
----- - -------

--...-- 5C21-7718-7

-. --- - - --- File No. 538-24

SC21-7718-7-.--- -.. - ---..-- File No. S38-24

-~-_ -.~---- -- - _.

IBM System/3S

IBM System/38
COBOL
Reference Manual
and Programmer's Guide

Program Number 5714-CBl

Eighth Edition (November 1986)

This major revision obsoletes SC21-7718-6.

Changes are periodically made to the information herein; any

such changes will be reported in subsequent revisions. Changes

or additions to the text and illustrations are indicated by a

vertical line to the left of the change or addition.

This edition applies to Release 8, Modification Level 0, of IBM

System/38 COBOL Program Product (Program 5714-CB1) and to

all subsequent releases and modifications until otherwise

indicated in new editions.

References in this publication to IBM products, programs, or

services do not imply that IBM intends to make these available in

all countries in which IBM operates. Any reference to an IBM

program product in this publication is not intended to state or

imply that only IBM's program product may be used. Any

functionally equivalent program may be used instead.

This publication contains examples of data and reports used in

daily business operations. To illustrate them as completely as

possible, the examples include the names of individuals,

companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by

an actual business enterprise is entirely coincidental.

Publications are not stocked at the address given below.

Requests for IBM publications should be made to your IBM

representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this

publication. If the form has been removed, comments may be

addressed to

IBM Canada Ltd.

Information Development,

Department 849,

895 Don Mills Road,

North York, Ontario, Canada. M3C lW3

IBM may use or distribute whatever information you supply in

any way it believes appropriate without incurring any obligation

to you.

© Copyright International Business Machines Corporation 1980,

1981, 1982, 1983, 1984, 1985, 1986

Contents

About This Manual xi

Purpose of This Manual Xl

Organization of This Manual Xl

Summary of Changes Xll

What You Should Know Xlll

If You Need More Information Xlll

Industry Standards XIV

Acknowledgment xv

Chapter 1. Introduction •..••...•.. 1-1

General Description 1-1

Language Level 1-1

Compiler Features 1-3

Format Notation 1-4

Chapter 2. Language Considerations 2-1

COBOL Program Structure 2-1

The COBOL Divisions 2-1

Clauses and Statements 2-2

Clause and Statement Specification

Order 2-2

Structure of the Language 2-3

Character-Strings 2-4

COBOL Words 2-4

Literals 2-8

PICTURE Character-Strings 2-10

Comments 2-10

Separators 2-10

Standard COBOL Format 2-11

Sequence Numbers (Columns 1-6) .. 2-11

Continuation Area (Column 7) 2-12

Area A (Columns 8-11) and Area B

(Columns 12-72) 2-12

Special Considerations 2-14

Division Header 2-14

Section Header 2-14

Paragraph Header, Paragraph-Name 2-14

Data Division Entries 2-14

DECLARATIVES and END

DECLARATIVES 2-15

Program Spacing 2-15

Indentation 2-15

Continuation of Lines 2-15

Comment Lines 2-16

Debugging Lines 2-16

Blank Lines 2-16

Overall Punctuation Rules 2-16

Identification Division 2-16

Environment Division 2-17

Data Division 2-17

Procedure Division 2-17

Methods of Data Reference 2-17

Qualification 2-17

Qualification Rules 2-19

Subscripting and Indexing 2-20

Identifier 2-20

Condition-Name 2-21

Explicit and Implicit References 2-21

Data Attribute Specification 2-21

Procedure Division Data References 2-22

Transfers of Control 2-22

Chapter 3. Identification and

Environment Divisions•..... 3-1

IDENTIFICATION DIVISION 3-1

Coding Example 3-2

PROGRAM-ID Paragraph 3-2

Other Optional Paragraphs 3-3

ENVIRONMENT DIVISION 3-3

Coding Example 3-4

Configuration Section 3-4

SOURCE-COMPUTER Paragraph 3-6

OBJECT-COMPUTER Paragraph 3-6

MEMORY SIZE Clause 3-6

PROGRAM COLLATING SEQUENCE

Clause 3-6

SEGMENT-LIMIT Clause 3-6

SPECIAL-NAMES Paragraph 3-7

Function-Name-l Clause 3-7

Function-Name-2 Clause 3-8

Coding Example 3-9

Alphabet-Name Clause 3-9

CURRENCY SIGN Clause 3-12

DECIMAL-POINT IS COMMA

Clause 3-12

Input-Output Section 3-12

Files 3-12

Data Base Files 3-12

Contents 111

Device Files 3-13

DDM Files 3-13

Paragraphs 3-13

File Processing Summary 3-14

Data Organization 3-14

Access Modes 3-15

Access Mode Allowed for Each File

Type 3-16

FILE-CONTROL Paragraph 3-16

FILE-CONTROL Paragraph - General

Considerations 3-18

SELECT Clause 3-19

ASSIGN Clause 3-19

RESERVE Clause 3-21

ORGANIZATION Clause 3-22

ACCESS MODE Clause 3-23

RECORD KEY Clause (Indexed File) 3-24

FILE STATUS Clause 3-26

I-O-CONTROL Paragraph 3-27

RERUN Clause 3-28

SAME Clause 3-28

MULTIPLE FILE TAPE Clause ... 3-29

COMMITMENT CONTROL Clause 3-29

Chapter 4. Data Division .•........ 4-1

Data Division Concepts 4-1

External Data 4-1

Internal Data 4-2

Data Relationships 4-2

Data Division Organization 4-2

Coding Example 4-3

Sample Data Division Entries 4-4

File Section 4-5

Working-Storage Section 4-5

Linkage Section 4-6

File Description Entry 4-6

File-Name 4-10

BLOCK CONTAINS Clause 4-10

RECORD CONTAINS Clause 4-11

LABEL RECORDS Clause 4-12

VALUE OF Clause 4-12

DATA RECORDS Clause 4-13

LINAGE Clause 4-13

CODE-SET Clause 4-16

Data Description 4-17

Data Description Concepts 4-17

Level Concepts 4-17

Level-Numbers 4-18

Special Level-Numbers 4-20

Indentation 4-20

Classes of Data 4-20

Standard Alignment Rules 4-21

Standard Data Format 4-22

Character-String and Item Size 4-22

Signed Data 4-22

Operational Signs 4-22

Editing Signs 4-22

Record Description Entry 4-23

Data Description Entry 4-23

Format 1 4-25

Format 2 4-26

Format 3 4-26

Format 4 - Boolean Data 4-27

Level-Numbers 4-27

Data-Name or FILLER Clause 4-27

REDEFINES Clause 4-28

USAGE Clause 4-31

DISPLAY Phrase 4-31

Computational Phrases 4-32

INDEX Phrase 4-33

SIGN Clause 4-35

OCCURS Clause 4-36

INDICATOR Clause 4-36

SYNCHRONIZED Clause 4-36

JUSTIFIED Clause 4-36

BLANK WHEN ZERO Clause 4-37

VALUE Clause 4-38

General Considerations 4-38

Format 1 Considerations 4-40

Format 2 Considerations 4-40

PICTURE Clause 4-41

Symbols Used in the PICTURE

Clause 4-42

PICTURE Clause Editing 4-49

RENAMES Clause 4-54

Chapter 5. Procedure Division 5-1

Procedure Division Concepts 5-1

Declaratives 5-1

Procedures 5-1

Procedure Division Organization 5-2

Categories of Sentences 5-3

Categories of Statements 5-4

Categories of Expressions 5-5

Sample Procedure Division Statements 5-6

Arithmetic Expressions 5-6

Arithmetic Operators 5-7

Conditional Expressions 5-8

Simple Conditions 5-9

Class Condition 5-9

Condition-Name Condition 5-10

Relation Condition 5-11

Sign Condition 5-14

Switch-Status Condition 5-14

Complex Conditions 5-15

Negated Simple Conditions 5-15

Combined Conditions 5-16

IV

L
Abbreviated Combined Relation

Conditions 5-19

Declaratives 5-20

EXCEPTION/ERROR Declarative 5-21

File-Name Phrase 5-21

INPUT Phrase 5-22

OUTPUT Phrase 5-22

1-0 Phrase 5-22

EXTEND Phrase 5-22

General Considerations 5-22

Programming Notes 5-23

Conditional Statements 5-23

IF Statement 5-24

Nested IF Statements 5-25

Input/Output Statements 5-27

Common Input/Output Phrases 5-27

Status Key 5-28

INVALID KEY Condition 5-28

INTO/FROM Identifier Phrase 5-28

Current Record Pointer 5-29

DB-FORMAT-NAME Special Register 5-30

ACCEPT Statement 5-30

Format 1 Considerations 5-31

Format 2 Considerations 5-33

Format 3 Considerations 5-33

Format 4 Considerations 5-34

Programming Notes 5-34

ACQUIRE Statement 5-34

CLOSE Statement 5-35

COMMIT Statement 5-39

DELETE Statement 5-40

DISPLA Y Statement 5-43

Format 1 Considerations 5-44

Format 2 Considerations 5-47

DROP Statement 5-47

OPEN Statement 5-47

READ Statement 5-52

REWRITE Statement 5-61

ROLLBACK Statement 5-65

START Statement 5-66

WRITE Statement 5-72

Arithmetic Statements 5-80

Arithmetic Statement Operands 5-80

Size of Operands 5-80

Overlapping Operands 5-81

Multiple Results 5-81

Common Phrases 5-82

CORRESPONDING Phrase 5-82

GIVING Phrase 5-83

ROUNDED Phrase 5-83

SIZE ERROR Phrase 5-84

ADD Statement 5-84

COMPUTE Statement 5-85

DIVIDE Statement 5-86

MULTIPLY Statement 5-88

SUBTRACT Statement 5-89

Data Manipulation Statements 5-90

INSPECT Statement 5-90

INSPECT 5-93

TALL YING Phrase 5-94

REPLACING Phrase 5-94

BEFORE/AFTER Phrases 5-95

INSPECT Statement Examples 5-96

MOVE Statement 5-97

General Considerations 5-98

Elementary Moves 5-98

Group Moves 5-101

Format 1 Considerations 5-102

Format 2 Considerations 5-103

SET Statement 5-103

STRING Statement 5-104

STRING Statement Execution 5-105

STRING Statement Example 5-106

UNSTRING Statement 5-109

Sending Field 5-109

Data Receiving Fields 5-110

UNSTRING Statement Execution .. 5-111

UNSTRING Statement Example ... 5-114

Procedure Branching Statements 5-116

ALTER Statement 5-116

Segmentation Information 5-117

EXIT Statement 5-117

GO TO Statement 5-118

Format 1- Unconditional GO TO .. 5-119

Format 2-Conditional GO TO 5-119

PERFORM Statement 5-119

Format 1 5-122

Format 2 5-122

Format 3 5-122

Format 4 5-123

Varying One Identifier 5-124

Varying Two Identifiers 5-126

Varying Three Identifiers 5-130

Segmentation Information 5-132

STOP Statement 5-133

Compiler-Directing Statements 5-134

ENTER Statement 5-134

Chapter 6. Additional Functions .•... 6-1

TABLE HANDLING 6-1

Table Handling Concepts 6-1

Table Definition 6-2

Table References 6-4

Subscripting 6-4

Indexing 6-6

Restrictions on Subscripting and

Indexing 6-7

Table Initialization 6-7

Contents

l
V

Data Division - Table Handling 6-9

OCCURS Clause 6-9

Fixed Length Tables 6-11

Variable Length Tables 6-11

ASCENDING/DESCENDING KEY

Phrase 6-12

INDEXED BY Phrase 6-13

USAGE IS INDEX Clause 6-13

Procedure Division - Table Handling ... 6-14

Relation Conditions 6-14

SEARCH Statement 6-15

Format 1 6-17

Format 2 6-18

Programming Notes 6-20

SEARCH Example 6-20

SET Statement 6-22

Format 3 6-23

Format 4 6-24

SORT/MERGE 6-25

Sort/Merge Concepts < •• 6-25
•

Sort Concepts 6-26

Merge Concepts 6-27

Environment Division - SORT/MERGE 6-27

File-Control Paragraph 6-27

I-O-Control Paragraph 6-27

Data Division-SORT/MERGE 6-28

Procedure Division - SORT/MERGE 6-28

MERGE Statement 6-29

SORT Statement _.. 6-29

MERGE Statement and SORT

Statement Phrases 6-30

ASCENDING/DESCENDING KEY

Phrase 6-30

COLLATING SEQUENCE Phrase 6-31

USING Phrase 6-32

GIVING Phrase 6-32

SORT INPUT PROCEDURE Phrase 6-33

SORT/MERGE OUTPUT

PROCEDURE Phrase _.. 6-34

SORT or MERGE INPUT/OUTPUT

PROCEDURE Control 6-35

RELEASE Statement (Sort Function

Only) 6-36

RETURN Statement 6-36

SORT/MERGE Programming Notes .. 6-37

SOURCE PROGRAM LIBRARY 6-39

COPY Statement 6-39

Data Field Structures 6-43

Floating Point Fields 6-43

Indicator Structures 6-44

Externally Described COpy

Statement, DDS Format, and DD

Format Considerations 6-45

REPLACING Phrase 6-47

COpy Statement Example 6-49

SEGMENTATION FEATURE 6-50

Segmentation Concepts 6-50

Program Segments 6-50

Fixed Segments 6-50

Independent Segments 6-51

Segmentation Logic 6-51

Segmentation Control 6-52

COBOL Source Program Considerations 6-52

Segmentation - Environment Division 6-52

Segmentation - Procedure Division 6-53

Segmentation - Special Considerations 6-53

ALTER Statement 6-53

PERFORM Statement 6-54

SORT and MERGE Statements 6-54

Calling and Called Programs 6-54

INTER-PROGRAM COMMUNICATION

FEATURE 6-54

Inter-Program Communication Concepts 6-55

Transfers of Control 6-55

Common Data 6-55

COBOL Language Considerations 6-56

Data Division - Inter-Program

Communication 6-56

Record Description Entries 6-58

Data Item Description Entries 6-58

Procedure Division - Inter-Program

Communication 6-58

CALL Statement 6-59

USING Phrase 6-60

CPF Graphics Support 6-61

CANCEL Statement 6-62

EXIT PROGRAM Statement 6-63

STOP RUN Statement 6-64

Inter-Program Communication Feature

Examples 6-64

DEBUGGING FEATURES 6-66

COBOL Source Language Debugging .. . 6-66

Compile-Time Switch 6-66

Execution-Time Switch 6-67

USE FOR DEBUGGING Declarative 6-68

DEBUG-ITEM Special Register 6-70

Debugging Lines 6-72

FIPS FLAGGER 6-73

Chapter 7. TRANSACTION Files (IBM

Extension)•....... 7-1

Externally Described Transaction File ... 7-1

Processing an Externally Described

TRANSACTION File 7-4

Indicators 7-4

Indicators in the Record Area 7-5

Indicators in a Separate Indicator Area 7-5

VI

l

ASSIGN Clause with Separate Indicator

Area Attribute 7-6

Data Description Entry- Boolean Data 7-6

Special Considerations 7-7

INDICATOR Attribute of the COpy

Statement, DDS Format or DD

Format 7-7

INDICATORS Phrase 7-9

Indicators in the Record Area 7-9

Indicators in a Separate Indicator Area 7-10

Indicators Sample Programs 7-10

Subfiles 7-22

Use of Subfiles 7-24

Multiple Device Files and Single Device

Files 7-28

Program Described Transaction Files ... 7-39

Environment Division 7-39

File-Control Entry 7-39

ASSIGN Clause 7-39

ORGANIZATION Clause 7-40

ACCESS MODE Clause 7-41

RELATIVE KEY Clause 7-41

FILE STATUS Clause 7-41

CONTROL-AREA Clause 7-42

Data Division 7-43

File Description Entry 7-43

Boolean Data Facilities 7-44

Procedure Division 7-44
l ACCEPT Statement 7-44

Attribute Data Formats 7-45

ACQUIRE Statement 7-45

CLOSE Statement 7-46

DROP Statement 7-47

OPEN Statement. 7-47

Common Processing Facilities 7-48

FORMAT Phrase 7-48

DB-FORMAT-NAME Special Register 7-48

INDICATORS Phrase 7-49

SUBFILE Phrase 7-49

TERMINAL Phrase 7-49

READ Statement 7-50

Format 1 7-50

Format 2 7-55

REWRITE Statement 7-58

WRITE Statement 7-60

Format 1 7-60

Format 2 7-63

USE Statement 7-66

Work Station Sample Programs 7-66

Chapter 8. Creating and Executing

Programs ..••••.............•• 8-1

Entering the Source Program into the

System 8-1

Using SEU to Enter Source 8-2

Using SEU to Browse through a

Compiler Listing 8-4

Compiling the Source Program 8-5

Compiler Options 8-6

Create COBOL Program Command 8-6

PROCESS Statement 8-13

Batch Compiles 8-15

Using COpy within the PROCESS

Statement 8-15

Compiler Output 8-16

Command Summary 8-16

Compiler Options 8-17

Source Listing 8-17

Verb Usage by Count Listing 8-20

Data Division Map 8-20

FIPS Messages 8-22

Cross-Reference List 8-23

Messages 8-24

How to Execute a COBOL Program 8-25

Chapter 9. Programmer's Guide

Information •..................• 9-1

Device Independence/Device Dependence 9-2

Spooling 9-4

Output Spool 9-4

Input Spool 9-4

Level Checking 9-5

File and Record Locking by COBOL 9-5

Releasing a Record Read for Update ... 9-6

Unblocking Input Records and Blocking

Output Records 9-6

Multiple Member Processing 9-7

System Override Considerations 9-7

Externally Described/Program Described

Files 9-8

Externally Described Files 9-10

Record Format Specifications 9-11

Access Path 9-15

Record Keys and Common Keys ... 9-15

COBOL Specifications for Externally

Described Files 9-16

Overriding or Adding COBOL

Functions to the External

Description 9-18

Program Described Files 9-20

Specific COBOL File Processing 9-21

Printer File Considerations 9-21

SPECIAL-NAMES Paragraph and the

ADVANCING Phrase 9-21

LINAGE Clause 9-21

FORMATFILE Files 9-22

Card File Considerations 9-29

Specifying the Function 9-29

Contents Vll

Nonassociated Card Files 9-29

Associated Card File 9-30

Stacker Selection 9-30

Hopper Selection 9-30

DISK and DATABASE File

Considerations 9-31

DATABASE versus DISK Files 9-31

Processing Methods for DISK and

DATABASE Files 9-31

Referring to a Partial Key 9-33

Logical File Considerations 9-36

File Processing Methods 9-40

Descending File Considerations 9-41

Commitment Control Considerations 9-44

Exceptions and Some of Their Causes 9-52

System/38 COBOL Programming

Considerations 9-53

Performance Considerations 9-53

Segmentation 9-53

Debugging 9-53

Data Formats 9-53

*NORANGE Option 9-53

Indicators 9-53

Commitment Control 9-54

Program Loops 9-54

Tracing a Loop in a Program 9-54

Errors That Can Cause a Loop 9-54

Recovery after a Failure 9-55

Recovery with Commitment Control 9-55

Communications Recovery 9-55

System/38 Inter-Program Communication

Considerations 9-60

Return of Control From a Called

Program 9-61

Initialization of Storage 9-61

Local Data Area 9-65

File Considerations 9-65

Chapter 10. Testing and Debugging

COBOL Programs 10-1

Using a Test Library 10-1

Testing 10-2

Normal 10-3

Job 10-3

Using Breakpoints 10-4

Example of Using Breakpoints 10-4

Considerations for Using Breakpoints 10-8

Using a Trace 10-8

Example of Using a Trace 10-9

Considerations for Using a Trace 10-11

Using a Debug Execution-Time Switch .. 10-12

File Status 10-12

Using a COBOL Formatted Dump 10-12

Reply Modes and System Reply List 10-13

Vlll

Example of Using a Dump 10-13

Chapter 11. COBOL Problem

Determination 11-1

How to Use This Procedure 11-1

Identifying COBOL Problems 11-1

Calling for Help 11-5

Appendix A. COBOL Compiler Service

Information A-I

Compiler Overview A-I

Compiler Phases A-3

Execution-Time Subroutines A-3

Major Compiler Data Areas A-3

Compiler Error Message Organization A-3

Compiler Debugging Options A-5

DUMP Parameter A-6

ITDUMP Parameter A-6

Examples of Using Compiler Debugging

Options A-6

IRP Layout A-9

Appendix B. Summary of IBM

Extensions B-1

Character-String Considerations B-1

Identification Division B-1

Environment Division B-1

Data Division B-2

Procedure Division B-2

COpy Statement - All Divisions B-4

TRANSACTION Files B-4

Compiler Options B-5

Appendix C. Compile-Time Message

Description C-1

CAUTION C-2

Appendix D. Associated Card File

Processing D-1

Environment Division D-1

SELECT Clause D-1

ASSIGN Clause D-1

Data Division D-2

Procedure Division D-2

Appendix E. Intermediate Result

Fields E-1

Compiler Calculation of Intermediate

Results E-2

Appendix F. Sample File-Processing

Programs F-1

Sequential File Creation F-2

Sequential File Updating and Extension F-4

Indexed File Creation F-6

Indexed File Updating F-8

Relative File Creation F-l1

Relative File Updating F-13

Relative File Retrieval F-15

Appendix G. COBOL Reserved Words G-l

Appendix H. EBCDIC and ASCII

Collating Sequences H-l

EBCDIC Collating Sequence H-2

ASCII Collating Sequence H-5

Appendix I. File Structure Support

Summary and Status Key Values 1-1

Attribute Data Formats 1-10

Display Device Attribute Data 1-10

Communications Device Attribute

Data 1-10

OPEN-FEEDBACK and I-O-FEEDBACK

Data Areas 1-11

OPEN-FEEDBACK 1-11

I-O-FEEDBACK 1-11

Appendix J. Summary of Clauses and

Statements J-l

Conventions Used for Describing

Statement Formats J-l

COBOL Program Structure J-2

Process Statement J-2

Identification Division J-2

Environment Division J-2

Data Division J-3

Procedure Division - Format

1 - Declaratives Section J-3

Procedure Division - Format 2 J-3

DETAILED FORMATS J-4

Identification Division Format J-4

Environment Division Formats J-5

Configuration Section J-5

Input-Output Section J-6

Data Division Formats J-9

File Section Formats J-9

Working-Storage Section J-14

Linkage Section J-16

Procedure Division Formats J-16

Procedure Division Header J-16

Procedure Division Statements J-16

Conditional Expressions J-37

Qualification of Data Reference

Formats J-39

All Divisions J-41

Symbols Allowed in the PICTURE Clause J-43

Assignment-Names in the ASSIGN Clause J-43

Glossary GLOSS-l

Index X-I

Contents IX

x

l

About This Manual

Purpose of This Manual

This reference manual describes the System/38 COBOL (Common Business
Oriented Language) compiler and language. This manual provides
reference material and programmer guide information for persons who have
some knowledge of the COBOL language and some experience in writing
COBOL programs.

Organization of This Manual

This manual is organized as follows:

• 	 Chapters 1 through 5 describe the COBOL language and each of the
four program divisions: Identification, Environment, Data, and
Procedure. The COBOL clauses and statements available to the user
are explained.

• 	 Chapter 6 describes the additional functions of the language that are
provided through the various processing modules.

• 	 Chapter 7 describes the support of work stations and interactive
communications as a function of the COBOL compiler.

• 	 Chapter 8 describes how to create and execute programs.

• 	 Chapter 9 contains programmer's guide information.

• 	 Chapter 10 describes how to test and debug COBOL programs.

• 	 Chapter 11 contains COBOL problem determination information.

• 	 Appendix A contains compiler service information.

• 	 Appendix B summarizes IBM extensions.

• 	 Appendix C contains diagnostic level information for compiler
messages.

• 	 Appendix D describes associated card file processing.

About This Manual Xl

• Appendix E describes intermediate result fields.

• 	 Appendix F contains sample file-processing programs.

• 	 Appendix G contains COBOL reserved words.

• 	 Appendix H contains the EBCDIC and ASCII collating sequences.

• 	 Appendix I contains a file structure support summary and the status
key values.

• 	 Appendix J contains a summary of the System/38 COBOL clauses and
statements for each division.

• 	 A glossary of terms and their definitions.

To aid the user, IBM provides several extensions to American National
Standard (ANS) COBOL, X3.23-1974. The more significant extensions
include:

• 	 TRANSACTION 1-0: Used to send or receive records from a work
station.

• 	 Data Base 1-0: The System/38 COBOL programmer can define data as
he does presently. Thus, the COBOL programmer can use standard
COBOL Environment and Data Division entries to specify file
identification, field definitions, and data structures. Clauses have been
added to the READ, WRITE, REWRITE, DELETE, and START verbs to support
the System/38 data base.

• 	 COPY: Support for externally described files.

• 	 Extended data types: Computational-3 (packed decimal), and
computational-4 (binary).

• 	 Use of apostrophe instead of quotes.

Summary of Changes

The following changes have been made to this manual for COBOL release 8:

• 	 Three references have been added to the list in this prolog: one for
Distributed Data Management (DDM), one for the 3180 keyboard
template, and one for the office keyboard template.

• 	 A new section on DDM files has been added to Chapter 3.

• 	 A note on when the System/38 compiler does not generate a temporary
result field has been added to the"Arithmetic Statements" section of
Chapter 5.

Xll

I

• A paragraph on unexpected results during a MOVE operation has been
added to Chapter 5.(.1

• 	 A paragraph on replacement has been added to the "COpy Statement"
in Chapter 6.

• 	 A description of DDM has been entered into the Glossary.

• 	 The local data area is now defined outside the COBOL program as 1024
bytes of character data.

• 	 Various technical and editorial changes have been made to improve the
quality and usability of this manual.

The other updates indicated in this version of the user manual identify
corrections to the previous version, or editorial changes made to the text.
Note that the way of identifying IBM extensions has changed as described
in Chapter 1.

Note: This publication follows the convention that he means he or she.

What You Should Know

Before reading this manual, you should be familiar with the IBM System/38
Control Program Facility Concepts Manual, GC21-7729, which contains the
basic concepts of the control program facility.

If You Need More Information

You may need some or all of the following information while using this
manual:

• 	 IBM System/38 Guide to Publications, GC21-7726, which contains
information about related publications, defines terms and lists index
entries of frequently used System/38 publications.

• 	 IBM System/38 Guide to Program Product Installation and Device
Configuration, GC21-7775, which describes how to install COBOL on
your system.

• 	 IBM System/38 COBOL Reference Summary, SC21-7781, which outlines
clauses and statements used in System/38 COBOL.

• 	 IBM COBOL Coding Form, GX28-1464, which is used for coding.

• 	 IBM System/38 Source Entry Utility Reference Manual and User's Guide,
SC21-7722, which describes how to create and update source records
using SED.

About This Manual Xlll

• 	 IBM System/38 Control Program Facility Programmer's Guide,
SC21-7730, which explains how to use CPF commands and data
description specifications.

• 	 IBM System/38 Control Language Reference Manual, SC21-7731, which
describes commands and parameters that are used for various CPF
functions.

• 	 IBM System/38 Control Program Facility Reference Manual- Data
Description Specifications, SC21-7806, which describes the data
description specifications that are used for describing files.

• 	 IBM System/38 Messages Guide: COBOL, SC21-7823, which contains
additional information about COBOL messages.

• 	 IBM System/38 Concepts for the COBOL User, GC21-7855, which
introduces new extensions to COBOL for System/38.

• 	 IBM System/38 Problem Determination Guide, SC21-7876, which
contains procedures for resolving system problems that are indicated by
error messages, operator/service panel lights, interactive/batch jobs or
spooling functions that do not work as expected, or devices that do not
work as expected.

• 	 IBM System/38 Data Communications Programmer's Guide, SC21-7825,
which describes commands, parameters, and data description
specification keywords that are used for program-to-program and
system-to-device communication functions.

• 	 IBM System/38 Operator's Guide, SC21-7735, which explains the
operation of individual devices, system operation, and how to analyze
system problems.

• 	 IBM System/38 CPF Graphics Reference Manual, SC21-8007 and IBM
System/38 CPF Graphics Programmer's Guide, SC21-8006, which
describe how to use the Graphical Data Display Manager (GDDM), and
Presentation Graphics Routines (PGR).

• 	 IBM System/38 Distributed Data Management User's Guide, SC21-8036.

• 	 IBM System/38 3180 Keyboard Template, GX09-1036.

• 	 IBM System/38 Office Keyboard Template, GX09-1038.

XIV

Industry Standards

The System/38 COBOL compiler is designed according to the following
industry standards as understood and interpreted by IBM, as of June 1980:

• 	 The ANS COBOL, X3.23-1974 standard. ANS COBOL is identical to ISO
1989-COBOL, as approved in February 1978 by the International
Organization for Standardization. The ANS COBOL processing
modules are described in the table under "Language Level" in
Chapter 1.

• 	 The December 1975 Federal Information Processing Standard (FIPS
PUB 21-1) low-intermediate level. Additional support is provided for
many features at higher FIPS levels.

Portions of this manual are copied from American National Standard (ANS)
COBOL, X3.23-1974. This material is reproduced with permission from
American National Standard Programming Language COBOL, X3.23-1974,
copyright 1974 by the American National Standards Institute, copies of
which can be purchased from the American National Standards Institute at
1430 Broadway, New York, New York, 10018.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data Systems Languages.

Acknowledgment

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report as
the basis for an instruction manual or for any other purpose, is free to
do so. However, all such organizations are requested to reproduce this
section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention COBOL in
acknowledgment of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company
or group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

Procedures have been established for the maintenance of COBOL. Inquiries
concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference of Data Systems Languages.

About This Manual xv

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator,
Form No. F28-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-2760,
copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction
and use of COBOL specifications in programming manuals or similar
publications.

XVI

Chapter 1. Introduction

General Description

COBOL (Common Business Oriented Language) is a programming language
that resembles English. As its name implies, COBOL is especially efficient
in the processing of business problems. COBOL can be used to manipulate
large files of data in a relatively simple way. That is, COBOL emphasizes
the description and handling of data items and of input/output records.

The System/38 COBOL Compiler and Library is an IBM program product
that accepts and compiles COBOL programs written in accordance with the
ANS COBOL X3.23-1974 standard. This program product also includes a
number of IBM extensions. The following sections describe the language
level implemented and the language-independent compiler features.

Language Level

The table that follows shows the support of each module provided by
System/38 COBOL. The table also describes each module.

The following example explains the notation used to identify levels of
implementation:

ISIG l· tL---Highest level available
------Minimum level required

---------Module identifier
------------Level supported by System/38 COBOL

Chapter 1. Introduction 1-1

System/38
COBOL
Processing
Modules Module Description

Nucleus 	 Contains the language elements necessary for internal processing.
2 NUC 1. 2

Table Handling 	 Contains the language elements necessary for: (1) definition of
2 TBl 1. 2 	 tables; (2) identification, manipulation, and use of indexes; (3)

reference to the items within tables. Provides the ability to define
fixed-length or variable-length tables of up to three dimensions.
Items in the tables can be referred to by using a subscript or an
index.

Sequential 1-0 Allows definition and access of sequentially organized external
2 SEQ 1. 2 files. IBM System/38 COBOL Sequential 1-0 provides all level 2

functions except for support of the RERUN clause.

Relative 1-0 	 Provides the capability of defining and accessing disk files in
2 REl O. 2 	 which records are identified by relative record numbers. A file can

be accessed randomly and sequentially in the same COBOL
program. IBM System/38 COBOL Relative 1-0 provides all level 2
functions except for support of the RERUN clause.

Indexed 1-0 Provides the capability of defining disk files in which records are
2 INX O. 2 identified by the value of a key and accessed through an access

path. IBM System/38 COBOL Indexed 1-0 provides all level 2
Note: functions except for support of the ALTERNATE RECORD KEY clause,
Alternate key the RERUN clause, and the KEY IS phrase of the READ statement.
omitted.

Sort-Merge Allows the inclusion of one or more sorts in a COBOL program
2 SRT O. 2 and use of the merge facility.

Report Writer 	 Provides semiautomatic production of printed reports.
o RPW O. 1

Segmentation 	 Provides overlaying at object time of Procedure Division sections.
2 S EG O. 2

Library 	 Allows inclusion of predefined COBOL text in a program.
2 LI B O. 2

Debug Provides for user-specification of statements and procedures for
2 DEB O. 2 debugging.

Inter-Program Provides facilities for a program to communicate with one or more
Communication other programs. Also provides capability to transfer control to
2 IPC O. 2 another program known at compile time, and the ability for both

programs to have access to certain data items.

Communication 	 Provides the ability to access, process, and create messages or
o COM O. 2 portions of messages; also provides the ability to communicate

through a Message Control System with local and remote
communication devices.

1-2

Compiler Features

The following language-mdependent features are made available with
System/38 COBOL:

• 	 Syntax-checking compilation saves machine time while debugging
source syntax errors. The source program is scanned for syntax errors
and associated error messages are generated, but no executable or
nonexecutable program is produced.

• 	 The sorted cross-reference option provides a listing of each Data
Division name and Procedure Division procedure-name, and indicates
the statement numbers of each reference or change to the item.

• 	 Inter-program calls allow programs written in System/38 COBOL to 'call
or be called by other programs written in System/38 COBOL, System/38
RPG III, or System/38 control language.

• 	 Multiple printer files allow the user to define and use multiple printer
files in the same program.

• 	 Diagnostic messages below a user-specified level can be suppressed.

• 	 The FIPS flagger, depending on the compiler option chosen, identifies
source statements and clauses that do not conform to 1975 FIPS
COBOL. 1975 FIPS (Federal Information Processing Standard) COBOL
is a compatible subset of 1974 Standard COBOL. A program must
conform to one of the four levels of 1975 FIPS COBOL processing: full,
high-intermediate, low-intermediate, or low. Refer to the Messages
Guide: COBOL for information on the messages flagged by FIPS.
Figure 1-1 shows the 1974 Standard COBOL processing modules
included in each of the levels of 1975 FIPS COBOL.

High- Low
1974 ANS Intermediate Intermediate
Module Name Full FIPS FIPS FIPS Low FIPS

Nucleus 2 NUC 1,2 2 NUC 1,2 1 NUC 1,2 1 NUC 1,2

Table 2 TBL 1,2 2 TBL 1,2 1 TBL 1,2 1 TBL 1,2
Handling

Sequential 1-0 2 SEQ 1,2 2 SEQ 1,2 1 SEQ 1,2 1 SEQ 1,2

Relative 1-0 2 REL 0,2 2 REL 0,2 1 REL 0,2 0 REL 0,2

Indexed 1-0 2 INX 0,2 0 INX 0,2 0 INX 0,2 0 INX 0,2

Sort-Merge 2 SRT 0,2 1 SRT 0,2 0 SRT 0,2 o SRT 0,2
Report Writer o RPW 0,1 0 RPW 0,1 o RPW 0,1 0 RPW 0,1

Segmentation 2 SEG 0,2 1 SEG 0,2 1 SEG 0,2 o SEG 0,2
Library 2 LIB 0,2 1 LIB 0,2 1 LIB 0,2 0 LI B 0,2

Debug 2 DEB 0,2 2 DEB 0,2 1 DEB 0,2 o DEB 0,2

Figure 1-1 (Part 1 of 2). 	 1974 American National Standard and FIPS
Levels

Chapter 1. Introduction 1-3

----- -- - -----

I High- Low
1974 ANS Intermediate Intermediate
Module Name Full FIPS FIPS FIPS Low FIPS

Inter-Program 2 IPC 0,2 2 IPC 0,2 1 IPC 0,2 o IPC 0,2
Communication

Communications 2 COM 0,2 2 COM 0,2 0 COM 0,2 a COM 0,2

Key:

ITt'l---Highest level available in 1974 ANS COBOL
------Minimum level required by 1974 ANS COBOL

---------Module identifier
------------Level supported

Figure 1-1 (Part 2 of 2). 	 1974 American National Standard and FIPS
Levels

Format Notation

In COBOL, basic formats are prescribed for the various elements of the
language. In this manual, these formats are presented in a uniform system
of notation that is explained in the following paragraphs. This notation is
designed to assist the programmer in writing COBOL source statements.

• 	 Reserved words are printed entirely in CAPITAL LETTERS. These words
have preassigned meanings in COBOL. If any reserved word is
misspelled, it is not recognized as a reserved word and can cause an
error in the program. The two types of reserved words are keywords
and optional words.

Keywords are required by the syntax of the format unless the

portion of the format containing them is optional. In formats,

keywords are shown in UNDERLINED CAPITAL LETTERS. A missing

keyword is considered an error in the program.

Optional words are included only for readability. They can be

included or omitted without changing the syntax of the program.

Optional words are CAPITALIZED but not underlined.

• 	 Words printed in lowercase letters represent information to be supplied
by the user. All such words are defined in the text of this manual.

• 	 For easier text reference, some user-defined words are followed by a
hyphen and a digit or letter. This suffix does not change the syntactical
definition of the word.

• 	 Braces ({}) enclosing listed items indicate (1) that exactly one of the
enclosed stacked items must be specified, and/or (2) when followed by
an ellipsis, that the enclosed unit or item must be specified at least
once.

1-4

• 	 Square brackets ([]) indicate that the enclosed item or unit can be used
or omitted, as required for the program. When two or more items are
stacked within brackets, one or none of them can be specified. When
followed by an ellipsis, the item or unit can be repeated.

• 	 The ellipsis (...) indicates that the immediately preceding unit can occur
once or any number of times in succession. A unit can be a single
lowercase word or a group of lowercase words and one or more reserved
words enclosed in brackets and/or braces. When repetition is used,
everything enclosed within the immediately preceding brackets or
braces must be repeated.

• 	 The arithmetic and logical operators (+, -, <, >, =) that appear in
formats are required although they are not underlined.

• 	 All punctuation and other special characters appearing in formats
(except braces, brackets, ellipsis, commas, and semicolons) are required
by the syntax of the format when they are shown; if they are omitted,
an error occurs in the program. Additional punctuation can be
specified, according to the punctuation rules given later in this manual.

• 	 The required clauses and (when written) optional clauses must be
written in the sequence shown in the format except where the
accompanying text states otherwise.

• 	 Comments, restrictions, and clarifications on the use and meaning of
every format are contained in the description following the format.

•

r---- ------- -------- ------ ----------1
• I COBOL clauses and statements that are syntax-checked, but are treated

I as documentation by the System/38 COBOL compiler, are boxed like :
ILthis sentence. ~

• 	 IBM extensions

IBM Extension

IBM extensions to American National Standard (ANS) COBOL, X3.23-1974,
that are part of the text description begin with the paragraph heading, IBM
Extension and are separated from the regular text as is this paragraph.
Note that Chapter 7 consists only of IBM extensions; the entire chapter is
boxed like this paragraph.

1.-_________ End of IBM Extension _________~

Chapter 1. Introduction 1-5

1-6

Chapter 2. Language Considerations

COBOL Program Structure

Every COBOL source program is divided into four divisions. Each division
must begin with a division header and each must be placed in proper
sequence. (Appendix J shows the general structure of every COBOL source
program.)

The following chapters contain the rules for writing COBOL source
programs and the methods of data reference.

The COBOL Divisions

The following paragraphs describe the four divisions of a COBOL source
program and their functions in solving a data processing problem.

Identification Division: The Identification Division names the program
and, optionally, documents the date the program was written, the
compilation date, and other pertinent information.

Environment Division: The Environment Division describes the
computer(s) to be used and specifies the machine(s) and equipment features
used by the program. This description defines the relationship of data files
and input/output devices.

Data Division: The Data Division defines the nature and characteristics
of all data the program processes: data used in input/output operations and
data developed for internal processing.

Procedure Division: The Procedure Division consists of executable
statements that process the user-defined data. Statements are executed in
the order they are written unless another order is defined by the user.

Chapter 2. Language Considerations 2-1

Clauses and Statements

Every COBOL source program is written in clauses and statements, each
describing a solution to some specific aspect of the data processing problem.

• 	 Clauses, written in the Environment and Data Divisions, specify an
attribute of an entry. A series of clauses ending with a period is defined
as an entry.

• 	 Statements, written in the Procedure Division, specify an action to be
taken by the object program. A series of statements ending with a
period is defined as a sentence.

Each clause or statement in the program can be subdivided into smaller
syntactical units called phrases. A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a portion of a COBOL
clause or statement. A phrase provides the programmer with required or
optional wording, depending on the desired meaning.

Clauses, entries, statements, and sentences can be combined into
paragraphs or sections. Each paragraph and section defines some larger
part of the data processing problem solution. Specific rules for the
formation of each element are given in the documentation for each division
of the COBOL program.

Clause and Statement Specification Order

When specified, each required or optional clause and statement (including
those treated as documentation) must be written in the sequence shown in
the format unless the associated rules explicitly state otherwise. The
COBOL program hierarchy for each division is:

• 	 In the Identification, Environment, and Data Divisions:

Division

Section(s)

Entry(s)

Clause(s)

Phrase(s).

• 	 In the Procedure Division:

Division

Section(s)

Sentence(s)

Statement(s)

Phrase(s).

2-2

Structure of the Language

In COBOL, the indivisible unit of data is the character. In System/38
COBOL, 51 EBCDIC (extended binary-coded decimal interchange)
characters form the COBOL character set: the 26 letters of the alphabet, the
10 Arabic numerals, and 15 special characters.

Individual COBOL characters are put together to form character-strings
and separators.

A character-string is a character or sequence of contiguous characters that
form a word, a literal, a PICTURE character-string, or a comment. A
character-string can be delimited only by a separator.

A separator is a contiguous string of one or more punctuation characters.
A separator can be placed next to another separator, or next to a
character-string.

Except for comments and nonnumeric literals (which can use any character
in the EBCDIC set), the 51 characters are the only characters valid in a
COBOL program. Figure 2-1 shows the valid COBOL characters in
ascending EBCDIC sequence and their usage in a COBOL program.

IBM Extension

The apostrophe can be used in place of the quotation mark. See "Compiler
Options" in Chapter 8.

'--_________ End of IBM Extension _________--'

COBOL
Character 	 Meaning Use

Space Punctuation character

Decimal point; Editing character;
period punctuation character

< Less than Relation character

(Left parenthesis Punctuation character

+ 	 Plus symbol Arithmetic operator;
sign; editing character

$ Dollar sign 	 Editing character

* 	 Asterisk Arithmetic operator;
editing character

) Right parenthesis Punctuation character

, Semicolon Punctuation character

Figure 2-1 (Part 1 of 2). COBOL Characters and Their Meanings

Chapter 2. Language Considerations 2-3

Character-Strings

COBOL

Character Meaning Use

- Minus symbol; Arithmetic operator;

hyphen sign; editing character

/ Stroke or slash Arithmetic operator;

editing character

, Comma Punctuation character;

editing character

> Greater than Relation character

= Equal sign Relation character;

punctuation character

" or Quotation mark or Punctuation character
I

apostrophe

A-Z Alphabet Alphabetic character

0-9 Arabic numerals Numeric character

Figure 2-1 (Part 2 of 2). COBOL Characters and Their Meanings

Notes:

1. 	 Throughout this manual, the quotation mark is used because it is the
default option. In all cases, the apostrophe can be used only if the default
option is ouerriden.

2. 	 All COBOL characters are considered to be alphanumeric.

COBOL character-strings form words, literals, PICTURE character-strings,
and comments. Each is described in the following paragraphs.

COBOL Words

A COBOL word can be a user-defined word, a system-name, or a reserved

word. A COBOL word can belong to only one of these classes.

The maximum length of a COBOL word is 30 characters.

User-Defined Words: A user-defined word is a COBOL word supplied by

the programmer. Valid characters in a user-defined word are:

• 	 A through Z

• 0 through 9

• - (hyphen).

The hyphen cannot appear as the first or last character in a user-defined
word.

2-4

A list of user-defined word sets, together with rules for their formation, is
given in Figure 2-2. The function of each user-defined word in a particular
clause or statement is included in the text describing each clause or
statement.

User-Defined

Word Sets Rules for Formation

Alphabet-Name Must contain at least one alphabetic character.

Condition-N arne Within each set, the name must be unique either

Data-Name because no other word is made up of an identical

Record-Name character-string, or because it can be made unique

File-Name through qualification. (See "Methods of Data

Index-Name Reference" later in this chapter.)

Mnemonic-N arne

Routine-Name

Library-Name

Text-Name

Program-Name

Paragraph-Name Need not contain an alphabetic character. Other

Section-Name rules as in first paragraph.

Level-Numbers: Must be a 1- or 2-digit integer. Need not be unique.
01-49, 66, 77, 88

Segment-Numbers: Must be a 1- or 2-digit integer. Need not be unique.
00-99

Figure 2-2. User-Defined Word Sets and Rules for Formation

System-Names: A system-name is an IBM-defined name that is used to
communicate with the system. A system-name can be:

• A computer-name

• A language-name

• An implementor-name

A function-name

An assignment-name

A user-name.

The function of each system-name is described with the format in which it
appears; each system-name is defined in the Glossary.

Reserved Words: A reserved word is a COBOL word with fixed
meaning(s) in a COBOL source program. A reserved word must not be
specified as a user-defined word or as a system-name. Reserved words can
be used only as specified in the formats for a COBOL source program.

Appendix G gives a complete list of COBOL reserved words. "Format
Notation" in Chapter 1 gives the conventions used to represent reserved
words in this manual.

There are six types of reserved words:

• Keywords

Chapter 2. Language Considerations 2-5

• 	 Optional words

• 	 Connectives

• 	 Special registers

• 	 Special-character words

• Figurative constants.

Each type is described in the following paragraphs.

Keywords are words that are required within a given clause, entry, or

statement. There are three types of keywords:

• 	 Verbs, such as ADD. READ. WRITE

• 	 Required words, which appear in clause, entry, or statement formats,
such as the word USING in the MERGE statement

• 	 Words with a specific functional meaning, such as NEGATIVE or
SECTION.

Optional Words are words that can be included in a clause, entry, or
statement. When an optional word is omitted, the meaning of the COBOL
program is unchanged.

There are three types of connectives: qualifier, series, and logical.

• 	 Qualifier connectives (OF, IN) associate a data-name, condition-name,
text-name, or paragraph-name with its qualifier.

• 	 Series connectives (the comma and semicolon) optionally link two or
more consecutive operands. (An operand is a data item or literal that is
acted upon by the COBOL program.)

• 	 Logical connectives (AND. OR. AND NOT. OR NOT) are used to specify
conditions.

Special registers are compiler-generated storage areas used primarily to
store information produced through one of the specific COBOL features.
Each such storage area has a fixed name and need not be further defined
within the program. These special registers include the following:

,.------------ IBM Extension ------------.,

• 	 DB-FORMAT-NAME

(See "Common Input/Output Phrases" under "Input/Output Statements"
in Chapter 5.)

'--__________ End of IBM Extension __________.....J

• DEBUG- ITEM (see "DEBUGGING FEATURES" in Chapter 6).

2-6

• 	 LINAGE-COUNTER (see "LINAGE Clause" in Chapter 4).

• 	 DATE. DAY. TIME (see "ACCEPT Statement" in Chapter 5).

Special-character words are arithmetic operators (+ - * / **) or relation
characters « > =). Arithmetic operators are described under "Arithmetic
Expressions" in Chapter 5. Relation characters are described in the
relation condition description under "Conditional Expressions" in
Chapter 5.

Figurative constants name and refer to specific constant values.

The reserved words and meanings for figurative constants are:

• 	 ZERO. ZEROS. ZEROES: Represents the value 0 or one or more
occurrences of the character 0, and is numeric or nonnumeric,
depending on context. For example, ZERO is considered to be
nonnumeric when it is compared to an alphanumeric data item in a
relational expression.

• 	 SPACE. SPACES: Represents one or more blanks or spaces, and is
always considered to be a nonnumeric literal.

• 	 HIGH-VALUE. HIGH-VALUES: Represents one or more occurrences of
the character with the highest value in the collating sequence used.
For the EBCDIC (NATIVE) collating sequence, the character is hex FF;
for other collating sequences, the character used depends on the
collating sequence. When used in a COBOL program, HIGH-VALUE is
treated as a nonnumeric literal.

• 	 LOW-VALUE. LOW-VALUES: Represents one or more occurrences of the
character with the lowest value in the collating sequence used. For the
EBCDIC (NATIVE) collating sequence, the character is hex 00; for
other collating sequences, the character used depends on the collating
sequence. When used in a COBOL program, LOW-VALUE is treated as a
nonnumeric literal.

• 	 QUOTE. QUOTES: Represents one or more occurrences of the quotation
mark character and is nonnumeric. The word QUOTE (QUOTES) cannot
be used in place of a quotation mark or an apostrophe to enclose a
nonnumeric literal.

IBM Extension

When APOST is specified as a compiler option, the figurative constant
QUOTE has the EBCDIC value of an apostrophe.

L..-__________ End of IBM Extension __________--'

• 	 ALL literal: Represents one or more occurrences of the string of
characters composing the literal and is nonnumeric. The literal must
be either a nonnumeric literal, Boolean literal, or a figurative constant
other than the ALL literal. When a figurative constant is used, the word
ALL is redundant and is used for readability only. The figurative

Chapter 2. Language Considerations 2-7

constant, ALL literal, cannot be used with the DISPLAY, INSPECT,
STRING, STOP, or UNSTRING statements.

The singular and plural forms of a figurative constant are equivalent and
can be used interchangeably. For example, if OATA- NAM E-1 is a
five-character data item, either of the following statements will fill
OAT A- NAM E-1 with five spaces:

MOVE SPACE TO OATA-NAME-1.
MOVE SPACES TO DATA-NAME-1

In any format, a figurative constant can be substituted for a nonnumeric
literal; only the figurative constant ZERO <ZEROS, ZEROES) can be
substituted for a numeric literal.

IBM Extension

The figurative constant ZERO can be used as a Boolean literal.

'--_________ End of IBM Extension _________---'

The length of a figurative constant depends on the context of the program.
The following rules apply:

• 	 When a figurative constant is associated with a data item, the length of
the figurative constant character-string is equal to the length of the
associated data item. This rule applies, for example, when a figurative .'
constant is moved to, or compared with, another item. ..""

• 	 When a figurative constant is not associated with another data item,
the length of the character-string is one character. This rule applies,
for example, in the DISPLAY, INSPECT, STRING, STOP, and UNSTRING
statements.

Literals

A literal is a character-string whose value is specified either by the ordered
set of characters of which it is composed, or by specification of a figurative
constant. The three types of literals are Boolean, nonnumeric, and
numeric.

IBM Extension

Boolean Literals: A Boolean literal is a character-string delimited on the
left by the separator B" and on the right by the quotation mark separator.
The character-string consists only of the character 0 or 1. The value of a
Boolean literal is the character itself, excluding the delimiting separators.
All Boolean literals are of the category Boolean.

'--_________ End of IBM Extension _________---'

2-8

Nonnumeric Literals: A nonnumeric literal is a character-string that can
contain any allowable character from the EBCDIC set.

r------------ IBM Extension --------------,

A nonnumeric literal can contain a maximum of 160 characters.

'--__________ End of IBM Extension __________--'

A nonnumeric literal must be enclosed by quotation marks (or apostrophes,
if the APOST option is in effect). The enclosing quotation marks are not
part of the literal.

Any punctuation characters included within a nonnumeric literal are part
of the value of the literal. An embedded quotation mark must be
represented by two adjacent quotation marks (" "); one quotation mark (")
is then part of the value of the literal.

Every nonnumeric literal is in the alphanumeric data category. Data
categories are defined under "PICTURE Clause" in Chapter 4.

Numeric Literals: A numeric literal is a character-string whose
characters are selected from the digits 0 through 9, the sign characters (+
or -), and the decimal point. The following rules apply:

• 	 1 to 18 digits are allowed.

• 	 Only one sign character is allowed. If a sign character is included, it
must be the leftmost character of the literal. If the literal is unsigned,
it is considered to have a positive value.

• 	 Only one decimal point is allowed. If a decimal point is included, it
is treated as an assumed decimal point (not considered a character
position in the literal). The decimal point can appear anywhere within
the literal except as the rightmost character. If the literal contains no
decimal point, it is considered to be an integer. The word integer
appearing in a format represents a numeric literal of nonzero value that
contains no sign and no decimal point; any other restrictions are
included with the description of the format.

The value of a numeric literal is the algebraic quantity expressed by the
characters in the literal. The size of a numeric literal in standard data
format characters is equal to the number of digits specified by the user.

If a literal conforms to the rules for the formation of numeric literals, but is
enclosed in quotation marks, it is a nonnumeric literal.

Chapter 2. Language Considerations 2-9

Separators

PICTURE Character-Strings

A PICTURE character-string consists of COBOL characters used as symbols ...J
in the PICTURE clause.

The choice of symbols determines whether the user-supplied name is
numeric, alphabetic, or alphanumeric. The character-string can also be
used to define edited output fields.

Comments

A comment is a character-string containing any combination of characters
from the EBCDIC set. A comment serves only as documentation. Comments
take two forms:

• 	 A comment entry in the Identification Division: For a further
description of a comment entry, see "IDENTIFICATION DIVISION" in
Chapter 3.

• 	 A comment line (preceded by an asterisk or a slash in Column 7) in any
division of the program: For a further description of a comment line,
see "Standard COBOL Format" later in this chapter.

A separator is a string of one or more punctuation characters or B" when
used to delimit a Boolean literal. The characters are shown in Figure 2-3.

Punctuation
Character Meaning

Space

Period
(Left parenthesis
) Right parenthesis

; Semicolon
, Comma

= Equal sign

" Quotation mark
I Apostrophe
B" Delimiter for Boolean literal

Figure 2-3. Punctuation Characters

The following rules apply to the formation of separators:

• 	 A space is always a separator except when the space appears within a
nonnumeric literal. When contained between the opening and closing
quotation marks of a nonnumeric literal, the space is considered part of
the literal. Wherever a space is used as a separator, more than one
space can be used.;)

2-10

• 	 A comma, semicolon, or period immediately followed by a space is a
separator. These separators can appear only where explicitly allowed
by COBOL rules.

• 	 The left and right parentheses are separators. Parentheses must appear
as balanced pairs of left and right parentheses to delimit subscripts,
indexes, arithmetic expressions, or conditions.

• 	 The quotation mark is a separator. An opening quotation mark must
be immediately preceded by a space or a left parenthesis. A closing
quotation mark must be immediately followed by one of the following
separators: space, comma, semicolon, period, or right parenthesis.
Quotation marks must appear as balanced pairs delimiting nonnumeric
literals except when the literal is continued.

• 	 The pseudo-text delimiter (= =) is a separator. An opening pseudo-text
delimiter must be immediately preceded by a space. A closing
pseudo-text delimiter must be immediately followed by one of the
following separators: space, comma, semicolon, or period. Pseudo-text
delimiters must appear as balanced pairs delimiting pseudo-text.

r------------- IBM Extension ---------------,

• 	 B" is a separator when it is used to describe a Boolean literal. The B
must immediately precede the quotation mark.

'--_________ End of IBM Extension _________---'

Standard COBOL Format

COBOL programs must be written in the standard COBOL format, described
in the following discussion. The format is described in terms of an
80-character line. The output listing of the source program is printed in
this same format. The COBOL coding form is shown in Figure 2-4.

Sequence Numbers (Columns 1-6)

Sequence numbers are written in columns 1 through 6. A sequence number
numerically identifies each line to be compiled by the COBOL compiler.
Sequence numbers are optional. A sequence number, if used, must consist
of six digits in the sequence number area, (including the preprinted digits in
columns 4 and 5).

If sequence numbers are used in the source program, they must be in
ascending order. If sequence numbers are out of sequence, the compiler
accepts them in the order read and generates a warning message.

,...------------ IBM Extension ---------------,

The user can suppress sequence checking at compile time by specifying
NOSEQUENCE.

Chapter 2. Language Considerations 2-11

If the NUMBER option is specified, the sequence numbers from columns 1
through 6 are used; otherwise the source sequence numbers provided in the
source file are used.

~_________ End of IBM Extension _________---'

IBM COBOL Coding Form
SYSTEM PUNCHING INSTRUCTIONS PAGE OF

PROGRAM GRAPHIC .
I I CARD FORM #
PROGR_ER DATE PUNCH I

SEQUENCE ~iA 18 COBOL STATEMENT i IDENTIFICATION
IPAGE} SERIAL, , 5 7

01 Ii I i I I I I
02 I II I I I

03 I
, II i

04 I,
I I I I

Columns 1-6 represent the sequence number area.

Column 7 is the continuation area.

Columns 8-11 represent Area A ~ Used for writing COBOL source statements.

Columns 12-72 represent Area I ~

Columns 73·80 are used to identify the program.

Figure 2-4. IBM COBOL Coding Form and Standard COBOL Format

Continuation Area (Column 7)

The continuation area is used to indicate the continuation of words and
nonnumeric literals from the previous line onto the current line, to specify
debugging lines, or to indicate that the text on this line is to be treated as a
comment.

Area A (Columns 8-11) and Area B (Columns 12-72)

COBOL elements that can begin in Area A and specific COBOL elements
that can follow them are shown in Figure 2-5.

The basic skeleton of a COBOL program is shown in Figure 2-6.

2-12

Elements That Must Be

Must Begin in Followed

Area A Immediately By

Division header 	 (In Procedure Division)

US I NG phrase

Section header, paragraph header,
paragraph-name, or (in Procedure
Division) keyword DECLARATIVES

Section header 	 (In Declaratives section)

USE statement

Paragraph header,
paragraph-name, (after USE, if
specified), level indicator, or
level-number

Paragraph header or Identification Division entry,

paragraph-name Environment Division entry, or

Procedure Division sentence

Level indicator, level-numbers Data-name

01 and 77

Keyword DECLARATIVES 	 Declaratives section-name

Keywords END DECLARATIVES 	 Section header

Figure 2-5, Sequence of Elements in Area A and Area B

SEQUENCE ~ A IB
(PAGEl SERIAL 81

1 3 4 6 8 1

041tl ic~IIIFil IN lS ~ITI ~,

o 71c j~11 iE,- ,
0811

1 011 I~II Le' SErrrrnN.
111l 1ft

1 2 iw~2K:l NIi-IS..- .. Ie: Is 1-1'11 t'l",

1 31'1 lfJi !U5"12 , I, I "IN •

14 jtU
1 5 I , ~

16'" 11 Il~ ~s:nu,u:. ID viIS t'l

1 7 Il ill E~ UAlu Til IE ,

19 iEH~ IC~~L~IR~ I~£ ,

n -IN £

D IUlS-15 A.

i

Figure 2-6, Basic Skeleton of a COBOL Program

Placement of

Following

Elements

Same or next line

(Area B)

Next line (Area A)

Same or next line

(Area B)

Next line (Area A)

Same or next line

(Area B)

Same or next line

(Area B)

Next line (Area A)

Next line (Area A)

Chapter 2. Language Considerations 2-13

Special Considerations

Some lines in a COBOL program require additional rules. A discussion of
each follows.

Division Header

A division header must be immediately followed by a period except when a
US I NG phrase is specified with a Procedure Division header. Except for the
US I NG phrase, no text can appear on the same line.

Section Header

A section header must be immediately followed by a period except when
Procedure Division segment numbers are specified. In the Environment and
Procedure Divisions, a section consists of paragraphs. In the Data Division,
a section consists of Data Division entries.

Paragraph Header, Paragraph-Name

In both the Identification Division and the Environment Division, a
paragraph consists of a paragraph header followed by one or more entries
in Area B. An entry consists of one or more clauses. In the Procedure
Division, a paragraph consists of a paragraph-name followed by one or more
sentences in Area B. A sentence consists of one or more statements; a
statement is a syntactically valid combination of a COBOL verb and its
operands. Entries and sentences must be ended with a period followed by a
space.

Successive entries or sentences begin in Area B. The entries are either on
the same line as the last entry or sentence, or they are on the next
succeeding nonblank noncomment line.

Data Division Entries

Each Data Division entry begins with a level indicator or level-number
followed by a space. On the same line is a data-name in Area B, followed by
a sequence of independent clauses describing the item. Each clause, except
the last, is followed by a space (or optionally by a comma or semicolon and
a space). The last clause in the entry must be ended with a period followed
by a space.

Successive clauses begin in Area B. The clauses are either on the same line
as the preceding clause, or on the next succeeding nonblank noncomment
line.

A level indicator (FD. SD) must begin in Area A and be followed by a space.
For a further description of level indicators, see "Data Division
Organization" in Chapter 4.

A level-number is a 1- or 2-digit integer with one of the following values: 1
through 49, 66, 77, or 88. At least one space must follow the level-number.

2-14

Program Spacing

Level-numbers 01 and 77 must begin in Area A. The associated record-name
or item-name must appear in Area B. Level-numbers 02 through 49, 66, and
88 can begin in either Area A or Area B.

DECLARATIVES and END DECLARATIVES

In the Procedure Division, the keywords 0ECLARATI V ES and END
oECLARATI V ES begin and end the Declaratives portion ofthe source
program. Both of these keywords must begin in Area A and be followed
immediately by a period. No other text can appear on the same line. After
the keyword END DECLARATIVES, no text can appear before the following
section header.

In writing a COBOL program, rules for indentation, continued lines,
comment lines, debugging lines, and blank lines must be observed.

Indentation

Within an entry or sentence, successive lines in Area B can have the same
format or can be indented to clarify program logic. The output listing is
indented only if the input statements are indented. Indentation does not
affect the syntax of the program. The amount of indentation can be chosen
by t};,e user, subject only to the restrictions on the width of Area B.

Continuation of Lines

Any ;entence, entry, clause, or phrase that requires more than one line can
be ccntinued in Area B of the next succeeding noncomment line. The line
being continued is called the continued line; the succeeding lines are
continuation lines. Area A of a continuation line must contain only spaces.

If thE,re is no hyphen in the continuation area (Column 7) of a line, the last
character of the preceding line is assumed to be followed by a space.

If there is a hyphen in the continuation area of a line, the first nonblank
character of this continuation line immediately follows the last nonblank
charl:lcter of the continued line without any intervening space. However,
this restriction does not apply to nonnumeric literals.

If the continued line contains a nonnumeric literal without a closing
quotation mark, all spaces at the end of the continued line (through
Column 72) are considered to be part of the literal. The continuation line
must contain a hyphen in the continuation area, and the first nonblank
character in Area B must be a quotation mark. The continuation of the
literal begins with the character immediately following the quotation mark.

A pair of quotation marks indicating a single quotation mark in the value
of the literal must occur on the same line. Likewise, both characters
composing the separator = = or S" must be on the same line.

Chapter 2. Language Considerations 2-15

Comment Lines

A comment line is any line with an asterisk or slash in the continuation
area of the line. The comment may be written anywhere in Area A and
Area B of that line. The comment may consist of any combination of
characters from the EBCDIC set.

If an asterisk is placed in the continuation area, this comment line is
printed in the output listing immediately following the last preceding line.

If the slash is placed in the continuation area, the current page of the
output listing is ejected, and the comment line is printed on the first line of
the next page.

The asterisk or slash and the comment are produced only on the output
listing. They are treated as documentation by the compiler.

Successive comment lines are allowed. Each must begin with an asterisk or
slash in the continuation area.

Comment lines are not allowed before the Identification Division header.

Debugging Lines

A debugging line is any line with a D coded in the continuation area.
Rules for the formation of debugging lines are given under "DEBUGGING
FEATURES" in Chapter 6.

Blank Lines

Blank lines contain nothing but spaces from Column 7 through Column 72.
A blank line may appear anywhere in a program except immediately
preceding a continuation line.

Overall Punctuation Rules

Any punctuation character included in a PI CTUR E character-string, a
comment character-string, or a nonnumeric literal is not considered to be a
punctuation character but rather is considered to be part of the
character-string or literal.

A comma, period, or semicolon followed by a space in or at the end of a
PICTURE character-string is a separator and terminates the PICTURE
character-string. The comma and semicolon are used only for readability.

Punctuation rules for each division of the COBOL source program follow.

Identification Division

Commas and semicolons can be used in the comment-entries. The
PROGRAM- I D paragraph must end with a period followed by a space.

2-16

Environment Division

Commas or semicolons can separate successive clauses and successive
operands within clauses. The SOURCE-COMPUTER, OBJECT -COMPUTER,
SPECIAL-NAMES, and I-O-CONTROL paragraphs must each end with a period
followed by a space. In the FILE-CONTROL paragraph, each file-control
entry must end with a period followed by a space.

Data Division

Commas or semicolons may separate successive clauses and operands
within clauses. File (FO), Sort/Merge file (SO), and data description entries
must each end with a period followed by a space.

Procedure Division

Commas or semicolons may separate successive statements within a
sentence and successive operands within a statement. Each sentence and
each procedure must end with a period followed by a space.

Methods of Data Reference

Every user-specified name defining an element in a COBOL program must
be unique, either because no other name has a character-string of the same
value or because it can be made unique through qualification, subscripting,
or indexing. In addition, references to data and procedures can be either
explicit or implicit. The rules for qualification and for explicit and implicit
references follow.

Qualification

A name can be made unique if it exists within a hierarchy of names, and
the name can be identified by specifying one or more higher-level names in
the hierarchy. The higher-level names are called qualifiers, and the process
by which such names are made unique is called qualification.

Qualification is specified by placing one or more phrases after a
user-specified name. Each phrase consists of the word 0 F or IN followed by
a qualifier. (OF and IN are logically equivalent.) The three formats for
references are references to Data Division names, references to Procedure
Division names, and references to COPY libraries.

Format 1

{ data-name-, } [{OF}]
condition-name IN data-name·2 •..

Chapter 2. Language Considerations 2-17

Format 2

paragraph-name [{~:} section-name]

Format 3

text-name [{~:} library-name]

In Data Division references, all qualifying data-names must be associated
with a level indicator or level-number_ Therefore, two identical data-names
must not appear as subordinate entries in a group item unless they can be
made unique through qualification. Names associated with a level
indicator (FD and SD) are the highest level in the hierarchy_ Next highest
are those associated with level-number 01. Names associated with
level-numbers 02 through 49 are at successively lower levels in the
hierarchy.

In the Procedure Division, two identical paragraph-names must not appear
in the same section. A section-name is the highest and only qualifier
available for a paragraph-name.

The following example illustrates the use of identical names in a section
hierarchy:

01 FIELD-A

02 FIELD-B

05 SUBI

07 SUB2

02 FIELD-C

07 SUBI

A hierarchy includes all subordinate entries to the next equal or higher
level-number. Therefore, in the above example all entries are in the
hierarchy of FI ELD-A. All entries from FI ELD- Bto, but not including,
FI ELD-C are in the hierarchy of FI ELD- B.

In the hierarchy of FI ELD-A, SUBI can be used twice; once as subordinate
to FI ELD-B and once as subordinate to FI ELD-C. In references to SUB-I, it
must be qualified as SUB-l OF FIELD-B or SUB-l OF FIELD-C. Within
FI ELD- Bor FI ELD-C, SUBI cannot be subordinate to itself.

In any hierarchy, the name associated with the highest level must be
unique and cannot be qualified.

No matter what qualification is available, no name can be both a data-name
and a procedure-name.

Enough qualification must be specified to make the name unique; however,
it may not be necessary to specify all the levels of the hierarchy. For

2-18

example, if more than one file has records that contain the field
EMPLOYEE-NO but only one of the files has a record named MASTER-RECORD,
then specifying EMPLOYEE-NO OF MASTER-RECORD sufficiently qualifies
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid
but unnecessary.

Qualification Rules

The following rules for qualification apply:

• 	 Each qualifier must be of a successively higher level and must be within
the same hierarchy as the name it qualifies.

• 	 The same name must not appear at two levels in a hierarchy unless it
can be qualified.

• 	 If a data-name or condition-name is assigned to more than one data
item, the data item must be qualified each time it is referenced, with
this exception: in the RED EFIN ES clause, qualification is unnecessary
and must not be used.

• 	 A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word S ECTI ON must
not appear. A paragraph-name need not be qualified when referred to
within the section in which it appears.

• 	 Library-name must be unique in the system. Therefore, the first 10
characters of library-name must be unique.

• 	 Text-name (member-name) must be qualified by the
file-name-library-name in which it resides. If no library is specified, the
*L I BL list is searched.

IBM Extension

File-name is optional for the COpy statement, format 1. If file-name is
not specified, the default is QCBLSRC.

L...-_________ End of IBM Extension _________--'

• 	 When a data-name is being used as a qualifier, it cannot be subscripted.

• 	 A name can be qualified even when it does not need qualification.

• 	 If more than one combination of qualifiers ensures uniqueness, then any
of these combinations can be used.

• 	 Duplicate section-names are not allowed.

• 	 A data-name cannot be the same as a section-name or a
paragraph-name.

• 	 A section-name cannot be the same as a paragraph-name.

Chapter 2. Language Considerations 2-19

• 	 If a data-name cannot be made unique by qualification, duplication of
this data-name is not allowed.

• 	 The complete list of qualifiers for one data-name must not be the same
as a partial list of qualifiers for another data-name.

• 	 A maximum of 48 qualifiers (49 qualifiers for file data) can be specified.

• 	 LINAGE-COUNTER must be qualified each time it is referenced if more
than one file description entry containing a LI NAG E clause has been
specified in the source program.

Subscripting and Indexing

Identifier

Subscripts and indexes can be used only when reference is made to an
individual element within a table of elements that have not been assigned
individual data-names. Subscripting and indexing are explained under
"TABLE HANDLING" in Chapter 6.

An identifier is a term used to reflect that a data-name, if not unique in a
program, must be followed by some syntactically correct combination of
qualifiers, subscripts, or indexes sufficient to ensure uniqueness. The
general formats for identifiers are as follows:

Format 1

data-name-' [{~:}data-name-2] ... [(subscriPt-, [. subscript-2 [. subscriPt-3]])J

Format 2

[{OF}] [{indeX-name-, [{±} literal-2]}

data-name-' IN data-name-2 . .. (

- literal-'

[
• {indeX-name-2 [{±} literal-4J } [.{indeX-name-3 [{±} literal-6J}]])]

Iiteral-3 	 Ilteral-5

Restrictions on qualification, subscripting, and indexing follow:

• 	 A data-name must not be subscripted or indexed when that data-name is
being used as an index, subscript or qualifier.

2·20

• 	 Indexing is not permitted when subscripting is not permitted.

• 	 An index can be modified only by the SET, SEARCH, and PERFORM
statements. Data items described by the USAG E ISIN 0EX clause permit
the values associated with index-names to be stored as a binary
occurrence number. Such data items are called index data items.

• 	 Literal-I, literal-3, literal-5 in the above format must be positive
numeric integers. Literal-2, literal-4, literal-6 must be unsigned numeric
integers.

Condition-Name

A condition-name is a user-defined word that is assigned a specific value or
range of values. The value assigned is contained in the set of values that a
conditional variable may possess. A condition-name can alternatively be a
user-defined word that is assigned the status of an IBM-defined switch or
device.

Each condition-name must be unique, or it must be made unique through
qualification, and/or indexing, or subscripting.

If qualification is used to make a condition-name unique, the associated
conditional variable may be used as the first qualifier. If qualification is
used, the hierarchy of names associated with the conditional variable or the
conditional variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or subscripting,
then references to any of its condition-names also require the same
combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names are the same as that for
identifiers except that data-name-I is replaced by condition-name-l.

In the general formats, condition-name refers to a condition-name that is
qualified, indexed, or subscripted as necessary.

Explicit and Implicit References

COBOL source program references can be either explicit or implicit in
three instances: data attribute specification, Procedure Division data
references, and transfers of control.

Data Attribute Specification

Explicit attributes are specified in COBOL coding. If a data attribute is not
specified in COBOL coding, it takes on a default value. These default
values are implicit attributes.

For example, the ACCESS MODE clause in the file-control entry need not be
specified. If the clause is omitted, the compiler provides the default value,
ACCESS MODE IS SEQUENTIAL. This clause is then an implicit attribute. If

Chapter 2. Language Considerations 2-21

this same attribute, ACCESS MODE IS SEQUENTIAL, is specified in the
COBOL coding, it is an explicit attribute.

Procedure Division Data References

Procedure Division statements can refer to data items either explicitly or
implicitly.

An explicit reference occurs when the data-name of the item is written in a
COBOL statement or when the data-name is copied into the program
through a COpy statement. An implicit reference occurs when the
data-name is referred to by a COBOL statement without the name being
written in that statement.

For example, when USE AFTER STANDARD EXCEPTION/ERROR PROCEDURE ON
INPUT is specified, an implicit reference is made to each file-name that
identifies an input file. See "EXCEPTION/ERROR Declarative" in
Chapter 5 for a further description.

Transfers of Control

In the Procedure Division, program flow transfers control from statement to

statement in the order they are written unless an explicit control transfer is

specified or no next executable statement exists. (See the note below.) This

normal program flow is an implicit transfer of control.

In addition to the implicit transfers of control between consecutive ~

statements, implicit transfer of control also occurs when the normal flow is,

altered without the execution of a procedure branching statement. COBOL

provides implicit transfers of control that override the

statement-to-statement transfers of control under the following conditions:

• 	 After execution of the last statement of a procedure being executed
under control of another COBOL statement. COBOL statements that
control procedure execution are MERGE, PERFORM, SORT, and USE.

• 	 During SORT or MERGE statement execution when control is transferred
to any input or output procedure.

• 	 During execution of any COBOL statement that causes execution of a
Declarative procedure.

• 	 At the end of execution of any Declarative procedure.

COBOL also provides explicit transfers of control through the execution of
a procedure branching or conditional statement. Lists of procedure
branching and conditional statements are given under "Procedure Division
Organization" in Chapter 5.

Note: The term next executable statement refers to the next COBOL
statement to which control is transferred according to the rules given
above. No next executable statement can follow:

2-22

• The last statement in a Declarative procedure that is not being executed
under control of another COBOL statement.

• The last statement in a COBOL program when the paragraph in which
it appears is not being executed under control of another COBOL
statement.

Chapter 2. Language Considerations 2-23

2-24

Chapter 3. Identification and Environment Divisions

IDENTIFICATION DIVISION

The Identification Division must be the first division in every COBOL
source program. This division names the source program and the object
program. (A source program is the user-written COBOL program. An object
program is the output from a compilation.)

The user may also include the date the program was written, the date of
compilation, and other such documentary jnformation about the program in
the Identification Division.

Format

IDENTIFICATION DIVISION.

PROG RAM-ID. program-name.

[AUTHOR. [comment-entry] .. .J
[INSTALLATION. [comment-entry] ...J
[DATE-WR ITTEN. [comment-entry] ..•J
[DATE-COMPILED. [comment-entry] .. .J
[SECURITY. [comment-entry] ...J

The Identification Division must begin with the words 10 ENT I FI CAT ION
oI VISION followed by a period and a space.

Chapter 3. Identification and Environment Divisions 3-1

Coding Example

SEQUENCE

(PAGEl SERIAL ~IA IB
1 3 4 6 1 32

Dill o 1Ie :1 11l1!INiTII 1=II I:1,,11illalal IIV II~ I r'lII.
o 21C 1c;:1...- lID
03~ 1& Iu. . A .
04 i I NS1'ritIIL L11111lilt:Itii· R L fl.
05 ill~T1&.1- ~n. litrITI' III • n III J~ 79
06 iD IA1IE;· It:nIMlp IIIL1,111. 8~ .11, 17~ .
o 7 ~ isI~t lUI I T~ l\iill ~ ~Ir, rr A
o 8 I

PROGRAM-ID Paragraph

The first paragraph of the Identification Division must be the PROGRAM- I D
paragraph. The PROGRAM- I Dparagraph specifies the name by which the
program is known to the system.

The name by which the program is known to the system can be overridden
by the PGM parameter of the CRTCBLPGM command. See Chapter 8 for more
information on the PGM parameter.

Program-name is a user-defined word that identifies the object program to'
the system. A program-name must include at least one alphabetic ..""
character. The system uses the first 10 characters of program-name as the
identifying name of the program; these first 10 characters, therefore, should
be a unique program-name.

The system expects the first character of program-name to be alphabetic; if
it is numeric, it is converted as follows:

• 0 is converted to J

• 1 through 9 is converted to A through I.

The system does not include the hyphen as an allowable character;
therefore, if any of the second through tenth characters are hyphens, they
are converted to zeros.

To avoid such conversions, the user should not specify program-names with
leading numerics or embedded hyphens.

3-2

Other Optional Paragraphs

The other paragraphs are optional; however, if they are written, they must
appear in the order shown in the format.

The comment-entries serve only as documentation and do not affect the
syntax of the program. The comment-entries in the optional paragraphs
may be any combination of characters from the EBCDIC set and may be
written in Area B on one or more lines. A hyphen is not permitted in the
continuation area of Identification Division statements.

The DATE-COMPILED paragraph provides the compilation date of the source
listing. When the comment-entry is specified, the entire entry is replaced
with the current date. When the comment-entry is omitted, the compiler
adds the current date to the DATE-COMPI LED paragraph.

ENVIRONMENT DIVISION

The Environment Division, the second division of all COBOL source
programs, identifies the following:

• 	 The computer on which the source program is to be compiled

• 	 The computer on which the object program is to be executed

• 	 The specific main storage size required to execute the object program

• 	 The linkage between the logical concept of the files and their records,
and the physical aspects of the devices on which data is stored.

The Environment Division has two sections: the Configuration Section and
the Input-Output Section.

The following shows the general format of the sections and paragraphs in
the Environment Division, and defines the order of presentation in the
source program.

Chapter 3. Identification and Environment Divisions 3-3

Coding Example

Format

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

[I N PUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} •

[I-O-CONTROL. input-output-control-entry]]

The Environment Division must begin with the words ENV IRONMENT
D I V I S I ON followed by a period and a space_

SEQUENCE ~ A IB
(PAGE) SER(Al 81

1 34 678 1 32 36

o~ 0 10 e Ivll II Ilil ~ I r,
o 20 I II~ 1111 N ,S "rIIIlN •

030 - • IBM-SJR.

o 40 If' 8~ aie _ OMI, 11,. III -S31.
. ".1 IS P "Ii - blP.

o 6~ il ... ,u;y. 151 TI~ •

070 IF IILE
080 I 51£1.

090 I liz Tit"

1 0 i

Configuration Section

The Configuration Section describes the computer that compiles 'the source
program and the computer that executes the object program_ This section
optionally relates IBM-defined function names to user-defined
mnemonic-names, specifies the collating sequence to be used, specifies a
substitution for the currency sign, and/or interchanges the functions of the
comma and the period_

3-4

In the Configuration Section, the comma or semicolon can optionally
separate successive clauses within a paragraph. In each paragraph, there
must be one period; the period must be placed immediately after the last
entry in the paragraph.

Format

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] •

OBJECT-COMPUTER. computer-name

r[~::::Z~i:e:{~~=~!~T:s}JI
I MODULES I
I I
'---------------~
[, PROGRAM COLLATING SEQUENCE IS alphabet-name]

[, SEGMENT-LIMIT IS segment-number] •

[SPECIAL-NAMES. [function-name-' ~ mnemonic-name]

[function-name-2

IS mnemonic-name, Q!::! STATUS.!§. condition-name-' [, OFF STATUS.!§. condition-name-2]

IS mnemonic-name, OFF STATUS.!§. condition-name-2 [, ON STATUS ~ condition-name-']

ON STATUS.!.§ condition-name-, [, Q££ STATUS !.§ condition-name-2]

OFF STATUS IS condition-name-2 [, ON STATUS.!.§. condition-name-,]

STANDARD-'
NATIVE

THROUGH} .
literal-' [{!.!::!..B..!:! Iiteral-2

, alphabet-name IS ALSO literal-3 [, ALSO literal-4]
...J
{ THROUGH} I'Itera -16

[literal-5 [THRU JJ ...
ALSO literal-7 [, ALSO literal-8] ...

[, CURRENCY SIGN ~ literal-g]

[, DECIMAL-POINT!§ COMMA] .]

Chapter 3. Identification and Environment Divisions 3-5

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph describes the computer that compiles the
source program. The computer name should be coded as: IBM-S38.

With the exception of the WITH DEBUGGING MODE clause, the
SOURCE-COMPUTER paragraph is syntax-checked, but is treated as
documentation. The WITH DEBUGG I NG MODE clause is described under
"DEBUGGING FEATURES" in Chapter 6.

OBJECT-COMPUTER Paragraph

The OBJECT -COMPUTER paragraph identifies the computer that executes the
object program. Computer-name must be the first entry in the
OBJECT -COMPUTER paragraph. The other clauses can be specified in any
order. The computer-name should be coded as; IBM-S38.

MEMORY SIZE Clause

The MEMORY S I ZE clause is syntax-checked, but is treated as documentation.

PROGRAM COLLATING SEQUENCE Clause

The PROGRAM COLLATING SEQUENCE clause specifies the collating sequence
used in a program. The collating sequence associated with the specified
alphabet-name must be defined in the SPECIAL-NAMES paragraph. The
program collating sequence applies to the following nonnumeric
comparIsons:

• 	 Those comparisons explicitly specified in IF, PERFORM, and SEARCH
statements

• 	 Those comparisons implicitly specified in STRING, INSPECT, and
UNSTRING statements

• 	 Those comparisons implicitly specified in MERGE or SORT statements
that do not specify a COLLATING SEQUENCE phrase.

When the PROGRAM COLLATING SEQUENCE clause is omitted, the EBCDIC
collating sequence is used. See Appendix H for the complete EBCDIC
collating sequence.

SEGMENT-LIMIT Clause

The SEGMENT -LIMIT clause is described under "SEGMENTATION
FEATURE" in Chapter 6.

3-6

SPECIAL-NAMES Paragraph

Function-name-l

CSP

Cal

Sal, S02, S03,
S04, S05

ATTRIBUTE-DATA

The SPECIAL-NAMES paragraph relates IBM-specified function-names to
user-specified mnemonic-names. This paragraph specifies a collating
sequence that is associated with an alphabet-name, a substitute character
for the currency sign, and the interchange of the comma and decimal point
in PICTURE clauses and numeric literals. The clauses can be specified in
any order.

Function-Name-l Clause

Function-name-1 specifies system devices or standard system actions taken
by the compiler.

The associated mnemonic-name is required. The mnemonic-name is formed
according to the rules for a user-defined word and must contain at least one
alphabetic character.

Programming Note: The SEU Syntax Checker requires that the first clause
be entered on the same line as the SPECIAL-NAMES entry.

Figure 3-1 shows the actions that are associated with mnemonic-names for
function-name-!. Each of these functions can appear only once in the
SPECIAL-NAMES paragraph.

Statement where 	Usage
mnemonic-name
associated with
function-name
is used
WRITE 	 Suppress spacing when printing a line. Use only

when PRINTER is the device. See
"FILE-CONTROL Paragraph" later in this
chapter.

WRITE 	 Skip to the next page. Use only when
PRI NTER is the device. See "FILE-CONTROL
Paragraph" later in this chapter.

WRITE 	 Select stackers on a card punch file. SOl
through S04 select stackers 1 through 4, and S05
selects stacker 1 on the IBM 5424. Use only
when PUNCH, PUNCHPRINT, or PRINT is the
device. See "FILE-CONTROL Paragraph" later
in this chapter.

ACCEPT 	 Retrieve attribute data about a program device
acquired by a TRANSACTION file, but only when
the file is open. See"ACCEPT Statement" in
Chapter 7.

Figure 3-1 (Part 1 of 2). Choices of Function-Name-l and Action Taken

Chapter 3. Identification and Environment Divisions 3-7

Function-name-! Statement where Usage
mnemonic-name
associated with
function-name
is used

I-O-FEEDBACK ACCEPT Give information about the last 1-0 operation on
a file, but only when the file is open. See
"ACCEPT Statement" in Chapter 5.

OPEN-FEEDBACK ACCEPT Give information about a file, but only when the
file is open. See "ACCEPT Statement" in
Chapter 5.

CONSOLE.
SYSTEM-CONSOLE

ACCEPT. DISPLAY Communicate with the system operator's
message queue (QSYSOPR).

LOCAL-DATA ACCEPT. DISPLAY Retrieve data from, or moves data to the local
data area created by the system for every job.
See "ACCEPT Statement" and "DISPLAY
Statement" in Chapter 5.

REQUESTOR ACCEPT.DISPLAY Communicate with the user work station
(interactive jobs) or the batch input stream or
job log (batch jobs).

Figure 3-1 (Part 2 of 2). Choices of Function-Name-l and Action Taken

Function-Name-2 Clause

Function-name-2 can be defined as UPS I -0 through UPS I -7 or as
SYSTEM-SHUTDOWN.

User Program Status Indicator (UPSI): Function-name-2 can define
eight I-byte program switches, UPSI-O through UPSI-7.

Each UPSI is a User Program Status Indicator switch. At least one
condition-name must be associated with each UPS I switch specified. UPS I-O
through UPS I -7 are COBOL names that identify program switches defined
outside the COBOL program at object time. Their contents are considered
to be alphanumeric. A value of zero is off; a value of one is on.

Each switch represents one byte from the 8-character SWS parameter of the
control language CHGJOB, SBMJOB, JOB, and JOBD commands as follows:

UPSI-O First byte (leftmost)
UPS I -1 Second byte
UPS I - 2 Third byte

UPS I -7 Eighth byte (rightmost)

One condition-name must be associated with each function-name-2; a second
condition-name is optional. One condition-name can be associated with the
ON status; another can be associated with the OFF status. Establishing
condition-names for the ON or OFF status of a switch permits testing the
setting of that switch.

3-8

Each condition-name is formed according to the rules for a user-defined
word, and the condition-name must contain at least one alphabetic
character.

In the Procedure Division, the UPS I switch status is tested through the
associated condition-name(s). Each condition-name is the equivalent of a
level-88 item. The associated mnemonic-name, if specified, is considered the
conditional variable and can be used for qualification.

Programming Notes: UPS I switches are useful for processing special
conditions within a program, such as year-beginning or year-ending
processing. At the beginning of the Procedure Division, an UPS I switch can
be tested; if it is ON, the special branch is taken.

SYSTEM-SHUTDOWN: SYSTEM-SHUTDOWN is an internal switch that is
set to ON status when the system operator causes the system to be in a
shutdown-pending state or when the job is being canceled in a controlled
manner. The associated ON or OFF condition-names can be referenced
anywhere a condition-name is valid. Their status cannot be altered by the
program.

Coding Example

This coding example assigns mnemonic-names to some commonly used
function-names in the SPECIAL-NAMES paragraph.

SPECIAL-NAMES SYSTEM-CONSOLE IS SYSTM.
REQUESTOR IS WORK-STATION.
COl IS NEXT-PAGE.
LOCAL-DATA IS LOCAL-DATA-AREA.
ATTRIBUTE-DATA IS ATTRB-DATA.
SYSTEM-SHUTDOWN IS SHUTDOWN-SWITCH.

ON 	 STATUS IS SHUTDOWN-PENDING.
UPSI-O IS UPSI-SWITCH-O.

ON 	 STATUS IS UO-ON.
OFF STATUS IS UO-OFF.

UPSI-I IS UPSI-SWITCH-l.
ON 	 STATUS IS UI-ON.
OFF STATUS IS UI-OFF.

IBM-ASCII IS STANDARD-I.
CURRENCY-SIGN IS "Y".

Alphabet-Name Clause

The alphabet-name clause provides a means of relating an alphabet-name to
a specified character code set or collating sequence.

The alphabet-name specifies a collating sequence in one of the following:

• 	 The PROGRAM COLLATING SEQUENCE clause in the OBJECT-COMPUTER
paragraph

• 	 The COLLATING SEQUENCE phrase of the SORT or MERGE statement.

The EBCDIC collating sequence is used when NATI VEis specified or when
the alphabet-name clause is omitted.

Chapter 3. Identification and Environment Divisions 3-9

The ASCII (American National Standard Code for Information Interchange)
collating sequence is used when STANDARD-l is specified.

Literal Phrase: The literal phrase of the alphabet-name clause processes
internal data in collating sequences other than NATIVE or STANDARD-I.

When the literal phrase is specified, the collating sequence to be used is
specified by the user according to the following rules:

• 	 The order in which literals appear specifies the ordinal number, in
ascending sequence, of the character(s) in this collating sequence.

• 	 Each numeric literal specified must be an unsigned integer and must
have a value from 1 through 256 (the maximum number of characters in
the EBCDIC character set). The value of each literal specifies the
relative position of a character within the EBCDIC character set. For
example, the literal 112 represents the EBCDIC character ?, the literal
234 represents the EBCDIC character Z, the literal 241 represents the
EBCDIC numeric character o.

• 	 Each character in a nonnumeric literal represents that character in the
EBCDIC set. If the nonnumeric literal contains more than one
character, each character, starting with the leftmost, is assigned a
successively ascending position within this collating sequence.

• 	 Any EBCDIC characters not explicitly specified assume positions in this
collating sequence higher than any of the explicitly specified
characters. The relative order of the unspecified characters within the
EBCDIC set remains unchanged.

• 	 Within one alphabet-name clause, a given character must not be
specified more than once.

• 	 Each nonnumeric literal associated with a THROUGH or ALSO phrase
must be one character in length.

• 	 When the THROUGH phrase is specified, the contiguous EBCDIC
characters beginning with the character specified by literal-I and
ending with the character specified by literal·2 are assigned
successively ascending positions in this collating sequence. This
sequence may be either ascending or descending within the original
EBCDIC sequence. For example, if the characters Z through S are
specified, then for this collating sequence the ascending values are:
ZYXWVUTS

• 	 When the ALSO phrase is specified, the EBCDIC characters specified as
literal·1 , literal·3, literal·4, and so on are assigned to the same position
in this collating sequence. For example, if "D" ALSO "N" ALSO 112
ALSO "%" is specified, then for this collating sequence the characters D,
N, ?, and % are all considered to be in the same position in the
collating sequence.

3·10

If specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with hex 00 and hex
FF respectively.

After all clauses in the SPECIAL-NAMES paragraph are processed, the
character having the highest ordinal position in this collating sequence is
associated with the figurative constant HIGH-VALUE. If more than one
character has the highest position because the ALSO phrase is specified, the
last character specified is considered to be the HIG H - V AL U E character for
procedural statements such as DISPLAY, or as the sending field in a MOVE
statement. If the ALSO phrase example given above were specified as the
high-order characters of the collating sequence, then the HIGH - VALU E
character would be %.

After all clauses in the SPECIAL-NAMES paragraph are processed, the
character having the lowest ordinal position in this collating sequence is
associated with the figurative constant LOW-VALUE. If more than one
character has the lowest position because the ALSO phrase is specified, the
first character specified is the LOW-VALUE character. If the ALSO phrase
example given above were specified as the low-order characters of the
collating sequence, then the LOW-VALUE character would be D.

Alphabet-Name Clause Examples: The following examples illustrate
some uses for the alphabet-name clause.

If PROGRAM COLLATING SEQUENCE IS USER-SEQUENCE; if the alphabet-name
clause is specified as USER-SEQUENCE IS "D", "E", "F"; and if two Data
Division items are defined as follows:

01 ITEM-1 PIC X(3) VALUE "ABC".
01 ITEM-2 PIC X(3) VALUE "DEF".

then the comparison IF ITEM-1 > ITEM-2 is true.

Characters D, E, and F are in ordinal positions 1, 2, and 3 of this collating
sequence. Characters A, B, and C are in ordinal positions 197, 198, and 199
of this collating sequence.

If the alphabet-name clause is USER-SEQUENCE IS 1 THRU 247, 251 THRU
256, "7", ALSO "8", ALSO "9"; if all 256 EBCDIC characters have been
specified; and if the two Data Division items are specified as follows:

01 ITEM-1 PIC X(3) VALUE HIGH-VALUE,
01 ITEM-2 PIC X(3) VALUE "787".

then both of the following comparisons are true:

IF ITEM-1 ITEM-2 ,
IF ITEM-2 = HIGH-VALUE

They compare as true because the values "7", "8", and "9" all occupy the
same position (HIGH-VALUE) in this USER-SEQUENCE collating sequence.

If the alphabet-name clause is specified as USER-SEQUENCE IS "E", "D",
"F" and a table in the Data Division is defined as follows:

Chapter 3. Identification and Environment Divisions 3-11

05 	 TABLE A OCCURS 6 ASCENDING KEY IS
KEY-A INDEXED BY INX-A
10 FIELD-A
10 KEY-A

and if the contents in ascending sequence of each occurrence of KEY -A are
A, B, C, D, E, G, then the results of the execution of a SEARCH ALL
statement for this table will be invalid because the contents of KEY -A are
not in ascending order. The proper ascending order would be E, D, A, B, C,
G.

CURRENCY SIGN Clause

The literal that appears in the CURRENCY SIGN clause defines the currency
symbol to be used in the PICTURE clause. The literal must be a
one-character nonnumeric literal and must not be any of the following
characters:

• 	 Digits 0 through 9

• 	 Alphabetic characters ABC D L P R S V X Z or the space

• 	 Special characters . (+ *) ; - / • = "

When the CURRENCY SIGN clause is omitted, only the dollar sign ($) may be
used as the PICTURE symbol for the currency sign.

DECIMAL-POINT IS COMMA Clause

When the DECIMAL-POINT IS COMMA clause is specified, the functions of the
period and the comma are exchanged in PICTURE character-strings and in
numeric literals.

Input-Output Section

The Input-Output Section defines each file, identifies its external storage
medium, assigns the file to one or more input/output devices, and also
specifies information needed for efficient transmission of data between the
external medium and the COBOL program.

Files

System/38 has two categories of files: data base files and device files.

Data Base Files

Data base files allow information to be permanently stored on the system.
Multiple programs can access this information in different ways.

A data base file is subdivided into groups of records called members. Every
file has at least one member.

3-12

DDM Files

Paragraphs

There are two types of data base files: physical files and logical files.

Physical Files: A physical file is a file that actually contains data
records. This makes physical files similar to disk files on other systems. A
physical file can contain only fixed-length records, all of which have the
same format.

Logical Files: A logical file is a data base file through which data from
one or more physical files can be accessed. The format and organization of
this data is different from that of the data in the physical file(s}. Each
logical file can define a different access path (index) for the data in the
physical file(s). Each logical file can exclude and reorder the fields defined
in the physical file(s}.

Device Files

A device file reads from or writes to a device attached to the system. A
device file controls the transfer of data between the physical device and the
program.

This manual uses the term file as a device file or a member in a data base
file.

Distributed Data Management (DDM) allows you to access data files that
reside on remote IBM System/36 and System/38 systems. DDM files are
supported by the COBOL compiler. You can retrieve, add, update or delete
data records in a file that resides on another system. In addition, a remote
system can access your System/38 data base for record retrieval.

For more information about accessing remote files, refer to the IBM
System/38 Distributed Data Management User's Guide.

The Input-Output Section is divided into two paragraphs: the FI LE-CONTROL
paragraph, which names and associates the files with the external media,
and the I -O-CONTROL paragraph, which defines special input/output
techniques to be used.

Format

DNPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry}.

D-O-CONTROL. input-output-control-entry]] •

Chapter 3. Identification and Environment Divisions 3-13

The exact contents of the Input-Output Section depend on the file
organization and access methods used to process the file. The following
summary gives some background for the file processing techniques
available in System/38 COBOL.

File Processing Summary

The method used to process a file in a COBOL program depends on the data
organization of the file and on the access mode used.

Appendix J summarizes which clauses and statements are required and
which clauses and statements are optional for each access mode and device.

The following paragraphs describe both the types of data organization, and
the access modes available in COBOL. See Chapter 9 for information about
COBOL file processing in relation to System/38 file processing.

Data Organization

In a COBOL program, data organization can be sequential, indexed,
relative, or TRANSACT! ON.

Records can be fixed or variable in length. For all files other than tape,
variable length records are stored as fixed length records of the maximum
size specified for the file.

Sequential Organization: With this organization, records are placed in
the file consecutively, without keys, in the order they are written (arrival
sequence). Once established, this relationship does not change, with the
exception that a file can be extended. Both data base files and device files
can have sequential organization.

Indexed Organization: With this organization, each record in the file has
one embedded key that is associated with an index. The index provides a
logical path to the data records according to the contents of the associated
embedded record key data item (key sequence).

When records are inserted, updated, or deleted, they are identified solely by
the value of their record key. Thus, the value in each record key data item
must be unique and must not be changed when the record is updated. The
key used for any specific input/output request is known as the key of
reference.

Only data base files can have indexed organization.

3-14

.------------ IBM Extension ------------,

A logical file that is opened for OUTPUT does not remove all records in the
physical file on which it is based. Instead, the file is opened to allow only
write operations, and the records are added to the file.

L-__________ End of IBM Extension __________---'

Relative Organization: With this organization, each record in the file is
identified by its relative record number. The file can be thought of as a
serial string of areas, each of which can contain one record. Each of these
areas is identified by a relative record number; record storage and retrieval
are based on this number. For example, the first record area is addressed
by relative record number 1, and the tenth is addressed by relative record
number 10, whether or not records have been written in the second through
ninth record areas. Relative files must be assigned to DISK or DATABASE.

New relative files opened for OUTPUT are initialized with all records
deleted. In the absence of command language override, the number of
records in a newly created file is the number of records specified at file
creation time including all increments. Any attempt to extend a relative
file beyond its current size results in a boundary violation.

Relative record number processing can be used for a physical file or for a
logical file that is based on only one physical file.

IBM Extension

TRANSACTION Organization: Work station and data communication
files can have TRANSACTION organization. See Chapter 7 for a discussion of
this organization.

'--_________ End of IBM Extension _________---1

Access Modes

Access mode is a COBOL term that defines the manner in which data in a
logical or physical file is to be processed. The three access modes are
sequential, random, and dynamic.

Sequential Access Mode: This access method allows records of a file to be
read and written in a serial manner. The order of reference is implicitly
determined by the position of a record in the file.

Random Access Mode: This access method allows records to be read and
written in a user-specified manner. The control of successive references to
the file is expressed by specifically defined keys supplied by the user.

Dynamic Access Mode: This access method allows a specific input/output
request to determine the access mode. Thus records can be processed
sequentially and/or randomly.

Chapter 3. Identification and Environment Divisions 3-15

Access Mode Allowed for Each File Type

Sequential Files: Files with sequential organization can be accessed only
sequentially. The sequence in which records are accessed is the order in
which the records were originally written (arrival sequence).

Indexed Files: All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is determined by the RECORD KEY value.

In the random access mode, the sequence in which records are accessed is
controlled by the user. The desired record is accessed by placing the value
of its record key in the RECORD KEY data item defined for that file.

In the dynamic access mode, the user can change from sequential access to
random access by using appropriate input/output statements.

Relative Files: All three access modes are allowed.

In the sequential access mode, the sequence in which records are accessed
is the ascending order of the relative record numbers of all records that
currently exist within the file.

In the random access mode, the sequence in which records are accessed is
controlled by the user. The desired record is accessed by placing its
relative record number in a RELATIVE KEY data item.

In the dynamic access mode, the user can change from sequential access to
random access by using appropriate input/output statements.

TRANSACTION Files: See Chapter 7 for a discussion of access mode
considerations for TRANSACTION files.

FILE-CONTROL Paragraph

The FI LE-CONTROL paragraph contains one or more file-control entries. A
file-control entry associates a file in the COBOL program with an external
medium, and this entry allows specification of file organization, access
mode, and other information. The format of a file-control entry varies with
the type of file described. The formats for the F I L E - CONTROL paragraph are
as follows:

3-16

Format 1 - Sequential File Entries (READER, PUNCH,
PUNCHPRINT, PRINT, PRINTER, TAPEFILE, DISKETTE,
FORMATFILE, DISK, DATABASE)

SELECT [OPTIONAL] file-name
r;:- --------1

ASSIGN TO assignment-name-,I [,assignment-name-2] ... 1L- _______ --'
r-- --- -----,-,

: [RESERVE integer-' [~:~~sJ] :
L___________::...J

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[F ILE STATUS IS data·name-'] •

Format 2-Indexed File Entries (DISK, DATABASE)

SE LECT file-name
r;::---- -----1

ASSIGN TO assignment-name-11 [, aSsignment-name-2] ..• 1t..::..: _______ ---'
rr----------=,-]
I [RESERVE integer-1 [~:~~s]J IL.!: __________ ::!.l

ORGANIZATION IS INDEXED

SEQUENTIAL}]

[ACCESS MODE IS { RANDOM

DYNAMIC

[FILE STATUS ISdata.name-l] •

Chapter 3. Identification and Environment Divisions 3-17

Format 3-Relative File Entries (DISK, DATABASE)

SELECT file-name

c--------.
ASSIGN TO assignment-name-11 [. assignment-name-2J •.. I

~-- ______ I

~;;;;;R~E~_~'[~:~~s]]l.!: __________ ~

ORGANIZATION IS RELATIVE

SEQUENTIAL [. RELATIVE KEY IS data-name-3] }
ACCESS MODE IS {

{ RANDOM}
DYNAMIC • RELATIVE KEY IS data-name-3

[FILE STATUS IS data-name-1] .

Format 4 - Sort or Merge File Entries

r------------------I
SELECT file-namelASSIGN TO assignment-name-1 [, assignment-name-2] .•• 1 . L __________________1

IBM Extension

Format 5 - TRANSACTION File Entries (WORKSTATION)

See Chapter 7 for a discussion of this format.

'--_________ End of IBM Extension _________---'

FILE-CONTROL Paragraph - General Considerations

Each file described in an FO or SO entry in the Data Division must be
described in only one entry in the FI LE- CONTROL paragraph. Each file
specified in a file-control entry must have a file description in the Data
Division.

The keyword FI LE- CONTROL can appear only once, at the beginning of the
FILE-CONTROL paragraph. The word FILE-CONTROL must begin in Area A,
and it must be followed by a period and a space.

Each file-control entry must begin in Area B with a SEL ECT clause. The
order in which other clauses appear is not significant.

Each clause within a file-control entry can optionally be separated from the
next by a comma or semicolon followed by a space. Each file-control entry
ends with a period and a space.

Each data-name must appear in a Data Division data description entry.
Each data-name can be qualified but cannot be subscripted or indexed.

3-18

SELECT Clause

Each file-name specified in a SELECT clause must have an FD or SD entry in
the Data Division. A file-name must conform to the rules for a COBOL
user-defined name, must contain at least one alphabetic character, and must
be unique within this .program.

Sequential File Considerations: The OPT IONAl phrase can be specified
only for input files with sequential organization. It must be specified for
input files that are not necessarily present each time the program is
executed.

ASSIGN Clause

The ASS I GN clause associates a file with an external medium. The
assignment-name makes the association between the file and the external
medium. For sort or merge files (associated with an SD entry), no external
medium is used. The related ASS I GN clause is only validity checked. It is
not actually used for 1-0.

Assignment-name consists of 3 parts:

• Device

• System/38 file name

• Attribute.

It has the following general structure:

Device [- System/38 file name [- attribut~]

Device: This part of assignment-name specifies the type of device that the
file will use. The compiler can then check whether the file is described and
used in a consistent manner. See "Device Independence/Device
Dependence" in Chapter 9 for further information.

The compiler does not check whether the device associated with the
external file is of the type specified in the device portion of
assignment-name. For example, assignment-name could be TAP E F I l E- ABC 0
and ABCD could be created with a Create Card File (CRTCRDF) Cl command.
The compiler would provide no diagnostics unless the 1-0 verbs were used
in an inconsistent manner· for TAP E F I l E. At execution time, CPF (control
program facility) could either issue an escape message or ignore the
function if it was not applicable to the device. See the CPF Programmer's
Guide for further information on overriding files.

Chapter 3. Identification and Environment Divisions 3-19

IBM Extension

The device type can be changed at execution time with the DEV parameter
of the OVRxxx F CL command. To ensure consistent results, the device type
associated with the DEV parameter should be the same as that specified for
assignment-name.

'--_________ End of IBM Extension _________----1

Device can be any of the following:

Device Associated File
READER Card file
PUNCH Card file
PUNCHPRINT Card file
PRINT Card file
PRINTER! Printer file
FORMATF I L E2 Printer file
TAPEFILE Tape file
DISKETTE Diskette file
DISK3 Any physical data base file or single format logical

data base file

DATABASE4 Any data base file

WORKSTATION Display file, communications file, binary
 Jsynchronous communications file, or mixed file.

For more information on how to use externally described printer files see
"FORMATFILE Files" in Chapter 9.

Note: See "DISK and DATABASE File Considerations" in Chapter 9 for
further information.

System/3a File Name: This part of assignment-name must be an
unhyphenated, 1- through 10-character system name of the actual external
file (physical or logical data base, or device). This external file has to be
created before compiling the program only when it is used by a COpy
statement, DDS (data description specifications) or DD format, within this
program.

For data base files, the member name cannot be specified in the program. If
a member other than the first member is to be specified, the Override with

PRINTER should be specified for program described printer files only.

2 	 FORMATFILE should be specified for externally described printer files only.

3 	 When DISK is the device, data base extensions cannot be used.

4 	 When DATABASE is the device, externally described data and data base
extensions can be used.

3-20

Data Base File (OVRDBF) CL command must be used at execution time to
specify the member name.

This System/38 file name is the name of the CPF object that is displayed by
the Display Program References (OSPPGMREF) command. Since no external
medium is used for an SO file, the OSPPGMREF command does not list any
files defined for an SD file.

The System/38 file name can be changed at execution time with the TOFILE
parameter of the OVRxxxF CL command. To ensure consistent results, the
device type associated with the TO F I L E parameter should be the same as
that specified for assignment-name.

Attribute: This part of assignment-name can be one of the following:

• - hopper [- association]

• - S1.

Hopper must be either P or S to specify the primary or secondary hopper for
card device files. If neither P nor S is specified for a card device file, the
HOPPER parameter on the Create Card File (CRTCRDF) or Change Card File
(CHGCROF) CL commands is used.

Association must be any single-digit number from 0 through 9. It can be
used only if the primary (P) hopper is specified for the file. All unit record
card files that have the same association number are assigned to the same
unit record card device, and must use the same external file name (see
Appendix D).

81 indicates that a separate indicator area has been specified in the DDS
for a FORMATFILE or WORKSTATION file. See "Indicators" in Chapter 7 for
more information on the use of the SI attribute.

See "Device Independence/Device Dependence" in Chapter 9 for further
information on the ASSIGN clause.

The valid entries for each field of the assignment-name vary with the
device. The valid combinations of fields are shown in Figure 3-2.

In formats 1, 2, and 3, the second and subsequent assignment-names are
syntax-checked, but are treated as documentation. In format 4, the entire
ASSIGN clause is syntax-checked, but is treated as documentation.

RESERVE Clause

The RESERVE clause is syntax-checked, but is treated as documentation.

Chapter 3. Identification and Environment Divisions 3-21

ORGANIZATION Clause

The ORGAN I ZATI ON clause specifies the logical structure of the file. The file .
organization is established at the time the file is created and cannot
subsequently be changed. When the ORGAN I ZATI ON clause is omitted,
ORGANIZATION IS SEQUENTIAL is assumed.

;------------ IBM Extension -------------,

For data base files, the ORGAN I ZATI ON clause indicates the current program
usage of the file in the program. Therefore, the same data base file can use
SEQU ENTI AL. IN DEX ED (assuming a keyed sequence access path exists), or
RELATIVE in the ORGANIZATION clause. This is true regardless of what is
specified in other programs that use this file.

'--_________ End of IBM Extension _________-'

Note: A keyed sequence access path is always created when a key is
specified in the DDS that was used as input to the Create Physical File
(CRTPF) or the Create Logical File (CRTLF) CL command.

System/38 Default

File System/38

Device Name File Name Hopper Association SI

READER 0 QCARD96 0 0 N

PUNCH 0 QCARD96 0 0 N

PUNCHPRINT 0 QCARD96 0 0 N

PRINT 0 QCARD96 0 0 N

PRINTER 0 QPRINT N N N

FORMATFI LE R N N 0

TAPEFILE 0 QTAPE N N N

DISKETTE 0 QDKT N N N

DISK R N N N

DATABASE R N N N

WORKSTATION R N N 0

R=Required
o= Optional

N= Not Allowed

Figure 3-2. Valid Entries for the Assignment-Name

Sequential File Considerations: When ORGANIZATION IS SEQUENTIAL is
specified or implied, a predecessor-successor relationship of the records in
the files is established by the order in which records are placed in the file
when it is created or extended (arrival sequence access path).

3-22

Indexed File Considerations: When ORGANIZATION IS INDEXED is
specified, the position of each logical record in the file is determined by the
key sequence access path created with the file and maintained by the
system. The access path is based on an embedded key within the file's
records.

Relative File Considerations: When ORGANIZATION IS RELATIVE is
specified, the position of each record in the file is determined by its relative
record number within the arrival sequence access path.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which the records of the file
are made available for processing. When this clause is omitted, ACCESS IS
SEQUENTIAL is assumed.

Sequential File Considerations: For files with sequential organization,
records in the file are accessed in the order they are written when the file is
created or extended (arrival sequence). Whether ACCESS IS SEQUENTIAL is
specified or omitted, sequential access is always assumed.

Indexed File Considerations: For files with indexed organization, the
access mode can be SEQUENTIAL. RANDOM. or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied, records in the file are
accessed in the sequence of ascending record key values within the index.

,------------ IBM Extension ---------------,

When using an externally described file, if the DDS keyword DES CEN Dis
used when the field is specified as a key field, the records in the file are
accessed in the sequence of descending record key values within the index.
Either the DESCEND keyword, or the ASCEND keyword (if DESCEND is not
specified) appears under the heading RETR I EVAL in a comment table in the
COBOL source program listing.

'---_________ End of IBM Extension _________--J

When ACCESS IS RANDOM is specified, the value placed in the RECORD KEY
data item specifies the record to be accessed.

When ACCESS IS DYNAMIC is specified, records in the file can be accessed
sequentially or randomly, depending on the form of the specific
input/output request.

Relative File Considerations: For files with relative organization, the
access mode can be SEQUENTIAL. RANDOM. or DYNAMIC.

When ACCESS IS SEQUENTIAL is specified or implied, records in the file are
accessed in the ascending sequence of relative record numbers in the
arrival sequence access path.

When ACCESS IS RANDOM is specified, the value placed in the RELATIVE
KEY data item specifies the record to be accessed.

Chapter 3. Identification and Environment Divisions 3-23

L

When ACCESS IS DYNAMIC is specified, records in the file can be accessed
sequentially or randomly, depending on the form of the specific
input/output request.

RELATIVE KEY Phrase: The RELATIVE KEY phrase specifies the relative
record number for a specific record in a relative file.

Data-name-3 is the RELATIVE KEY data item. It must be defined as an
unsigned integer data item and must not be defined in a record description
entry associated with this relative file. That is, the RELATIVE KEY is not
part of the record.

When ACCESS IS SEQUENTIAL is specified, the RELATIVE KEY phrase need
not be specified unless the START statement is used. When the START
statement is used, the system uses the contents of the RELATIVE KEY data
item to determine the record at which sequential processing is to begin.

If a value is placed in the RELATI VE KEY data item and a START statement
is not used, the value is ignored and processing begins with the first record
in the file.

r------------ IBM Extension ------------,

When the file is opened, the POSITION parameter on the OVRDBF CL
command can be used to set the current record pointer. This causes
Processing to begin with a record other than the first record. See the CL
Reference Manual for further information. j
L...-_________ End of IBM Extension _________---'

When ACCESS IS RANDOM or ACCESS IS DYNAMIC is specified, the RELATIVE
KEY phrase must be specified. For each random processing request, the
contents of the RELA TI V E KEY data item are used to communicate a relative
record number to the system.

TRANSACTION File Considerations: See Chapter 7.

RECORD KEY Clause (Indexed File)

The RECORD KEY clause must be specified for an indexed file. The RECORD
KEY clause specifies the data item within the record that is the record key
for an indexed file. The values contained in the record key data item must
be unique among records in the file.

r------------ IBM Extension ------------,

The DUPLI CATES phrase can only be specified for files assigned to DATABASE.
This allows the file to have keys with the same values. If the file has
multiple formats, two keys in different formats have the same values only
when the key lengths and the contents of the keys are the same.

For example, given a file with the following two formats:

3-24

Format F1 with keys A, B, C
Format F2 with keys A, B, D.

If fields C and D are the same length, have the same data type, and have
the same values, the file would contain two records with a duplicate key.
The term duplicate key applies only to a complete record key for the format.
A record key for the format consists of the key field(s) defined for a DDS
format for records residing on the data base. The term does not apply to
the common key for the file (only fields A and B in the above example).

Users can indicate DUPLI CATES on the RECORD KEY clause. A file status of
95 is returned after a successful open when:

• 	 The DUPLICATES phrase is specified in the COBOL program and the file
was created with UN I QU E specified in DDS.

• 	 The DUPLICATES phrase is not specified in the COBOL program and the
file was created allowing nonunique keys.

Processing files when either of these conditions exist can cause
unpredictable results.

To ensure that the proper duplicate record is updated or deleted in a file
that allows duplicates and is processed randomly, the last input/output
statement executed prior to the execution of the REWRITE or DELETE
statement must be a successfully executed READ statement for the record
to be deleted or rewritten.

If the DDS file level keyword LIFO (last-in-first-out) is specified, the
duplicate records within a physical file are retrieved in a last-in-first-out
order.

'--_________ End of IBM Extension _________---'

Data-name-2 is the RECORD KEY data item. It must be described as a
fixed-length alphanumeric item within a record description entry associated
with the file. The length of the record key is restricted; the key length, in
characters, plus the number of fields cannot exceed 120. See the CPF
Reference Manual- DDS for more information.

IBM Extension

The RECORD KEY data item, data-name-2, can be a numeric item when the
file is assigned to a DATABASE device type. The numeric item can have a
usage of DISPLAY, COMP (COMP-3), or COMP-4.

Depending on the keywords specified for the data item in DDS, the keyed
sequence access path can be by algebraic value. See the ABSVAL, DIGIT,
SIGNED, and ZONE keywords in the CPF Reference Manual-DDS. If one of
these keywords is specified, its name appears in a comment table in the
COBOL source listing under the heading TY PE. If no keyword is specified,
the table entry is the data type specified in DDS. The table entry AN
indicates that the data type is alphanumeric (specified in DDS as A). The

Chapter 3. Identification and Environment Divisions 3-25

table entry N indicates that the data type is numeric (specified in DDS as P,
S, or B).

The keywords specified for the data item in DDS can modify record
sequence. See the AL TSEQ. DIGIT. and ZONE keywords in the CPF
Reference Manual- DDS. If none of these keywords are specified, the
records are ordered according to the EBCDIC collating sequence.

L..-._________ End of IBM Extension _________----J

The data description of data-name-2 and its relative location within the
record must be the same as the ones used when the file was defined in DDS.

The record description that defines data-name-2 will always be used to
access the record key field for the 1-0 operation.

IBM Extension

The reserved word EXTERNALLY -DESCRI BED-KEY can specify that the key(s)
for this file are those that are externally described in DDS. The keys are
determined by the record formats that are copied by the COpy statement,
DDS or DD format, under the FD for this file.

The key can start at different offsets within the buffer for each format. In
this situation, care must be used when changing from one record format to
another, using a random READ or START statement. The key must be placed
in the record format at the correct offset in the format that will be used in
the random access of the file. Unpredictable results can occur if the key for
the desired record is based on data that was part of the last record read.
This is because the movement of the data to the key field can involve
overlapping fields.

The key within a format can be made up of multiple, noncontiguous (not
adjacent) fields. When using EXTERNALLY-DESCRIBED-KEY for a logical file,
the key fields defined for a record format in DDS must also be fields defined
in that format. Therefore, fields renamed in DDS, or fields that are part of
concatenated fields in DDS cannot be used as keys. Only those record
formats copied in within the FD for the file should be referenced by the
FORMAT phrase. If a format is referenced that is defined within the file, but
that format has not been copied into the program, the key is built using the
key field(s) defined for the first record format that was copied. This can
cause unpredictable results.

L..-._________ End of IBM Extension _________----J

3-26

FILE STATUS Clause

The FILE STATUS clause allows the user to monitor the execution of each
input/output request for the file.

Data-name-! is the status key data item. Data-name-! must be defined in
the Data Division as a two-character alphanumeric item and must not be
defined in the File Section.

When the FILE STATUS clause is specified, the system moves a value into
the status key data item after each input/output request that explicitly or
implicitly refers to this file. The value indicates the execution status of the
statement. When the compiler generates code to block output records or
unblock input records, file status values that are caused by CP F exceptions
are set only when a block is processed. See Appendix I for a description of
the possible values. See Chapter 9 for more information on blocking output
records and unblocking input records.

r------------- IBM Extension --------------,

An extended file status data item may be specified for TRANSACT ION file
processing. See Chapter 7 for more information.

'--_________ End of IBM Extension _________-----J

I-O-CONTROL Paragraph

The I -O-CONTROL paragraph specifies when checkpoints are to be taken and
what storage areas are to be shared by different files and optimization
techniques. The I -O-CONTROL paragraph is optional in a COBOL program.

Chapter 3. Identification and Environment Divisions 3-27

Format

[-O~O~T~O= ____________ ---,

I [RERUN ON assignment-name I

I I

IL EVERY integer-' RECORDS OF file-name-,] .•. I

~

RECORD]]
[SAME [SORT AREA FOR file-name-2 {. file-name-3} . .. • ..

SORT-MERGE rr------------------- II[MULTIPLE FILE TAPE CONTAINS 	 I

I file-name-4 [POSITION integer-2] 	 :

I [file-name-5 [POSITION integer-3]] ..•] • ... !L___________________ ~

[COMMITMENT CONTROL FOR

file-name-6

[file-name-7] .. .J .J

The keyword I -O-CONTROL can appear only once, at the beginning of the
I-O-CONTROL paragraph. The word I-O-CONTROL must begin in Area A, and
it must be followed by a period followed by a space.

Each clause within the I -O-CONTROL entry can optionally be separated from
the next by a comma or semicolon followed by a space. The clauses, when
present, must be specified in the order shown. Clauses can be specified on
the same line as the I -0- CONTROL paragraph header, or on separate lines.
The I -a-CONTROL entry ends with a period followed by a space.

RERUN Clause

The RERUN clause is syntax-checked, but is treated as documentation.

Assignment-Name: This name can be any user-defined word.

3-28

SAME Clause

The SAME clause specifies that two or more files are to use the same main
storage area during processing. The files named in a SAME clause need not
have the same organization or access.

The following discussion describes only the SAME RECORD AREA and SAME
AREA clauses. The SAME SORT AREA and SAME SORT -MERGE AREA clauses
are discussed under "SORT/MERGE" in Chapter 6.

The SAME RECORD AREA clause and SAME AREA clause are intended to make
efficient use of main storage. However, the virtual storage architecture of
System/38 eliminates the need for these clauses, and the clauses are
supported for compatibility rather than for performance. Use of the SAME
RECORD AREA actually degrades performance.

The SAME RECORD AREA clause specifies that two or more files are to use
the same main storage area for processing the current record. All the files
can be open at the same time. A record in the shared storage area is
considered to be both a record of each opened output file in this SAME
RECORD AREA clause, and a logical record of the most recently read input
file in this SAME RECORD AREA clause.

More than one SAME RECORD AREA clause can be included in a program;
however, the following restriction applies:

• 	 A specific file-name must not appear in more than one SAME RECORD
AREA clause.

The SAME AREA clause is syntax-checked, but is treated as documentation.
However, the following restrictions apply:

• 	 A specific file-name must not appear in more than one SAME AREA
clause.

• 	 If one or more file-names of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause must
appear in that SAME RECORD AREA clause. However, that SAME RECORD
AREA clause can contain additional file-names that do not appear in that
SAME AREA clause.

• 	 Only one of the files for which the SAME AREA clause is specified can be
open at one time. This rule takes precedence over the SAME RECORD
AREA rule that all the files can be open at the same time.

Programming Notes: The SAME RECORD AREA clause allows transfer of data
from one file to another with no explicit data manipulation because the
input/output record areas of named files are identical, and all are available
to the user.

Chapter 3. Identification and Environment Divisions 3-29

MULTIPLE FILE TAPE Clause

The MU L TIP L E F I LETAP E clause is syntax-checked, but is treated as
documentation. This clause specifies that two or more files share the same
reel of tape. The function is provided by the system through the use of
command language. See CRTTAPF. CHGTAPF. and OVRTAPF commands in
the CL Reference Manual.

COMMITMENT CONTROL Clause

The COMM ITM ENT CONTROL clalise specifies the files that will be placed
under commitment control when they are opened. These files will then be
affected by the COMMIT and ROLLBACK statements. The COMMIT statement
allows the synchronization of changes to data base records while
preventing other jobs from modifying those records until the COMM I T is
complete. The ROLLBACK statement provides a method of cancelling
changes made to data base files when those changes should not be made
permanent.

The COMMITMENT CONTROL clause can specify only files assigned to a device
type of DATABASE. Files under commitment control may have an
organization of sequential, relative or indexed, and may have any access
mode valid for a particular organization.

The system locks records contained in files under commitment control when
these records are accessed. Records remain locked until released by a
COMMIT or ROLLBACK statement. For more information about record locking
for files under commitment control, see "Commitment Control
Considerations" in Chapter 9.

,'\
wi

Programming Note: Always try to use files in a consistent manner to avoid
record locking problems, and to avoid reading records that have not yet
been permanently committed to the data base. Typically, a file should
either always be accessed under commitment control or never be accessed
under commitment control.

3-30

Chapter 4. Data Division

Data Division Concepts

The Data Division of a COBOL source program describes all the data to be
processed by the object program. Two types of data can be processed:
external data and internal data.

External Data

External data is contained in files. A file is a collection of data records
existing on some input/output device. A file can be thought of as a group of
physical records; it can also be thought of as a group of logical records.
The Data Division source statements describe the relationship between
physical and logical records. (See the Glossary for definitions of these
items.)

A physical record is a unit of data that is treated as an entity when it is
moved into or out of auxiliary storage. The size of a physical record is
determined by the particular input/output device on which it is stored. The
size does not necessarily have a direct relationship to the size or content of
the logical information contained in the file.

A logical record is a unit of data whose subdivisions have a logical
relationship. A logical record can itself be a physical record (that is, be
contained completely in one physical unit of data), or several logical
records can be contained within one physical record.

Record description entries, which follow the FD (file description) entry for a
specific file, describe the logical records in the file. These entries also
describe the category and format of data within each field of the logical
record and different values the data might be assigned.

The FD entry specifies the physical aspects of the data such as the size
relationship between physical and logical records, the size and name(s) of
the logical record(s), and labeling information.

Once the relationship between physical and logical records has been
established, only logical records are made available to the COBOL program.
Thus, in this manual, a reference to records means logical records unless
the term physical records is used.

Chapter 4. Data Division 4-1

Internal Data

Program logic can develop additional data within storage. Such data is
called internal data.

The concept of logical records applies to internal data as well as to external
data. Internal data can thus be grouped into logical records and be defined
by a series of record description entries. Items that need not be so grouped
can be defined in independent data entries.

Data Relationships

The relationships of all data to be used in a program are defined in the
Data Division through a system of level indicators and level-numbers.

A level indicator, together with its descriptive entry, identifies each file
description in a program. Level indicators are the highest level of any data
hierarchy with which they are associated.

A level-number, together with its descriptive entry, indicates the properties
of specific data. Level-numbers can be used to describe a data hierarchy.
They can indicate that this data has a special purpose, and while they can
be associated with and be subordinate to level indicators, they can also be
used independently to describe internal data or data common to two or
more programs.

Data Division Organization

The Data Division is divided into three sections: the File Section, the
Working-Storage Section, and the Linkage Section. Each section has a
specific logical function within a COBOL source program, and each can be
omitted from the source program when that logical function is not needed.

4-2

Format

DATA DIVISION.

~ILE SECTION.

[file-descriPtion-entry. {record-description-entry} ...] . .

I!ort-merge-fi le-description-entry. {record-description-entry} •..] . _ .]

[WORKING-STORAGE SECTION.

[data-descriPtion-entryJ ...

[!ecord-descriPtion-entry] .]

[LINKAGE SECTION.

[data-descriPtion-entryJ

[!ecord-descriPtion-entryJ .•.]

The Data Division must begin with the words OATA 0 I VISI ON followed by a
period and a space.

In the source program, the Data Division sections must appear in the order
shown.

Coding Example

SEQUENCE ~IA IB
(PAGE) SERIAL
1 3 • 6 8 1

o 1 ~010 j) ~T ~i III I I Is I, .
o 2 Itl IF I L lEi 1St~T II ~
03 III i~D FII 1&- will ..
04 I • ,..""
05 ~RlftI D
06 OJ Lull; II InD
o 7 Iii I LII t.I~ "IE:
o 8 0, Il~ 1111 1(11;: ,..11'" • S "'r-.~

09 o ,1.1 DE 51r 1111 Illil .", a! •

1 0 I'l ~It'll!It:, 11iI1!!i- Sli~TI. ~ ..

1 1 (' MIll&. N111M1E- • T ItlIiI •

1 2 ~ ill.1. , I'I~ II'rrl ~~.

I I1 3

Chapter 4. Data Division 4-3

Sample Data Division Entries

.. 1 2 3 4 5 .. . 6 ... 7J
DATA DIVISION.
FILE SECTION.
FD INPUT-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORDS ARE GEN-INFO SALES-DATA.

01 GEN-INFO.
03 EMPLOYEE-NAME.

05 FIRST-NAME PICX(12).
05 LAST-NAME PI C X (12) .

03 SOC-SEC-NUMBER PIC 9(9).
03 CHECK-SSN

REDEFINES SOC-SEC-NUMBER PIC X(9).
03 AGE PIC 99.
03 BIRTH-DATE.

05 B-MONTH PIC 99.
05 B-DAY PIC 99.
05 B-YEAR PIC 99.

03 ANNUAL-SALARY PIC 9(5)V99.
03 CHECK-SALARY

REDEFINES ANNUAL-SALARY PIC X(7)
* THIS REDEFINES WILL BE USED TO SEE IF THE FIELD IS BLANK.

03 RECORD-ID PIC X.
03 FILLER PIC X(31).

01 SALES-DATA.
03 SALES-SSN PIC 9(9).
03 SALES-LOCATION PIC xx.

88 MICHIGAN VALUE IS "MI"
88 EASTERN-REGION VALUES ARE "PA" "NY"
88 HEADQUARTERS VALUES ARE "BA" THRU "BZ".

03 TOTAL-COMMISSION PIC 9(5)V99.
03 RECORD-CODE PIC X.
03 FILLER PIC X(61).

FD REPORT-OUT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 132 CHARACTERS
LINAGE IS 66 LINES

FOOTING 6 LINES AT TOP 4 LINES AT BOTTOM 4
DATA RECORD IS PRINT-OUT.

01 PRINT-OUT PIC X(l32).
WORKING-STORAGE SECTION.
01 RECORDS-IN PIC 9(6) VALUE ZEROS.
01 DECLARATIVE-ERRORS PIC 9(4) VALUE ZEROS.
01 EOF-SW PIC X VALUE ZERO.
01 BAD-DATA-COUNTER PIC 9(3) VALUE ZEROS.
01 CHECK-IT PIC XX.
01 PRINT-FIELDS-EDITED.

03 FILLER PIC X(14) VALUE SPACES
03 TOTAL~SALARY PIC $$$.$$$.99BB.
03 COMMISSION-COSTS PIC $**.***.***.99B.
03 FILLER PIC X(65) VALUE ALL "_".
03 FILLER PIC X(12)

VALUE "---END---JOB".
01 SALARY-COUNTER PIC 9(6)V99 VALUE ZEROS.
01 COMMISSION-COUNTER PIC 9(6)V99 VALUE ZEROS.

4-4

File Section

The File Section contains a description of all externally stored data (FO)
and a description of each sort-merge file (SO) used in the program.

The File Section must begin with the header FILE SECTION followed by a
period. The File Section contains file description entries and sort-merge
file description entries. Each entry is followed by its associated record
description entry (or entries).

In a COBOL program, the file description entries (beginning with the level
indicators FO and SD) represent the highest level of organization in the File
Section. The file description entry provides information about the physical
structure and identification of a file, and gives the record-name(s)
associated with that file. For further description of the format and the
clauses required in a file description entry, see "File Description Entry" in
this chapter. See "Data Division - SORTIMERGE" in Chapter 6 for a
complete discussion of the sort-merge file description entry.

The record desclription entry consists of a set of data description entries
that describe the records contained within a particular file. More than one
record description entry can be specified; each is an alternative description
of the same storage area. For the format and the clauses required within
the record description entry, see "Data Description" in this chapter.

IBM Extension

The record description entry for a file can be specified using the COPY
statement, DDS or DO format. This allows the field descriptions for a record
format to be exactly as defined in DDS. Also, programs are easier to write
because the record format description is maintained in only one place. See
"SOURCE PROGRAM LIBRARY" in Chapter 6 for further information on
the COPY statement, DDS or DO format.

End of IBM Extension _________--'

Data areas described in the File Section should not be considered available
for processing unless the file containing the data area is open.

Working-Storage Section

The Working-Storage Section can contain description records that are not
part of data fileE but are developed and processed internally. These records
are used for report description, counters, and other functions necessary in
processing data.

The Working-Storage Section must begin with the section header
WORKI NG-STORAGE SECTION followed by a period. The Working-Storage
Section contains record description entries and data description entries for
noncontiguous data items.

Chapter 4. Data Division 4-5

Linkage Section

Data elements in the Working-Storage Section that bear a definite
hierarchical relationship to one another must be grouped into records
structured by level-number.

Noncontiguous items in this section that bear no hierarchical relationship
to one another need not be grouped into records provided they do not need
to be further subdivided. Instead, they are classified and defined as
noncontiguous elementary items. Each is defined in a separate data
description entry that begins with the special level-number 77 or
level-number 01. The format of the data description entry is the same as
the format for the record description entry.

The Linkage Section describes data made available from another program.

Record description entries and data description entries in the Linkage
Section provide names and descriptions, but storage within the program is
not reserved because the data area exists elsewhere. Any data description
clause can be used to describe items in the Linkage Section with one
exception: the VALUE clause cannot be specified for any items other than
level-88 items. See "INTER-PROGRAM COMMUNICATION FEATURE" in
Chapter 6 for additional information.

File Description Entry
J

In a COBOL program, the file description entry (FO entry) or the sort-merge
file description entry (SO entry) is the highest level of organization in the
File Section. Up to 99 FD and SO entries can be defined in a COBOL
program.

4-6

L

Format 1-Files (FORMATFILE, DATABASE, DISK, READER,
PUNCH, PUNCHPRINT, PRINT)

[FD file-name

[BLOCK CONTAINS Qnteger-, TO] integer-2 {~~;~~~~ERS}]

[RECORD CONTAINS [Jnteger-3 TO] integer-4 CHARACTERS]

,----------------------,
I LABEL {RECORD IS } {STANDARD} I
, -- RECORDS ARE OMITTED I

I [{data-name-,} II VALUE OF user-name-' IS literal-' I
I I
, [{data-name-2}]] I
, ' user-name-2 IS literal-2 . . . IL ______________________~

[DATA {:~~~:~~~RE} data-name-3 [data-name-4] ..•]

{record-descriPtion-entry} .••] •.•

Format 2 - Files (DISKETTE)

[FD file-name

[BLOCK CONTAINS [integer-' TO] integer-2 {~~~~~~~ERS}]

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

r - - -{REcORDIS- -} -{STAi~j[;ARD}- ---,
I LABEL RECORDS ARE OMITTED I

'[,
{ data-name.' } IIVALUE OF user·name-' ISI literal-' I

: [.u..,~.m.-2 IS {~~~:~_~m'-2}] .. .J: ,__________________ J

{ RECORD IS} []][DATA RECORDS ARE data-name-3 ,data-name-4 '...

[CODE-SET IS alphabet-name] .

{record-descriPtion-entry} •.•] ...

Chapter 4. Data Division 4-7

Format a-Files (TAPEFILE)

[FD file-name

[BLOCK CONTAINS [integer-1 TO] integer-2 {~~~~~~~ERS}]

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

{ RECORD IS } {STANDARD}
LABEL RECORDS ARE OMITTED

r-----------------------l
I { data-name-1} II [VALUE OF user-name-1 IS literal-1 I
I I
I [{data-name-2}]] II ' user-name-2 IS literal-2 • •• IL_______________________ J

{ RECORD IS} []][Q8I6. RECORDS ARE data-name-3 ,data-name4 •••

[CODE-SET IS alphabet-name] •

{record-description-entry} •••] •••

4-8

Format 4 - Files (PRINTER)

[FD file-name

[BLOCK CONTAINS [integer-, TO]integer-2{~~~~~~~ERS}]

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

r-----------------------l
, LABEL {RECORD IS } {STANDARD} I
I RECORDS ARE OMITTED ,

I ["
{data-name-,}I VALUE OF user-name-' IS literal-' I

I
I

[,",,,-n.me-2 IS {~;::;~~me-2}] , , ,] I
I

L_______________________J

[DATA {~~~g~g~:RE} data-name-3 [; data-name4] •.•]

[LINAGE IS {?ata-name-5} LINES [. WITH FOOTING AT {~ata-name-6}]
Integer-5 Integer-6

[. LINES AT TOP {~ata-name-7}J [LINES AT BOTTOM {~ata-name-8}J]
- Integer-7 Integer-8

{record-descriPtion-entry} ..•] •••

Format 5 - Sort or Merge File Description

See "Data Division - SORT/MERGE" in Chapter 6 for the format of the
sort-merge file description (SD entry).

IBM Extension

Format 6- TRANSACTION File

See Chapter 7 for a discussion of this format.

L...-_________ End of IBM Extension _________---'

The file description entry must begin with the level indicator FD followed by
a space.

The clauses that follow file-name are optional in many cases; the order of
their appearance is not significant.

However, at least one record description entry must follow the FD entry.
When more than one record description entry is specified, each entry
implies a redefinition of the same storage area. The last clause in the FD
entry must be immediately followed by a period and a space.

Chapter 4. Data Division 4-9

File-Name

The file~name must follow the level indicator, and must be the same as that
specified in the associated file control entry.

The file-name must follow the rules of formation for a user-defined word; at
least one character must be alphabetic. The file-name must be unique
within this program.

BLOCK CONTAINS Clause

This clause is syntax-checked, but is treated as documentation except for
tape files.

The BLOCK CONTAINS clause specifies the size of a physical record. When
the BLOCK CONTAINS clause is omitted, the compiler assumes that records
are not blocked. Thus, this clause can be omitted when each physical
record contains only one complete logical record.

Format

r .]. {RECORDS}]lBLOCK CONTAINS [!nteger-1 TO mteger-2 CHARACTERS

Integer-l and integer-2 must be nonzero unsigned integers.

When neither the CHARACTERS nor RECORDS phrase is specified, the
CHARACTERS phrase is assumed.

RECORDS Phrase: When the RECORDS phrase is specified, the physical
record size is the number of logical records contained in each physical
record.

Note: Maximum record size is 32 767; maximum block size is 32 767. These
maximums include any control bytes required for variable blocked records;
thus, the maximum size data record for a variable-blocked record is 32 759.

CHARACTERS Phrase: When the CHARACTERS phrase is specified or
implied, the physical record size is specified as the number of character
positions required to store the physical record no matter what USAGE clause
the characters within the data record have.

If only integer-2 is specified, it specifies the exact character size of the
physical record. When integer-l and integer-2 are both specified, they
represent, respectively, the minimum and maximum character size of the
physical record.

Note: Each variable record contains a 4-byte header and each block
contains a 4-byte header when the data is transferred to tape. However,
these 4-byte headers are provided by the system and are of no concern to

4-10

the COBOL user except that the maximum size of a variable record is
restricted to 32 759.

When variable records are used, the BLOCK CONT A I NS clause specifies the
maximum physical record length, while the logical record length for each
record is inferred by the compiler from the record name used in a WRITE
statement. If an explicit length is required after a READ statement, the user
can obtain it through the I -0- FEEDBACK mnemonic-name.

RECORD CONTAINS Clause

The RECORD CONT A I NS clause specifies the size of a file's data records.

Format

[RECORD CONTAINS [Jnteger.3 TO] integer-4 CHARACTERS]

The RECORD CONTAINS clause is never required because the size of each
record is completely defined in the record description entries. When this
clause is specified, the following rules apply:

• 	 Integer-3 and integer-4 must be unsigned, nonzero integers.

• 	 When both integer-3 and integer-4 are specified, integer-3 specifies the
size of the smallest data record, and integer-4 specifies the size of the
largest data record.

• 	 Integer-4 must not be specified alone unless all the records are the same
size. If all records are the same size, integer-4 specifies the exact
number of characters in the record.

• 	 The record size must be specified as the number of character positions
needed to store the record internally; that is, size is specified in terms of
the number of bytes occupied internally by the record's characters,
regardless of the number of characters used to represent the item within
the record. The size of a record is determined according to the rules for
obtaining the size of a group item. For a further description of record
size, see "USAGE Clause" in this chapter.

Note: When the RECORD CONTAINS clause is omitted, the record lengths are
determined by the compiler from the record descriptions. When one of the
entries within a record description contains an OCCURS DEPENDING ON
clause, the compiler uses the maximum value of the variable length item to
calculate the record length.

Programming Note: The system supports variable length physical records
only for files on tape. For all other files, the logical records are truncated
or padded to the length of the record as defined in the CRTxxx F CL
command. User length in the following table is defined as the largest
record associated with the given file, as specified by its record description.

Chapter 4. Data Division 4-11

User Length Less User Length
Input/Output Than File Record Greater Than
Type Length File Record Length

Input Truncation 	 Pad with blanks.

Output Pad with blanks 	 Truncation if old file
(non-empty); for new (empty
files) the larger record length is
used.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present or omitted.
The LABEL RECORDS clause is required in every FD entry. Format 3
(TAPEFILE) is the only format in which this clause is not treated as
documentation.

Format

LABEL {RECORD IS } {STANDARD}
-- RECORDS ARE OMITTED

r------------- IBM Extension ------------,

The LABEL RECORDS clause can be changed at execution time by
specifying the REELS parameter of the Override with Tape File
(OVRTAPF) CL command. See the CL Reference Manual for more
information on this command.

1...-_________ End of IBM Extension _________--1

STANDARD Phrase: The STANDARD phrase specifies that labels
conforming to system specifications exist for this file. This phrase must be
specified for files assigned to DIS K ETT E. DIS K. and DATA BAS E. (See
"FILE-CONTROL Paragraph" in Chapter 3.)

OMITTED Phrase: The OMITTED phrase specifies that no labels exist for
this file. This phrase must be specified for files assigned to READER.
PUNCHPRINT. PRINT, and PRINTER. 	 (See "FILE-CONTROL Paragraph" in
Chapter 3.)

VALUE OF Clause

The VALUE OF clause is syntax-checked, but is treated as documentation. It
specifies the description of an item in the label records associated with this
file.

4-12

L

Format

{ data-name-1 }
[VALUE OF ",,,-oam'-' IS literal-'

{ data-name-2}] ..•J[• user-name-2 IS
Iiteral-2

User-name: This name follows the rules for the formation of a
user-defined word.

DATA RECORDS Clause

The DATA RECORDS clause specifies the names of data records associated
with this file. The DATA RECORDS clause is never required.

Format

[DATA {:~~~:~~~RE} data-name-3 [data-name-4] ...]

Data-name-3 and data-name-4 are the names of data records and must have
01 level-number record descriptions that have the same name associated
with them.

The specification of more than one data-name indicates that this file
contains more than one type of data record. Two or more record
descriptions for this file occupy the same storage area. These records need
not have the same description or length. The order in which the
data-names are listed is not significant.

LINAGE Clause

The LI NAG E clause specifies the depth of a logical page in terms of the
number of lines. This clause also optionally specifies the line number at
which the footing area begins, as well as the top and bottom margins of the
logical page.

At execution time, the printer file being used determines the physical page
size. This information is used to issue appropriate space and eject
commands to produce the logical page as defined in the LINAGE clause.
Thus, the logical page can contain multiple physical pages, or one physical
page can contain multiple logical pages.

Chapter 4. Data Division 4-13

Format

J
[LINAGE IS {data-name-5} LINES [WITH FOOTING AT {~ata-name-6}1

Integer-5' Integer-6

[, LINES AT TOP {data.name-7}] [, LINES AT BOTTOM {~ata-name-8}]J
-- Integer-7 Integer-8

The LI NAGE clause can be specified only for files assigned to the device
PRINTER. See "FILE-CONTROL Paragraph" in Chapter 3.

All integers must be unsigned. All data-names must be described as
unsigned integer data items.

LINAGE Integer-5/Data-Name-5: Integer-5 or the value in data·name-5
specifies the number of lines that can be written and/or spaced on this
logical page. The area of the page that these lines represent is called the
page body. The value must be greater than zero.

WITH FOOTING Phrase: Integer-6 or the value in data-name-6 specifies
the first line number of the footing area within the page body. The footing
line number must be greater than zero, but it must not be greater than the
number for the last line of the page body. The footing area extends between
those two lines. If this phrase is not specified, the assumed value is equal
to that of the page body (integer-5 or data-name-5).

LINES AT TOP Phrase: Integer-7 or the value in data-name-7 specifies
the number of lines in the top margin of the logical page. The value of
integer-7 or data-name-7 can be zero. If this phrase is not specified, zero is
assumed.

LINES AT BOTTOM Phrase: Integer-8 or the value in data-name-8
specifies the number of lines in the bottom margin of the logical page. The
value of integer-8 or data-name-8 can be zero. If this phrase is not specified,
zero is assumed.

Figure 4-1 illustrates the use of each phrase of the LI NAGE clause.

LINAGE Clause Considerations: The logical page size specified in the
LI NAG E clause is the sum of all values specified in each phrase except the
FOOTING phrase. If the LINES AT TOP and/or the LINES AT BOTTOM phrases
are zero, each logical page immediately follows the preceding logical page
with no additional spacing provided.

At the time an OPEN OUTPUT statement is executed, the values of integer-5,
integer-6, integer-7, and integer-8 are used to determine the page body, first
footing line, top margin, and bottom margin of the logical page for this file.
These values are then used for all logical pages printed for this file during a
given execution of the program.

4-14

t
(top

LINES AT TOP integer-7
ma;gin)

Logical
Page Page

Body Depth

WITH FOOTING integer-6

FoJting

Are.a

LINAGE integer-5

(bottom
LINES AT BOTTOM integer-8

marpin)

Figure 4-1. LINAGE Clause and Logical Page Depth

If the FOOT I NG phrase is specified and the value of data-name-6 or integer-6
is equal to the LI NAGE value of data-name-5 or integer-5, one line (the last
line of the logical page) is available for footing information. If the FOOT I NG
phrase is not specified, no footing area is provided at the end of the logical
page, even though the default FOOT I NG value is data-name-5 or integer-5.

Data-name-5, data-name-6, data-name-7, and data-name-8 cause the following
actions to take place:

• 	 Their values at the time an OPEN OUTPUT is executed are used to
determine the page body, the first footing line, the top margin, and the
bottom margin for the first logical page only.

• 	 Their values at the time a WRITE ADVANCING statement causes page
ejection are used to determine the page body, first footing line, top
margin, and bottom margin for the next succeeding logical page only.

LINAGE-COUNTER Special Register: For each FD entry containing a
LINAGE clause, a separate LINAGE-COUNTER special register is generated.
LINAGE-COUNTER is initialized to one when an OPEN statement for this file is
executed. LINAGE-COUNTER is automatically modified by any WRITE
statement for this file.

If more than one FD has a LINAGE clause, then when LINAGE-COUNTER
special register is referred to in the PROCEDURE DIVISION, the user must
qualify each LI NAGE-COUNTER with its related file-name. For example,
LINAGE-COUNTER OF FILE-A.

The value in LI NAG E- COUNTER at any given time is the line number at
which the device is positioned within the current page. LINAGE-COUNTER
can be referred to in Procedure Division statements; LI NAGE-COUNTER must
not be modified by these statements.

Chapter 4. Data Division 4-15

CODE-SET Clause

The CODE-SET clause is valid only for files assigned to TAPEFILE or
DIS KETT E. This clause specifies the character code that is used to represent
data on a magnetic tape file or diskette file.

Format

[CODE-SET IS alphabet.name]

When the CODE-SET clause is specified, the following rules apply:

• 	 Alphabet-name identifies the character code convention that is used to
represent data on the input/output device.

• 	 All data in this file must have USAGE DISPLAY.

• 	 If signed numeric data is present, it must be described by the SIGN IS
SEPARAT E clause.

• 	 Alphabet-name must be defined in the SPECIAL-NAMES paragraph as
STANDARD-l for ASCII encoded files or as NATIVE for EBCDIC
encoded files.

The CODE-SET clause specifies the algorithm for converting the character
codes on the input/output medium from or to the internal EBCDIC
character set.

r------------ IBM Extension -------------,

If the CODE-SET clause is omitted, the CODE parameter of the Create
Diskette File (CRTDKTF) or the Create Tape File (CRTTAPF) CL command is
used.

The CODE-SET clause can be changed at execution time by specifying the
CODE parameter on the Override with Diskette File (OVRDKTF) or the
Override with Tape File (OVRTAPF) CL command. See the CL Reference
Manual for more information on these commands.

'---_________ End of IBM Extension _________---l

4-16

Data Description

All the data used in a COBOL program is described using a uniform system
of representation. The basic concepts of data description are discussed in
this chapter, as well as the actual COBOL clauses used to describe data.

Data Description Concepts

Most of the data processed by a COBOL program is presented in
hierarchically arranged records. This is necessary because most data must
be divided into subdivisions for processing. To subdivide such records,
COBOL uses a hierarchical concept of levels.

For example, in a department store's customer file, one complete record
could contain all data pertaining to one customer. Subdivisions within that
record could be: customer name, customer address, account number,
department number of sale, unit amount of sale, dollar amount of sale,
previous balance, and other pertinent information.

Level Concepts

Because records must be divided into logical subdivisions, the concept of
levels is inherent in the structure of a record. Once a record has been
subdivided, it can be further subdivided to provide more detailed data
references.

The basic subdivisions of a record (that is, those fields that are not further
subdivided) are called elementary items. Thus, a record can be made up of
a series of elementary items, or it can itself be an elementary item.

It might be necessary to refer to a set of elementary items. Thus,
elementary items can be combined into group items. Groups can be
combined into a more inclusive group that contains two or more subgroups.
Thus, within one hierarchy of data items, an elementary item can belong to
more than one group item.

Chapter 4. Data Division 4-17

Level-Numbers

A system of level-numbers specifies the organization of elementary and
group items into records. Special level-numbers are also used to identify
data items used for special purposes.

Each group and elementary item in a record requires a separate entry, and
each must be assigned a level-number. The following level-numbers are
used to structure records:

01 	 This level-number specifies the record itself and is the
most inclusive level-number possible. A level-01 entry can
be either a group item or an elementary item.

02-49 	 These level-numbers specify group and elementary items
within a record. Less inclusive data items are assigned
higher (not necessarily consecutive) level-numbers.

A group item includes all group and elementary items following it until a
level-number less than or equal to the level-number of this group is
encountered.

All elementary or group items immediately subordinate to one group item
must be assigned identical level-numbers that are higher than the
level-number of this group item.

IBM Extension

Elementary items or group items that are immediately subordinate to one
group item can have unequal level-numbers. For example, group item A
consists of items B, C, and D:

01 A.
05 B PIC X(4).
04 C PIC X(20).
02 0 PIC 99.

IBM does not recommend such coding practices, and this extension is
provided only for compatibility.

~_________ End of IBM Extension _________---'

Figure 4-2 illustrates the level-number concept. Notice that all groups
immediately subordinate to the level-01 entry have the same level-number.
Notice also that elementary items from different subgroups do not
necessarily have the same level-number, and that elementary items can be
specified at any level within the hierarchy. Figure 4-2 shows the COBOL
record-description entry in the left portion of the figure; it shows the
subdivision of the entry in the right portion of the figure.

Note: Level-numbers 01 through 09 can also be written as 1 through 9.

4-18

The items included in the
nierarchy of each level are

The COBOL record description entry is written as follows: indicated below:

01 	 RECORD-ENTRY. --------------This entry includes:

05 GROUP-1. ------------This entry includes:

..10 	 SUBGROUP-1. This .n'", inCIUd"'l
15 ELEM-1 PIC

15 ELEM-2 PIC

10 SUBGROUP-2.
 This .n'", inclUd"'l
15 ELEM-3 PIC

15 ELEM-4 PIC

05 GROUP-2. _-----------'This entry includes:

15 	 SUBGROUP-3. ...----------This entry includes:

25 ELEM-5 PIC

25 ELEM-6 PIC

15 SUBGROUP-4 PIC ---------This entry includes itself.

05 GROUP-3 PIC ... ------------This entry includes itself.

The storage arrangement is illustrated below:

~-----------------------------RECORD-ENTRY------------------------------~

GROUP-1-------....,.------GROUP-2-----t
I--SUBGROUP-1--'Ij.·--SUBG ROUP-2·--·j.·--SUBG ROUP-3---J I

ELEM-l I ELEM-2 I ELEM-3 I ELEM-4 I ELEM-5 I ELEM-6 I SUBGROUP-4 IGROUP-3

Figure 4-2. Level-Number Concepts

Chapter 4. Data Division 4-19

Classes of Data

Special Level-Numbers

Special level-numbers identify items that do not structure a record. The
following are special level-numbers:

66 	 This level-number identifies elementary or group items
described by a RENAMES clause. Such items regroup
previously defined data items.

77 	 This level-number identifies independent data description
entries in the Working-Storage or Linkage Section. These
items are not subdivisions of other items, and are not
themselves subdivided.

88 	 This level-number identifies any condition-name entry
that is associated with a particular value or values of a
conditional variable. An example is given under "VALUE
Clause" in this chapter.

Note: Level-77 and level-Ol entries in the Working-Storage Section and
Linkage Section must be given unique data-names because neither can be
qualified. If subordinate data-names can be qualified, they need not be
unique.

Indentation

Successive data description entries can begin in the same column as
preceding entries, or they can be indented according to level-number.
Indentation is useful for documentation, but it does not affect the action of
the compiler.

All data used in a COBOL program can be divided into four classes and six
categories. Every elementary item in a program belongs to one of the
classes as well as one of the categories. Every group item belongs to the
alphanumeric class even if the subordinate elementary items belong to
another class and category. Figure 4-3 shows the relationship of data
classes and categories.

r------------- IBM Extension ------------..,

Boolean data is an IBM extension that provides a means of modifying and
passing the values of the indicators associated with the display screen
formats. A Boolean value of 0 is the off status of the indicator, and a
Boolean value of 1 is the on status of the indicator.

A Boolean literal contains a single 0 or 1 and is enclosed in quotes and
immediately preceded by an identifying B. The Boolean literal is defined as
either B"O" or B"l". A Boolean character occupies 1 byte. The figurative
constant ZERO can be used as a Boolean literal, and the reserved word ALL
is valid with a Boolean literal.

'--_________ End of IBM Extension _________---..l

4-20

Level of Item 	 Class Category

Elementary 	 Alphabetic Alphabetic
Boolean Boolean
Numeric Numeric
Alphanumeric Numeric edited

Alphanumeric edited
Alphanumeric

Group Alphanumeric 	 Alphabetic
Boolean
Numeric
Numeric edited
Alphanumeric edited
Alphanumeric

Figure 4-3. Classes and Categories of Data

Standard Alignment Rules

The standard alignment rules for positioning data in an elementary item
depend on the data category of the receiving item (that is, the item into
which the data is placed).

Numeric Items: When a numeric item is the receiving item, the following
rules apply:

• 	 The data is aligned on the assumed decimal point (P I CTUR Echaracter V)
and, if necessary, truncated or padded with zeros. (An assumed decimal
point is one that has logical meaning but does not exist as a character
in the data.)

• 	 If an assumed decimal point is not explicitly specified, the receiving
item is treated as though an assumed decimal point is specified
immediately to the right of the field. The data is then treated as in the
preceding rule.

Numeric Edited Items: The data is aligned on the decimal point and, if
necessary, truncated or padded with zeros at either end, except when
editing causes replacement of leading zeros.

Alphanumeric, Alphanumeric Edited, Alphabetic: For these data
categories, the following rules apply:

• 	 The data is aligned at the leftmost character position and, if necessary,
truncated or padded with spaces at the right.

• 	 If the J USTI FI ED clause is specified for this receiving item, the above
rule is modified as described in the JUSTI FI ED clause.

Chapter 4. Data Division 4-21

----------------- -----

Standard Data Format

COBOL makes data description as machine independent as possible. For
this reason, the properties of the data are described in a standard data
format rather than a machine-oriented format.

The standard data format uses the decimal system to represent numbers no
matter what base is used by the system. The nonnumeric data can contain
any characters that are in the native character set, that is, nonnumeric
data is not limited to just the COBOL character set or the nonnumeric
COBOL characters.

Character-String and Item Size

In COBOL, the size of an elementary item is determined through the
number of character positions specified in its PI CTU R E character-string. In
storage, however, the size is determined by the actual number of bytes the
item occupies as determined by the combination of its PICTURE
character-string and its USAGE clause.

When an arithmetic item is moved from a longer field to a shorter one, the
compiler truncates the data to the number of characters represented in the
shorter item's PICTURE character-string.

For example, if a sending field with PICTURE S99999 and containing the
value +12345 is moved to a COMPUTATIONAL receiving field with PICTURE
S99, the data is truncated to +45.

Signed Data

There are two categories of algebraic signs used in COBOL: operational and
editing.

Operational Signs

Operational signs (+, -) are associated with signed numeric items and
indicate their algebraic properties. The internal representation of an
algebraic sign depends on the item's USAGE clause and optionally upon its
SIGN clause. Zero is considered a unique value regardless of the
operational sign. An unsigned field is always assumed to be positive or
zero.

Editing Signs

Editing signs are associated with numeric edited items. Editing signs are
PI CTUR E symbols (+, -, CR, DB) that identify the sign of the item in edited
output.

4-22

Record Description Entry

A record description entry consists of one or more data description entries.
The maximum length of a record description entry is restricted to 32 767
bytes.

Data Description Entry

A data description entry specifies the characteristics of a particular data
item. The maximum length for any item that is not otherwise restricted is
32 767 bytes. The general formats are:

Format 1

{ data.name., }
level-number FILLER

[REDEFINES data.name-2]

[{ PICTURE} _]
PIC IS character-string

DISPLAY
COMPUTATIONAL
COMP
COr\Xi5UTATloNA·C·:3;

[USAGE IS]
COMP·3

{COMPUT ATIONAL-4
COMP·4
INtfEX

[[SIGN IS] {~~~~~~NGG} [SEPARATE CHARACTER]]

OCCURS {integer.1 TO integer·2 TIMES DEPENDING ON data.name.3}[
integer-2 TIMES

[{ ~~~~~~~~G} KEY IS data·name·4 [. data.name.5] •••] •.•

r ___ [I~:x~~y~~:;1 [. ;odoxo,m.2] ...]]

I[{SYNCHRONIZED} [LEFT J] I
I SYNC RIGHT I
~_==_____ =-=-_:.J
[{~IFIED} RIGHT]

[BLANK WHEN ZERO]

[VALUE IS literal] •

Chapter 4. Data Division 4-23

Format 2

[{THROUGH}]66 data-name-1 RENAMES data-name-2 THRU data-name-3.

Format 3

88 d"" {VALUE IS }I" 11 [{THROUGH} I" 12]con Itlon-name VALUES ARE Itera - THRU Itera

[';""'3 [{~UGH} '1""'4]] ...

J

4-24

IBM Extension

Format 4 - Boolean Data

{ data-name-,}
level-number FILLER

[REDEFINES data-name-2]

[{~TURE} IS , J
[[USAGE IS] DISPLAY]

rOCCURS {integer-, TO integer-2 TIMES DEPENDING ON data-name-3}
L Integer-2 TIMES

[INDEXED BY index-name-1 [index-name-2] .. .J]
INDICATOR}]

[{INDICATORS integer-3

INDIC

1- - - - - - - - --,

I[{SYNCHRONIZED} [LEFT JJ I

I SYNC RIGHT I
. -- -- I

I I

I [{JUSTIFIED} RIGHT]
I JUST I
1_ -=-=- __ __ ---1
[VALUE IS Boolean-literal)

L..-_________ End of IBM Extension _________...J

Chapter 4_ Data Division 4-25

Format 1

This format is used for record description entries in all sections and for
level-77 entries in the Working-Storage and Linkage Sections. The
following rules apply:

• 	 Level-number can be any number from 01 through 49 or 77.
Level-numbers from 01 through 09 can be coded as 1 through 9.

• 	 The clauses can be written in any order, with two exceptions:

The data-name/FILLER clause must immediately follow the

level-number.

When specified, the REDEFINES clause must immediately follow the

data-name clause.

• 	 The PICTURE clause must be specified for every elementary item except
index data items.

• 	 The BLANK WHEN ZERO, JUSTIFIED, PICTURE, and SYNCHRONIZED clauses
are valid only for elementary items.

• 	 Either a space, or a comma or a semicolon followed by a space, must
separate clauses.

• 	 Each entry must end with a period followed by a space.

Format 2

This format regroups previously defined items. The following rules apply:

• 	 A level-66 entry cannot rename another level-66 entry, nor can it
rename a level-Ol, level-77, or level-88 entry.

• 	 Alllevel-66 entries associated with one record must immediately follow
the last data description entry in that record.

• The entry must end with a period followed by a space.

See "RENAMES Clause" later in this chapter for a further description.

Format 3

This format describes condition-names. A condition-name is a user-specified
name that associates value(s) and/or a range(s) of values with a conditional
variable.

A conditional variable is a data item that can assume one or more values
that can, in turn, be associated with a condition-name. The following rules
for condition-name entries apply:

• 	 Any entry beginning with level-number 88 is a condition-name entry.

4-26

,~

Level-Numbers

• 	 The condition-name entries associated with a particular
conditional-variable must immediately follow the conditional variable
entry. The conditional variable can be any elementary data descripti6n
entry except another condition-name, index data item, or level-66 entry.

• 	 A condition-name can be associated with a group item data description
entry. The following rules apply:

The condition-name value must be specified as a nonnumeric literal

or figurative constant.

The size of the condition-name value must not exceed the sum of the

sizes of all the elementary items within the group.

No element within the group may contain a JUST! FI ED or

SYNCHRONIZED clause.

No USAGE other than USAGE IS DISPLAY may be specified within the

group.

• 	 Condition-names can be specified both at the group level and at
subordinate levels within the group.

• 	 The relation test implied by the definition of a condition-name at the
group level is performed in accordance with the rules for comparison of
nonnumeric operands regardless of the nature of elementary items
within the group.

• 	 Either a space or a comma or a semicolon followed by a space, must
separate successive operands.

• 	 Each entry must end with a period followed by a space.

Examples of both elementary and group condition-name entries are given
under "VALUE Clause" in this chapter.

Format 4 - Boolean Data

See Chapter 7 for a discussion of this format.

The level-number specifies the hierarchy of data within a record and also
identifies special-purpose data entries.

Format

level-number

The following rules for level-numbers apply:

• 	 A level-number begins a data description entry, a regrouped item, or a
condition-name entry.

• 	 Level-numbers 01 and 77 must begin in Area A.

Chapter 4. Data Division 4-27

• 	 Level-numbers 02-49,66, and 88 can begin in either Area A or Area B
and must be followed by a space.

• 	 Single-digit level-numbers 1 through 9 can be substituted for
level-numbers 01 through 09.

Data-Name or FILLER Clause

A data-name explicitly identifies the data being described; the keyword

FILL ER specifies an item that is never explicitly referenced in the program.

Format

data-name
FILLER

In a data description entry, either the data-name or the keyword FILLER
must be the first word following the level-number. The data-name identifies
a data item by referring to the field, not to a particular value. This data
item can assume a number of different values during the course of a
program.

A data-name can begin anywhere in Area B. A data-name must contain at
least one alphabetic character.

Entries at level-numbers 01 and 77 in the Working-Storage and Linkage
Sections cannot be qualified, and therefore require unique data-names.
Subordinate data-names that can be qualified do not require unique
data-names.

The keyword FILLER specifies an elementary item in a record that is never
explicitly referred to. The word FILL ER can be written anywhere in Area B.

In a MOVE CORRESPONDING statement, an ADD CORRESPONDING statement, or
a SUBTRACT CORRESPONDING statement, FILLER items are ignored.

r------------ IBM Extension -------------,

A FI LLER item can be used as a group item definition. Subordinate data
items can then be referenced by the appropriate data-name.

'--_________ End of IBM Extension _________---1

REDEFINES Clause

The REDEFINES clause allows the same storage area to be described by
different data description entries.

Format

level-number data-name-1 REDEFINES data-name-2

4-28

Level-number and data-name-l are not part of the REDEFI NES clause itself,
and are included in the format only for clarity.

If specified, the REDEFINES clause must be the first entry following
data-name-I.

The level-number of data-name-l and data-name-2 must be identical and
must not be level-66 or level-88.

Data-name-l is the redefining item and is an alternative description for the
data-name-2 area.

Data-name-2 is the redefined item.

Implicit redefinition is assumed when more than one level-Ol entry
subordinate to an FD entry is written. In such level-Ol entries, the
REDEFI NES clause must not be specified.

Redefinition begins at data-name-2 and ends when a level-number less than
or equal to that of data-name-2 is encountered. No entry having a
level-number numerically lower than those of data-name-l and data-name-2
can occur between these entries.

In the following example, A is data-name-2, and B is data-name-I.
Redefinition begins with B and includes the two subordinate items B-1 and
B-2. Redefinition ends when the level-05 item C is encountered.

05 A PICTURE X(6).
05 B REDEFINES A.

10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).

05 C PICTURE 99V99.

The data description entry for data-name-2 cannot contain a REDEFINES
clause or an OCCURS clause. However, data-name-2 can itself be
subordinate to an item that contains either clause. If data-name-2 is
subordinate to an OCCURS clause, it must not be subscripted or indexed in
the REDEFINES clause.

The redefined item, the redefining item, and any items subordinate to them
cannot contain an OCCURS DEPENDING ON clause.

When data-name-l is specified with a level-number other than 01, it must
specify a storage area of the same size as data-name-2.

Multiple redefinitions of the same storage area are permitted. The entries
giving the new descriptions of the storage area must immediately follow the
description of the redefined area without intervening entries that define
new character positions. Multiple redefinitions must all use the data-name
of the original entry that defined this storage area. For example:

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999
05 C REDEFINES A PICTURE 99V99

Data-name-l and any subordinate entries must not contain any VALUE
clauses. This rule does not apply to condition-name entries.

Chapter 4. Data Division 4-29

Data items within an area can be redefined without their lengths being
changed. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-l REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

Data items can also be rearranged within an area. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-l REDEFINES NAME-2.
10 EMP-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

When an area is redefined, all descriptions of the area are always in effect;
that is, redefinition does not cause any data to be erased and does not
supersede the previous description. Thus, if B REDEFINES A has been
specified, either of the two procedural statements MOV E X TO Band MOV E Y
TO A could be executed at any point in the program.

In the first case, the area described as B would assume the value of X. In
the second case, the same physical area (described now as A) would assume
the value of Y. If the second statement is executed immediately after the
first, the value of Y replaces the value of X in the one storage area.

The USAGE clause of a redefining data item need not be the same as that of
a redefined item. This does not, however, cause any change in existing
data. For example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.

05 C REDEFINES B PICTURE S99 USAGE

COMPUTATIONAL-4.

05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configuration of the DISPLAY value 8 is 1111 0000 11111000.
Redefining B does not change the bit configuration of the data in the
storage area. Therefore, the two statements, ADD B TO A and ADD C TO A
give different results. In the first case, the value 8 is added to A (because B
has USAGE DISPLAY). In the second statement, the value ·48 is added to A
(because C has USAGE COMPUTATIONAL-4), and the bit configuration
(truncated to 2 decimal digits) in the storage area has the binary value ·48.

Unexpected results can occur when a redefining item is moved to a
redefined item (that is, if B REDEFINES C and the statement MOVE B TO Cis
executed). Unexpected results can also occur when a redefined item is
moved to a redefining item (from the previous example, unexpected results
occur if the statement MOV E C TO Bis executed).

The REDEFINES clause can be specified for an item within the scope of any
area being redefined (that is, an item subordinate to a redefined item). For
example:

\
..,

"\
.."

4·30

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE

9999V99.
10 WEEKLY-PAY REDEFINES

SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The RED EFIN ES clause can also be specified for an item subordinate to a
redefining item. For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY

PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY

PICTURE 9999.

USAGE Clause

The USAGE clause specifies the format of a data item in storage. The USAGE
clause can be specified for an entry at any level. However, if it is specified
at the group level, it applies to each elementary item in the group. The
usage of an elementary item cannot contradict the explicit usage of a group
to which the elementary item belongs.

The USAGE clause specifies the format in which data is represented in
storage. Consideration must be given to how the data is used in the
Procedure Division.

Format

DISPLAY
COMPUTATIONAL
COMP
COMPUTATIONAL-3

[USAGE IS]
COMP-3
COMPUTATIONAL-4
COMPA
INDEX

When the USAGE clause is not specified at either the group or elementary
level, USAG E ISO I SPLAY is assumed.

Chapter 4. Data Division 4-31

DISPLAY Phrase

The D I SPLAY phrase can be explicit or implicit. It specifies that the data
item is stored in character form, one character per 8-bit byte. This
corresponds to the form in which information is represented for keyboard
input or for printed output. USAGE IS DISPLAY is valid for the following
types of items:

• Alphabetic

• Alphanumeric

• Alphanumeric edited

Numeric edited•
Boolean•
Zoned decimal (numeric). •

Alphabetic, alphanumeric, alphanumeric edited, numeric edited, and
Boolean items are discussed under "PICTURE Clause" later in this chapter.

Zoned Decimal Items: These items are sometimes referred to as external
decimal items. Each digit of a number is presented by a single byte. The
four high-order bits of each byte are zone bits; the four high-order bits of . '\
the low-order byte represent the sign of the item. If the number is positive, ..,.,
these four bits contain a hexadecimal F. If the number is negative, these
four bits contain a hexadecimal D. The four low-order bits of each byte
contain the value of the digit. When zoned decimal items are used for
computations, the compiler performs the necessary conversions. The
maximum length of a zoned decimal item is 18 digits.

The PICTURE character-string of a zoned item can contain only 9s, the
operational sign symbol S, the assumed decimal point V, and one or more
Ps.

Examples of zoned decimal items are shown in Figure 4-4.

Computational Phrases

The term computational refers to the following phrases of the USAGE clause:

• COMPUTATIONAL or COMP (packed decimal)

IBM Extension

• COMPUTATIONAL-3 or COMP-3 (packed decimal).

• COMPUTATIONAL-4 or COMP-4 (binary).

'--_________ End of IBM Extension _________---'

4-32

A computational item represents a value to be used in arithmetic operations
and must be numeric. If the USAGE of a group item is described with any of
these options, it is the elementary items within the group that have this
usage. The group itself is considered nonnumeric and cannot be used in
numeric operations. The maximum length of a computational item is 18
decimal digits.

The PICTURE of a computational item can contain only:

9 (one or more numeric character positions)

S (one operational sign)

V (one implied decimal point)

P (one or more decimal scaling positions).

The COMPUTATIONAL phrase is specified for packed decimal items. Such an
item appears in storage as 2 digits per byte, with the sign contained in the 4
rightmost bits of the rightmost byte. A packed decimal item can contain
any of the digits 0 through 9 plus a sign. If the PI CTU R E of a packed decimal
item does not contain an S, the sign position is occupied by a bit
configuration that is interpreted as positive.

,------------- IBM Extension -------------,

The COMPUTATIONAL-3 phrase is specified for packed decimal items and is
considered by the compiler to be equivalent to the COMPUTATIONAL phrase.

The COMPUTATIONAL-4 phrase is specified for binary data items. Such items
have decimal equivalents consisting of the decimal digits 0 through 9, plus
a sIgn.

The amount of storage occupied by a binary data item depends on the
number of decimal digits defined in its PICTURE clause:

Digits in Storage
PICTURE Clause Occupied

1 through 4 2 bytes

5 through 9 4 bytes

10 through 18 8 bytes

The leftmost bit of the storage area is the operational sign.

'--__________ End of IBM Extension __________.....J

Examples of packed decimal and binary items are shown in Figure 4-5.

Chapter 4. Data Division 4-33

INDEX Phrase

The USAG E I SINDEX clause specifies that the data item named has an
indexed format and, therefore, is an index data item. The index data item is
an elementary item that can be used to save index-name values for future
reference.

The USAGE IS INDEX clause is described in detail under "TABLE
HANDLING" in Chapter 6.

4-34

Value Internal Representation-Item Description

Zoned PIC S9999 DISPLAY +1234 F1 F2 F3 F4

Decimal -1234 F1 F2 F3 D4

1234 F1 F2 F3 F4

PIC 9999 DISPLAY +1234 F1 F2 F3 F4
-1234 F1 F2 F3 F4

1234 F1 F2 F3 F4

PIC S9999 DISPLAY SIGN LEADING +1234 F1 F2 F3 F4
-1234 D1 F2 F3 F4
1234 F1 F2 F3 F4

PIC S9999 DISPLAY SIGN TRAILING SEPARATE +1234 F1 F2 F3 F4 4E
-1234 F1 F2 F3 F4 60

1234 F1 F2 F3 F4 4E

PIC S9999 DISPLAY SIGN LEADING SEPARATE +1234 4E F1 F2 F3 F4
-1234 60 F1 F2 F3 F4

1234 4E F1 F2 F3 F4

Packed PICS9999{COMP } 	 +1234 01 23 4F

Decimal COMP-3 	 -1234 01 23 4D

+1234 01 23 4FPIC 9999 {CO M P }

COMP-3
 -1234 01 23 4F

Binary PIC S9999 COMP-4 	 +1234 04 D2

-1234 FB 2E

PIC 9999 COMP-4 	 +1234 04 02
-1234 04 02

*The internal representation of each byte is shown as two hex digits. The bit configuration for each digit is as follows:

Hex Digit Bit Configuration 	 Hex Digit Bit Configuration

a 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

Notes:
1. The leftmost bit of a binary number represents the sign: a is positive, 1 is negative.
2. Negative binary numbers are represented in twos complement form.
3. Hex 4E represents the EBCDIC character +. Hex 60 represents the EBCDIC character-.
4. Specification of SIGN TRAILING (without the SEPARATE CHARACTER option) is the equivalent of the

standard action of the compiler. .
Figure 4-4. Internal Representation of Numeric Items

Chapter 4. Data Division 4·35

SIGN Clause

The SIGN clause specifies the position and mode of representation of the
operational sign for a numeric entry.

Format

[[SIGN IS] {~~~~~~NGG} [SEPARATE CHARACTER]]

The SIGN clause can be specified only for a signed numeric data description
entry (that is, one whose PICTURE character-string contains an S), or for a
group item that contains at least one such elementary entry. USAG E IS
DISPLAY must be specified either explicitly or implicitly.

Only one SIGN clause can apply to anyone data description entry. The
SIGN clause is required only when an explicit description of the properties
and/or position of the operational sign is necessary.

The SIGN clause defines the position and mode of representation of the
operational sign for the numeric data description entry to which it applies,
or for each signed numeric data description entry subordinate to the group
to which it applies.

If the SEPARATE CHARACTER phrase is not specified, then:

• 	 The operational sign is presumed to be associated with the leading or
trailing digit position (whichever is specified) of the elementary numeric
data item.

• 	 The character S in the PICTURE character-string is not counted in
determining the size of the item (in terms of standard data format
characters).

If the SEPARATE CHARACTER phrase is specified, then:

• 	 The operational sign is presumed to be the leading or trailing character
position (whichever is specified) of the elementary numeric data item.
This character position is not a digit position.

• 	 The character S in the P I CT U R E character string is counted in
determining the size of the data item (in terms of standard data format
characters).

• 	 + is the character used for the positive operational sign.

• 	 - is the character used for the negative operational sign.

J

Every numeric data description entry whose PICTURE contains the symbol
S is a signed numeric data description entry. If the SIGN clause is also ,.j

4-36

specified for such an entry and conversion is necessary for computations or
comparisons, the conversion takes place automatically.

If no SIGN clause is specified for a signed numeric data description entry,
the position and mode of representation for the operational sign is
determined as explained in the USAGE clause description.

OCCURS Clause

The OCCURS clause specifies tables whose elements can be referred to by
indexing or subscripting. This clause is described under "Data
Division - Table Handling" in Chapter 6.

INDICATOR Clause

The INDICATOR clause is discussed under "Data Description
Entry - Boolean Data" in Chapter 7.

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item on
a proper boundary in storage.

The SYNCHRONIZED clause is syntax-checked, but is treated as
documentation for all items.

Format

[{ SYNCHRONIZED) [LEFT J]
SYNC RIGHT

JUSTIFIED Clause

The JUSTI FI ED clause overrides standard positioning rules for a receiving
item of the alphabetic or alphanumeric categories.

Format

The JUSTI FI ED clause can be specified only at the elementary level. JUST
is an abbreviation for JUST I FI ED and has the same meaning.

Chapter 4. Data Division 4-37

The JUSTI FI ED clause must not be specified for a numeric item or for any

item for which editing is specified. The JUSTI FI ED clause must not be '\

specified with level-66 (RENAMES) or level-88 (condition-name) entries."

.------------- IBM Extension --------------,

The JUST! FI ED clause can be specified for an alphanumeric edited item.

'--__________ End of IBM Extension __________.......

When the JUST! FI ED clause is specified for a receiving item, the data is
aligned at the rightmost character position in the receiving item, and:

• 	 If the sending item is larger than the receiving item, the leftmost
characters are truncated.

• 	 If the sending item is smaller than the receiving item, the unused
character positions at the left are filled with spaces.

When the JUST! FI ED clause is omitted, the rules for standard alignment are
followed.

