clause cannot be specified for any items other than
level-88 items. See “INTER-PROGRAM COMMUNICATION FEATURE” in
Chapter 6 for additional information.

File Description Entry

In a COBOL program, the file description entry (FD entry) or the sort-merge
file description entry (SD entry) is the highest level of organization in the
File Section. Up to 99 FD and SD entries can be defined in a COBOL
program.

4-6

Format 1-Files (FORMATFILE, DATABASE, DISK, READER,
PUNCH, PUNCHPRINT, PRINT)

[f_D file-name

. . RECORDS
[BLOCK CONTAINS [linteger-1 TO] integer-2 { CHARAGTE RS}]

[RECORD CONTAINS [linteger-3 TO Jinteger-4 CHARACTE RS]

LABEL{RECORD IS }{STANDARD} —=
=—— \ RECORDS ARE f | OMITTED |
I
I
I
I
I
I

[VALUE OF user-name-1 IS {data-name-I}

literal-1

[user-name-2 |S {qata-name 2}]]
literal-2

RECORD IS
[DATA {RECORDS ARE} data-name-3 ,data-name-4] ..]

{record-description-entry} ..] P

Format 2—Files (DISKETTE)

[@ file-name

i ; RECORDS
[B LOCK CONTAINS [lnteger-I I_Q] integer-2 {CHARACTERS}]

[Recorb conTAINS [[integer-3 TQ] integer-4 CHARACTERS]
| RECORD IS STANDARD 1
=====1RECORDS ARE | | OMITTED

data-name-1 }

| VALUE OF user-name-1 IS .
| _— literal-1

| , user-name-2 IS data -name-2 |
Ilteral 2

RECORD IS .
[DATA {_RECORDS ARE} data-name-3 [,data-name~4] ..]

[CODE-SET IS alphabet-name] .

(record-description-entry) ..] .

Chapter 4. Data Division 4-7

Format 3—Files (TAPEFILE)

[F_D file-name

; : RECORDS
[B LOCK CONTAINS [integer-1 T_o] integer-2 { CHAR ACTERS}]

[RECORD CONTAINS [[integer-3 TQ] integer-4 CHARACTERS]

RECORD IS STANDARD
'I&{RECORDS ARE} {OMITTED }

literal-1

, user-name-2 IS data -name-2
Ilteral 2

‘RECORD IS
[DATA {__RECORDS ARE} data-name-3 Edata-name4] ..]

[[copeseT 1S alphabet-name | .

[VALUE OF user-name-1 IS {data-name-1}

(recorddescription-entry) ..] ..

Format 4— Files (PRINTER)

[ﬂg file-name

. . RECORDS
[BLOCK CONTAINS [lnteger-1 m] integer-2 {CHARACTERS}]

[RECORD CONTAINS [[integer-3 TO Jinteger-4 CHARACTERS]

RECORD IS STANDARD
LABEL {RECORDS ARE} {OMITTED }

data-name-1
literal-1

data name-2
[, user-name-2 IS ||tera| 2 }]]

r
I
|
|
I [VALUE OF user-name-1 IS {
I
I
|
L

RECORD IS
[DAT‘A {RECORDS ARE} datarname 3 [, datename4] ..]

LINAGE IS .data'"ame's} LINES |, WITH FOOTING AT { d2taname
- integer-5 _ integer-6

, LINES AT TOP data e 7} , LINES AT BoTTOM { 92t2name8
|nteger -7 integer-8

(recorddescription-entry) ..] .

Format 5— Sort or Merge File Description

See “Data Division —SORT/MERGE” in Chapter 6 for the format of the
sort-merge file description (SD entry).

r IBM Extension I

Format 6—TRANSACTION File
See Chapter 7 for a discussion of this format.

| End of IBM Extension |

The file description entry must begin with the level indicator FD followed by
a space.

The clauses that follow file-name are optional in many cases; the order of
their appearance is not significant.

However, at least one record description entry must follow the FD entry.
When more than one record description entry is specified, each entry
implies a redefinition of the same storage area. The last clause in the FD
entry must be immediately followed by a period and a space.

Chapter 4. Data Division 4-9

File-Name

The file-name must follow the level indicator, and must be the same as that
specified in the associated file control entry.

The file-name must follow the rules of formation for a user-defined word; at
least one character must be alphabetic. The file-name must be unique
within this program.

BLOCK CONTAINS Clause

4-10

This clause is syntax-checked, but is treated as documentation except for
tape files.

The BLOCK CONTAINS clause specifies the size of a physical record. When
the BLOCK CONTAINS clause is omitted, the compiler assumes that records
are not blocked. Thus, this clause can be omitted when each physical
record contains only one complete logical record.

Format

- . RECORDS
[BLOCK CONTAINS [integer-1 I_Q] integer-2 {CHARACTERS}]

Integer-1 and integer-2 must be nonzero unsigned integers.

When neither the CHARACTERS nor RECORDS phrase is specified, the
CHARACTERS phrase is assumed.

RECORDS Phrase: When the RECORDS phrase is specified, the physical
record size is the number of logical records contained in each physical
record.

Note: Maximum record size is 32 767; maximum block size is 32 767. These
maximums include any control bytes required for variable blocked records;
thus, the maximum size data record for a variable-blocked record is 32 759.

CHARACTERS Phrase: When the CHARACTERS phrase is specified or
implied, the physical record size is specified as the number of character
positions required to store the physical record no matter what USAGE clause
the characters within the data record have.

If only integer-2 is specified, it specifies the exact character size of the
physical record. When integer-1 and integer-2 are both specified, they
represent, respectively, the minimum and maximum character size of the
physical record.

Note: Each variable record contains a 4-byte header and each block
contains a 4-byte header when the data is transferred to tape. However,
these 4-byte headers are provided by the system and are of no concern to

9

9

the COBOL user except that the maximum size of a variable record is
restricted to 32 759.

When variable records are used, the BLOCK CONTAINS clause specifies the
maximum physical record length, while the logical record length for each
record is inferred by the compiler from the record name used in a WRITE
statement. If an explicit length is required after a READ statement, the user
can obtain it through the I1-0-FEEDBACK mnemonic-name.

RECORD CONTAINS Clause
The RECORD CONTAINS clause specifies the size of a file’s data records.

Format

[RECORD CONTAINS [integer-3 TO Jinteger-4 CHARACTERS

The RECORD CONTAINS clause is never required because the size of each
record is completely defined in the record description entries. When this
clause is specified, the following rules apply:

o Integer-3 and integer-4 must be unsigned, nonzero integers.

o When both integer-3 and integer-4 are specified, integer-3 specifies the
size of the smallest data record, and integer-4 specifies the size of the
largest data record.

o Integer-4 must not be specified alone unless all the records are the same
size. If all records are the same size, integer-4 specifies the exact
number of characters in the record.

e The record size must be specified as the number of character positions
needed to store the record internally; that is, size is specified in terms of
the number of bytes occupied internally by the record’s characters,
regardless of the number of characters used to represent the item within
the record. The size of a record is determined according to the rules for
obtaining the size of a group item. For a further description of record
size, see “USAGE Clause” in this chapter.

Note: When the RECORD CONTAINS clause is omitted, the record lengths are
determined by the compiler from the record descriptions. When one of the
entries within a record description contains an OCCURS DEPENDING ON
clause, the compiler uses the maximum value of the variable length item to
calculate the record length.

Programming Note: The system supports variable length physical records
only for files on tape. For all other files, the logical records are truncated
or padded to the length of the record as defined in the CRTxxxF CL
command. User length in the following table is defined as the largest
record associated with the given file, as specified by its record description.

Chapter 4. Data Division 4-11

User Length Less| User Length

Input/Output| Than File Record| Greater Than '
Type Length File Record Length

Input Truncation Pad with blanks.

Output Pad with blanks Truncation if old file

(non-empty); for new (empty
files) the larger record length is
used.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present or omitted.
The LABEL RECORDS clause is required in every FD entry. Format 3
(TAPEFILE) is the only format in which this clause is not treated as
documentation.

Format

RECORD IS STANDARD
LABEL {RECORDS ARE} {OMITTED }

l IBM Extension l '

The LABEL RECORDS clause can be changed at execution time by
specifying the REELS parameter of the Override with Tape File
(OVRTAPF) CL command. See the CL Reference Manual for more
information on this command.

I End of IBM Extension |

STANDARD Phrase: The STANDARD phrase specifies that labels
conforming to system specifications exist for this file. This phrase must be
specified for files assigned to DISKETTE, DISK, and DATABASE. (See
“FILE-CONTROL Paragraph” in Chapter 3.)

OMITTED Phrase: The OMITTED phrase specifies that no labels exist for
this file. This phrase must be specified for files assigned to READER,
PUNCHPRINT, PRINT, and PRINTER. (See “FILE-CONTROL Paragraph” in
Chapter 3.)

VALUE OF Clause

The VALUE OF clause is syntax-checked, but is treated as documentation. It

specifies the description of an item in the label records associated with this
file.

J

4-12

Format

literal-1
[, user-name-2 IS {qata-name-Z}] ..]
literal-2

User-name: This name follows the rules for the formation of a
user-defined word.

[VALUE OF user-name-1 IS {data‘"ame'1}

DATA RECORDS Clause

LINAGE Clause

The DATA RECORDS clause specifies the names of data records associated
with this file. The DATA RECORDS clause is never required.

Format

RECORD IS
[DATA {RECORDS ARE} data-name-3 [,data—name-4] ..]

Data-name-3 and data-name-4 are the names of data records and must have
01 level-number record descriptions that have the same name associated
with them.

The specification of more than one data-name indicates that this file
contains more than one type of data record. Two or more record
descriptions for this file occupy the same storage area. These records need
not have the same description or length. The order in which the
data-names are listed is not significant.

The LINAGE clause specifies the depth of a logical page in terms of the
number of lines. This clause also optionally specifies the line number at
which the footing area begins, as well as the top and bottom margins of the
logical page.

At execution time, the printer file being used determines the physical page
size. This information is used to issue appropriate space and eject
commands to produce the logical page as defined in the LINAGE clause.
Thus, the logical page can contain multiple physical pages, or one physical
page can contain multiple logical pages.

Chapter 4. Data Division 4-13

4-14

Format
LINAGE IS f‘ata'”ame‘s} LINES | , WITH FOOTING AT { dataname6
integer-5 AL] integer-6
, LINES AT TOP data-name-7 , LINES AT BoTTOM { dataname8
|nteger -7 integer-8

The LINAGE clause can be specified only for files assigned to the device
PRINTER. See “FILE-CONTROL Paragraph” in Chapter 3.

All integers must be unsigned. All data-names must be described as
unsigned integer data items.

LINAGE Integer-5/Data-Name-5: Integer-5 or the value in data-name-5
specifies the number of lines that can be written and/or spaced on this
logical page. The area of the page that these lines represent is called the
page body. The value must be greater than zero.

WITH FOOTING Phrase: Integer-6 or the value in data-name-6 specifies

the first line number of the footing area within the page body. The footing

line number must be greater than zero, but it must not be greater than the

number for the last line of the page body. The footing area extends between

those two lines. If this phrase is not specified, the assumed value is equal

to that of the page body (integer-5 or data-name-5). J

LINES AT TOP Phrase: Integer-7 or the value in data-name-7 specifies
the number of lines in the top margin of the logical page. The value of
integer-7 or data-name-7 can be zero. If this phrase is not specified, zero is
assumed.

LINES AT BOTTOM Phrase: Integer-8 or the value in data-name-8
specifies the number of lines in the bottom margin of the logical page. The
value of integer-8 or data-name-8 can be zero. If this phrase is not specified,
zero is assumed.

Figure 4-1 illustrates the use of each phrase of the LINAGE clause.

LINAGE Clause Considerations: The logical page size specified in the
LINAGE clause is the sum of all values specified in each phrase except the
FOOTING phrase. If the LINES AT TOP and/or the LINES AT BOTTOM phrases
are zero, each logical page immediately follows the preceding logical page
with no additional spacing provided.