The following shows the difference between standard and justified
alignment when the receiving field has a length of 5 character positions:

Sending Receiving Field
Alignment Field Value Value

Standard THE THE b b

Justified right THE b bTHE

Standard TOObBIG TOO b B

Justified right TOO b BIG ob BIG

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item is to be filled entirely
with spaces when its value is zero. When the data item receives a value of
zero through an explicit reference at execution time, it is set to blanks.

Format

[BLANK WHEN ZERO]

The BLANK WHEN ZERO clause can be specified only for elementary numeric
or numeric edited items. When it is specified for a numeric item, the item is
considered to be a numeric edited item.

4-38

VALUE Clause

If the BLANK WHEN ZERO clause is specified, the item contains nothing but
spaces when its value is zero.

The BLANK WH EN ZERO clause must not be specified for level-66 or level-88
items.

The BLANK WHEN ZERO clause and the asterisk (*) suppression symbol must
not be specified for the same entry.

The VALU E clause specifies the initial contents of a data item, or the
value(s) associated with a condition-name. The two formats for the VALUE
clause are as follows:

Format 1

[VALUE IS literal]

Format 2

88 d"" {VALUE IS } I" I [{THROUGH} "]
con Itlon-name VALUES ARE Itera-1 THRU IIteral-2

" [{THROUGH} "]][Iiteral-3 THRU Iiteral-4

Level-number 88 and condition-name are not part of the Format 2 VALU E
clause itself, and are included in the format only for clarity. The use of the
VAL U E clause differs with the Data Division section in which it is specified.

File and Linkage Sections: The VALUE clause can only be used in
condition-name entries.

Working-Storage Section: The VALUE clause is used in condition-name
entries. It is also used to specify the initial value of any data item; the item
assumes the specified value at the beginning of program execution. If the
initial value is not explicitly specified, it is unpredictable.

General Considerations

The keywords THRU and THROUGH are equivalent.

The VALUE clause must not be specified for any item whose length is
variable; that is, it is a group item that has an OCCURS DEPENDING ON
clause subordinate to it.

Chapter 4. Data Division 4-39

For group entries, the VALU E clause must not be specified if the entry or an
entry subordinate to it contains any of the following clauses: JUSTI FI ED,
SYNCHRONIZED, or USAGE (other than USAGE DISPLAY).

The VALU E clause must not conflict with other clauses in the data
description entry or in the data description of this entry's hierarchy. The
following rules apply:

• 	 Wherever a literal is specified, a figurative constant can be substituted.

• 	 If the item is numeric, all VALU E clause literals must be numeric literals.
If the literal defines the value of a W orking-8torage item, the literal is
aligned according to the rules for numeric moves with one additional
restriction: the literal must not have a value that requires truncation of
nonzero digits. If the literal is signed, the associated PICTURE
character-string must contain a sign symbol (8).

• 	 All numeric literals in a VALU E clause of an item must have a value that
is within the range of values indicated by the PICTURE clause for that
item. For example, for PICTURE 99PPP, the literal must be zero or
within the range 1000 through 99000. For PICTURE PPP99, the literal
must be within the range .00000 through .00099.

• 	 If the item is an alphabetic, alphanumeric, alphanumeric edited, or
numeric edited item, all VALU E clause literals must be nonnumeric
literals. The number of characters in the literal must not exceed the
size of the item.

IBM Extension

• 	 If the item is Boolean, the VALU Eclause literal must be a Boolean
literal.

1...-__________ End of IBM Extension __________....J

• 	 The functions of the editing characters in a PI CTUR E clause are ignored
in determining the initial appearance of the item described. However,
editing characters are included in determining the size of the item.
Therefore, any editing character must be included in the literal. For
example, if the item is defined as PICTURE +999.99 and the value is to
be + 12.34, then the VALU E clause should be specified as VALU E
" +012.34".

• 	 A maximum of 32 767 bytes can be initialized by means of a single
VALUE clause.

4-40

Format 1 Considerations

This format specifies the initial value of a data item in storage.
Initialization is independent of any BLANK WHEN ZERO or JUSTI FI ED clause
specified.

A Format I VALUE clause must not be specified for an entry that contains or
is subordinate to an entry that contains a REDEFINES or OCCURS clause.

If the VALU E clause is specified at the group level, the literal must be a
nonnumeric literal or a figurative constant. The group area is initialized
without consideration for the subordinate entries within this group. In
addition, the VALU E clause must not be specified for subordinate entries
within this group.

Format 2 Considerations

This format associates a value, values, and/or range(s) of values with a
condition-name. Each such condition-name requires a separate level-8S
entry.

The VALUE clause is required in a condition-name entry and must be the
only clause in the entry. Each condition-name entry is associated with a
preceding conditional variable. Thus, every level-88 entry must always be
preceded either by the entry for the conditional variable or by another
level-88 entry when several condition-names apply to one conditional
variable. Such level-88 entries implicitly have the PICTURE characteristics
of the conditional variable.

Every condition-name can be qualified by the name of its associated
conditional variable and by the qualifier(s) of the conditional variable. If
the associated conditional variable requires subscripts or indexes, each
procedural reference to the condition-name must be subscripted or indexed
as required for the conditional variable.

When only literal-I is specified, the condition-name is associated with a
single value.

When literal-I, literal-3 and so on are specified, the condition-name is
associated with several single values.

When literal-I THRU literal-2 is specified, the condition-name is associated
with one range of values.

• 	 If the literals are numeric, literal-I must be less than literal-2.

• 	 If the literals are nonnumeric, literal-I must appear before literal-2 in
the program collating sequence.

When literal-I THRU literal-2, literal-3 THRU literal-4, and so on are specified,
the condition-name is associated with more than one range of values.

• 	 If the literals are numeric, literal-I must be less than literal-2, literal-3
must be less than literal-4, and so on.

Chapter 4. Data Division 4-41

• 	 If the literals are nonnumeric, literal-l must appear before literal-2 in
the program collating sequence, literal-3 must appear before literal-4 in
the program collating sequence, and so on.

One or more single values and one or more ranges of values can be
specified in a single Format 2 VALUE clause.

The type of literal in a condition-name entry must be consistent with the
data type of the conditional variable. In the following example,
CITY -COUNTY - INFO, COUNTY -NO, and CITY are conditional variables; the
associated condition-names immediately follow the level-number 88. The
PI CTUR Eassociated with COUNTY - NO limits the condition-name value to a
2-digit numeric literal. The PICTURE associated with CITY limits the
condition-name value to a 3-character nonnumeric literal. Any values for
the condition-names associated with CITY-COUNTY - INFO cannot exceed 5
characters, and the literal (because this is a group item) must be
nonnumeric:

05 	 CITY-COUNTY-INFO.
88 BRONX VALUE 103NYC".
88 BROOKLYN VALUE 124NYC".
88 MANHATTAN VALUE "31NYC".
88 QUEENS VALUE 141NYC".
88 STATEN-ISLAND VALUE "43NYC".

10 COUNTY-NO PICTURE 99.
88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW-YORK VALUE 31.
88 RICHMOND VALUE 43.

10 CITY 	 PICTURE X(3).
88 BUFFALO VALUE "BUF".
88 NEW-YORK-CITY VALUE "NYC".
88 POUGHKEEPSIE VALUE "POK".

05 	 POPULATION ...

The following example shows the use of the THRU phrase. In this example,
the number of miles a person drives to work each day is categorized.

05 	 MILEAGE PIC 9(2)V9.
88 LOW VALUE 0 THRU 09.9.
88 MED VALUE 10.0 THRU 19.9.
88 HIGH VALUE 20.0 THRU 99.9.

Condition-names are used procedurally in condition-name conditions, and
are described under "Conditional Expressions" in Chapter 5.

PICTURE Clause

The PICTURE clause specifies the general characteristics and editing
requirements of an elementary item.

Format

[{ PICTURE} .]PIC IS character-string

4-42

The PICTURE clause must be specified for every elementary item except an
indexed data item. The PI CTUR E clause can be specified only at the
elementary level. PIC is an abbreviation for PICTURE and has the same
meanmg.

The character-string is made up of certain COBOL characters used as
symbols. The allowable combinations determine the category of the data
item. The character-string can contain a maximum of 30 characters.

Symbols Used in the PICTURE Clause

The functions of each PICTURE clause symbol are defined in the following
list. Any punctuation character appearing within the PICTURE
character-string is not considered a punctuation character, but rather as a
PICTURE character-string symbol.

A 	 Each A in the character-string represents a character position that
can contain only a letter of the alphabet or a space.

BEach B in the character-string represents a character position into
which the space character will be inserted.

P 	 The P indicates an assumed decimal scaling position, and is used to
specify the location of an assumed decimal point when the point is not
within the number that appears in the data item. The scaling position
character P is not counted in the size of the data item. Scaling
position characters are counted in determining the maximum number
of digit positions (18) in numeric edited items or in items that appear
as arithmetic operands. In any operation converting data from one
form of internal representation to another, if the item being converted
is described with the PICTURE symbol P, each digit position described
by a P is considered to contain the value zero, and the size of the item
is considered to include these zero digit positions.

For example, PI CTUR E PPP99 D I SPLAY defines a 2-character item
whose value is zero or ranges from .00001 through .00099. PICTURE
99PPP DISPLAY defines a 2-character item whose value is zero or
ranges from 1000 through 99000.

The scaling position character P can appear only to the left or right of
the other characters in the string as a continuous string of Ps within
a PICTURE description. The sign character S and the assumed decimal
point V are the only characters which can appear to the left of a
leftmost string of Ps. Because the scaling position character P implies
an assumed decimal point (to the left of the Ps if the Ps are leftmost
PICTURE characters; to the right ofthe Ps if the Ps are rightmost
PICTURE characters), the assumed decimal point symbol V is
redundant as either the leftmost or rightmost character within such a
PICTURE description.

S 	 The symbol S is used in a PICTURE character-string to indicate the
presence (but not the representation or, necessarily, the position) of
an operational sign. The sign must be written as the leftmost
character in the PICTURE string. An operational sign indicates

Chapter 4. Data Division 4-43

V

X

Z

9

1

o

whether the value of an item involved in an operation is positive or
negative. The symbol S is not counted in determining the size of the
elementary item, unless an associated SIGN clause specifies the
SEPARATE CHARACTER option.

The V is used in a character-string to indicate the location of the
assumed decimal point and can appear only once in a character-string.
The V does not represent a character position and, therefore, is not
counted in the size of the elementary item. When the assumed
decimal point is to the right of the rightmost symbol in the string, the
V should not be included in this PICTURE string.

Each X in the character-string represents a character position that
can contain any allowable character from the EBCDIC set.

Each Z in the character-string represents a leading numeric character
position. When that position contains a zero, the zero is replaced by a
space character. Each Z is counted in the size of the item.

Each 9 in the character-string represents a character position that
contains a numeral and is counted in the size of the item.

IBM Extension

The character 1 represents a character position that contains a
Boolean value of B" I" or B" 0". Usage must be explicitly or implicitly
defined as DISPLAY.

End of IBM Extension _________---l

Each zero in the character-string represents a character position into
which the numeral zero will be inserted. Each zero is counted in the
size of the item.

Each slash in the character-string represents a character position into
which the slash character will be inserted. Each slash is counted in
the size of the item.

Each comma in the character-string represents a character position
into which a comma will be inserted. This character is counted in the
size of the item. The comma insertion character cannot be the last
character in the PI CT URE character-string.

When a period appears in the character-string, it is an editing symbol
that represents the decimal point for alignment purposes. In addition,
it represents a character position into which a period will be inserted.
This character is counted in the size of the item. The period insertion
character cannot be the last character in the PICTURE
character-string.

Note: For a given program, the functions of the period and comma are
exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the period

4-44

apply to the comma, and the rules for the comma apply to the period
wherever they appear in a PICTURE clause.

+, -, CR, DB

These symbols are used as editing sign control symbols. Each symbol
represents the character position into which the editing sign control
symbol will be placed. The symbols are mutually exclusive in one
character-string. Each character used in the symbol is counted in
determining the size of the data item.

* 	 Each asterisk (check protect symbol) in the character-string
represents a leading numeric character position into which an asterisk
will be placed when that position contains a zero. Each asterisk is
counted in the size of the item.

The asterisk used as the zero suppression symbol and the BLANK WHEN
ZERO clause must not appear in the same entry.

'cs' 	 The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The currency
symbol in a character-string is represented either by the symbol $ or
by the single character specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph of the Environment Division. The currency
symbol is counted in the size of the item.

Note: Because the currency symbol can be replaced in the CURRENCY
SIGN clause, the term 'cs' is used throughout this book rather than the
actual currency symbol ($).

Figure 4-5 gives the order in which PI CTUR E clause symbols must be
specified.

Character-String Representation: The following symbols can appear
more than once in one PICTURE character-string:

A B P X Z 9 0 / , + - * 'cs'

Each time one of these symbols appears in the character-string, it
represents an occurrence of that character or set of allowable characters in
the data item.

Chapter 4. Data Division 4-45

Non-Floating Floating Other Symbols

~ I.)
Symbol Insertion Symbols Insertion Symbols
1 1Second B 0 / , ell {g~} 2

~} {:}l e}l e} 2 2 9 A S V pi pi 1 -
'cs' XSymbol e} 'cs' 'cs'

B x x x x x x x x x x x x x x x x x

0 x x x x x x x x x x x x x x x x x

/ x x x x x x x x x x x x x x x x x
i

, x x x x x x x x x x x x x x x x ~;
Non-Floating

Insertion x x x x x x x x x x

Symbols
 t}
x x x x x x x x x x x x x X .;.{~}

CR\ x x x x x x ~ x x x x x x xOBI

'cs' x

{~} x x x x x x x

{~} x x x x x x x x x x x if;!
Floating

Insertion x x x x x x
t}
Symbols

x x x x x x x x x Xt} Ii
k

x x x x x X'cs'

P X X X X X X X X X x

9 x x x x x x x x x x x x x x x

A
x x x x x
XOther

Symbols S

V x x x x x x x x x x x x

p x xx x x x x x x x x x

p x x x x x

: I·· I· I ,.................... ·c I. .. ,. '; !•• i I·.····· ; , .•• > }I··'· I·
....

......•.. I.i.> I ..•...•• •• h. b •......... I•. ,... ... / h••••·.... .'.' t ••...•.. I... I .. .•. ; t

I Non-floating insertion symbols + and -, floating insertion symbols Z, *. +, -, and 'cs', and other symbol P appear twice in the above

table. The leftmost column and uppermost row for each symbol represents its use to the left of the decimal point position. The

second appearance of the symbol in the table represents its use to the right of the decimal point position.

2$ is the default value for the currency symbol. This value can be replaced bv a character specified in the currency SIGN clause.

An X at an intersection indicates that the symbol(s) at the top of the column can, in a given Character-string, appear anywhere to
the left of the symbol(s) at the left of the row.

Braces ({} I indicate items that are mutually exclusive.

At least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or 'cs' must be present in a PICTURE string.

Figure 4-5. PICTURE Cla~se Symbol Order

4-46

An integer enclosed in parentheses immediately following any of these
symbols specifies the number of consecutive occurrences of that symbol.
The number of consecutive occurrences cannot exceed 32 767.

For example, the following two PICTURE clause specifications are
equivalent:

PICTURE IS $99999.99CR
PICTURE IS $9(S).99CR

The following five symbols can each appear only once in one PICTURE
character-string:

S V . CR DB 1

Data Categories and PICTURE Considerations: The allowable
combinations of PICTURE symbols determine the data category of the item.
Rules for each category follow.

The following rules apply for alphabetic items:

• 	 The PICTURE character-string can contain only the symbols A and B.

• 	 The contents of the item in standard data format must consist of any of
the 26 letters of the alphabet and the space character.

• 	 USAGE DISPLAY must be either specified or implied.

• 	 Any associated VALU E clause must specify a nonnumeric literal.

IBM Extension

Boolean items - the following rules apply:

• 	 The PICTURE character-string can contain only the symbol 1.

• 	 Only one character 1 can be specified.

• 	 The USAGE of an item can only be DISPLAY.

• 	 An associated VALUE clause must specify a Boolean literal (B"l" or
B"O ") or zero.

• 	 The following clauses cannot be specified for a Boolean item:

SIGN clause

BLANK WHEN ZERO clause

ASCENDING/DESCENDING KEY clause.

• The I NO I CATOR clause can be specified (see "Indicators" in Chapter 7).

1...-_________ End of IBM Extension _________--J

The following rules apply for numeric items:

Chapter 4. Data Division 4-47

• 	 The PICTURE character-string can contain only the symbols 9, P, S, and
v.

• 	 The number of digit positions must range from 1 through 18.

• 	 The contents of a numeric item must be a combination of the digits 0
through 9. The numeric item can contain an operational sign. If the
PICTURE contains an S, the contents of the item are treated as a positive
or negative value, depending on the operational sign present in the
data. If the PICTURE does not contain an S, the contents ofthe item
are treated as an absolute value.

• 	 If a VALU E clause is specified for an elementary numeric item, the literal
must be numeric. If a VALUE clause is specified for a group item
consisting of elementary numeric items, the group is considered
alphanumeric, and the literal must therefore be nonnumeric.

• 	 The USAGE clause ofthe item can be DISPLAY or COMPUTATIONAL.

IBM Extension

The USAGE can be COMPUTATIONAL-3 or COMPUTATIONAL-4.

'--_________ End of IBM Extension _________---'

Examples of numeric items are shown in Figure 4-6.

PICTURE Valid Range of Values

9999 othrough 9999

S99 -99 through +99

S999V9 -999.9 through +999.9

PPP999 othrough .000999

S999PPP -1000 through -999000 and +1000

through +999000 or zero

Figure 4-6. Examples of Numeric Items

The following rules apply to alphanumeric items:

• 	 The PICTURE character-string must consist of either:

The symbol X entirely.

Combinations of the symbols A, X, and 9. The item is treated as if
the character-string contained only the symbol X. A PICTURE
character-string containing all A's or all 9's does not define an
alphanumeric item.

• 	 The contents of the item in standard data format may be any allowable
characters from the EBCDIC character set.

• 	 USAGE DISPLAY must be either specified or implied.

4-48

• Any associated VALUE clause must specify a nonnumeric literal.

The following rules apply to alphanumeric edited items:

• 	 The PICTURE character-string can contain the symbols:

AX9BO/

• 	 The string must contain at least one of the following combinations:

At least one B and at least one X

At least one 0 and at least one X

At least one X and at least one /

At least one A and at least one 0

At least one A and at least one /.

• 	 The contents of the item in standard data format can be any allowable
character from the EBCDIC character set.

• 	 USAGE DISPLAY must be either specified or implied.

• 	 Any associated VALUE clause must specify a nonnumeric literal. The
literal is treated exactly as specified; no editing is performed.

• 	 Alphanumeric edited items are subject to only one type of
editing - simple insertion using the symbols 0, B, and /.

The following rules apply to numeric edited items:

• 	 The PI CTUR E character-string can contain the following symbols:

B P V Z 9 0 / , . + - CR DB * 'cs'

The combinations of symbols allowed are determined from the PICTURE
clause symbol order allowed (see Figure 4-4), and the editing rules (see
the following section). The following additional rules also apply:

The string must contain at least one of the following symbols:

B / Z O. * + - CR DB 'cs'

The number of digit positions represented in the character-string

must be in the range of 1 through 18 inclusive.

The total number of character positions in the string (including

editing characters) must not exceed 30.

• 	 The contents of those character positions representing digits in
standard data format must be one of the digits 0 through 9.

• 	 USAGE DI SPLAY must be either specified or implied.

• 	 Any associated VALUE clause must specify a nonnumeric literal. The
literal is treated exactly as specified; no editing is performed.

Chapter 4. Data Division 4-49

PICTURE 	Clause Editing

There are two general methods of performing editing in a PICTURE clause:
by insertion, or by suppression and replacement.

There are four types of insertion editing: simple insertion, special insertion,
fixed insertion, and floating insertion. There are two types of suppression
and replacement editing: zero suppression and replacement with asterisks,
and zero suppression and replacement with spaces.

The type of editing allowed for an item depends on its data category. The
type of editing that is valid for each category is shown in Figure 4-7.

Each type of editing is discussed in detail in the following paragraphs.

Simple Insertion Editing: This type of editing is valid for alphabetic,
alphanumeric edited, and numeric edited items. The valid insertion symbols
for each category are shown in Figure 4-8.

Each insertion symbol is counted in the size of the item, and represents the
position within the item where the equivalent characters will be inserted.
Examples of simple insertion editing are shown in Figure 4-9.

Category Type of Editing

Alphabetic Simple insertion

Boolean None

Numeric None

Alphanumeric None

Alphanumeric edited Simple insertion

Numeric edited All

Figure 4-7. 	 Valid Editing for Each Data Category

Category Valid Insertion Symbols

Alphabetic B

Boolean None

Numeric None

Alphanumeric None

Alphanumeric edited B 0 /
Numeric edited B 0 / ,

Figure 4-8. 	 Valid Insertion Symbols for Simple Insertion Editing for Each
Data Category

4-50

PICTURE Value of Data Edited Result

X (10) /XX ALPHANUMEROI ALPHANUMER/Ol

X (5) BX (7) ALPHANUMERIC ALPHA NUMERIC

A(5)BA(5) ALPHABETI C ALPHA BETIC

99, B999, BODO 1234 01, 234, 000

99,999 12345 12,345

Figure 4-9. Examples of Simple Insertion Editing

Special Insertion Editing: This type of editing is valid only for numeric
edited items.

The period is the special insertion symbol; it also represents the actual
decimal point for alignment purposes.

The period insertion symbol is counted in the size of the item, and
represents the position within the item where the actual decimal point will
be inserted.

The actual decimal point and the assumed decimal point (the symbol V)
must not both be specified in one PI CTU R E character-string.

Examples of special insertion editing are shown in Figure 4-10.

Fixed Insertion Editing: This type of editing is valid only for numeric
edited items. The following insertion symbols are used:

'cs' (currency symbol)

-I- - CR DB (editing sign control symbols).

• 	 In fixed insertion editing, only one currency symbol and one editing
sign control symbol can be specified in one PICTURE character-string.

• 	 Unless it is preceded by a -I- or - symbol, the currency symbol must be
the leftmost character position in the character-string.

• 	 When either -I- or - is used as a symbol, it must represent either the
leftmost or rightmost character position in the character-string.

PICTURE Value of Data Edited Results
999.99 1.234 001.23
999.99 12.34 01234
999.99 123.45 123.45
999.99 1234.5 234.50

Figure 4-10. Examples of Special Insertion Editing

• 	 When CR or DB is used as a symbol, it must represent the rightmost
two character positions in the character-string.

Chapter 4. Data Division 4-51

• 	 Editing sign control symbols produce results depending on the value of
the data item as shown in Figure 4-11.

Examples of fixed insertion editing are shown in Figure 4-12.

Editing Symbol in Resulting Data Resulting
PICTURE Character Item Positive Data Item
String 	 or Zero Negative

+ 	 +
-	 space
CR 	 2 spaces CR
DB 	 2 spaces DB

Figure 4-11. Editing Sign Control Results

PICTURE Value of Data Edited Result
999.99+ +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
$9999.99CR +123.45 $0123.45
$9999.990B -123.45 $0123.450B

Figure 4-12. Examples of Fixed Insertion Editing

Floating Insertion Editing: This type of editing is valid only for numeric
edited items. The following symbols are used:

'cs' 	+

Within one PI CTUR Echaracter-string, these symbols are mutually exclusive
as floating insertion characters.

Floating insertion editing is specified by using a string of at least two of the
allowable floating insertion symbols to represent leftmost character
positions in which these characters can be inserted.

The leftmost floating insertion symbol in the character-string represents the
leftmost limit at which this character can appear in ·the data item. The
rightmost floating insertion symbol represents the rightmost limit at which
this character can appear.

The second leftmost floating insertion symbol in the character-string
represents the leftmost limit at which numeric data can appear within the
data item. Nonzero numeric data can replace all characters at or to the
right of this limit.

Any simple insertion symbols (B 0 / ,) within or to the immediate right of ..~
the string of floating insertion symbols are considered part of the floating .."
character-string,

4-52

In a PI CTU R E character-string there are two methods to represent floating
insertion editing and to perform editing:

• 	 Any or all leading numeric character positions to the left of the decimal
point are represented by the floating insertion symbol. When editing is
performed, a single floating insertion character is placed to the
immediate left of the first nonzero digit in the data or of the decimal
point, whichever is farther left. The character positions to the left of
the inserted character are filled with spaces.

• 	 All the numeric character positions are represented by the floating
insertion symbol. When editing is performed, then:

If the value of the data is zero, the entire data item will contain

spaces.

If the value of the data is nonzero, the result is the same as in

method 1.

To avoid truncation, the minimum size of the PICTURE character-string
must be the sum of:

• 	 The number of character positions in the sending item

• 	 The number of nonfloating insertion symbols in the receiving item

• One character for the floating insertion symbol.

Examples of floating insertion editing are shown in Figure 4-13.

Zero Suppression and Replacement Editing: This type of editing is

valid only for numeric edited items.

The symbols Z and * are used for zero suppression. These symbols are
mutually exclusive in the PI CTUR E clause.

The following symbols are mutually exclusive as floating replacement
symbols in one PICTURE character-string:

Z * + - 'cs'

Zero suppression editing is specified by using a string of one or more of the
allowable symbols to represent leftmost character positions in which zero
suppression and replacement editing can be performed.

Any simple insertion symbols (B 0 I ,) within or to the immediate right of
the string of floating editing symbols are considered part of the string.

Chapter 4. Data Division 4-53

PICTURE Value of Data Edited Result
$$$$.99 .123 $ 12
$$$9.99 . 12 $0.12
$$.$$$.999. 99 -1234. 56 $1.234. 56
++.+++.999.99 -123456.789 -123.456.78
$$,$$$,$$$.99CR -1234567 $1.234,567.00CR
++,+++.+++,+++.++ 0000.00

Figure 4-13. Examples of Floating Insertion Editing

In a PI CTU R E character-string, there are two ways to represent zero
suppression and perform editing:

• 	 Any or all of the leading numeric character positions to the left of the
decimal point are represented by suppression symbols. When editing is
performed, any leading zero in the data that appears in the same
character position as a suppression symbol is replaced by the
replacement character. Suppression stops at the character farthest left
that:

Does not correspond to a suppression symbol.

Contains nonzero data.

Is the decimal point.

• 	 All the numeric character positions in the PI CTUR Echaracter-string are
represented by the suppression symbols. When editing is performed and
the value of the data is nonzero, the result is the same as in the
preceding rule. The following rules apply if the value of the data is
zero:

If Z has been specified, the entire data item contains spaces.
If * has been specified, the entire data item, except the actual
decimal point, contains asterisks.

The asterisk as a suppression symbol and the BLANK WHEN ZERO clause must
not be specified for the same entry.

Examples of zero suppression and replacement editing are shown in
Figure 4-14.

PICTURE 	 Value of Data Edited Result
**** ** 	 0000.00 **** **
ZZZZ. ZZ 	 0000.00
ZZZZ.99 	 0000.00 .00

****.99 	 0000.00 ****.00

Figure 4-14 (Part 1 of 2). 	 Examples of Zero Suppression and
Replacement Editing

....."•.

""'"

4-54

RENAMES Clause

PICTURE 	 Value of Data Edited Result

ZZ99.99 	 0000.00 00.00
l.lZZ. ll+ 	 +123.456 123.45+

*.***.**+ 	 -123.45 **123.45

** ***.*** **+ +12345678.9 12.345.678.90+•

$l. In. lZZ . ZZCR +12345.67 $ 12.345.67

$B*.***.***.**BDB -12345.67 $ ***12.345.67 DB

Figure 4-14 (Part 2 of 2). 	 Examples of Zero Suppression and
Replacement Editing

The RENAMES clause specifies alternative, possibly overlapping, groupings of
elementary data items. This clause allows a single data-item to rename a
group of data items within a record.

Format

[{ THROUGH}]66 data-name- 1 RENAMES data-name-2 TH RU data-name-3

Note: Level-number 66 and data-name-l are not part of the RENAMES clause
itself, and are included in the format only for clarity.

One or more RENAMES entries can be written for a logical record. All
RENAMES entries associated with one logical record must immediately follow
that record's last data description entry.

Data-name-l identifies an alternative grouping of data items. It cannot be
used as a qualifier; it can be qualified only by the names of FD or SD entries
or level-Ol entries.

A level-66 entry cannot rename a level-Ol, level-77, level-SS, or another
level-66 entry.

Data-name-2 or data-name-3 identifies the original grouping of elementary
data items; that is, they must name elementary or group items within the
associated level-Ol entry and must not be the same data-name. Both
data-names may be qualified.

The OCCURS clause must not be specified in the data entries for data-name-2
and data-name-3, or for any group entry to which they are subordinate. In
addition, the OCCURS DEPENDING ON clause must not be specified for any
item occupying storage between data-name-2 and data-name-3.

When data-name-2 is specified, and data-name-3 is not specified, data-name-l
is defined with the same attributes as data-name-2.

Chapter 4. Data Division 4-55

http:12.345.67
http:12345.67
http:12.345.67
http:12345.67
http:12.345.678.90

When both aata-name-2 and data-name-3 are specified, the following occurs:

• 	 If data-name-2 is an elementary item, data-name-1 is defined as a group
item starting with data-name-2 and ending with data-name-3, or the last
elementary item in data-name-3, if it is a group item.

• 	 If data-name-2 is a group item, data-name-1 is defined as a group item
starting with the first elementary item in data-name-2, and ending with
data-name-3, or the last elementary item in data-name-3, if it is a group
item.

The keywords THRU and THROUGH are equivalent.

The leftmost character in data-name-3 must not precede that in data-name-2;
the rightmost character in data-name-3 must follow that in data-name-2.
This means that data-name-3 cannot be subordinate to data-name-2.

Valid and invalid specifications of the RENAMES clause are given in
Figure 4-15.

J

4-56

COBOL Specifications 	 Storage Layouts

Example 1 (Valid)

01 	 RECORD-I.
05 DN-1 ... RECORD·II' 	 'I05 DN-2 ...

05 DN-3 ... DN·1 DN·2 DN·3 DN4
I 	 I I
05 DN-4 ... I, 	 ,I66 DN-6 RENAMES DN·1 THROUGH DN·3. 	 DN·6

Example 2 (Valid)

01 	 RECORD·II. RECORD-II
05 DN·1. DN·1

DN·2 ...
10 DN·2A ... 	 I DN·2 DN·2A I DN·5
10 	

I : '\ 'I
I

05 DN·1A REDEFINES DN·1. I, 	 ,I10 DN·3A ... DN·1A
10 DN·3 ...

DN-3A DN·3 I DN·38 I10 DN·38 ... I I
05 DN·5 ...

66 DN-6 RENAMES DN·2 THROUGH DN·3. I-DN-6-!

Example 3 (Invalid)

l
01 RECORD·III. RECORD·III

05 DN·2. DN·2
10 DN·3 ...

I : 	 ' I 'I
10 DNA ... 	 DN·3 DN4 DN-5I 	 I I05 DN·5 ...

66 DN·6 RENAMES DN·2 THROUGH DN-3. DN·6 is indeterminate

Example 4 (Invalid)

01 	 RECORD·IV. RECORD·IV
05 DN·1. DN·1I : 	 'I 'I10 DN·2A ...

10 DN·28 ...
 DN·2A DN·28 DN·3
10 DN·2C REDEFINES DN-2B. I 	 I I

I-DN-2C-!15 DN·2 ...
15 DN·2D ... I DN-2 1DN-2D I

05 ON·3 ... DNA is indeterminate

66 	 DN·4 RENAMES DN·1 THROUGH DN·2.

Figure 4-15. Valid and Invalid Specifications of the RENAMES Clause

Chapter 4. Data Division 4-57

J

4-58

Chapter 5. Procedure Division

Procedure Division Concepts

The Procedure Division is required in every COBOL source program. The
Procedure Division consists of optional Declaratives and procedures that
contain the sections and/or paragraphs, sentences, and statements that
solve a data processing problem.

Declaratives

The Declarative section provides a method of invoking procedures that are
executed when an exceptional condition occurs that is to be tested by the
COBOL programmer.

When Declarative sections are specified, they must be grouped at the
beginning of the Procedure Division. Declarative sections are preceded by
the keyword DECLARATIVES and followed by the keywords END
DEC LARATI VES.

If Declarative sections are specified, the entire Procedure Division must be
divided into sections.

Procedures

A procedure is a paragraph, group of paragraphs, a section, or a group of
sections within the Procedure Division. A procedure-name is a user-defined
name that identifies a section or a paragraph.

A section consists of a section header followed by zero, one, or more than
one successive paragraphs. A section-header is a section-name followed by
the keyword SECT ION, an optional segment-number, followed by a period
and a space. Segment-numbers are explained under "Segmentation
Feature" in Chapter 6. A section-name is a user-defined word that identifies
a section. A section-name, because it cannot be qualified, must be unique.
A section ends immediately before the next section header, at the end of the
Procedure Division, or, in the Declaratives portion, at the keywords END
DECLARATIVES.

Chapter 5. Procedure Division 5-1

A paragraph consists of a paragraph-name followed by a period and a space.
Zero, one, or more than one successive sentences are allowed. A
paragraph-name is a user-defined word that identifies a paragraph. A
paragraph-name, because it can be qualified, need not be unique. A
paragraph ends immediately before the next paragraph-name or section
header, at the end of the Procedure Division, or, in the Declaratives
portion, at the keywords END DECLARATI VES. If one paragraph in a
program is contained within a section, then all paragraphs must be
contained in sections.

A sentence consists of one or more statements terminated by a period and a
space.

A statement is a syntactically valid combination of words (identifiers,
data-names, figurative constants, and so on) and symbols (literals,
relational-operators, and so on) beginning with a COBOL verb.

A data-name is a user-defined word naming a data item described in a data
description entry in the Data Division. When data-name is used in a
general format, it represents a word that cannot be subscripted, indexed, or
qualified unless this is specifically permitted by the rules for that format.

An identifier consists of the word or words necessary to make unique
reference to a data item through qualification, subscripting, or indexing. In
any Procedure Division reference except the class test, if the contents of an
identifier are not compatible with the class specified through its PICTURE
clause, results are unpredictable.

Note: A level-88 (condition-name) entry, because it is not a data item,
cannot be an identifier. The associated conditional variable, however, can
be an identifier.

Procedure Division Organization

The structure of the Procedure Division is shown in the following formats.
Figure 5-1 gives an example.

5-2

Format 1

PROCEDURE DIVISION [USING data-name-' [, data-name-2] .•.J.
[DECLARATIVES.

{section-name SECTION Gegment-number] • use-sentence.

[paragraPh-name. [sentence] ...] ... } ...

END DECLARATIVES]

vection-name SECTION [segment-number]

[paragraph-name. [sentence] ...] ... } .

Format 2

PROCEDURE DIVISION [USING data-name-' [, data-name-2] ...J.
{paragraph-name. [sentence] ... } ...

Coding Example

SEQUENCE "' IB
(PAGE) SERIAL alA , 3 4 6 7 8 32" ob~o llrl :pIRbIr:. 0 DE I'lj Iv I lsi. ~II\.

02 illIE LiA 1i!IA T' VES.

03 n is &I~~;I "JII -N 11114E ,Se. ITI' ~~.

o 4 11'.1 illI... I.. ; l't • -
05 ~I A II It;, I5,rt .

06 ~ ITs.

07 1..~lt II: ...IATI, VI~I~ •

o 8 ;,s1E: dr:, ~N -IN Jl1t4 ~ sl£. lTi lin
o 9 ,It::itAPIli -iMAIME

II1 0 nl II I.:. ~rrIATI~

1 1
 I

Figure 5-1. Coding Example to Show Procedure Division Organization

Categories of Sentences

There are three categories of sentences: conditional sentences, imperative
sentences, and compiler-directing sentences.

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, terminated by a period and a space.

An imperative sentence is an imperative statement, which can consist of a
series of imperative statements, followed by a period and a space.

Chapter 5. Procedure Division 5-3

A compiler-directing sentence is a single compiler-directing statement,
followed by a period and a space.

Categories of Statements

Three categories of statements are used in COBOL: conditional statements,
imperative statements, and compiler-directing statements.

A conditional statement specifies that the truth value of a condition is to be
determined, and that the subsequent action of the object program is
dependent on this truth value. Figure 5-2 lists types of COBOL conditional
statements.

An imperative statement specifies that an unconditional action is to be
taken by the object program. An imperative statement can also consist of a
series of imperative statements. Figure 5-3 lists types of COBOL imperative
statements.

A compiler-directing statement causes the compiler to take a specific action
during compilation. Figure 5-4 lists types of COBOL compiler-directing
statements.

Type Conditional Statement

Decision IF
Input/Output DELETE ... INVALID KEY

READ .. ,AT END
READ, ,INVALID KEY
REWRITE ... INVALID KEY
START. . INVALID KEY
WRITE .. ,AT END-OF-PAGE
WRITE ... INVALID KEY

Arithmetic ADD ... ON SIZE ERROR

COMPUTE, ,ON SIZE ERROR
DIVIDE ... ON SIZE ERROR
MULTIPLY .. ON SIZE ERROR
SUBTRACT ... ON SIZE ERROR

Data Movement STRING ... ON OVERFLOW

UNSTRING, .. ON OVERFLOW

Table Handling SEARCH

Ordering RETURN, .AT END

Inter-program CALL . . . ON OVERFLOW

Communication

Procedure Branching PERFORM .. ,UNTI L

Figure 5-2. Types of Conditional Statements

Without the SIZE ERROR phrase.

Without the INVALID KEY phrase.

Without the ON OV ER FLOW phrase.

4 Without the AT END. INVALID KEY, or NO DATA phrase.

5-4

Type 	 Imperative Statement

ADDI
Arithmetic COMPUTEI
D I V I DEI
INSPECT (TALLYING)
MUL TI PLYI
SUBTRACT!

Data Movement ACCEPT (DATE. DAY. TIME)

INSPECT (REPLACING)
MOVE
STR ING3
UNSTR ING3

Ending STOP RUN

EX IT PROGRAM

Input/Output ACCEPT OPEN

ACQUIRE READ4
CLOSE REWRITE2
COMMIT ROLLBACK
DELETE2 START2
DISPLAY STOP literal
DROP WR ITE5

Ordering MERGE

RELEASE
SORT

Procedure Branching ALTER

EXIT
GO
PERFORM6

Table Handling SET

Inter-program CALL3

CANCELCommunication

Figure 5-3. Types of Imperative Statements

Compiler-Directing

Type Statement

Library COpy

Declarative USE

Documentation ENTER

Figure 5-4. Types of Compiler-Directing Statements

Categories of Expressions

Two categories of expressions are used in COBOL: arithmetic expressions
and conditional expressions.

Arithmetic expressions are used as operands of conditional or arithmetic
statements.

Conditional expressions cause the object program to select alternative
paths of control, depending on the value of a truth test. There are two types

Without the INVALID KEY or END~OF-PAGE phrase.

6 Without the UNTI Lphrase.

Chapter 5. Procedure Division 5-5

of conditional expressions: simple conditions and complex conditions.

Conditional expressions can be specified in the I F, PERFORM, and SEARCH .•,.

statements. ..""

Sample Procedure Division Statements

. 1 ... 2 3 4 5 6 .. 7

PROCEDURE DIVISION.
DEC LARA TI VES .
ERROR-IT SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-DATA.
ERROR- ROUTI NE.

IF CHECK-IT = "30" ADD 1 TO DECLARATIVE-ERRORS.
END DECLARATIVES.
BEGIN-NON-DECLARATIVES SECTION.
100-BEGIN-IT .

OPEN INPUT INPUT-DATA OUTPUT REPORT-OUT.
1l0-READ- IT

READ INPUT-DATA RECORD
AT 	 END MOVE "Y" TO EOF-SW.

IF EOF-SW NOT::: "Y" ADD 1 TO RECORDS-IN.
200-MAIN-ROUTINE.

PERFORM PROCESS-DATA UNTIL EOF-SW = "Y".
PERFORM FINAL-REPORT THRU FINAL-REPORT-EXIT.
DISPLAY "TOTAL RECORDS IN ::: " RECORDS-IN UPON WORK-STATION.
DISPLAY "DECLARATIVE ERRORS::: " DECLARATIVE-ERRORS

UPON WORK-STATION.
STOP RUN.

PROCESS-DATA.
IF 	 RECORD-ID = "Gil

PERFORM PROCESS-GEN-INFO
ELSE

I F RECORD-CODE = "C" J.
PERFORM PROCESS-SALES-DATA 	 •

ELSE
PERFORM UNKNOWN-RECORD-TYPE.

Arithmetic Expressions

Arithmetic expressions are used as operands of certain conditional and
arithmetic statements. An arithmetic expression can consist of any of the
following:

• 	 An identifier described as a numeric elementary item

• 	 A numeric literal

• 	 Identifiers and literals, as defined in Items 1 and 2, separated by
arithmetic operators

• 	 Two arithmetic expressions, as defined in Items 1,2, and/or 3, separated
by an arithmetic operator

• 	 An arithmetic expression, as defined in Items 1, 2, 3, and/or 4, enclosed
in parentheses.

Any arithmetic expression can be preceded by a unary operator.

5-6

Identifiers and literals appearing in an arithmetic expression must
represent either numeric elementary items or numeric literals on which
arithmetic can be performed.

Arithmetic Operators

The five binary arithmetic operators and two unary arithmetic operators
shown in Figure 	5-5 can be used in arithmetic expressions. The arithmetic
operators are represented by specific characters that must be preceded and
followed by a space.

Parentheses can be used in arithmetic expressions to specify the order in
which elements are to be evaluated. Expressions within parentheses are
evaluated first. When expressions are contained within a nest of
parentheses, evaluation proceeds from the innermost to the outermost set of
parenthetical expressions.

When parentheses are not used, or when parenthesized expressions are at
the same level of inclusiveness, the following hierarchical order is implied:

1. Unary operator

2. Exponentiation

3. Multiplication and division

4. Addition and subtraction.

Binary
Operator 	 Meaning

+ Addition

- Subtraction

* Multiplication

I Division

** Exponentiation

Unary Operato 	 Meaning

+ 	 Multiplication by +1; retains original
sign

-	 Multiplication by -1; changes sign

Figure 5-5. Binary and Unary Operators

Parentheses either eliminate ambiguities in logic where consecutive
operations appear at the same hierarchical level or modify the normal
hierarchical sequence of execution when this is necessary. When the order
of consecutive operations at the same hierarchical level is not completely
specified by parentheses, the order is from left to right.

Figure 5-6 shows permissible arithmetic symbol pairs. An arithmetic
symbol pair is the appearance of two such symbols in sequence.

Chapter 5. Procedure Division 5-7

An arithmetic expression can begin only with a left parenthesis, a unary
operator, or a variable (that is, an identifier or literal). An arithmetic
expression can end only with a right parenthesis or a variable. An
arithmetic expression must contain at least one reference to an identifier or
literal. There must be a one-to-one correspondence between left and right
parentheses in an arithmetic expression; each left parenthesis is placed to
the left of its corresponding right parenthesis.

Programming Notes: The results of exponentiation are truncated after the
thirteenth fractional digit. The results of exponentiation when the
exponent is noninteger are accurate to seven digits.

Second Symbol

First Variable * Unary + ()
Symbol (identifier / Unary

or literal) 	 **
+
-

Variable - p - - p
(identifier or
literal)

* 1** + - P - P P
Unary + or
Unary - p - - p
(p - p p
) - p - - p

J
p indicates a permissible pairing
- indicates that the pairing is not permitted

Figure 5-6. Valid Arithmetic Symbol Pairs

Conditional Expressions

A conditional expression causes the object program to select alternative
paths of control, depending on the truth value of a test. Conditional
expressions can be specified in IF, PERFORM, and SEARCH statements. A
conditional expression can be specified in simple conditions and in complex
conditions. Both simple and complex conditions can be enclosed within any
number of paired parentheses; parentheses do not change the category of
the condition.

5-8

Simple Conditions

There are five simple conditions: class condition, condition-name condition,
relation condition, sign condition, and switch-status condition. A simple
condition has a truth value of true or false. When a simple condition is
enclosed in paired parentheses, its truth value is not changed.

Class Condition

The class condition determines whether a data item is alphabetic or
numenc.

Format

The identifier being tested must be described implicitly or explicitly as
USAGE DISPLAY. This identifier is determined to be numeric only if the
contents consist of any combination of the digits 0 through 9.

If the PICTURE of the identifier being tested does not contain an operational
sign, the identifier is determined to be numeric only if the contents are
numeric and an operational sign is not present.

If the PICTURE of the identifier being tested does contain an operational
sign, the identifier is determined to be numeric only if the item is an
elementary item, the contents are numeric, and a valid operational sign is
present.

In the EBCDIC collating sequence, valid embedded operational positive
signs are hexadecimal F, C, E, and A. Negative signs are hexadecimal D
and B. The preferred positive sign is hexadecimal F, and the preferred
negative sign is hexadecimal D. For items described with the SIGN IS
SEPARA TE clause, valid operational signs are + (hex 4E) and - (hex 60).

The NUMERIC test cannot be used with an identifier described either as
alphabetic or as a group item that contains one or more signed elementary
items. The identifier being tested is determined to be alphabetic only if the
contents consist of any combination of the alphabetic characters A through
Z and the space.

The ALPHABET! C test cannot be used with an identifier described as
numeric.

Figure 5-7 shows valid forms of the class test.

Chapter 5. Procedure Division 5-9

Type of Identifier Valid Forms of the Class Test

Alphabetic ALPHABETI C
NOT ALPHABETIC J

Alphanumeric, ALPHABETI C
NOT ALPHABETICalphanumeric edited, or NUMERICnumeric edited NOT NUMERIC

Zoned decimal NUMERIC

NOT NUMERIC

Figure 5-7 . Valid Forms of the Class Test

Condition-Name Condition

A condition-name condition causes a conditional variable to be tested to
determine whether its value is equal to any of the values associated with
the condition-name (level-88 item).

Format

condition-name

A condition-name is used in conditions as an abbreviation for the relation
condition, because the specified condition-name is equal to only one of the
values or ranges of values assigned to the specified conditional variable.
The result of the test is true if one of the values corresponding to the
condition-name equals the current value of the associated conditional
variable.

If the condition-name is associated with a range of values or with several
ranges of values, the conditional variable is tested to determine whether or
not its value falls within the range(s), including the end values. The result
of the test is true if one of the values corresponding to the condition-name
equals the value of its associated conditional variable.

The following example illustrates the usage of condition-names and
conditional variables:

02 GRADE-ID PIC 99.
88 PRIMARY-OTHER

VALUE 1 THRU 3, 5, 6.
88 PRIMARY-FOUR

VALUE 4
88 JUNIOR-HI

VALUE 7 THRU 9.
88 SENIOR-HI

VALUE 10 THRU 12.

GRADE-ID is the conditional variable, PRIMARY-OTHER, PRIMARY-FOUR,
JUNIOR-HI, and SENIOR-HI are condition-names. For individual records in
the file, only one of the values specified in the condition-name entries can
be present. To determine the grade level of a specific record, any of the
following can be coded:

5-10

IF PRIMARY-OTHER.
(which tests for values 1, 2, 3, 5, 6)

I F PRIMARY-FOUR.
(which tests for value 4)

IF JUNIOR-HI ...
(which tests for values 7, 8, 9)

IF SENIOR-HI.
(which tests for values 10, 11, 12)

Depending on the evaluation of the condition-name condition, alternative
paths of execution are taken by the object program.

Relation Condition

A relation condition causes a comparison between two operands, either of
which can be an identifier, a literal, or an arithmetic expression.

Format

GREATER THAN
LESS THAN
EQUAL TO

operand·1 IS [~OT] operand-2>
<

Operand-1 is the subject of the relation condition; operand-2 is the object of
the relation condition. Operand-1 and operand-2 can each be an identifier,
a literal, or an arithmetic expression. The relation condition must contain
at least one reference to an identifier. Except when two numeric operands
are compared, operand-1 and operand-2 must have the same USAGE.

The relational operator specifies the type of comparison to be made.
Figure 5-8 shows relational operators and their meanings. Each relational
operator must be preceded and followed by a space.

Relational Ope,rator Meaning

IS [NOT] GREATER THAN Greater than or not greater
IS [NOT] > than

IS [NOT] LESS THAN Less than or not less than
IS [NOT] <

IS [NOT] EQUAL TO Equal to or not equal to
IS [NOT] =

Figure 5-8. Relational Operators and Their Meanings

Rules for numeric and nonnumeric comparisons are given in the following
paragraphs. If either of the operands is a group item, nonnumeric
comparison rules apply. Figure 5-9 summarizes the permissible
comparisons.

Chapter 5. Procedure Division 5-11

Second Operand

First Operand
GR AL AN ANE NE

FC
NNL

ZR
NL ZO BI PO AE

I.·······················

I •••••Ii
IN 101

Group (GR)

Alphabetic (AL)

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN
IJ

I

....

.....

Alphanumeric (AN)

Alphanumeric edited (ANE)

Numeric edited (NE)

Figurative constants, except
ZERO (FC) and nonnumeric
literal (NNL)

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

Ii

~
I>
I

Ii

•••••••

i

'i

i

Figurative constant ZERO
(ZR) and numeric literal
(NL)

Zoned decimal (ZO)

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN NN NU

NU

NU

NU

NU

NU

NU

NU

NU

It

:
i

101

10 1

Binary (BI) NU NU NU NU NU ••••••\ > 101

Packed decimal (PO) NU NU NU NU NU
...•...

101

Arithmetic expression (AE)

!3()()lean·data item (BOjol"
<i .. i

Boolean literal
< ...••.•••••••••••••• I',

Index-name (IN)

....... <···1'

···········1

.•...

....•..

.,. 'i

......................

NU

I •.•.....

101

NU

101

NU Nul NU

I

I
101 101

I>
I

BO'"

...,
10 IV

Index data item (101) IV IV

BO
NN
NU

10
IV
Blank

=
=
=
=
=
=

Comparison as described for Boolean operands.
Comparison as described for nonnumeric operands.
Comparison as described for numeric operands.

Comparison as described for two index-names (by occurrence numberl.

Comparison as described for index data items (by valuel.
Comparison is not allowed.

1Valid only if the numeric item is an integer.

Figure 5-9. Permissible Comparisons of Operands

5-12

Comparison of Numeric Operands: For numeric class operands,
algebraic values are compared. The length (number of digits) of the
operands is not significant. Zero is considered a unique value, regardless of
the sign. Unsigned numeric operands are considered positive; regardless of
their USAGE, comparison of numeric operands is permitted.

IBM Extension

Comparison of Boolean Operands: Boolean operands can be used only in
the [NOT] EQUAL TO relation condition. Boolean operands cannot be
compared to non-Boolean operands. Boolean data items and literals must
be one position in length. Two Boolean operands are equal if they both
have a value of Boolean 1 or Boolean O. The Boolean operands are unequal
if one has a value of Boolean 1 and the other has a value of Boolean O.

'--_________ End of IBM Extension _________----'

Comparison of Nonnumeric Operands: A comparison of two nonumeric
operands or of one numeric and one nonnumeric operand is made with
respect to the program collating sequence in use.

When a nonnumeric and a numeric operand are compared, the following
rules apply:

• 	 If the nonnumeric operand is a literal or an elementary data item, the
numeric operand is treated as though it were moved to an alphanumeric
elementary data item of the same size, and the contents of this
alphanumeric data item were then compared with the nonnumeric
operand.

• 	 If the nonnumeric operand is a group item, the numeric operand is
treated as though it were moved to a group item of the same size, and
the contents of this group item were then compared with the
nonnumeric operand. For further discussion of the rules for
alphanumeric and group move operations, see the "MOVE Statement"
later in this chapter.

Numeric and nonnumeric operands can be compared only when their USAGE,
explicitly or implicitly, is the same. In such comparisons, the numeric
operand must be described as an integer literal or data item; noninteger
literals and data items must not be compared with nonnumeric operands.

The size of each operand is the total number of characters in that operand;
the size affects the result of the comparison. There are two kinds of
operands to consider: operands of equal size and operands of unequal size.

Operands of equal size: Characters in corresponding positions of the two
operands are compared, beginning with the leftmost character and
continuing through the rightmost character.

If all pairs of characters through the last pair test as equal, the operands
are considered equal. If a pair of unequal characters is encountered, the
characters are tested to determine their relative positions in the collating

Chapter 5. Procedure Division 5-13

sequence. The operand containing the character higher in the sequence is
considered the greater operand.

Operands of unequal size: If the operands are of unequal size, the
comparison is made as though the shorter operand were extended to the
right with enough spaces to make the operands equal in size.

Note: Valid comparisons for index-names and index data items are
discussed under "Table Handling" in Chapter 6.

Sign Condition

The sign condition determines whether or not the algebraic value of a
numeric operand is less than, greater than, or equal to zero.

Format

POSITIVE }
operand IS [NOT] { NEGATIVE

ZERO

The operand being tested must be defined as a numeric identifier or as an
arithmetic expression that contains at least one reference to an identifier.

The operand is POS IT I V E if its value is greater than zero, N EGA TI V E if its
value is less than zero, and ZERO it its value is equal to zero. An unsigned J
operand is POS I TI V E or ZERO.

When NOT is specified, one algebraic test is executed for the truth value of
the sign condition. For example, NOT ZERO is regarded as true when the
operand tested is positive or negative in value.

Switch-Status Condition

The switch-status condition determines the on or off status of an UPSI
switch.

Format

condition-name

The condition-name must be defined to be associated with the ON or OFF
value of a switch in the SPECIAL-NAMES paragraph.

The switch-status condition tests the value associated with the
condition-name. The result of the test is true if the UPSI switch is set to
the position corresponding to condition-name.

5-14

Complex Conditions

A complex condition is a condition in which one or more logical operators
act upon one or more conditions. Complex conditions include:

• Negated simple conditions

• Combined conditions

• Negated combined conditions.

Each logical operator must be preceded and followed by a space. The
logical operators and their meanings are shown in Figure 5-10.

The truth value of a complex condition depends on the truth values of the
simple conditions and negated simple conditions that make up the complex
condition. The logical operators tell the compiler how to combine these
individual truth values.

Logical
Operator 	 Meaning
AND 	 Logical conjunction - the truth value is true when

both conditions are true.
OR 	 Logical inclusive OR - the truth value is true when

either or both conditions are true.
NOT 	 Logical negation - reversal of truth value (the

truth value is true if the condition is false).

Figure 5-10. Logical Operators and Their Meanings

Negated Simple Conditions

A simple condition is negated through the use of the logical operator NOT.

Format

NOT simple-condition

The simple-condition to be negated can be a class condition, a
condition-name condition, a relation condition, a sign condition. or a
switch-status condition. The simple-condition cannot be negated if the
condition itself contains a NOT.

The negated simple-condition gives the opposite truth value as the simple
condition. That is, if the truth value of the simple-condition is true, then
the truth value of that same negated simple-condition is false.

Placing a negated simple-condition within parentheses does not change its
truth value. For example, the following two statements are equivalent:

NOT A IS EQUAL TO B

NOT (A IS EQUAL TO B)

Chapter 5. Procedure Division 5-15

Combined Conditions

Two or more conditions can be logically connected to form a combined
condition.

Format

condItlon" OR condition"} •• ,{{AND}

The condition to be combined can be a simple-condition, a negated
simple-condition, a combined condition, a negated combined condition (that
is, the NOT logical operator followed by a combined condition enclosed in
parentheses). Combinations of the preceding conditions are specified
according to the rules given in Figure 5-11.

Parentheses are never needed when either AND or OR (but not both) are used
exclusively in one combined condition. However, parentheses might be
needed to find a final truth value when a combination of AND, OR, and NOT
is used. There must a one-to-one correspondence between left and right
parentheses with each left parenthesis to the left of its corresponding right
parenthesis.

Figure 5-11 summarizes the way in which conditions and logical operators
can be combined and parenthesized, Figure 5-12 illustrates the relationships
between logical operators and conditions C1 and C2 where C1 and C2 are
any conditions as defined above.

Evaluating Conditional Expressions: If parentheses are used, logical
evaluation of combined conditions proceeds in the following order:

1. 	 Conditions within parentheses are evaluated first.

2. 	 Within nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition.

If parentheses are not used (or are not at the same level of inclusiveness),
the combined condition is evaluated in the following order:

1. 	 Arithmetic expressions.

5-16

Permissible Position in Conditional Expressions

Condition Element Leftmost

When Not Leftmost, Can
Be Immediately
Preceded By:

When Not Rightmost,
Can Be Immediately
Followed By: Rightmost

Simple-Condition Yes OR

NOT

OR

AND

Yes

AND

(

)

OR

AND

No Simple-Condition

)

Simple-Condition

NOT

(

No

NOT Yes OR

AND

(

Simple-Condition

(

No

(Yes OR

NOT

Simple-Condition

NOT

No

AND

(

(

) No Simple-Condition

I)

OR

AND

)

Yes

Figure 5-11. Valid Combinations of Conditions, Logical Operators, and Parentheses in a
Conditional Expression

Values Values CIAND CIOR NOT (CI NOTCI NOT (CI NOTCI
for CI for C2 C2 C2 AND C2) ANDC2 OR C2) ORC2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True

Figure 5-12. How Logical Operators Affect the Evaluation of Conditions

Chapter 5. Procedure Division 5-17

2. 	 Simple-conditions in the following order:

a. 	 Relation
b. 	 Class
c. 	 Condition-name
d. 	 Switch-status
e. 	 Sign.

3. 	 Negated simple-conditions in the same order as item 2.

4. 	 Combined conditions, in the following order:

a. 	 AND
b. 	 OR.

5. 	 Negated combined conditions in the following order:

a. 	 AND
b. 	 OR.

6. 	 Consecutive operands at the same evaluation-order level are evaluated
from left to right. However, the truth value of a combined
condition can sometimes be determined without evaluating the truth
value of all the component conditions.

The component conditions of a combined condition are evaluated from left
to right. If the truth value of one condition is not affected by the
evaluation of further elements of the combined condition, these elements
are not evaluated. However, the truth value of the condition will always be
the same (as if the condition had been evaluated in full), as described
earlier in this paragraph.

For example:

NOT A IS GREATER THAN B OR A + B IS EQUAL

TO C AND D IS POSITIVE

is evaluated as if parenthesized as follows:

(NOT (A IS GREATER THAN B» OR «(A+B) IS EQUAL

TO C) AND (D IS POSITIVE»

The order of evaluation in this example is as follows:

1. 	 (NOT (A IS GREATER THAN B» is evaluated. If true, the rest of the
condition is not evaluated, as the expression is true.

2. 	 (A+B) is evaluated. giving some intermediate result. x.

3. 	 (x I S EQUAL TO C) is evaluated. If false, the rest of the condition is
not evaluated, as the expression is false.

4. 	 (D IS POSITIVE) is evaluated, giving the final truth value of the
expression.

5-18

Abbreviated Combined Relation Conditions

When relation-conditions are written consecutively and no parentheses are
used within the consecutive sequence, any relation-condition after the first
can be abbreviated by either:

• 	 Omission of the subject

• 	 Omission of the subject and relation operator.

Format

GREATER THAN
LESS THAN
EQUAL TO

relation-condition { AONRD} riNOT]L! 	 object>
<

In any consecutive sequence of relation-conditions, both forms of
abbreviation can be specified. The abbreviated condition is evaluated as if:

• 	 The last stated subject is the missing subject.

• 	 The last stated relational operator is the missing relational operator.

• 	 The resulting combined condition must comply with the rules for
element sequence in combined conditions, as shown in Figure 5-11.

• 	 The word NOT is considered part of the relational operator in the forms
NOT GREATER THAN. NOT >. NOT LESS THAN. NOT <. NOT EQUAL TO.
and NOT =.

• 	 NOT in any other position is considered a logical operator, and thus
results in a negated related-condition.

Figure 5-13 shows examples of abbreviated combined relation-conditions
and their nonabbreviated equivalents.

Abbreviated Combined Relation-Condition Nonabbreviated Equivalent

A = B AND NOT LESS THAN C OR D «A = B) AND (A NOT LESS THAN C)) OR

(A NOT LESS THAN D)

A NOT GREATER THAN B OR C (A NOT GREATER THAN B) OR (A NOT

GREATER THAN C)

NOT A = B OR C (NOT (A = B) OR (A = C))

NOT (A = B OR LESS THAN C) NOT «A = B) OR (A LESS THAN C))

Figure 5-13 (Part 1 of 2). Abbreviated Combined Relation-Condition Equivalent

Chapter 5. Procedure Division 5-19

Abbreviated Combined Relation-Condition Nonabbreviated Equivalent

NOT (A NOT = BAND C AND NOT D) NOT «(A NOT = B) AND (A NOT = C» AND

(NOT (A NOT = D»)

Figure 5-13 (Part 2 of 2). Abbreviated Combined Relation-Condition Equivalent

Declaratives

The Declaratives section provides a method of invoking procedures that are
executed when an exceptional condition occurs that cannot normally be
tested by the COBOL programmer. Declarative procedures are provided for
the processing of exceptional input/output conditions and debugging
procedures.

Format

PROCEDURE DIVISION [USING data-name-1 [. data-name-2] ...J.
[DECLARATIVES.

{section-name SECTION ~egment-number] . USE statement_

[paragraPh-name. [sentence] ..•] ... } ... J
END DECLARATIVES]

Declarative procedures are written at the beginning of the Procedure
Division in a series of Declarative sections. Each such section is preceded
by a US E statement that identifies under what conditions the section is
used. The series of procedures that follow specify what actions are to be
taken when the exceptional condition occurs. Each Declarative section
ends with the occurrence of another section-name followed by a USE
statement, or with the keywords END DECLARATIVES.

The entire group of Declarative procedures is preceded by the keyword
DECLARATI VES, written on the next line after the Procedure Division
header; the group is followed by the keywords END DECLARATIVES. The
keywords DECLARATIVES and END DECLARATIVES must each begin in Area A
and be followed by a period. No other text can appear on the same line.

In the Declaratives portion of the Procedure Division, each section header
(with an optional segment number) must be followed by a period and a
space, and must be followed by a US E statement followed by a period and a
space. No other text can appear on the same line. There are two forms of
the USE statement:

• USE AFTER EXCEPTION/ERROR

• USE FOR DEBUGGING_

5-20

The US E statement itself is never executed; instead, the US E statement
defines the conditions that will cause execution of the immediately
following procedural paragraphs, which specify the actions to be taken.
After the procedure is executed, control is returned to the routine that
activated it.

Within a Declarative procedure, except for the US E statement itself, there
must be no reference to any nondeclarative procedure.

Within a Declarative procedure, no statement can be executed that would
cause execution of a USE procedure that has been previously invoked and
has not yet returned control to the invoking routine.

An exit from a Declarative procedure is effected by executing the last
statement in the procedure.

In this chapter, only the USE AFTER EXCEPTION/ERROR Declaratives
procedure is described. The USE FOR DEBUGGING Declaratives procedure is
described under "Debugging Features" in Chapter 6.

EXCEPTION/ERROR Declarative

The EXCEPTI ON/ ERROR Declarative specifies procedures for input/output
exception or error handling that are to be executed in addition to the
standard system procedures.

Format

file-name-' [, file-name-2] __ .

~
USE AFTER STANDARD {. EXCEPTION} PROCEDURE ON OUTPUT

ERROR
1-0
EXTEND

The words EXCEPTION and ERROR are synonymous and can be used
interchangeably.

File-Name Phrase

This phrase is valid for sequential, indexed, and relative files. When this
phrase is specified, the procedure is executed only for the file(s) named. No
file-name can refer to a sort-merge file. For any given file, only one
EXCEPTION/ERROR procedure can be specified. For example, if an input file
is specifically named in one EXCEPTION/ERROR procedure, there must not
also be an EXCEPTION/ERROR procedure for all INPUT files.

Chapter 5. Procedure Division 5-21

,------------- IBM Extension -------------,

The file·name phrase is also valid for TRANSACTION files.

L...-_________ End of IBM Extension _________---1

INPUT Phrase

This phrase is valid for sequential, indexed, and relative files. When this
phrase is specified, the procedure is applicable to all files opened in INPUT
mode.

OUTPUT Phrase

This phrase is valid for sequential, indexed, and relative files. When this
phrase is specified, the procedure is applicable to all files opened in OUTPUT
mode.

1-0 Phrase

This phrase is valid for sequential, indexed, and relative files. When this
phrase is specified, the procedure is applicable to all files opened in 1·0
mode.

IBM Extension

The 1·0 phrase is also valid for TRANSACTION files.

L...-_________ End of IBM Extension _________---'

EXTEND Phrase

This phrase is valid for sequential files only. When this phrase is specified,
the procedure is applicable to all files opened in EXTEND mode.

General Considerations

The EXCEPTION/ERROR Declaratives procedure is executed when one of the
following conditions exists:

• 	 After completing the standard system input/output error routine

• 	 Upon recognition of an I NVALI D KEY or AT END condition when an
INVALID KEY or AT END option has not been specified in the
input/output statement

• 	 When Status Key 1 is not equal to 0 following an 1·0 operation.

The EXCEPTION/ERROR Declarative procedures are performed when an
input/output error occurs during execution of a READ. WRITE. REWRITE.
START. DELETE. ACQUIRE. DROP. OPEN. or CLOSE statement. For

5-22

example, these procedures are activated when an input/output statement
fails on a file that is in the open status.

After execution of the EXCEPTION/ERROR Declarative procedure, control is
returned to the statement immediately following the input/output statement
that caused the error.

Within a Declarative procedure, there must be no reference to any
nondeclarative procedure. In the nondeclarative portion of the program,
there must be no reference to procedure-names that appear in an
EXCEPTION/ERROR Declarative procedure, except that PERFORM statements
can refer to an EXCEPTION/ERROR Declarative procedure or to procedures
associated with it.

Within an EXCEPTION/ERROR Declarative procedure, no statement can be
executed that causes execution of a USE statement that has been
previously invoked and has not yet returned control to the invoking
routine.

Programming Notes

EX CEPT ION / ERROR Declarative procedures can be used to check the status
key values whenever an input/output error occurs. Additional information
about the file causing the error can be obtained by using data from the
mnemonic-names OPEN- FEEDBACK and I -0- FEEDBACK.

Care should be used in specifying EXCEPTION/ERROR Declarative procedures
for any file. Prior to successful completion of an initial OP EN for any file,
the current Declarative has not yet been established by the object program.
Therefore, if any other 1-0 statement is executed for a file that has never
been opened, no Declarative can receive control. However, if this file has
been previously opened, the last previously established Declarative
procedure receives control.

For example, an OPEN OUTPUT statement establishes a Declarative
procedure for this file, and the file is then closed without error. During
later processing, if a logic error occurs, control will go to the Declarative
procedure established when the file was opened OUTPUT.

If there is no applicable US E procedure in the program when an 1-0 error
occurs, execution can continue. Unless the program is terminated, or some
other action taken, other errors may occur, causing undesirable results.

Conditional Statements

A conditional statement specifies that a truth value of a condition is to be
determined, and that the subsequent action of the object program depends
on this truth value. Figure 5-2 gives a list of the conditional statements.

Only the I F statement is discussed in this section; the other conditional
statements are discussed elsewhere in this manual.

Chapter 5. Procedure Division 5-23

IF Statement

The I F statement causes a condition to be evaluated, and provides for
alternative actions in the program, depending on that value.

Format

{ statement.' } [{ELSE statement·2 }]IF conditio
>Pi'·')'} " ,,?:;}; NEXT SENTENCE ELSE NEXT SENTENCE

IBM Extension

TH EN is used as a separator.

L...-_________ End of IBM Extension _________---'

Statement-lor statement-2 can be anyone of the following:

• 	 An imperative statement
• 	 A conditional statement
• An imperative statement followed by a conditional statement.

The scope of an I F statement can be terminated by any of the following:

• 	 A separator period

• 	 If nested, by an ELS E phrase associated with an I F statement at a higher
level of nesting.

If the condition tested is true, one of the following actions takes place:

• 	 Statement·I, if specified, is executed. If statement-I contains a
procedure branching statement, control is transferred according to the
rules for that statement. If statement-I does not contain a
procedure-branching statement, the ELSE phrase, if specified, is ignored,
and control passes to the next executable sentence.

• 	 NEXT SENTENCE, if specified, is executed; that is, the ELSE phrase, if
specified, is ignored, and control passes to the next executable sentence.

If the condition tested is false, one of the following actions take place:

• 	 ELS E statement-2, if specified, is executed. If statement-2 contains a
procedure-branching statement, control is transferred according to the
rules for that statement. If statement-2 does not contain a
procedure-branching statement, control is passed to the next executable
sentence.

5-24

• 	 ELSE NEXT SENTENCE, if specified, is executed. Therefore, statement-I,
if specified, is ignored; control passes to the next executable sentence.

• 	 If ELS E phrase is omitted, control passes to the next executable
sentence.

• 	 The ELSE NEXT SENTENCE phrase can be omitted if it immediately
precedes the period that ends the conditional sentence.

Note: When the ELSE phrase is omitted, all statements following the
condition and preceding the period for the sentence are considered to be
part of statement-I.

Nested IF Statements

The presence of one or more I F statements within an initial I F statement
constitutes a nested I F statement.

Statement-l and statement-2 in I F statements can consist of one or more
imperative statements and/or a conditional statement. If an I F statement
appears as statement-lor as part of statement-I, it is said to be nested.
Nesting statements is much like specifying subordinate arithmetic
expressions enclosed in parentheses and combined in large arithmetic
expressions.

I F statements contained within I F statements must be considered as paired
I F and ELSE combinations, proceeding from left to right. Thus, any ELSE
encountered must be considered to apply to the immediately preceding IF
that has not already paired with an ELS E.

Figure 5-14 shows the possible true/false combinations for the following
nested I F statement:

IF condition-l
statement-l-l
I F condition-2

I F condition-3
statement-3-1

ELSE
statement-3-2

ELSE
statement-2-2

I F condition-4

IF condition-5

statement-5-1

ELSE
statement-5-2.

Chapter 5. Procedure Division 5-25

True

IF condition·' I statement.,.,

False

True~

IF! condition-2!

False

True

It condition-3 stateme!t.3-l

False

I ELSE statement-3·2

l" I

ELSE statement-2·2

rr=
I F Icondition-4

True

False

1 True

condition·5 statement-5ol

False

ELSE statiment-5 -2

Next sentence in COBOL source program

Figure 5-14. Nested IF Statement - True/False Combinations

Programming Notes: Because their logic is often difficult to follow,
nested I F statements should, wherever possible, be avoided in a COBOL
program. Often a series of simple I F statements can be used in place of the
nested I F statement.

For example, the following series of simple I F statements give results
equivalent to those achieved using the preceding nested I F statement
example:

IF condition-I NEXT SENTENCE
ELSE GO TO PARA-2.

statement-I-I.

IF condition-2 NEXT SENTENCE
ELSE GO TO PARA-I.

IF condition-3 statement-3-I GO TO PARA-2
ELSE statement-3-2 GO TO PARA-2.

5-26

PARA-I.

statement-2-2.

IF condition-4 NEXT SENTENCE
ELSE GO TO PARA-2

IF condition-5 statement-5-1
ELSE statement-5-2.

PARA-2.

next-execu table-statement.

Notice that Figure 5-14 also illustrates the logic flow for the preceding
series of simple I F statements.

Input/Output Statements

COBOL input/output statements transfer data to and from files. In COBOL,
the unit of data made available to the program is a record, and the COBOL
user need be concerned only with such records. Provision is automatically
made for such operations as the movement of data into buffers and/or
internal storage, validity checking, error correction (when feasible), and
unblocking and blocking of records.

The description of the file in the Environment Division and the Data
Division governs which input/output statements are allowed in the
Procedure Division.

All TRANSACT I ON file formats of the input/output statements are discussed
in Chapter 7.

For information about COBOL file processing in relation to System/38 file
processing, see Chapter 9. See Appendix I for a file structure support
summary.

Common Input/Output Phrases

There are several phrases and concepts common to input/output statements.
These are: status key, I NVALI 0 KEY condition, I NTO/ FROM identifier phrase,
and current record pointer. The description of these phrases precedes
the descriptions of the individual statements.

Chapter 5. Procedure Division 5-27

L

Status Key

If the FILE STATUS clause is specified in the file-control entry, a value is ..J
placed in the specified status key (the 2-character data item named in the
FILE STATUS clause) during execution of any request on that file; the value
indicates the status of that request. The value is placed in the status key
before execution of any EXCEPTION/ERROR Declarative or INVALID KEY/AT
END phrase associated with the request.

The first character of the status key is known as status key 1; the second
character is known as status key 2. Combinations of possible values and
their meanings are shown in Appendix 1.

INVALID KEY Condition

The INVALID KEY condition can occur during execution ofa START, READ,
WRITE, REWRITE, or DELETE statement. When the INVALID KEY condition
is recognized, the actions are taken in the following order:

1. 	 If the FILE STATUS clause is specified in the file-control entry, a value
is placed into the status key to indicate an I NVALI D KEY condition (see
Appendix I).

2. 	 If the I NVALI D KEY phrase is specified in the statement causing the
condition, control is transferred to the I NVALI D KEY
imperative-statement. Any EXCEPTION/ERROR Declarative procedure
specified for this file is not performed.

3. 	 If the INVALID KEY phrase is not specified, but an EXCEPTION/ERROR
Declarative procedure is specified for the file, the EXCEPTION/ERROR
procedure is executed.

When an I NVALI D KEY condition occurs, the input/output statement that
caused the condition is unsuccessful. If the I NVALI D KEY phrase is not
specified for a file, an EXCEPTION/ERROR procedure must be specified.

INTO/FROM Identifier Phrase

This phrase is valid for READ, REWRITE, and WRITE statements. The
identifier specified must be the name of an entry in the Working-Storage
Section, the Linkage Section, or of a record description for another
previously opened file. Record-name/file-name and identifier must not refer
to the same storage area. In both phrases, an implicit move is executed
according to MOVE statement rules without the CORRESPOND I NG phrase.

The following illustrate the use of the INTO / FROM identifier phrase in an
input/output statement:

READ file-name RECORD I NTO identifier.

WRITE record-name FROM identifier.

5-28

Current Record Pointer

The current record pointer identifies a particular record accessed by a
sequential input request. The record identified depends on the statement
being executed. The OPEN, READ, RETURN, ROLLBACK, and START
statements position the current record pointer as follows:

• 	 The OP EN statement positions the current record pointer to the first
record in the file.

IBM Extension

The current record pointer can be positioned to any record in the file by
using the POS I T I ON parameter of the Override with Data Base File
(OVRDBF) command.

'--__________ End of IBM Extension __________......1

• 	 For a sequential access READ statement, or a dynamic access READ NEXT
statement, the following considerations apply:

If an OPEN or START statement positioned the current record pointer,

the record identified by the current record pointer is made

available. If this record does not exist, the next existing record is

made available.

If a previous READ statement positioned the current record pointer,

the current record pointer is updated to point to the next existing

record in the file; that record is then made available.

r------------- IBM Extension --------------,

• 	 For a dynamic access READ FIRST statement, the current record pointer
is positioned to point to the first record in the file; that record is then
made available.

• 	 For a dynamic access READ LAST statement, the current record pointer
is positioned to point to the last record in the file; that record is then
made available.

• 	 For a dynamic access READ PRIOR statement, the current record pointer
is positioned to point to the previous existing record in the file; that
record is then made available.

'--__________ End of IBM Extension __________......1

• 	 For the RETURN statement, the following considerations apply:

The first RETURN statement positions the current record pointer to
the first record in the file, and that record is then made available.
If a previous RETURN statement positioned the current record
pointer, the current record pointer is updated to point to the next
existing record in the file, and the record is then made available.

Chapter 5. Procedure Division 5-29

• 	 For the ROLLBACK statement, the following considerations apply to any
file under commitment control:

The ROLLBACK statement sets the current record pointer to the
pointer's position at the previous commitment boundary. This is
important to remember if you are doing sequential processing.
The current record pointer is set to the pointer's position at the
OPEN if no COMMIT statement has been issued since the file was
opened.
The current record pointer is undefined for any file under
commitment control that is not open.

• 	 The START statement positions the current record pointer to the first
record in the file that satisfies the implicit or explicit comparison
specified in the START statement.

The setting of the current record pointer is affected only by the OP EN •
START. RETURN. READ, and ROLLBACK statements. The concept of the
current record pointer has no meaning for files with an access mode of
random, for TRANSACTION files, or for output files.

IBM Extension

DB-FORMAT-NAME Special Register

After the execution of an input/output statement, for a FORMAT F I L E or
DATABASE file, the DB-FORMAT-NAME special register is modified according to
the following rules:

• 	 After completion of a successful READ. WRITE. REWRITE. START. or
DELETE operation, the record format name used in the 1-0 operation is
implicitly moved to the special register.

• 	 After an unsuccessful input/output operation, DB- FORMAT -NAME contains
the record format name used in the last successful input/output
operation.

• 	 DB-FORMAT-NAME is implicitly defined as PICTURE X(lO)'

'--_________ End of IBM Extension _________----1

ACCEPT Statement

The function of the ACCEPT statement is to obtain low volume data.
ACCEPT statement execution causes the transfer of data into the specified
identifier. There is no editing or error checking of the incoming data. The
formats of the ACCEPT statement are as follows:

5-30

Format 1

ACCEPT identifier [FROM mnemonic-name]

Format 2

DATE}

ACCEPT identifier FROM { DAY

TIME

Format 3 - Feedback

ACCEPT identifier F ROM mnemonic-name

[FOR file-name]

Format 4 - Local Data Area

ACCEPT identifier-l FROM mnemonic-name

r-------~----------,
I rFOR { i~entifier-2}] :

I LJ-- literal I

L__________________J

,...------------ IBM Extension -----------~

Format 5 - TRANSACTION Attributes

See Chapter 7 for information about this format.

L....-_________ End of IBM Extension _________----'

Format 1 Considerations

This format is used to transfer data from an input/output device to the
identifier. Identifier can be any fixed length group item, or an elementary
alphabetic, alphanumeric, or zoned decimal item.

When the FROM phrase is omitted, the ACCEPT statement obtains input from
the job input stream for batch jobs, and from the work station for
interactive jobs.

Chapter 5. Procedure Division 5-31

The job input stream is CL request data. If there is no data in the input

stream, an exception occurs. See "How to Execute a COBOL Program" in \

Chapter 8 for further information on the placement of input data for a """"

batch job.

When the FROM phrase is specified, mnemonic-name must be associated with

an input/output device that is specified in the SPECIAL-NAMES paragraph.

The input/output device can be the work station (REQUESTOR) or the system

operator's station (CONSOLE or SYSTEM-CONSOLE). If mnemonic-name is

REQUESTOR and the job is a batch job, the job input stream is used.

When the input is from the job input stream, the following rules apply:

• 	 An input record size of 80 characters is assumed.

• 	 If the identifier is up to 80 characters in length, the input data must
appear as the first character within the input record. Any characters
beyond the length of identifier are truncated.

• 	 If the identifier is longer than 80 characters, succeeding input records
are read until the storage area of the identifier is filled. If the length of
the identifier is not an exact multiple of 80 characters, the last input
record is truncated.

When the device is the work station, the input record size is 100. When the
device is console, the input record size is 58. The following steps occur:

1. 	 A system-generated inquiry message containing the program-name, the
text "AWAITING REPLY FOR POSITION(S)", and the beginning and
ending positions is automatically sent to the system or work station
operator. Previous DISPLAYs can also appear on the ACCEPT screen.

2. 	 Execution is suspended.

3. 	 The reply is moved into the identifier, and execution is resumed after a
reply is made by the system operator to the inquiry in step 1. The reply
value is made available to the program as it was entered, in uppercase
or lowercase.

4. 	 If the identifier is longer than the input record size, then succeeding
input records are read (steps 1-3) until the identifier is filled.

If the incoming reply is longer than the identifier, the character positions
beyond the length of identifier are truncated.

The source of input data is dependent upon the type of program initiation
as follows:

5-32

Method of
Program
Initiation

BATCH

INTERACTIVE

Mnemonic-Name Mnemonic-Name Data Source
Associated with Associated with When FROM
SYSTEM-CONSOLE REQUESTOR Phrase Omitted

System operator's station Job input stream Job input stream

System operator's station Work station Work station

Format 2 Considerations

This format is used to transfer the system date or system time to the
identifier, using the rules for the MOV E statement without the
CORRESPONDING phrase. Identifier can be a group item, or an elementary
alphanumeric, alphanumeric edited, numeric, or numeric edited item.

r------------- IBM Extension --------------.

A numeric item can also be defined as COMPUTATIONAL-3 or
COMPUTATIONAL-4.

'--_________ End of IBM Extension _________---'

DATE. DAY. and TIME implicitly have USAGE DISPLAY.

DATE has the implicit PICTURE 9(6). The sequence of data elements from
left to right is: two digits for year of century, two digits for month of year,
two digits for day of month. Thus July 4, 1976 is expressed as 760704.

DAY has the implicit PICTURE 9 (5). The sequence of data elements from
left to right is: two digits for year of century, three digits for day of year.
Thus, July 4, 1976 is expressed as 76186.

TIME has the implicit PICTURE 9(8). The sequence of data elements from
left to right is: two digits for hour of day, two digits for minute of hour,
two digits for second of minute, two digits for hundredths of second. Thus
12.25 seconds after 2:41 p.m. is expressed as 14411225.

Format 3 Considerations

This format is used to transfer feedback information from an active file to
the identifier. The identifier can be any fixed-length group item or an
elementary alphabetic, alphanumeric, or zoned decimal item. The file must
be defined in an FD entry, and must be open prior to the execution of the
ACCEPT statement. If the file is not open, the contents of identifier remain
unchanged.

The FROM phrase specifies a mnemonic-name that must be associated with a
function-name of OPEN- FEEDBACK or I -0- FEEDBACK in the SPECIAL-NAMES
paragraph.

When the FOR phrase is specified, the feedback information is from the file
specified in the phrase. When the FOR phrase is not specified, the feedback
information is from the last file opened or used in an input or output
operation.

Chapter 5. Procedure Division 5-33

See Appendix I for a discussion of the I-O-FEEDBACK and OPEN-FEEDBACK

areas. See the CPF Programmer's Guide for a layout and description of the"

data areas contained in the feedback areas. ..."

Format 4 Considerations

This format is used to transfer data to identifier-1 from the system-defined
local data area created for a job.

This format is only applicable when the mnemonic-name in the
SPECIAL-NAMES paragraph is associated with the function-name
LOCAL-DATA.

The move into identifier-1 takes place according to the rules for the MOV E
statement for a group move without the CORRESPOND I NG phrase.

When the FOR phrase is specified, it is syntax checked during compilation
but treated as comments during execution. The value of literal or
identifier-2 indicates the program device name of the device that is
associated with the local data area. There is only one local data area for
each job, and all devices in a job access the same local data area. Literal, if
specified, must be nonnumeric and 10 characters or less in length.
Identifier-2, if specified, must refer to an alphanumeric data item, 10
characters or less in length.

See "Local Data Area" in Chapter 9 for more information.

Programming Notes J
The Format 1 ACCEPT statement is useful for exceptional situations in a
program when operator intervention (to supply a given message, code, or
exception indicator) is required. The operator must, of course, be supplied
with the appropriate messages with which to reply.

The Format 2 ACCEPT statement allows the programmer access to the
current date (in two formats) and time of day, as carried by the system.
This can be useful in identifying when a particular run of a program was
executed. It can also be used to supply the date in headings, footings, and
so on.

ACQUIRE Statement

r------------- IBM Extension ------------,

The ACQU I RE statement acquires a program device for a TRANSACT! ON file.

See Chapter 7 for the format, and for a discussion of this statement.

L-.._________ End of IBM Extension _________---1

5-34

CLOSE Statement

The CLOS E statement terminates the processing of volumes and files.
REWIND, LOCK, and REMOVAL phrases are specified, as applicable. The
formats of the CLOS Estatement are as follows:

Format 1

{ REEL} [WITH NO REWIND]

UNIT FOR REMOVAL

CLOSE file-name-'

WITH {NO REWIND}

LOCK

{ REEL} [WITH NO REWIND]
UNIT FOR REMOVAL

, fi le-name-2

WITH {NO REWIND}

LOCK

Format 2

See Chapter 7 for a discussion of the TRANSACTION file format.

Each file-name designates a file upon which the CLOS E statement is to
operate. These files:

• Need not have the same organization or access mode

• Must not be sort or merge files_

A CLOSE statement without the REEL/UNIT phrase can be successfully
executed for a file. In this case, an OPEN statement for the file must be
executed before any other input/output statement can refer explicitly or
implicitly to the file. This is true for all input/output statements except a
SORT /MERGE statement with the USING or GIVING phrases.

If the FILE STATUS clause is specified in the file-control entry, the
associated status key is updated when the CLOSE statement is executed.

If the file is open and the execution of a CLOS E statement is unsuccessful,
the EXCEPTION/ERROR procedure for the file, if specified, is executed..

If a CLOS Estatement for an open file is not executed before a STOP RUN for
this run unit, the file is implicitly closed.

If a CANCEL statement is executed for a program with an open file:

• The status of that file is unpredictable

• The file can be logically damaged

Chapter 5_ Procedure Division 5-35

L

- - - - - - - - -

• The file can keep the allocated device longer than necessary.

If the SEL ECT OPT! ONAL clause is specified in the file-control entry for this
file and the file is not present at execution time, standard end-of-file
processing is not performed.

The following tables illustrate organization, access, device, and volume
considerations for the CLOS Estatement. The letter codes used in the tables
are defined in the section following the tables.

Sequential Organization

Access SEQUENTIAL

Device READER PUNCH PRINT PUNCHPRINT PRINTER DISKETTE DISK DATABASE FORMATFILE

CLOSE K J K J K J K J K J K J K J K J K J
CLOSE WITH K, J, E K, J, E K, J, E K, J, E K, J, E K, J, E K, J, E K, J, E K, J, E
LOCK

REEL/UNIT

REMOVAL - - - - - - - -
-NO REWIND - - - - - - -

Sequential Organization Indexed Organization

Access SEQUENTIAL Access Any

Device TAPEFILE Device DISK DATABASE

Volume Single Multi CLOSE K J K J

CLOSE WITH K, J, K, J, E
CLOSE K J G K J G A LOCK E
CLOSE WITH LOCK K, J, G, K, J, G, A. E REEL/UNIT -

E
REMOVAL -

CLOSE NO REWIND K J B K J B A
NO REWIND -

CLOSE REEL/UNIT C K F G

CLOSE REEL/UNIT C K, F, D, G

FOR REMOVAL

CLOSE REEL/UNIT C K, F, B

WITH NO REWIND

5-36

- -

C

Relative Organization

Access Any

Device 	 DISK DATABASE

CLOSE K J K J

CLOSE WITH K, J, K, J, E

LOCK E

REEL/UNIT -
REMOVAL

NO REWIND -

Letter
Code Meaning

An invalid combination.

A 	 No effect on any previous volumes. Any additional volumes are not
processed.

B 	 The current volume is left in its present position. The reel is not
rewound.

IBM Extension

The system always rewinds and unloads the tape when REEL/UNIT
is specified on the CLOSE statement.

L--_________ End of IBM Extension _________---'

Optional, but only syntax-checked (performs no function at
execution time).

D 	 The current volume is rewound and unloaded. The system is
notified that the volume is logically removed from this run unit.
However, the volume can be accessed again, after execution of a
CLOSE statement without the REEL/UNIT phrase and an OPEN
statement for this file.

E 	 COBOL ensures that this file cannot be reopened during this
execution of the program.

F 	 Close volume procedures. The labels are handled as follows:

Chapter 5. Procedure Division 5-37

Label Records

Mode of File Standard Omitted

INPUT F01 F02

OUTPUT F03 F04

1-0 F01 F02

FOI 	 The current volume is positioned to read the labels. If this is
the last volume for the file, the next executed READ
statement receives the AT END condition. If this is not the
last volume, the following actions are taken:

1. 	 The current volume is unloaded

2. 	 The beginning standard labels on the next volume are
read

3. 	 The next executed READ statement gets the first record
on the newly mounted volume.

F02 	 The current volume is unloaded. If all of the reels as
specified on the REELS parameter of the Create Tape File . '~.'
(CRTTAPF) or Override with Tape File (OVRTAPF) CL command -."II
have been processed, the next executed READ statement
receives the AT END condition. If there are more reels, the
next volume is mounted, and the next executed READ
statement gets the first record on the newly mounted
volume.

F03 	 The standard end-of-volume labels are written. The next
volume is mounted. The standard beginning labels are
written on the new volume. The next executed WR I TE
statement places the next logical record on the newly
mounted volume.

F04 	 The system end-of-volume procedures for nonlabeled tapes
are executed. The next volume is mounted. The system
beginning of volume procedures for nonlabeled tapes are
executed. The next executed WRITE statement places the
next logical record on the newly mounted volume.

G 	 The current volume is positioned at its beginning.

J 	 The record area associated with the file-name is no longer
available after successful execution of this statement.
Unsuccessful execution of this statement leaves availability of the
record data area undefined.

Labels are processed as follows:

5-38

Label Records

Mode of File Standard Omitted

INPUT J01 J02

OUTPUT J03 J04

1-0 J01 J02

JOI 	 If the file is positioned at its end, the label records are read
and verified, and the file is closed. If the file is not at its
end, the file is closed.

J02 	 The file is closed.

J03 	 The standard label records are written, and the file is closed.

J04 	 The file is closed without any label processing.

K May be executed only for an open file.

COMMIT Statement

The COMM I T statement provides a way of synchronizing changes to data base
records while preventing other jobs from modifying those records until the
COMMIT is performed. The format of the COMMIT statement is:

Format

When the COMM I T statement is executed, all changes made to files under
commitment control since the previous commitment boundary are made
permanent. A commitment boundary is established by the successful
execution of a ROLLBACK or COMMIT statement. If no COMMIT or ROLLBACK
has been issued in the current job, a commitment boundary is established
by the first OP EN of any file under commitment control in the job. Changes
are made to all files under commitment control in the job, not just to files
under commitment control in the COBOL program that issues the COMMI T
statement.

When a COMMIT is executed, all record locks held by the job since the last
commitment boundary for files under commitment control are released and
the records become available to other jobs.

The COMMIT statement only affects files under commitment control. If a
COMMIT is executed and there are no files opened under commitment

Chapter 5. Procedure Division 5-39

control, the COMM IT statement has no effect and no commitment boundary is
established.

The COMMIT statement does not:

• Modify the I-O-FEEDBACK area for any file

• Change the current record pointer for any file

• Set a file status value for any file.

For more information on commitment control, see "Commitment Control
Considerations" in Chapter 9.

DELETE Statement

The DELETE statement logically removes a record from an indexed or
relative file. The format ofthe DELETE statement is as follows:

Format

DELETE file·name RECORD

[INVALID KEY imperative-statement]

After successful execution of a DELETE statement, the record is logically
removed from the file. It is no longer accessible. Execution of the DELETE
statement does not affect the contents of the record area associated with
file-name.

If the FILE STATUS clause is specified in the FILE-CONTROL entry, the
associated status key is updated when the DEL ET E statement is executed.

The current record pointer is not affected by the execution of the DEL ETE
statement.

The following tables illustrate organization, access, and device
considerations for the DELETE statement. The letter codes used in the
tables are defined in the section following the tables.

Sequential Organization

Device Any

Access SEQUENTIAL

IDELETE Verb Not allowed

5-40

Relative Organization

Device

Access

DELETE Verb

INVALID KEY

FORMAT

SEQUENTIAL

A P Z

-
-

DISK

RANDOM

B P Z

0 U

-

DYNAMIC

B P Z

0 U

-

DATABASE

SEQUENTIAL RANDOM

A P Z B P Z

- o u
- -

DYNAMIC

B P Z

0 U

-

Indexed Organization

Device DISK DATABASE

Access

DELETE Verb

SEQUENTIAL

A P Z

-

RANDOM

D P Z

DYNAMIC

D P Z

SEQUENTIAL

A P Z

-

RANDOM

D P Z

DYNAMIC

D P Z

INVALID KEY 0 U 0 U o u o U

FORMAT -- -- -- - S. F S. F

Letter

Code Meaning

An invalid combination.

A 	 The last input/output statement must have been a successfully
executed READ statement. When the DELETE statement is executed,
the system logically removes the record retrieved by that REA 0
statement.

B 	 The system logically removes the record identified by the contents
of the RELATI VE KEY data item. If the file does not contain such a
record, an INVALID KEY condition exists. The space is then
available for a new record with the same RELATIVE KEY value.

D 	 The system logically removes the record identified by the contents
of the RECORD KEY data item. If the file does not contain such a
record, an INVALID KEY condition exists.

.....------------ IBM Extension ------------,

When EXTERNALLY -DESCRI BED-KEY is specified for the file, the key
field in the record area7 for the format specified by the FORMAT

The key field in the record area is the location in the buffer selected in
accordance with a record format or specification in order to build a search
argument.

Chapter 5. Procedure Division 5-41

phrase is used to find the record to be deleted. If the FORMAT

phrase is not specified, the first format defined in the program for ~

the file is used to find the record to be deleted. ..."

If the DUPLI CA TES phrase was specified for this file, the last

input/output statement executed for this file before execution of

the DELETE statement must have been a successfully executed READ

statement. The record read by that statement is the record that is

deleted.

In this case, the FORMAT phrase is not used to find the record to be

deleted. The READ statement is required to ensure that the proper

record is deleted when there are duplicates. If a successful read

operation did not occur before the delete operation:

• 	 The file status key, if defined, is set to 94.

• 	 The USE AFTER STANDARD EXCEPTION/ERROR procedure, if
specified, is executed.

• 	 The delete operation is not executed.

F 	 The value specified in the FORMAT phrase contains the name of the
record format to use for this 1-0 operation. The system uses this to
specify or select which record format must be operated on.

The literal or identifier must be a character-string of 10 characters
or less. If an identifier is specified, it must be the name of one of
the following:

• 	 A Working-Storage Section entry

• 	 A Linkage Section entry

• 	 A record-description entry for a previously opened file.

A value of all blanks is treated as though the FORMAT phrase were
not specified. If the value is not valid for the file, a F I LESTATUS
of 9K is returned and a US E procedure is invoked, if applicable for
the file.

'--_________ End of IBM Extension _________---'

o Optional.

P Allowed when the file is opened for 1-0.

S Required when processing a file that has multiple record formats

and has unique keys.

U The INVALID KEY phrase must be specified for files in which an
applicable US E procedure is not specified.

5-42

IBM Extension

Z 	 The action of this statement can be inhibited at program execution
time by the inhibit write (I NHWRT) parameter of the Override with
Data Base File (OVRDBF) CL command. When this parameter is
specified, non-zero file status codes are not set for data dependent
errors. Duplicate key and data conversion errors are examples of
data dependent errors.

See the CL Reference Manual for more information on this
command.

L--_________ End of IBM Extension __________.1

DISPLAY Statement

The D I SPLAY statement transfers low-volume data to an output device.

Format 1

oISPLA Y {i~entifier-1} [, identifier.2]
IIteral-1 , literal·2

..• [UPON mnemonic.name]

r------------- IBM Extension -----------~

Format 2 - Local Data Area

DISPLAY {identifier-,} n{, identifier-2}[l
literal-1 LJ , literal-2 ~

UPON mnemonic-name

r-----------------,: rFOR {identifier-3}] :
: ~-- literal-3 :

~-----------------~

'--_________ End of IBM Extension _______~_-.I

Chapter 5. Procedure Division 5-43

L

Format 1 Considerations

The DIS P LAY statement transfers the contents of each operand to the output
device in the left-to-right order in which the operands are listed. When a
DIS PLAY statement is executed, the data contained in the sending field is
transferred to the output device. The size of the sending field is the total
character count of all operands listed. If the total character count is less
than the maximum logical record size, the remaining rightmost characters
are padded with spaces. If the total character count exceeds the maximum,
as many records are written as are needed to display all operands. Any
operand being displayed when the end of a record is reached is continued in
the next record.

Numeric identifiers not described as USAGE IS DISPLAY are converted
automatically to zoned decimal.

IBM Extension

COMPUTATIONAL-4 items are also converted to zoned decimal. Signed
noninteger numeric literals are allowed.

'--__________ End of IBM Extension __________--'

Signed values in numeric fields cause the last character to show both the
sign and number. For example, if SIGN WITH SEPARATE CHARACTER is not
specified and two numeric items have the values -34 and 34, they are
displayed as 3M and 34, respectively. If SIGN WITH SEPARATE
CHARACTER is specified, a + or a - sign is displayed as either leading or
trailing, depending on how the number was specified.

Programming Note: Group items containing packed or binary data (COMP,
COMP-3, or COMP-4) should not be displayed on a display station. Such
data can contain display station control characters which can cause
undesirable and unpredictable results.

A literal can be any figurative constant except the ALL literal. When a
figurative constant is specified as one of the operands, only a single
occurrence of the figurative constant is displayed.

When the UPON phrase is omitted, the DISPLAY statement sends output to
the REQUESTOR. When the UPON phrase is specified, mnemonic-name must be
associated in the SPECIAL-NAMES paragraph with either the work station
(REQUESTOR) or the system operator's station (CONSOLE or SYSTEM-CONSOLE).

The record length depends on the device as follows:

5-44

Maximum Logical
Output Record Size

Job log 120 characters
Work station 58 characters
System console 58 characters

When a program in a batch job executes a DISPLAY statement without the
UPON phrase, or with an UPON phrase associated with the REQUESTOR, the
output is sent to the job log in an informational message of severity 80.
You can change the severity of this message using the Change Message
Description (CHGMSGD) CL command.

For more information, see the CL Reference Manual.

For an interactive job that uses display device files, DISPLAY statements are
not normally used. If you do use them, the following considerations apply.

When an interactive job executes a DISPLAY statement, the logical record
appears on the screen in the Program Messages display.

The following screen shows a sample Program Messages display.

System messages
for this session ~

~{ 7/16/82 14:51:12 PROGRAM MESS~GES
JOB I4S1.QPGtlR.OO()745 STARTED 07/16/82 14:50:22.

Program messages 1 SAI:PlE PROGR:\H tlESSAGE fROM PREVIOUS EXECUTION.
for this session SAtlPLE rROGRAM MESSAGE FRat1 CURRENT EXECUTION.

This display contains messages from the current program execution, as well
as messages relating to other activities in the session.

The display device file on the screen when a DISPLAY statement is executed
determines whether program execution is suspended as a result of the
DISPLAY statement execution.

Chapter 5. Procedure Division 5-45

• 	 If the parameter RSTDSP (*NO) is specified when the display device file is
changed or created (CHGDSPF or CRTDSPF command), DISPLAY statement \
execution suspends program execution, and the Program Messages ..."
display appears on the screen. You must press the Enter key to resume
program execution. The previous display returns to the screen
immediately.

• 	 If the parameter RST OS P(*y ES) is specified when the display device file
is changed or created (CHGDSPF or CRTDSPF command), DISPLAY
statement execution does not suspend program execution. The Program
Messages display appears on the screen, and remains on the screen
until one of the following happens:

The program executes a nonsubfile READ or WRITE statement for that

file. The Program Messages Display then disappears, and the

display device file is returned to the screen.

The program terminates.

Programming Note: If you want to suspend program execution, code an

ACCEPT statement after the DISPLAY statement. Program execution is

suspended until you press the Enter key.

To view output records after the program terminates, press the CF7 key
from the Command Entry display.

For additional information on interactive processing, see Chapter 7. For
additional information on the RSTDSP parameter, see the CHGDSPF and
CRTDSPF commands in the CL Reference Manual.

When a program started by a work station operator sends a DIS PLA Y to the
system operator's station (separate from the work station), program
execution is not suspended.

The location of the output data is dependent upon the type of program
initiation as follows:

Mnemonic-Name Mnemonic-Nam.

Method of Associated with Associated with UPON

Initiation SYSTEM-CONSOLE REQUESTOR Phrase Omitted

BATCH 	 System operator's Job log Job log

station

INTERACTIVE 	 System operator's Work station Work station

station

5-46

DROP Statement

OPEN Statement

IBM Extension

Format 2 Considerations

This format is used to transfer data to the system-defined local data area
created for a job.

This format is only applicable when the mnemonic-name in the
SPECIAL-NAMES paragraph is associated with the function name
LOCAL-DATA.

The D I SPLAY statement's literal operands, or the contents of the D I SPLAY
statement's identifier operands, are written to the system-defined local data
area of the job containing the program that issues the DISPLAY. The data is
written to the local data area according to the rules of the MOV Estatement
for a group move, without the CORRESPONDING phrase.

The FOR phrase, when specified, is syntax checked during compilation but is
treated as comments during execution. The value of literal-3 or identifier-3
indicates the program device name of the device that is writing data to the
local data area. There is only one local data area for each job, and all
devices in a job access the same local data area. Literal-3, if specified, must
be nonnumeric and 10 characters or less in length, and identifier-3, if
specified, must refer to an alphanumeric data item 10 characters or less in
length.

For more information, see "Local Data Area" in Chapter 9.

'---_________ End of IBM Extension _________--'

IBM Extension

The DROP statement releases a program device that was acquired by a
TRANSACTION file.

See Chapter 7 for the format, and for a discussion of this statement.

'--_________ End of IBM Extension _________-.1

The OP EN statement initiates file processing. It also checks and/or writes
labels. The formats of the OP EN statement are as follows:

Chapter 5. Procedure Division 5-47

Format 1-Sequential Files

. [REVERSED J
INPUT file-name-' WITH NO REWIND

. [REVERSED J][,file-name-2 WITH NO REWIND

OUTPUT file-name-3[WITH NO REWIND]

[, file-name-4 [WITH NO REWIND]]

1-0 file-name-5 [, file-name-6] •.•

EXTEND file-name-7 [, file-name-8] •

Format 2- Indexed and Relative Files

INPUT } }
OPEN { { ~UT file-name-' [, file-name-2]

Format 3 - TRANSACTION Files

See Chapter 7 for a discussion of this format.

Each file-name designates a file upon which the OPEN statement is to
operate. The files specified need not have the same organization or access.
Each file-name must be defined in an FD entry in the Data Division, and
must not name a sort or merge file_ The FD entry must be compatible with
the information supplied to the system when the file was defined.

At least one of the phrases (I NPUT, OUTPUT, I -0, or EXTEND) must be
specified. These phrases can appear in any order. More than one file name
can be specified in each phrase.

A file can be opened for INPUT, OUTPUT, 1-0, or EXTEND in the same
program. After the first OPEN statement is executed for a file, each
subsequent OP EN statement execution must be preceded by a successful
CLOSE file statement execution without the LOCK phrase.

The following tables illustrate organization, access, and device
considerations for the OPEN statement. The letter codes used in the tables
are defined in the section following the tables.

5-48

- - -

Sequential Organization

Access SEQUENTIAL

Device READER PUNCH PRINT PUNCH PRINT PRINTER TAPEFILE DISKETTE DISK DATABASE FORMATFILE

OPEN Verb S S S S S L S S S S,C S

INPUT R. A, F - - - 0, A, F, L1, O,A,F,N 0, A, 0, A, K, F, NO, A. K, F-
N K, F,

N

OUTPUT R.J R, J R, J IR, J 0, J, L2, N O,J, N 0, G, 0, G, N 0, G-
N

1-0 - - - - - - - 0, M, 0, M, K 0, M, K
K

NO REWIND - - - - - - - - ° D

REVERSED - - - - - ,0, B - - -
EXTEND - - - - - 0, E, L3 - 0, E 0, E

Relative Organization

Device DISK DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

OPEN Verb H, S IH S H~ H,S,C H,S,C H,S,C

INPUT O,~,_~N K O,A, K,N OAK° A ° A
-

° A
OUTPUT O,G,N O,G,N° G ° G ° G ° G

1-0 K K K M K° M ° M ° M ° M ° M
- - - - ° - NO REWIND

-REVERSED - - - -
-EXTEND - - - - I

Indexed Organization

Device DISK DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

OPEN Verb S S S S,C S,C S,C

INPUT O,A, K,N ° A, K O,A, K,N O,~__ A K° A ~
OUTPUT O,G,N O,G,N° G ° G ° G ° G
1-0 M, K M K K K° M ° M ° M ° M° ° NO REWIND - - - - -
NO REVERSED - - - - -
EXTEND - -

Chapter 5. Procedure Division 5-49

Letter
Code Meaning

An invalid combination.

A 	 The file is opened for input operations. The current record pointer
is set to the first record in the file. If no records exist in the file,
the current record pointer is set so that execution of the first
sequential READ statement results in an AT END condition.

B 	 OP EN statement execution positions the file at its end. Subsequent
READ statements make the data records available in reverse order,
starting with the last record. REVERSED can only be specified for
input files.

IBM Extension

C 	 The file may be be placed under commitment control.

See "Commitment Control Considerations" in Chapter 9 for more
information.

'--_________ End of IBM Extension _________----1

D 	 The OPEN statement does not reposition the file. The tape must be
positioned at the beginning of the desired file before execution of
the OP EN statement.

IBM Extension

The system keeps track of the current position on the tape and
automatically positions the tape to the proper place. When
processing a multifile tape volume, all CLOSE statements should
specify the LEAV E phrase. When the next file on the volume is
opened, the system determines which direction the tape should be
moved to most efficiently get to the desired file.

'--_________ End of IBM Extension _________----1

E 	 The EXTEND phrase permits opening the file for output operations.
OPEN EXTEND statement execution prepares the file for the addition
of records. These additional records immediately follow the last
record in the file. Subsequent WRITE statements add records as if
the file had been opened for OUTPUT. The EXTEND phrase can be
specified when a file is being created.

F 	 If SELECT OPTIONAL is specified in the file-control entry, OPEN
statement execution causes the program to check for the presence
or absence of this file at execution time. If the file is absent, the
first READ statement for this file causes the AT END condition to
occur.

5-50

IBM Extension

G 	 Only a physical file is cleared when opened for OUTPUT. When the
file is successfully opened, it contains no records. If an attempt is
made to open a logical file for OUTPUT, the file is opened but no
records are deleted. The file is treated as though the EXTEND
phrase had been specified. To clear a logical file, all the members
on which the logical file is based should be cleared.

~_________ End of IBM Extension _________---'

H 	 Not allowed for logical file members:

• 	 That are based on more than one physical file.

• That contain select/omit logic.

I Allowed when the file is opened for INPUT.

J The file is opened to allow only output operations. When the file is
successfully opened, it contains no records.

IBM Extension

K 	 The first record to be made available to the program can be
specified at execution time by using the POS ITI 0 Nparameter on the
OVRDBF CL command. See the CL Reference Manual for more
information on this command.

~_________ End of IBM Extension _________---1

L 	 When label records are specified but not present, or when label
records are present but not specified, execution of the OP EN
statement can have unpredictable results.

Ll The beginning labels are checked.

L2 The labels are checked, then new labels are written.

L3 The following results occur:

• 	 Beginning file labels are processed only if this is a
single-volume file.

• 	 Beginning volume labels of the last existing volume are
checked.

• 	 The file is positioned to the existing ending file labels.
The labels are checked and then deleted.

• Processing continues as if the file were opened as an
output file.

Chapter 5. Procedure Division 5-51

L

M 	 The file is opened for both input and output operations. The
current record pointer is set to the first record in the file. If no
records exist in the file, the current record pointer is set so that
execution of the first sequential READ statement results in an AT
END condition.

N 	 The compiler generates code to block output records or unblock
input records if the conditions listed in "Unblocking Input Records
and Blocking Output Records" in Chapter 9 are satisfied.

o 	 Optional.

R 	 Required.

S 	 The successful execution of an OP EN statement determines the
availability of the file and results in that file being open. Before
successful execution of the OPEN statement for a file, no statement,
except a SORT or MERGE statement with the USING or GIVING
phrase, that refers explicitly or implicitly to that file can be
executed. The successful execution of the OPEN statement makes
the associated record area available to the program. It does not
obtain or release a data record.

If the FILE STATUS clause is specified in the file-control entry, the
associated status key is updated when the OPEN statement is
executed.

If an OPEN statement is issued for a file that is already open, the J.
EXCEPTION/ERROR procedure for this file, if specified, is executed.
See Appendix I for the file status codes.

READ 	Statement

At execution time, the READ statement makes a record available before
execution of any statement following the READ statement.

For sequential access, the READ statement makes available the next logical
record from a file. For random access, the READ statement makes available a
specified record from a file.

The formats for the READ statement are as follows:

5-52

Format 1-Sequential Retrieval Using SEQUENTIAL Access

READ file-name RECORD

[AT END imperative-statemen~

Format 2-Sequential Retrieval Using DYNAMIC Access

RECORDREAD file-name

[I NTO identifier-,]

rFORMAT IS {i~entifier-2}]
~ IIteral-'

AT EN D imperative-statement

Format 3-Random Retrieval

READ file-name RECORD [INTO identifier-1]

[FORMAT IS {identifier-2}
literal-1

[INVALID KEY imperative-statement]

Format 4 - TRANSACTION File (Nonsubtile)

Format 5 - TRANSACTION File (Subtile)

See Chapter 7 for a discussion of these formats.

File-name must be defined in a Data Division FD entry, and must not name
a sort or merge file. If more than one record-description entry is associated

Chapter 5. Procedure Division 5-53

L

------------- ---

with file-name, these records automatically share the same storage area.
That is, they are implicitly redefined.

After a READ statement is executed, only those data items within the range
of the current record are replaced. Data items stored beyond this range are
undefined. Figure 5-15 illustrates this concept.

The FD entry is:

FD INPUT-FILE LABEL RECORDS OMITTED.

01 RECORD-1 PICTURE X(30).

01 RECORD-2 PICTURE X(20).

Contents of the input area before the READ statement is executed:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Contents of the record being read in (RECORD-2):

01234567890123456789

Contents of the input area after the READ statement is executed:

01234567890123456789??????????

(Characters in the input area represented by question marks are

undefined.)

Figure 5-15. READ Statement with Multiple Record Descriptions

The following tables illustrate organization, access, and device
considerations for the READ statement. The letter codes used in the tables
are defined in the section following the tables.

5-54

- - - - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - -

Sequential Organization

Access 	 SEQUENTIAL

Device READER PUNCH PRINT PUNCHPRINT PRINTER TAPEFILE DISKETTE DISK DATABASE FORMATFILE

READ Verb A. I, G1, A. I, G1, N, A, I, G1, N, 	 A. I, A. I, p, G1, A.I,G1,N
N - - - - V V 	 P, N

G1,
N

NEXT - - - - - - - - -
LAST

FIRST - - - - - - - - -
PRIOR -
INTO 0 B - - - 0 B 0 B 0 B 0 B 0 B-

AT END 0, E, 01 - - - - 0, E, D1 0, E, 01 	 0, E, 0, E, D1 0, E, 01
01

INVALID -
KEY

FORMAT - - - - - - - -

Relative Organization

Device DISK 	 DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

READ Verb A I P G2 A I P G3 A I P A I P G2 A I P G3 A I P

NEXT - - 0 Z1 - - 0 Z1

FIRST - - - - -
LAST

PRIOR - - - - -
INTO 0 B 0 B 0 B 0 B 0 B 0 B

AT END 0 E 02 - 0 E 02 0 E 02 - o E 02

INVALID KEY - 0 u 0 u - 0 u 0 U

FORMAT - - - - -

Indexed Organization

Device DISK DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

READ Verb A I P G4 A I P G5 A I P A I P G4 A I P G5 A I P

NEXT - - 0 Z2 - - 0 Z3

FIRST - - - - - 0 Z3

LAST - - - - - 0 Z3

PRIOR - - - - - 0 Z3

INTO 0 B 0 B 0 B 0 B 0 B 0 B

AT END 0 E D2 - 0 E D2 0 E D2 - 0 E D2

INVALID KEY - 0 U 0 U - 0 u 0 U

FORMAT - - - 0, F, X 0, F, W 0, F, Y

Chapter 5. Procedure Division 5-55

Letter

Code

A

B

Dl

D2

E

Meaning

An invalid combination.

If the FI LE STATUS clause is specified in the file-control entry, the
associated status key is updated when the READ statement is
executed.

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

The I NTO identifier phrase makes a READ statement equivalent to:

READ file-name RECORD
MOV E record-name TO identifier

After successful execution of the READ statement, the current
record becomes available both in the record-name and identifier.

When the I NTO identifier phrase is specified, the current record is
moved from the input area to the identifier area according to the
rules for the MOVE statement without the CORRESPONDING phrase.
Any subscripting or indexing associated with identifier is evaluated
after the record has been read and immediately before it is
transferred to identifier.

The I NTO identifier phrase cannot be specified when the file
contains records of various sizes, as indicated by their record
descriptions. The storage area associated with identifier and the
record area associated with the file-name cannot be the same
storage area.

When the AT END condition is recognized, a successful CLOSE
statement, followed by a successful OPEN statement, must be
executed for this file before executing a READ statement.

When the AT END condition is recognized, a sequential access READ
statement for this file must not be executed without first executing
one of the following:

• 	 A successful CLOSE statement followed by a successful OPEN
statement.

• 	 A successful START statement for this file.

• 	 A successful random access READ statement for this file.

If no next logical record exists in the file when the READ statement
is executed, an AT END condition occurs, and READ statement
execution is unsuccessful. The following actions are taken, in the
order listed:

5-56

1. 	 If the FILE STATUS clause is specified, the status key is
updated to indicate an AT END condition.

2. 	 Ifthe ATE NDphrase is specified, control is transferred to the
AT END imperative-statement. Any EXCEPTION/ERROR
procedure for this file is not executed.

3. 	 If the AT END phrase is not specified, any EXCEPTION/ERROR
procedure for this file is executed.

The AT END phrase must be specified if no explicit or implicit
EXCEPTION/ERROR procedure is specified for this file.

,------------ IBM Extension --------------,

F 	 The value specified in the FORMAT phrase contains the name of the
record format to use for this 1-0 operation. The system uses this to
specify or select which record format to operate on.

The literal or identifier must be a character-string of 10 characters
or less. If an identifier is specified, it must be the name of one of
the following:

• 	 A Working-Storage Section entry

• 	 A Linkage Section entry

• 	 A record-description entry for a previously opened file.

A value of all blanks is treated as though the FORMAT phrase was
not specified. If the value is not valid for the file, a FILE STATUS
of 9K is returned and a USE procedure is invoked, if applicable for
the file.

'--__________ End of IBM Extension __________--'

Gl 	 The record that is made available by the READ statement is
determined as follows:

• 	 If the current record pointer was set by the execution of an
OPEN statement, the record pointed to is made available.

• 	 If the current record pointer was set by the execution of a
previous READ statement, the pointer is updated to point to the
next existing record in the file. That record is then made
available.

G2 	 The record that is made available by the READ statement is
determined as follows:

• 	 If the current record pointer was set by the execution of a
START or OPEN statement, the record pointed to is made
available if it is still accessible through the path indicated by
the current record pointer. If the record is no longer accessible

Chapter 5. Procedure Division 5-57

(due, for example, to deletion of the record), the current record
pointer is updated to indicate the next existing record in the
file. That record is then made available.

• 	 If the current record pointer was set by the execution of a
previous READ statement, the current record pointer is updated
to point to the next existing record in the file. That record is
then made available.

If the RELATI V E KEY phrase is specified for this file, READ statement
execution updates the RELATIVE KEY data item to indicate the
relative record number of the record being made available.

G3 	 The record with the relative record number contained in the
RELATIVE KEY data item is made available. If the file does not
contain such a record, the INVALID KEY condition exists, and READ
statement execution is unsuccessful.

G4 	 The record made available by the READ statement is determined as
follows:

• 	 If the current record pointer was set by the execution of a
START or OPEN statement, the record pointed to is made
available if it is still accessible through the path indicated by
the current record pointer. If the record is no longer accessible
(due, for example, to deletion of the record), the current record
pointer is updated to indicate the next existing record in the
file. That record is then made available.

• 	 If the current record pointer was set by the execution of a
previous READ statement, the current record pointer is updated
to point to the next existing record in the file. That record is
then made available.

IBM Extension

For a file that allows duplicate keys (the DUPLI CATES phrase is
specified in the file-control entry), the records with duplicate
key values are made available in the order specified when the
file was created. The system options are first-in first-out (FI FO)
and last-in first-out (L I FO). See the LIFO keyword in the CPF
Reference Manual- DDS.

L--_________ End of IBM Extension _________---J

G5 	 The record in the file with a key value equal to that of the RECORD
KEY data item is then made available. If the file does not contain
such a record, the INVALID KEY condition exists, and READ
statement execution is unsuccessful.

5-58

.------------- IBM Extension --------------,

For a file that allows duplicate keys (the DUPLI CA TES phrase is
specified in the file-control entry), the first record with the
specified key value is made available. The first record is
determined by the order specified when the file was created. The
system options are first-in first-out (FI FO) and last-in first-out
(l I FO). 	 See the lIFO keyword in the CPF Reference
Manual- DDS.

'--_________ End of IBM Extension _________---1

I 	 Allowed when the file is opened for INPUT.

N 	 If S El ECT OPT! ONAl is specified in the file-control entry for this
file and the file is not available when this program runs, execution
of the first READ statement causes an AT END condition. Since the
file is not available, the standard system end-of-file processing is
not done when the file is closed.

o 	 Optional.

P 	 Allowed when the file is opened for 1-0.

U 	 The I NVAl I D KEY phrase must be specified for files in which an
appropriate US E procedure is not specified.

V 	 If end of volume is recognized during execution of a READ statement
and logical end of file has not been reached, the following actions
are taken in the order listed:

1. The standard ending volume label procedure is executed.

2. A volume switch occurs.

3. The standard beginning volume label procedure is executed.

4. The first data record of the next volume is made available.

The program receives no indication that the above actions
occurred during the read operation.

W 	 If specified, the key as defined for the specified format is used to
get a record of that format. If a record of that format is not found,
a record-not-found condition is returned. This occurs even when
there are records that have the defined key, but that have a
different record format.

If the format is omitted, the common key for the file is used to get
the first record of any format that has that common key value.
The common key for a file consists of the key fields common to all
formats of a file for records residing on the data base. The common
key for a file is the leftmost key fields that are common across all

Chapter 5. Procedure Division 5-59

X

Y

record formats in the file. The common key is built from the data
in the record description area using the first record format defined.·\
in the program for the file. """"

If specified, the next record in the keyed sequence access path that
has the requested format is made available. If omitted, the next
record in the keyed sequence access path is made available.

FORMAT Phrase

Specified Omitted

NEXT Yl Y2

PRIOR Y3 Y4

FIRST YS Y6

LAST Y7 Y8

None of
the Above

Y9 YIO

Yl 	 The next record in the keyed sequence access path having the
specified format is made available.

Y2 	 The next record in the keyed sequence access path is made
available regardless of its format. ..J

Y3 	 The record in the keyed sequence access path preceding the
record identified by the current record pointer having the
specified format is made available.

Y4 	 The record in the keyed sequence access path preceding the
record identified by the current record pointer is made
available regardless of its format.

Y5 	 The first record in the keyed sequence access path having the
specified format is made available.

Y6 	 The first record in the keyed sequence access path is made
available regardless of its format.

Y7 	 The last record in the keyed sequence access path having the
specified format is made available.

Y8 	 The last record in the keyed sequence access path is made
available regardless of its format.

Y9 	 The key as defined for the specified format is used to get a
record of that format. If a record of that format is not found,
a record-not-found condition is returned. This occurs even
when there are records that have the defined key, but that ..J
have a different record format.

5-60

YlO The common key for the file is used to get the first record of
any format that has that common key value. The common
key for a file consists of the key fields common to all formats
of a file for records residing on the data base. The common
key for a file consists of the leftmost key fields that are
common across all record formats in the file. The common
key is built from the data in the record description area using
the first record format defined in the program for the file.

Zl When specified, a sequential read is done (see G2). When omitted, a
random read is done (see G3).

Z2 When specified, a sequential read is done (see G4). When omitted, a
random access read is done (see G5).

Z3 When specified, a sequential read is done (see G4). If NEXT. FI RST.
LAST and PRIOR are all omitted, a random access read is done (see
G5).

REWRITE Statement

The REWRITE statement logically replaces an existing record in a file.
When the REWRITE statement is executed, the associated file must be open.
The formats for the REWRITE statement are as follows:

Format 1

REWR ITE record-name

[INVALID KEY imperative-statement]

Format 2- TRANSACTION

For a discussion of this format, see Chapter 7.

Record-name:

• 	 Must be the name of a record in the File Section

• 	 Must have the same number of character positions as the record being
replaced

• 	 Must not be subscripted or indexed

• 	 Can be qualified.

After successful execution of a REWRITE statement, the logical record is no
longer available in record-name unless the associated file is named in a

Chapter 5. Procedure Division 5-61

- - - - - - - -

- - - - - - - -

- - - - - - - - - -
- - - - - - - - -

SAME RECORD AREA clause. In this case, the record is also available as a
record of the files named in the SAME RECORD AREA clause.

The current record pointer is not affected by execution of the REWRI TE
statement.

If the FILE STATUS clause is specified in the file-control entry, the
associated status key is updated when the REWR I TE statement is executed.

The following tables illustrate organization, access, and device
considerations for the REWRITE statement. The letter codes used in the
tables are defined in the section following the tables.

Sequential Organization

Access SEQUENTIAL

Device READER PUNCH PRINT PUNCH PRINT PRINTER TAPEFILE DISKETTE DISK DATABASE FORMATFILE

REWRITE AP A P
Verb

FROM 0 B 0 B

INVALID
KEY I

FORMAT

Relative Organization

Device DISK DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM !DYNAMIC

REWRITE Verb A P Z S P Z S P Z A P Z S P Z
--"" ..S P Z

FROM 0 B o B o B 0 B 0 B 0, B __

INVALID KEY - U H J U H J - U H J .. ju ~J
FORMAT - - - -

Indexed Organization

Device DISK DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

REWRITE Verb A E P Z D P Z D P Z A E P, Z D, P Z D P Z

f-FROM 0 B OL_~___ ~~-- o B o B 0 B

INVALID KEY U, G J U H J U H J U, G, J U H J U, H, J
-

FORMAT - - - - M, F M, F

5-62

Letter
Code Meaning

An invalid combination.

A 	 The last input/output statement executed for this file must have
been a successfully executed READ statement. When the REWRITE
statement is executed, the record retrieved by that READ statement
is replaced.

B 	 The FROM identifier phrase makes a REWR I TE statement equivalent
to:

MOV E identifier TO record-name
REWRITE record-name.

After successful execution of the REWR I T E statement, the current
record is no longer available in record-name, but is still available
in identifier. Record-name and identifier cannot both refer to the
same storage area.

D 	 The record to be replaced is specified by the value in the RECORD
KEY data item. If the file does not contain such a record, an
I N V A LI D KEY condition exists.

;------------- IBM Extension --------------,

When EXTERNALLY-DESCRIBED-KEY is specified for the file, the key field in
the record area for the format specified by the FORMAT phrase (or, if
not specified, the first format defined in the program for the file), is
used to find the record to be replaced.

If the DUPLICATES phrase was specified for this file, the last
input/output statement executed for this file before the REWRITE
statement must have been a successfully executed READ statement.
The record read by that statement is the one that is replaced. In
this case, the FORMAT phrase is not used in determining the record
to be replaced.

The READ statement is required to ensure that the proper record is
replaced when there are duplicates. If a successful read operation
did not occur before the rewrite operation:

• The file status key, if defined, is set to 94.

• The 	EXCEPTION/ERROR procedure, if any, is executed.

• The REWRITE statement is not executed.

Chapter 5. Procedure Division 5-63

Programming Note: The only way to rewrite one of a sequence of
records with duplicate keys is to sequentially read each of the ."\
duplicate records and rewrite the desired one.,.,

'--_________ End of IBM Extension ____-.-____----1

E 	 The value of the RECORD KEY data item must not have been
changed since the record was read.

IBM Extension

F 	 The value specified in the FORMAT phrase contains the name of the
record format to use for this 1-0 operation. The system uses this to
specify or select which record format to operate on.

The literal or identifier must be a character-string of 10 characters
or less. If an identifier is specified, it must be the name of one of
the following:

• A Working-Storage Section entry

• A Linkage Section entry

• A record-description entry for a previously opened file.

A value of all blanks is treated as though the FORMAT phrase were
not specified. If the value is not valid for the file, a FILE STATUS
of 9K is returned and a USE procedure is invoked, if applicable for
the file.

L-_________ End of IBM Extension _________----1

G 	 Executed when the value contained in the RECORD KEY of the
record to be replaced does not equal the RECORD KEY data item of
the last retrieved record from the file.

H 	 Executed when the record specified by the key field in the record
area is not found.

J 	 When an I NVALI D KEY condition exists, the updating operation
does not take place. The data in record-name is unaffected.

M 	 Optional when processing a file that has one record format.

o 	 Optional.

P 	 Allowed when the file is opened for 1-0.

S 	 The record to be replaced is specified by the value in the RELATIVE
KEY data item. If the file does not contain such a record, an
INVALID KEY condition exists.

5-64

U 	 The I NVALI D KEY phrase must be specified for files in which an
applicable USE procedure is not specified.

IBM Extension

Z 	 The action of this statement can be inhibited at program execution
time by the inhibit write (I NHWRT) parameter of the Override with
Data Base File (OVRDBF) CL command. When this parameter is
specified, non-zero file status codes are not set for data dependent
errors. Duplicate key and data conversion errors are examples of
data dependent errors.

See the CL Reference Manual for more information on this
command.

L...-_________ End of IBM Extension _________---J

ROLLBACK Statement

The 	ROLLBACK statement provides a way to cancel one or more changes to
data base records when the changes should not remain permanent. The
format of the ROLLBACK statement is:

Format

When the ROLLBACK statement is executed, any changes made to files under
commitment control since the last commitment boundary are removed from
the data base.s A commitment boundary is the previous occurrence of a
ROLLBACK or COMMIT statement. If no COMMIT or ROLLBACK has been issued,
the commitment boundary is the first OPEN of a file under commitment
control. Removal of changes takes place for all files under commitment
control in the job, and not just for files under commitment control in the
COBOL program that issues the ROLL BACK.

Once the ROLLBACK is successfully executed, all record locks held by the job
for files under commitment control are released and the records become
available to other jobs.

The ROLLBACK has no effect on files not under commitment control. If a
ROLLBACK is executed and there are no files under commitment control, the
ROLLBACK is ignored.

8 	 When a file is cleared while being opened for OUTPUT, execution of a
ROLLBACK statement does not restore cleared records to the file.

Chapter 5. Procedure Division 5-65

START Statement

.

A file under commitment control can be opened or closed without affecting
the status of changes made since the last commitment boundary. A COMM IT\
must still be issued to make the changes permanent. A ROLLBACK, when ..""
executed, leaves files in the same open or closed state as before execution.

The ROLLBACK statement does not:

• 	 modify the I-O-FEEDBACK area for any file

• set a file status value for any file.

For the ROLLBACK statement, the following considerations apply:

• 	 The ROLLBACK statement sets the current record pointer to the pointer's
position at the previous commitment boundary. This is important to
remember if you are doing sequential processing.

• 	 If no COMM I T statement has been issued since the file was opened, the
ROLLBACK statement sets the current record pointer to the pointer's
position at the OPEN.

• 	 The current record pointer is undefined after a ROLLBACK if the file is
closed with uncommitted changes.

At the end of every job, an implicit ROLL BAC Kof uncommitted records is
automatically done for all files under commitment control. Any
uncommitted changes to the data base are canceled.

The START statement provides a way of positioning within an indexed or
relative file for subsequent sequential retrieval. This positioning is
achieved by comparing the key values of records in the file with the value
you place in the RECORD KEY portion of a file's record area (for an indexed
file), or in the RELATIVE KEY data item (for a relative file) prior to
execution of the START statement. The format for the START statement is as
follows:

5-66

Format

EQUAL TO

GREATER THAN
START file-name KEY IS 	 >

NOT LESS THAN
NOT<

DNVALID KEY imperative.statement]

File-name must be defined in an FD entry in the Data Division. It must not
name a sort or merge file.

Data-name-l, data-name-2 ... can be qualified.

If the FILE STATUS clause is specified in the FILE-CONTROL paragraph, the
associated status key is updated when the START statement is executed.

Programming Note: If a START operation with a KEY phrase is unsuccessful,
the current record pointer is positioned to the first record in the file, and
the record is locked. A WR I TE operation for an indexed or sequential file
does not release a record lock.

The following tables illustrate organization, access, and device
considerations for the START statement. The letter codes used in the tables
are defined in the section following the tables.

Sequential Organization

Access SEQUENTIAL

Device Any

ISTART Verb Not allowed

Chapter 5. Procedure Division 5-67

--

Relative Organization
:"

Device DISK 	 DATABASE

Access 	 SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

START Verb IPA -- I P A I P A - I P A

KEY IS 0 E -- o E o E -- o E

INVALID KEY 0 U D -- 0 U D 0 U D - o U D
FORMAT - -- - -- -

Indexed Organization

Device DISK 	 DATABASE

Access 	 SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

START Verb I P B -- I P B I P B K - I P B K

KEY IS o G o G o G - o G
INVALID KEY 0 U D -- 0 U D o U D -- o U D

FORMAT - -- -- 0, F, J - 0, F, J

Letter

Code Meaning

An invalid combination.

A 	 When the KEY phrase is not specified, the current record pointer is
set to the record in the file with a key (relative record number)
equal to the RELATIVE KEY data item.

B 	 When the KEY phrase is not specified, the current record pointer is
set to the record with a key equal to the value contained in the
RECORD KEY data item.

D 	 If the comparison is not satisfied by any record in the file, an
I NVALI D KEY condition exists. The position of the current record
pointer is undefined, and the I NVALI D KEY imperative-statement, if
specified, is executed.

E 	 When the KEY phrase is specified, data-name-l must specify the
RELATI VE KEY. The current record pointer is positioned to the first
logical record currently existing in the file with a key (relative
record number) that satisfies the comparison with the RELATIVE
KEY data item.

5-68

.....------------ IBM Extension --------------,

F 	 The value specified in the FORMAT phrase contains the name of the
record format to use for this 1-0 operation. The system uses this to
specify or select which record format to operate on.

The literal or identifier must be a character-string of 10 characters
or less. If an identifier is specified, it must be the name of one of
the following:

• 	 A Working-Storage Section entry

• 	 A Linkage Section entry

• 	 A record-description entry for a previously opened file.

A value of all blanks is treated as though the FORMAT phrase were
not specified. If the value is not valid for the file, a FI L E STATUS
of 9K is returned and a US E procedure is invoked, if applicable for
the file.

L...-_________ End of IBM Extension _________---'

G 	 When the KEY phrase is specified, the search argument used for the
comparison is data·name-1, which can be:

• 	 The RECORD KEY itself.

• 	 An alphanumeric data item within a record description for the
file with a leftmost character position that corresponds to the
leftmost character position of the key field in the record area.
This data item must be less than or equal to the length of the
RECORD KEY for the file. This data item can be qualified.

Note: If the RECORD KEY is defined as COMP, COMP-3, or COMP-4,
the key data item must be the RECORD KEY itself. A partial key
field in the record area cannot be used.

The current record pointer is positioned to the first record in the
file with a record key for a format that satisfies the comparison. If
the operands in the comparison are of unequal length, the
comparison proceeds as if the longer field were truncated on the
right to the length of the shorter field. All other numeric and
nonnumeric comparison rules apply, except that the PROGRAM
COLLATING SEQUENCE, if specified, has no effect .

.------------- IBM Extension -------------,

For a file that specified RECORD KEY IS
EXTERNALLY -DESCRI BED-KEY, the following additional
considerations apply:

Chapter 5. Procedure Division 5-69

• 	 The reserved word EXTERNALLY-DESCRIBED-KEY can be
specified. This indicates that the complete key field in the
record area should be used in the comparison.

• 	 A series of data names can be specified. This allows a partial
key field in the record area to be used (generic START). These
data names must follow the following rules:

All except the last of the data names specified must be a
record key for a format that was copied in for the file. The
record format in which they are contained does not have to
be the one that can be specified by the FORMAT phrase.
The order of these data names (key fields) must match the
order of the keys as defined in DDS; that is, they must be
specified from most significant field to least significant.
The total number of data names cannot exceed the number
of key fields defined for that record format.
If the last data name specified in the series is not a key
field in the record area, it must have its left byte occupy
the same space as the key field that is defined at that
relative position. If the key field in the record area at this
position is a COMP, COMP-3, or COMP-4 field, only the key
field itself can be used as the data name.

• 	 The following table shows the action between the KEY IS
phrase and the FORMAT phrase:

KEY Phrase

FORMAT Data-name EXTERNALLY-

Phrase Series Omitted DESCRIBED-KEY

Yes G1, G2 G3, G4 G3, G2

No Gl, G5 G6, G7 G6, G5

Gl 	 The search argument is built using the specified data items.

G2 	 The current record pointer is set to the first record in the
file of the format specified with a record key that satisfies
the comparison specified in the key phrase.

G3 	 The search argument is built using the key fields in the
record area for the format specified in the FORMAT phrase.

G4 	 The current record pointer is set to the first record in the
file of the specified format with a record key equal to the
search argument.

5-70

G5 	 The current record pointer is set to the first record in the
file with a common key for the file that satisfies the
comparison specified in the KEY phrase. If there is no
common key, the current record pointer is set to the first
record in the file.

G6 	 The search argument is built using the key fields in the
record area for the first record format for the file as defined
in the program.

G7 	 The current record pointer is set to the first record in the
file with a common key for the file that is equal to the
search argument. If there is no common key, the current
record pointer is set to the first record in the file.

L....-_________ End of IBM Extension _________----1

I 	 Allowed when the file is opened for INPUT.

J 	 If specified, the current record pointer is set to the first record of
the specified record format that satisfies the comparison. If
omitted, the current record pointer is set to the first record of any
format that satisfies the comparison.

See the table in G (under "KEY IS Phrase") for a description of
how this interacts with EXTERNALLY-DESCRIBED-KEY and the KEY
IS phrase.

IBM Extension

K 	 The meaning of the comparison can be affected by the type of key
fields in the record area defined for the file. Key fields on this
system can be defined as multiple fields, each of which can be in
ascending or descending sequence. The system establishes a
sequence (keyed sequence access path) for the records based on the
values contained in the record key for the format and the
sequencing specified in DDS. When a START statement is executed,
the request is interpreted as follows:

COBOL Comparison System Result
GREATER THAN AFTER

NOT LESS THAN EQUAL TO or AFTER

For example, when a statement is executed using the comparison of
GREATER THAN, a search is made of these sequenced records for the
first record after the search argument specified by the START
statement. If the file was sequenced using descending keys, the
current record pointer would point to a record with a key less than
the one specified and not greater than that specified in the START
statement.

'--_________ End of IBM Extension _________----1

Chapter 5. Procedure Division 5-71

o Optional.

p Allowed when the file is opened for 1-0.

U The I NVALI D KEY phrase must be specified for files in which an
appropriate USE procedure is not specified.

WRITE Statement

The WRITE statement releases a record to the system. The formats for the
WRITE statement are as follows:

Format 1-Sequential Files

WR ITE record-name [F ROM identifier-1]

{~dentifier-2} {LINE }
mteger LINES

{ BEFORE} ADVANCING
AFTER

mnemOniC-name}
{

PAGE

{ END-OF-PAGE} ..][AT EOP Imperative-statement

Format 2- Indexed and Relative Files

~ record-name [.E..BQM identifier-1]

[FORMAT IS {:~:~~:~;er-2}J •...

[INVALID KEY imperative-statement]

Format 3-FORMATFILE Files

~ record-name [FROM identifier-U

[FORMAT IS { i~entifier-2}J

IIteral-1

[{
1}]INDICATOR C'S

;TORS AR~ identifier-J
[AT {~-OF-PAGE}

5-72

Format 4 - TRANSACTION File (Nonsubtile)

Format 5 - TRANSACTION File (Subtile)

See Chapter 7 for a discussion of these formats.

Record-name:

• 	 Must be the name of a record in the File Section of the Data Division

• 	 Can be qualified

• 	 Cannot be associated with a sort or merge file.

The maximum record size for a data base file is established at the time the
file is defined to the system (using the Create Physical File [CRTP F] or the
Create Logical File [CRTL F] CL command) and cannot be changed. If the
record length defined in the program is incompatible with the record length
defined to the system, the following occurs during output to the file:

• 	 When the program record length is greater than the length defined to
the system, the records are truncated to the system length. If the file is
empty, the program record length is used.

• 	 When the program record length is less than the record length defined
in the system, the records are padded with blanks to make them the size
specified in the system.

Execution of the WR ITE statement releases a record to the file associated
with record-name. After execution of a WRITE statement, the record is no
longer available in record-name unless either of the following is true:

• 	 The associated file is named in a SAME RECORD AREA clause. In this
case, the record is also available as a record of the files named in the
SAME RECORD AREA clause.

• 	 The WRITE statement is unsuccessful due to a boundary violation
(beyond extent).

If either of the above conditions is true, the record is still available in
record-name.

The current record pointer is not affected by execution of the WRITE
statement.

The number of character positions required to store the record in a file can
be, but is not necessarily, the same as the number of character positions
defined by the description of the record in the COBOL program. (See
"PICTURE Clause" and "Usage Clause" in Chapter 4.)

If the FILE STATUS clause is specified in the file-control entry, the
associated status key is updated when the WRITE statement is executed.

When an attempt is made to write beyond the externally defined boundaries
ofthe file, WR IT Estatement execution is unsuccessful, and an

Chapter 5. Procedure Division 5-73

- - - - - - - -

- - - - - - - -

- - - - - -

- -

EXCEPTION/ERROR condition exists. The status key, if specified, is updated.

If an explicit or implicit EXCEPTION/ERROR procedure is specified for the "\

file, the procedure is executed. If no such procedure is specified, the results ~

are unpredictable.

The following tables illustrate organization, access, and device

considerations for the WRITE statement. The letter codes used in the tables

are defined in the section following the tables.

Sequential Organization

Access 	 SEQUENTIAL

Device READER PUNCH PRINT PUNCHPRINT PRINTER TAPEFILE DISKETTE DISK DATABASE FORMATFILE

WRITE Verb - a, T Q, T a, T a, T V, a, 5, T V, a, T 	 a,s, a, 5, T, Z a, T
T Z

-FROM o B o B o B o B o B o B 	 o B o B o B
INVALID -
KEY

ADVANCING - o 02 o 02 0 02 0 01 - - - -
AT END- 0, E1 0, E2
OF-PAGE

FORMAT - - - - - - - - - N, F

INDICATORS - - - - - - - - - I

Relative Organization

Device DISK 	 DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

WRITE Verb a K Z paM Z paM Z a~ Z paM Z paM Z

FROM o B o B o B o B o B o B
INVALID KEY 0, J1, J, U 0, J1, J2, 0, J1, J2, J, 0,J1,J,U 0, J1, J2, 0, J1, J2, J,

J U U 	 J U U

ADVANCING

AT END-OF-PAGE - - - - -
FORMAT - - -
INDICATORS - - - - -

5-74

- - - - - -

Indexed Organization

Device DISK 	 DATABASE

Access SEQUENTIAL RANDOM DYNAMIC SEQUENTIAL RANDOM DYNAMIC

WRITE Verb G. Hl. Q. Z G. H2. p. G. H2. p. Q. G. Hl. Q. Z G. H2. P. G. H2. p. Q.

Q Z Z Q Z Z

FROM o B o B o B o B o B o B
INVALID KEY O. J1. J4. J. U O. Jl. J3. O. Jl. J3. J. O. Jl. J4. J. U O. Jl. J3. O. Jl. J3. J.

J U U J U U

ADVANCING - - - - -
AT END-OF-PAGE - - - - -
FORMAT - - - N. F N. F N. F

INDICATORS

Letter

Code Meaning

An invalid combination.

A 	 When the KEY phrase is not specified, the current record pointer is
set to the record in the file with a key (relative record number)
equal to the RELATIVE KEY data item.

B 	 The FROM identifier phrase makes a WRITE statement equivalent to:

MOV E identifier TO record-name
WRITE record-name.

After successful execution of the WR IT E statement, the current
record pointer is no longer available in record-name, but is still
available in identifier. Record-name and identifier cannot both
refer to the same storage area.

Dl 	 When not specified, a default of AFTER ADVANCING 1 LINE is used.
When specified, the following rules apply:

• 	 When BEFORE ADVANCING is specified, the line is printed before
the page advances.

• 	 When AFTER ADVANCING is specified, the page advances before
the line is printed.

• 	 When identifier-2 is specified, the page advances the number of
lines equal to the current value in identifier-2. Identifier-2
must name an elementary integer data item. Identifier-2 can be
zero.

• 	 When integer is specified, the page advances the number of
lines equal to the value of integer. Integer can be zero.

• 	 When a mnemonic-name is specified, a page eject or space
suppression occurs. The mnemonic-name must be equated with

Chapter 5. Procedure Division 5-75

function-name-l in the SPECIAL-NAMES paragraph. This phrase
is not valid if a L I NAG E clause is specified in the FD entry for '\,

this file. '""'"

• 	 When PAGE is specified, the record is printed on the logical
page BEFORE or AFTER (depending on the phrase specified) the
device is positioned to the next logical page. If PAGE has no
meaning for the device used, BEFORE or AFTER ADVANCING 1
LIN E is provided (depending on the phrase specified).

If the FD entry contains a LI NAG E clause, the device is
positioned to the first printable line of the next page, as
specified in that clause. If the LI NAG E clause is omitted, the
device is positioned to line 1 of the next page.

If the L I NAG E clause is specified for this file, the associated
LINAGE-COUNTER special register is modified during the
execution of the WR ITE statement, according to the following
rules:

If ADVANCING PAGE is specified, LINAGE-COUNTER is reset to
1.

If ADVANC I NG identifier-2 or integer is specified,

LINAGE-COUNTER is incremented by the value ofidentifier-2

or integer.

If the ADVANCING phrase is omitted, LINAGE-COUNTER is

incremented by 1.

When the device is repositioned to the first printable line of

a new page, LI NAGE-COUNTER is reset to 1.

D2 	 When not specified, stacker 1 is selected.

IBM Extension

The ADVANC I NG phrase using a mnemonic name can be specified to
control the stacker selection. The mnemonic name must be
equated with function-name-l in the SPECIAL-NAMES paragraph and
must be one of the valid stacker selection names.

L--_________ End of IBM Extension _________--'

El 	 The keywords END-OF-PAGE and EOP are equivalent. When the
END-OF-PAGE phrase is specified, the FD entry for this file must
contain a LINAGE clause. When END-OF-PAGE is specified, and the
logical end of the printed page is reached during execution of the
WRITE statement, the END-OF-PAGE imperative-statement is
executed. The logical end of the printed page is specified in the
LI NAG E clause associated with record-name.

An END-OF-PAGE condition is reached when execution of a WRITE
END-OF-PAGE statement causes printing or spacing within the
footing area of a page body. This occurs when execution of such a
WRITE statement causes the value in the LINAGE-COUNTER to equal

5-76

or exceed the value specified in the WITH FOOT I NG phrase of the
LI NAG E clause. The WR ITE statement is executed, and then the
END-OF-PAGE imperative statement is executed.

An automatic page overflow condition is reached whenever the
execution of any WRITE statement with or without the END-OF-PAGE
phrase cannot be completely executed within the current page
body. This occurs when an executed WRITE statement would cause
the value in the LINAGE-COUNTER to exceed the number of lines for
the page body specified in the LINAGE clause. In this case, the line
is printed before or after the device is repositioned to the first
printable line on the next logical page, as specified in the LI NAG E
clause.

If the END-OF-PAGE phrase is specified, the END-OF-PAGE
imperative-statement is then executed. The END-OF-PAGE condition
and automatic page overflow condition occur simultaneously in the
following cases:

• 	 When the WITH FOOT! NG phrase ofthe LI NAG E clause is not
specified. This results in no distinction between the
END-OF-PAGE condition and the page overflow condition. No
footing information can be printed at the bottom of a logical
page when the FOOT! NG phrase is not specified.

• 	 When the WITH FOOTING phrase is specified, but the execution
of a WRITE statement would cause the LINAGE-COUNTER to
exceed both the footing value and the page body value specified
in the LINAGE clause.

E2 	 The keywords END-OF-PAGE and EOP are equivalent. When the
EN D- 0F - PAG E is specified, and the logical end of page is reached,
during execution of the WRITE statement for the FORMATFILE file,
the END-OF-PAGE imperative statement is executed. The logical
end of the printed page is specified in the overflow line number
parameter of the CRTPRTF command or the OVRPRTF command.

.------------- IBM Extension --------------,

F 	 The value specified in the FORMAT phrase contains the name of the
record format to use for this 1-0 operation. The system uses this to
specify or select which record format to operate on.

The literal or identifier must be a character-string of 10 characters
or less. If an identifier is specified, it must be the name of one of
the following:

• 	 A Working-Storage Section entry

• 	 A Linkage Section entry

• 	 A record-description entry for a previously opened file.

Chapter 5. Procedure Division 5-77

A value of all blanks is treated as though the FORMAT phrase were
not specified. If the value is not valid for the file, a FILE STATUS
of 9K is returned and a USE procedure is invoked, if applicable for
the file.

'--_________ End of IBM Extension _________----1

G 	 When the WR ITE statement is executed, the system releases the
record. Before the WRITE statement is executed, the user must set
the key fields in the record area to the desired value.

IBM Extension

If the DU PLICATES phrase is specified, record key values for a
format need not be unique (see "FILE-CONTROL Paragraph,
RECORD KEY Clause [Indexed File]" in Chapter 3.) In this case,
the system stores the records so that later sequential access to the
records allows retrieval in the order specified in DDS.

'--__________ End of IBM Extension __________--'

HI 	 Records must be released in ascending RECORD KEY value sequence.

Note: The records must be released in ascending key sequence
even though the file can be ordered in descending key sequence by
a DDS option.

H2 	 Records can be released in any user-specified order.

I 	 See "Indicators" in Chapter 7.

J 	 When the INVALID KEY condition is recognized, WRITE statement
execution is unsuccessful, and the contents of the record are
unaffected. See the "RECORD KEY Clause" of the "SELECT
Statement" under "FILE-CONTROL Paragraph" in Chapter 3 for
the order of the actions taken.

JI 	 An I NVALI D KEY condition exists when an attempt is made to
write beyond the externally defined boundaries of the file.

J2 	 An I NVALI D KEY condition exists when the relative key
specifies a record that already contains data.

J3 	 An INVALID KEY condition exists when the value of the key
field in the record area equals that of an already existing
record and DUPLICATES are not allowed.

J4 	 An INVALID KEY condition exists when the value of the key
field in the record area is not greater than that for the
previous record.

5-78

V

IBM Extension

If DUPLICATES are allowed, this condition exists only if the
RECORD 	 KEY is less than that for the previous record.

'-_________ End of IBM Extension _________--'

K 	 The first record released has relative record number 1, the second
has number 2, the third has number 3, and so on. If the RELATIVE
KEY is specified in the file-control entry, the relative record number
ofthe record just released is placed in the RELATIVE KEY during
execution of the WRIT E statement.

M 	 The RELATIVE KEY must contain the desired relative record number
for this record before the WR I T E statement is issued. When the
WRITE statement is executed, this record is placed at the specified
relative record number position in the file, if this position is
vacant.

N 	 Required if there is more than one record format for the file.

o 	 Optional.

P 	 Allowed when the file is opened for 1-0.

Q 	 Allowed when the file is opened for OUTPUT.

S 	 Allowed when the file is opened for EXTEND.

T 	 When an attempt is made to write beyond the externally defined
boundaries of the file, the execution of the WR ITE statement is
unsuccessful and an EXCEPTION/ERROR condition exists. The
contents of record-name are unaffected. If specified, the status key
is updated, and if an explicit or implicit EXCEPTION/ERROR
procedure is specified for the file, the procedure is executed. If no
such procedure is specified, the results are unpredictable.

U 	 The I NVALI D KEY phrase must be specified for files in which an
applicable US E procedure is not specified.

When end-of-volume is recognized for a multivolume OUTPUT file,
the WRITE statement performs the following operations in the
following order:

1. The standard ending volume label procedure is executed.

2. A volume switch occurs.

3. The standard beginning volume label procedure is executed.

No indication that an end-of-volume has occurred is returned to
the program.

Chapter 5. Procedure Division 5-79

....------------ IBM Extension ------------,

Z 	 The action of this statement can be inhibited at program execution
time by the INHWRT parameter of the OVRDBF CL command. When
this parameter is specified, non-zero file status codes are not set for
data dependent errors. Duplicate key and data conversion errors
are examples of data dependent errors.

See the CL Reference Manual for more information on this
command.

L--_________ End of IBM Extension _________---1

Arithmetic Statements

Arithmetic statements are used for computations. Individual operations are
specified by the ADD, SUBTRACT. MULTIPLY, and DIVIDE statements. The
COMPUTE statement can be used to symbolically combine these operations in
a formula.

Arithmetic Statement Operands

The data description of operands in an arithmetic statement need not be the
same. Throughout the calculation, the compiler supplies any necessary
data conversion and decimal point alignment.

Size of Operands

The maximum size of each operand is 18 decimal digits. The composite of
operands (a hypothetical data item resulting from the superimposition of
the operands aligned by an assumed decimal point) must not contain more
than 18 decimal digits.

For the ADD and SUBTRACT statements, the composite of operands is
determined by superimposing all operands in a given statement except those
following the word GIVING.

For the MULTI PL Ystatement, the composite of operands is determined by
superimposing all receiving data items.

For the D I V IDE statement, the composite of operands is determined by
superimposing all receiving data items except the REMAINDER data item.

For the COMPUTE statement, the restriction on composite of operands does
not apply.

For example, the items A, B, and C are defined in the Data Division as
follows:

5-80

01 	 A PICTURE S9(7)V9(5).
01 	 B PICTURE S9(11)V99.
01 	 C PICTURE S9(12)V9(3).

If the statement ADD A, B TO C is executed, then the composite of operands
for this statement consists of 17 decimal digits. It has the following implicit
PICTURE clause:

PICTURE S9(12)V9(5)

IBM Extension

The composite of all operands in an arithmetic statement can have a
maximum length of 30 digits.

'--__________ End of IBM Extension __________--'

Overlapping Operands

When operands in an arithmetic statement share part of their storage (that
is, when the operands overlap), the result of the execution of such a
statement is unpredictable.

Multiple Results

When an arithmetic statement has multiple results, execution conceptually
proceeds as follows:

• 	 The statement performs all arithmetic operations to find the result to be
placed in the receiving items and stores that result in a temporary
location.

• 	 A sequence of statements transfers or combines the value of this
temporary result with each single receiving field. The statements are
considered to be written in the same left-to-right order that the multiple
results are listed.

For example, executing the following statement:

ADD A, B, C TO C, D(C), E.

is equivalent to executing the following series of statements:

ADD A, B, C GIVING TEMP.

ADD TEMP TO C.

ADD TEMP TO D(C).

ADD TEMP TO E.

TEMP is a compiler-supplied temporary result field. When the addition
operation for D (C) is performed, the subscript C contains the new value of
C.

Note: The compiler does not generate a temporary result field when only
one identifier is specified in the following cases: in the ADD statement,
Format 1, preceding the keyword TO; in the SUBTRACT statement, Format 1,

Chapter 5. Procedure Division 5-81

Common Phrases

preceding the keyword FROM; and in the MUL TI PL Yand DIV I DE statements,
Format 1.

Programming Note: In all arithmetic statements, it is the user's
responsibility to define data with enough digits and decimal places to
ensure accuracy in the final result. Refer to Appendix E for more
information.

There are several phrases common to the arithmetic statements. They are
the CORR ES PON DING phrase, the G I V I NG phrase, the ROUND ED phrase, and the
SIZE ERROR phrase. Their description precedes the descriptions of the
individual statements.

CORRESPONDING Phrase

The CORR ES PON DING phrase allows operations to be performed on
elementary items of the same name simply by specifying the group items to
which they belong.

The CORRESPONDING phrase is valid in the ADD. SUBTRACT, and MOVE
statements. The abbreviation CORR is equivalent to the keyword
CORRESPONDING.

Both identifiers following the keyword CORRESPONDING must name group .~

items. In this discussion, these identifiers are referred to as dl and d2. 'fC'II

A pair of subordinate data items, one from dl and one from d2, correspond
if the following conditions are true:

• 	 In an ADD or SUBTRACT statement, both ofthe subordinate items are
elementary numeric data-items.

• 	 In a MOV E statement, at least one of the subordinate items is elementary.

• 	 The two subordinate items have the same name and the same qualifiers
up to but not including dl and d2.

• 	 The subordinate items are not identified by the keyword FILLER.

• 	 The subordinate items do not include a REDEFINES. RENAMES. OCCURS,
or USAGE IS INDEX clause in their descriptions; if such a subordinate
item is a group item, the items subordinate to it are also ignored.
However, dl and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

For example, two data hierarchies are defined as follows:

5-82

05 ITEM-l OCCURS 6 INDEXED BY X
10 ITEM-A
10 ITEM-B
10 ITEM-C REDEFINES ITEM-B

05 ITEM-2.
10 ITEM-A
10 ITEM-B
10 ITEM-C

If ADD CORR ITEM-2 TO ITEM-l(X) is specified, ITEM-A and ITEM-A(X)
and 	ITEM-B and ITEM-B(X) are considered to be corresponding and are
added together. ITEM-C and ITEM-C(X) are not included because
ITEM-C(X) includes a REDEFINES clause in its data description. ITEM-l
is valid as either dl or d2.

• 	 Neither dl nor d2 is described as a level 66, 77 or 88 item, or as a
FILLER or USAGE IS INDEX item.

IBM Extension

Dl and/or d2 can be subordinate to a FI LLER item.

L..-_________ End of IBM Extension _________---'

GIVING Phrase

If the GI VI N Gphrase is specified, the value of the identifier that follows the
word GIVING is set equal to the calculated result ofthe arithmetic
operation. Because this identifier is not involved in the computation, it can
be a numeric edited item.

ROUNDED Phrase

After decimal point alignment, the number of places in the fraction of the
result of an arithmetic operation is compared with the number of places
provided for the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for
its storage, truncation occurs unless the ROUNDED phrase is specified. When
the ROUNDED phrase is specified, the least significant digit of the resultant
identifier has its absolute value increased by 1 whenever the most
significant digit of the excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps and when the number of places in the calculated result
exceeds the number of integer positions specified, rounding or truncation
occurs relative to the rightmost integer position for which storage is
allocated.

Chapter 5. Procedure Division 5-83

ADD Statement

SIZE ERROR Phrase

A size error condition exists if, after decimal point alignment, the value of a J
result exceeds the largest value that can be contained in the resultant field.
Division by zero or zero raised to the zero power always causes a size error
condition.

In the ADD, SU BTRACT, and COMPUTE statements, the size error condition
applies only to final results. In the MUL TI PL Yand 0I VI DE statements, the
size error condition applies both to final results and to intermediate results.

If the ROUNDED phrase is specified, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SI Z E ERROR phrase is specified.

If the S I Z E ERROR phrase is not specified and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When
multiple receivers are specified, those that do not have a size error are not
affected by receivers that do have the error.

If the SI Z E ERROR phrase is specified and a size error condition occurs, the
error results are not placed in the receiving identifier. After completion of
the execution of the arithmetic operation, the imperative-statement in the
S I Z E ERROR phrase is executed.

If an individual arithmetic operation causes a size error condition for ADD
CORRESPONDING and SUBTRACT CORRESPONDING statements, the SIZE ERROR
imperative-statement is not executed until all of the individual additions or
subtraction have been completed.

The ADD statement causes two or more numeric operands to be summed and
the result to be stored. The formats of the ADD statement are as follows:

Format 1

{ identifier-,} [, identifier-2] "" " [
ADD I"t I' I" I 2 ••• TO Identlfler-m _R....:;O...:U:....N...:D=--E_DJ-- I era - , Itera -

[. identifier-n [ROUNDED]] ••• [ON SIZE ERROR imperative-statement]

5-84

Format 2

ADD {identifier-1} {identifier-2} [, identifier-3]
-- literal-l 'literal-2 ,literal-3 ..•

GIVING identifier-m [ROUNDED] [identifier-n [ROUNDED]] •

[ON SIZE ERROR imperative-statement]

Format 3

ADD {~.~ESPONDING} identifier.1 TO identifier·2 [ROUNDED]

[ON SIZE ERROR imperative.statement]

In Fortnats 1 and 2, each identifier, except those following the keyword
G I V I N G must name an elementary numeric item. In Format 2, each
identifier following the keyword G I V I NG must name an elementary numeric
or numeric edited item. In Format 3, each identifier must name a group
item. In all formats, each literal must be a numeric literal.

In Format 1, all identifiers or literals preceding the keyword to are added
together, and this sum is added to and stored immediately in identifier-m. If
specified, the sum is then added to and stored immediately in identifier-n,
and so on.

In Format 2, at least two operands must precede the keyword G I V I NG. The
values of these operands are added together, and the sum is stored as the
new value of identifier-m, and, if specified, identifier-n, and so on.

If Format 3, elementary data items within identifier-1 are added to and
stored in the corresponding elementary items within identifier-2.

For the ROUNDED and SIZE ERROR phrases, and for operand considerations,
refer to the preceding "Common Phrases" in this section.

COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic expression to one
or more data items.

Chapter 5. Procedure Division 5·85

Format

COMPUTE identifier-' [ROUNDED] [, identifier-2 [ROUNDED]]

= arithmetic-expression [ON SIZE ERROR imperative-statement]

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on the composite operands and/or receiving data
items imposed by the rules for the ADD. SUBTRACT. MULTIPLY. and DIVIDE
statements.

The identifiers that appear to the left of the equal sign (=) must name
either elementary numeric items or elementary numeric edited items.

When the COMPUTE statement is executed, the value of the arithmetic
expression is calculated; then this value is stored as the new value of
identifier-I, identifier-2, and so on, in turn.

The arithmetic expression can be any meaningful combination of
elementary numeric items, numeric literals, and arithmetic operators.

An arithmetic expression consisting of a single identifier or literal allows
the user to set identifier-I, and so on, equal to the value of that identifier or
literal.

For the ROUND ED and S I ZE ERROR phrases, and for operand considerations,
see "Common Phrases" earlier in this section.

DIVIDE Statement

The 0I V IDE statement divides one numeric data item into others and sets
the values of data items equal to the quotient and remainder. The formats
of the 0I V IDE statement are:

Format 1

DIVIDE {:~t:~~::;er-l} INTO identifier·2 [ROUNDED]

[, identifier-3 [ROUNDED]] ..• [ON SIZE ERROR imperative-statement]

5-86

Format 2

DIVIDE {i?entifier-,} {INTO} {i?entifier-2} GIVING identifier-3 [ROUNDED]
IIteral-' BY Ilteral-2

[. 	identifier-4 [ROUNDED]] •.• [ON SIZE ERROR imperative-statement]

Format 3

DIVIDE {:~:~::~~er-'} {~~TO} {:~:~::~~er-2} GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]

Each identifier except those following the keywords G I V I NG and REMAI NDER
must name an elementary numeric item. Each identifier following the
keywords GIVING and REMAINDER must name an elementary numeric or
numeric edited item. Each literal must be a numeric literal.

In Format 1, the value of literal-lor identifier-1 is divided into the value of
identifier-2; then the quotient is placed in identifier-2. If identifier-3 is
specified, the value of literal-lor identifier-1 is divided into identifier-3;
then the quotient is placed in identifier-3, and so on.

In Format 2, the value of identifier-lor literal-1 is divided into/by the value
of identifier-2 or literal-2. The value of the quotient is stored in identifier-3,
and (if specified) identifier-4, and so on.

In Format 3, the value of identifier-lor literal-1 is divided into/by
identifier-2 or literal-2. The value of the quotient is stored in identifier-3,
and the value of the remainder is stored in identifier-4.

The remainder is defined as the result of subtracting the product of the
quotient and the divisor from the dividend. If identifier-3 (the quotient) is a
numeric edited field, the quotient used to calculate the remainder is an
intermediate field that contains the unedited quotient.

For the ROUNDED and SIZE ERROR phrases, and for operand considerations,
see "Common Phrases" earlier in this section.

In addition to the conditions for common phrases, the following
considerations apply when the ROUNDED and SIZE ERROR phrases are used
in Format 3.

• 	 When the ROUNDED phrase is specified, the quotient used to calculate
the remainder is an intermediate field which contains the quotient
truncated rather than rounded.

• 	 When the ON SI Z E ERROR phrase is specified and the size error
condition occurs on the quotient, no remainder calculation is

Chapter 5. Procedure Division 5-87

meaningful. Therefore, the contents of the quotient field (identifier-3)
and the remainder field (identifier-4) are unchanged.

• 	 When the ON SIZE ERROR phrase is specified and the size error occurs
on the remainder, the contents of the remainder field (identifier-4) are
unchanged.

Note: In the two preceding cases, the user must analyze the results to
determine which situation has actually occurred.

MULTIPLY Statement

The MUL TI PL Ystatement causes numeric items to be multiplied and sets the
values of data items equal to the results. The formats ofthe MULTI PL Y
statement are:

Format 1

MULTIPLY {il~entlif1ier-1} BY identifier-2 [ROUNDED]
Itera -

[, identifier-3 [ROUNDED]] ••• [ON SIZE ER ROR imperative-statement]

Format 2

MULTIPLY {i~entifier-1} BY {i~entifier-2} GIVING identifier-3 [ROUNDED] J
IIteral-1 - IIteral-2

[, identifier-4 [ROUNDED]] •.• [ON SIZE ER ROR imperative.statement]

Each identifier except those following the keyword GI VI NG must name an
elementary numeric item. Each identifier following the keyword G I VI NG
must name an elementary numeric or numeric edited item. Each literal
must be a numeric literal.

In Format 1, the value of identifier-1 or literal-1 is multiplied by the value
of identifier-2; the product is then placed in identifier-2. If identifier-3 is
specified, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-3; the product is then placed in identifier-3, and so on.

In Format 2, the value of identifier-1 or literal-1 is multiplied by the value
of identifier-2 or literal-2; the product is then stored in identifier-3, and, if
specified, identifier-4, and so on.

For the ROUNDED and SIZE ERROR phrases, and for operand considerations,
see "Common Phrases" earlier in this section.

5-88

SUBTRACT Statement

The SUBTRACT statement causes either one, or the sum of two or more
numeric items to be subtracted from one or more numeric items and the
result to be stored. The formats of the SUBTRACT statement are:

Format 1

SUBTRACT {i~entifier-l} [, i~entifier-2J ... FROM identifier-3 DROUNDEDI
Iiteral-l ,llteral-2 -- :.J

[, identifier-4 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

Format 2

{ identifier-l} [, identifier-2] F OM{ identifier-3 }
SUBTRACT . . I 2 . .. R I· I 3 .;:....::-.::....:...:.-=..:-=-=:....:.. Iiteral-l , litera - --- Itera

GIVING identifier-4 [ROUNDED] [, identifier·5 [ROUNDED]]

[ON SIZE ERROR imperative-statement]

Format 3

{ CORRESPONDING}
SUBTRACT CORR Identlfler-l FROM Identlfler-2 [ROUNDED]

[ON SIZE ER ROR imperative-statement]

In Formats 1 and 2, each identifier except those following the keyword
G I V I NG must name an elementary numeric item. In Format 2, each
identifier following the keyword G I V I NG must name a numeric elementary
or numeric edited elementary item. In Format 3, each identifier must name
a group item. In all formats, each literal must be a numeric literal.

In Format 1, all identifiers or literals preceding the keyword FROM are
added together, and this sum is subtracted from and stored immediately in
identifier-3, and then, if specified, subtracted from and stored immediately
in identifier-4, and so on.

In Format 2, all identifiers or literals preceding the keyword FROM are
added together and this sum is subtracted from identifier-3 or literal-3. The
result of the subtraction is stored as the new value of identifier-4, and, if
specified, identifier-5, and so on.

In Format 3, elementary data items within identifier-1 are subtracted from
and stored in the corresponding elementary data items within identifier-2.

Chapter 5. Procedure Division 5-89

L

For the ROUNDED and SIZE ERROR phrases, and for operand considerations,
see "Common Phrases" earlier in this section.

Data Manipulation Statements

Movement and inspection of data are the functions of the following COBOL
statements: INSPECT, MOVE, STRING, and UNSTRING.

When the sending and receiving fields of a data manipulation statement
share a part of their storage (that is, when the operands overlap), the result
of the execution of such a statement is unpredictable.

INSPECT Statement

The INSPECT statement specifies that characters in a data item are to be
counted, replaced, or counted and replaced. The formats of the INSPECT
statement are:

Format 1

INSPECT identifier·1 TALLYING

{
• identifier.2 FOR {. {{~~~OING} {:~:~::~~er'3}}

CHARACTERS J
[{ BEFORE} INITIAL {i~entifier-4}]} . o} 00

AFTE R Iiteral·2

Format 2

INSPECT identifier·1 REPLACING

CHARACTERS BY {i~entifier.6} [{BEFORE} INITIAL {i~entifier'7}]
'::::":"';':"":':"':':"":":::"':"';::..0..;..;::. - Ilteral-4 AFTER Iiteral-5

*OING} {. {i~entifier.5} BY {i~entifier.6} [{BEFORE} INITIAL {i~entifier'7}]· } o}.0 0 0 0

{ , { FIRST Iiteral-3 - Iiteral-4 AFTER Iiteral-5

5-90

Format 3

INSPECT identifier-l TALLYING

{ ALL } {identifier-3}}
{ , identifier-2 FOR,{ { LEAD I NG IIteral-l

CHARACTERS

[{ BEFORE} INITIAL {i?entifier-4}]} ...}.
AFTE R IIteral-2

REPLACING

CHARACTERS BY {i?entifier-6} [{BEFORE} INITIAL {i?entifier-7}]
- IIteral-4 AFTER IIteral-5

{
~DING} { {i?entifier-5} BY {i?entifier-6}{, 	 FIRST 'Iiteral-3 - IIteral-4

-[{BEFORE} INITIAL {i?entifier-7}] } •..}.
AFTE R IIteral-5

Either the TALLYING or the REPLACING phrase must be specified. Both the
TALLYING and REPLACING phrases can be specified. If both TALLYING and
REPLACING are specified (Format 3), all tallying is performed before any
replacement is made.

Identifier-l is the inspected item. Identifier-l must be an elementary or
group item with USAGE DISPLAY.

All other identifiers except identifier-2 (the count field) must be elementary
alphabetic, alphanumeric, or zoned decimal items. Each is treated according
to its data category. Each data category is treated as follows:

• 	 Alphabetic or alphanumeric items are treated as a character-string.

• 	 Alphanumeric edited, numeric edited, or unsigned numeric (zoned
decimal) items are treated as though redefined as alphanumeric, and the
INSPECT statement refers to the alphanumeric item.

• 	 Signed numeric (zoned decimal) items are treated as though moved to
an unsigned zoned decimal item of the same length, and then treated as
though redefined as alphanumeric. The I NSP ECT statement refers to the
alphanumeric item.

Each literal must be nonnumeric and can be any figurative constant except
ALL.

The comparison operands of the TALL Y I NG phrase (literal-lor identifier-3,
and so on) and/or REPLACING phrase (literal-3 or identifier-5, and so on) are

Chapter 5. Procedure Division 5-91

compared in the left-to-right order specified in the INSPECT statement. A
maximum of 15 comparison operands may be specified for each REPLAC I NG
and each TALLYING phrase. When the INSPECT statement is contained
within I F statements, this maximum number is reduced by the number of
nested I F statements.

When the TALLYING/REPLACING operands are the compared operands, the
following comparison rules apply:

1. 	 When both the TALLYING and REPLACING phrases are specified, the
INS PECT statement is executed as if an INS PECT TAL LVI NG statement
were specified and immediately followed by an INSPECT REPLACING
statement.

2. 	 The first operand is compared with an equal number of leftmost
contiguous characters in the inspected item. The operand matches the
inspected characters only if both are equal, character for character.

3. 	 If no match occurs for the first operand, the comparison is repeated for
each successive operand until either a match is found or all operands
have been acted upon.

4. 	 If a match is found, tallying or replacing takes place as described in
TALLYING/REPLACING phrase descriptions. In the inspected item, the
first character following the rightmost matching character is now
considered the leftmost character position. The process described in
comparison rules 2 and 3 is then repeated.

5. 	 If no match is found, the first character in the inspected item following
the leftmost inspected character is now considered the leftmost
character position. The process described in comparison rules 2 and 3
is then repeated.

6. 	 If the CHARACTERS phrase is specified, an implied I-character operand is
used in the process described in rules 2 and 3. The implied character is
considered to always match the inspected character of the item
inspected.

7. 	 The actions taken in comparison rules 1 through 6 - which are defined
as the comparison cycle - are repeated until the rightmost character in
the inspected item has either been matched or has been considered as
the leftmost character position. Inspection then terminates.

Figure 5-16 illustrates I NSPECT statement comparisons.

5-92

INSPECT 10-1 TALLYING 10-2 FOR ALL "**"
REPLACING ALL "u" BY ZEROS.

10-1 before
I * I * I * I 0 I * I * 10-2 before Execution

ExecutionI I I (initialized by
programmer)Execution for TALLYINGI I I

TALLYING Phrase: Comparison Operand: 10-2I I I
Contains:

I
1st

I I
(true)

Comparison rn I I rn
I
I I I

(false)
Comparison
2nd c:EJ rn

I I I
3rd I (false)
Comparison ~ rn

I I
I

(true)
Comparison
4th

I rn=rn
I

Execution for REPLACING
REPLACING Phrase: I Comparison Operand:

I
5th

(true)rn rn 10·1 0>,,,,,",, .,J .
I0 I0 I* I0 I

I I

Comparison

6th rn (false) 10-1 Unchanged
Comparison

7th
(false) 10-1 UnchangedComparison

8th
(true)Comparison

10 10 1* I 0 I 0 I 0 I
At the end of inspection:

10-1 10-2
Contains: 1 0 1 0 1 * 1 0 1 0 I 0 I Contains:

Figure 5-16. INSPECT Statement Execution Results

Note: When the BEFORE/AFTER phrase is specified, the preceding results
are modified as described in the BEFORE/AFTER phrase description.

INSPECT

The following exampIe shows an INS P E CT statement.

Chapter 5. Procedure Division 5-93

.. 1 2 3 4 5 6 7

DATA DIVISION. '\
WORKING-STORAGE SECTION. 	 ~
01 10-1 PIC X(10) VALUE "ACADEMIANS".
01 CONTR-l PIC 99 VALUE 00.
01 CONTR-2 PIC 99 VALUE ZEROS.
PROCEDURE DIVISION.

* THIS ILLUSTRATES AN INSPECT STATEMENT WITH 2 VARIABLES.
100-BEGIN-PROCESSING.

DISPLAY CONTR-l SPACE CONTR-2 UPON MYTUBE.
101-MAINLINE-PROCESSING.

PERFORM COUNT-IT THRU COUNT-EXIT
STOP RUN.

COUNT - IT.
INSPECT 10-1
TALLYING CONTR-l

FOR CHARACTERS BEFORE INITIAL "AD"
CONTR-2

FOR ALL "MIANS".
DISPLAY-COUNTS.

DISPLAY "CONTR-l = " CONTR-l UPON MYTUBE.
DISPLAY "CONTR-2 = " CONTR-2 UPON MYTUBE.
DISPLAY "*********EOJ*********" UPON MYTUBE.

COUNT - EX IT .
EXIT .

Resultant Output:

00 00
CONTR-l = 02
CONTR-2 = 01
*********EOJ*********

TALL YING Phrase

Identifier-2 is the tallying field and must be an elementary integer item
defined without the symbol P in its PICTURE character-string. Identifier-2
must be initialized before the INSPECT statement is executed.

Identifier-3 or literal-l is the comparison operand. If the comparison
operand is a figurative constant, it is considered to be a one-character
nonnumeric literal.

REPLACING Phrase

Identifier-5 or literal-3 is the comparison operand. Identifier-6 or literal-4 is
the replacement field.

The comparison operand and the replacement field must be the same length.
The following replacement rules apply:

• 	 If the comparison operand is a figurative constant, it is considered to be
a one-character nonnumeric literal. Each character in the inspected
item equivalent to the figurative constant is replaced by the
single-character replacement field, which must be one character in
length.

• 	 If the replacement field is a figurative constant, it is considered to be ."
the same length as the comparison operand. Each nonoverlapping ..""

5-94

occurrence of the comparison operand in the inspected item is replaced
by the replacement field.

• 	 When the comparison operand and replacement fields are
character-strings, each nonoverlapping occurrence of the comparison
operand in the inspected item is replaced by the character-string
specified in the replacement field.

• 	 Once replacement has occurred in a given character position in the
inspected item, no further replacement for that character position is
made in this execution of the I NSPECT statement.

BEFORE/AFTER Phrases

The keywords BEFORE and AFTER should not be used in the same statement.

When either of these phrases is specified, the preceding actions for tallying
and replacing are modified.

Identifier-4, identifier-7, literal-2, and literal-5 are delimiters. Tallying
and/or replacement of the inspected item is bounded by their presence;
however, the delimiters themselves are not counted or replaced.

If the delimiter (literal-2 or literal-5) is a figurative constant, it is
considered to be 1 character in length.

In the REPLACING phrase, if the CHARACTERS phrase is specified, the
delimiter (literal-5 or identifier-7) must be 1 character in length.

When the BEFORE phrase is specified, tallying and/or replacement of the
inspected item begins at the leftmost character and continues until the first
occurrence of the delimiter is encountered. If no delimiter is present in the
inspected item, tallying and/or replacement continues to the rightmost
character.

When the AFTER phrase is specified, tallying and/or replacement of the
inspected item begins with the first character to the right of the delimiter
and continues to the rightmost character in the inspected item. If no
delimiter is present in the inspected item, no tallying or replacement takes
place.