At the time an OPEN OUTPUT statement is executed, the values of integer-5,
integer-6, integer-7, and integer-8 are used to determine the page body, first
footing line, top margin, and bottom margin of the logical page for this file.
These values are then used for all logical pages printed for this file during a
given execution of the program.

<9

C

[}
LINES AT TOP integer.7 '°P_
margin)
t
Logical
Page Page
Body Depth
WITH FOOTING integer-6
Footing
Area
LINAGE integer-5 I
LINES AT BOTTOM integer-8 \POttom
mar'gm)

Figure 4-1. LINAGE Clause and Logical Page Depth

If the FOOTING phrase is specified and the value of data-name-6 or integer-6
is equal to the LINAGE value of data-name-5 or integer-5, one line (the last
line of the logical page) is available for footing information. If the FOOTING
phrase is not specified, no footing area is provided at the end of the logical
page, even though the default FOOTING value is data-name-5 or integer-5.

Data-name-5, data-name-6, data-name-7, and data-name-8 cause the following
actions to take place:

® Their values at the time an OPEN OUTPUT is executed are used to
determine the page body, the first footing line, the top margin, and the
bottom margin for the first logical page only.

e Their values at the time a WRITE ADVANCING statement causes page
ejection are used to determine the page body, first footing line, top
margin, and bottom margin for the next succeeding logical page only.

LINAGE-COUNTER Special Register: For each FD entry containing a
LINAGE clause, a separate LINAGE-COUNTER special register is generated.
LINAGE-COUNTER is initialized to one when an OPEN statement for this file is
executed. LINAGE-COUNTER is automatically modified by any WRITE
statement for this file.

If more than one FD has a LINAGE clause, then when LINAGE-COUNTER
special register is referred to in the PROCEDURE DIVISION, the user must
qualify each LINAGE-COUNTER with its related file-name. For example,
LINAGE~COUNTER OF FILE-A.

The value in L INAGE-COUNTER at any given time is the line number at
which the device is positioned within the current page. LINAGE-COUNTER
can be referred to in Procedure Division statements; L INAGE-COUNTER must
not be modified by these statements.

Chapter 4. Data Division 4-15

CODE-SET Clause

4-16

The CODE-SET clause is valid only for files assigned to TAPEFILE or
DISKETTE. This clause specifies the character code that is used to represent
data on a magnetic tape file or diskette file.

Format

[CODE-SET IS alphabet-name]

When the CODE-SET clause is specified, the following rules apply:

o Alphabet-name identifies the character code convention that is used to
represent data on the input/output device.

e All data in this file must have USAGE DISPLAY.

e If signed numeric data is present, it must be described by the SIGN IS
SEPARATE clause.

e Alphabet-name must be defined in the SPECIAL -NAMES paragraph as
STANDARD-1 for ASCII encoded files or as NATIVE for EBCDIC
encoded files.

The CODE-SET clause specifies the algorithm for converting the character
codes on the input/output medium from or to the internal EBCDIC
character set.

| IBM Extension 1

If the CODE-SET clause is omitted, the CODE parameter of the Create
Diskette File (CRTDKTF) or the Create Tape File (CRTTAPF) CL command is
used.

The CODE-SET clause can be changed at execution time by specifying the
CODE parameter on the Override with Diskette File (OVRDKTF) or the
Override with Tape File (OVRTAPF) CL. command. See the CL Reference
Manual for more information on these commands.

| End of IBM Extension

9

Data Description

C

All the data used in a COBOL program is described using a uniform system
of representation. The basic concepts of data description are discussed in
this chapter, as well as the actual COBOL clauses used to describe data.

Data Description Concepts

Most of the data processed by a COBOL program is presented in
hierarchically arranged records. This is necessary because most data must
be divided into subdivisions for processing. To subdivide such records,
COBOL uses a hierarchical concept of levels.

For example, in a department store’s customer file, one complete record
could contain all data pertaining to one customer. Subdivisions within that
record could be: customer name, customer address, account number,
department number of sale, unit amount of sale, dollar amount of sale,
previous balance, and other pertinent information.

Level Concepts

Because records must be divided into logical subdivisions, the concept of
levels is inherent in the structure of a record. Once a record has been
subdivided, it can be further subdivided to provide more detailed data
references.

| - The basic subdivisions of a record (that is, those fields that are not further
subdivided) are called elementary items. Thus, a record can be made up of
a series of elementary items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items. Thus,
elementary items can be combined into group items. Groups can be
combined into a more inclusive group that contains two or more subgroups.
Thus, within one hierarchy of data items, an elementary item can belong to
more than one group item.

Chapter 4. Data Division 4-17

Level-Numbers

A system of level-numbers specifies the organization of elementary and J
group items into records. Special level-numbers are also used to identify
data items used for special purposes.

Each group and elementary item in a record requires a separate entry, and
each must be assigned a level-number. The following level-numbers are
used to structure records:

01 This level-number specifies the record itself and is the
most inclusive level-number possible. A level-01 entry can
be either a group item or an elementary item.

02-49 These level-numbers specify group and elementary items
within a record. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers.

A group item includes all group and elementary items following it until a
level-number less than or equal to the level-number of this group is
encountered.

All elementary or group items immediately subordinate to one group item
must be assigned identical level-numbers that are higher than the
level-number of this group item.

| IBM Extension l

Elementary items or group items that are immediately subordinate to one ')
group item can have unequal level-numbers. For example, group item A
consists of items B, C, and D:

01

[sleleh-J
NSO
ooOw
ja=lavine]

I
I
I

elwle]
O >< ><

(4).
(20) .
9.

IBM does not recommend such coding practices, and this extension is
provided only for compatibility.

| End of IBM Extension J

Figure 4-2 illustrates the level-number concept. Notice that all groups
immediately subordinate to the level-01 entry have the same level-number.
Notice also that elementary items from different subgroups do not
necessarily have the same level-number, and that elementary items can be
specified at any level within the hierarchy. Figure 4-2 shows the COBOL
record-description entry in the left portion of the figure; it shows the
subdivision of the entry in the right portion of the figure.

Note: Level-numbers 01 through 09 can also be writien as 1 through 9.

4-18

C

The items included in the
nierarchy of each level are

The COBOL record description entry is written as follows: indicated below:
01 RECORD-ENTRY. This entry includes:—
05 GROUP-1. - This entry includes:—
10 SUBGROUP-1. This entry includes: —

156 ELEM-1 PIC
15 ELEM-2 PIC

10 SUBGROUP-2. This entry includes:—

15 ELEM-3 PIC

15 ELEM4 PIC

05 GROUP-2. This entry includes:—

15 SUBGROUP-3. This entry includes:

25 ELEM-5 PIC
25 ELEM-6 PIC

15 SUBGROUP4 PIC This entry includes itself.

05 GROUP3 PIC This entry includes itself.

The storage arrangement is illustrated below:

RECORD-ENTRY

GROUP-1 GROUP-2 ————|

je—SUBGROUP-1

+——SUBGROUP-2 je——SUBGROUP-3——+]

ELEM-1 ELEM-2 ELEM-3 ELEM4 ELEM-5 ELEM-6 SUBGROUP-4 | GROUP-3

Figure 4-2. Level-Number Concepts

Chapter 4. Data Division 4-19

Special Level-Numbers

Special level-numbers identify items that do not structure a record. The J
following are special level-numbers:

66 This level-number identifies elementary or group items
described by a RENAMES clause. Such items regroup
previously defined data items.

77 This level-number identifies independent data description
entries in the Working-Storage or Linkage Section. These
items are not subdivisions of other items, and are not
themselves subdivided.

88 This level-number identifies any condition-name entry
that is associated with a particular value or values of a
conditional variable. An example is given under “VALUE
Clause” in this chapter.

Note: Level-77 and level-01 entries in the Working-Storage Section and
Linkage Section must be given unique data-names because neither can be
qualified. If subordinate data-names can be qualified, they need not be
unique.

Indentation

Successive data description entries can begin in the same column as

preceding entries, or they can be indented according to level-number.

Indentation is useful for documentation, but it does not affect the action of !
the compiler. J

Classes of Data

All data used in a COBOL program can be divided into four classes and six
categories. Every elementary item in a program belongs to one of the
classes as well as one of the categories. Every group item belongs to the
alphanumeric class even if the subordinate elementary items belong to
another class and category. Figure 4-3 shows the relationship of data
classes and categories.

| IBM Extension |

Boolean data is an IBM extension that provides a means of modifying and
passing the values of the indicators associated with the display screen
formats. A Boolean value of 0 is the off status of the indicator, and a
Boolean value of 1 is the on status of the indicator.

A Boolean literal contains a single 0 or 1 and is enclosed in quotes and
immediately preceded by an identifying B. The Boolean literal is defined as
either B"0" or B"1". A Boolean character occupies 1 byte. The figurative
constant ZERO can be used as a Boolean literal, and the reserved word ALL
is valid with a Boolean literal.

| End of IBM Extension l J

4-20

C

Level of Item Class Category
Elementary Alphabetic Alphabetic
Boolean Boolean
Numeric Numeric
Alphanumeric Numeric edited
Alphanumeric edited
Alphanumeric
Group Alphanumeric Alphabetic
Boolean
Numeric
Numeric edited
Alphanumeric edited
Alphanumeric

Figure 4-3. Classes and Categories of Data

Standard Alignment Rules

The standard alignment rules for positioning data in an elementary item
depend on the data category of the receiving item (that is, the item into
which the data is placed).

Numeric Items: When a numeric item is the receiving item, the following
rules apply:

e The data is aligned on the assumed decimal point (PICTURE character V)
and, if necessary, truncated or padded with zeros. (An assumed decimal
point is one that has logical meaning but does not exist as a character
in the data.)

e If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated as in the
preceding rule.

Numeric Edited Items: The data is aligned on the decimal point and, if
necessary, truncated or padded with zeros at either end, except when

editing causes replacement of leading zeros.

Alphanumeric, Alphanumeric Edited, Alphabetic: For these data
categories, the following rules apply:

e The data is aligned at the leftmost character position and, if necessary,
truncated or padded with spaces at the right.

e If the JUSTIFIED clause is specified for this receiving item, the above
rule is modified as described in the JUSTIFIED clause.

Chapter 4. Data Division 4-21

Standard Data Format

COBOL makes data description as machine independent as possible. For
this reason, the properties of the data are described in a standard data
format rather than a machine-oriented format.

The standard data format uses the decimal system to represent numbers no
matter what base is used by the system. The nonnumeric data can contain
any characters that are in the native character set, that is, nonnumeric
data is not limited to just the COBOL character set or the nonnumeric
COBOL characters.

Character-String and Item Size

Signed Data

4-22

In COBOL, the size of an elementary item is determined through the
number of character positions specified in its PICTURE character-string. In
storage, however, the size is determined by the actual number of bytes the
item occupies as determined by the combination of its PICTURE
character-string and its USAGE clause.

When an arithmetic item is moved from a longer field to a shorter one, the
compiler truncates the data to the number of characters represented in the
shorter item’s PICTURE character-string.

For example, if a sending field with PICTURE S99999 and containing the
value +12345 is moved to a COMPUTATIONAL receiving field with PICTURE
S99, the data is truncated to +45.

There are two categories of algebraic signs used in COBOL: operational and
editing.

Operational Signs

Operational signs (+, -) are associated with signed numeric items and
indicate their algebraic properties. The internal representation of an
algebraic sign depends on the item’s USAGE clause and optionally upon its
SIGN clause. Zero is considered a unique value regardless of the
operational sign. An unsigned field is always assumed to be positive or
Zero.

Editing Signs
Editing signs are associated with numeric edited items. Editing signs are

PICTURE symbols (+, -, CR, DB) that identify the sign of the item in edited
output.

9

Record Description Entry

A record description entry consists of one or more data description entries.
The maximum length of a record description entry is restricted to 32 767
bytes.