When the BEFORE/AFTER phrase is not specified, the following actions take
place when the INSPECT TALLYING statement is executed:

• 	 If the ALL phrase is specified, the tallying field is increased by one for
each nonoverlapping occurrence in the inspected item of the
comparison operand. This process begins at the leftmost character
position and continues to the rightmost.

• 	 If the LEADING phrase is specified, the tallying field is increased by one
for each contiguous nonoverlapping occurrence of the comparison
operand in the inspected item, provided the leftmost such occurrence is
at the point where comparison began in the first comparison cycle for
which the comparison operand is eligible to participate.

Chapter 5. Procedure Division 5-95

• 	 If the CHARACTERS phrase is specified, the tallying field is increased by
one for each character (including the space character) in the inspected
item. Thus, execution of the INSPECT TALLYING statement increases
the value in the tallying field by the number of characters in the
inspected item.

When the BEFORE/AFTER phrase is not specified, the following actions take
place when the INSPECT REPLACING statement is executed:

• 	 If the CHARACTERS phrase is specified, the replacement field must be 1
character in length. Each character in the inspected field is replaced
by the replacement field. This process begins at the leftmost character
and continues to the rightmost.

• 	 If the ALL phrase is specified, each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced by the
replacement field, beginning at the leftmost character and continuing to
the rightmost.

• 	 If the LEAD ING phrase is specified, each contiguous nonoverlapping
occurrence of the comparison operand in the inspected item is replaced
by the replacement field, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison cycle for
which this replacement field is eligible to participate.

• 	 If the FIRSTphrase is specified, the leftmost occurrence of the
comparison operand in the inspected item is replaced by the
replacement field.

INSPECT Statement Examples

The following examples illustrate some uses of the INSP ECT statement. In
all instances, the programmer has initialized the COUNTR field to zero before
the INSPECT statement is executed.

INSPECT 10-1 REPLACING CHARACTERS BY ZERO.

ID-l Before COUNTR After ID-l After
1234567 0 	 0000000
HIJKLMN 0 	 0000000

INSPECT 10-1 TALLYING COUNTR FOR CHARACTERS REPLACING
CHARACTERS BY SPACES.

ID-l Before COUNTR After ID-l After
12345.67 7
HIJKLMN 7

INSPECT 10-1 REPLACING CHARACTERS BY ZEROS BEFORE INITIAL
QUOTE.

J

5-96

http:12345.67

ID-l Before COUNTR After ID-l After
456"ABEL 0 OOO"ABEL
ANDES"12 0 00000"12
"TWAS BR 0 "TWAS BR

INSPECT 10-1 TALLYING COUNTR FOR CHARACTERS AFTER INITIAL "S"
REPLACING ALL "A" BY "0",

ID-l Before COUNTR After ID-l After
ANSELM 3 aNSELM
SACKET 5 SOCKET
PASSED 3 paSSED

INSPECT ID-1 TALLYING COUNTR FOR LEADING "0" REPLACING FIRST
"A" BY "2" AFTER INITIAL "C".

ID-l Before COUNTR After ID-l After
OOACADEMYOO 2 OOAC2DEMYOO
OOOOALABAMA 4 OOOOALABAMA
CHATAMOOOO 0 CH2THAMOOOO

Programming Note: The INSPECT statement is useful for filling all or part of
a data item with spaces or zeros. It is also useful for counting the number
of times a specific character (for example, zero, space, asterisk) occurs in a
data item. In addition, it can be used to translate characters from one
collating sequence to another.

MOVE Statement

The MOV E statement transfers data from one area of storage to one or more
other areas. The formats of the MOV Estatement are as follows:

Format 1

MOVE { identifier-l} TO 'd 'f' 2 ['d 'f' 3]
I, I I entl ler- , I entl ler- •

-- Itera

Format 2

{ CORRESPONDING}. , ,
MOVE CORR Identlfler-l TO identifier-2

Chapter 5. Procedure Division 5-97

General Considerations

Identifier-lor literal is the sending area. Identifier-2, identifier-3, and so on
are the receiving areas.

An index data item cannot be specified in a MOV Estatement. Any
subscripting or indexing associated with the sending item is evaluated only
once: immediately before the data is moved to the first receiving field. Any
subscripting or indexing associated with the receiving items is evaluated
immediately before the data is moved into the receiving field.

For example, the result of the statement:

MOVE A (B) TO B. C (B).

is equivalent to

MOVE A (B) TO TEMP.
MOVE TEMP TO B.
MOVE TEMP TO C (B).

where TEMP has been defined as an intermediate result item. The subscript
Bchanged in value between the time the first move took place and the time
the final move to C (B) was executed.

After execution of a MOV E statement, a sending field contains the same data
as before execution, unless a receiving field overlaps the sending field.

Unexpected results can occur when a redefining item is moved to the
redefined item (that is, if B REDEFINES C and the statement MOVE B TO Cis
executed). Unexpected results can also occur when a redefined item is
moved to an item redefining it (from the previous example, unexpected
results occur if the statement MOV E C TO B is executed).

Elementary Moves

An elementary move is one in which both the sending and receiving items
are elementary items. Each elementary item belongs to one of the following
categories:

• 	 Numeric: Includes numeric data items, numeric literals, and the
figurative constant ZERO/ZEROS/ZEROES

• 	 Alphabetic: Includes alphabetic data items and the figurative constant
SPACE/SPACES.

Both identifiers following the keyword CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as dl and d2.

A pair of subordinate data items, one from dl and one from d2, correspond
if the following conditions are true:

• 	 At least one of the subordinate items is elementary.

5-98

• 	 The two subordinate items have the same name and the same qualifiers
up to but not including dl and d2.

• 	 The subordinate items are not identified by the keyword FILL ER.

• 	 The subordinate items do not include a REDEFINES, RENAMES, OCCURS,
or USAGE IS INDEX clause in their descriptions; if such a subordinate
item is a group item, the items subordinate to it are also ignored.
However, dl and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their description.

For example, two data hierarchies are defined as follows:

05 	 ITEM-l OCCURS 6 INDEXED BY X.

10 ITEM-A

10 ITEM-B ..

10 ITEM-C REDEFINES ITEM-B ..

05 	 ITEM-2.

10 ITEM-A

10 ITEM-B

10 ITEM-C

If MOVE CORR ITEM-2 TO ITEM-l(X) is specified, ITEM-A and ITEM-A(X),
and ITEM- Band ITEM- B(X) are considered to be corresponding and the
moves are performed. ITEM-C and ITEM-C(X) are not included because
ITEM-C(X) includes a REDEFINES clause in its data description. ITEM-l is
valid as either dl or d2.

• 	 Neither dl nor d2 is described as a level 66, 77 or 88 item, or as a
FILLER or USAGE IS INDEX item.

IBM Extension

Dl and/or d2 can be subordinate to a FI LLER item.

L.....-_________ End of IBM Extension _________--'

• 	 Alphanumeric: Includes alphanumeric data items, nonnumeric literals,
and all figurative constants except ZERO and SPACE.

• 	 Alphanumeric edited: Includes alphanumeric edited data items.

• 	 Numeric edited: Includes numeric edited data items.

IBM Extension

• 	 Boolean: Includes Boolean data items and Boolean literals.

L.....-_________ End of IBM Extension _________--'

Valid elementary moves are executed according to the following rules:

• 	 Any necessary conversion of data from one form of internal
representation to another along with any specified editing in the
receiving item takes place during the move.

Chapter 5. Procedure Division 5-99

• 	 For an alphanumeric or alphanumeric edited receiving item:

Justification and any necessary space filling take place as described J
under "Standard Alignment Rules" in Chapter 4. Unused character
positions are filled with spaces.
If the size of the sending item is greater than the size of the
receiving item, excess characters at the right are truncated after the
receiving item is filled.
If the sending item has an operational sign, the absolute value is
used. If the operational sign occupies a separate character, that
character is not moved, and the size of the sending item is
considered to be one less than its actual size.

• 	 For a numeric or numeric edited receiving item:

Alignment by decimal point and any necessary zero filling take
place as described under "Standard Alignment Rules" in Chapter 4,
except where zeros are replaced because of editing requirements.
If the receiving item is signed, the sign of the sending item is placed
in the receiving item, with any necessary sign conversion. If the
sending item is unsigned, a positive operational sign is generated
for the receiving item.
The absolute value of the sending item is used if the receiving item
has no operational sign.
If the sending item has more digits to the left or right of the decimal
point than the receiving item can contain, excess digits are
truncated.
When the sending item is alphanumeric, the data is moved as if the
sending item were described as an unsigned integer. It is the user's
responsibility to ensure that the data is numeric.

• 	 For an alphabetic receiving field:

Justification and any necessary space filling take place as described
under "Standard Alignment Rules" in Chapter 4.
If the size of the sending item is greater than the size ofthe
receiving item, excess characters at the right are truncated after the
receiving item is filled.

IBM Extension

• 	 For a Boolean receiving field, only the first byte of the sending item is
moved.

'--__________ End of IBM Extension __________...J

Note: If the receiving field is alphanumeric or numeric edited, and the
sending field is a scaled integer (that is, it has a P as the rightmost
character in its PICTURE character-string), the scaling positions are treated
as trailing zeros when the MOV E statement is executed.

Figure 	5-17 shows valid and invalid elementary moves for each category.

5-100

Group Moves

A group move is one in which one or both of the sending and receiving
fields are a group item. A group move is treated exactly as though it were
an alphanumeric elementary move except that data is not converted from
one form of internal representation to another. In a group move, the
receiving area is filled without consideration for the individual elementary
items contained within either the sending area or the receiving area. See
"OCCURS Clause" in Chapter 6 for additional information.

Chapter 5. Procedure Division 5-101

•••••••••

••

Receiving Item Category
Sending
Item Alphanumeric Numeric Numeric Numeric 1
Category Alphabetic Alphanumeric Edited Integer Noninteger Edited .D••~I,

I

Alphabetic
and SPACE

YES YES YES NO NO NO U}!NO ••••••••

Alphanumeric YES YES YES YES4 YES4 YES4 iYESs :
Nonnumeric
Literal

YES YES YES YES t YES t YES t
.'
YESS

hi
i

••• \
Alphanumeric

YES YES YES NO NO NO IINOEdited)iI

Numeric
NO YES YES YES YES YES NO

Integer2

&

Numeric
NO NO NO YES YES YES NO 'j!

Noninteger2

.) \i
Numeric

NO YES YES NO NO NO NEdited !i

LOW/HIGH
VALUES NO YES YES NO NO NO NO ::
QUOTES

i:
ZERO NO YES YES YES YES YES YES

?::~ '0:

.'i ··.·.•iiiO: ...•... ...•....'.·i}W'·...••... " :.:::.......... } ... ··· .•·.·.·.····.·.·.··,,·:·:·'··i.'.:. I:
8':~:i.~I::n 3<+'"•••.• NO YES YES NO NO NO YES ..•••••••••
i ..·...•...···i........·· ":.:",,,,:. ..: •... •. \:;0"'" • i.·.. i :.:............••. ..,:.::"

YES = move is valid
NO = move is invalid

1 Moved only if an unsigned integer.

2 Includes numeric literals.

3 Includes Boolean literals.

4Compiler assumes alphanumeric item is an unsigned integer.

S Compiler assumes item is a 0 or a 1.

Figure 5-17. Valid and Invalid Elementary Moves

Format 1 Considerations

When Format 1 is specified, the identifiers can be either group or
elementary items. The data in the sending area is moved into the first
receiving area (identifier-2); then it is moved from the sending area into the
second receiving area (identifier-3), and so on.

5-102

• • • TO {~~F}

Format 2 Considerations

SET Statement

CORRESPONDING Phrase: The CORRESPONDING phrase allows data to
be moved between elementary items of the same name simply by specifying
the group items to which they belong.

The abbreviation CORR is equivalent to the keyword CORRESPONDING.

r------------ IBM Extension -------------,

The SET statement is used to alter the status of external switches and the
values of conditional variables. See "SET Statement" in Chapter 6 for the
other two formats.

Format 1

SET mnemon ic-name-1 [. mnemon ic-name-2]

Format 2

SET condition-name-1 [. condition-name-2] ••• TO TRUE

For Format 1 each mnemonic-name must be associated with an external
switch, the status of which can be altered. The only external switches
allowed are the UPS I switches, UPS I -0 through UPS 1-7.

The status of each external switch associated with the specified
mnemonic-name is modified such that the truth value resultant from
evaluation of a condition-name associated with that switch will reflect an
on status if the ON phrase is specified, or an off status if the 0 F F phrase is
specified. For additional information, refer to "Simple Conditions,
Switch-Status Condition" earlier in this chapter.

Format 2 allows conditional items to be set to their stated values. The
literal in the VALUE clause associated with the condition-name is moved to
the conditional variable according to the rules for elementary moves.

If multiple condition-names are specified, the results are the same as those
obtained if a separate SET statement were written for each condition-name
in the same order specified in the SET statement.

1....-_________ End of IBM Extension _________----'

Chapter 5. Procedure Division 5-103

STRING Statement

The STRING statement gives the programmer the ability to concatenate the
partial or complete contents of two or more data items into a single data
item.

Format

identifier-3}
STRING {i~entifier"1} [. i~entifier"2] ••• DELIMITED BY { literal-3

Iiteral-1 • Iiteral-2
SIZE

identifier-6}]
[{ identifier-4}

[• i~entifier-5] ••• DELIMITED BY { literal-6 , literal-4 , Iiteral-5
SIZE

INTO identifier-7 [W ITH PO INTE R identifier-S]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each can be any figurative
constant except the ALL literal. When a figurative constant is specified, it
is considered a I-character nonnumeric literal.

All identifiers except identifier-8 (the pointer item) must have USAGE
DISPLAY, explicitly or implicitly.

The sending fields are identifier-I, identifier-2, identifier-4, identifier-5, or
their corresponding literals.

The receiving field is identifier-7, which must be an elementary
alphanumeric item without editing symbols and without the JUSTI FI ED
clause in its description.

The delimiters are identifier-3, identifier-6, or their corresponding literals,
or the keyword SI ZE. The delimiters specify the character(s) delimiting the
data to be transferred; when SIZE is specified, the complete sending area is
transferred.

When the sending field or any of the delimiters are elementary numeric
items, they must be described as integers, and their PI CTUR E
character-strings must not contain the symbol P.

The pointer field is identifier-8, which must be an elementary integer data
item large enough to contain a value equal to the length of the receiving
area plus one. The pointer field must not contain the symbol P in its
PICTURE character-string.

J

5-104

STRING Statement Execution

When the STRING statement is executed, data is transferred from the
sending fields to the receiving field. The order in which sending fields are
processed is the order in which they are specified. The following rules
apply:

• 	 Characters from the sending fields are transferred to the receiving field
according to the rules for alphanumeric to alphanumeric elementary
moves except that no space filling is provided.

• 	 When the DELIMITED BY identifier/literal is specified, the contents of
each sending item are transferred character by character beginning
with the leftmost and continuing until either a delimiter for this
sending field is reached (the delimiter itself is not transferred) or the
rightmost character of this sending field has been transferred.

• 	 When DELIMITED BY SIZE is specified, each sending field is transferred
in its entirety to the receiving field.

• 	 When the receiving field is filled or when all the sending fields have
been processed, the operation is ended.

• 	 When the POI NTER phrase is specified, an explicit pointer field is
available to the COBOL user to control placement of data in the
receiving field. The user must set the explicit pointer's initial value,
which must not be less than one and not more than the character count
of the receiving field. The pointer field must be defined as large enough
to contain a value equal to the length of the receiving field plus 1; this
precludes arithmetic overflow when the system updates the pointer at
the end of the transfer.

• 	 When the POINTER phrase is not specified, no pointer is available to the
user. However, an implicit pointer with an initial value of one is used
by the system.

• 	 When the STR I NG statement is executed, the initial pointer value
(explicit or implicit) points to the first character position within the
receiving field into which data is to be transferred. Beginning at that
position, data is then positioned character by character from left to
right. After each character is positioned, the explicit or implicit pointer
is incremented by one. The value in the pointer field is changed only in
this manner. At the end of processing, the pointer value always
indicates one character beyond the last character transferred into the
receiving field.

• 	 If, at any time during or after initiation of STR I NG statement execution,
the pointer value (explicit or implicit) is less than one or exceeds a
value equal to the length of the receiving field, no more data is
transferred into the receiving field and, if specified, the ON OVERFLOW
imperative-statement is executed. (The ON OV ER FLOW statement is not
executed unless there was an attempt to move in one or more characters
beyond the end of identifier-7.)

Chapter 5. Procedure Division 5-105

• 	 If the ON OVERFLOW phrase is not specified, then when the preceding
conditions occur, control passes to the next executable statement.

After STR ING statement execution is completed, only that part of the
receiving field into which data was transferred is changed. The rest of the
receiving field contains the data that was present before this execution of
the STR IN Gstatement. Figure 5-18 illustrates the rules of execution for the
STRING statement.

STRING Statement Example

The following example illustrates some of the considerations that apply to
the STR ING statement.

In the Data Division, the programmer has defined the following fields:

01 	 RPT -LINE PICTURE X(120).
01 	 LINE-POS PICTURE 99.
01 	 LINE-NO PICTURE 9(5) VALUE 1.
01 	 DEC-POINT PICTURE X VALUE ".".

In the File Section, he has defined the following input record:

01 	 RCD-01.
05 	 CUST-INFO.

10 	 CUST-NAME PICTURE X(15).
10 	 CUST-ADDR PICTURE X(34).

05 	 BILL-INFO.
10 	 INV-NO PICTURE X(6).
10 	 INV-AMT PICTURE $$,$$$.99.
10 	 AMT-PAID PICTURE $$,$$$.99.
10 	 DATE-PAID PICTURE X(S).
10 	 BAL-DUE PICTURE $$,$$$.99.
10 	 DATE-DUE PICTURE X(S).

5-106

STRING Statement to be Executed:

STRING 10·1 10-2 DELIMITED BY 10·3

104 10-5 DELIMITED BY SIZE

INTO 10·7 WITH POINTER 10·8.

Results:

10-4 at Execution 10·1 at Execution 10-2 at Execution 10·5 at Execution

161718191*101 1112131*14151 IAI*IBICI IDIEI*IFIGI
I I I I y I i I

I
Third Group of First Group of Second Group of Fourth Group of
Characters Moved Characters Moved Characters Moved Characters Moved

I I
I I

10·3
(delimiter)
at Execution

10·7 after Execution (initialized to ALL Z before execution)

10-8
(pointer)
after Execution

(initialized to 01 before execution)

Figure 5.18. STRING Statement Execution Results

The user wants to construct an output line consisting of portions of the
information from RCD-Ol. The line is to consist of a line number, customer
name and address, invoice number, date due, and balance due, truncated to
the dollar figure shown.

The record as read in contains the following information:

J.B.bSMITHbbbbb
444bSPRINGbST.,bCHICAGO,bILL.bbbbb
A14275
$4,736.85
$2,400.00
09/22/76
$2,336.85
10/22/76

Chapter 5. Procedure Division 5-107

http:2,336.85
http:2,400.00
http:4,736.85

In the Procedure Division, the user initializes RPT -LINE to SPACES and sets
LI NE- POS (which is to be used as the pointer field) to 4. Then he issues this
STR I NG statement:

STRING LINE-NO SPACE

CUST-INFO SPACE

INV-NO SPACE

DATE-DUE SPACE

DELIMITED BY SIZE.
BAL-DUE

DELIMITED BY DEC-POINT

INTO RPT -LI NE

WITH POINTER LINE-POS.

When the statement is executed, the following actions take place:

1. 	 The field LINE-NO is moved into positions 4 through 8 of RPT -LINE.

2. 	 A space is moved into position 9.

3. 	 The group item CUST - INFO is moved into positions 10 through 58.

4. 	 A space is moved into position 59.

5. 	 INV-NO is moved into positions 60 through 65.

6. 	 A space is moved into position 66.

7. 	 DATE-DUE is moved into positions 67 through 74.

8. 	 A space is moved into position 75.

9. 	 The portion of BAL-DUE that precedes the decimal point is moved into
positions 76 through 81.

After the STRI NG statement has been executed:

• 	 RPT-LINE appears as shown in Figure 5-19.
• 	 LINE-POS contains the value 82.

Programming Note: One STRING statement can be written instead of a series
of MOV E statements.

Column
4 10 25

I I !
00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL.

60 67 76

! I !
A14725 10/22/76 $2,336

Figure 5-19. STRING Statement Example Output Data

5-108

UNSTRING Statement

The UNSTRING statement causes contiguous data in a sending field to be
separated and placed into multiple receiving fields.

Format

UNSTRING identifier-1

DELIMITED BY [ALL] {i?entifier-2} [OR [ALL] {i?entifier-3}].][IIteral-1 ' - -- IIteral-2 ••

INTO identifier-4 [, DELIMITER IN identifier-5] [, COUNT IN identifier-S]

[, identifier-7 GDELIMITER IN identifier-S] [, COUNT IN identifier-g]]

[WITH POINTER identifier-1~ [TALLYING IN identifier-11]

[ON OVERFLOW imperative-statemen~

Each literal must be a nonnumeric literal; each may be any figurative
constant except ALL literal. When a figurative constant is specified, it is
considered to be a 1-character nonnumeric literal.

Sending Field

Identifier-! is the sending field. It must be an alphanumeric data item. Data
is transferred from this field to the receiving fields.

DELIMITED BY Phrase: This phrase specifies delimiters within
identifier-! that control the data transfer.

The delimiters are identifier-2, identifier-3, or their corresponding literals.
Each identifier or literal specified represents one delimiter. No more than
30 delimiters can be specified. Each must be an alphanumeric data item.

If a delimiter contains two or more characters, it is recognized in the
sending field only if the delimiter characters are contiguous and, in the
sequence specified, in the delimiter item.

When two or more delimiters are specified, an OR condition exists and each
nonoverlapping occurrence of anyone of the delimiters is recognized in the
sending field in the sequence specified. For example, if DELIMITED BY AB
OR BC is specified, then an occurrence of either AB or BC in the sending field
is considered a delimiter. An occurrence of ABC is considered an occurrence
of AB. and the search for another delimiter resumes with C.

When the DELIMITED BY ALL phrase is not specified, and two or more
contiguous occurrences of any delimiter are encountered, the current data
receiving field is filled with spaces or zeros according to the description of
the data receiving field.

Chapter 5. Procedure Division 5-109

When the DELIMITED BY ALL phrase is specified, one or more contiguous

occurrences of any delimiter are treated as if they were only one '\

occurrence, and this one occurrence is moved to the delimiter receiving ...".,

field (if specified). The delimiting characters in the sending field are

treated as an elementary alphanumeric item and are moved into the current

delimiter receiving field according to the rules of the MOV Estatement.

The DELI MITER I N and COUNT I N phrases can be specified only if the

DELIMITER BY phrase is specified.

Data Receiving Fields

Identifier-4, identifier-7, and so on, are the data receiving fields and must
have USAGE DISPLAY. These fields can be defined as:

• Alphabetic (without the symbol Bin the PICTURE string)

• Alphanumeric

• Numeric (without the symbol P in the PICTURE string).

These fields must not be defined as alphanumeric edited or numeric edited
items. Data is transferred to these fields from the sending field.

DELIMITER IN Phrase: The delimiter receiving fields are identifier-5,
identifier-B, and so on. These identifiers must be alphanumeric. They must
not be defined as alphanumeric edited or numeric edited items.

COUNT IN Phrase: The data-count fields for each data transfer are
identifier-6, identifier-9, and so on. These identifiers must be described as
elementary numeric integer data items; they cannot contain the symbol P in
their PICTURE clauses. Each field holds the count of delimited characters
in the sending field to be transferred to this receiving field; the delimiters
are not included in this count.

POINTER Phrase: The pointer field is identifier-lO. This identifier must
be described as an elementary numeric integer data item; it cannot contain
the symbol P in its PI CTUR E clause. The identifier contains a value position
in the sending field. When this phrase is specified, this field must be
initialized before execution of the UNSTR I NG statement to a value that is not
less than one and not greater than the count of the sending field.

TALLYING Phrase: The field-count is identifier-ll. This identifier must
be described as an elementary numeric integer data item; it cannot contain
the symbol P in its PICTURE clause. The identifier is incremented by the
number of data receiving fields acted upon in this execution of the
UNSTR ING statement. When this phrase is specified, this field must be
initialized before execution of the UNSTR I NG statement.

The data-count fields, the pointer field, and the field-count field must each
be integer items without the symbol P in the PICTURE character-strings.

5-110

UNSTRING Statement Execution

When the UNSTR I NG statement is initiated, the current data receiving field
is identifier-4. Data is transferred from the sending field to the current data
receiving field according to the following rules:

• 	 If the PO I NTE Rphrase is not specified, the sending field character-string
is examined beginning with the leftmost character. If the PO INTER
phrase is specified, the field is examined beginning at the relative
character position specified by the value in the pointer field.

• 	 If the DELIMITED BY phrase is specified, the examination proceeds left
to right character by character until a delimiter is encountered. If the
end of the sending field is reached before a delimiter is found, the
examination ends with the last character in the sending field.

• 	 If the DELIMITED BY phrase is not specified, the number of characters
examined is equal to the size of the current data receiving field, which
depends on its data category:

If the receiving field is alphanumeric or alphabetic, the number of
characters examined is equal to the number of characters in the
current receiving field.

If the receiving field is numeric, the number of characters examined
is equal to the number of characters in the integer portion of the
current receiving field.

If the receiving field is described with the SIGN IS SEPARATE
clause, the characters examined are one fewer than the size of the
current receiving field.

If the receiving field is described as a variable-length data item, the
number of characters examined is determined by the current size of
the current receiving field.

• 	 The examined characters (excluding any delimiter characters) are
treated as an alphanumeric elementary item, and are moved into the
current data receiving field according to the rules for the MOVE
statement.

• 	 If the DELIMITER IN phrase is specified, the delimiting characters in the
sending field are treated as an elementary alphanumeric item and are
moved to the current delimiter receiving field according to the rules for
the MOV E statement. If the delimiting condition is the end of the
sending field, the current delimiter receiving field is filled with spaces.

• 	 If the COU NT I N phrase is specified, a value equal to the number of
examined characters (excluding any delimiters) is moved into the data
count field, according to the rules for an elementary move.

• 	 If the DELIMITED BY phrase is specified, the sending field is further
examined, beginning with the first character to the right of the
delimiter.

Chapter 5. Procedure Division 5-111

• 	 If the DELIMITED BY phrase is not specified, the sending field is further
examined, beginning with the first character to the right of the last
character examined.

• 	 After data is transferred to the first data receiving field (identifier-4),
the current data receiving field becomes identifier-7. For each
succeeding current data receiving field, the preceding procedure is
repeated - either until all of the characters in the sending field have
been transferred, or until there are no more unfilled data receiving
fields.

• 	 When the PO I NTER phrase is specified, the contents of the pointer field
behaves as if incremented by one for each examined character in the
sending field. When this execution of the UNSTRING statement is
completed, the pointer field contains a value equal to its initial value
plus the number of characters examined in the sending field.

• 	 When the TAL LY I NG phrase is specified and the execution of the
UNSTRING statement is completed, the tallying identifier contains a
value equal to the initial value plus the number of data receiving areas
acted upon; this count includes any null fields.

• 	 When an overflow condition exists, the execution of the UNSTR I NG
statement is terminated. If the ON OV ERFLOW phrase has been specified,
that imperative-statement is executed. If the ON OVERFLOW phrase has
not been specified, control passes to the next executable statement. An
overflow condition exists when:

An UNSTR I NG statement is initiated and the value in the pointer
field is less than 1 or greater than the length of the sending field.

Or, all data receiving fields have been acted upon during UNSTR I NG
statement execution, and the sending field still contains
unexamined characters.

Note: If any of the UNSTR I NG statement identifiers are subscripted or
indexed, the subscripts and indexes are evaluated as follows:

• 	 Any subscripting or indexing associated with the sending field, the
pointer field, or the field-count field is evaluated only
once - immediately before any data is transferred.

• 	 Any subscripting or indexing associated with the delimiters, the data
and delimiter receiving fields or the data-count fields, is evaluated
immediately before the transfer of data into the affected data item.

Figure 5-20 illustrates the rules of execution for the UNSTR I NG statement.

5-112

The following UNSTRING statement has the execution results shown:

UNSTRING ID·SEND DELIMITED BY DEL·ID OR ALL "*,,
INTO ID·R1 DELIMITER IN ID·D1 COUNT IN ID·C1 (All the data

ID·R2 DELIMITER IN ID·D2 receiving fields
ID·R3 DELIMITER IN ID·D3 COUNT IN ID·C3 are defined as
I D·R4 COUNT I N I D·C4 alphanumeric.)

WITH POINTER ID·P
TALLYING IN ID·T
ON OVERFLOW GO TO OFLOW·EXIT.

ID·SEND at Execution
® DEL·ID

at Execution

3

1112131 b lblbl 141516171 s lbl lili@ IglolAIBlcl

I D·R 1 after ID·R2 after ID·R3 after ID·R4 after
Execution Execution Execution Execution

ID·D1 ID·C1 ID·D2 ID·D3 ID·C3 ID·C4 ID·P ID·T
(pointer) (tallying field)

E:EJ 0 ~ EEl @] 0 ~ ~
(after execution) (after (after execution) (after execution-both

execution) initialized to 01
before execution)

The order of execution is:

considered to be the delimiter. The
(DThree characters are examined before a delimiter is second "?" is the delimiter for the next

encountered. These characters are moved to ID-R 1. receiving field.

No characters are examined before the next oThe delimiter "*,, is placed in ID-D1; the number of ®
delimiter is encountered, so no characters are movedcharacters before the delimiter is moved to ID-C1.
to I D-R3. Padding causes ID-R3 to be filled with
spaces. The del imiter "?" is placed in I D-D3. The Note: Because ALL "*,, is specified, the second
number of examined characters (0) is moved toasterisk is treated as part of the delimiter.
ID-C3.Only the first occurrence of the delimiter

is moved to the DELIMITER IN data o The remaining 8 characters are examined; no item,ID-D1.
delimiter is found. These characters are moved too Five characters are examined before the next ID-R4. Because of the size of the receiving field,
the last 3 characters are lost due to truncation.delimiter is encountered. These characters are
However, the total number of charactersmoved to ID-R2.
examined (8) is moved to I D-C4. o The delimiter "?" is placed in I D-D2. (j) After execution, ID-P is incremented by the

Note: Because ALL is not specified for this number of characters examined, and ID-T is
delimittlr, only the first "?" is incremented by the number of receiving fields

processed.

Figure 5-20. UNSTRING Statement Execution Results Chapter 5. Procedure Division 5·113

UNSTRING Statement Example

The following example illustrates some of the considerations that apply to
the UNSTRI NG statement.

In the Data Division, the user has defined the following input record to be
acted upon by the UNSTRING statement:

01 INV-RCD.
05 CONTROL-CHARS PIC XX.
05 ITEM- INDENT PIC X(20).
05 FILLER PIC X.
05 INV-CODE PIC X(lO).
05 FILLER PIC X.
05 NO-UNITS PIC 9(6).
05 FILLER PIC X.
05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.
05 RTL-AMT PIC 9(6).99.

The next two records are defined as receiving fields for the UNSTR ING
statement. DISPLAY-REC is to be used for printed output. WORK-REC is to
be used for further internal processing.

01 DISPLAY-REC
05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE
05 DISPLAY-DOLS PIC 9(6).

01 WORK-REC

05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).
05 WK-PRICE

REDEFINES
FIELD-A PIC 9999V99.

05 INV-CLASS PIC X(3).

The user has also defined the following fields for use as control fields in the
UNSTRING statement.

01 DBY-1 PIC X. VALUE IS ".".
01 CTR-1 PIC 99. VALUE IS ZERO.
01 CTR-2 PIC 99. VALUE IS ZERO
01 CTR-3 PIC 99. VALUE IS ZERO.
01 CTR-4 PIC 99. VALUE IS ZERO.
01 DLTR-1 PIC X.
01 DLTR-2 PIC X
01 CHAR-CT PIC 99. VALUE IS 3.
01 FLDS-FILLED PIC 99. VALUE IS ZERO.

In the Procedure Division, the user writes the following UNSTRI NG
statement to move subfields of INV-RCD to the subfields of DISPLAY-REC and
WORK-REC:

5-114

UNSTRING INV-RCD
DELIMITED BY ALL SPACES

OR 	 "/"
OR 	 DBY-1

INTO ITEM-NAME COUNT IN CTR-1.
INV-NO DELIMITER IN DLTR-1

COUNT IN CTR-2.
INV-CLASS.
M-UNITS COUNT IN CTR-3.
FIELD-A.
DISPLAY-DOLS DELIMITER IN DLTR-2

COUNT IN CTR-4
WITH POINTER CHAR-CT
TALLYING IN FLDS-FILLED
ON 	 OVERFLOW

GO TO UNSTRING-COMPLETE.

Before the UNSTRING statement is issued, the user places the value 3 in the
CHAR-CT (the pointer item), so as not to work with the two control
characters at the beginning of INV-RCD. In DBY-1, a period is placed for use
as a delimiter, and in FLDS-FILLED (the tallying item) the value 0 is placed.
The following data is then read into INV-RCD as shown in Figure 5-21.

Column

1 10 20 30 40 50 60

I I I I I I I
ZYFOUR-PENNY-NAILS 707890/BBA 475120 00122 000379.50

~ Figure 5-21. UNSTRING Statement Example - Input Data

When the UNSTRING statement is executed, the following actions take place:

1. 	 Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in
ITEM-NAME, left-justified within the area, and the unused character
positions are padded with spaces. The value 16 is placed in CTR-l.

2. 	 Because ALL SPACES is specified as a delimiter, the five contiguous
SPACE characters are considered to be one occurrence of the delimiter.

3. 	 Positions 24 through 29 (707890) are placed in INV-NO. The delimiter
character / is placed in DL TR-1, and the value 6 is placed in CTR-2.

4. 	 Positions 31 through 33 are placed in INV-CLASS. The delimiter is a
SPACE, but because no field has been defined as a receiving area for
delimiters, the SPACE is merely bypassed.

5. 	 Positions 35 through 40 (475120) are examined and are placed in
M-UNITS. The delimiter is a SPACE, but because no receiving field has
been defined as a receiving area for delimiters, the SPACE is bypassed.
The value 6 is placed in CTR-3.

6. 	 Positions 42 through 46 (00 122) are placed in FIEL D - Aand
right-justified within the area. The high-order digit position is filled
with a 0 (zero). The delimiter is a SPACE, but because no field has been
defined as a receiving area for delimiters, the SPAC E is bypassed.

Chapter 5. Procedure Division 5-115

L

http:000379.50

7. 	 Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The
period delimiter character is placed in D L T R - 2, and the value 6 is placed
in CTR-4.

8. 	 Because all receiving fields have been acted upon and two characters of
data in INV-RCD have not been examined, the ON OVERFLOW exit is
taken, and execution of the UNSTRI NG statement is completed.

At the end of execution of the UNSTRING statement, DISPLAY-REC contains
the following data:

707890 FOUR-PENNY-NAILS 000379

WORK-REC contains the following data:

475120000122BBA

CHAR-CT (the pointer field) contains the value 55, and FLD-FILLED (the
tallying field) contains the value 6.

Programming Note: One UNSTR I NG statement can be written instead of a
series of MOV E statements.

Procedure Branching Statements

Stda~em~nlts, sentendces, and ~alrlagrTahphs in thde Probcedurh~ Division are 11 J
or man yexecute sequentla y. e proce ure ranc Ing statements a ow
alterations in the sequence. The procedure branching statements are:
AL TER, EX IT, GO TO, PER FORM, and STOP.

ALTER Statement

The AL TER statement changes the transfer point specified in a GO TO
statement.

Format

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4J .

Procedure-name-l, procedure-name-3, and so on, must each name a
Procedure Division paragraph that contains only one sentence. That
sentence must be a GO TO statement without the DEP END I NG ON phrase.

Procedure-name-2, procedure-name-4, and so on, must each name a
Procedure Division section or paragraph.

5-116

EXIT Statement

AL TER statement execution modifies the GO TO statement in the paragraph
named by procedure-name-l, procedure-name-3, and so on_ Subsequent
executions of the modified GO TO statement(s) cause control to be
transferred to procedure-name-2, and (if specified) procedure-name-4, and so
on. For example:

PARAGRAPH-I.

GO TO BYPASS-PARAGRAPH.

PARAGRAPH-IA.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-I TO PROCEED TO

PARAGRAPH-2.

PARAGRAPH-2.

Before the AL TER statement is executed, when control reaches PARAGRAPH-I,
the GO TO statement transfers control to BYPASS-PARAGRAPH. After
execution of the ALTER statement, however, the next time control reaches
PARAGRAPH-I, the GO TO statement transfers control to PARAGRAPH-2.

Programming Note: The ALTER statement acts as a program switch,
allowing, for example, one sequence of execution during initialization and
another sequence during the bulk of file processing. Because altered GO TO
statements are difficult to debug, it is preferable to test a switch, and based
on the value of the switch, execute a particular code sequence.

Segmentation Information

A GO TO statement in a section whose segment-number is greater than or
equal to 50 must not be referred to by an ALTER statement in a section with
a different segment-number. All other uses of the ALTER statement are
valid and are performed.

Modified GO TO statements in independent segments can sometimes be
returned to their initial states. See "Program Segments, Independent
Segments" in Chapter 6 for further discussion.

The EX I T statement provides a common end point for a series of procedures.

Chapter 5. Procedure Division 5-117

L

GO TO Statement

Format

EXIT [PROGRAM]

The EX I T statement must appear in a sentence by itself, and this sentence
must be the only sentence in the paragraph. The EX I T statement lets the
user assign a procedure-name to a given point in a program.

The EX I T statement has no other effect on the compilation or execution of
the program.

The EX I T PROGRAM statement is discussed under "Procedure
Division - Inter-Program Communication" in Chapter 6.

Programming Note: The EX I T statement is useful for documenting the end
point in a series of procedures. If an exit paragraph is written as the last
paragraph in a Declarative procedure or a series of performed procedures, it
identifies the point at which control will be transferred. When control
reaches such an exit paragraph and the associated Declarative or PERFORM
statement is active, control is transferred to the appropriate part of the
Procedure Division. When control reaches such an exit paragraph and no
associated PER FORM statement or Declarative procedure is active, control
passes through the EX I T statement to the first statement of the next
paragraph.

If an EX I T statement is not written, the end of the sequence is difficult to
determine unless the user knows the logic of the program.

The GO TO statement transfers control from one part of the Procedure
Division to another. The formats of the GO TO statement are as follows:

Format 1

GO TO [procedure-name-1]

Format 2

GO TO procedure·name-1 [, procedure-name-2J ... , procedure-name-n

DEPENDING ON identifier

Each procedure-name specified must name a paragraph or section in the
Procedure Division.

J

5-118

Format 1- Unconditional GO TO

The GO TO statement transfers control to the first statement in the
paragraph or section named in procedure-name-l unless the GO TO
statement has been modified by an AL TER statement.

When a Format 1 GO TO statement appears in a sequence of imperative
statements, it must be the last statement in the sequence.

When a paragraph is referred to by an AL TER statement, the paragraph can
consist only of a paragraph-name followed by a Format 1 GO TO statement.

If procedure-name-l is not specified in a Format 1 GO TO statement, an
AL TER statement must have been executed before the execution of the GO TO
statement. The GO TO statement must immediately follow a paragraph-name
and must be the only statement in the paragraph.

Format 2-Conditional GO TO

Control is transferred to one of a series of procedures, depending on the
value of identifier. Identifier must name an elementary integer item. When
identifier has a value of one, control is transferred to the first statement in
the procedure named by procedure-name-l; if it has a value of two, control
is transferred to the first statement in the procedure named by
procedure-name-2, and so on.

If the value of identifier is anything other than a value within the range 1
through n (where n is the number of procedure-names specified in this GO
TO statement), the GO TO statement is ignored. Instead, control passes to
the next statement in the normal sequence of execution.

The maximum number of procedure-names permitted for a Format 2 GO TO
statement is 255.

PERFORM Statement

The PERFORM statement transfers control explicitly to one or more
procedures and implicitly returns control to the next executable statement
after execution of the specified procedure(s) is completed. The formats of
the PERFORM statement are as follows:

Format 1

[{THROUGH}]PERFORM procedure-name-' THRU procedure-name-2

Format 2

[{ THROUGH}] {identifier-,}
PERFORM procedure-name-' THRU procedure-name-2 integer-' TIMES

Chapter 5. Procedure Division 5-119

Format 3

[{THROUGH} 	 J \PERFORM procedure-name-' ~ procedure-name-2 UNTIL conditi~

Format 4

[{ THROUGH}]PERFORM 	 procedure-name-, THRU procedure-name-2

' , , } {identifier-2 }
VARYING {	 ~dentlfler-' FROM index-name-2

Index-name-' I' I 2Itera

BY {identifier-3} UNTIL d" _, _ literal-3 ___ con Itlon

'd 'f' 4} { identifier-5 }
[AFTER {	 ~ entl ler- FROM index-name,5

Index-name-4 I' I 5Itera

{ identifier-6}
BY I' 16 UNTIL condition-2 - Itera- --

[AFTER {~dentifier'7 } FROM {:~~~~~~::~-8}
Index-name-7 I' 18Itera

{ identifier-9} , ,]]
BY literal-9 UNTIL condltlon-3

Each procedure-name must name a section or paragraph in the Procedure
Division.

When both procedure-name-l and procedure-name-2 are specified, if either is
a procedure-name in a Declarative procedure, then both must be
procedure-names in the same Declarative procedure.

Each identifier must name a numeric elementary item.

Each literal must be a numeric literal.

The set of statements within the range of procedure-name-l (through
procedure-name-2 if specified) for a PERFORM statement are referred to as the
specified set of statements.

Whenever a PERFORM statement is executed, control is transferred to the
first statement of the specified set of statements. Control is always
returned to the statement following the PERFORM statement. The point from
which this control is returned is determined as follows:

5-120

• 	 If procedure-name-I is a paragraph name and procedure-name-2 is not
specified, the return is made after the execution of the last statement of
procedure-name-I.

• 	 If procedure-name-I is a section-name and procedure-name-2 is not
specified, the return is made after the execution of the last sentence of
the last paragraph in that section.

• 	 If procedure-name-2 is specified and it is a paragraph name, the return
is made after the execution of the last statement of that paragraph.

• 	 If procedure-name-2 is specified and it is a section-name, the return is
made after the execution of the last sentence of the last paragraph in
the section.

The only necessary relationship between procedure-name-I and
procedure-name-2 is that a consecutive sequence of operations is executed
beginning at the procedure named by procedure-name-I and ending with the
execution of the procedure named by procedure-name-2.

When both procedure-name-I and procedure-name-2 are specified, GO TO and
PERFORM statements can appear within the sequence of statements
contained in these paragraphs or sections. A GO TO statement should not
refer to a procedure-name outside the range of procedure-name-I through
procedure-name-2. If this is done, results are unpredictable and are not
diagnosed.

When only procedure-name-I is specified, PERFORM and GO TO statements
can appear within the procedure. A GO TO statement should not refer to a
procedure-name outside the range of procedure-name-l. If this is done,
results are unpredictable and are not diagnosed. .

When the performed procedures include another PERFORM statement, the
sequence of procedures associated with the embedded PERFORM statement
must be totally included in or totally excluded from the performed
procedures ofthe first PERFORM statement. That is, an active PERFORM
statement whose execution point begins within the range of performed
procedures of another active PER FORM statement must not allow control to
pass through the exit point of the other active PER FORM statement. In
addition, two or more such active PERFORM statements must not have a
common exit.

r------------ IBM Extension -------------,

Two active PERFORM statements can have a common exit point.

'--__________ End of IBM Extension __________-'

When control passes to the sequence of procedures by means other than a
PERFORM statement, control passes through the exit point to the next
executable statement as if no PER FORM statement referred to these
procedures.

Chapter 5. Procedure Division 5-121

The range of a PERFORM statement logically consists of all executed

statements resulting from the execution of a PERFORM statement, and ...\

includes the implicit transfer of control to the end of the PERFORM ...",

statement. This range includes all executed statements in Declarative

procedures as well as statements resulting from the transfer of control by

CALL, EX IT without the PROGRAM phrase, GO TO, and PERFORM statements.

The statements in the range of a PERFORM statement need not appear

consecutively in the source program.

Figure 5-22 illustrates valid sequences of execution for PER FORM

statements.

The preceding rules refer to all four formats of the PER FORM statement.

The following sections give rules applying to each individual format.

Format 1

Format 1 is the basic PERFORM statement. The procedure(s) referred to is
executed once, and then control passes to the next executable statement
following the PERFORM statement.

Format 2

Format 2 uses the TIMES phrase. Identifier-l must name an integer item.
The procedure(s) referred to is executed the number of times specified by
the value in identifier-lor integer-I. Control then passes to the next
executable statement following the PERFORM statement. The following rules
apply:

• 	 If identifier-l is zero or a negative number at the time the PERFORM
statement is initiated, control passes to the statement following the
PER FORM statement.

• 	 After the PERFORM statement has been initiated, any reference to
identifier-lor change in the value of identifier-l has no effect in
varying the number of times the procedures are executed.

Format 3

Format 3 uses the UNTI L phrase. The procedure(s) referred to is performed
until the condition specified by the UNTI L phrase is true. Control is then
passed to the next executable statement following the PERFORM statement.

If condition-l is true at the time the PERFORM statement is encountered, the
specified procedure(s) is not executed.

5·122

PERFORM a THRU m x PERFORM a THRU m

L
x

a a

d PERFORM f THRU j d PERFORM f THRU j

f

~
h

m

m f

~

x

a

f

m

PERFORM a THRU m

d PERFORM f THRU j

a

d PERFORM j THRU m

f

m EXIT. ----'-----'

Figure 6-22. Valid PERFORM Statement Execution Sequences

Format 4

Format 4 uses the VARYING phrase. This phrase increments or decrements
one or more identifiers or index-names according to the following rules.
Once the condition(s) specified in the UNT I L phrase is satisfied, control is
passed to the next executable statement following the PERFORM statement.

No matter how many variables are specified, the following rules apply:

• In the VARY I NG/AFTER phrases, when an index-name is specified:

The index-name is initialized and incremented or decremented
according to the rules for the SET statement. For a description of
the SET statement, see "Table Handling" in Chapter 6.

In the associated FROM phrase, an identifier must be described as an
integer and have a positive value; a literal must be a positive
integer.

In the associated BY phrase, an identifier must be described as an
integer; a literal must be a nonzero integer.

Chapter 5. Procedure Division 5-123

L

• In the FROM phrase, when an index-name is specified:

In the associated VARYING/AFTER phrase, an identifier must be
described as an integer. It is initialized as described in the SET
statement.

In the associated BY phrase, an identifier must be described as an
integer and have a nonzero value; a literal must be a nonzero
integer.

• 	 In the BY phrase, identifiers and literals must have a nonzero value.

• 	 Changing the values of identifiers and/or index-names in the VARY lNG,
AFTER, FROM, and BY phrases during execution changes the number of
times the procedures are executed.

The way in which operands are incremented or decremented depends on the
number of variables specified.

Varying One Identifier

In the following discussion, every reference to identifier-n refers equally to
index-name-n except when identifier-n is the object of the BY phrase.

The following actions take place:

1. 	 Identifier-! is set equal to its starting value, identifier-2 or literal-2.

2. 	 Condition-! is evaluated:

a. 	 If it is false, steps 3 through 5 are executed.

b. 	 If it is true, control passes directly to the statement following the
PERFORM statement.

3. 	 Procedure-! through procedure-2 (if specified) are executed once.

4. 	 Identifier-! is augmented by identifier-3 (or literal-3), and condition-! is
evaluated again.

5. 	 Steps 2 through 4 are repeated until condition-! is true.

Figure 5-23 is a flowchart illustrating the logic of the PERFORM statement
when one identifier is varied.

5-124

Execution of
PERFORM
Statement
Begins

Set I dentifier-1
Equal to Its
FROM Value

Exit

False

Execute

Procedu re-1

THRU

Procedure-2

Augment

Identifier-1

With Its
Current BY
Value

Figure 5-23. Format 4 PERFORM Statement Logic - Varying One Identifier

Chapter 5. Procedure Division 5-125

The following example shows a PERFORM statement varying one identifier.
This PER FORM logic is executed 100 times.

1 .. 2 3 4 5 6 7

DATA DIVISION.
WORKING-STORAGE SECTION
01 SUBI 	 PIC 999.
01 TOTAL-HOLD 	 PIC 99 VALUE 57.
01 HOLD-2 	 PIC 99 VALUE 10.
01 HOLD-THE-SUM PIC 99 VALUE ZERO.
01 TABLE-ELEMENT.

03 ELEMENTS-OF-TABLE PIC 9 OCCURS 100 TIMES.
PROCEDURE DIVISION.
100-START-PROCESSING.

* THIS PERFORM LOGIC IS EXECUTED 100 TIMES.
PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT

VARYING SUBI FROM 1 BY 1 UNTIL SUBI GREATER THAN 100
* THIS ADD STATEMENT IS EXECUTED AFTER PERFORM IS DONE.

ADD TOTAL-HOLD HOLD-2 GIVING HOLD-THE-SUM.
DISPLAY "TOTAL OF TWO VARIABLES = " HOLD-THE-SUM

UPON MYTUBE.
PERFORM ANOTHER-WAY-TO-INITIALIZE THRU AWTI-EXIT.

* THE TABLE WILL BE ALL ZEROS AND SHOULD PRINT AS SUCH.
DISPLAY "THE TABLE "TABLE-ELEMENT UPON MYTUBE.
STOP RUN.

SAMPLE-PERFORM.
MOVE ZEROS TO ELEMENTS-OF-TABLE (SUBl)

PERFORM-EXIT .
EXIT.

ANOTHER-WAY-TO-INITIALIZE.
MOVE ZEROS TO TABLE-ELEMENT.

AWTI-EXIT .
EXIT.

Varying Two Identifiers

In the following discussion, every reference to identifier-n refers equally to
index-name-n except when identifier-n is the object of the BY phrase.

The following actions take place:

1. 	 Identifier-l and identifier-4 are set to their initial values, identifier-2 (or
literal-2) and identifier-5 (or literal-5), respectively.

2. 	 Condition-l is evaluated:

a. 	 If it is false, steps 3 through 7 are executed.

b. 	 If it is true, control passes directly to the statement following the
PERFORM statement.

3. 	 Condition-2 is evaluated:

a. 	 If it is false, steps 4 through 6 are executed.

b. 	 If it is true, ideiltifier-4 is set to the current value of identifier-5, and
identifier-l is augmented by identifier-3 (or literal-3), and step 2 is
repeated.

4. 	 Procedure-l through procedure-2 (if specified) are executed once.

5-126

5. Identifier-4 is augmented by identifier-B (or literal-B).

B. Steps 3 through 5 are repeated until condition-2 is true.

7. Steps 2 through 6 are repeated until condition-! is true.

At the end of PER FORM statement execution, identifier-4 contains the current
value of identifier-5. Identifier·! has a value that exceeds the last used
setting by the increment/decrement value (unless condition-! was true at
the beginning of PERFORM statement execution, in which case identifier-!
contains the current value of identifier-2).

Figure 5-24 is a flowchart illustrating the logic of the PERFORM statement
when two identifiers are varied.

Chapter 5. Procedure Division 5-127

Execution of
PERFORM
Statement Begi ns

Identifier-1
Identifier-4
Set to Initial
FROM Value

False

Execute
Procedure-1
THRU
Procedure-2

Augment
Identifier-4
With Its
Current
BY Value

Exit

Set Identifier-4
to I ts Current
FROM Value

Augment
Identifier-1
With Its
Current
BY Value

Figure 5-24. Format 4 PERFORM Statement Logic- Varying Two Identifiers

5-128

The following example shows a PERFORM statement varying two identifiers.
This PERFORM logic is executed 126 times. This program searches a table
and gives a total of female employees .

.. 1 2 ... 3 4 5 6 '" ... 7

DATA DIVISION.
FILE SECTION.
FD PRINTED-REPORT

LABEL RECORDS OMITTED.
01 PRINT-OUT PIC X(132).
FD EMPLOYEE-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS EMPLOYEE-RECORD.

01 EMPLOYEE-RECORD PIC X(90).
WORKING-STORAGE SECTION.
01 RECORDS-IN PIC 9(5) VALUE ZEROS.
01 EOF-SW PIC X VALUE "N".
01 HOLD-INPUT-RECORD.

03 EMPLOYEE-SEX PIC 9.
88 MALE VALUE IS 1.
88 FEMALE VALUE IS 2.

03 EMPLOYEE-RACE PIC 9.
88 RACE-CODES VALUES ARE 1 THRU 7.

03 EMPLOYEE-JOB-CLASS PIC 99.
88 JOB-CLASS VALUES ARE 01 THRU 18.

03 FILLER PIC X(76) VALUE SPACES.
01 EMPLOYEE-TABLE.

03 E-SEX OCCURS 2 T1MES.
05 E-RACE OCCURS 7 TIMES.

07 E-JOB OCCURS 18 TIMES PIC 99.
01 SUB1 PIC 99.
01 SUB2 PIC 99.
01 SUB3 PIC 99.
01 TOTAL-WOMEN PIC 9(5) VALUE ZEROS.
PROCEDURE DIVISION.
100-START-IT.

OPEN INPUT EMPLOYEE-DATA OUTPUT PRINTED-REPORT.
MOVE ZEROS TO EMPLOYEE-TABLE.

200-READ- IT.
READ EMPLOYEE-DATA RECORD INTO HOLD-INPUT-RECORD

AT END MOVE "Y" TO EOF-SW.
ADD 1 TO RECORDS-IN.

300-MAINLINE-LOGIC.
* THE PERFORM STATEMENT USING 2 VARIABLES WILL BE DONE 126
* TIMES

PERFORM LOAD-TABLE UNTIL EOF-SW = "Y".
PERFORM FIND-NUMBER-OF-WOMEN

VARYING SUB2 FROM 1 BY 1 UNTIL SUB2 > 7
AFTER SUB3 FROM 1 BY 1 UNTIL SUB3 > 18.

PERFORM WRITE-REPORT THRU WR-EXIT.
DISPLAY "TOTAL RECORDS IN RECORDS-IN UPON MYTUBE.
STOP RUN.

II

LOAD- TABLE.
MOVE EMPLOYEE-SEX TO SUB1.
MOVE EMPLOYEE-RACE TO SUB2.
MOVE EMPLOYEE-JOB-CLASS TO SUB3.
ADD 1 TO E-JOB (SUB1 SUB2 SUB3).
PERFORM 200-READ-IT.

FIND-NUMBER-OF-WOMEN.
ADD E-JOB (2 SUB2 SUB3) TO TOTAL-WOMEN.

WRITE-REPORT.
MOVE TOTAL-WOMEN TO PRINT-OUT.
WRITE PRINT-OUT.

WR-EXIT'
EXIT.

Chapter 5. Procedure Division 5-129

Varying Three Identifiers

In the following discussion, every reference to identifier-n refers equally to
index-name-n except when identifier-n is the object of the BY phrase.

The actions are the same as for varying two identifiers except that
identifier-7 goes through the complete cycle each time that identifier-4 is
augmented by identifier-6 or literal-6, which in turn goes through a
complete cycle each time identifier-l is varied.

At the end of PERFORM statement execution, identifier-4 and identifier-7
contain the current values of identifier-5 and identifier-8, respectively.
Identifier-l has a value exceeding its last used setting by one
increment/decrement value (unless condition-l was true at the beginning of
PERFORM statement execution, in which case identifier-l contains the
current value of identifier-2).

Figure 5-25 is a flowchart illustrating the logic of the PER FORM statement
when three identifiers are varied.

5-130

Identifier-l
Identifier4
Identifier-7
Set to Initial
FROM Values

False

Execute
Proc:edure-l
THRU
Procedure-2

Augment
Identifier-7
with Its
Current
BY Value

Exit

Set Identifier-7
to Its Current
FROM Value

Augment
Identifier4
with Its
Current
BY Value

Set Identifier4
to Its Current
FROM Value

Augment
Identifier-1
with Its
Current
BY Value

Figure 5-25. Format 4 PERFORM Statement Logic - Varying Three Identifiers

Chapter 5. Procedure Division 5-131

The following example shows a PERFORM statement varying three identifiers.
This PERFORM logic is executed 250 times .

.. 1 2 3 4 5 6 ... 7

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SUB1 	 PIC 99.
01 SUB2 	 PIC 99.
01 SUB3 	 PIC 99.
01 TEST-IT 	 PIC 99 VALUE 00
01 TOTAL-RECS 	 PIC 99 VALUE ZEROS.
01 COMPANY-TABLE.

05 DIVISION-IN OCCURS 10 TIMES.
10 	 DIVISION-NAME PIC X(10).
10 	 DIVISION-NUMBER PIC 9(4).
10 	 SECTION-IN OCCURS 5 TIMES.

15 	 UNIT-IN OCCURS 5 TIMES.
20 	 UNIT-NAME PIC X(5).
20 	 UNIT-NUMBER PIC 9(4).

PROCEDURE DIVISION.
100-START-PROCESSING.

* THIS PERFORM LOGIC IS EXECUTED 250 TIMES
PERFORM ZERO-OUT-BIG-TABLE

VARYING SUB1 FROM 1 BY 1 UNTIL SUB1 > 10
* SUB1 IS VARIED LAST

AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 5
* SUB2 IS VARIED SECOND

AFTER SUB3 FROM 1 BY 1 UNTIL SUB3 > 5.
* SUB3 IS VARIED FIRST

PERFORM ADDRESS-THE-VARIABLES THRU ATV-EXIT.
DISPLAY "VARIABLE TEST-IT = " TEST-IT UPON MYTUBE.
STOP RUN.

ZERO-OUT-BIG-TABLE.
MOVE ZEROS TO UNIT-IN (SUB1 SUB2 SUB3)

ADDRESS-THE-VARIABLES.
IF 	 UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN

OF 	 COMPANY-TABLE (3 4 5) = 0 J
ADD 1 TO TEST-IT.

ATV-EXIT.
EXIT .

Programming Note: The procedures executed by a PERFORM statement are,
in effect, a closed subroutine that can be entered from many other points in
the program.

The Format 4 PERFORM statement is especially useful in table handling. One
Format 4 PERFORM statement can serially search an entire 3-dimensional
table.

Segmentation Information

A PERFORM statement appearing in a permanent segment can have in its
range only one of the following:

• 	 Sections, each of which has a segment number less than 50

• 	 Sections and/or paragraphs wholly contained in a single independent
segment.

A PERFORM statement that appears in an independent segment can have in
its range only one of the following:

• 	 Sections, each of which has a segment number less than 50

5-132

STOP Statement

• 	 Sections and/or paragraphs wholly contained within the same
independent segment as the PERFORM statement.

Control is passed to the performed procedures only once for each execution
of the PERFORM statement.

The STOP statement halts the object program either temporarily or
permanently.

Format

{RUN}
STOP
literal

The literal can be numeric or nonnumeric, and can be any figurative
constant except ALL literal. If the literal is numeric, it must be an
unsigned integer.

When STOP literal is specified, the literal is communicated to the system
operator for batch jobs and to the work station for interactive jobs.
Program execution is suspended. Execution is resumed only after operator
intervention.

The operator response determines whether the run unit continues at the
next executable statement in the sequence, or a STOP RUN is executed.

Operator
Response Action

G (default) Continue at next instruction.

C Terminate execution of the run unit. Escape message
CBE9001 is issued to the caller of the COBOL run unit. For
batch jobs, the job is canceled if the CNLSEV parameter for
the job contains a value that is less than or equal to the
severity of the message.

The output of the STOP literal contains the program-name followed by the
literal.

If the literal cannot be contained in the length of one line of the display
device, the Help key must be used to display the entire literal.

When STOP RUN is specified, execution of the run unit is terminated. If a
STOP RUN statement appears in a sequence of imperative statements, it must
be the last or the only statement in the sequence. All files should be closed
before a STOP RUN statement is executed. If you do not close the files, they
are closed by compiler generated code. An implicit STOP RUN is always
generated after the last statement in the source program.

Chapter 5. Procedure Division 5-133

Programming Note: The STOP literal statement is useful for special
situations when operator intervention is needed during program execution.

Compiler-Directing Statements

ENTER Statement

Compiler-directing statements provide instructions to the COBOL compiler.
The compiler·directing statements are COPY, ENTER, and USE.

Only the ENTER statement is discussed in this chapter. The COPY statement
is discussed under "Source Program Library" in Chapter 6. The US E
statements are discussed under "Declaratives" in this chapter and under
"Debugging Features" in Chapter 6.

The System/38 COBOL compiler does not allow another source language to
be used in COBOL source programs. Therefore, the ENTER statement is not
required or used by the System/38 COBOL compiler, but is only treated as a
comment.

Format

ENTER language-name [routine-name] •

Language-name and routine-name can be any user-defined word. The
compiler expects a valid COBOL statement to immediately follow the ENTER
statement.

J

5-134

Chapter 6. Additional Functions

System/38 COBOL offers several additional functions that are useful to
programmers who are writing more advanced applications. The additional
functions provided by the System/38 COBOL discussed in this chapter are:

Table Handling•
SORT-MERGE•
Source Program Library•

• Segmentation

• Inter-Program Communication

• Debugging

F IPS Flagger.•

TABLE HANDLING

Tables are often used in data processing. A table is a set of logically
consecutive items, each of which has the same data description as the other
items in the set. The items in a table can be described as separate
contiguous items. However, this approach may not be satisfactory for two
reasons. From a documentation standpoint, the homogeneity of the data
items is not apparent; secondly, repetitive coding to reference unique
data-names becomes a severe problem. Thus, a method of data reference is
used which makes it possible to refer to all or to part of one table as an
entity.

Table Handling Concepts

In COBOL, a table is defined with an OCCURS clause in its data description.
The OCCURS clause specifies that the named item is to be repeated as many
times as stated. The item so named is considered a table element, and its
name and description apply to each repetition (or occurrence) of the item.
Because the occurrences are not given unique data-names, reference to a
particular occurrence can be made only by specifying the data-name of the
table element, together with the occurrence number of the desired item
within the element.

Chapter 6. Additional Functions 6-1

Table Definition

The occurrence number is known as a subscript and the technique of
supplying the occurrence number of individual table elements is called
subscripting. A related technique, called indexing, is also available for
table references. Both subscripting and indexing are described in
subsequent sections.

COBOL allows tables in one, two or three dimensions.

To define a one-dimensional table, the user writes an OCCURS clause as part
of the definition of a table element. However, the OCCURS clause must not
appear in a data description entry that has a 01, 66, 77, or 88 level-number.
For example:

01 TABLE-ONE.
05 ELEMENT-ONE OCCURS 3 TIMES

10 ELEMENT-A PIC X(4).
10 ELEMENT-B PIC 9(4).

TABLE-ONE is the group item that contains the table. ELEMENT -ONE is an
element of a one-dimensional table that occurs three times. ELEMENT -A and
ELEMENT- Bare elementary items subordinate to ELEMENT -ONE.

To define a two-dimensional table, a one-dimensional table is defined within
each occurrence of another one-dimensional table. For example:

01 TABLE-TWO.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-A PIC X(4).
15 ELEMENT-B PIC 9(4)

TABLE- TWO is the group item that contains the table. ELEMENT -ONE is an
element of a one-dimensional table that occurs three times. ELEMENT-TWO is
an element of a two-dimensional table that occurs three times within each
occurrence of ELEMENT -ONE. ELEMENT -A and ELEMENT- Bare elementary
items subordinate to ELEMENT-TWO.

To define a three-dimensional table, a one-dimensional table is defined
within each occurrence of another one-dimensional table, which is itself
contained within each occurrence of another one-dimensional table. For
example:

01 TABLE-THREE.
05 ELEMENT-ONE OCCURS 3 TIMES.

10 ELEMENT-TWO OCCURS 3 TIMES.
15 ELEMENT-THREE OCCURS 2 TIMES

PICTURE X (8) .

TABLE- THREE is the group item that contains the table. ELEMENT-ONE is an
element of a one-dimensional table that occurs three times. ELEMENT-TWO is
an element of a two-dimensional table that occurs three times within each
occurrence of ELEMENT -ONE. ELEMENT-THREE is an element of a
three-dimensional table that occurs two times within each occurrence of
ELEMENT- TWO. Figure 6-1 shows the storage layout for TABLE- THREE.

6-2

ELEMENT·THREE
Occurs Two Times

ELEMENT·THREE (1, 1, 1)

ELEMENT·THREE (1, 1,2)

ELEMENT·THREE (1,2,1)

ELEMENT·THREE (1,2,2)

ELEMENT·THREE (1,3,1)

ELEMENT·THREE (1,3,2)

ELf:MENT·THREE (2, 1,1)

ELEMENT·THREE (2, 1,2)

ELEMENT·TH REE (2,2, 1)

ELEMENT·THREE (2, 2, 2)

ELEMENT·THREE (2,3,1)

ELEMENT·THREE (2,3,2)

ELEMENT·THREE (3, 1,1)

ELEMENT·THREE (3, 1,2)

ELEMENT·THREE (3, 2, 1)

ELEMENT·THREE (3,2,2)

ELEMENT·THREE (3,3,1)

ELEMENT·THREE (3,3,2)

Byte Dis
placement

o
8

16

24

32

40

48

56

64

72

80

88

96

104

112

120

128

136

144

ELEMENT-ONE
Occurs Three Times

ELEMENT·ONE (1)

ELEMENT·ONE (2)

ELEMENT·ONE (3)

ELEMENT·TWO
Occurs Three Times

ELEMENT·TWO (1, 1)

ELEMENT·TWO (1,2)

ELEMENT·TWO (1,3)

ELEMENT·TWO (2, 1)

ELEMENT·TWO (2,2)

ELEMENT·TWO (2,3)

ELEMENT·TWO (3, 1)

ELEMENT·TWO (3,2)

ELEMENT·TWO (3,3)

Figure 6-1. Storage Layout for TABLE-THREE

Chapter 6. Additional Functions 6·3

Table References

Whenever the user refers to a table element, or to any item associated with
a table element, the reference must indicate which occurrence is intended.

For a one-dimensional table, the occurrence number of the desired element
gives the complete information. For tables of more than one dimension, an
occurrence number for each dimension must be supplied. In the
three-dimensional table defined in the previous discussion, for example, a
reference to ELEMENT-THREE must supply the occurrence number for
ELEMENT-ONE, ELEMENT-TWO, and ELEMENT-THREE. Either subscripting or
indexing, described in the following paragraphs, can be used to supply the
necessary references.

Subscripting

Subscripting is a method of providing table references through the use of
subscripts. A subscript is an integer value that specifies the occurrence
number of a table element. Subscripts can be used only when reference is
made to an individual item within a table element.

Format

{ data.name., } [{OF} data·name·2] .•. (subscript·' [, subscript·2 [,subscript·3]])INcondition·name

Data-name-! must be the name of a table element. (Note that when
qualification is used, it is data-name-! that is subscripted, not data-name-2.)

The subscript can be represented either by a literal or a data-name.

A literal subscript must be an integer, and it must have a value of one or
greater. The literal can have a positive sign or it may be unsigned.
Negative subscript values are not permitted. For example, the following
are valid literal subscript references to TABLE- THREE:

ELEMENT-THREE (1. 2. 1)

ELEMENT-THREE (2. 2. 1).

A data-name subscript must be described as an elementary numeric integer
data item. A data-name subscript may be qualified; it may not be
subscripted or indexed. For example, assuming that SUB1, SUB2, and SUB3
are all items subordinate to SUBSCRI PT- ITEM, valid data-name subscript
references to TABLE- THREE are:

ELEMENT-THREE (SUB1. SUB2. SUB3)

ELEMENT-THREE IN TABLE-THREE (SUB1 OF
SUBSCRIPT-ITEM. SUB2 OF SUBSCRIPT-ITEM.
SUB3 OF SUBSCRIPT-ITEM)

6-4

The set of one to three subscripts must be written within a balanced pair of
parentheses immediately following data-name-1 or its last qualifier. One or
more spaces can optionally precede the opening parenthesis.

When more than one subscript is specified, each subscript must be
separated from the next by either a space or a comma and a space.

When more than one subscript is required, the subscripts are written in the
order of successively less inclusive data dimensions. For example, in the
table reference ELEMENT-THREE (3, 2, 1), the first value (3) refers to the
occurrence within ELEMENT -ONE, the second value (2) refers to the
occurrence within ELEMENT-TWO, and the third value (1) refers to the
occurrence within ELEMENT-THREE.

The lowest possible subscript value is 1; this value points to the first
occurrence within the table element. The next sequential elements are
pointed to by subscripts with values 2, 3, and so on. The highest
permissible subscript value in any particular table element is the maximum
number of occurrences specified in the OCCURS clause. For example, in
TABLE- THREE the highest possible subscript value for ELEMENT -ONE is 3, for
ELEMENT - TWO is 3, and for ELEMENT-THREE is 2.

If the RANGE option is specified or implied (see "COBOL Command
Statement" or "Process Statement" in Chapter 8), the system ensures that
the subscript value is valid. If the RANGE option is not active, it is your
responsibility to ensure that the subscript value is valid.

Specify the RANGE option for subscripts only. The RANGE option does not
verify that indexes are valid.

The following example shows subscripting using a 3-level table. In this
example, UNIT -NUMBER does not need qualification and could also be
referenced as UNIT-NUMBER (3, 4, 5).

Chapter 6. Additional Functions 6-5

L

1 ... 2 .. 3 4 5 6 7

DATA DIVISION.
WORKING-STORAGE 	 SECTION.
01 SUB1 	 PIC 99.
01 SUB2 	 PIC 99.
01 SUB3 	 PIC 99.
01 TEST-IT 	 PIC 99 VALUE 00
01 TOTAL-RECS 	 PIC 99 VALUE ZEROS.
01 COMPANY-TABLE.

05 DIVISION-IN OCCURS 10 TIMES.
10 DIVISION-NAME 	 PIC X(10).
10 DIVISION-NUMBER PIC 9(4).
10 SECTION-IN OCCURS 5 TIMES.

15 UNIT-IN OCCURS 5 TIMES
20 UNIT-NAME PIC X(5).
20 UNIT-NUMBER PIC 9(4).

PROCEDURE DIVISION.
100-START-PROCESSING.

PERFORM ZERO-OUT-BIG-TABLE
VARYING SUB1 FROM 1 BY 1 UNTIL SUB1 > 10

SUB1 IS VARIED LAST* AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 5
SUB2 IS VARIED SECOND* AFTER SUB3 FROM 1 BY 1 UNTIL SUB3 > 5.
SUB3 IS VARIED FIRST* PERFORM ADDRESS-THE-VARIABLES THRU ATV-EXIT.
DISPLAY "VARIABLE TEST-IT = " TEST-IT UPON MYTUBE.
STOP-RUN.

ZERO-OUT-BIG-TABLE.
{ MOVE ZEROS TO UNIT-IN (SUB1 SUB2 SUB3).

Subscripting < ADDRESS- THE-VARIABLES.
IF UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN{ OF COMPANY-TABLE (3 4 5) = 0

ADD 1 TO TEST-IT.
ATV-EXIT.

EXIT.

Indexing

Indexing is the method of providing table references through the use of
indexes. An index is a compiler-generated storage area used to store table
element occurrence numbers. For System/38 COBOL, the index contains a
value that is an offset into the table.

Format

data-name-, } [{OF}] {indeX-name-, [{±} literal-2J }
{

condition-name 	 IN data-name-2 ... (
- literal-1

• { index-name-2 [{±} literal-4 J} [, {i~deX-name-3 [{±} literal-6] }]])
[

IIteral-3 	 IIteral-5

Data-name-l must be the name of a table element. (Note that when
qualification is used, it is data-name-l that is indexed rather than
data-name-2.)

Each index-name identifies an index to be used in table references. The
index-name is specified through the INDEXED BY phrase in the OCCURS
clause.

6-6

Each index named is a compiler-generated storage area, 2 bytes in length.
Two forms of indexing are provided: direct and relative.

In direct indexing, the index-name is in the form of a subscript. In relative
indexing, the index-name is followed by a space, a + or a -, another space,
and an unsigned numeric literal. The literal is considered to be an
occurrence number, and is converted to an index value before being added
to or subtracted from the index-name index.

To be valid during execution, an index value must correspond to a table
element occurrence number that is not less than one, or greater than the
highest permissible occurrence number. This restriction applies to both
direct and relative indexing.

The RANGE option (see "COBOL Command Statement" or "Process
Statement" in Chapter 8) does not cause the system to verify that index
values are valid. It is your responsibility to ensure valid index values.

An index-name must be initialized through a SET, PERFORM-Format 4, or
SEARCH ALL statement before it is used in a table reference.

One or more index references (direct or relative) can be specified together
with literal subscripts.

Further information on index-names is given later in this chapter in the
description of the INDEXED BY phrase of the OCCURS clause.

Restrictions on Subscripting and Indexing

• 	 A data-name must not be subscripted or indexed when it is being used
as a subscript or qualifier.

• 	 Indexing is not permitted when subscripting is not permitted.

• 	 An index can be modified only by a PERFORM, SEARCH, or SET statement.

• 	 When a literal is used in a subscript, it must be a positive or unsigned
integer.

• 	 When a literal is used in relative indexing, it must be an unsigned
integer.

Table Initialization

A table can contain static values or dynamic values. Static values remain
the same through every execution of the object program. When this is true,
the initial values of table elements can be specified in Working-Storage in
one of two ways:

• 	 The table can be described as a record containing contiguous
subordinate data description entries, each of which contains a VALUE
clause for the initial value. The record is then redescribed through a
REDEFINES entry that contains a subordinate entry with an OCCURS

Chapter 6. Additional Functions 6-7

clause. Because of the OCCURS clause, the subordinate entries of the
redefined entry are repeated. For example:

01 	 TABLE-ONE.
05 	 ELEMENT-ONE PICTURE X VALUE "1".
05 	 ELEMENT-TWO PICTURE X VALUE "2".
05 	 ELEMENT-THREE PICTURE X VALUE "3".
05 	 ELEMENT-FOUR PICTURE X VALUE "4".

01 	 TABLE-TWO REDEFINES TABLE-ONE.
05 	 OCCURS-ELEMENT OCCURS 4 TIMES

PICTURE X

• 	 If the subordinate entries do not require separate handling, the VALUE of
the entire entry can be given in the entry that names the table. The
lower level entries then contain OCCURS clauses, and show the
hierarchical structure of the table. The subordinate entries must not
contain VALU Eclauses. For example:

01 	 TABLE-ONE VALUE "1234".
05 	 TABLE-TWO OCCURS 4 TIMES

PICTURE X

Dynamic values may change during one execution of the object program, or
from one execution to another. If the dynamic values are always the same
at the beginning of object program execution, they can be initialized in the
same manner as static values. If the initial values change from one
execution to the next, then the table can be defined without initial values,
and the changed values can be placed in the table before any table
reference is made.

Tables can be initialized to a common value by a MOVE to the group item
that defines the entire table. For example:

MOVE SPACES TO TABLE-ONE.

However, care should be exercised when this method is used with a table
containing non-display type elements. For example:

01 	 BINARY-TABLE.
05 	 BINARY-COUNT OCCURS 4 TIMES

PIC 9999 COMP-4.

MOVE ZEROS TO BINARY-TABLE.

The MOVE statement does not fill BINARY- TABLE with binary zeros, but with
display-type zeros, hex" FO".

The following example shows two ways of initializing a table with zeros:

6-8

1 2 3 4 . 5 .. 6 .. 7

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SUB 1 PIC 999.
01 TABLE-OF-ELEMENTS.

03 ELEMENTS-OF-TABLE PIC 9 OCCURS 100 TIMES.
PROCEDURE DIVISION.
100-START-PROCESSING.

PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT
VARYING SUBI FROM 1 BY 1 UNTIL SUB1 GREATER THAN 100.

*
PERFORM ANOTHER-WAY-TO-INITIALIZE THRU
THE TABLE WILL BE ALL ZEROS AND SHOULD

AWTI-EXIT.
PRINT AS SUCH.

DISPLAY "THE TABLE "TABLE-OF-ELEMENTS UPON MYTUBE.

\
Initializing

Table to
Zeros

STOP-RUN

{
SAMPLE-PERFORM.

MOVE ZEROS TO ELEMENTS-OF-TABLE (SUB1).
PERFORM-EXIT.

EXIT .
{ ANOTH ER-WAY TO- I N I TI ALI ZE.

MOVE ZEROS TO TABLE-OF-ELEMENTS.
AWTI - EX IT.

EXIT.

Data Division - Table Handling

COBOL Data Division clauses used for Table Handling are the OCCURS
clause and the USAGE IS INDEX clause.

OCCURS Clause

The OCCURS clause eliminates the need to specify separate entries for
repeated data items; it also supplies the information necessary for the use of
subscripts or indexes. The formats of the OCCURS clause are as follows:

Format 1-Fixed Length Tables

OCCURS integer·2 TIMES

[{ASCENDING } []]DESCENDING KEY IS data·name·2 data-name·3 ••• • ••

[INDEXED BY index·name·1 [index.name.2] •••J

Chapter 6. Additional Functions 6-9

Format 2- Variable Length Tables

OCCURS integer-1 TO integer-2 TIMES

DEPENDING ON data-name-l

{ ASCENDING} 	 r:]][DESCENDING KEY IS data-name-2 L data-name-3 . • . • .•

[INDEXED BY index-name-l [index-name-2] •. .]

The subject of an OCCURS clause is the data-name of the data item
containing the OCCURS clause. Except for the OCCURS clause itself, data
description clauses used with the subject apply to each occurrence of the
item described.

Whenever the subject is used in any statement-other than SEARCH or USE
FOR DEBUGGING, or unless it is the object of a REDEFINES clause-the
subject must be subscripted or indexed. When it is subscripted or indexed,
the subject refers to one occurrence within the table element.

Whenever the subject is used in a SEARCH or USE FOR DEBUGGING
statement, or when it is the object of a REDEFINES clause, the subject must
not be subscripted or indexed. When it is not subscripted or indexed, the
subject represents the entire table length.

The table must contain less than 32 768 occurrences, the length of a table
element must be less than 32 K bytes, and the length of the whole table
must be less than 32 K bytes.

All data-names used in the OCCURS clause can be qualified; they cannot be
subscripted or indexed.

All integers must be positive nonzero integers.

The OCCURS clause cannot be specified in a data description entry that:

• 	 Has a level-Ol, level-66, level-77, or level-88 number.

• 	 Describes an item of variable size (an item is of variable size if any
subordinate entry contains an OCCURS DEPENDING ON clause).

• 	 Describes redefined data items. (However, a redefined item can be
subordinate to an item containing an OCCURS clause.) See
"REDEFINES Clause" in Chapter 4.

Fixed Length Tables

When Format 1 is used, integer-2 specifies the exact number of occurrences.

Integer-2 must be greater than zero and less than 32 768.

Because three subscripts or indexes are allowed, three nested levels of the
Format 1 OCCURS clause are allowed.

Variable Length Tables

When the OCCURS DEPENDING ON clause is specified, integer-l represents
the minimum number of occurrences, and integer-2 represents the maximum
number of occurrences. The value of integer-l must be one or greater; it
must also be less than integer-2. Integer-2 must be less than 32 768. The
length of the subject item is fixed; it is only the number of repetitions of the
subject item that is variable.

Data-name-l is the object of the OCCURS DEPEND I NG ON clause. The object
is the data item whose current value represents the current number of
occurrences of the subject item. The object of the OCCURS DEPENDING ON
clause:

• 	 Must be described as a positive integer. That is, if data-name-l is
described as a signed item, at execution time it must contain positive
data.

• 	 Must not occupy any storage position within the range of this table.
That is, the object must not occupy any storage position from the first
character position in this table through the last character position in
this record description entry.

• 	 Must contain a value within the range of integer-l and integer-2,
inclusive.

The value of the object of the OCCURS DEP END I NG ON clause specifies that
part of the table element available to the object program. Items whose
occurrence numbers exceed the value of the object are not available. If,
during execution, the value of the object is reduced, the contents of items
whose occurrence numbers exceed the new value of the object are
unpredictable.

When a group item containing a subordinate OCCURS DEPENDING ON item is
referred to, the current value of the object determines which part of the
table area is used in the operation.

In one record description entry, any entry that contains an OCCURS
DEPENDING ON clause may be followed only by items subordinate to it. The
OCCURS DEPENDING ON clause cannot be specified as subordinate to another
OCCURS clause. However, the Format 1 OCCURS clause may be specified as
subordinate to the OCCU RS 0EP END I NG ON clause; in this case, a table of up
to three dimensions may be specified.

Chapter 6. Additional Functions 6-11

ASCENDING/DESCENDING KEY Phrase

The ASCENDING/DESCENDING KEY phrase specifies that the repeated data is
arranged in ascending or descending key sequence (depending on the
keyword specified) according to the values contained in data-name-2,
data-name-3, and so on. The data-names are listed in their descending order
of significance. The ASCENDING/DESCENDING KEY data items are used by
the SEARCH ALL statement for a search of the table element.

The order is determined by the rules for comparison of operands. (See
"Simple Conditions, Relation Condition" in Chapter 5.)

Data-name-2 must be the name of the subject entry or the name of an entry
subordinate to the subject entry. If data-name-2 names the subject entry,
that entire entry becomes the ASCENDING/DESCENDING KEY and is the only
key that can be specified for this table element. If data-name-2 does not
name the subject entry, then data-name-2, data-name-3, and so on:

• 	 Must be subordinate to the subject of the table entry itself

• 	 Must not be subordinate to any other entry that contains an OCCURS
clause

• 	 Must not themselves contain an OCCURS clause.

The following example illustrates the specification of
ASCENDING/DESCENDING KEY data items: JWORKING-STORAGE SECTION.

01 	 CURRENT-WEEK PICTURE 99.
01 	 TABLE-RECORD.

05 	 EMPLOYEE-TABLE OCCURS 100 TIMES
ASCENDING KEY IS WAGE-RATE
EMPLOYEE-NO INDEXED BY A, B.
10 	 EMPLOYEE-NAME PIC X(20).
10 	 EMPLOYEE-NO PIC 9(6).
10 	 WAGE-RATE PIC 9999V99.
10 	 WEEK-RECORD OCCURS 52 TIMES

ASCENDING KEY IS WEEK-NO
INDEXED BY C.
15 	 WEEK-NO PIC 99.
15 	 AUTHORIZED-ABSENCES PIC 9
15 	 UNAUTHORIZED-ABSENCES PIC 9.
15 	 LATENESSES PIC 9.

The keys for EMPLOYEE- TABLE are subordinate to that entry, and the key for
WEEK-RECORD is subordinate to that subordinate entry.

When the ASCENDING/DESCENDING KEY phrase is specified, the following
rules apply:

• 	 Keys must be listed in decreasing order of significance.

6-12

• 	 A key can have USAGE DISPLAY or COMPUTATIONAL.

,.------------ IBM Extension --------------,

A key can have USAGE COMPUTATIONAL-3 or COMPUTATIONAL-4.

'--_________ End of IBM Extension _________---'

• 	 The user is responsible for ensuring that the data present in the table is
arranged in ascending or descending key sequence according to the
collating sequence in use.

In the preceding example, records in EMPLOYEE- TABLE must be arranged in
ascending order of WAGE-RATE and in ascending order of EMPLOYEE-NO
within WAGE-RATE. Records in Week-Record must be arranged in ascending
order of WEEK-NO. If they are not, SEARCH ALL statement results will be
unpredictable.

INDEXED BY Phrase

The INDEXED BY phrase specifies the indexes that can be used with this
table element. The I NDEX ED BY phrase is required if indexing is used to
refer to this table element.

Each index-name must follow the rules for formation of a user-defined word;
at least one character must be alphabetic. Each index-name specifies an
index to be created by the compiler for use by the program. These
index-names are not data-names and are not identified elsewhere in the
COBOL program; instead, they can be regarded as compiler generated
registers for the use of this object program only. Therefore, they are not
data or part of any data hierarchy; as such, each must be unique. An
INDEX-NAME can only be referenced by a PERFORM, SET, or SEARCH
statement, as a parameter in the US I NG phrase in a CAL L statement, or in a
relational condition comparison.

USAGE IS INDEX Clause

The USAG E IS IN 0EX clause specifies that the data item named has an
index format. Such an item is an index data item.

Format

[USAGE IS] INDEX

An index data item is a 2-byte elementary item that can be used to save
index-name values for future reference. Through the SET statement, an
index data item can be assigned an index-name value. The index-name
value corresponds to the displacement for an occurrence number in the
table, that is (occurrence-number - 1) * entry length.

Chapter 6. Additional Functions 6-13

An index data item can be referred to directly only in a SEARCH statement,
a SET statement, a relation condition, the US I NG phrase of the Procedure
Division header, or the US I NG phrase of the CAL L statement. An index data
item can be part of a group item referred to in a MOV E statement or an
input/output statement.

An index data item saves binary values that represent a table occurrence
number; however, it is not itself necessarily defined as part of any table.
Thus, when it is referenced directly in a SEARCH or SET statement, or
indirectly in a MOV E or input/output statement, there is no conversion of
values when the statement is executed.

The USAGE IS INDEX clause may be written at any level. If a group item is
described with the USAGE IS INDEX clause, it is the elementary items
within the group that are index data items; the group itself is not an index
data item, and the group name cannot be used in SEARCH and SET
statements or in relation conditions. The USAGE clause of an elementary
item cannot contradict the USAGE clause of a group to which the item
belongs.

An index data item cannot be a conditional variable; it cannot have a
subordinate level-88 item.

The SYNCHRONIZED, JUSTI FI ED, PICTURE, BLANK WHEN ZERO, or VALUE
clauses cannot be used to describe group or elementary items described
with the USAGE IS INDEX clause.

Since the format of an index data item is implementation dependent, an...J
index data item should not be defined in the File Section.

Procedure Division - Table Handling

In the Procedure Division, the SEARCH and SET statements can be specified
with indexed tables. There are also special rules involving table handling
elements when they are used in relation conditions.

Relation Conditions

Comparisons involving index-names and/or index data items conform to the
following rules:

• 	 The comparison of two index-names is actually the comparison of the
corresponding occurrence numbers.

• 	 In the comparison of an index-name with a data item (other than an
index data item) or in the comparison of an index-name with a literal,
the occurrence number that corresponds to the value of the index-name
is compared with the data item or literal.

• 	 In the comparison of an index data item with an index-name or another
index data item, the actual values are compared without conversion.

6-14

Results of any other comparison involving an index data item are
undefined.

Figure 6-2 shows permissible comparisons for inde:x:-names and index data
items.

Second Operand

Data-Name Numeric
Index Data (numeric Literal

First Operand Index-name Item integer only) (integer only)

Index-Name Compare Compare Compare Compare
occurrence without occurrence occurrence
numbers conversion number with number with

data-name literal

Index Data Compare Compare Invalid Invalid
Item without without

conversion conversion

Data-Name Compare Invalid Invalid Invalid
(numeric occurrence
integer only) number with

data-name

Numeric Compare Invalid Invalid Invalid
Literal occurrence
(integer only) number with

literal

Figure 6-2. Permissible Comparisons for Index-Names and Index Data Items

SEARCH Statement

The SEARCH statement searches a table for an element that satisfies the
specified condition, and adjusts the associated index to indicate that
element. The formats for the SEARCH statement are:

Chapter 6. Additional Functions 6-15

Format 1

SEARCH identifier·' [VARYING {~dentifier'2 }] [AT END imperative'statement.' . '}
Index·name·' ""1'"

WHEN d"" , {imperative.statement.2}
__con Itlon· NEXT SENTENCE

[WHEN d"·.2 {imperative.statement.3}]
-- con Itlon NEXT SENTENCE

Format 2

SEARCH ALL identifier·' [AT END imperative.statement.']

identifier·3 } }
{ IS EQUAL TO}data.name., { literal·'

IS =
WHEN { arithmetic-expression·'

condltlon'name-'

IS EQUAL TO} {identifier-4 }d 2 {ata-name- literal-2
IS =

arithmetic-expression-2

condition-name-2

{ im perative-statement-2}
NEXT SENTENCE

The Data Division description of identifier-l must contain an OCCURS clause
with the INDEXED BY phrase.

When specified in the SEARCH statement, identifier-l must refer to all
occurrences within the table element; it must not be subscripted or indexed.

Identifier-l can be a data item subordinate to a data item that contains an
OCCURS clause; it can be a part of a two- or three-dimensional table. In this
case, the data description entry must specify an INDEXED BY phrase for
each dimension of the table.

SEARCH statement execution modifies only the value in the index-name
associated with identifier-l (and, if present, of index-name-l or identifier-2).
Therefore, to search an entire two- or three-dimensional table, a SEARCH
statement must be executed for each dimension. Before each execution, SET
statements must be executed to reinitialize the associated index-names.

In the AT END and WHEN phrases, control passes to the next sentence after
the imperative-statement is executed if any of the specified
imperative-statements do not end with a GO TO statement.

6-16

Format 1

Format! SEARCH statement execution causes a serial search to be executed,
beginning at the current index setting.

If the value of the index-name associated with identifier-! is not greater
than the highest possible occurrence number, when the search begins the
following actions take place:

1. 	 The conditions in the WHEN phrases are evaluated in the order they are
written.

2. 	 If none of the conditions are satisfied, the index-name for identifier-! is
incremented to correspond to the next table element, and step! is
repeated.

3. 	 If upon evaluation, one of the WH EN conditions is satisfied, the search
terminates immediately, and the imperative-statement associated with
that condition is executed. The index-name identifies the table element
that satisfied the condition.

4. 	 If the end of the table is reached (that is, the incremented index-name
value is greater than the highest possible occurrence number) without
the WHEN condition begin satisfied, the search terminates as described
in the next paragraph.

If, when the search begins, the value of the index-name associated with
identifier-! is greater than the highest possible occurrence number, the
search immediately ends, and, if specified, the AT END imperative-statement
is executed. If the AT END phrase is omitted, control passes to the next
sentence.

Each WHEN phrase condition can be any condition as described under
"Conditional Expressions" in Chapter 5.

VARYING Index-Name-l Phrase: When the VARYING index-name-!
phrase is omitted, the first (or only) index-name for identifier-! is used for
the search. When the VARY I NG index-name-! phrase is specified, one of the
following actions takes place:

• 	 If index-name-! is an index for identifier-I, this index is used for the
search. Otherwise, the first (or only) index-name is used.

• 	 If index-name-! is an index for another table element, then the first (or
only) index-name for identifier-! is used for the search; the occurrence
number represented by index-name-I is incremented by the same amount
as the search index-name and at the same time.

Chapter 6. Additional Functions 6-17

VARYING Identifier-2 Phrase: When this phrase is specified, the first
(or only) index-name for identifier-l is used for the search.

Identifier-2 must be either an index data item or an elementary integer
item. During the search, one of the following actions takes place:

• 	 If identifier-2 is an index data item, then whenever the search index is
incremented, the specified index item is simultaneously incremented by
the same amount.

• 	 If identifier-2 is an elementary integer item, then whenever the search
index is incremented, the specified data item is simultaneously
incremented by 1.

Figure 6-3 is a flowchart of a Format 1 SEARCH operation containing two
WHEN phrases.

Format 2

Format 2 SEARCH ALL statement execution causes a binary search to be
executed. The search index need not be initialized by SET statements,
because its setting is varied during the search operation. The index used is
always the index that is associated with the first index-name specified in
the OCCURS clause.

If the WHEN phrase cannot be satisfied for any setting of the index within
this range, the search is unsuccessful. If the AT EN D phrase is specified, the
AT END imperative-statement is executed. If the AT END phrase is not
specified, control is passed to the next sentence. In either case, the final
setting of the index is not predictable.

If the WHEN phrase can be satisfied, control passes to imperative-statement-2
and the index contains a value indicating an occurrence that allows the
WH EN condition(s) to be satisfied.

WHEN Condition-Name Phrase: If the WH EN condition-name phrase is
specified, each condition-name specified must have only a single value, and
each must be associated with an ASCENDI NG/DESCENDING KEY identifier for
this table element.

WHEN Relation-Condition Phrase: If WH EN relation-condition is
specified, the following considerations apply:

• 	 Data-name-l or data-name-2 must specify an ASCENDING/DESCENDING
KEY data item in the identifier-l table element and must be indexed by
the first identifier-l index-name, along with other indexes or literals as
required. Each data-name may be qualified.

• 	 Identifier-3 and identifier-4 must not be an ASCENDING/DESCENDING KEY
data item for identifier-lor an item that is indexed by the first
index-name for identifier-I.

• 	 Literal-lor literal-2 must be a positive or unsigned numeric integer.

6-18

Execution of
SEARCH Begins

GT AT END** Imperative
Statement-1

True WHEN Condition-1 Imperative
Statement-2

True WHEN Condition-2** Imperative
Statement-3

False

Increment Index-·

Name for

Identifier-1

(index-name-1

if applicable)

Increment Index

Name-1 (for

another table)

or Identifier-2

* Index setting equals highest permissible occurrence number.

** These operations are included only when called for in the statement.

*** 	Each of these control transfers is to the next sentence unless the
imperative~tatement ends with a GO TO statement.

Figure 6-3_ Format 1 SEARCH with Two WHEN Phrases

Chapter 6. Additional Functions 6-19

• 	 Arithmetic-expression-l or arithmetic-expression-2 may be any of those
defined under "Arithmetic Expressions" in Chapter 5 with the following \
restriction: any identifier in the arithmetic-expression must not be an ..."
ASCENDING/DESCENDING KEY data item for identifier-lor an item that is
indexed by the first index-name for identifier-I.

• 	 When an ASCENDING/DESCENDING KEY data item is specified either
explicitly or implicitly in the WHEN phrase, then all preceding
ASCENDING/DESCENDING KEY data-names for identifier-l must also be
specified.

The results of a SEARCH ALL operation are predictable only when both of
the following apply:

• 	 The data in the table is ordered in ascending or descending key
sequence.

• 	 The contents of the ASCENDING/DESCENDING keys specified in the WHEN
phrase provide a unique table reference.

Programming Notes

Index data items cannot be used as subscripts or indexes, because of the
restrictions on direct reference to them. The use of a direct indexing
reference together with a relative indexing reference for the same
index-name allows reference to two different occurrences of a table element
for comparison purposes.

When the object of the VARYING phrase is an index-name for another table
element, one Format 1 SEARCH statement looks at two table elements at
once.

One Format 4 PERFORM statement can search an entire multidimensional
table.

To ensure correct execution of a PERFORM or SEARCH statement for a
variable length table, the user must make sure that the object of the OCCURS
DEPENDING ON clause (data-name-I) contains a value that correctly specifies
the current length of the table.

SEARCH Example

The following example searches an inventory table for items that match
those from input data. The key is ITEM-NUMBER.

6-20

.. 1 2 ... 3 4 . .. 5 ... 6 7

DATA DIVISION.
FILE SECTION.
FD SALES-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS SALES-REPORTS.

01 SALES-REPORTS PIC X(80).
FD PRINTED-REPORT

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 132 CHARACTERS
LABEL RECORDS OMITTED
DATA RECORD IS PRINTER-OUTPUT.

01 PRINTER-OUTPUT PIC X(132).
FD INVENTORY-DATA

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 40 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS INVENTORY-RECORD.

01 INVENTORY-RECORD.
03 I-NUMBER PIC 9(4).
03 INV-ID PIC X(26).
03 I-COST PIC 9(8)V99.

WORKING-STORAGE SECTION.
01 EOF-SW PIC X VALUE "N".
01 EOF-SW2 PIC X VALUE "N".
01 SUB1 PIC 99.
01 RECORDS-NOT-FOUND PIC 9(5) VALUE ZEROS.
01 TOTAL-COSTS PIC 9 (10) VALUE ZEROS.
01 HOLD-INPUT-DATA.

03 INVENTORY-NUMBER PIC 9999.
03 PURCHASE-COST PIC 9(4)V99.
03 PURCHASE-DATE PIC 9(6).
03 FILLER PIC X(64).

01 PRINTER-SPECS.
03 PRINT-LINE.

05 OUTPUT-ITEM-NUMBER PIC ZZZ9.
05 FILLER PIC X(48) VALUE SPACES.
05 TOTAL-COSTS-O PIC $(8).99.

01 PRODUCT-TABLE.
05 INVENTORY-NUMBERS OCCURS 50 TIMES

ASCENDING KEY ITEM-NUMBER
INDEXED BY INDEX-I.

07 ITEM-NUMBER PIC 9(4).
07 ITEM-DESCRIPTION PIC X(26).
07 ITEM-COST PIC 9(8)V99.

Chapter 6. Additional Functions 6-21

I ... 2 3 4 5 6 ... 7

PROCEDURE DIVISION. J
IOO-START-IT. ,

OPEN INPUT SALES-DATA INVENTORY-DATA OUTPUT PRINTED-REPORT.
MOVE HIGH-VALUES TO PRODUCT-TABLE.
PERFORM READ-INVENTORY-DATA.

LOAD-TABLE-ROUTINE.
PERFORM LOAD-IT VARYING SUBI FROM I BY I UNTIL SUBI > 50

OR EOF-SW2 = "Y".
PERFORM 110-READ-IT.

200-MAIN-ROUTINE.
PERFORM PROCESS-DATA UNTIL EOF-SW = "Y".
MOVE TOTAL-COSTS TO TOTAL-COSTS-O.
PERFORM WRITE-REPORT THRU WRITE-REPORT-EXIT.
DISPLAY "RECORDS NOT FOUND - " RECORDS-NOT-FOUND

UPON MYTUBE.
STOP RUN.

PROCESS-DATA.
SEARCH ALL INVENTORY-NUMBERS

AT END PERFORM KEY-NOT-FOUND THRU NOT-FOUND-EXIT
WHEN ITEM-NUMBER (INDEX-I) = INVENTORY-NUMBER
MOVE ITEM-NUMBER (INDEX-I) TO OUTPUT-ITEM-NUMBER
MOVE ITEM-COST (INDEX-I) TO TOTAL-COSTS-O
ADD ITEM-COST (INDEX-I) TO TOTAL-COSTS
PERFORM WRITE-REPORT THRU WRITE-REPORT-EXIT.

PERFORM 110-READ-IT.
KEY-NOT-FOUND.

ADD I TO RECORDS-NOT-FOUND.
NOT - FOUND- EX IT .

EXIT .
LOAD- IT.

MOVE INVENTORY-RECORD TO INVENTORY-NUMBERS (SUBI).
PERFORM READ-INVENTORY-DATA.

WRITE-REPORT.
WRITE PRINTER-OUTPUT FROM PRINTER-SPECS.

WRITE-REPORT-EXIT. J".
EXIT .

*********END OF SAMPLE SEARCH PROGRAM********
READ-INVENTORY-DATA.

READ INVENTORY-DATA
AT END MOVE "Y" TO EOF-SW2.

llO-READ-IT .
READ SALES-DATA INTO HOLD-INPUT-DATA

AT END MOVE "Y" TO EOF-SW.

SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names to values associated with table elements.
The SET statement may be used to transfer values between index-names and
other elementary data items. The formats of the SET statement when it is
used for table handling are described here. For information on the other
formats allowed for SET statements, see "SET Statement" in Chapter 5.

6-22

Format a

identifier-3 }
SET {identifier-, [, identifier-2] .

:} TO { ~ndex-name-3
- index-name-' [, index-name-2] .

Integer-'

Format 4

{ UP BY } {identifier-4}SET index-name-4 [,index-name-5]
. •• DOWN BY integer-2

Index-names are related to a given table through the INDEXED BY phrase of
the OCCURS clause; they are not further defined in the program.

When the sending and receiving fields in a SET statement share part of
their storage (that is, the operands overlap), the result of the execution of
such a SET statement is undefined.

Format 3

When this form of the SET statement is executed, the value of the sending
field replaces (with or without conversion) the current value of the
receiving field_

The receiving field can be specified as follows:

• 	 Index-name-I, index-name-2, and so on.

• 	 Identifier-I, identifier-2, and so on_ The identifiers must name either
index data items or elementary numeric integer items.

The sending field can be specified as follows:

• 	 Identifier-3, which must name either an index data item or an
elementary numeric integer item

• 	 Index-name-3, whose value before the "SET" statement is executed must
correspond to an occurrence number of its associated table

• 	 Integer-I, which must be a positive integer.

Figure 6-4 shows valid combinations of sending and receiving fields in a
Format 3 "SET" statement_

Execution of the Format 3 "SET" statement depends upon the type of
receiving field, as follows:

Chapter 6. Additional Functions 6-23

• 	 Index-name receiving fields (index-name-I, index-name-2, and so on)
with one exception are converted to a displacement value representing
the occurrence number indicated by the sending field. To be valid, the
resulting index-name value must correspond to an occurrence number
in its associated table element. For the one exception, when the sending
field is an index data item, the value in the index data item is placed in
the index-name without change.

• 	 Index data item receiving fields (identifier-I, identifier-2, and so on) are
set equal to the contents of the sending field (which must be either an
index-name or an index data item); no conversion takes place. A
numeric integer or literal sending field must not be specified.

• 	 Integer data item receiving fields (identifier-I, identifier-2, and so on)
are set to the occurrence number associated with the sending field,
which must be an index-name. An integer data item, an index data
item, or a literal sending field must not be specified.

Receiving fields are acted upon in the left-to-right order they are specified.

Any subscripting or indexing associated with an identifier receiving field is

evaluated immediately before the field is acted upon.

The value used for the sending field is its value at the beginning of SET

statement execution.

The value for an index-name after execution of a SEARCH or PERFORM

statement can be undefined; therefore, a Format 3 SET statement should be ...~

used to reinitialize such index-names before other table handling operations,

are attempted.

Format 4

When this form of the SET statement is executed, the value of the receiving
field is incremented (UP BY) or decremented (DOWN BY) by the value in the
sending field.

The receiving field can be specified by index-name-4, index-name-5, and so
on. These index-name values must correspond to an occurrence number in
the associated table both before and after the SET statement execution.

The sending field can be specified as identifier-4, which must be an
elementary integer data item, or as integer-2, which must be an integer.

When the Format 4 SET statement is executed, the contents of the receiving
field are incremented (UP BY) or decremented (DOWN BY) by the value of
identifier-4 or integer-2. Receiving fields are acted upon in the left-to-right
order they are specified. The value of the sending field at the beginning of
SET statement execution is used for all receiving fields.

6-24

Receiving Field

Sending Field Index-Name Index Data Item Integer Data Item

Index-name Valid Valid' Valid

Index data item Valid' Valid

Integer data item Valid

Integer literal Valid

, No conversion takes place.

Figure 6-4. Sending and Receiving Fields for Format 3 SET Statements

SORT/MERGE

Arranging records in a particular order or sequence is a common
requirement in data processing; such record ordering can be accomplished
using sort or merge operations. While both operations accomplish record
ordering, the functions and capabilities of a sort and a merge are different.

A sort produces an ordered file from one or more input files that can be
completely unordered as to sort sequence. Thus, the sort operation must
accept unordered input and produce ordered output.

A merge produces an ordered file from two or more input files, each of
which is already ordered in the merge sequence.

r------------ IBM Extension ------------,

Input files need not be sequenced prior to a merge operation.

1.-..._________ End of IBM Extension _________--'

COBOL has special language features that assist in sort and merge
operations so that the user need not program these operations in detail.

Sort/Merge Concepts

Sorting and merging have always constituted a large percentage of the
workload in business data processing. COBOL standardizes the
specification of these operations, making them easy to specify and modify.
In addition, the COBOL user can alternatively use the System/38 logical file
support to perform these operations as separate command language (CL)
commands. The COBOL language supports these operations through the
file-control entry in the Environment Division, the SD

Chapter 6. Additional Functions 6-25

Sort Concepts

(sort-merge-file-description) entry in the Data Division, and the SORT and
MERGE statements in the Procedure Division. J
The sort or merge file is described through the file-control entry in the

Environment Division, and the SD entry in the Data Division. The sort or

merge file is the working file used during the sort or merge; it can be

considered an internal file. As such, blocking and internal storage

allocation for this file are not under the control of the COBOL user.

However, a sort or merge file, like any file, is a set of records, and a

sort-merge file description can be considered a particular type of file

description.

The sort-merge file is processed through a Procedure Division SORT or

MERGE statement. The statement specifies the key field(s) within the record

upon which the sort or merge is to be arranged. Keys can be specified as

ascending or descending. When more than one key is specified, a mixture

of the two sequences is allowed. The sequence of sorted or merged records

conforms to the mixture of keys specified.

Through the SORT statement, the COBOL user has access to input

procedures (used before sorting) and output procedures (used after sorting)

that can add, delete, alter, edit, or otherwise modify the records in the input

and/or output files. A COBOL program can contain any number of sorts,

each with its own independent input and/or output procedures. During ..\...

SORT statement execution, these procedures are automatically executed at""

the specified point in processing; thus, extra passes through the sort file are

avoided.

A COBOL program containing a sort is usually organized so that one or

more input files are read and operated on by an input procedure. Within the

input procedure a RELEASE statement (analogous to the WRITE statement)

places a record in the sort file. That is, when input procedure execution is

completed, a sort file has been created by placing records one at a time into

the sort file through the REL EAS Estatement. If the user does not wish to

modify the records before the sorting operation begins, the SORT statement

US I NG phrase releases the unmodified records to the sort file.

After all the input records have been placed in the sort file, the sorting

operation is executed. This operation arranges the entire set of sort file

records in the sequence specified by the key(s).

After completion of the sorting operation, sorted records can be made

available from the sort file, one at a time, through a RETURN statement for

modification in an output procedure. If the user does not wish to modify

the sorted records, the SORT statement GIVING option names the sorted

output file.

6-26

Merge Concepts

Through the MERGE statement, the COBOL user has access to output
procedures (used after merging) that can modify the records in the output
file. The COBOL program can contain any number of merge operations,
each with its own independent output procedures. During MERGE statement
execution, these procedures are automatically executed at the specified
point in processing.

The merge operation compares keys within the records of the input files
and arranges the records within the merged file in the sequence specified by
the key(s).

Merged records can then be made available, one at a time, through a
RETURN statement for modification in an output procedure. If the user does
not wish to modify the merged records, the MERGE statement GIVING phrase
names the merged output file.

Environment Division - SORT/MERGE

In the Environment Division, the user must write file-control entries for
each file used as input to or output from a sort or merge operation. The
user must also write a file-control entry for each unique sort-file or
merge-file.

<., File-Control Paragraph

See "FILE-CONTROL Paragraph" in Chapter 3 for a description of input
and output files of a sort or merge operation.

I-O-Control Paragraph

In the I-O-Control paragraph, the SAME SORT AREA or SAME SORT -MERGE
AREA clause is used.

Format

RECORD]]
[SAME [SORT AREA FOR file-name-2 {, file-name-3} • •• •

SORT-MERGE

The SAME SORT AREA and SAME SORT -MERGE AREA clauses are
syntax-checked, but are treated as documentation.

Restrictions on the specification of SAME RECORD AREA clause are given
under "I-O-Control Paragraph" in Chapter 3.

Chapter 6. Additional Functions 6-27

Data Division - SORT/MERGE

In the File Section, the user must write an FD entry for each file that is
input to or output from the sort/merge operation, as well as a record
description entry. In addition, there must be an SD
(sort-merge-file-description) entry for each sort or merge file.

Format

[SO file·name

[RECORD CONTAINS [integer-' TO] integer-2 CHARACTERS]

[DATA {~~~~~~~~RE}data.name-' [,data-name-2] .• .J .
{record-description-entry} ..•]

The level indicator SD identifies the beginning of the SD entry, and must
precede the file-name. The file-name must specify a sort or merge file.

The clauses that follow file-name are optional, and their order of
appearance is not significant. Both the RECORD CONTAINS clause and the
DATA RECORDS clause are described in Chapter 4.

One or more record description entries must follow the SD entry. However,
no input/output statements may be executed for this file.

The following example illustrates the File Section entries needed for a sort
or merge file:

SD SORT-FILE.
01 SORT-RECORD PICTURE X(80).

Procedure Division - SORT/MERGE

The Procedure Division contains MERGE and SORT statements to describe the
merge and sort operations and, optionally, sort input procedures and/or
sort/merge output procedures. A sort input procedure must contain a
RELEASE statement that makes each record available to the sorting
operation. A sort/merge output procedure must contain a RETURN statement
that makes a sorted/merged record available to the output procedure.

The Procedure Division can contain more than one SORT and/or MERGE
statement. These statements can appear anywhere except in the
Declaratives portion or in the sort input or sort/merge output procedures.

Files specified in the USING and GIVING phrases of the SORT and MERGE
statements must be described explicitly or implicitly in their file-control
entries as having sequential organization.

6-28

US E procedures are not executed if they reference files specified on a US I NG
or GIVING phrase ofa SORT or MERGE statement. If these files are also
referenced in an 1-0 statement within an output procedure or a SORT input
procedure, a USE procedure for the file specified is invoked when necessary.

MERGE Statement

The MERGE statement combines two or more identically sequenced files that
have already been sorted in an identical ascending/descending key sequence
on one or more keys. This statement makes records available in merged
order to an output procedure or output file.

Format

. {ASCENDING} []MERGE flle-name-' ON DESCENDING KEY data-name-' ,data-name-2 •

{ ASCENDING} [][ON DESCENDING KEY data-name-3 ,data-name-4 • .J .
[COLLATING SEQUENCE IS alphabet-name]

USI NG file-name-2, file-name-3 [, file-name-4J .

. [{THROUGH}.sectlon-name-2OUTPUT PROCEDURE IS sectlon-name-' THRU J}
{

GIVING file-name-5

File-name-l is the name given in the SD entry that describes the records
being merged. No file-name may be repeated in the MERGE statement.

When the MERGE statement is executed, all records contained in file-name-2,
file-name-3, and so on, are accepted by the sort/merge program and then
merged according to the key(s) specified. These files must not be open
when the MERGE statement is executed; they are automatically opened and
closed by the MERGE operation, and all implicit functions are performed.
The files are closed as if the CLOSE statement were written without any
optional processing.

See "MERGE Statement and SORT Statement Phrases" later in this chapter
for details about the phrases of the MERGE statement.

SORT Statement

The SORT statement accepts records from one or more files, sorts them
according to the specified key(s), and makes records available either
through an output procedure or in an output file.

Chapter 6_ Additional Functions 6-29

Format J
.SORTflle-name-l0N {ASCENDING} KEYdata-name-' data-name.~DESCENDING 	 ~

[ON {~~~~~~~~~G } KEY data-name-3 [, data-name-.ij ..•] .

[COLLATING SEQUENCE IS alphabet-name]

{ 	
J}. [{THROUGH}.INPUT PROCEDURE IS sectlon-name-' THRU sectlon-name-2

USING file-name-2 [. file-name-3] •• _

t
 . [{THROUGH}
 ll}OUTPUT PROCEDURE IS sectlon-name-3 THRU section-name-~

GIVING file-name-4

Fide-name-I is the name given in the SD entry that describes the records
being sorted.

When the SORT statement is executed, all records contained in file-name-2,
file-name-3, and so on are accepted by the sort/merge program and then
sorted according to the key(s) specified. These input files must not be open
at the time the SORT statement is executed; they are automatically opened
and closed by the SORT operation, and all implicit functions are performed.
The files are closed as if the CLOSE statement were written without any
optional processing.

MERGE Statement and SORT Statement Phrases

Most SORT /MERGE statement phrases apply to both the SORT and the MERGE
statements. The common SORT/MERGE statement phrases are the
ASCENDING/DESCENDING KEY phrase, the COLLATING SEQUENCE phrase, the
USING phrase, the GIVING phrase, and the OUTPUT PROCEDURE phrase. The
INPUT PROCEDURE phrase applies only to the SORT statements.

ASCENDING/DESCENDING KEY Phrase

This phrase specifies that records are to be processed in an ascending or
descending key sequence based on the specified sort/merge keys.

Each data-name specifies a KEY data item on which the sort-merge will be
based. Each such data-name must identify a data item in a record
associated with file-name-I. The following rules apply:

• 	 A specific KEY data item must be physically located in the same position
and have the same data format in each input file; however, it need not
have the same data-name.

6-30

http:data-name-.ij

• 	 If file-name-l has more than one record description, then the KEY data
items need be described in only one of the record descriptions.

• 	 KEY data items must be fixed-length items.

• 	 KEY data items must not contain an OCCURS clause or be subordinate to
an item that contains an OCCURS clause.

• 	 The total length (in bytes) of the KEY data items must not exceed 248.

• 	 KEY data items can be qualified; they cannot be subscripted or indexed.

The KEY data items are listed in order of decreasing significance, regardless
of how they are divided into KEY phrases. Using the SORT format as an
example, data-name-l is the most significant key and records are processed
in ascending or descending order on that key; data-name-2 is the next most
significant key and within data-name-l records are processed on
data-name-2 in ascending or descending order. Within data-name-2, records
are processed on data-name-3 in ascending or descending order; within
data-name-3, records are processed on data-name-4 in ascending or
descending key sequence.

The direction of the sort/merge operation depends on the specification of
the ASCENDING or DESCENDING keywords as follows:

• 	 When ASCENDING is specified, the sequence is from the lowest key value
to the highest key value.

• 	 When DESCENDING is specified, the sequence is from the highest key
value to the lowest.

• 	 If the KEY data item is alphabetic, alphanumeric, alphanumeric edited,
or numeric edited, the sequence of key values depends on the collating
sequence used.

• 	 The key comparisons are performed according to the rules for
comparison of operands in a relation condition. See "Simple
Conditions, Relation Condition" in Chapter 5.

COLLATING SEQUENCE Phrase

This phrase specifies the collating sequence to be used in nonnumeric
comparisons for the KEY data items in this sort/merge operation.

Alphabet-name must be specified in the SPECIAL-NAMES paragraph
alphabet-name clause. Anyone of the alphabet-name clause phrases can be
specified with the following results:

• 	 When NAT I VE is specified, the EBCDIC collating sequence is used for all
nonnumeric comparisons.

• 	 When STANDARD-l is specified, the ASCII collating sequence is used for
all nonnumeric comparisons.

Chapter 6. Additional Functions 6-31

• 	 When the literal phrase is specified, the collating sequence established
by the specification of literals in the alphabet-name clause is used for .. \ .
all nonnumeric comparisons. ...""

When the COLLATING SEQUENCE phrase is omitted, the PROGRAM COLLATING
SEQUENCE clause (if specified) in the OBJECT -COMPUTER paragraph specifies
the collating sequence to be used. When both the COLLATING SEQUENCE
phrase and the PROGRAM COLLATING SEQUENCE clause are omitted, the
EBCDIC collating sequence is used.

USING Phrase

When the USING phrase is specified, all input files are transferred
automatically to file-name-l. At the time the SORT or MERGE statement is
executed, these files must not be open; the COBOL compiler opens, reads,
makes records available, and closes these files automatically. If
EXCEPTION/ERROR procedures are specified for these files, the COBOL
compiler makes the necessary linkage to these procedures.

The input files must have sequential organization.

All input files must be described in an FD entry in the Data Division, and
their record descriptions must describe records of the same size as the
record described for the sort or merge file. If the elementary items that
make up these records are not identical, the user must describe the input
records as having the same number of character positions as the sort
record.

J
GIVING Phrase

When the G I VI NG phrase is specified, all the sorted or merged records in
file-name-l are automatically transferred to the output file (MERGE
file-name-5 or SORT file-name-4). At the time the SORT or MERGE statement
is executed, this file must not be open; the COBOL compiler opens, writes,
and closes the output file automatically. The records overwrite the
previous contents, if any, of the file.

6-32

IBM Extension

If file-name-l is a logical data base file, the records are added to the end of
the file.

L---_________ End of IBM Extension _________--'

If EXCEPTION/ERROR procedures are specified for the output file, the COBOL
compiler makes the necessary linkage to these procedures.

The output file must have sequential organization.

The output file must be described in an FD entry in the Data Division, and
its record description(s) must describe records of the same size as the record
described for the sort or merge file. If the elementary items that make up
these records are not identical, the user must describe the output record as
having the same number of character positions as the sort or merge record.

SORT INPUT PROCEDURE Phrase

This phrase specifies the section-name(s) of a procedure that is to modify
input records before the sorting operation begins.

Section-name-l specifies the first (or only) section in the input procedure.
Section-name-2 (when specified) identifies the last section of the input
procedure.

The input procedure must consist of one or more sections that are written
consecutively and do not form a part of any output procedure. The input
procedure must include at least one REL EAS E statement in order to transfer
records to the sort-file.

Control must not be passed to the input procedure except when a related
SORT statement is being executed because the RELEASE statement in the
input procedure has no meaning unless it is controlled by a SORT
statement. The input procedure can include any procedures needed to
select, create, or modify records. The following restrictions apply to the
procedural statements within an input procedure:

• 	 The input procedure must not contain any SORT or MERGE statements.

• 	 The input procedure must not contain any transfers of control to points
outside the input procedure. The execution of a CALL statement to
another program, or the execution of US E Declaratives is not considered
a transfer of control outside an input procedure. Hence, they are
allowed to be activated within these procedures.

Chapter 6. Additional Functions 6-33

IBM Extension

J
• 	 If control transfers via a PERFORM statement to a point outside the input

procedure, a conditional level message is issued but compilation
continues.

1-.._________ End of IBM Extension _________---'

• 	 The remainder of the Procedure Division must not contain any transfers
of control to points inside the input procedure with the exception of the
return of control from a Declaratives Section.

...------------- IBM Extension -------------,

• 	 If control transfers via a PERFORM statement to a point inside the input
procedure from elsewhere in the Procedure Division, a conditional level
message is issued but the compilation continues.

1-.._________ End of IBM Extension _________---1

If an input procedure is specified, control is passed to the input procedure
when the SORT program input phase is ready to receive the first record.
The compiler inserts a return mechanism at the end of the last section of
the input procedure and when control passes the last statement in the input
procedure, the records that have been released to file-name-! are sorted.
The RELEASE statement transfers records from the Input Procedure to the
sort file, which is then used in the input phase of the sort operation.

SORT/MERGE OUTPUT PROCEDURE Phrase

This phrase specifies the section-name(s) of a procedure that is to modify
output records from the sort or merge operation.

Section-name-3 specifies the first (or only) section in the output procedure.
Section-name-4 (when specified) identifies the last section of the output
procedure.

The output procedure must consist of one or more sections that are written
consecutively and are not part of any input procedure. The output
procedure must include at least one RETURN statement in order to make
sorted/merged records available for processing.

When all the records are sorted/merged, control is passed to the output
procedure. The RETURN statement in the output procedure is a request for
the next record.

Control must not be passed to the output procedure except when a related
SORT or MERGE statement is being executed because RETURN statements in
the output procedure have no meaning unless they are controlled by a SORT
or MERGE statement. The output procedure can consist of any procedures
needed to select, modify, or copy the records that are being returned one at

\

,..".,

.'"

..",

6-34

a time from the sort/merge file. There are three restrictions on the
procedural statements within the output procedure:

• 	 The output procedure must not contain any SORT or MERGE statements.

• 	 The output procedure must not contain any transfers of control to
points outside the output procedure. The execution of a CALL statement
to another program, or the execution of US E Declaratives are not
considered as transfers of control outside an output procedure. Hence,
they are allowed to be activated within these procedures .

.------------- IBM Extension ------------,

• 	 If control transfers via a PERFORM statement to a point outside the
output procedure, a conditional level message is issued but compilation
continues.

'--_________ End of IBM Extension _________--'

• 	 The remainder of the Procedure Division must not contain any transfers
of control to points inside the output procedure with the exception of
the return of control from a Declaratives Section.

IBM Extension

• 	 If control transfers via a PER FORM statement to a point inside the input
procedure from elsewhere in the Procedure Division, a conditional level
message is issued but the compilation continues.

'--_________ End of IBM Extension _________--'

When an output procedure is specified, control passes to it after the
sort/merge file (file-name-l) has been placed in sequence by the sort/merge
operation. The COBOL compiler inserts a return mechanism at the end of
the last section in the output procedure; when control is passed to the last
statement in the output procedure, the return mechanism terminates the
sort or merge, and passes control to the next executable statement after the
SORT or MERGE statement.

SORT or MERGE INPUT/OUTPUT PROCEDURE Control

The I NPUT or OUTPUT PROCEDURE phrases function in a manner similar to
Format 1 of the PERFORM statement (the simple PERFORM). For example,
naming a section in an OUTPUT PROCEDURE phrase causes execution of that
section during the sort/merge operation to proceed as if that section were
named in a PERFORM statement. As with the PERFORM statement, execution
of the section is terminated after execution of its last statement. The last
statement in Input and Output Procedures can be the EX I T statement. This
is useful for documentation purposes.

Chapter 6. Additional Functions 6-35

RELEASE Statement (Sort Function Only)

The REL EAS Estatement transfers records from an input/output area to the
initial phase of a sort operation. This statement is similar to the WR ITE
statement.

The RELEASE statement can be specified only within an input procedure
associated with a SORT statement. Within an input procedure at least one
REL EAS Estatement must be specified.

When the RELEASE statement is executed, the current contents of
record-name are placed in the sort file; that is, made available to the initial
phase of the sort operation.

Format

RELEASE record-name [FROM identifier]

Record-name must specify a record associated with the SO entry for
file-name-!. Record-name can be qualified.

When the FROM identifier phrase is specified, the REL EAS Estatement is
equivalent to the statement MOV E identifier to record-name followed by the
statement RELEASE record-name. Moving takes place according to the rules
for the MOVE statement without the CORRESPONDING phrase.

Identifier and record-name must not refer to the same storage area.

After the REL EAS Estatement is executed, the information in record-name is
no longer available unless file-name-! is specified in a SAME RECORD AREA
clause, in which case record-name is still available as a record of the other
files named in that clause. When the FROM identifier phrase is specified,
the information is still available in identifier.

When control passes from the input procedure, the sort file consists of all
those records placed in it by execution of RELEASE statements.

RETURN Statement

The RETURN statement transfers records from the final phase of a sort or
merge operation to an input/output area. This statement is similar to the
READ statement.

The RETURN statement can be specified only within an output procedure
associated with a SORT or MERGE statement. Within an output procedure at
least one RETURN statement must be specified.

6-36

Format

RETURN file-name RECORD [INTO identifier] AT END imperative-statem\!nt

When the RETURN statement is executed, the next record from file-name is
made available for processing by the output procedure.

File-name must be described in a Data Division SO entry.

If more than one record description is associated with file-name, these
records automatically share the same storage; that is, the area is implicitly
redefined. After RETURN statement execution, only the contents of the
current record are available; if any data items lie beyond the length of the
current record, their contents are undefined.

When the I NTO identifier phrase is specified, the RETURN statement is
equivalent to the statement RETURN file-name followed by the statement
MOVE record-name TO identifier. Moving takes place according to the rules
for the MOVE statement without the CORRESPONDING phrase. Any
subscripting or indexing associated with identifier is evaluated after the
record has been returned and immediately before it is moved to identifier.

The record areas associated with file-name and identifier must not be the
same storage area.

After all records have been returned from file-name, the AT END
imperative-statement is executed, and no more RETURN statements can be
executed.

SORT/MERGE Programming Notes

Sort/merge execution time can vary greatly and depends on the following
factors:

• The size of the storage pool in which the job executes

• The number of records sorted

• Record size

• The number of key fields specified

• The collating sequence used

• The number and types of input files

• Message severity.

Chapter 6. Additional Functions 6-37

Storage Pool Size: A minimum storage pool size of 200 K is recommended,
and 300 K is recommended for the average storage pool size. Executing
sort/merge operations and other applications, especially interactive J
applications, in the same storage pool increases response time and increases
sort/merge execution time.

Number of Records: Execution time increases when the number of
records included in the sort increases. The sort/merge operation builds a
work record for each input record in the sort. For efficiency, pass only
required records to the sort.

Record Size: Execution time increases when the records are longer. To
minimize execution time, do not include fields that contain unnecessary
information.

Number of Key Fields: Execution time increases when there are more
sort/merge key fields. As keys, character fields are more efficient than
packed or binary signed fields.

Alternate Collating Sequences: Using an alternate collating sequencE'
increases the execution time of the sort. Additional logic is required to
change each key field from the standard collating sequence to the alternate
collating sequence.

Number and Types of Files: Because the sort must move each record two
times (from the file to the work record area, and from the work file to the
output file), consider the characteristics of the file. J
A logical file on the System/38 can be a subset of a physical file, a
combination of physical files, and/or a restructuring of a group of fields
from one or more physical files. Because of the added flexibility, use of
logical files as input to the sort/merge operation can increase the execution
time of the sort/merge operation. If possible, use a physical file for input to
the sort/merge.

Processing a file from a unit record device, such as a diskette or a card
reader, is much slower than processing a file from the data base or from
tape. If a file is heavily used during a job or a series of jobs, execution time
can be improved by copying the file into the data base.

Message Severity: In cases where an input or output procedure transfers
control to points outside the procedure, or where control transfers to inside
an input or output procedure from elsewhere in the Procedure Division,
conditional level message CBL0492 is issued, but compilation does not fail.

In some cases, however, it may be desirable to have compilation fail. If
desired, you can force such transfers of control to cause the compilation to
fail by changing the conditional level message to a severe level message.
This can be done by changing the severity of the message to 30 using the
Change Message Description (CHGMSGD) CL Command. See the CL
Reference Manual for more information about the CHGMSGD command. See
the System/38 Messages Guide: COBOL for more information about
message severities.

6-38

SOURCE PROGRAM LIBRARY

COpy Statement

Prewritten source program entries can be included in a source program at
compile time. Thus, an installation can use standard file descriptions,
record descriptions, or procedures without recoding them. These entries
and procedures can be saved in files. They can be included in the source
program by means of the COpy statement.

The COPY statement places previously written text in a COBOL program.

Format

COpy text·name [{OINF} System/38 file name [- System/38 library name]]

==pseudo-text·1 ==} { ==pseUdo-text-2==}
identifier-1 BY identifier-2

REPLACING {
, 	 literal-1 -. literal-2

word-1 word-2

Compilation of the source program containing COpy statements is logically
equivalent to processing all COPY statements before processing the resulting
source program.

The effect of processing a COpy statement is that the text associated with
text-name is copied into the source program, logically replacing the entire
COpy statement beginning with the word COpy and ending with the period,
inclusive. When the REPLACING phrase is not specified, the text is copied
unchanged.

The text-name is the name of the member to be copied. The text-name must
begin with an alphabetic character. The first 10 characters of the
text-name are used as the member name; these first 10 characters must,
therefore, be unique within one file.

If text-name is not qualified, QCBLSRC is assumed as the System/38 file
name. If the System/38 file name is not qualified by System/38 library
name, it is assumed to reside in a library in the library list, *L I BL.

The System/38 library name, System/38 file name, and text-name must
follow the rules for formation of any System/38 name.

A COPY statement can appear in the source program anywhere that a
character-string or a separator can appear. However, a COpy statement
must not be sper.ified within the resulting copied text. Each COPY statement
must be preceded by a space, and followed by a period and a space.

Chapter 6. Additional Functions 6-39

Comment lines can appear in copied text. Comment lines in text are copied
into the source program unchanged and are interpreted logically as a single
space. J
Debugging lines can appear in copied text. When a COpy statement is
specified on a debugging line, the copied text is treated as though it
appeared on a debugging line except that comment lines in the text appear
as comment lines in the resulting source program.

The syntactic correctness of the entire COBOL source program cannot be
determined until all COPY statements have been completely processed,
because the syntactic correctness of the copied text cannot be
independently determined.

Text copied from a member is placed into the same area of the resultant
program as it is in the member. Copied text must conform to the rules for
standard COBOL format.

....------------ IBM Extension -------------.,

The COpy statement, DDS or DO format, can also be used to create equivalent
COBOL Data Division statements for a file that exists on the system. These
descriptions are based on the file in existence at compile time. This
statement does not use the DDS source statements for the file. The DDS or
DO format of the COpy statement can be used only in the Data Division, and
it is the user's responsibility to precede the statement with a group level
item that has a level-number less than 05.

The COPY statement, DO format, can be used to reference an Alias (alternate)
name. The specification of an Alias name in DDS allows a data name of up
to thirty characters to be included in the COBOL program.

When the COpy statement DO format is specified, COBOL copies in Alias
names and translates all underscores to hyphens in the alias names before
any replacing occurs.

Note: Alias names which are included in the COBOL source file, can be
used in the Procedure Division.

When the RECORD KEY clause specifies EXTERNALLY -DESCRI BED-KEY, a
format can be copied only once under an FD. For example, if all formats are
copied under an FD, no other COPY statement, DDS or DO format, can be
specified for the same file under that FD.

6-40

Format 2

DD-format_name)
DD-ALL-FORMATS

-I -INDICATOR]!DDS-format-name
-INDICATORS

COpy DDS-ALL-FORMATS _ [~oJ [

-INDIC

{?:} System/38 file name [-System/38 library name]

==pseUdo-text-, ==} {==pseUdo-text-2==}
identifier-' BY identifier-2{REPLACING

, 	 literal-' - literal-2
word-' word-2

The format-name is the name of the DDS record format definition that is
translated into COBOL equivalent data description entries. The
format-name must follow the rules for formation of any System/3S name.

If DDS-ALL- FORMATS or DD-ALL- FORMATS is specified or - I -0 is specified or
assumed, each record format is generated as a redefinition of an 05
elementary item defined as the size of the largest record format definition.

If a separate storage area is needed in WORKING-STORAGE for each format,
individual COPY statements must be specified for each format.

For example:

SELECT FILE-X

ASSIGN TO DATABASE-CUSTMASTER.

FD FI LE-X
LABEL RECORDS ARE STANDARD.

01 FI LE-X-RECS.
COPY DDS-ALL-FORMATS OF

CUSTMASTER-QGPL. (See Note 1.)

WORKING-STORAGE SECTION.
01 ADR-REC.

COPY DDS-CUSTADR OF
CUSTMASTER. (See Note 2.)

01 DETAIL-REC.
COPY DDS-CUSTDETL OF

CUSTMASTER. (See Note 2.)

Chapter 6. Additional Functions 6-41

Notes:

1. 	 This COPY statement generates only one storage area for all formats.

2. 	 This COpy statement generates separate storage areas.

System/38 file name is the name of a System/38 file. The generated DDS
entries represent the record format defined in the file. The file must be
created before the program is compiled.

System/38 library name is optional. If it is not specified, the current job
library list is used as the default value.

If neither - I nor -0 is specified, - I -0 is assumed.

If - I is specified, the generated data description entries contain either the
input and input/output fields for a nonsubfile format, or the input, output,
and input/output fields for a subfile format.

If -0 is specified, the generated data description entries contain one of the
following:

• 	 The output and input/output fields for the nonsubfile format.

• 	 The input, output, and input/output fields for the subfile format.

The use of the I ND I CATOR attribute is discussed under "Indicators" in

Chapter 7.

Data base files never have indicators.

Group level names are assigned as follows:

• 	 INPUT

05 format-name- I

• 	 OUTPUT

05 format-name-O

If indicators are requested, or exist in the format, an additional group name
(06 level) is generated at the beginning of the structure.

06 format-name-<I or O)-INDEC.
07 	 INOl PIC 1 INDIC 01.
07 	 IN04 PIC 1 INDIC 04.
07 	 IN05 PIC 1 INDIC 05.
07 	 IN07 PIC 1 INDIC 07.

06 	 FLD1 PI C
06 	 FLD2 PIC

If redefinition is required, a group level name is generated as follows:

J

6-42

05 file-name-RECORD
PIC X(largest record size).

Field names, PICTURE definitions, and numeric usage clauses are derived
directly from the internal DDS format field names and data type
representations. Field names and PI CTUR E definitions are constructed as
follows:

Data Field Structures

06 field-name PIC (appropriate COBOL definition...see Figure 6-5).

L...-_________ End of IBM Extension _________---..1

Floating Point Fields

COBOL treats floating point fields as FI LLER. The fields can contain
floating point values set outside of COBOL, and a COMP-4 definition is
generated to maintain proper alignment in the record, but the data is not in
binary format. No attempt must be made to use floating point data for
processing in the COBOL program.

Programming Note: If you have not specified your own program collating
sequence, you may create a record containing floating point fields in your
COBOL program by moving LOW-VALUES to the entire record before moving
in the values of the non-floating-point fields. This will give the floating
point fields in the record a value of zero. Note that the above method is
only recommended if valid floating point fields with a value of zero are
desirable for your particular application.

Floating point key fields are not allowed. In cases where some formats
exist without a floating point key field and other formats do not, you should
use one or more COPY DD or COpy - DDS statements with specific format
names, rather than using COPY DDS-ALL- FORMATS or COpy
DD-ALL- FORMATS.

Chapter 6. Additional Functions 6-43

IBM Extension

Indicator Structures

07 INxx PIC 1 INDIC xx.

where xx is indicator number.

PHYSICAL, LOGICAL, PRINTER, COMMUNICATIONS, AND BSC FILES

DDS COBOL DATA DIVISION
n =total field length (DDS pas. 30-34)

Data Type Formats m =number of decimals (DDS pos. 36 & 37)

(Pos.35)

If DDS pos. 36 & 37 are blank If DDS pos. 36 &37 are not blank

-t5 (Blank) Default PIC X(n) PIC S9(n-m)V9(m)

P Packed decimal PIC S9(n) COMP-3 PIC S9(n-m)V9(m) COMP-3

S Zoned decimal/signed numeric PIC S9(n) PIC S9(n-m)V9(m) .~

B Binary PIC S9(n) COMP-4 PIC S9(n-m)V9(m) COMP-4 ~

F Floating Point!

- single precision PIC S9(5) COMP-4

- double precision PIC S9(10) COMP-4 .

A Character PIC X(n)

DISPLA Y FI LES

X Alphabetic Only PIC X(n)

N Numeric Shift PIC X(n) PIC S9(n-m)V9(m)

Y Numeric Only PIC S9(n) PIC S9(n-m)V9(m)

I Inhibit Keyboard entry PIC X(n) PIC S9(n-m)V9(m)

W Katakana PIC X(n)
A Alphanumeric Shift PIC X(n)

! COBOL treats floating point fields as FI LLER. See Floating Point Fields.

Figure 6-5. Data Field Structures

6-44

Externally Described COpy Statement, DDS Format, and
DD Format Considerations

When all field descriptions are identical, and the user has requested INPUT
and OUTPUT fields implicitly or explicitly, only one set of field descriptions
is generated. This type of description is annotated with a comment-line
reading "1-0 FORMAT: format-name" and neither -I nor -0 is appended to
the record format name. This is always the case for data base and printer
device files. For example:

01 RCUSREC.
COpy DDS-CUSREC OF CUSFILE.
1-0 FORMAT:CUSREC FROM FILE CUSFILE OF LIBRARY CUSLI B CUSREC* * THE KEY DEFINITIONS FOR RECORD FORMAT CUSREC
NUMBER NAME RETRIEVAL TYPE ALTSEQ* 0001 ARBAL ASCENDING SIGNED NO* 0002 AREACD DESCENDING ABSVAL NO* 05 CUSREC.

06 ARBAL
06 AREACD
06 BOSTAZ
06 CNTCT
06 CRCHKZ
06 CSTAT
06 CUSTNZ
06 DLORD
06 DSCPCZ
06 INDUS
06 NAMEl
06 NAME2
06 NAME3
06 NAME4
06 PHONE
06 PRICIZ
06 SHPINZ
06 SLSMAZ
06 TAXCDZ
06 TERMSZ

PIC S9(7)V9(2)
PIC S9(3)
PIC X0) .
PIC X(5) .
PIC S9(2).
PIC XO) .
PIC S9 (6) .
PIC S9(6).
PIC S9(2)V9(3)
PIC S9(2).
PIC X(25).
PIC X(25) .
PIC X(25).
PICX(25).
PIC S9(7)
PIC S9(2).
PIC X(25).
PIC X(3).
PIC S9(2).
PICS9(2).

COMP-3. CUSREC
COMP-3. CUSREC

CUSREC
CUSREC
CUSREC
CUSREC
CUSREC
CUSREC

COMP-3. CUSREC
CUSREC
CUSREC
CUSREC
CUSREC
CUSREC

COMP-3. CUSREC
CUSREC
CUSREC
CUSREC
CUSREC
CUSREC

The user should pay particular attention to the REDEFINES clause that may
be generated for the ALL- FORMATS or - I -0 phrases. Since all formats are
redefined on the same area (generally a buffer area), several field names
can describe the same area of storage, and unpredictable results can occur
if the entire format area is not reinitialized prior to each output operation.
Data items that are subordinate to the data item specified in a MOV E
CORRESPONDING statement do not correspond and are not moved when they
contain a REDEFINES clause or are subordinate to a redefining item.

To avoid reinitialization, multiple COPY statements, DDS or DD format, using
- I and -0 suffixes can be used to create separate areas of storage in the
Working-Storage section for each format or format type (input or output).
READ INTO and WRITE FROM statements can be used with these record
formats. For example:

Chapter 6. Additional Functions 6-45

FD ORDER-ENTRY-SCREEN
01 ORDER-ENTRY-RECORD

WORKING-STORAGE SECTION.
01 ORDsFL-I-FORMAT.

COPY DDS-ORDSFL-I OF DOESCR.
01 ORDSFL-O-FORMAT.

COPY DDS-ORDSFL-O OF DOESCR.

PROCEDURE DIVISION.

READ SUBFILE ORDER-ENTRY-SCREEN NEXT MODIFIED RECORD
INTO ORDSFL-I-FORMAT FORMAT IS "ORDSFL"
AT END SET NO-MODIFIED-SUBFILE-RCD TO TRUE.

MOVE CORR ORDSFL-I TO ORDSFL-O.
REWRITE SUBFILE ORDER-ENTRY-RECORD FROM ORDSFL-O-FORMAT

FORMAT IS "ORDSFL" .

If a user-defined field-name is a COBOL reserved word, the suffix -DDS is
appended to the field-name. The format-name can be a COBOL reserved
word only if the REPLACING phrase is used to change the copied occurrence
of the format-name.

The REPLACING phrase of the COPY statement can be used to replace any of
the generated COBOL source, including the level-numbers and the
format-name. For example:

COPY DDS-MOVE OF DDsFILE-CUSLIB
REPLACING MOVE BY CUSREC.

*1-0 FORMAT:MOVE FROM FILE DDSFILE OF LIBRARY CUSLIB MOVE
* MOVE
* THE KEY DEFINITIONS FOR THE RECORD FORMAT MOVE
* NUMBER NAME RETRIEVAL TYPE ALTSEQ
* 0001 CUsT ASCENDING DIGIT NO

05 CUSREC. MOVE
06 CUST PIC X(5). MOVE

* CUSTOMER NUMBER MOVE
06 NAME PIC X(20). MOVE

* CUSTOMER NAME MOVE
06 AD DR PIC X(20). MOVE

* CUSTOMER ADDRESS MOVE
06 CITY PIC X(20). MOVE

* CUSTOMER CITY MOVE
06 STATE PICX(2). MOVE

* STATE ABBREVIATION MOVE

When RECORD KEY IS EXTERNALLY-DESCRIBED-KEY is specified, the
REPLACING phrase cannot change the name of a field that is a key.

DDS field names can contain characters that are not allowed in the COBOL
language. For example, the field name CUSTN# can be used as an
abbreviation for customer number. This format can be used in a COPY
statement, DDS or DD format, if the REPLACING phrase is used to change the
invalid characters to valid COBOL characters.

6-46

COpy DDS-ALL-FORMATS of PHEADR2-CUSTLIB
REPLACING ==CUSTN#== BY CUSTNO.
1-0 FORMAT:HEDR2 FROM FILE PHEADR2 OF LIBRARY CUSLIB
* THE KEY DEFINITIONS FOR RECORD FORMAT HEADR2
* NUMBER NAME RETRIEVAL TYPE ALTSEQ
* 0001 CUSTNO ASCENDING N NO
* 0002 RECCOD DESCENDING ZONE YES

05 PHEAOR2-RECORD PIC X(113).
05 HEAOR2 REDEFINES PHEADR2-RECORD.

06 CUSTNO PIC S9(6).
06 ORO ERN PIC S9(6).
06 RECCOO PIC S9(1).
06 SHIPI PIC X(25).
06 SHIP2 PIC X(25).
06 SHIP3 PIC X(25).

'--_________ End of IBM Extension _________---'

REPLACING Phrase

In the REPLAC ING phrase, each operand can consist of one of the following:

pseudo-text, an identifier, a literal, or a COBOL word. When the

REPLAC ING phrase is specified, each operand-l from the copied text is

replaced by its associated operand-2.

Pseudo-text is a sequence of character-strings and/or separators bounded

by, but not including, pseudo-text delimiters (= =). Both characters of each

pseudo-text delimiter must appear on one line; however, character-strings

within pseudo-text can be continued.

Pseudo-text-l must not be null; neither can it consist solely of the space

character and/or of comment lines.

Pseudo-text-2 can be null. It can consist solely of space characters and/or

comment lines.

Each identifier can be defined in any Data Division section.

Each literal can be numeric or nonnumeric.

Each COBOL word can be any single COBOL word.

Programming Note: Sequences of code (such as file and data descriptions,

error and exception routines, and so on) that are common to a number of

programs can be cataloged and used in conjunction with the COpy

statement. If naming conventions are established for such common code,

then the REPLACING phrase need not be specified. If the names will change

from one program to another, then the REPLACING phrase can be used to

supply meaningful names for this program.

Chapter 6. Additional Functions 6-47

REPLACING Phrase Processing

When the REPLAC I NG phrase is specified, the text is copied, and each
properly matched occurrence of operand-! within the text is replaced by the
associated operand-2.

For purposes of matching, each identifier-I, literal-I, or word-! is treated as
pseudo-text containing only identifier-I, literal-I, or word-! respectively.
Separator spaces in identifiers are optional in both the copied text and the
comparison text.

The comparison proceeds as follows:

• 	 Any separator comma, semicolon, and/or space preceding the leftmost
word in the text is copied into the source program. Beginning with the
leftmost text word and the first operand-! specified in the REPLACING
phrase, the entire REPLACING operand that precedes the keyword BY is
compared to an equivalent number of contiguous text words.

• 	 Operand-! matches the text only if the ordered sequence of text words
in operand-! is equal, character for character, to the ordered sequence
of words. For matching purposes, each occurrence of a comma or
semicolon separator is considered to be a single space. However, when
operand-! consists solely of a separator comma or semicolon, it
participates in the match as a text word. In this case, the space
following the comma or semicolon separator can be omitted. Each
sequence of one or more space separators is considered to be a single
space.

• 	 If no match occurs, the comparison is repeated with each successive
operand-! (if specified) until either a match is found or there are no
further REP LAC I NG operands.

• 	 Whenever a match occurs between operand-! and the copied text, the
associated operand-2 is copied into the source program in the place of
operand-!.

IBM Extension

Operand-2 is copied in the place of operand-! unless pseudo-text-2
positioning rules cause the replacement to be inserted in a different
area.

'--_________ End of IBM Extension _________----'

• 	 When all operands have been compared and no match is found, the
leftmost text word is copied into the source program.

• 	 The next successive uncopied text word is then considered the leftmost
text word, and the comparison process is repeated, beginning with the
first operand-!. The process continues until the rightmost copied text
word has been compared.

6-48

• 	 A comment line occurring in operand-l and in the copied text is
interpreted for matching purposes as a single space. A comment line
appearing in operand-2 is copied unchanged into the source program.

• 	 Debugging lines are not permitted in operand-l. Debugging lines,
however, are permitted in copied text and in operand-2. Text words in a
debugging line are matched as if no D appeared in column 7.

• 	 Text words after replacement are placed in the source program
according to standard COBOL format rules.

Notes:

1. 	 Arithmetic and logical operators are considered to be text words and can
be replaced only through the pseudo-text phrase.

2. 	 When a figurative constant is operand-I, it will match only exactly as
specified. For example, if ALL "AB" is specified in the copied text, then
"ABAB" is not considered a match. Only ALL "AB" is considered a match.

COpy Statement Example

In this example, the member PAYREC consists of the following Data Division
entries:

02 	 B PIC S99.
02 	 C PIC S9(5)V99.
02 	 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

The user can use the COPY statement in the Data Division of a program as
follows:

01 	 PAYROLL. COPY PAYREC OF PAYFILE.

In this program, the member is then copied. The resulting entry is treated
as if it had been written as follows:

01 	 PAYROLL.
02 	 B PIC S99.
02 	 C PIC S9(5)V99.
02 	 D PIC S9999 OCCURS 1 TO 52 TIMES

DEPENDING ON B OF A.

To change some (or all) of the names within the member, the user can use
the REPLACING phrase:

01 	 PAYROLL. COPY PAYREC OF PAYFILE
REPLACING A BY PAYROLL

B BY PAY-CODE
C BY GROSS-PAY.

In this program, the member is copied. The resulting entry is treated as if
it had been written as follows:

01 PAYROLL.

02 PAY-CODE PIC S99.

02 GROSS-PAY PIC-S9(5)V99.

Chapter 6. Additional Functions 6-49

02 D 	 PIC 59999 OCCURS 1 TO 52
TIMES DEPENDING ON
PAY-CODE OF PAYROLL.

The changes shown are made only for this program. The entry as it appears
in the member remains unchanged.

SEGMENTATION FEATURE

It is not necessary to be concerned with storage management when writing
System/38 COBOL programs. Segmentation, however, is available for
compatibility with other systems.

The segmentation feature provides programmer-controlled storage
optimization of the Procedure Division by allowing that division to be
subdivided both physically and logically.

Segmentation Concepts

Although it is not required, the Procedure Division of a source program is
usually written as a consecutive group of sections, each of which is made
up of a series of related operations that perform a particular function.
Thus, the entire Procedure Division is made up of a number of logical
subdivisions. Segmentation allows the programmer to physically divide the
Procedure Division into segments, each of which has specific physical and
logical attributes.

When Segmentation is used, the entire Procedure Division must be divided
into sections. Each section must then be classified as to its physical and
logical attributes. Classification is specified by means of segment-numbers.
All sections given the same segment-number make up one program segment.

Segment-numbers must be integers from 0 through 99.

Program Segments

There are three types of program segments: fixed permanent, fixed
overlayable, and independent.

Fixed Segments

Fixed permanent segments and fixed overlayable segments make up the
fixed portion, the part of the Procedure Division that is logically treated as
if it were always physically present in main storage. Fixed-portion
segment-numbers must be integers from 0 through 49.

A fixed permanent segment is always made available in its last-used state.

A fixed overlayable segment is logically always in main storage during
program execution; therefore, it is always available in its last-used state.

6-50

Any overlay of such a segment is transparent to the user. Thus, a fixed
overlayable segment is logically identical with a fixed permanent segment.

Independent Segments

Logically, an independent segment can overlay and be overlaid by other
segments during program execution.

An independent segment is made available in its initial state the first time
control is passed to it (explicitly or implicitly) during program execution.

An independent segment is made available in its initial state during
subsequent transfers of control when:

• 	 The transfer is the result of an implicit transfer of control between
consecutive statements that are in different segments (that is, when
control drops through into the independent segment from the physically
preceding segment).

• 	 The transfer is the result of an implicit transfer from a SORT or MERGE
statement in one segment to a SORT input procedure or SORT /MERGE
output procedure in an independent segment.

• 	 An explicit transfer of control from a section with a different
segment-number takes place (as, for example, during the transfer of
control in a PERFORM n TIMES statement).

An independent segment is made available in its last-used state during
subsequent transfers of control when:

• 	 With the exception of the two preceding kinds of implied transfers, an
implicit transfer from a section with a different priority takes place (as,
for example, when control is returned to the independent segment from
a Declarative procedure).

• 	 An explicit transfer results from an EX IT PROGRAM statement.

Independent segments must be assigned segment-numbers 50 through 99.

Segmentation Logic

In a segmented program, the sections are classified by a system of
segment-numbers according to the following criteria:

• 	 Frequency of Reference - Much used sections, or those that must be
available for reference at all times, should usually be within fixed
permanent segments. Less frequently used sections should usually be
within either fixed overlayable or independent segments, depending on
the program logic.

• 	 Frequency of Use - The more frequently a section is referred to, the
lower its segment-number; the less frequently it is referred to, the
higher its segment-number.

Chapter 6. Additional Functions 6-51

• 	 Logical Relationships - Sections that frequently communicate with each
other should be given identical segment-numbers.

Segmentation Control

Except for specific transfers of control, the logical sequence and the
physical sequence of program instructions are the same. The compiler
inserts any instructions necessary to initialize a segment. It is not
necessary to transfer control to the beginning of a segment, or to the
beginning of a section within a segment. Instead, control can be
transferred to any paragraph in the Procedure Division.

COBOL Source Program Considerations

The following elements of a COBOL source program implement the
Segmentation feature:

• 	 The SEGMENT -LIMIT clause in the OBJECT-COMPUTER paragraph of the
Environment Division. This clause allows the programmer to control
the specification of fixed permanent and fixed overlayable segments.

• 	 Procedure Division segment-numbers, which group sections into
segments. The segment numbering scheme also allows specifications of
independent segments, fixed permanent segments, and (in conjunction
with the SEGMENT -LI MIT clause) of fixed overlayable segments.

Segmentation - Environment Division

In the OBJECT -COMPUTER paragraph, the SEGMENT -LIMIT clause allows the
user to reclassify fixed permanent segments while retaining the properties
of fixed portion segments for the reclassified segments.

Format

[, SEGMENT-LIMIT IS segment-number]

The SEGMENT -LIMIT clause allows the programmer to specify certain
permanent segments as capable of being overlaid by independent segments
without losing the logical properties of fixed portion segments.

Segment-number must be an integer ranging in value from 1 through 49.

When the SEGMENT -LIMIT clause is specified:

• 	 Fixed permanent segments are those with segment-numbers from 0 up
to, but not including, the segment-number specified.

• 	 Fixed overlayable segments are those with segment-numbers from the
segment-number specified through 49.

6-52

For example, if SEGMENT -LIMIT IS 25 is specified, sections with
segment-numbers 0 through 24 are fixed permanent segments, and sections
with segment-numbers 25 through 49 are fixed overlayable segments.

When the SEGMENT -LIMIT cause is omitted, all sections with
segment-numbers 0 through 49 are fixed permanent segments.

Segmentation - Procedure Division

In the Procedure Division of a segmented program, section classification is
specified through segment-numbers in the section headers.

Format

section-name SECTION [segment-number]

All sections with the same segment-number make up one program segment.
Such sections need not be contiguous in the source program.

The segment-number must be an integer from 0 through 99.

Segments with segment-numbers 0 through 49 are in the fixed portion of the
program. Declarative sections can be assigned only these segment-numbers.

Segments with segment-numbers from 50 through 99 are independent
segments.

If the segment-number is omitted from the section header, the
segment-number is assumed to be O.

Segmentation - Special Considerations

When segmentation is used, there are restrictions on the ALTER, PERFORM,
SORT, and MERGE statements.

There are also special considerations for calling and called programs.

ALTER Statement

A GO TO statement in an independent segment must not be referred to by an
AL TER statement in a different segment. All other uses of the AL TER
statement are valid and are performed, even if the GO TO statement referred
to is in a fixed overlayable segment.

Chapter 6. Additional Functions 6·53

PERFORM Statement

A PERFORM statement in the fixed portion can have in its range, in addition J
to any Declarative procedures whose execution is caused within that range,
only one of the following:

• 	 Sections and/or paragraphs in the fixed portion

• 	 Sections and/or paragraphs contained within a single independent
segment.

A PERFORM statement in an independent segment can have within its range,
in addition to any Declarative procedures whose execution is caused within
that range, only one of the following:

• 	 Sections and/or paragraphs in the fixed portion

• 	 Sections and/or paragraphs wholly contained in the same independent
segment as the PER FORM statement.

SORT and MERGE Statements

If a SORT or MERGE statement appears in the fixed portion, then any SORT
input procedures or SORT/MERGE output procedures must appear completely
in one of the following:

• 	 The fixed portion

• 	 A single independent segment.

If a SORT or MERGE statement appears in an independent segment, then any
SORT input procedures or SORT /MERGE output procedures must appear
completely in one of the following:

• 	 The fixed portion

• 	 The same independent segment as the SORT or MERGE statement.

Calling and Called Programs

The CALL statement can appear anywhere within a segmented program.
When a CALL statement appears in an independent segment, that segment is
in its last-used state when control is returned to the calling program.

INTER-PROGRAM COMMUNICATION FEATURE

Complex data processing problems are often solved by the use of separately

compiled but logically interdependent programs which, at execution time,

form logical and physical subdivisions of a single run unit. A run unit is

the total program necessary to solve a data processing problem; it includes

one or more programs, and can include programs from source programs ...~

written in languages other than COBOL. See "System/38 Inter-Program ""'"

6-54

Communication Considerations" in Chapter 9 for more information on
COBOL and non-COBOL program communication.

Inter-Program Communication Concepts

When the solution of a problem is subdivided into more than one program,
the constituent programs must be able to communicate with each other
through transfers of control and/or through reference to common data.

Transfers of Control

In the Procedure Division, a calling program can transfer control to a
called program, and a called program can itself transfer control to yet
another called program. However, a called program must not directly or
indirectly call its caller. For example, if program A calls program B,
program B calls program C, and program C then calls program A, the
results are unpredictable.

When control is passed to a called program, execution proceeds in the
normal way. When a called program processing is completed, the program
can either transfer control back to the calling program, call another
program, or end the run unit.

Common Data

Program interaction can require that both programs have access to the
same data.

In a calling program, the common data items are described in the same
manner as other File and Working-Storage Section items. Storage is
allocated for these items in the calling program. In a called program,
common data items are described in the Linkage Section. Storage is not
allocated to them in the called program. Because a calling program can
itself be a called program, common data items can be described in the
Linkage Section of the calling program. In this case, storage is not
allocated for these items in the calling program itself, but rather in the
program that called the calling program. For example, program A calls
program B which calls program C. Data items in program A can be
described in the Linkage Sections of programs Band C, and the one set of
data can be made available to all three programs.

When control is transferred from the calling to the called program, the
programmer must furnish a list of the common data items in both programs.
The sequence of identifiers in both lists determines the match of identifiers
between the calling and called programs. A corresponding pair of
identifiers in the list names a single set of data that is available to both
programs. While the called program is executing, any reference to one of
these identifiers is a reference to the corresponding data of the calling
program.

Chapter 6. Additional Functions 6-55

COBOL Language Considerations

In the Data Division of the source programs, the programmer defines the
common data items to be used by both the calling and called programs. In
the calling program, these items can be defined in the File,
Working-Storage, or Linkage Sections. In the called program, these items
must be defined in the Linkage Section. Common data items need not have
the same name and data description, but they must contain the same
number of characters.

In the Procedure Division, the list of common data items is established
through the US I NG phrase, which names those data items available to both
programs. In the called program, only those items named in the US I NG list
of the called program are available from the data storage of the calling
program.

A CALL statement in the calling program transfers control to the first
nondeclarative procedural statement in the called program. When the called
program has completed execution, control is returned to the calling
program by an EX IT PROGRAM statement. The entire run unit can be ended
by a STOP RUN statement in either program.

Data Division - Inter-Program Communication

In the Data Division of a called program, the programmer specifies in the
Linkage Section those data items that are common with the calling
program.

6-56

Format

LINKAGE SECTION.

[{~~-49} data-name/FILLER clause

[REDEFINES clause]

[BLANK WHEN ZERO clause]

[INDICATOR clause]

[JUSTIFIED clause]

[OCCURS clause]

[PICTURE clause]

[SIGN clause]

[SYNCHRONIZED clause]

[USAGE clause] .] ...

[88 condition-name VALUE clause.]

[66 RENAMES clause.] •••

The Linkage Section has meaning only if this program functions under
control of a CALL statement that contains the US I NG phrase, or a call
statement from another language.

The Linkage Section describes data available within the calling program
and referred to in both the calling and called programs. Items described in
the Linkage Section do not have space allocated for them in the called
program. Procedure Division references to these data items are resolved at
object time by equating the reference in the called program to the location
used in the calling program. For index-names, no such correspondence is
established. Index-name references in the calling and called programs
always refer to separate indexes. Index-name values can be passed by first
moving them to an index data item and passing that index data item.

Items defined in the Linkage Section can be referred to in the Procedure
Division only if they are one of the following:

• Operands of a US I NG phrase in this program

• Data items subordinate to such a US I NG phrase operand

Chapter 6. Additional Functions 6-57

• 	 Items associated with such a US I NG operand (such as condition-names or
index-names).

Each Linkage Section record-name and noncontiguous data-name must be
unique, because neither can be qualified. Descriptions of each clause valid
in the Linkage Section are given under "Data Description" in Chapter 4.
The following additional considerations apply.

Record Description Entries

Items that have a hierarchical relationship with one another must be
grouped into level-Ol records according to the rules for formation of record
descriptions. Data description clauses can be used to complete the
description of the entry. Except for level-88 condition-names, the VALUE
clause must not be specified.

Data Item Description Entries

Items that have no hierarchical relationship with each other can be defined
as noncontiguous items with level-number 77. The following clauses are
required:

• 	 Level-number 77

• 	 Data-name

• 	 PICTURE or USAGE IS INDEX. J
Other data description clauses are optional and, when necessary, can
complete the description of the item. Except for level-88 condition-names,
the VALU E clause must not be specified.

Procedure Division - Inter-Program Communication

In the Procedure Division, control is transferred between a COBOL
program and another System/38 program by means of the CALL statement.

Reference to common data is provided through the US I NG phrase, which
can be specified in the CALL statement and in the Procedure Division
header of the called program.

The CANCEL statement releases storage used by a called program.

The EX I T PROGRAM statement allows termination of called program
processing. The STOP RUN statement allows termination of the run unit.

6-58

CALL Statement

The CALL statement transfers control from one object program to another
within the run unit. The calling program must contain a CALL statement at
the point where another program is to be called.

Execution of the CALL statement passes control to the first nondeclarative
instruction of the called program. Control returns to the calling program
at the instruction following the CALL statement.

Called programs themselves can contain CALL statements, but a called
program that contains a CALL statement that directly or indirectly calls the
calling program gives unpredictable results.

Format

CALL { identifier.1} [[]]US I NG data-name-1 • data-name-2 ..•
-- literal-'

[ON OVERFLOW imperative-statement]

Literal-1 must be nonnumeric and must conform to the rules for formation
of a program-name. The first 10 characters of the literal are used to make
the correspondence between the calling program and the called program.
The literal must specify the program-name of the called program.

If literal-1 is specified, the call is classified as a static call because the
PROGRAM- lOis determined at compile time.

Identifier-1 must be an alphanumeric data item. Its contents. must conform
to the rules for formation of a program-name (see "PROGRAM-ID
Paragraph" in Chapter 3). The first 10 characters of identifier-l are used to
make the correspondence between the calling and called program.

If identifier-l is specified, the call is classified as a dynamic call because the
PROGRAM- lOis resolved at execution time each time a call is made. If
literal-1 is specified, the PROGRAM- lOis resolved only once.

CALL statement execution passes control to the called program which
becomes part of the run unit. If a CALL statement names a program that
does not exist in the job's library list (*L I BL) at execution-time, an error
message is issued.

A called program is in its initial state the first time it is called within a run
unit, and the first time it is called after a CANCEL statement for the called
program has been executed.

On all other entries into the called program, it is in its last-used state, and
the reinitialization of any items is the responsibility of the user. See
Chapter 9 for more information about calling programs.

Chapter 6. Additional Functions 6-59

L

If there is not enough storage resource available to accommodate the called
program in the subsystem, the ON OVERFLOW phrase specifies the action to ...'\..
be taken. ..""

If the ON OV ER FLOW phrase is not specified, results are unpredictable.

The user return code is set to 0 at the start of execution of any COBOL
program, and before a call is made to another program. See the RTVJOBA
and DSPJOB commands in the CL Reference Manual for more information
about return codes.

USING Phrase

The US I NG phrase makes data items in a calling program available to a
called program. COBOL supports the passing of arguments to other
System/38 programs. The attributes of the data passed depends on the
definition requirements of the called program.

The following discussion of the US I NG phrase assumes that the calling and
called programs are written in COBOL.

Format

USING data-name-' [. data-name-2]

In a calling program, the US I NG phrase is valid for the CALL statement;
each US I NG data-name must be defined as a level-01 or level-77 item
anywhere in the Data Division. The maximum number of data-names that
can be specified is 30.

r------------- IBM Extension --------------,

In the US I NG phrase of the calling program CALL statement, the data-names
can have level-numbers other than 01 or 77. These data-names can be
indexed or subscripted, and can be qualified.

'--_________ End of IBM Extension _________----'

In a called program entered at the beginning of the nondeclaratives portion,
the US I NG phrase is valid in the Procedure Division header; each US I NG
data-name must be defined as a level-01 or level-77 item in the Linkage
Section of the called program.

Formats for these individual items show the correct syntax for specifying
the US I NG phrase.

The US I NG phrase is specified if, and only if, the called program is to
operate under control of a CALL statement and that CALL statement itself
contains a US I NG phrase. That is, for each CALL US I NG statement in a

6-60

calling program, there must be a corresponding USING phrase specified in
the called program.

The order of appearance of USING data-names in both calling and called
programs determines the correspondence of single sets of data available to
both programs. The correspondence is positional and not by name.
Corresponding data-names must contain the same number of characters,
although their data descriptions need not be the same. For index-names, no
correspondence is established; index-names in calling and called programs
always refer to separate indexes.

The data-names specified in a CALL US I NG statement name data items
available to the calling program that can be referred to in the called
program. A given data-name can appear more than once.

In a called program, US I NG data-names must be defined in the Linkage
Section. Of the items defined in the Linkage Section, only those named in
the US I NG phrase are available to the program. Within the called program,
US I NG data-names are processed according to their definition within this
program.

When the US I NG phrase is specified, the program executes as if each
reference to a US I NG data-name in the called program Procedure Division is
replaced by a reference to the corresponding US I NG data-name in the calling
program.

Examples that illustrate the USING phrase are given in Figure 6-6 and in
"Inter-Program Communication Feature Examples" later in this chapter.

CPF Graphics Support

System/3S COBOL lets you use the CALL statement to access the following
CPF Graphics routines:

• 	 Graphical Data Display Manager (GDDM), a set of graphics primitives for
drawing pictures

• 	 Presentation Graphics Routines (PGR), a set of business charting
routines.

You access all these graphics routines with the same format of the CALL
statement:

Format

CALL "GDDM" USI NG routine-name [. data-name-,] .

Routine-name is the name of the graphics routine you want to use.

The data-names that follow routine-name are the parameters necessary to
use certain graphics routines. The number of parameters that you must

Chapter 6. Additional Functions 6-61

specify varies, depending on which routine you select. When you select a
graphics routine, make sure each parameter is the correct size and data
type as required by that routine.

The following are examples of calling graphics routines. Remember, you
must define each parameter as required by the graphics routine you use.

MOVE "FSINIT" TO CPF-GRAPHICS-ROUTINE-NAME.
CALL "GDDM" USING CPF-GRAPHICS-ROUTINE-NAME.

MOVE "GSFLD" TO CPF-GRAPHICS-ROUTINE-NAME.
CALL "GDDM" USING CPF-GRAPHICS-ROUTINE-NAME.

PIC-ROW PIC-COL.
PIC-DEPtH, PIC-WIDTH.

For more information about graphics routines and their parameters, see the
CFP Graphics Programmer's Guide and the CPF Graphics Reference
Manual.

CANCEL Statement

The CANCEL statement releases the storage occupied by a called program.

Format

CANCEL {identifier-1} [, identifier-2]
literal-1 , literal-2 ...

Each literal or identifier specified in the CANCEL statement must be
nonnumeric. The contents must conform to the rules for formation of a
program-name (see "PROGRAM-ID Paragraph" in Chapter 3). The first 10
characters of the literal or identifier are used to make the correspondence
between the calling and called program.

Each literal or identifier specified in the CANCEL statement must be the
same as the literal or identifier specified in the associated CALL
statement(s).

Subsequent to the execution of a CANCEL statement, the program referred to
by the statement ceases to have any logical relationship to the program in
which the CANCEL statement appears.

The program named in a CANCEL statement can be entered in its initial state
again after the CANCEL statement is executed: the program is entered in its
initial state if a CALL statement that names the program is executed by any
program in the run unit. A CALL statement is the only means by which a
logical relationship to a canceled program can be reestablished.

A called program is canceled either by being directly referred to as the
operand of a CANCEL statement or by the termination of the run unit of
which the program is a member.

. '\

...."

6-62

No action results from the execution of a CANCEL statement that names a
program that has not been called in the run unit, or that names a program
that was called but is at present canceled. In either case, control passes to
the next statement.

If a CANCEL statement names a program that does not exist in the library
list, an error message is issued.

Called programs can contain CANCEL statements. However, a called
program must not contain a CANCEL statement that directly or indirectly
cancels a calling program. In this case control is passed to the next
statement.

A program named in a CANCEL statement must not refer to any program that
has been called and has not yet returned control to the calling program. A
program can, however, cancel a program that it did not call. For example,
if A calls Band B calls C, when A receives control, it can cancel C; or if A
calls B and A calls C, when C receives control, it can cancel B.

Calling Program Description Called Program Description
WORKING-STORAGE SECTION. LINKAGE SECTION.
01 PARAM-LIST. 01 USING-LIST.

OS PARTCODE PIC A. 10 PART-ID PIC X(S).
OS PARTNO PIC X(4). 10 SALES PIC 9(S).
OS U-SALES PIC 9(S).

PROCEDURE DIVISION USING
PROCEDURE DIVISION. USING-LIST.

CALL CALLED-PROG
USING PARAM-LIST.

Figure 6-6. Common Data Items in Inter-Program Communication

Note: In the calling program, the code for parts (PARTCODE) and the part
number (PARTNO) are referred to separately. In the called program, the code
for parts and the part number are combined into one data item (PART- ID);
therefore in the called program, a reference to PART-ID is the only valid
reference to them.

EXIT PROGRAM Statement

The EX IT PROGRAM statement specifies the logical end of a called program
(subprogram).

Format

paragraph-name. EXIT PROGRAM.

The EX I T statement must be preceded by a paragraph-name, and it must be
the only statement in the paragraph.

When control reaches an EX IT PROGRAM statement in a subprogram, control
returns to the point in the calling program immediately following the CALL

Chapter 6. Additional Functions 6-63

statement. If control reaches an EX IT PROGRAM statement in a main
program, control passes through the exit point to the first sentence of the
next paragraph. For more information, see "System/38 Inter-Program
Communication Considerations" in Chapter 9.

STOP RUN Statement

Format

STOP RUN

When STOP RUN is specified, execution of the run unit is terminated. If a
STOP RUN statement appears in a sequence of imperative statements, it must
be the last or the only statement in the sequence. All files should be closed
before a STOP RUN statement is executed. If you do not close the files, they
are closed by compiler generated code. For more information, see
"System/38 Inter-Program Communication Considerations" in Chapter 9.

An implicit STOP RUN is always generated after the last statement in the
source program.

Inter-Program Communication Feature Examples

A static CALL is illustrated in the following program example.

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLSTAT.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 RECORD-2 PIC X.
01 RECORD-I.

05 SALARY PIC S9(5)V99.
05 RATE PIC S9V99.
05 HOURS PIC S9V99.

PROCEDURE DIVISION

CALL "PROG" USING RECORD-I.

STOP RUN.

The following example illustrates a dynamic CALL. The dynamic CALL
differs in execution from the static CALL that is illustrated in the preceding
example.

6-64

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLDYNA.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 IDENT PICTURE X(lO).

01 RECORD-2 PIC X.
01 RECORD-I.

05 SALARY
05 RATE
05 HOURS

PIC S9(5)V99.
PIC S9V99.
PIC XXX.

PROCEDURE DIVISION.

MOVE "PROG" TO IDENT.
CALL IDENT USING RECORD-I.

CANCEL IDENT.

STOP RUN.

The following called program can be associated with either of the calling
programs in the two preceding examples.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG.

DATA DIVISION.

LINKAGE SECTION.
01 PAYREC.

10 PAY PIC S9(5)V99.
10 HOURLY-RATE PIC S9V99.
10 HOURS PIC S99V9.

01 CODE PIC 9.

PROCEDURE DIVISION USING PAYREC.

EX IT PROGRAM.

Processing in these examples begins in the calling program, which can be
either CALLSTAT or CALLDYNA. When the first CALL statement is executed,
control is transferred to the first statement of the Procedure Division in the
called program, PROG.

Chapter 6. Additional Functions 6-65

Note that in each of the calling programs the operand of the first USING
phrase is identified as RECORD-I.

When PROG receives control, the values within RECORD-l are made
available to PROG; however, in PROG they are referred to as PAYREC.

Note that the PI CTURE character-strings within PAYREC and CODE contain
the same number of characters as RECORD-l and RECORD-2, although the
descriptions are not identical.

When processing within PROG reaches the EX IT PROGRAM statement, control
is returned to the calling program, and processing continues in that
program.

In any given execution of these two calling programs, if the values within
RECORD-l are changed between the time of the first CALL and another CALL,
the values passed at the time of the second CALL statement are the changed,
not the original, values. If the user wishes to use the original values, then
he must ensure that they have been saved.

DEBUGGING FEATURES

The debugging features specify the conditions under which procedures are
to be monitored during program execution.

COBOL source language debugging statements are provided. The user
decides what to monitor and what information to retrieve for debugging
purposes. The COBOL debugging features simply provide access to
pertinent information.

COBOL Source Language Debugging

COBOL language elements that implement the Debugging Feature are a
compile-time switch (WITH DEBUGGING MODE), an execution-time switch, a
USE FOR DEBUGGING Declarative, the special register DEBUG- ITE~l, and
debugging lines that can be written in the Environment, Data, and
Procedure Divisions.

Compile-Time Switch

In the SOURCE-COMPUTER paragraph of the Configuration Section, the WITH
DEBUGGING MODE clause acts as a compile-time switch.

Format

SOURCE-COMPUTER. computer-name

[WITH DEBUGGING MODE] •

6-66

The WITH DEBUGGING MODE clause serves as a compile-time switch for the
debugging statements written in the source program.

When WITH DEBUGGING MODE is specified, all debugging sections and
debugging lines are compiled as specified in this chapter. When WITH
DEBUGGI NG MODE is omitted, all debugging sections and debugging lines are
treated as documentation.

Execution-Time Switch

The execution-time switch dynamically activates the debugging code that is
generated when WITH DEBUGGING MODE is specified.

Two commands are provided to control the execution-time switch. To set
the execution-time switch on, enter the command:

-("LIBL:::JENTCBLDBG--PGM prolram-n.me

.library-name

To set the execution-time switch off, enter the command:

-(,.L1BL::r-
ENDCBLDBG--PGM prolram-name

.library-name

The default for the execution-time switch is off.

When debugging mode is specified, through the execution-time switch, all
the debugging sections and debugging lines (D in column 7) compiled into
the program are activated.

The ENTCBLDBG command must be entered for each COBOL program (main
program or called program) to be debugged in the next COBOL run unit.
At the end of the run unit, all execution-time switches that are on are set
off. If a switch must be set off before a following execution of a COBOL
run unit, the ENDCBLDBG command should be used. Execution-time switches
for up to 15 programs can be on at once.

When the ENTCBLDBG or ENDCBLDBG command is issued in a CL program,
concatenation expressions can be used for all parameter values. See
the CL Reference Manual for more information about concatenation
expressions:

Chapter 6. Additional Functions 6-67

http:prolram-n.me

When debugging mode is suppressed, through the execution-time switch,
any USE FOR DEBUGGING Declarative procedures are inhibited. However,
all debugging lines (D in column 7) remain in effect.

Recompilation of the source program is not required to activate or
deactivate the execution-time switch.

When WITH DEBUGGING MODE is not specified in the SOURCE-COMPUTER
paragraph, the execution-time switch has no effect on execution of the
program.

USE FOR DEBUGGING Declarative

The USE FOR DEBUGGING sentence in the Procedure Division identifies the
items in the source program that are to be monitored by the associated
debugging Declarative procedure.

Format

[ALL REFERENCES OF] identifier-l
fi le-name-l

USE FOR DEBUGGING ON
procedure-name-l
ALL PROCEDURES

[AJ...L. REFERENCES OF] identifier-2]
[file-name-2

procedure-name-2 •••
ALL PROCEDURES

When specified, all debugging sections must be written immediately after
the DECLARATIVES header. Except for the USE FOR DEBUGGING sentence
there must be no reference to any nondeclarative procedure within the
debugging procedure.

Automatic execution of a debugging section is not caused by a statement
appearing in a debugging section.

A debugging section for a specific operand is executed only once as the
result of the execution of a single statement, no matter how many times the
operand is specified in the statement. An exception to this rule is that each
specification of a subscripted or indexed identifier where the subscripts or
indexes are different causes invocation of the debugging Declarative. For a
PER FORM statement that causes repeated execution of a procedure, any
associated procedure-name debugging Declarative section is executed once
for each execution of the procedure.

For debugging purposes, each separate occurrence of an imperative verb
within an imperative statement begins a separate statement.

Statements appearing outside the debugging sections must not refer to
procedure-names defined within the debugging sections.

6-68

Except for the USE FOR DEBUGGING sentence itself, statements within a
debugging Declarative section can only refer to procedure-names defined in
a different USE procedure through the PERFORM statement.
Procedure-names within debugging Declarative sections must not appear in
USE FOR DEBUGGING sentences.

Figure 6-7 defines the points during program execution when the USE FOR
DEBUGGI NG procedures are executed. Identifier-n, file-name-n, and
procedure-name-n refer to the first and all subsequent specifications of that
type of operand in one USE FOR DEBUGGING sentence. Any particular
identifier, file-name, or procedure-name can appear in only one US E FOR
DEBUGGING sentence, and only once in that sentence.

An identifier in a USE FOR DEBUGGING sentence:

• 	 Must be specified without the subscripting or indexing normally
required if it contains an OCCURS clause or is subordinate to an entry
containing an OCCURS clause. (A SEARCH or SEARCH ALL statement that
refers to such an identifier does not invoke the USE FOR DEBUGGING
procedures.)