Data Description Entry

A data description entry specifies the characteristics of a particular data
item. The maximum length for any item that is not otherwise restricted is
32 767 bytes. The general formats are:

Format 1

level-number data-name-1
evel-num FILLER

[REDEFINES data-name-2]

— M}m character-strin]
| \pic i i

r DISPLAY 3
COMPUTATIONAL
comp
COMPUTATIONAL-3
COMP-3
COMPUTATIONAL-4

[USAGE |s])

| INDEX_

e

LEADING
[SIGN 1] {TRNL'NG} [SEPARATE CHARACTER]]

integer-1 TO integer-2 TIMES DEPENDING ON data~name-3}

OCCURS {integer-2 TIMES

.

ASCENDING
[{DESCENDING} KEY IS data-name-4 [, data-name-5] ..] .

e —— e —— —
| SYNCHRONIZED LEFT
L SYNC RIGHT

JUSTIFIED
[{JUST } RIGHT]

[BLANK WHEN ZERO]

[VvALUE isiteral] .

Chapter 4. Data Division 4-23

Format 2

J

66 data-name-1 RENAMES data-name-2 [{W} data-name-3] .

Format 3

VALUES ARE THRU

. THROUGHY ..
[Iltera|-3 [{THRU }Ilteral-4]] e e e

88 condition-name { VALUE IS } literal-1 [{w} Iiteral-2]

4-24

IBM Extension]

Format 4— Boolean Data

data-name-1
level-number

FILLER

[R EDEFINES data-name-2]

[(PICTURE
{EIQ }'S 1]

[[USAGE 1] DISPLAY]

OCCURS {!nteger-1 TO integer-2 TIMES DEPENDING ON data‘name-3}
— Linteger-2 TIMES

.

[INDEXED BY index-name-1 [} index-name-2] . .]]

[~ (INDICATOR
{INDICATO RS} integer-3
| UINDIC

\-— — — — — - 1

([rsyncHrRONIZEDY [LEFT 71!
I \syne RIGHT |]!
' |
\ p—

I fJUSTIFIED |
|| Vot RIGHT |
b= —_ o _ 1
[VALUE IS BooIean-IiteraI] .

End of IBM Extension

Chapter 4. Data Division 4-25

Format 1

This format is used for record description entries in all sections and for
level-77 entries in the Working-Storage and Linkage Sections. The
following rules apply:

® Level-number can be any number from 01 through 49 or 77.
Level-numbers from 01 through 09 can be coded as 1 through 9.
® The clauses can be written in any order, with two exceptions:
— The data-name/FILLER clause must immediately follow the
level-number.
— When specified, the REDEFINES clause must immediately follow the
data-name clause.
e The PICTURE clause must be specified for every elementary item excebt
index data items.
e The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and SYNCHRONIZED clauses
are valid only for elementary items.
e Either a space, or a comma or a semicolon followed by a space, must
separate clauses.
e Each entry must end with a period followed by a space.
Format 2

This format regroups previously defined items. The following rules apply:

A level-66 entry cannot rename another level-66 entry, nor can it
rename a level-01, level-77, or level-88 entry.

All level-66 entries associated with one record must immediately follow
the last data description entry in that record.

The entry must end with a period followed by a space.

See “RENAMES Clause” later in this chapter for a further description.

Format 3

This format describes condition-names. A condition-name is a user-specified
name that associates value(s) and/or a range(s) of values with a conditional
variable.

A conditional variable is a data item that can assume one or more values
that can, in turn, be associated with a condition-name. The following rules
for condition-name entries apply:

4-26

Any entry beginning with level-number 88 is a condition-name entry.

9

Level-Numbers

The condition-name entries associated with a particular
conditional-variable must immediately follow the conditional variable
entry. The conditional variable can be any elementary data description
entry except another condition-name, index data item, or level-66 entry.

A condition-name can be associated with a group item data description
entry. The following rules apply:

— The condition-name value must be specified as a nonnumeric literal
or figurative constant.

— The size of the condition-name value must not exceed the sum of the
sizes of all the elementary items within the group.

— No element within the group may contain a JUSTIFIED or
SYNCHRONIZED clause.

— No USAGE other than USAGE IS DISPLAY may be specified within the
group.

Condition-names can be specified both at the group level and at
subordinate levels within the group.

The relation test implied by the definition of a condition-name at the
group level is performed in accordance with the rules for comparison of
nonnumeric operands regardless of the nature of elementary items
within the group.

Either a space or a comma or a semicolon followed by a space, must
separate successive operands.

Each entry must end with a period followed by a space.

Examples of both elementary and group condition-name entries are given
under “VALUE Clause” in this chapter.

Format 4 —Boolean Data

See Chapter 7 for a discussion of this format.

The level-number specifies the hierarchy of data within a record and also
identifies special-purpose data entries.

Format

level-number

The following rules for level-numbers apply:

A level-number begins a data description entry, a regrouped item, or a
condition-name entry.

Level-numbers 01 and 77 must begin in Area A.

Chapter 4. Data Division 4-27

e Level-numbers 02-49, 66, and 88 can begin in either Area A or Area B
and must be followed by a space.)

e Single-digit level-numbers 1 through 9 can be substituted for
level-numbers 01 through 09.

Data-Name or FILLER Clause

A data-name explicitly identifies the data being described; the keyword
FILLER specifies an item that is never explicitly referenced in the program.

Format

data-name
FILLER

In a data description entry, either the data-name or the keyword FILLER
must be the first word following the level-number. The data-name identifies
a data item by referring to the field, not to a particular value. This data
item can assume a number of different values during the course of a
program,

A data-name can begin anywhere in Area B. A data-name must contain at
least one alphabetic character.

Entries at level-numbers 01 and 77 in the Working-Storage and Linkage

Sections cannot be qualified, and therefore require unique data-names. J
Subordinate data-names that can be qualified do not require unique

data-names.

The keyword FILLER specifies an elementary item in a record that is never
explicitly referred to. The word FILLER can be written anywhere in Area B.

In a MOVE CORRESPONDING statement, an ADD CORRESPONDING statement, or
a SUBTRACT CORRESPONDING statement, FILLER items are ignored.

| IBM Extension |

A FILLER item can be used as a group item definition. Subordinate data
items can then be referenced by the appropriate data-name.

| End of IBM Extension |

REDEFINES Clause

The REDEFINES clause allows the same storage area to be described by
different data description entries.