• 	 Must not be a special register.

When ALL PROCEDURES is specified in a USE FOR DEBUGGING sentence,
procedure-name-1, procedure-name-2, procedure-name-3, and so on, must not
be specified in any USE FOR DEBUGGING sentence. The ALL PROCEDURES
phrase can be specified only once in a program.

When a USE FOR DEBUGGING operand is used as a qualifier, such a reference
in the program does not activate the debugging procedures.

References to the DEBUG- ITEM special register can be made only from within
a debugging Declarative procedure.

USE FOR Upon execution of the following, the USE FOR

DEBUGGING Operand DEBUGGING procedures are executed immediatel

identifier-n 	 Before REWRITE/WRITE identifier-n and after FROM

phrase move, if applicable.

After each initialization, modification, or
evaluation of identifier-n in
PERFORM/VARY I NG/ AFTER/UNTI L identifier-no

After any other COBOL statement that explicitly
refers to identifier-n and could change its
contents. (See note.)

Figure 6-7 (Part 1 of 2). Execution of Debugging Declaratives

Chapter 6. Additional Functions 6-69

USE FOR Upon execution of the following, the USE FOR
DEBUGGING Operand DEBUGGING procedures are executed immediatel J
ALL REFERENCES OF Before GO TO DEPENDING ON identifier-n, control is
identifier-n transferred, and before any associated debugging

section for procedure-name is executed.

Before REWRITE/WRITE identifier-n and FROM phrase
move, if applicable.

After each initialization, modification or
evaluation of identifier-n in
PERFORM/VARY ING/ AFTER/UNT I L identifier-no

After any other COBOL statement explicitly
referring to identifier-no (See note.)

file-name-n After CLOS E/DEL ETE/OP EN/START file-name-n.

After READ file-name-n where AT ENDjINVALID KEY
was not executed.

procedure-name-n Before each execution of the named procedure.

After execution of an AL TER statement referring
to the named procedure.

ALL PROCEDURES Before each execution of every nondebugging
procedure.

After execution of every AL TER statement (except
AL TER statements in Declarative procedures).

Figure 6-7 (Part 2 of 2). Execution of Debugging Declaratives

Note: Operands acted upon but not explicitly named in such statements as
ADD, MOVE, or SUBTRACT CORRESPOND ING never cause activation of a USE
FOR DEBUGG ING procedure when such statements are executed. If
identifier-n is specified in a phrase that is not executed, the associated
debugging section is not executed.

DEBUG-ITEM Special Register

The DEBUG- ITEM special register provides information for a debugging
Declarative procedure. DEBUG- ITEM has the following implicit
description.

01 DEBUG-ITEM.
02 DEBUG-LINE PICTURE IS X(6).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-NAME PICTURE IS X(30).
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-1 PICTURE IS S9999 SIGN IS

LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-SUB-2 PICTURE IS S9999 SIGN IS

LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE
02 DEBUG-SUB-3 PICTURE IS S9999 SIGN IS

LEADING SEPARATE CHARACTER.
02 FILLER PICTURE IS X VALUE SPACE.
02 DEBUG-CONTENTS PICTURE IS X(n). ...)

6-70

Item Causing
Debug Section
Execution

identifier-n

file-name-n

procedure-name-n
AL TER reference
GO TO
procedure-name-n

procedure-name-n
in SORT /MERGE
INPUT/OUTPUT
PROCEDURE

PERFORM statement
transfer of control

procedure-name-n
in a US E procedure

The DE BU G- I TEM special register provides information about the conditions
causing debugging section execution.

Before each debugging section is executed, DEBUG- I TEM is filled with
spaces. The contents of the DEBUG- ITEM subfields are then updated
according to the rules for the MOV E statement, with one exception:
DEBUG-CONTENTS is updated as if the move were an alphanumeric to
alphanumeric elementary move without conversion of data from one form of
internal representation to another. After updating, each field contains:

• 	 DEBUG-LINE: The compiler-generated statement number, right justified
and padded on the left with zeros. For example, 000112.

• 	 DEBUG-NAME: The first 30 characters of the name causing debugging
section execution. All qualifiers are separated by the word OF
(subscripts or indexes are not entered in DEBUG-NAME).

• 	 DEBUG-SUB-I, DEBUG-SUB-2, DEBUG-SUB-3: If the DEBUG-NAME is
subscripted or indexed, the occurrence number of each level is entered
in the respective DEBUG-SUB-n. If the item is not subscripted or
indexed, these fields remain spaces.

• 	 DEBUG-CONTENTS: Data is moved into DEBUG-CONTENTS as shown in
Figure 6-8. DEBUG-CONTENTS is the same size as the largest identifier
in the program.

DEBUG-LINE
Contains Number
of COBOL
Statement DEBUG-NAME DEBUG-CONTENTS
Referring to Contains Contains

identifier-n identifier-n 	 Contents of identifier-n
when control passes
to debug section.

file-name-n file-name-n 	 For READ: contents of
record retrieved. Other
references: spaces.

AL TER statement procedure-name-n procedure-name-n in TO
PROCEED TO phrase

GO 	 TO statement procedure-name-n

SORT/MERGE procedure-name-n "SORT I NPUT" "SORT
statement OUTPUT" "MERGE OUTPUT"

as applicable

This PERFORM procedure-name-n "PERFORM LOOP"
statement

Statement causing procedure-name-n "USE PROCEDURE"
US E procedure
execution

Figure 6-8 (Part 1 of 2). DEBUG-ITEM Subfield Contents

Chapter 6. Additional Functions 6-71

DEBUG-LINE
Contains Number

Item Causing of COBOL
Debug Section Statement DEBUG-NAME DEBUG-CONTENTS
Execution Referring to Contains Contains

Implicit transfer Previous statement procedure-name-n "FALL THROUGH"
from previous executed in
sequential previous
procedure sequential

procedure (see
note)

First execution of Line number of First "START PROGRAM"
first first statement in nondeclarative
nondeclarative the procedure procedure-name
procedure

Figure 6-8 (Part 2 of 2). DEBUG-ITEM Subfield Contents

Note: If this paragraph is preceded by a section header and control is
passed through the section header, the statement number refers to the
section header.

Debugging Lines

A debugging line is any line in a source program with a Dcoded in column
7 (the continuation area). If a debugging line contains nothing but spaces
in Area A and Area B, it is considered a blank line.

Each debugging line must be written so that a syntactically correct
program results whether the debugging lines are compiled into the program
or syntax-checked, but are treated as documentation.

Successive debugging lines are permitted. Debugging lines can be
continued_ However, each continuation line must contain a 0 in column 7,
and character-strings must not be broken across two lines.

Debugging lines can be specified only after the OBJECT -COMPUTER
paragraph.

When the WITH DEBUGGING MODE clause is specified in the
SOURCE-COMPUTER paragraph, all debugging lines are compiled as part of
the object program.

When the WITH DEBUGGI NG MODE clause is omitted, all debugging lines are
syntax-checked, but are treated as documentation.

6-72

FIPS FLAGGER

The FI PS (Federal Information Processing Standard) Flagger can be
specified. Depending on the compiler option specified, it identifies source
statements and clauses that do not conform to a specified level of the
federal standard. For information on the FI PS Flagger, refer to Chapter 1
and to the Messages Guide: COBOL.

Chapter 6. Additional Functions 6-73

6·74

Chapter 7. TRANSACTION Files (IBM Extension)

IBM Extension

This chapter describes the System/38 COBOL language extensions that
support 'Work stations and program-to-program communication.

The TRANSACT I ON file organization allows a COBOL program to
interactively communicate with:

• 	 One or more work station users

• 	 One or more programs on a remote system

• 	 One or more devices on a remote system

• 	 Any combination of the above.

On the System/38 you communicate with a program or device on a remote
system by using LUI, BSC, or PEER devices. For a detailed discussion of
these devices, see the CPF Data Communications Programmer's Guide.

When required, references are made to prior discussions in earlier chapters
of this book, in order to avoid repetition. The language extensions in this
chapter are presented in the following sequence: Environment Division,
Data Division, and Procedure Division.

Externally Described Transaction File

A COBOL TRANSACT! ON file normally uses an externally described display
file, BSC file, communications file, or mixed file that contains file
information and a description of the fields in the records. The records in
this file are described to the COBOL program by the DDS format of the COPY
statement (see "Source Program Library" in Chapter 6).

In addition to the field descriptions (such as field names and attributes), the
data description specifications (DDS) for a display device file:

• 	 Specify the line number and position number entries for each field and
constant to format the placement of the record on the screen.

• 	 Specify attention functions such as underlining and highlighting fields,
reverse image, or a blinking cursor.

Chapter 7. TRANSACTION Files (IBM Extension) 7-1

• 	 Specify validity checking for data entered at the display work station.
Validity checking functions include:

Detecting fields where data is required
Detecting mandatory fill fields
Detecting incorrect data types
Detecting data for a specific range
Checking data for a valid entry
Performing modulus 10 or 11 check digit verification.

• 	 Control screen management functions such as when fields are to be
erased, overlaid, or retained when new data is displayed.

• 	 Associate indicators 01 through 99 with command attention keys or
command function keys. If a command key is described as a command
function key (C F), both the modified data record and the response
indicator are returned to the program. If a command key is described
as a command attention key (CA), the response indicator is returned to
the program, but the data record usually contains default values for
input-only fields and the values written to the format for hidden
output/input fields. For more information on CF and CA keys, see the
CPF Programmer's Guide.

• 	 Assign an edit code (EDTCDE keyword) or edit word (EDTWRD keyword) to
a field to specify how the field's values are to be displayed.

• 	 Specify subfiles.

A display device record format contains three types of fields:

• 	 Input Fields: Input fields pass from the device to the program when the
program reads a record. Input fields can be initialized with a default
value; if the default value is not changed, the default value passes to
the program. Uninitialized input fields are displayed as blanks into
which the work station user can enter data.

• 	 Output Fields: Output fields pass from the program to the device when
the program writes a record to a display. The program or the record
format in the device file can provide output fields.

• 	 Output/Input (both) Fields: An output/input field is an output field that
can be changed and, therefore, become an input field. Output/input
fields pass from the program when the program writes a record to a
display and pass to the program when the program reads a record from
the display. Output/input fields are used when the user is to change or
update the data that is written to the display from the program.

For a detailed description of an externally described display device file or
data communications file and for a list of the valid data description
specifications (DDS) keywords, see the CPF Reference Manual- DDS.

Figure 7-1 shows an example of the DDS for a display device file.

J

7-2

GX21-7754-1 UMI05O'
DATA DESCRIPTION SPECIFICATIONS Printed in U,S,A.IBlt1lnterNtion" BUlin... MKhint1 Corpor8tion

File 1P9
of

Programmer Date

~
Conditioning '" location~

X

• Condition Name ~

Sequence ~ ~ Name length m Functions

Number E Ci ~ ~

E ~ ~ s ~

~~ " l! z ii ! i i h &~ Une Po.

~g~.!~B-~~.:S - !!B~t

~.i~~~]~.5Z~ i !3~.f:S

1 2 3 4 5 6 7 • 9 1011121314151617 81920212223 24 2526 27 28 29 0313233 34 35383738 39 4041424344 454847484950515253 54 565667 58 598061 82636416.878819 70717273747578 77 78 7980

- • AI*CU5TOt'l£1l I1"STERIHQUIRIV F:I:LE -- C U SM I N<l' ..: ::: _ • .' :'. '... _ : : • •

- A

A

•
A

, A

A Ii- 'CJ,"') -'.. :' • - • _ - • . -

A NAME R 8 11 ' • _ - - : . - ,
: - A

•
A "DD'R~ 11 ' • '. • ••••• ,...: - • • ; - •••• ; ••

1-----...++-+-+--+-+--+~++r----,------+-.-r------t-::If-------,-~++___t__t__=J.~"T__;_'_'3;_r_'--"(';--'-i,___L_J__+V-,-i---;-- - : : • • - ; • • • •
, - A

A

- (;1 TV 11< id. 1.1 -. .- • '11 •. -' . .• - _-_ •__ - __ , •
, A~---HrH~~-H~rH==~~~-'~r-__-Hrll~1~1~~~+'~5~~~'4~,t~',e~'__'~~'~-r-~--.~-__;~;_~,_.~;~.~._.~,~

A STAT E .11 11 - • -. ••• . • : -. •~

A

_ A

. A

A

- - A

A

A

-: : ' A l..IP l.1 '3 J." •• - •• - - • ':. • -'" :. •
A .11. 3' AI(l.'~Q I AnC;.e .. _ • . : ;L -

, - A
•

ARSAL R J. 1 1. 7,EDTc.\)1: C:r) .: • :; : - _.::: ::. - . :
A • - . .: -. .. - :. :: -'" ..: - . :

•

A .. . - . : . . . - .
. A . . . - . - : :' :: :':: -'., :":"':

• Number of sheets per pad may vary slightlv

Figure 7-1 (Part 1 of 2), Example of the Data Description Specifications for a Display Device File

Chapter 7. TRANSACTION Files (IBM Extension) 7-3

L

http:i~~~]~.5Z

This display device file contains two record formats: CUSPMT and CUSFLDS.

D 	 The attributes for the fields in this file are defined in the CUSMSTP field reference file.

o 	 Command attention key 1 is associated with indicator 15, with which the user ends the

program.

II 	The ERRMSG keyword identifies the error message that is displayed if indicator 99 is set on in

the program that uses this record format.

D 	 The OVERLAY keyword is used for the record format CUSFLDS so that the CUSPMT record on the

display will not be erased when the CUS FLDS record is written to the display.

o 	 The constants such as 'Name', 'Address', and 'City' describe the fields that are written out by

the program.

D 	 The line and position entries identify where the fields or constants are written on the display.

Figure 7-1 (Part 2 of 2). Example of the Data Description Specifications for a Display Device File

Processing an Externally Described TRANSACTION File

When an externally described TRANSACTION file is processed, the Control
Program Facility (CPF) transforms data from the program to the format
specified for the file and displays the data. When data passes to the
program, the data is transformed to the format used by the program.

CP F provides device control information for performing input/output .\.
operations for the device. When an input record is requested from the ..."
device, CPF issues the request, then removes device control information
from the data before passing the data to the program. In addition, CPF can
pass indicators to the program indicating which fields, or if any fields, in
the record have changed.

When the program requests an output operation, it passes the output record
to CPF. CPF provides the necessary device control information to display
the record. CP F also adds any constant information specified for the record
format when the record is displayed.

When a record passes to a program, the fields are arranged in the order in
which they are specified in the DDS. The order in which the fields are
displayed is based on the display positions (line numbers and positions)
assigned to the fields in the DDS. Therefore, the order in which the fields
are specified in the DDS and the order in which they appear on the screen
need not be the same.

Indicators

Indicators are Boolean data items that can have the values 8"0" or 8"1".

When you define a record format for a file using DDS, you decide the options
...~

...,that are to be controlled by indicators, and the indicators that are to reflect •.

particular responses.

7-4

Option indicators provide options such as spacing, underlining, and
allowing or requesting data transfer from a program to a printer or display
device. Response indicators provide response information to a program from
a device, such as which function keys are pressed by a work station user,
and whether data has been entered.

Indicators can also be used with Fa RMA TF I L E files.

Indicators can be passed with data records in a record area, or outside the
record area in a separate indicator area.

Indicators in the Record Area

If the keyword I NDARA is not used in the DDS for a file, indicators are
created in the record area. When indicators are defined in a record format
for a file, they are read, rewritten, and written with the data in the record
area.

The number and order of indicators defined in the DDS for a record format
for a file determines the number and order in which the data description
entries for the indicators in the record format must be coded in the
program.

If a 	COpy statement, DDS or DD format, is used to copy indicators into a
source program, the indicators are defined in the order in which they are
specified in the DDS for the file.

Indicators in a Separate Indicator Area

If the file level keyword I NDARA is specified in the DDS, then for any record
format in the file, all indicators defined in the record format(s) for the file
are passed to and from the program in a separate indicator area, not in the
record area. For information on how to specify the INDARA keyword, see
the CPF Reference Manual- DDS.

The file control entry for a file that has INDARA specified in its DDS must
have the separate indicator area attribute, S I, as part of the
assignment-name in the ASS I GN clause.

The advantages of using a separate indicator area are as follows:

• 	 The number a::ld order of indicators used in an 1-0 statement for any
record format in a file need not match the number and order of
indicators specified in the DDS for that record format.

• 	 The program associates the indicator number in a data description
entry with the appropriate indicator.

Chapter 7. TRANSACTION Files (IBM Extension) 7-5

ASSIGN Clause with Separate Indicator Area Attribute

Assignment-name of the ASS I GN clause of a file control entry has the
following general format:

device - 8ystem/38 file name - attribute

Device can be either WORKSTATION or FORMATFILE.

System/38 file name must refer to a file that has the file level keyword
I NDARA specified in its DDS.

Attribute must be the separate indicator area attribute, 81

An example of an assignment-name is:

WORK5TATION-8ystem/38 file name-51

Data Description Entry - Boolean Data

When you use indicators in a COBOL program, you must describe them as
Boolean data items using the data description entry for Boolean data.

Format

{ data-name-, }
level·number FILLER

[REDEFINES data-name-2]

[{~TURE}S ,]

[[USAGE IS] DISPLAY]

rOCCURS 	{integer-, TO integer-2 TIMES DEPENDING ON data-name-3}
L: 	 integer-2 TIMES

ENDEXED BY ;OOex-n.m.-, [;OO.x-name-2] - -] J
INDICATOR} J

[{ INDICATORS integer-3
INDIC

1--------

[{SYNCHRONIZED} [LEFT 1J I
I SYNC [RIGHTJ I

I fi{JUSTIFIED} RIGHT] I
1 LJ JUST J--=------
[VALUE IS Boolean-literal]

7-6

Special Considerations

The special considerations for the clauses used with the Boolean data
follow. All other rules for clauses are the same as those for other data as
described under "Data Description Entry" in Chapter 4.

PICTURE Clause: An elementary Boolean data-name is defined by a
PICTURE containing a single 1.

USAGE Clause: USAGE must be defined implicitly or explicitly as
DI SPLAY.

OCCURS Clause: When the OCCURS clause and the INDICATOR clause are
both specified at an elementary level, a table of Boolean data items is
defined with each element in the table corresponding to an external
indicator. The first element in the table corresponds to the indicator
number specified in the INDICATOR clause; the second element corresponds
to the indicator that sequentially follows the indicator specified by the
INDICATOR clause.

For example, if the following is coded:

07 SWITCHES 	 PIC 1

OCCURS 10 TIMES

INDICATOR 16.

then SWITCHES (1) corresponds to indicator 16, SWITCHES (2) corresponds to
indicator 17, ... , and SWITCHES (10) corresponds to indicator 25.

INDICATOR Clause: If indicator fields are in a separate indicator area,
the I NO I CATOR clause associates an indicator defined in DDS with a Boolean
data item. If indicator fields are in the record area, the I ND I CATOR clause is
syntax-checked, but is treated as documentation.

Integer·3 must be a value of 1 through 99.

The I NO I CATOR clause must be specified at an elementary level only.

VALUE Clause: The VALUE clause specifies the initial content of a
Boolean data item. The allowable values for Boolean literals are B"O",
B"I", and ZERO.

INDICATOR Attribute of the COPY Statement, DDS
Format or DD Format

The INDICATOR attribute specifies whether or not data description entries
are generated for indicators.

If the I NO I CATOR attribute is specified, data description entries are
generated for indicators, but not for data fields. The data description
entries that are generated are determined by which one of the usage
attributes (I, 0, or 1-0) is specified or assumed in the COPY statement.

Chapter 7. TRANSACTION Files (IBM Extension) 7-7

• 	 If ... I - I ND I CATOR ... is specified, data description entries for input
(response) indicators are generated for indicators used in the input
record area.

• 	 If ... 0- I ND I CATOR ... is specified, data description entries for output
(option) indicators are generated for indicators used in the output
record area.

• 	 If ... I-O-INDICATOR ... is specified or assumed, data description
entries for both input and output (response and option) indicators are
generated for indicators used in the input and output record areas.

If the I ND I CATOR attribute is not specified, whether data description entries
are generated for indicators depends on whether the file has the keyword
I NDARA specified in the DDS.

• 	 If I NDARA is not specified, data description entries are generated for
both data fields and indicators.

• 	 If I NDARA is specified, data description entries are generated for data
fields only, not for indicators.

Group level names are assigned as follows:

• 	 INPUT

05 	 format-name- I

• 	 OUTPUT

05 	 format-name-O

If indicators are requested, or exist in the format, an additional group name
(06 level) is generated at the beginning of the structure.

06 	 format-name-<I or O)-INDIC.

07 IN01 PIC 1 INDIC 01.

07 IN04 PIC 1 INDIC 04.

07 IN05 PIC 1 INDIC 05.

07 IN07 PIC 1 INDIC 07.

06 FLD1 PIC

06 FLD2 PIC

If redefinition is required, a group level name is generated as follows:

05 	 file-name-RECORD

PIC X(largest record size).

Field names, PICTURE definitions, and numeric usage clauses are derived
directly from the internal DDS format field names and data type
representations. Field names and PICTURE definitions are constructed as
follows:

• 	 Data Field Structures:

7-8

L
06 field-name PIC (appropriate COBOL definition)_

• 	 Indicator Structures:

07 INxx PIC 1 INDIC xx.

where xx is indicator number.

See "Source Program Library" in Chapter 6 for more information on the
COPY statement.

INDICATORS Phrase

When the INDICATORS phrase is used in READ, REWRITE, and WRITE
statements (see Figure 7-3) it specifies which indicators are to be read,
rewritten, and written.

The identifier specified in the IN 0 I CATORS phrase can be either of the
following:

• 	 An elementary Boolean data item

• 	 A group item with elementary Boolean data items subordinate to it.

Indicators in the Record Area

If I NDARA is not specified in the DDS for the file, the size of the identifier in
the 	IN 0I CATORS phrase of an I-a statement (see Figure 7-3) should be equal
to the number of option or response indicators defined in the DDS for that
format.

• 	 In a READ statement, the identifier size should be equal to the number of
response indicators.

• 	 In a REWRITE or WRITE statement, the identifier size should be equal to
the number of option indicators.

The contents of the identifier are not checked, but are copied to or from the
beginning of the record, on a byte by byte basis; indicator numbers are
ignored.

If the INDICATORS phrase is omitted, the data in the indicator fields in the
record are still passed in the record area. The INDICATORS phrase is only
used to copy indicators into the record area before a WRITE or REWRITE
statement, or out of the record area after a READ statement.

Chapter 7. TRANSACTION Files (IBM Extension) 7-9

Indicators in a Separate Indicator Area

If I NDARA is specified in the DDS for the file, the use of the indicators Jreferenced in the INDICATORS phrase is based on indicator number.

• 	 In a READ statement, only the response indicator numbers referenced by
the INDICATORS phrase are updated. Indicators specified in the DDS for
the format but not referenced by the INDICATORS phrase are ignored.
Indicators referenced by the IN D I CATORS phrase but not specified in the
DDS are not modified.

• 	 In a WRITE or REWRITE statement, only the option indicators referenced
by the INDICATORS phrase are used. Indicators specified in the DDS for
the format but not referenced by the INDICATORS phrase are assumed to
be off. Indicators referenced by the INDICATORS phrase but not used in
the DDS for the format are ignored.

lfthe INDICATORS phrase is not specified, the following occurs:

• 	 In the READ statement, indicators are not updated.

• 	 In a WRITE or REWRITE statement, indicators are treated as through they
are set off.

Indicators Sample Programs

This section contains sample COBOL programs that illustrate the use of
indicators in either a record area or a separate indicator area.

All the programs do the following:

1. 	 Determine the current date.

2. 	 If it is the first day of the month, turn on an option indicator that
causes an output field to appear and blink.

3. 	 Allow the work station user to press C F keys to terminate the program,
or turn on response indicators and call programs to write daily or
monthly reports.

Figure 7·2 shows a program that uses indicators in the record area but does
not use the INDICATORS phrase in any 1·0 statement. The associated DDS
for the file is also shown.

Figure 7·3 shows a program that uses indicators in the record area and the
INDICATORS phrase in the 1·0 statements. The associated DDS for the file is
the same as that shown for the program in Figure 7·2.

Figure 7-4 shows a program that uses indicators in a separate indicator
area, defined in WORKING-STORAGE by using the COpy statement, DDS format.
The associated DDS for the file is also shown.

7·10

Figure 7-5 shows a program that uses indicators in a separate indicator
area, defined in a table in WORKING-STORAGE. The associated DDS for the
file is the same as that shown for the program in Figure 7-4.

Chapter 7. TRANSACTION Files (IBM Extension) 7·11

• •

GX21-7754·' UM/050· IBM InternltioNI a....ine. Meehln•• Corporation DATA DESCRIPTION SPECIFICATIONS Printed in USA

f-F_ue______-----,-____-----ll K.y;ng I G"Ph;C! I I I I I rD.sc,;pt;on Page of1

Programmer 1Oat. 1 Inst,uc';on 1 K.y 1 1 1 1 1 1 ~--------L--\J
Conditioning

location

Condition Name

Sequence 	 Name FunctionsI~ 	 Length I~ I~
Number

I Ig I~ 	 I~
iJ I~ . I~ . I~ j rill IJ 1:1 Hlj ~,Un.

1 2 3 4 '10171.1, 1(112 13 115161171'"1192021 22 23 24 2S 26 27 28 129 po 31 32 3J ,,135136 37'i.13' 404' 142 43 .. 145 46 47 48 49 5051 5253 .. 5556 57 5. 5960 6162 63 64 6566 67 68 69 70 71 72 73 74 7516 77 78 79.,

IA~ 0 IsP ~rtF I LE (105 IFoR IINIDI [ATCR il:·._E5 . .:
IA . --	 fli:ll··. . •
IA Y R IFORMA,I1 	 f-I- (qq'END dF l-' :.:JC:1KAr).:: •
IA !-F<J':)(S I "'DAI LYRE)Rl 1 .: • :

. : :
.

A • 	 _: .' •
••

. ' .. "

: : . ' ·

A-• -. • -. · :.
A • • • • T'·" · : .
A 	 --.- •• - . ., :

•

D The I NDARA keyword is not used; indicators are stored in the record area with the data fields.

o One record format, FORMAn, is specified.

11 Three indicators are associated with three C F keys. Indicator 99 will be set on when C F key 1 is

pressed, and so on.

D One field is defined for input.

11 Indicator 01 is defined to cause the associated constant field to blink if the indicator is on.

D The C F key definitions are documented on the work station screen.

Figure 	 7-2 (Part 1 of 4). Example of a Program Using Indicators in the Record Area without
Using the INDICATORS Phrase in the 1-0 Statement-Data Description
Specifications

7-12

05/31/825714CBl R04 MOl 820813 COBOL SOURCE LISTING

STMT SEQNBR -A 1 B ••••• 2 •••••• 3 ••• 4 •••••• 5 •••••• ~ •••••• 7 .IDENTFCN S COPY~A~E

1 000100 IDE~TIFICATION OIVISION. 00010000
2 000200 PROGRAM-ID. INOICI. 00020000

000300* INDICATORS EXAMPLE 1 - FILE WITH INDICATORS IN RECORD AREA. '~00050000

3 000400 ENVIRONMENT DIVISION. 00170000
4 000500 CONFIGURATION SECTION. 00180000
5 000600 SOURCE-COMPUTER. IBM-S3B. 00190000
6 000700 OBJECT-COMPUTER. IBM-S3B. 00200000
7
8
9

000800
000900
001000

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT OISPFILE II
00250000
00260000
00330000

10 001100 ASSIGN TO WORKSTATION-OISPFILEX 00340000
11 001200 ORGANIZATION IS TRANSACTION 00350000
12 001300 ACCESS IS SEQUENTIAL. 00350000
13 001400 00360000
14 001500 DATA DIV I S ION. 00370000
15 001600 FILE SECTION. 00380000
16 001700 FD OISPFILE 0550000
17 001800 LABEL RECORDS ARE OMITTED 00560000
18 001900 OATA RECORD IS DISP-REC. 0570000
19 002000 01 DISP-REC. a 0580000
20 002100 COpy DDS-ALL-FORMATS OF OISPFILEX. 1;1
22 +000001 05 OISPFILEX-RECORO PIC XI8'. (-ALL-FMTS
23 +000002 (-ALL-FMTS

+000003* INPUT FORMAT:FORMATI FROM FILE DISPFILEX OF LIBRARY EXAMPLES (-ALL-fMTS
+000004'~ (-ALL-FMTS

24 +000005 05 FORMATI-1 REDEFINES DISPFILEX-RECORO. (-ALL-FMTS
25 +000006 06 FORMATI-I-INOIC. (-ALL-FMTS
26 +000007 07 IN99 PIC 1 INDIC 99. (-ALL-FMTS

+000008' END OF PROGRA'1 (-ALL-FMTS
27 +000009 07 IN51 PIC 1 INOIC 51. (-ALL-FMTS

+000010* DAILY REPORT (-ALL-FMTS
28 +000011 07 IN52 PIC 1 I-'OIC 52. (-ALL-FMTS

+000012* MONTHLY REPORT (-ALL-FMTS
29 +000013 06 DEPTNO PIC XI5'. (-ALL-FMTS
30 +000014 (-ALL-FMTS

+000015* OUTPUT FORMAT:FORMATl FROM FILE OISPFILEX OF LIBRARY EXAMPLES (-ALL-FMTS
+000016* (-ALL-FMTS

31 +000017 05 FORMATI-0 REDEFINES DISPFILEX-RECORD. (-ALL-FMTS
32 +000018 06 FORMATI-0-INDIC. (-ALL-FMTS
33 +000019 07 INOI PIC 1 INOIC 01. (-ALL-FMTS
34 002200 00360000
35 002300 WORKING-STORAGE SECTION. 00620000
36 002400 01 CURRENT-DATE. 0580000
37 002500 05 CURR-YEAR PIC 99. 0580000
38 002600 05 CURR-MONTH PIC 99. 0580000
39 002700 05 CURR-DAY PIC 99. 0580000
40 002800 0580000
41 002900 01 INDIC-AREA.II 0580000
42 003000 05 INOI PIC 1. 0580000
43 003100 88 NEW-MONTH VALUE B"l lt • 05BOOOO
44 003200 05 IN51 PIC 1 • 05BOOOO
45 003300 88 WANT-DAILY VALUE Btl 1". 0580000
46 003400 05 IN52 PIC 1. 0580000
47 003500 88 WANT-MONTHLY VALUE 8"1". 0580000
48 003600 05 IN99 PIC 1. 0580000

Figure 7-2 (Part 2 of 4). Example of a Program Using Indicators in the Record Area without
Using the INDICATORS Phrase in the 1-0 Statement

Chapter 7. TRANSACTION Files (IBM Extension) 7-13

5714CBl R04 1401 820813 COBOL SOURCE LISTING INOIC 1

STMT SEQNBR -A 1 B•• 2 •••••• 3 ••• 4 •••••• 5 •••••• 6 •••••• 7 .IDENTFCN S COPYNA~E

49 003700 88 NOT-ENO-OF-JOB VALUE B"O". 0580000
50 003800 88 ENO-OF-JOB VALUE 6"1". 05BOOOO
51 003900 01030000
52 004000 PROCEDURE DIVISION. 01060000
53 004100 OPEN 1-0 DISPFILE. 090000
54 004200 ACCEPT CURRENT-DATE FROM DATE.
55 004300 SET NOT-END-OF-JOB TO TRUE.
56 004400 PERFOR~ DISPLAY-SCREEN THRU READ-AND-PROCESS-SCREEN

004500 UNTIL END-OF-JOB.
57 004600 CLOSE DISPFILE.
58 004700 STOP RUN.

004800 01030000
004900 DISPLAY-SCREEN.

59 005000 I1I~MGVE ZEROS TO INDIC-AREA.
60 005100 IF CURR-DAY = 01 THEN
61 005200 fJ--SET NEW-MONTH TO TRUE.
62 005300 "'~MOVE CORR INOIC-AREA TO FORMATI-O-INDIC.
63 005400 m.,....rOlRITE OISP-REC FORMAT IS "FORMATl"·1Ill

005500
005600 READ-ANO-PROCESS-SCREEN.

64
65

005700
005800 m MOVE ZEROS TO

-READ DISPFILE
INOIC-AREA.

FORMAT IS "FORMATl".
66 005900 m...,r"MOVE CORR FOR~ATl-I-INOIC TO INOIC-AREA.
67 006000 ~ IF WANT-DAILY THEN
68 006100

006200
m--",,"CALL
W ELSE

"OAILY" USING OEPTNO

69 006300 IF WANT-MONTHLY THEN
70 006400 CALL "MONTHLY" USING DEPTNO.

* * * * * END 0 F SOU R C E * * * * ~

Figure 7-2 (Part 3 of 4). Example of a Program Using Indicators in the Record Area without
Using the INDICATORS Phrase in the 1-0 Statement

7-14

5714C81 R04 MOl 820813 COBOL SOURCE LISTING INOIC2 05/31/82

STMT SEQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IDENTFCN S COPYNAME

49 003700 05 NEW-MONTH PIC 1. 000
50 003800 01030000
51 003900 PROCEDURE DIVISION. 01060000
52 004000 OPEN 1-0 DISPFILE. 090000
53 004100 ACCEPT CURRENT-DATE FROM DATE.
54 004200 MOVE IND-OFF TO END-OF-PROGRAM.
55 004300 PERFORM DISPLAY-SCREEN THRU READ-AND-PROCESS-SCREEN

004400 UNTIL END-OF-PROGRAM = IND-ON.
56 004500 CLOSE OISPFILE.
57 004600 STOP RUN.

004700 01030000
004800 DISPLAY-SCREEN.

58 004900 MOVE ZEROS TO OPTION-INDICS.
59 005000 IF CURR-DAY = 01 THEN
60 005100 MOVE IND-ON TO NEW-MONTH.
61 005200 WRITE DISP-REC FORMAT IS "FORMATl"

005300 INDICATORS ARE OPTION-INDICS.
005400
005500 READ-AND-PROCESS-SCREEN.

62
63

005600
005700
005800

MOVE ZEROS TO RESPoNSE-iNDICS.IJ READ DISPFILE FORMAT IS "FOR'1ATl" m
INDICATORS ARE RESPoNSE-I!IIDICS. iii

64
65

005900
006000

IF DAILY-~EPoRT = IND-oN THENm CALL "DAILY" USING DEPTNo
006100 ELSE

66 006200 IF MONTHLY-REPORT = IND-ON THEN
67 006300 CALL "MONTHLY" USING oEPTNO.

* * • • * END 0 F SOU R C E *. * • *

Figure 7-3 (Part 2 of 3). 	 Example of a Program Using Indicators in the Record Area and the
INDICATORS phrase in the 1-0 Statements

o The separate indicator area attribute, S I, is not coded in the AS SIGN clause.

D The COpy statement, DDS format, defines data fields and indicators in the record area.

II Because the file does not have a separate indicator area, response and option indicators are

defined in the order in which they are used in the DDS, and the indicator numbers are treated
as documentation.

D 	 All indicators used by the program are defined with meaningful names in data description
entries in WORKING-STORAGE. Indicator numbers are omitted here because they have no effect.
Indicators should be defined in the order needed by the display file.

D INOI in WORKING-STORAGE is set on if it is the first day of the month.

1m FORMATl is written to the work station screen:

• 	 The INDICATORS phrase causes the contents of the variable OPTION-INDICS to be copied to
the beginning of the record area.

• Data and indicator values are written to the work station screen.

fJ FORMATl, including both data and indicators, is read from the work station screen.

III The I NDI CATORS phrase causes bytes to be copied from the beginning of the record area to
RESPONSE-INDICS.

iii If C F key 5 has been pressed, a program call is executed.

Figure 7-3 (Part 3 of 3). Example of a Program Using Indicators in the Record Area and the
INDICATORS phrase in the 1-0 Statements

Chapter 7. TRANSACTION Files (IBM Extension) 7-17

__

• •• ••

• • • •

GX21-7754-1 UM/050·IB~ Internltional BUliness Machines CorpoI'ation DATA DESCRIPTION SPECIFICATIONS 	 Printed in U.S.A.

ofFile IDesc,;ptoon

Programmer Date

,---,----------,TT----------TT-----rr-TT-----,,-------------------------------------~

~

>

!
~ Conditioning ~ Location

t..~~" Condition Name 	 ~I 	 X~~~~~ 	 ~ _~I--.-~Sequence ;:, Name length v"; ..:: Functions

Number
 ~ ~ 	 ~ ~E ! g ~ ~

!~ :; _ c; _ s !i g ~_~~ Line Pas

E~ ij!Z 11 Z ~ ~ ~ ~ t; .~~; i

~ ~ ~ j ~ j ~ ~ ~ ~ 3 ~cf ~

1 2 3 4 5 6 7 9 1011121314151611 HI 19202122232425262728 29 031323334 3536 37 38 39404142434445464748 49 50515253545556 57 58596061 62636465666756 69 707172 73 74 7576 77 78 7980

__ A ~ 	 •• • ~ _ . : .• ~ _ U' l.l '.
A 	 a I N\:>AAA . __ . _. ••

f--'---'-++_++--+-+--H--W---/-;;;c~~;h-+--H---++__++--+ r:~01I9~ 'END OF P~AAM')A ~ fORMA11
A 	 , .· 	 -Fo5(51 'OAI LYREPORT"') ••· •A 	 :F09(52. 'MONTI-lL'(REPORT') .

.
Ailli ,

•
. 	 '... '.'.". . l

· .
•A I 0 	 10'DEPARTMENT NUI'tlSER:)" •

A)E:PTNC .5· ·
. A ::>..1 ·

A

• 	

DSPA"TR{& loy '. • '. .• • l
A~ 	 'jj ~j i '1' '. • _ .l.: ,i •

• • • • • 	 , , .A ·
• •

2..4 01CPS .= PAl .'1. ~Io(' / ~ •. .' ·

A ..
A • l · .. · l -	 - l

, · , 	 ,. . .A 	 • •

A .l. • •

• • • . •• l l, • .' •• •
• . 	 •• •

A , . ' 	

D 	 The I NDARA keyword is specified, indicators are stored in a separate indicator area, not in the ,
record area. Except for this specification, the DDS for this file is the same as that shown in ~
Figure 7·2.

Figure 7-4 (Part 1 of 4). 	 Example of a Program Using Indicators in a Separate Indicator Area,
defined in WORKING-STORAGE by using the COPY Statement, DDS
format

IIC ~ ." •
• •

. .

. ,

•• ••

7·18

05/31/825714C81 R04 MOl 820813 	 COBOL SOURCE LISTING

STMT SEQNBR -A 1 B••••• 2 •••••• 3 ••• 4 •••••• 5 •••••• b ••• ••• 1 .IDENTFCN S COPYNA~E

1 000100 IDENTIFICATION DIVISION. 00010000
2 000200 PROGRAM-ID. INOIC3. 00020000

000300* INDICATORS EXAMPLE 3 - FILE WITH SEPARATE INDICATOR AREA. *00050000
3 000400 ENVIRONMENT OIVISION. 00170000
4 000500 CONFIGURATION SECTION. 00180000
5 000600 SOURCE-COMPUTER. IBM-S38. 00190000
6 000700 OBJECT-COMPUTER. IBM-S38. 00200000
1 000800 INPUT-OUTPUT SECTION. 00250000
8
9

000900
001000

FILE-CONTROL.
SELECT DISPFILE D 00260000

00330000
10 001100 ASSIGN TO WORKSTATION-OISPFILE-SI 00340000
11 001200 ORGANIZATION IS TRANSACTION 00350000
12 001300 ACCESS IS SEQUENTIAL. 00350000
13 001400 00360000
14 001500 DATA OIVISION. 00370000
15 001600 FILE SECTION. 00380000
16 001700 FO DISPFILE 0550000
17 001800 LABEL RECORDS ARE OMITTED 00560000
18 001900 DATA RECORD IS DISP-RfC. -= 0570000
19 002000 01 DISP-REC. 0580000
20 002100 COpy DDS-ALL-FORMATS OF DISPFILE.I;I
22 +000001 05 DISPFILE-RECORD PIC X(8). (-ALL-FMTS
23 +000002 (-ALL-FMTS

+000003~' INPUT FORMAT:FORMATI FROM FILE DISPFILE OF LI&RARV EXA~PLES <-ALL-FMTS
+000004* (-ALL-FMTS

24 +000005 05 FORMATl-I REDEFINES DISPFILE-R~CORD. (-ALL-FMTS
25 +000006 06 DEPTNO PIC X(5). (-ALL-FMTS
26 +000007 (-ALL-FMTS

+000008'-' OUTPUT FORMAT:FORMATI FROM FILE DISPFILE OF LI8RARV EXAMPLES (-ALL-FMTS
+000009* (-ALL-FMTS
+000010* 05 FORMATl-O REOEFINES OISPFILE-RECORO. (-ALL-FMTS

27 002200 00360000
28 002300 WORKING-STORAGE SECTION. 0<>620000
29 002400 01 CURRENT-DATE. 0580000
30 002500 05 CURR-VEAR PIC 99. 0580000
31 002600 05 CURR-~ONTH PIC 99. 0580000
32 002700 05 CURR-DAV PIC 99. 0580000
33 002800 0580000
34 002900 71 INO-OFF PIC VALUE B"O". 0580000
35 003000 77 IND-ON PIC VALUE B"l". 0580000
36 003100 01 DISPFILE-INOICS. 0580000
37 003200 COPY DOS-ALL-FORMATS-INDIC OF OISPFILE.I!I 0580000
39 +000001

+000002* INPUT FORMAT:FORMATl FROM FILE OISPFILE OF LIBRARV EXAMPLES
(-ALL-FMTS
(-ALL-FMTS

+000003" (-ALL-FMTS
40
41

42

+000004
+000005
+000006*
+000007

06 FORMATI-I-INOIC.
01 IN51 PIC 1 INDIC

OAIL Y REPORT
07 IN52 PIC 1 INOIC

51. 1[1
52.

(-ALL-FMTS
(-ALL-FMTS
(-ALL-FMTS
(-ALL-FMTS

+000008* MONTHLY REPORT (-ALL-FMTS
43 +000009 01 IN99 PIC 1 INDIC 99. (-ALL-FMTS

+000010* ENO OF PROGRAM (-ALL-FMTS
44 +000011 (-ALL-FMTS

+000012* OUTPUT FORMAT:FORMATI FROM FILE OISPFILE OF LIBRARY EXAMPLES (-ALL-FMTS
+000013* (-ALL-FMTS

Figure 7-4 (Part 2 of 4). 	 Example of a Program Using Indicators in a Separate Indicator Area,
defined in WORKING-STORAGE by using the COPY Statement, DDS
format

Chapter 7. TRANSACTION Files (IBM Extension) 7-19

5714CBl R04 MOL 820813 	 COBOL SOURCE LISTING INDIC3 05/31/82

STMT SEQNBR -A 1 B •• 2 •••••• 3 •••••• 4 •••••• 5 •••••• b ••• ••• 7 .IDENTFCN S COPYNA~E

45 -000014
46 -000015
47 003300
48 003400
49 003500
50 003600
51 003700
52 003800

003900
53 004000
54 004100

004200
004300

55 004400
56 004500
57 004600
58 004700

004800
004900
005000

59 005100
60 005200

005300
61 005400
62 005500

005600
63 005700
64 005800

06 FORMATI-0-INDIC.
07 INOI PIC 1 INOIC 01.

PROCEOURE OIVISION.
OPEN 1-0 DISPFILE.
ACCEPT CURRENT-DATE FROM DATE.
MOVE IND-OFF TO IN99 IN FORMAT1-I-INOIC.
PERFORM DISPLAY-SCREEN THRU READ-AND-PROCESS-SCREEN

UNTIL IN99 IN FORMAT1-I-INDIC = IND-ON.
CLOSE DISPFILE.
STOP RUN.

OISPLAY-SCREEN.
MOVE ZEROS TO FO~MAT1-0-tNDIC.
IF CURR-DAV = 01 THENiii MOVE IND-ON TO IN01 IN FORMAT1-D-INDIC.
WRITE DISP-REC FORMAT IS "FORMAn" _

INDICATORS ARE FORMAT1-0-INDIC • .,.

READ-AND-PROCESS-SCREEN.
MOVE ZEROS TO FORMATI-I-INDIC.
READ DISPFILE FORMAT IS "FORMAT1"

INOICATORS ARE FORMAT1-I-INOIC. ~
~ IF IN51 IN FORMAT1-I-INDIC = INa-ON THEN
~ CALL "DAILV" USING OEPTNO

ELSE
IF IN52 IN FORMATI-I-INDIC = IND-ON THEN

CALL "MONTHLY" USING DEPTNO.

* * * * * END 0 F SOU R C E * * * * ¥

<-ALL-~MTS

(-ALL-FMTS
01030000,
01060000
090000

01030000

1260000

1260000

Figure 7-4 (Part 3 of 4). 	 Example of a Program Using Indicators in a Separate Indicator Area,
defined in WORKING-STORAGE by using the COPY Statement, DDS
format

o The separate indicator area attribute, S I, is specified in the ASS I GN clause.

II The COpy statement, DDS format, generates data descriptions in the record area for data fields
only. The data description entries for the indicators are not generated because a separate
indicator area has been specified for the file.

II The COpy statement, DDS format, with the INDICATOR attribute, INDIC, defines data description
entries in WORKING-STORAGE for all indicators used in the DDS for the record format for the file.

II Because the file has a separate indicator area, the indicator numbers used in the data
description entries are not treated as documentation.

D I NO 1 in the separate indicator area for FORMAT1 is set on if it is the first day of the month.

D The INDICATORS phrase is required to send indicator values to the work station screen.

D The IN D I CATORS phrase is required to receive indicator values from the work station screen. If
C F key 5 has been pressed, I N 51 is set on.

D If I N 51 has been set on, a program call is executed.

Figure 7-4 (Part 4 of 4). Example of a Program Using Indicators in a Separate Indicator Area,
defined in WORKING-STORAGE by using the COPY Statement, DDS
format

7-20

5714CBl R04 MOl 820813 COBOL SOURCE LISTING 05/31/82

STMT SEQNBR -A 1 B •• ••• 2 •••••• 3 ••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN S COpy NAME

1 000100 IDENTIFICATION DIVISION. 00010000
2 000200 PROGRAM-ID. INDIC4. 00020000

000300* INDICATORS EXAMPLE 4 - FILE WITH SEPARATE INDICATOR AREA. *00050000
3 000400 ENVIRONMENT DIVISION. 00170000
4 000500 CONFIGURATION SECTION. 00180000
5 000600 SOURCE-COMPUTER. IBM-S38. 00190000
6 000700 OBJECT-COMPUTER. IBM-S38. 00200000
7
8
9

000800
000900
001000

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DISPFILE D
00250000
00260000
00330000

10 001100 ASSIGN TO WORKSTATION-OISPFILE-SI 00340000
11 001200 ORGANIZATION IS TRANSACTION 00350000
12 001300 ACCESS IS SEQUENTIAL. 00350000
13 001400 00360000
14 001500 DATA DIVISION. 00310000
15 001600 FILE SECTION. 00380000
16 001700 FD DISPFILE 0550000
17 001800 LABEL RECORDS ARE OMITTED 00560000
18 001900 DATA RECORD IS DISP-REC. 0570000
19 002000 01 OISP-REC. .,. 0580000
20 002100 COPY DDS-ALL-FORMATS OF OISPFILE.~
22 +000001 05 OISPFILE-RECORD PIC XI8'. <-ALL-FMTS
23 +000002 <-ALL-FMTS

+000003* INPUT FORMAT:FORMATI FROM FILE DISPFILE OF LI8RARY EXA~PLES <-ALL-FMTS
+000004* <-ALL-FMTS

24 +000005 05 FORMATl-I REDEFINES OISPFILE-RECORO. <-ALL-FMTS
25 +000006 06 DEPTNO PIC XI5,. <-ALL-FMTS
26 +000007 <-ALL-FMTS

+000008* OUTPUT FORMAT:FORMATI FROM FILE DISPFILE OF LIBRARY EXAMPLES <-ALL-FMTS
+000009* <-ALL-FMTS
+000010* 05 FORMATl-O REDEFINES OISPFILE-RECORD. <-ALL-FMTS

21 002200 00360000
28 002300 WORKING-STORAGE SECTION. 00620000
29 002400 01 CURRENT-DATE. 0580000
30 002500 05 CURR-YEAR PIC 99. 0580000
31 002600 05 CURR-MONTH PIC 99. 0580000
32 002700 05 CURR-DAY PIC 99. 0580000
33 002800 0580000
34
35

002900
003000

01 INDIC-AREA.
05 INOIC-TABLE OCCURS 99 PIC 1 INDICATOR 1.11 05BOOOO

0580000
36 003100 88 INO-OFF VALUE B"O". 0580000
37 003200 88 INO-ON VALUE B"l". 0580000
38 003300 0580000
39 003400 01 DISPFILE-INDIC-USAGE. 0580000
40
41

003500
003600 n 05

05
IND-NEW-MONTH
IND-DAILY

PIC
PIC

99
99

VALUE
VALUE

01.
51.

0580000
0580000

42 003700 ... 05 IND-MONTHLY PIC 99 VALUE 52. 0580000
43 003800 05 IND-EOJ PIC 99 VALUE 99. 0580000
44 003900 01030000
45 004000 PROCEDURE DIVISION. 01060000
46 004100 OPEN 1-0 DISPFILE. 090000
47 004200 ACCEPT CURRENT-DATE FROM DATE.
48 004300 SET IND-OFF IIND-EOJI TO TRUE.
49 004400 PERFORM DISPLAY-SCREEN THRU READ-ANO-PROCESS-SCREEN

004500 UNTIL IND-ON IIND-EOJI.

Figure 7-5 (Part 1 of 2). Example of a Program Using Indicators in a Separate Indicator Area,
Defined in a Table in WORKING-STORAGE

Chapter 7. TRANSACTION Files (IBM Extension) 7-21

5714CB1 R04 MOl 620813 COBOL SOURCE LISTING INOIC4 05131/82

STMT SEQNBR -A 1 B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN S COPYNAME

50
51

52
53
54
55

56

57
56

59
60

004600
004700
004800
004900
005000
005100
005200
005300
005400
005500
005600
005700
005600
005900
006000
006100
006200
006300

CLOSE OISPFILE.
STOP RUN.

DISPLAY-SCREEN.
MOVE ZEROS TO INDIC-AREA.
IF CURR-DAY = 01 THEN t;I

SET INO-ON (IND-NEW-MONTHI TO TRUE. 1;1
WRITE OISP-Rf'C FORMAT IS "FORMATl" n

INDICATORS ARE INOlC-TABLE. ~

REAO-AND-PROCESS-SCREEN.
READ DISPFILf' FORMAT IS "FORMATl" a

INDICATORS ARE INDIC-TABLE.IUI
~ IF IND-ON (IND-DAILY' THEN
~ CALL "DAILY" USING DEPTNO

ELSE
IF INO-ON (INO-MONTHLY' THEN

CALL "MONTHLY" USING DEPTNO.

01030000

1260000

1260000

o 0 0 0 0 END 0 F SOU R C E _ _ _ 0 -

D 	 The separate indicator area attribute, S I, is specified in the ASS I GN clause.

D 	 The COpy statement, DDS format, generates fields in the record area for data fields only.

II 	A table of 99 Boolean data items is defined in WORKING-STORAGE. The INDICATOR clause for

this data description entry causes these data items to be associated with indicators 1 through 99

respectively. The use of such a table may result in improved performance as compared to the

use of a group item with multiple subordinate entries for individual indicators; however, you

must consider the number of references and indicators for example, to realize improved

performance.

D 	 A series of data items is defined in WORKING-STORAGE to provide meaningful subscript names J
with which to refer to the table of indicators. The use of such data items is not required.

II 	 INDIC- TABLE (01) in the separate indicator area for FORMATl is set on if it is the first day of

the month.

o 	 The I NO I CATOR phrase is required to send indicator values to the work station screen.

IJ 	 The INDICATOR phrase is required to receive indicator values from the work station screen. If

C F key 5 has been pressed, I NO I C-TABL E (51) is set on.

o 	 If INDIC- TABLE (51) has been set on, a program call is executed.

Figure 7-5 (Part 2 of 2). 	 Example of a Program Using Indicators in a Separate Indicator Area,
Defined in a Table in WORKING-STORAGE

Subfiles

Subfiles can be specified in the DDS for a display file or mixed file to allow
the user to handle multiple records of the same type on a display (see
Figure 7-6). A subfile is a group of records that is read from or written to a
display device. For example, a program reads records from a data base file
and creates a subfile of output records. When the entire subfile has been
written, the program sends the entire subfile to a display device in one
write operation. The work station user can change data or enter additional
data in the subfile; the program then reads the entire subfile from the

7-22

display device into the program and processes each record in the subfile
individually.

L Records to be included in a subfile are specified in the DDS for the file. The
number of records that can be contained in a subfile must also be specified
in the DDS. One file can contain more than one subfile; however, only
twelve subfiles can be active concurrently for a device. Twelve subfiles can
be displayed on a device at the same time.

The DDS for a subfile consists of two record formats: a subfile record format
and a subfile control record format. The subfile record format contains the
field descriptions of all the records in the subfile. Specification of the
subfile control record format on the READ or WRITE statement causes the
physical read, write, or setup operations of a subfile to take place.
Figure 7-7 shows an example of the DDS for a subfile record format, and
Figure 7-8 shows an example of the DDS for a subfile control record format.

For a description of how the records in a subfile can be displayed and for a
description of the keywords that can be specified for a subfile, see the CPF
Programmer's Guide.

Programming Note: In a mixed file, the formats used for defining the
subfile records and the subfile control record can be used only in 1-0
operations to display devices.

Customer Name Search

Search Code

Number Name Address City State

XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX xx
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX
XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XX

Figure 7-6. Subfile Display

To use a subfile for a display file or mixed file in a COBOL program, the
SUBFILE phrase must be specified with the input/output operation. The
valid subfile operations are:

• READ SUBFI LE file-name RECORD

Chapter 7. TRANSACTION Files (IBM Extension) 7-23

Use of Subfiles

• WRITE SUBFILE record-name

• 	 REWRITE SUBFILE record-name. J
In COBOL, subfiles can be processed sequentially with the READ SUBFI LE
NEXT MOD I FI ED statement, or processed randomly by specifying a relative
key value.

The TRANSACT I ON file must be an externally described file. In COBOL, all
access to the subfile is done with a relative record number. If the SUBFI LE
phrases are used with a TRANSACTION file, the SELECT statement in the
Environment Division must state that ACC ESS MOD E IS DYNAM I C and must
specify the RELATIVE KEY to be used.

If more than one display device is acquired by a display file or mixed file,
there is a separate subfile for each individual display device. If a subfile
has been created for a particular display device acquired by a TRANSACTION
file, all input operations that refer to a record format for the subfile are
performed against the subfile belonging to that device. See the discussions
on the TERM I NAL phrase later in this chapter for information about how to
determine which device is used. Any operations that reference a record
format name that is not designated as a subfile are executed as an
input/output operation directly to the display device.

Some typical uses of subfiles include:

• 	 Display only. The work station user reviews the display.

• 	 Display with selection. The user requests more information about one
of the items on the display.

• 	 Modification. The user modifies one or more of the records.

• 	 Input only, with no validity checking. A subfile is used for a data entry
function.

• 	 Input only, with validity checking. A subfile is used for a data entry
function, but the records are checked.

• 	 Combination of tasks. A subfile can be used as a display with
modification.

7-24

GX2H754-1 UMI06O'
DATA DESCRIPTION SPECIFICATIONS Printed in U.s.A.IB~ International Bulin.n Mec:hinK Corporation

I" o.
File

Programmer Date

~
Condidoning ~

Locttion
~

- Condition Nlrne ~
Functions~ i i Na~ I ~lenGth

Number

E l ~. ~
!8 ! - i a u_ ~
;~z J .~ ~I it I nMHi ~ ~ z 0~ zo:o: l5il~

1 2 3 .. & • 7 A: • 10 1213'4161. 1 81920212223242626 27 28 29~31 3233 34 35313138 3940414243 t..s 48 41.4810&1 5213141111 &1585810.'12117 •• '0 1172 13 74 71181171 ~

D IS, Is: IR THE IDl SP L~ V DEVtl:CE'IL E L~R(.t>~()O,' ,.,'," ,.:,::,! ,! '. ..t.
. A (COVNT 5 Rr: EX VAB LE II NTEIRA ('T:tVE'PAYtf~ttr 'UPDA.TE: :: J " ,.,.'" l

_., A ,1.:. c. :, ,',: L i : 1. Ll." , "
A If •

At •. , : -, •• ::" ':' , :

f----+-A!_+_~!_+_-+-I__!_+_I__--I__I__H_--H__+EI VA\..U£:S' 'I.YES' "~'H.O:'.)11 : ':,': :.
A 15l IDSP:AT:fWRI, :MOT) ,: :"'" ,', ,

A N51. DSPATR(N:D 'P,R'" .' ':'

1__--+-114.I.:H-+-+--++-+++.,..,-,.:;:,."",....-+--+--+-I----=H-+~· 1'""". : , . .',: .: .:,.' :"". . •
1--_--t-A+++:-:++-+-I---H-F-C.:<,U.........5T_I--I---H-__ S~SlrE.X.l(IC\.4~+O"'.r' nlA~biC'll" J . ~ , :u
S.,...·-1--1'181
t------'-+-AH-tS,o-".l=t--t--H-+++-.-..,.........+---t-rl-+---,.--,--+-+-+-D D.SBATR J~Ll ' : , L. ': J. ~_ '

A ~~ DS:PI'\T'RjI/'4il)\ : • ',' .' _ • •
A

14.1* . ••• . " ., . .

A S~ l)S.f'ATRCNI» • ::": '
A 15+ IDSPA1'~{PR\: '..c ..• J:,' ,. , ,
Alf ,~ .. , -'- : • :
A f:CPMSG 31
A 52. PS.PATRlRX,) "':.
A 15~ I)SPATR (Nt»)i .' . ..::: . • ,

A S4 t>SPAT:~ CSL),":

AfI' • .: :, " .: .' .'. ' • :.:

A OVRPMT g Z 5 101rE.JCT{'Ove.W""oQ,v'",etl-t ') . :. :

. , ,:" :
,A STSC.DE: •

'Number of sheet! per pad mllY ~lIry slightl".

Figure 7-7 (Part 1 of 2). Data Description Specifications for a Subfile Record Format

Chapter 7. TRANSACTION Files (IBM Extension) 7-25

c

The data description specifications (DDS) for a subfile record format describe the records in the
subfile:

o 	 The SFL keyword identifies the record format as a subfile.

o 	 The line and position entries define the location of the fields on the display.

II 	The VALUES keyword specifies that the user can only specify *YES or *NO as values for the

ACPPMT field.

II 	The usage entries define whether the named field is to be an output (0), input (I), output/input

(B), or hidden (H) field.

g 	 The entry CHECK(FE) specifies that the user cannot skip to the next input field without pressing

one of the field exit keys.

IJ 	 The entry AUTO(RAB) specifies that data entered into the field AMPAID is to be automatically

right-justified, and the leading characters are to be filled with blanks.

D 	 The entry CMP(GT 0) specifies that the data entered for the field AMPAID is to be compared to

zero to ensure that the value is greater than zero.

m 	The EDTCDE keyword specifies the desired editing for output field OVRPMT. EDTCDE(1) indicates

that the field OVRPMT is to be printed with commas, decimal point, and no sign. Also, a zero

balance will be printed and leading zeros will be suppressed.

m The DSPATR keyword is used to specify the display attributes for the named field when the

corresponding indicator status is true. The attributes specified are BL (blink), R I (reverse

image), PR (protect), MDT (set modified data tag), and ND (nondisplay).

Figure 7-7 (Part 2 of 2). Data Description Specifications for a Subfile Record Format J

7-26

• •

- -

D.te

GX21·77fi4.1 UM/060·II,., International Bu.ineu MKhinn Corplr~ion DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A.

ofIDe""iption

~

~
Conditioning

LoCition

Condition Name ~
§ Nt... ungth ~
 Functions
~

Ii: < :l:
~! ~.

","Uoo
~ j "• 1:1!l

• ~ I:& ~ ~
f 1 I ia: i H ~

• 10 1213 151817 8192021 2223 24 25 28 27 28 29 031 3233 J4 35 J8

rO~TRO .J.
. ,

Ib.L
•

62. ·
61.. ..

t---+-i9H-=9"":+q+--H-H-+-----+-+-+-+-....;....-++--1H--+1I SFLI1S:G(.CFH :-. IarlO"'~ '"'\lal i ~ ~'I~"""~
1_ '.' : ,U'".I. 2.. - e",clpo."'tI!Q~++
utJd ..+:e ') !: • .:.. •

L __ C • •. .:.

.1 O'~+e ". • .. .' .'. r • . .: .••. •"'5 I
•

?, 2. I Ac.c. e.Pt"· .' . 'b3
· .. 2. I pgo. ""le.nt: I ..

•
'\ .1.4 (us,\"olOle:r t

.
I

•.
·

·
.

. , ,
.

• · •
•

·Number of sheets per pad may vary slightly.

Figure 7-8 (Part 1 of 2). Data Description Specifications for a Subfile Control Record Format

Chapter 7. TRANSACTION Files (IBM Extension) 7-27

The subfile control record format defines the attributes of the subfile, the search input field,
constants, and com~and keys. The keywords used indicate the following:

D 	 SFL CTL identifies this record as a subfile control record and names the associated subfile

record (SUBFI LEI).

o SFLS I Z indicates the total number ofrecords to be included in the subfile (17).

E1 SFLPAG indicates the total number ofrecords in a page (17).

D SFLCLR indicates when the subfile should be cleared (when indicator 61 is on).

D SFLDSP indicates when to display the subfile (when indicator 62 is on).

D SFLDSPCTL indicates when to display the subfile control record (when indicator 62 is on).

fJ The LOCK keyword prevents the work station user from using the keyboard when the CONTROL I

record format is initially displayed.

IJ HELP allows the user to press the Help key and sets indicator 99 on.

m SFLMSG identifies the constant as a message that is displayed if indicator 99 is on.

In addition to the control information, the subfile control record format also defines the constants to
be used as column headings for the subfile record format.

Figure 7-8 (Part 2 of 2). Data Description Specifications for a Subfile Control Record Format

Multiple Device Files and Single Device Files

A multiple device file is either a display file or a mixed file capable of
having more than one program device acquired for that file.
Communications and BSC files can never be defined as multiple device files.

A display file is capable of having multiple program devices when the
MAXDEV parameter of the CRTDSPF CL command is greater than 1. For more
information about how to create and use a display file, see the CPF
Programmer's Guide.

A mixed file is capable of having multiple program devices when the
MAXPGMDEV parameter of the CRTMXDF CL command is greater than 1. For
more information about how to create and use a mixed file, see the CPF
Programmer's Guide.

COBOL determines at execution time whether a file is a single device file or
a multiple device file based on whether the file is capable of having multiple
devices. The actual number of devices acquired does not affect whether a
file is considered a single or multiple device file. Determination of whether
a file is a single or a multiple device file is not done at compilation time
based on the current description of the display or mixed file.

For multiple device files, if a particular program device is to be used in an
I-O statement, that device is specified by the TERMI NAL phrase. The
TERM I NAL phrase can also be specified for a single device file.

7-28

The following example illustrates the use of multiple device files. The
program uses a mixed file, and is intended to be run in batch mode. The
program acquires terminals and invites those terminals via a sign-on
screen. After the terminals are invited, they are polled. If nobody signs on
before the wait time expires, the program ends. If the user enters a valid
password, he is allowed to update an employee file by calling another
COBOL program. Once the update is complete, the device is invited again
and the terminals are polled again.

Chapter 7. TRANSACTION Files (IBM Extension) 7-29

GX21-7754-2 UM/050· IB~ Intern8tlon81 8ulint!'H MIIch,n!!1 Corporation DATA DESCRIPTION SPECIFICATIONS
Printed in U.S.A.

ofKeYing 10",,,ptiOOIFila IG"ph" IPa~
: Programmer KayInstruction~---1 I FR=R=R I

~r.1 IConditioning 2
>.' location --- Ii<
Ii!Condition Name <t:

Sequence I
~ Na"" length '"

~

Functionsi2 ~
Number ~i2 ;C;,I i! <gI ~

!l
~ e Line PO'~ 2 >" ~ Il

~....S Iz 9
~ -

z ., ~ 3 - 3
~ ; ~ ~&] ~] ~] za: a: c

~
:J

1 2 3 4 5 6 11 12 13 14 1516 1118 19202122232425262728 29 30 31 32 33 34 35 38394041 424344 4546 47 48 4950515253545556 57!>8 596061626364 656667 6869707172 73 74 1576 77 78 7980
9 '.

A

A PolS F R tHE. MIXED FI LE MIJLT
A

A R 51GNON INV I TE D
A 0 5 20 'V ~1I~ fill rHO/iS I6lI v1116 ~¥~ II Ii
A D~P'f\TH{RIJ

A " 2~ 'Ij~

D The format SIGNON has the
A D5PATR(RI)

A keyword INVITE associated 6 ~p '/616'

A with it. Th is means that, if format DSPATRl RI)
A 0 1 2(j II Ii I

SIGNON is used in a WRITEA 05 A1"R(RIL

A statement, the device to which it 7 Z 1M I6D~F'

DS ',ATR (HI 81-)
A
is writing will be invited.

A 7 g8 ~J
A 05 ATK{RI)

A
 B '2.0 Ibb
A D~ PATR(K_'J

A 8 ~8 1~~
 .
A DS A"fR(",

A q
 ljJ '~IJ~Ii'616IiS~ ~~IH ~~II~\4 ~I;tJll
A IOSPATR/RI
A 11& ze PLEASE L060t-J I

A iDSPATR(HI)

A ?ASSWO IlD -(iliA 1 ""3 IlSPAfR.(RI PC.)
1."

A 2.91A 2..~ 43

A R Uf'DAlE

A 10 1 .; OPOATf OF Pf R'sOllIJE L FILE I

A OSPATR (8 L)

A 0 7 5 'TYPf IN eMPLO'f.EE tJlI MIHR T

A fO BE UPDATED'

A HUM IA '[-, 44 OSPATR (F-I PC)

A ~ EHPLO'f EE

A 0 1 5 f.I1P to '{ eEN" M6ER

A NU~ 71Pt e ~ 2.~ 1>5PATi? (PC)

A 0 c:; ;'EMPLD'IEE NAME

A t-IAl1f golA f 5 %.5 D5"A TRI pc.)

A 0 7 !: ' E.t1PI.. ()'iEE PlDPRESS

A 0. 5 'SfRen I
A STREeT 11,0 A g II t.~ DSPAT~{PC l .
A _11 "! • APARrnEtJT WV M6ER'

A Af'i)JO ~jI1 I! H 2.5 MPATRlPC.)

A 5
4 CITY

A CITY l¢P :P. 1~ 2.5 DSPAiR(PC)

A 0 ,,5 I:j PROV I NCfl
I

A pp.ov Z4J1'1 'E 1~ Z!S DSP,b."ff{(PC}
A i~ RECOV€ I~Y

A ~ 5 I It~ E.t1 PL.o'{£.e tJUHBER '{OU +

A HAVE 61 V HI IS IIIJVALID

A 4l 5 'lYPE 'f TO IlEi~Y

A () fl 5 lYPE N TO Elll r'

A AA~WEjl.. 1)(I -11l 1>51" Al~(P-I PC)

A 'I J:\l.U E 5 (I Y 11' NI)

-Numtlet" of IheetJ PM ped n"IIIV vary .lightLy.

Figure 7-9 (Part 1 of 10). Example of the Use of Multiple Device Files

7-30

http:eMPLO'f.EE

y~y GX21-7754·2 UM/050"
DATA DESCRIPTION SPECIFICATIONS -i.~i";"!; lnternetlQflIIt BUllneSi M.ctHnel CorporatIOn PrInted in U.S.A.

File ID'''''ption IP~.g.Of~Keying IG"ph'o 1I +t[IIC1---)c --~ InstructionProgrammer __Date Key i I

!~I~ Conditioning Z
~ LocationI- ----- x I
ii!

Condition Namea <:

~ ~ " ~Sequence ~ Name Length Functions
¥ ~ ~

Number e::. ~
<: on

E ~ ., "~]11. -- 0 Line Po,~§
e->"0• ~ ~ ~

5 Ie:
0 0 . ~

~ ~ IJ "
~~ 5

~ ~
j nH] ~]] za: cl' a Co.. ~

... "
1 2 3 4 5 6 , 9 10 111213 1516 17 18 19 20 21 22 23 24 2526 21 28 293031 32 33 34 35 3631 38 .~~nOM~~~~.~~~UM~~~.H~~AU~~~~MMro"nDMM~n.n~

AIJI

A~ J:)\) 1= Itt IT It £ f H'IS Ie At. IFllE ~AS I5w6/c \)

AIJ

A \)~IC~V E

A
 ~ PAsSImIfolDS

, PA55XEI'fA "'OJ
A P~S5~~D i -ira
A II' PA~Kel'l
A I
A

A

A

A

A

A

A

A
 I
jA I
A I
A

"Numbet" of 11"0_" per I*i mev II.'Y iI,ghttV

Figure 7-9 (Part 2 of 10). Example of the Use of Multiple Device Files

ChaptE'r 7. TRANSACTION Files (IBM Extension) 7-31

L

GX21·7754-2 UM/050DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A.

tFile I Keying I Graphic I I I I I I I IO"'''pt;oo Ip,~
IProgrammer 1 Instruction J Key_IOate I I I I I I

of

I JI

z ~ Conditioning >: locationx
i!!

Condition Name ..

Sequence Functions
r-.-,---,-.----1~ Length ~ ~ f---,---iName

~ ~ ~
Number ~ a: e::. ~

~ ! ir; ~

! ~ _ ~ _ 15 _ ~ ! 'i ! ~ _~ ~ Line Pos

E~~o~N~I)~i - t-~gi

&I~~~]~]z~ ~ ~~~5 , , 3 • 8 91011121314151617181920 212223242526 27 28 293031 3233 34 35 363} J8 39404142434445 4647 4S 495051525354 5556 57 58596061 626364 6566676869 70 7172 7374757677 78 7980•• 7

A

A It>tl:i' I'R [liE 1>-11'151 CAL FILl! E.~PI

A 1It11 H ICD lA'~~ TItE liST O~ TE"I1I~AL5

A

A

A
 , ,
,

A

A

A

A

A
;A

A

A
 . '

A ,

,

A

A

A ; ;
,

;

, • ,
A

A ,

Figure 7-9 (Part 3 of 10). Example of the Use of Multiple Device Files

7-32

5114CBl R05 MOO 830610 LOBOL SOURCE LISTING 03/04/133

STMT SEQNBR -A 1 B•• 2 •••• _. 3 •••••• 4 •••••• 5 •••••• /:I •••••• 7 .IQENTFCN S (OPYNA~E

000100 PROCESS
000200 IDENTIF-t(ATIO~ OIIJISION.

3 000300 PROGRAM-IO. SAMPlEMOF.

4 000400 AUTHOR. l N Y PROGRAMMFR.

000 500'; ¢ ¢,;,: ::,***~, ¢ ¢~(t ¢~, ¢~,~, Q ¢::. ¢ ¢ ':' ¢,,~ * *~::) *.... :!: ~*<)* ¢~: ¢::< ¢*::<,;,. ¢ ,*~,::: **:::::>~,::: ,)C ¢¢ *
000600* THF. FOllOWING PROGRAM DEMONSTRATES SOME OF THE FUf04CTIONS
000700* AVAIlARLE \'11TH MULTIPLE D~YICE FILE SUPPORT
000300**~:¢*~"~*¢*¢~'~' ~,: :;:.;:¢*,;,~,~:,,~**,,~ ~:¢~ " '::*¢*¢':: ~,~ **¢........ ~, :,~*:!< *¢*~

5 000900 ENVIRONMENT DIVISION.
6 001000 COfl4FIGURATION SHTlON.
1 001100 SOURCE-COMPUTER. J8M-S38.
B 001100 OBJF(T-(OMPUTER. J-BM-S3a.
9 001300 SPECIAL-NAMES. D

10 001400 ATTR13UTE-DATA IS ATTR.
11 001500 INPUT-OUTPUT SECTION.
12 001600 FIlE-CO"lTROL.
13 00170,) SELEeCT MULTIPLE-FILE
14 001800 ASSIGN TO WORKSTATION-MULT .,.
15 001900 ORGA"IIlATION IS TRAJtfSACTIONM
16 OOlOOO ACCESS MODE IS SEQUENTIAL
17 002100 FILE STATUS IS MULTIPLE-FSl, MULTIPLE-FSlll
18 001200 CONTRUl-AREA IS MULTIPLE-CONTROl-AREA.
19 002300 II
20 002400 SHECT TERMINAL-F ILE :.
21 002500 ASSIGN TO (\ATAAASE-TE~IIII

Z2 002600 OR.GA~I1ATION IS SEQUENTiAl
23 002700 ACCESS MODE I S SEQUENT lAL
24 0021300 FILE STATUS IS TERMINAL-FSI.
lS OOl900
26 003000 SELECT PASSWORO-FIlE
21 003100 ASSIGN TO DATABA'iE--PASo;;WORI)
28 003100 ORGANIZATION IS INDEXED
29 003300 ~ECURD KEY IS EXTERNALLY-DF.SC.RlhED-KEY
30 003400 ACC~SS M'lDF IS RANDOM
31 00]500 FILE STATUS IS PASSWORfl-FS1.
32 003600
33 003700 SEtH T PRINTER-FIU
34 003800 ASSIGN TO PRINTi::~-QPRINT.

35 003900
3b 004000
37 004100 OATA. !JlvrSION.
,8 004200 FILE SECTION.
39 004300 FO MULTlPLE-FlLF. ..
40 004400 01 MULTIPlf:-Rf(.. COPy DOS-SIGIIIO~ OF MULT ••
42.000001 O'i r~UlT-RlCO~O PIC. X{)OI. SIGNON
43 '000002 S IGNON

.000003* I~PUT FORMAT:SIGNDN FRU" FILE t-4.IJLT S tGNON

.000004* S IGNON
44 +000005 0" 51 GNuN- I REOFFIiH:S MUlT-IH:CORO. o;;IGNO~

45 .000006 06 PASSWORD PIC XIlOI.m SIGNON
46 .000007 S IGNON

.000008" QUTPUT H1R.MAT :SIGNON FI(.]14 FILE MULT OF Lf3RARY bATCH'mF 51 GNON

.000009* S tGNON
41 +000010 0'> SIGNGN-O REOEF INE S MUl T-fHCQI'.I.O. S I GNON
48.000011 06 FILLER PIC XI 10). 'iIGNON

Figure 7-9 (Part 4 of 10). Example of the Use of Multiple Device Files

Chapter 7. TRANSACTION Files (IBM Extension) 7-33

5714(31 RO'5 MOO f3306tO 	 ')At.IIPlE~DF 03/04/B

5T"1T 5EJNBR -4 1 ~ •• 2 3 • •• 4 •••••• '5 •••••• 6 •••••• 1 .IOfNTFCN ') COPYNA"'E

49 "000012 Db WRONG PIe K(20 l. '\IGNO:'-l
50 004'500
51 004600 FO TE~Mlf\jAL-FIlE.

004700 01 HR. ... rNAL-RfC. Cooy ODS-AlL-FI)~"'ATS lJF TE~~.

54" ·000001 0'5 HR"4-RECORD PH..'«(101 .. <-ALL-F~TS

55 +000002 <-AlL-F~TS

+OOOOO3~' 1-0 Ff)R"'AT:TE~M FRO'" "'Ill; TE~~ IlF LI::lRA~Y dATCH"ID'" (-All-F1-ITS
"OOOOO4~' (-AlL-"'MTS

5. -+'J00005 0'3 Tf R~ REOEFINfS TER."1-Q.lCJf;tD. (-ALL-"MTS
'1 +000006 06 TE~M rIC K (It..). <-ALL-FMTS

.,

5. 004800
59 004'900 FO PASSWORD-FILE ..
60 '10'3000 ')1 PA'.)'.)WQPQ-RFC. CODy nDS-All-FnK~ATS OF PASSWJfU. ., +0000'01 05 PAss"m;':O-Rf:(CJR[) PIC A(201. o(-ALL-f!~-ITS

·000002 (-HL-F,"1TS
+000003~' 1-0 FnR"IAT:PASSWORO"i FRO"1 FILE: PASS.ORfJ t"JF Ll:3RA::l:Y bATCHMDF <-All-FMTS
+000004* <-,o\ll-F'ITS
.000005~:l'~E KEY OEFTNITIuN~ FOR RECOR,) FOQ.MAT ?ASSWO~O" (-All-PITS
.000006¢ rJU"1~E:;~ NA"'E RETP 1 FV"-l A L TSEO <-ALL-FMTS
+OU0007::' 0001 PA SSKH ASCiNDI '~G NO (-ALl-FMTS

64 .000008 0'5 PA SSl'Il)lPlS REDfF INES PASSW'JRD-RE:(URlJ. (-All-HITS
6r; +000009 06 "ASSKEY PIC)(1101. (-AlL-"MTS
66 .000010 OA PA.SSWORD PIC XII0). (-ALL-HITS
b7 	 005100
68 	 005200 FD PRPHEP-FIlI:.
69 005300 01 PRINTER-REC.

70 00'5400 0'5 PRi~H:R-RECmU) PtC XI13lt.

71 00'>'500

72 00'>600 WORKING-STORAGf. SE:CTlO"t.

13 	 OOS 700

00<; 800', *~¢*¢ ~:** ¢*(t*,~~,:;,~.,,~~ **¢:~~::~ :H:*::'~'~'*~' ~¢*~':::~'f.,**~, **::'"

110<;900:;: JECLARE T4E FILt- STATUS F'JiI. EACH FlU

006000* ;,~:,~* **f,,*;:**~,*:;:*¢ ':'~'* **** :;:.'** ~:**:;:,: ':' ~":' *:;:*;~,~:;, *,: **~:* "'-~ f.;;. **** ':, ~,,:: ,,*~,::: *f.

74 	 OOb lOa
MUL TIPlf-FSl _75 006200 01 PIe XI2t VALUE SPACE:S.

76 006300 01 MULTIPlE-FSl. ..

11 006400 05 "IULTIPlF-~AJOR PIC X 121 VAL '.JE SPACE') •
,. 006500 A'> MUL T IPlE-MI NOR PIe x (2) VALlIf· SPAC[S.

19 006600

130 006700 01 TfRMINAl-FSl PIC x (21 VALUI: :)p~(E:S.

'31 OObBOO 01 PASSWI}R!)-FSI PIC XI 2) VALlH,; ') PACE';.

83 001300

84 007400 01 STATION-ATTQ.

1'15 007500 0'5 STATION-TYPF PIe x.

~6 001.000 0<; S TA Tl DN- S Il E PTC x.

87 001700 05 STAT IC'N-lOC P Ie. x.

88 007800 05 FILLER PIC K.

89 1)07900 05 STATtON-ACUUIRE PIe x.

90 008000 J5 STATION-INVITE p rC K.

91 008100 0" STATION-DATA PIC x.

n 00~200 0'5 STAT 10N-STA TUS PIC x.

Figure 7-9 (Part 5 of 10). Example of the Use of Multiple Device Files

.2
OECLARE STRUCTURE fCJR HOLDI'\lG Fru: ATTRIBUTES

0072 00 {, ¢¢::: *.:: t,,*::: ¢¢¢¢ * ,,,:' ¢ *¢(r* *:::::: ':,* ¢¢** * ¢ **¢¢ ¢,~ *{< *;~ ¢¢,~ * ** ***¢ * ,;, * ':

7-34

5714(Bl ROS00 8'30610 (OBOl SOURCE LISTING ')AMPlEMDF OJ!i.l4/A3

ST~T SFIJNBR -A 1 B•• 2 •••••• j •••••• 4 ') ... •••••• 1 .!DENTFCN S COPY~AME

93 OU8300 05 STATION-DISPLAY PIC x.

94 008400 05 STATION-KfY\30ARO PIC x.

95 00850Q OS STATION-SIGNON PIC x.

96 0013600 OS FILL ER PIC X I ~).

97 008700

008800¢*:(!*~'':'~' ,~,***¢"*,:,*:(!~~**o*** *::: ~,***:::**,~ ~:*,::*:(1:¢***~: ~,*:~,~::::;,*:~ ':"~::

JECLAR.E THE CQNTiHJL ARlA

98 00910()
99 009200 01 MUL T 1 PlE-CONTROl-AREA.

100 009300 05 MULTI Plf:-KEY-FEF;()fUCK PIC xl21 VALUE SPA(.t:S.
101 009400 os MULTIPLE-DEVICE-NAME PIC XII01 VALUE SPACES.
10, 009500 05 MUL T I HE-FORMAT-NAME PIC .11.(10) VALUt SPACES.
103 009600

009700': ,"~, * :::***:::~, ~,,~,;, ::,**:;,*~,,:

009800* OF-ClARE ERH.OR l<.E:prJRT VARIA~lES

00 <:;I 900*::: ':::;'¢;;:::::::::: ****:::~, ~,,:, *~, *** *~,~,~,:::::: *** *:;. ".'::::;. ,:,~, ** **::: ,:'::: ~,,~ '::.** *:;: ': :' t;.;,::: **~, **,~ ~,,:,

104 010000

105 010100 01 I~EADEq-LINE.

106 010200 as FILLER PIC xI60J VALUI;: SPA.as.

107 010300 05 FILLER PIC X(711 VALUE

lOS 010400 "MOF !:RRu~ R:..:P JttT".

109 010500

110 010600 01 OFT A I L-L I Nt:.

III 010700 05 FILLER PIC X115) VALUt SPACES.
liZ 010800 05 DfSCRIPTIO~ PIC X!Z'i1 VAlUI: SPACES.
113 010900 as DFHIL-VALUE PIC X19?1 VAlUr;
114 lana

011200:;.
011300~'~''::

11'> 011400

lIb 011500 01 (URRPJT-TFRMI~Al PTC xl10. VALUt)PA.~E5.

117 011600

118 011700 01 Tf,{·HNAl-~RRAY.

11q 011800 1)5 LI<:;T-OF-TER~INALS OCCUR') 250 TI"'fS.

120 011<:;100 07 DfVICE-NA~E PIC).1101.

121 012000

122 012100 01 C(]U~,HR PIC 909 VALUE 1 , I.

123 01<'200

124 012300 01 Nn-OF-HRI.tINAlS PIC VA.LUE 1 , I.
90"
125 01240J
126 012500 01 TfR~I "iAL -LI ST-Fl AG PIC I.
127 012600 i:'\I(j-(iF-TERM I NAL-L I 5 T VAlUi: 11 !'''l''.
128 012700 8A NOT - E~O-UF- TC RM I NA L-ll 5 T VALUE IS 9"0".

129 012!iOO

1'30 012900 01 NO-GAT A-FLAG PIC I.

111 01 '3000 SA No-n AT A-AVA I lABlE V4.lUE: 1 S FI"l".

132 013100 DATA-AVA.ILABLE VALUE 1 S "'''I)''.

133 013200 ""

134 013300 PRUCEDURE DIVISION.

013400

1'H3S00 DECLA.RATIVES.

013600

tl13700 MULTIPLE-Sf-CTIO"'l SEUIllN.

"

Figure 7-9 (Part 6 of 10). Example of the Use of Multiple Device Files

Chapter 7. TRANSACTION Files (IBM Extension) 7-35

5714CRl R05 :.too 830blfJ 	 03/04/~3

ST~T SEQNBR -A 1 J •• 2 •••••• 3 •••••• 't •••••• 5 •••••• ~ 1 .tDE~TFCN S COPYNA~E

013800 U';E AFTFR STANDARO EXCEPTION P~J"JCEJURE ON ''''ULTIPlE-qll:.

013900 MUL TIPlf-PARAGRA!-'H.

~:4000

135 	 (J14100
014200

136 014300 ,..OVE "fILE NAME IS:" TO DESCRIPTION OF OETAIL-LtNF.

137 01440'0 '"InVE "MULTIPLE-FILl:" TU DETAIL-VALUE OF DFTAIl-LlNt:,

118 014500 ",RIH: Pq:I~TER-RH Fq:JM OETAIL-LINE AFTER AtlVA"l:'IN':. <j LINE').

014600
11. 014700 MOVE "FILE STATU~ IS:" TO UESCRIPTIO,,,, OF OETAIL-LlNf.

140 014800 "Iovr MULTIPLE-FS1 TlJ DfTAIl-VALUf- UF OETAIl-lL.... E.

141 014900 wR.IlE PRPlTER-REC FQ.OM DETAIL-LIiiE AfTtR Ai)VANCtI\j[, :? L1NE<;.

015000

142 nt5100 ml-lOvF uE:xTE"IIOEC'l STATUS IS:" TO QFSCRIPTION OF tlcTAIL-Li~.IC.

14' 015200 _MOVE ~UL TIPLE-FS2 TO DETAIL-VALUE OF OETAIL-LI~E.

144 015300 wRITE PRINHR-RE'C FQ.UM OETAtL-UNE Af-TE~ AOVANCIN'; 2 LI"IIE';.

01'5400

145 015500 n.ACCEPT STATION-ATTR FROM AlTR.

146 015600 1Ki1"10VF. "FILE ATTRIHUHS ARE:" TO DESCRIPTION OF GI:::TAIL-LINE:.

147 01'5100 ,..nVE 5HTIO~-ATTR TO DETAIL-VALUE: GF TlElAIl-LI'lF.

14" 015800 ,.RITE PRINHI'.-REC Fq:u~' OtCTAIl-LWE AFTER A[,VM1;:ING 2 LINeS.

149 01')900 STop RU,'II.

OlbOOO

01bl00 TfRMINAL-SECTIO~1 SECTION.

1)16200 USE AFTER STANDARD EXCEPTIO~ P~OCr::DUKE ON TER"IINAl-I=IU:.

016300 TFRMINJtL-PARAGRAPH.

016400

150 	 016500 ~RITE PRINTER-REt: FROM HEADER-LINE AFTER AUVA.I\ICI~G PAGE.

016600

01b700 MOVE "FILE NA~E IS:" TJ iJESCRIPTIQN uF DETAIL-lI"11E.

016800 nOVE "TERMINAL-FILc" TO DfTAIl-VAlUE OF DfTAIl-ll·'"II:.

016900 W~IH PRINTER-RICC FROM DETAIL-LINE AFTER AOVA"l':ING' I) LINt.=S.

011000

154 017100 MOVE "FILE 5T4TU5 IS:" TO UESCRIPTIO:-" OF DETAIL-LINI=.

155 011200 ~,OVE Tc~MINAL-FSl TO DETAIL-V-'.LUE JF I'JETAll-lI~E.

156 01130U ~RITE PRINTER-RH Ff<JI<\ DEUll-LINF A.FlER ADVA"'I':I"IG 2 LINES.

011400

157 	 011500 STOP RUN.

011600

017700 PASSWORD-SHT ION SECTION.

011600 USE AFTER STA~nARD EXCEPTtOI\l PROCEDURE ON PA.SSIfFJRO-FILE.

011900 PASSwORD-PARAGRAPH.

01AOOO

158 	 018100
018200

159 OllBOO ""OVE "FIl~ NA~E IS:" TO DESCRIPTION uF DETAIL-LINE.

160 018400 MOVE "PASSWORD-FILE" TJ DElAIl-VA.LUf OF OETAIL-U"'£:.

161 01~500 wRIH: PRIIIITfR-RFC FRO'" I)ETAfl-LINE AFTER ADVAN;:ING '5 LlN£:S.

018bOO
162 olA700 "'OVE "fIL~ STATUS IS:" TO DESCRIPTION Of DEall-LINE.

163 018800 MOVE PASSWORD-FSl to DETAIL-VALUE OF DETAIl-LI'lE.

164 010900 ~RITE PRINTEK-RE(FROM OElAIl-LINE Af-TER AuVA~::.t'lG ? lINt:S.

019000

165 019100 STOP RUN.

019200

Figure 7-9 (Part 7 of 10). Example of the Use of Multiple Device Files

7-36

http:tlcTAIL-Li~.IC

$AMPU:MDF 03/04/83S714CSI ROS MOO 830blO coanL SOURCE L ISTI~G

ST~T SEClNBR -A 1 B••••• 2 •••••• 3 •••••• 't •••••• 5 •••••• 0 •••••• 1 .IDf~TFCN S :::OPYr.JA~E

019300 END DE'CLARATIVES.

019400

019500**'" ********** ~'***~'***~''''*.:<*#**';'

019600* ~AIN PKOGRAM LOGIC ~EGINS HERE
o19700*~'}~' ~"~******* ******* ¢,~ ~

019800

019900 I'tAIN-LINE SrcTION.

020aOO MAtN-LINE-PARA(,RAPH.

020100

166 020Z00 OPEN 1-[1 MULTIPLE-FILE.
OZ0300
OZ0400

INPUT TERMINAl-F ILEt _
1-0 PASSWORO-FILE l1li

020S00 OUTPUT PRINTER-FlU::.
020600

167 020700 "'OVE' 1 TIJ COUNT FR.
16B 020800 SET NOT-I:NO-OF-HRMINAL-LIST TO TRU[.

020900 PERFORM
169 OZ I 000 FILL-TF:'R~INAL-LIST UNTIL ENO-OF-HRMIN~L-LIST.

D21100
021200 PERFOR,'1

170 f12i300 ACQUIRI"-ANO-INVIH-TER~lNALS VARYING C'JU~F~ ;":~J~ I ~Y I
021400 UNTIL C.OUt-.TER GREATER THAN ND-DF-H:''''!lNALS.
021500

171 021600 MnVF 1 TO CnU"iTEK.
112 021100 SET OATA-AVAlLARLE TO TRUF.

021600 PERFClRI"
173 021900 Pl1LL-H-R"'IINALS UNTIL Nfl-rJATA-AVAILAl)LE.

022000
022100 PERFO~'"

174 022200 [)RQP-TF.RMINALS VARYING cnU"tTER r-Q.O~ 1 fl,y 1
022300 U"1TIl cnUNTF:'f< GREATER THAN NU-OF-TERMINAl<';.
022400

175 022500 CLOSE MULTIPLF;-FlLE.
OZ 2600 TERMINAL-FILEt
02Z700 PASSWflRO-FILEt
022800 PPINHR-FILE.
022900

116 023000 STOP PU"J.

023300* PPOCEDURES

02 340:)*'~';' ,- ~ ~ ¢~,*~;::o~,~,~,~,:;<

023500

')23600 PflL)CEOURE-SflTtnN SHTION.

023100 FILL-TERMlf11AL-LIST.

023BOQ

177 	 023900 RF.AO TERMINAL-FILE RECORD I HJ LIST-OF-H:RMINALSICuUNTERI
024000 AT E',jD

178 0124100 SET !:ND-OF-TER~INAL-LIST TO TRUE
119 024200 SUIHRACT 1 FRL!oi CoU"IITI::R
lElO OZ4300 ""OVE COUNTER TO NU-OF-TERMINAlS.

024400
lfi I 024S00 AOU 1 Te CUUNTE~.

024bOO
024100 A(.:lUI RE-ANC;- I 'Ilv I TE- TERM I NAL S.

Figure 7-9 (Part 8 of 10). Example of the Use of Multiple Device Files

5114(81 ROS)0\00 830610 COBOL SOURCE LISTING 03/04/B3

STHT SfQNBR -A 1 B.. ••• • ••••• .3 •••••• <1- •••••• 5 •••••• ~ •••••• 7 • I DENTFCN 5 CoPYNA"'JE

024600
18, 024900
183 025000

025100
02'i200
OZS300
025400
025500
OZ'i600
025700
025800

18S 025900
186 026000

OZ6100
187 026200
188 026300
189 02640J

026500
026600
026700
026600

190 026900
191 027000

)27100
192 021Z00
193 021300

r)27400
194 	 027500

OZ1600
021700
021800
021900
028000
02Bl00
OZ8200

196 	 028300
02'3400

ACQUIRE LIST-OF-fER"IINALSICOUIllTERJ FOR MULTIPLt=-FIlE.
IoIRITE f'lULTIPlE-REC III

FORMAT IS "SIGNON"

TERMINAL IS llST-OF-TERMINAlS(CDUNTERI.

IIIPJLL-TERMINALS.

READ ~.ULTIPlE-FIlE RECORO.iIJ

IF 	 MULTIPlE-FS2 = "0310" THFN lin

SET ND-QUA-AVAIlABLF TO TRUF..1IiI

IF 	 DATA-AVAILABLE THEN

Io\OVE MULTI PlF:'-OEVICE-NAME TO CURRENT-TEK"'INAL

PERFDRM PASSWORO-VALI(}ATTO"l.

PASSIol:)RD-VAL lOATI(1N.

MOVE CURRf:NT-TERMINAl TO PASSKEY OF PASC;wQJU)-lq:::.
R~An PASSWORD-F I LE RECORD.

IF PASSWORD OF SIGNON-I = PASSWORD OF PAsS'.. nR!)-RlC THF~
CAll "UP~ATE" USII~G CURRENT-hRMiNAl

ELSE
MOVE "INVALID PASSWORD" TO WRONG OF SIGNON-J.

WRITE 	 MULTIPLE-RI:C FOR~AT IS "SIGr.JON"

TER'-'INAL IS CURRENT-TER"IINAL.

OROP-TE"MINALS.

LJROP llST-OF-TERMJNALS1COUNTERI FROM ~ULTIPlE-FJLE. II
ENJ IlF SuURCE

Figure 7-9 (Part 9 of 10). Example of the Use of Multiple Device Files

Chapter 7. TRANSACTION Files (IBM Extension) 7-37

o 	 ATTR is the mnemonic-name associated with the function-name ATTRIBUTE-DATA. ATTR will be
used in the ACCEPT statement to obtain attribute data for the TRANSACTION file MUL TIPLE-FILE. \
See item m. ...""

D 	 File MUL T must have been created using the CRTMXDF CL command, where the ACQPGMDEV
parameter has a value of *NONE and the MAXPGMDEVE parameter has a value greater than 1. The
WAITRCD parameter specifies the wait-time for READ operations on the file. The WAITRCD
parameter must have a value greater than o.

D 	 MULTIPLE-FS2 is the extended file status for the TRANSACTION file MULTIPLE-FILE. This
variable has been declared in the WORKI NG-STORAGE section of the program. See item D.

D 	 MUL TIPLE-CONTROL-AREA is the control area for the TRANSACTION file MUL TIPLE-FILE. This
variable will be used to determine which program device was signed on to. See item m.

D 	 The data description for MUL TI PLE-REC has been defined using the COpy DDS statement. Note
that only the fields which are copied are named fields. Refer to the DDS of this example for
comments regarding the DDS used.

D 	 Format S I GNON is the format with the I NV I TE keyword. This is the format that will be used to
invite devices via the WRITE statement.

o 	 This is the declaration for the extended file-status MUL TIPLE-FS2. It is a 4-byte field which is
subdivided into a major return code (first two bytes) and a minor return code (last two bytes).

m 	STATION-ATTR is the structure which will be used by the ACCEPT statement to hold the attribute

data for the TRANSACTION file MULTI PLE- FI LE. See item m.

1m 	 In this statement the extended file status MUL TIPLE-FS2 is being written.

OJ 	This is an example of accepting attribute-data for the TRANSACTION file MULTIPLE-FILE.
Because we are not interested in a specific program device, but rather the last program device
used, the FOR phrases are not used with the ACCEPT.

IIlJ 	This statement opens the TRANSACTION file MULTIPLE-FILE. Since the ACQPGMDEV parameter of
the CRTMXDF command has the value *NONE, no program devices are implicitly acquired during
this open.

m 	This statement acquires the program device contained in the variable LIST -OF- TERMINALS

(COUNTER), for the TRANSACT I ON file MUL TI PL E- F I L E.

m 	This WRITE statement is inviting the program device specified in the TERMINAL phrase. We

know it is inviting the program device because the format S I GNON has the DDS keyword I NV IT E

associated with it. Refer to item III.

III 	This READ statement will read from any invited program device. See item m. If the wait time

expires before anyone inputs to the invited devices, the extended file status will be set to "0310"

and execution will continue. See item m.

m 	In this statement, the extended file status for MULTI PLE- FI LEis being checked to see if the

wait-time expired.

m 	The program device name stored in the control area is used to determine which program device
was signed on to. See item D.

m 	This DROP statement detaches the program device contained in the variable LIST -OF- TERMINALS

from the TRANSACTION file MUL TIPLE-FILE.

Figure 7-9 (Part 10 of 10). Example of the Use of Multiple Device Files

7-38

Program Described Transaction Files

Normally, COBOL TRANSACTION files are externally described. However, if
these files are program described, only simple display formatting can be
performed. All field level descriptions are defined in the COBOL program.

Packed or binary data (COMP, COMP-3, or COMP-4) should not be sent to a
display station as output data. Such data can contain display station
control characters which can cause unpredictable results.

See the CPF Programmer's Guide for more information about using
program described display files.

Environment Division

File-Control Entry

The TRANSACTI ON file must be named by a file-control entry in the
FILE-CONTROL paragraph. This entry also specifies other information
related to the file.

Format

SELECT file-name
r---------------,

ASSIGN TO assignment-name-1:[, aSSignment-name-2] ... :
L ______________ J

ORGANIZATION IS TRANSACTION

{ SEQUENTIAL }ll[ACCESS MODE IS DYNAMIC, RELATIVE KEY IS data-name-3 [J

[FILE STATUS IS data-name-1(~ data-name-5]]

[CONTROL-AREA IS data.name-6J .

ASSIGN Clause

The ASS I GN clause associates the TRANSACTI ON file with a display file,
communications file, BSC file, or mixed file through the use of
assignment-name-l.

Chapter 7. TRANSACTION Files (IBM Extension) 7-39

Assignment-name-1 has the following structure:

device [- system/38 file name [- attribute]]

Device specifies the type of device associated with the file. The value must
be WORKSTATION.

System/3S file name is a 1- to 10-character external name of the display file,
communications file, BSC file, or mixed file specified on the create device
file commands, CRTDSPF, CRTCMNF, CRTBSCF, or CRTMXDF.

Attribute specifies the file level option for a separate indicator area, S I.
See "INDICATORS" earlier in this chapter.

The second and subsequent assignment-names are syntax-checked, but are
treated as documentation.

ORGANIZATION Clause

The ORGAN I ZAT I ON clause specifies the logical structure of a file.
TRANSACTION organization signifies interaction between a COBOL program
and either a work station user or another system.

TRANSACTION Organization: TRANSACTION processing can be
characterized as the random arrival of a record from one of multiple
possible sources followed by appropriate processing, and finally, by the
output of results or feedback information of some type to the source of the
record.

In some cases, all records are homogenous; that is, a logical transaction is
completed with one exchange of records. In other situations, a series of
records is passed back and forth in a logical progression with various
record types either being selected by the initiator or as part of the
processing based on input data values.

Each transaction can be processed by a different program, or multiple
transactions can be processed by the same program, depending on the
system environment.

The initiation of a transaction can cause a program to be scheduled to
process the transaction.

A transaction can consist of a series of alternating requests and responses
(a dialogue). Each request and response can consist of multiple logical
records.

7-40

ACCESS MODE Clause

The ACCESS MODE clause and the RELATIVE KEY clause are discussed under
"FILE-CONTROL Paragraph" in Chapter 3.

For files with TRANSACTION organization, the access mode can be
SEQUENTIAL or DYNAMI C.

When ACCESS IS SEQUENTIAL is specified or implied, the format name
contained in the format name field of the control area specifies which
record was accessed. When ACCESS IS SEQUENTIAL is specified for a
TRANSACTION file, the RELATIVE KEY data item must not be specified.

When ACCESS IS DYNAMIC is specified, records in the file can be accessed
sequentially or randomly, depending on the form of the specific
input/output request. Random accessing of a TRANSACT I ON file is only valid
if subfile processing is being performed. For subfile processing, ACC ESS IS
DY NAM I C must be specified.

RELATIVE KEY Clause

The RELATIVE KEY clause specifies the relative record number for a specific
record in a subfile. The RELATIVE KEY data item, data-name-3, must be
defined as an unsigned integer and must not be defined in a record
description entry associated with the TRANSACTI ON file.

FILE STATUS Clause

Data-name-l and general considerations about the FILE STATUS clause are
described under "FILE-CONTROL Paragraph" in Chapter 3.

Data-name-5 identifies the extended file status data item, which contains
major and minor return codes. These major and minor return codes can, in
some cases, indicate 1-0 errors when the file status code does not.

Data-name-5 must be defined in the Data Division as a 4-byte alphanumeric
data item, and must not be defined in the File Section. The first two bytes
of the extended file status data item contain the major return code, and the
second two bytes contain the minor return code. Return codes are moved
into data-name-5 after any input or output operation (except the ACC EPT or
CLOS Estatement) on the TRANSACTI ON file. The values placed in
data-name-5 can also be accessed by the ACCEPT statement using the
I -0- FEEDBACK function-name. For more information about the major and
minor return codes see the CPF Programmer's Guide and the Data
Communications Programmer's Guide.

Chapter 7. TRANSACTION Files (IBM Extension) 7-41

CONTROL-AREA Clause

The CONTROL-AREA clause specifies device dependent and system dependent
information that is used to control input/output operations for TRANSACTION
files.

Data-name-6 is a CONTROL-AREA data item that must be defined in the
LINKAGE SECTION or WORKING-STORAGE SECTION. Data-name-6 is assumed
to have the following format:

01 data-name-6.

02 data-name-12 PIC X(2).

(Function key feedback field)

02 data-name-ll PIC X(lO).

(Program device name)

02 data-name-l0 PIC X(lO).

(Record format)

Data-name-6 must be 2, 12, or 22 characters long. Based upon the length of

data-name-6, the compiler assumes the availability of key feedback bytes,

the program device name, and record format.

Programming Note: For a mixed file, the actual name of a device may be

different than the program device name (data-name-ll).

Information is moved into data-name-6 for each READ operation from a file

that has been assigned to a WORKSTATION device type. The information is"

valid only if the READ operation is successfully completed (provided the wait ...,

time has not expired). The information is in the fixed format as shown in

the following example:

FILE-CONTROL.
SELECT SCREEN-FILE

ASSIGN TO WORKSTATION-MYFMTS
ORGANIZATION IS TRANSACTION
CONTROL-AREA IS

TRANSACTION-CONTROL-AREA.

WORKING-STORAGE SECTION.
01 TRANSACTION-CONTROL-AREA.

* FEEDBACK ITEM
02 COMMON-AREA.

03 FUNCTION-KEY PIC XX.
03 TERMINAL-ID PIC X(lO)

02 FORMAT-NAME PIC X(lO).

Each field in the TRANSACTION-CONTROL-AREA data item in the example is
described as follows:

• 	 FUNCTION-KEY: A two-digit number inserted in the field by the work
station interface that identifies which function key the operator pressed
to initiate the transaction. The codes are as follows:

7-42

00
01-24
90
91
92
93
94
95
99

Enter key
Command keys 1 through 24
Roll Up key
Roll Down key
Print key
Help key
Clear key
Home key
Undefined

Any function keys for which feedback information is desired must be
defined for the display file or mixed file using DDS. The Print key must
also be optioned by a response indicator before feedback information
can be provided in the function key field of the CONTROL-AREA
data-name.

• 	 TERM INAL- I D: The program device name.

• 	 FORMAT -NAME: The DDS record format name that was referenced by the
last 1-0 statement executed.

Data Division

File Description Entry

A file description entry consists of a level indicator (FD), a file-name, and a
series of independent clauses. For a TRANSACTION file, the independent
clauses allowed are the RECORD CONTAINS clause the LABEL RECORDS
clause, and the DATA RECORDS clause. Only the LABEL RECORDS clause is
required.

Format

[FD file·name

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

r - -{RECORDis--}{oMinED-}~
LABEL RECORDS ARE STANDARD I- _____________:.J

[DATA {:~~~:~~~RE} data-name-3 [. data-name-4] •• .J
{record-description-entry} .. J

The LABEL RECORDS clause specifies whether or not labels are present. This
clause is required in every file description entry. This clause is
syntax-checked, but is treated as documentation.

Chapter 7. TRANSACTION Files (IBM Extension) 7-43

The RECORD CONTAINS clause and the DATA RECORDS clause are described in
Chapter 4.

Boolean Data Facilities

The use of Boolean data and the use of indicators is described under
"INDICATORS" earlier in this chapter.

Procedure Division

See Appendix I for a file structure support summary.

ACCEPT Statement

The ACCEPT statement retrieves information (attribute data) about a
particular program device associated with a TRANSACTION file.

Format

This format of the ACCEPT statement may only be used for files with an
organization of TRANSACTION. If the file is not open at the time the
ACCEPT is executed, message CBE7205 is issued and execution terminates.
Mnemonic-name must be associated with the function-name
ATTRI BUTE-DATA in the SPECIAL-NAMES paragraph.

If file-name is not specified, the default file for the ACCEPT statement is the
first TRANSACTION file specified in a SELECT clause of the FI LE-CONTROL
paragraph.

Literal or the contents of identifier-2, if specified, indicates the program
device name for which attribute data is made available. This device must
have been defined (through a CRTxxxF, CHGxxxF, OVRxxxF, or ADDxxxDEVE
CL command, where xxx has a value of BSC, CMN, or DSP) as available to be
acquired by the file, but need not have actually been acquired. Literal, if
specified, must be non-numeric and 10 characters or less in length. The
contents of identifier-2, if specified, must be an alphanumeric data item 10
characters or less in length. If an invalid program device name is specified,
message CBE7205 is issued and execution terminates.

If both FOR phrases are omitted (indicating the default TRANSACTION file is
being used) the ACCEPT statement uses the program device from which a

7-44

READ, WRITE, REWRITE, or ACCEPT (Attribute Data) operation on the default
file was most recently performed. If the only prior operation on the file was
an OPEN, the ACCEPT statement uses the program device implicitly acquired
by the file when the file was opened. When both FOR phrases are omitted, a
program device must have been acquired in order to use this format of the
ACCEPT statement.

Program device attributes are moved into identifier-l from the appropriate
attribute data format, according to the rules for a group MOV E without the
CORRESPONDING phrase.

Attribute Data Formats

The attribute data retrieved by the ACCEPT statement has two different
formats, depending on whether the data is for a work station or for a
communications device. See Appendix I for format descriptions.

Programming Notes: For a mixed file containing different types of program
devices, you may need to test the attribute data to determine the type of
program device for which information has been returned. This is done by
testing the first byte of the attribute data, which has different values for
work stations and communications devices.

The ATTRI BUTE-DATA mnemonic name can be used only to obtain
information about a program device acquired by a TRANSACTION file.
Attribute data does not provide information about the status of a completed
or attempted 1-0 operation. To obtain information about 1-0 operations, use
the Format 3 ACCEPT statement with the I -0- FEEDBACK or OPEN- FEEDBACK
mnemonic names. For more information about these mnemonic names, see
"ACCEPT Statement" in Chapter 5.

ACQUIRE Statement

The ACQU I RE statement acquires a program device for a TRANSACTION file.

Format

ACQUIRE {i~entifier} FOR file-name
literal

Literal or the contents of identifier indicates the program device name to be
acquired by the specified file. Literal, if specified, must be non-numeric and
10 characters or less in length. Identifier, if specified, must refer to an
alphanumeric data item 10 characters or less in length.

File-name must be the name of a file with an organization of TRANSACT ION,
and the file must be open when the ACQU IRE statement is executed. A
compilation error message is issued if the organization is not TRANSACTI ON.

For a description of conditions that must be met before a device can be
acquired, see the CPF Programmer's Guide.

Chapter 7. TRANSACTION Files (IBM Extension) 7-45

CLOSE Statement

Successful completion of the ACQU I RE operation makes the program device
available for input and output operations. If the ACQU I RE is unsuccessful,
the file status value is set to 9H and any applicable USE AFTER
EXCEPTION/ERROR procedure is invoked.

'\
"'tIll

Only one program device may be implicitly acquired when a file is opened.
If a file is a mixed file, the single implicitly acquired program device is
determined by the ACQPGMDEV parameter ofthe CRTMXDF CL command. If
the file is a display file, the single implicitly acquired program device is
determined by the first entry in the DEV parameter of the CRTDSPF, CHGDSPF,
or OVRDSPF CL command. Additional program devices must be explicitly
acquired. If the file is a communications or BSC file, the single implicitly
acquired device is determined by the 0EV parameter of the CRTCMN F,
CRTBSCF, CHGCMNF, CHGBSCF, OVRCMN F, or OVRBSCF CL command.
Communications and BSC files can never acquire multiple program devices.

A program device is explicitly acquired by using the ACQU I RE statement.
For a mixed file, that device must have been added to the file with an
ADDDSPDEVE, ADDCMNDEVE or ADDBSCDEVE CL command before the file was
opened. For a display file, the program device must have been specified in
the 0EV parameter when the file was created, changed, or overridden, and
before the OPEN is issued for the file.

For more information about these commands, see the CL Reference Manual
and the CPF Programmer's Guide.

The ACQUIRE statement can also be used as an aid in recovering from 1-0
errors. For more information, see "Communications Recovery" in Chapter
9.

The CLOSE statement terminates the processing of files.

Format

CLOSE file-name-' [WITH LOCK]

[file-name-2 [WITH LOCK]].

For a further discussion of the CLOS E statement, see "CLOSE Statement" in
Chapter 5.

7-46

DROP Statement

The DROP statement releases a program device that has been acquired by a
TRANSACTION file.

Format

OPEN Statement

{ identifier}
DROP literal FROM file-name

Literal or the contents of identifier indicates the program device name of
the device to be dropped. Literal, if specified, must be non-numeric and 10
characters or less in length. Identifier, if specified, must refer to an
alphanumeric data item, 10 characters or less in length.

File-name must refer to a file with an organization of TRANSACTION, and the
file must be open in order to be used in the DROP statement. If no DROP
statement is issued, program devices attached to a TRANSACTION file are
implicitly released when that file is finally closed.

Program devices specified in a DROP statement must have been acquired by
the TRANSACTION file, either through an explicit ACQUIRE or through an
implicit ACQU IRE at OP EN time.

After successful execution of the DROP statement, the program device is no
longer available for input or output operations through the TRANSACTION
file. The device may be reacquired if necessary. The contents of the record
area associated with a released program device are no longer available,
even if the device is reacquired.

If the DROP statement is unsuccessful, any applicable USE AFTER
EXCEPTION/ERROR procedures are executed.

The DROP statement can also be used as an aid in recovering from 1-0
errors. For more information, see "Communications Recovery" in Chapter
9.

The 0PEN statement initiates the processing of files.

Format

OPEN 1-0 file-name-' [file-name-2] ...

Chapter 7. TRANSACTION Files (IBM Extension) 7-47

A TRANSACTION file must be opened in the 1-0 mode. For a further
discussion of the OP EN statement, see "OPEN Statement" in Chapter 5.

The OP EN statement can cause a program device to be implicitly acquired
for a TRANSACTION file. For a further discussion about the acquiring of
program devices, see "ACQUIRE Statement" earlier in this chapter.

Common Processing Facilities

The following discussion on FORMAT, INDICATORS, SUBFILE, and TERMINAL
phrases relates to the READ, REWRITE, and WRITE statements.

FORMAT Phrase

The literal or identifier specified must be a character-string of 10 characters
or less in length.

Multiple data records, each with a different format, can be concurrently
active for a TRANSACTION file. If the FORMAT phrase is specified, it must
specify a valid format name that is defined to the system, and the 1-0
operation must be performed on a data record of the same format. If the
format is an invalid name or ifit does not exist, the FILE STATUS data
item, if specified, is set to a value of 9K and the contents of the record area
are undefined.

DB-FORMAT-NAME Special Register

After the execution of an input/output statement for a TRANSACTION file,
the 	DB-FORMAT -NAME special register is modified according to the following
rules:

• 	 If the input/output operation is successful, the record format name is
implicitly moved to the special register after completion of the
input/output operation.

• 	 If the input/output operation is unsuccessful, DB-FORMAT-NAME contains
the record format name used in the last successful input/output
operation.

When the FORMAT phrase is not specified, 0 B- FORMAT - NAME can be used if
the file contains a default record format name. The default value is always
moved to the DB-FORMAT -NAME special register.

DB-FORMAT-NAME is implicitly defined as PICTURE X(10).

7-48

INDICATORS Phrase

The identifier specified in the I NO I CATORS phrase must be either an
elementary Boolean data item specified without the OCCURS clause or a
group item that has elementary Boolean data items subordinate to it.

When a data record is written or rewritten, indicators can be written or
rewritten with it. The indicators can control how the record is displayed
and also the various Data Management functions.

When a data record is read, indicators can be read with it. The indicators
can be used to pass information about the data record and how it was
entered into the user program.

The user determines, when he defines a format using DDS, what functions
are to be controlled by indicators, and which indicator(s) controls a
particular function.

See "INDICATORS" earlier in this chapter for more information on the
INDI CATORS phrase.

SUBFILE Phrase

When the SU BF I L E phrase is specified, it indicates that all formats
referenced by the statement are subfiles. When SUBFILE is not specified in
a TRANSACTION I -0 statement, it indicates that none of the formats
referenced by the statement are subfiles. This information is not verified at
compile-time. If it is specified incorrectly, an incorrect program is
generated; when the program is executed, the FILE STATUS data item, if
specified, is set to a value of 92 (logic error), and the contents of the record
are undefined.

When SUBFILE is not specified, the RELATIVE KEY data item associated with
the file, if specified, is not referenced or changed by the 1-0 operation.

When SUBFILE is specified, a RELATIVE KEY data item must be defined for
the file. Its value is referenced, and sometimes changed, by the 1-0
operation. See each 1-0 statement associated with SUBFILE operations for a
detailed description of when and how the RELATIVE KEY data item is
changed.

The SUB F I L E phrase can be specified only for display files, and for display
devices in a mixed file.

TERMINAL Phrase

When the TERM I NAL phrase is specified, it indicates a specific program
device is to be used for a READ, WRITE, or REWRITE operation on a
TRANSACTION file.

The TERM I NAL phrase can be omitted for 1-0 operations on single device
files, since the single device is always used.

Chapter 7. TRANSACTION Files (IBM Extension) 7-49

READ Statement

If the TERMINAL phrase is omitted for an 1-0 operation on a TRANSACTION
file that has acquired multiple program devices, the program device that
last attempted a READ, WRITE, REWRITE, ACQUI RE, DROP, or ACCEPT
(Attribute Data) operation on the file is used. If the only prior operation on
the file was an OPEN, the default program device used is the program device
implicitly acquired by the TRANSACTION file when the file was opened. A
run-time error message occurs if no program device is acquired when the
file is opened.

For a READ statement with both the TERMINAL phrase and the NO DATA
phrase specified, the imperative-statement in the NO OATAphrase is
executed only if data is not immediately available from the program device
specified by the TERM I NAL phrase.

If the TERMI NAL phrase is specified and the data-item or literal has a value
of blanks, the phrase is treated at execution time as if it were not specified.

The READ statement makes available a record from a device, using a named
format. If the format is a subfile, the READ statement makes available a
specified record from that subfile.

Format 1

Format 1-Nonsubfile Format

[I NTO identifier-,]

[FORMAT IS {i~entifier-2}J
Iiteral-'

[TERMINAL IS {identifier-3}]
literal-3

{ :~~:~~~~:S [~REJ} identifier-J
[

INDIC J
[NO DATA imperative-statement-']

[AT END imperative-statement-2]

Format 1 is used only to read a format that is not a subfile. The RELATIVE
KEY data item, if specified in the FILE-CONTROL entry, is not used. The
Format 1 READ statement is not valid for a subfile record. However, a
Format 1 READ statement for the subfile control record format must be used

7-50

to place those subfile records that were updated on a display into the
subfile.

If the data is available, it is returned in the record area. The names of the
record format and the program device are returned in the I-O-FEEDBACK
area in the CONTROL-AREA.

The READ statement is valid only when there are acquired devices for the
file. If a READ is executed and there are no acquired devices, the file status
is set to 92 (logic error).

The manner in which the Format 1 READ statement functions depends on:

• 	 If the READ is for a single device file or a multiple device file

• 	 If a specific program device has been requested through the TERMINAL
phrase

• 	 If a specific record format has been requested through the FORMAT
phrase

• 	 If the NO OATA phrase has been specified.

In the following discussions, references to "data available or returned"
include the situation where only the response indicators are set. This is so
even when a separate indicator area is used and the indicators are not
returned in the record area for the file.

The following chart shows the possible combinations of phrases, and the
function performed for a single device file or a multiple device file. For
example, if TERMINAL is N, FORMAT is N, and NO DATA is N, then the single
device is Dand multiple device is A.

Phrase 	 Y=Yes N=No
Checked at 	 TERMINALl N N N N Y Y Y Y

FORMAT! N N Y Y N N Y Y
Compilation
NO 	 DATA N Y N Y N Y N Y

Determined at Single Device 	 0 COB D C o B

A A D B 0 C D B
Execution 	 Multiple Device

Codes A through D are explained below.

Code A - Read From Invited Program Device (Multiple Device Files only)

This type of READ receives data from the first invited program device that
has data available. An invited program device is a work station or
communications device (LUI, BSC, or PEER) that has been invited to send
input. Inviting is done by writing to the program device with a format that
has the DDS keyword INVITE specified. Once an invited program device is
actually read from, it is no longer invited. That program device will not be

If the phrase is specified and the data item or literal is blank, the phrase is
treated at execution time as if it were not specified.

Chapter 7. TRANSACTION Files (IBM Extension) 7-51

used for input by another READ statement unless reinvited, or unless a READ
is directed to it specifying the TERMINAL phrase or FORMAT phrase. J
The record format returned from the program device is determined by the
system. See the chapter on display devices in the CPF Programmer's Guide
for information on how this is determined for work stations. For
communications devices, see the CL Reference Manual for information on
the FMTSLT parameter on the ADDBSCDEVE and ADDCMNDEVE commands.

This READ can complete without returning any data in the following cases:

1. 	 There are no invited devices. This is the AT END condition, which
occurs when:

• 	 There are no invited devices.

• 	 For a PEER device, another READ is done after a detach signal is

received.

• 	 For an LUI device, the session is terminated by the host.

2. 	 A controlled cancel of the job occurs. This results in a file status value
of 9A and a major-minor return code value of 0309.

3. 	 The NO OAT A phrase is omitted and the specified wait time expires. This
results in a file status value of 00 and a major-minor return code value
of 0310. The specified wait time is the value entered on the WAITRCD
parameter for the file.

4. 	 The NO DATA phrase is specified and there is no data immediately
available when the READ is executed.

If data is available, it is returned in the record area. The record format is
returned in the I -0- FEEDBACK area and in the CONTROL-AREA. For more
information about "reading from invited program devices," see the CPF
Programmer's Guide.

Code B - Read From One Program Device (Invalid combination)

A compilation time message is issued and the NO OAT A phrase is ignored.
See the table entry for the same combination of phrases with the NO DATA
phrase omitted.

Code C - Read From One Program Device (with NO DATA phrase)

This function of the READ statement never causes program execution to stop
and wait until data is available. Either the data is immediately available or
the NO DATA imperative-statement is executed.

This READ function can be used to periodically check if data is available
from a particular program device (either the default program device or one
specified by the TERMINAL phrase). This checking for data is done in the '\
following manner: 	 """

7-52

1. 	 The program device is determined as follows:

a. 	 If the TERMI NAL phrase was omitted or contains blanks, the default
program device is used. The default program device is the one used
by the last attempted READ, WRITE, REWRITE, ACQUIRE, or DROP
statement. If none of the above 1-0 operations were previously
executed, the default program device is the first program device
acquired.

b. 	 If the TERM I NAL phrase was specified, the indicated program device
is used.

2. 	 A check is done to determine if data is available and if the program
device is invited.

3. 	 If data is available, that data is returned in the record area and the
program device is no longer invited. If no data is immediately
available, the NO DATA imperative-statement is executed and the
program device remains invited.

4. 	 If the program device is not invited, the AT END condition exists and the
file status is set to 10.

Code 0- Read From One Program Device (without NO DATA Phrase)

This READ always waits for data to be made available. Even if the job
receives a controlled cancel, or a WA ITRCD time is specified for the file, the
program will never regain control from the READ statement. This READ
operation is performed in the following manner:

1. 	 The program device is determined as follows:

a. 	 If the TERM I NAL phrase is omitted or contains a blank value, the
default program device is used. The default program device is the
program device used by the last attempted READ, WRITE, REWRITE,
ACQUIRE, DROP or ACCEPT (Attribute Data) statement. If none of
these operations has been done, the program device implicitly
acquired when the file was opened is used. If there are no acquired
devices, the AT END condition exists.

b. 	 If the TERM I NAL phrase is specified, the indicated program device is
used.

2. 	 The record format is determined as follows:

a. 	 If the FORMAT phrase is omitted or contains blanks, the record
format returned is determined by the system. For information on
how the record format is determined for work station devices, see
the chapter on "Display Device Support" in the CPF Programmer's
Guide. For information about how the record format is determined
for communications devices, see the section on the FMTSL T
parameter on such commands as the CRTBSCF, CRTCMNF,
ADDBSCDEVE, and ADDCMNDEVE commands in the CL Reference
Manual.

Chapter 7. TRANSACTION Files (IBM Extension) 7-53

b. 	 If the FORMAT phrase is specified, the indicated record format is
returned. If the data available does not match the requested record
format, a file status of 9K is set.

3. 	 Program execution stops until data becomes available. The data is
returned in the record area after the READ statement is executed. If the
program device was previously invited, it will no longer be invited after
this READ statement.

4. 	 The AT END condition can only occur for LUI or PEER devices. When
there are multiple LUI or PEER devices acquired for a TRANSACTION file,
each individual device can cause an AT END condition to occur. The AT
END condition occurs when:

• 	 For a PEER device, another READ is done after a detach signal is
received. Since a detach signal can be sent with or without data,
check the major-minor return codes to determine if there was any
data.

• 	 For an LUI device, the session is terminated by the host.

AT END Phrase

Imperative-statement-2 is executed when the AT END condition is detected.

FORMAT Phrase

Literal-l or identifier-2 specifies the name of the record format to be read.
Literal-I, if specified, must be nonnumeric and 10 characters or less in
length. Identifier-2, if specified, must refer to an alphanumeric data item,
10 characters or less in length. If identifier-2 contains blanks, the READ
statement is executed as if the FORMAT phrase was omitted.

NO DATA Phrase

When the NO DATA phrase is specified, the READ statement will determine
whether data is immediately available. If data is available, the data is
returned in the record area. If no data is immediately available,
imperative-statement-l is executed. The NO DATA phrase prevents the READ
statement from waiting for data to become available.

TERMINAL Phrase

Literal-2 or identifier-3 specifies the program device name. Literal-2, if
specified, must be nonnumeric and 10 characters or less in length.
Identifier-3, if specified, must refer to an alphanumeric data item, 10
characters or less in length. The program device must have been acquired
before the READ statement is executed. If identifier-3 contains blanks, the
READ statement is executed as if the TERM! NAL phrase was omitted. For a
single device file, the TERM! NAL phrase can be omitted. The program device
is assumed to be that single device.

\

...,

J

.~

~

7-54

If the TERMINAL phrase is omitted for a READ of a TRANSACTION file that has
acquired multiple program devices, the default program device is used. See
the general discussion about the TERM I NAL phrase in the "Common
Processing Facilities" section earlier in this chapter for details about how
the default program device is determined.

Format 2

Format 2- Subtile Format

[NEXT MODIF lED] RECORD

[INTO identifier-,]

[FORMAT IS {i?entifier-2}]
literal-'

[TERMINAL IS { identifier-3}]
literal-2

INDICATORS ARE] identifier-4[{
INDICATOR [IS}]

INDIC

[INVALID KEY imperative-statement-']

[AT EN D imperative-statement-2]

Format 2 is used only to read a format that is a subfile. The AT END phrase
can only be used when the NEXT MODI FI ED phrase is specified. The
INVALID KEY phrase must not be used when the NEXT MODIFIED phrase is
specified.

Format 2 cannot be used for communications devices. If the subfile format
of the READ statement is used for a communications device, the READ fails
and a file status of 90 is set.

Random Access of Subfile Records: The NEXT MODIFIED phrase must not be
used to randomly access records in a subfile. The I NVALI D KEY phrase can
only be used for random access of subfile records.

Sequential Access of Subfile Records: The NEXT MOD I FI ED phrase must be
specified to access subfile records sequentially. The AT END phrase can
only be specified with the NEXT MOD I F I ED phrase.

NEXT MODIFIED Phrase

When NEXT MOD I F I ED is not specified, the data record made available is the
record in the subfile with a relative record number that corresponds to the
value of the RELATIVE KEY data item.

Chapter 7. TRANSACTION Files (IBM Extension) 7-55

When the NEXT MODIFIED phrase is not specified, and if the RELATIVE KEY
data item contains a value other than the relative record number of a
record in the subfile, the I NVALI 0 KEY condition exists and the execution of
the READ statement is unsuccessful.

When the NEXT MODI FI ED phrase is specified, the record made available is
the first record in the subfile that has been modified (has the Modified Data
Tag on). For information about turning on the Modified Data Tag, see the
CPF Programmer's Guide.

The search for the next modified record begins:

• 	 At the beginning of the subfile if:

An 1-0 operation has been performed for the subfile control record.
The 1-0 operation cleared, initialized, or displayed the subfile.

• 	 For all other cases, with the record following the record that was read
by a previous read operation.

The value of the RELATIVE KEY data item is updated to reflect the relative
record number of the record made available to the program.

If NEXT MODI FI ED is specified and there is no user-modified record in the
subfile with a relative record number greater than the relative record
number contained in the RELATIVE KEY data item, the AT END condition
exists. Imperative-statement-2, or any applicable USE AFTER
ERROR/EXCEPTION procedure, if any, is then executed.

FORMAT Phrase

When a format-name is not specified, the format used is last record format
written to the display device that contains input fields, input/output fields,
or hidden fields. If no such format exists for the display file, the format
used is the record format of the last WRITE operation to the display device.

If the FORMAT phrase is specified, literal-lor the contents of identifier-2
must specify a format, which is active for the appropriate program device.
The READ statement reads a data record of the specified format.

The FORMAT phrase should always be specified for multiple format files to
ensure correct results. For more information on the FORMAT phrase, see
"Procedure Division, Common Processing Facilities" in this chapter.

TERMINAL Phrase

See Format 1 above for general considerations concerning the TERMI NAL
phrase.

For a Format 2 READ, if the TERMINAL phrase is omitted for a file that has
multiple devices acquired for it, a record is read from the subfile associated
with the default program device. See the general discussion about the
TERMINAL phrase in the "Common Processing Facilities" section earlier in

7-56

this chapter for more details about how the default program device is
determined.

INVALID KEY Phrase

If the RELATIVE KEY data item at the time of the execution of the READ
statement contains a value that does not correspond to a relative record
number for the subfile, the I NVALI 0 KEY condition exists and the execution
of the READ statement is unsuccessful.

For a Format 2 READ, the I NVALI 0 KEY phrase should be specified if the
NEXT MODIFIED phrase is not specified and there is no applicable USE
procedure specified for the file-name.

If both an INVALID KEY phrase and a USE procedure are specified for the
file when the I NVALI 0 KEY condition occurs, control transfers to the
I NVALI 0 KEY imperative-statement, and the US E procedure is not executed.

AT END Phrase

If NEXT MODI FI ED is specified and there is no user-modified record in the
subfile, the AT END condition exists, and the execution of the READ
statement is unsuccessful.

The AT END phrase should be specified when the NEXT MODIFIED phrase is
used, and no applicable US E procedure is specified for the file-name. If the
AT END phrase and a USE procedure are both specified for a file, and the AT
END condition arises, control transfers to the AT END imperative statement
and the US E procedure is not executed.

For a further discussion of the READ statement (and a related topic, the
INTO phrase), the INVALID KEY phrase, and the AT END phrase, see "READ
Statement" in Chapter 5.

Chapter 7. TRANSACTION Files (IBM Extension) 7-57

REWRITE Statement

The REWRITE statement is used to replace a subfile record that already
exists in the subfile.

Format

REWRITE SUBFILE record-name [FROM identifier-']

FORMAT IS {i~entifier-2}
IIteral-'

[TERMINAL IS {i~entifier-3}]
IIteral-2

INDICATOR IS}]

[{ INDICATORS [ARE] identifier-4

INDIC

[INVALID KEY imperative-statement]

The number of character positions in the record referenced by record-name
must be equal to the number of character positions in the record being
replaced. A successful read operation on the record must be done prior to
the rewrite operation. The record replaced in the subfile is the record in
the subfile accessed by the previous read operation.

FORMAT Phrase

The record format specified in the FORMAT phrase must be the record format
accessed on the previous read operation. Literal-lor the contents of
identifier-2 must be the name of the subfile format accessed on the previous
READ. For more information on the FORMAT phrase, see "Procedure
Division, Common Processing Facilities" earlier in this chapter.

TERMINAL Phrase

The TERMINAL phrase indicates which program device's subfile is to have a
record rewritten. If the TERMINAL phrase is specified, literal-2 or identifier-3
must refer to a work station that has been acquired by the TRANSACT I ON
file. Ifliteral-2 or identifier-3 contains blanks, the TERMINAL phrase has no
effect. The program device specified by the TERMINAL phrase must have
been acquired, either explicitly or implicitly, and must have a subfile
associated with the device.

Literal-2 or identifier-3 must be a valid program device name. Literal-2, if
specified, must be nonnumeric and 10 characters or less. Identifier-3, if
specified, must refer to an alphanumeric data item, 10 characters or less in

~~. ~

7-58

If the TERMINAL phrase is omitted from a TRANSACTION file that has
acquired multiple program devices, the subtile used is the subfile associated
with the last program device from which a READ of the TRANSACTI ON file
was attempted.

The REWR IT Estatement cannot be used for communications devices. If the
REWR IT Estatement is used for a communications device, the operation fails
and a file status of 90 is set.

INV ALID KEY Phrase

If, at the time of the rewrite operation, the RELATIVE KEY data item
contains a value that does not correspond to the relative record number of
the record from the previous read operation, the INVALID KEY condition
exists.

The I NVALI D KEY phrase should be specified for files for which an
appropriate USE procedure is not specified. Undesirable results may occur
if the I NVALI D KEY phrase is not specified, and no US Eprocedure is
specified.

For a further discussion of the REWRITE statement (and the related topic,
the FROM phrase) and the INVALID KEY phrase, see "REWRITE Statement"
in Chapter 5.

Chapter 7. TRANSACTION Files (IBM Extension) 7-59

WRITE Statement

The WRIT E statement releases a logical record to the file.

Format 1

Format 1-Nonsubfile Formats

WRITE record-name [F ROM identifier-1]

FORMAT IS {identifier-2}
literal-1

[TERMINAL IS {i~entifier-3}]
Iiteral-2

[STARTING AT LINE {i~entifier-4}J
Iiteral-3

{	 BEFORE [LiNESl {identifier-5}
AFTER ROLLING LINE J literal-4

[THROUGH){identifier-6} {~ }
THRU J literal-5 DOWN

{ identifier-7} rLiNES]
literal-6 LLiNE

INDICATOR IS}]
[{ 	INDICATORS [] identifier-8

INOIC ARE

TERMINAL Phrase

The TERMINAL phrase specifies the program devices to which the output
record is to be sent.

The contents of literal-2 or identifier-3 must be the name of a program
device previously acquired, either implicitly or explicitly, by the file.
Literal-2, if specified, must be nonnumeric and 10 characters or less in
length. Identifier-3, if specified, must refer to an alphanumeric data item,
10 characters or less in length. A value of blanks is treated as if the
TERMI NAL phrase was omitted.

If only a single program device was acquired by the TRANSACT! ON file, the
TERMI NAL phrase can be omitted. That program device is always used for
the WRITE.

If the TERM I NAL phrase is omitted for a WR IT E operation to a TRANSACT! ON
file that has acquired multiple program devices, the default program device
is used. See the general discussion about the TERMINAL phrase in the

7-60

"Common Processing Facilities" section earlier in this chapter for details
about how the default program device is determined.

ST ARTING Phrase

The STARTING phrase specifies the starting line number for the record
formats that use the variable start line keyword. This phrase is only valid
for display devices.

The actual line number on which a field begins can be determined from the
following equation:

Actual Starting line + The line number - 1
line number specified specified in
number in the program positions 39

through 41 of the
Data Description
Specifications form

The write is successful if:

• 	 The result of the above equation is positive and less than or equal to
the number of lines on the work station screen.

• 	 The value specified for the STARTING phrase is o. In this case, a value
of 1 is assumed.

The write is unsuccessful and the program terminates if:

• 	 The result of the above equation is greater than the number of lines on
the work station screen.

• 	 The value specified for the STARTI NG phrase is negative.

If the value specified for the STARTING phrase is within the screen area, any
fields outside of the screen area are ignored.

Literal-3 of the STARTI NG phrase must be a numeric literal. Identifier-4
must be an elementary numeric item.

To use the STARTING phrase, the DDS record level keyword SLNO(*VAR)
must be specified for the format being written. If the record format does not
specify this keyword, the STARTING phrase is ignored at execution time.

The DDS keyword CLRL also affects the STARTING phrase. CLRL controls how
much of the screen is cleared when the WRITE statement is executed.

See the CPF Reference Manual- DDS and the CPF Programmer's Guide for
further information on SLNO(*VAR) and CLRL.

ROLLING Phrase

The ROLLI NG phrase allows you to move lines displayed on the work station
screen. All or some of the lines on the screen can be rolled up or down.
The lines vacated by the rolled lines are cleared, and can have another

Chapter 7. TRANSACTION Files (IBM Extension) 7·61

screen format written into them. This phrase is only valid for display
devices. J
ROLLING is specified in the WRITE statement that is writing a new format to
the work station screen. You must specify whether the write is before or
after the roll, the range of lines you want to roll, how many lines you want
to roll these lines, and whether the roll operation is up or down.

After lines are rolled, the fields on these lines retain their DDS display
attributes, for example, underlining, but lose their DDS usage attributes, for
example, input-capability. Fields on lines that are written and then rolled
(BEFORE ROLLING phrase) also lose their usage attributes.

If any part of a format is rolled, the entire format loses its usage attributes.
If more than one format exists, only the rolled formats lose their usage
attributes.

When you specify the ROLL I NG phrase, the following general rules apply.

• 	 The DDS record level keyword ALWROL must be specified for every record
format written in a WRITE statement containing the ROLLING phrase.

• 	 Other DDS keywords mutually exclusive with the ALWROL keyword must
not be used; see the CPF Reference Manual- DDS.

• 	 Either of the DDS keywords, CLRL or OV ERLAY, must be specified for a
record format that is to be written and rolled to prevent the display "\
screen from being cleared when that record format is written. See the ...",
CPF Reference Manual- DDS.

• 	 All the identifiers and literals must represent positive integer values.

• 	 The roll starting line number (identifier-5 or literal-4) must not exceed
the ending line number (identifier-6 or literal-5).

• 	 The contents of lines that are rolled outside of the window specified by
the starting and ending line numbers disappear.

Figure 7-9 shows an example of rolling. An initial screen format, FMTl is
written on the work station screen. The program processes this screen
format and is now ready to write the next screen format, FMT2, to the work
station screen. Part of FMT 1 is rolled down 2 lines before FMT2 is written to
the work station screen.

Execution of the following WRITE statement causes part of FMTl to be rolled
down 2 lines, and FMT2 to be written to the work station screen:

WRITE SCREENREC FORMAT IFMT2"

AFTER ROLLING LINES 14 THROUGH 20

DOWN 2 LINES

When this WRITE statement is executed, the following steps occur:

1. 	 The contents of lines 14 through 20 are rolled down 2 lines.

7-62

a. 	 The contents of lines 14 through 18 now appear on lines 16 through
20.

b. 	 The contents of lines 14 and 15 are vacated and cleared.

c. 	 The contents of lines 19 and 20 are rolled outside the window and
disappear.

2. 	 After the rolling operation takes place, FMT2 is written to the work
station screen.

a. 	 Part of FMT2 is written to the area vacated by the roll operation.

b. 	 Part of FMT2 is written over the data left from FMTl.

3. 	 When the contents of the work station screen are returned to the
program by a READ statement, only the input capable fields of FMT2 are
returned.

Format 2

Format 2- Subtile Formats

WRITE SUBFILE record-name [FROM identifier-1]

FORMAT IS {identifier-2}

literal-1

r,-ERMINAL IS {i~entifier-3}]l IIteral-2

INDICATOR IS}]
[{ INDICATORS [ARE] identifier-4

INDIC

Format 2 can only be used for display devices. If the subfile form of the
WRITE statement is used for any other type of device, the WRITE operation
fails and a file status of 90 is set.

If the format is a subfile, and SUBFILE is specified, the RELATIVE KEY clause
must have been specified on the SEL ECT clause for the file being written.
The record written to the subfile is the record in he subfile identified by the
format name that has a relative record number equal to the value of the
RELATIVE KEY data item. (See CPF Reference Manual-DDS.)

Chapter 7. TRANSACTION Files (IBM Extension) 7-63

L

TERMINAL Phrase

See Format 1 above for general considerations concerning the TERM I NAL
phrase.

The TERM I NAL phrase specifies which program device's subfile is to have a
record written to it. If the TERMI NAL phrase is specified, literal-2 or
identifier-3 must refer to a work station associated with the TRANSACT! ON
file. If literal-2 or identifier-3 contains a value of blanks, the TERM I NAL
phrase is treated as if it was not specified. The work station specified by
the TERMINAL phrase must have been acquired, either explicitly or
implicitly.

If the TERMI NAL phrase is omitted, the subfile useq is the subfile associated
with the default program device. See the general discussion about the
TERMI NAL phrase in the "Common Processing Facilities" section earlier in
this chapter for details about how the default program device is determined.

The I NVALI D KEY condition exists if a record is already in the subfile with
that record number, or if the relative record number specified is greater
than the maximum allowable subfile record number. The INVALID KEY
phrase should be specified in the WRITE SUBFILE statement for all files for
which an appropriate USE procedure is not specified.

For a further discussion of the WRITE statement, the FROM phrase, and the
I NVALI D KEY phrase, see "WRITE Statement" in Chapter 5. For
information on the FORMAT phrase, see "Procedure Division, Common J.
Processing Facilities" in this chapter.

7-64

- - - -

--

DISPLAY BEFORE EXECUTION OF THE WRITE STATEMENT

UPDATE CUSTOMER ORDER RECORD

TO END THIS JOB. PRESS CMD KEY 7

ENTER YOUR OPERATOR NUMBER:

ENTER CUSTOMER NUMBER:

PRESS CMD KEY 3 TO DISPLAY OPTION MENU

DISPLAY AFTER EXECUTION OF THE WRITE STATEMENT

UPDATE CUSTOMER ORDER RECORD

TO END THIS JOB, PRESS CMD KEY 7

ITEM NUMBER ORDERED:

QUANTITY ORDERED: __

ENTER CUSTOtIER NUtIBER: XXXXX

PRESS CHD KEY 3 TO DISPLAY OPTION MENU

Figure 7-10. Example of ROLLING Operation

Line 3

Line 8

Line 17

Line 20

These 7 lines of
FMT1 will be
rolled down 2
lines.

Line 3

Line 8

- Line"'2" }

Line 14

Line 17

Line 19

These 3 lines of
FMT2 have been
written over the
previous lines.

Chapter 7. TRANSACTION Files (IBM Extension) 7-65

L

USE Statement

The US E statement specifies procedures for input/output error handling that
are in addition to the standard procedures provided by the input/output
control system.

Format

AFTER STANDARD {ERROR }
EXCEPTION

PROCEDURE ON {file-name., [. file-name-2].
1·0

See "Declaratives" in Chapter 5 for a further discussion of the USE
statement.

Work Station Sample Programs

This section contains sample COBOL programs that illustrate work station
applications on the System/38.

Figure 7-11 shows a basic inquiry program that uses the COBOL
TRANSACTION file. The associated DDS for the files is also shown.

7-66

••

GX21·7754-1 UMID5O"DATA DESCRIPTION SPECI FICATIONS 	 Printed in U.S.A.

I~ ofFile

Prop-.mmer Olte

~
Conditioning ~ LOCItion

--	 §
t

Condition Nlme

~ 1--.,....,---,-,----1~ Nome LAngth ll: -1---,---1 	 Functions

~ 	 ~ ~I ~ 	 g ~ ~
&8 & ~! 0 Uno Po.

IiIi Jiii JH jilli
1 2 3 .. 5 • 7 •• 1011121314151' 17 81920 2122 23 2. 252827 28 29 30 313233 34 3I51a 37 38 31404142 43 447 !OSl 52 &3 54 use 57 5& 59 8011121314 •• ,7 •• 1071721314751117118 7980

• A C.115 HIA TeR INGV:I I(FJ:LE -- C.USI'IIMQ .' .••.••.••••.
A* . 	 •• ..' ••. •..

· A • 	 ~EF{ CV~HSTP) •. .'

· . A 	 c..UST I~ l1?o 2.dJ •~. . •
• A qq ERIUtSGl Ic..U:S+~,"&Y Vlu"'.be I'" \'\.o+.t OlAntA ..

• • A pre5s.Ycse+..-the,",cntc.Y V<l\ liJ .1. +
• A • ~199)' • • " •• ...• ~

_ A • 5' 3 I .\1~'~' GEL +'0 ,etf\.d.oyoa.V'tAtftc\.ls~e.III+'''v'

•

·
A . 	 •• Q.v6RlJ',i •.•. "; • . •
A . ' .8 ..!> IN'«IIIe.'. •.•. '.. • • •• •
A NPrHE .• ·8.1.1. •.••. •• ••.•••• • I. .. . _

A • Pr\)OR ..9 J,...! •• ..• ••••. '. • • • . • • •
A . 	 ltj '! Ie; it" I • • ' .

•

A 'TY 	 .1.<1 .Ll ~ '. • ••.
.A,' 	 .u 3 'S+o.+~ I . .'

•

A. ST I\1"E R 1. .u • 	 ., ·
A 	 .L j 2..l 'z i.,.c::.Od4! I . ' •

• A z.1:P .1.1 3J. . '. •

· ..
, A 	 . • ,

•

A '. .'
,

A • • • • . • • •

*Number of sneets per pad may ~ary slightly

Figure 7-11 (Part 1 of 8). 	 Example of a TRANSACTION Inquiry Program Using a Single Display
Device

Chapter 7. TRANSACTION Files (IBM Extension) 7-67

http:Vlu"'.be

The data description specifications (DDS) for the display device file (CUSM I NQ) to be used by this
program describe two record formats: CUSPMT and CUS FLDS.

The CUSPMT record format contains the constant 'Customer Master Inquiry', which identifies the
display. It also contains the prompt 'Customer Number' and the input field (CUST) into which the
work station user enters the customer number. Five underscores appear under the input field CUST
on the screen where the user is to enter the customer number. The error message 'Customer number
not found' is also included in this record format. This message is displayed if indicator 99 is set on
by the program. In addition, this record format defines a command attention key that the user can
press to end the program. When the user presses command attention key 01, indicator 15 is set on in
the COBOL program. This indicator is then used to end the program.

The CUSFLDS record format contains the constants 'Name', 'Address', 'City', 'State', 'Zip Code', and
'AIR Balance', which identify the fields to be written out from the program. This record format also
describes the fields that correspond to these constants. All of these fields are described as output
fields (blank in position 38) because they are filled in by the program; the user does not enter any
data into these fields. To enter another customer number, the user presses the Enter key in response
to this record. Notice that the CUSFLDS record is to overlay the CUSPMT record. Therefore, when the
CUS FLDS record is written to the screen, the CUSPMT record remains on the screen.

In addition to describing the constants, fields, and attributes for the screen, the record formats also
define the line numbers and horizontal positions in which the constants and fields are to be
displayed.

Note: The field attributes are defined in a physical file (CUSMSTP) used for field reference purposes,
instead of in the DDS for the display file.

Figure 7-11 (Part 2 of 8). 	 Example of a TRANSACTION Inquiry Program Using a Single Display
Device

7-68

GX21·7154·1 UM/050' DATA DESCRIPTION SPECIFICATIONS 	 Printed in U.S,A.

IDe,c";ptionKeyi"9
Instruction I~.~iC I I I I I I I I 	

of

~
Conditioni l'l9 '"~ locItion

o,ndition NI.,. ~ ~ 1---.,.-,----r--.---1~ Longth!!: _1----,---1 	 FunctionsNome

~ 	 ~ ~i) 	 ~:a ~
H_ _ S !I j ~ Lone Po,s _ ~ 	 .. 8~
E!:!~b~ij331 	 • t;!:~i
~~L~~~~~i i d~.f:5

1 2' 3 .. 5 8 7 II 9 10 11 12 13 14 1518 17 8 19 20 21 22 23 24 25 26 27 28 29 031 32 13 J4 3538 37 38 39 40 41 4243'" 45 48 47 48 49 50 51 5253 54 5& 58 57 5& 5980 61 6263 ... 16_ 61 88 88 70 71 72 73 74 7571 77 78 79 80

"I*lf PI~'(s I~AIL CIJSM.SrP <'05TClt1e~ I1ASh'E~FXLr. • .:. .:

II 	 l.]:P 5 (JtI. rrE:)(T(I Z.L" .GOde 0) •

II (..OST'(P .l tid [r&)(TD (.li\S +ol'll(tri''1 pe J.~("O"2=Sc::,", +
II ~=~\J~••-f=P'lT5.=OT '\ • • .

II 	 R.()LMT 8 ;1.. rrf:XT'(,(.I.\.S-l".O"'42 c.,re.alt".1 i i-t') .•

II • K UST· •. • • • • . . • .• ••. • .' •.• • •

The data description specifications (DDS) for the data base file that is used by this program describe
one record format: CUSMST. Each field in the record format is described, and the CUST field is
identified as the key field for the record format.

Figure 7-11 (Part 3 of 8), 	 Example of a TRANSACTION Inquiry Program Using a Single Display
Device

Chapter 7. TRANSACTION Files (IBM Extension) 7-69

SEGNeR••••••• 1 •••••• 2 •••••• 3 ••••••••••••• 5 •••••• 6 •••••• 7

ioo IDENTIFICATION DIVISION.
200 PROGRAM-ID. INOUIRY.
300 ENVIRONMENT DIVISION.
400 CONFIGURAT ION SECTION.
500 SOURCE-COMPUTER. IBM-S38.
600 OB~ECT-COMPUTER. IBM-S3B.
700 INPUT-OUTPUT SECTION.
800 FILE-CONTROL.
900 SELECT CUST-DISPLAY

1000 ASSIGN TO WDRKSTATION-CUSMINQ.
1100 ORGANIZATION 	 IS TI;ANSACTIDN.
1200 CONT ROL-AREA 	 IS WS-CONTROL.
1300 SELECT CUST-MASTER
1400 ASSIGN TO DATABASE-CUSMSTP.
1500 ORGANI ZATI ON 	 I S INDEXED.
1600 ACCESS IS RAN>OM
1700 	 RECORO KEY IS CUST OF CUSMST.
11100 FILE STATUS IS C STATUS.
1900 DATA DIVISION.
2000 FILE SECTION.
2100 FD CUST-DISPLAY
2200 LABEL RECORDS ARE OMITTED.
2300 01 DI SP-REC.
2400 COpy DDS-ALL-FORMATS OF CUSHINQ.
2500 FD CUST-MASTER
2600 LABEL RECORDS ARE STANDARD.
2700 01 CUST-REC.
2800 COPY ODS-CUSMST OF CUSMSTP.
2900 WRKING-STORAGE SECTION.
3000 01 ONE 	 PIC I VALUE a-I".
3100 01 CM-STATLJS 	 PIC XX.
3200 01 WS-CONTROL.
3300 02 WS-I N) 	 PIC XX.
3400 02 WS-FORMAT 	 PIC XIIOI.

The SEU listing of the Identification, Environment, and Data Division statements for this sample
program is shown here. In particular, note the FILE-CONTROL and FD entries.

Figure 7-11 (Part 4 of 8). 	 Example of a TRANSACTION Inquiry Program Using a Single Display
Device

COBOL SOURCE LISTING

ST"4T SEQNBR -A 1 B ••••• 2 •••••• 3 5 •••••• 6 •••••• 7 .IOENTFCN 5 CQPYNAME

000100 IDENTIFICATION DIYISION.
2 000200 PRDGRAI'-lD. INOUIRY.
3 000300 ENVIRONMENT DIVISION.
" 000"00 CONFIGURATION SECTION.
5 000500 SOURCE-COIOPUTER. IBIO-S38.
6 000600 OBJECT-COIOPUTER. IBIO-S38.
7 000700 INPUT-OUTPUT SECTION.
S 000800 FILE-CONTROL.
9 000900 SELECT CUST-DISPLAY

10 001000 ASSIGN TO WDRKSTATIDN-CUSIOINO.
II 001100 ORGANIZATION IS TRANSACTION.
12 001200 CONTROL-AREA IS WS-CONTROL.
13 001300 SELECT CUS T-IOASTER
I" 001400 ASSIGN TO OATABASE-CUSMSTP.
15 001500 ORGANIZATION IS INDEXED.
16 001600 ACCESS IS RANDOI'
17 001700 RECORD KEY IS CUST OF CUSIOST.
18 001800 FILE STATUS IS C..... STATUS.
19 001900 DATA DIVISION.
20 002000 FILE SECTION.
21 002100 FD CUST-o ISPLAY
22 002200 LABEL RECORDS ARE OIOITTED.
23 002300 01 01 SP-REC.
24 002400 COPY OOS-ALL-FORMATS OF CUSM INa.

26 +000001 05 CUSMINQ-RECORD PIC X1601. <-ALL-FMTS
27 +000002 <-ALL-FIOTS

+000003* INPUT FORIOAT:CUSPIOT FROIO FILE CUSIOINO OF LIBRARY PUBS <-ALL-FIOTS
+00000,,$ CUSTOIOER PROIOPT <-ALL-FIOTS

28 +000005 05 CUSPIOT-I REDEFINES CUSIOINQ-RECORD. <-ALL-FIOTS
29 .000006 06 CUSPIOT-I-INDIC. <-ALL-FIOTS
30 +000007 07 IN 15 PIC I INDIC 15. <-ALL-FMTS

+000008:0. END OF PROGRAM <-ALL-FIOTS
31 +000009 07 IN99 PIC 1 INDIC 99. <-ALL-FIOTS

+0000100 CUSTOIOER NUIOBER NOT FOUND PRESS RESET. TH <-ALL-FMTS
32 +000011 06 CUST PIC X151. <-ALL-FIOTS

+0000120 CUSTOIOER NUI08ER <-ALL-FIOTS
33 +000013 <-ALL-FIOTS

+0000.40 OUTPUT FORNAT:CUSPMT FROIO FILE CUSMINO OF LIBRARY PUBS <-ALL-FIOTS
+0000 15~ CUSTO"ER PROIOPT <-ALL-FIOTS

34 +000016 05 CUSPMT-O REDEFINES CUSIOINQ-RECORD. <-ALL-FIOTS
35 +000017 06 CUSPMT-O-[NDIC. <-ALL-FMTS
36 +000018 07 11'\199 PIC 1 IHDIC 99. <-ALL-FIOTS

+000019. CUSTOMER HUIOBER NOT FOUND PRESS RESET. TH <-ALL-FIOTS
37 +000020 <-ALL-FIOTS

.000021~ <-ALL-F.ns
+000022~ END OF: CUSPIOT -> <-ALL-FIOTS
+000023-0' <-ALL-FIOTS

38 +00002" <-ALL-FIOTS
+00002S~ INPUT FOR~AT:CUSFLDS FROM FILE CUSIOINO OF LIBRARY PUBS <-ALL-FMTS
"000026~ CUSTOMER DISPLAY <-ALL-FMTS

Jq +000027 05 CUSFLOS-I REDEFINES CUSIOINQ-RECORD. <-ALL-FIOTS
40 +000028 06 CUSFLDS-I-INDIC. <-ALL-FIOTS
41 +000029 07 IN 15 PIC I INOIC 15. <-ALL-FIOTS

+0000]0* END OF PROGRAM <-ALL-FIOTS
42 +000031 <-ALL-FIOTS

+0000320 OUTPUT FOR''''T :CUSFLOS FROM FILE CUSMINa OF L I BR ARY PUBS <-ALL-FMTS
+000033* CUSTOIOER DISPLAY <-ALL-FMTS

43 +00003. 05 CUSFLOS-O REDEFINES CUSIOINQ-RECORD. <-ALL-FIOTS

." +000035 06 N....E PIC x(25). <-ALL-FIOTS
+000036# CUSTOIOER NAIOE <-ALL-FIOTS

45 +000037 06 ADOR PIC X1201. <-ALL-F.ns
+000038* CUSTOMER ADDRESS <-ALL-FIOTS

"6 +000039 06 CITY PIC X(20). <-ALL-FMTS
+0000"00 CUSTOMER CITY <-ALL-FMTS

47 +00004' 06 STATE PIC x 121. <-ALL-FIOTS
+0000420 STATE <-ALL-FMTS

48 +000043 06 ZIP PIC 59(5). <-ALL-FIOTS
+0000440 ZIP CODE <-ALL-FMTS

"9 +000045 06 ARBAL PIC S9(6)Y9121. <-ALL-FIOTS
+000046# ACCTS REC BALANCE <-ALL-FMTS

SO +000047 <-ALL-FIOTS
+000048* <-ALL-FIlltTS
+000049. END OF: CUSFLDS -> <-ALL-FMTS

+000050. <-ALL-FMTS

The Data Division for this sample program is shown after compilation to illustrate the data
structures generated by the COPY statements, DDS formats.

Figure 7-11 (Part 5 of 8). Example of a TRANSACTION Inquiry Program Using a Single Display
Device

Chapter 7. TRANSACTION Files (IBM Extension) 7·71

51 002500 FD CuST-MAS TER
52 002600 LABEL RECORDS ARE STANDARD.
53 002700 01 CUST-REC.
5~ 002800 COPY DDS-CUSMST OF CUSMSTP •
56 • 000001 CUSMST

.0000020 1-0 FORMAT:CUSMST FROM FILE CUSMSTP OF LIBRARY PUBS CUSMST

.000003* CUSTOMER MASTER RECORD CUSMST
57 .OOOOO~ 05 CUSMSf. CUSMST
511 .000005 06 CUST PIC)(IS I. CUS145T

.0000060 CUSTOMER NUMBER CUSMST
59 +000007 06 NAME PIC)(1251. CUSMST

+0000080 CUSTOMER NA"E CUSMST
.60 +000009 06 ADDR PIC)(1201. CUSMST

>0000100 CUSTOMER ADDRESS CUSMST
61 >000011 06 CiTV PIC)(1201. CUSMST

+0000124' CUSTOMER CITV CUS"ST
62 _000013 06 STATE PIC)(121. CUSMST

_000014. STATE CUSMST
63 >00001 S 06 liP PIC S915' caNP-3. CUSMST

>0000160 ZIP CODE CUSMST
64 _000017 06 5RHCDD PIC X161. CUSMST

>0000180 CUSTO..ER "lUMBER SEARCH CODE CUSMST
65 >000019 06 CUSTVP PIC 5911 I CDMP-3. CUSMST

_000020. CUSTOMER TYPE I=GOY 2=5CH 3=I!US 4=PVT 5=OT CUSNST
66 ·000021 06 ARBAL PIC 5916'V912, COMP-3. CUS'4ST

.0000220 ACCTS REC ElALANCE CUS.Sf
67 +000023 06 DRDBAL PIC S916,V"I21 COMP-3. CUSMST

.000024. A'R AMT IN OROER FILE CUSMST
611 >000025 06 LSTAMT PIC S916'Y9121 COMP-3. CUSNST

'0000260 LAST AMOUNT PAID IN A'R CUSMST
69 >000027 06 LSTOAT PIC S9161 COMP-3. CUSMST

>00002B. LAST OATE PA J() IN A,R CUSI4ST
70 .000029 06 CROLMT PIC S9161V9121 COMP-3. CUS"ST

>0000300 CUSTOMER CREOIT LIMIT CUSMST
71 .000031 06 SL5YR PIC S918'Y"IZI COMP-3. CUSMsr

>000032* CUSTO.. ER SALES THIS VEAR CUSM!>T
72 -000033 06 SLSLYR PIC s91elV912, COMP-3. CUSMST

.00003~. CUSTO.. ER SALES LAST YEAR CUSMST
73
74

002900
003000

WORKING-STORAGE
01 ONE

SECTION.
PiC 1 YALUE B"'-.

7'5 001100 01 CM-STATUS PIC XX.
76 001200 01 WS-CONTROI. •
77 OOllOO 02 WS-I NO PIC)(x.
78 OOl~OO 02 WS-FORMAT PIC)(1101·

The Data Division for this sample program is shown after compilation to illustrate the data
structures generated by the COPY statements, DDS formats.

Figure 7-11 (Part 6 of 8). 	 Example of a TRANSACTION Inquiry Program Using a Single Display
Device

7-72

COBOL SOURCE LISTING INQUIRY

snn SEQNBR -A I B ••••• 2 .' •••• 3 " •••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN 5 COPYNANE CHG/OATE

79 003500 PROCEDURE DIVISION.
003600 BEGIN.

80 003700 OPEN 1-0 CUST-DISPLAY. INPUT CUST-NASTER.

81 003800 NOVE ZERO TO IN99 OF CUSPNT-O.

003900 LOOP.
82 004000 WRITE OISP-REC FORNAT IS "CUSPNT".

83 004100 READ CUST-OISPLAY RECORD.

84 004200 IF I NI 5 OF CUSPMT-I
004300 15 EOUAL TO ONE

85 004400 THEN GO TO FINIS.

86 004500 MOVE CUST OF CUSPMT-I TO CUST OF CUSNST.

87 004600 READ CUST-NASTER 	RECORD.

88 004700 IF CN-STATUS IS NOT EQUAL "00· THEN

89 004800 NOVE ONE TO IN99 OF CUSPMT-O. GO TO LOOP.
91 004900 MOVE CORRESPONDING CUSMST TO CUSFLDS-O.
92 005000 WRITE OISP-REC FORMAT IS ·CUSFLDS·.

93 005100 READ CUST-DISPLAY RECORD.
94 005200 IF I NI5 OF CUSFLDS-I

005300 IS EQUAL TO ONE

95 005400 THEN GO TO FINIS.
96 005500 MOVE ZERO TO IN99 OF CUSPMT-O.
97 005600 GO TO LOOP.

005700 FINIS.
98 005800 CLOSE CU5T-DISPLAY. CUST-NASTER.

005900 RETURN-To-CALLER.
QQ 005000 EX IT PROGR AN.

The WRITE operation in statement 82 writes the CUSPMT record to the display. This record prompts
the user to enter a customer number. If the user enters a customer number and presses the Enter
key, the next READ operation then reads the record back into the program.

The READ operation in statement 87 uses the customer number (CUST) field to retrieve the
corresponding CUSMST record from the CUSMSTP file. If no record is found in the CUSMSTP file,
indicator 99 is set on. The GO TO operation in statement 89, which is executed when indicator 99 is
set on, causes the program to branch back to the beginning. The message 'Customer number not
found' is displayed because it is conditioned by indicator 99 in the DDS for the file, and the keyboard
is locked. The user must press the Reset key in response to this message to unlock the keyboard.
The user can then enter another customer number.

If the READ operation retrieves a record from the CUSMSTP file, the WRITE operation writes the
CUS FLDS record to the display work station. This record contains the customer's name, address, and
accounts receivable balance.

The user then presses the Enter key, and the program branches back to the beginning of the
calculations. The user can enter another customer number or end the program. To end the program,
the user presses the command attention key 01, which sets on indicator 15 in the program.

When indicator 15 is on, the program closes all files and executes the EX IT PROGRAM statement,
which causes the program to return control to whoever called the COBOL program.

Figure 7-11 (Part 7 of 8). 	 Example of a TRANSACTION Inquiry Program Using a Single Display
Device

Chapter 7. TRANSACTION Files (IBM Extension) 7·73

L

This is the initial display written by the WRITE operation in statement 82:

Customer Master Inquiry

Customer Number

Use CFl to end program. use enter key to return to prompt screen

This display appears if a record is found in the CUSMSTP file for the customer number entered in
response to the first display:

Customer Master Inquiry

Customer Number 10000

Use CFl to end program. use enter key to return to prompt screen

Name EXAMPLE WHOLESALERS
Address 3561 60TH STREET
Ci ty MOLINE
State IL lipcode 61265
AIR balance 137.02

This display appears if the CUSMSTP file does not contain a record for the customer number entered in
response to the first display:

Customer Master Inquiry

Customer Number 10001

Use eFl to end program. use enter key to return to prompt screen

Customer number not found press reset. then enter valid number

Figure 7-11 (Part 8 of 8). Example of a TRANSACTION Inquiry Program Using a Single Display
Device

7-74

•• •••• ••

Figure 7-12 shows a sample order inquiry program, ORD220, that uses
subfiles. The associated DDS is also shown, except for the DDS for the
customer master file, CUSMSTP. Refer to Figure 7-11 for the DDS for
CUSMSTP.

ORD220 displays all the detail order records for the requested order number.
The program prompts the user to enter the order number that is to be
reviewed. The order number is checked against the order header file,
ORDHDRP. If the order number exists, the customer number accessed from
the order header file is checked against the customer master file, CUSMSTP.
All order detail records in ORDDTLP for the requested order are read and
written to the subfile. A write for the subfile control record format is
executed, and the detail order records in the subfile are displayed on the
screen for the user to review. The program is ended by pressing command
key 12.

GX21· 7754-1 UMI050' DATA DESCRIPTION SPECIFICATIONS

I

Printed in U.s.A.

I~ ofDesaiplionKeying
Instruction

1 2 3 <4 5 • 7 • 10111213141518 1 8 19 20 2122 23 24 2Sa 27 28 29 30 313233 34 35383138 39404142 43 44.4141. 4IlOa1 112113 54 511158 5718 581081 '28384 86888188 89 70 7172 73 74 767177 78 7980

~
Condh:kH1ing ::::

lOCItion

~
s-a
Number

-

~
i

Conditkln Name

§
ii: Na.. Length

:

..
~ J- Functions

~
! 8

~
~

g:a
• i ::

0 Uno Pbs

~~zlz!z2'::1
hi ~ j f j f i j

! ng~·
nil

,

• A ~PH'{S:ECAL ORI>IIP~P ORI)&R IHEIAOER F:tLE.· •• :•...•.•...... : .

~r 10ite

•

•

A . .

A

A

·Number of sheets per pad may vary slightly

Figure 7-12 (Part 1 of 14). Sample Order Inquiry Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-75

L

• •

GX21-71!)4.1 UMIOSO11"1: Intttm.tJonlI aulln .. M.chlMl Corporftlon DATA DESCRIPTION SPECIFICATIONS
Printed in U.S.A.

ofI~..i~ion I ,.
L--___~____)1--~--------'--lo.te------11 ~:;:;on I~ I I I I I I I I

~
Conditioning ~ Location

§
t

Condition Nllme

s-nco ~ § No.. ~h co Functions r.._ ~ _ ~~

I ! g ~ ~
!8 ! B!!. S2 Pot

in I i j i j H I Hili
Uno

1 2 3 4 I • 1 •• 1011 1213 141' " 7 8 " 20 2122 23 24 21528 27 28 21~31 32 33 341-1- 311i .4041~243 44 4& 41 4141 41505112 53 &4 MN 57 5851110111213 11 •• '0 11 12 73 74 751877 78 1180

. A!tI* if IVS CAL o-fit.DDT1. P bRI>6.R OET!AI L F:I LE: .

5

5 •
•

L.INNU,", . .
'O·LJ.lD""'Llf/I~1 I No. I)

II R ORI>t>iL

A • . •

A . -- ..
II --

•
A -,- . .

COLI·ID(;;('p" I c.e ') •
.• II . ffE:'lCT", Se.1 ,'f/lQI)V',c.e'}

8 2.
· A

•

• A OLHI>6i 'S i'n I I~".')
• i -. ' .

•
• A

•

BroDA- .•

• II • • •

• II K..IJSTVP .l .It RANGE. (.L 5)
- II

·
1ST ATE: 2 He.'CI((I'{F) •

•
-. A

•

• II •

A 2-d. OL..~I)&('Ac.<.-t' '.M.f-h'\
. . _. .

.

.

.- A
• II

.. .. '.'. .

*:: LlltlllUH
.

• • . .
•

*Number ofsheeu per pad may \lary slightly.

Figure 7-12 (Part 2 of 14). Sample Order Inquiry Program

7-76

(OLJ.lo"('Edellls: 01'1 '1

GX21· 71M-1 UM,(JIOIB~ '"_...___......_ DATA DESCRIPTION SPECIFICATIONS "'inted in u.s.A.

ofb 1- 1:-11111111 I"
r.iJ ICondi1ioni,.

'-"'" -- Condition Nil""

~ Function.
~ i:- I ! -
g ~

'" UM ...
~ ii j Hii ~1 hiI
~ I_ I _ I J Hi

1 l 3 ••• 7 •• '01 1 I' I' 14"" 7 • "20 21 n D2421212J 21 :113:1",. [00" .40.' 2.'"... ., •• 1011 &2t.l "'" ".".1110.,1213.....,•• 7071 n n 7. 1SlIn,. ~

A 0 0 tl6D ~XISTIHG C~~ER Il IVI W
A

A aiR .FL

A ITfI'l 5 ~ .U TaL I ~fe.", V\be.r I)

A atyOitD 3 al 9 'HT 'lK"n,tit'lorc:lc"ed''L
A DeSG~p 3m .l..d .L £'lC I ~+ ..ftII "sc.r ..t; 0" ,
A PRICE I:. 1(12. Ld 4~ iEY.T • ell.no D .. lee')
A ,XTe~s 8 102 Ldi 5 "c E
A 6J('l::lCtel'lsiol'l Qlllol1n1"' o.f- +
A .. v o",d J(D .. ; c..JO.'
A UB<.Tll SFL G.r: ,IS LAB;.)
A ,II! i.E GlK.
• ;7 ,FLOSP
A S8 5FLDS PC.1"L
A iF' ..512. 57
A iFLPA6 , ..)
A 51 Sf- HI

A VERLA¥

• oc.J(
A

A ~7 RoLLUP 97 ' C 0 ..+ i ,"II! d l 6 D 1",,,')
A LA t(9B '&"~ o~ ., "0" rClIiI')
A £iOFf 51 'Oi5DI"" subf.il .. '
A SETofHS8 'Off~!)' SDIIAV 'sube'\' I o .. ,.c. ...

A SlAb~',I .. • \

A 1 ·E,.'s~·O\.. o".ae.v ',,, .. ,,,, .. ,,'

• '0" '
• OllDt;!\' I~ TElCT 'Orcl.e.y '"'D ..v' ,
• b.l E.R.g,t'\S6.L '.o.~ .. "'.'L"lb~r .. 0+ .I' 0 lAO\ A ' 6.1
• +7 ;U.MSC. \ . VI"'" .f..o,," +10' S oreier' -t
A t :fRHS (, '11 .. c. ."1-,, '" n>c.o,..d. ""Vld 1:-" +
A C, ..HI.'.s G r <i.e.r • bZ'
A ' DIA+e. '
A Oli'OOA' ItU 4 " E)(T('D.. +e. order, "'(A" e"t~re.~')
A 5 ' [... ,S' #'
A .lI.ST. 5 'I EXT ' t ... st 0"".... n"'Mber'
• NAME. l .} .1.1:. n.~f '[, .s -1-,,"'...... """..... '
A ~()DR z.o t &)1., 'C.... 6·h:>OIer Q~d ..e.s,,'

A IT"Y 2.4Ji 5 .LIoITnr ' C IAs+o",e. .. c. i ty , }

A TATE. 2 I. .J.~ fl:,)(T '$+o.fe·)

• Iz.-I.p 5 rjr. b 31 'Te.~T 'Zip c.ode')
• H 'To+ad'

A IDRDAM ~ 162 .I. 51. TEXT (' i 01"<>. I do I I ... y ""'Of..,,-I- of *hI'. +

A Io..de.y'

• 44- '5+",+I.\S'
A iT50RD J.2 Z:51
• ~+4 '0", '
• 'SOP ~ 5,
• .. 44 I C... :\+oMe.. (IV-oJ e ... '
• U$OR. .1.5 4 S<lI TEllT('C ..s+o..."", cho.:;e. o,-de. .. +

•
A

,II"''''''''''
44 ·Sk' .. viGl'

A 5., E)C.t I s .. ·, w""O\/l " O\&f'.. .,c.f' On.; ,)ISM'V'l:A .15
A I P .. · ,,-1- ... 6 OAf..." 4 ..
A IPfiOAT " ~d " S. f Xi 'O .. f... 0"4""" "'illS ~4!!!d ')
A 2~ 't"voic.e..'
• :,NN.UM 38 TEXT • :I.,vo· c..... IA ...b'!.r'

• 1 ,,+ 'I'ITU'
A ,CT"',.-H III, 1 faQ EOlCT(' A-c.c.oo.lnt' "Q "'0....... of!- sa #I')

A T 7t. .'C........ '
.. Ie ''iR z 7 11 E¥"T(' Ac.c.oc. ..-t' " .. ~eQ.Y ..,f s",1 e' 1
.. • 1:+e", , .. •Q+v'
A 1+ '~+~", c:le.sc.ri pt'",,'
A 4 • PI'" 1: ... I .. 5 ·E~fe ,o,,'

Figure 7-12 (Part 3 of 14), Sample Order Inquiry Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-77

L

http:c:le.sc.ri

COBOL SOURCE LISTING

ST~T SEQNBR -A 1 B••••• 1 •••••• 1 •••••• ~ •••••• ~ •••••• & •••••• 7 .IDENTFCN S CDPYNA~E CHG/DATf

1 000100 IDENTIFICATION DIVISION.

1 000200 PROGRA~-ID.

3 000300 ORDllD.

~ 0001t00 ENVIRONMENT DIVISION.

~ 000500 CONFIGURATION SECTION.

& 000600 SOURCE-COMPUTER.

1 000100 IBM-S18.

8 000800 OBJECT-COMPUTER.

9 000900 IBM-S38.

10 001000 INPUT-OUTPUT SECTION.

11 001100 FILE-CONTROL.

lZ 001200 SELECT ORDER-HEADER-FllE

13 001300 ASSIGN TO DATABASE-ORDHORP

1~ 001ltOO ORGANIZATION IS INDEXEO

1~ OOlSOO ACCESS ~ODE 1.5 RANDO~

1& 001600 RECORD KEY IS ORDER OF ORDER-HEADER-RECORD.

17 001100 SELECT ORDER-DETAIL-FILE

18 001800 ASSIGN TO DATABASE-ORDDTlP

19 001900 ORGANIZATION IS INDEXED

lO OOlOOO ACCESS MODE IS DYNAMIC

II OOllOO RECORD KEY IS ORDER-DETAIL-RECORD-KEY.

II 002200 SELECT CUSTOMER-MASTER-FllE

II 001300 ASSIGN TO DA'ABASE-CUS~STP

l~ 001400 ORGANIZATION IS INDEXED

l~ 001500 ACCESS MODE IS RANDO~

l& 001600 RECORD KEY IS CUST OF CUSTOMER-MASTER-RECORD.

l7 001700 SELECT EXISTING-OROER-DISPLAY-FILE

l8 002800 ASSIGN TO WORKSTATION-ORD2l00

19 001900 ORGANIZATION IS TRANSACTION

30 003000 ACCESS HODE IS DYNA~IC

11 OOllOO RELATIVE KEY IS SUBFIlE-RECORD-~UMBER

32 003100 FILE STATUS IS STATUS-CODE-ONE.

II OOllOO DAtA DIVISION.

l~ 0011000 filE SEC TlON.

l~ 003500 FD ORDER-HEADER-FILE

3& 003600 LABEL RECORDS ARE STANOARD.

31 003100 01 ORDER-HEADER-RECORO.

38 001800 COPY DDS-ORDHDR OF ORDHDRP.