Format

level-number data-name-1 REDEFINES data-name-2)

4-28

Level-number and data-name-1 are not part of the REDEFINES clause itself,
and are included in the format only for clarity.

If specified, the REDEFINES clause must be the first entry following
data-name-1.

The level-number of data-name-1 and data-name-2 must be identical and
must not be level-66 or level-88.

Data-name-1 is the redefining item and is an alternative description for the
data-name-2 area.

Data-name-2 is the redefined item.

Implicit redefinition is assumed when more than one level-01 entry
subordinate to an FD entry is written. In such level-01 entries, the
REDEFINES clause must not be specified.

Redefinition begins at data-name-2 and ends when a level-number less than
or equal to that of data-name-2 is encountered. No entry having a
level-number numerically lower than those of data-name-1 and data-name-2
can occur between these entries.

In the following example, A is data-name-2, and B is data-name-1.
Redefinition begins with B and includes the two subordinate items B-1 and
B-2. Redefinition ends when the level-05 item C is encountered.

05 A PICTURE X(6).
05 B REDEFINES A.
10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).
05 C PICTURE 99Vv99.

The data description entry for data-name-2 cannot contain a REDEFINES
clause or an OCCURS clause. However, data-name-2 can itself be
subordinate to an item that contains either clause. If data-name-2 is
subordinate to an OCCURS clause, it must not be subscripted or indexed in
the REDEFINES clause.

The redefined item, the redefining item, and any items subordinate to them
cannot contain an OCCURS DEPENDING ON clause.

When data-name-1 is specified with a level-number other than 01, it must
specify a storage area of the same size as data-name-2.

Multiple redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must immediately follow the
description of the redefined area without intervening entries that define
new character positions. Multiple redefinitions must all use the data-name
of the original entry that defined this storage area. For example:

05 A PICTURE 9999
05 B REDEFINES A P
05 C REDEFINES A P

ICTURE 9V999
ICTURE 99V99.

Data-name-1 and any subordinate entries must not contain any VALUE
clauses. This rule does not apply to condition-name entries.

Chapter 4. Data Division 4-29

4-30

Data items within an area can be redefined without their lengths being
changed. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO _PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data items can also be rearranged within an area. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO _PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 EMP-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect;
that is, redefinition does not cause any data to be erased and does not
supersede the previous description. Thus, if B REDEFINES A has been
specified, either of the two procedural statements MOVE X TO B and MOVE Y
TO A could be executed at any point in the program.

In the first case, the area described as B would assume the value of X. In
the second case, the same physical area (described now as A) would assume
the value of Y. If the second statement is executed immediately after the
first, the value of Y replaces the value of X in the one storage area.

The USAGE clause of a redefining data item need not be the same as that of
a redefined item. This does not, however, cause any change in existing
data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.

05 C REDEFINES B PICTURE S99 USAGE
COMPUTATIONAL-4.

05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configuration of the DISPLAY value 8 is 1111 0000 1111 1000.
Redefining B does not change the bit configuration of the data in the
storage area. Therefore, the two statements, ADD B TO A and ADD C TO A
give different results. In the first case, the value 8 is added to A (because B
has USAGE DISPLAY). In the second statement, the value -48 is added to A
(because C has USAGE COMPUTATIONAL-4), and the bit configuration
(truncated to 2 decimal digits) in the storage area has the binary value -48.

Unexpected results can occur when a redefining item is moved to a
redefined item (that is, if B REDEFINES C and the statement MOVE B TO Cis
executed). Unexpected results can also occur when a redefined item is
moved to a redefining item (from the previous example, unexpected results
occur if the statement MOVE C TO B is executed).

The REDEFINES clause can be specified for an item within the scope of any
area being redefined (that is, an item subordinate to a redefined item). For
example:

9

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
‘ 10 GRADE PICTURE X(4).

10 SEMI-MONTHLY-PAY PICTURE
9999Vv99.

10 WEEKLY-PAY REDEFINES
SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause can also be specified for an item subordinate to a
redefining item. For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4)
10 SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY
PICTURE 9999.

USAGE Clause

r The USAGE clause specifies the format of a data item in storage. The USAGE
clause can be specified for an entry at any level. However, if it is specified
at the group level, it applies to each elementary item in the group. The
usage of an elementary item cannot contradict the explicit usage of a group
to which the elementary item belongs.

The USAGE clause specifies the format in which data is represented in
storage. Consideration must be given to how the data is used in the
Procedure Division.

Format

r DISPLAY \
COMPUTATIONAL
comp
COMPUTATIONAL-3
COMP-3 (
COMPUTATIONAL-4
COMP-4

| INDEX)

[USAGE ls])

p
‘ When the USAGE clause is not specified at either the group or elementary
level, USAGE IS DISPLAY is assumed.

Chapter 4. Data Division 4-31

DISPLAY Phrase

The DISPLAY phrase can be explicit or implicit. It specifies that the data J
item is stored in character form, one character per 8-bit byte. This

corresponds to the form in which information is represented for keyboard

input or for printed output. USAGE IS DISPLAY is valid for the following

types of items:

Alphabetic

e Alphanumeric

e Alphanumeric edited

o Numeric edited

e Boolean

e Zoned decimal (numeric).

Alphabetic, alphanumeric, alphanumeric edited, numeric edited, and
Boolean items are discussed under “PICTURE Clause” later in this chapter.

Zoned Decimal Items: These items are sometimes referred to as external

decimal items. Each digit of a number is presented by a single byte. The

four high-order bits of each byte are zone bits; the four high-order bits of '
the low-order byte represent the sign of the item. If the number is positive, J
these four bits contain a hexadecimal F. If the number is negative, these

four bits contain a hexadecimal D. The four low-order bits of each byte

contain the value of the digit. When zoned decimal items are used for

computations, the compiler performs the necessary conversions. The

maximum length of a zoned decimal item is 18 digits.