ItO .000001 DRDHOR

.00000l~ 1-0 FORMAT:ORDHDR FRO~ FILE ORDHDRP OF LIBRARY CBll8lt9 ORDHDR

.000001~ ORDER HEADER RECORD ORCHOR

.000001t0THE KEY DEFINITIONS FOR RECORD FORMAT OROHDR OROHOR

'0000050 NUMBER NAME RETRIEVAL TYPE AU SEa ORCHDR

+00000&0 0001 ORDER ASCENDING N NO ORDHOR

Itl .000007 05 ORDHDR. ORDHOR

Itl .000008 06 CUST PIC XIS). ORDHOR

+0000090 CUSTOMER NUMBER ORDHDR

~3 -000010 0& DROER PIC S9(5) COMP-l. ORCHOR

-000011° ORDER NU~BER ORDHOR

Itlt 'OOOOll 06 ORDUAl PIC 59(6) COHP-3. DROHOR

.000011~ DATE ORDER WAS ENTERED DRCHDR

itS -000011t 06 CUSORO PIC XI lSI. DRDHDR

-00001 ~* CUSTOMER PURCHASE ORDER NUMBER ORDHDR

1t6 -000016 06 SHPVIA PIC X(I~I. ORDHDR

'0000170 SHIPPING INSTRUCTIONS OROHDR

Figure 7-12 (Part 4 of 14). Sample Order Inquiry Program

7-78

COIlOL SOURCE Ll STING OR02Z0

STMT SEQNBR -A 1 8 ••••• Z •••••• 3 •••••• 4 •••••• 5 •••••• b ••• 1 .IOENTFCN 5 COPYNAME CHG/OATE

47 .000018 06 ORUSH PIC 59(1' CQHP-3. OROHDR
·0000190 ORDER STATUS IPCS ZCNT 3CHK 4RDY 5PRT 6PCK ORDHDR

48 .OODOZO
-OOOOZl°

06 OPRNAM PIC
OPERATOR

X(lO'.
NAME WHO ENTERED THE ORDER

ORDHDR
OROHOR

49 0000022
-0000Z30

06 ORDAMT PIC 59(6,\l9(Z) COMP-3.
TOTAL DOLLAR A~OUNT OF THE OROER

DROHOR
OROHOR

5D .0000Z4
·0000Z50

06 CUSTYP PIC
CUSTOMER

59(1'
TYPE l=GOV

COMP-3.
Z=SCH l=IlUS 4=PVT 5=OT

OROHOR
OROHOR

51 .0000Z6 06 INVNUM PIC S9(5) COMP-3. OROHOR
-OOOOZl° INVOICE: NUMBER OROHOR

52 -0000Z8
-0000Z90

06 PRTDAT
DATE

PIC 59(6'
ORDER WAS

COMP-3.
PRINTED

DROHOR
OROHOR

53 .000030 06 OPNSTS PIC S9(I, CQHP-3. OROHDR
-000031° ORDER OPEN STATUS l=OPEN Z=CLOSE 3=CANCEL OROHOR

54 .00003Z 06 TOTLIN PIC S9(3, COMP-3. ORDHDR
-0000310 TOTAL LINE ITEMS IN ORDER ORDHDR

55 -000034
·000035°

06 ACTMTH PIC S9(2,
ACCOUNTING MONTH OF

CQHP-3.
SALE

OROHOR
ORDHOR

56 -000036
·0000310

06 ACTYR PIC 59(Z,
ACCOUNTING YEAR OF

CQHP-3.
SALE

OROHOR
OROHOR

57 .000038
+ 0000390

06 STATE PIC
SUTE

X(2). ORCHDR
ORCHDR

58 .000040
_0000410

06 AMPAIU PIC S9(6,\l9(Z)
TOTAL DOLLAR AMOUNT

COMP-3.
PAID

OROHDR
OROHOR

59 003900 FO ORDER-DETAIL-FILE
60 004000 LABEL RECORDS ARE STANDARD.
bl 004100 01 ORDER-DETAIL-RECORO.
62 004Z00 COpy DOS-ORDOTL OF ORDOTLP.
64 -000001 ORDDTL

.00000zo 1-0 FORMAT:ORDDTL FROM FILE ORDOTLP OF LIBRARY CBLZ849 ORDDll

.0000030 URDER DETAIL RECORD OROOll
+D000040THE KEY OEFINITIONS FOR RECORD FORMAT ORODTL DROOlL
'0000050 NUMBER NAME RETRIEVAL TYPE ALTSEQ ORDDlL
.0000060 0001 ORDER ASCENDING N 1110 ORDOTL
.0000010 0002 LlNNUM ASCENDING N NO ORDOlL

65 '000008 as ORDDTL. ORODlL
66 .000009 06 CUST PIC X(5). OROOlL

-0000100 Customer number OROOlL
61

66

.000011

.0000120
-000013
-0000140

06

06

ORDER

LINNUM

PIC S9(5)
Order number

PIC S9(3,
1I NE NUMbER OF LINE

COMP-3.

COMP- 3.
IN ORDER

OROOlL
ORDOTL
ORDOTL
OROOlL

69 -000015
.000016c.>

06 ITEM
Item

PIC S9(5)
nUlllber

COMP-3. OR DOll
OROOlL

10 -000017
-0000180

06 QTYORD PIC
QUANTITY

S9(3)
ORDERED

COMP-3. OROOlL
ORODTL

11 • 000019 06 OESCRP PIC X(30,. ORDDTL
·OOOOZoo Item des(;ription ORDOTL

7l -OOOOZ 1 06 PRICE PIC S9(4,\l9(2, CQHP-) • ORDOlL
_000"Z2° SELLl NG PR IC E OROOlL

13 -0000Z3 06 EXTENS PIC S9(6,V9(Z) COMP-3. OROOlL
• 0000Z4° EXTENSION AMOUNT OF QTYORD x PRICE ORDDTL

14 .0000Z5 06 WHSLOC PIC X(3). ORODTL
-0000Z6° Bin no. ORDDTL

15 00000Z7 06 OROOAT PIC S9(6, COMP-3. OROOlL

Figure 7-12 (Part 5 of 14). Sample Order Inquiry Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-79

C080l SOURCE L[ST[NG OROllO

ST"T SEQNBR -A 1 B ••••• Z •••••• 3 •••••• ~ •••••• 5 ••• 6 •••••• 1 .[OENTFCN S COPYNAME

'0000280 DATE ORDER WAS ENTERED DROOll
7& '000019 Db CUSTYP PIC S9(1) COMP-3. ORDOll

.0000300 CUSTOMER TYPE l=GOV 2=SCH 3=BUS 4=PVT 5=OT ORDeTL
77 .000031 06 STATE PIC X(2) • ORDOlL

• 0000320 State OROOH
78 .000033 06 ACTMTH PIC S9(2) CDMP-3. OROOll

.0000340 ACCOUNTING MONTH OF SALE ORDOll
79 '000035 Db ACTYR PIC S9(2) COMP-3. OROOTL

• 0000360 ACCOUNT! NG YEAR OF SAlE ORODll
80 004300 66 ORUER-OETAIL-RECORO-KEY RENAMES ORDER THRU LINNUM.
81 004400 FD CUSTOMER-MASTER-FILE
82 00'0500 LABEL RECORDS ARE STANDARD.
81 00'0600 01 CUSTOMER-MASTER-RECORD.
8'0 00'0700 COPY DDS-CUSKST OF CUSMSTP.
86 .000001 CUSMS T

.0000020 [-0 FORMAT:CUSMST FROM F[LE CUSMSTP OF LIBRARY CBL1849 CUSMST

.0000010 CUSTOMER MASTER RECORD CUSMST

.0000040 THE KEY OEFIN[TIONS FOR RECORD FORMAT CUSMST CUSMST

.0000050 NUMBER NAME RETR[EVAL TYPE ALTSEQ CUSMST

.00000bO 0001 CUST ASCENDING AN 1110 CUSMS T
81 .000007 OS CUSMST. CUSMST
88 .000008 06 CUST PIC X(5). CUSMST

·0000090 CUS TOMER NUMBER CUSMST
89 .000010 Db NAME PIC X(2S). CUSMST

·0000110 CUSTOMER NAME CUSMS T
90 .000012 06 AOoR PIC X(20). CUSMsl

.0000130 CUSTOMER ADDRESS CUSMST
91 .000014 Db CITY PIC X(201. CUSMST

'0000150 CUS TOMER CITY CUSMS T
92 .00001b Db STATE PIC X (21. CUSMST

·000011" STATE CUSMST
93 .000018 06 ZIP PIC S9(5) COMP-3. CUSMS T

·000019.:< lIP CODE CUSMST
9'0 .000020 Db SRHCOO PIC X(b). CUSMST

.0000210 CUSTOMER NUMBER SEARCH CODE CUSMST
95 .000022 06 CUSTYP PIC S9(1) COMP-3. CUSMST

.0000230 CUSTOMER TYPE l=GOV 2=SCH 3=8US 4=PYT 5=OT CUSMST
9b .000014 Db ARBAL PIC S9(b)V9(2) COMP-3. CUSMST

.0000250 ACCTS REC BALANCE CUSMST
91 .000026 Db ORDBAl PIC S9(6)V9(2) COMP-3. CUSMS T

.0000210 AIR AMT IN ORDER F[LE CUSMST
98 .000028 06 lSTAMT PIC S9(6)V9(2) COMP-3. CUSMS T

·0000290 LAST AMOUNT PAID IN AIR CUSMS T
99 .000010 Db lSTOAT PIC S9(6) COMP-3. CUSMST

·000031° LAST DATE PAID IN AIR CUSMST
100 ·000032 06 CRDlI'IT PIC S9(6)Y9(2) COMP-3. CUSMST

.0000330 CUSTOMER CREDIT LIMIT CUSMS T
101 ·000034 Db Sl SYR PIC S9(8}Y9(Z) CQMP-3. CUSMS T

.0000350 CUSTOMER SALES THIS YEAR CUSMST
101 .00003b Db SlSlYR PIC S9(8)Y9(1) COMP-3. CUSMST

.000031° CUSTOMER SALES LAST YEAR CUSMST
101 004800 FO EXISTING-ORDER-DISPLAY-FLlE
104 004900 lABEL RECORDS ARE O~ITTEO.

105 005000 01 EXISTING-OROER-DISPLAY-RECURD.
lOb 005100 COpy ODS-ALL-FORMATS OF ORD220D.

Figure 7-12 (Part 6 of 14). Sample Order Inquiry Program

7·80

<..;'

(OBOL SOuRtE LISTING OROllO

STIH SEOIllBR -A B••••• 2 •••••• 3 •••••• ~ •••••• 5 •••••• b ••• ••• 7 .IDENTFCN S COpy NAME CHG/DATE

108 .000001 05 aROllOD-REtORD Pit X(l11). <-AlL-FMH
109 -000002 <-AlL-FMTS

·000003· 1-0 FORMAT: SUBl FROM FILE OR02200 OF LIBRARY tBL284" <-All-FIHS
-000004* <-AlL-FMTS

110 .000005 05 SUBl REDEFIIIlES ORD2200-REtORD. <-All-FMTS
111 -OOOOOb 06 ITEM Pit S9(5). <-ALl-FMTS

-000007* ITEM IIlUM8ER <-All-FMTS
112 -000008 06 OTYORD Pit S9(3). <-ALl-FMTS

·000009¢ OUAIIlTITY ORDER EO <-All-FMTS
113 .000010 06 DEStRP Pit K(30). <-All-FMTS

.000011'" ITEM DEStRIPTION <-AlL-FMTS
114 ·000012 06 PRltE Pit S9(4)VQ I2). <-All-FMTS

-000013° SELLING PRltE <-All-FMTS
115 .000014 06 EXTENS Pit S9(6)V912). <-All-FMTS

·000015* EXTENSION AMOUNT OF OTYORD X PRltE <-All-FMTS
11b .00001b <-All-FMTS

- 000017¢ INPUT FORMAT: SUBt TL 1 FROM FILE OROZ20D OF LIBRARY tBL2849 <-All-FMTS
·000018. <-All-FMTS

117 -00001" 05 SUbCTll-1 REDEFINES ORD220D-REtORD. <-All-FMTS
118 .900020 06 SU3t Tll-I-INDlt. <-All-FMTS
119 • 000021 07 I N97 Pit 1 INDlt 97. <-All-FMTS

-000022¢ (ONTI~uE DISPLAY <-All-FMTS
120 -000023 07 INII8 Pit 1 INOlt 98. <-All-FMTS

.000024¢ END OF PROGRAM <-All-FMTS
121 ·000025 01 IIIIH Pit 1 INDlt 51. <-All-FMTS

-0000260 DISPLAY SUBFILE <-All-FMTS
122 ·000027 07 IN58 Pit 1 INO It 58. <-All-FMTS

-000028¢ OFF=OISPLAY SUBtTL ON=tLEAR SUBFIlE <-All-FMTS
123 ·000029 07 IN61 Pit 1 HWlt 61. <-All-FMTS

.0000300 Order number not found <-All-FMTS
124 .000031 ill IN47 PIt 1 INDlt 47. <-All-FMTS

.000032° No lines for this order <-All-FMTS
125 -OOOOH 07 IIIIb2 Pit 1 IIIlDlt b2. <-All-FMTS

-000034* No customer record found fOr this order <-All-FMTS
126 ·000035 06 ORDER PIt S9(5). <-All-FMTS

-000036* ORDER NUMBER <-All-FMTS
127 -000037 <-All-FMTS

-000038° OUTPUT FORMAT:SUStTll FROM FILE OR02l0U OF LIBRARY tBL284" <-All-FMTS
-000039¢ <-ALl-FMTS

128 -000040 05 SUBtTll-O REDEFINES ORD220D-REtORD. <-All-FMTS
129 -000041 06 SUBtTL1-D-INDlt. <-ALl-FMTS
130 ·000042 07 IN58 Pit I INDlt 58. <-All-FMTS

-0000430 OFF=OISPLAY sust TL ON=tLEAR SUBFIlE <-All-FMTS
131 ·000044 01 IN57 Pit 1 IIIIDlt 57. <-All-FMTS

-000045¢ DISPLAY SUBFILE <-All-FMTS
132 -00004b 07 IN45 PIt 1 INDlt 45. <-All-FMTS
IH -000041 01 IN47 Pit 1 l'liOlt 47. <-All-FMTS

·000048· No lanes for this order <-All-FMTS
134 .000049 07 111161 Pit 1 INDlt 61. <-All-FMTS

-0000500 Order number not found <-All-FMTS
135 • 000051 01 INb2 PIt 1 I!'Wlt b2. <-All-FMTS

-000052* No customer record found fOr this order <-All-FMTS
136 ·000053

-0000540
06 ORDER Pit S9(5).

O~DER NUMBER
<-All-FMTS
<-All-FMTS

137 -000055 06 ORDDAT Pit S9Ib). <-All-FMTS

Figure 7-12 (Part 7 of 14). Sample Order Inquiry Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-81

COBOL SOURCE LISTING ORDllO

5TMT SEQ~BR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 1 .fOENTFCN S COPYNAME (HG/DATE

'00005b"' DHE ORDER WAS ENTERED <-ALL-FMTS
138 '000057 Ob CUST PIC XIS). <-ALl-FMTS

'000058"' CUSTOMER NUMBER <-ALL-FMTS
139 '000059 Ob NAME PIC X(25). <-ALL-FMTS

'OOOObO~ CUSTOMER NAME <-ALl-FMTS
140 'OOOObl 0& ADDR PIC K(20). <-All-FMTS

'000062"' CUSTOMER ADDRESS <-ALL-FMTS
L41 '0000&3 0& CITY PIC X(20). <-ALL-FMTS

'0000&4#
142 -0000&5

• 0000&6#
Ob STATE

CUSTOMER
PIC

STATE

CITY
X(2}.

(-All-FMTS
<-ALL-FMTS
<-All-FMTS

143 '0000b7 Db lIP PIC 59(5). <-AlL-FMTS
'0000b6# lIP CODE <-ALl-FMTS

144 '0000&9 0& ORGAMT PIC S9(6)V9(2). <-AlL-FMTS
'000070"' TOTAL DOLLAR AMOUNT OF THE ORDER <-AlL-FM TS

145 '000071 06 STSORO PIC XII2). <-UL-FMTS
146 '000072 Ob STSOPN PIC X(12). <-ALL-FMTS
147 -000013 Ob CUSORD PIC K(15). <-ALL-FMTS

-000014# CUSTO"lER PURCHASE ORDER NUMBER <-AlL-FMTS
148 '000015 06 SHPVIA PIC X(15). <-ALl-FMTS

'000076# SHIPPING INSTRUCTIONS <-ALL-FMTS
149 '000077 06 PRTDAT PIC 59(6). <-ALL-FMTS

'000078* DHE ORDER WAS PRINTE~ <-ALl-FMTS
150 '000079 06 INVNUM PIC S915}. <-ALL-FMTS

'OOOOSO# INVOICE NUMBER <-ALl-FMTS
151 -00008L 06 ACTMTH PIC S9(2). <-ALL-FMTS

'000082* ACCOUNTING MONTH OF SALE <-ALL-FMTS
152 -000083 0& ACTYR PIC S9(2}. <-AlL-FMTS

153
- 000084#

005200 WORKING-STORAGE SECTION.
A((OUNTIN YE AR OF SAlE <-ALL-FMTS

L54 005300 01 EXISTING-ORDER-DlSPlAY-KEY.
155 005400 05 SUBFILE-RECDRD-NUMBER PIC 9(02)
15& 005500 VALUE lERO.
157 005600 01 ORDER-STATUS-COMMENT-VALUES.
158 005700 05 FILLER PIC KIL2)
159 005800 VALUE "I-IN PROCESS".
160 005900 05 FILLER PIC X(llJ
Ibl 006000 VALUE "2-CONTINUED ".
162 OObLOO 05 FILLER PIC XIL2)
1&3 00&200 VALUE "3-CREDIT CHK".
164 00b300 05 FILLER PIC X(12)
1&5 006400 VALUE "4-READY PRT ".
Ibb 00b500 05 FILLER PIC X(12)
167 006bOO VALUE US-PRINTED ".
Ib8 006700 05 FILLER PIC X(12)
169 OO&BOO VALUE ub-PICKED
170 006900 05 FILLER PIC KIL2)
171 007000 VALUE "l-INVOICED ".
172 007100 05 FILLER PIC X(12)
173 007200 VALUE "S-INVALID ".
114 001300 as FILLER PIC KII2)
175 007400 VALUE "9-CANCELED ".
176 007500 01 ORDER-STATUS-COMMENT-TABLE
177 007600 REDEFINES ORDER-STATUS-COMMENT-VALUES.
118 007700 05 ORDER-STATUS OCCURS 9 TIMES.

Figure 7-12 (Part 8 of 14). Sample Order Inquiry Program

7-82

COBOL SOURCE LISTING OROllO

SIMI SE~NUR -A 1 B••••• 2 •••• ,. 3 •••••• 4 •••••• 5 •••••• 6 •••••• 1 .IDENTFCN S COPYNAHE CHG/DATE

179 007800 10 ORDER-STATUS-COMMENT PIC X(121.

160 007900 01 UPEN-STATU5-COMMENT-YALUES.

181 008000 05 FIll ER PIC X (121

182 00HI00 VALUE "I-OPEN 11/11/BO

183 008200 05 FIll ER PIC X(121

IB4 008]00 VALUE "2-CLOSED " . 11/11/80

185 008400 as Ft II ER PIC X(Ill

186 008500 VALUE "3-CA~CELEO lln1/80

187 008600 vI OPEN-STATUS-COHMENT-TABLE

1 BB 008100 REDEFINES OPEN-STATU5-COMHENT-VALUES.

189 00880U 05 OPEN-STATUS OCCURS 3 TIMES.

190 00B900 10 OPEN-STATUS-COMMENT PIC XI121.

l'H 009000 01 ERRHOL-PARAMETERS.

192 009100 05 STATUS-CODE-ONE PIC xx. 11/0 7/80

19] 009200 88 SUBF lLE-1 S-FULL VALUE "91'1". 11/11180

194 009300 01 ER~PGM-PARAMETERS.

195 009400 05 OISPLAY-PARAMETEH PIC X(OOBI

196 009500 VALUE "OR02200 .. Unl/80

191 009600 05 OU /'1M Y- OI'H: PIC X(0061

198 009100 VALUE SPACES.

199 009800 05 DUMMY-TWO PIC X(OOBI

200 009900 VALUE SPACES.

201 010000 05 STATUS-CODE-TWO.

202 010100 10 PR POIARY PIC x.

20] 010200 10 SECONDARY PIC X.

204 010300 10 FILLER PIC X(005)

205 010400 VALUE SPACES.

20b 010500 05 lJUMMY-TH~EE PIC X(01 0 1

207 010600 	 VALUE SPACES.
208 010700 01 SWITCH-AREA.

£09 010800 05 SWOl PIC I.

210 010900 88 NO-MORE-OETAIL-LINE-ITEM~ VALUE B' 1'.

211 011000 88 MORE-OETAIL-LINE-ITEMS-EXIST VALUE B' 0' •

Zll 011100 05 SilO.? PIC I.

213 011200 1i8 WRI fE-DISPLAY VALUE S'l'.

214 011300 8B READ-DISPLAY VALUE B·O'.

ZI~ 011400 05 51003 PIC 1.

216 011500 83 SUBC Ttl-FORMAT VALUE b' 1'.

211 011600 88 NOT-SUBCTLI-FOR~AT VALUE B·O'.
~) 	 Z!!! 011100 05 SI/04 PIC I.
219 o llliOO 88 SUS I-FURMAT VALUE B' 1 ••
220 011900 88 NOT-SUBI-FORMAT VALur B·O'.
221 012000 01 INDICATOR-AREA.
22Z 012100 05 IN?8 PIC 1 I NDIC 98.

223 012200 88 ENO-OF-EXISTING-ORDER-INQUIRY VALUE B'l'.

224 012300 05 IN97 PIC 1 INOIC 97.

225 012400 88 CONTINUE-DETAIL-LINE~-OISPLAY YALUE B' l' •

226 012500 05 1"162 PIC 1 INDIC 62.

221 012600 88 CUSTOM~R-NOT-FOUND VALUES'l'.

228 012700 B8 CUSTOMI:R-EXIST VALUE B·O'.

229 0121100 05 I t><6 1 PIC 1 I NJ IC 61.

230 012900 88 ORDER-NOT-FOUNO VALUE B'l'.

231 013000 138 uROER-DIST YALUE B'O'.

£ 32 013100 05 IN58 PIC 1 INDIC 58.

233 013200 88 CLEAR-5UBFILE VALUE B'l'.

Figure 7-12 (Part 9 of 14), Sample Order Inquiry Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-83

L

tObOL SOURCE LISTING ORono

STMT SEQN8R -A 1 B••••• Z •••••• 3 •••••• 4 •••••• S

234 013300
235 013400
23b 013500
237 013(,00
238 013700
239 '>13800
240 013900
241 014000
242 014100

01'0200
014300
014400
014500
014bOO

243 01'0700
014800

244 014900
015000
015100
015100

245 015300
24b 015400

015500
247 015bOO

015700
248 015800

015900
01bOOO
01bl00

249 01b200
01b300
01b400
01b500
01bbOO
01b700
01b800
01b900

250 017000
01HOO
017200
017300
011.. 00
017500
017bOO
017700

251 017800
252 017900

018000
011H00

253 018200
254 018300
255 01B'oOO
25b 0111500
257 01d600

018700

88 DISPLAY-SUBFILE-tONTROL
05 IN57

88 DISPLAY-SUBFILE
05 IN47

88 NG-DETAIL-LINES-FOR-OROER
88 JETAIL-LINES-FOR-ORDER-EXIST

05 IN45
88 END-OF-OROER

PROCEOURE DIVISION.
DECLARAT IVES.
TRANSACTION-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE
EXISTING-URDER-DISPLAY-FILE.

WORK-STATION-ERRQR-HANDLER.
IF SUBFILE-IS-FULL THEN NEXT SENTENCE

ELSE

•••••• b ••• ••• 1 .IDENTF(N S

V_LUE B'O'.

PIC I INDIC 57.

VALUE B'l'.

PIC 1 INOIC 47.

VALUE B'l'.

VALUE B'O'.

PIC 1 INOIC 47.

VALUE B'l'.

DISPLAY 'WORK-STATION ERROR' STATUS-CODE-ONE.
END DECLARATIVES.
INQUIRY-INTO-EXISTING-URDER SECTION.
MAINLINE-ROUTINE.

PERFORM SET-UP-ROUTINE.
PERFORM EXISTING-ORDER-INQUIRY

UNTIL ENG-OF-ExiSTING-ORDER-INQUIRY.
PERFORM CLEAN-UP-RUUTINE.

SET-UP-ROUTJ NE.
OPEN lNPUT URDER-HEADER-FIlE

OROER-OETAll-FILE
CUSTOMER-MASTER-FILE

1-0 EXISTING-ORDER-OISPLAY-FllE.
MOVE SPACES TO CUST UF SUBCTlI-0

NAME OF SUBCTLI-O
AODR OF SUBCTLI-0
CITY OF SUBCTLI-O
STATE OF SUBCTLI-0
STSORD OF SUBCTLI-0
STSOPN OF SUBCTll-D
CUSURO OF SUBCTlI-0.

MOVE ZEROS TO ORDER OF SUBCTL1-O
ORDOAT OF SUBCTL1-0
lIP UF SUBCTLI-O
QRDAMT OF SUBCTLI-0
PRTOAT OF SUBCTLI-0
INVNUM OF SUBCTLI-0
ACTMTH OF SUBCTLI-0
ACTYR OF SUBCTLI-0.

MOVE S'O' TO INDICATOR-AREA.
SET READ-DISPLAY

NOT-SUBCTLI-FORMAT
NOT-SUSI-FORMAT TO TRUE.

HOVE CORR INDICATOR-AREA TO SUBCTlI-O-INDIC.
SET WRITE-DISPLAV. SUBCTLI-FORMAT TO TRUE.
WRITE EXISTING-OROER-DISPLAV-RECDRO FORMAT IS
READ EXI~TING-DROER-DlSPlAY-FllE RECORD.
HOVE CORR SUdCTLl-l-iNDIC TO INDICATOR-AREA.

EXISTING-ORDER-INQUIRY.

Figure 7-12 (Part 10 of 14). Sample Order Inquiry Program

'SU3CTL 1'.

COpy NAME CHG/DATE

11/07/80
11/07/80
11/07/80

11/07/80

7-84

COBOL SOURCE LISTING ORD220

STMT SEQNBR -A B••••• 2 •••••• 1 •••••• 4 •••••• 5 ••• 6 •••••• 7 .10ENTFCN S COpy NAME CHG/DATE

Z5tl 018800
259 018900
260 019000
261 019100

019200
262 019300

019400
019500

263 019600
019100

264 019800
019900
020000

265 OZ0100
266 020200
267 020301.1
268 020400
269 020500
270 020600

020700
271 020800
H2 020900
273 021000
214 021100
275 021200
276 021300
277 021400

02150u
021600
021700
021800
021900
022000
022100

278 OZUOQ
022300

119 022400
022500

280 022600l.; 022700
291 022800

022900
29i! 023000

023100
283 023200

023300
294 023400

0.23500
295 023600
196 023700
291 023800

023900
.l98 02400U
Z99 024100
290 024200

IF 	 CONTINUE-GET AIL-LINES-DISPLAY THEN

PERFORM READ-NEXT-OROER-DETAIL-RECORO

IF MORE-DETAIL-LINE-ITEMS-EXIST THEN

IF 	 ORDER OF ORDER-DETAIL-RECORD IS NOT EQUAL TO
UROER OF ORDER-HEAOER-RECORD THEN
SET OISPLAY-SUBFILE.

ND-DETAIL-LINES-FOR-ORDER TO TRUE
ELSE

PERFORM SUBFILE-SET-UP
elSE

SET DISPLAY-SUBFILE.
ND-DETAIL-LINES-FOR-URDER TO TRUE

ELSE
PERFORM OROER-NUMBER-VALIDATION.

MOVE CORR INDICATOR-AREA TO SUBCTLI-O-INOIC.
SET "RITE-DISPLAY. SUBCTLI-FORMAT TO TRUE.
WRITE EXISTING-ORDER-DISPLAY-RECORO FORMAT IS 'SUBCTLt'.
READ EXISTING-ORDER-DISPLAY-FILE RECORD.
MOVE CORR SUdCTLI-I-iNOIC TO INOICATOR-AREA.

URDER-NUMBER-VALIDATION.
PERFORM READ-ORDER-HEADER-FILE.
IF ORDER-EXIST THEN

PERFORM REAO-CUSTOMER-MASTE~-FILE
IF 	 CUSTOMER-EXIST THEN

PERFORM READ-FIRST-ORDER-DETAIL-RELORD
IF OETAIL-LINES-FOR-ORDER-EXIST THEN

PERFORM SUBFILE-SET-UP
elSE

NEXT SENTENCE
ELS!:

NEXT SE,'1TENCE
ELSE

NEXT SENTENCE.
REAO-!)RDER-HEADER-FII-E.

MOVE ORDER OF SUBCTLI-I UF EXISTING-ORDER-DISPLAY-RECORD
TO DROER OF ORDER-HEADER-RECORD.

READ OROER-HEADER-FILE
KEY IS ORDER OF OROER-HEAOER-RECORD
INVALIO KEY SET ORDER-NOT-FOUND TO TRUE.

READ-CUSTOMER-MASTER-FILE.
MOVE CUST OF ORDER-HEADER-RECORD

TO CUST OF CUSTOMER-MASTER-RECORD.
READ CUSTOMER-MASTER-FILE

KEY IS CUST OF CUSTOMER-MASTER-RECORD
INvALIO KEY seT CUSTOMER-NOT-FOUND TO TRUE.

READ-FIRST-ORDER-DETAIL-RECORD.
MOVE ORDER OF OROER-HEADER-RECORD

ro ORDER OF ORDER-DETAIL-RECORD.

MOVE I TO LINNUM Of ORDER-DETAIL-RECORD.

READ ORDER-DETAIL-FILE

INVALID KEY SET ND-~ETAIL-LINES-FOR-ORDER TO
SUBFILE-SE T-uP.

SET CLEAR-SUdFI~E TO TRUE •
MOVE CORR INDICATOR-AREA TO SUBCTLI-O-INDIC.
SET WRITE-DISPLAY. SUBCTLI-FORMAr TO TRUE.

Figure 7-12 (Part 11 of 14). Sample Order Inquiry Program

1I/07/BO
1I/07/BO

TRUE.

Chapter 7. TRANSACTION Files (IBM Extension) 7-85

CObOL SOURCE LISTING OR0220
STMT SEQNBR -A d••••• l •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENfFCN 5 (uPYNAME CHG/OATE

2'H 024300 WRITE EXISTING-OROER-OISPLAY-RECORO
024400 FORMAT IS 'SU6CTLl'.
024500 SET OISPLAY-SUB~ILE-CONTROL TO TRUE.
024bOO PERFORM dUILO-OISPLAY-SU6FILE
024100 UNTIL NO-MORE-DETAIL-LIN£-IT£MS
024800
024900

OR SUBFILE-IS-FULL.
MOVE CJRR OROHDR OF ORDER-HEAOE~-RE(ORO

1l/01/80

Ol5000 TO SUBCTLI-0 OF ~XISTING-ORDER-OISPLAY-RECORO.
OlSlOO
025100

MOVE CORR CUSMST
TO SUBCTLI-O

OF
OF

CUSTOMER-MASTER-RECORD
EXISTING-ORDER-DISPLAY-RECORQ •

1l/Ob/80

29b 025300 MOVE OROER-STATUSIOROSTS) TO STSORD.
297 025400 MOVE OPEN-STATUS(OPNSTS) TO STSOPN.
298 Ol5S0u SET MCRE-OETAIL-LINE-ITEMS-EXIST TO TRUE.
299 02SbOO

025100
HOVE ZEROS TO SU~FILE-RECORD-NUMBER.

BUILO-0ISPLAY-5UBFILE.
11/01/80

300 025800 MOVE (ORR ORDOTL Of ORDER-DETAIL-RECORO
025900 TO SUBI OF EXISTING-OROER-OISPLAY-RECORO.

lOt OlbOOO SET WRITE-DISPLAY, SUBI-FORMAT TO TRUE.
302 02blOO ADO I TO SUBFllE-RtCORO-NUM3cR.
30} 02b200 WRITE SUBcILE EXISTING-uROER-DISPLAV-RECORD FORMAT IS 'SUBl'.
304
305

02b300
02b400

IF SUBFILE-IS-~ULL TH~N

SET OISPLAY-SUSFILE TO TRUE
1l/01/80

02b,00 ELSE
30b 02bbOO PERFORM READ-NtXT-JROER-DETAIL-RtCORD
307 02b100 IF NO-MORE-OETAIL-LINE-ITEMS THEN

02b800 NEXT SPHENC"
02b900 HSE

308 02100U IF ORDEN JF OROER-DErAll-RECORO 15 NOT EQU_L TO
021100 URDER UF ORDER-HEAJER-RECORO THEN

}09 OlUOO SET OI~PlAY-SUoFILt,
021300 NO-~OR£-oETAIL-LINt-ITEMS TO TRUE
021400
On500 NHT SENTPKE.
021bOO REAO-~E~T-URDER-DcTAIL-RECURO.

3tO 021700 READ ORDER-~ETAIL-FILE NEXT RECORD
HI 021800 AT ENO SET QISPLAY-SUBFILE,

021900 No-MORE-DETAIL-LINE-IT~MS TO TRUE.
028000 ClEAN-UP-ROUTINE.

312 028100 CLOSE ORDER-HEAOER-FILE
028200 JROER-OETAIL-FILt
028300 CUSTUMER-HASTER-FILE
02B400 lXISTING-OROER-DISPLAY-FILE.

313 028500 STOP RUN.

- 0 00. END 0 F SOU R CEo • • - -

Figure 7-12 (Part 12 of 14). Sample Order Inquiry Program

7-86

c
This is the initial order entry prompt display written to the workstation:

Existing Order Inquiry Total 00000000
Status

Order 00000 Open
Date 000000 Customer order
Cust # Ship via

00000 Printed date 000000
Invoice 00000 Mth 00 Year 00

Item Qty Item description Price Extension

This display appears if there are detail order records for the customer whose order number was
entered in the first display:

~) Existing Order Inquiry Total 00742656
Status 7-INVOICED

Order 17924 TESTCASE HARDWARE CO Open 2-CLOSED
Date 110580 1204 BURNSIDE DR Customer order TESTCS179330011
Cust # 11200 KANKAKEE Ship via TRUC.KCO

IL 60901 Printed date 042578
Invoice 17924 Mth 12 Year 78

Item Qty Item description Price Extension
33001 003 TORQUE WRENCH 75LB 14 INCH 009115 273.45
33100 001 TORQUE WRENCH WIGUAGE 200 LB 015777 157.77
44529 004 WOOD CHISEL - 3 1/4 006840 273.60
44958 002 POWER DRILL - 3/8 REV 008200 164.00
46102 003 WROUGHT IRON RAILING 4FTX6FT 007930 237.90
46201 001 WROUGHT IRON HAND RAIL 4X4FT 007178 71.78
47902 005 ESCUTCHEON BRASS 15X4INCHES 044488 2,224.40
48108 002 DOOR CHIME ELECTRIC 6 NOTE 104202 2,084.04
48801 004 AWNING ALUMINUM 4FT STRIPED 043002 1,720.08
48900 001 AWNING FIBERGLASS STRIPED 6FT 021954 219.54

Figure 7-12 (Part 13 of 14). Sample Order Inquiry Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-87

http:1,720.08
http:2,084.04
http:2,224.40

This display appears if the ORDHDRP file does not contain a record for the order number entered on
the first display:

Existing Order Inquiry Total 00000000
Status

Order 12400 Open
Date 000000 Customer order
cus't # Ship via

00000 Printed date 000000
Invoice 00000 Mth 00 Year 00

Item Qty Item description Price Extension

Order number not found

Figure 7-12 (Part 14 of 14). Sample Order Inquiry Program

7-88

• •

Figure 7-13 shows a sample payment update program, ARCOlO, with the
related DDS and sample display screens. For the DDS for the customer
master file, CUSMSTP, refer to Figure 7-11.

In this example, payments from customers are registered. The clerk is
prompted to enter one or more customer numbers and the amount of money
to be credited to each customer's account. The program checks the
customer number and unconditionally accepts any payment for an existing
customer who has invoices outstanding. If an overpayment will result from
the amount of the payment from a customer, the clerk is given the option to
accept or reject the payment. If no customer record exists for a customer
number, an error message is issued. Payments can be entered until the
clerk ends the program by pressing command key 12.

GX21·77S4-1 UMI05O'
IB~ International Bulin" MM:hin81 Cofpoflltion DATA DESCRIPTION SPECIFICATIONS Printed in U.s.A.

ofFile

Programmer Date

,.-J ~
Conditioning

t
~

Location

X

Condition Name in
;,

Soquonco
a
$ § Nome Lon"h '" Functions
~ Nu_ ~ C< ;, ;;i ~ see ~ ~

It B It a Une
~ It g~;52 I - §

~ 8 ~ e H
I H j

~ ~ ~ ~ ! ~
5 • , ..,. iii 131...,1920 212223242526 27 28 29 031323334 353131 424344 ••~.~M~UUM~~~~~~Mna~••v ••~nnn~~nnnN~1 2 3 " " 1213 '415 '8 " .

A ~ LO",I C.~L bRDI-IO/tL K>Roe-1C Fl. LECl f- CIlO:HOR . :

A IR oRDI-IOi2 PFI.lE(OIU>HDRP)

,
,

• •

•

Ailf : . •

A · ·UST
· ..

A tLHVNUM · , . : :

A
 ·ORDE~ •

• • ••
· .

•

A bRDDAT · .
·

•

•••
A ,LJ50RJ:) • • •

A IHI P\/IA · •

·

•

•
•

A ORDSi 5 · •

•

••
· .. ' ,A OPRN~M . · ·

· ...A OROP.'H · •
.A OSTYP

•

·
• ·

A
• · . •PR'TDlt.T . · . : · · ' . , , .A OPIi.:nS

• ••· • ,• •A TOTL., N : ·

·
•A ACTI'1TH ·

•A l(.T Y'R
.

• • , ,
•A ':>T ATE: • •••

A AMPAID ,
•

• •• •
•

• • .
•A k: VST

•

• •
. A • •

K INVNUM • ·
·A

· ·
Number of sheets per pad may ~ary sllghtlv •

Figure 7-13 (Part 1 of 17), Sample Payment Update Program

Chapter 7. TRANSACTION Files (IBM Extension) 7-89

GX21-1754-1 UM/050
IB~ intll'Mtionii Bull" .. MKhi"" Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U,S,A,

File L--IDe.."ption_~I"_oI_J
Progr.mrMf D.te

~
Conditioning

~ LOCItion

~
Condition Nlme ~

Sequence ~- ~TT-''-~~ ~_ U~h ~ ~~~~ Functions

Number i

Cl

&J
C2 ~ ~

~ § a ~

!. 0 Une Pos

S ~l _.1 !ig~
~~~ 111 )1
~ I ~ _ j J .. ~ sJ f 

1 2 3 4 5 • 7 a 9 10 12 13 151817 81920 2122 23 2425 2817 28 290031 32 33 l4 35:1S 37 38 39 4041 424344 45 e 47" 49 50515153 54 5556 57 58 598081 8283 64 668667 sa 89 70 7l 72 73 74 7576 77 78 7980 

A* D lS If R THE iD:ISPL~Y OelvIC FILE. t>.RCd).1.0t> .' 

AlE ACCOLJNTS RH.E:tVAflLl: IINTERACITIVEPAYME/iT UPDATE 

A !If . 

A I~ SUBFIlEl S~L 

At 

A 

AC.P Pt\T 41A I 5 4h"EJ. Tl'Ac.c.e.p'tp<AVtlte",+ I'
A 

A 

A 15l ID!>~ATR(R.IMDT ) 

A INS.L DSPATRlNOPR , 


A CUST 5 B 5 lc;ITEXT{ ICl.\s+o",ew- nlA..,bell'l) 

A '51 DSPATRCRI) 


iDSP·HR (NI>' • . j 

A 154 IDS PATR (PRY 


A IAHPAID g 102 5 

A cHEC.I«Ft) • 

A A.VTO CRAB) • . • • 

A CI'I'P( 6T 4'») • • 
A 51 
A iS~ D S P AlRLIiD) J 
A 1st 

. . 

A &cPMSG 311A 0 5 37ITEXT ( IEICGe.pti OVi. me'i05<Aae I)' 

A 52- iDSP A TR (Rl:) • 

A !S? ID <, PIU R ( N {) ) 

A 5 ~ DS~AT~ (8 L) 

A OVRPMT 81,{ Z. 5 
• 

• • 

A EDTCDf(.L) 

A 5') DS PATR( Bl) 

A Nlsb DS PA1"·R( NO' 


: . 

A .STSC.O.E .LA .. 

-Number of sheets per pad may vary slightly, 

Figure 7-13 (Part 2 of 17). Sample Payment Update Program 

7-90 

http:t>.RCd).1.0t


GX21·77501-1 UM/050·DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A. 

FU. I
Dela"""on 

Progr.mmer Dot. I" o. 

,., 
~ 

Conditioning ~ 
L.oc:otion ~ 

Condition Nlme ~ 
Soquonct t-..,.-,-.,-,---l§ " FunctionsNu_ ~ , Nome Lon"" ~ ~ 

~ q ~i - g»
8.~ ! i .~ W_ ~ 
~~ i"" I np .:~ , I I J II ~ nU 

1 2 3 4 5 • 10 1213 15 l' 7 818202122 23 24 2128 27 28 21 0313233 34 3538 37 3138 404142434441 .. 47" 4850515253 54 se!le 57 515910 818283 841&11187 •• 707172 73 74 757177 71 7910 

A RONT Rc LL TE:"1.T( '$\AOf il e.CO nt 1'0 I ' ) 
A 5 F LC.TL (~Uf!>FILE.ll 
A 'lFLSrz.(.L1) 
A SfLPAl:.{.l.7) 
A SFLCL& 

A 61 SFLDSP 

A 62. SFL DSPCTL 
A O.I/E~L4¥. 
A LOCt:: 
A 


A 


A 


A 


A 

A qq 
A 

A u lOa~+€ . I ) • 

A 

A 

A J.. "5' I).de I •.• : •. _ 

A ~ 7lDATE cDTLD~(~) 

A 3 Z' Ptc.c. ell-i- I 

A 

A .3 .14' CIA 51- 0 lie I'" I 

A 3 l" I PClt"""ent ' 
A 

Ait 

A R. MESSAGIf: 1 TE~I(IMess~ae Y~cord' J 
A 


A 


A 


A 


A IOSPATiUR:t) 
A 


A 


A 


A 


.A . . 
·Number of shllU per pad <nay vary slightly 

Figure 7-13 (Part 3 of 17). Sample Payment Update Program 

WE.LP(q9 '1le-\oKeY' J 

Chapter 7. TRANSACTION Files (IBM Extension) 7-91 

http:lFLSrz.(.L1
http:Uf!>FILE.ll


COBOL SOURCE LISTING 

STMT SEON8R -A 1 B ••••• Z •••••• 3 •••••• 4 •••••• S •••••• 6 •••••• 1 .IDENTFCN COpy NAME CHG/OAT 

DRDHOR 
OROHOR 
OROHOR 
DROHOR 
OR.OHOR 
OROHOR 
OROHOR 
OROHOR 
OROHDR 
OROHOR 
O~DHOR 

·JRDHOR 
OROHOR 
DROHOR 
OROHOR 
DROHDR 
OROHDR 
OROHO", 
'JROHOR 
ORfJHOR 

1 000100 
2 000200 
3 000300 
4 000400 
5 000500 
b OOObOO 
7 000700 
8 000600 
9 00090J 

10 001000 
11 001100 
12 001200 
13 001300 
14 001400 
15 001500 
Ib 001 bOO 
17 001700 
16 001600 
19 001900 
20 002000 
21 002100 
22 OOllOO 
23 002100 
24 002400 
25 002500 
2b 002bO\) 
27 002100 
2<1 002800 
29 002900 
30 003000 
II 0()3100 
32 003200 
3} OOHOU 
l4 003400 
35 003500 
37 -000001 

-000002* 
-000003<;0 

IDENTIFICATION DIVISION. 
PROGRAM-ID. 

ARCOIO. 
ENVIRONMENT QIVISION. 
CONfiGURATION SECTION. 
SOURCE-COMPUTER. 

18M-S38. 
OBJECT-COMPUTER. 

IBM-S38. 
INPUT-OUTPUT SECTION. 
F I LE-CmHROL. 

SELECT CUSTOMER-INVOICE-FILE 

ASSIGN TO JATAbASE-ORDHDRL 

ORGANllATION IS INDEXED 

ACCESS MODE IS SEOUENTIAL 

RECORD KEY IS COMP-KEY 

fiLE STATUS IS STATUS-CODE-ONE. 


SELECT CUSTOMER-MASTER-FILE 
ASSIGN TO DATABASE-CUSMSTP 
ORGANIZATION IS INDEXED 
ACCESS MODE IS RANDOM 
RECORD KEY IS CUST OF CU5TOMlR-~ASTER-RECORD. 

SELECT PAYME~T-UPOATE-OISPLAY-fILE 


ASSIGN TO ~ORKSTATION-ARCOIOO 


ORGANIlATION IS TRANSACTION 

ACCESS MOJE IS DYNAMIC 

RELATIVE K~Y IS REL-NUMBER 

~ILE STATUS IS STATUS-CODE-ONE 

CONTROL-AREA IS ~S-CONTROL. 


UATA DIVISION. 

FILE SECTION. 

FD 

01 

CUSTOMER-INVOICE-FILE 
LABEL RECORDS ARE STANDARD. 
CUSTOMER-INVJICE-RECORD. 
CJPY DOS-OROHOR OF ORDHORL. 

1-0 FORMAT:0ROHOR fROM 

-000004*THE KEY OEFINITIONS FOR RECORD 
-000005* ~;Ue'BER NAME 
.00000b* 0001 CUST 
- 000007* 0002 INVNUM 

38 -000008 05 OROHOR. 
39 -000009 Ob CUS T 

-000010* 
40 - 0000 11 01'> I NVNUM 

- 0000 12;' 
41 -000013 Db ORDER 

- 0000 14~' 
4l -000015 Db DRDDA T 

'ODODlb* 
43 '000017 Ob CUSQR.; 

.0liOOld* 
44 '000019 Ob 5 HPV I A 

- 000020* 

FILE OROHDRL OF LlbRAqy CBl2a49 

FORMAT ORDHOR 

PIC X(5). 
CUSTUME:R NUMBER 

PIC S~(5) 

INVOICE NUMBER 
PIC S9(~) 

ORDER NUMflE:R 
PIC S~(b) 

DATE OROEQ WAS 
PIC X(15). 

RETRIEVAL 

ASCE:N[JING 

ASC I:NO II,G 


(OMP-3. 

[OMP-3. 

COMP-3. 
E~rt;REO 

C'JS TOMER PURCHA~E ORuER NUMBER 
PIC X(15)_ 

~HIPPING INSTRUCTIU~S 

TYPE AlTSEO 

AN NO 

N NO 


Figure 7-13 (Part 4 of 17). Sample Payment Update Program 

7-92 



(OdOL SOURCE LISTING ARCOIO 

STMT Sf: :.lNBR -A 1 B•• 2 ... ... 3 ... ... 4 ... ... 0; ... ... 0 ... ... 7 .IDENTFCN S COPVNAME CHG/DATE ~ 
45 ·000021 06 DROST!> f'IC S9 ( 1) COMP- 3. ORDHDR 

·000022~ ORDER 5 T AT US IPCS lCNT 3CHK 4RDY 5PRT 6PCK ORDHDR 
46 ·000023 06 DPRNAM PIC )( ( 10). ORDHDR 

• 000024~' OPERATOR NAME WHO E.'HERED THE ORDER OROHDR 
47 ·000025 06 OROAMT PIC 59(6)119(2) COMP- 3. OROHOR 

·000026~ TOT AL DOLLAR AMOUNT OF THE OROER ORDHDR 
46 ·000027 06 CUSTYP PIC S'~ ( 1 ) CDHP- 3. OROHDR 

·00002d'" CUS TlJM[R TYPE 1=(,011 2=SCH 3=8U5 4=PIIT 5=DT DROHDR 
49 ·000029 06 PRTOAT PIC S9(6) COMP- 3. ORDHOR 

·000030~ DATE ORDER WAS P~INTEO OROHOR 
o;u ·000031 06 OPNSTS PIC 59 (1) C DMP-3. OROHOR 

·000032* ORDER OPEIII S THUS I=OPEN 2=CLOSE 3=CANC EL ORDHDR 
51 ·000033 06 TOTL! N PIC S9 (3) (OMP-3. ORDHDR 

·000034'" TOT AL LINE I T::MS IN ORDER ORDHDR 
5l ·000035 06 ACTIHH PIC S9(2) COMP-3. DROHOR 

·000036* ACCOU"HING MOIIITH OF SALE ORDHDR 
53 ·000037 06 ACTYR PIC S9(2) COMP-3. ORDHOR 

·00003a* ACCOUNTING YEAR GF SALE ORDHDR 
54 ·000039 06 STATE DIC q2). ORDHOR 

·000040'" STATE ORDHDR 
55 ·000041 06 AMPAlil PIC S9(6)1/9(2) COMP-3. ORDHDR 

·00004l'" ruT AL DOLLAR AMOUNT PAID ORDHDR 
56 003600 66 CD)lP-KEY RtcNAMES ClI ST TYRU INI/NUM. 
57 003700 FD CUSTOMER-MASTER-FILE 
58 003800 LABEL RECORDS ARE STMWARO. 
59 003900 01 CUSTUM~R-MASTER-RECORD. 

60 004000 lOPY OOS-CUSMS T OF CUSMS T P. 
b2 .00000 I CUSMS T 

·000002* 1-0 FOR'1AT:CUSM5T FROM FILE CU5"'15 TP OF LIBRARY CBL2649 CUSMST 
·000003* CUS TO'1~R '1A S TER RECORD CUSMST 
·000004*THE KEY ilEFI:'HTIONS FOR RElORD FORMAT CUSMST CUSMST 
·000005" NUMB~R NAMe RETRIEVAL TYPE ALTSEJ CUSMS T 
·OOOOOb* 0001 CUS T ASCENJING AN NO CUS'1 S T 

&3 ·000007 05 CU5MST. CU5MS T 
64 ·OOOOOtl ub CUST PIC X (5). CUSMST 

·000009* CUSTOMER -'U'1BER CUSMST 
65 ·000010 Ob NA~E PIC x (25). CUSMS T 

·000011* CUSTOM~R NAME CUSMS T 
66 ·000012 06 ADOR PIC x (20). CUSMS T 

·000013* CUSTO~ER AUORE ~S CUSM S T 
67 ·000014 06 Cl TY "IC X(20). CUSMS T 

·000015* CUSTOMER CITY CUSMS' 
66 ·000016 06 STATE PIC X (2)_ CUSMST 

·000017~ ) TA IE CUSMS T 
b9 ·000018 06 liP PIC 59(5) CDMP- 3. CUSMST 

.000019* liP CODE CUSMS T 
70 ·000020 U6 5RHCOU PIC X (6)_ CUSMST 

·000021* CU5TLl~lR NUMBER SE AIlCH CODE CUSMST 
71 

12 

·000022 
.000023* 
·000024 

Ob 

06 

CUSTYP 

ARBAL 

PIC S9 ( 1) 
CU~TOMlR TYPE 1 =GOV 

PIC 59(6)1/9(2) 

l OMP- 3. 
l=SCH j=aus 

l OMP-3. 
4=PVT 5=llT 

CUSM> T 
CUSMS T 
CUSMS T 

.000020;~ ACCTS REl BALA ~IiCE CUSMST 
13 ·000026 06 ORDdAL PIC S9(b)IIQ(2) l OMP- 3. CUSMS T 

·000027* AIR A ''IT IN ORDER FlU: CUSMS T 
74 ·000Ul8 06 L,TAMT PIC S9(6)VQ(Z) COMP-3. CUSMST 

Figure 7-13 (Part 5 of 17). Sample Payment Update Program 

Chapter 7. TRANSACTION Files (IBM Extension) 7-93 



COBOL SOURCE LISTING ARCOI0 

STMT SEQNBR -A 1 B••••• l •••••• 3 •••••• 4 •••••• ~ ••• & •••••• 7 .IOENTFCN S COPYNAME CHG/D4T 

~000029~ LAST AMOUNT PAID IN AIR CUSMST 

75 ~000030 06 L S T OA T PIC S 9 (6) (. OM P- 3. CUSMST 


+000031* LAST OATE PAlO IN AIR CUSMST 

76 .000032 06 CROLMT PIC S9(6)V9(2) lOMP-3. CUSMST 


• 000033~ CUSTOMER CREDIT LIMIT CUSMST 

17 .000034 06 SLSYR PIC S9(6)V9(l) COMP-3. CUSMST 


~000035* CU~TOMtR SALES THIS YEAR CUSMST 

76 .000036 06 SLSLYR PIC S9(6)V'I(2) COMP-3. CUSMST 


+000037* CUSTOMER SALES LAST YEAR CUSMS T 

79 004100 FD PAYMENT-UPDATE-DISPLAY-FILE 

60 004200 LABEL RECOROS ARE OMITTED. 

61 004]00 01 PAYMENT-UPDATE-DISPLAY-RECORD. 

62 004400 COPY DOS-ALL-FORMATS OF ARCOIOO. 

64 .000001 05 ARCOIOD-RECORD PIC X(59). <-ALl-FMTS 

85 .000002 <-ALL-FInS 


~ 000003* INPUT FORMAT:SUBFILEI FROM FILE ARCOI0D OF LibRARY CBL2849 <-ALL-FMTS 
+000004* SUJFILE FOR CUSTOMER PAYMENT <-ALL-FMTS 


86 ~000005 05 SUBFILEI-I REOEFINES ARCOI0D-RECORD. <-ALL-HITS 

67 .000006 06 ACPPMT PIC X(4). <-ALL-FMTS 


~000007* ACCEPT PAYMENT <-ALl-FMTS 

68 ~000008 06 CUST PIC XIS) • <-ALL-F:HS 


• 000009* CUSTOMER NOMBER <-ALL-FMTS 

89 -000010 Ob AMPAIO PIC S9(6)V912). <-ALL-FMTS 


+00001l~ A'10U'IT PAID <-ALL-FMTS 

90 -000012 06 ECPMSG PIC X(31). <-ALL-FMTS 


+00001]* EXCEPTION MESSAGE <-ALL-FMTS 

91 .000014 06 OVRP~T PIC S9Ib)V9(2). <-ALL-FMTS 


-000015* UVER PAYMENT <-lLl-FMTS 

92 -00001& 06 STSCOE PIC X(I). <-ALl-FMTS 


+000017* STATuS CODE <-All-FMTS 

'I] +000018 <-4LL-FMTS 


- 000019* OUTPUT FOkMAT:SUBFILFl FROM FILE ARCOIDD OF LIBRARY CgL2849 <-ALL-F,HS 

-000020* SUBFllE FOR CUSTOMER PAYMENT <-ALL-FMTS 


94 -000021 05 SUSFILEI-O REDEFINES ARCOIOU-~ECORD. <-ALL-F"lTS 

95 - 00002£ 06 SUBFILEI-O-INDIC. <-ALL-FMTS 

96 -OOOOZ] 07 IN51 PIC INUIC 5t. <-'Ll-FMTS 

97 +000024 07 I N52 PIC I'lOIC 52. <-ALL-FMTS 

98 + 000025 07 IN 53 PIC INUIC 53. <-ALL-FMTS 

'19 -000026 07 IN54 PIC INDIC 54. <-ALL-FMTS 


100 -000027 07 I N55 PIC INDIC 55. <-ALl-FMTS 

101 -000026 07 IN56 PIC I INDlC 56. <-ALL-FMTS 

10l -000029 06 CUST PIC q5). <-ALL-FMTS 


-000030* CUS TO"II:R NUMBER <-ALL-F,"ITS 

103 +000031 06 AMPAID PIC S9(b)V9(2). <-lLl-FMTS 


+000032* A-"UUNT PAlO <-ALL-FMTS 

104 -000033 Ob ECPMSG PIC X(31). <-All-FMTS 


+0000]4" tXCEPTION MESSAGE <-ALL-FMTS 

105 -000035 06 OVRPMT PIC S9(b)V9(2). <-ALl-FMTS 


+000036" OVI:R PAYMENT <-All-FMTS 

10& -000031 06 S TSC ~E PIC Xlt). <-ALL-HITS 


-000038~ STHUS COD E <-.LL-FMTS 

101 -000039 <-All-HITS 


+000040* INPUT FORMAT:CONTRDLI fROM FILE ARCOIOU OF LIBRARY CgL2849 <-.' L L - FM T S 
+00004l" SUBFILE CONTROL <-ALl-FMTS 


106 -000042 05 CONHOLl- [ REDEFINES ARCOIOO-RECORD. <-AlL-FMTS 


Figure 7-13 (Part 6 of 17). Sample Payment Update Program 

7-94 



COSOL SOURCE LISTING ARC 010 

STMT SEQNSR -A 1 B••••• l •••••• 3 4 •••••• ; •••••• 6 •••••• 1 .IOENTFCN S COpy NAME CHG/OATE 

109 +000043 06 CONTRUL1-I-INDIC. <-ALt-F'ITS 
110 .000044 01 IN99 PIC 1 I'W[C 9'1. <-ALL-HITS 

-00004S0 HELP KEY <-Alt-FMTS 
111 '000046 01 1i'j98 PIC 1 I,."DIC 98. <-ALL-FMTS 

• 0000410 t:.'lD PAYMeNT UPDATE <-ALL-FMTS 
112 • 000048 07 IN97 PIC 1 I"IOIC 97. <-ALL-F~TS 

+0000490 IGNORE INPUT <-ALL-FMT5 
113 .000050 <-ALL-FMTS 

• 0000510 OUTPUT FORMAT:CONTROLI FROM FILE ARC010D OF LTBRARY C8L2849 <-Al L-FMTS 
-00005l* SUSFILE (ON TROL <-ALL-FIHS 

114 +000053 05 CONTROLl-O REDEF[NES ARCOI0D-KECORD. (-.LL-FMTS 
11S -000054 0& CO~TROL1-O-INOIC. <-ALL-FMTS 
116 +00005S 01 1,.,,&1 "IC l'<OIC 61. <-lLL-FMTS 
111 +000056 07 1111&2 PIC INOTC 62. <-lLL-FMTS 
118 +000057 07 111199 PIC IIIIOIC 99. <-lLL-FMTS 

+000058* HELP KI::Y <-lLL-FI4TS 
119 - 000059 01 IN6) PIC I"IOIC 63. <-.t.LL-f'olTS 
120 +000060 01 1'<64 PIC INOIC 64. <-ALL-FMTS 
121 -000061 <-ALL-FMTS 

+000062* I fljPUT FOR"!AT:MESSAGEI FRO"! FILE ARCO 100 Of LIBRARY CBL2849 <-ALL-FMTS 
-000063* MESSAGE RECOR[) <-ALL-FMTS 
+000064'=' 05 ME SSAGI:l-1 RELJ'=FIMS AReOlOD-RECORO. <-ALL-FMTS 

III 	-000065 <-lLL-FMTS 
- 000066* OUTPUT FOR"!AT:MESSAGEl FRO"! FILE: ARCO 100 OF LIBRARY OlLl849 <-lLL-FMTS 

~i 


• 00006 70 MESSAGE RECORD <-~LL-FMTS 


123 ·0000&6 05 MESSAGEl-O REDEFINES ARCOIOQ-RECORD. <-ALL-F"!TS 

124 -0000&9 06 MESSAGEI-0-INDIC. <-UL-F'4TS 

125 .000010 07 1,.,,11 PIC 1 I'lDIC 71. (-ALL-FMTS 

126 004500 .. ORKING-STORAGE ~ECT ION. 

127 004600 01 REl-NUMBER PTC 9(05) 

128 004700 V4LUE lEROSe 

129 004800 01 WS-CONTROl. 

130 004900 05 WS- I NO PIC X(02). 

111 005000 05 WS-FORMAT PIC X(10). 

112 005100 01 SYSTEM-DATE. 

133 005l00 05 SYSHM-Yi:AR PIC 99. 

134 005300 05 SYSTEM-MONTH PIC 9'1. 

llS 005400 0'5 SYS TE"!-OAY PIC 99. 

136 005500 01 PROGRAM-DATE. 

IH 00560() as PROGRAM-MONTH PIC 9'1. 

1311 005700 0'5 PROGRAM-ilAY PIC 99. 

139 005800 as PROGRAM-YE AR PIC 99. 

140 0(;5900 01 FILE-DATE REDEFINES PROGRAM-DAlE PIt 59(6). 

141 006000 01 EXCEPTION-STATUS. 

142 OU6100 as STATUS-CODE-ON~ PIC XX. 

143 006<'00 88 SUBF ILE-IS-FULL VALUE "9M". 

144 006300 01 EXCEPTION-MESSAGES. 

14S 00".. 00 OS MESSAGE-ONE PIC X (31) 

146 006,00 VALUE "CUSTOMER ODES NOT EXI) T ". 

147 00660(; 05 MESSAGE-TWO PIC XPI) 

148 006100 VALUE "NO INVOICES EXIST FOR CUSTOMER ". 

149 006800 uS MESSAGE-THREE: PIC X(31 ) 

150 006900 VALUE "CUS TOME R HAS AN OVER ~AY"!ENT UF". 

151 007000 01 pRUGRAM-VARIAALES. 

152 007100 05 AMOUNT-DWEll PTC S9(&)V99. 


Figure 7-13 (Part 7 of 17). Sample Payment Update Program 

Chapter 7. TRANSACTION Files (IBM Extension) 7-95 



(O~OL SOURCE LISTING ARC010 

snn SEQNBR -A 8••••• z •••••• 3 •••••• 4 •••••• ~ •••••• b ••• ••• 1 .IOENTFCN S COPYNAME CHG/OAT' 

153 007200 05 AMOUNT-PAID PIC S9(6)V99. 

154 001300 05 I NVDICE-BALANU: PIC S9(bIV99. 

155 001400 01 ERRPGM-PARAMETERS. 

ISo 
157 

007500 
007000 

05 DISPLAY-PARAMETER PIC X(008) 
VALUE "ARCOI0D ". 

158 007100 05 DUMMY-ONE PI( )((000) 
159 001800 VALUE SPACES. 
160 007900 05 DUMMY-TWU PI( X(008) 
161 008000 VALUE SPACES. 
162 008100 05 S T ATUS-CUOE- TWU. 
163 008200 10 PRIMARY PI( X. 
164 008300 10 SECONDARY PIC x. 
165 008400 10 FILL ER PIC X(005) 
166 008500 VALUE SPA(ES. 
167 008600 05 DUMMY-THREE PIC X(010) 
168 008700 VALUE SPACES. 
169 008800 01 SWITCH-AREA. 
170 008900 05 SWOl PI( 1. 
171 009000 88 WRITE-DISPLAY VAlUE B' l' • 
112 009100 88 READ-DISPLAY VALUf B'O'. 
173 009200 05 SW02 PI( 1. 
174 009300 88 SUBF Il E1-FORMAT VALUE S'l'. 
175 009400 68 NOT-SUBFILE1-FUR~AT VIIlUE B'O'. 
176 009500 05 SW03 PI( 1. 
117 009000 88 CONTROL1-FOIHIAT VALUE B'l'. 
178 009100 B8 NOT-CONTROL1-FORHAT VALUE B'O'. 
179 009800 05 SW04 PIC 1. 
180 009900 B8 NO-MORl-TRANSACTIONS-EXIST VALUE 0'1'. 
181 010000 88 TRANSACTIONS-EXIST V4LUE B'O'. 
lB2 010100 05 SW05 PI( 1. 
183 010200 BB (USTOMER-NOT-FOUND VALUE B' 1 • • 
184 010300 BB CUSTOMER-EXIST VALUE B'O'. 
185 010400 05 SW06 PIC 1. 
18b 010500 88 NO-MORE-INVOICES-EXIST VALUE 0'1'. 
181 010600 88 (USTOMER-INVOI(E-EXIST VALUE !l'O'. 
188 010100 05 SW01 PI( I. 
189 010800 88 NO-MORE-PAYMENT-EXIST VALUE B' 1 ' • 
190 010900 88 PAYMENT-EXIST VALUI:: B'O'. 
191 011000 05 SWOB PIC I. 
192 011100 88 INPUT-ERRORS-EXIST VALUE B' 1 •• 
193 011200 88 NO-INPUT-ERRORS-EXIST VALUE B'O'. 
194 011300 05 SW09 PI( 1. 
195 011400 8B UVER-PAYMENT-DISPLAYED-ONCE VALUE B'l •• 
196 011500 B8 OVER-PAYHENT-NOT-DISPLAYED VALUE 0'0'. 
191 011600 01 INOI(ATOR-AREA. 
198 011100 05 IN99 PIC. 1 INDI( 99. 
199 011800 1>8 HE LP- I !)-NEE:DED V~LUI:: u'l'. 
lOO 011900 88 HELP-IS-NOT-NEEDED VALUE B'O'. 
201 012000 05 I"J98 PIt 1 INDI( 9B. 
202 012100 88 END-OF-PAYMENT-UPDATE VALUt: 5'1'. 
203 012200 05 IN91 PI( 1 INDIC 97. 
204 012300 88 IGNORE-INPUT VALUI:. !l'l'. 
205 012400 05 INSI PIC 1 INOI( 51. 
20b 012500 88 DISPLAY-ACCEPT-PAYMENT VALUE B-l-. 
207 012600 86 UJ-NOT-DISPLAY-ACCEPT-PAYMtNT VALUE (j·O·. 

Figure 7-13 (Part 8 of 17). Sample Payment Update Program 

7-96 



COBOL SOURCE LISTING ARCOla 

ST~T 	 SE ONBR -A [s •• ... 2 ... ... 3 ... ... 4 ... ... 5 ... ... 6 ... ... 7 .IDENTFCN S COPYNAME CHG/DATE(; 
208 012700 05 IN52 PIC 1 I N::lI C 52. 
.209 012800 8B REVERSE-fiELD-IMAGE VALUE B' 1 •• 
210 012900 d8 uO-NOT-REVERSE-FIELO-IMAGE VALUE 3'0'. 
211 013000 05 IN53 PIC I I NO IC 53. 
212 013100 88 DO-NOT-OISPLAY-FIELD VALUE u' 1 •• 
213 013200 88 DISPLAY-FIELD VALUE S'O'. 
214 013300 05 1"154 PIC I I NO IC 54. 
215 013400 88 PROTECT-INPUT-FIELD VALUE B' 1 •• 
216 013500 88 OO-NOT-PROTECT-INPUT-FIELD VALUE B'O'. 
211 013600 05 IN55 PIC I I NDIC 55. 
218 013100 88 MAKE-FIELD-BLINK VALUE 3' 1 •• 
219 013800 88 DO-~OT-MAKE-FIELD-8LINK VALUE B'O'. 
22U 013900 05 IN56 PIC 1 INDIC 56. 
221 014000 88 DISPLAY-OVER-PAYMENT VALUt: b'l'. 
112 014100 d8 OO-NOT-DISPLAY-OVER-PAYMENT VALUE S'O'. 
223 014200 05 INbl PIC I I NO IC 61. 
224 014300 d8 CLEAR-SUBFILE VUUI: e' 1 •• 
225 014400 83 DO-NOT-CLEAR-SUBFILE VALUE S'O'. 
226 014500 05 INb2 PIC 1 INOIC 62. 
.227 014600 88 01 SPL4Y-SCR EcN Vr.LUE u' l' • 
228 014700 88 DO-NOT-DISPL4Y-SCREtN Vr.LUE B'O'. 
229 014800 0"> IN63 Pl( 1 I "'DIC 63. 
1 30 014900 B8 DISPLAY-ACCEPT-HEA~ING VALUt. 0'1' • 
231 015000 BS OO-NOT-OISPLAY-ACCEPT-HEADING VALUE a'o'. 
23.2 015100 05 INb4 PIC 1 I NO IC 64. 
.233 015200 88 uISPLr.Y-EXCEPTION VALUE 0'1' • 
234 015300 B8 OO-NOT-OISPlAY-EXCEPTIO~ VALUE: d'O'. 
23"> 01540u 05 IN7l PIC 1 INOIC 71. 
236 015500 88 DISPLAY-ACCEPT-MESSAGE VALUE o· l' • 
237 015600 BS OO-NOT-~ISPLAY-ACCEPT-MESSAGt VAlUE b'O'. 
238 015100 PROCEDURE DIIiISION. 

015800 UECLARATiVES. 

015900 TRANSACTION-ERROR SEC TION. 

016000 USE AFTER STANDARD ERROR PROLE DURE 

016100 PAYHE~T-UPUATE-DISPLAY-FILE. 


016200 ~ORK-STATION-ERROR-H4NOLER. 


239 	 016300 IF SUBF I LE-I S-FULL THEN Ntn SENTENCE 
01b400 ELSE(.,) 240 	 016500 DISPLAY '"RROR IN PAYMENT-UPDATE' STATUS-COUE-ONE. 
01bbOO END DECLARATIVES. 
016700 CUSTOMER-PAYMENT-UPOATE SECTION. 
01b800 HAINLINE-ROUTINE. 

241 016900 PERFORM SET-UP-ROUTINE. 

242 017000 PERFORM PROCESS-TRANSACTION-FILE 


0111 00 UNTIL ENO-OF-PAYMENT-UPDATE. 

243 01120(, PERFORM CLEAN-uP-ROUTINE. 


017300 SE T-UP-RUUTt NE. 

244 	 011400 OPEN 1-0 CUS TO"ll R-I NVOI CE-F IL E 

017500 CUSTO,..lR-MASTER-FILE 
017600 PAV"lI:NT-UPDATE-OISPLAY-FILE. 

245 	 017700 MOVE !l'O' TO INI)lCATOR-AREA 
017800 s .. ITCH-AREA. 

246 017900 ACCEPT SYSTEM-DATE FROH DATE. 
241 018000 MOVE SYS TE~I-YEAR TO PROGRAM-YEAR. 
248 018100 MOVE SYSTEM-MONTH TO PROGRAM-MONTH. 

Figure 7-13 (Part 9 of 17). Sample Payment Update Program 

Chapter 7. TRANSACTION Files (IBM Extension) 7-97 



C080L SOURCE LISTING ARCOIO 

STMT SEUNI:lR -A 8 ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 1 .IDENTFCN 5 COPYNAME CHG/DA 

249 018200 MOVE SYSTEM-DAY TO PROGRAM-DAY. 
250 018300 SET WRITE-DISPLAY, CDNTROLI-FORMAT. 

019400 uO-NOT-DISPLAY-OVER-PAYMENT, 
018500 DO-NOT-PROTECT-I~PUT-FIELO. 
018600 DD-NOT-REVERSE-FIELD-IMAGE, 
018700 DO-NOT-MAKE-FIELO-BLINK. 
018800 OO-NOT-OISPLAY-ACCEPT-PAYHENT, 
018900 CLEAR-SUBFILE TO TRUE. 

2'H 019000 MOVE CaRR INDICAr~R-AREA TO CONTROL1-0-INOle. 
252 019100 WRITE PAYMENT-UPOATE-OISPLAY-RECORO 

019200 FORMAT IS 'CONTROLI'. 
019300 
019400 
019500 
019600 
019700 
019800 

258 019900 
020000 

259 020100 
020200 

260 020300 
l61 020400 
262 020500 

020600 
020100 
020800 
020900 
021000 
021100 
021200 
021300 
021400 

263 021500 
l64 021600 

021100 
Z&S 021800 
266 021900 
267 022000 

022100 
268 022200 

022300 
022400 
022500 

.,69 022600 
270 022700 

022800 
211 022900 
272 023000 

023100 
023200 
023300 
023400 
023500 

213 023600 

SET DO-NOT-(LEAR-SUBFILE TO TRUE. 

PERFORM INITIALIlE-SUBFILE-RECORO 11 TIMES. 

SET OISPLAY-SCKEEN TO TRUE. 

MOVE CORR INDICATOR-AREA TO CONTROLI-O-INOIC. 

WRITE PAYMENT-UPOATE-OISPLAY-RECORO 


FORHAT IS 'CONTROll'. 
REAO PAYMENT-UPOATE-DISPlAY-FIlE RECORD 

FORMAT IS 'CONTROll'. 
MOVE CORR CONTROlI-I-INOIC 

PROCESS-TRANSACTION-FilE. 
IF HELP-IS-NOT-NtEOEO rHE~ 

IF IGNORE-INPUT THEN 
SET WRITE-DISPLAY, 

CLEAR-SU8FIlE, 

TO INDICATOR-AREA. 

CONTROL I-FORMAT 
DISPLAY-FIELD 

aO-NOT-OISPlAY-GVtR-PAYHENT 
DO-NOT-PROTECT-INPUT-FIElO 
DD-NOT-R EVERSE-F I Eto-I MAGE 
aU-NOT-DISPLAY-ACCEPT-PAYHENT 
DD-NOT-OISPLAY-ACCEPT-HEADING 
DO-NOT-OISPLAY-ACCEPT-MESSAGE 
DD-NOT-OISPlAY-EXCEPTION 
OO-NOT-MA~E-FIELD-BlINK TO TRUE 

MOVE CORR INDICATOR-AREA TO CONTROlI-O-INDIC 

ELSE 

WRITE PAYME~T-UPDATt-OISPLAY-RECORD 

FJRHAT 15 'CQNTROLl' 
SET OO-NOT-CLEAR-SUBFILE TO TRUE 
MOVE 0 TO REL-NUMBER 
PERFORM INITIAlllE-SUBFILE-RECORO 11 

SET 	 TRANSACTIONS-EXIST 
OO-NOT-OISPl4Y-ACCEPT-HEADING 
QO-NOT-OISPLAY-ACCEPT-MESSAGE 
QG-NOT-:.JISPLAY-EXCEPT ION TO TRUE 

PERFORM R~AO-MODIFIEO-SUBFILE-RE(ORO 
PERFORM TRANSACTION-VALIDATION 

UNTIL NO-MORE-TRANSACTIONS-EXIST 
SET ND-INPUT-ERRORS-EXIST TO TRUE 
PERFORM TEST-FOR-RECORD-INPUT-ERRURS 

VARYING REL-NUMBER 

FROM 1 

'1Y 1 

TIMES 

UNTIL REL-NUMBER IS GREATER THAN 11 
OR INPUT-ERRORS-cXIST 

IF 	 NO-I~PUT-ERRORS-EXIST THEN 

Figure 7-13 (Part 10 of 17). Sample Payment Update Program 

7-98 



COBOL SOURCE LISTING .ARCOIO 

SP1T SECJN8R -A 8 •• ••• 2 •••••• 1 •••••• 4 •••••• ') •••••• b ••• ••• 1 .IOENTFCN S COPYNAME CHG/OATE 

2.14 	 023100 
275 	 023800 

023900 
024000 
024100 
024200 
024300 
024400 
024500 
024600 
024100 

216 024600 
271 024900 

025000 
278 025100 
219 025200 
280 025300 

025400 
281 	 025500 

025600 
025100 
Ol580;) 

L' 

025900 
282 026000 
283 026100 
284 026200 

026300 
285 02.6400 
286 026500 
281 026600 

026100 
288 OL6800 

026900 
289 021000 

021100 
190 021200 

021300 
291 021400 

027500 
2n 027600 

027100 
293 021800 
294 027900 

028000 
028100 
028200 

29, 028300 
028400 

296 023500 
291 028600 

028100 
298 028800 
299 028900 
30U 029000 
301 029100 

IF 	 OVER-PAYMENT-OISPLAYEO-ONCE THEN 
SET 	 WRITE-DISPLAY. CONTROLI-FORMAT 

OO-NOT-OISPLAY-OVER-PAYMENT 
DO-NOT-PROTECT-INPUT-FIELO 
aO-NOT-REVERSE-FIELD-IMAGE 
DO-NOT-MAKE-FIELO-8LINK 
DO-NOT-OISPLAY-ACCEPT-PAYMENT 
OO-NOT-DISPLAY-ACCEPT-HEAUING 
DO-NOT-DI5PLAY-ACCEPT-MESSAGE 
DO-NOT-OISPLAY-EXCEPTION 
CLEAR-SU3FILE. DISPLAY-FIELD TO TRUE 

~OVE CORR INDICATOR-AREA TO CGNTROLI-O-INDIC 
WRITE PAYMENT-UPDATE-DISPLAY-RECORD 

FJRMAT 15 'CONTROlI' 
SET DO-NOT-CLEAR-SUBFILE TO TRUE 
~UVE 0 TO RtL-NUMdER 
PERFORM INITIALIZE-SUBFfLE-RECORD 11 TIMES 

ELSe: 
S~T OVER-~AYM[NT-DISPLAYED-ONCE TO TRUE 

ELS~ 

NO r SENTENCE 

EL,)E 


NEXT SENTENCE. 
SET WRITE-DISPLAY. DISPLAY-SCREEN TO TRUE. 
MOVE CDRR INOICATOR-AReA TO MESSAGEl-O-INDIC. 
wRITE PAYMENT-UPOATE-DISPLAY-RECORD 

FORMAT IS '~ESSAGEl'. 

SET ~RITE-OISPLAY. CONTROLl-FORMAT TO TRUE. 
MOVE CORR INDICATOR-AREA TO CONTROLI-O-INDIC. 
WRITE PAYMENT-UPDATE-DISPLAY-RECORD 

fORMAT IS 'CONTROLt'. 
READ PAYMENT-UPOATE-DISPLAY-FILE RECORD 

FORMAT IS 'CONTROLI'. 
MOVE CaRR CONTROLI-I-INDIC TO INuICATOR-AREA. 

R E AD- !111DI FIE 0- SUBF ILE-R ECORO. 
READ SUBFILE PAYMENT-UPDATE-OISPLAY-FILE 

NEXT MODIFIED RECORD FORMAT IS 'SU8FILEl' 
AT END SET NO-~ORE-TRANSACTIUN~-EXIST TO 

TEST-FUR-RECORD-INPUT-ERRORS. 
TRUE. 

REAO SUBFILE PAYMENT-UPDATE-DISPLAY-FILE RECORD 

fORMAT IS 'SU8FILEI', 


IF STSCOE OF SUbFILEl-t IS EQUAL TO 'I' THEN 

SET INPUT-ERRORS-ExIST TO TRUE 


EL S E 

NEXT SENTENCE. 


TRA~SACTION-VALIOATION. 

MOVE 	 CUST OF SUBFILEI-l OF PAYMENT-UPOATE-DISPLAY-RECORO 
TO CUST OF CUSTOMER-MASTER-RtCORO. 


SET CUSTOMER-EXIST TO TRUE. 

READ CUSTOMER-MASTER-FILE 


KEY IS CUST OF CUSTOMER-MASTER-RECORD 
I'WAllD KEY SET CUSTOMtR-NOT-'FOUNO TO TRUE. 

IF 	 CUSTOMER-EXIST THEN 

MOVE CUST OF CUSMST TO cusr OF OROHOR 

MOVE ZEROES TO I~VNUM 


Figure 7-13 (Part 11 of 17). Sample Payment Update Program 

Chapter 7. TRANSACTION Files (IBM Extension) 7-99 



CO~OL SOURCE LISTING ARCOIO 

STMT SEUNBR -A 1 B••••• l •••••• 3 •••••• 4 •••••• 5 •••••• 0 •••••• 7 .IDENTFCN S COPYNAME 

302 029200 
303 029300 
304 029400 
305 029500 
306 029600 
307 029700 
308 02913 00 
309 029900 
310 030000 

030100 
030200 

311 030300 
312 030400 

030500 
030bOO 
030700 
030800 
030900 
031000 

313 031100 
314 031200 
315 031300 
316 031400 

031500 
H7 031600 

031700 
Oj1800 
031900 
032000 
032100 

31B 032200 
319 032300 
320 032400 
321 032500 

032600 
322 032700 

032800 
313 032900 

033000 
314 033100 

033200 
033300 
033400 
033500 
033600 
033700 

325 0331100 
326 033900 
317 034000 
326 034100 
329 034200 

034300 
330 034400 

034500 
)31 034600 

SET CUSTOMER-INVOICE-E.IST TO T~Uf 

PERFORM START-ON-CUSTOMER-I~VOICE-FILE 

IF CUSTOMER-INVOICE-EXIST THEN 
PERFURM READ-CUSTOMER-INVOICE-RECORD 
IF 	 CUSTOMlR-INVOILE-EXIST THEN 

PERFURM CUSTOMER-MASTER-FllE-UPDATE 
MOVE AMPAID OF SUBFILEI-I TU AMOUNT-PAID 
SET PAyMENT-EXIST TO TRUE 
PERFORM PAYMENT-UPDATE 

UNTIL NO-MORl-INVOICES-EXIST 
OR NO-MORE-PAYMENT-EXIST 

IF AR~AL OF CUSTOMER-MASTER-RECORD IS NEGATIVE 
SET MAKE-FIELD-BLINK. DISPLAY-FIELD. 

DO-NOT-REVERSE-FIELD-IMAGE 
OV~R-PAYMENT-NOT-DISPlAYED 
DISPlAY-OVER-PAYMENT 
DISPLAY-EXCEPTION 
DO-NOT-DISPLAY-ACCEPT-PAYMENT 
PROTECT-INPUT-FIELD TO TRUE 

MOVE ARBAl TO OVRPMT OF 5UBFIlEI-0 
MOVE MtSSAGE-THREE TO ECPMSG OF SUBFIlEI-0 
MOil E '0' TO STSCOE OF SUaF IL EI-0 
PERFORM REwRITE-DISPlAY-5UBFILE-RECORD 

ELSE 
SET 

MOvE 
MOVE 
MOVE 

OQ-NOT-DISPLAY-FIElD 
DO-NOT-DISPlAY-OVER-PAYMENT 
DO-NOT-REVERSE-FIELD-IMAGE 
OO-NOT-MAKE-FIELD-~LINK 

OO-NOT-DISPlAY-ACCEPT-PAYMENT 
PROTECT-INPUT-FIELD TO TRUE 

SPACES TO ECPMSG OF SUBFILEI-0 
ZtROES TO OVRP~T OF SUBFILEI-0 
'0' TU STSCDE OF SUBFllEI-O 

PE~FORM REwRITl-OISPLAY-SUBFIlE-RECORD 
ELSE 

PERFORM NO-CUSTOMER-INVOICE-RDUTINE 
ELSE 

PERFORM ND-CUSTOMER-INVDICE-ROUTINE 
ELSE 

SET 	 REVERSE-FIELD-IMAGE 
DO-NOT-PROTECT-INPUT-FIELD. DISPLAY-FIELD 
DO-NOT-OlSPLAY-OVER-PAYMENT 
DO-NOT-MAKE-FIELD-BlINK 
UISPLAY-EXCEPTION 
DO-NOT-DISPLAY-ACCEPT-PAYMENT 
DO-NOT-PROTECT-INPUT-FIELD TO TRUE 

MOVE ZEROES TO OVRPMT OF 5UBFILEI-0 
MOVE MES~AGE-ONE TU ECPMSG OF SUBFIlEl-O 
MOVE 'I' TU STSCDE OF SUbFILE1-O 
PERFORM REWRIT(-OI5PLAY-SU~FIlE-RE(ORD. 

PERFORM READ-MODIFIED-5UtiFllE-RECO~D. 
5TART-ON-CUSTOMER-I~VOICE-FllE. 

START CUSTOMEP-INVOICE-FILt 
KEY IS ~REATER THAN COMP-KEY 
INVALIO KEY SET NO-MORl-INVDICES-EXIST TO TRU=. 

Figure 7-13 (Part 12 of 17). Sample Payment Update Program 

7-100 



COdOL SOURCE LISTING ARCOla 

STMT SFQNBR -A 1 B••••• l •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 

034100 
332 034800 
333 034900 
334 035000 

035100 
335 035200 

0]5300 
035400 
035500 

3Jt> 035600 
331 035700 

035800 
H8 03';900 

036000 
339 036100 

036100 
340 036300 
341 036400 
342 036500 
343 036bOO 
344 03b700 

0]6800 
036900 

3'00; 037000 
346 031100 
341 037 200 

037300 
037400 
037500 
037600 
037100 

34tl 037800 
349 037900 
350 038000 
HI 038100 

038200 
30;2 038300 
353 036400 

038500 
036600 
036100 
038800 
038900 
039()00 

35" 039100 
355 039200 
3St> 039300 
351 039400 

039500 
358 039600 

039100 
039600 
039900 
040000 
040100 

~EAD-CUSTOMER-INVOICE-RECORO. 

READ CUSTOHER-INVOICt-FILE NtXT kECOkO 
AT END SET NO-MORE-INVOICES-EXIST TO TRUt. 

IF CUST UF CUSTOMER-MASTER-RECORD 
IS NOT EQUAL TO CUST OF CUSTOMER-INVOICE-RECURO THEN 
SET 	 NO-MORE-INVOICES-ExIST TU TRU, 

ELSE 
NEXT SENTENCE. 

CUSTOMlR-MASTER-FILE-UPDATE. 
MOVE FILE-DATE TO LSTDAT OF CUSTOMER-~ASTER-RECORO. 
MOVE AMPAID OF SUBFILEI-I 

TO LSTAMT OF CUSTOMER-MASTER-RECORD. 
SUBTRACT AMPAIO OF SUBFILEI-I 

FROM ARBAL OF CUSTuM~R-MASTER-RECORD. 
REwRITE CUSTOMER-~ASTEk-RECORD. 

RENRITE-OISPLAY-SUBfILl-RECORO. 
MOVE AMPAIO UF SU3FILEI-1 TO AMPAIO OF SUBFILEI-O. 
MOVE CUST OF SUBfILEI-1 TO CUST UF SUBFILEI-O. 
SET WRIT[-OISPLAY, SUBFIlEl-~ORMAT TU TRUE. 
MOVE CORR INOICATQ~-AREA TO SUbFILlI-0-INOIC. 
REwRIT~ ,UBFILE PAYMcNT-UPOATE-DISPLAY-RECURD 

FORMAT IS 'SUBfILEl'. 
NO-CUSTOMER-INVOICE-~GUTINE. 

IF 	 STSCOE OF SUBFILEI-I IS EQUAL Ta 'I' THEN 
IF 

HSE 

ELSE 
SET 

ACPPMT OF 5UBFILEI-1 I~ ~QUAL TO 'eNO ' 
SET 	 uO-NOT-OISPLAY-FIELU 

UO-NOT-DISPLAY-OVER-PAYMENT 
UO-NOT-REVERSE-FIELO-IMAGE 
OO-~UT-'1AKE-F I ELO-BLINK 
OO-NOT-DISPLAY-ACCEPT-PAYMENT 
PROTECT-INPUT-FIELD TO TRUE 

MOVE SPACeS TO ECPMSG CF SUBFILEI-O 
MOVE IERU~S TO OVRPMT OF SU6FILcl-O 
MOVE '0' ro STSCDc OF SUBFILEl-O 
PERFORM RENRITE-DISPlAY-SUBFILE-RECORD 

PERFORM LUSTOMER-MASTER-FILE-UPOATE 
SET 	 MAKE-FIELO-aLINK. DISPLAY-FIELD, 

JO-NUT-RcVERSE-FIELO-IMAGE 
UVER-PAYMENT-NOT-OISPLAYEO 
OISPLAy-aVE~-PAYMENT 

VI5PLAY-EXCEPTION 
OO-NOT-DISPLAY-ACCEPT-PAYMcNT 
PROTtCT-I~PUT-FIELO TO TRUE 

MOVE ARBAL TO OVRPMT OF SUBFILEI-O 

THEN 

MOVE MESSAGE-TH~EE TO ECP'1SG OF SUBFILEI-O 
MOVE: '0' TU STSCOE UF SUilFIlU-O 
PERFORM REWRITE-DISPLAY-SUBFILE-RECORO 

REVERSE-fllLO-IMAGE, OIS~LAY-FIELO 

DO-NOT-PROTECT-INPUT-FIELD 
UO-NOT-OISPlAY-OVER-PAYMcNT 
UISPLAY-lXLEPTION 
DISPLAY-ACCEPT-PAYMENT 
DISPLAY-ACCEPT-HEADING 

Figure 7-13 (Part 13 of 17). Sample Payment Update Program 

7 .IUENTFCN S COPYNAME CHG/DATE 

Chapter 7. TRANSACTION Files (IBM Extension) 7-101 



C030L ~OURCE LISTING A~COh) 

STMT 	 SEQN5R -A 1 B••••• 

040200 
040300 

359 040400 MOVE 
3&0 040500 MOVE 

l •••••• 3 •••••• 4 •••••• 5 •••••• & •••••• 1 .IOENTFCN S COPYNAME CHG/OAT' 

OISPLAY-ACCEPT-MESSAGE 
DO-NOT-MAKE-FIELD-BLINK TO TRUe 

lEROES TO OVRPMT OF SUBFILEI-O 
MESSAGE-TWO TO tCP~SG OF SUBFILEI-O 

3&1 040bOO MOVE' l' TO STSCDE OF SUBF ILU-O 

3bl 040700 PERFORM RE~RITl-DISPLAY-SUBFILE-RECORO. 


040800 PAYMENT-UPDA TE. 

3b3 	 040900 SUBTRACT AMPAIO OF CUSTOMER-INVOICE-RECOR~ 


041000 FROM OROAMT OF CUST3MER-INVOICE-REL0RD 

041100 GIVING AMOUNT-UWED. 


3b4 	 041200 SUBTRACT AMOUNT-PAID 

041300 FROM AMOUNT-OWED 

041400 GIVING INVUIC[-BALANCE. 


3b5 041500 IF INVOICE-BALANCE IS L~SS THAN .01 THEN 

3bb 041 bOO MOVE 2 TO OPNSTS OF CUSTUMER-INVOICE-RECORD 

3b1 041100 MOVE ORUAMT Or CUSTOMER-INVOICE-RECORD 


0411100 TO AMPAIO UF CuSTOMER-INVOICE-RELOR~ 


3&8 041900 SUBTRACT AMOUNT-OWED FROM AMOUNT-PAID 

042000 ElSE 


Jb'l 041100 ADD AMUUNT-PAIO TO A~PAIU OF CUSTOM~R-INVOICE-RECORO 


310 042200 SET NO-~OR(-PAYMENT-EXIST TO TROE, 

311 0'02300 REWRITE CUSTOMLR-INVOILE-RECORU. 

312 042400 IF NO-MOR[-PAYMENT-EXIST TH~N 


042500 NE XT SEll. TENC ~ 


042bOO ELSE 

313 042100 PERFORM REAO-CUSTOMER-INVOIC~-RFCORO. 


042800 INITIALllE-SUBFllE-RECORO. 

314 042900 MOVE SPACES TO CUST OF SUBFILE1-0 


043000 . ECPMSG OF SUBFILE1-0. 

315 0431 00 MOV~ '0' TG ST~CUE OF SU3FILE1-0. 

316 0'03200 MOVE ltRuES TO AMPAID OF SUQFILEl-O 


043300 OVK~Mr UF SU3fILE1-0. 

317 043400 ADU 1 TO REL-NUMBEK. 

318 043500 MOVE CuRK INOICAT0R-ARe~ TO SUBFILE1-0-INOIC. 

319 043000 wRITE SUBFILE P4YMENT-UPUATE-DISPLAY-RECORD 


043100 FORMAT IS 'SUBFIlEl', 

04380u CLEAN-UP-RUUTINE. 


380 	 043900 CLUSt CUSTDMER-INVUICE-Fllf 

044000 CUSTOMER-MASTER-FILE 

044100 PAYMENT-J?DATE-OISPLAY-FILc. 
 J 

381 	 044200 STUP RUN. 

- • ~ • - E ~ D Q F SOU R (E - - - • 

Figure 7-13 (Part 14 of 17). Sample Payment Update Program 

7-102 



This is the initial display that is written to the work station to prompt the user to enter the customer 
number and payment: 

Customer Payment Update Prompt Date 11/10/80 


Customer Payment 


The user enters the customer numbers and payments: 

Customer Payment Update Prompt Date 11/10/80l,: 
Customer Payment 

34500 2000 

40500 30000 

36000 2500 

12500 200 

22799 4500 

41900 7500 

10001 5000 

49500 2500 

13300 3500 

56900 4000 


Figure 7-13 (Part 15 of 17). Sample Payment Update Program 

Chapter 7. TRANSACTION Files (IBM Extension) 7-103 




Payments that would result in overpayments or that have invalid customer numbers are left on the 
display and appropriate messages are added: 

Cu:;tomer Payment Update Prompt Date 11/10/80 

Accept 
Payment 

Customer Payment Exception message 

40500 30000 NO INVOICES EXIST FOR CUSTOMER 

12500 200 NO INVOICES EXIST FOR CUSTOMER 

41900 7500 NO INVOICES EXIST FOR CUSTOMER 
10001 5000 CUSTOMER DOES NOT EXIST 

13300 3500 NO INVOICES EXIST FOR CUSTOMER 

Accept payment values: (*NO *YES) 

The user indicates which payments to accept: 

Customer Payment Update Prompt Date 11/10/80 

Accept Customer Payment Exception message 
Payment 

*NO 40500 30000 NO INVOICES EXIST FOR CUSTOMER 

*YES 12500 200 NO INVOICES EXIST FOR CUSTOMER 

*NO 41900 7500 NO INVOICES EXIST FOR CUSTOMER 
10001 5000 CUSTOMER DOES NOT EXIST 

*NO 13300 3500 NO INVOICES EXIST FOR CUSTOMER 

Accept payment values: (*NO *YESJ 

Figure 7-13 (Part 16 of 17). Sample Payment Update Program 

7-104 



The accepted payments are processed and overpayment information is displayed: 

Customer Payment Update Prompt Date 11/10/80 

Accept Customer Payment Exception message 
Payment 

12500 200 CUSTOMER HAS AN OVER PAYMENT OF 58.50 

10001 5000 CUSTOMER DOES NOT EXIST 

Figure 7-13 (Part 17 of 17). Sample Payment Update Program 

'---_________ End of IBM Extension _________--1 

Chapter 7. TRANSACTION Files (IBM Extension) 7-105 



J 


7·106 




Chapter 8. Creating and Executing Programs 

Entering the Source Program into the System 

After you have written your COBOL program on the coding forms, you 
must enter the source program into source files in the system. 

These source files should have a record length of 92. However, the COBOL 
compiler also supports a record length of 102. In addition to the usual 
fields of sequence number (6 characters), last modified date (6 characters), 
and the data (80 characters), a field of 10 characters that can contain 
additional information is placed at the end of the record (positions 93-102). 
This information is not used by the COBOL compiler, but is placed on the 
extreme right of the compiler listing. You are responsible for placing 
information into this field. If you want to use the additional field, create a 
source file with a record length of 102. The source file QCBLSRC has a 
record length of 92. 

The normal ways of entering a source program are: 

• 	 You can enter it interactively by using the source entry utility (S EU) of 
the Interactive Data Base Utilities Licensed Program (I DU): 

You can enter the EDTSRC (Edit Source) command to call SEU. Refer to 
the SEU Reference Manual and User's Guide for further information on 
the EDTSRC command. 

• 	 You can enter your source program in a batch manner (for example, 
from cards or diskettes) by using either the CP F copy or spooling 
functions: 

Chapter 8. Creating and Executing Programs 8-1 

L 



Diskette Copy 

Cards Spooling 

Refer to the CPF Programmer's Guide for more information on how to 
use the copy or spooling function for batch entry of the source program. 

Using SEU to Enter Source 

SEU provides special display screen formats for COBOL that correspond to 
the COBOL Coding Form to help you enter your COBOL source programs. 
Figure 8-1 shows a display screen format, the relationship between the 
headings on the COBOL Coding Form and the labels on the display screen, 
and where you can enter the source on the display screen. 

If you specify the TYPE (*CBL) parameter on the EDTSRC command, SEU 
invokes a COBOL syntax checker that checks each line for errors as you 
enter it. The COBOL syntax checker finds invalid entries in the source 
statements and displays error messages that allow you to correct the errors 
before compiling the program. Since the COBOL syntax checker checks 
only one statement at a time, independently of statements that precede or 
follow it, only syntax errors within the source data can be detected. No 
interrelational errors, such as undefined names and invalid references to 
names, are detected. These errors are detected by the COBOL compiler 
when the program is compiled. 

Syntax checking for COBOL source functions is subject to the following 
rules. 

• 	 Source on a line with an asterisk (*) or a slash (f) in column 7 is not 
syntax checked. An asterisk indicates a comment line, a slash indicates 
a comment line and page eject. 

• 	 Syntax checking occurs line by line as source is entered. The error 
messages that are generated by lines consisting of incomplete 
statements disappear when the statements are completed. In the 
example: 

ADD A 
TO 	 BCD. 

An error message is generated after the first line is entered and 
disappears after the second line is entered, when the statement is 
completed. A sentence can span at most 45 lines. 

8-2 



I~M 	 COBOL Coding Form 
SYSTEM 	 PUNCHING INSTRUCTIONS PAGE OF 

PROGRAM GRAPHIC 	 . 
CARD FORM # 

PROGRAMMER 	 DATE PUNCH 

. SEQUENCE "~IA 	 COBOL STATEMENT !IDENTIFICATIONIB 
(PAGEl SEFlIAl 

• 	 51, 3 6 , , 74 , 32 36 <0 , 6 	 ," 	 " o 1 	 I I I I '" I I I '6r 
02 	 I I I II I i i I 	 I 

I I I03 i I I I I I I 
04, ! j I I I , l_ L. 

I I I I .. 	 J'--'" 
\ A,,, A 	 Area B 

I ndicator Area 

EDIT US W:7 Hbr: TESTPRT Scan: 

FHT CB •••••• -A+++B++++++++++++++++++++++++++++++++++++++++++++++++++++++Pgm-i


SEU can display 0007.00 ENVIRONtlENT DIVISION. 
format Iines to 0008.00 CONFIGURATION SECTION. 
help you make 0009.00 SOURCE-COf'lPUTER. IBN-S38. 
changes or key 0010.00 INPUT-OUTPUT SECTION. 
in entries position 0011.00 FI LE -CONTROL. 
by position. FHT CB •••••• -A+++B++++++++++++++++++++++++++++++++++++++++++++++++++++++Pgm-i 

0012.00 SELECT FILE-l ASSIGN TO DATABASE-HASTER. 
0013.00 SELECT FILE-2 ASSIGN TO DATABASE-HASTER. 
0014.00 DATA DIVISIm~. 
0015.00 FI LE SECTION. 
0016.00 FD FILE-1 
0017.00 LABEL RECORDS ARE STANDARD 
0018.00 RECORD CONTAINS 20 CHARACTERS 
0019.00 DATA RECORD IS RECORDl. 

*******ENO OF DATA******* 

FMT 	 SEQNBR Cont Area-A Area-B You can key in -{ 
CBan entry field 

by field in this area. 

Figure 8-1. Relationship between COBOL Coding Form and an SEU Display 

• 	 Any time a source line is entered or changed, up to 45 lines of source 
may be syntax checked as one unit. The length of a single unit of 
syntax checking is determined by extending from an entered or changed 
line as follows: 

A unit of syntax checking extends towards the beginning of the 
source member until the first source line, or a line that ends in a 
period is encountered. 

A unit of syntax checking extends towards the end of the source 
member until the last source line, or a line that ends in a period is 
encountered. 

Chapter 8. Creating and Executing Programs 8-3 

L 



If this unit spans more than 45 source lines (not including comment 
lines), the system responds with a message. 

• 	 If there is an error in a unit of syntax checking, the entire unit is 
presented in reverse image. The message at the bottom of the display 
screen refers to the first error in the unit. 

• 	 No compiler options are honored to control syntax checking. 

For example, the syntax checker accepts either quotes or apostrophes as 
nonnumeric delimiters as long as they are not mixed within one unit of 
syntax checking. It does not check whether the delimiter is the one 
specified in the CRTCBLPGM command or in the PROCESS statement. 

• 	 The first sentence following any of the paragraph headers listed below 
must begin on the same line as the paragraph header: 

PROGRAM-ID. 
AUTHOR. 
INSTALLATION. 
DATE-WRITTEN. 
DATE-COMPILED. 
SECURITY. 
SOURCE-COMPUTER. 
OBJECT-COMPUTER. 
SPECIAL-NAMES. 

• 	 Character replacement specified by the CURRENCY and DECIMAL-POINT 
clauses of the SPECIAL-NAMES paragraph is not honored during 
interactive syntax checking. J 

For a complete description of how to enter a source program using SEU, 
refer to the SEU Reference Manual and User's Guide. 

Using SEU to Browse through a Compiler Listing 

SEU lets the user browse through a compiler listing that is on an output 
queue. The following shows SEU's split-edit display that lets the user 
browse through the listing from a work station. 

8-4 



EDIT US W:1 Nbr: CBLEXMPL Scan: 
FNT CB •••••• -A+++B+++++++t+++t+++t++tt++t++ttt+++t++++++++++++++++t++++Pgm-i 

0012.00 INPUT OUTPUT SECTIOt~. 
00l3.00 FILE-CONTROL. 
0014.00 SELECT FILEl ASSIGN TO PRINTER-QSYSPRT 
0015.00 ORGANIZATION IS SEQUENTIAL. 
0016.00 DATA DIVISIOt~. 
0017.00 FILE SECTION. Source 
0018.00 FD FILEI Statements 
0019.00 RECORD CONTAINS 56 CHARACTERS 
0020.00 LABEL RECORDS ARE OMITTED 
0021.00 DATA RECORD IS REB-I. 
0022.00 01 REC-l PIC X(S6). 

BROWSE Nbr:SPOOLFILE W:l Pos: 

30 003100 STOP RUN. 


* * * * * E C E * * * * * 
5714CB1 VERIFY 

CompilerSTMT SEQNBR NSGIO SEV TEXT 
listing* 21 002100 CBLl327 30 'REB-I' not previously define Clause ignored.

An error ~IESSAGE SUMMARY 
is found. TOTAL INFO(0-4) WARNING(5-19) ERROR(20-29) SE TERMIN 

1 0 0 0 

An * requests a scan 
for compiler errors. 

While browsing, the user can: 

• Scan for errors 

• Correct source statements that have errors. 

For complete information on browsing through a compiler listing, see the 
SEU Reference Manual and User's Guide. 

Compiling the Source Program 

After you have entered the source program into the system, you need to 
compile the source program. This process of compilation is done by the 
COBOL compiler, which is part of the COBOL Licensed Program. To 
compile a COBOL program, you must use the CRTCBLPGM (Create COBOL 
Program) command, and the libraries QCBL and QTEMP must be in the library 
list. If the COPY statement, DDS or DO format is used by the program, the 
Control Program Facility (CPF) provides information about the externally 
described files to the compiled program. The compiler is invoked to create 
an executable COBOL program and a listing: 

Chapter 8. Creating and Executing Programs 8-5 



COBOL 

Source COBOL Compiler Executable 


COBOL 

Program / t 

CPF ~p=rog=ram==~_____ ~ 
Listing 

r---------t' • Command summary 
DDS for • Compiler options 

Externally 
 • Source listing 

Described 
 • Verb usage 

Files 
 • Data Division map 

• FIPS messages Copy 
• Cross-reference list Source 
• MessagesText 

The compiler syntax checks the COBOL source program line by line and 
the interrelationships between the lines. 

Compiler Options 

You can specify various compiler options either by using the CRTCBLPGM 

command OPTION parameter or by using the PROCESS statement with the \ 

desired options. Any options specified in the PROCESS statement override .." 

the corresponding options on the CRTCBLPGM command. The PROCESS 

statement is discussed later in this chapter_ 


Create COBOL Program Command 

To compile a COBOL source program into an executable program, you must 
enter the CRTCBLPGM (Create COBOL Program) command that invokes the 
COBOL compiler. The command is valid in batch and interactive jobs, or 
from other programs. 

If the COBOL compiler terminates, the escape message CBL 900 1 is issued. 
A control language program can monitor for this exception by using the 
control language MONMSG (Monitor Message) command. 

All object names specified on the CRTCBLPGM command must be composed of 
alphanumeric characters, the first of which must be alphabetic. The length 
of the names cannot exceed 10 characters. See the CL Reference Manual for 
a detailed description of CPF object naming rules and for a complete 
description of CPF command syntax. 

The command syntax is as follows. The defaults are indicated by heavier 
branch lines. The brackets indicate that the options can be specified in any 
order. 

8-6 



Optional 

_PGMID::J{.QOPL
-(CRTCBLPGM-PGM )-----------_. 

pro&ram-name . library-name 

QCBLSRC._LIBL -( _PGM 

-(


>-SRCFILE -( eLlBL Y-SRCMBR )--•• 
•ouree-Cile-name . louree-Clle 

.lIbral'1-nama -member-name 

eSOURCI -(eNOXRBy -( eOBiI:r 
>-OPTION-[ -GeSRC 9-I [ I [ J

eNOBRC eXRIP eNOOBN 

eNOBOURCB 

SEQUENCE J- -( _NOVBSUj- ~eNONUMBS3-
-[-( I [ I [-NUMBSR J 

.NOSSQUENCE _VBSUM eLlNBNUMBER 

eNOMAy -( eNOOPTIONJ- -(eQUOTE)
-[-( I [ I [ I--~--. 

_MAP _OPTIONS eAPOST 

eNOLISJ- -(.NOXREP)- -( eNOPATCj
>- GENOPT - [ -( ) [ I [ ) -----_. 

eLiST eXRIP - ePATCH 

eNOOUM:>- -( _NOATY- -( _RANGEJ
-[-( I[ I[ J---~". 

-DUMP _ATR eNORANGE 

-UNREF:J- -( .NOOPTIMIZJ- ® 
-[-( I [ J-----------. 

-NOUNREF .OPTIMIZE 

29 -(QSYSPRT.eLlBL . 

-(
>- GENLVL )---PRTFILE -(.eLIIL_Y"---.' 

_ severity-level fUe-name 

.lIbr.ry-n...... 

~"" ~~~~,UG-(:.-e-rl-tY-_-Ie-v-el-)'.---USRPRF -( :::::J~---' 
_NORMAL~ ~.SRCMBRTXT~ 


>-PUBAUT ~ _ALL --~----TEXT .BLANK--....-----------..... 

• NONI - 'description' 

>- DUMP atartlnl-atmt endln&-stmt -ITOUMP dump-option --- 

IJob:I,1 PpmI,I 

When the CRTCBLPGM command is issued in a CL program, concatenation 
expressions can be used for all parameter values. See the CL Reference 
Manual for more information about concatenation expressions. 

Programming Note: The number of entries in the Object Definition Table 
(ODT) and the amount of storage required by a COBOL program varies with 
the number and kinds of COBOL statements used in the program. A 
combination of these factors can cause System/38 internal size limits for the 
program to be exceeded. If this occurs, the *NOUNREF option can be tried. 
If the problem persists, the program must be rewritten. 

When the *NOUNREF option is specified, only names that are referenced or 
are needed for data structuring are defined. This option is useful when the 
program contains many unreferenced identifiers. 

Chapter 8. Creating and Executing Programs 8-7 



The description of the parameters follows (the defaults are explained first 
and are underscored): 

PGM Parameter: Specifies the qualified name by which the compiled 
COBOL program can be known and the library in which the compiled 
program is to be located. 

*PGMID: The name specified as the PROGRAM-ID is used. 

program-name: Specifies the name by which the compiled COBOL 
program is known. If program-name is specified for the PGM parameter, 
the first program in the batch job has that name, and all other programs 
use the name specified in the PROGRAM- I D paragraph in the source 
program. 

QGPL: Name of the library in which the created program is stored if no 
library-name is specified. 

library-name: Specifies the name of the library in which the created 
program is stored. 

SRCFILE Parameter: Specifies the name of the source file that contains 
the COBOL source to be compiled. 

QCBLSRC: Specifies that the IBM-supplied source file, QCBLSRC, contains 
the COBOL source to be compiled. 

qualified-source-file-name: Enter the qualified name of the source file 
that contains the COBOL source to be compiled. If no library qualifier 
is given, *L I BL is used to find the file. This source file should have a 
record length of 92. 

SRCMBR Parameter: Specifies the name of the member of the source file 
that contains the COBOL source to be compiled. This parameter can be 
specified only if the source-file-name in the SRCFILE parameter is a data 
base file. 

*PGM: The COBOL source to be compiled is in the member of the source 
file that has the same name as that specified for the compiled program in 
the PGM parameter. If*PGMID is specified for the PGM parameter, the 
SRCMBR parameter is not used. For a data base source file, the first 
member is used. 

source-file-member-name: Enter the name of the member that contains 
the COBOL source. 

OPTION Parameter: Specifies the options to use when the COBOL source 
is compiled. 

*SOURCE or *SRC: The compiler produces a source listing, consisting of 
the COBOL source input and all compile-time error messages. 

*NOSOURCE or *NOSRC: The compiler does not produce a source listing. ,..J 

8-8 



*NOXREF: The compiler does not produce a cross-reference listing for the 
source program. 


*XREF: The compiler produces a cross-reference listing for the source 

program. 


*GEN: The compiler creates an executable program after the program is 
compiled. 


*NOGEN: The compiler does not create an executable program after the 

program is compiled. 


*SEQUENCE: The reference numbers are checked for sequence errors. 
Sequence errors do not occur if the *LINENUMBER option is specified. 

*NOS EQU ENC E: The reference numbers are not checked for sequence 
errors. 

*NOVBSUM: Verb usage counts are not printed. 


*V BS UM: Verb usage counts are printed. 


*NONUMBER: The source file sequence numbers are used for reference 

numbers. 

*NUMBER: The user-supplied sequence numbers (columns 1 through 6) 

are used for reference numbers. 


*LINENUMBER: The compiler generated sequence numbers are used for 

reference numbers. This option combines program source code and 
source code introduced by COpy statements into one consecutively 
numbered sequence. Use this option if you specify FI PS flagging. 

*NOMAP: The compiler does not list the Data Division map. 


*MAP: The compiler lists the Data Division map. 


*NOOPTIONS: Options in effect are not listed for this compilation. 


*OPTIONS: Options in effect are listed for this compilation. 


*QUOTE: Specifies that the delimiter" is used for nonnumeric literals 

and Boolean literals. This also specifies that the value of the figurative 
constant QUOT E has the EBCDIC value of a quote. 

*APOST: Specifies that the delimiter is used for nonnumeric literals andI 

Boolean literals. This also specifies that the value of the figurative 
constant QUOTE has the EBCDIC value of an apostrophe. 

GENOPT Parameter: Specifies the options to use when the executable 
program is created. The listings could be required if a problem occurs in 
COBOL. 

*NOLIST: No IRP, associated hexadecimal code or error messages are 
listed. 

Chapter 8. Creating and Executing Programs 8-9 



*LIST: The IRP, its associated hexadecimal code, and any error 

messages are listed. 


*NOXREF: A cross-reference listing of all objects defined in the IRP is not 
produced. 

*XREF: A cross-reference listing of all objects defined in the I R P is 
produced. 

*NOPATCH: Space is not reserved in the compiled program for a program 
patch area. 

*PATCH: Space is reserved in the compiled program for a program patch 
area. The program patch area can be used for debugging purposes. 

*NODUMP: The program template is not listed. 

*DUMP: The program template is listed. 

*NOATR: The attributes for the IRP source are not listed. 

*ATR: The attributes for the I RP source are listed. 

*RANGE: Execution time checks are performed for subscript ranges, but 
not index ranges. Checks are also performed for substring operations in 
compiler-generated code. 

*NORANGE: Execution-time checks are not performed. 

*UNREF: Unreferenced data items are included in the compiled program. 

*NOUNREF: Unreferenced data items are not included in the compiled 
program. This reduces the number of ODT (object definition table) 
entries used, allowing a larger program to be compiled. The 
unreferenced data items still appear in the cross-reference listings 
produced by specifying OPTION (*REF). 

*NOOPTI M I Z E: The compiler performs only standard optimizations for 
the program. 

*OPTI M I Z E: The compiler generates a program for possibly more 
efficient execution that will possibly require less storage. However, 
specifying *OPTIMIZE can substantially increase the time required to 
compile a program. 

GENLVL Parameter: Specifies when a program is generated. A 
severity-level value, corresponding to the severity level of the messages 
produced during compilation, can be specified in this parameter. If 
errors occur in a program with a severity level greater than the value 
specified in this parameter, an executable program is not generated. For 
example, if you do not want a program generated if you have messages 
with a severity level of 20 or greater, specify 19 in this parameter. 

8-10 



29: If a severity-level value is not specified, the default severity-level is 

29_ 


severity-level: A two-digit number, 00 through 29, can be specified. 


PRTFILE Parameter: Specifies the name of the file to which the compiler 
listing is directed and the library in which the file is located. The file 
should have a minimum record length of 132. If a file with a record 
length less than 132 is specified, information is lost. 

OSYSPRT: If a file-name is not specified, the compiler listing is directed to 

the IBM-supplied file, QSYSPRT. 


file-name: Enter the name of the file to which the compiler listing is 

directed. 


*L I BL: If a library-name is not specified, the system searches the library 

list, *L I BL, to find the library in which the file is located. 


.library-name: Enter the name of the library in which the file is located. 


FIPS Parameter: The source program is F IPS flagged for the following 
specified level. (Select the *LINENUMBER option to ensure that the 
reference numbers used in the FIPS flagging messages are unique.) 

*NO: The source program is not FIPS flagged. 

*L: FI PS flag for low level and higher. 

*LI: FI PS flag for low-intermediate level and higher. 

*H I: FI PS flag for high-intermediate level and higher. 

*H: FI PS flag for high level. 

FLAG Parameter: Specifies the minimum severity level of messages to be 
printed. 

00: All messages are to be printed. 

severity-level: Enter a two-digit number that specifies the minimum 
severity level of messages that are to be printed. Messages that have 
severity levels of the specified value or higher are listed. 

USRPRF Parameter: Specifies under which user profile the compiled 
COBOL program is to be executed. The profile of either the program 
owner or the program user is used to execute the program and control 
which objects can be used by the program (including what authority the 
program has for each object). 

*USER: The program user's user profile is to be used when the program 
is executed. 

*QWNER: The user profiles of both the program's owner and user are to 
be used when the program is executed. The collective sets of object 

Chapter 8. Creating and Executing Programs 8-11 



authority in both user profiles are to be used to find and access objects 
during the program's execution. Any objects that are created during the 
program are owned by the program's user. 

Note: Specify the USRPRF parameter to reflect the security requirements 
of your installation. The security facilities available on System/3S are 
described in detail in the CPF Programmer's Guide and the CL Reference 
Manual. 

PUBAUT Parameter: Specifies what authority for the program and its 
description is being granted to the public. The authority can be altered 
for all or for specified users after program creation through the 
GRTOBJAUT (Grant Object Authority) or RVKOBJAUT (Revoke Object 
Authority) commands. (For further information on these commands, see 
the CL Reference Manual.) 

*NORMAL: The public has only operational rights for the compiled 
program. Any user can execute the program, but cannot change it or 
debug it. 

*ALL: The public has complete authority for the program. 

*NONE: The public cannot use the program. 

Note: Specify the PU BAUT parameter to reflect the security requirements 
of your installation. The security facilities available on System/38 are 
described in detail in the CPF Programmer's Guide and the CL Reference 
Manual. 

TEXT Parameter: Lets the user enter text that briefly describes the 
program and its function. 

*SRCMBRTXT: Indicates that the text for the object being created is to be 
the same as the text for the data base file member containing the 
COBOL source. If the source comes from a device or in-line file, 
specifying *SRCMBRTXT has the same effect as specifying *BLANK. 

*BLANK: No text is specified. 

I text I: The text that briefly describes the program and its function can 
be a maximum of 50 characters in length and must be enclosed in 
apostrophes. The apostrophes are not part of the 50~character string. 

ITDUMP (n) Parameter: An IBM debugging aid. Causes the compiler to 
dump the internal text at various times during the compilation. Refer to 
Appendix J for values allowed for n. (For IBM service personnel.) 

DUMP Parameter: An IBM COBOL debugging aid. (For IBM service 
personnel.) 

8-12 



PROCESS Statement 

The PROCESS statement also lets you specify compile-time options. Options 
specified in the PROCESS statement override corresponding options specified 
in the CRTCBLPGM command. The PROCESS statement must be placed 
before the first source statement in the COBOL program immediately 
preceding the IDENTI FICATION DIVISION header. 

The format of the PROCESS statement is as follows: 

Format 

PROCESS option-1 [option-2] ... [option-n] [.] 

The following rules apply to the PROCESS statement: 

• 	 The word PROCESS and all options must appear within positions 8 
through 72. Position 7 must be left blank. The remaining positions can 
be used as in COBOL source statements, positions 1 through 6 for 
sequence numbers, positions 73 through 80 for identification purposes. 

• 	 Options must be separated by one or more blanks and/or commas. 

• 	 Options can appear in any order. If conflicting options are specified, for 
example, LI ST and NOLI ST, the last option encountered takes 
precedence. 

• 	 If the option keyword is correct and the suboption(s) is in error, the 
default suboption(s) is assumed. 

• 	 The PROCESS statement begins with the word PROCESS. Options can 
appear on more than one line; however, only the first line can contain 
the word PROCESS. 

The allowable options for the PROCESS statement are described as follows. 
Defaults are underlined. 

SOURCE or SRC: The compiler produces a source listing, consistmg of the 
COBOL source input and all compile-time error messages. 

NOSOURCE or NOSRC: The compiler does not produce a source listing. 

NOXREF: The compiler does not produce a cross-reference listing for the 
source program. 

XREF: The compiler produces a cross-reference listing for the source 
program. 

GEN: The compiler creates an executable program after the program is 
compiled. 

Chapter 8. Creating and Executing Programs 8-13 



NOGEN: The compiler does not create an executable program after the 

program is compiled. 


SEQUENCE: The reference numbers are checked for sequence errors. 

Sequence errors do not occur if the LINENUMBER option is specified. 


NOSEQUENCE: The reference numbers are not checked for sequence errors. 
Since SEQUENCE is the default option, sequence errors are flagged until the 
NOSEQUENCE option is recognized. When NOSEQUENCE is the last item 
specified on a record, sequence checking is in effect between that record and 
the next record. 

NOV BS UM: Verb usage counts are not printed. 


VBSUM: Verb usage counts are printed. 


NONUMBER: The source file sequence numbers are used for reference numbers. 


NUMBER: The user-supplied sequence numbers (columns I through 6) are 

used for reference numbers. 


LIN ENUMBER: The compiler generated sequence numbers are used for 

reference numbers. The option combines program source code and source 

code introduced by COPY statements into one consecutively numbered 

sequence. Use this option if you specify FI PS flagging. 


NOMAP: The compiler does not list the Data Division map. 


MAP: The compiler lists the Data Division map. 


NOOPT IONS: Options in effect are not listed for this compilation. 


OPT IONS: Options in effect are listed for this compilation. 


QUOT E: Specifies the delimiter " is used for nonnumeric literals and Boolean 

literals. This also specifies that the value of the figurative constant QUOTE has 

the EBCDIC value of a quote. 


APOST: Specifies that the delimiter is used for no numeric literals and 
I 

Boolean literals. This also specifies that the value of the figurative constant 
QUOTE has the EBCDIC value of an apostrophe. 

NOLIST: No IRP, associated hexadecimal code, or error messages are listed. 

LIST: The IRP, its associated hexadecimal code, and any error messages are 
listed. 

GENLVL (n): Specifies when a program is generated. A severity-level value, 
corresponding to the severity level of the messages produced during 
compilation, can be specified in this parameter. If errors occur in a program 
with a severity level greater than the value specified in this parameter, the 
compilation is terminated. For example, if you do not want a program 
generated if you have messages with a severity level of 30 or greater, specify 
29 in this parameter. The default value is 29. 

J 


8-14 



FIPS: The source program is FIPS flagged for the following specified level. 
(Select the LINENUMBER option to ensure that the reference numbers used in 
the F IPS flagging messages are unique.) 

NO: The source program is not FI PS flagged. 

L: FI PS flag for low level and higher. 

LI: F I PS flag for low-intermediate level and higher. 

HI: FI PS flag for high-intermediate level and higher. 

H : FIPS flag for high level. 

FLAG: Specifies the minimum severity level of messages to be printed. 

00: All messages are to be printed. 

severity-level: Enter a two-digit number that specifies the minimum 
severity level of messages that are to be printed. Messages that have 
severity levels of the specified value or higher are listed. 

Batch Compiles 

The PROCESS statement is used to separate multiple programs and/or 
subprograms to be compiled with a single invocation of the compiler. In the 
batch compile environment, all compiler options specified on the CRTCBLPGM 
command statement, plus all default options, plus the options specified on the last 
PROCESS statement will be in effect for the compilation. All compiler output is 
directed to the destinations as specified by the CRTCBLPGM command statement. 

All executable programs are stored in the library specified on the PGM parameter. 
If program-name is specified for the PGM parameter, the first program in the batch 
job has that name, and all other programs use the name specified in the 
PROGRAM- I 0 paragraph in the source program. 

Using COPY within the PROCESS Statement 

The COBOL COpy statement can be used within the PROCESS statement to 
retrieve compiler options previously stored in a source library and include them in 
the PROCESS statement. COpy can be used to include options that override those 
specified as defaults by the compiler. Any PROC ESS statement options can be 
retrieved with the COPY statement. 

Compiler options can both precede and follow the COPY statement within the 
PROC ES S statement. The last encountered occurrence of an option overrides all 
preceding occurrences of that option. 

The following example shows the use of the COpy statement within the PROCESS 
statement. The COPY statement must be followed by a period. Notice also that in 
this example, NOMAP overrides the corresponding option in the library member: 

Chapter 8. Creating and Executing Programs 8-15 



000001 PROCESS XREF 	 MYPROG 
000002 COPY DEFLTS. 	 MYPROG 

MAP. SOURCE. LIST DEFLTS 
000004 NOMAP FLAG20 	 MYPROG 
':)80010 IDENTiFICATION DIVISION. MYPROG 

Compiler Output 

The output of the compilation job step can include: 

• 	 A summary of command options. 

• 	 An options listing: A listing of options in effect for the compilation. 

• 	 A source listing: A listing of the statements contained in the source program. 

• 	 A verb usage listing: A listing of the COBOL verbs and the number of times 
each verb is used. 

• 	 A Data Division map: A glossary of compiler-generated information about 
the data. Also included is a mapping of user-supplied names to 
compiler-generated internal names. 

• 	 FIPS messages: A list of all FIPS messages for the requested FIPS level and 
above. 

• 	 A cross-reference list. 

• 	 Compiler messages (including diagnostic statistics). 

• 	 Compilation statistics. 

• 	 A listing of the generated program in symbolic form. 

• 	 An executable program. 

The presence or absence of some of these types of compiler output is determined 
by options specified on the PROCESS statement or through the CRTCBLPGM 
command. The level of diagnostic messages printed depends upon the FLAG 
option. Page ejection of the source program listing is obtained by placing the 
slash / character in the continuation area of a comment line. 

Figures 8-2 through 8-8 illustrate the compiler output produced for the sample 
program. References to the figures are made throughout the following text. The 
letters in text correspond to the letters in the figures and reference an area of the 
output as it is being discussed. 

Command Summary 

This summary, which is output after compilation, lists all options specified in the 
CRTCBLPGM command statement and as modified by the PROCESS statement. 

8-16 



Command Summary 

This summary, which is output after compilation, lists all options specified 
in the CRTCBLPGM command statement and as modified by the PROCESS 

statement. 

Compiler Options 

The PROCESS statement, if specified, is printed immediately. Figure 8-2 is a 
list of all options in effect for the compilation of the sample program. 
Compiler options are listed at the beginning of all compiler output when 
the OPTIONS option is specified. 

COHOL SOURCE LISTING 

STMT SEQNBR -A 1 U ••••• 2 •••••• 3 ••• • •• 4 ••• • •• 5 •••••• 6 •••••• 7 .IDENTFCN S COPYNAME 

1 000 100 PROCESS OPTIONS.LIST ."'4AP.)(REF.FLAG(OO).F IP5(L' .V~)5UM 


COBOL COl'lPILER OPf]ONS IN EFF::CT 


OP TI 0"15 

SOURCE 

XREF 


NAP 


VR5UM 

NONUMBER 


SEQUE"ICE 


GEN 

GENLVL' 2<,)) 


FLAG' 0) 

FIP5'L) 
QUOTE 

COBOL GENERATION OPTIONS IN EFFr:::CT 

LIST 


U"REF 

RANG£ 

NOATR 

NOXREF 


NOOUMP 

NOPATCH 


Figure 8-2. Compiler Options 

Source Listing 

Figure 8-3 illustrates a source listing. The statements in the source 
program are listed exactly as submitted. The source is not listed if the 
NOSOURCE option is specified. 

All compiler output pages after the page where the PROGRAM-ID paragraph 
is listed have the program-id name listed in the heading prior to the date 
field. Figure 8-3 displays the following fields: 

o Compiler-generated statement number: The numbers appear 
to the left of the source program listing. These numbers 
are referenced in all compiler output listings except for FIPS 
messages listings. A statement number can span several 
lines, and a line can contain more than one statement. 

Chapter 8. Creating and Executing Programs 8-17 



Option 
NONUMBER 
NUMBER 
LINENUMBER 

e 

Reference number: The numbers appear to the left of the 
source statements. The numbers that appear in this field 
and the column heading (shown as SEQNBR in this listing) 
are determined by an option specified in the CRTCBLPGM 

command or in the PROCESS statement, as shown in the 
following table. 

Heading Origin 
SEQNBR Source file sequence numbers. 
NUMBER Standard COBOL sequence numbers.
LINNBR Compiler generated sequence numbers. 

Sequence error indicator column: An S in this column 
indicates that the line is out of sequence. Sequence 
checking is performed on the reference number field only if 
the SEQUENCE option is specified. 

Copyname: The copyname, as specified in the COBOL COpy 

statement, is listed here for all records included in the 
source program by that COpy statement. If the 
DDS-ALL-FORMATS phrase is used, the name '<--ALL-FMTS' 

appears under copyname, and each individual format is 
terminated with the compiler-generated comment line 'END 

OF: format-name -->'. 

Change/date field: The date the line was last modified is 
listed here. 

8-18 



COBOL SOURCE LISTING 

4aiT SECitR -A I B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••• ,. 7 .ID~NTFCNca. COijiAME 

2 000200 
3 000300 
4 000400 
5 000500 
6 000600 
7 000700 
8 000800 
9 000900 

10 001000 
II 001100 
12 001200 
13 001300 
14 001400 
IS 001 SOO 
16 001600 
17 001700 
18 001800 
19 001900 
20 002000 
21 002100 
22 002200 
23 002300 
24 002400 
25 002500 
26 002600 
27 002700 
28 002800 
29 002900 
30 003000 
31 003100 
32 003200 
33 003300 
34 003400 
35 003500 
36 003600 
37 003700 
38 003800 
40 +000100 
41 • 000200 
42 .000300 
43 +000400 
44 +000500 
45 +000600 
46 +000700 
47 +000800 
48 .000900 
49 003900 

OO~ 000 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TESTPR. 

AUTHOR. PROGRAMMER NAME. 
INSTALLATION. ROCHESTER LA80RATORY. 
DATE-WRITTEN. APRIL 15. 1980. 
DATE-COMPILED. 11'06'80 

ENVIRON~ENT DIVISION. 
CONFIGURATION SECTION. 

SOURCE-CO,.PUTER. 18001-538. 
OBJECT-COMPUTER. IBM-S36. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT FILE-I ASSIGN TO 
SELECT FILE-2 ASSIGN TO 

DATA DIVISION. 
FILE SECTION. 
FD FILE-I 

18:29:28 

DISK-SAMPLE. 
DISK-SAMPLE. 

LABEL RECORDS ARE STANDARD 
RECORD CONTAINS 20 CHARACTERS 
DATA RECORD IS RECORD-I. 

01 RECORO-I. 
02 FIELD-A PICTURE IS X(20). 

FO FILE-2 
LABEL RECORDS ARE STANDARD 
RECORD CONTAINS 20 CHARACTERS 
DATA RECORD IS RECORD-2. 

01 RECORD-2. 
02 FIELD-A PICTURE IS X(2a). 

WORKING-STORAGE SECTION. 
01 FILLER. 

05 KOUNT PIC S99 COMP-3. 

as ALPHABET PICTURE X( 26) VALUE "ABCOEFGHIJKLMNOPQRSTIJVWXYZ". 

as ALPHA REDEFINES ALPHABET PICTURE x OCCURS 26 TIMES. 

05 NUMBR PIC S99 COMP-l. 

as DEPENDENTS PIC X(26) VALUE "012340123401234012340". 

as DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES. 


COPY WRKRCD. 
01 WORK-RECORD. 

as NAME-FIELD PICTURE X • 
05 FILLER PICTURE X VALUE IS SP'CE. 
05 RECORD-NO PICTUR<: 999S. 
05 FILLER PICTURE X VALUE IS SPACE. 
05 LOCATION PICTURE AAA VALUE IS "NYC". 
05 FILLER PICTURE X VALUE IS SPACE. 
05 NO-OF-DEPENDENTS PICTURE XX. 
05 =ILLER PICTURE X(7) VALUE IS SPACES. 

PROCEDURE DIVISION. 
BEGIN. 

WRkRCD 
WRKf.lCD 
WRKRCo 
WRKRCD 
WRKRCD 
lORKRCD 
WRKRCD 
lORKRCD 
WRKRCD 

004100***~***********~********~***~**~**~*************~**************~* 
00~200** THE FOLLOWING PARAGRAPH OPENS THE OUTPUT FILE TO 6E CREATED*** 
00~300.* AND INITIALIZES COUNTERS. ~** 

OO~~OO****************~************************~******~*********~****** 
50 00.500 STEP-I. OPEN OUTPUT FILE-I. 
51 00~600 MOVE ZERO TO KoUNT NUMBR. 

004700********~*******~~************~************~*******~**~********** 
00~800** THE FOLLOWING CREATES INTERNALLY THE RECOqOS TO BE *** 
00~900** CONTAINED IN THE FILE. WRITES THEM ON DISK, AND DISPLAYS *** 
005000** THEM. *** 
005100***************************************************************** 

52 005200 STEP-2. ADO I TO KDUNT. ADO I TO ~UMBR. 
54 005300 MOVE ALPHA (KOUNT/ TO NAME-FIELD. 
S5 005400 MOVE DEPEND IKOUNT/ TO No-OF-oEPENoENTS. 
56 005500 MOVE NUMBR TO RECORD-NO. 
57 005600 STEP-3. DISPLAY WORK-RECORD. 
58 005700 WR ITE RECORD-I FROM .ORK-RECORo. 
59 005800 STEP-4. PERFORM STEP-2 THRU STEP-3 U~TIL ~OUNT IS EQUAL TO 26. 

005900*••••**000*****************************************0************* 
006000** THE FOLLOWING CLOSES QUTPUT AND REOPENS IT AS *** 
006100** INPUT. *** 
006200***************************************************************** 
006300 STEP-So 

60 006400 CL oSE FI LE-I • 
61 006500 o"EN I N"UT F ILE-2. 

006600************~************~******~~~********~*********~*********~* 
006700** THE FOLLOWING READS BACK THE FILE AND SINGLES OUT EMPLOYEES*** 
006800** WiT" NO OEPENDENTS. *** 
006900*****************~******~***~******~***.*********~********~****** 
007000 STEP-6. 

62 007100 READ FILE-2 RECORD INTO WOKK-RECoRo 
63 007200 AT E NO GO TO STEP-B. 

007300 STEP-7. 
64 007400 IF No-OF-DEPENDENTS IS EQUAL TO "0" 
65 007500 MOVE "Z" TO NO-OF-DEPENDENTS. 
66 007600 GO TO STEP-6. 

007700 STEP-8. 
67 007800 CLOSE FII..E-2. 
68 007900 STQP RUN. 

Figure 8-3. Source Listing 

Chapter 8. Creating and Executing Programs 8-19 



Verb Usage by Count Listing 

Figure 8-4 shows the alphabetic list that is produced of all verbs used in the J 
source program. A count of how many times each verb was used is also 
included. This listing is produced when the VBSUM option is specified. 

COBOL VERB U:iAGE BY COU"T TESTPR 

VERB COUNT 

ADD 2 
CLOSE 2 
DISPLAY 
GO 2 
IF 
MOVE 5 
OPEN 2 
PERFORM 1 
READ 
STOP 
WRITE 

Figure 8-4. Verb Usage by Count Listing 

Data Division Map 

The Data Division map, Figure 8-5, is listed when the MAP option is 
specified. The Data Division map contains information about names in the 
COBOL source program. The number of bytes required for the File Section 
and Working-Storage Section is given at the end of the Data Division map. 
Figure 8-5 displays the following fields: 

Statement number: The compiler-generated statemento J 
number where the data item was defined is listed for each 
data item in the Data Division map. 

Level of data item: The level-number of the data item. as 
specified in the source program, is listed here. Index-names 
are identified by an IX in the level-number and a blank type 
field. 

Source name: The data-name as specified in the source 
program is listed here. 

Section: The section in which the item was defined is o 
shown here through the use of the following codes: 

FS File Section 
WS Working-Storage Section 
LS Linkage Section 
SM Sort/Merge Section 
SR Special Register 

Displacement: The offset, in bytes, of the item from the 
level-Ol group item is given here. 

Length: The decimal length of the item is listed here. 

8-20 



Type: The data class type for the item is shown here 
through the use of the following codes: 

GROUP Group Item 

A Alphabetic 
AE Alphabetic edited 
AN Alphanumeric 
ANE Alphanumeric edited 
INDEX Index data item (USAGE INDEX) 
BOOLN Boolean 
ZONED Zoned decimal 
PACKED Packed decimal (COMP or COMP-3) 
BINARY Binary (COMP-4) 
NE Numeric edited 

G) 	 Internal name: The compiler-generated internal names are 
listed here and are assigned as follows: 

File-names 	 The internal name uses the form .Fnn, where .F indicates a 
file-name, and nn is a unique two-digit number. 

Data-names 	 The internal name uses the form .Dxxxxxx, where .D 
indicates a data-name or index-name, and xxxxxx is a 
unique six-digit hex value. These names appear on the PRM 

listing if generated. 

o Attributes: The attributes of the item are listed here as 
follows: 

• 	 For files, the following information can be given: 

Device type 
ORGANIZATION 

ACCESS MODE 
BLOCK CONTAINS information 
RECORD CONTAINS information 
LABEL information 
RERUN specified is indicated 
SAME AREA specified is indicated 
CODE-SET specified is indicated 
SAME RECORD AREA specified is indicated 
LINAGE specified is indicated. 

• 	 For data items, the attributes indicate whether the 
following information was specified for the item: 

REDEFINES 
VALUE 
JUSTIFIED 
SYNCHRONIZED 
BLANK WHEN ZERO 
SIGN IS LEADING 

SIGN IS LEADING SEPARATE 
SIGN IS SEPARATE 

INDICATORS. 

Chapter 8. Creating and Executing Programs 8-21 

L 



• 	 For table items, the dimensions for the item are listed 
here in the form dim ( ). For each dimension, a 
maximum OCCURS value is given. When a dimension is 
variable, it is listed as such, giving the lowest and 
highest OCCURS values. 

CUIOL ClATA 01'111 ';;( r)N ~AP T~_STPR 

SHU 

0 
18 

LVL 

CD 
FD 

SOURCE NA04E 

«I 
FILE-I 

Sc"CTIO'l 

0 
FS 

!.) I ~>p LEN., 0 
TYP~ 1-'lA,I4E• •.FOI 

ATT"n,UTES•DEI/ICE DISK. ORGANI ZA TI O"l SEOUENTIAL. 
ACCESS SEI)UcNT1AL, BLOCK CO"TAINS 20 
CHA,RACTE'~"i, nECQRD COI~TAINS 20 
CHARACTEJ,(5 • LA~f'L Wr::CJHDS STANDARD 

22 01 "ECORD-I F5 000000 20 GHO~P • 00053"4 
23 02 FIELD-A f'S 000000 20 A" .000:') 3£8 

24 FD FILE-2 Fe, • F02 D':V ICE L'15K. D"GA" I Z.6 TI ON 5EOUC:: NT [4L. 

ACCFSS SEQUE"l TI AL. BLllC:K CONTAINS 20 
CHARACTER:S. QECORD CONTAINS ?O 
CHARAcr~~s. LAflEL RF:.CO-lDS STANDARD 

26 01 RECORD-2 Fe; 000000 20 G!~OUP .nOO54E4 

29 02 FIELO-A fCS 00000) 20 A" .0005538 

31 01 FILLER wS 000000 56 G~UUP • DO 055132 
32 02 KDUNT .S OOuooo pOCKED .r)OOS5l>4 

33 02 ALPHAB€T oS oooao" 2~ A!'. • ,)OQS636 VALUf 

34 02 ALPHA ... s 000002 I A'I .DOO56Q 2 PE:JEFINE5 .0005636. DI:'4ENSION(26) 
35 02 NUMBR hS OOQOZH PACKED .(>005712 
36 02 DEPENDENTS ., 0000'0 26 '" .COO~~714 VALUE 
37 02 DEPEND '4'5 ooon 30 I ,,'I .000S7~t:. ;) O::DEF t NES .000':>774. f'I"f'NSIONI26J 
40 01 WORK-RECORD .5 000000 21 ::it=' '],JP .D005U4E 

41 02 NA~E-F I ELO .5 ooo~o~ I A~ .1'~0::'8~6 

42 02 FILLER .. 5 000001 1 A'I .OO058FC I/ALUE 
43 02 QECORD-N:l _s OJO') 02 'i lilNC;:C .. [1005956 

44 02 FILLER 0/5 000007 1 A", .OO059'lE I/ALUE 
45 02 LOCATION .S OoonO>3 A .DOO5AP3 VALUE 

46 02 FILLER ',,5 0000 II AN .. DOO5A7F VALUE 
47 02 No-aF-DE~ENOEr,TS w'> 0000 I? 2 A1'1 .UOQ::'AOcl 

48 02 FILLER ",5 000014 7 AN .0'1058J4 I/ALUE 

FILE SECT ION USES 40 dYTE" OF STO.,.GE 
.ORKING-STORAGE SECTION USES 77 qYTES OF STO~AGE 

Figure 8-5. Data Division Map 

FIPS Messages 

The PIPS messages, Figure 8-6, are listed when the PIPS option is 
specified. Only messages for the requested PIPS level and above are listed. 
Figure 8-6 displays the following fields: 

8-22 

http:STO.,.GE


COBOL F IPS '''~SS4GE5 TE'iTPR 

FXTENSIU~S. 

FIPS-IO DESCRIPT10N AND SEQIJENCE NUMBERS FLAGGED 

CD 
CBL8200 FOLLOWI~G ITE"'S ONLY V~LIO AT FIPS LEVEL 2 r)R HIGHt-:-:(:. 

CBL8201 COPY ST" TE M!:NT • 
38 

CBLB300 FOLLOWING ITE"'1S 'lJ4L111 ONLY A.T FIPS LEVFL , OR Ht::iHf:.:1. 

CBL8302 Pt-URAL FORM OF FtGUR"TIVL CONSTANTS USED. 
48 

CBL8303 DATE-COMPILED PARAGRAPH. 
7 

CBL83SQ UNTIL PHRASE OF PEKFORM STATEMENT. 
S9 

CBL8S00 FOLLOWING ITE~S ARE IMPLE~ENTOR-D~FIN~D Oq ARE Irl~ 

CBL8S04 ASSIGN TO SYSTEM-NA~E-l CLAUSE OR SYSTEM-NA4~ CLAlJSE. 
14 IS 

CBL8S06 FILLER USED AS GROUP ITE~. 

3\ 
CBUIS\ B USAGE IS CQMPUTATIQNAL-3. 

32 3S 
CBL8S6\ COpy STATEMENT WITH DF-FAULT LIBRARY ASSU'''f.:..D. 

38 

\0 FIPS VIOLATIONS FLAGGEO. ~ 

Figure 8-6. FIPS Messages 

FIPS-10: This field lists the FIPS message number. 

Description and reference numbers flagged: This field lists a 
description of the condition flagged, followed by a list of the 
reference numbers from the source program where this 
condition is found. The type of reference numbers used, and 
their names in the heading (shown as SEQUENCE NUMBERS 
in this listing) are determined by an option specified in the 
CRTCBLPGM command or in the PROCESS statement, as 
shown in the following table. 

Option Heading 
NONUMBER DESCRIPTION AND SEQUENCE NUMBERS FLAGGED 
NUMBER DESCRIPTION AND USER-SUPPLIED NUMBERS FLAGGED 
LINENUMBER DESCRIPTION AND LINENUMBERS FLAGGED 

Items grouped by level: These headings subdivide the FIPS 
messages by level. 

FIPS violations flagged: The total number of FIPS 
violations flagged is included at the end of the FIPS listing. 

Cross-Reference List 

The cross-reference list, Figure 8-7, is produced when the XREF option is 
specified. It provides a list of all data references and procedure-name 
references, by statement number, within the source program. Figure 8-7 
displays the following fields: 

Chapter 8. Creating and Executing Programs 8-23 

L 



C'JBOL CROSS RfFFR=NCE LISTING TESTPR 

NAMES 1* 

" ALPHA 

PROCEDURE-NAME) OEF[N£D R!cFERENCES• • 34 54 

( * : CHANGED) 

ALPHABET 33 34 
~BEGIN 50 

DEPEND 37 55 
DEPE"IDENTS 36 37 

*DUMMY-SEC T I ON 50 
FIELD-A 23 
FIELD-A 29 
FILE-I III 14 50 60 
FILE-2 24 15 61 6? 67 
KOUNT 32 51* 52* 54 55 59 
LOCATION 45 
NAME-FIELD 41 54* 
No-OF-DEPENOENTS 47 55* 64 65* 
NUNBR 35 5\* 53* 56 
RECORD-NO 43 56* 
RECORD-I 22 21 58* 
RECORD-2 2B 27 

~STEP-I 50 
~STEP-2 52 59 
OSTEP-3 57 5~ 

OSTEP-4 59 
OSTEP-5 60 
OSTEP-6 62 66 
OSTEP-7 64 
~STEP-8 67 63 

WORK-RECORD 40 57 58 62* 

Figure 8-7. Cross-Reference List 

Names field: The data-name or procedure-name referenced 
is listed here. All procedure-names are flagged with an * 
before the name. The names are listed alphabetically. 

o Defined field: The statement number where the name was 
defined within the source program is listed here. 

References field: All statement numbers are listed in the 
same sequence as the name is referenced in the source 
program. An * following a statement number indicates that 
the item was modified in that statement. 

Messages 

Figure 8-8 shows the messages that are generated during program 
compilation. The fields displayed are: 

8-24 



• • • 
COBOL MESSAGES TE STPR 

STNT SEaNBR NSGIO SEV TEXT 

0 .. 43 +000400 C!lL1242 30 '5' USED INCORRECTLY I~ PICTURE. ASSU~ED 59(5,.
.. 50 004500 OlL033S 00 E~PTY PARAGRAPH OR SECTION PRECEDES .ST~P-l. PARAGRAPH O~ SECTION • 
.. 54 005300 CBLOOIO 10 ·~OVE· INVALID IN AREA A. ACCEPTED AS IF [N AREA 8. 


MESSAGE SUM ... ARY 

GTOTAL INFOI0-4' "ARNINGI5-I9' ERROR(20-2<)) SE\lE'RE' 130-39 , TERMINAL(40-99' 
3 I I o 1 o 

79 SOURCE RECORDS READ 
9 COPY RECORDS READ 
1 COPY NEMBERS PROCESSED 
o SEQUENCE ERRORS 
30 WAS TH: HIGHEST SE\lERITY MESSAGE ISSUED 

Figure 8-8. Diagnostic Messages 

o Statement number: This field lists the compiler-generated 
statement number associated with the statement in the 
source program for which the message was issued. 1 

Reference number: The reference number is issued here'! 
The numbers that appear in this field and the column 
heading (shown here as SEQNBR) are determined by an 
option specified in the CRTCBLPGM command or in the 
PROCESS statement, as shown in the following table. 

Option Heading Origin 
NONUMBER SEQNBR Source file sequence numbers 
NUMBER NUMBER Standard COBOL sequence numbers
LINENUMBER LINNBR Compiler generated sequence numbers 

When a message is issued for a record from a copy file, the 
number is preceded by a + or a -. 

MSGID and Severity Level: These fields contain theo 
message number and its associated severity level. Severity 
levels are defined as follows: 

00 Informational 
10 Warning 
20 Conditional 
30 Severe 
40 Unrecoverable 

Message: The message identifies the condition ando 
indicates the action taken by the compiler. 

The statement number and the reference number do not appear on certain 
messages that reference missing items. For example, if the PROGRAM-ID 
paragraph is missing, message CBL0031 appears on the listing with no 
statement or reference number listed. 

Chapter 8. Creating and Executing Programs 8-25 



o Message statistics: This field lists the total number of 
messages and the number of messages by severity level. 

The totals listed are the number of messages generated for 
each severity by the compiler and will not always be the 
number listed. For example, if FLAG (10) is specified, no 
messages of severity less than 10 are listed. However, the 
counts will indicate the number that would have been 
printed if they had not been suppressed. 

How to Execute a COBOL Program 

There are many ways to execute a COBOL program depending on how the 
program is written and who is using the program. See the CPF 
Programmer's Guide for the various ways to execute a COBOL program. 
The three most common ways are through: 

• A control language CALL statement or the COBOL CALL statement 

• An application-oriented menu 

• A user-created command. 

A control language CALL statement can be part of a batch job, entered 
interactively by a work station user, or included in a CL program. An 

ehxample offa cOCnOtBroOILlanguage CAhLL ~tatelmlednt iSd ChALL PAYROLdL. APCaYOrBoiolLis .J... 
t e name 0 a program t at IS ca e an t en execute . 
program can call another program with the COBOL CALL statement (see 
Chapter 6). Another way to execute a COBOL program is through an 
application-oriented menu. The work station user can request an 
application-oriented menu and then select an option that will call the 
appropriate program. The following is an example of an 
application-oriented menu: 

PAYROLL DEPARTMENT MENU 

1. Inquire into employee master 

2. Change employee master 

3. Add new employee 

4. Return 

Option:_ 

This menu is normally displayed by a control language program in which 

each option calls a separate COBOL program. When a COBOL program is 

ended, the system returns control to whoever called the program. This.\.' 

could be a work station user, a CL program (such as the menu handling ..." 

program), or another COBOL program. 


8·26 




You can also create a command yourself to execute a COBOL program by 
using a command definition. Refer to the CPF Programmer's Guide for 
information on using the command definition. For example, you can create 
a command, PAY, which calls a program, PAYROLL. A user-created 
command can be entered into a batch job, or it can be entered interactively 
by a work station user. 

If a COBOL program terminates abnormally during execution, the escape 
message CBE9001 is issued. A control language program can monitor for 
this exception by using the MONMSG (Monitor Message) command. 

If a program terminates other than by a STOP statement or falling through 
to the end of the program, the return code is set to 2. See the RTVJOBA and 
DSPJOB commands in the CL Reference Manual for more information about 
return codes. 

When the user is executing a batch job that uses the ACCEPT statement, the 
input data is taken from the job stream. The data must be placed 
immediately following the CL CALL for the COBOL program. It is the 
user's responsibility not to request (through ACCEPTs) more data than is 
available. If more data is requested than is available, the CL statement 
following the data is treated as input data. 

Programming Note: If more data is requested than is available, 
unpredictable results can occur. 

When the user is executing a batch job that uses the ACCEPT statement, the 
input data is taken from the job stream. The data must be placed 
immediately following the CL CALL for the COBOL program. It is the 
user's responsibility to request (through ACCEPTS) the same amount of data 
as is available. 

Programming Note: If more data is requested than is available, the CL 
statement following the data is treated as input data. 

If more data is available than is requested, each extra line of data is treated 
as a CL command. 

In either of the above cases, undesirable results can occur. 

Chapter 8. Creating and Executing Programs 8-27 



8-28 




Chapter 9. Programmer's Guide Information 

This chapter describes: 

• 	 The device-independent and device-dependent characteristics of COBOL on 
Systemf38. 

• 	 System/38 spooling functions. 

• 	 Level checking functions. 

• 	 File and record locking considerations. 

• 	 Unblocking and blocking records to improve performance. 

• 	 Multiple member processing. 

• 	 System override considerations. 

• 	 General information about the use of externally described files and program 
described files in the COBOL program. 

• 	 COBOL functions that relate specifically to a COBOL PRINTER device, and 
an MFeU device. Special considerations for 0 I SK devices are also discussed. 

• 	 Commitment control considerations. 

• 	 General programming considerations. 

• 	 Recovery after a failure. 

• 	 Inter-Program Communications considerations. 

• 	 General information about the local data area available to a COBOL 
program. 

• 	 File considerations. 

Chapter 9. Programmer's Guide Information 9-1 



Device Independence/Device Dependence 


The key element for all 1-0 operations on System/38 is the file. All files used on 
the system are defined to CPF. CPF maintains a description of each file that is 
accessed by a program when the file is used. 

The files are kept online and serve as the connecting link between a program and 
the device used for 1-0. The actual device association is made when the file is 
processed. In some instances, this type of 1-0 control allows the user to change 
the attribute of the file (and, in some cases, change the device) used in a program 
without changing the program. 

In System/38 COBOL, the System/38 file name specified in the ASS I GN clause of 
the file control entry, rather than the device name specified, is used to point to the 
file. The System/38 file name points to the CP F file description: 

COBOL Program FILEX 

SELECT System/38 file name 
DEV(QCARD96l MFCU

ASSIGN TO READER-FILEX 

The COBOL device name in the ASSIGN clause defines the COBOL functions that 
can be performed on the selected file. At compilation time, certain COBOL 
functions are valid only for a specific COBOL device name; therefore, in this 
respect, COBOL is device dependent. The following are examples of device 
dependency: 

• SUBFILE operations are valid only for a WORKSTATION device. 

• Indicators are valid only for WORKSTATION or FORMATFI LE devices. 

• LINAGE is valid only for the PRINTER device. 

• Stacker select is valid only for the MFCU. 

• OPEN INPUT WITH NO REWIND is valid only for a TAPEFILE device. 

In the preceding example, stacker select specifications are valid in the program 
because the device name is READER. 

For another example, assume that the file name FILEY is specified in the COBOL 
program with the FORMATFILE device. The device FORMATFILE is an 
independent device type; therefore, no line or page control specifications are valid 
in the COBOL program in the WRITE ADVANCING statement. When the program 
is executed, the actual 1-0 device is specified in the description of FILEY; for 
example, the device might be a printer, in which case only the default line and 
page control or those defined in the DDS would be used: 

9-2 



FILEYr----- COBOL Program -----, 

SELECT COBOL·file·name 
DEV(OPRINT) Printer

ASSIGN TO FORMATFILE·FILEY 

C P F commands can be used to override a parameter in the specified file 
description (such as specifying hopper 2 for a card input file instead of the default 
of hopper 1) or to redirect a file at compilation time or execution time. File 
redirection allows the user to specify one file at compilation time and another file 
at execution time: 

Compile /'  FILEXTime ,( 
DEV(OCARD96)COBOL Program I 

I 
SELECT COBOL·file·name / 


ASSIGN TO READER·FILEX 
 Override Command: 

OVRDKTF FILE(FILEX) TOFILE(FILEA) 


FILEA Diskette
Execution 


DEV(ODKT)
Time o 

In the preceding example, the Override to Diskette File command (OVRDKTF) 
allows the program to execute with an entirely different device file than was 
specified at compilation time. 

Not all file redirections or overrides are valid. At execution time, checking 
occurs to ensure that the specifications within the COBOL program are valid for 
the file being processed. CPF allows some file redirections even if device specifics 
are contained in the program. For example, if the COBOL device name is 
PRINTER and the actual file the program uses is not a printer, CPF ignores the 
COBOL print spacing and skipping specifications. 

There are other file redirections that CP F does not allow and that cause program 
termination. For example, if the COBOL device name is DATABASE or DISK and 
a keyed READ operation is specified in the program, the program is terminated if 
the actual file the program uses is not a disk or data base file. In addition, 
associated card files cannot be redirected because the compiler uses a single 
operation (PUTGET) to punch one record and read the next. This operation is 
valid only to a card device capable of both reading and punching. 

See the CPF Programmer's Guide for more detailed information on valid file 
redirections and file overrides. 

Chapter 9. Programmer's Guide Information 9-3 



Spooling 


Output Spool 

Input Spool 

System/38 provides for the use of input and output spooling functions. Each 
System/38 file description contains a spool attribute that determines whether 
spooling is used for the file at execution time. The COBOL program is not aware 
that spooling is being used. The actual physical device from which a file is read 
or to which a file is written is determined by the spool reader or the spool writer. 
Associated card files in COBOL must not be spooled, or results are unpredictable. 
See the CPF Programmer's Guide for more detailed information on spooling. 

Output spooling is valid for batch and interactive jobs. The description of the file 
that is specified in COBOL by the system-name contains the specification for 
spooling as shown in the following example: 

COBOL Program ---  OPRINT Output 
File Oueue 

SELECT COBOL-file-name SPOOL(*YES)
ASSIGN TO PRINTER-OPRINT OUTO(OPRINT) OPRINT 

.. 
Execution Time 

Print 

Writer 


Print { 

Writer Time 


File override commands can be used at execution time to override the spooling 
options that are specified in the file description, such as the number of copies to 
be printed. In addition, System/38 spooling support allows a user to redirect a 
file after the program has executed. For example, the user can direct the printer 
output to a different device, such as a diskette. 

Input spooling is valid only for inline data files in batch jobs. If the input data 
read by COBOL comes from a spooled file, COBOL is not aware of which device 
the data was spooled in from. 

The data is read from a spooled inline file: 

9-4 



MFCU 
,...--- COBOL Program FILEA 

SELECT COBOL-file-name DEV(OCARD96) 


ASSIGN TO READER-FILEA SPOOL(*YES) 


See the CPF Programmer's Guide for more information on inline data files. 

Level Checking 

When a COBOL program uses an externally described file, System/38 provides a 
level check function. This function ensures that the format has not changed since 
compilation time. 

COBOL always provides the information required by level checking when an 
externally described file is used (when a record description was defined for the file 
by using the COPY statement, DDS or DD format). Only formats that are copied by 
the COPY statement, DDS or DD format, under the FD for a file are level checked. 
The level check function can be requested on the create, change, and override file 
commands. The default on the create file command is to request level checking. 
If level checking was requested, level checking occurs on a record format basis 
when the file is opened. If a level check error occurs, COBOL sets a file status of 
90 at OP EN time. 

If an existing format is used in a new file, any existing COBOL programs that use 
that format can still be used (assuming that no other conflicts such as a change of 
keys exist) without recompilation. 

COBOL does not provide level checking for program described files. 

For more information on how to specify level checking, see the CL Reference 
Manual. 

File and Record Locking by COBOL 

CP F allows a lock state (exclusive, exclusive allow read, shared for update, shared 
no update, or shared for read) to be placed on a file used during a routing step. 
The file can be allocated in such a manner with the Allocate Object (ALCOBJ) 
command. (For more information on allocating resources and the lock states, see 
the CPF Programmer's Guide.) 

Chapter 9. Programmer's Guide Information 9-5 



If an ALCOBJ command is not used for a routing step, COBOL places the 
following lock states on data base files when it opens the files: 

OPEN Type Lock State 

INPUT Shared-for-read 
1-0 Shared-for-update 
EXTEND Shared-for-update 
OUTPUT Shared-for-update 

The shared-for-read lock state allows another user to open the file with a lock 
state of shared-for-read, shared-for-update, shared-no-update, or 
exclusive-allow-read, but the user cannot specify the exclusive use of the file. The 
shared-for-update lock state allows another user to open the file with 
shared-for-read or shared-for-update lock state. 

In order for programs to share a data base file, the file must be opened by the 
first program (the program with the highest invocation in the stack) for the 
maximum amount of functions to be performed by any subsequent programs that 
share the same file. If a subsequent program requests a function that was not 
specified by the first program, an abnormal termination occurs. 

COBOL places an exclusive-allow-read lock state on device files. Another user can 
open the file with a shared-for-read lock state. 

The lock state placed on the file by COBOL can be changed if you use the 
ALCOBJ command. 

Releasing a Record Read for Update 

When a data base record is read by COBOL and the file is opened for 1-0, a lock 
is placed on that record so that it is not available to another program. COBOL 
releases the record from its locked state when the next successful 1-0 operation 
occurs. No special action is required to release a record from its locked state if 
the record does not require any changes. If a requested record is already locked 
by another program, a file status of 9D is returned. 

Unblocking Input Records and Blocking Output Records 

To potentially improve the performance of input and output operations, the 
COBOL compiler generates code to unblock input records and block output 
records if all of the following conditions exist: 

• ACCESS IS SEQUENTIAL is 1!pecified for the file. 

• The file is opened only for I NPUT or OUTPUT in that program. 

• The file is assigned to DISK, DATABASE, DISKETTE, or TAPEFILE. 

• No START statements are specified for the file. 

9-6 



Even when all of the above conditions are met, certain CP F restrictions can cause 
blocking and unblocking to not be performed. In these cases, performance 
improvements will not be realized. 

The I-O-FEEDBACK area is not updated after each read or write for files in which 
multiple records are blocked and unblocked by COBOL. See "I-O-Feedback" in 
Appendix I for more information. 

For data base files, you may not see all changes as they occur, if the changes are 
made in different programs. For a description of the effect of blocking on 
changes to data base files, see the discussion on sequential-only processing in the 
CPF Programmer's Guide. 

Multiple Member Processing 

Multiple member processing can be accomplished for a data base file, by 
overriding a data base file to process all members. 

System Override Considerations 

Any overrides must be specified before the file is opened by the COBOL program. 
The system uses the file override command to determine the file to open and the 
attributes of the file. 

The simplest form of overriding a file is to override some attributes of the file. 
For example, FILE<OUTPUn with COPIES(2) is specified when a printer file is 
created. Then, before the COBOL program is executed, the number of printed 
copies of output can be changed to 3. The override command is as follows: 

OVRPRTF FILE(OUTPUT) COPIES(3) 

Another form of file overriding is to redirect the COBOL program to access a 
different file. When the override redirects the program to a file of the same type 
(such as a printer file to another printer file), the file is processed in the same 
manner as the original file. 

When the override redirects the program to a file of a different type, the 
overriding file is processed in the same manner as the original file would have 
been processed. However, device dependent specifications in the COBOL 
program are ignored and the defaults are taken by the system. 

Not all file redirections are valid. A COBOL associated card file can only be 
overridden to another associated card file. An indexed file for a COBOL program 
can only be overridden to another indexed file with a keyed access path. A data 
base source file used for a COBOL program, cannot be overridden to process all 
members. Specifying OVRDBF MBR (*ALl) will result in the termination of the 
compile. A data base file used for a COpy statement, cannot be overridden to 
process all members. Specifying OVRDBF MBR (*ALl) will cause the COpy 
statement to be ignored. 

Chapter 9. Programmer's Guide Information 9-7 

L 



---------------------------------

It is the COBOL programmer's responsibility to ensure that file overrides are 
applied properly. For more information on valid file redirections, the device. "\.~~ 
dependent characteristics ignored, and the defaults assumed, see the CPF ...., 
Programmer's Guide. 

Externally Described/Program Described Files 

All files on System/38 are defined to CPF. However, the extent to which files can 
be defined differs: 

• 	 An externally described file is described at the field level to CPF through DDS. 
The description includes information about the type of file, such as data base 
or a device, and a description of each field and its attributes. 

• 	 A program described file is described at the field level within the COBOL 
program in the Data Division of the COBOL program. The description of 
the file to CPF includes information about the type of file and the length of 
the records in the file. 

Both externally described files and program described files must be defined in the 
COBOL program within the INPUT -OUTPUT SECTION and the FILE SECTION. 
However, record descriptions in the F I L E SECT ION for externally described files 
can be defined with the DDS format of the COBOL COPY statement. (For more 
information on the COPY statement, DO or DDS format, see Chapter 6.) 

Note: Actual file processing within the Procedure Division is the same, whether J 
the file is externally described or program described. 

Externally described files offer the following advantages: 

• 	 Less coding in COBOL programs. If the same file is used by many programs, 
the fields can be defined once to C P F and used by all the programs. This 
eliminates the need to code record descriptions for COBOL programs that use 
externally described files. 

• 	 Less maintenance activity when the file's record format is changed. The user 
can often update programs by changing the file's record format and then 
recompiling the programs that use the files without changing any coding in 
the program. 

• 	 Improved documentation because programs using the same files use consistent 
record fornlat and field names. 

Device-dependent functions such as stacker selection or forms control are not 
extracted by the COPY DDS operation. Only field level descriptions are extracted. 
When EXTERNALLY-DESCRIBED-KEY is specified as RECORD KEY, the field(s) that 
compose RECORD KEY are also extracted from DDS. 

If the user chooses, he can use an externally described file within the program by 
specifying the file as program described (specifying the coding for the record 
description in the source). In this case, the compiler does not copy in the external 
field-level description of the file at compilation time. This approach can be used 

9-8 



D 
COBOL / 

Externally B 
C~OL 

Program Program II Externally 
Described Described Described Described 
File. e.Fil The File File. 
COpy DDS mpilerco COpy DDS 
or COpy DD does not or COpy DD 

used in copy in the used in 
COBOL fie Id-Ievel COBOL 
program. description. program. 

COBOL 

in conversion where existing programs use program described files and new 
programs use externally described files to refer to the same file. 

Figure 9-1 shows some typical relationships between COBOL programs and files 
on System/38. 

CPF CPF 	 CPF 

Field·Level Record- Level Field-Level 

Description of Description of Description of 

a File a File a File 

D 	 The COBOL program uses the field level description of a file that is defined to CPF. The 
COBOL user coded a COpy statement, DDS or DO format, for his record description. At 
compilation time, the compiler copies in the external field-level description and translates it 
into a syntactically correct COBOL record description. The file must exist at compilation time. 

fJ 	 An externally described file is used as a program described file in the COBOL program. The 
entire record description for the file is coded in the COBOL program. This file does not have to 
exist at compilation time. 

II 	A file is described to CPF only to the record level. The entire record description must be 
coded in the COBOL program. This file does not have to exist at compilation time. 

D 	 A file-name can be specified for compilation time, and a different file-name can be specified for 
execution time. A COBOL COpy statement, DDS or DO format, generates the record description 
for the file at compilation time. At execution time, a different library list or a file override 
command can be used so that a different file is accessed by the program. The file description 
copied in at compilation time is used to describe the input records used at execution time. 

Note: For externally described files, the two file formats must be the same. Otherwise, a level check 
error will occur. 

Figure 9-1. Typical Relationships between COBOL and the Files on System/3S 

By using the COBOL COPY statement, DDS or DO format, the user can generate a 
record description for a COBOL file from the record format for a different file. 
An override command is unnecessary. The following example shows an 
application where the file actually processed is the MFCU card device, QCARD96, 
but the record description for that file is generated from the record format for the 
file FMTl. To do this, the user: 

• Defines a physical file named FMT 1 that has one record format containing the 
description of each field in the record format. The record format is defined 

Chapter 9. Programmer's Guide Information 9-9 

L 



on data description specifications (DDS). The externally described file should 
contain only one record format for a card device. J 

• 	 Creates the file named FMTl with a CPF Create Physical File command. 

• 	 Specifies the file-name of QCARD96 (the IBM-supplied device file name for the 
MFCU) in his COBOL program; uses the COBOL COpy statement, DDS 
format, to create the record description; and specifies READER as the device. 

• 	 Creates the COBOL program using the CRTCBLPGM command. 

• 	 Calls the program at execution time. Because no file override is used at 
execution time for this program, the program then accesses the QCARD96 file: 

COBOL Program FMT1 


SELECT COBOL·file·name 

ASSIGN TO READER·QCARD96. 

FD COBOL·file·name ... 

01 COpy DDS·ALL·FORMATS 
OF FMT1. 

r;QCARD96~ 
READ COBOL·file·name ... ~EV(QCARD~ MFCU 

J 

Externally Described Files 

For externally described files, COpy statements, DDS or DD format, are used for 
coding the record description for the file. Therefore, the file must be created 
before the program is compiled. 

The external description for a file includes: 

• 	 The record format specifications that contain a description of the fields in a 
record 

• 	 Access path specifications that describe how the records are to be retrieved. 

These specifications result from the DDS for the file and the CP F create file 
command that is used for the file. 

9-10 



Record Format Specifications 

The record format specifications describe the fields in a record and the location of 
the fields in a record. The fields are located in the record in the order specified in 
DDS. The field description generally includes the field name, the field type 
(character, binary, zoned decimal, or packed decimal), and the field length 
(including the number of decimal positions in a numeric field). Instead of being 
specified in the record format for a physical or logical file, the field attributes can 
be defined in a field reference file (see Figure 9-2 and Figure 9-3). 

The keys for a record format are specified in DDS. When you use a COpy 
statement, DDS or DO format, a table of comments is generated in the source 
program listing showing how the keys for the format are defined in DDS. The 
entries that may appear in the table and the table heading are listed below. 

Heading Possible Entry 
NUMBER key field number 
NAME key field name 
RETRIEVAL ASCENDING, DESCENDINGTYPE ZONE, DIGIT, SIGNED, ABSVAL, 

AN (Alphanumeric), N (Numeric)ALTSEQ 
NO, YES 

In addition, DDS keywords can be used to: 

• Specify edit codes for a field (EDTCDE) 

• Specify edit words for a field (EDTWRD) 

• Specify that duplicate key values are not allowed for the file (U NI QU E) 

• Specify a text description for a record format or a field (T EXT). 

See the CPF Reference Manual-DDS for a complete list of the DDS keywords 
that are valid for a data base file. 

Any editing that is to be performed on externally described output files is 
specified in DDS. 

Figures 9-2 and 9-3 show an example of the DDS for a data base file and for a 
field reference file that defines the attributes for the fields used in the data base 
file. See the CPF Programmer's Guide for more information on a field reference 
file. 

Chapter 9. Programmer's Guide Information 9-11 



DATA DESCRIPTION SPECIFICATIONS 

File 

PTogr.mrner Date 

I 
~ 

Conditioning 
LOCItion 

Condition Nlme 

~ ~,,-,.-~~ ~~ U~h ~ Functions 

~ ~ ~I ~ §. ~ 

Hili!i!iJ i hiluM~' 
1 2 3 4 5 8 7 • 9 10 11 12 13 14 15 11 17 8 19 20 21 2223 24 25 21 27 28 29 031 3233 34 35 J8 37 38 38 40 41 42 43 .... 46 ... 47 .. 48 50 51 52 r.J 54 Mi 5& 57 18 59 60 81 82 83 .. 1JI5. 87 88 ea ':'0 11 n 73 74 757t1 77 78 79 SO 

PF1LE(CUSt1.SfP) 

. .' . . , . , . ' .. .. . . .' 

The sample data description specifications (DDS) are for the customer master logical file CUSMSTL. 
The file contains one record format CUSREC (customer master record). The data for this file is 
contained in the physical file CUSMSTP, which is identified by the keyword PFILE. The UNIQUE 
keyword is used to indicate that duplicate key values are not allowed for this file. The CUST field is 
identified by a K in position 17 of the last line as the key field for this record format. 

The fields contained in this record format are listed in the order they are to appear in the record. 
The attributes for the fields are obtained from the physical file CUSMSTP. The physical file, in turn, 
refers to a field reference file to obtain the attributes for the fields. The field reference file is shown 
in Figure 9-3. 

Figure 9-2. Example of the Data Description Specifications for a Data Base File 

9-12 



• • •• 

• • 

GX21-77&4-' UMI050'DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A. 

ofFile IO'....;pI;on 

Programmer Dot. 

~ 
Conditioning 

~ 
 Loanion 


Condition Nllme § 
~ 0 

Sequence ~ ~ Heme Length ~ - Functions 

Number ......... <~ ~ 


I ~ ~. ~ 
~8 ~ 0 UM ~ 

",~-zo_::-S"" '" . • . '"1 C ~ . '!l .. c~ 
E~=~~~~_~! ~ ;~:~.
of ol: ~ :¥ ~ ~ ~ ~ ! 	 a: l! 15;:5 

, :2 3 .. 5 8 7 8 9 10111213141518 7 81920 2122232<425262728 29 0313233 J4 3538 37 38 39 4041 2.3444648 47 484950515253 54 55565758 596061 8263648666818889 7071 72 73 74 7578 77 78 7980 

• 

A \)~TRJ:.F 
: ... : : - . -A 	 . 

~ASDP,l b <1 EDTC DE t'f 'L 	 • :. f--D: 
Allf FI ELO 5 lAS 	 o .~'i. C I)S ""0 MeR MA STE:~ ~]LE : • : 

GUST S 
-fJ: 

Ii'IA-ME 20r---IJ A 
A ~DOi<:: R 

r-' 	 A 

A C.I.TY ~ 
A 

IsTA-1"'~ 1.=fJ	 A 
A ILOL~D~/ LS-t<\T;e.') _ 
A 	 ISR~LOP 
A "-

A 

--fJA 12..1.!' 	 :> .fP C.~C~(HA\ : :. - . - • : • 
-' 	A . : : . 

=DA Vu~,."p .i t 
A~ 
A 


_'_, A 

g 

A I&OTc..o.6{J) . . _. . 
r-DA b~D~Aj. &' 
-' A (O~D:6L' AIR A""'-t:;n.' "O"'~IL'" F; Ie' ) 

A 

_II A ~R~AL 	 2 

L-STAI'IT R 

A 

A 


:A 	 . . . . : .: :::. 
A 	 . - - . 
A 

. .: - A - . - . 
A : 	 : . : - . : 
A 	 : .. 

: .. . - . .. .: '. . 
.A • • • 	 - . : 

-

-Number of sheets per pad may varY slightly 

Figure 9-3 (Part 1 of 2), Example of a Field Reference File 

• • 

- . 

- -

· 
-

Go.Ac. / -) 

R..6rtJ6E(.l 5 1 • 

;",AIP. ,) : 

Chapter 9. Programmer's Guide Information 9-13 



• • 

· ! • 
•••• 

· · . 
! G.fOL.M'T 

· .~ 
· . 

~ 

• 
SWS,{IC! 

! •• 

· 
.. 

• 

5U;LY4Z 
..• 

" .. 
• 

! 

· 
~ 

• 

Iii: to 
· 

~+ 

• • 

2 

.'2 

· . . 

· 

GX21·1754-1 UMI05O'DATA DESCRIPTION SPECIFICATIONS 
I~ ~in:inUUIJ 

Key.." 
Instruction 

• 

Conditioning 

· 	

Fl,.lnC1ionl 

USTDA'T IR 

This example of a field reference file shows the definitions of the fields that are used by the CUSMSTL 
(customer master logical) file, which is shown in Figure 9-2. The field reference file normally 
contains the definitions of fields that are used by other files. The following text describes some of 
the entries for this field reference file. 

D The BAS OAT field is edited by the Vedit code, as indicated by the keyword EDTCDE (Y). If this J 
field is used in an externally described output file for a COBOL program, the COBOL-generated 
field is compatible with the data type specified in the DDS. The field is edited when the record is 
written. When the field is used in a program described output file, compatibility with the DDS 
fields in the file is the user's responsibility. When DDS is not used to create the file, appropriate 
editing of the field in the COBOL program is the user's responsibility. 

fJ 	 The CHECK(MF) entry specifies that the field is a mandatory fill field when it is entered from a 

display work station. Mandatory fill means that all characters for the field must be entered 

from the display work station. 


II 	The ADDR and ClTV fields share the same attributes that are specified for the NAME field, as 

indicated by the REFFLD keyword. 


D 	 The RANGE keyword, which is specified for the CUSTYP field, ensures that the only valid numbers 

that can be entered into this field from a display work station are 1 through 5. 


o 	The COLHDG keyword provides a column head for the field if it is used by the Interactive Data 

Base Utilities (I DU). 


rJ 	 The ARBAL field is edited by the J edit code, as indicated by the keyword EDTCDE(J). 

o 	A text description (TEXT keyword) is provided for some fields. The TEXT keyword is used for 

documentation purposes and appears in various listings. 


Figure 9-3 (Part 2 of 2). Example of a Field Reference File 

9-14 



Access Path 

The description of an externally described file contains the access path that 
describes how records are to be retrieved from the file. Records can be retrieved 
based on an arrival sequence (non keyed) access path or on a keyed sequence 
access path. 

The arrival sequence access path is based on the order in which the records are 
stored in the file. Records are added only to the end of the file. 

For the keyed sequence access path, the sequence in which records are retrieved 
from the file is based on the contents of the key field(s) that is defined in the DDS 
for the file. For example, in the DDS shown in Figure 9-2, CUST is defined as the 
key field. The keyed sequence access path is updated whenever records are added, 
deleted, or the contents of a key field change. 

See the CPF Programmer's Guide for a complete description of the access paths 
for an externally described data base file. 

Record Keys and Common Keys 

For a keyed sequence access path, one or more fields can be defined in the DDS 
to be used as the key fields for a record format. All record types in a file do not 
have to have the same key fields. For example, an order header record can have 
the ORDER field defined as the key field, and the order detail records can have the 
ORDER and LI NE fields defined as the key fields. 

The key for a file is determined by the valid keys for the record types in that file. 
The file's key is determined in the following manner: 

• 	 If all record types in a file have the same number of key fields defined in DDS 
that are identical in attributes, the key for the file consists of all fields in the 
key for the record types. (The corresponding fields do not have to have the 
same name.) For example, if the file has three record types and the key for 
each record type consists of fields A, B, and C, then the file's key consists of 
fields A, B, and C. That is, the file's key is the same as the records' key. 

• 	 If all record types in the file do not have the same key fields, the key for the 
file consists of the key fields common to all record types. For example, a file 
has three record types and the key fields are defined as follows: 

RECl contains key field A. 
REC2 contains key fields A and B. 
REC3 contains key fields A, B, and C. 

Then the file's key is field A, the key field common to all record types. 

• 	 If no key field is common to all record types, any keyed reference to the file 
will always return the first record in the file. 

In COBOL you must specify a RECORD KEY for an indexed file to identify the 
record you want to process. COBOL compares the key value with the key of the 
file or record, and performs the specified operation on the record whose key 
matches the RECORD KEY value. 

Chapter 9. Programmer's Guide Information 9-15 



When RECORD KEY IS EXTERNALLY-DESCRIBED-KEY is specified: 

• 	 If the FORMAT phrase is specified, the compiler builds the search argument 
from the key fields in the record area for the specified format 

• 	 If the FORMAT phrase is not specified, the compiler builds the search argument 
from the key fields in the record area for the first record format defined in the 
program for that file. 

Programming Note: For a file containing multiple key fields to be processed in 
COBOL, the key fields must be contiguous in the record format used by the 
COBOL program, except when RECORD KEY IS EXTERNALLY -DESCRI BED-KEY 
is specified. 

COBOL Specifications for Externally Described Files 

Data description specifications (DDS) are used to describe files at the field level 
to CPF. Each record format in an externally described file is identified by a 
unique record format name. Figure 9-4 shows an example of the DDS for a file 
with one record fonnat (one record type). 

The COBOL user can code a COpy statement, DDS format, of one of the 
following forms to have the external description retrieved: 

COPY DDS-CUSREC-I-O OF CUSMSTL. 

COPY DDS-CUSREC OF CUSMSTL. 

COPY DD-CUSREC OF CUSMSTL. 

The information from the external description is then retrieved by the COBOL 
compiler, and a COBOL data structure is generated. Figure 9-5 shows the 
COBOL code generated by the COpy statement, DDS format. 

Figure 9-6 shows an example of DDS with the Alias keyword. Figure 9-7 shows 
the COBOL code generated by the COpy statement, DD format. 

Actual file processing within the Procedure Division is the same for both program 
described and externally described files. 

J 


9-16 



GX21·1154-1 UMI050'II,., InttrnattoMl Bulin ... ,.hl".. Cofpor~ion DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A. 

ofFile 

Programmer Dote 

Conditioning 
locItion 

A US, . ; .. 
. t.lAMl:A 

; . ,;,
A: 	 ~DDR · ' 

· 	 A c.t.,-y ... ; , . . 
A ; S-rATc 

• 
V:tP 	

••~. :: . ,A 
. .." 	 ' .. A SIi?-:"C.O.!) 	 ; . . . . , · ; 

· 
. ; A 	 ; , ' ~A)Si'(P 	 . ~~ ~ ~ J~ ~ 

. ' , . 
; 

A ~RSAI. 	 ..l 
; 

; 
, 

A STAtf1 . 	
; 

A 	 O~OI1.AI. . 

· 	 ';.; , .. ; ;; .· 	 A L.SiP AT 
· 

A • 
CRDLM1' 	

• . ;•; . 	
• ;A 	 . . . ,~,L.S'<~ 	 , ..'. ;, . 

, · 	 •A '·c ;. 
, • 

1,,:I..S,-U. ; II, : • • 

• 	
•• ; .; 

; 	 , ;A III~ C.:I1ST • 
; : ' 	 .: jJ.:~. •.•. 

• 
•

'Number of sheets per pad may vary ,lightly~ 
D 	 A logical file for processing the customer master physical file (CUSMSTP) is defined and named 

CUSMSTL. 

fJ 	 The UN I QU E keyword indicates that duplicate key values for this file are not allowed. 

II 	One record format (CUSREC) is defined for the CUSMSTL file. 

D 	 The CUST field is identified as the key field for this file. 

III 	 If field attributes (such as length, data type, and decimal positions) are not specified in the DDS 
for a logical file, the attributes are obtained from the corresponding field in the physical file. 
Any field attributes specified in the DDS for the logical file override the attributes for the 
corresponding field in the physical file. The definition of the fields in the physical file could 
refer to a field reference file. A field reference file is a data description file consisting of field 
names and their definitions, such as size and type. When a field reference file is used, the same 
fields that are used in multiple record formats have to be defined only once in the field 
reference file. For more information on a field reference file, see the CPF Programmer's Guide. 

Figure 9-4. Example of Data Description Specifications 

Chapter 9. Programmer's Guide Information 9-17 

http:O~OI1.AI


01 CUS-MASTER. 
COPY DDS-CUSREC OF CUSTMAST-CUSLIB. J*1-0 FORMAT: CUSREC FROM FILE CUSTMAST OF LIBRARY CUSLI B CUSREC 

* CUSREC 
*THE KEY DEFINITIONS FOR THE RECORD FORMAT CUSREC 
*NUMBER NAME RETRI EVAL TYPE ALTSEQ
*0001 CUST ASCENDING AN NO 

05 CUSREC. CUSREC 
06 CUST PIC X(5). CUSREC 

* CUSTOMER NUMBER CUSREC 
06 NAME PIC X(20). CUSREC 

* CUSTOMER NAME& CUSREC 
06 ADDR PIC X(20). CUSREC 

* CUSTOMER ADDRESS CUSREC 
06 CITY PIC X(20). CUSREC 

* CUSTOMER CITY CUSREC 
06 STATE PIC X(2). CUSREC 

* STATE ABBREVIATION CUSREC 
06 ZIP PIC S9(5) COMP-3. CUSREC 

* ZIP CODE CUSREC 
06 SHRCOD PIC X(3). CUSREC 

* CUSTOMER NAME SEARCH CODE CUSREC 
06 CUSTYP PIC X(1). CUSREC 

* CUSTOMER TYPE CUSREC 
06 ARBAL PIC S9(8)V9(2) COMP-3. CUSREC 

* ACCT/REC BALANCE CUSREC 

Figure 9~5. Example of the Results of the COPY Statement, DDS Format 

Overriding or Adding COBOL Functions to the External 
Description 

In addition to placing the external file description in the program through the use 
of the COpy statement, DDS format, the user can also use standard record 
definition and redefinition to describe external files or to provide a group 
definition for a series of fields. It is the programmer's responsibility to ensure 
that program described definitions are compatible with the external definitions of 
the file. 

9-18 



•• 

] 

GX21-7754-1 UMI050' 
IB"1lntem.tiona, BUlin... Meehin. Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U.s.A. 

Dosedption 	 ofFile I 	 I~ 
Programmer Date 

Conditioning 

.. 	 Condition Name 

e..; (5 
Functions 


Number ......... ~ ~
1 ~ g:A ~ 


Sectuence _ ~ Name 

&8 & 0::::::: Line Pos 

.. > § ~-l:~


~~~~~~~~~j ! ~~-Jli 
of H ~ ~ ~ ~ ~ :Z! J 	 c3 .!2:50:

123456789101112'3'415'617 8'920212223242528272829 03132333435363738394041424344454647484950515253545556575859608182636466.6788.,07,12'3747&7877787980

A 1/1. LO 61 C/LL- ~U.5 /liST I.. CUSTO~ER fIIA-STER FILE'].]]],., .• ,] ••]:] •
. , , A ·
~.