The PICTURE character-string of a zoned item can contain only 9s, the
operational sign symbol S, the assumed decimal point V, and one or more

Ps.

Examples of zoned decimal items are shown in Figure 4-4.
Computational Phrases

The term computational refers to the following phrases of the USAGE clause:

e COMPUTATIONAL or COMP (packed decimal)

| IBM Extension

e COMPUTATIONAL-3 or COMP-3 (packed decimal).
e COMPUTATIONAL-4 or COMP-4 (binary).

| End of IBM Extension | J

4-32

A computational item represents a value to be used in arithmetic operations
and must be numeric. If the USAGE of a group item is described with any of
these options, it is the elementary items within the group that have this
usage. The group itself is considered nonnumeric and cannot be used in
numeric operations. The maximum length of a computational item is 18
decimal digits.

The PICTURE of a computational item can contain only:

9 (one or more numeric character positions)

S (one operational sign)

V (one implied decimal point)

P (one or more decimal scaling positions).
The COMPUTATIONAL phrase is specified for packed decimal items. Such an
item appears in storage as 2 digits per byte, with the sign contained in the 4
rightmost bits of the rightmost byte. A packed decimal item can contain
any of the digits 0 through 9 plus a sign. If the PICTURE of a packed decimal

item does not contain an S, the sign position is occupied by a bit
configuration that is interpreted as positive.

| IBM Extension |

The COMPUTATIONAL-3 phrase is specified for packed decimal items and is
considered by the compiler to be equivalent to the COMPUTATIONAL phrase.

The COMPUTATIONAL-4 phrase is specified for binary data items. Such items
have decimal equivalents consisting of the decimal digits 0 through 9, plus
a sign.

The amount of storage occupied by a binary data item depends on the
number of decimal digits defined in its PICTURE clause:

Digits in Storage
PICTURE Clause Occupied
1 through 4 2 bytes

5 through 9 4 bytes

10 through 18 8 bytes

The leftmost bit of the storage area is the operational sign.

| End of IBM Extension

Examples of packed decimal and binary items are shown in Figure 4-5.

Chapter 4. Data Division 4-33

INDEX Phrase

The USAGE IS INDEX clause specifies that the data item named has an J
indexed format and, therefore, is an index data item. The index data item is

an elementary item that can be used to save index-name values for future

reference.

The USAGE IS INDEX clause is described in detail under “TABLE
HANDLING” in Chapter 6.

4-34

Item Description Value Internal Representation*
Zoned PIC S9999 DISPLAY +1234 F1 F2 F3 F4
Decimal -1234 F1 F2 F3 D4
1234 F1 F2 F3 F4
PIC 9999 DISPLAY +1234 F1 F2 F3 F4
-1234 F1 F2 F3 F4
1234 F1 F2 F3 F4
PIC S9999 DISPLAY SIGN LEADING +1234 F1 F2 F3 F4
-1234 D1 F2 F3 F4
1234 F1 F2 F3 F4
PIC S9999 DISPLAY SIGN TRAILING SEPARATE +1234 F1 F2 F3 F4 4E
-1234 F1 F2 F3 F4 60
1234 F1 F2 F3 F4 4E
PIC S9999 DISPLAY SIGN LEADING SEPARATE +1234 4E F1 F2 F3 F4
-1234 60 F1 F2 F3 F4
1234 4E F1 F2 F3 F4
Packed PIC 89999{COMP } +1234 01 23 4F
Decimal COMP-3 -1234 01 23 4D
PIC 9999 fCOMP +1234 01 23 4F
COMP-3 -1234 01 23 4F
Binary PIC S9999 COMP4 +1234 04 D2
-1234 FB 2E
PIC 9999 COMP4 +1234 04 D2
-1234 04 D2

*The internal representation of each byte is shown as two hex digits. The bit configuration for each digit is as follows:

standard action of the compiler.

1. The leftmost bit of a binary number represents the sign: O is positive, 1 is negative.
2. Negative binary numbers are represented in twos complement form.

3. Hex 4E represents the EBCDIC character +, Hex 60 represents the EBCDIC character -.
4. Specification of SIGN TRAILING (without the SEPARATE CHARACTER option) is the equivalent of the

Hex Digit Bit Configuration Hex Digit Bit Configuration
0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 Cc 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 111

Notes:

Figure 4-4. Internal Representation of Numeric Items

Chapter 4. Data Division

4-35

SIGN Clause

4-36

The SIGN clause specifies the position and mode of representation of the
operational sign for a numeric entry.

Format

LEADING
[[SIGN 1s] {TRA”_'NG} [SEPARATE CHARACTER]]

The SIGN clause can be specified only for a signed numeric data description
entry (that is, one whose PICTURE character-string contains an S), or for a
group item that contains at least one such elementary entry. USAGE IS
DISPLAY must be specified either explicitly or implicitly.

Only one SIGN clause can apply to any one data description entry. The
SIGN clause is required only when an explicit description of the properties
and/or position of the operational sign is necessary.

The SIGN clause defines the position and mode of representation of the
operational sign for the numeric data description entry to which it applies,
or for each signed numeric data description entry subordinate to the group
to which it applies.

If the SEPARATE CHARACTER phrase is not specified, then:

e The operational sign is presumed to be associated with the leading or
trailing digit position (whichever is specified) of the elementary numeric
data item.

e The character S in the PICTURE charhcter-string is not counted in

determining the size of the item (in terms of standard data format
characters).

If the SEPARATE CHARACTER phrase is specified, then:

o The operational sign is presumed to be the leading or trailing character
position (whichever is specified) of the elementary numeric data item.
This character position is not a digit position.

o The character S in the PICTURE character string is counted in
determining the size of the data item (in terms of standard data format
characters).

e + is the character used for the positive operational sign.

e - is the character used for the negative operational sign.

Every numeric data description entry whose PICTURE contains the symbol
S is a signed numeric data description entry. If the SIGN clause is also

9

9

specified for such an entry and conversion is necessary for computations or
comparisons, the conversion takes place automatically.

If no SIGN clause is specified for a signed numeric data description entry,

the position and mode of representation for the operational sign is
determined as explained in the USAGE clause description.

OCCURS Clause
The OCCURS clause specifies tables whose elements can be referred to by

indexing or subscripting. This clause is described under “Data
Division — Table Handling” in Chapter 6.

INDICATOR Clause

The INDICATOR clause is discussed under “Data Description
Entry —Boolean Data” in Chapter 7.

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on
a proper boundary in storage.

The SYNCHRONIZED clause is syntax-checked, but is treated as
documentation for all items.

Format

SYNCHRONIZED [LEFT]
SYNC RIGHT

JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning rules for a receiving
item of the alphabetic or alphanumeric categories.

Format

JUSTIFIED
[{JUST } RIGHT]

The JUSTIFIED clause can be specified only at the elementary level. JUST
is an abbreviation for JUSTIFIED and has the same meaning.

Chapter 4. Data Division 4-37

The JUSTIFIED clause must not be specified for a numeric item or for any
item for which editing is specified. The JUSTIFIED clause must not be
specified with level-66 (RENAMES) or level-88 (condition-name) entries.

The JUSTIFIED clause can be specified for an alphanumeric edited item.

When the JUSTIFIED clause is specified for a receiving item, the data is
aligned at the rightmost character position in the receiving item, and:

e If the sending item is larger than the receiving item, the leftmost

characters are truncated.

e If the sending item is smaller than the receiving item, the unused

IBM Extension

End of IBM Extension

character positions at the left are filled with spaces.

When the JUSTIFIED clause is omitted, the rules for standard alignment are

followed.

The following shows the difference between standard and justified
alignment when the receiving field has a length of 5 character positions:

Sending Receiving Field
Alignment Field Value | Value
Standard THE THED b
Justified right THE b bTHE
Standard TOO b BIG TOOb B
Justified right TOO b BIG 0 b BIG

BLANK WHEN ZERO Clause

4-38

The BLANK WHEN ZERO clause specifies that an item is to be filled entirely
with spaces when its value is zero. When the data item receives a value of
zero through an explicit reference at execution time, it is set to blanks.

Format

[BLANK WHEN zERo]

The BLANK WHEN ZERO clause can be specified only for elementary numeric
or numeric edited items. When it is specified for a numeric item, the item is
considered to be a numeric edited item.

9

9

VALUE Clause

If the BLANK WHEN ZERO clause is specified, the item contains nothing but
spaces when its value is zero.

The BLANK WHEN ZERO clause must not be specified for level-66 or level-88
items.

The BLANK WHEN ZERO clause and the asterisk (*) suppression symbol must
not be specified for the same entry.

The VALUE clause specifies the initial contents of a data item, or the
value(s) associated with a condition-name. The two formats for the VALUE
clause are as follows:

Format 1
[vALUE isiterat]
Format 2

VALUES ARE THRU

. THROUGHY ..
[llteral-3 [{THRU }Ilteral-4]] ..

88 condition-name {\-/LUE IS } literal-1 [{Iﬂo—u—@ﬂ} |itera|-2]

Level-number 88 and condition-name are not part of the Format 2 VALUE
clause itself, and are included in the format only for clarity. The use of the
VALUE clause differs with the Data Division section in which it is specified.

File and Linkage Sections: The VALUE clause can only be used in
condition-name entries.

Working-Storage Section: The VALUE clause is used in condition-name
entries. It is also used to specify the initial value of any data item; the item

assumes the specified value at the beginning of program execution. If the
initial value is not explicitly specified, it is unpredictable.

General Considerations
The keywords THRU and THROUGH are equivalent.
The VALUE clause must not be specified for any item whose length is

variable; that is, it is a group item that has an OCCURS DEPENDING ON
clause subordinate to it.

Chapter 4. Data Division 4-39

4-40

For group entries, the VALUE clause must not be specified if the entry or an
entry subordinate to it contains any of the following clauses: JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY).

The VALUE clause must not conflict with other clauses in the data
description entry or in the data description of this entry’s hierarchy. The
following rules apply:

e Wherever a literal is specified, a figurative constant can be substituted.

e If the item is numeric, all VALUE clause literals must be numeric literals.
If the literal defines the value of a Working-Storage item, the literal is
aligned according to the rules for numeric moves with one additional
restriction: the literal must not have a value that requires truncation of
nonzero digits. If the literal is signed, the associated PICTURE
character-string must contain a sign symbol (8S).

e All numeric literals in a VALUE clause of an item must have a value that
is within the range of values indicated by the PICTURE clause for that
item. For example, for PICTURE 99PPP, the literal must be zero or
within the range 1000 through 99000. For PICTURE PPP99, the literal
must be within the range .00000 through .00099.

e If the item is an alphabetic, alphanumeric, alphanumeric edited, or
numeric edited item, all VALUE clause literals must be nonnumeric
literals. The number of characters in the literal must not exceed the
size of the item.

I IBM Extension I

e If the item is Boolean, the VALUE clause literal must be a Boolean
literal.

| End of IBM Extension

e The functions of the editing characters in a PICTURE clause are ignored
in determining the initial appearance of the item described. However,
editing characters are included in determining the size of the item.
Therefore, any editing character must be included in the literal. For
example, if the item is defined as PICTURE +999.99 and the value is to
be +12.34, then the VALUE clause should be specified as VALUE
”+012.34".

e A maximum of 32 767 bytes can be initialized by means of a single
VALUE clause.

9

Format 1 Considerations

This format specifies the initial value of a data item in storage.
Initialization is independent of any BLANK WHEN ZERO or JUSTIFIED clause
specified.

A Format 1 VALUE clause must not be specified for an entry that contains or
is subordinate to an entry that contains a REDEFINES or OCCURS clause.

If the VALUE clause is specified at the group level, the literal must be a
nonnumeric literal or a figurative constant. The group area is initialized
without consideration for the subordinate entries within this group. In
addition, the VALUE clause must not be specified for subordinate entries
within this group.

Format 2 Considerations

This format associates a value, values, and/or range(s) of values with a
condition-name. Each such condition-name requires a separate level-88
entry.

The VALUE clause is required in a condition-name entry and must be the
only clause in the entry. Eac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>