, .]] A] R
, ,] • 	 A .

•] A

A]

·,

A

, • A
]

.] , 	 A . , .: ' '. "':.." •

.] 	 A]

A
] SRHCOO

A ·
· 	 ,cusrtP

,. A · ARBRL. , . ' ,
,· _ A · , ..

A .] U
A 	 L'6'TDR'T :

• •
· 	 ·

A R.DLI'IT .]

A

- SLSYR : 	 - _. .. :,:" . .: .' : .] :' . ,---'

]] 	 A , · : .. ,]]SLSVYR
, , . , . __ A]] J< 	 : :

-Number of "'"" per _ may vary IIlghtlv.

o The name associated with the Alias keyword, which will be included in the program,

Figure 9-6. Example of Data Description Specifications with Alias

Location

Length ~ -

· . IN IQ'uf ' • • •• • :] .: .' :'

INAME'

C.,I.TY

Chapter 9. Programmer's Guide Information 9-19

01 CUS-MASTER.
COpy DD-CUSREC OF CUSTMAST-CUSLIB.

*1-0 FORMAT: CUSREC FROM FILE CUSTMAST OF LIBRARY CUSLIB CUSREC
* *THE KEY DEFINITIONS FOR THE RECORD FORMAT CUSREC
*NUMBER NAME RETRIEVAL TYPE ALTSEQ
*0001 CUSTOMER-NUMBER ASCENDING AN NO

05 CUSREC. CUSREC
06 CUSTOMER-NUMBER PIC X(5). CUSREC

* CUSTOMER NUMBER CUSREC
06 CUSTOMER-NAME PIC X(20). CUSREC

* CUSTOMER NAME CUSREC
06 ADDRESS PIC X(20). CUSREC

* CUSTOMER ADDRESS CUSREC
06 CITY PIC X(20). CUSREC

* CUSTOMER CITY CUSREC
06 STATE PIC X(2). CUSREC

* STATE ABBREVIATION CUSREC
06 ZIP PIC S9(5) COMP-3 CUSREC

* ZIP CODE CUSREC
06 SEARCH-CODE PIC X(3). CUSREC

* CUSTOMER NAME SEARCH CODE CUSREC
06 CUSTOMER-TYPE PIC X(l) CUSREC

* CUSTOMER TYPE CUSREC
06 ACCT-REC-BALANCE PIC S9(S)V9(2) COMP-3. CUSREC

* ACCT/REC BALANCE CUSREC

Figure 9-7. Example of the Results of the Copy Statement, DD Format with the Alias Keyword

Program Described Files

Records and fields for a program described file are described by coding
record descriptions in the File Section of the COBOL program instead of
using the COPY statement, DDS or DO format.

The file must be created on the system before the program can be executed.
This can be done by using one of the Create File commands. See the CL
Reference Manual for the commands.

DDS can be used with the Create File commands. For a COBOL indexed
file, a keyed access path must be created. This can be done by specifying a
key in DDS when the file is created. The record key in COBOL must match
the key defined when the file was created.

9-20

Specific COBOL File Processing

Printer File Considerations

You can obtain printed output from a COBOL program by issuing WR ITE
statements to one or more printer files. Each printer file must have a unique
name and be assigned to a device of PRINTER or FORMATFILE in the ASSIGN
clause of that file's F I L E- CONTROL entry. A device of PR I NTER must be used for
program described files, and a device of FORMATF I L E must be used for externally
described printer files. The Create Print File (CRTPRTF) command can be used to
create a printer file (see the CL Reference Manual for further information on the
CRTPRTF command), or one of the IBM-supplied printer device files, such as
QPRINT can be used.

The file operations that are valid for a printer file are WRITE, OPEN, and CLOSE.
For a complete description of these operations, see Chapter 5.

FORMA TF I L E must be used when the file is an externally described printer file.
See the CPF Programmer's Guide for information on the DDS for externally
described printer files.

SPECIAL-NAMES Paragraph and the ADVANCING
Phrase

When the mnemonic-name associated with the function-name CSP is specified in
the ADVANCING phrase of a WRITE statement for a printer file, it has the same
effect as specifying ADVANC I NG 0 LI NES.

When the mnemonic-name associated with the function-name CO 1 is specified in
the ADVANC I NG phrase of a WR ITE statement for a printer file, it has the same
effect as specifying ADVANCING PAGE.

The ADVANCING phrase cannot be specified in WRITE statements for files assigned
to FORMATFI LE.

LINAGE Clause

When the LINAGE clause is specified for a file assigned to PRINTER, all spacing
and paging controls are handled internally by the compiler. At OP EN time, the
printer is positioned to a new physical page and the LINAGE-COUNTER is set to 1.
All spacing or paging for following WR IT E statements for the file is controlled
internally, and the physical page size is ignored. For a file that has a LI NAGE
clause and is assigned to P R I NT ER, paging consists of spacing to the end of the
logical page (page body) and then spacing past the bottom and top margins.

Use of the LINAGE clause degrades performance. The LINAGE clause should be
used only as necessary. If the physical paging is acceptable, the LINAGE clause is
not necessary.

The LI NAGE clause should not be used for files assigned to FORMATFI LE.

Chapter 9. Programmer's Guide Information 9-21

FORMATFILE Files

Externally described printer files must be assigned to a device of FORMATFI LE. ..J
The term FORMA TF I LEis used because the FORMAT phrase is valid in WR IT E
statements for the file, and the data formatting is specified in the DDS for the file.

When you have specified a device of FORMA TF I L E, you can obtain formatting of
printed output in two ways:

1. 	 Choose which formats to print in which order by using appropriate values in
the FORMAT phrases specified for WR IT E statements. For example, use one
format once per page to produce a heading, and use another format to
produce the detail lines on the page.

2. 	 Choose the appropriate options to be taken when each format is printed by
setting indicator values and passing these indicators through the INDICATOR
phrase for the WR I TE statement. For example, fields may be underlined,
blank lines may be produced before or after the format is printed, or the
printing of certain fields may be skipped.

The use of external descriptions for printer files has the following advantages over
program descriptions:

• 	 Multiple lines can be printed by one WR IT E statement. When multiple lines
are written by one WRITE statement and the END-OF-PAGE condition is
reached, the END-OF - PAG E imperative statement is executed after all of the
lines are printed. It is possible to print lines in the overflow area, and onto "'\".
the next page before the END-OF-PAGE imperative statement is executed. '<IttttIII.

Figure 9-8 shows an example of an occurrence of the END-OF-PAGE
condition through FORMATFI LE.

• 	 Optional printing of fields based on indicator values is possible.

• 	 Editing of field values is easily defined.

• 	 Maintenance of print formats, especially those used by multiple programs, is
easier.

Use of the ADVANCING phrase for FORMATFILE files causes a compilation error to
be issued. Advancing of lines is controlled in a FORMATFILE file through DDS
keywords such as SKIPA and SKIPB, and through the use of line numbers.

For FORMATFILE files, the LINAGE clause is invalid.

Figure 9-9 shows an example of using an externally described printer file through
FORMATF I L E.

9-22

L COBOL SOURCE LISTING

ST~T SFQt,:aR -A 1 i3 ••••• 2 •••••• 3 ••• 4 •••••• 5 •••••• ~ •••••• 1 .rOENTFCN S COPYNA"'E tHG/OATE

000100 I'JENTIFtCATtOt.l OIVISION.

000200 PROGRA,M-ID. FORfIIUFllE.

000]00 AUTHOR. II:'M CANADA LABORATOR¥.

000400 ENVIR('tN'4ENT 01 'Irs ION.

000500 CI'lNFtCURUH'N SECTION.

b 000600 SOUa:CE-CO~PUTER. IBM-53".
7 OQ01()O OBJECT-COMPUTER. JBM-B8.

a 000800 INPUT-OUTPUT SECTION.

9 000900 F r L:-CONTROl.

La 001000 SelECT Pf.RSRFPT ASSIGN TO FORMUFILE-PERSREPT-SI

11 aOllOO ORGANIZATION IS SEQUENTIAL.

12 00120Q SeleCT PERSFILE ASSIGN TO OATABASE-PI;:RSFIlE

13 001300 ORGANIZATION [5 INDEXED
l4 001400 ACCESS MODE IS SEQUENTIAL
15 001500 RECORD KEY IS EXTERNALLY-DEsCRIBeD-KEY.
16 001600 DATA DIVISION.

11 001700 FILE SECTIO~.

IB 001800

19 001900 FD PERSREPT

20 002000 lABEL RECORDS ARE STANDARD.

21 002100 01 PERSRePT-REC.

22 002200 COPY DOS-AlL-FORMATS-O OF PF.RSREPT-EUMPLES.

23 +000001 05 PERSREPT-RECORD PIC Xlllt61. <-ALl-FMTS

+000002(: nuTPUT FOR"AT:HEAOING FWM FILE PERSREPT OF LI8RARY EXAMPl.ES <-ALl-FMTS
.0000030 <-All-PMTS

24 .000004 05 HEADI~G-O REOEFINES PERSREPT-RECORa. <-All-FMTS
25 +000005 06 ORDERTYPE PIC X1151. <-Al.l-FMTS

+000006* OuTPUT FOR~AT:DETAll FROM FILE PERSREPT OF liBRARY EXAMPLES <-All-FMTS
.000007* <-All-FMTS

26 +000008 os OEUIl-O REDEFINES PERSREPT-RECQRO. <-ALL-FMTS
27 .000009 06 NAME PIC XClOI. <-ALL-FfHS
28 +000010 06 EMPlNO PIC S9161. <-ALL-FMTS
29 .000011 06 8IRTHOATE PIC X161. (-AlL-FHTS
30 .OOOOH 06 AODRESSI PIC X()51. <-ALl-FMTS
31 +000013 06 "'ARHAT PIC XllI. <-ALl-FMTS
32 .000014 06 SPOUSENAME PIC X1301. <-All-FMTS
33 .0000lS 06 AODRESSZ PIC X(351. <-ALl-FMTS
)4 +000016 06 NU"ICHIlO PIC S9121. <-~lL-FMTS

Figure 9-8 (Part 1 of 3). Example of the END-OF-PAGE Condition

COBOL SOURCE LISTING FORMATFIlE

snn SEQN8R -A 1 B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IDENTFCN S CO~ypt.NlE CHG/DATE

002300/
35 002400 FD PER$FILE
36 002500 LABEL RECORDS ARE STANDARD.
37 002600 01 PERSFILE-REC.
38 002700 COPY DDS-AlL-FORMATS OF PER$FlLE.. EXAMPLES.
39 .000001 05 PEFlSFlLE-RECQRD PIC XtU51. <"'ALL-FMTS

+0000020 1-0 FORMAT:PERSREC FROII! FILE PF.RSFIL,E OF LIBRARY EX,l"PLES <-ALL-HITS
+0000030 <-ALL-fMTS
.00000lt0THE KEY DEFINITIONS FOR RECORD FORMAT PERSREC <-ALl.-FMTS
+000005.0 NUMBER NAME RE TR I EVAL TYPE AL TSEQ <-AlL-FMTS
.0000060 0001 EMPlNO ASCEt-lDING SICt-lEO NO <-All-FMTS

40 .000001 05 PERSREC REOEf t ES PERSF IL E-RECORO. <-ALl-FMTS
41 +000008 06 EMPlNO PIC 59(6). <-All-HITS
42 .000009 06 NAME PIC X1301. <-All-FMTS
1t3 +000010 06 ADDp,ESS1 PIC X1351. <-All-FMTS
44 .000011 06 AODRESS2 PIC X1351. (-All-FMTS
45 .000012 06 BIRTHOATE PIC X161. <-ALL-FMTS
1t6 +000013 06 MARSTAT PIC XIII. <-AlL-FMTS
47 .000011t 06 SPOUSENAME PIC Xt301. (-All-FMTS
1t8 +000015 06 NU"lCHILD PIC S91ll. <-ALl-FMTS
49 002800
50 002900 WORKING-STORAGE SECTION..
51 003000 71 HEAD-ORDER PIC Xt 151 VALUE -EMPLOYEE NU"BER-.
52 003100 01 PERSREPT-INOICS.
53 003200 COPY DDS-AlL-FORMATS-O... INDIC Of PERSREPT-EXAMPlES.
54 .000001 05 PERSREPT-RECQRO. <-ALl-FMTS

.000002* OUTPUT FORMATniEAOINC fROM FILE PERSREPT OF LliiRARY EXAMPLES <-All-fMTS
+0000030 <-ALl-FHTS
.000001t* 06 HEADING-O-INDIe. <-All-FMTS
+0000050): OUTPUT FORMAT:OETAtL FRO~ FilE PERS~EPT OF LIBRARY i:;XAMPlES <-ALl-FMTS
+0000060 <-All-FMTS

55 .000007 06 DETAIL-O-INDIC. <-ALl-FMTS
56 .000008 07 INOI PIC 1 INOIe 01. <-AU-FMTS
57 003300
58 003400 77 EOF-FLAC PIC X VALUE "0-.
59 003500 88 NOT-END-Of-FlLE VALUE "0".

60 003600 8e ENO-OF-F IlE VALUE "1".

6i 003700 77 MARRHD PIC x VALUE "M".

Figure 9-8 (Part 2 of 3). Example of the END-OF-PAGE Condition

Chapter 9. Programmer's Guide Information 9-23

L

http:EXAMPl.ES

COBOL SOURCE LISTING FDRM.6,TFIlE

ST"'T SEQNeR -.6, 1 8 ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• b ••• ••• 7 .IDENTFCN 5 CDPYNA"IE CHG/OATf

003800/
62 003900 PROCEDURE DIVISION.

004000 FIRST-SECT SECTION.
004100 FIRST-PARA..

63 004200 OPEN INPUT PERSFIlE
004300 OUTPUT PERSREPT.

64 004400 PERFORM HEADING-LINE.
65 004500 PERFORM PROCESS-RECORD U~TIL ENO-OF-FILE.
6b 004600 CLOSE PERSFIlE PERSREPT.
61 004700 STOP RUN.

004800
004900 PROCESS-RECORD.

68 005000 READ PERSFIlE AT END SET END-OF-FIlE TO TRUE.
70 005100 IF NOT-END-OF-FllE THEN
11 005Z00 PERFORM PRINT-RECORD.

005300
005400 PRINT-RECORD.

72 005500 CLOSE PERSFH..E PERSREPT.
13 005600 MOVE CORR PERSREC TO DETAIL-a.
71t 005700 If MARSTAT IN PERSFtLE-REC = MARRIED THEN
75 005800

005900
MOVE

ELse
S"I" TO INOI IN DETAIl-O-tNOI;:'

76 006000 HOVE S"O" TO INOI IN DETAIl-O-I~OIC.
77

18

00,6100
006Z00
006300

WRITE PERSREPT-REC FORMAT IS "DETAIL"
INDICATORS ARE DETAIl-O-INOIC

AT EOP PERFORM HEADING-LINE. 0
006<\00 HEADING-LINE.

19 006,00 MOVE HEAD-ORDER TO ORDERTVPE •
• 006600 WRITE PERSREPT-REC FOR"AT IS "HEADING" •

••••• END OF SOURCE

o If the number of lines per page has been exceeded, END-OF-PAGE occurs. The format HEADING

is printed on a new page.

Figure 9-8 (Part 3 of 3). Example of the END-OF-PAGE Condition

J

9-24

• • •

• •• • • •

• • •• •

• • • •

GX21·7754·2 UMI060' II,., 1,...,,.lonal Buli,.. MKhin. Corpodtion DATA DESCRIPTION SPECIFICATIONS 	 Printed in U.S.A.

• 	
of

I
IlFile I Keying I Guphi' I I I I I I I I IDe",'; ..;'" Ip~
II Progrlmmer IDate I Instruction I Key I I I I I 1 1i

~
~ Olnditioning >: Location
X I
~ Olndition Name

~ 	
~

Seq......,. ~ Name Length 	 Functions

Number (? 	 ;e~i !

~

g .. ~
~

It E It 	 Line Po.

~ 	 >'ii!~~~ g g g .1 H j i
';; ~ ~

~
tn] j i j ~ fa: a: H,e:,

1 2 3 4 5 • 7 .I. 11 1213 141518 7 819 20 21 22 23 24 25 26 27 28 29 031 32 33 34 35 38 37 38394041 424344 6~~~~~~~~~~~DM~~~~AMe.Q••m"nnN~~nnN~ ... IAI PH1'115) ~L IF' L! OilIS fO~ 11&0 1 'LI! 1 \1 J:OP."AT"Lal;~"1 . : : . ·t'1~S I)"''''
A.

: · I 	 i
·

A PI:.I~IlE c.. ...
•

A ~HP'-"C · liS •
.

· : : •

,: A N~l'le 3J · · . · ... 	 •

A 	 · .· .
•

• 	 ,'"' 3~
•••

A ~l r... ,,2 ~ 	 • •
A .J.: ... ISO. 	

•

• •• - -
• 	 • · -

A
•

lit; 	 '.. • ,

~ · A

A II " :111 IU: .S: 	 , · .. :· .
A IIC E ,PL).7t

• 	 •

· . ·
·

•

•
•

A 	 · ·
• •

••A · . 	 : .
• •• ·... 	 •A 	 • • : .

• 	 ·• • T . - -.A 	 · · • 	 • · • •.'
· . 	 · A : 	 • • : .• 	

• · . · • •• · : : .· • • 	 · A 	
•

• ·
· : · . : ·

• • • • · · · . · _ A 	 .
. . • • ·

• • •

. A · · . · . • •
: : . : • •

: · : .
•

•

-Number of n'WY vtry .lthdy.

Figure 9-9 (Part 1 of 7), 	 Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE

Chapter 9. Programmer's Guide Information 9-25

--

•••

GX21·7754·2 UMI05O·
IB~ Intlrnlltlon. Bulin.u Mechinn Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A.

If-Fi_'.______-,---___---11 K'ying I G"phic I I J I I J
[L--o..C'iPlio_"_~I~_°'------'1 JIProgrammer IDate 1 Instruction I Key I I I I I

Conditioning

Location

Condition Name

f--,,----r-,--------j~Sequence 	 Name
Nu"",,, Ii:'"

!
11. .. "- .. ~
~ sz£zs i
E ~ -~ -;~ n

~ :¥ ~ ~ ~] ~~

1 2 3 4 5 6 910111213'4'51617 819202122232425262728 ..
r---t"'f.... !!T+-++-,++--+++-----,.....o.-+-+l-++-----'-t-f--1H--+II , ~,O,"I"~,IFIp.Jt$'TL'i.J • ' ',:, ';',

.. ~ ~&Ab\\116 II ISKI"CtH,SPACEAf3l II'-.........-,--'--,-_.-H'

~~+"+++-~~-+++__~~+-++____H-~__+~f~~'~P~~tNglt'~~~rl~'" '
A 	 Ut,U) UU!, ., ." , ",' .:.

f---;~-I-..-+++-+-+--~-+-++~----+--+--++--f-+--++-~.3,.,m-''''''~TiORD'aRaJ) "y' , .' : 	 • ,

, '

f---;_-I-A-+++-+-+--~-+++______-+--+--++__f-+--++_+'~ • ,', '..' , . :.n;T£oIr::"iI'"=l:::-r- • ' . .•
.. 	 IH 'PABa,'IiI, , '.. , ~

I.. 	 . -++----++--++-+---1==.= .• j • -' - '-,'a'"h"'""'II'" · •-'- ,,' •• '--'
..

•

I>ETA\l II-++--~-++~+-------r~S:..:..IP.LJAC·~"""II!A'~(S~J . . ' "
, 	 , ... ILlI~~ 	 .' ':""" .,,

:
' 	

1 ~=:.n .'·:: ,.: :'" .'" ,'" .~Ma ~t==j..tttttjj=tn~~=ttlt==tt,1t=t4i5'!~'J;:i~~H"Pil.Lto.vel.'U'.SE"" "" . ' 	 ,..
e.fUKl _ PI

•

•SIKTttoRT~ R

Il\loI~ 	 &'7II~PbU$E! ,·S "NtS.1 I .' . • , .. 	 I..: lit)'! :. • ,'" , .' ." L j _ .. 	 ,. -' .

""IC;V~II. 1 • ' •• ' .• '
.SI"OIJU>1Ii (01: ~: •• ::' :". "
7.!ttIP II ,. ••. , ' , .. · .. - . . , :.... . .

•
A " .".' ,.. ,iJ lii_' i • .. 	 . • : ' " .', .:,.'. 'i:

• .. •

. 	 .. . - . , " '. ". " ,., li~ 	 l~~~ .•• i .. 	
•

. . : : , .. : . '" .. ,
A 	 • " • .• _J:, .~ .• • .. 	 .

Figure 9-9 (Part 2 of 7). 	 Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE

..

.. ..
E

9-26

http:tttttjj=tn~~=ttlt==tt,1t=t4i5'!~'J;:i~~H"Pil.Lto.vel.'U'.SE
http:r~S:..:..IP

D 	 I NDARA specifies that a separate indicator area is to be used for the file.

HEADING is the format name which provides headings for each page.

II 	SKIPB(l) and SPACEA(3) are used to:

1. Skip to line 1 of the next page before format HEAD I NG is printed.
2. Leave 3 blank lines after format HEADING is printed.

ID 	 DATE, TIME and PAGNBR are used to have the current date, time and page number printed

automatically when format HEAD I NG is printed.

III 	 DETAIL is the format name used to print the detail line for each employee in the personnel file.

m 	SPACEA(3) causes 3 lines to be left blank after each employee detail line.

II 	SPACEA(l) causes a blank line to be printed after the field BI RTHDATE is printed. As a result,
subsequent fields in the same format are printed on a new line.

III 	 01 means that these fields are printed only if the COBOL program turns indicator 01 on and

passes it when format DETAIL is printed.

m 	EDTCDE(3) is used to remove leading zeros when printing this numeric field.

Figure 9-9 (Part 3 of 7). 	 Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE

5114CRl ROS I~OO 830610 COBOL SDURCF LISTtN:; 	 03/D4/A 3

STMT SEQNBR -A 1 B •••• 2 ••••••) 4 •••••• 5 •••••• :. " 7 .. TDENTFCI\I 5 CJPYNA"tE
0

1 000100 rnENTIFiCATION DIVISION.

2 000200 PROGRAM-IO. FOR"1ATFILF.

3 	 000300 AUTHOP. IBM CANADA LA9QRATOPY.

000400 E"IVIf<O"lMfNT DIVISION.
000500 (ONFIGURATIO"l SECTION.

000600 SIJUR(E-COl"PUTER. IBM-S3B.

7 000100 OBJECT-COMPUTER. 13M-53'1.
 D
8 	 000800 INPUT-OUTPuT SECTION.
9 000900 FIlE-CON.TROL.

10 001000 SELECT PERSREPT ASSIGN TO FOPMATeIlE-PErl.S~;:,pT-q

11 001100 QRr,ANllATIIJ,'.j IS SEOUENTIAL.

12 001200 SELECT PERSFILf ASSIGN Te DATA9A,SE-PF~SFIlF

13 001300 ORGANIZATiON IS INDEXED

14 001400 ACCESS MODE IS SEQUf:NTIU

15 001500 ~ECORO KEY IS ExTERNALL'f'-OESCRIaED-K!:'f'.

16 001600 DATA DIVISION.

11 001700 FILE Sf(TIO~.

16 001800

19 001900 FD PERSREPT

20 007000 LABI=L RECORDS ARF STANDARD.

21 002100 01 PFR5REPT-IUC.

22 00220l) COPY OD'i-ALL-FOI<MATS-O flF P':'R$RF;PT-EXAMPLES • .:II

24 +000001 0<; pCRSRfPT-RECOQD PIC X11461. _ <-ALl-I'"MTS

2') +000002 <-ALl-FMTS

+000003'¢ OUTPUT Ff".1f1MH:HEA.OING FRO'" CILE PERSREPT nF LIaRARY t::'<:A"'PLES <-ALl-fMTS

+000004::< <-ALl-F~TS

26 +000005 0') HF:40t~G-O REDHtNfS PERSR'EPT-PfCI]~L). <-UL-FMTS

27 +000006 06 Oi<.OERTYPF PIC)(1151. <-AlL-I=MTS

28 	 +000001 <-ALL-FMTS

+000008* 'JUTPUT FORI,!AT:DETAIl FPO~ FILE PER5REPT fJF LT }RA,Q'(I:;XAM?lfS <-All-F'1TS

+000009* <-ALL-I'"MTS

29 +000010 0'1 DFT4IL-O REDEFINES PEk5kFPT-RECiJR'). (-ALl-I'"MTS

30 +000011 06 NAME PIC XDO). <-ALL-'~,TS

31 +000012 06 EMPlNO PIC 59161. <-ALL-HITS

32 +000013 06 RIRTHOATE PIC X(bl. <-A.ll-C:MTS

'\3 +000014 06 AlJDRfSSl PIC XI3SI. <-All-HITS
II
34 +OOOOIS O~ MARSTAT PIC Xill. (-AlL_e~HS

35 +000016 0'" 5POUSENAMf PIC X1301. <-All-FMTS

36 +000011 06 ADDRES52 PIt X1l51. <-ALl-F~TS

31 +000018 06 NUMCHI LO PIC 59121. <-ALl-FMT.S

Figure 9-9 (Part 4 of 7). Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE

Chapter 9. Programmer's Guide Information 9-27

5714CB1 R05 MOO 830610 COBOL SOURCE LISTING ~ORMATFILE 03/04/83

STMT SEQNHR -A 1 a ••••• 2 j 4 5 •••••• ~ •••••• 7 .10ENTFCN S CUPYNA""E

002300/
313 002400 FO PERSFILE
39 002500 LABFL RF(OROS ARt: STANi)ARr).
40 002600 01 PERSFI LF-REC.
41 002100 COpy 'JUS-All-FORMATS OF PERSFILE-EXAMPLF::..
43 .00000 1 07 PFRSFILE-'l:ECQRD IJTC 1.(14';». <-ALL-I'="HS
44 .00000l <-ALl-F"'ITS

.000003* FRO'" f!U PERSFILF OF LlJ/ol.ARY t:XA~PU:S (-A.ll-FMTS
·ooaoo...* (-ALL-F"'TS
·000005*THE KEY' DEFINITIO~S FOR RFCORn r-O~"'.6.T PERSREC <-ALL-F~TS

+000006* NUMPER NAME RICTQ.I~VAL TYPE Al TSEO <-·Ul-F'-nS
.OOOOOF 0001 EMPL!'40 ASCt:"f[)l:~G N ,,0 <-ALL-t:~TS

45 .000008 u5 PERSf'E'C kfUEFINES PEK$FILE-PECIJRD. <-ALl-FMTS
46 .000009 0'> EI~PLNO ?IC S9(6). <-ALL-J:"'ITS
47 "000010 06 ~:A~E PIC X(30). <-A,LL-F"\TS
4B .00001l 06 A[)I)RESSl PIC XDS). (-aLL-FMTS
49 +000012 Of) ADORESSZ PIC x, ~5'. <-ALl-FMTS
'50 +000013 06 RIRTI-IOAH PIC x, 61. (-ALl-F'1TS
5} +000014 06 "'AI<STAT PIC X (1). <-ALL-t:MTS
'52 "000015 U'" SPOUSENA"'c o IC X (3J). (-ALL-FMTS
53 .. 000016 06 "lUMCHlLD ole 59(2) • (-AlL-FMTS
'54 002800
55 002900 WORKJI'IG-STORAGE SEC TIn:-...
56 003000 01 PfRSREPT-FORMAT-I"H'-O ..
57 003100 0'5 HEAD-LINES PIC 9 COMP VAlUF 3.
58 003Z00 05 HEAO-:lRDER. PIC XII'S) VALUE "f::,MPluYf::: NJ)F.-~" ..
':l9 003300 0'5 DETAll-L I\lES PIC 9 CO,'1P VALuE' 'l.
60 003400
61. 	 003500 01 PfRSRFPT-INDICS. II
6Z 003600 Copy DOS-o'ILl-FORMATS-O-INDIC Of PERSKrp"-rX6,"1Plt:'J. ~

64 ·000001 05 PFR.SREPT-RfCORO. (-ALL-F,-ns

6S .000002 (-All-i=MT::'

.000003~: IJUTpUT FClR~AT:Hf:ADINr, fROM FILE PERSRCPT <-AlL-i=MT5

.. oooon4~ <-A.ll-F:-1TS
+00000 '5~: Of, HEAOING-O-I~OIC. <-All-I:/o',"S

66 .. OOOOOb (-AlL-I=~TS

·OOOOOF OUTPUT FOI<'1AT:OErAIL IJF LI~~AR¥ t XA"PLE;S (-AlL-t:Io\TS
.. 000008* (-ALl-I",H::,

67 +000009 06 IlETAIL-O-INOIC .. (-ALL-F,-Il"S
68 .000010 07 INOl PIC 1 I"IOIC 01. <-A.Ll-FMTS
69 003100
70 003800 77 EOF-FLAG P II X VALUE "(I".
71 003900 86 NOT-E"JD-DF-F I LE VAlUf "a".
72 004000 89 END-OF--F ILE VALUE "1".
73 00lt100 77 MARRIED PIC x VAlUF "M".
74 004200 77 L INE-(OUNT PIC 9 (3) CO"'l;> VALUE 99.
75 004}OO 77 PAGE-S HE: PIC 9!J) (O"'P VAllJ'" ')~.

Figure 9-9 (Part 5 of 7). 	 Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE J

5714(81 1'.050 1-100 830610 coanL snUR.CE LISTING FJRMATFlLE O)/04/R3

5T"1T SEQNBR -f;, 1 B••••• 2 3 •••••• 4 •••••• 'j b ••• f .1DENTFCN S C(JpY~A"'E

004400/
76 	 004500 PRLlCEDURE OIVISlUN.

004600 FIRST-SECT SECTION.

004700 FIRST-PARA.

77 	 004800 QPE~ INPUT PfRSFIlE
004900 ouTPUT PfRSRFPT.

78 005000 PERFORM PROCESS-RfCQRO UNTIL END-OF-Fill::.

79 00" 100 CLOSE PERSFIL£ PERSRfPT.

80 005Z00 STOP RUN.

005300
005400 PROC ES S-RE'CORD.

8; 1 00'5500 READ PERSFllE AT F;\lD SET ENI)-OF-FILF TO TR.UE".

83 005600 IF NOT-FND-OF-FILf THEN"

B4 00"700 PERFOR~ PRINT-HCORn.1iI

005800

005900 PR INT-RfCC'RD.

85 006000 IF LINE-COUNT)' PAGE-SIZE TI.-IEN
 iii
86 006100 MOVE HEA[)-ORDER TO ORDERTYPf

87 OOhZOO WRITE. PFRSREPT-RE(FORMAT IS "HEAI)I'l.jC."

00h300 MOVE HE:AO-LINES TO LINE-C1U"IT.
006400

89 00b500" MOVE CURR PFRSRJ:C TO DfTAIl-a.

90 006600 _ IF "'ARSTAT IN PERSFILE-R[C = ·"t.RRIEO THEN"

91 001'>700 MOVE 8"1" TO PoWl IN DETAll-O-INQle III

006800 ElSF

Q2 006900 MOvE ~"O" Tel INOI IN DETAIl-O-INDl(. l1li

93 007000 WRITE PERSRFPT-R'.C FORMAT IS "DETAIL" ..

007100 INDICATORS ARE DETAll-O-[~OI~.

94 007200 ADO DETAIL-LINES TO LINE-COUNT ..

'8

II
'« END OF saURCt: ",~,-::

Figure 9-9 (Part 6 of 7). Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE

9-28

http:HEAI)I'l.jC

D The externally described printer file is assigned to device FORMA TF I L E.

D The COPY statement, DDS format, is used to copy the fields for the printer file into the program.

II Note that although the fields in format 0ETA I L will be printed on 3 separate lines, they are

defined in one record.

D COPY-DDS is used to copy the indicators used in the printer file into the program.

D Paragraph PROCESS-RECORD performs PRINT -RECORD for each employee record.

D If the number of lines per page has been exceeded, format HEAD I NG is printed on a new page.
The current line count is reset to the number of lines taken up by HEAD I NG.

D All fields in the employee record are moved to the record for format 0ET A I L.

IJ If the employee is married, indicator 01 is turned on; otherwise the indicator is turned off,
preventing the spouse's name field in DETAIL from being printed.

D Format DET A I L is printed with indicator 01 passed to control printing.

IIiJ The number oflines (including blank lines) taken up by DETAIL is added to the current line
count.

Figure 9-9 (Part 7 of 7).. Example of the Use of Externally Described Printer Files Assigned to a
Device of FORMATFILE

Card File Considerations

The following paragraphs discuss the COBOL processing unique to card files.
This processing includes card file function specification, hopper selection, stacker
selection, nonassociated card files, and associated card files.

Specifying the Function

For System/38 COBOL, card file processing is divided into four I-O functions:
reading, punching, printing, and punching-printing. The device-name specified in
the ASS I GN clause for a card file is a function selection. The valid devices are
READER, PUNCH, PRINT, and PUNCHPRINT. At execution time, the system-name
specified in the ASS I GN clause must correspond to a card file specified on a
Create Card File (CRTCRDF) command.

Nonassociated Card Files

Card files are nonassociated if no association-number is specified in the ASS I GN
clause. Nonassociated card file processing is limited to processing of only one of
the four 1-0 functions. Thus, only one nonassociated card file can be open at a
time, and only its specified function can be performed.

Chapter 9. Programmer's Guide Information 9-29

Associated Card File

Card files are associated when an association-number is specified in the ASS I GN
clause. All card files with the same association-number are then processed at the
same time. They must all be open before any processing is done, and all
processing must be complete when a CLOSE is issued for any of the files.
Associated card file processing allows the functions of reading, punching, and
printing to be combined for one system and file. Only one set of associated card
files per MFCU can be processed (open) at a time. Associated card files cannot be
spooled.

File status on associated files is set only on the COBOL verb that actually causes
the 5424 Multi-Function Card Unit (MFCU) to process the card. For example, if a
READER and PUNCH or PRINT or PUNCHPRINT are associated, the card is
processed only on the READ statement execution, and file status is set only for the
READ statement. If a PUNCH and PR I NT are associated, and the READER is not
specified, card processing occurs only on the WR I TE (Print) verb, and file status is
set only for the WRITE statement. See Appendix D for more information on
associated card file processing.

Stacker Selection

Stacker selection allows the user to specify the stacker that the cards are to be put
into after a punch or print operation. The stacker selection is done in the
COBOL program by:

1. 	 Specifying a mnemonic-name for the function-names SOl, S02, S03, S04, or J
S05 in the SPECIAL-NAMES paragraph. SOl through S04 correspond to
stackers 1 through 4, and S05 corresponds to stacker l.

2. 	 Specifying the mnemonic-name for the desired stacker in the WR I TE
ADVANCING mnemonic-name statement for the card file.

If a stacker is not selected by the program, stacker 1 is assumed.

Hopper Selection

Hopper selection allows the user to select the specific hopper from which the
cards are to be processed. The hopper is selected in the ASS I GN clause by
specifying P for the primary hopper and S for the secondary hopper. If a hopper
is not specified, the primary hopper is assumed. The primary hopper must be used
for associated card files.

A hopper can also be specified on the CRTCRDF command. For information on
the CRTCRDF command, see the CL Reference Manual.

9-30

DISK and DATABASE File Considerations

Data base files, which are associated with the COBOL devices of DATA BAS E and
DIS K, can be:

• 	 Externally described files, whose fields are described to CP F through DDS

• 	 Program described files, whose fields are described in the program that uses
the file.

All data base filt's are created by C P F create file commands. See the C P F
Programmer's Guide for a description of the CPF commands that relate to data
base files.

DATABASE versus DISK Files

Ass'gning a file to DISK in COBOL restricts the user to traditional DISK
processing. The use of DATA BAS E as the device permits the user to make use of
the special System/38 COBOL data base features such as formats and duplicate
record keys.

Processing Methods for DISK and DATABASE Files

COBOL Indexed Files: An indexed file is a fIe whose access path is built on
key values. The user must create a keyed acces& path for a'l indexed file by using
DDS.

To write standard ANS COBOL X3.23-1974 to access an indexed file, the file
must be created with certain characteristics. The following table lists these
characteristics and what controls them.

Characteristic 	 Control

The file must be a physical file. The CRTPF CL command

The file cannot have records with The DDS keyword UN I QU E
duplicate key values.

The file cannot be a shared file. The CRTPF CL command

A key must be defined for the file. DDS

Keys must be in ascending sequence. DDS

Keys must be contiguous within the DDS
record.

Key fields must be alphanumeric. They DDS
cannot be numeric only.

The value of the key used for DDS
sequencing must include all 8 bits of
every byte.

A starting position for retrieving The OVRDBF CL command
records cannot be specified.

Select/omit level keywords cannot be DDS
used for the file.

Chapter 9. Programmer's Guide Information 9-31

L

When a record is copied using the COPY statement, DDS or DD format, a comment
table appears in the COBOL source program listing identifying the characteristics
controlled by DDS. This table includes:

• 	 Key field number
• 	 Key field name
• 	 Keywords specified
• 	 Data type.

An indexed file is identified by the ORGANIZATION IS INDEXED clause of the
SELECT statement.

The key fields identify the records in an indexed file. The user specifies the key
field in the RECORD KEY clause of the SELECT statement. The RECORD KEY data
item must be defined within a record description for the indexed file. If there are
multiple record descriptions for the file, only one need contain the RECORD KEY
data-name. However, the same positions within the record description that
contain the RECORD KEY data item are accessed in the other record descriptions as
the KEY value for any references to the other record descriptions for that file.

An indexed file can be accessed sequentially, randomly by key, or dynamically.

Valid RECORD KEYS: The DDS for the file specifies the field(s) to be used as
the key field. If the file has multiple key fields, the key fields must be contiguous
in each record unless RECORD KEY I S EXTERNALLY -DESCRI BED-KEY is
specified.

When the DDS specifies only one key field for the file, the RECORD KEY must be a
single field of the same length as the key field defined in the DDS.

If a COpy statement, DDS or DD format, is specified for the file, the RECORD KEY
clause must specify one of the following:

• 	 The name used in the DDS for the key field if the name is not a COBOL
reserved word.

• 	 The name used in the DDS for the key field with -DDS added to the end if the
name is a COBOL reserved word.

• 	 The data-name defined with the proper length and at the proper location in a
program described record description for the file.

• 	 EXTERNALLY - DESCRI BED- KEY. This keyword specifies that the keyes)
defined in DDS for each record format are to be used for accessing the file.
These keys can be noncontiguous. They can be defined at different positions
within the record format.

When the DDS specifies multiple contiguous key fields, the RECORD KEY
data-name must be a single field with its length equal to the sum of the lengths of
the multiple key fields in the DDS. If a COpy statement, DDS or DO format, is
specified for the file, there must also be a program described record description
for the file that defines the RECORD KEY data-name with the proper length and at
the proper position in the record.

9-32

~

Referring to a Partial Key

A generic START statement allows the use of a partial key. The KEY I S phrase is
required.

"ST ART Statement" in Chapter 5 lists the rules for specifying a search argument
that refers to a partial key.

Figure 9-10 shows an example of generic STARTS using a program described file.

Figure 9-11 shows an example of generic STARTS using an externally described
file.

COBOL SOURCE LISTING
STMT SEQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN S COPYNAME CHG/DATE

1 000100 FILE-CONTROL.
8 000800 SELECT FILE-1 ASSIGN TO OISK-FILE1
9 000900 ACCESS IS OYNAMIC RECORD KEY IS FULL-NAME IN FILE-1

10 001000 ORGANIZATION IS INDEXED.
11 001100 DATA DIVISION.
12 001200 FILE SECTION.
13 001300 FD FILE-1 LABEL RECORDS ARE STANDARD.
14 001400 01 RECORD-DESCRIPTION.
15 001500 03 FULL-NAME.
16 001600 05 LAST-ANO-FIRST-NAMES.
17 001700 01 LAST-NAME PIC X(20).
18 001800 01 FIRST-NAME PIC X(20).
19 001900 05 MIOOLE-NAME PIC X(20).
20 002000 03 LAST-FIRST-MIOOLE-INITIAL-NAME REOEFINES FULL-NAME
21
22

002100
002200 03 REST-OF-RECORD

PIC
PIC

X(41).
X(401.

0023001
23 002400 PROCEDURE DIVISION.

002500 START-PROGRAM.
24 002600 OPEN INPUT FILE-I.

0021000
0028000 POSITION THE FILE STARTING ~ITH RECORDS THAT HAVE A LAST NAME OF
0029000 "SMITH"

25 003000 MOVE ·SMITH" TO LAST-NAME.
26 003100 START FILE-l KEY IS EQUAL TO LAST-NAME
21 003200 INVALID KEY DISPLAY "NO DATA IN SYSTEM FOR· LAST-NAME
28 003300 GO TO ERROR-ROUTINE.

003400*
003500*
003600*
003700*
003800* POSITION THE FILE STARTING WITH RECORDS THAT HAVE A LAST NAME OF
003900* "SMITH" AND A FIRST NAME OF ROBERT

29 004000 MOVE "SMITH" TO LAST-NAME.
30 004100 MOVE "ROBERT" TO FIRST-NAME.
31 004200 START FILE-1 KEY IS EQUAL TO LAST-AND-FIRST-NAMES
32 004300 INVALID KEY DISPLAY "NO DATA IN SYSTEM FOR "

004400 LAST-AND-FIRST-NAMES
33 004500 GO TO ERROR-ROUTINE.

0046000
004100*
0048000
004900"
005000* POSITION THE FILE STARTING WITH RECORDS THAT HAVE A LAST NAME OF
005100" "SMITH", A FIRST NAME OF ROBERT, AND A MIDDLE INITIAL OF "M"

34 005200 MOVE "SMITH" TO LAST-NAME.
35 005300 MOVE "ROBERT" TO FIRST-NAME.
36 005400 MOVE "M" TO MIDDLE-NAME.
37 005500 START FILE-l KEY IS EQUAL TO LAST-FIRST-MIDDLE-INITIAL-NAME
38 005600 INVALID KEY DISPLAY "NO DATA IN SYSTEM FOR "

005100 LAST-FIRST-MIODLE-INITIAL-NAME
39 005800 GO TO ERROR-ROUTINE.

005900
006000
006100 ERROR-ROUTINE.

40 006200 STOP RUN.

Figure 9-10. Generic STARTS Using a Program Described File

Chapter 9. Programmer's Guide Information 9-33

DATA DESCRIPTION SOURCE
SEQNBR 0 ••• 1 l ... ••• 3 ••• 4 •••••• 5 ••• ••• 6 ••• • •• 1 ... • •• 8 DATE

100 A UNIQUE
200
300

A
A

R ROE
FNAME 20

TEXT('RECORD DESCRIPTION')
TEXT('FIRST NAME')

400 A MINAME 1 TEXT('MIDDLE INITIAL NAME')
500
600

A
A

MNAME
LNAME

19
20

TEXT('REST OF MIDDLE
TEXT('LAST NAME')

NAME')

700 A PHONE 10 0 TEXT('PHONE NUMBER')
800
900

A
A

DATA
K LNAME

40 TEXT('REST OF DATA')

1000 A K FNAME
1100 A K MINAME
1200 A K MNAME

Figure 9-11 (Part 1 of 2). Generic STARTS Using an Externally Described File

9-34

~ COBOL SOURCE LISTING
ST~T SEQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IDENTFCN S COPYNAME CHGIDA TE

7 000700 FILE-CONTROL.
8 000800 SELECT FILE-l ASSIGN TO DATABASE-NAMES
9 000900 ACCESS IS DYNAMIC RECORD KEY IS EXTERNALLY-OESCRIBED-KEY

10 001000 ORGANIZATION IS INDEXED.
11 001100 DATA DIVISION.
12 001200 FILE SECTION.
13 001300 FD FILE-l LABEL RECORDS ARE STANDARD.
14 001400 01 RECORD-DESCRIPTION.
15 001500 COpy ODS-RDE IN NAMES-PUBS.
17 +000001 ROE

+000002* FROM FILE NAMES OF LIBRARY PUBS ROE
+000003* RECORD DESCRIPTION ROE

18 +000004 05 ROE. ROE
+000005* RECORD KEY FOR INDEXEO FILE. KEY '0002 KEY FIELD NAME FNAME ROE

19 +000006 06 FNAME PIC X(20). ROE
+000007* FIRST NAME ROE
+000006* RECORD KEY FOR INDEXED FILE. KEY 0003 KEY FIELD NAME MINAME ROE

20 +000009 06 MINAME PIC X(l). ROE
+000010* MIDDLE INITIAL NAME ROE
+000011* RECORD KEY FOR INOEXED FILE, KEY 0004 KEY FIELD NAME MNAME ROE

21 +000012 06 MNAME PIC X(19). ROE
+000013* REST OF MIDDLE NAME ROE
+000014* RECORD KEY FOR INDEXED FILE, KEY 0001 KEY FIELD NAME LNAME ROE

22 +000015 06 LNAME PIC X(20). ROE
+000016* LAST NAME ROE

23 +000017 06 PHONE PIC S9(10) COMP-3. ROE
+000016* PHONE NUMBER ROE

24 +000019 06 DATA-DDS PIC X(40). ROE
+000020* REST OF DATA ROE

25 001600 66 MIDDLE-NAME RENAMES MINAME THRU MNAME.
0017001

26 001800 PROCEDURE DIVISION.
001900 START-PROGRAM.

27 002000 OPEN INPUT FILE-I.
002100*
002200* POSITION THE FILE STARTING WITH RECORDS THAT HAVE A LAST NAME
002300* OF "SMITH"

28 002400 MOVE "SMITH" TO LNAME.
29 002500 START FILE-l KEY IS EQUAL TO LNAME
30 002600 INVALID KEY DISPLAY "NO DATA IN SYSTEM FOR" LNAME
31 002700 GO TO ERROR-ROUTINE.

002600*
002900*
003000*
003100*
003200* POSITION THE FILE STARTING WITH RECORDS THAT HAVE A LAST NAME
003300* OF "SMITH" ANO A FIRST NAME OF ROBERT

32 003400 MOVE "SMITH" TO LNAME.
33 003500 MOVE "ROSERT" TO FNAME.
34 003600 START FILE-l KEY IS EQUAL TO LNAME, FNAME
35 003700 INVALID KEY DISPLAY "NO DATA IN SYSTEM FOR"

003800 LNAME .. " FNAME
36 003900 GO TO ERROR-ROUTINE.

004000
004100
004200
004300
004400 POSITION THE FILE STARTING WITH RECORDS THAT HAVE A LAST NAME OF
004500 "SMITH", A FIRST NAME OF ROBERT. AND A MIDDLE INITIAL OF "M"

37 004600 MOVE "S~ITH" TO LNAME.
38 004700 MOVE "ROBERT" TO FNAME.
39 004800 MOVE "M" TO MINAME.
40 004900 START FILE-l KEY IS EQUAL TO LNAME, FNAME, MINAME
41 005000 INVALID KEY DISPLAY "NO DATA IN SYSTEM FOR"

005100 LNAME SPACE FNAME SPACE MINAME
42 005200 GO TO ERROR-ROUTINE.

005300
005400
005500 ERROR-ROUTINE.

43 005600 STOP RUN.

Figure 9-11 (Part 2 of 2). Generic STARTS Using an Externally Described File

Chapter 9. Programmer's Guide Information 9-35

Logical File Considerations

When a logical file with multiple record formats, each having associated key
fields, is processed as an indexed file in COBOL, the following restrictions and
considerations apply:

• 	 The FORMAT phrase must be specified on all WR IT E statements to the file.

• 	 If the access mode is RANDOM or DYNAMIC, and the DUPLICATES phrase is not
specified for the file, the FORMAT phrase must be specified on all DEL ETE and
REWRITE statements.

• 	 When the FORMAT phrase is not specified, only the portion of the RECORD
KEY data item that is common to all record formats for the file is used by the
system as the key for the 1-0 statement. When the FORMAT phrase is
specified, only the portion of the RECORD KEY data item that is defined for
the specified record format is used by the system as the key. See the CPF
Programmer's Guide for more information on logical file processing.

• 	 When *NON E is specified as the first key field for any format in a file, records
can only be accessed sequentially. When a file is read randomly:

If a format name is specified, the first record with the specified format is

returned.

If a format name is not specified, the first record in the file is returned.

In both cases, the value of the RECORD KEY data item is ignored.

• 	 F or a program defined key field:

Key fields within each record format must be contiguous.

The first key field for each record format must begin at the same relative

position within each record.

The length of the RECORD KEY data item must be equal to the length of

the longest key for any format in the file.

• 	 For an EXTERNALLY-DESCRI BED-KEY:

Key fields within each record format can be noncontiguous.

The key fields can begin at different positions in each record format.

Figures 9-12 and 9-l3 show examples of how to use DDS to describe the access
path for indexed files.

J

9-36

• •

• •

• • • • • • • • • •••

• •
• •

• •••• ••••

GX21·77S4-1 UMIQ!;()' DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A.,,. ofFile

Progr.mmer o.te

fI 	 ~
Conditioning

~ location

X

Condition Nlme Vi
_nee 	 a 5 ..<

~ Nome Lonoth 	 Func:tions~ 	 ~ ~
Number i i< 	 ~ ~

1I e - g '! ~ I!. 	 Uno 1'0.11.8

~ tH
I!. • ~, s 	 ~ ~

E~ ~ A -~ B
:~ I 1 I 1 :i _ i", j HJ J

1 	 :2 3 .. 5 • 1 •• 10 111213 ,." " 11 8 19 20 21 22 23 24 25 26 27 28 29 Po 313233 34 31 3131404' 42.344 •• ~ ••~~~~M~M~~9M~n~M••~ •• rnnnn~~nn~NM

A I~ FORMAT J>.. PF:t LS(0 ROO'- L p)
A Te.l't" C 'A~ (. «OS S Pcat'hf,H' .t.,,4el(.u! fi le. ')
A lfLDA. H
A O~DeR 5 «i
A FLO & .1 GIl
A K Oltl>&R
A

A

A

A

A

A

A
 . • •

A

A 	
•

A 	

.

. ...
.A .

•
• • .A

••
.

.

A

A

• 	 . . • •

•

"Number of sheets per pad may vary slightly.

Data description specifications must be used to create the access path for a program described
indexed file.

In the DDS for the record format FORMATA for the logical file ORDDTLL, the field ORDER, which is 5
digits long, is defined as the key field, and is in packed format. The definition of ORDER as the key
field establishes the keyed access for this file. Two other fields, FLDA and FLDB, describe the
remaining positions in this record as character fields.

The program described input field ORDDTL L is described in the F I L E- CONTROL section in the SEL ECT
clause as an indexed file.

The COBOL descriptions of each field in the FD entry must agree with the corresponding description
in the DDS file. The RECORD KEY data item must be defined as a 5-digit numeric integer beginning in
position 15 of the record.

Figure 9-12. Using Data Description Specifications to Define the Access Path for an Indexed File

Chapter 9. Programmer's Guide Information 9-37

•• •

• •••

• • •

••• • •
•••• •

••

GX21-7754-1 UMIOSO' IBM InternlltloM! .." ... Mlchlnel Corporlltion DATA DESCRIPTION SPECIFICATIONS I~ ~in~~ in U'SAu.-----------------------.-----.----~~.-.-.-,-,-,

~, loot. =~ion I:-;iC I I I I I I I I ,., ~
Conditioning ~

Locationt
X

Condition NIl". 	 U!
"<..

Soquo- ~ No.,. untth i 	 Functions~ 	 ~Nu_ 	 ~I ~ 	 ,. ~
! 	 Pot~ Line

~

~ ,§

~
lJ

- ! 	
~ ~

11 •
~HlU - I i ~ i I I1 j Hi i

1 2 3 .. I • 7 • .I. 11 1213 14111' 7 '" 202122 23 24 252827 28 29 30 31 32 33 34 31.37 38 3140 .. , 42 .. 3 ".O••~~~~~~M~M"~~~aM••V •• mnnn~~~n~m~
A R F-O~MAT IPF:tL.;ElOR.I>t>TL.P) ,',.', . :
A In:.)Cr ('AGce'Ss P...-t"-: 'f:o'V' I.".. CilCe<l F'.I ~,)
A F L.DA .1'1 : : : . :· :

• 	 · .. .A ORt>""~ 5 •
•A iJ:TEH1 !> , :

A F-L.08 'flo • · . : , ·

.·A I(~Rp6~ 	 , , · •

• ·
A 	 · . :.t.T.!;"" 	 ·

A · .. 	 .

A : 	 ·
· . 	 . •

A 	 · .
· . :

A 	 • •
• • • · . 	 •••••

A 	 . · .. · .. ·

A · '
• •• · 	 •· .II ·

~ - - .
A 	 .

~

: •
i . . , .· -	 • • .

: 	
· : .A 	 ·

-
A • 	 • •: : :

·

• 	 •· , 	 • •• .,: A · • 	 : : . : . :
. .

• •
A : • : 	 : · : : : : ..•

* Number ot shnts per pad m.y v.ry slightlY. 	
• ·

In this example, the data description specifications define two key fields for the record format FORMAT
in the logical file ORDDTLL. For the two fields to be used as a composite key for a program described
indexed file, the key fields must be contiguous in the record.

The COBOL description of each field must agree with the corresponding description in the DDS file.
A 10-character item beginning in position 15 of the record must be defined in the RECORD KEY clause
of the file-control entry. The COBOL descriptions of the DDS fields ORDER and ITEM would be
subordinate to the 10-character item defined in the RECORD KEY clause.

Figure 9-13. 	 Using Data Description Specifications to Define the Access Path (a Composite Key) for
an Indexed File

COBOL Relative File: A COBOL relative file is a file to be processed by a
relative record number. To process a file by relative record number,
ORGANIZATION IS RELATIVE must be specified in the SELECT statement for the
file. A relative file can be accessed sequentially, randomly by record number, or
dynamically.

To write standard ANS COBOL X3.23-1974 to access a relative file, the file must
be created with certain characteristics. The following table lists these
characteristics and what controls them.

9-38

Characteristic Control

The file must be a physical file. The CRTPF CL command

The file cannot be a shared file. The CRTPF CL command

No key can be specified for the file. DDS

A starting position for retrieving The OVRDBF CL command

records cannot be specified.

Select/omit level keywords cannot be DDS

used for the file.

For a COBOL file with an organization of RELATIVE, the Reorganize Physical
File Member (RGZPFM) CL command can:

• 	 Remove all deleted records from the file. Since COBOL initializes all relative
file records to deleted records, any record that has not been explicitly written
will be removed from the file. This causes the relative record numbers of all
records after the first deleted record in the file to change.

• 	 Change the relative record numbers if the file has a key and the arrival
sequence is changed to match a key sequence (with the KEYFILE parameter).

Either result of the RGZPFM CL command causes the COBOL concept of a
relative file to change.

COBOL Sequential File: A COBOL sequential file is a file in which records
are processed in the order in which they were placed in the file; that is, in arrival
sequence. For example, the tenth record placed in the file occupies the tenth
record position and is the tenth record to be processed. To process a file as a
sequential file, ORGANIZATION IS SEQUENTIAL must be specified in the SELECT
clause, or the ORGANIZATION clause can be omitted. A sequential file can only be
accessed sequentially.

To write standard ANS COBOL X3.23-1974 to access a sequential file, the file
must be created with certain characteristics. The following table lists these
characteristics and what controls them.

Characteristic Control

The file must be a physical file. The CRTPF CL command

The file cannot be a shared file. The CRTPF CL command

The device specified in the

assignment-name must match the actual

device to which the file is assigned.

No key can be specified for the file. DDS

The file must have a file-type of data. The CRTPF command

Field editing cannot be used. DDS

Line and position information cannot be DDS

specified.

Spacing and shipping keywords cannot DDS

be specified.

Chapter 9. Programmer's Guide Information 9-39

Characteristic Control
Indicators cannot be used. DDS

System-supplied functions such as date, DDS
time, and page number cannot be used.

Select/omit level keywords cannot be DDS
used for the file.

COBOL File Organization and System/38 File Access Path
Considerations: A file with a keyed sequence access path can be processed in
COBOL as a file with INDEXED, RELATIVE, or SEQUENTIAL organization.

To process a keyed sequence file as a relative file in COBOL, the file must be a
physical file, or a logical file whose members are based on one physical file
member. To process a keyed sequence file as a sequential file in COBOL, the file
must be a physical file, or a logical file that is based on one physical file member
and that does not contain select/omit logic.

A file with an arrival sequence access path can be processed in COBOL as a file
with RELATIVE or SEQUENTIAL organization. However, the file must be a
physical file or a logical file where each member of the logical file is based on
only one physical file member.

When sequential access is specified for a logical file, records in the file are
accessed through the access path created by the user with create file options.

File Processing Methods J
Figure 9-14 shows the valid processing methods and expected operation for
combinations of organization, access mode, open state, 1-0 verb, and 1-0 verb
modifiers.

Programming Note: All physical data base files that are opened for output are
cleared. Data base files with RELATI V E organization are also initialized with
deleted records, which is necessary for successful relative file processing on
System/38. Relative files should be cleared and initialized with deleted records
before they are used when the first OPEN statement for the file is not OPEN
OUTPUT. See the discussion of the CLRPFM and INZPFM commands in the CL
Reference Manual. The RECORDS parameter in the INZPFM command must specify
*DLT. Overrides are applied when COBOL performs the clear and initialize
operations, but overrides are not applied when the user performs the clear and
initialize operations with CL commands.

Users can expect lengthy delays in OP EN OUTPUT processing for extremely large
relative files (over 1,000,000 records), such as when *NOMAX is specified on the
create file command.

Device files, such as QTAPE and QDKT, must be initialized by the user. Refer to
the CL Reference Manual for information on the INZTAP and INZDKT
commands.

9-40

Descending File Considerations

Files created with a descending keyed sequence (in DDS) cause the READ statement
NEXT, PRIOR, FIRST, and LAST phrases to work in a fashion exactly opposite
that of a file with an ascending key sequence. For example, READ FI RST
retrieves the record with the highest key value, and READ LAST retrieves the
record with the lowest key value. Files with a descending key sequence also cause
the START qualifiers to work in the opposite manner. For example, START
GREATER THAN positions the current record pointer to a record with a key less
than the current key.

Chapter 9. Programmer's Guide Information 9-41

SELECT I
CLAUS

ORG ACC DEV OPEN READ WRITE START REWRITE DELETE CLOSE FORMAT KEY IS

S S ANY INPUT X X

S S ANY OUTPUT X(F1) X A1

S S ANY 1-0 X X X

S S ANY EXTEND X X

I S D/DB INPUT X X X B1 C1

I S D/DB OUTPUT X(Fll X B1 C1

I S D/DB 1-0 X X X X X B1 C1

I R D/DB INPUT X X B1 D1

I R D/DB OUTPUT X(F1) X B1 D1

I R D/DB 1-0 X X X X X B1 D1

I D D/DB INPUT X X X B1 D1

I D D/DB OUTPUT X(F1) X B1 D1

I D D/DB 1-0 X X X X X X B1 D1

R S D/DB INPUT X X X C1

R S D/DB OUTPUT X(G1) X C1

R S D/DB 1-0 X X X X X C1

R R D/DB INPUT X X E1

R R D/DB OUTPUT X(Gll X E1

R R D/DB 1-0 X X X X X E1

R D D/DB INPUT X X X E1

R D D/DB OUTPUT X(G1) X E1

R D D/DB 1-0 X X X X X X E1

T S W 1-0 X X X H1

T D W 1-0 X(K1) X(K1) X X 11 J1

ORG: ACC: DEV:

S = Sequential S = Sequential ANY = Any device

R = Relative R = Random D = DISK

I = Indexed D = Dynamic DB = DATABASE

T = TRANSACTION W = WORKSTATION

Figure 9-14. Processing Methods Summary Chart

9-42

The following paragraphs explain the keys used in Figure 9-14.

x 	 The combination is allowed.

A 1 	 The FORMAT phrase is required for FORMA TF IL E files with multiple formats,
and is not allowed for all other device files.

B 1 	 The FORMAT phrase is optional for OAT ABAS E files, and not allowed for
01 SK files. If the FORMAT phrase is not specified, the default format name
of the file is used. The default format name of the file is the first format
name defined in the file.

The special register, DB-FORMAT -NAME, can be used to retrieve the format
name used on the last successful 1-0 operation.

C 1 	 The SEL ECT clause KEY phrase is ignored except for the START statement.
If the KEY phrase is not specified on the START statement, the RECORD KEY
phrase or the RELATIVE KEY phrase in the SELECT clause is used and KEY
= is assumed.

01 	 The SELECT clause KEY phrase is used except for the START statement. If
the KEY phrase is not specified on the START statement, the RECORD KEY
phrase in the SELECT clause is used and KEY = is assumed.

NEXT, PRIOR, FIRST, or LAST can be specified only for the READ statement
for DATABASE files with DYNAMIC access. If NEXT, PRIOR, FIRST, or LAST
is specified, the SELECT clause KEY phrase is ignored.

E1 The SELECT clause RELATIVE KEY phrase is used.

The NEXT phrase can be specified only for the READ statement for a file
with DYNAMI Caccess mode. If NEXT is specified, the SELECT clause KEY
phrase is ignored.

The RELATIVE KEY data item is updated with the relative record number
for files with sequential access on READ operations.

F1 	 A physical file opened for output is cleared.

G 1 	 A physical file opened for output is cleared and initialized to deleted
records.

H1 	 The FORMAT phrase is required for the WR I TE statement.

11 	 The FORMAT phrase is required to distinguish between the subfile records
and the sub file control record. The WR IT E FORMAT IS
control-record-format-name displays the subfile, but a READ FORMAT IS
control-record-format-name is required to allow data to be entered and to
cause the operator input for the subfile records on the display to be placed
in the subfile.

J1 	 The SELECT clause RELATIVE KEY phrase is used for READ, WRITE, and
REWRITE statements that use the SUBFILE phrase, except that the READ
SUBFI LE NEXT MODI FI ED uses the current system relative record number
rather than the RELATIVE KEY data item. The RELATIVE KEY data item is

Chapter 9. Programmer's Guide Information 9-43

L

updated with the relative record number for subfile records for READ
statements with the N EXT MOD I FI ED clause.

K 1 	 The SUB FI L E phrase is required when an 1-0 operation deals with a
particular record rather than an entire file.

Commitment Control Considerations

Commitment control is a function that allows:

• 	 Synchronization of changes to data base files within the same job

• 	 Cancellation of changes that should not be permanently entered into the
database

• 	 Locking of records being changed until changes are complete

• 	 Techniques for recovering from job or system failure.

In some applications, it is desirable to synchronize changes to data base records.
If the program determines the changes are valid, the changes are then
permanently made to the data base (a COMM I T statement is executed). If the
changes are not valid, or if a problem OC!;urs during processing, the changes can
be canceled (a ROLLBACK statement is executed). (When a file is cleared after
being opened for OUTPUT, execution ofa ROLLBACK does not restore cleared
records to the file.) Changes made to records in a file that is not under'\
commitment control are always permanent. Such changes are never affected by ...",
subsequent COMM IT or ROL LBACK statements.

Each point where a COMMIT or ROLLBACK is successfully executed is a
commitment boundary. (If no COMMIT or ROLLBACK has yet been issued in a
program, a commitment boundary is created by the first open of any file under
commitment control.) The committing or rolling back of changes only affects
changes made since the previous commitment boundary.

The synchronizing of changes at commitment boundaries makes restart or
recovery procedures after a failure easier. For more information see "Recovery
After Failure" later in this chapter.

When commitment control is used for data base files, records in those files are
subject to either a high lock level LCKLVL (*ALL) or a low lock level
LCKLVL<*CHG). With a low lock level (*CHG), all records that are changed
(rewritten, deleted, or added) in files under commitment control are locked until a
COMMIT or ROLLBACK statement is successfully executed. With a high lock level
(*ALL), all records accessed, whether for input or output, are locked until a
COMMIT or ROLLBACK is successfully executed. For both record locking levels, no
other job can modify data in locked records until the COMMIT or ROLLBACK has
been successfully completed. (A locked record can only be modified within the
same job and through the same physical or logical file.)

The lock level also governs whether locked records can be read. With a high lock
level (*ALL), you cannot read locked records in a data base file.

9-44

VERB

DELETE

READ

READ

REWRITE

START

START

WRITE

WRITE

With a low lock level (*CHG), you can read locked records in a data base
file, provided the file is opened as INPUT in your job.

Other jobs, where files are not under commitment control, can always read
locked records, regardless of the lock level used, provided the files are
opened as INPUT. Because it is possible in some cases for other jobs to read
locked records, data can be accessed before it is permanently committed to a
data base. If a ROLLBACK statement is executed after another job has read
locked records, the data accessed will not reflect the contents of the data
base.

Figure 9-15 shows record locking considerations for files with and without
commitment control.

OPEN MODE LOCK LEVEL DURATION OF RECORD LOCK

Next 1-0 COMMI Tor

Operation ROLLBACK

+
I

~r

DELETE I
1-0 Without Commitment Control

With Commitment I "CHG

0 I

Control I "ALL
I

L

READ I
INPUT Without Commitment Control

With Commitment I "CHG
Control I "ALL

0

0

I
I
I

I
READ I

1-0 Without Commitment Control 0 I
With Commitment
Control

I "CHG

I "ALL

a I
I

1·0 Without Commitment Control

With Commitment I "CHG

REWRITE
0

I
I

I
Control I "ALL

INPUT Without Commitment Control

With Commitment I "CHG
Control I "ALL

START
0

0

I
I
I
I
I
I

1-0 Without Commitment Control

With Commitment I "CHG

Control I "ALL

START

a
c

I
I
I

WRITE I
1-0 Without Commitment Control

0 I
With Commitment
Control

I "CHG

I "ALL

I
I

I

OUTPUT Without Commitment Control

With Commitment I "CHG

Control I "ALL

WRITE

a
I
I

Figure 9-15. Record Locking Considerations with and without Commitment Control

Chapter 9. Programmer's Guide Information 9-45

A file under commitment control can be closed or opened without affecting

the status of changes made since the last commitment boundary. A\

COMMIT must still be issued to make the changes permanent, or a ROLLBACK ..""

issued to cancel the changes. A COMMIT statement, when executed, leaves

files in the same open or closed state as before execution.

All files under commitment control within the same job must be journaled

to the same journal. For more information about journal management and

its related functions, and for more information about commitment control,

refer to the CPF Programmer's Guide.

Commitment control must also be specified outside the COBOL language

through the CPF control language (CL). The Begin Commitment Control

(BGNCMTCTL) CL command establishes the capability for commitment

control and sets the level of record locking at the high level (*ALL), or the

low level (*CHG). The BGNCMTCTL command does not automatically initiate

commitment control for a file. That file must also be specified in the

COMMITMENT CONTROL clause of the I -O-CONTROL paragraph within the

COBOL program. The commitment control environment is normally

terminated by using the End Commitment Control (ENDCMTCTL) CL

command. This causes any uncommitted changes for data base files under

commitment control to be cancelled. (An implicit ROLLBACK is executed.)

Refer to the CL Reference Manual for more information on the BGNCMTCTL

and ENDCMTCTL commands.

For more information about commitment control see the CPF Programmer's
Guide.

Programming Note: The ability to prevent reading of uncommitted data
that has been changed is a function of commitment control and is only
available if you are running under commitment control. Normal
(non-commit) data base support is not changed by the commitment control
extension, and allows reading of locked records when a file that is opened
only for input is read. Try to use files consistently. Typically, files should
always be run under commitment control or never be run under
commitment control.

Figure 9-16 shows an example of the use of commitment control.

The following example illustrates a possible use of commitment control in a
banking environment. The program processes transactions for transferring
funds from one account to another. If no problems occur during the
transaction, the changes are committed to the data base file. If the transfer
is invalid due to improper account number or insufficient funds, a
ROLLBACK is issued to cancel the changes.

9-46

• •• •
• •

GX2'·7754·2 UM/050'DATA DESCRIPTION SPECIFICATIONS Printed in U.S.A.

I~ ofIIf-F--'-"II______.--___---I1 Keying I ",.phle I I I I
II Pr....m_ IDlte I Instruction I Key I I I I

Conditioning
LOCition

Functions

1-" , ~ .
'. IA -U .'>.. ,

,~ I" lit AC.c..1tt1 rr

'--, I"·' '1 "'I 11 MAilIT.'1 IlPDAP' ·
IA . i ! .3 1 'IED~ ~UJ It .

·

i i . , i' !'IJI f'r.o.~

, IA i "'J

A .. E.~J",l· • '. i
IA ~.., ·~\\I.. ',l" filL.!!. ali flU Ii, •

•
• i •

i • IA . .• • • ., i

i i IA' . " i . .
 , .
!A i" .

· .

IA .• • .

.
i i • IA . '. " , .

.
.

... I" .
•

.' .. i
 ·
•

• •
i

. . .
• . .
•i ; i

. .
• • ,. I~ i ·

· • • .
. , · i

.. . ..'
. '. . , . ,·

Figure 9-16 (Part 1 of 6). Example of Use of Commitment Control

Chapter 9. Programmer's Guide Information 9-47

L

5714(81 ROS .'''100 a30hl0 COBOL SOUqCE LISTING

SIMT SEON8R -A 1 8 ••••• 2 •••••• 3 ••• 4 •••••• lj •••••• b ••• ••• 1

0001011 I1'tENTIFICAT.ION DIVISION.

000200 PAOGRA"I- In. ACCOUNT.

000300 AUTHOR. tAH CA~AOA LA~JRA.T')RY.

000400 I~STAllHIQ~. TORONTO LABIJRAT:JRY.

00050J ENVIRONMENT OIVISIJf04.

& 000&00 CO"lFIGUFlATI'JN SECTION.

1 000100 SOURCE-COMPUTER. 18"'-S38.

8 oooaoo O~Jf(T-CO~PUTfR. 18"-')]8.

9 000900 INPUT-OUTPUT SECTION.

10 001000 FtLC::-C~f04TAOl.

11 001100 SELfCT ACCOUNT-FilE

12 001200 ASSIGN TO OU"'SASE-ACCTHST

13 001300 IJRGANIZATION IS INDEXED

14 001400 ACCeSS I S DYNAMIC

15 n01500 RECORD KEY IS EXTEA'IIALlY-DESCK.16EO-KE\'

1& 001600 FILE STATuS IS ACCOUNT-FlLe"STATUS.

11 	 001700 SELECT OISPlAV-FILE II
18 	 001800 ASSIGN TO WORKSTATION-ACCTFMTS-SI
19 	 001900 ORGANIUTlON IS TRANSACTIO~.

DO? 0000'**0(:,(;*:) (I(1*:tt1!< ¢.(IO 0 (1*(:"(1",:) (: (roo I) o.o. o.(: 1)« 00 * * (:;)00 O¢ (! •

00210Q*

20 	 002200 I-O-CONTRnL. COt04MITMENT CONTROL. FOK ACC'lUNT-FIlF.

002300::'

002400 r,:,,~ 0 (! ¢¢o.~' >::c>::::> (:~, (; *C~*.(1 (: ('¢;;::;: ** t:f,I f,l::::::;:< *;) tte f.1 (::;.:;. .;.;;: ~

Zl 	 002S00 DATA DIVISI'1r-..
?2 002600 FILE SECTTON.

?3 002700 FO ACCflUNT-F1l~

24 002~00 LABEL RECOROS ARE STA~DAR.n.

25 002900 01 ACCOUNT-RECORO.

26 003000 (l'1PV ODS-ALL-FQv I1AT5 OF ACCTMST.

2B .000001 05 A(CTHST-RECOR.Q PIC X(~ZI.

29 .0000n2

+OOQ003:~ 1-0 F!')R·~AT:ACCNTR.EC FR.O"l FILE ACCT~ST OF LIhQ,A~Y C.OM"IIT
.000004*
.OQ0005:)T'-!E KEY DEFINJ.TIONS FOR RECORD FO~MAT ACCNTREe
+OOOOO/)¢" ""J "tPE II ~AME r.l.EfltJEVA.l TYPE
+000007* 001"11 ACCNTKEY ASCE iHl!; N

ll) +000006 O~ ACC~TREC REOEFH~ES ACCT'1ST-RECORD.
H .OOOOM Db ACCNTIC.FY PIC S9ISI.
l2 .000010 Db NAMi:: PIC X.l lO).
H .OOOOll Db AOOR PIC X.1201.
34 +000012 at. CITY PIC)«(ZOI.
Vi .000013 Of, $TATE PIC)(121.
lb .000014 06 lIP PIC S9t5J.
31 .000015 Ob I'IAlANCE PIC S91tUy Q f21.
38 003100 F'J OI5PLAY-FIlF
39 003200 lASH Rf'COROS ACl:E OMI nED.
40 003300 Cl DISPI,.AV-RFC.
41 003400 COpy DOS-ALL-FORMATS OF ACClF'I4TS.
43 .000001 0'5 II.CCTFpAT'i-RE(OCl:ij PIC XI £'41.
"4 +000002

+00000)(: I'tPUT F!lRIlt4AT:A(CTPHT FRO"! Flt.E: ACCTF"'lTS OF LId:f."~Y C!lH"'P
.0000041) CUS TOMER ACCUUNT PRClMPT

45 .000005 O'S A(CTP"'T-l REDEFINES ACCTF"'TS-I{E.C;Jq;u.

46 .000006 06 A((TFROH Pie 59! S).

03/04/A3

.JDEI..;TFCN S CJPY\I"''''E J

<-A.LL-F~TS

<-AlL-I=MTS
<-ALl-F"4TS
<-All-F,'HS
<-ALl-FMTS

Al TSEIJ <-ALL-cMTS
:iQ <-ALl_c~TS

<-AI-I,. ...FMTS
<-lLl-P-MTS
<-All-F:'HS
<-ALl-I=!oITS
(-ALl--=MTS
(-All--=r1TS
<-All-FMTS
<-All-~~TS

<-All-C:tHS
<-ALl-FMTS
<-All-FMTS
<-All-PHS
<-All_c~TS

<-ALl-FMTS

Figure 9-16 (Part 2 of 6). Example of Use of Commitment Control

9-48

http:ACCNTIC.FY
http:F!')R�~AT:ACCNTR.EC

••

S1l4CfH ~05 ~OO 8301)10 COBOL 511URLF LI<;T(NG AC. (ourn 03/04/113

SHn SfUNBR. -A 1 B•• £ ••••••) • •• 4 •••••• 5 •••••• ~ •••••• 7 .I)EIliTFCN S CJPY"'A)jjE

47 -000007 Of., A(CTTJ PIC 541')1. <-4LL-"'I'IT5
48 .000006 06 HANSAMT PIC S91d1V'H21. <-ALL-F"IT5
49 -000009 <-ALL-IO:-ITS

+000010* OUTPUT H1R.'4AT:ACCTPMT FRO'" FILE:. ACCTPIT5 01- L Ll~APy c.nH"IlT <-A.lL-FMTS
+000011* CUSTQME't ACCOUNT PRJ;"\PT <-AlL-F..,TS
.. 0000 12::= 0<; ACCTPa.jl-0 REDEFI;;E~ ACCTF",rS-Q.((:,jRD. <-AlL-F~TS

")0 .000013 <-AlL-FMTS
"000014* IIljPIJT FOR~A.T:ERRFMT FROM FILE ACCTF"rs 01- Ll3RAQ,Y cnM"IIT <-AlL-FMTS
"000015* <-ALL-FI'H5
+000016::: 05 ERRFMT-I kEOEFINE5 ACCTF~TS-Q.ECJR(J. 	 <-ALl-~"ITS

"
-0000\7 	 <-ALL-F"ITS,

+DOOOIB¢ OuTPUT FIJRMAT:FRRFMT FRO"'! FILE AC(TF"'TS 0;: LJ<;~AI:!Y cnM'"IIT <-AlL-F~TS

+000019# <-ALL-F""TS
-000020* 0<; cRRFMT-O RE'DEFI'~fS ACCTF"'TS-REC,JRO. <-ALL-FlHS

5, 003500 \.fORKI~(,-STORAr.E SECTION.

53 003600 17 ACCOU"IT-F[LE-STATUS PIC xx.

54 003700 77 rNO-O~ PIC 1 VALUE ~"l".

003808 11 PW-OFF PIe 1 VALUE d"O".
5b" 003900 U1 F~J~-AC(OUNT-RECURD.

51 004000 (IlPV ODS-All-FORMATS DF AC(TMST •
• OOOODI OC; ACCTMST-RFCO~I') PIC J«(321. 	 <-AlL-FMTS

60 	·000002 <-ALL-F"1TS
.OOOO03~· I-O FQR~AT:ACC"IrqF::(FROM FILE ACCT"'IST <-All-PHS
·OOOOO4~ <-"ll-F"IT)

At +000005 0') ACC~TREC KEO~FINF.S A(CHIST-REcrH0. <-A.ll-"'''ITS ., ·000000 06 ACCIIITKEV PIe <;9 I!) I. <-ALl-FMTSo
b3 .OGOO07 U6 ~A"lE PIC J(t 20 I. <-"LL-F~TS

b4 ·oooooa Db AUOR PIC XllO). <-AlL-FMTS
b. ·000009 06 ClTv PIC xe201. <-ALL-FMTS
66 ·000010 J6 STATE: PIC)((2). <-ALl-FMT5
61 ·000011 O~ II P P IC S~ 1';>1. <-ALL-FI'HS
68 ·000012 U6 9ALAfIIC.F. PIC S~18)vqt21. 	 <-A.LL-F,-US
b. 004100 at Tn-ACCOUNT -RECORD.

70 004.200 COPY OJS-ALl-FORMATS OF ACCTM<iT.

72 .000001 00; ACCTKST-RECORO PIC)({821. (--ALl-FMTS

73 .000002 <-ALL-FMTS

''000003~: 1-0 Ff)k"'AT: A(CNTREC FRCJ'IoI FILE ACCTMST 	 <-ALL-FMTS
.000004': <-All-F"ITS

74 .. 000005 0') ACCNT~E:C REOfFINES ACCTMST-REcn~'1 • <-AlL-FMT5
15 .. 000O!16 ut.. A(CNTKEY PIC S91~1. <-ALL-FMTS
7b .. 000007 06 NA"~E PIC XIZO) .. <-All-FIIIIITS
77 ·000003 ut.. "DDR PIC X(20). <-All-FMTS
78 .000009 06 CITY PIC XtZUI. <-A\..L-FMTS
79 .000010 06 STAfF PIC xu I. <-All-FMTS
'0 ·000011 Of> lIP PIC 59151. <-UL-FMTS
81 .. 00001.2 06 RAlANCE PIC S9(BIV912J. <-All-FMTS
82 004300 at 01 SPF I Lt-- IWIICS.., 004401) COpy DDS-ALl-FDRMATS-INDIC I)F ACCTF"ITs.1I
8 • • 000001 0'5 ACCTFMTS-RECURD. <-.A.ll-FMTS
.b .00000.2 <-ALL-F-I4TS

"00000]':' I\lPIJT Ft')RMAl:A.CCTPMT FRO'" FILE ACtTF"1TS OF L IdR.ARY COH'HT <-ALL-FMTS

.~
• 000004~' (USTO"lER ACCQUNT PRO"lPT <-All-F"lTS

B1 .OOOOOc;, U~ A((TPMT-I-INDIC. <-ALL-FMTS

'0 .OOOQOb fJ7 INl') PIC 1 I"40I(1'). <-All-F'HS
·0000070:: END UF PROGRA'IoI <-ALL-FMTS

Figure 9-16 (Part 3 of 6). Example of Use of Commitment Control

Chapter 9. Programmer's Guide Information 9-49

http:ACCTF"ITs.1I

S114CBl ROS HOD 811)610 COBOL SDuRCE LISTING AC.COUNT 03/04/113

STMT SEQNBR -A 1 B••••• l ••• 3 ••• 4 •••••• 5 ••• ~ •••••• 1 .I:JENTFCN 50 CLlPYNAIoIIE

89 .000008 07 IN91 PIC 1 I~OIC 91. <-AlL-I=MTS
+000009* I~VAllO TO A((OUNT NU"'BFR (-ALl-FMTS

90 .000010 01 I N98 PIC 1 PlOIC 9f1. <-ALL-FMTS
·000011* INiUFFICIENT FUNDS IN fRJ"'I ACCOUNT (-Ul-FMTS

91 .00001Z 01 IN99 PIC 1 I"'DIC 9? <-ALL-I=MTS
.0000130 INVALID FRO'" ACCOUNT NU"43ER <-ALL-FMTS

92 +000014 <-ALL-f:MTS
.000015~ OUTPUT FORMAT:",CCTPMT fRO~~ FILE AC(TFMTS OF lttlRAQ.y (OM"1IT (-ALL-FMTS
·000016* CUSTO~ER ACCOUNT PROMPT <-UL-FMTS

9] .000017 06 AeCTP"IT-O-INOIC.. <-ALL-FMTS
90ft .000018 01 1~97 PIC 1 I"IOIC 97. <-ALL-FMTS

.0000190 INVALID TO ACCOUNT NUMtiEK (-ALL-F·''1lS
95 +000020 01 I N98 PIC 1 tNDI(98. <-ALL-F~TS

·000021~ INSUFFICJENT FUhlDS 1111 FRc;"1 ACCOU"4T <-UL-FIil4TS
96 .000022 01 1f..l99 PIC 1 INolC 9q. (-A.LL-FMTS

·000023* INVALID FRO""! A<.COUNT NLJ"BE~ <-ALL-HITS
91 .000024 <-ALL-I=~TS

.OOOOZ5-e: INPUT FOR "'AT : Ef(RfMT FRO""! FILE A(CTF""!T!) '1f- LI:lURV (IJ"MIT <-ALl-F"ITS
+OQ0026-(: <-A.LL-Ff'llS
·000021'0 Db I:RRfHT-I-INDIC. (-ALl-FMTS

98 .000028 <-Al.L-FMTS
+OOOO!9* OUTPUT FOR "'AT : ERRFMT FRO~ FILE ACCTFMTS OF L IBRAQ.y (OM'" I T <-ALL-FMTS
·000030(1 (-ALL-F"'TS

99 .0000)1 Db ERRFIo1T-Q-1NDl(. <-ALL-FMTS
100 +000032 01 IN95 PIC I~DIC 95. <-ALL-FM1S
101 .000033 01 I N96 PIC I'lDle 'lb. (-ALL-F~TS

102 004500 PROCEDURE DIVISION.
004600

00470U OEClARATlveS.

004800 ERRCA-SfCT I ON SECTION.

004900 USE AFTER STANDARD EXCEPTION PROCEDURE O~ ACCOuNT-FILE.

005000 I:A.ROR-PARA(,RAPH.

103 	 00<;100 IF ACCOUNT-FILE-$TATUS NOT .. "23" THE,\! II
104 	 00520J "'aVE INO-ON TO IN96 OF ERRFMT-O-INOIC

005300 elSE
105 OQ5ltOO "'aVE INC-ON TO IN95 OF ERRFHT-O-H.,.nIC.
106 	 005500 WRITE DISPLAY-Rft FORMAT IS "ER!\FMT" II

00$600 I~DICATORS ARE EA.q,F~T-G-INDI=.

107 005700 (lOSE DISPLAY-F-llE,
005800 ACCGlINT-FIlE.

108 	 005900 STOP RU~.
OObOOO END DEClAR:AT IVES.
OOfo)100
001,,200 BEGIN.
006300

109 DDbltOO OPEN 1-0 ACCOUNT-FILE,
006500 1-0 DISPLAY-FilE ..

110 DObbOO ,",DVE ZEROS TO A((TPMT-I-I"lDIC,
006100 ACe TPIllT -0-1 NO IC.

III OOb800 PERFOR'" WRlTE-REAO-CISPLAY.
112 006900 PEr.tFORM VEiUFY-AC.C.OUNT-NO UNTIL
113 ool'ooo CLOSE DISPLAY-FILE,

001100 ACCOUNT-F IU.
114 001100 STOP RUN.

001300

Figure 9-16 (Part 4 of 6). Example of Use of Commitment Control

9-50

5714(61 R05 MOO 83')bl0 (osnL SOURCE LISTING A.CCOUNT 03/04/83

ST"'T SEQNBR -A 1 B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN S COPY~A"'E

001400 ',IE R I F V-ACCOUNT - NO.

007500

115 007600 PERFOR.M VERIFY-ACCOUNT-FRnM.
 II
116 007700 IF IN99 OF ACCTPMT-O-INDIC = IND-OF'" THEN

117 007800 PERFnR'" VEPIFY-ACCOUNT-TO.

118 001900 PERFORM wR I TE-READ-D I SPLAY.

008000

008100 VE R 1 F Y -ACCOUNT - FkOM.

008200

119 00A300 MOVE I\((TFROM TO ACCNTKEY IN ACCOUNT-RECORD.

120 OOA400 ~EAD ACCOUf'.lT-FILE INTO FROM-ACCOUNT-RECORD

121 0085QO PIVAllD KEY MOVE P..jO-ON TO 1"199 OF ACCTP"IT-O-INDIC.

008600

008700 VERIFY-ACCOUNT-TO.

008800

122 008900 MOVE ACC lTD TO ACCNTKEY IN ACCOUNT-RECORD.

123 009000 READ "CCOUNT-FlU INTO TO-ACCOUNT-RECORD ..

12. 	 009100 INVALID KEY MOVE INC-ON TO IN97 OF ACCTP ... T-J-I'JJIC...
125 	 00920D IF IN97 OF ACCTPMT-O-INDIC '" l.'W-ON THEN

009300* ~,¢ ¢~ **********¢»~, e.,~,~ ***t.,*e-*o::* o::;~*~

009400*

009500 1l0LL~ACK iii

126 	 009600*

0097 00*** *****~, *" ** * *********«*,;: ** *:~ * : '* * * * ** ':' ** *~,

009800 ElSE

127 	 009900 PieR-FORM UPDATE-ACCOUNT.

0100ao

010100 UPDATE-ACCOUNT.

010200

128 010300 SUBTRACT TRAf\SA"'IT FROM BALANCE IN FRl.J"!-ACCQUiH-RE(;)I?D.

129 010400 AOD TRA"lSAMT TO 8ALAI\lCE: IN TO-ACCOU~T-RECORD.

130 010500 REWR ITE ACCOUNT-RECORD FROM FIIOM-ACCOUNT-QECORJ.

131 010600 REwl? ITt: ACCOUNT-RElORD FROM TO-.t.CCQUNT-RECtJRD.

132 010700 IF BAlANCE IN' FROI"I-ACCOUNT-RECQRD < 0 THEN

133 010800 MOVE IND-ON TO IN98 OF _~CCTPMT-O-INOIC,

010900~"":::·~¢:::*******f.:,;:,::~,:::~,::::::';:1):)******~,*,~**~

011000': III
011100 ROLLBACK _

134 011200*

o11300*.¢..¢..¢.~.¢.*****~'* *~,****,;,**;~*::::::*****:;,:,;,:;,:{:~*~,~;~,*,,~

011400 ELSE

011500************* *****¢***** ** **~.'* **¢* *****(, ~:*

135

011600::>
011700 COMMIT.

012000

012100 PlIlITE-READ-rISPLAY.

012200

136 	 012300 WRITE DIsolAY-RfC FORMAT IS "ACCTPMT" II
012400 INDICATORS ARE AC(TPMT-O-INDIC.

137 012500 MOVE ZEROS TO A(CTP~T-I-INDIC,
012600 ACC TPMT-O- INO Ie.

138 012700 READ DISPLAY-FILE RECORD
012800 INDICATORS ARE A(CTPMT-I-lNDIC.

Figure 9-16 (Part 5 of 6). Example of Use of Commitment Control

Chapter 9. Programmer's Guide Information 9-51

o 	A separate indicator area is provided for the program.

D 	 The COMMITMENT CONTROL clause specifies files to be placed under commitment control. Any

files named in this clause are affected by the COMMIT and ROLLBACK verbs.

II 	The COpy statement, DOS format, with the indicator attribute INDIC, defines data description

entries in WORKI NG-STORAGE for the indicators to be used in the program.

D 	 I N96 is set ifthere is an invalid file status.

iii 	 IN95 is set ifthere is an INVALID KEY condition on the REWRITE operation.

11 	 I N99 is set if the entered account number is invalid for the account that money is being

transferred to.

D 	 I N97 is set if the entered account number is invalid for the account that money is being

transferred to.

I!I 	 If an INVALI 0 KEY condition occurs on the READ, a ROLLBACK is used and the record lock placed
on the record after the first READ is released.

D 	 If the transfer offunds is invalid (an indicator has been set), the ROLLBACK statement is

executed. All changes made to data base files under commitment control are canceled.

1m 	If the transfer offunds was valid (no indicators have been set), the COMMIT statement is

executed, and all changes made to data base files under commitment control then become

permanent.

m 	The INDICATORS phrase is required for indicators controlled by Command Function keys on the
work station screen.

Figure 9-16 (Part 6 of 6). Example of Use of Commitment Control

Exceptions and Some of Their Causes

MCH 1202 data exception:

• 	 A numeric elementary item has been used as a source when no valid data has
been previously stored in it. The item should have a VAL UEclause, or a MOV E
statement should be used to initialize its value.

• 	 An attempt has been made to place nonnumeric data in a numeric item.

• 	 Bad data was written to a subfile earlier in the program. The sub file data is
not validated until it is written to the screen, so the 1202 error can occur on
the WR IT E of a subfile control record, but the bad data was actually put to
the subfile earlier.

MCH3601 invalid pointer:

• 	 The OPEN for the file was unsuccessful and the execution of any other 1-0
statement for that file is attempted. The file status should be checked before
any other 1-0 is attempted.

• 	 A reference is made to a record or a field within a record and the associated
file has been closed or has never been opened.

9-52

MCH3402 reference destroyed object:

• 	 A reference is made to a record or a field within a record and the associated
data base file has been closed.

CPF2415 end of request:

• 	 An attempt has been made to accept input from the job input stream while
the system is running in batch mode and no input is available.

System/3S COBOL Programming Considerations

Performance Considerations

Segmentation

Use of segmentation increases the compile and execution times of the COBOL
program. The segmentation feature is provided only for compatibility with other
systems. It is not necessary to be concerned with storage management when using
System/38 COBOL programs.

Debugging

COBOL source language debugging is provided to help the COBOL programmer
debug a program that is not functioning as expected. Use of this facility increases
the compile and execution times of a COBOL program.

Data Formats

Data described as packed (COMP or COMP-3) provides better perforn1ance than
data described as binary (COMP-4) or zoned decimal (DISPLAY) at execution time.

*NORANGE Option

This option of the GENOPT parameter of the CRTCBLPGM command removes the
execution-time checks for subscript ranges. If frequent references to tables are
made and the subscripts always reference elements within the table, use of this
option can improve performance.

Indicators

If you use indicators in a separate indicator area (I NDARA keyword specified in
DDS) instead of in the record area, the use of the OCCURS clause to specify a table
with up to 99 indicators can improve performance.

Chapter 9. Programmer's Guide Information 9-53

Program Loops

Commitment Control

Generally, the use of commitment control increases the execution time of a
COBOL program. In addition, the record locking which results from the use of
commitment control by a job may cause delays for other users attempting to
access the same file.

When a program repeatedly executes the same series of instructions, and it is
apparent that this will continue indefinitely, the program is in a loop. To identify
loops, you can use information known about the program itself, as follows:

• 	 Time: If the actual run time is substantially exceeding the expected run time,
the program could be in a loop.

• 	 1-0 operations: If no input/output operations are taking place and 1-0 is
expected to be occurring repeatedly, the program is probably in a loop.

Tracing a Loop in a Program

Frequently, a loop encompasses many instructions in a program. In this case, the
user can use the COBOL debugging features as described in Chapter 6, or the
System/38 debugging capabilities of Trace as described in Chapter 10.

Errors That Can Cause a Loop

A PERFORM statement with an UNTI Lclause can cause a loop when the condition
specified in the UNTI Lclause cannot be met. For example:

PERFORM UNTIL COUNTR LESS THAN ZERO

where COUNTR is an unsigned numeric item.

A GO TO statement that refers to a previous procedure-name can cause a loop
when no conditional statement exists to prevent the GO TO statement from being
executed again. For example:

PARA-I.
MOVE
MOVE
MOVE

PARA-2.
MOVE
GO 	 TO PARA-I.

A possible variation of this case is when a conditional statement exists, but the
condition cannot be met or the statement does not branch (through a GO TO
statement) to a paragraph outside the range of the loop.

9-54

Recovery after a Failure

Recovery with Commitment Control

When the system is restarted after a failure, files under commitment control are
automatically restored to their status at the last commitment boundary.

For a job failure (either because of user or system error), files under commitment
control are restored as part of job termination to the files' status at the previous
commitment boundary.

Because files under commitment control are rolled back after system or process
failure, this feature may be used to aid in restarting. You can create a separate
record to store data which may be useful should it become necessary to restart a
job. This restart data can include items such as totals, counters, record key
values, relative key values, and other relevant processing information from an
application.

By having the above restart data in a file under commitment control, that data
too will be permanently stored in the data base when a COMMIT statement is
issued. When a ROLLBACK occurs after job or process failure, you may retrieve a
record of the extent of processing successfully performed before failure. Note that
the above method is only a suggested programming technique and will not always
be suitable, depending on the application.

Communications Recovery

In some cases, you can recover from 1-0 errors on TRANSACTION files without
intervention by the operator, or the varying off/varying on of work stations or
communications devices.

For potentially recoverable 1-0 errors on TRANSACTI ON files, the system initiates
action in addition to the steps that must be taken in the application program to
attempt error recovery. For more information about action taken by the system,
see the CPF Programmer's Guide and the Data Communications Programmer's
Guide.

By examining the file status after an 1-0 operation, the application program can
determine whether a recovery from an 1-0 error on the TRANSACTI ON file may be
possible. If the File Status Key has a value of 9N, the application program may
be able to recover from the 1-0 error. A recovery procedure must be coded as
part of the application program and varies depending on whether a single device
was acquired by the TRANSACT ION file or whether there were multiple devices
attached.

For a file with one acquired device:

1. 	 Close the TRANSACTION file with the 1-0 error.

2. 	 Reopen the file.

3. 	 Perform the steps necessary to retry the failing 1-0 operation. This may
involve a number of steps, depending on the type of program device used.

Chapter 9. Programmer's Guide Information 9-55

(For example, if the last 1-0 operation was a READ, you may have to repeat
one or more WRITE statements, which were executed prior to the READ
statement.) For more information on recovery procedures, see the Data
Communications Programmer's Guide.

For a file with multiple devices acquired:

1. 	 DROP the program device that caused the 1-0 error on the TRANSACTION file.

2. 	 ACQU I RE the same program device.

3. See Step 3 above.

Application program recovery attempts should typically be tried only once.

If the recovery attempt fails:

• 	 If the file has only one program device attached, terminate the program
through execution of the STOP RUN or EX I T PROGRAM statement, and
attempt to locate the source of the error.

• 	 If the file has multiple acquired program devices, you may wish to do one of
the following:

Continue with execution without the program device that caused the 1-0
error on the TRANSACTION file, and reacquire the device later.

Terminate the program.

For a description of major-minor return codes that may aid in diagnosing 1-0
errors on the TRANSACT I ON file, see the CPF Programmer's Guide and the Data
Communications Programmer's Guide.

Figure 9-17 gives an example of an error recovery procedure.

J

9-56

• • •• •

•
• •

• •
• • •

• ••• •

• •• • • • •

GX21-7754·2 UMI050'
IB~ Intern..IoMI ..un. _hi,... Corporation DATA DESCRIPTION SPECIFICATIONS Printed in U.s.A.

o.IFile I Keying I G...""ie I I I I I I I IO"""pbon

IProgrammer Olte I Instruction I Key I·· II ! I I I I I
~mI

Conditioning ;:'"
t location
1!:
!Q

Condition Neme ..
e::

Sequence § Nomo length !!' Functions

Numbo<

~ ~

~
ir ~ <'~ ! « !!'g
8. Line Pol

I! (1
E

~ i ~
>.!~.. ~ .1 ~ I ~ I ~1 ';; ~ ~ t! ! ~h J z ~ i _ Ia: a: H,e:,

123415,7 .,. tl 1213 14 "" 7 8 19 20 21 2223 24 25 26 27 28 29 031323334 353837 38394041 424344 "~U~~~~~~~~M~M~~~~aM•• p ••~"nn~~~nnn~
, • 0.D ..yI": tl , F" 'Left>.. •• h~ '. b\J ELY ~ tW1.E

, A
0 • . ,

0
0

,A0

•
• I • ,

0

o 0

A :'1 C'R111' e1t6' OJ) bF ¥
, • ,• 0

0IA ,
•

A
•

•
•

• n. u 'i011u>t .,PUT» ,
, • • 0

' 'A 111It'V\ I'ILoIl !Ii, II \1. 12- · ,
·

0
· . , •

-
A Ul t.A CFf e"lu.t1 I~ '....E,'
A ,

•

A • ,
• . . , o •

' 0
• ••

0

A
• •

· :
• • . , ••• • •A

A
•

• ..
0

-

0 •A
0

• •
0 ,

0A
• , , 0

•

• • •

0,
0

, ,• · '· A j
• • 0,

o •• A , .
· • • ••A 0

•
•

0

•
· . '

A

•

, · . , •

0

• · . . 0 •• • · '

• , . . ~
• 0 '

0 • 0A . : . . •
•

• • 0 0

.~ of PldmIYwrv.......,.
 • 0

Figure 9-17 (Part 1 of 4), Example of Error Recovery Procedure

Chapter 9. Programmer's Guide Information 9-57

S714CBl ROS MOO 830610 COBOL SnURCE LISTING 03/04/83

STHT SEQNt3R -A 1 B••••• 2 •••••• 3 ••• 4 •••••• 5 •••••• () •••••• 7 .IDfNTFCN S COPY~A"'E

1 000100 IDE"ITlFI(ATION DIVISION. 00010000

2 000200 PROGRAM-IO. RECOVERY. 00020000

000300~' EXAMPLF OF PftOGRAM-OEFI".IED ERROR ~ElOVERY. *00050000

3 000400 ENVIRON~EF04T DIVISIOF04. 00170000

000500 CONFIGURATION SFCTION. 00180000

000600 50UR(£:-CO~PUTER. 18"'-538. 00190000

000100 OBJE(,T-CO~PUTER. I6M-S3R. 00200000

7 000800 INPUT-OUTPUT SECTION. aozsoolJo

S 000900 FILE-CONTROL. 00Z600!)O

9 001000 SELEC T Q.E:COVF ILE 00330000

10 001100 ASSIGN TO WORKSTATION-RECOVFIlE-SI 00340000

11 001200 ORGANIZATION IS TRANSACTION 00350000

12 001300 ACCESS IS SEQUPHIAL 00350000

13 001400 FIlF SHTUS IS STATUS-FLO, STATUS-fLO-Z 00350000

14 001500 COt-.TROl-AREA IS CONTROL-FLO. 00350000

15 001600 00360000

16 001700 SElH T PR I "'TER-F I If

17 001800 ASSIGN l'l PRINTER.-QPRINl.

18 001900

1.11 002000 DA.TA DIVISION. a0370000
20 002100 FILE SECTION. 00380000
21 002200 FD HeOVF ILE 0550000
22 002300 LABEl RfCOROS ARE UMITTfO 00560000
23 002400 DATA RECORD IS REeOV-REC. 0510000
24 002500 01 RECOV-R~C. 0530000
25 002600 copy ODS-ALL-f:[jRMATS OF RECOVFIU:.
27.000001 00:; RE'[OVFIlE-RE(DRD PIC xl61. (-AlL-FMTS
2Q .000002 (-AlL-FI'ITS

·000003* I~PUT FOR~AT:FuRMAT1 FRO~ FILE i<ECOVFIU: OF L13R.AR.Y ~(A"'PLES (-ALL-PHS
... 000004~' (-ALL-F"ITS

29 "'000005 05 FOR"'ATl-1 REOEFIf'..ES ~ECOVFILE-RH'lR,). <-.UL-FMTS
30 .000006 06lNPUTFlD PIC X(5). <-AlL-FMTS
31 .000001 <-ALL-FI'HS

"'000008* OUTPUT FOR~AT:FORMII,Tl FRO'4 I:JLI:: RHOVFIlE OF l1j'<4RY i..)(A~PLES (-ALL-t:"'1TS
.0000011* <-ALL-'::MTS
.000010'.~ 05 Fr:!R"'ATl-O RfDFFINES <;{EClIIFIU-RECfJRD. <-ALL-FMTS

,2 002700
33 002800 FD PRtNTER-F ILE.

34 002900 01 PRINTER-REC.

35 003000 05 PR INTER-RECORD PIC)(1132').

36 003100

37 003200 WORKI"H~-STaRA(,E SEC TIO~. 00620000

18 003300 at I-O-VERE' PIC XII01. 0580000

19 003400 01 STATUS-FLO PIC X121. 058000il

40 003500 8A NO-ERRflR VALUE "DO".

41 003600 88 ACQUIRE-FAILED VALUE "9H".

4Z 003700 88 TE.~PORARY-ERROR VALUF "9N".

43 n03BOJ 01 STATUS-FLO-2 PIC X141. 1J5t!OOOO

44 003900 01 CONTROL-FLO. 05AOOOO

45 004000 05 FUNCTION-KEY PIC X(21. 0580000

46 004100 os PGM-OEVICE-NA"',I:: PIC)(1101. 0580000

47 004200 05 RfCORO-FORMAT PIC XIIOI. 05BOOOO

48 004300 0580000

49 004400 01 END-III,IOICATOR PIC 1 I~OtCATOk 1 VALLJF, 9"1')". 05110000

'30 004500 86 FND-f\!OT-REOUESTEO VAlJF 'l,ltl)". 0580000

5714CAl 1((,)5 MOO 830t,10 (.OdnL SrJUI<:Cf LISTING 03/04/~3

STJoIT srQ~3P. -A 1 8 ••••• 2 •••••• 3 •••••• 4 •••••• 5 7 • I8EiHFCN

Si OU4bOU •• fNO-~EQUE5H.f) VA L ~J'" "'''1''. Q'5800r)0
004100 01 USE-PRuC-FlAG 'I C 1 VALUE e"o". 0')1'\0000
"53 004800 8P. USE - PROC -NOT -I;: XECUT E ') VALUE 0"0" • 05130000
.. 0041100 •• USE -PROC - ~"I(£CUTEO VALUt: !J"1". 05JOOOO

55 00')000 01 RECOVERY-FlAG PIC 1 VALUE BItO". 0580000

56 00"'100 .8 NO-;H;lO"ERY-OO"lE VALUE 8"0". 05dOOOO

005200 6B ~C:OVEQY-DONE' V LUE 0"1". 058000J
"58 001}300

59 005400 Ot HfAr)ED:-LINE.

60 00'i500 0' FILL EP PIC Xl601 VALUE SP~CE>;.

61 005600 05 FIllER PIC X 112 1 VALUE

h2 005700 "ERROR P.i: PJRT".

" 00")800

64 00")900 01 DFTAIL-lINE.

65 006000 05 FILLEQ PIC X (1'5) VAlU!: ")P4CE S.

66 006100 05 DESCRIPTION pre x {25 I VAl~1:: SPA,Ct:'\.

61 OOI)ZOO a' CETAIL-VALUF Pie x I 'iZI vAUJt :'P4CE: '\.

OOh300."
6' 006400 at "1ESSAGE.-LINF.

10 OG6500 A' FILLER PIC X 11 <; 1 VAlUl: ~PACIi;S.

11 006600 05 OFseR 1 PT ION pre x {1111 VALUIC SPII.C E S.

Figure 9-17 (Part 2 of 4). Example of Error Recovery Procedure

9-58

5114CAl ;('05 MOO 1))06}0 C09nL SOURCE lI'5.TING K[COVEqy 03/04/83

ST~T Sr:QNilR -A, lB••••• 2 •••••• 3 •••••• 4 ••••••

00670U/
72 	 006800 PRQCEDURE JIVISIOr>.i.

0069000£ClARATIVES.
007000 HA~OLE-ERqoRS SECTIO~.
007100 U:)E AFTEJ.l: STANOAR[) E:RROR PR'::CEDUIl:E
oonno
OU7300 OT SPlAY~ERROR.

73 	 OU1400 SfT USE-PQQC-fXHUTEC, FJ TRUE:.

5 •••••• :. •••••• 7 .IDI='~~TfCI.j S COPYNAIoIE

os"wnuo
01 ()60000

D
ON Q:.E:CDVFIl~.

74 	 007500 '... D:ITE PRI!IITFR-rHC F-RCM H[ADER-lIr>.E Af-TER ADVA~~I"JS PASt.

75 	 OG7700 ~OVE "l:RROK. OC(,UKRt'l I~" Tu DESCRIPTI'lN OF ')tTUL-LIN'.
76 	 007800 ~,C1VE I-:J-VERb Tel DETt. IL-IiALUt;; GF DETAIL-LIJ\li".
77 	 007900 .NiTE PRIHHR-REC f-RCJ.'1 ndAIl-LINE AfTER AJVA~I: ,'<;; .; LI!IIt:'i.

008000
78 	 008100 MOvE "FlU STAIUS =" T8 DESCRIPTIO:';! OF ~ETAIL-lI\lIO".

79 	 aOA200 II '10VE SUTl'S-H) TO r"IETAIl-IIAlUE: .JF DETAIL-LINE.
11.0 	 OOBlOO

OOA400
q 1 ·10RSOO
A2 OJAbO()
83 OOR700

00R800
10'14 0011900
flS 00900J
A6 009l J0

009200
OOQ 300

fl7 009400
88 009500

009600
89 1')09700

00980,)
90 	 OCJ9900

010000
91 010100
92 010200

~1f)300
93 I') 10400

OlO'JOO
94 010600

Ol0700
95 Oloaoo

010900
96 OllOOO

011100
97 111200
98 ('111300

011400
qq 	 011500

011600
100 	 01110;)

011800
011900

101 	 0120()O
102 	 Ol2100

WRITt;; PRIr~TER-KFC FRG.'" nETAIl-LIr>.E AFTER A;)VA~:I'II:' ? II JIlt;; S.

MOV" "E:(T!:NI)f:O FILE; STATUe; =" T'1 Jt::SCRIPTIO'J OF)FTl\ll-liNl.
'A~VF STATU~-Fl0-2 TO DETAIL-VALUE 01=' r'JETAIl-Ll,\jt:;.
wRITE PIlI'llTI7R-kH H:Qt4 DHAIL-Ll.IH: AFHR AL)VA'I::;[\jC, 2 LINtS.

WlVE' "U1J\lTRnL ARi::A =" rIO OfSC~IPTIO'll OF DICH.iL-ll-'!:.
'1r:VF CO~Tpnl-FLIJ TU CjfTAIL-IIALUF '31' DETAiL-U"<::.
~RIH P~INHR-~f:l FRO~ J!:TAll-LINE AFTEG. A:;V,\"<:'I'lS 2 ll\j!:e;.

CIIECI';-EA:ROR.
IF HNPOKARY-FRRQR A"..[': NJ-RECOVFiH-~J"lE THE.,. II

MOllE "**'~ E:RRf)k. R::LOVf"tY BEING ATTE~prEl Tn. "II
DE SlQ.l PTIO~ Of MFSSAGE-L I~~F:

\ojf./.ITt PPl'~TER.-REC H'U~ "'lSSAGE-LI~E: AfTER A,DVA~::I';G

.3 LINFS,
PER.FO~M ERkr)R-~ECOVEKY

II
EL SE

IF A:E:COVE:RY-DOf\4F THEN
'lOVE OI~,¢* tRROR AROSE FRU~ RETRY HTlR R[;::.JV~RY *,;",11

TO DESCRIPTION Of IoIESSAGF-LIN!:
Wf.l.lTE PQ:.I~TfR-f.(FC FRiJ'A MESSA('E.-LI"-lE AFT':f< .<\.:)v,\,.,lCI ~

3 LI~ES
MOVE .. ~,t.,~, PRuGP,AM TFR~1!NATE:r) ~":,~,,, T'J [)t.SCRIPT!~J'\j OF

IJIESSAGF--LINE
IIRITE PRI"I!Ek-kI='C H'u~ foIESSA':;E-LINE AFTrR /I,'1VHCi\JG

2 LI NE<i

GI') TO ER'{OR-t'"l(IT

El SE

SET /IlO-P.HOVERV-OONE TO TRUE.

MOVE ",:,~,,~ EXECUTION CONTINUES :::;,~~,,, T[J DEsr.RIPTH'~ OF

"IESSAGf-LINE.

WRITE: PQI'HEi{-RE(FRUM IOIE'iSAGE-L!NE AFT~R A~V~N(IN':'

2 LI"lES.

GO TO END-OF-DEClARATIVES.

ERRI1R-R"COIIEf(Y.
SfT RECOVERY-OONt TJ TR.UE:.
QROP PGM-OEVICE-'lAME FIl:U'I Il:E:CDVFILE.

S714Cl3l Kns r1011 830610 	 'H/04/il3

ST"'IT SF.W"J:3R

103 	 012200
012.300
1)12400

104 012500
012bO!')

105 	 Dl2700
'112800
n 12900
013000

-A 1 d ••••• l. •••••• 3

AC:.lUIf.l.l PGM-OFVICf:-"'A~t::
ERROR-E.",! T.

CLOSE R.F((,1VFIlE

PRPHER-FIlF.

STUP RU~I.

END-OF-~E(LAI{AT I Vf S.
E\jD DEClARATIVl:S.

4 •••••• 5 •••••• 7 .IDF'~TFC'~ COP,(NA~t;;

FOk 	 Rt.COIIFILF. II

Figure 9-17 (Part 3 of 4). Example of Error Recovery Procedure

Chapter 9. Programmer's Guide Information 9-59

L

http:DHAIL-Ll.IH

51l4(Al ROil) ~OO !J3061fJ (.030L SOURLf LISTING ~::(UVERY :"l3!04!Qj

ST"IT SEJN:3R -A 1 B••••• z •••••• 3 •••••• 4 .' •••• ') ••• • ••••• 7 .IOF TF(N S (UPY'U"'I::

013100/

<'112QO Mil, IN-PR(lG!U'" 5lCT IDf\J.

01'3300 Ko,l\JUNE.

lOb Dl34QO Movr; "GPE~" TO I-O-YE:.R~.

101 01350,) OPFf\J I~O R£;(OVFILF,

011600 r:JUTPUT PRIN;HR-FILE. ..

loa 013700 PERFURM I-Ij-PI\RI\GRAPH UNTIL E~JO-~.::JIJtSTF:D • .,.

109 t;13800 CLOSE In CO'l"'lLE,

013900 PRINHR-FILE.

110 014UOO STOP RU,~.

014100
014200 l-U-PARA('RAClI-j.

111 n l. 4 300 MrVf "WR ITE" TO I-O-\lFRA.

112 014400 .;q USE-PQJ(-NOT-FXICCUTH; TO TRUt:.

113 C14500 ",RI TI; KJO(IlV-REC FOR"'AT IS ,q::ORI'IATl"

014600 INDICATOR IS F.N[J-HJDICt.TLI~. 1:1

114 014700 IF' USF-PRC(-e;lI'£-CUTlD A~W RECQVERY-LJDr:E T~tF."I ..

lIS 014600 ('8 TO I-D-PAKA(,RAPH.

014900

116 015000 MOVF "R!"AO" TO I-O-YERB.

117 01;100 SH USE-P~Or:-'IIOT-EXfCuTEO. "IO-RfCOVFR't'-OONl: T'1 TRU/;:.

lIB 01SZQO ;{EAD ~E(DVFIlE F(]R~AT IS. "FORMATl"

015300 lNOICATOR IS F.N[)-INr)[c.ATO~. II1II

119 015400 IF NO-ERf<,(lR THEN III

120 	 01550a PERFORM SOMF-PRnCESSI~G.

01 <;601)

01:;700 SOMf-P,HJC':SSING.

,15800* IINS[;PT OATABASE PKOCESSIW:;, FOR FX"",PLE)

!::NJ OF S0URCt:

o This defines processing that takes place when an 1-0 error occurs on RECOVFILE.

fJ This prints out information to help in diagnosing the problem.

D If the file-status equals 9N (temporary error), and no previous error recovery has been attempted

for this 1·0 operation, error recovery is now attempted.

o 	 If recovery was previously attempted, it is not attempted now. This is done to avoid program

looping.
 JD 	 Recovery consists of dropping, then reacquiring, the program device on which the 1-0 error

occurred.

o 	 The mainline of the program consists of writing to and reading from a device until the user
signals an end to the program by pressing eFl.

D If the WRITE operation failed but recovery was done, the WRITE is attempted again.

III If the READ operation failed, execution will continue by writing to the device again, and then
attempting the READ again.

Figure 9-17 (Part 4 of 4). Example of Error Recovery Procedure

System/38 Inter-Program Communication Considerations

System/38 allows inter-program communication between COBOL and
non-COBOL programs. For the following discussion a main program is
defined as the COBOL program that is highest in the invocation stack. The
main program is the first program in the run unit. A run unit is defined as
a set of one or more programs that functions as a unit at execution time to
provide a problem solution. A run unit starts with the first COBOL
program in the invocation stack and includes all programs (of any type)
that are below it in the invocation stack. A subprogram is a program in the
run unit below the main program in the invocation stack. For a definition

9-60

of invocation stack and other terms relating to System/38 inter-program
communication see the CL Reference Manual.

Return of Control From a Called Program

In COBOL, you can issue either a STOP RUN statement or an EX IT PROGRAM
statement to return control from a called program. The action of these
statements depends upon the execution time environment, as explained
below.

• 	 Exit Program

When issued from a main program, control passes to the next
statement (no operation is performed).

When issued from a subprogram, control returns to the calling
program.

• 	 Stop Run

Whether issued from a main program or a subprogram, the run unit
is terminated. Control returns to the (non-COBOL) program that
called the main program.

Initialization of Storage

The first time a COBOL program in a run unit is called, its storage is
initialized. Storage is initialized again under the following conditions:

• 	 The run unit is terminated, then reinitiated.

• 	 The program is cancelled (COBOL CANCEL statement, RPG III FREE
operation, CL RCLRSC command), then called again.

If a non-COBOL program is named in a CANCEL statement, its name must
conform to the rules for formation of a COBOL program name.

The following examples illustrate the use of the EX IT PROGRAM and STOP
RUN statements in different parts of a run unit.

• 	 The example in Figure 9-18 shows a single run unit.

• 	 The example in Figure 9-19 shows multiple run units.

• 	 The example in Figure 9-20 shows a run unit with a shared program
that is both a subprogram and a main program.

Chapter 9. Programmer's Guide Information 9-61

INVOCATION
RUN UNIT A NUMBER,---------------, J

PGMA 	 I

Main
Program CO BO L

PGMB

I 	 n

I
I
I
I

PGMC 	 I
I n + 1

COBOL Non-COBOL I
I
I

PGMD PGME PGMF I
I n+2

COBOL COBOL Non-COBOL I
L ________ ~~=~_______ ~

PROGRAM EXECUTING STATEMENT

STATEMENT PGMA PGMB PGMD PGME

EXIT PROGRAM D II II II

STOP RUN II II II IJ

D 	 No operation is performed because the statement is executed in a main program_ Execution
continues with the next statement in PGMA_

o 	 Control returns to the caller of the program that executes the EX IT PROGRAM statement.

ID 	 Run unit A terminates. For all programs in the run unit, open files are closed. Storage is freed
for all programs in the run unit. Control returns to the program that is at invocation number
n-l. If n = 1, the following considerations apply:

• 	 Run unit A operates as a routing step. See the CPF Programmer's Guide for more
information.

• 	 For batch jobs, the STOP RUN causes the job to end. For interactive jobs, control returns to
the system and the system terminates the routing step.

Figure 9-18. Example of a Single Run Unit

9-62

MULTIPLE RUN UNITS
INVOCATION

NUMBER

PGMA

nNon-COBOL

1-------:::;-1
PGMB I

PGMD

Main
I
I

COBOL I Program

I
I
I

I
...l.J
L_
PGME

I 	 I

RUN UNIT B 	 RUN UNIT C
------1
PGMC

Main n + 1
Program COBOL

PGMF

n+2

COBOLL __ ~n~~L__I___~~~
L 	 __________ -.J

PROGRAM EXECUTING STATEMENT

PGME PGME

STATEMENT PGMB PGMC (RUN (RUN PGMF

UNIT B) UNIT C)

EXIT PROGRAM IJ IJ IJ

STOP RUN II a II II II

D 	 No operation is performed because the statement is executed in a main program. Execution
continues with the next statement in the main program.

D 	 Control returns to the caller of the program that executes the EX IT PROGRAM statement.

II 	Run unit B terminates. All open files in run unit B are closed. Storage is freed for all
programs in run unit B. Control returns to the caller of the main program for the run unit
(PGMA).

D 	 Run unit C terminates. All open files in run unit C are closed. Storage is freed for all
programs in run unit C. Control returns to the caller of the main program for the run unit
(PGMA).

Figure 9-19. Example of Multiple Run Units

Chapter 9. Programmer's Guide Information 9-63

INVOCATION
NUMBER

PGMA

n

Non-COBOL

RUN UNIT B

1----- --,
IPGMB 	 PGMCI II n + 1 Main II Program COBOL I Non-COBOL

I
I 	 L_
I
I

PGMD PGME ,I I PGMF

n+2
I
I 	 I I I Main

I
I

Non-COBOL I COBOL II Program COBOLI 	 II 	 L...:: _____~

L _____ L:_-=--=-=~
PROGRAM EXECUTING STATEMENT

PGME PGME

STATEMENT PGMB (RUN (RUN PGMF

UNIT B) UNITE)

EXIT PROGRAM D II D D

STOP RUN II II II II

D 	 No operation is performed because the statement is executed in a main program. Execution

continues with the next statement in the main program.

D 	 Control returns to the caller of the program that executes the EXIT PROGRAM statement.

II 	Run unit B terminates. All open files in run unit B are closed. Storage is freed for all

programs in run unit B. Control returns to the caller of the main program for the run unit

(PGMA).

II 	Run unit E terminates. All open files in run unit E are closed. Storage is freed for PGME.

Control returns to the caller of the main program for the run unit (PGMC).

m 	Run unit F terminates. All open files in run unit F are closed. Storage is freed for PGMF.

Control returns to the caller of the main program for the run unit (PGMC).

Figure 9-20. 	 Example of a Run Unit with a Shared Program that is Both a Subprogram and a Main
Program ..J

I RUN

~I 1. --::1

9-64

Local Data Area

The system automatically creates a local data area for each job. The local
data area is defined outside the COBOL program as an area of 1024 bytes of
character data.

The local data area can be used to pass any desired information between
programs in a job. This information may be free-form data, such as
informal messages, or may consist of a fully structured or formatted set of
fields.

When a job is submitted, the submitting job's local data area is copied into
the submitted job's local data area. If there is no submitting job, the local
data area is initialized to blanks.

A COBOL program can access the local data area for its job with the
ACCEPT and DISPLAY statements, using a mnemonic name associated with
the function-name LOCAL-DATA.

There is only one local data area associated with each job. If several work
stations are acquired by a single job, still only one local data area exists for
that job. There is not a local data area for each individual work station.

File Considerations

A file cannot be received as a parameter in a COBOL program. If a file is
defined in both a calling program and a called program, it is treated as two
separate files. The contents of the record area and the current record
pointer in each program are independent, unless shared files are specified
in CL commands. See the CL Reference Manual for further information on
shared files.

The following statements affect file status differently:

• 	 An EX I T PROGRAM statement does not change the status of any of the
files in a run unit.

• 	 A STOP RUN statement closes all the files in a run unit.

• 	 A CANCEL statement does not change the status of any of the files in the
program that is canceled. It does free the storage that contains
information about the file. If the program has files that are open when
the CANCEL statement is executed, those files remain open until the run
unit is terminated. The program can no longer use the file. If the
cancelled program is called again, the program considers the file closed.
If the program opens the file, a new linkage to the file is established.
This can cause additional system storage to be used.

Chapter 9. Programmer's Guide Information 9-65

9-66

Chapter 10. Testing and Debugging COBOL Programs

COBOL and CPF provide functions that you can use to test and debug the
programs you develop:

CPF 	 COBOL

Test library Debugging features
Breakpoints Formatted dump
Traces

The CPF functions let you test programs while protecting your production files,
and let you observe and debug operations as a program executes. No special
source code is required for using the CPF functions.

The COBOL functions can be used independently of the CPF functions or in
combinations with them to:

• 	 Debug a program

• 	 Produce a formatted dump of the contents of fields, data structures, arrays,
and tables.

Source code is required for using the COBOL Debugging features and formatted
dump capability. A formatted dump can also be obtained by a user's response to
an execution-time message.

OPEN- FEEDBACK and I -0- FEEDBACK contents can provide additional debugging
information. The method for obtaining this information is described later in this
chapter.

Using a Test Library

The basic concept of testing and debugging is that of a testing environment.
Programs executing in a normal operating environment can read, update, and
write records that are in either test or production libraries. Programs executing in
a test environment can read, update, and write records in either test or production
libraries. However, to prevent data base files in production libraries from being
modified unintentionally, you can specify UPDPROD (*NO) on the Enter Debug
(ENTDBG) command or Change Debug (CHGDBG) command (see the CPF
Programmer's Guide).

On System/38, you can copy production files into the test library or you can
create special files for testing in this library. A test copy of a file and its

Chapter 10. Testing and Debugging COBOL Programs 10-1

production copy can have the same name if the files are in different libraries.
You can use the same file name in the program for either testing or normal
processing.

Normal Environment

Production Library
Job Production Files

Program 1

Program 5

Test Environment

Program 10 	 Test Library

Test Files

For testing, you must place the test library name ahead of the production library
name in the library list for the job that contains the program to be tested. For
normal execution, the test library should not be named in the library list for that
job.

Testing

Test

Library
List

Program
Test

Library
Production
Library 1

Production
Library 1

Production
Library 2

QTEMP Production
Library 2

10-2

Normal

Production
Library Library 1
List

Production
Program Library 1

Production
Library 2 Production

QTEMP Library 2

No special statements for testing are contained within the program being tested.
The same program being tested can be run normally without modifications. All
testing functions are specified within the job that contains the program and not
within the program.

Job

Testing Functions,

(These functions are specified
through CPF commands.)

Programs

Testing functions apply only to the job in which they are specified. A program
can be used concurrently in two jobs: one job that is in a test environment and
another job that is in a normal processing environment.

Testing functions of CPF let you interact with a program as it executes to observe
the operations being done. These functions include using breakpoints and traces.

Chapter 10. Testing and Debugging COBOL Programs 10-3

Using Breakpoints

JA breakpoint is a statement number or a label in your program where you want
program execution to stop. If you use a statement number, it can be a statement
number that appears on the compiler listing of the COBOL source program. If
you use a label as a breakpoint rather than a statement number, the label can be:

• Associated with a function done by your COBOL program (for example,
. OPEN indicates the open file function). See "Examples of Using Compiler
Debugging Options" in Appendix A for a list of breakpoints and their
functions.

• An internal COBOL compiler generated label (for example, . LOOOOO 1
indicates the first internally generated label).

Note: To determine the internally generated labels for your program, use the
GENOPT parameter on the CRTCBLPGM command to get an I RP listing of the
program.

When a breakpointed statement is about to execute for an interactive job, the
system displays the breakpoint at which the program has stopped and, if
requested, the values of program variables. After you get this information (in a
display), you can enter CPF commands to request other functions (such as
displaying or changing a variable, adding a breakpoint, or adding a trace).

For a batch job, a breakpoint program can be invoked when a breakpoint is
reached. The breakpoint information is passed to the breakpoint program.

Example of Using Breakpoints

Figure 10-1 shows a sample COBOL program, TESTPRT. The following CPF
commands add breakpoints at statements 51 and 60. The value of variable
RECORDNO is displayed when the breakpoint at statement 60 is reached.

CPF Commands:

ENTDBG TESTPRT
ADDBKP STMT(51)
ADDBKP STMT(60)

PGMVAR(RECORDNO)

All CPF commands are explained in the CL Reference Manual.

10-4

COI:lOL SOU~C~ LISTING

STMT SEQHSR -14. I e••••• 2 •••••• J •••••• " •••••• 5 •••••• 6 •••• _. 7 .JDENTFCN S CQPYNA"'E CH(O,OATE

000200 IDENTIFICATION OIYIS'ON.
000300 PROGRAM-IO. TESTPRT.
000400 AUTHQA _ PAQGAAM"ER NAIllE.
000500 INSTALLATION. ROCHESTER LAf!lOAATORY.

6 000600 DATE-WRITTEN. .JlA.Y 15. 1980.
7 000700 DATE-CQNPILED. 111'06'80 18:32:31
8 000&00 ENYIRONMENT DIYISION.
9 000900 CONFIGuRATION seCTION.

10 001000 SOURce-COMPUTER. 19"1-5]8.
II 001100 D8.JEcr-CQMPuteR. IBM-Sllh
12 001200 INPUT-OUTPUT SECTlO~.
13 001300 FILE-CONTACL.
14 001400 SELECT FILE-I ASSIGN TO DATABASE-MASTER.
15 001500 SELECT FILE-2 ASSIGN TO OATA,SI4.SE-..ASTER.
16 001600 DATA DIVISION.
17 001700 FILE SECTION.
18 001800 FO FILE-I
19 001900 LABEL RECORDS ARE STANDARD
20 002000 RECORD CONTAINS 20 CHARACTERS
21 002100 OATA RECORO IS RECOROI.
22 002200 01 RECORDh
23 002300 02 FIELDA PICTURE IS X(20'.
24 002400 FO FILE-2
25 002'500 LABEL Rt;;CORDS ARE STANDARD
26 002600 RECORD CON'" INS 20 tHARACtERS
27 002700 DATA RECORD IS qoECOR02.
28 002800 01 RECOR02.
29 002900 02 ~IELOA PICTURe IS](C201.
30 003000 ilfQRKIHG-STORAGE SECTION.
31 003100 01 FILLER.
U ~~o ~.oompKS~C~~.

33 003300 05 ALPHABET PICTURE X(26) VALUE -ABCOEFGHI.lKLMNQPQRSTUVWXYZ·.
].. 003400 05 ALPHA REDEFINIiS ALPHABEt PicTURE A OCCURS 26 TUtES.
35 00]500 OS HUfitEIA PIC S99 COMP-3.
36 003600 OS Ho-OF-DEPENDENTS PIC At26)
31 003700 VALUE ·010000120 00 123001234002~0-.
38 003800 05 DEPEND REbEFINES NO-OF-DEPENDENT'i PIC X OCCURS 26 TIMES.
39 003900 01 fIIIORKAECOAO.
.. 0

"1
004000

00.100

OS HAIIES-FIELO PICTURE x •
05 FILLER PICTURE X VALUE IS SPACE.

42 004200 05 RECOADMQ PICTURE 5999.
43 004300 05 F ILLER PICTURE X VALUE IS SPACE.
44 004 ..00 05 LOCA.T ION PICTURE AAA VA.LUE IS -NYC·.
45 004500 05 F ILLER PICTURe x VALUE IS SPACE.
46 004600 05 OEPENO!:NTS PICTURE xx.
47 004700 05 FILLER PictURe X(71 VALue IS SPACES.
48 004800 ot NODEPEN) PICTURE 99 CONP-3.
49 004900 01 ZOIE~ATA PICTURE qq.

50 005000 PROCEDURE OIVISION.
OOSIOO....................•••..••••.......• ••••••••••
00520.,.. THE FOLLOWING PARAGRAPH OPENS THE OUTPUT FILE TO BE CREATEO•••
005300*. AND INITIALIZES COUNTERS. • ••

005400.................••••..............••••••••••••••..••••••• •••••••
005500 STEP-I.
005600 OPEN OUTPUT FILE-I.

COBOL SOURCE LISTING 1'Es'I'PRT

5TMT SEaHBR -A I B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IDENTP'CN 5 CQPYHAME CHGI'OATE

52 005700 MOve lERO TO KOUNt HUMBA NOOEPf::NO.
005800...

005900•• THE FOu..OWING CREATES INTERNALLY THE ReCORDS TO BE ...
006000•• COtllTAlNED IN THE FILE. WRITES THEM ON DISK, AND DISPLAYS •••
006100•• THEM. • ••
006200...
006300 STEP-2.

53 006400 ADO I TO KDUN1. ADO I TO HUMBR.
55 006500 MOVE ALPHA 'KOUNTt To NAIES-FIELD.
56 00&600 MOVE DEPEND CKOUNT) TO DEPENOENTS.
57 006700 MOVE NUM8A TO RECORO...,.

0«'800 STEP-3.
58 006900 WIiITE RECORDl FADM WORKREC~D.

007 DOO STEP-4.
59 007100 PERF'm:tM STEP-2 THRU S1'EP-.] UNTIL KaUNT IS EQUAL TO 26.

001200...

007300•• TME FOLLOWING CLOSES OUTPUT AND REOPENS If AS •••
~~_l_h ~

007500...
007600 STEP-S ..
001700 CLOSE FILE-I.
007800 a~EN '..-UT FILE-2.
007900...
ooaooo•• 'tHE FOLLO.UliG READS BAOC THE FILE AND SINGLES OUT EMPLOYEES•••
DOlt 100*. Willi NO DEPEN)ENTS. • ••
008200...
008300 51'£P-6.

62 009400 READ FILE-2 RECORD INfO WORKAECDRO
63 008500 AT END GO TO STEp.. ••

008600 STEP-7.
64 008700 IF DEPENDENTS IS EQUAL TO -0
65 008800 MOVE .Z. TO OEPeNOI!NTS
66 008900 ADD I TO NOOEPEHO.
67 009000 GO TO STEP-6.

009100 STEP-8.
68 009200 CLOSE FILE-2.
69 009300 01 SPLAY .I!....LOVEES WITH Nl DEPENDENTS. NDOEPENO.
70 009400 ADD I TO ZONE-DATA.
71 009500 STOP RUN •

••••• END OF SOURCE •••••

Figure 10-1. Example of Using Breakpoints

Chapter 10. Testing and Debugging COBOL Programs 10-5

The first breakpoint is used just so you know where you are in the program.
The following is displayed as a result of reaching the first breakpoint. J

06/16/81 11:08:31 BREAKPOINT DISPLAY
Stmt/Inst: 51 /0015
Program: TESTPRT Inv lvl: 1

CF1-Cancel request CF3-Command Entry ENTER-Resume execution

The following is displayed as a result of reaching the second breakpoint.

06/16/81 11:09:54 BREAKPOINT DISPLAY
Stmt/Inst: 60 /003A
Program: TESTPRT Inv lvl: 1

Output start pos: 1 length: *DCL format: *CHAR
Variable: RECORDNO

Type: ZONED Length: 3 0
, +26'

CF1-Cancel request CF3-Cornrnand Entry ENTER-Resume execution

When specifying a variable for the PGMVAR parameter, every name must
begin with an alphanumeric character (A through Z, $, #, or @) and can be
followed by the characters (A through Z, 0 though 9, $, #, @, or _).

The following example shows how to display a COBOL variable,
ZONE-DATA, in the sample program. Because the hyphen is treated by CPF
as a special character, ZONE-DATA must be enclosed in quotes.

ENTDBG TESTPRT
ADDBKP STMT (60)

PGMVAR('ZONE-DATA')

To display the value of a table element, the appropriate occurrence numbers
(subscripts) must be included with the variable name. Up to three
dimensions of subscripting are allowed, and the subscripts must be
separated by commas. You should not use an index-name or index
data-item as a subscript. When an index is entered as a subscript, CPF uses
the internal value of the index as the subscript, and undesirable results can
occur. The following example shows how to specify the COBOL variable
TABLEl with three dimensions.

PGMVAR ('TABLEl (SUB1, SUB2, SUB3) ').

10-6

••
••

•• ••

••
••
••

~

One or more blanks are allowed after each comma separating subscripts, but the
total length of the variable plus subscripts, parentheses, commas, and blanks
specified with the PGMVAR keyword cannot exceed 132 characters. For more
information on how to code variables in CL commands, see the CL Reference
Manual.

Variable names can be qualified in the PGMVAR parameter, for example,

NAMES-FIELD OF WORKRECORD - Figure 10-1.

Another technique can be used to display variables that are not elements of a
multi-dimensional table. For example, to display the field NAMES- FI ELD you can
use COBOL Data Division map to find its COBOL internal name (I - NAM E).
Next use the I RP cross-reference listing to find the Object Definition Table (ODT)
number for the internal-name. (See "COBOL Command Statement" and
"PROCESS Statement" in Chapter 8 for information on how to obtain these
listings.) Figure 10-2 shows the Data Division map and Figure 10-3 shows the
I RP cross-reference listing for the sample program, TESTPRT.

C060L DATA or VI sum MAP TESTPRT

ST,.T LVL SOURCE frrtAME SEcn ON Drsp LeN tyPE I-NAME ATTfUBUTES

I. 	FD FILE-I F' • FDa OEVICE DATABASE • ORGANI ZATION
SEQUENTIAL. ACCESS SEOuENTI M.. •
SLOCK CONTAINS 20 CHARACTERS. RECORD
CONTAINS 20 CHARACTERS. LABEl. RecORos
STANDARD

22 AECORDl 	 F. 000000 GROUP .000539.., 	 2.
23 	 • 2 FIELD... F' 000000 2. AN .00053E8
2. 	 FO FILE-2 F' .F02 DeVICE DATABASE. ORGANIZATION

SEQueNTIAL. ACCESS SEQUENTIAL.
BLOCK CONTAINS 20 CHAAACTEAS. RECORoO

CQNTAINS 20 CHARACTEAS. LABEL RECORDS
STANDARD .. 	., .,.2

••
2.2. RECDRQ2 	 F' 000000 2. GROUP .00054£2

F IELOA F' 000000 AN .0005536

31 FILLER 000000 5. ""OUP .00055810

32 	 .2 KOUNT 000000 2 PACKED .0005502
33 .2 ALPHABET .s 000002 2. AN .000563. 	 VALUE
34 .2 ALPHA 000002 I AN .0005660 	 REDEFINES .0005634. DilillENSIDNt26'
35 	 .2 NUMBR .s 000028 2 PACKED .0005710
3. .2 Ho-QF-DEPENDENT S 000030 2. AN .0005712 	 VALUE....3. .2 DEPEND 000030 I AN .D0057F6 	 REDEFINES .0005772. 'DIMENSI0NIZ6'
3. 	 ., WORKRECORD • s 000000 I • OAOUP .0005856

02 (?\IAMES-F IELD) 000000 I AN (.00058AC)

.2 FILLIER 000001 I .000590• VALUE
.." ., 	.2 RECORDNO ., 000002 3 ZONED .000595E

.2 FILLER 000005 I AN .D0059C2 VALUE

.2 LOCATIOtoi .s 000006 3 A .0005AIC VALUE
.. 	.2 ..FILLER 	 000009 I AN .0005A82 VALUE...2 DEPENDeNTS 000010 AN .OOOSAOC

47 • z FILLER .. 000012 AN .000S832 VALUE

•• 	 ., NOOEPENO .. 000000 2 PACKED .ooosaac
., ZONE-oA'A .s 000000 Z ZONED .0005BEE
.. 	 'RDB-FoRNAT-NAME 	 000079 I. AN .DOOSCAA

F lLE SECTION USES .0 BYTES OF STORAGE
WORKING-stORAGE SECTION uses 89 RYTES OF STORAGE

Figure 10-2. Data Division Map for TESTPRT

Chapter 10. Testing and Debugging COBOL Programs 10-7

IRP LISTING FDA TESTPRT

DDT DDT NAME SEa CROSS REFEReNCE •• INDICATES WHERE OEf'I ..eD)

OIAa .0005502 547. 602 607 611 615 637
0lA9 .DOOSS]6 5"5*
OIAA .0005580 5"" 5"7 5"8 5151 552
OIA£ .0005680 5500 613
OIAe .0005634 548. 549
0lS2 .0005"6 554. 617
OlAF .0005710 5510 603 609 619
Ot aD .0005772 552. 553

t"'Oi"I4'\.0005SAC 556. 613
""'Oi'IT"".0005M6 5550 5S6 55t ~58 559 560 561 562 563 622 678

OtB7 .00059C2 5590
0lB5 .000590" 557.
0186 .000595£ 55&* 619
oleo .000707e 568. 709
022••EXC'LLX 879.
0211 .EXCDOE 838. eel
0223 .EXFSf.N 878. 886
0216 .EJlFSIO 8"4. 8S1
021C .£XFS22 86,,0 866
021e .EJl.FS:M 86&* 870
0220 .£XFS9I(872. 87"
02.26 .EtJ(GN!USE 88. 882 88,,0

0212 .EXMSGIO 839. 882

0219 .EJl.N[JF 85l. 862

02U, .EXIJII'EOF 85" 8600

02.4 .EJl.OPLST 8"•• 8St 880
02 10 .EX~RMS 8370 838 8~9 8"0 85(1 879
021l .EXPTR 8"c)0 841
ooee .FCEItCM 181.
008e .FCLI ST 180.' 82
0000 .FCLPP 286.
ooeE .FCLS TC 28,,0 2 as 286
OOCD .FCLSTC. 283.
0002 .FCLSTP 289. 290 291 292 2<1.3
0001 .FCLSTP" 288.
ooeA .FC.... R,. 1780 179
0088cP.. RMP a79. 180
0089 .f'CPTA 177••82
009" .FIB aqo.
00C2 .FIS_OPT 269. 270 271 272 273 274
0096 .FtB"I..T 198. 595 759
OOAE .FIRCA 248.
OOBI .FIBCF,.T 2510
0090 .FrSCFS 22Z* 627 628 747 749 753 764 774 1"93 795 810 819 647 84"' 855 8M 86A 812 878 8Sl
009£ .FlaCFSI 223. 672
00A7 .FIBCH"N 239.0
ooAF .FIBCttID 2490
009<: .FlaCOFt 22.0 1902 815 81e 82e 832
0080 .FIOCTIO 250.0
0113 .FltlCTL 371.
OO'9B .FI6CUR 2200 221 22.2 223 7"6 791 609 827
00C8 .FtSCURtt 27_5* 21"6 277
00",7 .FI8FLGS 20a'O: 748 752 756 769 784 787 794 602 801 845 846 854 860
OOAO .FIBFMT 225'0:

0095 .FI8FN 197:=r

OOC4 .FIBKIfLN 27 ••

Figure 10-3. IRP Cross-Reference Listing for TESTPRT

You can use the following CPF commands to add a breakpoint to the sample
program at statement 60 that will display the variable NAM ES- FI EL 0, using the
appropriate OOT number:

ENTOBG TESTPRT
AOOBKP STMT(60)

PGMVAR (I /odt-number ')

This command is explained in the CL Reference Manual.

The following is displayed as a result of reaching this breakpoint:

06/16/81 11:08:31 BREAKPOINT DISPLAY
Stmt/Inst: 60 /003A
Program: TESTPRT Inv lvl: 1

Output start pos: 1 length: *OCL format: *CHAR
Variable: /01B4

Type: CHARACTER Length: 1
I Z I

CF1-Cancel request CF3-Command Entry ENTER-Resume execution

10-8

At this point you could change the value of program variables to alter your
program's execution. You can use the Change Program Variable (CHGPGMVAR)
command to change the value of a variable. in the CL Reference Manual.

Considerations for Using Breakpoints

The following characteristics of breakpoints should be known before breakpoints
are used:

• 	 If a breakpoint is bypassed by a COBOL statement, for example the GO TO
statement, that breakpoint does not execute.

• 	 When a breakpoint is established on a statement, the breakpoint occurs
before that statement is executed.

• 	 Breakpoint functions are specified through CPF commands.

These functions include adding breakpoints to programs, displaying
breakpoint information, removing breakpoints from programs and resuming
execution of a program after a breakpoint has been displayed. See the CL
Reference Manual for descriptions of these commands, and see the CPF
Programmer's Guide for a further description of breakpoints.

Using a Trace

A trace is a record of some or all of the statements in a program that were
executed and, if requested, the values of specific variables used in the statements.

Program Trace

Statement
1
2
3
4
56 __

7
8

Order of Execution
1
6
7
8
6
7
2
6
7

Variables

-

-

A trace differs from a breakpoint in that a trace ends depending on which
statements and how many statements are traced. The system records the traced
statements that were executed. You must request a display of the traced
information. The display shows the sequence in which the statements were
executed and, if requested, the values of variables used in the statements.

Chapter 10. Testing and Debugging COBOL Programs 10-9

L

You specify what statements the system should trace. Also, you might specify that
variables be displayed only when their value changes from the previous time a
traced statement executed. J
You can specify a trace of one statement in a program, a group of statements in a
program, or an entire program.

Example of Using a Trace

Figure 10-4 shows a portion of a sample COBOL program, TESTPRT. The
following CPF command adds a trace of statements 62 and 67 in that program.
The variable NODEPEND is to be recorded only if its value changes between
statements 62 and 67:

ADDTRC 	 STMT (62 67)
PGMVAR(NODEPEND) OUTVAR(*CHG)

Note: ENTDBG must be entered before the ADDTRC statement.

COBOL SOLRce LISTtNG
STNT SEONBR: -It • B 2 3 " 0;; CHG'OAn::

00'5000 PROCEDURE 01 VI SION.

005100*•• O•••••_ •••OO••••• ~iOI••••• 0000.0•••"'.10<*00••••••0 •••••••• 10< ••00•••

00'5200•• THE FOLLOWING PARAGRAPH OPENS THE OUTPUT FILE TO BE <:l:IeIllTEOO.O
005,]0000 ANO INITIALIZES COUNTERS. 00.

005400. *110: •••••"'" 0-0 .0.0.............0 *0 00 0 •• 0: '00 0: •••••••00 •••• 00 ••*0.0 *0

51 	 005600 OPEN OUTPUT FILE-too
005700 MOve ZERO TO KOUNT NUfIiIBR NOOePEND.
005800•••••••••••••••010<0;.0.0000 00.0: .:co •••••••••••••• C'-OO ••••O ••0 •••••••** ••
005900•• THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE •••

006000•• CONTAlNEO IN THE FILE. WRITES THEM ON DISK. AND DISPLAYS

006100.0 THEM.

005200.0••••••••••••••••••••••• 0000 •••••••••••••••••• 00000•••••••••••••

005300 STEP-2.

53 006_00 AOD 1 Tn KOUNT. ADO 1 TO NUNBR.

55 006500 MOVE ALPHA tKOUNTI TO NAMES-FIELD.

56 006600 '"'aVE DEPEND tKOUNTI TO OEPENOENTS.
 J

006800 STEP-3.

006900 WRITE ~ECOROI FROM WOI;IKAECORD.

007000 STep-••

007tOO PERFORM STEP-2 THAU STEP-3 UNTIL "OUNT IS EOUAL TO 26.

007 200••••••••0 •••••• :(10 ••••••00.000....0.0.........................0 ••••

007300•• THE FOLLOIII'IN(O CLOSES OUTPUT AND REoPENS IT AS

007400•• INPUT.

007 SO 0 •••••0. 0...............0.00000•••••••••••••0 ••••••••••••0 ••••••••••0

007600 STEP-5.

001'700 CLOSE FILE-t.

001'800 OPEN INPUT FILE-2.

001'9000"'...

OO'OO~•• THE FOLLOlII'lNG READS BACK THE FILE AND SINGLES OUT EMPLOYEES."

OO'tOO•• IIjITH NO Df'PEt«>ENTS.

008200•••••00 000 •• " .0•••• 0000.0•••••0.0••••••••••00 00 •••••000
e 008300 STEP-6.

62 	 008400 READ FILE-2 RECOfll) INTO WOAKAECORD

008500 AT ~IIC (00 TO STEP-8.

008600 STEP-7.

64 009'100 IF OEPE"IOENTS IS EOUAL TO "0"

65 008600 MOVE "Z" TO OEPEt«>ENTS

00<,5 900 ADO 1 TO "'IOOEPENO.
ef')7 OO~OOO GO TO STEP-6.

OO-HOO STEP-S.

68 009200 CLOSE FILE-2.

OISPLAY -E,",PLOYEES WITH NO DEPENDENTS - NOOEPEND.

009400 ADO I TO ~O"'E-DA TA.

71 009500 STOP RUN.

Figure 10-4. COBOL Source Code

Figure 10-5 is an example of a display of the traced information. The following
CPF command lists this information:

DSPTRCDTA OUTPUT(*LIST) CLEAR(*YES)

The Display Trace Data command is explained in the CPF Reference
Manua/-CL.

10-10

•• ••

11/06/80 19:30:57
STMT: 62

OUTPUT STAAT POS: 1
OVARIABLE: NOOEPEND

TYPE: PACI(t;:D
• +0'

STMT: 67
OUTPUT ST AAT POS: 1

OVARIABLE: NODEPENO
TYPE: PACKED
• +1'

sn4T: 62
OUTPUT START POS: I

C:VARIABLE: NODECtEND
TYPE: PACKED

STfl4T: 67" '
SH4T: 62
snH: 67

OUTPUT ST ART POS: t
OVARIABLE: NODEPE"'O

TYPE: PACKED
• +2'

STIIIT: 62
OUTPUT START POS: 1

OVARIA8L.E: NOOEPEND
TYPE: PACKED
• +2'snn: 67

OUTPUT START pas: I
OVA'UABLE: NOOEPEND

TYPE: PACKEO
'3'

STJoU: 62
OUTPUT START pas: I

OVARIABLE: NODEPEND
TYPE: PACkEO
• +3'

SHH: 	 67
OUTPUT START POS: 1

OVAR .ABLE: NOOEPENQ
TYPE: PACKED
, +4'

STMT: 62
OUTPUT ST AR T POS: 1

OVARIABLE: NOOEPENO
Type: PACKED

• +4'
STMT: 67

OUTPUT START POS: 1
C:VAPI A6L£;:: NODEPEND

TYPE: PACkED..'
snH: 62

OUTPUT START pas: 1
OVAR I ABLE: Nooe"END

TYPE: P"CkED
• +5'

SHoll: 67
SHill: 62
STfl4T: 67
STIIIT: 62
sniT: 67

I')UTPUT START pas:

TRACE DA TA 0 I SPLAY
PGM: TESTPRT LVL: 1 5.

LENGTH: OOCL FORMAT: oOCHAR

LENGTH: 2 0

PGM: TESTPRT LVL: 1 55
LENGTH: oOOCL FORMAT: oOCHAR

LENGTH:

Tt;STPRT

2 0

LVL: I 5.
LENGTH: *OCL FORMAT: oOCHAR

LENGTH: 2 0

PGM: TESTPRT
PGJoI: TESTPRT

LVL: 1
LVL: I

575.
PGM: TESTPRT LYL: I 5.

LENGTH: O:OCL FOI;tMAT: OCHAR

LENGTH: 2 0

PGM: TESTPRT LVL: I 60
LENGTH: *OCL FORMAT: OCHAR

LENGTH:

TESTPRT LVL: 1 61
LE~GTH: oODCL FORMAT: CrCHAR

LENGTH: 2 0

TEST~RT LVL: I 62
LENGTH: oODCL FORM ... T: oOCHAR

LENGTH: 2 0

TESTPRT LVL: I 63
LENGTH: *OCL FORNAT: oOCHAR

LENGTH: 2 0

PGM: TESTPRT
LENGTH:

LVL: 1
*DCL FORMA T:

6'
C<CHAR

2 0

PGM: TESTPRT LVL: 1 65
LENGTH: OOCL FORMAT: oOCHAR

LENGTH: 2 0

PGN: 	 TESTPRT LVL: 1 .6
LENGTH: *OCL FORM"T: *CHAR

Lf:.NGTH: 2 0

PGM: TESTPRT LYL: l 67
PC M: TES TPRT LVL: I
PG"': TESTPRT LVL: 1
PCIIiI: TESTPRT LVL: 1 70
PGM: TESTPRT LVL: 1 71

LENGTH: oODCL FORMAT: oOCHAR

Figure 10-5, Trace Data Display Listing

Considerations for Using a Trace

The following characteristics of traces should be known before traces are used in
COBOL programs:

• 	 Statements bypassed by COBOL statements, such as the GO TO statement, are
not included in the trace.

• 	 Trace functions are specified through CPF commands in the job that contains
the traced program. These functions include adding trace requests to a
program, removing trace requests from a program, removing data collected
from previous traces, displaying trace information, and displaying the traces
that have been specified for a program.

• 	 In addition to statement numbers, names of COBOL-generated routines can
appear on the trace output STMT field. (See the list of breakpoints and their
functions under "Examples of Using Compiler Debugging Options" in
Appendix A.)

See the CPF Programmer's Guide for a further description of traces.

Chapter 10. Testing and Debugging COBOL Programs 10-11

Using a Debug Execution-Time Switch

An execution-time switch is provided for the COBOL Debug facility. This switch
activates the debugging code generated when WITH DEBUGGING MODE is specified.
When the execution-time switch is set on, all debugging sections that were
compiled are activated. When the execution-time switch is set off (the default),
the USE FOR DEBUGGING Declarative procedures are inhibited. In both cases the
debugging lines (D in column 7) remain in effect.

See "Debugging Features" in Chapter 6 for more information on COBOL Debug
and how to use the switch.

File Status

The following format can be used to transfer data (OPEN- FEEDBACK or
I - 0 - FEED BA CK areas) associated with an open file to an identifier.

Format

J
See Chapter 5 for more information on specifying this statement.

Appendix H contains a discussion of the OPEN- FEEDBACK and I -0- FEEDBACK
areas. See the CPF Programmer's Guide for a layout and description of the data
areas contained in the feedback areas.

Using a COBOL Formatted Dump

Some COBOL execution-time messages allow you to obtain a COBOL formatted
dump option by giving a reply of D or F.

The output for the dump is sent to the IBM-supplied printer file QPPGMDMP.

The formatted dump (reply D) includes the current file information about the files
in the program, contents of fields, data structures, arrays, and tables for
user-defined COBOL data variables.

If you reply with an F option, the dump also includes a list of compiler-generated
fields and their contents.

10-12

If you do not desire a dump, specify reply C (cancel with no dump). Reply C
is also the default reply for all COBOL inquiry messages that allow a dump
to be obtained.

Reply Modes and System Reply List

The need for a reply to execution time inquiry messages is controlled by the
INQMSGRPY parameter on the following control language (CL) commands:

• 	 CHGJOB - Change Job

• 	 CHGJOBD - Change Job Description

• 	 CRTJOBD - Create Job Description

• 	 JOB -Job

• 	 SBMJOB - Submit Job.

Through the INQMSGRPY parameter, three reply modes for inquiry messages
are possible. The reply modes are:

• 	 *RQD - A reply is required.

• 	 *DFT - Take the default reply.

• 	 * SYSRPL - Search the System Reply List and if the message is found,
take the default action specified in the list. If the message is not found
in the System Reply List, then take the default specified in the message
description.

The System Reply List allows you to specify replies for inquiry messages
CBE7200, CBE7201, CBE7203, CBE7204, and CBE720S. The replies may
be specified individually or generically. This method of replying to inquiry
messages is especially suitable for batch programs, which would otherwise
require a console operator to issue replies.

To see the entries in the System Reply List, specify the Display Reply List
(DSPRPYL) CL command. This allows you to change, remove, and add
entries to the System Reply List.

For more information on message reply modes and the System Reply List,
see the CL Reference Manual.

Example of Using a Dump

Figure 10-6 shows an example of a COBOL formatted dump.

The following list describes the areas of Figure 10-6 indicated by letters:

Chapter 10. Testing and Debugging COBOL Programs 10-13

o 	 The exception for which the dump was requested and the location in
the program where the exception occurred.

G 	 The COBOL statement number of the last 1-0 operation that was
executed before the exception occurred. This information is produced
only if at least one 1-0 operation has been executed.

e 	 Current information for each file. This information is produced only
if the program has files.

e 	 Beginning of compiler-generated fields (included in the dump if the
user responds with an F option).

1-0 flags for the current file:0
Bit Meaning

1 File is open
2 File is locked
3 End of file
4 MFCU
5 Optional file
6 Check indexed file for duplicates at open
7 End of page
8 (Reserved)

Previous status code.0 	 Je
 Beginning of Module Global Table (MGT).

Last exception code.G

Invocation number of current program.0

• Qualified program name and library.

Beginning of the Program Global Table (PGT) • 0

• Invocation number of the main COBOL program.

Q Job date (YYMMDD).

Q Beginning of user fields.

Invalid zoned field printed in hexadecimal.
G

10-14

L

COBOL SOURCE LISTING

ST~T SEQNBR -A I 8 ••••• 2 •••••• J •••••• " •••••• 5 •••••• 6 •••••• 7 .IOENTFCN 5 CQPYNAME CHG.I"D"'T£

2 0002QO IDENTIFICATION DIVISiON.
3 000300 PROGRAI4-1D. TESTPRT.
4 000400 AUTHOR. PAOGRAMIIIEA N E.
5 000500 IIltST"'LLAnON. ROCHESTER L ...aORATQRY.
6 000600 OArE-WAlnEN. JULY IS. 1960.
7 000700 OATE-CO~PILED. 11/061'80 18: 32:31
8 000800 ENVIAON~ENT 01 VI SI ON.
9 OOCJ900 CONFIGURATION SECTION.

10 001000 SOUAce-COMPUTEA. 18114-538.
11 001100 08JECT-CO)ollPUTEA. 18)011-53,,.
12 001200 INPUT-OUTPUT SECTIO"'_
13 001300 FILe-CONTROl._
.4 001"00 SELECT FILE-l ASSIGN TO O... TA8ASE-JilASTEA.
15 001500 SELECT FILE-2 ASSIGN TO DATA8ASE-MASTER.
16 001600 DATA 0 IV lSI ON.
17 001700 FILE SECTION.
18 001800 FD FILE-l
19 001900 LABEL RECORDS ARE STANDARD
20 002000 RECORD CONTA INS 20 CHARACTERS
21 002100 01. TA RECORO IS RECoRDI.
22 002200 01 RECORD ..
23 002300 02 F IELDA PICTURE IS Je f20).
20\ 0024.00 Fa FI LE-Z
25 002500 LABEL RECORDS ARE STANDARD
26 002600 RECORD CONTA INS 20 CHARACTERS
27 002700 DATA RECORD IS QECOR02.

2. 002800 01 RECOAD2.
2. 002900 02 j: IELDA PICTURE IS Jet 201.

30 003000 WORKING-STORAGE seCT ION.

31 OOllOO ot FILLER.

32 001200 05 !too"" PIC S99 CQMP-3.

33 003300 as ALPHABET PICTURE)(1261 YAl.VE -ABCOEFGHIJKLMNQPQRSTUVWKYZ-.

3_ 003""00 as ALPHA REDEF IN':'5 ALPHABET PICTURE X OCCUAS 26 TIlES.

35 003500 05 NUMBR Pie SW CO"'P-3.

36 003600 05 ND-OF-OEPENDENTS PIC)(1261
37 003700 VALUE "0100001200012300123.0023.0".
38 003800 05 DEPEND REOEFINES NO-OF-oePENOENTS PIC K OCCURS 26 TIMES.
39 003900 01 WORKRECOAO.
40 004000 05 NAII4IES-FIELO PICTURE x.
•• 004100 05 F ILLER PICTURE X VALUE IS SPACE.
42 004200 05 REC~ONO PICTURE 5999.
"'3 00.300 05 f ILLEA PICTUftE X VALUE IS SPACE.

00••00 05 LOCA'ION PICTURE A"1t. YI.LUE IS "NYC".
45 00"'500 05 F ILLER PICTURE J(VALUE IS SPACE.
46 00",,600 05 OEPEHO!:NTS PICTURE xx •
• 7 004700 05 FILUM PICTURE Xl71 VALUE 1'5 SPACES •
• 8 004800 01 NOOEPEIIO PICTURE 99 CONP..3.

49 004900 01 ZONE-oAT A PICTURE 99.

50 005000 Pf;l:OC£DURE DIVISION.

005100....................................111 ••••••••••••••••••••••••••••

0052000. THE FOU.OWUCG PARAGRAPH OPENS THe OUTPUT FILE TO ae CRE"'TEO•••
005300.....N> INITIALIZES COUNTERS. • ...

005.-000...........0'·••0'.·.......·.·.·**...··•··•·••••··•••••·••.••.....

005500 STEP-I.

51 005600 OPEN OUTPUT FILE-I.

Figure 10-6 (Part 1 of 8). COBOL Formatted Dump

Chapter 10. Testing and Debugging COBOL Programs 10·15

COBOL SO~CE LISTING TESTPRT

STMT SECINBA -A I B.. ••• 2 ;] ••••••••••••• 5 •••••• 6 •••••• 7 .IOENTFCN 5 COPYNAME CHGI'DA~

52 	 005700 MOW! ZEAO TO KOUNT NUMSR NO!>EPENO.

005800...

005.00•• THE FOl.LO"ING CREATES I'NTERNALLY THE RECORDS TO BE •••

006000•• CONTAIM:O IN THE' FILE. WRITES THEM ON DISK. ANO DISPLAYS •••

0061000* THE.. • ••

006~oe..

006300 STEP-2.

53 006_00 ADO I TO kOUNT. ADO I TO NUNBR.

55 006500 NOVf! ALPHA (KDUNTt TO NAMES-FIELp.

S. 006600 MOVE DEPENO (kOUHT I TO DEPENDENTS.

57 006700 MOVE NUMBR TO AECOADNl.

096aOo STeP-l.

58 006900 WAITe RECOAl)I FROM WORKREC()IqO"

007 000 51' EP-_.

59 007100 PERF'Ji'" STB'-2 THAU STEP-3 UNTIL KOUNT IS EQUAL TO 26.

007200·····..••..••••....•• ..••••..••••..••••••••••••••••••••••••••••••007_00. THE. FOU.a.JNG CLOSES OUTPUT AND REOPEN$ IT AS •••

00740". INPUT. • ••

0075000..

007600 STEP-S.

60 007700 a.OSE FI LE-I •

• 1 	 007_00 GlEM INPUT FIL£-2.

00190.,...

0""". THE FOLLOWJ'" _ADS BACIC THE F I'-E AND 5INGL~S OUT eMPLOyeES'••

q_IOQIII. WUI1 NO DEPlfIrl1!DENTS. • ••

ooa~O...

008300 STEP-6.

62 009400 READ "ILE-2 R£COIlO I Mfa WOAKAECQRD

63 ooesoo AT EN) GO TO STEP-e.

ooe.oo 51"EP-7.

64 008700 IF DEPENDENTS IS EQUAL TO ·0·

•• CJoeaoo MOVE '0 De;PEN)ENTS
-Z
66 008900 ADD I 1"0 NOOEPEHO.

67 009000 GO TO STEP-6.

009100 STEP-a.

6_ 009200 CLOSE FILE-2.

69 009300 DISPLAY "£_LOYEES WITH NO O£PENOEN1'S • N~PENO.

70 009400 ADO I TO Z0'4E-OATA.

71 009500 STOP RUN •

••••• END OF SOURCE •••••

Figure 10-6 (Part 2 of 8). COBOL Formatted Dump

J
• MCHI202 £)(CI:.PTlON IN PA()(ORAM TESTPAT.Pt)I:!S AT MI INSTQUCTION NUMBER 0060 COBOL STATEMENT NUIII8EA 70.

e LAU '-0 OP(R.TlON •• S AT STATEMENT •••

• 	 "LE-2.C.~'903-'IF"'''TlON PEA'AlN,,,. '0 FILE

C8E1904-F ILE IS NOT OPEN.

C8E7906-LAST SUCCESSFUL. 1-0 OPERATION FQq FILE WAS CLOSE.

Cae.7907-LAST FILE STATUS FgA FtL£ w.s 00.

C8E7903-"'FORMATlDN PEATAINJ!lfG TO FILE FILE-I.

C8E7904-F ILE IS NOT OPEN.

C8E1906-l.AST SUCCESSFIL 1-0 OPERATI CJr\I FOR FILE WA5 CLOSE.

C8l!7907-\..AST FILE STATUS FDA FILI'~
 ."S 00.

Figure 10-6 (Part 3 of 8). COBOL Formatted Dump

10-16

NAME

G·ADBUF

.ADBlFVL

.ADENY

• ADFUNC
.ADLN
.ADMID

• ADPGM
.ADRLN

• ADRTH
.ADRTVP

• ADTOD
.ADTYP
.BINSUB
.BIHZ
• BSTFUN'G
.BUFFER
• BUFPTR
.CALERP

.CALPHAB

.CIMBSGN

.CNLERP

.CNUMERC

.CPADCHR

.CRCLEAR

.CSEPSGN

.DBUGRTN

.DISPPOS

.DISPPTR

.OLINENO
.DNCCOJililT
.DNCCPCL
.DJ4CCPOP
.DJ4CDCJ4T
.DMCDELT
.DMCDVL
.DNCFEOD
.DMCFRCE
.DMCGET
• Dfoo1CGETD
.DMCGETK
.DJIICLINK
.DNCODP
.DNCOFFS
.DMCPTGT
.D~CPUT

.D14CRLSE

• D~CRSYI

NAME

.DJiIIICRSV2:

.DMCSPTB

.DMCUPD

.DMDEVP

.DMPCOFO

.DII4PCDFP

.DIolPDBFB

.DMPDEYN

.DMPFBAT

.D!oIIPFBCL

.DJiIIIPFBCT

.DMPFBDC

.DMPFBDE

• DMPFBDU
.DrotPFBFN
.DJI4PFBHI
.DJiIIIPFBM2
.DMPFBIB
.DMPFBLN
.DIolPFBLO
.DMPF6Lf'
.DMPFBLS
.DMPFBLI

• DMPFBLZ
.DMPF8I14N
.DMPFBND
.DMPFBOB

• DMPFBOF
.DII4PF80L
.OMPF8RC
.DMPFBR"
.OMPFBSC
.OI4PFBSF
.DMPFBSL
.OMPFBSN
.DMPF8TY
.DMPFBUF
.DMPFBVL
.DAIIPIOFB
.OMPIOFS

.OMPRFMT

.DMPRRN

.DMPSRC

.0005680

.DOOS7F6

.D007D7C

.EKCDOE
.EKfoo1SGID

.EKPTR

• FCLPP
.FCLSTC
.FCLSTC_

OFFSET

000300

000A20
000A20
000A48
000313
000310
000314
000316
00031B
000318
0002FO
00031A
000325
000311
0003E8
0003EA

000500
000420

000941
OOOAFB
OOOAFB
000923

000.10

000B37
000B5C
0008FO

000AF9
0002:00
OOOBAO
000!:t90

0003E2

000606

OFFSET

000650

0005FO

0005AO

0009AE
oooeoo
OOOC05

oooeoo
OOOCIO

000550
00055A
00054E

ATTRIBUTES 	 VALUE

POINTERISPP' 	 SPACE OFFSET 2592 -00000A20-K
OBJECT PSSA

CHAR(491 -EMPLOYEES WITH NO DEPENDENTS 13
VALUE IN HEK 'C504070 306E BC 5C SE 240E6C9E3C840DSD64 OC4C5D 7C5D5C4C5D5E3E24 OF IF 30 00 0000 00000000 000- X

+41 -000000000000000000 - X
CHAR 11 I 	 ",
CHAR 11 I '0'
BI NARY(21 	 31
BINARY(21
CHARI101 'TESTPRT
BINARYC21 0
POINTERIIP I NULL
CHAR III
CHARI131
BINARYI2I
BI NARY 12' 26
BIHARY(21
NOT ADDRESSABLE
NOT ADDRESSAaLE
PO INTERC SPPI NULL
POINTERC SPPI SPACE OFFSET 1008

OBJECT PSSA

'OO'X
'00000000000000000000000000' X

'000003FO' K

CHAR (27' 	 - ETAOINSHRDLUCIIIFWYPYBGKQJXZ
CHARI601 	 '0123456789 JI(LJilllNOPQR STUVWXYZ ABCDEFGHI STUYWXYZ'
YALUE IN HEK - F OF 1 F 2F 3F 4F SF 6F 7F 8F900D 102030 4050 60 7D8D9AOAI A2A3A4A SA 6A 7 A8 A9BOB I B 2838485B6B788B9- X

.41 -coc I C2C3C4C5C6C7C 8C9E OE IE 2E3E4E 5E6E7E8E9- X
POINTERI SPPI SPACE CFFSET 1008 - 0000 03FO - X

OBJECT PSSA
CHARIIOI -0123456789
CHAR 11)
POINTER(SYPI OBJECT QCRCLEAR

CONTEX T QCBL
CHAR 12'
POINTERIIP, 	 NULL
BINARV(2' 	 2
PDINTER(SPPI 	 SPACE OFFSET 2623 - 00000A3F' K

OBJECT
CHARC6,
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSAaLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT AODRESS"SLE
NOT ADDRESSABLE
BINARYI2)
NOT ADDRESSABLE

ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSAtiLE

ATTR IBUTES 	 VALUE

NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
POINTERISPPI CANNOT
NOT ADDRESSABLE

PO INTERC SPP, CANNOT
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSAaLE
NOT ADDRESSABLE

ADDRESSABLE
NOT 	 ADDRESSABLE

ADDRESS"BLE
ADDRESSABLE

NOT ADDRESSABLE
NOT ADDRESSABLE

ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSAaLE
PO INTER(spp, NULL
NOT ADDRESSAaLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE

ADDRESS"BLE
NOT ADDRESSABLE

NOT ADDRESS"BLE
NOT ADDRESSABLE
NOT AODRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE

ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESSABLE

ADDRESSAaLE
NOT ADDRESSABLE
NOT ADDRESSABLE
NOT ADDRESS"BLE

ADDRESSABLE
NOT ADDRESS"BLE

PSSA
-OOOOOOOOOOOO'X

MATERIALIZE

"'ATER IALI ZE

CHAR 1291 'E",PLOYEES WITH NO DEPENDENTS '
CHARClI -OO-X
CHAR(4) -OOOOOOOO-X
CHARI121 -000000000000000000000000' X
POINTER(SPP, SPACE OFFSET 3072 'OOOOOCOO-X

OBJECT PSSA
CHAR(3) -OOOOOO-X
CHARCI2' '000000000000000000000000' X
CHARCI2' -00000307£4.0060002000 IFF. X

Figure 10-6 (Part 4 of 8), COBOL Formatted Dump

Chapter 10. Testing and Debugging COBOL Programs 10-17

NAME OFFSET ATTRIBUTES YALUE

.FCLSTP

.FCLSTPof

.FCPARM

.FCPARMP

.FCPTR

.F18

.FISofOPT
.FI8ALT
.FI8CA
.FtBCFMT
.FIBCFS
.FIBCFSI
.FIBCHAN
.FI8CKIO
.F[BCOP
.FI8CTIO
.FIBCTL
.. FIBCUR
.FIBCURK

e ·FIBFLGS
.FIBFfoIT
.FIBFN
.FIBKofLN
.FIBK.qof
.FIBKAK
.FIBKofTP
.. FIBKCGK
.FIBKCGR
.FIBKCTL
.FIBKOl.N
.FIBKOMof
.FIBKDTP
.FIBKEY
.F(8KFLN
.FIBKFMT
.FleKFTP
.FIBKKEY

O
.FlbKKLN
.FIBKKTP
.FI8KLEN
.FIBLBO
.FIBLFS
.FIBLFT

NAME

.FIBLIN

.FIBLINE

.FIBLOP

.FIBLTO

.FIBMOP
• FIBOFNT
.FI BOKEV

.. FIBOKLN

.FIBOLD

.FIBOLDK

.FJ80P

.FIBOPI

.FIBOP2

.FJeoP3

.. FIBOP4

.FIBQRRN

.FI8PTR

.FI8SPC

.FI8T",PE

.FIBTLEN

.. FIBUBTO

.FIBUFCB

.FI8URTN
.FIBUSAY
.FIBUSE.
.FIBYER8
.FSK'"
.FSKB
.FSPA
.FSP!:I
.FSTKS
.FOIALTS
.FOICH"'N

.FOICOP

.FOICUR

.FO IFLGS

.FOIF"'T

.FOIFN

.. FOIOLD

.F01SPC

.FOIUBTO

.FOJUFCB

.FOIURTN

.FOIUSE.

.F02ALTS

.F02CH... N

00057"
000566
000_50
000_70

000__0

0007EO
00083A
0007EO
000808
000830
000&58
OO~C4

0007Fe
000875
000881
00080A
00080...
000860
000875
000806
000877
000580
000806
0004CC
000526
0004CC
000.F4
0007FF
00080e
0007eo
0004C5
000_C7
0004C9
0004C4
000....0
0004 ...a
0004BO
OO~CO

0004C2
0004 BF
000818
00CM-B3
0004B5
000482
0004CE
00052B
0004(.E
0004F6
0004CC
0004CS
OOOBIC
00081E
000B04
00081A

OFFSET

0008.8
000820
OOOBOO
OOOBIC
000870
OOOBES
000873
0008CD
000873
000898
000871
000&00
000B71
0008C8
000871
000899
000602
000602
000603
OOO&G4
000605
000871
000220

000B18
0005.6
000549
000840
000B30

0008'50
000490
OOOBOC
000B26
0005BB
00057E
000580
000583
000563
00067E
0006EO

000686
OOO!J86
0006"
0005Be
000660
000680
000698
0005CO
0006eo

000600
OOOliac
0007FE
000860

CHARI211
CHAR 1211
CH,\P12Z1
PO INTERI SPP,

POINTER(SVP'

CHAR(32767)
+91

YA,LUE IN otEX
+_1
+81
+121

,"HARU)

CH ... R (I'

CHAR(22)

CH",RtlO)

CHARU)

CH ...R II)

POINTERI SPP)

ZONEDI2,O'

OtAR 14 I

CHARClO'

POINTERC SPP'

CHAR(6'

CH ... R (122 J

+91
YALUE IN HEX

+_1
CHARI I)
CH",RIIO)
CHAR 130'
81 NARYI 2'
BIN"'RYC_,
BIN... RYC2'
CHARC I'
CHARIB'
CHARla,
BINARYI2,
BINARvI21
81NARY12,
CH",R II I
81 NARV 14 I
BINARY(2)
CHARtlol
CHAR It,
CH"'R I 120)

+91
YALUE IN HEX

+41
B(N"''''YU)
CHARCI)
BIN... RY(2)
SINARV(2'
CH",RI2)
BINARVI2,

ATTR I8UTES

BIN...RYI2,
8IN...RVC2.)
CIi ... R 1.1
81 N"'RY I 2,
CHAR II ,
OUR II 0'
CHAR(l20,

+91
Y"'LUE IN HEX

+4l
81 NARV C2 ,
CIiAR 16'
CIi ... R C 122)

+91
V"'LUE I N HEX

+4'
CH ... RI4'
CH"'RUI
CHARII)
CH ... RIl,
CHARIII
81 NARYI41
PO INT!::R(SPP)

CIiARI14'

CHARla,

BINARY(4)

POINTER'IP'

POINTER« SPP)

POINTERI SPP'

POINTER(IP I

BINARVI2'

eINARY(2)

BINARVI2,

BINARY(2)

BIN...RV(2'

BINARVI21

BJNARY(2)

CH AR (I ,

PO INTERI SPP)

CHAR ,.,

CH ... RC6)

CH ... R",

CH ... RIIO'

CMAR (30'

CH ... R(6)

CH ... RU.)

POINTERC If:»

POINTERlsPPI

POINTERI SPP)

BINARV(2)

CIi ... R I I ,

PO I ... TERI SPP)

'00' X
• 090002000 00 ... 000 20 00 008000200000C00020 OOOFF • X

SPACE OFFSET 1104 -00000450'X
OBJECT PSS...
DeJECT OCREXHAN

CONTEx T oeBL
'FILE-2 IOCLOSOO
"2
• C 6C 903C56 OF 24 04 04 04040404 04040404 0404 0404 04 04 0_04 0404 0404040002 00300000 IF IF OC 3D 3')C

'06E2F OF 00 00 04 04 04 040.0.04 040404 00 0000 0000 00000000000000000 000 00 I 0000000000000000' X
-80000000000000000 OO"'D2F 2DF00091 00 0000 0000 0 0000000000000 00000 000 000000 00000000000' X
• 00000000000 0000 000000000' x

'0000000000000000' X
'OO'X
'00')(
'00000000000000000000· x

'00'
'0' ..NULL

'OOOO'X
'CLOSt

'00000000000000000000' X
NULL
'CLOSOO'

'00000 00 0000 00 0000 0000 000000000000 00 00 0000 00000000000000000 000000000000000000000 o. x
.] LINES OF ZEROES SUPPRESSED

'F (LE-2
o
o
o

o
••

'20'X

'OO'X
'0800040000000009 - X
'0200040000000OFF' X

'0 I 'X

'0001)00000000000000000000000000000 00000000000000 000000000000000000000000000000000' X
2 LI NES OF ZEROES SUPPRESSED
0

'OO'X
0
0
'10'
0

V ... LUE

'OO'X
-000000000004(: IE2ElC5' X

• 0 00 00 00 000000 0000 aOOOOOOOOOOOOOUO 0 000 00 00 000000 00000000 0000000000 00000000 0000000' X
2 LI NES OF ZEROES SUPPReSSEO

'03000001FIFO' X'0'

'000 0 00000 000000000 000000 0 00 0000 00 000' x
3 LINES OF ZEROES SUPPRE SSEO

'03000OO1'X
'03'X
'OO'X
'OO'X
'OI'X

0
SP"'CE OFFSET 2016 '000007EO'X
oe.lECT PSSA

'0000000000000000000000000000' X
'II 000400000000FF' X

0
NULL
SPACE OFFSET 2160 '00000870'X
DeJeCT PSSA
NULl.
NULL
o
l

•
o

o
• o

'OO'X
SPACE. OFFSET 2016 '000007EO'X
DeJECT PSSA
'CLOS'

'20'X

'F ILE-I
00' 'OOOOOOOSFOf'O' X

• OOOO!)OOOOOOOOOOOOOOOOOO()OOOO' X
NULL
SPACE OFF'iET 1776 '000006FO'X
08.1ECT P'iS ...
NULL
0

'OO'X
NULL

Figure 10-6 (Part 5 of 8). COBOL Formatted Dump

10-18

http:040.0.04

.F02COP

.F02CUR

.F02FLGS

.F02F*"T

.F02FN

.F02rJLD

.F02SPC

.F02UBTD

.F02UFCB

.F02UAT.,.

.F02USIEII

.IOCPTR

.IOE:PTR

.IOFDBEX

.100PTR

.IOPTN

.11700001

• fl4AIfo'RTN

CD ::~~BIN8
.MGTCNCL
.fI4GTCNT~

.MGTCPGf14
• MGTDBUG

•	 .fI4GTEXCD
.fI4GTF IB

O
• MGTFUNC
.MGTIND

.MGTINVC

• "'GTNSGI
• MGT~SGN
• fi4:GTNSGR

• MGT"'SGS
.MGTMSGT

• MGTNA"'E
• MGTNEXT
."'GTOSl
.MGrOVFL

.MGTPAR'"

./IIIGTPASA

• "'GTPCS

NA"'E

• MGTPFM

•	 .MGTPGM

. .MGTPGT

.MGTPLVL

• MGTPTP

• MGTPTR

• Mr.;TQST
• "'GTSEG
.MGTSEPT

• MGTSOSZ
.MGTSPCO
• MGTSW
• MGTTVPE
.MGTUPTR

.MPRCATR

.MPRCTMP
• NULLCL
.ODP8PTR
.QNSAVE

.ONSAVI

.PASACUR

.PASAPTR

.P8PDUfIII

.PBP0004

......PERFCTR

W·PGT

.PGTIND

~.PGTlfrNC
V.PGTLVL

.PGTMGTL

.PGTMGTI

.PRBUFR

.PT

OFFSET ATTRIBUTES 	 VALUE

000806 CHAR (4) 'CLOS'

000806 CHAR (6) 'eLOSOO'

0007FF CHAP II) '20'X

oooeOE CHARIIOI

0007EO Ct-tAR f 30. 'F ILE-2

000800 CHARI"" 10' '03000001F IFO' X

000318 Ct-tAR II.) -0000000000000000000000000000' X

000840 PO INTERC IP) NULL

000830 POINTER(SPP) SPACE OFFSET 2160 '00000870'X

OBJECT PSSA

000650 POINTER(SPP) NULL

00060C HI NARY(21 0

000540 POI"olTERlsPP) SPACE OFFSET 15,]6 • 00000600 - X

oe.JECT PSSA

000620 POINTER(SYPI OBJECT aDBGET'"

CI)NTEXT QSYS

0005EO POINTFRI SPPI NULL

0006.]0 POINTERI SPP) SPACE OFFSET 2054 '00000806'x

OS.JECT PSSA
000210 POINTER(JPI 	 STMT 68 INSTR II 0000005B

OBJECT TEST PFI T

CONTEXT PUBS

000A60 P!)INTERI1P) 	 STI4T 59 INSTR II 00000033

OBJECT TESTPRT

CONTE.XT PUBS

0002CO PO INTER' SYP) 	 De JECT OCR"'AIN
CONTEXT OSYS

OOOOAO OtARtt6' 'COBOL "'GT 00.0

000187 CHARla, '0000000000000000' x

000196 CHAP!I) -a'

000130 BINARY!,,-) 01 "'ENSIONI 20)

00017C 11-20)

000200 POINTEi'll SYP) NULL

000198 Ct-tARll) ·0'

00018C CHAR(7)

OOOOCO POINTEFlI SPP) SPACE OFFSET 1632 • 00000660' X

OBJECT PSS'"

000185 8INARYl21

000193 CtiARll1 OI~NSION(32)

000162 11-32'

00018A HINAAY(2)

000262 CHAR C7. -00000000000000' X

000260 6INARY(2'

000250 PO INTER(SPP) NULL

000230 POINTER(IP) NULL

000240 POINTEi'll SPP, NULL

000180 CHARIIOI 'TESTPAT

000080 POINTER(SPPI NULL

000193 CHARII' '0'

000195 C.. ARIl) '0'

00016F P"CKED 131. 0) *••••••••••••• 0.0:0.0:.00***00.**•• '00000000000000000000000000000000' X

000270 POINTER(SPP, SPACE OFFSET 768 -00000300'X

OS.JECT PSSA

OOOOEO POINTERC SPPI SPACE OFFSET 2304 , 00000900'X

OBJECT PASA

0001 EO PO INTER(SPP, 	 NULL

OFFSET ATTR IBUTES 	 VALUE

000197 CH"'RIII '0·
000110 POINTER(SYPI OBJ!;:CT TESTPRT

CONTEXT PUBS
000000 POINTERlsPP, SPACE OFFSET 4816 '00001200'X

OBJECT PSSA
000101 8INARY(2'
OOOIFO POINTEi'll sPPI SPACE OFFSET .l512 '00000900' X

OS.JECT PSSA
0002€0 PO INTERt SPP) SPACE OFFSET 'OOOOOOAO- X

OBJECT PSSA
000120 POINTERIIPI NULL.
OOOICF 6INARY(2. o
OOOOFO POINTER(SPP, sPACE OFFSET 'OOOOOOOO'X

OBJECT QINSEPT
CONTEXT Q'5YS

000194 CHARIII
000199 CHARtI I
000183 Ct-tARII •
000184 CliAR III 'I •
000100 POINTEi'll SPP' SPACE OFFSET 1344 '00000540'X

OBJECT PCS 001269
0002AO PrJINTER(SPPI SPACE OFFSET 640 '00000260' X

OBJECT
000280 BINARY(4' 32
000600 CHARIII
0005CO POINTERI SPPI CANNOT MATERIALIZE

000140 CtiAR(32'
000340 VALUE IN tiEX '00' X
000360 CHAR(321
000360 VALUE IN tiEX '000 000000 000000 00000000000' X
000000 POINTER(SPP, SPACE OFFSET 5296 '0000 14BO'X

OBJECT PASA
000290 PO INTERI SPPI SPACE OFFSET -OOOOOOOO'X

OBJECT PASA
0007EO POINTER(IP, NULL
0009EO POINTERC IP' STMT S9 I"'STR • 00000033

OBJECT TESTPRT
CONTEXT

0003EO 81 NARY(2. 1
OOIZOO CHARI327671 .2 .2 OOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOO
00 132A *91
001200 VALUE IN HEX '07C7E34 OF OF 04 BF 0404040404040404 0800000000000001 9000AD2F2DFOOO 14080000000000000C o· X
0012F8 '000~02F20FOOO 14 OFOFOFOFOFOFOFOFOFOF OFOFOFOFOFOFQFQFOFOF OFOF OFOFOFOFOFOFOFOP"OFOF 0' X
001320 *81 '0 00 20 000004 DO 00 00 000 0 00 000000 0000 0000 0000 00 00 00 a 0 0000 00 000000 00 000000 0 00000 00000' X
001348 *121 '00000 0000000000000000000' X
001300 CHARIIJ 01 MENS 10N(321

00131F 11-32'
001320 HlHAAY(2J
00l2OO CHARCl6) 'PGT 00.0
0012FO POINTER! SPPI SPACE OFFSET 160 '000000,,"0' X

Q8.JECT PSSA
0012EO POINTEFI(SPPI SPACE OFFSET 160 'OOOOOOAO' X

OBJECT
""OT ADDRESSABLE

000900 CHAR(641 OPT 01.0 0 , t

000900 VALUE IN liEX 'D7E34OFOF 149F0001 0000lF00000000040000000000Q0900000AI321 OE0006'5A4000000000000000' X

Figure 10-6 (Part 6 of 8). COBOL Formatted Dump

Chapter 10. Testing and Debugging COBOL Programs 10-19

http:CONTE.XT

OFFSET ATTRIBUTES 	 VALUE

0001FB ... 1 '0 OOA 132 IOE00065AO 00.. 00000 0000 000000000000 0000000· X
.PTA8LE 	 0009EO CHAR 1481 1

0009EO VALUE IN !-fEX ... 0000 00 OOOOOOQOOO OOA, 321 OE00065A.. 00000000 OOOOOOOOOOA 1321 OE00065A0004000000000000· X
OOOAOB .41 -000000000000000 O' X
000900 CHAR(t61 OPT 01.0 • D7E 340FOF 14BF 000 1 0000 t FOOOOOOOOO' X

000909 BINARY(21 1
~PTSEG 	 000908 CHAQ(t I

.. PO 10200 000'J70 PACKED(2,01 13

.QCROISP POINTER(Sypl OBJECT OCRAOQTN
CONTEXT OCBL

.OCRXHAN POINTERI SYPI OBJECT QCREXHAN
CONTExT oeBL

.RCL'" 0009;CO CI-lARtll
OOOBOO POHHER(SPPI SPACE OFFSET 300B "000008CO'X

OAJECT

• RETURNP 	 000610 POINTER(lP>1
.RTNPTR 	 0003FO POINTERI SPPI SPACE OFFSET 2304 "00000900"X

OBJECT PASA

• SEPTP 	 000280 PO INTE~(SPP' NULL
000430 	 POINTERlsPPI SPACE OFFSt::T 100e • 000003FO' X

OBJECT PSSA

• SvOaUFR OOOACI CHAR 1561
OOOA CI VALUE IN HEX • 000 0000 0000000000000000000000 000" X
OOOAEQ .41 '00000000000000000000000000000000" X

• 	TAOR 00 1 000AI0 POINTERI sPOPI SPACE OFFSET 2443 ·000009B8'X
OBJECT PSS ...

• 	TCOOOOI 000A51 CHAR(561
000" 51 VALUE IN HEX • 0000000 0000000000000000 00 0000000000 OOOOOOO() 0000000000000000000000000000 000000000' X

OOOA 79 "41 • 00000000000000000000000000000000' X
.lCOC002 	 000"89 CHARI'i61

OOOA B9 VALUE I N HEX "00000000000000000000000000000 00000000 000· X... '00000000000000000000000000000000' X
000670 CHARI321
000970 V"LUE IN HEX • 0 13FOOO 0000 000000000000 000· X

• T"'PNOI

• TOOOOOI NOT ADDRESSABLE

• 	T000002 000A3F CHAR 1291
OOOA 3F VALVE IN HEX • 0 00 0000 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOJOOOOOOOOOOO' X

• T000003 	 OOOA3F ZONEOI2,O' 'OOOO"X
000380 CHAR I 321
0003BO VALUE IN rtEX '00' X

• TI

• T2 0003AO CHAR (32'

0003AO VA LUE IN HEX '00000000000000000000000000000000000 0000000000000 0000000000000000' X

0003CO CHARI32'

0003CO VALUE I N HEX 00 00 ooon 00 00000000000 000000000000000000000000000 00000000000000000- X

.UCB 	 000870 CHAR 02767'
OOOBC" .91 "'AS T'
ooos 70 VALUE I N HEX • 0 0000 00 0000 00000000000000000000000000 000' X
0006'iJ8 .41 2 LI NE5 OF ZEROES SUPPRESSED
OOOBEA .121 • 000 0000000000000D4C 1 E2E 3· X

.UCBCUIG 000928 C'iARIII

.UCBEOOP 000929 CHARl11

.UCBF ILE 0008 Fa CHAR I 10' "MAS TER

.UCBFLGS 00091F. CHAR(21 'S020. X

.UCBFLGI 00091E: CHARtt I 'SO'X

.UCBFLG2 00091F Ci'iAR 111 "20"X

.UCBtBR.;) 000R80 PO INT!":R(SPP' NULL

NANE 	 OFFSET ATTR IBUTES VALUE

.UCBINOX 00091C BINARY(2)

.UCBtOFii OOOSBO PO INTER(SPPI NULL

.UCBLAST 000912 CHAR ItO) '00000000000000000000' X

.UCBL8.0 OOOSFA BI NARY (2) -75

.UCBLIB OOOSFC CHARIIO) 'ltLI81.

.UCBLIB5 OOOBFA CHAR(l2) '*LIBL "FFB55C03C9CZ03404040"0"0' X
~ UCB"'BIO 0009·06 BINARY(2) -71
.UCB148RS 000906 CHAR(12' 'FFBQ40..0"04040404040"040·X
.UCBMLIB 000908 CI-IAR(10'
.UCBNXTii 0008CO POINTER(SPP' NULL
.UCBOBRii 000890 PDINTERI SPPI
.ucsoopa OOOB 70 POINTER(SPPI NULL
.UCBOPF. OOOBAO POINTERC SPP, NULL
.UCBPARN 00094.0 81 NARYI21
.UCBRLEN 0009 ..2 BINARY(2)
.UCBRLVR 000920 OUR(.. , '0100"

.UFCBPTR 000590 POINTERe SPpl SPACE OFFSET 2160
OBJECT P5SA

.UFLGSAV OOOSEO CHAR (21 "0010' X

.USERTN 000480 POINTERI lPI NULL
OOOC 30 PO INTERe SPPI 	 NULL

• U01FLGS 00079E CHARtz •
.UOIIBFiI 000100 POINTERfSPPI NULL
.UOILVAL 000701 CHARI II 'OQ'X
.UOILVCK 000701 CHAR (11 -OO'X:
.UOIOBFa 000710 POINTERI SPPI NULL
.UOIUFCB OOOf)FO PO INT!":R(SPPI NULL
.U02FLGS 00091E CHAR(21 '8020'X
.U021eFa 0008&0 POINTERespp, NULL

• USEWRKii

• U02LVAL 000951 CfiARUI
.U02LVCK 000951 CfiAR(I' 'OO'X
.U020BFa 000890 P[)INTERI5PP) NULL
.U02UFCB 000870 POINTERI SPP, NULL
.V0058EE 0009A3 CHARtl) 'OO'X
.WCBCNLS 000550 CI-IAR til '0·
• WCBJOAT 	 00055. CHAR(71 '0801106'
.WC8L.UAC 0005"0 B1NARYI21 o
.WCBPINF 000S42 BI NARY t 2)

• WCBSWTC 	 0005S8 CHAR eel '00000000'

• weBUOTA 	 000540 CHAR C32767' 0080110600000000..,
000540 VALUE IN HEX 'QOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFOFOF8FOF IFlFOF6FOFOF OFOFOFOFOFOOOOOOOOOOOOOOOOO' X
000568 •• 1 3 LINES OF lE~OE5 SUPPRESSED

• WCBURC 000S4E CHAR(21 • 0000' X
.. WCBUO 00055B Cl-tARClI
.WCBUI 000559 CHARtI,

.WCBU2 00055A CHAR 111
• wC8U3 00055R CI-IAR (11 '0·
.WCBU" 00055C OUR (1' ·0·
.WC8U5 	 000550 CHAR (II ·0·
.WCBU6 	 0005SE CHAR(II

• WCBU7 	 00055'" CHAR,,' ·0·...YOI0200 	 000~70 ZONEOI2.0' '013F'X
ALPHA 	 000956 CHARClI OINENSION(26'

Q0096F (261 ·z·
ALPHABET 	 000956 CI-IAR (26) "ABC OEFG HI.JltLMNOPORS'-UV",XY Z'

Figure 10-6 (Part 7 of 8). COBOL Formatted Dump

10-20

OFFSET ATTRIBUTES VALUE

DB-FORfoIAT-N....e 000~A4 CHARCtO'

DEPE"'tO OOO~72 CHAR (I' OP4ENSrrJN(26.

000988 1.3-;:>61 '0'
DEPENOf;:NTS 000996 C.... AR 121 'Z
F IELDA NOT ADDqESSAULE
F IELDA NOT ADDRESSABLE
FILE-I NOT ADORESSAI:)LE
FILE-2 NOT ADORESSABLE

FILLER 000954 CHAR(56) ?ABCDEFGHI JKU4NOPQASTUVWXYZ ?010000I200012:JOOI23400234.0·
000954 VALUE IN HEI('0 26FCIC2C3C4C5C6C7C8C90ID20304D5D6D70809E2E:JE4E5E6E7E8E9026FFOF .FOFOFQFOF IF2FOFO' X
Q0097C +41 'FOFtF2F:JFQFOF'F~:JF4FOFOF2F3F4FO'1(

FILLER 000980 CHAR III
FILLER 000998 CHAR(7)
FILLE"R 000995 CHARI')
FILLER 000991 CHAR I II
KOUNT 000954 PACJ(EO(2,O) 2.
LOCATION 000Q92 CHARI:JI
NAM€S-F IELD' 0009 BC C"AR II J 'Z'
NO-OF-DEPENOENTS 000~72 CfiAR 1261 '0100001200012300123400234.0'
NODEPf.NO OOO<JAO PACKED(2 ,0 J
NULLCL 000601 CfiAR(t1

000970 P,ACKEDI2.0) 26
RECOA:ONO 00098E ZONED(3. 0) 26
RECORol NOT ADDRESSABLE
RECORol NOT ADDRESSABLE

WQRICRECQRO 00098C CHAR (19' 'Z 026 NYC Z
ZONE-DATA 000<JA2 ZDNEO(2.01

**INYALIO DATA 'OOOO'X

STATIC STO.=tAGE FOR PIoI'OGRAM TESTPRT .. PUB'i -IEGINS ... T OFFSET OOOOAO IN THE PROGRA'" STATIC STO<lAGO::: ARE'" IP<>SAI
"UTONATIC STORAGE F(R PROGRAM Tt;STPRT.PUBS BEGINS AT OFFSET 000Q40 IN THE PROGRA/II AUTO/lll"TlC STORAGE AREA I PASA,

Figure 10-6 (Part 8 of 8). COBOL Formatted Dump

Chapter 10. Testing and Debugging COBOL Programs 10-21

http:ZDNEO(2.01
http:NODEPf.NO

10-22

Chapter 11. COBOL Problem Determination

If a problem occurs while you are using COBOL, the cause of the problem
may not be obvious. An error in your application, in system operation, or
in the COBOL compiler could have caused the problem. The problem
determination procedure in this chapter can help you solve or circumvent
the problem. If you need to call for service, this chapter refers you to the
Problem Determination Guide.

How to Use This Procedure

This procedure is arranged in a sequence of questions that you can answer
with a YES or NO. Based on your answer, you are directed to another
question or to a recommendation for action.

Start at the beginning of the procedure and follow the question-and-answer
sequence, answering each question to which you are directed based on your
previous answer. If the problem is a condition that requires more detailed
procedures, you are referred to those procedures.

Identifying COBOL Problems

When a COBOL problem occurs, you can use the following series of
questions to pinpoint its possible cause:

Have changes been made to the user program since the last time it compiled
or ran successfully?

NO YES

I
Read on, but consider what has been changed. For example, have
operating procedures changed, are new device files being used, or have
program changes been applied recently? A good starting point for
problem determination can be a changed item.

Are you using the current release of the COBOL compiler? The release
number is printed on the first line of the source listing.

YES NO

I
Install the current release of the compiler and the program changes
that apply to the release, and recompile the program. Refer to the

Chapter 11. COBOL Problem Determination 11-1

Guide to Program Product Installation and Device Configuration for an
explanation of installing the compiler.

Have all IBM-supplied program changes you have received that apply to the
current release of the compiler been installed?

YES NO

I
Install the program changes you have received that have not yet been
applied, and recompile the program. Refer to the Operator's Guide for
an explanation of installing program changes.

Are you using the current release of the CPF?

YES NO

I
Install the current release of the CPF and any program changes you

have received that apply to the CPF release. Refer to the Guide to

Program Product Installation and Device Configuration for an

explanation of installing the CPF.

Have all IBM-supplied program changes you have received that apply to the
current release of the CPF been installed?

YES N10

Install the program changes you have received that have not yet been
applied. Refer to the System/38 Operator's Guide for an explanation of J
installing program changes.

Have any non-IBM-supplied modifications been made to the compiler or to
the CPF?

NO YES

I
If the compiler has been changed, install its current release and
program changes, and recompile the program. If the CPF has been
changed, install its current release and program changes. Refer to the
Guide to Program Product Installation and Device Configuration for an
explanation of installing the compiler and the CPF.

Did the COBOL compiler have an exception?

NO YES

I
An exception is an error indicating an abnormal compiler termination.
The exception is displayed at the work station or printed in the job log
for the job that requested the compile. Exception data is printed and
can be used to investigate the problem. For example, the name of the
compiler phase executing and the number of the COBOL source
statement being processed at the time of the exception are printed.
You can refer to the source statement in the user program and try to
modify the code to circumvent the problem. Retry the compilation and
specify the DUMP parameter on the Create COBOL Program

11-2

command. Whether or not you successfully circumvent the problem,
you should report it to your service representative.

Refer to "Calling for Help" later in this chapter.

Did the COBOL compiler loop or wait while compiling a user program?

NO YES
I

A loop or a wait is a seemingly never-ending compilation for which
neither output nor error messages are produced.

For either condition you can (1) enter service mode for the job, (2)
request a dump of the job, and (3) cancel the job. Refer to the IBM
System/38 Operator's Guide, SC21-7735, for descriptions of entering
service mode, requesting a dump, and cancelling a job.

Use the invocation stack layout at the beginning of the dump to
investigate the problem. If you cannot circumvent or solve the
problem, refer to "Calling for Help" later in this chapter.

Did the COBOL compiler produce incorrect output?

NO YES

I
One of the following conditions can indicate incorrect compiler
output:

• 	 An I RP syntax error, which causes the compiler to end abnormally
and an error message to be issued to the compiler requester. I RP,
which is an intermediate representation of a program that is
produced by the compiler, is described in Appendix A.

• 	 An unexpected result produced by a user program during its
execution.

IRP Syntax Error: If your program caused an IRP syntax error,
the IRP will be listed and you can trace the incorrect IRP
statement back to the COBOL source statement(s) that produced
it. Try to modify the COBOL source program to circumvent the
error and then recompile the program. Appendix A provides
information about relating IRP to COBOL source statements and
using compiler debugging options such as *LI ST.

Even if you circumvent the problem, you should also report it to
your service representative. If you cannot circumvent the
problem, refer to "Calling for Help" later in this chapter.

Unexpected Results: If a user program produces unexpected results,
you can use CPF debugging functions such as traces and
breakpoints, or you can use COBOL debugging feature USE FOR
DEBUGGING statement to isolate problems within a user program.
Refer to Chapter 6 for a description of COBOL debugging features
and to Chapter 10 for an overview of CPF debugging functions.

Chapter 11. COBOL Problem Determination 11-3

If after investigating the problem you suspect a compiler error,
recompile the program and specify *L IST for the GENOPT parameter
on the Create COBOL Program command. The I RP will be listed,
and you can trace the incorrect I RP statement back to the COBOL
source statement(s) that produced it. Try to modify the COBOL
source program to circumvent the error and then recompile the
program. Appendix A provides information about relating I RP to
COBOL source statements and using compiler debugging options
such as *LI ST.

If you cannot circumvent the problem, refer to "Calling for Help"
later in this chapter.

Did the COBOL user program have an exception/error?

NO YES

I
Two types of exception/error can occur: program and file. Examples
of program exception/errors are division by zero, use of an invalid
index, and use of uninitialized data items in an arithmetic operation.
Examples of file exception/errors are undefined record types and
device errors.

You can begin investigating the problem at the source statement
indicated by the message. Use CPF debugging functions or COBOL
Debugging features to pinpoint the problem. Chapter 6 describes
COBOL Debugging features, and Chapter 10 provides an overview of
CPF debugging functions.

If you cannot solve or circumvent the problem, refer to "Calling for
Help" later in this chapter.

Did the COBOL user program loop or wait during its execution or produce
incorrect output?

NO YES

I
A loop is a sequence of instructions that is executed repeatedly, and a
wait is a situation in which neither output nor error messages are
produced.

For either condition you can (1) enter service mode for the job, (2)
request a dump of the job, and (3) cancel the job. Refer to the IBM
System/38 Operator's Guide, SC21-7735, for descriptions of entering
service mode, requesting a dump, and canceling a job.

Use the invocation stack at the beginning of the dump to investigate
the problem. Also check for program logic errors; if the program
appears to be coded correctly, you can use CPF debugging functions
or COBOL debugging features to pinpoint the problem. For example,
you can trace the execution of certain statements and display the
contents of fields at stopping points in the program. Refer to Chapter

11-4

6 for a description of COBOL debugging features and to Chapter 10 for
an overview of CPF debugging functions.

When you isolate the problem to one or more source statements, you
can list the IRP by recompiling and specifying *LIST for the GENOPT
parameter on the Create COBOL Program command. If the I RP does
not appear to be an accurate representation of the COBOL source
statement, the compiler might be generating incorrect output.
Appendix A provides I RP information for further investigating this
type of problem.

If you cannot solve or circumvent the problem, refer to "Calling for
Help" later in this chapter.

Refer to "Calling for Help" later in this chapter.

Calling for Help

If you require additional assistance, do the following:

1. 	 Cancel the failing job and print the job log, if you have not already
done so. Do this by signing off your work station and choosing *L I ST
for the OUTPUT parameter. For example:

SIGNOFF OUTPUT(*LIST)

Call your system operator to verify that the job log was printed.

2. 	 Examine the job log, and any other available information on your job,
to determine why your problem occurred. If you still require additional
assistance, go to the next step.

3. 	 Before calling for service, have your system operator go to the
System/38 Problem Determination Guide.

Chapter 11. COBOL Problem Determination 11-5

11-6

Appendix A.
 COBOL Compiler Service Information

This appendix is provided for COBOL service personnel to use when investigating
COBOL problems and provides the following information:

• Compiler overview

• Compiler debugging options

• I RP layout.

COBOL programmers can also use this information to investigate COBOL

problems on their own before, or instead of, calling for service.

For more detailed information, refer to the microfiche for phase QCBROOT.

Compiler Overview

This section provides the following compiler information:

• How the compiler works

• Compiler phase descriptions

• Execution time subroutines

• Major compiler data areas descriptions

• Compiler error message organization.

This section provides an internal view of the compiler. If you need an external
view to investigate a COBOL problem, refer to Chapter 8, which describes
entering a COBOL program into the system, compiling the program, and using
the listings that the compiler produces.

Figure A-I summarizes how a COBOL source program is compiled into an
executable (encapsulated) program.

Intermediate text, which is output from step I in Figure A-I, is a representation
of COBOL source statements that is created by compiler phases and exists only
during their execution. This text can be dynamically listed through the I TDUMP
parameter of the CRTCBLPGM command. See "Compiler Debugging Options"
later in this appendix for explanations of these parameters and examples of
intermediate text.

Appendix A. COBOL Compiler Service Information A-I

When compilation ends, intermediate text has been processed and converted to
appropriate I RP (intermediate representation of a program). I RP, which is
output from step 2 in Figure A-I. can be listed through an *LIST value for the
GENOPT parameter on the CRTCBLPGM command. See "Compiler Debugging
Options" later in this appendix for explanations of these parameters and examples
of I RP statements.

A program template is output from step 3 in Figure A-I. A template is the final
form of a program before it is converted to an executable program, which is
called an encapsulated program. A template can be listed at the end of a
compilation through an *DUMP value for the GENOPT parameter on the
CRTCBLPGM command. See "Compiler Debugging Options" for an explanation of
this parameter and an example of a program template listing.

Input Processing 	 Output

This process begins when a
Create COBO L Program
(CRTCBLPGM) command is
entered.

1. The compiler converts the

COBO L source r--- source, statement by
statement, to intermediate
text. 	 • I ntermed iate

I Text

2. 	 The compiler produces an J
intermediate representation
of the program, called I RP,
from the intermediate

, text. 	 • IRP

I3. 	 Another program, called the
program resolution monitor,
converts the I RP to object ,
code, called a program
template. • Program

I Template

I4. 	 The program template is
converted (translated) to
an executable program,
which is called an
encapsulated program. Executable

Program

Figure A-I. Overview of the COBOL Compiler

A-2

Compiler Phases

The compiler consists of the phases listed in Figure A-2. These phases are shown
in the order in which they are executed.

The first compiler phase is named QCBCBL. The names of all phases that follow
QCBCBL begin with QCB and end with the function of the phase.

Execution-Time Subroutines

Figure A-3 lists the execution-time subroutines that are used by the compiler.

Major Compiler Data Areas

The major compiler data areas are a common area (X CBCOM), the dictionary
(DHPACKET), and intermediate text (!TXT). Detailed information about these data
areas can be found in the microfiche listing for phase QCBGEN.

Compiler Error Message Organization

Compiler error messages are organized as follows:

Error Messages Description

CBLOOOO to CBL0999 Messages with severity less than 30

CBLlOOO to CBLl999 Messages with severity greater than 29

CBL8000 to CBL8999 FIPS messages

The Messages Guide: COBOL describes all compiler messages.

Appendix A. COBOL Compiler Service Information A-3

L

Phase

Name

QCBCBL

QCBROOT

QCBDATA

QCBENVIR

QCBPROC

QCBPARA

QCBGEN

QCBLIST

QCBOBJ

Figure A-2.

Subroutine
Name
QCRMAIN
QCRADRTN
QCRANEDT

QCRCLEAR

QCREXHAN

QCRFPWR

QCRGDDM

QCRIPWR

QCRNAMCK

QCRSORT

QCRSTR

QCRUNST

Figure A-3.

Phase Description

Command interface that receives control when the CRTCBLPGM
command is entered, and passes the command parameter list to
QCBROOT.
Root phase that controls the calling of all other compiler phases.
This phase also sets the options from the command and the PROCESS
statement.

Phase that processes the first three COBOL divisions. The
dictionary is built and those phrases that have dependencies on
phrases that have not yet been processed are written to I-text to be
processed by the next phase.

Phase that processes the I-text from the first three divisions.

Phase that processes the Procedure Division statements. The
COBOL statements are broken down into basic operations that are
written to I-text.

Phase that resolves procedure-names. All symbolic procedure-names
in the I-text are resolved to dictionary entries.

Phase that generates the I R P. The dictionary is scanned to produce
the declarations and then the I-text is read to generate the IRP code
for the Procedure Division statements.

Phase that produces the listings. The verb sum list, Data Division
map, F I PS flagging, cross-reference, and COBOL messages listing.

Phase that calls the PRM to create the program.

Compiler Phases

Called:
Unconditionally (U

Subroutine Description Conditionally (C)

Initializing the COBOL program U
Run-time routine for ACCEPT and 01 SPLAY C

Run-time routine for doing alphanumeric C

editing

Run-time routine to clear a file C

Run-time routine to provide a symbolic dump C

Run-time routine for noninteger exponentiation C

Run-time routine for CALL "GDDM" C

Run-time routine for integer exponentiation C

Run-time routine to verify that a name is a C

valid COBOL name and convert it if necessary

Run-time routine for SORT /MERGE C

Run-time routine for STR ING C

Run-time routine for UNSTRI NG C

Execution-Time Subroutines

A-4

Compiler Debugging Options

Figure A-4 shows parameters in the CRTCBLPGM command that can be used to
debug COBOL problems. This section explains each of these parameters. For
information on the other parameters, see "COBOL Command Statement" in
Chapter 8. For examples of debugging information that can be requested by
these parameters, see "Examples of Using Compiler Debugging Options", later in
this appendix.

Optional

ePGMID ::J{.QOPL
CRTCBLPGM-PGM-()-----_______...,••

prOlram-name .lIbrary-name

QCBLSRC.eLIBL -(ePGM:::r-
-(>-SRCFILE .eIJBL SRCMBR

aource-rue- name 1 aource-rller
-G

\.. .lIbrary-name -member-name

SRC 9__SOURCE -(_NOXRI:>- -(_OIN j
>-OPTION-[] [] [] __

_NOSRC .XRIP .NOOIN

eNOIOURCI

SBQUENCB:J- -(eNOVBSUJ- -f.eNONUMBE~
-[-(] [] [eNUMBBR]_

..NOSEQUBNCE .VBSUM eLINENUMBBR

eNOMAJ- -(eNOOPTION:)- -(eQUOTE)
-[-(] [] []----_.

eMAP eOPTIONS .APOST

.NOLISY. -(.NOXRI')- -(.NOPATCJ>- GENOPT - [] [] [] ______•-(

• IJIT .XRIP - .PATCH

.NODUM:>- -(.NOATY -(eRANGE:>
-[-(] [] []----...

• DUMP eATR eNORANGE

~UNRBF:J- -(eNOOPTIMIZ:)- ®
-[-(] []------------.

eNOUNREF eOPTIMIZE

29 -(QSYSPRT.•LIBL
-(>- GENLVL)---PRTFILB -(••LIBL_Y"'---••

_ I.verity-Ievel ttle-name

.lIbrary-name

>-""~~~~,~-(:.-e-r-it-Y-_\-e-ve-\-)'---USRPRF -(:::::J~---.
.NORWAL~ -f..SRCMBRTXT~

>- PUBAUT -f. eALL --J""~---TEXT .BLANK --~>-------------...
eNONB - 'description'

>- DUMP startin&-Itmt endln&-Itmt - ITDUMP dump-option ---

IJab:B.l P,m:B.1

Figure A-4. Debugging Parameters

Appendix A. COBOL Compiler Service Information A-5

L

DUMP Parameter

The DUMP parameter produces a dictionary dump and also dumps compiler
flow information and data for the statements specified.

This parameter is intended for use by IBM service personnel only.

ITDUMP Parameter

The ITDUMP parameter produces a dump of the I-text. The parameter is a
number from 1 to 31 that controls when the I-text is dumped.

1 Dump the I-text after phase QCBPARA runs.

2 Dump the I-text before phase QCBPARA runs.

4 Dump the I-text as phase QCBGEN reads the I-text.

8 Dump the I-text as phase QCBGEN reads the I-text for the statements

specified by the DUMP parameter.
16 Dump the I-text in phase QCBLIST.

Note: Any combination can be specified by adding the values together for
the lists desired.

This parameter is intended for use by IBM service personnel only.

Examples of Using Compiler Debugging Options

Figure A-5 shows examples of debugging information that can be requested \

by compiler debugging options on the CRTCBLPGM command. The compiler ...,

listing in Figure A-5 was printed for a CRTCBLPGM command that specified

debugging parameters as follows:

GENOPT(*LIST *DUMP) DUMP(53 54) ITDUMP(4)

The DUMP (53 54) parameter causes a dump of tokens, semantic exits, all
dictionary activity, and all I-text written for statements 53 through 54. (Seeo in Figure A-5.)

Whenever the DUMP parameter is specified, a dump of the dictionary is
printed at the end. (See G in Figure A-5.)

The ITDUMP (4) parameter causes printing of the intermediate text as it is
processed by phase QCBGEN. The name of the routine that processes the
intermediate text is listed in front of each record. (See 4) in Figure A-5.)

The *LIST value for the GENOPT parameter causes printing of IRP and
machine instructions when compilation ends. (See 0 in Figure A-5.) The
headings in this IRP listing indicate the following information:

• 	 SEQ: A sequential numbering of the IRP statements. Error messages
such as IRP syntax errors issued by the program resolution monitor use
this number to refer to the IRP statements in error.

A-6

• 	 INST: A sequential numbering of the machine instructions generated
from the IRP statements. Not all IRP statements cause machine
instructions to be generated. The instruction number can be used as a
breakpoint for CPF debugging functions. Refer to Chapter 10 or the
CPF Programmer's Guide for further information about breakpoints.

• 	 OFFSET: Displacement of the machine instruction into the instruction
portion of the program template.

• 	 GENERATED CODE: Machine instructions that have been generated
from IRP statements.

• 	 GENERATED OUTPUT: IRP statements.

• 	 BREAK: Breakpoints in the IRP that can be used for stopping points
in CPF debugging functions. If the breakpoint is a number, it indicates
the COBOL source statement from which the IRP statement was
generated.

The following chart lists breakpoint names and the COBOL functions that
they handle. These breakpoint names can appear in error messages. They
help the user relate the statement number (field) to the function being
performed.

Breakpoint

Name COBOL Function

• CALEXCP 	 ON OVERFLOW exception monitor

• CLOSE 	 Close file

• CNLEXCP 	 CANCEL exception monitor

• CPFS004 	 Page overflow exception monitor

• CTRL 	 Control-Area processing

• DBUGBLD 	 Debug execution table build routine

• DBUGOUT 	 Debug table maintenance code

• DELETE 	 Delete routine

• EXCKRD 	 Called before doing a delete operation or a rewrite
operation

• EXFSGN 	 Generic exception monitor

• EXFS10 	 End of file exception monitor

•EXFS 11 	 No data available for file exception monitor

• EXFS12 	 No modified subfile record found exception monitor

•EXF S 2 2 	 Duplicate key exception monitor

Appendix A. COBOL Compiler Service Information A-7

Breakpoint
Name COBOL Function

.EXFS23 	 Record not found exception monitor

• EXFS24 	 Boundary violation exception monitor

• EXFS30 Permanent error or hardware error exception monitor

.EXFS34 Permanent error or boundary violation exception monitor

.EXFS9D A record is locked

•EXFS9G Input buffer too small exception monitor

.EXFS91 Write operation failed exception monitor

•EXFS9K 	 Invalid format name exception monitor

•EXFS9M 	 Last record written to subfile exception monitor

•EXFS9N 	 Recoverable 1-0 error exception monitor

•EXFS9P Commitment control exception monitor

.EXFS91 Invalid or unauthorized access exception monitor

•EXFS92 	 Logic error exception monitor

•EXINVT 	 Device was acquired but not invited

•EXISLD 	 Called before doing a sequential PUT to an indexed file

• EXNOF 	 File or member not found exception monitor

• EXRWRT 	 Called before doing a rewrite operation to an indexed file
with sequential access

• EXSB2 3 	 Subfile record not found exception monitor

• EXSB24 	 Subfile boundary violation exception monitor

•FCEXCP 	 Function check exception monitor

• FEOV 	 Force end of volume

.GET 	 GET

• GETKEY 	 Reads the record by the key value

• GETREL 	 GET relative

• INIT Initialization code and declares

· INIT002 Initialize return pointer

• LSKA 	 Linage control: before advancing page

A-8

Breakpoint
Name COBOL Function

• LSKB Linage control: after advancing page

• LSPA Linage control: before advancing n lines

• LSPB Linage control: after advancing n lines

• LSTRT Linage initialization

• NOALTR Unaltered GOTO

• OPEN Open file

•PAGING Paging routine

• PRINIT Printer initialization

• PRPUT Printer PUT

• PSPA Print control: before advancing

• PSPB Print control: after advancing

.PUTALL PUT

.PUTGET PUTGET

• PUTKEY Indexed keyed PUT

•REWRIT Rewrite

• SIZEXCP Internal size error exception monitor

• STARTR Relative I/O start

• STPEXCP STOP RUN exception monitor

•USETEST Save the CFIB address

See Chapter 10 or the CPF Programmer's Guide for further information on
breakpoints.

The *DUMP value for the GENOPT parameter causes printing of the program
template when compilation ends. (See. in Figure A-5.)

IRP Layout

The COBOL compiler generates code that has the following sections:

• 	 Declaration of MGT (see G in Figure A-5). The Module Global Table
(MGT) defines a common area for the module. This table is used to pass
information to execution-time subroutines.

Appendix A. COBOL Compiler Service Information A-9

• 	 Declaration of PGT (see 4) in Figure A-5). The Program Global Table
(PGT) is a communication area for the entire COBOL run unit (there is
only one PGT for the run unit).

• 	 Declarations for Environment and Data Division (see 0 in Figure A-5).
The declarations are generated in the same order as they appear in the
COBOL source. The HLL keyword gives the source COBOL name.

• 	 Procedure Division Code (see f) in Figure A-5). This lists the
generated code for the Procedure Division statements. The BRK
statement identifies the COBOL statement number, and the comment
indicates the COBOL verb.

• 	 Paragraph Initialization Table (see e in Figure A-5). This table
contains information about paragraphs that are performed.

• 	 Compiler-Generated Subroutines (see 0 in Figure A-5). Common
subroutines are included as needed for each program.

Some of the labels that can appear in the IRP for a COBOL program are:

.INIT 	 Label on the first executable MI instruction in the

generated program.

· Lnnnnnn 	 Compiler-generated labels where nnnnnn is a six digit
number.

· PARnnnn 	 Generated for each paragraph-name in the Procedure
Division, where nnnn is the paragraph number. The
paragraphs are defined in the Procedure Division.

· SECnnnn 	 Generated for each section-name in the Procedure Division,
where nnnn is the section number. The sections are
numbered sequentially starting with 1 as they are defined
in the Procedure Division.

· RETURN 	 Label on the code for program termination.

A-IO

••

L

Figure

CO~OL SOURCE LISTING

SEa"lBFI -III I B••••• 2 3 " •••••• <) •••••• 0 •••••• 7 .IDENTFCN S COPYNA..E CHG/OIIIT::

1 000 100 PROCESS OPTIONS Il4AP

COBOL COMPILER OPTIONS

oPTIONS

SOURCE

NOva SUM

NONUMBER

SEQUENCE

6£""-VL(291
FLAGI 0'

FIPS(NOI

QUOTE

OU"'P I $3. 541

ITDUMPt 41

COBOL GENERATlO"l OPTIONS

UNREF

NOPATCH

COBOL SO~CE LISTING

Sf"'T SEaNOR -A I B...... 2 •••••• 3 •••••• 4 •••••• s •••••• 6 1 .IOENTFCN S COPYNAME

2 	 000200 IDENTIFICATION DIVISION.
3 	 000300 PROGRAM-ID. TESTPRT.

000400 AUTHOR. PROGRAMMEA NAME.

ooosoo INSTALLATION. AOCHESTER LABORATORY.

DATE-WRITTEN. .JULY 15. 1980.

1 000700 DATE-COMPILED. 11/06/8018:46:00

6 000600 ENVIRONMENT DIvISION.

9 000900 CONFIGURATION SECTION.

SOURCE -c OItilPUTE R. 10M- 538.
oe.JECT-C OMPUTER.

'2 001200 [NPUT-OUTPUT SECTION.

13 001300 FILE-CONTROL •
.. 001400 SELECT F ILE-l ASSIGN TO OATABtoSE- ..ASTER.
OOISOO SELECT FILE-2 ASSIGN TO DATABASE-MASTER •

001600 DATA DIVISION.

11 001100 FILE SECTION •

..

..
• 8 001800 FD FILE-I

001900 LABEL RECORDS ARE STANDARD

002000 RECORO CONTAINS 20 CHARACTERS

002100 DATA RECORD IS RECORD ••

00Z200 01

002300 	 02 FIELDA PICTURE IS X1201.
00Z400 FD2'

2. OOZ,500 LABEL RECORDS ARE STANDARD
2. 002600 RECORD CONTA INS 20 CHARACTERS

27 00Z700 DATA RECIFD IS AECORD2.

28 002800 01 RECDAD2.

2. 00Z900 02 FIELDA PICTURE IS X1201.
3. 003000 WORKING-STOFUGE SECTION.

31 003100 01 FIL1..EA.

32 003200 05 KOUNf PIC S99 COMP-3.

33 003300 05 ALPHABET PICTURE xl261 VALUE "ABCDEFGHI.JKLMNOPrlRSTUVWXYZ".

34 003400 05 ALPHA REOEFINES ALPHABET PICTURE X OCCURS 26 TlfI4ES.

35 05 NUMSA PIC S99 CQMP-3.

003600 	 05 ND-OF-DEPENDENTS PIC X126}

003600 	 05 OEPENO REDEFINES NO-OF-OEPENOENTS Ptc X OCCU~S 26 TIMES.
003900 01 wOAKAECORD.

OS NAItliES-FIELO PICTURE X.

OS F ILLER PICTURE X VALUE I S SPACE.

004200 	 05 RECIFDNO PICTURE S999.

05 F ILLER PICTURE X VALUE I S SPACE.

aS LOCATION PICTURE AAA VALUE IS "NYC".

OS F ILLER PICTURE X VALUE IS SP"CE.

05 DEPENDENTS PICTURE XX.

004700 05 FILLER PICTURE xl1J VALUE IS SPACES.

46 004600 01 NO DE PEN> PICTURE 99 COMP-3.

49 004900 01 ZONE-oATA PICTURE 99.

DATA D'VISION SEMANTIC EXIT COUNTS

COUNTS FOR EX.TS I - 10

COUNTS FOR EX US - 20 22

COUNTS FDA EX ITS - 30
 .2•
COUNTS FDA ex ITS - 40 	 22

A-5 (Part 1 of 10). Examples of Compiler Debugging Information

Appendix A. COBOL Compiler Service Information A-ll

http:FIL1..EA

COfiOL SOUHCE LISTING rESTORT
S,III, SEQNSq -A 7 .IOENTfCN 5 COPYNAME

COUNTS FOR EXlf5 41 - SO

COUNTS FOR EXJTS 51
COUNTS FOR E:XITS
 fI'
COUNTS FOR E)(IfS - 80

COUNTS FOR EXITS 8. - 90

TOTAL NUM~;::R OF EXITS TAKEN IN ocsorA:

ENVIRONMENT 1 TEXT SEMANTIC EXIT COUNTS

COUNTS FOR EXITS I - 10

COUNTS FOR EXITS .0

COUNTS FOR EX ITS '1 30

--
COUNTS FOR EX ITS <0

COUNTS FOR EXITS - 50

COUNTS FOR EXITS 51

-
- ..

COUNTS FOR EXITS 61 - 70 o < 0

COUNTS FOH (:X ITS 71 - eo 23856- 3856-3856-.36 ~6- 38~6-31)56- 3856- 3856-38') e-

so 	 OO'jOOO PROCEDURE DIVISION.

OOS 1000•••••••0"0••••••••••••00 ••••••••••••••••••••••0 ••••

00'S200•• 'tHE FOLLOllllNG PARAGRAPH OPENS THE OUTPUT FILE TO BE CREIoTEO•••

005300•• AND INITIALIZES COUNTERS.

00540 O•••••••••0••••••0 ••••••0.0••00 ••

005500 STEP-I.
51 	 005600 oPEN OUTPUT FILE-I.

005700 MOVE ZERO TO KOUNT NUMBR NODEPENO.

005800•••••0 ••••••••0 .0••••00:•••••••••••••••••••0 ••0.

6)
005900•• THE FOLLOWIHG CREATES INTERNALLY rHE RECORDS TO BE

006000.0 CONTAINEO IN THE FILE. WRITES THEM ON OI$K. AND OISPLIoYS

006100•• THEIII.. • ••

• 	 006200•••••••••0.0•••••0.00.0.000.0•••••••••••••••••••••••••••• :;.••••••*.

006300 STEP-2.

S3 006400 ADO 1 TO KOUNT. AOO I TO NUIIIBR.

QC8PARSe: TOKEN 15- 101 NUMSR

00000000 0000000000000000000000364 OFOF OF6F4F OF 0000022

OC8PR{): SEMANTIC - 21 10' 5 NUMSA

aCBPARSE: TDKEN 15- ll7.

00000000 000000000000000 00000003640F OF 01"..,1" _F OF 00000_2

aC8PRO: SEIoIANflC - ll7:1

DHCOIE :0: OA Tlo-NAM OHTL 11000000

OHPARE"NT:= 00005580 OK.JNE 35 003500

OHDEBUG := 00000000 DtMiASH 00000000

-= 11000000 00000000

OOINLEIfL:= 2 Oa...EN DDFLAG 00000000 00000000

OOSECT = WORK OQSSU6 01000001

-= PACKE~ t 2. 0 I

O£H::)(LEVL-= OOAKCHN " 00000000

ODREOEFO= 00000000

S04ANTIC - lOt '5 NUIIISR

aCBPRO: SEIoIA"'ITI C - 84 I 17 2

aCBPRO: SEMANTIC - 116

OCBi-'AO: SEIUNTI C - 111

00003228: "'-TlJPLE AOD AO 00 41 18 2 0000 0002 00005710 HUMOA

COOOL 60UACE LISTING TESTPRT
srMT SEaNOR -A 1 e •• __ • 2 •••] _••••• 4 ••• 6 •••••• 1 .tDENTFCN S COPVNAME

01 00 40 21 • 0000 0001 FI404040

QC8PAO:S£~ANTIC- 11'5 117

OCflPRO: SEIIIANTIC - 12 11 7

QCBPIoRSE: TOKEN I s- 29 MOVE

CiO 00 3000 00000000000 00 00 0000 0003640F OF OF6F5F OF 000000"

I)CBPRU: Sf;MANTlC - 1.6 29

QCBPRO: SeMANTl C - n

OCBPAO: SEMANTJ C - 12 2. < 1oI0VE

OOOO]250~ ST"'T 55 006500 000000 1- 2.
..,.
aCqpARS€: rOKEN 15- ALPHA

00 00 0000 0 00 00 0000000000 00 00 00 0:"'_ OF OF OFbFSF OF" 00 00 OOF.:

aC6pQO: SEMANTIC - 21 to I

aC6PARSE: TOI(EN IS- "3 t

00000000 000000000000000000000017401" OF OF6F5FOFOOOOOI 0

aCAP~O: SEIoIANTIC - It.l 1 (

ALPHA

[)HCOD':. '" OIoTIo-"'AM OHTL

OHPAR:': NT:= 0000'5580 O INE 14 003400

OHDE6UG '" 00000000 -= 00000000 00000000

:= 00000000 00000000

DOINLEVL= 2 OOLEN 00010100 00000000

DoseCT = WORK DD5SUO 00000000

:= AN 	 DDAOOR

DDAKCHN '" 00000000

oOl)apos = OOAEOEFO=00005634

QC8PRO: St;.IoIAN T1 C - 82 10 I 5 ALPHA

OC8PRO: 5EMA,. TIC - II

QCOPRO: SEMANTIC - III 1 (

QC8PARSE: TOKeN IS- 101 KOllNT

00 000000 00000 00000000 000000000.J74OFOFOF6F5FOFOOOOOI '5

OCBPRO: SEMIoNflC - 21 101 5 KOUNT

OC8P"RSE: TOKEN 15- l:i':l J

00 on 0000 000 0000 00 0000 00 0000 0003740FOF OF6F5FOP 000001 6

OC8PAO: SEMANTIC: - 121 I 1

00005502

DHCOD:;: = OA TA-NAII4 DHTP = 11000000

DHPARtNT:z: 00005580 3. OHSONR 003200

OHOESUG = 00000000 OHHASH 00000000 OHTWIN

OHTP • 11000000 00000000

OOINL:::IfL_ 2 00000000 00000000

OOSECT _ WORK
 01000001

DOC OOOT.OR = I 2. 01

OOEXLEIfL= 00000000

DDDQPOS -= OOREOEFO= 00000000

QCOPRO: SEMANTIC - II

QCOPAO: SE"IAN T t C - 86 12 I II

0000"3264: "-TuPLE SUBSCR 3: 00 OB 00 00 I 0000 0000 00000000

I 0000 0001 00005680 IoLPHA
00 0000 00001 00005502 KOUNT

OC8PRD: SEMANfI C - .37 121 1 I

QC8PRO: SEfIiIANflC - 27 121 II

OC8PARSe: 'OIC.EN 15- 834 TO

Figure A-Ii (Part 2 of 10). Examples of Compiler Debugging Information

A-12

http:23856-3856-3856-.36

CQUOL SOURCE: LISTlffG

5TIIIIT 5EONfl.R -A I B...... 2 ••• 3 •••••• 4 •••••• 5 ••• ••• l' .IOENTf'CN 5 COPYNAIIIE CI"fG'DA1E00.

00002000 000000000 0000000000000"J74 OFOF OF6F5F OF 000001 q

55 ,",OVE "'LPH'" IKOUNTI TO N"'M'ES-FIELO.
56 006t>00 ~OVE DEPEND IKDUNTJ TO DEPENDENTS.

006700 ~OVE NUIoIBR TO AECDRONO.
006800 5TEP-J.

006900 WR ITE aF.COHOI FROM WOqKRt:::CO"lD.

007000 STEP-4.

007100 PERFORM STEP-2 THRU STEP-3 uNTIL '<OUNT 1<;, E.QUAL TO 26.

007 ;,!O 0(> (>(> (>(> 000 '0:0 OCOO OC 0101'0:0*0 OC OC< CO ** ICIC 010< 0*0:'0:0(> (>(> (>>) (>>)C 000';'0 (>(>0: 0 (> 0 0:0 0 0 >;<0 >;<$

0073000~ THE FOLLOWING CLOSt:S OUTPUT AND REOPt;:NS IT AS

00740000: INPUT.

00750 OOC';' »(>>)>;< -00:*';' *0 00 00 0*>;<>;<0:0 10<>;<:;>;<.10<00*0 0*10<0** 00:00: *0>;< 0 *000 >;<0:0:0: 0: 0 Oq *000 qq

007600 StEP-5.

O?EN INPUT FILE-2.
00790 Oq q q q* q(> CC:CIIOCO 00 00 00 00 10<0 0:0000:00010<10<10<00000: C* 0* qo:o q*o: 0:0: 0*00: 0(>*(> *0: (> 0 0:0

OO~OOO.O THE FOLLOWING READS S"'CK THE FILE AND SINGLES OUT EMROYEES.*O
OOS 100*0 WITH NO Of"PENOENTS. .0.
00'3200•••••0**0 *0 0:$** *0:0:0 000:0 ** co 0* 00'Cr-0 00 ¢¢ 0:0 .00*'0:'0:'0: 0:'0:'0: ••••OC'O:O'O:* 0*••0.
00'3300 STEP-6.

62 OOIUOO READ FILE-2 RECORD INTO 1III0i'lKAECORO

• 3 ...T TI'1 STEP-d •
"W GO

00~600 ST!;:P-7.

OO!l700 IF OEPEo.,jOENTS IS EOUAL TO "0"

65 001)800 MOV'€: ".zit TO OEPENDt::NfS

66 00~900 ADD I Til NOOEPEND.

~1' OO~OOO GO TO STEP-6.

OO'HOO STEP-6.

000)200 CLOSE FILE-2.

OO~300 DI'SPL"'Y "EMPLOY<::ES WITH I'C OEPf':NDENfS .. NOOEPENO.

70 00CJ400 ADD 1 TO 7.0"lf.-O... T

71 OOCJ500 STOP flUN.

.0' 0 •• 7 .IOENTFC S COPYNAME CHCO'OATE

PROCEDURE <>IVISION SE:4"'NTIC EXIT COUNTS

COUNTS FOR £:I(IT5 I - 10 0 0 0

51 2A
 .
COUNTS FOR E.)(IT5 21 - 30 o a 27

COU"lTS FOH EI(1 TS - 40 o "

COUNTS FOH E)(lTS 41

COUNTS FOR E)(lfS 51 - 60

COUNTS FOR E)(ITS - 70

COUNTS FOR E)(ITS 71

COUNTS FOR E)(IT5 81 - 90

COUNTS FOR eXITs 91 -100

COUNTS FOR EX ITS 101

COUNTS FOR EI(I TS -120

COUNTS FOM E)(ITS 121 -130
 2'
COUNTS FOR EI(ITS III -140

COONT5 FI')R EI(ITS 14.
-. so
COUNTS FOK EX ITS -161')

COUNTS FOR E)(lTS 161

COUNTS FOR EX ITS 171 -,80

COUNTS FOR EXITS 181

COUNTS FOR EI(IrS loll -200

COUNTS FOR E)(ITS 201 -210

COUNTS FOR E)(ITS 211 -220 0 a

• TOTAL PROC::OURE DIVISION SFMANTIC EXITS T"'KENW QCB6EN : 0000:JOF8: ST~T HDR 51 005600 000000 1- 31

ocaGIO 0000310C: N-TuPLE oPEN 2:

00 ao 00 00 0 0000 0000 000052EC FILe-1
01) 20 00 00

aCBG=N 005700 000:>00 1
QC9G"IOVE: 00003148: N-TUPLE MOVE 2:

00 80 00 ..

00 o. 00 00 · 0000 0001.,MOVE
00 80 00 2 0000 0002 NUII4BR
00 O. ., 00 " '0 · 0000 0001

00003198: "I-TUPLE ,00 80 00 00 os 0000 0002 00005H8C NODEPEND
00 O. 00 00 · 0000 0001

00 80" 00 00 0 0000 0000 STEP-2
006400 000000

"I-TuPLE" AOO .,
00 RO 00 0000.. ,
00 O' 00 .0 .." · OOOu

aCBGEN 006400 000000

OCBGARTtt: 0000~228: '~-TI)PLfO
 ..
00 ao 00 .a 2 0000 0002 00005710 NUMAR..
00 O. 00 .0 · 0000 0001 FI404040
OCBGEN , 00OOJ.l50: snn HOR 006500 000000 .
aC8{""sesc: 00003264= N-TlJPLE

08 " · 0000 0000 00000000
00 RO 00 00 · 0000 0001 0:)Cl056AO"

Figure A-5 (Part 3 of 10). Examples of Compiler Debugging Information

Appendix A. COBOL Compiler Service Information A-13

C:JBOL SOURCE LISTING
ST"IT SEONBR -A I a ••••• 2 ••• 3 •••••• • ••••• 7 .IDENTFCN S COPYNAME

.,00 02 00 l 0000 0002 	 00000000 ,OCBGLEJL LABEL

00 20" 00 00 0 0000 0000 00000000

OCBGEN , 0000~7FC: STHT HOR ., 009000 000000

~-TUPLE" BRANCH

00 80 00 00 0 0007 0000

OC9GL6L N-TLPLE LAeEL

00 ao" 00 00 . 0 0000 0000 STEP-6
0000384C: STHT HOR .. 009200 000000 .- 7

OCfJGIO 0000]&60: N-TlPLE CLOSE .,

00 80 00 00 0 0000 0000 000054]. F ILE-2

00 .0 00 00 0 0000 0000 	 00050000

STMT HOR .0 009]00 000000 .
0000369C: N-Tl.PLE 01 SPLAY

00 80 00 00 0000 0010 00007D1C -EMPLOYEES NO DEPeNDENTS..
00 80 00 00 · 0000 0002 00005BBC NODEPEND

"TH

00 .0 00 00 0 0000 0000 00000000

QCBGMove: 0001E204: i'll-TuPLE NOYE
 ., ..00 02 00 · 0000 0010 00000000

00 80 00 00 00001D7C -EMPLOYEES WI TH NO DEPENDENTS .

OCBGMOIIE: N-TuPLE

00 02 00 .t t. · 0000 0002 	 00000000
00 .0 00 00 · 0000 0002

OCBGEN , 00003804: 009400 000000

QCBGARTH: 000018E8: AOD .,

00 .0 00 00 2 0000 0002 ooooseEE lONE-DATA
00 00 0000 000 I FI404040

N-Tl..PLE " ., .. " .. ·
00 02 00 0000 0002 	 00000000

00 .0 00 00 t. 0000 0002 	 000058EE
QCBGfiIIOIIE: 	 00018404: N-TlJPLE

00 80 00 00 0000 0002 000059EE ZONE-DATA
..O.00 00 0000 0002 00000000

OCBGEN , 00003910: STHT HOR 7J 009500 000000 ,

00003924: "'-TuPLE" "

.0 00 00 0 0000 0000

0000l93C: N-TuPLE LABEL

00 20" 00 00 0 0000 0000 OOOOOOOF
. E N 0 o F 5 0 U R C E

coso:... NE">SAGES

sTln SEQNBR ~SGID SEY TE.kT

MESSAGE SUMMARY

TOTAL INFO' 0-4' 'IIIARNING'S-191 ERRORf 20-29' SEVERE 130-39, TERMtNALf40-99'

e 	 JDUMP OF DICTIONARY FOLLOWS

000052EC FILE-I

DHCOD!:: .. FILE-J;>I(.T DHTL 168 ONT. 10000000

OHPARENT: 00000000 OOleoo

OHDEBlJ6 : 00000000 00000000 00000000

DHTP '" 10000000 00000000

OFD I OFORG OFACC

OFSA'ME = DFSAMRC ,: 0 DFASIGN ::MASTER

DFSACHN .. 00000000 DFSRCHN := 00000000

DFUSE '" 00000000 DFCODSET= 00000000 OFFSTAT := 00000000

OFRELKY :: 00000000 OFRECKY := 00000000 DFAL TKV :: 00000000

DFL80DY :: 00000000 00000000 OFL80T:: 00000000

~~OOT·""_OO " "
DFREeL:: 20 DFAECS:: 20 OF ILENO ..

DFWKSTHO= 00000000 OFS =00000010 00000000 00001000

OFASFNO .. 0 OFSRLEN :: OFSTAT2 '" 00000000

DFIOE.kCP:: 00001001 00101010

DFIOINFO :: 11001000

00005394 RECOROI

84 '" 11000000

OHPARENT= 000052EC DI-LINE 002200
..
OHDEHUG = 00000000 '" 00000000 00000000

z 11000000 00000000

00 INLEVL= I O(lLEN 20 DDFLAG 00000000 00000000

OOSECT .. FILE D055U9 0 DDS 00000000

ODC '" (ORDUP

OOEJ(LEVL'" OOAKCHN '" 00000000

OODQPOS % o DREDEFQ: 0000 0000

000053E6 FIELOA

OHCODE = DATA-NAN DN7e DHTP 00000000

DHPARENT= 0000539_ D~INE DHSQNR 002300

[lHOE6UG = 00000000 O $H 00000000 OHTWIN 0000'5536

OHTP '" 00000000 00000000

OOINLSVL= 2 00000000 00000000

CD5ECT :: FILE OOSSUB DOS ::: 00000000

DOC :: AN ODAOQR DOLATR 20

DOE.kLEVL:= DDAKCHN = 00000000

OOQOPOs z DOREOEFa=oooooooo

'3

000054JA FILE-I!

OHcao::: '" FILE-PKT OHTP
.6.
DHPARENT: 00000000 	 DHSONR..

Figure A-5 (Part 4 of 10). Examples of Compiler Debugging Information

A-14

COfHlL NESSAGES Te'STPRT

00005E7C STEP-S
DHTL 60

OHPAFlENT'" 00005048 OK.. INE 60 007600

DHOEBUG .. 00000000 00000000

OHTP '" 00000000 00000000

OPCFLAGS= 10000000 00000000 o

DPPRQCNR= DPSEGNR = DPAGoPNR=

OPAGOSNR= DPNXTN6R= O~NXTSeG=

••
00007CC8 STEP-6

OHcao: = PROC-NN
DHPARE NT;: 00005048 DHSQNFI

OHDEBUG '" 00000000 DHHASH DHT .. IN
10000000 00000000

10000010 00000000

0000700. STEP-7

DHCOO:: = PROC-NM OHTL DHT~ 00000000
OHPAAENT= 0000'5048 Dtt..INE 6<
OttOEBlJG '" 00000000 Dt+lASH :;: 00000000 DHTWIN 00000000

DHTP = 00000000 00000000

OPCFLAGS,. 10000000 00000000 OPSMSTNR:c

DPPROCiIIA= OPSEGNR = OPAGQPNR=

OPAGOSNR= ()PNXT5EG=

00007040 STE.P-8

DHcnD::: = PROC-NM 60 10000000
OHPAR!":NT= OOOOSD.~ 009100..
DHOEtiUG = 00000000 OHHASH 00001)000

10000000 00000000

10000010 00000000 o

o
Opt../XTNBR=

00007P7C -elOlPLOYEES lIlTH NO DEPENDENTS"
DHCOO:: :;: NONNU"'-L OHTL

95 SOUR<;e RECORDS RI'" AD
o COPY RECOqDS READ
o COPY MEMBERS PROC.ESSEf)
o 	 SEQUENCE ERROqS

.S DICTIONARY FINDS

51 DICTIONARY PUTS

o .. AS HiE HI ...HEST SEVERITY 14£.SS"GE ISSUED

IBM 5/38 COBOL 571.CBl IRP LISTING FO~ TESTPRT 	 PAGE

•......SEQ I~ST OFFSET GENERATED CODE 	 • •• 5 6 7 •••

-IBN S/38 CoeOL Ij714Ct)t lAP LISTING FOR TESTPAT - i
ENTRY $ eXT

00003 	 BRK ·.MGT /*MODlA..E GLOBAL TABLE*/CD OCL 00 .NGT UtAR(161 BORY(161 INITt"COBOL "'GT 00.0·)
DCL SPCPTR .MGTNEXT /OPTR TO NEXT PGT$/ .MGT

00006 DCL SPCPTR .NGTFIB /OPTR TO FIRST F I S./ .MGT

00007 DeL SPCPTR .J4GTPGT 10PTR TO PGTO/ .MGT
DCL SPCPTR .MGTPASA 	 I'*PTR TO PASAOI' .~GT

00009 	 DCL SPCPTR .MGTSEPT I.PTR TO SEPT*I' .MGT
~CL SPCPTR • MG TlIPTR I'*PTR TO IICB IIORK AReA*/ .. MGT

DCL SYSPTR .MGTPGM I'OSYSTEIOII PTA TO PGM*I' ."'GT
00012 DCL Il'llSPTR .MGTRST .lORE START INSTRUCT PTR.I'

00013 DCL 00 .MGTCNTRI201 BIN(.I I'OCOUNTERS*/
.NGT

1'.0.1 - SIZE EXCEPTIONS.o.I .MGT
0001.
000t5 • ...GTNA"IE CHARt lOt /.PROGRAM- IDOl'
00016 .MGTINVC BIN(2) (NIT /OINVOCATION NSR OF PGN*/

."'GTEXCP CHAR(7) INIT /OLAST EXCEPT ION CODE$/ ."'6T
DCL 00 .MGTIM>132' CHARI1' INITI132,·O·, /OINDICATORSO/ ."'GT

~MGT
1'01-O!'! SIZE ERR INO*I' .MGT
Itil2-STIitT OSE INOOI' .MJ;f

/03-0VFL eXCPT-CAl,.LO/ .MGT
/tiI.-CNCL EXCPT-PROG AC TI VEO/
/OS-Fl~ST TIME PERFORM FOR STATE",eNT*1
/(t6-EXEC TIME DEBUG ON FOR PRDGR,I,M.I' .MGT
/*'7-PtJT aliT speCIAL DEBUG ITEMS'I .MGT

.00019 .MGT
00020 DeL 00 .IOIIGTOSZ CHAP(I' DEFf.NGTINOI POs(U I*ON SIZE ERROR INDOI' .MGT
00021 DCL 00 .NGTSOSZ CHARla, OEFt.MGTINO, POSI2' I*STNT ON SIZE ERROR IND.'; .MGT

.IO!GTO'o'FL CHARla' DEFI.~GTINO) POseJ' /OOVERFLOIIf ON C"LL snno/; .NGT
00023 ""'GTCNCL CHARlt, OEFI.NGTINO, POS(4) /*NO CANCEL - PROG "CTIVE* ."CT

/ .. MGT
DCL 00 .IO!GTPFM CHARI I' DEFI.NGTtNDI POSIS' /O'ST TIME PERF FOR STATE'" .MGT

DCL 00 .MGTOaUG CHARI t I DEF(.MGT INO) POSI fd /*EXEe T IM£ OEBUG ON FQR*/;

0002b DeL 00 .MGTSPCD CHARll) OEFI.MGTINO) POSit) /*SPECIAL OEBUG*/

00027 .MGTSW CHAR III INIT{X·OO·) /.~OOllLE SWITCHF.S*/

00028
00029 DCL DO .I\olGTTYPE CHARI I) .It/. TYPE OF RUN - I OR e.,

DeL DO .MGWLlNe BINI21 INIT 1'0FlINCTION COOE - QCR"'AIN* • MGT
I .MGT

• MGT
/Cl - STDP RUNOI .MGT

1'$2 - INITI"L C"LLlC!:/
1'03 - CONVERT FROM PACKED 31 TD BINARY 8*/
1'.4 - CONVERT FROM R,NARY e TD P"CKE"D 3l~/
/05 - FlEFRCSH PROC PHIS FOR SEGJOIENTO/

00032 	 DCL OD .MGTHINB CHA~le, I"*BINARY a - CONVERSION*/

Figure A-5 (Part 5 of 10). Examples of Compiler Debugging Information

Appendix A. COBOL Compiler Service Information A-I5

http:eXCPT-CAl,.LO

IRP LISTING FOR TESTPFH

INST OFFSET "'ENERATEO COoe: •••••••••••••• 2. •••••• 3 •••••• 4- ••• 5 •••••• I') 7 •••••• S ilR f: AI(;

00033 DeL DO • MGTPACK PKOI 31 .0' /~PACKEo .31 - CoNYERS10N~/ i
0003'" DCL DO .II4GTSEG nINU) /~TARGET SEGMENT .0'
00035 DCL 00 _f'tGTPLYL BINIZ' /f."PARM LEYEL-9-/ GT
00036 DCL DO 0 CHARt 13' ,C;FOI'l ALGNMN'~'
00031 DCL SPCPTR .I4GTPCS
0003. DCL SPCPTR .NGTPTP INITI.PT) ,~-» PARAGRAPH TABLE #./
000]9 OCL SYSPTA .MGTCPGN 'O:CANCELEO PGN.1 .IoIGT
ooa...o DCL I1'fSPTR .IORTN '~RETURN POINT FROMGT

0004. OCL SPCPTA .FI8PTR '~CURRENT FIB PH,IO, ."'GT
00042 DeL INSPTR ./IIIGTMSGS ,o->COaOL ST",T#., .'ACT
00043 OCL SPCPTR ."'GTMSGT '#.SUBSTITUTION TE)(T#./ .~GT

00044 DCL SPCPTR .Io'GTNSGR ,.ctREPLY AReA.ct, .!oIGT
00045 DCL DO .NGTMSGN 81N(2' ,ORELATIVE INVOCATION NBR.ct .~GT

/
000_6 DCL 00 .MGTMSGI CHARI?) /""'SG IDOl' .~'~T
0004" DCL 00 • CHAR(7) '#.UNUSED.' .~GT

00048 OCL SPCPTR .NGTPAIH4 /~- >AooTNL PARMS~'

000... 9
00050 OCL CON .NGTeTeT CHARIII INITI"B·) '~BATCH JOe./ .""GT
00051 DCL CON .. MGTCTIN CHAM(II INITlol-' /~ INTERACT IVE JOB~/ ."lGT

DCL SYSPTR • wcesEPTI 327671 eASt .MGTSEPT' .MGT

00053 8RK ".WCBDT"" .\fICBDT"
OOOS_ OCL SPC .WCBUDTA BASI.NGTUPTR) • \!jCBOTA
00055 DCL 00 .IICBLUQC alNI21 '~L/U f~ETURN CODE#.'

/00 - NORMALO,
/0. _ LR NOT SETO'/ • _ceDTA
,.2 - F.RRORO, .wCBOTA
/*3 - HAL T SET~/ • .. CBDTA

00056 • "'CElDTA
00057 DCL .IIfCBPI"IF BINI2' I.PRODUCT INfO~/0., • WC'1DT.
00058 DeL 00 0 CHARI10' O'R _"IIc.aPTA
00059 OCL DO .WCBUAC CHARI21 OIR /.U5EI< RETURN CODE AREA"'/ • WCBDTA
00060 UCL DO ...caCNLS CHARt I' OIR /*c ANCEL S •• / • wceDTA
00061 DCL 00 .wceJDAT CHARI?I OIR /~Joa DATE GUARD o YYN"4DO>::/ ... CSDTA
00062 OCL 00 .IiII'C85.TC CHARH" DIR /~UPSI SWITCHES./
00063 DCL 00 .IIjCBUO CHAR (., DEFt • .,ceSWTC I POS I 11

0006. DCL 00 ••ceUI CHARII) DEFC.WCBSWTC' PQS(2) .'.C8DT.

000~5 DeL on ... caU2 CHARI., DEF(.WCBSWTC' POSC31 • WCBDT"
00066 UCL 00 .WCBU3 CHARI.' O€FI ••caSWTC) post4-, ... ceorA
00067 OCL 00 .IIICBU4- CHAR 11) OEFI .IiII'CBS\I'TC I post SI • WCBOTA
00068 DCL 00 .IfCBUS CI-tAPlll DEFc.wceS\I'TCI POS(6) C80T"
00069 DCL 00 .WC9U6 CH"RII) DEFI.wCBSWTCI PDS(7) .«CBOTA

00070 OCL DO .WCElU7 CHARllJ OEFI.wCBSWTCI ~OSC81

A0007, BRK ".PGT II I':C:PRoCESS GLOtJ"L TAALE'Ii;.I'
00072 DCL SPC .PGT .PGT9' eASI.~GTPGTJ

OCL DO .PGTL'IL CHARtl61 OIR .PGT

IBM S/3d COBOL S"I4-C81 'RP LISTlf1G FOR TESTPRT

seQ INS T Ut'FSET GEH!!AA TEO COOlE I ••• • •• 2 ••• ••• :) ••• • •• 4 •••••• s ••• • •• 6 ••• 7 ••• J
000"4 oC:L SPCPTR .PGT"'GTI OIR '.PTR TO F(RST MGT./
0007S DCL SPCPTR .PGTIIIJGTL DtR '~PTR TO LA~T MGT~/
00076 DCL 00 .PGTlND(32) CHARI 11 OIR ,.INDICATORSo,
00077 DCL 00 .PGTINVC BINI2, DIR /OMA I N PGN (NVOC .. 0,

.PGT
,0' - STOP $TATENENT EXECUTEO.' .PGT

OOO"V OCL 00 • CHARIIOI OEFI."GTNAMEI INIT("TESTPRT ", .PGT
00080 DeL SPCPTR 0 DEFI.NGTFIB' IN,TI.F01FN' .PGT

00091 8R'i ".IN.T " .INIT
,0 INITITIALIZATION CODE AND OECLARES." .(NIT

000112 .INIT
00083 DCL DO .MPRCTNP 81"1(.' BDRY(16) INIT(32, .INIT

00084 DCL DO • CHARI12' • (NIT

00085 oct,. SPCPTR .PASAPTR /O-POINTER TO PASAO/ .. I"IIT
0008(» DCL SPCPTR .'IIIPQCATR INITt.fI¥lRCTNP'

00087 DCL SPCPTR .PASACUR 8A5(.PASAPTR I

00088 OCL SPCPTR .SF.PTP /OPTR TO SYS EP TBI.. 0, .INIT
DCL S'tSPTR .MAI"IRTN IN1TI"QCRMAIN".T't'PE(PGN.I)1

00090 OCL INSPTR .0fJUGRTN ,ORET PTR FROM OEBUG INCLO .INIT
S'C'/, .nUT

DeL SPCPTR .MGTPTR INITI.MGT) ,0caSOL NODULE GLOBAL TABL .INIT
E PTRO/ .INIT

00092 DCL OL .MGTLST t .MGTPTRI .IN IT

00093 •• NIT
0009. DCL CON OON CHARI" INITI"t ft , '~JNDICATOR ON YALUEO,
00095 OCL CON OCFF CHARI 11 INITI"O") /O.HDICATOR OFF YALueO/ IT

OOO"il6 DCL CON OSATCH CHARt I' IN' TI "e'" /OHATCH ..MlB.ct/ .. (HIT

00097 DeL CO.... *INH.R CHARt., 1"11""1-' ,0INTERACTIVE .JOBO/ .lfIIlT

/0 FILE STATUS CODES >::/
.INIT

0009"i1 OCL CON OFSOO CHARt2' INITC"OO") I'.SUCCESSFIJL COMPLET 10NO/ .INIT

00100 DCL CON OFS02 CHARUI 'NITI"02"1 ,OOUPLICATE KEY-ALLOWEQ$/ .INIT
00101 OCL CON OFS10 CHARC21 IN.T("IO'" ,OAT ENDO/ .'''tIT

00102 DCL CON OFSl1 CHARC2) INITI"1I'" /ONO DATA AVAILABLt::./ .INIT

0010;J DCL C/lH *FSI2 CHARI21 INITC"12") '."'0 ,"WOlF lEO SUBF ILE REC.
.INIT

00104- DCL CON OFS21 CHARIZ' INIT("21") '~SEOUENCE ERRORO/

00105 DeL CON *FS22 CHARt2, INITI"2Z") ,OOUP KEY-NOT At-LOIIEO.'

00106 DeL CON OFS23 CHAR(2) INIT("23") /#NO RECORD FOUN~' .1 N,T
00107 OCL CON OFSZ4 CHARI2J INITC"24-1 '.ONOAY VIOLTN-RELATIVEC/ .INIT
00108 DCL CON 'OFS30 CHARl2' INITI"30'" ,OPERMANENT ERROR.' .,NIT

00109 DCl. CON *FS34- Cl-tARt2, INIT("34-'" /.BOUNDARY VIOLATION., .IN.T

OOltO DCL CON .FS90 CHARt2} INITC"90") /OUNSUCCESSFUL I /O~/

00111 DCL CON CrFS91 CHAR(2) INITC"91"1 '.INVALID ACCESSO/ .INII

00112 OCL CON .FSQ2 CHARtZ) INITC"9Z'" ,OLOGIC ERRORO/

OCiUI.l DeL CON OFSq. CH"RIZ, INITI"94-") ,ONO CU~ REC PTR - 1/00/ .INIT

00114 I)CL CON OFS95 CHARt'" INITI"95'" '.INYLO'INCNPLT F.L INFO./ .,NIT
00115 PCL CON OF59G CHARIZI INITt"9G'" / •• NPUT DATA TRUNCATED~/ .IN,T

oat 16 DCL CON 01'"591 CHARt21 INIT("91'" /.wRITE OP FAILEo-TRANS~/ .lNIT

00117 DCL CO,..,. OFS91(. CHMqZI INITt"9K'" /.FMT N"ME INVLO,NOT FNO.' • ,NIT

00118 DCL CON OFS9M CHAR(2) INITC"9N'" /OSUBFILE FULL./ .INIT

Figure A-5 (Part 6 of 10). Examples of Compiler Debugging Information

A-16

http:INITI.PT

'B. 5/313 COeOL 57 ••C61 IRP LISTING FOR TESTPAT

IN.. T OFFSET GENERATED CODE ••• 2 .] e ••••• " •••••• 5 ••• '" 6 •••••• 7 •••••• t\ f'lREAK.0 ••••

00163 .CALEXCP
OOOA oooo.]e 3082 OOI.l oo~o CPYBLA ."1GTUV"L.OON .CALExCP
OOOB QOOO"2 03Ea ooe. RtNE"J(Cr> .C"LERP .CALEXCP

I'OINIER"IAL SllE ERROR EXCEPTION NDLER./ .CALEXCP
00166 .CALEXCP
Oalfo., D'He; -.SllExCP· .51 ZEXCP

DeL e.XC" .SIZE"XCM EXCIO(H"OCO,J-,""OCOA'.H'OCOS', INTI.SIZERTN' JND ey{ 	 .SIZEXCP
X"OOOOOOOO'1 .SIZEXCP

00169 DeL SPCPTR .SIZERP INIf(.RTNPTR' .SIZEXCP
00170 UHR.,. .Sllt;:RTN INT .SIZEXCP
OQI71 ODoe 0000"6 3.43 400B 2001 2001 AOUNIS' .MliTCNTAtll.l /.-AOO 1 TO SIZE (:ooNT.'
0011'2 0000 00004e IOB2! 4001" 2001 0050 CPYflLA • NGTJ NO 11,. :COON '.-INDICATE ON SIZE ERROR. .SIZEXCP

.SIZEXCP
00173 00005(> 1082 "OOF 2002 .SIZEXCP

OOOF 00005E 0,]£1 0081 RTf'lexCp .5tZEf;lP .51 ZEXCP
'.FUNC TID,,! CHECK EXCEPTION MONr TOR - CALLS aCRE"'HA, .SIZEXCP

.SIZEXCP
BRI(".FCEXCP· .FCexcp

00177 OCL SVSPTR .FCPTR IN IT I·OCREXHAN°. TYPEIPGIoIII .FCEXCP
00178 OCL DO .FCP"RIo4 CH"RI22, HIlT .FCEXCP
00179 DCL SPCPTR .FCPARMP INITI.FCP"AM, .FCEXCP

DCL 'lL .FCLIST I.FCPARIo4P •• MGTPTR' .FCE"'CP
00181 OCL eKC" .FCE"'CM e"'CIDIH·9999·' BPI.CPFQ9Q91 1I0Il0 CV'.CPF.' .. C"ce...cp
001~2 DOlO 00006:': 2283 0089 ooee 0000 .. CPF9999:C"'LL'" .FCPTR .. FCLIST.. /.CALL aCREXHAN IIITH 2 PAR .FCEXCP

.FCEXCP
00183 001 I 00006'" GO DO STOP AUN FUNCTION 	 .FCEXCP

.FCEXCP

.FCEXCP
;'OSTOP RUN EXCEPTION 1040NITOR./ .FCEXCP

0018... .FCEXCP
00185 BRK ".5TPEXCp·

DeL EXCIo4 .STPEXCM EXCIDtH·9999·' BPI.RTXI (1140 CVI·CSL·' .STPEXCP
00187 BRK ".INIT002· .lN1T002
00188 0012 00006£ 2132 007E 00 INIT002: CPV8iIIP .RTNPTR ... PAS"'CUR .INIT002

0013 00007" 10~ 0079 2001 CPV"V .PERFCTR.I /.INIT PERFOR"" NEST CTAO/ .INIT002
aRI(".OICTOI /. ST"'RT OF DICTIONARY DEC .0ICT

LARES ./ .. DICTo
.OICT

/OFIB OSECT IFILE INFDR""AUDN BLOCK'./ .OICT
00191 .OICT
00192 INSPTR .USERTN /tI. USE PROCEDURE ATNPOINTE

.DICT
001'U UCL INSPTR .FIBUSAV /ffI. USE S AVE PO INTER ./ .otCT
00194 OCL INSPTR .PBPDUM BASI.FIBPTR' /.PROCEOURE RTNPOINTER ./ .DICT
00195 DCL SPCPTR .FIBPTR / •• FI8 eASE./ .0ICT
00196 CCL SPC .. FIB ElASI.FIBPTRI .0ICT
00197 DCL 00 .FIBFN CHA'H30' CIR /.FD N....E./ .OICT
OClIQ8 DC", lJO .F II;:IALT CHARt 11 CIR /.ALTERNATE 10 FLAGSffI./ .oICT

.0ICT
/. BIT. CLEAR FILE ./ .0ICT

00199 .0ICT
/0 BIT 2 INITIALIZE FILE TO DELETED RECORDS ./ .olcr

00200 .0ICT
/0 BIT 3 RESET CURRENT RECORD POINTER IN EFFECT ./ .0ICT

00201 .0ICT
SET ON BY DELETE AND RE'IIRITE. SET OFF 8'(OPEN.RE ...O.START ••/ .DICT

IRP LISTING FOR TESTPRT

•...INST OFFSET GE~AATIEO CODE 1 •••••• 2 J ••• ••• 5 •••••• 6 •• ~ ••• 7 •••••• 8

/OFILE CO"lTRQL BLOCK./ 	 .DICT
• '>1 CT

BRK ·.F02· .F02
DCL 00 .F02FN CH...RI30' dOAY1(6) INITI.FILE-2

/. FO N... Io4E 0/ "'
DCL 00 .F02ALTS CH ...RII' /ONBA AL T KEYS."

OCL ::)D .F02FLGS CHARI II INITlx·OO.' /.BITS - OPEN.LDCKED.EOF.:14

DCL OD .F02DLp CHAR(6) INITIX·OOOOOOOOFOFO.'/.L"'ST OP "'1'011;) ST ... TUStI./ .F02

DCL 00 .F02CUR CHARI61 INI TI ... ·OOOOOOqOFOFO., .F02

DCL 00 .F02CoP CHARI'" DEFI.F02CUAI POS'I) /tl.CUR OP AND STATUS./

DCL DD .F02USE. BINt21 INIT /.USE P ... R...."

OCL 00 .F02FIIIT CH ... RIIOI INIT /.FMT IN EFFEC T*/

OCL 00 .F02SPC CHARt." II NI Tt ...·uOOOOOOOOOOOOOOOOOOOOOOOOOOO .. ,

/.SPEcr"L D"'TAO/
DeL 00 1(11 CH"'RIIOI I'.FILLEA./ .F02

00501 OCL SPCPTR .F02UFca INITC.U02UFCBI I'ffl.PTR TO UFCt;I./ .1"02

00502 OCL INSPTR .F02U8TO /.USE BR",NCH TO POINTER */.

0050J OCL SPCPTR .FI)2UHTN ;'OUSE RFO:TUAN POI tIITER ffI./

OCL SPCPTR .F02CH"'N /.NULL PTR HI Fla./ 	 .F02
.1"02

/0 UFCO FOA THE FILE .F02

00505 .f 02

00506 DCL SPCPTA .U02UFCB /ffl.PTR TO ODPC!10"

OCL SPCPTR .U02IBFa /*PTR TO (NPUT aUF." .F02

00508 OCL SPCPTR .U020BF. /tl.PTA TO OUTPUT BUFtI."

00$09 OCL SPCPTA • /.OPEN FEEDBACK./ .F02

00510 OCL SPC:PTR ffI. "ffl.1-0 FEEOB"'CKO/ .F02

005tl OCL ~PCPTQ * /.PTA T!J NEXT UFCfl TO DPEN .F02

EO./ .F02
OCL on 0 CHARI J2)
DeL DO ~ CHARI~01INITI·MA5T£R /.F I LE NAIillle:./.,
oeL on (I BIN(2) lNITI-75' /*LI BR ... f<ty./

00515 OCL 00 * CH... RIIO) INITI-.LIBL·'

(;0516 OCL 00 0 BINI2, INITI-711

00~17 DeL 00 • CH...RltO) HUT .F02

Oosie DCL on • CHARIIOJ /tI. N... Io4E OF DEVICE 0/ .102

00519 OCL 00 • BINIZ' INIT /.INOEX OF DEVICE IN OOP.,,; .F02

00520 GCL OD .Uf)2FLG5 CHARt21 I ... ITI X.8000.' .F02

00521 DCL 00 • CH"'RI'" INIT(-OIOO·' /.R<:L ...NO VEJ(ffI.;/ .F02

00$22 DCL DO • CH... f.l1281 /.RESEAVEOfto/

/.f.NO OF C0lo4140N P"'RM OF UFCH./
00523

/. OPTION - PQIIII ...AV AO::CORO LENGTH 0/

DeL 00 (I 'lIN(2) INITI01' .F02
DCL DO 0 IHNI2' INIT(000201 /. LE.NGTH OF ~ECO;;jO fiI/ .F02

.f- 02
/tI. OPTION - INHIBIT PAGE OVEAFLQIIO/

DCL 00 (I BI~112' INITI20'

DCL 00. CHARI I' INIT(X-80 0l , /0("11<1181 T = V1'S./

/0 OPTION - DEVICE DEPENDENT OR CONTROL LIST USEDO/

Figure A-5 (Part 7 of 10). Examples of Compiler Debugging Information

Appendix A. COBOL Compiler Service Information A-17

IBM S.l38 coeOL 571"Ctll IRP LISTING FOI< TESTPRT

(NST OFFSET GENERATED CODE •...... • •• :2 ••• "." 3 •••••• • ••• "" 6 •••••• 7 """ ••• A

DCL DO ., 81N(2) INITI031

00532 DCL DO • CH... HIII lNITIX-80-) .ICDEVICE CONTI<(LS USED¢-.1

00533 DeL DO ., SINI;!) INITISSI .F02

00534 DCL DO. CH"R(I' INIT(X"80"1

DCL DO • 9IN(2) INIT(O) 	 .I0lNOICATE BLOCI<ING OESIRE
DO,

.IC OPT I ON - LEVEL CHECK NO ¢-.1
.F1l2

00537 OCL OD 0 BINC2) IN1T(06'

00538 DCL DO .. U02LVCK CH ...RI II .I.L!:VEL CHECK NO 'b.l

DCL 00 .UOZLVAL CH"'R(I) 0€FI.U02LVCI<' INITIX-O\J'"
DCL DO 0 CH"'Rt21 INIT(X"7FFF-' • F ()2

/0-- END OF UFCB --0.1 .F 02
00541 	 .fOO2

8RK ".OICT- .DICT
DCL DO .F028UFR CHA~(00020) a"'St.U0208FiI) LVL("FO") HLLI"FILE-2") .DICT
DCL DO .. 00054E2 CH"'~100020' OEFt.F02BUFRI POsll) LVLC"OI") HLLI .DleT
"R€CORD2' I P"'~ENT("F ILE-:2' ,"FO·) .OlcT

005"5 	 DCL DO .. 0005536 CHAR.(00020 I OEFC.F02BUFR) POS(II LVL ("02') HLL I

·F.e:LD ... ·) PARENTI"RECDROZ"o"OI'1 .DICT

DCL DO .DOOS5RO CHAR(0005"') BORYI2) LVL('Ol") HLL('FILLER')

DCL DO .0005502 PKD102,001 OEFI.000S5801 POSit) LVLI'05"'LI"KOlJNfO I ,0teT

P"'RENTI·FILLER'.·O." .DtCT
oJCL DO .. 000563 .. CH ...Re000261 DEF(.a0055801 POse3' LVL('OS') HLLI .flICT
• ALPHAtlET"' PAR!;':NT ('FILLER', • 0 t 'I INIT ' BCDEFGH 1,JIC:LMNOPOI<STUVIIIXVZ'" .tHCT

00549 DCL Of) .. A005680126, CH ... RIOOOOI) DEFI.DaOS63") LVLI'05") HLLPALPHA'I

P"'RENT I· FILLER·.·O' -)

00550 	 DCL DO .D005680 CH"'R(OOOOII OEFt.BSTRING) P05111 .01 CT

DCL DO .. 0005710 PKDI02,00) OEFI.OOOSS801 PO'i(291 LVLt"OS') HLLI"NU"'o:tR'

, P ... RENTC "FILI.ER'. '01"

00552 	 DeL 00 .0005172 CHARI00026' OEF(.0005'580' POSt31' LVL(·O~·1 HLLI .0ICT
• ... O-QF-OEPc:NDE ...TS·) PARENTC'FILLER'o-OI" PUTI .OICT
-0 I 000012000 12 300 1234002340- 1

00553 	 DCL DO .Aoa57F6(26, CH ... R(000011 OEF(.00057721 LVL 1'05") H...L('OEPEND'I

P"'RENTI ·FILLE;:!: • .. "0 I"'

tJeL 00 .D0057F6 CHAR(OOOOII DFFI,eSTRING' pose I) .OICT

00555 	 DeL 00 .. 00058S6 CH"'R(OOOI~1 BORV(2) LVLC'OI'1 HLLC'.ORKRECOkO', • .; I CT

DCL DO .D005S... C CH ...RIOOOOII DEF(.00058561 Post II LV'Ll"oS"I HLL(.0ICT

·NAflilES-FIELO' , P ...RENTI 'WORKRECORO' ,"01",

00557 	 DCL DO .000590" CHARCClOOOll OEFI.0005856' P05(Z) LVLt'05"1 HLL(

·FILLER·' PARF.NT("WOAKRECORO","OI"' INIT ,IlICT

0055e 	 QCL DO .000595E ZNOI03,00) DEFI.DOOS(56) POSI3) LVLI'OS" HLL(

'RECORONO') P"'RENTC"WORKRECORO·,'Ol'l

OCL DO .. D0059C2 CH ...RIOOOOI) OEF(.00056561 POSI61 LVL C' 0.,·, HLL (.0ICT

'FILLE;;I:'I PARENTI·.,ORKRECORO'o"OI"1 INIT .DICT

00560 	 DCL 00 .0005AIC CH ... RI000031 OEFI.D005856) POSITI LVLe'OS·) HLL(

'LOC ...TION·' PARENTC'wORKREeORQ·, '01"' I~IT(-NVC"I .OtCT

DeL 00 .D005A82 CH ...R'OOOOI' OEF("D0058'561 POSelO) LVLI'Os') HLL(.DICT

"FILLER" P"'RE'NTC'wOAl(I<ECQRD'.'Ol" HilT .DleT

DCL DO .D005"'0C CH",R(00002) OEF(.000S856) POSIIII LVLI'05.' HLLI
'DEPENDENTS" 1 PARENT (I WORK RECORD' , "0 1'1
OCL 00 .000SB12 CHARt00007, OEFI.00058'i61 POS(131 LVLI'OS"' HLLI .0 I CT
'F ILLER') P ... RENTI "WORKRECORO" 0 '01' , INIT .01eT
DeL DO .D005B8C PKO(02.00' BORY(2) LVLt'OI" HLLC'''ODEPENO') .0ICT

00565 	 DeL DO .D0058£E ZNOI02,OO) HORVI2' LVLC"OI') HLL,·ZONE-DATA"'

IBM S/Ja COBOL 5714C81 IRP LISTING FOR TESTPAT

• SEQ INST OFFSET GENER"'TED CODE 1 •••••• 2 •••••• 3 4 •••••• 5 6 •••••• 7 •••••• B
 J
00566 	 DCL DO .V005BEE CHAR(OOOOII DEFC.D005BEE' POS(21

DCL 00 .OOOSC ... A CHAR(OOOlO, LVLe.Ol o , HLLC·OB-FORM... T-NAME"I

DCL 00 .0007D7C CHAR(00029) lNITI-ENPLOVEES WITH NO DEPENDENTS "I .0ICT

.,
00569 OCL 00 .PT 8[)~Y(16, CM...RI00064, /0 P"'RAGRAPH INlTULIZ"'TIO .. DieT

N TABLE 0/ .0ICT

00570 .PTHDR CH...R1161 OEFI .. PT) POSIII /. P ...R"'GRAPH TABLE HEADER .0ICT

.. OICT

00571 OCL DO 0 CH... Rtn OEF(.PTHOA' POSltl INITI'PT 01.0" .OICT

.10 NANE. AND LEVEL 0/

00572 DCL DO ~ fHNe2' OEF{.PTHDR, POS(8) INITll6' .1* SIZE OF HE"'DER 0.1

00573 OCL 00 .PT"IUN HINt2' DEF(.PTttOR, POS(IO) INITlOOOI) .DICT

.1* NO .. OF ENTR IES 0.1 .DICT

0057" DCL DO .. PTSEG CHAR(I' Q£Ft ..PTHOR) POStI2) INITI"O"' .DICT

00575 DCL DO .PTA8LE CH... R(000481 OEFt.PT' POS(17) .1* TABLE OF PROC PTRS 0/ .DICT

00576 OCL INSPTA .P8POOO" OEFI.PT ... BLE' POSIOOOOII .0ICT

00577 DCL INSPTR ~ ()EF(.PTA8LEI POS(000I7, INITI.P"'AOOosl

00578 DCL 00 0 81N(21 DEFI.PTABLEI P05C00033) INITIOooo", .DICT

00579 DCL SPCPTR • T ... OROO 1 .10 "'ODRESS TEMPOR... RV *.1 .0ICT

00580 	 OCL 00OBUFVL CHAR(000.9) .10 BUFFER FOR DISPLAY 0

ACCEPT */ .DICT

00581 OCL 00 .TCOOOCI CH ...AI00056) .0ICT

00582 OCL DO .. TC00002 CHAR(000S6' .It1 CH ...R TEMPS FOR IF 0.1 .0ICT

00583 DCL DO .SVOBUFR CH"'R(00056J .OICT

00584 OCL 00 .PRtlUFR eH... RI00056' 8ASI.UCBDBRiJ)

00585 OCL 00 .CSEPSGN CHAR(2, INITC'.-.' .I. SIGNS FOR IF 0/ .0ICT

00586 DCL DO .CINBSGN CH...R(60) 1!lfITi .OICT

.11:' FOF I F 2F 3F"FSF6F 7F8F9000 I 02030"OS0607080....0 ... 1 ... 2 ... 3A S ... 6A 7 ... 8 ...980 81B283 • DieT
0" BSfl6B788S"'CO C I C2C3C4C 5C6e7C8C 9EOEl E2E3E4E5E6E7E8E9' I .0ICT

.10 HEX NUNERICS FDA IF 0.1 .0ICT

00587 DCL DO .. eNUflilERC CH...RIIO' INITC"0123456789"' .10 NUMERICS FOR IF 0.1 .0ICT

DCL DO .C"'LPHAB CHARI27, INITC" eT"'OINSHROLUCMFWYPV8GKOJXZ ') .0ICT

.10 "'LPH ... BETICS FOR IF 0.1

OCL 00 .CP ...OOtR CH...OI(I) INITI' "I .10 PAD CH...R FOR IF 0.1 .DICT

00590 001400007... 10110106 B .ST... RT .OICT

005'H .ST....RT:

• PAROOOZ: 	 .DICT
8~K -51- /.OPEN 0.1 5\

00594 0015 00007E 2082 0023 014C SETSPP .FIBPTR,.FOIF,. .It1POINT TO CFCBO/

., ..

00595 0016 00008" 10B2 0096 2080 CPVElL'" .F I8ALT .K-SO" .I.CLEAR FILEO/ 5\

00596 0017 00008... 10 ..2 009F 2000 CPYNY .F IIJUSE., 0 .I0NO USE SPEelFIEOO.l

00597 0018 000090 10B2 Ol6d 0108 CPYBLA .UOIFLGS.X-OOIO· .I0SET OPEN OUTPUT • .1

00598 0019 000096 0293 OIFE 0000 0022 CALLI .OPEN ,O""IORTN .I0C"'LL wiTH RETURN POINTO/

00599 001 A 00009E 30,," 008E 2040 CPVBREP .FIBKF~T,- - .1* SLANK. FOR"'''' TN"'MEO/ " 51

0018 0000"'4 10 ..2 00 ... 2 2003 	 CPYNV .FI6VEAB,03 .105 AVE VERB TVPEO/

8RK ·52- .I.MOVE 0.1 52

00602 OOIC 0000...... 10"2 OI ... B 2000 CPVNV .0005502,0 .I0-COPY SOURCE TO REeVR 0.1

00603 0010 000080 10 ..2 01"'F 2000 CPYNV .0005710.0 .I0-COPY SOU~CE TO RECVR 0.1

0060" 10"2 OIBC 2000 CPVNV .0005B8C ,0 .I0-COPV SOURCE TO RECVR 0.1

00605 .P... ROQ03:

00606 ~>lK -53- .1....00 53

00607 OOIF OOOOBC 31"3 OI"'S 2001 AOONIS J .0005,02.1 53

00606 8RK "54" .1• ..,00
 ., ..
00609 0020 0000C2 1143 OI"'F 2001 	 AOONIS) .0005710,1 ..

8AK ·5S- .I0MOVE 0.1 55

00611 0021 0000C8 1042 0078 01.1;6 CPYNV .BINSUB•• 0005502 .I0-COPY SOURCE TO RECVR • .1
 ..

0022 OOOOCE 0082 0lC8 "lAO 0078 	 SETSPP .TADROOI 005680C.BIN$U'3)

Figure A-5 (Part 8 of 10). Examples of Compiler Debugging Information 	 ..)

A-18

http:PKO(02.00

18~ 5/38 COBOL 571"CBI IQP LISTING FOR TESTPRT

INST OFFSET GENER ... TED CODE •••••• 6 •••••• 1 •••••• e

0023 000006 IOB3 0184 BIAE OICB CPYAL"'P .0005<J"'C •• T"'OROOI->.00056BO." .. 55
55

0061" 3RK HS6" .1 56

00615 0024 OOOOEO 1042 0078 Ol ...e CPYNV .eINSUB ••0005502 '>O:-CQPY SOURCE TO RECVQ >O:/';
0025 0000E6 0082 0 Ice 41BI 007S SETSPP .T ... OROOl 0057F6(.BIN5Ua I

00617 0026 OOOOt:E IOB3 018A 81H2 OICS CPYBL"'P .DOOS"'OC •• T ... DA 00 1->.00057F6." .. 56
56

SRK "57" I*MOVE .1 ;;
00619 0027 0000F8 1042 0186 OlAF CPYNV .DOOS<;ISE ..OOOS710 I*-COPY SOURCE TO RECYA ./';
00620
00621 SRK "58"' SO

00622 0028 OOOOFE 3083 017Q 01B3 2040 CPYOLAp .0005394 •• 0005856." " 58
000106 0082 0023 014C SETSPP .FIBPHI •• FOIFN APOINT TO CFCB*I

002 ... OOOIOC 1082 OI1C OIOB CPYBL" .F IBOP. X" 00000005" I.SET 10 OPT IONS.1 58
002B 000112 0082 0126 011A SETSPP .1 OCPTR •• NULLCL 1* NULL CONTROL L IST*I ; 58
002C 000118 0293 020F 0000 C"'LL I .PUT ...LL.O •• IQRTN I.C..LL WITH RETURN POINT>o:/; 58
0020 000120 3CC2 COOO 0090 OOSC CMP1L .. 'BI .FIBCFS.>O:FS2"/NEal'l'LOOOOOII I.INVALID KEY*I 58

002E 00012'"
Oloe
1082 00<;10 OOSE CPYBL... • F I BCFS .*FS34 I.BOUNDRY VIOLATION*I .A

0062<;1 1'LOOOOOl: I. LABEL NED FS24 *1 58
00630 002F 000130 3042 00A2 2007 CPYNV .FIBVERil.07 I.S"VE VERB TYPE.I
00631 0030000136 008301170000 0119 ...ODSPP .OMPCDFP•• UCRIOF~•• OMPCDFO I*AOO OFFSET.,
00632 0031 00013E IOB3 OIBF 01432040 CPYOLAP .0005CA..... OMPRFMT." "' 1* COPY FOR"'AT NAME. I

0032 000146 Ii .PBP0004
00634
00635 BRK "59" I*PERFORM
00616 .LOOOOO I: 59

00637 00]30001"'" 3C46 COOO OI ... B 201'" C,,",PNYlai .D005502.26/NEa(.L0000041 59
OIOF

003" 000154 lOll 0lE3 B .L000002 59
0063", .LOOOOO": I 59

006"1 0035000158 2132 OlEO Olca CPYSWP .IP00001 •• P8P0004 I>O:-S"'VE OLD SR PT>O:,
006"2 003t> 0001SE 1022 01ca OIEI SETIP .PBP0004.'?'L000004 I.-SET RETURN "'OOR.I 59
006"3 0031 000164 1011 0109 B .P"'R0003 ""-GOTO P"R"'GRAPH./
00644 0036 000168 2132 OiC6 OlEO ?L000004:CPY8WP .P6pOOO••• IPOOOOI ,.-AESTORE OLD BR PT., 59

.L000003: 59
00646 0039 00016E a .L 000001 '9
00641 59

59
0064<;1 SRK ".()o. I*CLOSE ., 60

003A 000172 2082 0023 014C SETSPP .FIBPTR .. FOIFN "POINT TO CFCB.I 60

00651
00652

0038 000178
003C OOOllE

0132 0007 OOA4
1191 OOSA 2080

CPYAlWP .UFC8PTR••F IflUFCB
OR CSf .UCBFLGI.X"80"

IOSf':T Vf'CB "'DOR.I
I. PERIII. CLOSE.I

0030 000184 0293 0209 0000 0022 C ...LL t .CLOSE .* •• IORTN IOCALL WITH RETURN POINT*'; 60
006~4

00655
OOlE 00018C 30,,2 00A2 2001

lOBE OleF 20"0
CPYNV .F IRVER9. 0 I
CPYBREP .DOOSC "

I.SAVE VERB TYPE*I
I. BL ... NK FORM"TH ... ME.I

00656 BRK 0061" I.OPEN */ 61
006'51 000198 008200230118 SETSPP .FIBPTR •• F02FN I*POINT TO CFCB*I
00658 00019E 10"2 009F 2000 CPYNV .FIBVSE •• O I.NO USE SPECIFIEO./ 61

1082 0197 OIE~ CPYBL'" • U02FLGS. X.0020" I.SET OPEN INPVT *1 61
00660 0043 OOOIA" 0293 OIFE 0000 0022 C"'LLI .OPEN •••• IORTN I.CALL WITH RETVRN POINT.,. 61

00661 004" 000lB2 .lOBE OOBE 2040 CPYBREP .FIBKFIiIT." " 1>0: BL"'NK FORMATNAME.I 61

00"5 000188 1042 00A2 2003 CPYNY .FIBVERB.03 I.S ... VE VERB TYPE./' 61
00663

I>O:RE"'O

lAP LISTING FOR TESTPAT

INST OFFSET GENER... TED CODE >0: ••••••

0063 0002BO 1042 OIF. OIBC CPYNV .TIJOOOO] •• DOO'5BeC I.-COPY SOURCE TO RECVR */;
00715 0064 000286 1042 OIF I 2002 ICOISP ELEM L"'GTH*I 6<)
00116 0065 00D26C 1143 006E 2002 ... OON (S I ...CL.N.00002 I CCU'"' LNGTHO'I 6'1
001'17 0066 000292 0083 OIFO OIFO 01Fl ...OOSPP .0ISPPTR •• OISPPTA •• DISPPOS I>O:UPDT PTR*I 69
00718 001:17 00029... 0082 006A OICC SETSPP08UF ••AoBUFVL I.POINT TO BUFFER.I 69
00719 0068 0002 ...0 1082 0068 20C4 CPYBL'" .ADFUNC ."0" '.01 SPL"'Y OATI
00720 0069 0002 ..6 1042 006C 2009 CPYNV ."OTYP.OOOO<;l I*TYPE OF DISP>O:.1
00721 006A 0002 ...C 1042 0010 2001 CPYNY ."'l;TPLVL,1 I.LEVEL CHECI{>O:I
00722 0068 000282 0082 002A OOM SETSPP .IiIGTPARM....06UF '*P"RM LIST"'I
00723 006C 00D2BS 028:l 01F2 004F 0000 CALLX .OCROISP •• MGTLST.* 1>0:01 SP SUBR*I

BRK "70· .,
00125 OCL 00 .'1'010200 ZNO(02.00IDEFt .. TMPNOI I

0060 0002CO 1042 O,F5 01BO C'"YNV • YO I 02 00 •• OOOSBEE I>O:-COPY SOURCE TO RECVR '-;.1 i 70
00121 006E 0002C6 1143 0lF5 2001 ADONlsl .YOI0200.1 70
00128 006F 0002CC 1052 01BO OIFS EXHl,,4AG .OOOS8E'E •• Y010200 '.-EXTR"'CT "' ... GNITUOE *'/i 70

BRIC. "11" I>O:STOP .,
00730
00731

0070 000202
0071 000208

1042 0019 2001
0283 004C 004F

CPYf\lV • MG TFUNC. I
• MA INRTN •• "'G TLST • *

1>0: STOP RUN IS "'CTIVE ./
71

00732 1'LOOOOI6: 71
.LOOOOIS:

00734 0072 0002EO 30"2 0019 2001 CPYNV .MGTFUNC. I '*STOP RUN FUNCTION.I
0073 0002E6 0283 004C 004F 0000 CALLX .M"'INRTN •• MGTLST.iC' ,OCODE FOR CBL9999 EXCEPTI

ON - STOP RUN.I 71
OCL 00 .MCLM CH"'RII) INITC"CIOI 71

00737 DCL SPCPTR .ACL'I4a INIT C.RCLMI
OCL OL .RCLMOLI.RCL'4i1l 71

00739 0074 0002EE 2225 0000 /*oe ... CTlV.. TE THIS PGM>O:I 71
0075 0002F2 02834020 2056 OIFB C"'LLX .wceSEPT(~61 •• RCLMOL.>O: I>O:RECL ... ' M kESOURCE"'/ 71

0000 71
0076 0002FC 02 ... 1 0000 RTX 10< 71

1*----------- CO~MON INCLUDES ------------ *1
007"2 71
00143 DCL I)() .UFLGS"'V CH"'RI21 I>O:SAVE OLD UFCB FLAG:>.I 71

007"4 9RK ".':JPEN "
00745 ENTRY .OPEN IIIIT /CENTFlY POINT FOR OPEN.I
007"6 0077 000300 30B2 0098 0098 CPYBL'" .F I BOLO .. F I ClCUR 1iC':; ... VE OLD FIL~ STATUS.I

0078 000306 IOB2 0090 0054 CPY9L.... F IBCFS .OFSOO I>O:SEt FILE ST"'TUS GOOD.I .OPEN
00748 007'9 00030C lC2" 4000 0097 2060 TS reUM' rJI .F HIFLGS .X"60" IlER I. OPENOO I I ICC"'N NOT 8E "LRE"'OY OPEN. .OPEN

001 .. 000316 1082 00<)0 OObl CPYBL'" .F 11:lCFS .~FS92 I.SET ERROR ST ... TUSO,
.OPEN
.OPEN

0078 00031C lOll 0022 A .IORTN I>O:RfOTURN>O:1 .OPEN
.OPE'NOOI:

001C 000320 3C2'" 4000 0097 20"0 TST8U"IIR •• F 19FLGS.X"40"/ZERI.OPEN002) I*F ILE LOCKED*"
0200

00753 0070 00032'" 1082 0090 0061 CPYBL" .f-I BCFS ••FS92 I>O:SET ERROR ST ...TUSIO</
00754 007E 000330 IO""ETURNOI .OPEN
00155 .OPEN

007F 00033" 3193 0097 205F ...Nl>(SI .FIBFLGS.X"SF" I*SET EOF&OPEN OFF>O:I
0080 00033... 0132 0007 00A4 CPY8WP .UFC8PTR•• F IBUFCB /iC'LDCATE UFceOI

Figure A-5 (Part 9 of 10). Examples of Compiler Debugging Information

Appendix A. COBOL Compiler Service Information A-19

IBM 5.138 COBOL 5714C81 tRP LtSTING fOR TESTPIH

OFFSET fE04PL... TE DISPL ...Y

...V 00000000
00000020

00000000
40404040 40404040

0201E3CS
COOOOOOO

E3404040
00000000

40404040
00010000

40404040
OOOOOOO(!

40404040
00000000

00000040 00000000 00000000 OOOAOCI!!oC 57000400 00000000 00000000 00000000 00000000
00000060 OOOOOOFC 00000000 00000000 QOOF022,1, 00000100 000006C4 00000F70 00000009
00000080 0000(!218 00004244 000(1.0000 000026,&2 OOOOICOO 00000000 00000000 00000000
OOOOOOAO 00000000 00000000 1)0000000 00000000 00000000 00000000 00000000 OOfjlOOooO
OOooOOCO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
OOOOOOEO 00000000 00000000 00000000 00000000 QOOQOOOO 00000000 00000000
00000100 000005C4 23330049 00002010 0132Q006 004 ...1042 00192002 0283004C
00000120 10820060 00181083 0072000C 20401011 00903082 00130050 03EI0081 301:\20012
00000140 OOSOOJEI 0084314.1 400fl2001 20011082 4QOf2001 00501082 400F20~2 00S003El
00000160 0061'2293 0089008C 00001011 0lF82132 007£004'" 10420019 20011011 01062082
00000180 0023014C 10820096 20801042 009F2000 1092016e 01060293 OIFEOOOO 002230l;lE
OOOOOU.O OQBE2040 104200...2 20031042 01"'U200(jo 10420' ...F 200010~2 01aC2DOO 31430lA8
000001CO 20011'43 () I ... F2001 10420078 q lA80082 01C641"0 00781083 01f1481 ...E 01(82040
OOOOOtEO 10420078 0lAB0082 01e&4181 00781083 01('1A8182 0lC82040 l04201f16 01 ...F3Qfl3
00000200 01790183 20400082 0023014C 108201lC 01080082 0126011 ... OZ93020F 00000022
00000220 3C(2C000 0090005e 010el082 009D005E 3042Q!OA2 20070083 01170000 01191083
00000240 OISFQ14l 20401011 01C83C46 COOOO11 20lAOIoF JOtlOlE3 213201EO 0lC81022
00000260 01C80lEI 10110109 21320lC8 01e03011 01DE20e:! 0023014C 01320001' 00A411'l1'
000002&0 00£A2080 02930209 00000022 304200A2 200110f1E 00820023 01701042
000002,1,0 009F20DO 10820197 0lE50293 O.FEOOOO 00BE2040 I 04Z00 ...2
000002CO 00230178 0lE70082 0126011" 02930Z00 OOOOOO:!;.! 304200... 2 2Q040Q83
000002£0 01110000 01191083 018FfJI43 2Q401CC2 C000009E 20f 101E8 10110I£F rQllOla,l,
00000300 30BlOl83 01E92040 3CC3COOO 01S...20FO CHOSOIEE IOS30IS'" 20£92040 I04201f:0
00000320 ql8CI143 01E02"1?1 10520lec o IE03011 0lE62082 002J011'8 01320001' OlthllCa7
00000 ,)40 00EA2 08 0 02930209 00000022 3042110... 2 ZOOIIOBE 01SF2040 00820lFO 0lCCt042
0!)OOO360 006E2000 106301F3 01C02040 10420lFI 20101143 006E2010 00830lFO OIFOOIFl
00000)80 1042!t1F4 018Cl042 0lFl2002 11430061: ~002098' OIf'OOtFO 01"IQ082 006,1,OlCC
000003,1,0 10820068 20C41042 0060009 10420010 20010092 02~.30IF2

000003C0 II)421)IF5 01801143 01F52001 10520180 00192001 0293004C 004FOOOO
OOOOO:,EO 30420019 20010283 004C004F 0000028~ 40202056 o IFBOOOO 02AI0000
00000400 30820098 00981082 00900054 IC2",4000 00972090 OIf'F10fl2 00900061 10110022
00000420 3C2A4000 00972040 020(n082 009DOOf)1 1011004'2 31930097 205FOl32 000100 ... 4
00000440 IC2...4000 00Q62080 02031082 0lFOOOE9 028;)0202 02010000 lCC2COOO 00900054
0001)0460 ooz21qe2 00E90lFO 2132000E 000002831 402D200C tl1280QOO IC2A4000 00Q720~4

0~0004"0 020,ICC 2 40000 105 20C.02011 10110205 3CC24000 Oloa20E4 02061CC2 40000105
000004AO 20.000206 30820090 00633C2A 200000E8 203C0201' IC2"'2000 00E82018 02081C2,1,
000004CO 200000£8 203POZQ7 ICZA2000 00E82010 02010132 1)008000,1, 10110208 3e2...2000
000004EO 00972010 0208DI32 000A0008 31970091 20801011 00223082 0098009S 10B200'lC
00000500 020AI0f12 00QDQOS4 lC2A2000 00912080 020CI082 00900208 10110022 21320007
00000520 00A40 132 OooEOOO 0 02834 020 20080128 0000ll91' 11930091'
0~000540 00222132 000700A4 01320114 00091 OA 2 00980098 108200'l0 00541C2,1, 400000e8
00000560 I·C2,t,ZOOO 0110200£ 1l20E10fl2 011E2003 3092009C 011COQ83 01290114

00000580 01480 132 0124401:0 01310082 0125009C 028.30124 01270000 01320008 000... 101.
000005,1,0 00222132 000700"'4 01320114 00()91082 00980098 1082009C 011CIOll2 00900054
000005CO 004UOl29 01140148 01320124 40200135 00820125 009C0283 01240121' 00001011
OOOOOSEO 00223e2... 20000097 20010217 119"00~7 20Z0laS2 00900056 10110022 30820090
00000600 005,1011 00223C2... 20000097 2008021 ... 108200'l0 005F10"lE 02102040 02830215
00000620 02140000 IC464000 009F2000 00223197 10110022 30820090
00000640 005AIOII 00223082 0090005E 10110022 30820090 00661011 00223082 OOQOOOSF
00000660 308E0210 20400283 02150214 0000lCC2 40~00211 20C",0226 lCC2COOO 0212022$
00000680 02261082 0090005C]C464000 009F2000 01FC10II 02280023 01320092

000006"'0 809300"'6 10228093 00"6022'" 101l00... S 21320023 02280132 8~300"'6 00921011
000 006C 0 ~0910260 OOOOOC 20010001 08440004 10010000 10010000 10010000 10010000
000006EO 10010000 10010000 10020000 10040000 08080017 0004000'" 00080002 000C0007

Figure A-5 (Part 10 of 10). Examples of Compiler Debugging Information

A-20

Appendix B. Summary of IBM Extensions

This appendix contains a brief summary of the extensions to System/38 COBOL
with references to discussions of the extensions elsewhere in this manual.

Character-String Considerations

The maximum length of a non-numeric literal is 160 characters. See
"Character-Strings, Literals" in Chapter 2.

Identification Division

The system uses the first 10 characters of the program-name specified in the
PROGRAM- I 0 paragraph. See "PROGRAM-ID Paragraph" in Chapter 3.

Environment Division

The DEV parameter of an Override command can change the device type that the
file will use. See "FILE-CONTROL Paragraph, Assign Clause" in Chapter 3.

FORMATFILE must be specified in the ASSIGN clause to use an externally
described printer file. See "FILE-CONTROL Paragraph, Assign Clause" in
Chapter 3.

COBOL programs can process data base files. The ORGAN I ZA TI ON of the file
indicates the current program usage. See "File Processing Summary" and
"FILE-CONTROL Paragraph, ORGANIZATION Clause" in Chapter 3.

If the DDS keyword DESCEND is used when the field is specified as a key, the
sequence can be a descending key sequence. The OVRDBF command can set the
current record pointer when the file is opened. See "FILE-CONTROL
Paragraph, ACCESS MODE Clause" in Chapter 3.

The RECORD KEY data item, data-name-2, can be numeric.
EXTERNALLY-DESCRI BED-KEY can be specified in the RECORD KEY clause. See
"FILE-CONTROL Paragraph, RECORD KEY Clause (Indexed File)" in
Chapter 3.

The DUPLICATES phrase can be specified for the RECORD KEY clause. See
"FILE-CONTROL Paragraph, RECORD KEY Clause (Indexed File)" in
Chapter 3. Additional information is given in discussions of the READ, REWRITE,
DELETE, and WRITE statements in Chapter 5.

Appendix B. Summary of IBM Extensions B-1

The keywords specified for the data item in DDS can modify record sequence. See
"FILE-CONTROL Paragraph, RECORD KEY Clause (Indexed File)" in
Chapter 3. J
The COMM ITM ENT CONTROL clause can be specified to enable the synchronizing or
cancelling of data base changes, and to provide additional record locking for
records being changed. See "I-O-CONTROL Paragraph, COMMITMENT
CONTROL Clause" in Chapter 3 and and "Commitment Control
Considerations" in Chapter 9.

Data Division

Elementary items or group items immediately subordinate to one group item can
have unequal level-numbers. See "Data Description Concepts, Level-Numbers" in
Chapter 4.

The OVRTAPF command can change the LABEL RECORDS clause at execution time.
See "File Description Entry, LABEL RECORDS Clause" in Chapter 4.

If the CODE-SET clause is omitted, the CODE parameter of the CRTDKTF or the
CRTTAPF command is used. The OVRDKTF or the OVRTAPF command can change
the CODE-SET clause at execution time. See "File Description Entry, CODE-SET
Clause" in Chapter 4.

For the US I NG phrase of the CALL statement, data-names can have level-numbers
that are not 01 or 77, and the data-names can be indexed, subscripted, or
qualified. See "CALL Statement, USING Phrase" in Chapter 6.

A FILLER item can be used as a group item definition. See "Data-Name or
FILLER Clause" in Chapter 4.

COMPUTATIONAL-3 (packed decimal) and COMPUTATIONAL-4 (binary) can be
specified for the USAGE clause of numeric items. See "USAGE Clause" in
Chapter 4.

The key specified for an OCCURS clause can have USAGE of COMPUTATIONAL-3 or
COMPUTATIONAL-4. See "OCCURS Clause" in Chapter 6.

The JUSTI FI ED clause can be specified for alphanumeric edited items. See
"JUSTIFIED Clause" in Chapter 4.

Procedure Division

The mnemonic-names OPEN- FEEDBACK and I -0- FEEDBACK are used for file
information and are accessed through an ACC EPT statement format. See
"ACCEPT Statement" in Chapter 5.

THEN is used as a separator on the I F statement. See "IF Statement" in
Chapter 5.

The AT END phrase can be omitted for the READ statement. See "Common
Input/Output Phrases, INVALID KEY Condition" in Chapter 5.

B-2

The FORMAT phrase is valid for DELETE, READ, REWRITE, START, and WRITE
statements. See "DELETE Statement", "READ Statement", "REWRITE
Statement", "START Statement", and "WRITE Statement" in Chapter 5.

The special register DB-FORMAT -NAME contains information about execution of
file input/output statements. See "Common Input/Output Phrases,
DB-FORMAT-NAME Special Register" in Chapter 5.

The identifier in an ACCEPT statement can have USAGE of COMPUTATIONAL-3 or
COMPUTATIONAL-4. See "ACCEPT Statement" in Chapter 5.

The ACCEPT statement can be used to transfer data from a job's local data area to
a specified data item. See "ACCEPT Statement" in Chapter 5.

The system always rewinds and unloads the tape when REEL/UNIT is specified in
the CLOS E statement. See "CLOSE Statement" in Chapter 5.

The I NHWRT parameter of the OVRDBF command can inhibit the DELETE, READ,
and WRITE statements. See "DELETE Statement", "READ Statement", and
"WRITE Statement" in Chapter 5.

For a file with duplicate primary keys allowed, a READ statement must
immediately precede a DELETE or REWRITE statement to ensure proper deletion.
See "DELETE Statement" and "REWRITE Statement" in Chapter 5.

For the DISPLAY statement, COMPUTATIONAL-4 items are converted to zoned
decimal items and signed noninteger numeric literals are allowed. See "DISPLAY
Statement" in Chapter 5.

The DISPLAY statement can be used to transfer data to a job's local data area.
See "DISPLAY Statement" in Chapter 5.

A logical file opened for OUTPUT does not remove all records in the physical file
on which it is based. The OVRDBF command can specify the first record to be
made available to the program at execution time. See "OPEN Statement" in
Chapter 5.

FIRST, PRIOR, and LAST can be specified on the READ statement for indexed files
with dynamic access. See "READ Statement" in Chapter 5.

The KEY phrase of the START statement can specify
EXTERNALL Y-DESCRI BED-KEY. A comparison can be affected by the type of key
fields in the record area defined for the file. See "START Statement" in
Chapter 5.

For the WRITE statement, the mnemonic-name phrase can be used for stacker
selection on a card punch file. See "WRITE Statement" in Chapter 5.

The composite of all operands in an arithmetic statement has a maximum of 30
digits. See "Arithmetic Statement Operands" in Chapter 5.

In the CORRESPONDING phrase of an arithmetic statement, the identifiers dl and
d2 can be subordinate to a FILL ER item. See "Common Phrases,
CORRESPONDING Phrase" in Chapter 5.

Appendix B. Summary of IBM Extensions B-3

The two additional formats of the SET statement can be used to set
mnemonic-names to on or off and to set condition-names to true. See "SET
Statement" in Chapter 5.

Two active PERFORM and GO TO statements can have a common exit point. See
"PERFORM Statement" in Chapter 5.

Input files do not need to be sequenced before a merge operation. See
"SORT/MERGE" in Chapter 6.

In SORT/MERGE, input or output procedures can transfer control outside the input
or output procedure using a PER FORM statement, or have control transferred
inside the input or output procedure from elsewhere in the Procedure Division
using a PERFORM statement, without causing compilation to fail. See
"SORT/MERGE" in Chapter 6.

The COMM IT statement can be used to synchronize changes to records in data base
files under commitment control, while preventing other jobs from accessing or
modifying those records until the COMM IT is complete. See "COMMIT
Statement" in Chapter 5.

The ROLL BACK statement can be used to cancel data base changes from files under
commitment control when the changes should not remain permanent. See
"ROLLBACK Statement" in Chapter 5.

COpy Statement - All Divisions

JPseudo-text for the REPLAC I NG phrase of the COpy statement has considerations
for division, section, and paragraph entries, and also for the placement of copied
text as it appears in pseudo-text-2. See "COpy Statement, Replacing Phrase" in
Chapter 6.

The file-name is optional. The default file-name is QCBLSRC. See "Qualification,
Qualification Rules" in Chapter 2.

The COPY statement, DDS or DD format, is used to create Data Division entries
for externally described files in a program. See "COpy Statement" in Chapter 6.

TRANSACTION Files

The data organization for work stations, display files, BSC files, communications
files, and mixed files is TRANSACTION. TRANSACTION files have special formats
for the file-control entry, file description entry, and the input/output statements.
TRANSACTION file considerations are in Chapter 7.

Considerations for the TRANSACTION file-control entry include those for:

• The ASS I GN clause

• The ORGAN I ZA TI ON clause

• The ACCESS MODE clause

B-4

Compiler Options

• The FI LE STATUS clause

• The CONTROL-AREA clause.

Considerations for the TRANSACTI ON file description entry are the same as those
for other file description entries.

Boolean data provides a means of modifying and passing the values of the
indicators associated with the display screen formats. See "Indicators" in
Chapter 7.

The ACCEPT statement provides a way of accessing information about a program
device when function-name is associated with a mnemonic-name of
ATTRIBUTE-DATA in the SPECIAL-NAMES paragraph. See "ACCEPT Statement"
in Chapter 7.

TRANSACTION file considerations for OPEN, CLOSE, READ, WRITE, REWRITE, and
USE statements are given under the discussions for the respective statements and
the discussions of the FORMAT, TERMINAL, INDICATORS, NO DATA, and SUBFILE
phrases in Chapter 7.

The ACQUIRE statement can be used to acquire a program device for a
TRANSACTION file. See "ACQUIRE Statement" in Chapter 7.

The DROP statement can be used to release a program device acquired by a
TRANSACTION file. See "DROP Statement" in Chapter 7.

Sequence checking can be suppressed at compile time. The apostrophe or the
quotation mark can be used as a separator according to the compiler option
specified. See "Create COBOL Program Command" and "PROCESS Statement"
in Chapter 8.

Appendix B. Summary of IBM Extensions B-5

J

J

B-6

Appendix C. Compile-Time Message Description

This appendix contains a general introduction to the compile-time messages. For
additional information and a list of the messages, refer to the Messages Guide:
COBOL. Compiler-generated messages indicate conditions encountered during
program compilation. The messages describe an invalid use of COBOL syntax or
a violation of system requirements.

System/38 COBOL provides the following message severity levels:

Severity 	 Meaning

00 	 Informational: This level is used to convey information to the user
that may be of interest to him. No error has occurred.
Informational messages are listed only when the FLAG (00)
option is specified.

10 	 Warning: This level indicates that an error was detected but is not
serious enough to interfere with the execution of the program.

20 	 Conditional: This level indicates that an error was made, but the
compiler is taking a recovery that might yield the desired code.

30 	 Error: This level indicates that a serious error was detected.
Compilation is completed, but execution of the program cannot be
attempted.

40 	 Unrecoverable: This level indicates an error that forces
termination of processing.

Note: 00, 	10, and 20 messages are suppressed when the FLAG (30) option of the
PROCESS statement is used or the CRTCBLPGM command specifies FLAG(30) and
is not overridden by the PROCESS statement. See "PROCESS Statement" in
Chapter 8 for further information.

Compiler message numbers are assigned as follows:

Error Message 	 Description

CBLOOOO through CBL0999 Messages with severity less than 30

CBLlOOO through CBLl999 Messages with severity greater than 29

CBL8000 through CBL8999 F IPS messages

Appendix C. Compile·Time Message Description C-l

L

The compiler always attempts to provide full diagnostics of all source text in the
program, even when errors have been detected. If the compiler cannot continue
on a given statement, the message states that the compiler cannot continue and
that it will ignore the rest of the statement. When this occurs, the programmer
should examine the entire statement.

The Systemj38 message facility is used to produce all messages. The COBOL
compiler messages reside in the message file, QC BLMSG.

Substitution variables and valid reply values are determined by the program
sending the message, not by the message description stored in the message file.
However, certain elements of a message description can be changed: for example,
the text, severity level, default response, or dump list. To effect such changes, you
need to define another message description using an Add Message Description
(ADDMSGD) command, place the modified description in a user-created message
file,l and specify that file in the Override Message File (OVRMSGF) command.
Using the OVRMSGF command allows the compiler to retrieve messages from the
specified file. See the ADDMSGD and OVRMSGF commands in the CL Reference
Manual for additional information. The CPF Programmer's Guide describes the
process of overriding message files.

CAUTION

Overriding an IBM-supplied message with a user-created message can produce
results you do not anticipate. If reply values are not retained, the program might
not respond to any replies. Changing default replies on *NOT I FY type messages
could affect the ability of the program to run in unattended mode. Changing the
severity could cancel a job not previously canceled. Be cautious when overriding
IBM-supplied messages with user-created messages.

If an IBM·supplied message must be changed and replaced in its message file,
call your service representative.

C-2

Appendix D. Associated Card File Processing

The 5424 Multi-Function Card Unit (MFCU) can perfonn more than one card
processing function in a single pass through the unit. If a card has already been
partially punched, the MFCU can read the card, punch additional infonnation
into the card, and print up to 128 characters of information on the card. COBOL
supports these combined functions through nonnal control language. This
support is based on the concept of associated files.

COBOL handles each combined function as a separate logical file; each such
logical file has its own file structure and processing requirements. Therefore, the
user must define each function as if it were a unique file. However, because such
combined function files refer to one physical unit, the user must define the logical
files as being associated with each other, and relate them to each other during
processing. The following sections explain the programming requirements for
associated card file processing in System/38 COBOL.

Environment Division

Associated card file processing requires certain infonnation in the SEL ECT and
ASSIGN clauses.

SELECT Clause

A unique system file-name must be defined for each of the functions (reading,
punching, and printing) to be combined.

ASSIGN Clause

For associated card files, the ASS I GN clause assignment-name must specify the
primary (P) hopper of the 5424 MFCU and the association. The following format
is valid:

READER }
PUNCH ..{ [-system-name j- P-assoclatlon
PRINT
PUNCH PRINT

The association must be the same I-digit integer for all associated logical files.
This tells the compiler that each logical file is part of a particular associated card

Appendix D. Associated Card File Processing D-l

file 	processing structure that is assigned to one physical unit. Any two, or all
three, of the functions READER, PUNCH, or PRINT can each be specified once..,.
When the function PUNCHPRINT is specified for an associated file, READER can be ,..",
the only other function specified for that association.

More than one associated card file processing structure can be defined in a
program; however, the structures must not be processed concurrently. Each such
structure must have a unique association entry.

Data Division

An FD entry and a 01 record description entry must be defined in the File Section
of the Data Division for each associated logical file.

Procedure Division

All associated files within one associated card file processing structure must be
opened before a READ or WRITE statement is executed for any file in the structure.
Similarly, no associated files can be dosed until all READ and WR I TE statements
have been executed. When all such statements have been executed, all of the
associated files must be closed.

An OPEN, READ, WRITE, or CLOSE statement for one of the associated files cannot
be executed without concurrent processing of the other associated files. That is,
all processing of associated files must reflect the association.

For associated files with the functions of read (READER), punch (PUNCH), print
(PRINT), and punchprint (PUNCHPRINT), the following processing rules apply:

1. 	 An OP EN statement must be executed for each file; with the I NPUT phrase
specified for the READER file and the OUTPUT phrase specified for the PUNCH,
PRINT, and PUNCHPRINT files.

2. 	 To make the logical input record available, a READ statement must first be
executed for the READER file.

3. 	 The next input/output operation executed for an associated file must be a
WRITE statement for the associated PUNCH file. However, before the WRITE
statement is executed, all data to be punched must be moved to the record
specified for the associated PUNCH file.

Note: An alternative method is to move the additional data to be punched to
the appropriate fields of the input record, and then to execute a WRITE
statement for the PUNCH file using the FROM identifier phrase, where the
identifier is the record-name specified for the READ ER file.

4. 	 The WRITE statement for the PRINT file must be the next input/output
statement executed for any of the associated files. Before the WR ITE
statement for the PR I NT file is executed, you must format the data to be
printed by moving it to the record specified for the P R I NT file.

D-2

5. 	 Steps 1 through 4 are repeated for all other records in the READER file.

6. 	 When the PUNCHPRINT file is specified, a WRITE statement for the
PUNCHPRI NT file must be the next input/output statement following the READ
statement for' the READER file. Before the WRITE statement for the
PUNCHPRI NT file is executed, you must format the data to be punched and
printed by moving it to the record specified for the PUNCHPRINT file.

When both PUNCH and PR I NT files are associated, the stacker selection, if
specified, in the WRITE statement for the PRINT file overrides any stacker
selection specified for the PUNCH file.

When the READER file is specified for an associated card file, a READ until the AT
END condition is detected must be done. This forces punch and/or print operations
to occur for the last record read.

The order of processing specified in the preceding paragraphs also applies to a
structure where only two of the three functions are associated, except that the
processing of the unspecified function is not required.

Appendix D. Associated Card File Processing D·3

J

J

D-4

Appendix E.
Intermediate Result Fields

This appendix discusses the conceptual compiler algorithms for determining the
number of integer and decimal places reserved for intermediate results. The
following abbreviations are used:

i Number of integer places carried for an intermediate result.

d Number of decimal places carried for an intermediate result.

dmax In a particular statement the larger of either:

• 	 The number of decimal places needed for the final result
field(s)

• 	 The maximum number of decimal places defined for any
operand except exponents and divisors.

opl 	 First operand in a generated arithmetic statement.

op2 	 Second operand in a generated arithmetic statement.

dl,d2 	 Number of decimal places defined for opl or op2, respectively.

Ir 	 Intermediate result field obtained from the execution of a
generated arithmetic statement or operation. Irl, ir2, and so on
represent successive intermediate results. Successive intermediate
results may have the same location.

When an arithmetic statement contains only a single pair of operands, no

intermediate results are generated. Intermediate results are possible in the

following cases:

• 	 In an ADD or SUBTRACT statement containing multiple operands immediately
following the verb

• 	 In a COMPUTE statement specifying a series of arithmetic operations

• 	 In arithmetic expressions contained in an I F or PER FORM statement

• 	 In the GIVING option with multiple result fields for the ADD, SUBTRACT,

MULTIPLY, DIVIDE, or COMPUTE statements.

In such cases, the compiler treats the statement as a succession of operations. For
example, the following statement:

Appendix E. Intermediate Result Fields E-l

COMPUTE Y = A + B * C - 0 I E + F ** G

is replaced by

F**G yielding ir!
MULTIPLY B BY C yielding ir2
DIVIDE E INTO 0 yielding ir3
ADD A TO ir2 yielding ir4
SUBTRACT ir3 FROM ir4 yielding ir5
ADD ir5 TO ir! yielding Y

Compiler Calculation of Intermediate Results

The number of integer places in an ir is calculated as described in the following
paragraphs:

The compiler first determines the maximum value that the ir can contain by
performing the statement in which the ir occurs.

• 	 If an operand in this statement is a data-name, the value used for the
data-name is equal to the numerical value of the PICTURE for the data-name
(that is, PICTURE 9V99 has the value 9.99).

• 	 If an operand is a literal, the literal is treated as though it had a PICTURE,
and the numerical value of the PI CTURE is used (that is, the literal + 127.3
has an implied PICTURE S999V9). J

• 	 If an operand is an intermediate result, the PICTURE determined for the
intermediate result in a previous operation is used. The numerical value of
that PICTURE is used.

• 	 If the operation is division:

If op2 is a data-name, the value used for op2 is the minimum nonzero
value of the digit in the PICTURE for the data-name (that is, PICTURE
9V99 has the value 0.01).
If op2 is an intermediate result, the intermediate result is treated as
though it had a PI CTUR E, and the minimum nonzero value of the digits
in this P I CTU R E is used.

When the maximum value of the ir is determined by the above procedures, i is set
equal to the number of integers in the maximum value.

The number of decimal places contained in an ir is calculated as:

Operation 	 Decimal Places

+ or· 	 dl or d2, whichever is greater
* 	 dl + d2

dl - d2 or dmax, whichever is greater

E-2

** dmax if op2 is nonintegral or a data-name; dl * op2 if op2
is an integral literal

Note: The user must define the operands of any arithmetic statement with
enough decimal places to give the desired accuracy in the final result.

Figure E-l indicates the action of the compiler when handling intermediate
results.

Value Value
ofi + d ofd

<30 Any
= 30 value

>30 <dmax

=dmax

>dmax

Value of
i + dmax

Any value

Any value

<30

= 30

>30

Action Taken

i integer and d decimal places are
carried for ir

30 - d integer and d decimal
places are carried for ir

i integer and 30 - i decimal places
are carried for ir

30 - dmax integer and dmax
decimal places are carried for ir

Figure E-l. Compiler Action on Intermediate Results

Appendix E. Intermediate Result Fields E-3

J

E-4

Appendix F.
Sample File-Processing Programs

The programs in this appendix illustrate the fundamental programming techniques
associated with each type of file organization. They are intended to be used for
planning purposes only, and to illustrate the input/output statements necessary for
certain access methods. Other COBOL features (the use of the AL TER statement
and the PERFORM statement, for example) are used only incidentally. The
programs are:

• Sequential File Creation

• Sequential File Updating and Extension

• Indexed File Creation

• Indexed File Updating

• Relative File Creation

• Relative File Updating

• Relative File Retrieval.

Appendix F. Sample File-Processing Programs F-l

Sequential File Creation

This program creates a sequential file of employee salary records. The input
records are arranged in ascending order of employee number. The output file has
the identical order.

STMT SEQNBR -A 1 B.. • •• 2 •••••• 3 •••••• '" ••• • •• 5 ••••••

1 000100
2 000200
3 000300
4 000400
5 000500
6 000600
7 000700
8 000800
9 000900

10 001000
11 001100
12 001200
13 001300
14 001400
15 001500
16 001600
17 001700
18 001800
19 001900
20 002000
21 002100
22 002200
23 002300
24 002400
25 002500
26 002600
27 002700
28 002800
29 002900
30 003000
31 003100
32 003200
33 003300
34 003400
35 003500
36 003600
37 003700
38 003800
39 003900
40 004000
41 004100
42 004200
43 	 004300

004400
004500
004600
004700
004800

IDENTIFICATION OIVISION.

PROGRAM-ID. CREATESEQ.

ENVIRONMENT DIVISION.

CONFIGURAT toN SECT ION.

SOURCE-COMPUTER. IBM-S38.

OBJECT -C OMPU TER.' 18101- S 38.

SPECIAL-NAMES. CONSOLE IS TYPtWRITER.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO DISK-FILEA
FILE STATUS IS INPUT-FILE-STATUS.

SELECT OUTPUT-FILE ASSIGN TO DISK-FILES
FILE STATUS IS OUTPUT-FILE-STATUS.

DATA DIVISION.

FILE SECTION.

FD INPUT-FILE LABEL RECORDS
01 INPUT-RECORD.

05 INPUT-EMPLOYEE-NUMBER
05 INPUT-EMPLOYEE-NA~E

05 INPUT-EMPLOYEE-CODE
05 INPUT-EMPLOYEE-SALARY

FD OUTPUT-FILE LABEL RECORDS
01 OUTPUT-RECORD.

05 OUTPUT-EMPLOYEE-NUM8ER
05 OUTPUT-EMPLOYEE-NAME
05 OUTPUT-EMPLOYEE-CODE
05 OU TP UT -EMPLOYEE-SALARY

WORKING-STORAGE SECTION.
77 INPUT-FILE-STATUS
77 OUTPUT-F ILE-STATUS
01 INPUTEND

88 	 THE-END-OF-INPUT
01 	 DISP-RECORD.

05 OP-NAME
05 FILLER
05 FILE-NAME
05 FILLER
05 FILLER

05 	 FILLER
05 SK

PROCEDURE DIVISION.
DECLAR AT IVES.
I-O-ERROR SECTION.

STANDARD.

PIC TURf: 9161.
PICTURE X(23).

PICTURE 9.
PICTURE 9(6)V99.

STANDARD.

PIC TURE 9161.
PICTURE)(12~'.
PICTURE 9.
PICTURE 9(b)V9CJ.

PICTURE xx.

PIC TURE xx.

PIC TURE x VALUE

VALUE "E".

PICTURE)«(7).

PIC TURE xx VALUE

PICTURE XI Ill.

PICTURE XX VALUE

PICTURE)(1141

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-FILE.
OUTPUT-FILE.

I-O-ERROR-PA RA.

6 •••••• 7 .1 D€NTFCN 5 COPYNA~E CHG'DATE

SPACE.

J
SPACt:::.

SPACE.

VALUE "FILE STATUS IS".
PICTUR':: XX VALUE SPACE.

PICTURE xx.

00_900**
005000* DUMMY DECLARATIVES TO ENSURE CONTROL IS RETURNEO TO THIS *

005100* PROGRAM WHEN AN ERROR OCCURS DURING FILE PROCESSING. *

005200* ERROR HANDLING IS DONE AFTER EACH I'D STATEMENT. *

005300**

005400 END DECLARATIVES.

005500 MAIN-PROGRAM SECTION.

F-2

STMT SeQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN S COPYNAME CHG/DATE

005600
44 005700

005800
45 005900
46 006000
47 006100
48 006200
49 006300
50 006400
51 006500
52 006600
53 006700

54 006800
55 006900

007000
56 007100

007200
57 007300

007400
58 007500
59 007600
60 007700
61 007800
62 007900
63 008000
64 ooa 100
65 008200
66 008300
67 003400
68 008500
69 008600
70 008700
71 008800
72 008900

009000
73 009100
74 009200
75 009300

009400
76 009500

009600
009700

OPEN-F IL ES.
Of'EN INPUT I NPUT-F ILE

OUTPUT OUTPUT-FILE.
IF INDUT-FILE-STATUS NOT = "00"

MOVE "OPEN" TO OP-NAME
MOVE "INPUT-FILE" TO FILE-NAME
MOVE INPUT-FILE-STATUS TO SK
PERFOR.M ERROR-OUT-I THROUGH ERROR-OUT-2.

IF OUTPUT-FILE-STATUS NOT = "00"
MOVE "OPEN" TO OP-NAME
MOVE "OUTPUT-FILE" TO FILE-NAME
MOVE OUTPUT-FILE-STATUS TO SK
PERFORM ERROR-OUT-l THROUGH ERROR-OUT-2.

PERFORM BUILD-FILE UNTIL THE-END-OF-INPUT.
CLOSE-FILES.

CL OSE INPUT-FI LE
OUTPUT-F ILE.

STOP RUN.
BUILD-FILE.

READ INPUT-FILE INTO OUTPUT-RECORD
AT END SET THE-END-OF-INPUT TO

IF INPUT-FILE-STATUS NOT = "00"
MOVE "REAO" TO OP-NAME
MOVE "INPUT-FILE" TO FILE-NAME
MOVE INPUT-FILE-STATUS TO SK

TRUE.

PERFORM ERROR-OUT-I THROUGH ERROR-QUT-2
GO TO CLOSE-FILES.

WRITE OUTPUT-RECORD.

IF OUTPUT-FILE-STATUS NOT = "00"

MOVE "WR ITE" TO OP-NAMe
MOVE "OUTPUT-FILE" TO FILE-NAME
MOVE OUTPUT-FILE-STATUS TO SK
PERFORM ERROR-OUT-I THROUGH ERROR-OUT-2
GO TO CLOSE-FI LES.

ERROR-OUT-l.
DISPLAY "FILE PROCESSING ERRO"," UPQN TYPEWRITER.
OISPLAY DISP-RECORO UPON TYPEWRITER.
CLUSE INPUT-FILE

OU TPUT-F ILE.
STOP RUN.

ERROR-OUT-2.
EXIT.

STMT SEaNBR MSGID SEV TEXT

o 44 005400 CBL0335 00 EMPTY PARAGRAPH O~ SECTION PRECE~ES 'END DECLARATIVES' PARAGRAPH OR SECTION.

MESSAGE SUMMARY

TOTAL INFO(0-4J WARNING(5-19J ERROR(20-291 SEVERE(30-39J TERMINAL(40-991

1

97 SOURCE RECOROS REAO
o COPY RECORDS READ
o COPY MEMBERS PROCESSED
o SEQUENCE ERRORS
o WAS THE HIGHEST SEVERITY

o o o o

MESSAGE ISSUED

Appendix F. Sample File-Processing Programs F-3

L

Sequential File Updating and Extension

This program updates and extends the file created by the CREATE-SEQUENTIAL
program. The INPUT-FILE and the I-O-FILE are each read. When a match is
found between INPUT - EMPLOYEE-NUMBER and I -0- EMPLOYEE-NUMBER, the
input record replaces the original record. After the I - 0 - F I L E has been
completely processed, new employee records are added at the end of the file.

STMT SEONB;;t -A 1 B ••••• 2 •••••• 3 •••••• 4 ••• • •• 5 •••••• 6 •••••• 7 .IOENfFCN 5 CUPYNAME CHG/DATE

I 000100 IDENTIFICATION DIVISION.
2 000200 PROGRAM-ID. UPDATESEO.
3 000300 ENVIRONMENT DIVISION.
4 000400 CONFIGU~ATION SECTION.
5 000500 SOURCE-COMPUTER. IBM-S3B.
6 000600 08~ECt-COMPUTER. IBM-S38.
7 000 700 INPUT- OUTPUT SECT ION.
8 000800 FILE-CONTROL.
9 000900 SELECT INPUT-FILE ASSIGN fO DISK-FILE~

10 001000 FILE STATUS IS INPUT-FILE-STATUS.
11001100 seLECT MASTER-FILE ASSIGN TO DI5K-MSTFILE~
12 001200 FILE STATUS IS MASTEf<-FILE-STATU5.
13 001300
14 001400 DATA DIVISION.
15 001500 FILE SECTION.
16 001600 FD INPUT-FILE LABEL RECORDS STANDARD.
17 001700 01 INPUT-RECORD.
18 001BOO 05 INPUT-EMPLOYEE-NUMBER PICTURE 9161.
19 001900 05 INPUT-EMPLOYEE-NAME p Ie TUR~ XI 281 •
20 002000 05 INPUT-EMPLOYEE-CODE PIC TURE 9.
21 b02100 05 INPUT-EMPLOYEE-SALARY PIC TURE 9161V9g.
22 002200 FD MASTER-FILE LABEL RECORDS STANDARD.
23 002300 01 MASTER-RECORD.
24 002400 05 MST-EMPLOYEE-NUMBER PICTURE 9161.
25 002500 05 M5T-EMPLOYEE-NA~E PIC TURE '(1281.
26 002600 05 MST-EMPLDYEE-COOE PICTURE 9.
27 002700 05 MS T- EMPLOYEE-SAL AP Y PIC TURE 1l161V99.
28 002800 WORKING-STORAGE SECTION.
29 002900 77 INPUT-FILE-STATUS PIC T'JRE xx.
30 003000 77 MASTER-FILE-STATUS PICTURE xx.
31 003100 01 INPUTEND PICTURE X VALUE' SPACE. J
32 003200 88 THE-ENO-OF-INPUT VALUE "En.
33 003300 01 MASTER END PICTURE X VALUE SPACE.
34 003400 88 THE-END-OF-MASTER VALUE HE".
35 003500 01 ERROR-INFO.
36 003600 05 OP-NAME PIC TURF X1121.
37 003700 05 FILLER PICTURE XX VALUE SPACE.
38 003800 05 FILE-NAME PIC TURE XIII I •
39 003900 05 FILLER PIC TURE XX VALUE SPACE.
40 00'000 05 FILLER PICTURE XI141
41 00'100 VALU~ "FILE st~TUS IS".
'2 00'200 05 FILLER PICTURE XX VALUE SPACE.
43 00'300 09 SK PIC TURE xx.
44 004400 PROCE~URE DIVISION.

004500 DECLA-RAtIVES.
00~600 INPUT-FILE-ERROR SECTION.
004700 USE AFTER STANDARD ERROR PKOCEDUqe ON INPUT-FILE.
004800 INPUT-FI LE-ERROR-PARA.

45 004900 MOVe INPUT-FILE-STATUS TO SK.
46 005000 MOVE "INPUT-FILE" TO FILE'-NA'1E.
47 005100 DISPLAY "FILE PROCESSING ERROR".
48 005200 DISPLAY ERROR-INFO.
49 005300 DISPLAY "PROCESSING TERMINATED DUE TO 1-0 ~RROR".
50 005400 sl'op RUN.

005500 I-O-FILE-ERROR SECTION.

F·4

STMT SEQNBR -A I B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IDENTFCN S COPYNAME CHGI'D4TE

005600
005700

51 005800
52 005900
53 001) 000
54 006100
55 006200
56 001)300

006400
001) 500
006600

57 001)700
58 006800

005900
007000

59 007100
60 007200
61 007300

USE 4FTER STA'-IDARD ERROR PRuCEDURE ON
MASTE~-FILE-ERROR-PARA.

MOVE MASTER-FILE-STATUS TO SK.
MOVE "MASTER-FILE" TO FILE-NAME.
DISPLAY "FILE PROCESSING ERRDR".
DISPLAY ERROR-INFO.
DISPLAY "PROCESSING TEQMINAT~O l)UE

STOP RUN.
END DECLARATIVES.
lolA I N-P ROGR A~ SECT! ON.
OPEN-F ILES.

MOVE "OPEN" TO OP-NAME.

OPEN INPUT INPUT-FILE

1-0 MASTER-FILE.

PROCESSING-LOGIC.

PERFORM REAO-INPUT-FILE.
PERFORM READ-MASTE~-FILE.

MASTEeR-FILE.

TO 1-0 f::RROR".

PERFORM PROCE53-FILES UNTIL THE-E"U-QF-INPUT.
007400 CLOSE-FILES•

62 007500
63 007600

007700
64 007800

007900
65 OOBOOO
66 OOB 100
67 006200

006300
68 006400
69 00B500

006600
70 006700
71 008800
72 008900
73 009000
74 009100

009200
75 009300
76 009400
77 009500

009600
78 00~700

79 009800
009900

60 010000
61 010100
82 010200
83 010300
84 010400

010500
65 010600
86 010700

.-aVE "CLOSE" TO OP-NAt.4E.
CLOSE M4STER-FILE

INPUT-FI LE.
STOP RUN.

READ-INPUT-FILE.
MOVE "REAO" TO OP-NAME.

READ INPUT-F ILE
AT END SET THE-END-OF-INPUT

READ-MASTER-FILE.
MOVE "READ" TO OP-NAME.
READ MASTER-FILE

AT 	 END
SET THE-END-OF-MASTE~ TO

TO 	 TRUE.

TRUE
MOVE "AT E~D CLOSE" TO OP-NA~E

CLOSE MASTER-FILE

MOVE "OPEN EXTEND" TO OP-NAI~E

OPEN EXTEND MASTER-FILE.

PROCESS-FILES.

IF THE-END-OF-MASTER

WRITE MASTER-RECORD FRO~ INPUT-RECORD

PERFORM READ-INPUT-F ILE

ELSE
IF MST-EMPLOVEE-NUMBER LEoSS THAN INPUT-EMPLOYEE-NUMBER

PERFORM READ-MASTER-FILE
ELSE

IF 	MST-EMPLOYEE-NUMBER = INPUT-EMPLOYEE-NUMbER
MOVE "REWRITE" TO OP-NAME
REWRITE MASTER-RECORD FRO'" INPUT-RECORD
PERFORM READ-INPUT-FILE
PERFORM READ-MASTER-FILE

ELSE
DISPLAY "ERROR RECORD -> ", INPUT-E"4PLOYEE-NUfi4BER
PERFORM READ-INPUT-FILe.

TOTAL INFOCO-4) WARNINGI5-19) ERRDR(20-291 SEVERE C30-39 I TERMI NAL C40-99)
o o

107 SOUQCE qeCORDS READ
o COPY RECOROS READ
o COpy ME~BERS PROCESSED
o SEQUENCE ERRORS
o WAS THE HIGHEST SEVERITY

o o o 	 o

MESSAGE ISSUED

Appendix F. Sample File-Processing Programs F-5

http:OP-NAt.4E

Indexed File Creation

This program creates an indexed file of summary records for bank depositors.
The key within each indexed file record is REC- 10 (the depositor's account
number); the input records are ordered in ascending sequence upon this key.
Records are read from the input file and transferred to the indexed file record
area. The indexed file record is then written.

STMT SEQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• ,; •••••• 7 .IDENTFCN 5 COPYNAME CHG/DATE

000100 IDENTIFICATION OIVISION.

2 000200 PROGRAM-ID. CREATEIND.

3 000300

4 000400 ENVIRONMENT OIVISION.

5 000500 CONFIGURATION SECTION.

6 000600 SOURCE-COMPUTER. IBM-S38.

7 000700 OBJECT-COMPUTER. IBM-S38.

8 000800 INPUT-OUTPUT SECT! ON.

9 000900 FILE-CONTROL.

10 001000 SELECT INDEXED-FILE ASSIGN TO OISK-iNDEXFILE

II 001100 ORGANIZATION IS INDEXED

12 001200 ACCESS IS SEQUENTIAL

13 001300 RECORD KEY IS INDEX-KEY

14 001400 FILE STATUS IS INDEXED-FILE-STATUS.

15 001500 SELECT INPUT-FILE ASSIGN TO DISK-FILEG

16 001600 FILE STATUS IS INPUT-FILE-STATUS.

17 001700 DATA DIVISION.

18 001800 FILE SEC.J"IDN.

19 001900 FD INDEXED-FILE LABEL RECORDS STANDARD.

20 002000 01 INDEX-RECORD.

21 002100 05 INDEX-KEY PICTURE X I 10'.

22 002200 05 INDEX-FLDI PICTURE XI 10'.

23 002300 05 INDEX-NAME PI CTURE XI 2~,.

24 002400 05 INDEX-BAL PICTURE S9151V99.

25 002500 FD INPUT-FI LE LABEL RECORDS STAIIIDARD.

26 002600 01 INPUT-RECORD.

27 002700 05 INPUT-KEY PI CTURE XI 10 I.

28 002800 05 INPUT-NAME PICTURE X1201.

29 002900 05 INPUT-BAL PICTURE S915IV~9.

30 003000 WORKING-STORAGE SECTION.

31 003100 77 INOEXED-FILE-STATUS PICTURE XX.
 J
32 003200 77 INPUT-FILE-STATUS PICTURE XX.

33 003300 77 OF'-NAI4E PICTURE XI 71.

34 003400 01 INPUTEND PICTURE X VALUE SPACES.

35 003500 88 THE-END-OF-INPUT VALUE "E".

36 003600 01 ERRDRFLAG PICTURE x VALUE SPACES.

37 003700 88 ERROR-OCCURRED VALUE "1".

38 	 003800 PROCEDURE DIVISION.

003900 DECLARATIVES.

004000 INPUT-ERROR SECTION.

004100 USE AFTER STANDARD ERROR PROCEDURE ON INPUT.

004200 INPUT-ERROR-PARA.

39 004300 DISPLAY "UNEXPECTED ERROR ON ". OP-NAME. " FOR INPUT-FILE to.

40 004400 DISPLAY "FILE STATUS IS ", INPUT-FILE-STATUS.

41 004500 SET ERROR-OCCURRED TO TRUE.

004600 OUTPUT-ERROR SECTION.

004700 USE AFTER STANDARO ERROR PROCEDURE ON OUTPUT.

004800 OUTPUT-ERROR-PARA.

42 004900 DISPLAY "UNEXPECTED ERROR ON ",00-NAME. " FOR INDEXED-FILE"

43 005000 DISPLAY "FILE STATUS IS ", INDEXED-FILE-STATUS.

44 005100 SET ERROR-OCCURRED TO TRUE.

005200 END DECL AR AT IVES.

005300 MAIN-PROCESSING SECTION.

005400 MAIN-PROCEDURE.

45 	 005500 MOVE "OPEN" TO OP-NAME.

F-6

STMT SEQNBR -A 1 e ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTFCN 5 COPYNAME CHG/DATc

46 005600 OPEN INPUT INPUT-FILE
005700 OUTPUT INDEXED-F ILE.

47 005600 IF ERROR-OCCURRED GO TO ERROR-T~RMINATION.
49 005900 PERFoqM READ-I NPUT-F ILE.
50 005000 PERFoqM LOAD-INDEXED-FILE THRU READ-iNPUT-FILc

006100 UNTIL TYE-ENO-uF-INPUT.
51 005200 MOVE "CLOSE" TO O;:>-NAME.
52 006300 CLOSE INPUT-FILE

006400 INDEXED-FILE.
53 006500 IF ERROR-OCCUR~ED GO TO ERROR-T~RMINAT[ON.
55 006600 STOP RUN.

006700 LOAD-INDEXED-FILE.
56 006800 MOVE INPUT-KEY TO INDEX-KEY.
57 005900 MOVE INPUT-NAME TO INDEX-NAME.
56 007000 MOVE INPUT-BAL TO INDEX-BAL.
59 007100 MOVE SPACES TO INDEX-FLDI.
60 007200 MOVE "WRITE" TO OP-NAME.
61 007300 WRITE INDEX-RECORD

007400 INVALID KEY
62 007500 DISPLAY "WRITE FAILED FOR KEY". INDEX-KEY.
63 007600 IF ERROR-OCCURRED GO TO ERRQR-TER~INATION.

007700 READ-INPUT-FILE.
65 007800 MOVE "READ" TO OP-NAME.
66 007900 READ INPUT-FILE
67 008000 AT END SET THE-END-QF-INPUT TO TRUE.
68 006100 IF ERROR-OCCURRED GO TO ERROR-TERMINATION.

006200 ERROR-TERMINAT ION.
70 008300 DISPLAY "1-0 ERROR OCCURRED - PROCESS TER~INATING".
71 008400 STOP RUN.

TOTAL INFOI0-41 "ARNI NG 15-191 ERROR120-291 SEYcKE130-391 TERII4INALI40-991
o o o o o o

84 SOURCE RECORDS READ
o COPY RECORDS READ
o COPY MEM8ERS PROCESSED
o SEOUENCE ERRORS
o WAS THE ~IGHEST SEVERITY MESSAGE ISSUED

Appendix F. Sample File-Processing Programs F-7

Indexed File Updating

This program, using dynamic access, updates the indexed file created in the J
CREATE- I NDEXED program.

The input records contain the key for the record, the depositor name, and the
amount of the transaction.

When the input record is read, the program tests whether this is a transaction
record (in which case, all fields of the record are filled) or a record requesting
sequential retrieval of a specific generic class (in which case, only the
IN-GEN-FLD of the input record contains data).

Random access is used for the updating and printing of the transaction records.
Sequential access is used for the retrieval and printing of all records within one
generic class.

STMT SEQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .JOENTFCN S COPYNA~E CHG/DATE

000100 IDENTIFIC4TIDN DIVISION.
2 000200 PROGRAM-ID. UPOATEIND.
3 000300
4 000400 ENVIRONMENT DIVISION.
5 000500 CONFIGURATION S~CTION.
6 000600 SOURCE-COMPUTER. IBM-S3d.

7 000700 OBJECT-COMPUTER. IBM-S36.

6 000600 INPUT-OUTPUT SECTI 'IN.

9 000900 F I LE-C ONTROL •

10 001000 SELECT ~A?TER-FILE ASSIGN TO ~ISK-INDEXFILE

11 001 100 ORGANIZATION IS INDEXED

12 001200 ACCESS IS DYNAMIC

13 001300 RECORD KEY 15 MASTER-KEY

14 001400 FILE STATUS IS MASTER-FILF-STATU5.

15 001500 SELECT INPUT-FILE ASSIGN TO DISK-FILEH

16 001600 FILE STATUS IS INPUT-FILE-STATUS.

17 001700 SELECT PRINT-FILE ASSIGN TO PRINTER-QSYSPRT
16 001600 FILE STATUS IS PRINT-FILE-STATUS.
19 001900 DATA OIVISION.

20 002000 FILE SECTION.

21 002100 FD MASTER-FILE LABEL RECORDS STANDAPD.

22 002200 01 MASTER-RECORD.

23 002300 OS MA ST EP-'KEY.

24 002400 10 MA STER-GEN-FLD PICTURE XIS).

25 002500 10 MA,STER-DET-FLO PIC TUR~ X (5).

26 002600 05 MASTER-FLDI PICTURE X (10' •
27 002700 05 MASTER-NAME PICTURE X (20'.
26 002600 05 MASTER-BAL PIC TURE 59(S'V99.
29 002900 FD INPUT-FILE LABEL RECORDS STANDARD.
30 003000 01 INPUT-REe.
31 003100 05 INPUT-KEY.
32 003200 10 INPUT-GEN-FLD PIC TURE X (5 I.

33 003300 10 INPUT-OFT-FLO PIC TURE X (5' •
34 003400 05 I'jPUT-NAME PICTURE X(20).

35 003500 05 INPUT-AMT PICTURE 59(S)V99.

36 003600 FD PR INT-FI LE LABEL RECORDS OMI TTED

37 003700 LINAGE 12 LINES FOOTING AT 9.
36 003600 01 PI< (NT-RECORD-l.
39 003900 05 PI'! INT-KEY PICTURE x (10' •
40 004000 05 FILLER PICTURE)((S).

41 004100 05 PRINT-NA'lE PICTURE X(20).

42 004200 05 FILLER PICTURE X(5).
43 004300 05 PI'! IN T-BAL PICTURE $$$'5.$$$.99-.

44 004400 05 FILLER PICTURE XIS).
45 00.500 05 PR INT-AMT PICTURE $$$~.'Ii$t..-)Q-.

46 004600 05 FILLER PICTURE xl';).
47 004700 05 PRINT-NEw-uAL PICTURe:: 1;$$$. $~$. 99-.

46 00.600 01 PR INT-RECORD-2 PICTURE X(B9).

49 004900 WORKING-STORAGE SECTION.

50 005000 77 MASTER-FILE-STATUS PICTURF xx.
51 005100 77 1I'4PUT-FILE-STATUS PICTURE xx.
52 005200 77 PRINT-FILE-STATUS PICTURE' xx.
53 005300 01 PAGE-HEAD.

54 005400 05 FILLER PICTURE X(3a, VALUE SPACES.

55 005500 05 FILLER PICTURE X(13) VALUE "UPDATE REPORT".

F-8

B••••• 2 ••••••

05 	 FILLER
COLUMN-HEAD.
05 FILLER
05 FILLER
05 FILLER
05 FILLEP
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 	 FILLER
PAGE-FOOT.
OS 	 FILLER
05 	 FILLER
05 	 PG-NUMtlER

INPUTEND

STMT

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

SEQNBQ

005600
005700
005800
005900
006000
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
OO~OOO

OO~ 100
008200
00"300
00~400

008500
008600
008700
008800
008900
009000
009100

-A 1

01

01

01

01

01

01

01

01

811 THE-END-OF-INPUT
ERRORFL"G
88 ERROR-OCCURREO
ERROR-DATA.
05 FILLER

05 OP-NAME
05 FILLER
05 STATUS-VALUE
INPUT-MESSAGE.
05 FILLER

3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTF-CN S COPYN4.M£ CHG/OATI'

PICTU~E X(38'

PIC TUR~. X (6 I

PICTURE X(9'
PICTURE X(4,
PICTURE XI21'
PICTURE XIII'
PICTURE xI5'
PICTURE XII3'
PICTURE X 14'
PICTURE XlIII
PICTUR", X(4'

PICTUR~ XI"I'
PICTUR~ AI6'
PICTURE 99

VALU~ 	SPACES.

VALUE "KEY [D".
VALUE SPACES.
VALUE 	 "NA'I4E".
VALUE 	 SP"CES.
VALU~ 	"CUR a4LANCE".
VALUE 	 SPACFS.

VALUE 	 uUPDATE A~OUNT".

VALUE 	 SPACE S.
VALUE 	 "~Ew BALANCE".
VALUE 	 SPACES.

VALUE SP"CES.
V"LUE "PAGE
VALUE 00.

PICTURE)(VALUE SPACE.
VALUE 	 "1.'".

PICTURE X VALUE SPACE.

PICTURE
VALUE

PIC TURE

PICTURE
PlCTURE

P ICTUR"
VALUE "UNEXPECTED ERROR

1- 0- ME SS AGE.

05 FILLER PICTURE
VALUE "UNEXPECTEO ERRO'~

OUTPUT-MESSAGE.
as FILLER PICTURE

VALUE 	 "UNEXPECTEO ERROR

VALUE 	 "1".

Xl21'
"STATEI4ENT FAILING
X 19 , •

XI16' 	VALUE" FILE
XX.

)(130'
0"1 I NPUT-F ILE"

XI31'
0'4 "ASTER-FILE"

XI30'
ON PRINT-FILE" •

92 	 009200 PROCEDURE DIVISION.
00~300 DECLARATIVES.
009400 INPUT-ERROR SECTION.
009500 USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
00~600 INPUT-ERROR-PARA.

93
94
95
96

97
98
99

100

101
102
103
104

105
106

107
109
11 0
111

112
113

114
116

117
118

119

120
121
122
123

009700
009800
009900
010000
010100
010200
010300
010400
010500
010600
010700
010800
010900
Oil 000
011100
011200
011300
011400
011500
011600
011700
011800
011900
012000
012100
012200
012300
012400
012500
012600
012700
012600
012900
013000
013100
013200
013300
013400
013500
013600
013 700
013800
013900
01.000
01~100

01.200
014300
014400

DISPLAY INPUT-MESSAGE.

MOVE INPUT-FILE-STATUS TO STATUS-V_LUE.

DISPLAY ERROR-DAT_.

SET ERROR-OCCURRED TO TRUE.

I-O-ERROR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON 1-0.

I-D-ERRDR-PAF<A.
01 SPLA Y [-O-ME SSAGE.
MOVE "'ASTER-FILE-ST~TUS TO STATUS-VALUE.
DISPLAY ERROR-DATA.
SET ERROR-OCCURRED TO TRUE.

OUTPUT-ERROR SECTION.
USE AFTER STANDARD ERROR PROCED~RE ON OUTPUT.

OUTPUT-ERROR-PARA.
DISPLAY OUTPUT-MESSAGE.
MOVE PRINT-FILE-STATUS TO ST~TUS-VALU~.
DISPLAY ERROR-DATA.
SET ERROR-OCCURRED TO

END DECLARATIVES.
MAIN-PROCESSING SECTION.
MAIN-PROCEDURE.

MOVE "OPEN" TO OP-NAl¥I€.
OPEN IN;>UT INPUT-FILE

1-0 "'ASTER-F ILE
OUTPUT PRI NT-F lLE.

I~ ERROR-OCCUR~ED GO TO
PERF(JQM PAGE-START.

TRUE.

ER~OR-TE~~INATION.

PERFOR'" READ-INPUT-F ILE.
PERFORM PROCESS-DATA THRU REAO-INPUT-FIL~

UNT IL THE-ENO-OF-INPUT.
MOVE "CLOSE" TO OP-~AME.
CL DSE 	 INPUT-F I LE

M~ ST ER-F ILE

PRINT-fiLE.

IF ERROR-OCCURR:D GO TO ERROR-TERMINATION.
STOP RUN.

PROCESS-DATA.
IF INPUT-DET-FLD EQUAL SPACES

PERFORM INIT-SEQUENTIAL-poOCESS
ELSE

PERFORM DYNAMIC-PROCESS.
READ-I NPUT-F ILE.

MOVE "READ" TO OP-NAME.
READ INPUT-F ILE

AT END SET THE-ENO-DF-INPUT Tn TR~E.
IF ERROR-OCCURRED GO TO ERR'lR-H'R"'INAT ION.

".

15 ".

ST"TUS IS ".

Appendix F. Sample File-Processing Programs F-9

STMT SEQNBR -A I B••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• b •••••• 7 .IDFNTFCN 5 COPYNAME CHG/DA TF

Ol!t. 50 0

125 014bOO
126 014700
127 014800

014900
015000

128 015100
015200

129 015300
130 015400
132 015500

015600
015100
015800

133 015900
134 015000
135 016100
136 015200
138 016300
139 016400
140 015500
141 015600
142 015100

015800
o If> 90 0

143 017000
144 017100
145 017200

017300
146 017400

017500
147 017600
148 017700
150 017 BOO
151 017900
152 01~000

153 OI!HOO
154 018200
155 018300
156 018400
151 0lB500
158 018600
159 01B100

016800
160 01'1900

019000
161 019100
162 01~200

01') 300
164 019400
165 019500

019600
166 019700
167 019800
169 019900

020000
020100

170 020200

171 020300
172 020400

020500
113 020600

020100
115 020801)

020900
116 021000
118 021100
119 021200

021300
180 021400
182 021500

021600
183 021100

184 021800

INIT-5EQUENTIAL-PROCE5S.
MOVE INPUT-GEN-FLD TO MAST~R-GE~-FLD.
MOVE "START" TO OP-NAM'E.
START MASTER-FILE

KEY IS NOT LESS THAN .""A$TER-GEN-FLD

INVALID KEY
DISPLAY "MASTER-FILE START FAILED:

MASTER-GEN-FLD

~OVE HIGH-VALUE TO MASTER-GEN-FLD.
IF ERROR-OCCURRED GO TO ERRDR-TER~lNAT[ON.
PERFORM SEQUENTI AL-oROCE 5S

{~lVALfD K~Y d.

UNTIL INPUT-GEN-FLD N:JT E:lJAL MASTER-GC''l-FLD.

SEQUENTIAL-PROCES5.
MOVE "RFAO NEXT" TO OP-NA:"'t:.
READ MASTER-FILE NEXT RECORD

AT END MOVE HIGH-VALUE TO MASTER-GEN-FLD.
IF ERROR-OCCURRED GO TO ERRaR-TER.~INATION.
IF INPUT-GEN-FLD EQUAL MASTER-GEN-FLO

MOVE MASTER-KEY TO PRINT-~EY
MOVE MASTER-NAME TO PRINT-NAME
MOVE MASTER-BAL TO PRINT-NEW-~AL
PERFORM PRINT-DETAIL.

DYNAMIC-PROCESS.
MOVE INPUT-KEY TO MASTER-KEY.
MOVE "REAO" TO OP-NA,"4E.
READ ~ASTER-FILE

INVALID KEY
DISPLAY "MASTER-FILE Ri:AD FAILEO: INVALID

MASTER-KEY
~OVE ~IGH-VALUE TO MA~TER-GEN-FLD.

IF ERROR-OCCURRED GO TO i::RROR-TERMINAT ION.
IF INPUT-GEN-FLD EOUAL ~ASTER-GEN-FLD

MOVE MASTER-KEY TO PRINT-KEY
MOVE MASTER-NAME TO PRINT-NAME
MOVE MASTEK-BAL TO PRINT-BAL
MOVE I NPUT-AIH TO PR I NT-MolT
ADD INPUT-M'T TO MASTER-BAL
MOVE MASTER-SAL TO PRINT-NEW-BAL
PERFORM PRINT-DETAIL
MOVE "REWRITE" TO OP-NAME
RE~QITE MASTER-RECORD

I NVAL 10 KEY
DISPLAY "MASTER-FILE REWqlTE FAILt::O:

"'ASTER-KEY
MOVE HIGH-VALUE TO MASTER-GEN-FLD.

IF ERROR-OCCURRED GO TO ERROR-TERMINATION.
PRINT~DETAIL •

MOVE "WRITE" TO OP-NAME.
WRITE PRINT-RECORD-l

AT E NO-OF-PAGE
PERFORM PAGE-END THROUGIi PAGE-5TART.

IF ERROR-OCCURRED GO TO ERROR-TC:R'IINATIoN.
MOVE SPACES TO PRINT-RECOR~-I.

PAGE-END.
MOVE "WRITE" TO OP-NAME.
ADD 1 TO PG-NUMBER.
WRITE PRINT-RECORO-2 FROM PAGE-FOOT

AFTER ADVA"'CING 3.
IF ERROR-OCCURRED GO TO ERROR-TERMINATION.

PAGE-START.
WRITE PRINT-RECORD-2 FROM PAGE-HEAD

AFTER ADVANCING PAGE.
IF ERROR-OCCURRED GO TO ERROR-TERMINATION.
MOVE SPACES TO PRINT-RECORD-2.
WRITE PRINT-RECORD-2 FROM COLUMN-HEAD

AFTER ADVANCING 1 LINE.
IF ERROR-DCCURRED GO TO ERROR-TERMINATION.
MOVE SPACES TO PRINT-RECoRO-2.

ERROR-TERMINATION.
OJ SPLAY ·PROCESS TERMI NATING A.BNOqMALLV".

STOP RUN.

KEY".

INVALID KEY".

TOTAL INFOCO-4' WARNINGI5-19) ERRoR120-291 SEVEREI30-3'» TERMINALI40-99)
o o o o o o

218 SOURCE RECORDS ~EAD
o COpy RECORDS READ
o COPY MEMaERS PROCESSED
o SEQUENCE ERRORS
o WAS THE HIGHEST SEVERITY MESSAGE ISSUED

F-IO

Relative File Creation

This program creates a relative file of summary sales records using
sequential access. Each record contains a five-year summary of unit and
dollar sales for one week of the year; there are 51 records within the file,
each representing one week.

Each input record represents the summary sales for one week of one year.
The records for the first week of the last five years (in ascending order) are
the first five input records. The records for the second week of the last five
years are the next five input records, and so on. Thus, five input records
fill one output record.

The RELATIVE KEY for the RELATIVE-FILE is not specified because it is not
required for sequential access unless the START statement is used. (For
updating, however, the key is INPUT-WEEK.)

5T"1
1

SEQNBR -A 1 B ••••• Z •••••• 3 •••••• 4
000100 IDENTIFICATION DIVISION.

•••••• 5 •••••• 6 •••••• 7 .IDENTFCN S COPYNAME CHG/DATE

2 000200 PROGRAM-ID. CREATEREL.
3 000300
~ 000400 ENVIRONMENT DIVISION.
5 000500 CONFIGURATION SECTION.
6 000600 SOURCE-COMPUTER. IBM-S38.
7 000700 OBJECT-COMPUTER. IBM-S38.
8 000800 SPECIAL-NAMES. REQUESTOR IS REQUESTOR.
9 000900 FILE-CONTROL.

10 001000 SELECT RELATIVE-FILE ASSIGN TO DISK-FILED
11 001100 ORGANIZATION IS RELATIVE
12 001200 ACCESS IS SEQUENTIAL
13 001300 FILE STATUS RELATIVE-FILE-STATUS.
14 001~00 SELECT INPUT-FILE ASSIGN TD DISK-FILEC
15 001500 FILE STATUS INPUT-FILE-STATUS.
16 001600
17 001700 OATA DIVISION.
18 001800 FILE SECTION.
19 001900 FD RELATIVE-FILE LABEL RECORDS ARE STANDARD.
20 002000 01 RELATIVE-RECO~O-Ol.
21 002100 05 RELATIVE-RECORO OCCURS 5 TIMES INOEXED BY REL-INDEX.
22 002200 10 RELATIVE-YEAR PICTURE 99.
23 002300 10 RELATIVE-WEEK PICTURE 99.
2~ 002400 10 RELATIVE-UNIT-SALES PICTURE S9(6).
25
26

002500
002600 FD

10 RELATIVE-DOLLAR-SALES PICTURE
INPUT-FILE LABEL RECORDS STANDARD.

S9(9)V99.

27 002700 01 INPUT-RECORD.
28 002800 05 INPUT-YfAR PICTURE 99.
29 002900 05 INPUT-WEEK PICTURE 99.
30
31

003000
003100

05
05

INPUT-UNIT-SALES
INPUT-DOLLAR-SALES

PICTURE
PICTURE

S9(6).
S9(9)V99.

32 003200 WORKING-STORAGE SECTION.
33 003300 77 INPUT-FILE-STATUS PICTURE XX.
3~ 003~00 77 RELATIVE-FILE-STATUS PICTURE XX.
35 003500 01 WORK-RECORD.
36 003600 05 WORK-YEAR PICTURE 99 VALUE 00.
31 003100 05 WORK-WEEK PICTURE 99.
38 003800 05 WORK-UNIT-SALES PICTURE S9(6).
39 003900 05 WORK-DOLLAR-SALES PICTURE S9(9)V99.
~O OO~OOO 01 ERROR-INFO.
,1 00~100 05 OP-NAME PICTURE X(5).
~2 00~200 05 FILLER PICTURE X(10)
43 004300 VALUE " ERROR ON p.

44 00~400 05 FILE-NAME PICTURE X(13).
45
46

004500
004600

05 FILLER PICTURE
VALUE

X(16)
" FILE STATUS IS ".

41 00~700 05 STATUS-VALUE PICTURE XX.
48 004800 01 ERROR-FLAG PICTURE X VALUE SPACE.
49 00~900 88 ERROR-OCCURRED VALUE "1".

Appendix F. Sample File-Processing Programs F-II

STMT SE0N8R -14 1 B••••• 2 •••••• 3 •••••• ,. ••• • •• 5 ••• • •• b ••• • •• 7 .IOENTFCN 5 COPYNAME CHG/DATE

005600
005700
005800

55 005900
56 006000
57 006100

006200
58 006300
59 006400
60 006500

006600
006700
006800

61 0069C10
62 007000

007100
63 007200
65 007300
66 007400
67 007500

007.00
68 007700
69 007800
71 007900

008000
72 OO!! 100
73 0011200

0011300
74 008400

008500
75 008600
76 00$700
77 008800

008900
78 009000
79 009100

009200
80 009300
81 009400
112 009500
113 009600

009700
115 0091100
86 009900
.7 010000

I~O.ER~O~ SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON

INPUT-FI~E-ERROR.
MOVE "INPUT-FILE" TO FILE-N~Me.
MOVE INPUT-FILE-STATUS TO STATUS-VALUE.
SET ERROR-OCCURRED TO TRUE.

RELATIVE-FILE-ERROR.
MOVE "RELATIVE-FILE" TO FILE-NAME.
MOVE RELATIVE-FILE-STATUS TO STATUS-VALUE.
SET ERROR-OCCURRED TO TRUE.

END DECLARATIVES.
BeGIN-PRQCESSING SECTION.
PROCESSING-CONTROL.

MOYE "OPEN" TO OP-NAME.

OPE~ INPUT INPUT-FILE

OUTPUT RELAT IYE.FI LE.
IF ERROR~CCURRED GO TO ERROR-TERMINATION.
SET PEL-INDEX TO I.
PERFORM REAO-INPUT-F ILE.
PERFORM PROCESS-DATA THRU READ-INPUT-FILE

UNTIL THE-END-OF-INPUT.
CLOSE RELATIVE-FILE INPUT-FILE.
IF e;RROR-OCCUR:~EO GO TO ERROR-TERMINAT ION.
STOP RUN.

ERROR-TERMINAT ION.
DISPLAY ERROR-INFO UPON REOUESTOR.

INPUT-FILE.

DISPLAY "PROCESSING TER~INATEO DU~ TO 1-0 ERROR"
UPON REQUESTOR.

STOP RUN.
PROCESS-DATA.

MOVE INPUT-RECORD TO RELATIVE-RECORD (REL-INDEX'.
IF REL-INDEX NOT = 5

SET REL-INDEX UP 6Y 1
ELSE

SET REL-INDEX TO

PE~FORM RELATIVE-FILE-WRITE.

REAO-I NPUT-F ILE.
MOVE "READ" TO OP-NAME.
READ INPUT-FILE

AT END SET THE-ENO-OF-INPUT TO TRUE.
IF ERROR-OCCURRED GO TO ERROR-TERMINATION.

RELATIVE-FILE-WRITE.
MOVE "WRITE" TO OP-NAME.
WRITE RELATIVE-RECORD-Ol.
IF ERROR-OCCURRED GO TO ERROR-TERMINATION.

TOTAl. INFO(O-.' WARNI NG(5-19' ERROR(20-2'Ji
o o o o

100 SOURCE ReCQRDS READ
o CQPY RECORDS READ
o COPY MEMBERS PROCESSED
o SEQUENCE eRRORS
o WAS THE HIGHEST SEVERITY MESSAGE ISSUEO

SEVERE(30-39'
o

J
TERMI NALI 40-99'

Q

F-12

L

Relative File Updating

This program uses sequential access to update the file of summary sales
records created in the CREATE-RELATIVE program. The updating program
adds a record for the new year and deletes the oldest year's records from
the RELATIVE-FILE.

The input record represents the summary sales record for one week of the
preceding year. The RELATIVE KEY for the RELATIVE-FILE is present in the
input record as INPUT -WEEK. The RELATIVE KEY is used to check that the
record was correctly written.

STMT SEaNBR -A 1 B••••• 2 •••••• 3 •••••• It •••••• 5 •••••• 0 •••••• 7 .IDENTFCN 5 COPYNA~E CHG/DATE

000100 IDENTIFICATION DIVISION.

2 000200 PROGRAM-JD. UPDATEREL.

.3 000300

4 000400 ENVIRONMENT DIVISION.

5 000500 CONFIGURATION SECTION.

6 000600 SOURCE-COMPUTER. 1"'''-538.

7 000700 OBJECT-COMPlJTER. I6M-538.

8 000800 INPUT'-OUTPUT SECTION.

9 000900 FILE-CONTROL.

10 001000 SELECT RELATIVE-FILE ASSIGN TO DISK-FILED

1 1 001100 ORGANIZATION IS RELATIVE

12 001200 ACCESS IS SEQUENTIAL

13 001300 R~LA T'I VE KEY 1 r-..PUT-WE'=K

14 001400 FILE STATUS RELATIVE-FILe-STATUS.

15 001500 SELECT INPUT-FILE ASSIGN TO DISK-FIL~E

16 001600 FILE STATUS I~PUT-FILE-5TATUS.

17 001700

18 001800 DATA DIVISION.

19 001900 FILE SECTION.

20 002000 FD RELATIVE-FILE LAdEL RECORDS STANDARD.

21 0021?0 01 RELA Tl VE-RECORD PICTUR!= XIl05).

22 0022?0 FD I~PUT-FILE LAi~EL RECORDS ST~NDARO.

23 002300 01 INPUT-P"COR!) •

24 002400 O'i INPU T- vr: Aq Dlr:rURE' 99.

25 002500 05 lNPtJT-v.;EE'< PICTURE 99.

26 002600 05 INPUT-UNIT-SALES PICTURE 59(6).

27 002700 05 INPUT-DOLLAR-SALES PICTIJRE SQt9'V99.

28 002800 III.ClRKING-STORAGc SECT ION.

29 002900 77 RELATIV~-FILE-STATUS PICTURE XX.

30 003000 77 INPUT-FI LE-STATUS PICTURE xx.

31 003100 01 JNPUT=NO PICTURE X VALUE SPACf'.

32 003200 88 THt'-END-OF-I NPUT VALUE "E".

33 00,1300 01 wORK-RECOP o.

34 003400 0<; FILLER PICTURE X(;>I I.

35 001500 05 CURR~NT-wORK-YfAP3 PICTURF X(84).

36 003600 05 NE"'-WORK-YE:.AR.

37 003700 10 WORK-VEAR PICTuRe::- qq.

38 003800 10 wORK-""EEK PICTURE q9.

39 003900 10 WORK-UJ',/ T-SALE" PICTUf<E 59(6'.

40 004000 10 WORK-DOLLAR-SALES DICTUR~ S9t9)V99.

41 004100 66 WDRK-OUT-RECORD RENAMES

42 004200 CURRENT-wORK-VEARS THROUGH ,jE"'-WORK-YI"AR.

43 004300 01 ERROR-MESSAGE.

44 004400 05 OP-NAME PICTU~F X(7!.

45 OO~ 50 0 05 FILLE;~ P!CTUDEC X(101

46 004600 VALUE tt ERROR ON "

47 004700 05 FI Lf:-NA~E PICTURE xII3).

48 004800 05 FILLER PICTURE X116)

49 004900 V~LUE If FILF STATUS IS ..

50 005000 0<; STATUS-VALUE' PICTuqE xx.

51 005100

52 005200 PROCEDURE DIVISION.

005300 DECLARJlTIVES.

005400 I-O-ERROR SECTION.

005500 USE. AFTf:R STANDA~D ERROR PKDC~OURE ON R:::LATIV~-FILE.

Appendix F. Sample File-Processing Programs F-13

L

http:NE"'-WORK-YE:.AR

STMT SEQNBR -A 1 e•••.• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 ••• • •• 7 .1 DENTFCN S CQPYNAME CHG/DATE

005600
005700

53 005800
54 005900
55 00&000

005100
006200
005300

56 006400
57 00~500

58 006600
59 00fj700
fjO 006800
61 006900
62 007000

007100
63 007200
64 007300
65 007400
66 007500
67 007600
68 001700

007800
69 007900
70 009000
71 008100

008200
72 001.1300
73 009400
74 00~500

75 008600
76 008700
77 008800
78 008900

ERROR-PROCEDURE.
DISPLAY ERRUR-MESSAGE.
DISPLAY "PROCESSING TERMINATING".
STOP RUN.

END DECLARATIVES.
MAIN-PROCEDURE SECTION.
BEGIN-PROCESSING.

MOVE "OPEN" TO OP-NAME.

MOVE "INPUT-FILE" TO FILE-NAME.

OPEN IN;>UT INPUT-FILE.

MOVE "RELATIVE-FILE" TO FILE-NA.>"E.

OPEN 1-0 RELATIVE-FILE.

PERFORM READ-FILES.

PERFORM UPDATE-RELATIVE-FILE THRU REAO-FILES

UNTIL THE-END-OF-INPUT.
MOVE "CLOSE" TO OP-NAME.
MOVE "INPUT-FILE" TO FILE-NAME.
CLOSE INPUT-FILE.
M:JVE "RELATIVE-FILE" TO FILE-NA"'E.
CLOSE RELATIVE-FILE.
STOP RUN.

UPDATE-RELATIVE-FILE.
MOVE "R,E.,RITEtt T(] QP-NAME.
MOVE "RELATIVE-FILE" TO FILE-NAME.
REWRITE RELATIVE-RECURD FRD~ WORK-OUT-RECORD.

READ-FILES.
MOVE "READ'· TO OP-NAME.
MOVE "RELATI VE-FILE" TO FILE-NA'.E.
READ RELAT IVE-FILE INTO "ORK-RECOR~

AT END SET THE-END-OF-[~PUT TO TRUE.
MOVE" INPUT-FILE" TO F ILE-,..,.4.ME.
READ INPUT-FILE INTO NEW-WORK-YEAR

AT END SET THE-END-OF-INPUT TO TRUE.

INPUT-FILE.

TOTAL INFO(0-41 WARNI NG 15-191 ERROl'll 20-291 SEVERE I 30-391 TERMI NALI 40-991
o o

69 SOURCE RECORDS READ
o COpy RECORDS READ
o COPY MEMBERS PROCESSED
o SEQUENCE ERRORS
o WAS THE HIGHEST SEVERITY

o o o o

J
MESSAGE ISSUED

F-14

http:ILE-,..,.4.ME

Relative File Retrieval

This program, using dynamic access, retrieves the summary file created by
the CREATE-RELATIVE program.

The records of the INPUT-FILE contain one required field (INPUT-WEEK),
which is the RELATIVE KEY for RELATIVE-FILE, and one optional field
(END-WEEK). An input record containing data in INPUT-WEEK and spaces in
END-WEEK requests a printout for that one specific RELATIVE-RECORD; the
record is retrieved through random access. An input record containing
data in both INPUT -WEEK and END-WEEK requests a printout of all the
RELATIVE-FILE records within the RELATIVE KEY range of INPUT -WEEK
through END-WEEK, inclusive; these records are retrieved through sequential
access.

STMT SEQNBR -A 1 B ••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6 •••••• 7 .IOENTf-CN 5 COPYNAME CHG/DAT":

000100 IDENTIFICATION DIVISION.

2 '000200 PROGRAM-ID. RETRVEREL.

3 000300

4 000400 ENVIRONMENT DIVISION.

5 000500 CONFIGURATION SECTION.

6 000600 SOURCE-CO"'PUTER. IBI4-S38.

7 000700 OBJECT-COMPUTER. IB"I-S38.

8 000800 SPECIAL-NAMES. REQUESTOR IS REQUESTOR.

9 000900 INPUT-OUTPUT SECTION.

10 001000 FILE-CONTROL.

11 001 100 SELECT RELATIVE-FILE ASSIGN TO DISK-FILED

12 001200 ORGANIZATION IS RELATIVE

13 001300 ACCESS IS DYNAMIC

14 001400 RELATIVE KEY INPUT-WEEK

15 001500 FILE STATUS IS RELATIVE-FILE-STATUS.

16 001600 SELECT INPUT-FILE ASSIGN TO DISK-FILEF

17 001700 FILE STATUS IS INPUT-FILE-STATUS.

18 001800 SELECT PRINT-FILE ASSIGN TO PRINTER-QSVSPRT

19 001900 FILE STATUS IS PRINT-FILE-STATUS.

20 002000

21 002100 DATA OIVISIDN.

22 002200 FILE SECTION.

23 002300 FD RELATIVE-FILE LAEJEL RECORDS STANDARD.

24 002400 01 RELATIVE-RECORD-Ol.

25 002500 05 RELA TI VE-RECORD OCCURS 5 TIMES INDEXED BY REL-INDEX.

26 002600 10 RELATIVE-YEAR PICTURE 9'>.

27 002700 10 RELATI VE-WEEK PICTURE 99.

28 002800 10 RELATI VE-UNI T- SALES PI CTURE 5'>(<> I.

29 002900 10 RELATIVE-DOLLAR-SALES PICTU'<E S919IV99.

30 003000 FO INPUT-FILE LABEL RECORDS STANDARD.

31 003100 01 INPUT-RECORD.

32 003200 05 INPUT-WEEK PICTURE 99.

33 003300 05 END-WEEK PICTURE 99.

34 003400 FD PR INT-FI LE LABEL RECORDS aMI TTED.

35 003500 01 PR INT-RECORD.

36 003600 05 PRINT-WEEK PICTURE 99.

37 003700 05 FI LLER PI CTURE x(51.

38 003800 05 PRINT-YEAR PICTURE 99.

39 003900 05 FILLER PICTURE X(51.

40 004000 05 PR INT-UN IT-SALES PICTURE ZZZ,ZZ9.

41 004100 05 FILLER PICTURE XISI.

42 004200 05 PR INT-OOLLAR-SALES PI CTURE' $$$S.$S~.$$$.q9.

43 004300 WORKING-STORAGE SECT ION.

44 004400 77 RELATIVE-FILE-STATUS PICTURE xx.

45 004500 77 INPUT-FILE-STATUS PICTURE xx.

46- 004600 77 PR INT-FI LE-STATUS PICTURE xx.

47 004700 77 HI GH-WEEK PICTURE 99 VALUE 53.

48 004800 77 OP-NAME PICTURE Xl'll.

49 004900 01 INPUTEND PI CTURE x VALUE SPACE.

50 005000 88 THE-END-OF-I NPUT VALUE ,,~tI.

51 005100 PROCEDURE DIVISION.

005200 DECLARAT IVES.
005300 RELATIVE-FILE-ERROR SECTION.
005400 USE AFTER STANDARD ERROR PRQCEDURE ON RELATIVE-FILE.

005500 RELATIVE-ERROR-MSG.

Appendix F. Sample File-Processing Programs F-15

http:S.$S~.$$$.q9

STMT SEQN8R -A 1 B••••• 2 •••••• 3 •••••• 4 ••• • •• 5 ••• • •• 6 ••• • •• 7 .IDENTFCN S COPVNA~E CHG/DATE

52 005600 DISPLAY OP-NAME. If ERROR ON RELATIVE-FILE ".
53 005700 DISPLAY "FILE STATUS VALUE IS ". l'ELATIVE-FILE-STATlJS.
54 00560'0 DISPLAY ·PROCESSING TERMINATED ".
55 005900 STOP RUN.

006000 INPUT-FILE-ERROR SECTION.
006100 USE AFTER STANDARD ERROR PROCEDURE ON INPUT-FILE.
006200 INPUT-ERROR-MSG.

56 006300 DISPLAY QP-NAME... FRPOR ON INPUT-FILE ".
57 006400 DISPLAY "FILE STATUS VALUE IS ". INPUT-FILE-STATUS.
56 006500 DISPLAY "PROCESSING TERMINATED ..
59 006600 STOP RUN.

006700 PRINT-FILE-ERROR SECTION.
006600 USE AFTER STANDAPD ERROR PROCEDURE ON PRINT-FILEC.
006900 PR INT- ERROR-MSG.

60 007000 DISPLAY OP-NAME... ERROl' ON PRINT-FILE ".

61 007100 DISPLAY "FILE STATUS VALUE IS ", PRINT-FILE-STATUS.
62 007200 DISPLAY "PROCESSING TERMINATED ..
63 007300 STOP RUN.

007400 END DECLARATIVES.
007500 MAIN-PROCEDURE SECTION.
007600 MAIN-PROC':SS ING.

64 007700 MOVE "OPEN" TO OP-NA~E.

65 007600 0' EN I NOUT I NPUT-F IL E RELA TI VE-F I L '"
007900 OUTPUT PRINT-FIL~.

66 OO~ 000 MOVE SPACES TO PRINT-RECO'>D.

67 006100 PERFORM READ-I NPUT-F ILE.
68 006200 PERFORM CONTROL-Pl'OCESS T~~U l'EAO-INPUT-FILE

OOB 300 UNTIL T~E-END-OF-INPUT.
69 006400 MOVE "CLOSE" TO OP-NA~E.
70 00!l500 CLOSE RELATIVE-FILE

008600 INPUT-F I LE
ooa700 PRINT-FILE.

71 008800 STOP RUN.
00B900 CONTROL-Pl'OC ESS.

72 009000 IF I END-WEEK =SPACF.:S OR END-'''EEK 00 I
73 009100 PERFORM RANDOM-PROCESS

009200 ELSE
74 009300 PERF OR M SE aUEN TI AL -P ROCE';S.

009400 READ-INPUT-FILE.

75 009500 MOVE "ReAD" TO OP-NAME.
76 009600 RE AD I NPUT-F ILE
77 OOQ 700 AT ENO SET THE-",ND-OF-INPUT TO TRUE.

009600 RANDOM-PROCESS.
7B 009900 ~3VE "READ" TO OP-NAME.
79 010000 READ RELATIVE-FILE
60 010100 INVALID K=:V MOVE HIGH-IIIEEK Tn RELATIVE-wt":EK(1).

81 010200 IF RELATIVE-WEEKlll NOT EOUAL HIG~-W~EK
82 010300 PERFORM PRINT-SUMMARY VA'HING PEL-INDEX FROM I BY 1

010400 UNTIL REL-INDEX > 5.
010500 SEQUENT! AL-PROCESS.

63 010600 MOVE "READ" TO OP-NAME.
B4 010700 READ RELATIVE-FILE
6~ OIOBOO INVALID KEY MOVE HI<>H-"EEK TO RELATIVE-WEeKlll.

86 010900 PERFORM READ-PEL-SEQ
011 000 UNTIL RELATIVE-WEEKI 1 I GREATER THAN E~D-WEEK.

ST~T SEa~BR -A 1 B••••• 2 •••••• 3 •••••• 4 •••••• S •••••• ~ •••••• 7 .ID~NTFCN S COPVNAME CHG/DAT",

011100
011200 READ-REL-SEa.

87 011300 PERFORM PRINT-SUMMAPY VARYING REL-INDEX FROM 1 BY I
011400 UNTIL REL-IND:::X > 5.

66 011500 M~VE "READ NEXT" TO OP-NAM~.

69 011600 READ RELATIVE-FILE NEXT PECORD

90 011 700 AT END MOVE HIGH-WEEK TO RELATIVE-WEEKll,.
011800 PAINT-SUMMARY.

91 011900 MOVE RELATiVE-YEAR IREL-INDEXI TO PRINT-YEAP.
92 012000 MOVE l'ELATIVE-wEEK IREL-INDEXI TO PRINT-.EEK.
93 012100 MOVE RELATIVE-UNIT-SALES (REL-INDEXI TO PRINT-UNiT-SALES.
94 012200 MOVE REL AT IVE-DOLLAR-SALES (REL-l NDEX I TO PRI NT-DOLLAR-SALES.

95 012300 MOV~ "WRITE" TO OP-NAME.

96 012400 WRiTE PRINT-RECORD AFTER ADVANCING 2 LINES.

TOTAL INFO(0-41 WAl'NINGI5-191 ERROR(20-291 SEVEREI30-391 TERMINALI40-99)
o o o o o o

124 SOURCE RECORDS READ
o COPY RECORDS READ
o COPY MEMBERS PROCESSED
o SEQUENCE ERRORS
o WAS THE HIGHEST SEVERITY MESSAGE ISSUED

F-16

Appendix G. COBOL Reserved Words

The following COBOL reserved word list identifies all reserved words in:

• 	 IBM System/38 COBOL

• 	 American National Standard COBOL, X3.23-1974

• 	 CODASYL COBOL (from CODASYL COBOL Journal of Development dated
December 1978).

Each word in the list is preceded by an identifier that is associated with one of the
following meanings:

Blank A System/38 COBOL reserved word from the 1974 ANS standard.
1 A System/38 COBOL reserved word that is an IBM extension to the

1974 ANS standard.
2 	 A COBOL reserved word from the 1974 ANS standard that is not

used by System/38 COBOL. These words should not be used if
compatibility is important to an installation. If used, a diagnostic
message will be issued.

3 	 A CODASYL COBOL reserved word that is not included in the
1974 ANS standard and is not supported by System/38 COBOL as
an extension. If used, a diagnostic message will be issued. These
words are included for compatibility.

Appendix G. COBOL Reserved Words G-l

ACCEPT

ACCESS

1 	ACQUIRE
ADD
ADVANCING
AFTER
All

3 	ALPHABET
ALPHABETIC

3 	ALPHANUMERIC
3 	ALPHANUMERIC-EDITED

ALSO
Al TER
ALTERNATE
AND

3 	ANY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT

1 	ATTRI BUTE
AUTHOR

BEFORE
3 BEGINNING
3 BINARY
3 BIT
3 BITS

BLANK

BLOCK

3 	BOOLEAN
BOTTOM
BY

CAll

CANCEL

2 CD
2 CF
2 CH

CHARACTER

CHARACTERS

2 	CLOCK-UNITS
CLOSE

2 	COBOL
2 CODE

CODE-SET
COllATI NG

2 COLUMN
1 COMMA
1 COMMIT
1 COMMITMENT

3 COMMON
2 COMMUNICATION

COMP
1 COMP-3
1 COMP-4

COMPUT ATI ONAl
1 	COMPUTATIONAl-3
1 	COMPUTATIONAl-4

COMPUTE
CONFIGURATION
CONNECT
CONTAINS

3 	CONTENT
3 	CONTINUE
1 	CONTROL
1 	CONTROL-AREA
2 	CONTROLS
3 	CONVERSION
3 	CONV ERTI NG

COpy
CORR
CORRESPONDING
COUNT
CURRENCY

3 CURRENT

DATA

DATE

DATE-COMPILED

DATE-WRITTEN

DAY

3 	 DAY-OF-WEEK
3 	DB
3 	DB-ACCESS-CONTROl-KEY
3 	 DB-DATA-NAME
3 DB-EXCEPTION
1 DB-FORMAT-NAME
3 	DB-RECORD-NAME
3 	DB-SET-NAME
3 	 DB-STATUS
2 	DE

DEBUG-CONTENTS
DEBUG-ITEM

3 	DEBUG-lENGTH
DEBUG-LINE
DEBUG-NAME

3 	DEBUG-NUMERIC-CONTENTS
3 	DEBUG-SIZE
3 	DEBUG-START
3 	DEBUG-SUB

DEBUG-SUB-l
DEBUG-SUB-2
DEBUG-SUB-3

3 DEBUG-SUB-ITEM
3 DEBUG-SUB-N
3 DEBUG-SUB-NUM

DEBUGGING
DECIMAL-POINT
DEClARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING

2 DESTINATION
2 DETAIL
2 DISABLE
3 DISCONNECT

DISPLAY
3 	DISPlAY-n

DIVIDE
DIVISION
DOWN

1 	DROP
3 	DUPLICATE

DUPLICATES
DYNAMIC

2 	EGI
ELSE

2 EMI
3 EMPTY
2 ENABLE

END
3 END-ADD
3 END-CAll
3 END-COMPUTE
3 END-DELETE
3 END-DIVIDE
3 END-EVALUATE
3 END-IF
3 END-MULTI Pl Y

END-OF-PAGE
3 END-PERFORM
3 END-READ
3 END-RECEIVE
3 END-RETURN
3 END-REWRITE
3 END-SEARCH
3 END-START
3 END-STRING
3 END-SUBTRACT
3 END-UNSTRING
3 END-WRITE

J

G-2

3 	ENDING
ENTER
ENVIRONMENT

EOP

EQUAL

3 EQUALS
3 ERAS E

ERROR
2 ESI
3 EVALUATE

EVERY
3 	EXCEEDS

EXCEPTION
3 	EXCLUSIVE

EXIT
3 	EXOR

EXTEND
3 EXTERNAL
1 EXTERNALLY-DESCRIBED-KEY

3 	FALSE
FD
FILE
FILE-CONTROL
FILLER

2 FI NAL
3 FIND
3 FINISH

FIRST

FOOTING

FOR

1 FORMAT
3 FREE

FROM

2 GENERATE
3 GET

GIVING
3 GLOBAL

GO
GREATER

2 	GROUP

2 	HEADING
HIGH-VALUE
HIGH-VALUES

1-0

I-O-CONTROL

IDENTI FICATION

IF

IN

INDEX

3 	INDEX-n
INDEXED

1 INDIC
2 INDICATE
1 INDICATOR
1 INDICATORS

INITIAL
3 	INITIALIZE
2 INITIATE

INPUT
INPUT-OUTPUT
INSPECT
INSTALLA TI ON
INTO
INVALID
IS

JUST

JUSTI FI ED

3 	KEEP
KEY

LABEL

LAST

3 	LD
LEADING
LEFT

2 	LENGTH
LESS

2 	LIMIT
2 	LIMITS

LI NAGE
LINAGE-COUNTER
LINE

2 	LI NE-COUNTER
LINES
LINKAGE

3 	LOCALLY
LOCK
LOW-VALUE
LOW-VALUES

3 MEMBER
MEMORY
MERGE

2 MESSAGE
MODE

1 	MODIFIED

3 MODIFY
MODULES
MOVE
MUL TI PLE
MULTIPLY

NATIVE

NEGATIVE

NEXT

NO

3 NON-NULL
NOT

3 NULL
2 NUMBER

NUMERIC
3 	NUMERIC-EDITED

OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR

3 ORDER
ORGANIZATION

3 	OTHER
OUTPUT
OVERFLOW

3 	OWNER

3 PACKED-DECIMAL
3 PADDING

PAGE
2 	PAGE-COUNTER

PERFORM
2 	PF
2 	PH

PIC
PICTURE

2 PLUS
POINTER
POSITION
POSITIVE

2 	PRINTING
1 	PRIOR

PROCEDURE
PROCEDURES
PROCEED

Appendix G. COBOL Reserved Words 0-3

1 	PROCESS
PROGRAM
PROGRAM-ID

3 	PROTECTED
3 	PURGE

2 QUEUE
QUOTE
QUOTES

RANDOM
2 	RD

READ
3 	READY
3 	REALM
3 	REALMS
2 	RECEIVE
3 	RECONNECT

RECORD
3 	RECORD-NAME

RECORDS
RF.lJEFINES
REEL

j 	 REFERENCE
3 	REFERENCE-MODIFIER

REFERENCES
RELATIVE
RELEASE
REMAINDER
REMOVAL
RENAMES

3 	REPLACE
REPLACING

2 	REPORT
2 	REPORTING
2 	REPORTS

RERUN
RESERVE

2 	RESET
3 	RETAINING
3 	RETRI EVAL

RETURN

REVERSED

REWIND

REWRITE

2 RD
2 RH

RIGHT
1 	ROLLBACK
1 	ROLLING

ROUNDED
RUN

SAME

SD

SEARCH

SECTION

SECURITY

2 SEGMENT
SEGMENT -LIMIT
SELECT

2 SEND
SENTENCE
SEPARATE
SEQUENCE

SEQUENTIAL

SET

3 SETS
SIGN
SIZE
SORT
SORT-MERGE

2 SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-l

3 STANDARD-2
START

1 STARTING
STATUS
STOP

3 STORE
STRING

2 SUB-QUEUE-l
2 SUB-QUEUE-2
2 SUB-QUEUE-3
3 SUB-SCHEMA
1 SUBFILE

SUBTRACT
2 SUM
2 SUPPRESS
2 SYMBOLIC

SYNC
SYNCHRONIZED

2 TABLE
TALLYING
TAPE

3 	TENANT

TERMINAL
2 TERMINATE
3 TEST
2 TEXT

THAN
1 THEN

THROUGH
THRU
TIME
TIMES
TO
TOP
TRAILING

1 TRANSACTI ON
1 TRUE
2 TYPE

UNIT

UNSTRING

UNTIL

UP

3 	UPDATE
UPON
USAGE

3 	USAGE-MODE
USE
USING

VALUE

VALUES

VARYING

WHEN

WITH

3 	WITHIN
WORDS
WORKING-STORAGE
WRITE

ZERO

ZEROES

ZEROS

+

*

/

**

>
<

G-4

Appendix H.
 EBCDIC and ASCII Collating Sequences

The ascending collating sequences for both the EBCDIC (Extended Binary Coded
Decimal Interchange Code) and ASCII (American National Standard Code for
Information Interchange) character sets are given in this appendix. Decimal
positions within the sequence are given, as well as the binary representation,
symbol, meaning for each character, and corresponding decimal position within
the other sequence. The symbols with an asterisk * in the righthand column do
not correspond to the same symbol in the other collating sequence.

Note: When using the literal option of the alphabet-name clause, 1 must be
added to the number shown in this appendix to specify the corresponding
character. (The numbers in this appendix run from 0 to 255; the numbers in the
literal option run from I to 256.)

Appendix H. EBCDIC and ASCII Collating Sequences H-l

EBCDIC Collating Sequence

Collating Binary ASCII
Sequence Representation Symbol Meaning Number

0 00000000 0

64 01000000 SP Space 32

74 01001010 ¢ Cent sign 91 *
75 01001011 Period, decimal point 46
76 01001100 < Less-than sign 60
77 01001101 (Left parenthesis 40
78 01001110 + Plus sign 43
79 01001111 I Vertical bar, logical 33 *

OR
80 01010000 & Ampersand 38

90 01011010 ! Exclamation point 93 *
91 01011011 $ Dollar sign 36
92 01011100 * Asterisk 42

)93 01011101 Right parenthesis 41
94 01011110 ; Semicolon 59
95 01011111 --, Logical NOT 94
96 01100000 - Minus, hyphen 45
97 01100001 / Slash 47

106 01101010 I
I

Broken vertical bar 124 *
107 01101011 , Comma 44
108 01101100 % Percent sign 37
109 01101101 Underscore 95-
110 01101110 > Greater-than sign 62
111 01101111 ? Question mark 63

"121 01111001 Accent grave 96
122 01111010 . Colon 58
123 01111011 # Number sign 35
124 01111100 @ At sign 64
125 01111101 I Apostrophe, prime 39
126 01111110 = Equal sign 61
127 01111111 " Quotation mark 34

129 10000001 a 97
130 10000010 b 98
131 10000011 c 99
132 10000100 d 100
133 10000101 e 101
134 10000110 f 102
135 10000111 9 103
136 10001000 h 104
137 10001001 i 105

H-2

Collating Binary ASCII
Sequence Representation Symbol Meaning Number

145 10010001 j 106
146 10010010 k 107
147 10010011 1 108
148 10010100 m 109
149 10010101 n 110
150 10010110 0 111
151 10010111 P 112
152 10011000 q 113
153 10011001 r 114

161 10100001 - Tilde 126
162 10100010 s 115
163 10100011 t 116
164 10100100 u 117
165 10100101 v 118
166 10100110 w 119
167 10100111 x 120
168 10101000 Y 121
169 10101001 z 122

192 11000000 Left brace 1231193 11000001 65
194 11000010 B 66
195 11000011 C 67
196 11000100 D 68
197 11000101 E 69
198 11000110 F 70
199 11000111 G 71
200 11001000 H 72
201 11001001 I 73

208 11010000 Right brace 125
209 11010001 ~ 74
210 11010010 K 75
211 11010011 L 76
212 11010100 M 77
213 11010101 N 78
214 11010110 0 79
215 11010111 P 80
216 11011000 Q 81
217 11011001 R 82

224 11100000 \ Reverse slant 92

226 11100010 S 83
227 11100011 T 84
228 11100100 U 85
229 11100101 V 86
230 11100110 W 87
231 11100111 X 88
232 11101000 Y 89

Appendix H. EBCDIC and ASCII Collating Sequences H-3

Collating Binary
Sequence Representation

233 11101001

240 11110000

241 11110001

242 11110010

243 11110011

244 11110100

245 11110101

246 11110110

247 11110111

248 11111000

249 11111001

255

Symbol Meaning

Z

0

1

2

3

4

5

6

7

8

9

ASCII

Number J
90

48

49

50

51

52

53

54

55

56

57

J

H-4

ASCII Collating Sequence

Collating Binary EBCDIC
Sequence Representation Symbol Meaning Number

0 00000000 Null 0

32 00100000 SP Space 64

33 00100001 ! Exclamation point 79 *

34 00100010 II Quotation mark 127

35 00100011 # Number sign 123

36 00100100 $ Dollar sign 91

37 00100101 % Percent 108

38 00100110 & Ampersand 80

39 00100111 I Apostrophe, prime 125

40 00101000 (Opening parenthesis 77

41 00101001) Closing parenthesis 93

42 00101010 * Asterisk 92

43 00101011 + Plus 78

44 00101100 Comma 107
•
45 00101101 - Hyphen, minus 96

46 00101110 Period, decimal point 75

47 00101111 / Slant 97

48 00110000 0 240

49 00110001 1 241

50 00110010 2 242

51 00110011 3 243

52 00110100 4 244

53 00110101 5 245

54 00110110 6 246

55 00110111 7 247

56 00111000 8 248

57 00111001 9 249

58 00111010 · Colon 122
·
59 00111011 ; Semicolon 94

60 00111100 < Less-than sign 76

61 00111101 = Equals 126

62 00111110 > Greater-than sign 110

63 00111111 ? Question mark 111

64 01000000 @ At sign 124

65 01000001 A 193

66 01000010 B 194

67 01000011 C 195

68 01000100 0 196

69 01000101 E 197

70 01000110 F 198

71 01000111 G 199

72 01001000 H 200

73 01001001 I 201

74 01001010 J 209

75 01001011 K 210

76 01001100 L 211

77 01001101 M 212

Appendix H. EBCDIC and ASCII Collating Sequences H-5

Collating Binary EBCDIC
Sequence Representation Symbol Meaning Number J
78 01001110 N 213

79 01001111 0 214

80 01010000 P 215

81 01010001 Q 216

82 01010010 R 217

83 01010011 S 226

84 01010100 T 227

85 01010101 U 228

86 01010110 V 229

87 01010111 W 230

88 01011000 X 231

89 01011001 Y 232

90 01011010 Z 233

91 01011011 [Opening bracket 74 *

92 01011100 \ Reverse slant 224

93 01011101] Closing bracket 90 *

94 1\01011110 Circumflex, 95

-, Logical NOT

95 01011111 Underscore 109
-
96 01100000 '" Grave accent 121

97 01100001 a 129

98 01100010 b 130

99 01100011 c 131

100 01100100 d 132

101 01100101 e 133

102 01100110 f 134

103 01100111 9 135

104 01101000 h 136
 J105 01101001 i 137

106 01101010 j 145

107 01101011 k 146

108 01101100 1 147

109 01101101 m 148

110 01101110 n 149

111 01101111 0 150

112 01110000 P 151

113 01110001 q 152

114 01110010 r 153

115 01110011 s 162

116 01110100 t 163

117 01110101 u 164

118 01110110 v 165

119 01110111 w 166

120 01111000 x 167

121 01111001 Y 168

122 01111010 z 169

123 01111011 { Opening brace 192

124 01111100 I Vertical line 106 *

125 01111101 } Closing brace 208

126 01111110 - Tilde 161

H-6

Appendix I. File Structure Support Summary and Status

Key Values

Figure I-I lists the required and optional entries for various types of file
structures supported. Any file with a device type of disk can be assigned to a
data base or non-data base auxiliary storage file. The codes used are as follows:

Not applicable

B Optional for a work station that supports subfiles

C Optional entry, treated as comments only

D Optional for file assigned to -DATABASE, not allowed if not assigned
to a data base file

I Optional for a file opened for input or input-output

o Optional

R Required

S Required for a work station that supports subfiles

X Required; syntax-checked, but treated as documentation.

Figure 1-2 contains status key values and their meanings.

Appendix I. File Structure Support Summary and Status Key Values I-I

DEVICE TYPE

ENVIRONMENT DIVISION

RERUN ... RECORDS C C C C C C C C C C C C C C C C
SAME o 0 o 0 o 0 o o 0 o 0 o 0 o 0

AREA C C C C C C C C C C C C C C C C
RECORD AREA o 0 o 0 o 0 o o 0 o 0 o 0 o 0
SORT AREA C C C
SORT MERGE AREA C C C

MULTIPLE FILE TAPE C

COMMITMENT CONTROL D D D D D D D

SELECT R R R R R R R R R R R R R R R R
ASSIGN R R R R R R R R R R R R R R R R
OPTIONAL I I I I I

ORGANIZATION o 0 o 0 o 0 o R R R R R R R o 0
SEQUENTIAL 0000000 o 0
RELATIVE R R R

INDEXED R R R

TRANSACTION R

ACCESS OOOOOOOORR OR ROOO

SEQUENTIAL 00000000 o o 0 0

RANDOM R R

DYNAMIC R R S

RESERVE C C C C C C C C C C C C C C C
RELATIVE KEY o R R S

RECORD KEY R R R

DUPLICATES D D D

FILE STATUS o 0 o 0 o 0 o 0 0 0 0 0 o 0 0 0

CONTROL-AREA o
DATA DIVISION

LABEL RECORDS X X X X XRXXXXXX X X X X

STANDARD ORR RR RR R 0 R R

OMITTED R R R R R 0 o
VALUE OF C C C C CCCCCCCC C C C C
OF

BLOCK CONTAINS o 0 o 0 o 0 o 0 0 0 0 0 o 0 o 0
RECORD CONTAINS o 0 o 0 o 0 o 0 0 0 0 0 o 0 o 0
DATA RECORDS o 0 o 0 o 0 o 0 0 0 0 0 o 0 o 0
CODE-SET o o
LINAGE o

Figure 1-1 (Part 1 of 3). File Structure Support

1-2

DEVICE TYPE

a:
w
e
e:(
w
a:
e
a:
c:(
U

l:
()
2
::::>
CL

e
a:
c:(
()

I
2
a:
CL

e
a:
e:(
()

I
Z
a:
CL
l:
()
2
::::>
CL

0
a:
e:(
()

a:
w
I
2
a:
Q.

w
CL
c:(
l-

d
W
CJ)

::I/:
CJ)

e

d
w
CJ)

....I
W
a:
::I/:
~
0

~
0
e
2
e:(
a:
....I
W
a:
::I/:
CJ)

e

~
~
e:(
Z
>
C
....I
w
a:
::I/:
CJ)

e

d
w
CJ)

X e
::I/:
CJ)

0

~
0
e
2
e:(
a:
X e
::I/:
CJ)

e

()

~
e:(
2
>e
X e
::I/:
CJ)

CS

Z
0
i=
e:(
I
CJ)

::I/:
a:
0
~

w
l-
l-w
~

~
0

w
....I

u:
I-
e:(

~
a:
0
LL

PROCEDURE DIVISION

OPEN R R R R R R R R R R R R R R R R

INPUT R 0 0 0 0 0 0 0 0 0 0
OUTPUT R R R R 0 0 0 0 0 0 0 0 0 0
1-0 0 0 0 0 0 0 0 R 0

NO REWIND

REVERSED I

EXTEND 0 0 0
CLOSE R R R R R R R R R R R R R R R R

REEL/UNIT 0
REMOVAL 0
NO REWIND 0

NO REWIND 0
WITH LOCK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

READ

NEXT

FIRST D

~ LAST D

PRIOR D

INTO I

AT END

INVALID KEY I B

FORMAT D D D D I R

NEXT MODIFIED B

SUBFILE B

INDICATORS I

TERMINAL 0

NO DATA 0

WRITE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FROM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INVALID KEY 0 0 0 0 0 0 B

ADVANCING 0 0 0 0
AT END-OF-PAGE 0

FORMAT D D D D R R

STARTING 0
ROLLING 0

INDICATORS 0
SUBFILE B
TERMINAL 0

Figure 1-1 (Part 2 of 3). File Structure Support

Appendix I. File Structure Support Summary and Status Key Values 1-3

I- u U
2: ~ ~

0 ~ 0 ~ cc C e:(C e:(2:a..cc 0 w I: I: 0 Z Z 0 Z Z wI- w e:(> e:(i=w >

JC U U ...IZ (J) cc C (J) cc C e:(e:(z 2: w u:::w ;:) cc ;:) 0 ...I ...I ...I X X I-cc X (J) I-w w w w l-cc a.. a.. a.. w C C C l- e:((J) cc cc cc :III::I- WC C C C w2: :III:: :III:: :III:: :III:: :III:: :III:: :III:: cc :III:: ~ cc cc cc cc a.. cc(J) (J) (J) (J) (J) (J) 0 (J)e:(e:(e:(e:(cc ~ 0
U u U U a.. ~ 25 C 25 C 25 25 25 ~ 25 u..

DEVICE TYPE

START 0 0 0 0

KEY 0 0 0 0

INVALID KEY 0 0 0 0

FORMAT D D D

REWRITE 0 0 0 0 0 0 0 B

FROM 0 0 0 0 0 0 0 B

INVALID KEY 0 0 0 0 B

FORMAT D D B

INDICATORS B

SUBFILE S

TERMINAL 0

DELETE 0 0 0 0 0 0

INVALID KEY 0 0 0 0

FORMAT D D

USE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EXCEPTION/ERROR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FOR DEBUGGING 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COMMIT D D D D D D D JROLLBACK D D D D D D D

ACQUIRE 0

DROP 0

Figure 1-1 (Part 3 of 3). File Structure Support

1-4

Status
Key
1 2 Meaning

0 Successful Completion

0 Successful Completion

1 At End of File

0 End of file

2 No modified subfile record
found (IBM extension)

2 Invalid Key

1 Sequence error

2 Duplicate key when
duplicates are not allowed

3 No record found

4 Boundary violation

3 Permanent Error

0 Permanent Error

4 Boundary violation

When Set (CPF Exceptions
Monitored, Condition Detected)

No error condition occurred during the
1-0 operation.

CPF4740, CPF5070, CPF5001, CPF5025.

CPF5037.

REWRITE to an indexed file with sequential
access and key for REWRITE =F key from
previous READ, or WRITE to an indexed
file with sequential access and key values
for succeeding writes are not in ascending
sequence.

CPF5008, CPF5009, CPF5010, CPF5026,
CPF5034, CPF5084, CPF5085, or WRITE to
an indexed file with sequential access and
key values for succeeding writes are not
in ascending sequence.

CPF5006, CPF5013, CPF5020.

CPF5018, CPF5021, CPF5043, CPF5272,
CPF5305 if organization is not sequential.

CPF5101, CPF5102, CPF5113, CPF5120,
CPF5129, CPF5143, CPF5156.

CPF5116, CPF5018, CPF5272, CPF5305 if
organization is sequential.

Figure 1-2 (Part 1 of 5). Status Key Values and Meanings

Appendix I. File Structure Support Summary and Status Key Values I-5

Status
Key When Set (CPF Exceptions J1 2 Meaning 	 Monitored, Condition Detected)

9 Other Errors

0 Other errors:

File not found•
Member not found•
Level check error•

• 	 Unexpected 1-0
exceptions

CPF4101 if a USE is applicable for the file.

CPF4102 if a USE is applicable for the file.

CPF4131.

The following exceptions are
monitored generically:

CPF 4101 through CPF 4399
CPF 4501 through CPF 4699
CPF 4701 through CPF 4899
CPF 5001 through CPF 5099
CPF 5101 through CPF 5399

These exceptions are caught and FILE
STATUS is set to 90. If a USE procedure is
applicable, it is executed. Otherwise, the
program terminates and gives the operator
the exception and the option to cancel,
take a partial dump, or take a full dump.

J

Figure 1-2 (Part 2 of 5). Status Key Values and Meanings

1-6

Status
Key
1 2
9

Meaning

Other Errors
(continued)

1 Undefined or
unauthorized access type

2 Logic error:
• File locked
• File already open
• 1-0 to closed file
• READ after end of file
• CLOS E on unopened file

4 No current record pointer

5 Invalid or incomplete file
information

A Job has been cancelled in
a controlled manner by C L
command CNLJOB,
TRMSBS, TRMCPF, or
PWRDWNSYS

D Record is locked

When Set (CPF Exceptions
Monitored, Condition Detected)

CPF2207, CPF4104, CPF5057, CPF5109,
CPF5134, CPF5279.

CPF4102, CPF4106, CPF5013, CPF5119,
CPF5132, CPF5145, CPF5146, CPF5176,
CPF5183.

REWRITE/DELETE with sequential access,
and last operation was not a successful
READ.

(1) Duplicate keys specified in COBOL
program, but indexed data base file
created with unique key; or (2) Duplicate
keys not specified in COBOL program,
and indexed data base file created
allowing duplicate keys.

CPF4741.

CPF5027, CPF5032.

Figure 1-2 (Part 3 of 5). Status Key Values and Meanings

Appendix I. File Structure Support Summary and Status Key Values 1-7

9

I

Status
Key
1 2 Meaning

Other Errors
(continued)

H ACQU IRE operation failed

WR I TE operation failed

When Set (CPF Exceptions
Monitored, Condition Detected)

Resource owned by another program, or
unavailable. (9H is the result when an
ACQUIRE operation causes any of the CPF
exceptions monitored for 90, 9J, or 9N to
occur).
CPF5105, CPF5127, CPF5128,
CPF5165, CPF5166, CPF5198,
CPF5217, CPF5219, CPF5254,
CPF5260, CPF5265, CPF5269,
CPF5274, CPF5278, CPF5279,
CPF5351, CPF5355, CPF5358,
CPF5410, CPF5411, CPF5412,
CPF5413, CPF5424, CPF5447,
CPF5449, CPF5450, CPF5454,
CPF5507, CPF5508, CPF5509,
CPF5510, CPF5511, CPF5512,
CPF5513, CPF5514, CPF5515,
CPF5516, CPF5517, CPF5518,
CPF5519, CPF5521, CPF5537,
CPF5538, CPF5539, CPF5540,
CPF5541, CPF5542, CPF5540,
CPF5544, CPF5545, CPF5547,
CPF5552.

CPF5044.

Figure 1-2 (Part 4 of 5). Status Key Values and Meanings

1-8

9

Status
Key
1 2 Meaning

Other Errors
(continued)

K 	 Invalid format-name;

format not found

M 	 Last record written to
subfile

N 	 Temporary (potentially
recoverable) hardware 1-0
error

p OP EN failed because file
cannot be placed under
commitment control

When Set (CPF Exceptions
Monitored, Condition Detected)

CPF5022, CPF5023, CPF5053,
CPF5054, CPF5121, CPF5152,
CPF5153, CPF5186, CPF5187,

CP F5003.

CPF4145, CPF4146, CPF4193,
CPF4229, CPF4291, CPF4299,
CPF4354, CPF4526, CPF4542,
CPF4577, CPF4592, CPF4602,
CPF4603, CPF4611, CPF4612,
CPF4616, CPF4617, CPF4622,
CPF4623, CPF4624, CPF4625,
CPF4628, CPF4629, CPF4630,
CPF4631, CPF4632, CPF5107,
CPF5128, CPF5166, CPF5198,
CPF5280, CPF5282, CPF5287,
CPF5293, CPF5352, CPF5353,
CPF5517, CPF5524, CPF5529,
CPF5530, CPF5532, CPF5533.

CPF4285, CPF4293, CPF4326,
CPF4327, CPF4328, CPF4329,
CPF4330, CPF4331.

Figure 1-2 (Part 5 of 5). Status Key Values and Meanings

Appendix I. File Structure Support Summary and Status Key Values 1-9

Attribute Data Formats

JThe layouts and values of the attribute data are system dependent. The

following formats are for the System/3S.

Display Device Attribute Data

01 	 TERMINAL ATTRIBUTES.

02 TERMINAL-TYPE PIC X.

* 	 D - DISPLAY
02 TERMINAL-SIZE PIC X.

* 	 1 - 1920 CHARACTERS
* 	 2 - 960 CHARACTERS

02 TERMINAL LOCATION PIC X.
* 	 L - LOCAL
* 	 R - REMOTE

02 	 TERMINAL-STATUS.

03 FILLER PIC X.

* 	 RESERVED
03 ACQUIRE-STATUS PIC X.

* 	 Y - ACQUIRED
* 	 N - NOT ACQUIRED

03 INVITE-STATUS PIC X.
* 	 Y - INVITED
* 	 N - NOT INVITED

03 DATA-AVAILABLE-STATUS PIC X.
* 	 Y - DATA IS AVAILABLE
* 	 (ENTER OR COMMAND KEY PRESSED)
* 	 N - DATA IS NOT AVAILABLE

02 FILLER PIC X(9).
* 	 RESERVED

Communications Device Attribute Data

01 	 COMMUNICATIONS-ATTRIBUTES.

02 PROGRAM-DEVICE-STATUS PIC X.

* 	 A - THE PROGRAM DEVICE IS NOT ACQUIRED
* 	 (VALID FOR LUI, BSC, AND PEER)
* 	 C - THE PROGRAM DEVICE IS ACQUIRED
* 	 (VALID FOR LUI, BSC, AND PEER.
* 	 FOR PEER, THIS IS THE SOURCE END OF THE SESSION.)
* 	 R - THE PROGRAM DEVICE FOR THE TARGET END OF THE
* 	 SESSION IS ACQUIRED (VALID ONLY FOR PEER)

02 INVITE-STATUS PIC X.
* 	 N - THIS PROGRAM DEVICE IS NOT INVITED
* 	 I - THIS PROGRAM DEVICE IS INVITED BUT NO DATA
* 	 HAS BEEN RECEIVED

o - THIS PROGRAM DEVICE IS INVITED AND DATA IS READY*
02 	 SYNCHRONIZATION-LEVEL PIC X.

* 	 C - SYNVL (*CONFIRM)
* 	 N - SYNVL (*NONE)

02 DEVICE-NAME PIC X(10).
* 	 THE DEVICE NAME ASSOCIATED WITH THE PROGRAM DEVICE

1-10

OPEN-FEEDBACK and I-O-FEEDBACK Data Areas

OPEN-FEEDBACK

The OPEN- FEEDBACK area is part of the open data path (ODP) that contains
information about the OPEN operation. This information is set during OPEN
processing and is available as long as the file is open.

This area provides information about the file that the program is using. It
contains:

• 	 Information about the file that is currently open, such as:

File name
File type.

• 	 Information that depends on the type of file that is opened, such as:

Printer size
Screen size
Diskette or tape labels.

I-O-FEEDBACK

The system updates the I -0- FEEDBACK area each time a block of records is
transferred between CP F and the program. A block of records can contain
one or more records.

The I-O-FEEDBACK area is not updated after each read or write for files in
which multiple records are blocked and unblocked by COBOL. If the
I - 0 - FEE DBA C K area is needed after each read or write in the program, the
user can do either of the following: .

• 	 Prevent the compiler from generating blocking and unblocking code by
not satisfying one of the conditions listed under "Unblocking Input
Records and Blocking Output Records" in Chapter 9.

• 	 Specify SEQONL Y(*NO) on the Override with Data Base File (OVRDBF)
CL command.

Preventing the compiler from generating blocking and unblocking code is
more efficient than specifying SEQONLY(*NO).

Even when the compiler generates blocking and unblocking code, certain
CPF restrictions can cause blocking and unblocking to not be performed. In
these cases, a performance improvement will not be realized. However, the
I -0- FEEDBACK area will be updated after each read or write.

The I-O-FEEDBACK area contains information about the 1-0 operation. This
area consists of a common area and a device-dependent area. The
device-dependent area varies in length and content depending on the file
type. This area follows the I -0- FEEDBACK common area and can be

Appendix 1. File Structure Support Summary and Status Key Values 1-11

obtained by specifying the receiving identifier large enough to include the
common area and the appropriate device-dependent area.

The I -0- FEEDBACK area contains information about the last 1-0 operation,
such as:

• Device name

• Device type

• A I Dcharacter

• Error information for some devices.

See the CPF Programmer's Guide for a layout and description of the data
areas contained in the OPEN- FEEDBACK and I -0- FEEDBACK areas.

J

1-12

Appendix J.
Summary of Clauses and Statements

This appendix contains the following information:

• 	 A general outline of a COBOL program by division, including the PROCESS
statement

• 	 A detailed format summary for each division in a COBOL program

• 	 The symbols allowed in the PI CT U R E clause

• 	 The assignment-names in the ASS I GN clause.

Conventions Used for Describing Statement Formats

When statement formats are described in this appendix, capitalized words,
underlined words, braces, square brackets, and ellipsis have the following
meanings:

• 	 Reserved words are printed entirely in capital letters:

Required reserved words (keywords) are capitalized and underlined.
Optional reserved words are capitalized but not underlined.

• 	 User-defined words are shown in lowercase letters.

• 	 Braces {} enclosing listed items indicate (1) that exactly one of the enclosed
stacked items must be specified and/or (2) when followed by an ellipsis, that
the enclosed unit or item must be specified at least once.

• 	 Square brackets [] indicate the enclosed item or unit can be used or omitted
as required for the program. When two or more items are stacked within
brackets, one or none of them can be specified. When followed by an ellipsis,
the item or unit can be repeated.

• 	 An ellipsis (...) indicates that the immediately preceding unit can occur one or
more times in succession.

IBM extensions to American National Standard COBOL, X3.23-1974 are boxed
like this sentence.

r-----------------------------·
I COBOL clauses and statements that are syntax-checked, but are treated as
!documentation by the System/38 COBOL compiler are boxed like this sentence.JI L...- ________ ________ ____________ _

Appendix J. Summary of Clauses and Statements J-l

I

http:sentence.JI

COBOL Program Structure

Process Statement

PROCESSoption-l [option-2] ... [option-n] [.]

Note: The PROC ESS statement specifies compile-time options. It is not a
COBOL source statement. If you want any options that are not default options
of the PROCESS statement, this statement must precede the Identification Division
header. PROCESS statement options and defaults are defined later in this
appendix.

Identification Division

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] .. .J
[INSTALLATION. [comment-entry]. .J
[DATE-WR ITTEN. [comment-entry] ...J J
[DATE-COMPILED. [comment-entry] .. .J
[SECURITY. [comment-entry] ...J

Environment Division

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOU RCE-COMPUTE R. source-computer-entry

OBJECT-COMPUTE R. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file.control-entry} .

[I-O-CONTRO L. input-output-control-entry]]

J-2

Data Division

DATA DIVISION.

~ILE SECTION.

[file-descriPtion-entry, {record-descriPtion-entry} •••]

I!ort-merge-fi le-description-entry, {record-descriPtion.entry} • • .]]

[WORKING-STORAGE SECTION.

[data-descriPtion-entry] •..

[!ecord-descriPtion-entrv] .]

[LINKAGE SECTION.

[data-descriPtion-entry]

[!ecord-descriPtion-entrv] ...]

Procedure Division - Format 1- Declaratives Section

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] •••].

[DECLARATlVES.

{section-name SECTION cegment-number] • use-sentence

~aragraph-name. [sentence] •.•] •.• } •.•

END DECLARATIVES.]

~ection-name SECTION [segment-number]

(paragraph-name. [sentence] •••] .•• } •••

Procedure Division - Format 2

PROCEDURE DIVISION [USING data-name-' [, data-name-2] .•.].

{paragraph-name. [sentence] ..• } .••

Appendix J. Summary of Clauses and Statements J-3

DETAILED FORMATS
J

Identification Division Format

IDENTIFICATION DIVISION.

PROGRAM·ID. program-name.

[AUTHOR. [comment-entry] .. .J
[INSTALLATION. [comment-entry] .. .J
[DATE-WRITTEN. [comment-entry] ...J
[DATE-COMPILED. [comment-entry] .. .J
[SECURITY. [comment-entry] .. .J

J-4

Environment Division Formats

Configuration Section

CONFIGURATION SECTION.

SOURCE-COMPUTER. computer-name [WITH DEBUGGING MODE] .

OBJECT-COMPUTE R. computer-name

rr - - - - - - - - WORDS - - -,

1[. MEMORY SIZE integer {CHARACTERS}] I

I MODULES I
....... _------------_ ..

[. PROGRAM COLLATING SEQUENCE IS alphabet-name]

[. SEGMENT-LIMIT IS segment-number] •

[SPECIAL-NAMES. [function-name-, !§ mnemonic-name]

[function-name-2

IS mnemonic-name. ON STATUS.!§. condition-name-' [. OFF STATUS IS condition-name-2]

IS mnemonic-name. OFF STATUS.!§. condition-name-2 [. ON STATUS.!§. condition-name-']

ON STATUS ~ condition-name-' [. OFF STATUS!.§ condition-name-2]

OFF STATUS IS condition-name-2 [. ~ STATUS .!§.condition-name-']

STANDARD-'
NATIVE

THROUGH} .
[{literal-' THRU IIteral-2

• alphabet-name IS ALSO literal-3 [. ALSO literal-4] .J
{ THROUGH} .

[literal-5 [TH RU IIteral-6]] ...
ALSO literal-7 [. ALSO literal-8] ...

[. CURRENCY SIGN !§ literal-g]

[. DECIMAL-POINT .!§ COMMA] •]

Appendix J. Summary of Clauses and Statements J-5

Input..Output Section

Note: The keyword FILE-CONTROL appears only once at the beginning of the
paragraph before the first file-control entry. The key word I-O-CONTROL
appears only once at the beginning of the paragraph before the
input-output-cQntrol entry.

DNPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry} •••

U·O-CONTRO L. input-output-control-entry]] •

FILE-CONTROL Paragraph - Sequential File Entries (READER, PUNCH,
PUNCHPRINT, PRINT, PRINTER, TAPEFILE, DISKETTE, FORMATFILE,
DISK, DATABASE)

SELECT [OPTIONAL] file-name

rr- - - - - - - - -,
ASSIGN TO assignment-name-' tb.! :!sign~n~n~e-2 J....: :....:J

rr----------~

I[RESERVE integer-' [~:~~S]] IL!:: __________ ~

[ORGANIZATION IS SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-,] •

J-6

FILE-CONTROL Paragraph - Relative (Direct) File Entries (DISK, DATABASE)

SELECT file-name

ASSIGN TO assignment-name-' f(~ aSSign~n~ame-2]-::}
~________ -.l

r; - - - - -- - - -'- il

I [RESERVE integer-' [~:~~S]] I
L! __________ ~

ORGANIZATION IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-3] }
ACCESS MODE IS {

{ RANDOM}
DYNAMIC ,RELATIVE KEY IS data-name-3

[FILE STATUS IS data-name-'] .

FILE-CONTROL Paragraph - Indexed File Entries (DISK, DATABASE)

SELECT file-name

ASSI GN TO assignment-name-' ~~ assignment-name-2] • J
rr----------f1
I [RESERVE integer-' [~:~~S]] I
~ __________ :J

ORGANIZATION IS INDEXED

SEQUENTIAL}]
[ACCESS MODE IS { RANDOM

DYNAMIC

RECORD KEY IS e~~t~:2e~2~~~,::~~~~S~IBEE:~~~}[~I~H DUPLICATES]

[FILE STATUS IS data-name-,] •

FILE-CONTROL Paragraph - Sort or Merge File Entries

Appendix J. Summary of Clauses and Statements J-7

FILE-CONTROL Paragraph -TRANSACTION File Entries (WORKSTATION)

ASSIGN TO aSSignment-name-11[::i;men~a~e-2]~.}I.!:::.: _______ ..J

ORGANIZATION IS TRANSACTION

[{ SEQUENTIAL };l
ACCESS MODE IS DYNAMIC, RELATIVE KEY IS data-name-3 ~

[FILE STATUS IS data-name-1,[data-name-5]

[CONTROL-AREA IS data-name-6] .

J

I-O-CONTROL Paragraph

[IO~O~T~O.':: __________ --l
[RERUN ON assignment-name

I - I

1 EVERY integer-1 RECORDS OF file-name-1] •••1
1- _ _ 	 _ _ _ _ _ _ ______ J

RECORD]]
[SAME [SORT AREA FOR file-name-2 {, file-name-3} . .• .,.

SORT-MERGE
1-- --- - - - - - - - - - - --1
1 [MULTIPLE FILE TAPE CONTAINS 1

: file-name-4 [POSITION integer-2] :

: [file-name-5 [POSITION integer-3]] .•.] .•• :

.- --- - - --- --- ----_ ...

i~OMMITMEJ\1J CONJRQb FOR

iiil file-name-6

[. file-name-7] .. .]]

J-8

Data Division Formats

File Section Formats

FD Entry - Files (FORMATFILE, DATABASE, DISK, READER, PUNCH,
PUNCHPRINT, PRINT)

[FD file-name

[BLOCK CONTAINS Qnteger-, TO] integer-2 {~~~~~~~ERS}J
[RECORD CONTAINS Dnteger-3 TO] integer-4 CHARACTERS]

{ RECORD IS } {STANDARD}
LABEL RECORDS ARE OMITTED

rr-----------------I
I[VALUE OF user-name-' IS {~ata-name-'} I
I - literal-' I

I [{data-name-2} J] II ' user-name-2 IS literal-2 . . . I
L..- _________________ I

[DATA {:~~~:~~~RE}data-name-3 [data-name-4] •.•J
{record-descriPtion-entry} •••J...

Appendix J. Summary of Clauses and Statements J-9

__ _______________

FD Entry - Files (DISKETTE)

[FD file-name

[BLOCK CONTAINS [integer-' TO] integer-2 {~~~~~~~ERS}]
[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

1- - -{RECORD IS - }-{STANDARD} -
1 LABEL RECORDS ARE OMITTED

- - i
I

1 I
1 [VALUE OF user-name-' IS {data-name-,} 1
1 - literal-' I

:
1

[
-

• user-name-2 IS {~ata-name-2}J ..•J
hteral-2

II
J

{ RECORD IS} []][Q8!8. RECORDS ARE data-name-3 • data-name-4 •••

[CODE-SET IS alphabet-name] .

{record-description-entry} •••] •••

J

J-IO

FD Entry - Files (TAPEFILE)

[FD file-name

[BLOCK CONTAINS [integer-, TO] integer-2 {~~~~~~~ERS}]
[RECORD CONTAINS [integer-3 IQ] integer-4 CHARACTERS]

{ RECORD IS } {STANDARD}[LABEL RECORDS ARE OMITTED

r-----------------.

I VALUE OF user-name-' IS {data-name-,} I

I - literal-' I

: [{data-name-2}]] I
: ' user-name-2 IS literal-2 • • • I
'------------------'

{ RECORD IS} r]][DATA RECORDS ARE data-name-3 l! data-name-4 •••

[CODE-SET IS alphabet-name] •

{ record-descriPtion-entry} • . • J. . .

Appendix J. Summary of Clauses and Statements J-l1

L

FD Entry _. Files (PRINTER)

[FD file-name

[BLOCK CO NTAI NS [integer-, TO]integer-2 {~~;~~~~ERS}]

[RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

r-----------------,

I[LABEL {RECORD IS }
I RECORDS ARE

I

{STANDARD}
OMITTED

I
I

I
I VALUE OF user-name-' IS {data-name-,} I
: - literal-' :

IL [,",,,-n,me-2 IS e:::;~~me-2}] , , -] !
~

{ RECORD IS }' r]][DATA RECORDS ARE data-name-3 ~ data-name-4 .•.

[LINAGE IS {~ata-name-5} LINES [, WITH FOOTING AT{~ata-name-6}]
mteger-5 Integer-6

LINES AT TOP {~ata-name-7}J [, LINES AT BOTTOM {~ata-name-8}]1[-- Integer-7 Integer-8

{,".md-d"",;pt;on-ent'Y } _ • .] , • , 'J

J-12

FD Entry - TRANSACTION File

[FD file-name

[RECORQ, CONTAINS [integer-3 TO] integer-4 CHARACTERS]

r----------------------------------,
I {RECORD IS }{ STANDARD} :

: LABEL RECORDS ARE OMITTED J:
L__________________________________

{ RECORD IS} [] J[DATA RECORDS ARE data-name-3 .• data-name-4 .•. •

}.. .J

SD Entry

[SD file-name

[RECORD CONTAINS [integer-l TO] integer-2 CHARACTERS]

[DATA{~~~~~~~~RE}data-name-l [,data-name-2] ••].

{record-descriPtion-entry} ...]

Appendix J_ Summary of Clauses and Statements J-13

Working-Storage Section

Data Description Entry - Format 1 - Item Description J

;COMPUTATIONAL-4

{ data-name-1 }
level-number FILLER

[REDEFINES data-name-2]

[{ PICTURE} .]PIC IS character-string

DISPLAY

COMPUTATIONAL

COMP

USAGE IS] COMPUTATIONAL-3[
.. COMP-3

COMP-4

INDEX

[[SIGN IS] {~~~~~~GG} [SEPARATE CHARACTER]]

[OCCURS {~nteger-1 TO integer-2 TIMES DEPENDING ON data-name-3}

mteger-2 TIMES

[{ ~~~~~~~~~G} KEY IS data-name-4 [, data-name-5] 0 0 .J 0 0 oJ
[INDEXED BY index-name-1 [, index-name-2] 0 0 0]]

rr-----------,
I[{SYNCHRONIZED} [LEFT]] I

SYNC RIGHT
L!::: _-=-=- _____-== _ J

[{~IFIED} RIGHT]

[BLANK WHEN ZERO]

[VALUE IS literal] 0

J·14

Data Description Entry - Format 2 - Regroup or Rename Data Items

[{THROUGH}]66 data-name-' RENAMES data-name-2 THRU data-name-3_

Data Description Entry - Format 3 - Condition-Name Description

. . {VALUE IS }. [{THROUGH} .]88 condition-name VALUES ARE IIteral-' THRU IIteral-2

. [{THROUGH} .]][IIteral-3 THRU hteral-4 - -

Boolean Data Description Entry - Format 4 - Boolean Data

{ data.name-,}
level-number F I LLE R

[REDEFINES data-name.2]

[{~TURE} IS']

[[USAGE IS] DISPLAY]

rOCCURS {~nteger-1 TO integer-2 TIMES DEPENDING ON data-name-3}
L: mteger-2 TIMES

[INDEXED BY index-name-1 [index-name-2] - .JJ
INDICATOR}]

[{INDICATORS integer-3

INDIC

r - - - - - - - - -1
[{SYNCHRONIZED} [~ J]

I SYNC RIGHT I
I -- -- I

I
I [{JUSTIFIED} RIGHT]
I JUST I
1-~ ____ _ _ I

[VALUE IS Boolean-literaO •

Appendix J. Summary of Clauses and Statements J-15

Linkage Section

Any data description entry clause, except the VALU E clause, can describe items in
the Linkage Section. The VALUE clause can be specified only for level-88 items.
See "Working-Storage Section" earlier in this appendix for data description entry
clause formats.

Procedure Division Formats

Procedure Division Header

PROCEDURE DIVISION [USING data·name·' [.data-name.2] ...J .

Procedure Division Statements

ACCEPT Statement - Format 1

ACCEPT identifier [FROM mnemonic·name]

ACCEPT Statement - Format 2

DATE}
ACCEPT identifier FROM { DAY

TIME

ACCEPT Statement - Format 3 - Feedback

[FOR file.name]

ACCEPT Statement - Format 4 - Local Data Area

J-16

ACCEPT Statement - Format 5 - TRANSACTION Attributes

ACCEPT identifier-' FROM mnemonic-name

r.FOR rid.entifier-2} r. :::1]~ literal LfOR file-nam!J

ACQUIRE Statement - TRANSACTION File

ACQUIRE { 	 identifier} EQB file-name

literal

i

ADD Statement - Format 1

ADD {i~entifier-'} [, i~entifier-2] ... TO identifier-m [ROUNDED]
-- IIteral-' ,llteral-2

[. identifier-n [ROUNDED]] ••• [ON SIZE ERROR imperative-statement]

ADD Statement - Format 2 - Giving

ADD {identifier-,} {identifier.2} [, identifier-3]

-- literal-' 'literal·2 ,literal·3 ...

GIVING identifier-m [ROUNDED] [, identifier-n [ROUNDED]] •

[ON SIZE ERROR imperative-statement]

ADD Statement - Format 3 - Corresponding

{ CORRESPONDING}. []
ADD CORR Identifier·' TO Identlfler·2 ROUNDED

[ON SIZE ER ROR imperative.statement]

Appendix J. Summary of Clauses and Statements J-17

0

ALTER Statement

ALTER procedure-name-' TO [PROCEED TO] procedure-name-2

[. procedure-name-3 TO [PROCEED TO] procedure-name-4]

CALL Statement

CALL {identifier-,} [USING data-name-' [, data-name-2] 0 0 0]
-- literal-'

[ON OVE R F LOW imperative-statement]

CANCEL Statement

CANCEL {i?entifier-,} [, identifier-2]

IIteral-' , literal-2 0 0 0

CLOSE Statement - Format 1

{ REEL} [WITH NO REWIND]

UNIT FOR REMOVAL

CLOSE file-name-'

WITH {NO REWIND}

LOCK

{ REEL} [WITH NO REWIND]
UNIT FOR REMOVAL

, fi le-name-2

WITH {NO REWIND}

LOCK

CLOSE Statement - Format 2 - TRANSACTION File

CLOSE file-name-' [WITH LOCK]

[file-name-2 [WITH LOCK]].

J-18

COMMIT Statement

COMPUTE Statement

COMPUTE identifier-1 [ROUNDED] [, identifier-2 [ROUNDED]] ...

= arithmetic-expression [ON SIZE ERROR imperative-statement]

Declarative Procedures

[DECLARATIVES.

{section-name SECTION [segment-number] • use-sentence

[paragraPh-name. [sentence] ••.] ••• } •••

END DECLARATIVES.J

DELETE Statement

IS {i~entifier}]DELETE file-name RECO -...;;.-;.;.....- literal

[INVALID KEY

DISPLAY Statement - Format 1

{ identifier-1} [, identifier-2] []
DISPLAY , I' 12 . .. UPON mnemonic-name
---- Iiteral-l , Itera-

Appendix J, Summary of Clauses and Statements J-19

DISPLAY Statement - Format 2 - Local Data Area

D ISPLA Y { i?entifier-l} [. identifier-2]
---- Iiteral-l • Iiteral-2 ...

UPON mnemonic-name
r;;: --- - - - - --- -

:[FOR {:~:~~;~;er-3}]I
-------~,-----

DIVIDE Statement - Format 1

{ identifier-1} []DIVIDE I_ I INTO identifier-2 ROUNDED
Itera -1 -

[, identifier-3 [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

DIVIDE Statement - Format 2 - Giving

DIVI DE {i~entifier-l} {INTO} {i~entifier-2} GIViNG identifier-3 [ROUNDED]_'\.
literal-l BY Ilteral-2 ,..,

[. identifier-4 [ROUNDED]] ... [ON SIZE ER ROR imperative-statement]

DIVIDE Statement - Format 3 - Giving, Remainder

DIVIDE {i~entifier-l} {INTO} {i~entifier-2} GIVING identifier-3 [ROUNDED]
Ilteral-1 BY Iiteral-2

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]

DROP Statement

J-20

ENTER Statement

r------------------------------------I
!ENTER language-name [routine-name] .!
~-----------------------------------~

EXIT Statement

paragraph-name. EXIT [PROGRAM]

Note: The EXIT statement must be preceded by a
paragraph-name. and it must be the only statement in
the paragraph.

GO TO Statement - Format 1

GO TO [procedure-name-,]

GO TO Statement - Format 2 - Depending On (Conditional)

GO TO procedure-name-' Gprocedure-name-2] •..• procedure-name-n

DEPENDING ON identifier

IF Statement

..[] {statement-, } [{ELSE statement-2 }]
!£ conditionr.THEN NEXT SENTENCE ELSE NEXT SENTENCE

INSPECT Statement - Format 1 - Tallying

INSPECT identifier-' TALLYING

{ ALL } {identifier.3}}
{ { { LEADING [{ BEFORE} INITIAL {identifier-4}]} }• identifier-2 FOR. literal-' AFTER literal-2 • •. . ..

CHARACTERS

Appendix J. Summary of Clauses and Statements J-21

INSPECT Statement - Format 2 - Replacing

INSPECT identifier-1 REPLACING

{ identifier-6} [{ BEFORE} INITIAL {identifier-7}]

CHARACTERS BY literal-4 AFTER literal-5

{~ } { {identifier-5} BY {identifier-6} [{ BEFORE} INITIAL {identifier-7}]}
,LEADING 'I- 13 I- 14 .. } ..{ Itera - - Itera - AFTE R literal-5

FIRST

INSPECT Statement - Format 3 - Tallying and Replacing

INSPECT identifier-1 TALLYING

{ ALL } {identifier-3}}
{ {, identifier-2 FOR, { LEADING literal-1

CHARACTERS

[{ BEFORE} INITIAL {i?entifier-4}]} ••• }.
AFTER Ilteral-2

REPLACING

CHARACTERS BY {i?entifier-6} [{BEFORE} INITIAL {i?entifier-7}]
- IIteral-4 AFTER Ilteral-5

{
~DING} { {identifier-5} BY {i?entifier-6}{ , FIRST '1Iteral-3 - Ilteral-4

[{ BEFORE}. {identifier-7}]} }
AFTER INITIAL literal-5 .• , •

J-22

MERGE Statement

, {ASCENDING} []MERGE fde-name-1 ON DESCENDING KEY data-name-1 ,data-name-2 0

{ ASCENDING} [][ON DESCENDING KEY data-name-3 , data-name-4 oJ 0
0

[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4]
0

OUTPUT PROCEDURE IS section-name-1 [{~~:~UGH} section-name-2J}
{

GIVING file-name-5

MOVE Statement - Format 1

MOVE { identifier-1} TO 'd 'f' -2 ['d 'f' 3] __ literal _ I entl ler , I entl ler 0 0 0

MOVE Statement - Format 2 - Corresponding

O E { CORRESPONDING} 'd '" TO'd 'f' 2M....L CORR I entloler-1 _ I entl ler-

Appendix J. Summary of Clauses and Statements J-23

MULTIPLY Statement - Format 1

MULTIPLY {:~:~~:~~er-1} BY identifier-2 [ROUNDED] J
[, identifier-3 [ROUNDED]] ••• [ON SIZE ERROR imperative-statement]

MULTIPLY Statement - Format 2 - Giving

MULTIPLY {i?entifier-1} BY {i?entifier-2} GIVING identifier-3 [ROUNDED]

Ilteral-1 - Ilteral-2

[, identifier-4 [ROUNDED]] .•• [ON SIZE ERROR imperative-statement]

OPEN Statement - Sequential Files

. [REVERSED]
INPUT file-name-1 WITH NO REWIND

. [REVERSED]J[,flle-name-2 WITH NO REWIND

JOUTPUT file-name-3 [WITH NO REWIND]OPEN

[, file-name-4[WITH NO REWIND]]

1-0 fi le-name-5 [, fi le-name-6] . . •

EXTEND file-name-7 [, file-name-8] •

OPEN Statement - TRANSACTION File

-1 [file-name-2

J-24

OPEN Statement - Indexed and Relative Files

INPUT} }
OPEN {{~UT file-name-1 [, file-name-2] .. , ...

PERFORM Statement - Format 1

[{THROUGH}]PERFORM procedure-name-l THRU procedure-name-2

PERFORM Statement - Format 2 - Multiple Times

[{ TH ROUGH}] {identifier-l}
PERFORM procedure-name-1 THRU procedure-name-2 integer-l TIMES

PERFORM Statement - Format 3 - Until Condition Satisfied

PERFORM procedure-name-1 [{=UGH} procedure-name-2] UNTIL condition-1

AppendixJ. Summary of Clauses and Statements J-25

PERFORM Statement-Format 4-Varying Index or Identifier

[{THROUGH} 	 JPERFORM 	procedure-name-' THRU procedure-name-2

" " " } {identifier-2 }
VARYING {~dentlfler-' FROM index-name-2

mdex-name-' I" 12
Itera

BY {identifier-3}" UNTIL d""-' _ literal-3 ___ con Itlon

"" " } {identifier-5}
[AFTE R {	 ~dentlfler-4 FROM index-name-5

mdex-name-4 I" 15
Itera

BY {identifier-6} UNTIL d"" -2
_ literal-6 --- con ItlOn

rAFTER {~dentifier-7 } FROM {:~~:~~~::~-8}
L.: 	 mdex-name-7 I" 18Itera

{ identifier-9} 	 JJ
BY literal-9 UNTI L condition-3

READ Statement - Format 1 - Sequential Retrieval using SEQUENTIAL Access

READ file-name RECORD

[I NTO identifier-']

rFORMAT IS {i~entifier-2}J
~ Ilteral-1

[AT END imperative-statemenu

J·26

READ Statement - Format 2 - Sequential Retrieval using DYNAMIC Access

READ file-name

[I NTO identifier-']

[FORMAT IS {i~entifier-2}J
Iiteral-'

END imperative-statement]

READ Statement - Format 3 - Random Retrieval

READ file-name RECORD [INTO identifier-']

FORMAT IS

[INVALID KEY imperative-statement]

Appendix J. Summary of Clauses and Statements J-27

READ Statement - Format 4 - TRANSACTION File (NonsubfiIe)

[INTO identifier-,]

[FORMAT IS {i~entifier-2}]
literal- ,

[

[{

TERM INAL IS {i~entifier-3}J
IIteral-2

INDICATOR IS}]
=ATORS [ARE] identifier-4

[NO DATA imperative-statement-']

[AT END imperative-statement-2]

READ Statement - Format 5 - TRANSACTION File (Subfile)

[NEXT MODIFIED] RECORD

[INTO identifier-,]

[FORMAT IS {i~entifier-2}]
literal- ,

TERM INAL IS {identifier-3}

literal-2

[{ :~~:~~~g:s [~RE] } identifier-4]
INDIC

[INVALID KEY imperative-statement-']

[AT EN D imperative-statement-2]

J-28

RELEASE Statement

RELEASE record-name [FROM identifier]

RETURN Statement

RETURN file-name RECORD [INTO identifier] AT §@ imperative-statement

REWRITE Statement - Format 1

REWR ITE record-name [F ROM identifier-,]

[INVALID KEY imperative-statement]

REWRITE Statement - Format 2 - TRANSACTION File (Subfile)

REWRITE SUBFILE record-name [.EB..QM identifier-']

FORMAT IS {i~entifier-2}
IIteral-'

~ERMINAL IS{i~entifier-3}]
~ hteral-2

:~~:~~~~~S [~REJ }
 identifier-4]'[{
INDIC

[INVALID KEY imperative-statement]

ROLLBACK Statement

Appendix J. Summary of Clauses and Statements J-29

SEARCH Statement - Format 1 - Selective Table Search

{ identifier-2 }] J
SEARCH identifier-l [VARYING . d 1 [AT END imperative-statement-l]

In ex-name

. . {imperative-statement-2}

WHEN condltlon-1 NEXT SENTENCE

. . {imperative-statement-3}] [WHEN condltlon-2 NEXT SENTENCE

SEARCH Statement - Format 2 - Key Table Search

SEARCH ALL identifier-1 [AT END imperative-statement-l]

identifier-3 } }
{ IS EQUAL TO}data-name-1 { Iiteral-1

IS =
WHEN { arithmetic-expression-1

cond Itlon-name-1

IS EQUAL TO} {identifier-4 }d 2 {ata-name- literal-2
IS =

arithmetic-expression-2

condition-name-2

imperative-statement-2}{
NEXT SENTENCE

SET Statement - Format 1

[, mnemonic-name-2] •.• TO {~FF

SET Statement - Format 2

J-30

SET Statement - Format 3

identifier-3 }
SET {identifier-1 [, identifier-2] .

:} TO { ~ndex-name-3 -- index-name-1 [, index-name-2] .
Integer-1

SET Statement - Format 4

{ UP BY } {identifier-4}SET index-name-4 [,index-name-5] . .. DOWN BY integer-2

SORT Statement

_ {ASCEND ING }
SORTfile-name-10N DESCENDING KEYdata-name-1 ~ data-name-~

[ON {~~~~~~~~~G } KEY data-name-3 [, data-name-~ •••] .

[COLLATING SEQUENCE IS alphabet-nam~

. [{THROUGH} _]}INPUT PROCEDURE ISsectlon-name-1 THRU sectlon-name-2

{

USING file-name-2 [. file-name-3] •••

{
Ll}_[{THROUGH}.OUTPUT PROCEDURE IS sectlon-name-3 THRU sectlon-name~

GIVING file-name-4

START Statement

- EQUAL TO

GREATER THAN
START file-name KEY IS >

NOT LESS THAN
NOT<

rFORMAT IS {i~entifier-1}]
~ hteral-1

(INVALID KEY imperative-statement]

Appendix J. Summary of Clauses and Statements J-31

STOP Statement

STOP {RUN}
-- literal

STRING Statement

identifier-3}
STRING {identifier-,} [. li~entilf2ier-2J ..• DELIMITED BY { literal-3

literal-' • Itera-
SIZE

[{ i~entifier-4} [. i~entifier-5J ••• DELIMITED BY i~entifier-6}]
{ Iiteral-6 •••

• IIteral-4 , Ilteral-5
SIZE

INTO identifier-7 [WITH POINTER identifier-S]

[ON OVE R F LOW imperative-statement]

SUBTRACT Statement - Format 1

SUBTRACT { id.entifier-,} [. id.entifier-2]. D 0•• FROM identifier-3 ROUNDED
IIteral-' • IIteral-2

[, identifier-4 [ROUNDED]] ••. [ON SIZE ERROR imperative-statement]

SUBTRACT Statement - Format 2 - Giving

SUBTRACT {i~entifier-'} C' i~entifier-2J ••• FROM{ i~entifier-3 }

IIteral-' • Iiteral-2 -- Iiteral-3

GIVING identifier-4 [ROUNDED] [, identifier-5 [ROUNDED]]

[ON SIZE ERROR imperative-statement]

J-32

SUBTRACT Statement - Format 3 - Corresponding

SUBTRACT {~,~,~ESPONDING} identifier-' FROM identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]

UNSTRING Statement

UNSTRING identifier-'

J {id,entifier-2} [OR [ALL] {id,entifier-3}].][DELIMITED BY [ALL Iiteral-' '- -- IIteral-2 •.

INTO identifier-4 [, DELI MITE R IN identifier-5] [, COUNT IN identifier-6]

[. identifier-7 GDELIMITER IN identifier-S] [, COUNT IN identifier-g]]

[WITH POINTER identifier-'~ [TALLYING IN identifier-,,]

[ON OVERFLOW imperative-statemen~

USE Statement-EXCEPTION/ERROR Procedure-Format 1

file-name-' [, file-name-2]

llif!IT.
USE AFTER STANDARD {~~~~PRTION} PROCEDURE ON OUTPUT

1-0
EXTEND

USE Statement - EXCEPTION/ERROR Procedure (TRANSACTION) - Format 2

{ ERROR }
USE AFTER STANDARD EXCEPTION

PROCEDURE ON G~~-name-' [!ile-name-2] ••• } •

Appendix J, Summary of Clauses and Statements J-33.

USE Statement - FOR DEBUGGING

[ALL REFERENCES OF] identifier-l
fi le-name-l

USE FOR DEBUGG ING ON
procedure-name-l
ALL PROCEDURES

[ALL REFERENCES OF] identifier-2]'

fi le-name-2
[
procedure-name-2 	 .
ALL PROCEDURES

WRITE Statement - Format 1 - Sequential Files

WR ITE record-name [F ROM identifier-l]

{ ~dentifier-2} {LINE }
mteger LINES

{	 BEFORE} ADVANCING

AFTER

mnemo, nie-name} { PAGE

{ END-OF-PAGE} ..]
[AT EOP Imperatlve-.statemen.t , J

WRITE Statement - Format 2 - Indexed, and Relative Files

WR ITE record-name [F ROM identifier-l]

[FORMAT IS {i?entifier-2}]
literal-l

INVALID KEY imperative-statement]

J-34

WRITE Statement - Format 3 - FORMATFILE Files

WR ITE record-name [}= ROM identifier-,]

-
FORMAT IS {i~entifier-2}]

.. IIteral-'

~{INDICATOR [IS} ~
INDICATORS ARE] identifier-3
INDIC

[AT {~F.PAGE} ;mp"'t;ve-statement]

WRITE Statement-Format 4-TRANSACTION File (Nonsubfile)

WRITE record-name [FROM identifier-,]

FORMAT IS {i~entifier'2}

llteral-'

[TERMINAL IS {i~entifier-3}]
Ilteral-2

[STARTING AT LINE {i~entifier-4}J
IIteral-3

{ BEFORE} NG [LlNES]{identifier-5}
AFTER ROLLI LINE literal-4

[THROUGHl {identifier-6} {UP
THRU J literal-5 .;;....-._.'

{ 	identifier-7} [LiNESl
literal-6 LINE J

{ :~~:~~~g~s [~RE]} identifier-8]
INDIC

Appendix J. Summary of Clauses and Statements J-35

WRITE Statement-Format 5-TRANSACTION File (Subfile)

WRITE SUBFILE record-name [FROM identifier-1]

FORMAT IS {identifier-2}

literal-1

[TERMINAL IS fi~entifier-3}J
\'llteral-2

INDICATOR IS}]
[{	INDICATORS [RE] identifier-8

INDIC A

[INVALID KEY imperative-statement]

J-36

Conditional Expressions

Class Condition

00 [] {NUMERIC }
identifier IS NOT ALPHABETIC

Condition-Name Condition

condition-name

Relation Condition

GREATER THAN
LESS THAN
EQUAL TO

operand-1 IS [NOT] operand-2>
<

Sign Condition

POSITIVE}
operand IS [NOT] { NEGATIVE

ZERO

Switch-Status Condition

condition-name

Negated Simple Condition

NOT simple-condition

Combined Condition

condItlono ° {{AND}OR condO ° }Itlon

Appendix Jo Summary of Clauses and Statements J-37

Abbreviated Combined Relation Condition

J
GREATER THAN
LESS THAN
EQUAL TO

relation-condition {~~D} [NOT] > object

<

J

J-38

Qualification of Data Reference Formats

Data Item Reference

{ data-name-, } [{ 01NF} data-name-2] . . .
condition-name

Procedure Name Reference

paragraph-name [{~:} section-name]

COPY Library Reference

text-name [{~:} library-name]

Note: library·name has the following format:
System/38 file name ESystem/38 library name]

Subscripting

{ data-name-, } [{OF}] []data-name-2 ••• (subscript-' ,subscript-2 [,subscriPt-3])INcondition-name

Appendix J. Summary of Clauses and Statements J-39

Indexing

[{OF}] {indeX-name-, [{±} literal-2]} J
{ data-name-, }

IN data-name-2 •.. (condition-name
- literal-'

• {i~deX-name-2 [{±} literal-4]} [, {indeX-name-3 [{±} literal-6] } J])
[

IIteral-3 literal-5

J

J

J-40

All Divisions

Copy Statement - Format 1

COpy text-name [{~:} System/38 file name [-System/38 library nam!)

==pseudo-text-1 ==} { ==PseUdo-text-2==}
identifier-1 BY identifier-2

REPLACING {
• 	 literal-1 - literal-2

word-1 word-2

COpy Statement - Format 2 - DDS Translate

COpy I::~~:'~:::TS)[:~][::~g:~~~~~s]
-- DDS-ALL-FORMATS -1-0 -INDIC

{~:}System/38 file name ESystem/38 library nam~

==pseUdo-text-, ==} {==pseUdo-text-2==}
identifier-' BY identifier·2

REPLACING {
, 	 literal-' - literal-2

word·' word-2

Appendix J. Summary of Clauses and Statements J-41

PROCESS Statement

The PROCESS statement allows you to specify compile-time options unique to J
COBOL. The PROCESS statement must immediately precede the
IDENTIFICATION DIVISION header. The format of the PROCESS statement is as
follows:

PROCESS option-' [option-2] ... [oPtion-~ [.]

The following list identifies PROCESS statement options. The options can appear
in any order. Defaults are underlined.

SOURCE or SRC OPTIONS
NOSOURCE or NOSRC NOOPTIONS

XREF
NOXREF

QUOTE
APOST

GEN LIST
NOGEN NOLIST

SEQUENCE
NOSEQUENCE

GENLVL(n) [n =
GENLV1(29)

0 through 29]

VBSUM
NOVBSUM

FIPS(NO.L.LI.HI.H)

LINENUMBER
NUMBER
NONUMBER

FLAG (00)
FLAG (n) [n = 0 through 99]

MAP
NOMAP

J

J-42

Symbols Allowed in the PICTURE Clause

Symbol 	 Meaning

A Alphabetic character or space
B Space insertion character
P Decimal scaling position (not counted in size of data item)
S Operationai sign (not counted in size of data item unless a SIGN

clause with optional SEPARATE CHARACTER phrase is specified)
v Assumed decimal point (not counted in size of data item)
X Alphanumeric character (any from the EBCDIC set)
Z Zero suppression character
9 Numeric character

1 Boolean cha

o Zero insertion character
/ 	 Slash insertion character

Comma insertion character
Decimal point or period editing control character

+ 	 Plus sign insertion editing control character
Minus sign editing control character

CR Credit editing control character
DB Debit editing control character
* Check protect insertion character
cs Currency sign insertion character (default is $).

Assignment-Names in the ASSIGN Clause

device-system/38 file name tattributeJ

device:

system/38 file name:

attribute:

hopper:

association:

READER
PUNCH
PUNCHPRINT
PRINT
PRINTER
TAPEFILE
DISKETTE
DISK
DATABASE
WORKSTATION
FORMATFILE

1-10 character system-name

- hopper [-association]
SI (for separate indicator area)

P or S (for card devices only)

0-9 (for card devices only)

Appendix J. Summary of Clauses and Statements J-43

J

J

J-44

Glossary

abbreviated combined relation condition. The
combined condition that results from the explicit
omission of a common subject or a common subject
and common relational operator in a consecutive
sequence of relation conditions.

access mode. The manner in which files are
referenced by the computer. Access can be
sequential (records are referred to one after another
in the order in which they appear on the file), it can
be random (the individual records can be referred to
in a nonsequential manner), or it can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the specific input/output
request).

access path. The means by which CPF provides a
logical organization to the data in a data base file
so that the data can be processed by a program. See
also arrival sequence access path and keyed sequence
access path.

actual decimal point. The physical
representation - using either of the decimal point
characters (. or ,) - of the decimal point position in a
data item. The actual decimal point appears in
printed reports and requires a storage position in a
data item. Contrast with assumed decimal point.

alias name. A DDS keyword, which allows a DDS
field to be referenced by an alternate name (an
alias).

alphabet-name. A user-defined word, in the
SPECIAL-NAMES paragraph of the Environment
Division, which names a character set and/or
collating sequence.

alphabetic character. A character that is one of
the 26 uppercase characters of the alphabet, or a
space.

alphanumeric character. Any character in the
computer's character set.

alphanumeric edited character. An
alphanumeric data item whose PICTURE character
string contains at least one B, 0, or /.

American National Standard Code for
Information Interchange. The standard code
used for information interchange between data
processing systems, data communications systems,
and associated equipment. The code uses a coded
character set consisting of 7-bit coded characters (8
bits including parity check). The set consists of
control characters and graphic characters.
Abbreviated ASCII.

American National Standards Institute. An
organization sponsored by the Computer and
Business Equipment Manufacturers Association for
the purpose of establishing voluntary industry
standards. Abbreviated ANSI.

ANSI. See American National Standards Institute.

arithmetic expression. A statement containing
any combination of data-names, numeric literals,
and figurative constants, joined together by one or
more arithmetic operators in such a way that the
statement as a whole can be reduced to a single
numeric value.

arithmetic operator. A symbol that indicates the
arithmetic operation to be performed. The
arithmetic operators include: + (addition),
(subtraction), * (multiplication), / (division), and **
(exponentiation).

arrival sequence access path. An access path
that is based on the order in which records are
stored in a physical file. Contrast with keyed
sequence access path.

ascending key. The values by which data is
ordered from the lowest value to the highest value
of the key in accordance with the rules for
comparing data items. Contrast with descending
key.

ascending key sequence. The arrangement of
data in an order from the lowest value of the key
field to the highest value of the key field. Contrast
with descending key sequence.

Glossary GLOSS-l

ASCII. See American National Standard Code for
Information Interchange.

assignment-name. A word that associates a
file-name with an external device.

assumed decimal point. A logical decimal point
position that does not occupy a storage position in a
data item. It is used by the compiler to align a
value properly for calculation. Contrast with actual
decimal point.

AT END condition. A condition that occurs at
the following times: during the execution of a READ
statement for a sequentially accessed file; during
the execution of a RETURN statement when no next
logical record exists for the associated sort or merge
file; during the execution of a SEARCH statement
when the search operation terminates without
satisfying the condition specified in any of the
associated WH EN phrases.

auxiliary storage. All addressable storage other
than main storage. Auxiliary storage is located in
the system's nonremovable disk enclosures.

binary item. A numeric data item that is
represented internally in binary notation (that is, as
a number in the base 2); internally, each bit of the
item is a binary digit with the sign as the leftmost
bit.

binary synchronous communications. A form of
communications line control that uses transmission
control characters to control the transfer of data
over a communications line. Abbreviated BSC.
Contrast with synchronous data link control.

block. A unit of data that is moved into or out of
the computer.

Boolean data type. A category of data items that
are limited to a value of 1 or o.

Boolean literal. A literal composed of a Boolean
character enclosed in double quotes and preceded by
a B; for example, B" I" .

bottom margin. A blank area that follows the
page body.

boundary violation. An attempt to write beyond
the externally defined boundaries of a sequential
file.

breakpoint. A place in a program (specified by a
command or a condition) where the system halts
execution and gives control to the work station user
or to a specified program.

BSC. See binary synchronous communications.

BSC file. A device file created by the user to
support BSC. Contrast with communications file.

buffer. A portion of main storage into which data
is read or from which it is written.

called program. A program whose execution is
requested by another program (a calling program) or
by a command.

calling program. A program that requests the
execution of another program (a called program).

character. Any letter, digit, or other symbol in
the data character set that is part of the
organization, control, or representation of data.

character literal. A symbol, quantity, or constant
in a source program that is itself data, instead of a
reference to data. Contrast with numeric literal.

character set. All the valid characters for a
programming language or for a computer system.

character string. A sequence of characters that
form a COBOL word, a literal, a PICTURE
character-string, or a comment-entry.

class condition. A logical condition that states
that the content of an item is all alphabetic or all
numeric.

clause. An ordered set of consecutive COBOL
character-strings whose purpose is to specify an
attribute of an entry. There are three types of
clauses: data, environment, and file.

collating sequence. The order each character
holds in relation to other characters according to
the bit structure.

column. A character position measured
horizontally within a print line. The columns are
numbered from 1, by 1, starting at the leftmost
character position of the print line and extending to
the rightmost position of the print line.

combined condition. A condition that is the
result of connecting two or more conditions with
the AND or the OR logical operator.

comment. A word or statement in a program,
command, or file that serves as documentation
instead of as instructions. A comment is ignored by
a compiler.

J

J

J

GLOSS-2

comment line. A source program line that is not
translated by the compiler. The comment line can
be used to document the program.

comment-entry. An entry in the Identification
Division that is not translated by the compiler.

commitment boundary. In COBOL, a point
established by the successful execution of each
COMMIT or ROLLBACK statement. Hno COMMIT or
ROLLBACK has been issued, a commitment boundary
is established by the first OP EN of any file under
commitment control.

commitment control. An environment, defined in
COBOL through the I -O-CONTROL Paragraph, that
allows the synchronizing of data base changes
through a COMM I T statement, or the canceling of
data base changes through the ROLLBACK
statement, and that provides different levels of
locking for records being changed.

common key. The key fields that are common to
all record formats in the file starting with the first
key field (the most significant) and ending with the
last key field (the least significant).

communications file. A device file created by the
user to support LUI SDLC communications.
Contrast with BSC file.

communications device. A BSC, LUI, or PEER
device used through a BS C, communications, or
mixed file. In COBOL, these files are defined as
ORGANIZATION IS TRANSACTION.

compilation. Translation of a source program
(such as RPG or COBOL specifications) into an
executable program.

compile time. The time during which a source
program is translated by a compiler into an
executable program.

compiler. A program that translates a source
program into an executable program.

compiler-directing statement. A COBOL
statement that causes the compiler to take a
specific action during compilation, rather than
causing the program to take a particular action
during execution.

complex condition. A condition in which one or
more logical operators (AND, OR, or NOT) act upon
one or more conditions. Complex conditions include
negated simple conditions, combined conditions, and
negated combined conditions.

compound condition. A statement that tests two
or more relational expressions. It may be true or
false.

computer-name. A system-name that identifies
the computer upon which the program is to be
compiled or run.

condition. An expression in a program for which a
truth value can be determined at execution time.
Conditions include the simple conditions (relation
condition, class condition, condition-name
condition, switch-status condition, sign condition)
and the complex conditions (negated simple
conditions, combined conditions, negated combined
conditions).

condition-name. A name assigned to a specific
value, set of values, or range of values within the
complete set of values that a conditional variable
can have.

condition-name condition. A condition that
states that the value of a conditional variable is a
member of the set of values assigned to a
condition-name associated with the conditional
variable.

conditional expression. A simple condition or a
complex condition specified in an I F, PERFORM, or
SEARCH statement. See also simple condition and
complex condition.

conditional statement. A statement that causes
the truth value of a condition to be determined and
that controls program execution depending on this
truth value.

conditional variable. A data item for which one
or more values have a condition-name assigned to
them.

CONFIGURATION SECTION. A section of the
Environment Division of the COBOL program. It
describes the overall specifications of computers.

connective. A word or a punctuation character
that associates a data-name, paragraph-name,
condition-name, or text-name with its qualifier;
links two or more operands in a series; or forms a
conditional expression.

CONSOLE. A COBOL function-name associated
with the operator's keyboard/display.

constant. Data that has an unchanging,
predefined value to be used in processing. A
constant does not change during the execution of a
program, but the contents of a field or variable can.
See also literal.

Glossary GLOSS-3

contiguous items. Consecutive elementary or
group items in the Data Division that are contained
in a single data hierarchy.

control language. The set of all commands with
which a user requests functions. Abbreviated CL.

currency sign. The character $.

currency symbol. The character defined by the
CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. !fno CURRENCY SIGN clause is present,
the currency sign is used. See currency sign.

current record. The record that is available in
the record area associated with the file.

current record pointer. A conceptual entity that
is used in sequential retrieval of the next record.

data base. The collection of all data base files
stored in the system.

data clause. A clause that appears in a data
description entry in the Data Division and provides
information describing a particular attribute of a
data item.

data communications file. A generic term for a
communications file or a BS Cfile. See also
communications file and ESC file.

data description entry. A Data Division entry
that describes the characteristics of a data item.

data description specifications. A description of
the user's data base or device files that is entered
into the system using a fixed-form syntax. The
description is then used to create files. Abbreviated
DDS.

DATA DIVISION. One of the four main parts of a
COBOL program. The Data Division describes the
files to be used in the program and the records
contained within the files. It also describes any
internal Working-Storage records that will be
needed.

data item. A character or a set of contiguous
characters (excluding literals) defined as a unit of
data by the COBOL program.

data-name. A user-defined word that names a data
item. When used in the general formats, data-name
represents a word that can be neither subscripted,
indexed, nor qualified unless specifically permitted
by the rules of that format. An index-name is not a
data-name. See also identifier.

DD. See Alias Name.

DDS. See data description specifications.

debugging line. A COBOL statement executed
only when the WITH DEBUGGING MODE clause is
specified. Debugging lines can be used to help
determine the cause of an error.

debugging section. A decIaratives section that
receives control when an identifier, file-name, or
procedure-name is encountered in the Procedure
Division.

declarative-sentence. A compiler-directing
sentence that specifies when a debugging section or
an exception/error procedure is to be executed.

Declaratives. A set of one or more special-purpose
sections, written at the beginning of the Procedure
Division, and which can be used for input/output
error checking or debugging.

delimiter. A character or a sequence of
contiguous characters that identifies the end of a
string of characters. A delimiter separates a string
of characters from the following string of
characters. A delimiter is not part of the string of
characters that it delimits.

descending key. The values by which data is
ordered from the highest value to the lowest value
of the key, in accordance with the rules for
comparing data items. Contrast with ascending key.

descending key sequence. The arrangement of
data in order from the highest value of the key field
to the lowest value of the key field. Contrast
with ascending key sequence.

device file. An object that contains a description
of how input data is to be presented to a program
from an external device and/or how output data is
to be presented to the external device from the
program. External devices can be work stations,
card devices, printers, diskette magazine drives,
magazine tape drives, or a communications link.

digit. Any of the numerals from 0 through 9.

direct file. See relative file.

Distributed Data Management (DDM). A
program product that allows an application program
or user on a source system to access data files on
remote systems connected by a communications
network that also uses DDM.

division. One of the four major parts in a COBOL
program: Identification, Environment, Data, and
Procedure. J

J

GLOSS-4

division header. The COBOL reserved words and
punctuation that indicate the beginning of one of
the four divisions of a COBOL program.

dynamic access.. An access mode in which records
can be read from or written to a file in a
nonsequential manner (see random access) and read
from a file in a sequential manner (see sequential
access) during the scope of the same OPEN
statement.

EBCDIC. Extended binary-coded decimal
interchange code. A coded character set consisting
of 8-bit coded characters.

editing character. A single character or a fixed
2-character combination used to format output.

elementary item. A data item that is described as
not being logically subdivided.

entry. Any descriptive set of consecutive clauses
terminated by a period and written in the
Identification, Environment, or Procedure Division
of a COBOL source program.

ENVIRONMENT DIVISION. One of the four
main parts of a COBOL program. The Environment
Division describes the computers upon which the
source program is compiled and those on which the
object program is executed; it also provides a
linkage between the logical concept of files and
their records, and the physical aspects of the
devices on which files are stored.

exception. The occurrence of a machine or
user-defined condition that can be monitored for and
that is directly associated with the execution of a
particular function within a program. Exceptions
generally represent an abnormality detected by the
machine or by a program.

executable program. The set of machine
language instructions that is the output from the
compilation of a source program. The actual
processing of data is done by the executable
program.

execution time. The time during which the
instructions of a computer program are executed by
a processing unit.

exponent. A number, indicating to which power
another number (the base) is to be raised. In
COBOL, exponentiation is indicated with the
symbol ** followed by an exponent.

EXTEND mode. An open mode in which records
are added to the end of a sequential file.

external decimal item. See zoned decimal item.

externally described data. Data contained in a
file for which the fields in the records are described
to C P F, by using data description specifications,
when the file is created. The field descriptions can
be used by the program when the file is processed.
Contrast with program-described data.

externally described file. In S/38 COBOL, a file
for which one or more COpy statements. DDS
format, are coded as part of the record description
entry (or entries) for the file. These COpy
statements provide the program with the description
of the file used by CP F to create and process the
file. Contrast with program described file.

figurative constant. A reserved word that
represents a numeric or character value, or a string
of repeated values. The word can be used instead of
a literal to represent the value.

FILE-CONTROL. The name and header of an
Environment Division paragraph in which the data
files for a given source program are named and
assigned to specific input/output devices.

file description. An entry in the File Section of
the Data Division that provides information about
the identification and physical structure of a file.

file-name. A name, associated with a file, defined
in a file description entry or in a sort-merge file
description entry.

file organization. The permanent file structure
established at the time that a file is created.

FILE SECTION. A section of the Data Division
that contains descriptions of all externally stored
data (or files) used in a program. Such information
is given in one or more file description entries.

file separator. The pages or cards to be produced
at the beginning of each output file to separate the
file from the other files being spooled to an output
device.

function-name. A name, defined by IBM, that
identifies system logical units, system-supplied
information, printer and card punch control
characters, or program switches.

group item. A named set of contiguous
elementary or group items.

hierarchy. A hierarchy is a set of entries that
includes all subordinate entries to the next equal or
higher level number.

Glossary GLOSS-5

IDENTIFICATION DIVISION. One of the four
main parts of a COBOL program. The Identification
Division identifies the source program and the
object program and, in addition, may include such
documentation as the author's name, the
installation where written, the date written, and so
on.

identifier. A data-name that is unique or is made
unique by a combination of qualifiers, subscripts,
and/or indexes.

imperative statement. A statement that specifies
that an action is to be taken unconditionally. An
imperative statement can consist of a series of
imperative statements.

implementor-name. An IBM-defined name that
includes assignment-names, function-names, and
user-names.

index. A computer storage position or register, the
contents of which identify a particular element in a
set of elements.

index data item. A data item in which the
contents of an index can be saved.

index-name. A user-defined word that names an
index. An index-name is not a data-name.

indexed data-name. A data-name followed by one
or more index-names, enclosed in parentheses,
which is used to reference an element or a set of
elements in a table.

indexed file. A data base file whose access path is
built on key values. Each record in the file is
identified by a key field.

indexed organization. The file structure in which
each record is identified by the value of one or more
keys within that record.

indicator. An internal switch used by a program
to remember when a certain event occurs and what
to do when the event occurs.

input file. A file that is opened in the input mode.

input mode. An open mode in which records can
be read from the file.

input-output file. A file that is opened in the 1-0
mode.

INPUT-OUTPUT SECTION. In the Environment
Division, the section that names the files and
external media needed by an object program. It also
provides information required for the transmission

GLOSS-6

and handling of data during the execution of an
object program. JINPUT PROCEDURE. A procedure that provides
special processing of records when they are released
to the sort function.

integer. A numeric data item or literal that does
not include any character positions to the right of
the decimal point. Where the term integer appears
in formats, integer must be an unsigned numeric
literal and must be nonzero unless the rules for that
format explicitly state otherwise.

internal decimal item. See packed decimal item.

INVALID KEY condition. An execution-time
condition in which the value of a key for an indexed
or relative file does not give a correct reference to
the file.

invited device. A work station or communications
device that was written to using a DDS format that
had the I NV I TE option specified. For multiple
device files, the READ statement will read from any
invited program device if no particular program
device is specified for input using the TERM I NAL
phrase and no specific FORMAT is requested.

I-O-CONTROL. The name and the header for an
Environment Division paragraph in which program Jrequirements for specific input/output techniques
are specified. These techniques include rerun
checkpoints, the sharing of same areas by several
data files, and the use of a storage-resident cylinder
index.

1-0 mode. An open mode where records can be
read from, written to, or deleted from the file.

job separator. The pages or cards placed at the
beginning of the output for each job that has
spooled file entries on the output queue. Each
separator contains information that identifies the
job such as its name, the job user's name, the job
number, and the time and date the job was executed.

key. A data item that identifies the location of a
record, or a set of data items that is used to place
data in ascending or descending sequence.

key field. A field in a record whose contents are
used to sequence the records of a particular type
within a file member.

keyword. A reserved word that is required by the
syntax of a COBOL statement or entry.

keyed sequence access path. An access path to a
data base file that is ordered on the contents of key

fields contained in the individual records. Contrast
with arrival sequence access path.

language-name. A system-name that specifies a
particular programming language.

level indicator. Two alphabetic characters, FD or
SD, that identify the type of file description entry.

level-number. A numeric character (1 through 9)
or a 2-character set (01 through 49, 66, 77, 88) that
begins a data description entry, and establishes its
level in a data hierarchy. Level-numbers 66, 77,
and 88 identify special properties of a data
description entry.

library. An object that serves as a directory to
other objects. A library is used to group related
objects and to find objects by name when they are
used. The system-recognized identifier for the
object type is *L lB.

library-name. A user-defined word that names a
library.

LINKAGE SECTION. A section of the Data
Division that describes data made available from
another program.

literal. A character string whose value is given by
the characters themselves. For example, the
numeric literal 7 has the value 7, and the character
literal CHARACTERS I has the value CHARACTERS.I

See also character literal, constant, and numeric
literal.

local data area. An area automatically created by
the system for each job. The local data area is
defined outside the COBOL program as 1024 bytes of
character data. The local data area initially has the
same value as the submitting job's local data area
or, if there was no submitting job, has an initial
value of blanks.

logical file. A description of how data is to be
presented to or received from a program. This type
of data base file contains no data, but it provides an
ordering and format for one or more physical files.
Contrast with physical file.

logical operator. A COBOL reserved word that
defines the logical connection between conditions or
negates a condition: OR (logical connective - either
or both), AND (logical connective - both), and NOT
(logical negation).

logical record. The most inclusive data item. The
level number for a logical record is 01.

main program. The highest level program
involved in a run unit.

main storage. All storage in a computer from
which instructions can be executed directly.

merge file. The temporary file that contains all
the records to be merged by a MERGE statement.
The merge file is created and can be used only by
the merge function.

mixed file. A CP F device file that supports: one or
more work stations, one or more communications
devices, or any combination of work stations and
communications devices. A mixed file is processed
in COBOL by a file with ORGAN I ZA TI ON IS
TRANSACTION.

mnemonic-name. A user-defined word associated
with a function-name in the Environment Division.

mode. See access mode.

multiple device file. A device file that was
created with the maximum number of program
devices greater than one. Display files or mixed
files can be multiple device files. Contrast with
single device file.

name. A word that defines a COBOL operand. A
name is composed of not more than 30 characters.

native character set. The default character set
associated with the computer specified in the
OBJECT -COMPUTER paragraph.

native collating sequence. The default collating
sequence associated with the computer specified in
the OBJECT -COMPUTER paragraph.

negated combined condition. The NOT logical
operator immediately followed by a parenthesized
combined condition.

negated simple condition. The NOT logical
operator immediately followed by a simple
condition.

nest. To incorporate a structure or structures of
some kind into a structure of the same kind. For
example, to nest one loop (the nested loop) within
another loop (the nesting loop); to nest one
subroutine (the nested subroutine) within another
subroutine (the nesting subroutine).

next executable sentence. The sentence to which
control is transferred after execution of the current
statement is complete.

next executable statement. The statement to
which control is transferred after execution of the
current statement is complete.

Glossary GLOSS-7

next record. The record that logically follows the
current record of a file.

noncontiguous item. A data item in the
Working-Storage Section of the Data Division that
bears no relationship with other data items.

nonnumeric item. A data item that is
alphanumeric, alphabetic, or Boolean.

nonnumeric literal. A character string bounded
by quotation marks, which literally means itself.
See also literal.

numeric charact€:r. Anyone of the digits 0
through 9.

numeric edited item. A numeric item whose
PI CTU R E character-string contains valid editing
characters.

numeric item. A data item that must be numeric.
If signed, the item can also contain a representation
of an operational sign.

numeric literal. The actual numeric value to be
used in processing, instead of the name of a field
containing the data. A numeric literal can contain
any of the numeric digits 0 through 9, a sign (plus
or minus), and a decimal point. Contrast with
character literal.

OBJECT-COMPUTER. The name of an
Environment Division paragraph in which the
computer upon which the program will be run is
described.

open mode. The state of a file after execution of
an OPEN statement for that file and before the
execution of a CLOSE statement for that file. The
particular open mode is specified in the OP EN
statement as either I NPUT, OUTPUT, 1-0, or
EXTEND.

operand. The object of a verb or an operator; that
is, an operand is the data or equipment governed or
directed by a verb or operator.

operational sign. An algebraic sign associated
with a numeric data item or a numeric literal that
indicates whether the item is positive or negative.

optional word. A reserved word included in a
specific format only to improve the readability of a
COBOL statement or entry.

output file. A file that is opened in either output
mode or extend mode.

output mode. An open mode in which records can
be written to a file.

OUTPUT PROCEDURE. A procedure that
provides special processing of records when they are
returned from the sort or merge function.

overflow condition. A condition that occurs when
a portion of the result of an operation exceeds the
capacity of the intended unit of storage.

overlay. To use the same area of storage for more
than one procedure.

packed decimal format. Representation of a
decimal value in which each byte within a field
represents two numeric digits except the rightmost
byte, which contains one digit in bits 0 through 3
and the sign in bits 4 through 7. For all other
bytes, bits 0 through 3 represent one digit; bits 4
through 7 represent one digit. For example, the
decimal value + 123 is represented as 0001 0010 0011
1111. Contrast with zoned decimal format.

packed decimal item. A numeric data item that is
represented internally in packed decimal format.

paragraph. In the Procedure Division, a
paragraph-name followed by a period and a space
and by zero, one, or more sentences. In the
Identification and Environment Divisions, a
paragraph header followed by zero, one, or more
sentences.

paragraph header. A reserved word, followed by a
period and a space that indicates the beginning of a
paragraph in the Identification and Environment
Divisions.

paragraph-name. A user-defined word that
identifies and begins a paragraph in the Procedure
Division.

parameter. Data passed to or received from
another program.

phrase. An ordered set of one or more consecutive
COBOL character-strings that forms part of a clause
or a Procedure Division statement.

physical file. A description of how data is to be
presented to or received from a program and how
data is actually stored in the data base. A physical
file contains one record format and one or more
members. Contrast with logical file.

physical record. A unit of data that is moved into
or out of the computer. Same as block. J

J

GLOSS-8

procedure. One or more successive paragraphs or
sections within the Procedure Division, which
direct the computer to perform some action or series
of related actions.

PROCEDURE DIVISION. One of the four main
component parts of a COBOL program. The
Procedure Division contains instructions for solving
a problem. The Procedure Division may contain
imperative-statements, conditional statements,
paragraphs, procedures, and sections.

procedure-name. A paragraph-name or a
section-name in the Procedure Division.

process. Any operation or combination of
operations on data.

program-described data. Data contained in a file
for which the fields in the records are described in
the program that processes the file. Contrast with
externally described data.

program described file. In System/3S COBOL, a
file that does not have any COpy statement, DDS
format, coded as part of the record description entry
for the file. The fields in the file's records are
described only in the program that processes the
file. Contrast with externally described file.

program device. A symbolic mechanism that a
program uses instead of a real device (identified by
the device name) to access the devices in a file.
When the program uses a program device, the
system redirects the operation to the appropriate
real device. With the exception of mixed files, the
name of the program device is the same as the name
of the real device; for mixed files, the name of the
program device may differ from the name of the real
device.

program-name. A user-defined word that
identifies a COBOL source program.

pseudo-text. A sequence of character-strings
and/or separators bounded by, but not including,
pseudo-text delimiters. Pseudo-text is used in the
COpy REP LAC I NG statement for replacing text
strings.

pseudo-text delimiter. Two contiguous equal
signs (= =) used to delimit pseudo-text.

punctuation character. A character used to
separate COBOL elements or to identify a particular
type of COBOL element: a comma, semicolon,
period, quotation mark, left or right parenthesis, or
space.

qualified data-name. An identifier that is
composed of a data-name followed by one or more

sets of either of the connectives OF or I N followed
by a data-name qualifier.

qualifier. A name used to uniquely identify
another name. Group data-names, section-names,
and library-names can be used as qualifiers to form
qualified names.

random access. An access mode in which specific
records can be read from, written to, or deleted from
a file in a nonsequential manner.

read-from-invited-program-devices operation.
An input operation that waits for input from any
one of the invited program devices for a
user-specified time. Contrast with
read-from-one-program-device operation.

read-from-one-program-device operation. An
input operation that will not complete until the
specified device has responded with input. Contrast
with read-from-invited-program-devices operation.

record. A set of one or more related data items
that are grouped for processing. Records can be
defined for an input/output device or for internal
processing. See also logical record.

record area. A storage area in which a record
described in a record description entry in the File
Section is processed.

record description entry. The total set of data
description entries associated with a particular
record.

record key. A key whose contents identify a
record within an indexed file.

relation character. One of the characters that
expresses a relationship between two operands:
(equal to), > (greater than), < (less than).

relation condition. A condition that relates two
arithmetic expressions and/or data items.

relational operator. A reserved word, a relation
character, a group of consecutive reserved words, or
a group of consecutive reserved words and relation
characters used to construct a relation condition.

relative file. A file with a relative organization.
Same as direct file.

relative key. An unsigned integer data item that
can be used directly by the system to locate a record
in a file. Same as relative record number.

relative organization. The file structure in which
each record is uniquely identified by a positive

Glossary GLOSS-9

integer value that specifies the record's ordinal
position in the file.

relative record number. A number that specifies
the location of a record in relation to the beginning
of a data base file member or subfile. For example,
the first record in a data base file member or subfile
has a relative record number of 1.

reserved word. A predefined word used in a
COBOL source program for syntactical purposes. It
must not appear in a program as a user-defined
name or system-name.

routine. A set of statements in a program that
causes the computer to perform an operation or
series of related operations.

run unit. A set of one or more programs that
function as a unit at execution time to provide a
problem solution. A run unit starts with the first
COBOL program in the invocation stack and
includes all programs (of any kind) that are below it
in the invocation stack.

section. A set of zero, one, or more paragraphs or
entries, called a section body, preceded by a section
header. Each section consists of the section header
and the related section body.

section header. A combination of words, followed
by a period and a space, that indicates the
beginning of a section in the Environment, Data, or
Procedure Division.

section-name. A user-defined word that names a
section in the Procedure Division.

sector. The addressable unit into which each track
on a diskette is divided.

sentence. A sequence of one or more statements;
the last statement ends with a period followed by a
space.

separator. A punctuation character used to
delimit character strings. See also file separator
and job separator.

sequential access. An access mode in which
records are read from, written to, or deleted from a
file based on the logical order of the records in the
file.

sequential processing. The processing of logical
records in the order in which records are accessed.

serial search. A search in which the members of a
set are consecutively examined, beginning with the
first member and ending with the last member.

sign condition. A condition that states that the
algebraic value of a data item is less than, equal to,
or greater than zero. J
simple condition. Any single condition chosen
from the set: relation condition, class condition,
condition-name condition, switch-status condition,
and sign condition.

single device file. A device file created with only
one program device defined for it. Printer files, card
files, diskette files, tape files, communications files,
and BSC files are single device files. Display files
and mixed files created with a maximum number of
one program device are also single device files.
Contrast with multiple device file.

sort file. A temporary file that contains all the
records to be sorted by a SORT statement. The sort
file is created and can be used by the sort function
only.

sort-merge file description entry. An entry in
the File Section that describes a sort file or a merge
file.

SOURCE-COMPUTER. The name of an
Environment Division paragraph describing the
computer upon which the source program will be
compiled.

Jsource program. A set of instructions, written in
a programming language such as RPG or COBOL,
that represents a particular job as defined by a
programmer. A source program is used as input to
the compiler to create an executable program.

special character. A character that is neither
numeric nor alphabetic. Special characters in
COBOL include: + - * / = $ • . ") (; < >

special-character word. A reserved word that is
an arithmetic operator or a relation character.

SPECIAL-NAMES. The names of an Environment
Division paragraph and the paragraph itself in
which names supplied by IBM are related to
mnemonic-names specified by the programmer. In
addition, this paragraph can be used to exchange
the functions of the comma and the period or to
specify a substitution character for the currency
sign in the PI CT UREstring.

special registers. Compiler-generated data items
used to store information produced by specific
COBOL features (for example, the 0 EBUG- I TEM
special register).

J

GLOSS-IO

spooled file. A generic term for three types of
files: a device file that provides access to an inline
data file or that creates a spooled output file, an
inline data file, or a spooled output file.

standard data format. The format in which data
is described as to how it appears when it is printed,
rather than how it is stored by the computer.

statement. A syntactically valid combination of
words and symbols, beginning with a verb, that is
written in the Procedure Division. A statement
combines COBOL reserved words and user-defined
operands.

subfile. A group of records of the same record
format that can be displayed concurrently at a work
station. The system sends the entire group of
records to the work station in a single operation
and receives the group in another operation.

subject of entry. A data-name or reserved word
that appears immediately after a level indicator or
level-number in a Data Division entry. It serves to
reference the entry.

subprogram. A called program.

subscript. A positive integer whose value refers to
a particular element in a table.

subscripted data-name. A data-name that has
been made unique through the use of a subscript.

switch-status condition. A condition that states
that a switch is currently on or off.

Synchronous Data Link Control. A discipline
conforming to subsets of the Advanced Data
Communication Control Procedures (ADCCP) of the
American National Standards Institute (ANSI) and
High-level Data Link Control (HDLC) of the
International Standards Organization (ISO), for
managing synchronous, code-transparent,
serial-by-bit information transfer over a link
connection. Transmission exchanges may be duplex
or half-duplex over switched or nonswitched links.
The configuration of the link connection may be
point-to-point, multipoint, or loop. Abbreviated
SDLC.

system-name. An IBM-defined name that has a
predefined meaning to the COBOL compiler.
System-names include computer-names,
language-names, and implementor-names.

table. A set of logically consecutive data items
that are defined in the Data Division by means of
the OCCURS clause.

table element. A data item that can be referenced
in a table.

test condition. A statement that, taken as a
whole, may be either true or false, depending on the
circumstances existing at the time the expression is
evaluated.

text-name. A user-defined word that identifies
library text.

text-word. Any character-string or separator,
except the space, in copied COBOL source or in
pseudo-text.

TRANSACTION file. An input/output file used to
communicate with work stations and/or for
intersystems communications.

unary operator. A plus sign (+) or a minus sign
(-), which precedes a variable or a left parenthesis
in an arithmetic expression and which has the effect
of multiplying the expression by + 1 or -1,
respectively.

UPSI switch. A program switch that performs the
functions of a hardware switch. Eight switches are
provided: UPSI-O through UPSI-7.

user-defined word. A word, required by a clause
or a statement, that must be supplied by the user in
a clause or statement.

user-name. A type of implementor-name that
appears in the VALUE OF clause, and that follows
the rules for the formation of a user-defined word.

variable. A named modifiable value. The value
can be accessed or modified by referring to the
name of the variable.

verb. A COBOL reserved word that expresses an
action to be taken by a COBOL compiler or an
object program.

word. A character-string of not more than 30
characters, which forms a user-defined word, a
system-name, or a reserved word.

work station. A device that lets a person transmit
information to or receive information from a
computer as needed to perform his job.

WORKING-STORAGE SECTION. A
section-name (and the section itself) in the Data
Division. The section describes records and
noncontiguous data items that are not part of
external files but are developed and processed
internally. It also defines data items whose values
are assigned in the source program.

Glossary GLOSS-ll

zoned decimal format. Representation of a
decimal value by 1 byte per digit. Bits 0 through 3
of the rightmost byte represent the sign; bits 0
through 3 of all other bytes represent the zone
portion; bits 4 through 7 of all bytes represent the
numeric portion. For example, in zoned decimal

format, the decimal value of + 123 is represented as
1111 0001 1111 0010 1111 0011. Contrast with packed
decimal format. J
zoned decimal item. A numeric data item that is
represented internally in zoned decimal format.

J

J

GLOSS-12

Index

abbreviated combined relation condition

description 5-19

examples 5-19

ACCEPT statement

data transfer 5-30

DATE 5-33

DAY 5-33

description 5-30

for TRANSACTION file attributes 7-44

formats 5-31

mnemonic-name in 3-7

system information transfer 5-33

TIME 5-33

ACCESS IS DYNAMIC

relative key required 3-24

WRITE statement 5-74

ACCESS IS RANDOM

relative key required 3-24

WRITE statement 5-74

ACCESS IS SEQUENTIAL

relative key optional with 3-24

WRITE statement 5-74

ACCESS MODE clause

default is SEQUENTIAL 3-23

description 3-23

formats 3-17

access modes

access modes 3-15

compiler-directing statement 5-4

file 7-41

FORMAT phrase, for TRANSACTION file 7-37

logical file 9-31

access path

arrival sequence 9-15

example for indexed files 9-37

file processing considerations 9-40

for indexed files 1-2, 3-23

keyed sequence 9-15

acknowledgment xv

acquire program device

See ACQUIRE statement

ACQUIRE statement

description 7-45

format 7-45

actual decimal point

specification 4-50

ADD statement

common phrases 5-82

composite of operands 5-80

description 5-84

formats 5-84

ADVANCING phrase

of WRITE statement 5-72

AFTER ADVANCING phrase
of WRITE statement 5-72

AFTER phrase of INSPECT statement 5-95

algebraic comparison

relation condition 5-11

sign test uses 5-14

algebraic sign, definition 4-22

alias name 6-40

example 9-19

alignment rules

alphabetic items 4-21

alphanumeric edited items 4-21

alphanumeric items 4-21

decimal point in arithmetic statements 4-21

in an elementary MOVE statement 5-100

JUSTIFIED clause modifies 4-37

numeric edited items 4-21

numeric items 4-21

ALL literal figurative constant
description 2-7

ALL phrase of INSPECT statement 5-91

ALL PROCEDURES phrase (DEBUGGING) 6-68

allocate object command 9-5

alphabet-name

CODE-SET clause specification 4-16

formation rules 2-5

alphabet-name clause

COLLATING SEQUENCE phrase and 3-9

description 3-9

format 3-5

literal phrase 3-10

NATIVE phrase 3-9

PROGRAM COLLATING SEQUENCE clause

and 3-9

STANDARD-1 phrase 3-10

alphabetic characters

COBOL character set 2-3

description 2-3

in CURRENCY SIGN clause 3-12

ALPHABETIC class test rules 5-9

alphabetic item

alignment rules 4-21

PICTURE clause considerations 4-46

alphanumeric edited item

alignment rules 4-21

PICTURE clause considerations 4-47

alphanumeric item

JUSTIFIED clause and 4-37

PICTURE clause considerations 4-47

RECORD KEY data item 3-25

status key 3-26

ALSO phrase of alphabet-name clause 3-10

ALTER statement

description 5-116

format 5-116

segmentation considerations 5-117, 6-53

altered GO TO statement 5-117,5-119

Index X-I

American National Standard COBOL indicators 7-6

extensions to, printing of 1-5

publications xv

AND logical connective

description 2-6

in combined condition 5-15

AND NOT as logical connective 2-6

apostrophe

specified in PROCESS statement 8-9

used as quotes 2-3

within nonnumeric literal 2-9

Arabic numeral

description 2-4

in COBOL character set 2-3

Area A, columns 8 through 11 2-12

Area B, columns 12 through 72 2-12

arithmetic expression

COMPUTE statement operand 5-85

description 5-6

in relation condition 5-11

in sign test 5-14

in WHEN phrase of SEARCH ALL 6-18

operators used 5-7

arithmetic operation order rules 5-7

arithmetic operations, combining 5-86

arithmetic operator

description 5-7

list of 2-3

arithmetic statement operands

overlapping 5-81

size of 5-80

arithmetic statements

ADD statement 5-84

common phrases 5-82

COMPUTE statement 5-85

CORRESPONDING phrase 5-82

DIVIDE statement 5-86

GIVING phrase 5-83

multiple results 5-81

MULTIPLY statement 5-88

operands 5-80

ROUNDED phrase 5-83

SUBTRACT statement 5-89

arithmetic symbol pair list 5-8

ASCENDING/DESCENDING KEY phrase

of OCCURS clause

description 6-12

formats 6-10

SORT/MERGE

description 6-30

length of KEY data item 6-31

ASCII

alphabet-name clause and 3-10

COLLATING SEQUENCE phrase and 6-31

collating sequences H-l

PROGRAM COLLATING SEQUENCE

clause 3-10

ASSIGN clause

description 3-19

formats 3-17

assigning index values 6-22

assignment-name
 J

as function-name 2-5

ASSIGN clause

association 3-21

attribute 3-19

description 3-19

device 3-19

formats 3-16

hopper 3-21

name 3-21

RERUN clause 3-28

associated card files D-l

assumed decimal point

alignment in numeric item 4-21

description 4-21

asterisk (*)

begins comment line 2-16

precedes comment line 2-10

AT END condition

and SEARCH ALL statement 6-18

EXCEPTION/ERROR Declarative and 5-21

READ statement considerations 5-54, 7-53, 7-57

AT END phrase

of SEARCH statement 6-17

status key 5-28

attribute data for program device

formats 1-10

obtaining 7-45

ATTRIBUTE-DATA mnemonic-name

and ACCEPT statement 7-45

formats 1-10

AUTHOR paragraph, Syntax Checker

restriction 8-2

availability of records 5-29

BEFORE ADVANCING phrase

WRITE statement 5-72

BEFORE/AFTER phrase of INSPECT

statement 5-95

binary item

USAGE clause considerations 4-33

binary operators 5-7

bit configuration of hexadecimal digits 4-34

blank line

description 2-16

BLANK WHEN ZERO clause

description 4-37

format 4-37

VALUE clause considerations 4-40

BLOCK CONTAINS clause

description 4-10

format 4-10

I-O-FEEDBACK special register and 4-11

X-2

blocking output record
See unblocking input records/blocking output

records

blocking, automatic 5-27

Boolean data facilities

See also indicators

comparison rules 5-13

description 7-4, 7-44

format 4-25, 7-6

sending/receiving items 5-100

Boolean literal delimiters (B" and ")
placement rules for 2-15

bottom page margin in LINAGE clause 4-13,4-14

boundary alignment 4-36

braces indicate required items 1-4

brackets indicate optional items 1-5

breakpoints

and COBOL functions A-7

considerations 10-8

data-name considerations 10-7

description 10-4

example 10-4

names and COBOL functions J-7

BSC file support 7-1

CALL GDDM
See graphics support

CALL statement

description 6-59

dynamic 6-59

examples 6-64

formats 6-59

inter-program communication concepts 6-59

ON OVERFLOW phrase 6-59

segmentation considerations 6-53

static 6-59

USING phrase 6-60

called program
segmentation considerations 6-53

calling for HELP 11-5

calling program

segmentation considerations 6-53

CANCEL statement

description 6-62

example 6-63

format 6-62

inter-program communication concepts 9-60

capital letters, reserved words 1-4

card files, associated D-1

categories of data, concepts 4-20

categories of statements 5-4

character codes and CODE-SET clause 4-16

character set, COBOL definition 2-3

character-string

and item size 4-22

description 2-3

detailed description 2-4

in INSPECT statement 5-91

representation in PICTURE clause 4-44

characters allowed

COBOL program 2-3

nonnumeric literal 2-9

numeric literal 2-9

user-defined word 2-4

CHARACTERS phrase of BLOCK CONTAINS
clause 4-10

CHARACTERS phrase of INSPECT statement 5-96

characters used in PICTURE clause 4-42

class condition

description 5-9

EBCDIC signs in 5-9

format 5-9

class test rules 5-9

classes of data, concepts 4-20

clause, description 2-2

clauses, summary J-1

CLOSE statement

access considerations 5-36

description 5-35

device considerations 5-36

FOR REMOVAL phrase 5-35

for TRANSACTION file 7-46

formats 5-35, 7-46

LOCK phrase 5-35

organization considerations 5-36

REEL/UNIT phrase 5-35

volume considerations 5-36

COBOL character set
description 2-3

COBOL coding form example 2-12

COBOL command statement

compiler options specified in 8-6

options 8-8

syntax 8-6

used to compile a COBOL program 8-6

COBOL definitions

clause 2-2

paragraph 2-2

section 2-2

statement 2-2

COBOL program structure
general description 2-1

COBOL reserved words G-1

COBOL syntax checker

restrictions on source 8-2

used by SEU 8-2

COBOL words, detailed description 2-4

COBOL, industry standards xiv

CODE-SET clause

description 4-16

format 4-16

omission of 4-16

specified for diskette files 4-16

specified for tape files 4-16

coding example

COpy DDS results 6-45, 9-18

Index X-3

Data Division 4-3 common processing facilities
DDS for a record format 9-17

DDS for data base file 9-12

DDS for field reference file 9-13

DDS for keyed access path 9-37

initialize a table to zero 6-8

INSPECT statement 5-93

PERFORM statement 5-124, 5-128, 5-132

Procedure Division 5-6

SEARCH statement 6-20

SPECIAL-NAMES paragraph 3-9

subscripting 6-5

COLLATING SEQUENCE phrase

alphabet-name clause and 3-9

of SORT/MERGE statements 6-32

collating sequences

EBCDIC and ASCII H-l

user-specified 3-10

column 7

continuation area 2-12

D denotes debugging line 6-72

columns 1 through 6 for sequence numbers 2-11

combined arithmetic operations 5-86

combined condition

description 5-16

format 5-16

comma (,)

character, description 2-4

in Configuration Section 3-4

in data description entry 4-26, 4-27

in File-Control entry 3-18

in I-O-CONTROL paragraph 3-28

separator, rules for using 2-11

series connective 2-6

comma and decimal point, interchanging 3-12

comment

detailed description 2-10

punctuation characters valid in 2-16

comment character-string, definition 2-3

comment-entry

as a comment 2-10

detailed description 2-16

in Identification Division 3-1

COMMIT statement

description 5-39

format 5-39

commitment control

considerations 9-44

recovery after failure using 9-55

sample program 9-47

COMMITMENT CONTROL clause

description 3-29

format 3-27

common data concepts 4-17

common key 9-15

common phrases, arithmetic statements

CORRESPONDING phrase 5-82

GIVING phrase 5-83

ROUNDED phrase 5-83

SIZE ERROR phrase 5-84

current record pointer 5-29

INTO/FROM phrases 5-28
 J
invalid key condition 5-28

status key 5-28

communications file support 7-1

communications recovery 9-55

sample program 9-57

comparison rules

Boolean operands 5-13

INSPECT statement 5-92

START statement 5-66

compilation

with a remote System/36 file 3-13

WITH DEBUGGING MODE 6-66

compilation date in source listing 3-3

compiler

data areas A-3

debugging examples A-6

debugging options A-5

IRP layout A-9

overview A-I

phases A-3

service information A-I

subroutines A-3

temporary result field 5-82

compiler action on intermediate results E-l

compiler features 1-3

compiler messages C-l

compiler options

description 8-8

specified on CRTCBLPGM command 8-6

specified on PROCESS statement 8-13

compiler output

listing descriptions 8-16

listing examples 8-17

compiler-directing statement

compiling source programs 8-5

complex conditions

combined conditions 5-16

in PERFORM statement 5-123

negated simple conditions 5-15

composite of operands

ADD statement execution and 5-84

arithmetic statements 5-80

description 5-80

SUBTRACT statement execution rules 5-89

COMPUTATIONAL item

USAGE clause considerations 4-32

COMPUTE statement

description 5-85

format 5-86

computer-name

as system-name 2-5

form of 3-6

concatenating data items 5-104

concepts

data description 4-17

Sort/Merge 6-25

concepts, inter-program communication

X-4

common data 6-55

control transfers 6-55

language considerations 6-56

concepts, segmentation

control 6-52

fixed segments 6-50

independent segments 6-51

logic 6-51

condition

complex 5-15

in IF statement 5-24

permissible element sequences 5-17

simple 5-9

condition-name

and SET statement 5-103

condition 5-10

description 4-26

formation rules 2-5

qualification format 2-19

switch-status condition 5-14

VALUE clause considerations 4-38

condition-name condition

description 5-10

example 5-10

format 5-10

PROGRAM COLLATING SEQUENCE

clause 3-6

condition-name entry

concepts 4-20

description 4-40

general format 4-24

conditional expressions

complex conditions 5-15

evaluation rules 5-16

in PERFORM statement 5-122

simple conditions 5-9

conditional GO TO statement 5-119

conditional PERFORM statement 5-122

conditional statement

categories of 5-4

description 5-4

IF statement

description 5-24

format 5-24

nested IF statement 5-25

conditional variable

condition-name condition tests 5-10

condition-name entries 4-40

description 4-26

FILLER allowed as name 4-25

Configuration Section

description 3-4

format 3-5

connective words, detailed description 2-6

considerations, system dependent

DATA DIVISION considerations

BLOCK CONTAINS clause 4-10

COpy DDS statement 6-40

index literals 6-7

item size 4-10

LINAGE clause 4-14

OCCURS clause 6-9

RECORD CONTAINS clause 4-11

SORT/MERGE statement 6-30

subscript literals 6-4

ENVIRONMENT DIVISION considerations

ASSIGN clause 3-19

RECORD KEY clause 3-24

RESERVE clause 3-21

SAME AREA or SAME RECORD AREA

clause 3-28

SAME SORT-MERGE AREA clause 6-27

general considerations

indexed file 3-23

library-name 2-19

program-name 3-2

relative file 3-23

source program library 6-39

source statements 8-2

text-name 2-19

user-defined words 2-4

PROCEDURE DIVISION considerations

arithmetic statements 5-80

CALL statement 6-59

GO TO DEPENDING ON statement 5-118

INSPECT statement 5-90

STOP statement 5-133

UNSTRING statement 5-109

contents of DEBUG-ITEM special register 6-70

continuation area

column 7 2-12

D denotes debugging line 6-72

continuation line, definition 2-15

control flow

PERFORM statement 5-122

SEARCH ALL statement 6-18

SEARCH statement 6-15

control of segmentation 6-52

control return, in PERFORM statement 5-121

control transfer

changed by ALTER statement 5-116

inter-program communication concepts 6-55

PERFORM statement 5-121

control transfer rules

Declarative procedures 5-20

explicit, GO TO statement 5-118

control transfers, explicit and implicit 2-22

CONTROL-AREA clause 7-42

conversion of data

DISPLA Y statement and 5-43

COpy DDS, use with indicators 7-7, 7-49

COpy statement

and externally described data 6-40

and EXTERNALLY-DESCRIBED-KEY 6-40

and floating point 6-43

and record description entry 4-5

data field structures 6-43

DDS and use of 6-40

DDS results 6-44, 9-18

description 6-39

example 6-49

Index X-5

format 6-39 and FORMATFILE files 9-22

phrases 6-39

REPLACING phrase 6-47

use with TRANSACTION files 7-1

COPY, within PROCESS statement 8-15

CORRESPONDING phrase

description 5-82, 5-lO3

FILLER items ignored 4-28

MOVE statement considerations 5-97

count field in INSPECT statement 5-91

COUNT IN phrase of UNSTRING statement 5-111

CPF graphics support

See graphics support
CR (credit) PICTURE symbol

description 4-44

sign control symbol 4-50

creating a program 8-1

CRTCBLPGM command 8-6

currency sign

description 2-3

fixed insertion symbol 4-50

floating insertion symbol 4-51

CURRENCY SIGN clause

description 3·12

format 3-5

in PICTURE character-string 4-43

valid characters 3-12

current record pointer

description 5-29

START statement 5-66

data alignment

in an elementary MOVE statement 5-lO0

nonnumeric items 4-22

numeric items 4-21

data attribute specification 2-21

data base support

file description entry 4-6

logical record 4-1

physical record 4-1

data categories
PICTURE clause 4-46

data classes, description 4-20

data communications file 7-1, 7-39

data conversion

DISPLAY statement 5-43

in an elementary MOVE statement 5-99

numeric items 4-46

SET statement 6-23

data description

arithmetic statement operands 5-82

data description entry

general description 4-23

general formats 4-23

data description specifications (DDS)

and externally described files 9-8

and multiple device files 7-30

and program described files 9-20
 J
example for data base file 9-12

example for field reference file 9-13

example for keyed access path 9-37

example for record format 9-17

use of keywords 9-11

Data Division

concepts 4-1

data description 4-17

entries 2-14

example 4-3

file description entry 4-5, 4-6

general description 2-1

inter-program communications concepts 6-56

organization

description 4-2

format 4-24

punctuation in 2-17

sort/merge considerations 6-28

table handling considerations

OCCURS clause 6-9

USAGE IS INDEX clause 6-13

data hierachies

concepts 4-17

used in qualification 2-17

data item

description entry concepts 4-17

figurative constant length 2-8

data item description entry

ADD statement considerations 5-84

breaking apart 5-lO9

concatenating 5-104

general description 4-23

general format 4-3

joining together 5-104

MOVE statement considerations 5-98

subject of OCCURS clause 6-10

SUBTRACT statement considerations 5-89

data manipulation statements

INSPECT statement 5-90

MOVE statement 5-97

STRING statement 5-104

UNSTRING statement 5-109

data organization, description 3-14

data receiving fields (UNSTRING) 5-110

data record size specification 4-13

data records

in file on another system 3-13

DATA RECORDS clause

description 4-13

format 4-13

data reference, methods of 2-17

data references in Procedure Division 2-22

data relationships 4-2

data transfer

ACCEPT statement 5-30

DISPLAY statement 5-43

STRING statement 5-lO4

X-6

UNSTRING statement 5-109 format 3-5
data truncation Declarative procedures

ACCEPT statement 5-30 common exit point 5-117
incompatible record lengths 4-11 debugging 6-68
nonnumeric items 4-22 MERGE statement 6-28
numeric items 4-21 SORT statement 6-28

data-count fields in UNSTRING statement 5-110 Declaratives
data-name EXCEPTION/ERROR 5-21

description 5-2 EXCEPTION/ERROR for TRANSACTION
formation rules 2-5 file 7-66
qualification format 2-17 FOR DEBUGGING 6-68
REDEFINES clause specification 4-28 general description 5-1
restriction on duplications 2-20 general format 5-20
subscript, definition 6-4 section requirements when used 5-1

data-name clause DECLARATIVES keyword
description 4-25 begins Declaratives 5-1
format 4-27 begins in Area A 2-12, 2-15
order of specification 4-25 decrementing index-name values 6-24

date of compilation in source listing 3-3 decrementing operands 5-123
DATE-COMPILED paragraph default attributes are implicit 2-21

description 3-3 DELETE statement (input/output)
format 3-1 access considerations 5-40
Syntax Checker restriction 8-4 description 5-40

DATE-WRITTEN paragraph device considerations 5-40
Syntax Checker restriction 8-4 format 5-40

DATE, ACCEPT statement 5-33 organization considerations 5-40
DAY, ACCEPT statement 5-33 with duplicate keys 5-42
DB (debit) PICTURE symbol DELIMITED BY ALL phrase (UNSTRING)

and numeric edited items 4-48 description 5-109
description 4-44 DELIMITED BY phrase
sign control symbol 4-50 and STRING statement execution 5-105

DB-FORMAT-NAME delimiter
other files 5-30 for Boolean literal 7-44
TRANSACTION files 7-35 for pseudo-text 2-11

DB-FORM AT-NAME special register 5-30 in INSPECT statement 5-95
DD name 6-40, 9-8 in STRING statement 5-104
DDM files 3-13 in UNSTRING statement 5-109

definition GLOSS-4 DEPENDING ON phrase of GO TO statement
DDS name 6-40, 9-8 description 5-118
DEBUG module, 1974 Standard 1-2 DEPENDING ON phrase of OCCURS clause
DEBUG-CONTENTS 6-71 description 6-11
DEBUG-ITEM special register format 6-10

description 6-70 DESCENDING KEY phrase of OCCURS
format 6-70 clause 6-12
subfield contents 6-71 device dependencies 9-1

debugging Declaratives, execution of 6-68 device file
debugging features ASSIGN clause and 3-19

compile-time switch 6-66 diagnostic levels C-l
execution-time switch 6-67, 10-12 diagnostic messages
USE FOR DEBUGGING procedures 6-68 description C-1

DEBUGGING MODE as compile-time switch 6-66 listing 8-24
decimal numbers, representation 4-22 severity levels 8-25
decimal point (.) direct and relative index usage 6-20

alignment of numeric items 4-21 direct indexing, description 6-7
alignment of numeric-edited items 4-21 display device file
and comma, interchanging 3-12 data description specifications for 7-1
in elementary MOVE statement 5-100 description 7-39
in numeric literal 2-9 record format 7-2

DECIMAL-POINT IS COMMA clause sample program 7-30
comma and period PICTURE symbols 4-44 subfiles 7-22
description 3-12

Index X-7

display file support 7-1

DISPLAY phrase of USAGE clause

description 4-31

display screen formats

COBOL coding form and 8-2

DISPLAY statement

description 5-43

figurative constant length 2-8

format 5-43

mnemonic-name and 3-8

distributed data management (DDM) 3-13

definition GLOSS-4

DIVIDE statement

description 5-86

format 5-86

division header 2-14

division operator 5-7

documentation, comments 2-10

documenting end of procedures 5-117

dollar sign ($)

See currency sign

dollar sign character, description 2-3

DROP statement

description 7-47

format 7-47

dump, formatted 10-1

duplicate record keys, DUPLICATES phrase 3-24

duplication of data-name, restriction 2-20

dynamic access

DELETE statement 5-40

READ statement 5-54

WRITE statement 5-74

dynamic access mode

description 3-15

in WHEN phrase of SEARCH ALL 6-18

indexed files 3-16

relative files 3-16

relative key required 3-24

dynamic values in a table 6-7

EBCDIC character set

COBOL characters 2-3

default for alphabet-name clause 3-9

NATIVE phrase 3-9

EBCDIC collating sequence

alphabet-name clause 3-9

and HIGH-VALUE figurative constant 2-7

and LOW-VALUE figurative constant 2-7

and sort/merge phrase 6-31

list of characters H-2

editing character 2-3

editing in an elementary MOVE statement 5-99

editing sign control symbols 4-50

editing sign, description 4-22

editing through PICTURE clause 4-49

elementary item

X-B

alignment rules 4-21

as subscript 6-4

classes and categories 4-20
 J
description 4-17

level-number concepts 4-18

MOVE statement operand 5-98

valid clauses 4-26

elementary moves
description 5-98

ellipsis indicates repetition 1-5

ELSE phrase

description 5-24

format 5-24

with nested IF statements 5-25

END DECLARATIVES keywords

ends Declaratives 5-1

end of execution

STOP RUN statement 5-133

end of procedures, documenting 5-117

ENDCBLDBG command 6-67

ending file processing 5-35

ENTCBLDBG command 6-67

ENTER statement as documentation 5-134

entering source programs 8-1

entry, description 2-2

Environment Division

Configuration Section 3-4

File-Control entry, sort/merge 6-27

File-Control paragraph 3-16

general description 2-1

I-O-Control entry, sort/merge 6-27

I-O-CONTROL paragraph 3-27

Input-Output Section 3-12

punctuation in 2-17

Sort/Merge considerations 6-27

SPECIAL-NAMES paragraph 3-7

equal sign (=)

description 2-4

rules for using 2-11

separator, rules for using 2-10

EQUAL TO relational operator

in WHEN phrase of SEARCH ALL 6-18

error conditions

REWRITE statement considerations 5-63

error correction, automatic 5-27

evaluation results 5-17

examples

See also sample programs

access path for indexed file 9-37

breakpoint 10-4

COBOL formatted dump 10-12

COBOL program skeleton coding 2-13

commitment control 9-44

compiler debugging options A-6

compiler options listing 8-16, 8-17

COpy DDS results 6-45, 9-18

COpy statement 6·49

cross reference listing 8·23

Data Division 4-9

Data Division coding 4·3

Data Division map 8-20

DDS for a display device file 7-1

DDS for a record format 9-17

DDS for a record format with Alias

keyword 9-19

DDS for data base file 9-12

DDS for field reference file 9-13

DDS for subfiles 7-25

diagnostic messages listing 8-24

Environment Division coding 3-4

error recovery 9-55

FIPS messages listing 8-22

fixed insertion editing 4-51

floating insertion editing 4-52

FORMATFILE file 9-22

generic START using a program described

file 9-33

generic START using an externally described

file 9-33

Identification Division coding 3-2

Indicators 7-10

initialize a table to zero 6-8

INSPECT statement 5-93, 5-96

inter-program communication 6-64

mixed files 7-30
multiple display files 7-30

PERFORM statement 5-124,5-128,5-132
Procedure Division 5-6

Procedure Division coding 5-3

record description concepts 4-18

record format specifications 9-12, 9-13

REDEFINES clause 4-29

RENAMES clause 4-56

ROLLING phrase 7-61

SEARCH statement 6-20

simple insertion editing 4-49

source listing 8-17

SPECIAL-NAMES paragraph 3-7

STRING statement 5-106

subscripting 6-4

trace 10-9

UNSTRING statement 5-114

verb usage by count listing 8-20

work station application programs 7-66

zero suppression and replacement editing 4-53

EXCEPTION/ERROR Declarative

description 5-21

EXTEND phrase 5-22

file-name phrase 5-21

format 5-21

1-0 phrase 5-22

status key 5-28

EXCEPTION/ERROR procedure

and USING phrase for sort/merge 6-32

CLOSE statement 5-35

DELETE statement 5-42

MERGE statement 6-28

REWRITE statement considerations 5-63

sort/merge OUTPUT PROCEDURE 6-32

exceptional situations

SORT statement 6-28

exceptions

and status key values 1-5

causes 9-52

executing a program

compiler output 8-16

methods 8-25

execution flow

ALTER statement 5-116

GO TO statement 5-118

PERFORM statement 5-120

SEARCH ALL statement 6-18

SEARCH statement 6-15,6-18

STOP statement 5-133

execution results

INSPECT statement examples 5-93, 5-96

JUSTIFIED clause examples 4-37

STRING statement 5-107

UNSTRING statement examples 5-114

execution rules

INSPECT statement 5-92

PERFORM statement 5-122

ROUNDED phrase 5-83

SIZE ERROR phrase 5-84

STRING statement 5-105

UNSTRING statement fi-111

USE FOR DEBUGGING procedure 6-68

execution sequence, performed procedures 5-122

execution status, status key usage 3-27

execution suspension

ACCEPT statement 5-30

STOP statement provides 5-133

execution time

debugging switch 6-66

exit point rules for performed procedures 5-120

EXIT PROGRAM statement

CALL statement 6-56

description 6-63

format 6-63

inter-program communications concepts 6-64

EXIT statement

description 5-117

format 5-118

explicit attribute, description 2-21

explicit control transfer, GO TO statement 5-118

exponentiation operator 5-7

exponentiation results 5-8

EXTEND phrase of OPEN statement

description 5-50

extensions, how printed 1-5

extensions, summary of IBM B-1

external data concepts 4-2

external decimal item

See zoned decimal item
externally described files

adding COBOL functions 9-18

coding record descriptions 9-10

considerations for using 9-8

description 9-8

overriding COBOL functions 9-18

externally described TRANSACTION file 7-1

Index X-9

EXTERNALLY-DESCRIBED-KEY summary 3-14

and COpy statement, DDS, DD format 6-40,

6-45

description 3-26, 9-29

fall through of performed procedures 5-122

FD entry

See also File Description (FD) entry

description 4-1, 4-6

FILE-CONTROL paragraph 3-18

formats 4-7

implicit redefinition 4-28

LABEL RECORDS clause required 4-12

OPEN statement 5-48

field definitions

on remote system 3-13

when compiling programs 3-13

field-count field, in UNSTRING statement 5-110

fields, intermediate result E-l

figurative constant

detailed description 2-7

functions 2-7

file categories

data base files

logical 3-13

physical 3-13

device files 3-13

file creation time 5-73

File Description (FD) entry

description 4-6

FILE-CONTROL paragraph 3-18

formats 4-7

general description 4-1

general formats 4-7

LABEL RECORDS clause required 4-12

file feedback
See OPEN-FEEDBACK mnemonic-name

file label specification 4-12

file locking

allocate object command 9-5

lock states 9-5

shared files 9-5

file processing

access paths 9-40

associated card 9-30, D-l

card 9-29

DATABASE 9-31

DISK 9-31

feedback information 5-33

FORMATFILE 9-21

indexed organization 9-31

initiating 5-47

PRINTER 9-21

relative organization 9-38

sample programs F-l

sequential organization 9-39

File Section

general description 4-5
 Jgeneral formats 4-5

VALUE clause considerations 4-38

FILE STATUS clause

CLOSE statement 5-35

DELETE statement 5-40

description 3-26

formats 3-18

INVALID KEY condition 5-28

READ statement 5-56

REWRITE statement 5-62

START statement 5-67

file status information

obtaining 10-12

related exceptions 1-5

values 1-5

file structure support summary 1-1

File-Control entry

file processing entries 3-16

sort/merge considerations 6-26

TRANSACTION file processing entry 7-39

FILE-CONTROL paragraph

formats 3-16

function of 3-18

file-name

CLOSE statement operand 5-35

DELETE statement operand 5-40

formation rules 2-5

in FD entry 4-10

OPEN statement specification 5-48

READ statement considerations 5-53

SD entry operand 6-28

SELECT clause operand

description 3-19

formats 3-18

SORT statement operand 6-29

sort/merge file operand 6-27

START statement specification 5-67

file, description 4-1

files, TRANSACTION 7-1

FILLER keyword

description 4-27

order of specification 4-25

FIPS Flagger

compiler messages 8-22

description 6-73

standard modules used 1-3

1975 flagging 1-3

FIPS levels 1-4

FIRST phrase of INSPECT REPLACING

statement 5-93

FIRST phrase, READ statement 5-54

fixed insertion symbol

description 4-50

symbol

fixed length record

size specification 4-10

fixed length table

X-lO

description 6-11

fixed page spacing, LINAGE clause 4-13

fixed portion

segmented program 6-50

floating insertion editing 4-51

floating point fields 6-43

footing area, LINAGE clause 4-14

format notation, description 1-4

FORMAT phrase, for TRANSACTION file 7-48

FORMATFILE files

description 9-22

sample program 9-22

formatted dump, COBOL

contents 10-12

example 10-13

FROM identifier phrase

REWRITE statement considerations 5-63

WRITE statement considerations 5-75

FROM phrase

ACCEPT statement 5-31

RELEASE statement 6-36

function-name

ACCEPT statement 5-30

as system-name 2-5

DISPLA Y statement operand 5-44

SPECIAL-NAMES paragraph 3-7

values 3-8

WRITE statement 5-76

function-name-1 clause

description 3-7

format 3-5

function-name-2 clause

description 3-8

format 3-5

switch-status condition and 3-8

GDDM
See graphics support

general description of S/38 COBOL 1-1

generic START examples

using a program described file 9-33

using an externally described file 9-33

GIVING phrase

arithmetic statements 5-83

SORT/MERGE statements 6-32

GO TO statement 5-118

Graphical Data Display Manager

See graphics support

graphics support 6-61

group moves 5-101

hexadecimal digit bit configurations 4-34

hyphen (-)

allowed in user-defined word 2-4

character, description 2-4

in continuation area, meaning 2-15

in program-name, conversion of 3-2

produced when copying Alias names 6-40

1-0 files

EXCEPTION/ERROR Declarative 5-21

1-0 option of OPEN statement

description 5-48

indexed file considerations 5-48

relative file considerations 5-48

TRANSACTION file considerations 7-48

I-O-CONTROL paragraph

description 3-27

formats 3-27

order of clauses optional 3-28

sort/merge considerations 6-27

I-O-FEEDBACK mnemonic-name

and ACCEPT statement 5-33

description 1-11

extended file status 7-41

IBM extensions xii, 1-5, B-1

Identification Division

description 3-1

format 3-1

punctuation in 2-16

identifier

ACCEPT statement operand 5-30

breaking apart 5-109

description 5-2

DISPLAY statement operand 5-44

in sign test 5-14

INSPECT statement operand 5-90

replacing characters in 5-91

IF statement

description 5-24

format 5-24

nested 5-25

imperative-statement

categories of 5-4

description 5-4

implicit attribute, description 2-21

implicit control transfers 2-21

IN as qualifier connective 2-6, 2-17

incrementing index-name values 6-24

incrementing operands

PERFORM VARYING rules 5-123

indentation, to clarify logic 2-15

independent segment

Index X-11

calling and called programs 6-54 of OPEN statement
description 6-51

index

description 6-6

INDEX usage

description 6-13

index-name

and File Section 6-14

assigning values 6-22

comparison rules 6-13

description 6-6

in PERFORM statement 5-123

passing values of, in CALL 6-57

rules of formation 2-5, 6-13

SET statement operand 6-22

index-name values 6-22

INDEXED BY phrase

OCCURS clause

description 6-9

formats 6-9

SEARCH statement requirements 6-16

indexed data item

comparison rules 6-14

description 6-13

indexed file
File-Control entry

description 3-23

format 3-16

INDEXED 1-0 module, 1974 Standard 1-2

indexed organization 3-14

indexes

assigning values 6-22

conditional variable 4-40

indexing

description 6-6

INDEXED BY phrase rules 6-13

INDICATOR clause 7-7

indicators

and COpy statement 6-41,7-7

and Separate indicator area (SI) attribute 7-5

associated with command keys 7-2

Boolean data items 7-4, 7-17

INDARA DDS keyword 7-5

sample programs 7-10

TRANSACTION file processing 7-4

INDICATORS phrase 7-9, 7-49

industry standards, COBOL xiv

initialization

data items with INSPECT statement 5-91

DEBUG-ITEM special register 6-70

example for tables 6-8

indexed file considerations 5-48

LINAGE-COUNTER 4-15

of index 6-7

oftable values 6-7

input file

current record pointer used 5-29

for sort/merge 6-32

INPUT phrase

EXCEPTION/ERROR Declarative 5-21

description 5-52

relative file considerations 5-52
 J

Input-Output Section
detailed description 3-12

format 3-13

input/output errors

EXCEPTION/ERROR Declarative and 5-21

INPUT/OUTPUT PROCEDURE control 6-35

input/output statements

ACCEPT statement 5-31

ACQUIRE statement 7-45

CLOSE statement 5-35

common input/output phrases 5-27

DELETE statement 5-41

DISPLA Y statement 5-44

DROP statement 7-47

OPEN statement 5-48

READ statement 5-52

REWRITE statement 5-63

START statement 5-66

WRITE statement 5-72

insertion editing

description 4-49

INSPECT statement

ALL literal figurative 2-7

BEFORE/AFTER phrase 5-95

coding example 5-93

comparisons illustration 5-92

description 5-90

examples 5-96
 Jfigurative constant length in 2-8

formats 5-90

REPLACING phrase 5-94

TALLYING phrase 5-94

INSTALLATION paragraph as documentation

description 3-3

format 3-1

Syntax Checker restriction 8-4

integer item

RECORD KEY data item 3-25

RELATIVE KEY data item 3-24

status key 3-26

inter-program communication

common data 6-55

local data area 9-61

concepts

CALL statement 6-56

control transfers 6-55

language considerations 6-56

Data Division, Linkage Section 6-56

examples 6-64

EXIT PROGRAM statement 6-63, 9-61

CALL statement 6-64

file considerations 9-60

initialization 9-61

return of control 9-61

STOP RUN statement 6-64, 9-61

USING phrase, CALL statement 6-60

X-12

Inter-Program Communication module, 1974

Standard 1-3

interactive communications 7-1

intermediate result fields E-1

intermediate results

SIZE ERROR phrase and 5-84

internal data concepts 4-1

internal decimal item

See packed decimal item
internal representation

operational sign 4-22

INTO identifier phrase of READ statement 5-56

INTO phrase of RETURN statement 6-37

INTO/FROM identifier phrase 5-28

INVALID KEY condition

actions taken 5-28

EXCEPTION/ERROR Declarative and 5-22

statements that recognize 5-28

INVALID KEY phrase

DELETE statement and 5-40

START statement considerations 5-66

status key 5-28

WRITE statement 5-72

IRP layout A-9

joining data items together 5-104

JUSTIFIED clause

description 4-36

example of results 4-37

format 4-36

VALUE clause considerations 4-40

key fields

common keys and 9-15

defined by DDS 9-15

descending keys 9-41

for indexed files 9-32

in the record area 5-41

partial keys 9-33

RECORD KEY clause 9-15,9-32

record keys and 9-15

KEY phrase

of OCCURS clause 6-12

of START statement 5-67

key, status 5-28

keyword, detailed description 2-6

keywords, printed as underlined capitals 1-4

label processing

OPEN statement 5-51

READ statement 5-59

WRITE statement 5-79

LABEL RECORDS clause

description 4-12

format 4-12

required entry 4-12

label specification 4-12

language concepts, inter-program

communication 6-54

language extension

notation used 1-4

TRANSACTION file 7-1

language structure, description 1-1

language-name

as system-name 2-5

in ENTER statement 5-134

LAST phrase, READ statement 5-54

left parenthesis

character description 2-3

separator, rules for using 2-11

length of figurative constant 2-8

less than «) character

description 2-3

when required in formats 1-5

level check function
externally described files 9-5

level concepts 4-17

level indicator

as qualifier 2-19

begins in Area A 2-13

description 4-2

level-66 entry 4-54

level-number
concepts

description 4-18

illustration 4-20

description 4-2

format 4-27

formation rules 2-5

REDEFINES specifications and 4-28

unequal allowed 4-18

01 and 77 begin in Area A 2-15

02-49, 66, 88 begin in Area A or B 2-14

level-01 item
implicit redefinition 4-28

level-01 records 4-18

level-02 through -49 item 4-18

level-66 entry

description 4-54

general description 4-26

general format 4-24

level-77 entry

general description 4-25

general format 4-24

Index X-13

level-77 item detailed description 2-6

Linkage Section considerations 6-58

level-88 entry

description 4-40

general format 4-24

level-88 item

VALUE clause considerations 4-38, 4-40

library

source program 6-39

test 10-1

LIBRARY module 1-2

library-name 2-5,6-39

and System/38 library name 6-39

LINAGE clause

description 4-13

format 4-14

LINAGE-COUNTER special register and 4-15

logical page depth illustrated 4-15

printer file commands 4-14

when assigned to PRINTER 9-21

with WRITE END-OF-PAGE 5-76

WRITE ADVANCING PAGE statement 5-76

LINAGE-COUNTER special register

description 4-15

qualification rules 2-20

WRITE statement rules for 5-76

line advancing
WRITE statement rules 5-76

line continuation 2-15

line-number, LINAGE-COUNTER value 4-15

LINENUMBER 8-9,8-14

LINES AT BOTTOM phrase of LINAGE

clause 4-14

LINES AT TOP phrase of LINAGE clause 4-14

Linkage Section

general description 4-6

Inter-program Communication feature

concepts 6-56

description 6-56

level-77 and level-Ol names unique 4-20

VALUE clause considerations 4-38

literal

alphabet-name 2-5

as character-string 2-3

detailed description 2-8

in relation condition 5-13

INSPECT statement operand 5-90

phrase of alphabet-name clause 3-10

local data area

and ACCEPT statement 5-30

and DISPLAY statement 5-43

description 9-65

LOCAL-DATA mnemonic-name 3-8

LOCK phrase
CLOSE statement 5-36

locking, file and record 9-5

logic of segmentation 6-51

logical connective 5-15

meaning and use 5-15

logical connectives 2-6

logical file 3-13

logical page positioning
 JLINAGE-COUNTER and 4-15

logical page size

LINAGE clause specifies 4-13

logical record

BLOCK CONTAINS CHARACTER, clause

and 4-11

description 4-1

level concepts 4-17

size specification 4-10

loops in a program 9-54

LOW-VALUE/LOW-VALUES figurative constant

description 2-7

lower-case, user-defined words printed in 1-4

manual
updates xii

manual organization, description Xl

manual purpose xi

margins of pages in LINAGE clause 4-14

maximum length

COBOL word 2-4

data description entry 4-23

nonnumeric literal 2-9

numeric literal 2-9

of table 6-11

PICTURE character-string 4-42

Sort/Merge keys 6-31

table element 6-11

VALUE clause initialization 4-39

maximum number

characters in numeric item 4-46

delimiters in UNSTRING statement 5-109

digits in numeric item 4-46

GO TO statement procedure-names 5-119

lines on printed page 4-13

Sort/Merge keys 6-30

maximum value

of an index 6-7

subscript 6-4

merge

concepts 6-27

description 6-27

MERGE statement

description 6-29

format 6-29

phrases 6-30

segmentation considerations 6-54

sort/merge OUTPUT PROCEDURE 6-34

merged records 6-29

message reply modes 10-13

messages, compiler

modifying C-2

X-14

numbers C-1

severity codes C-1

methods of data reference 2-17

MFCU,5424 D-1

minimum size

numeric item 4-47

minimum value

index 6-7

subscript 6-4

minus sign (-)

floating insertion symbol 4-51

in numeric literal 2-9

sign control symbol 4-50

minus symbol (-) character, description 2-4

minus symbol, when required in formats 1-5

mixed files

description 7-40

sample program 7-30

subfiles 7-22

support 7-1

mnemonic-name

as qualifier 3-9

formation rules 2-5

I-O-FEEDBACK 5-33

OPEN-FEEDBACK 5-33

MOVE statement

CORRESPONDING phrase 5-97

description 5-97

elementary moves 5-98

formats 5-97

group moves 5-101

summary reference table 5-102

MOVE statement, implicit
INTO/FROM identifier phrase 5-28

multifunction card unit, 5424 D-1

multiple device file

description 7-28

sample program 7-30

MULTIPLE FILE TAPE clause

description 3-29

format 3-27

multiple member processing 9-7

multiple redefinitions allowed 4-29

multiple results, arithmetic

description 5-81

execution rules 5-81

multiplication operator 5-7

MULTIPLY statement

description 5-88

formats 5-88

NATIVE phrase

COLLATING SEQUENCE phrase 6-31

of alphabet-name clause 3-9

negated simple condition

description 5-15

format 5-15

negative numeric data

SIGN clause and 4-35

nested IF statement

description 5-25

examples 5-26

next executable statement
description 2-22

NEXT phrase of READ statement 5-54

NEXT SENTENCE in IF statement 5-24

NO DATA phrase

description 7-54
format 7-51

NO REWIND phrase of CLOSE statement 5-36

NO REWIND phrase of OPEN statement 5-48

nonnumeric item

ALL literal figurative constant 2-7

HIGH-VALUE figurative constant 2-7

LOW-VALUE figurative constant 2-7

QUOTE figurative constant 2-7

SPACE, SPACES figurative constant 2-7

ZEROS figurative constant 2-7

nonnumeric literal

alphabet-name clause 3-10

detailed description 2-9

punctuation characters 2-16

NOT logical connective

meaning and use 5-15

placement in combined condition 5-16

NUCLEUS module, 1974 Standard 1-2

numerals, in COBOL character set 2-3

numeric category, numeric literal 2-9

numeric characters

allowed in user-defined word 2-4

description 2-4

list 2-4

NUMERIC class test rules 5-9

numeric edited item

alignment rules 4-21

numeric edited item, PICTURE clause 4-48

numeric first character in program-name 3-2

numeric item

PICTURE clause considerations 4-47

ZERO, ZEROES, ZEROS figurative constant 2-7

numeric literal

DECIMAL-POINT IS COMMA clause 3-12

object of OCCURS DEPENDING ON clause

description 6-11

object program

See program (executable)

object time

See execution time

OBJECT-COMPUTER paragraph

description 3-6

Index X-15

format 3-5
PROGRAM COLLATING SEQUENCE clause

relation conditions 3-6

SPECIAL-NAMES paragraph and 3-6

Syntax Checker restriction 8-4

occurrence number

index-name 6-14

subscript identifiers 6-4

OCCURS clause

ASCENDING/DESCENDING KEY phrase 6-12

DEPENDING ON phrase 6-11

description 6-9

fixed-length tables 6-11

formats 6-9

INDEXED BY phrase 6-13

variable-length tables 6-11

omission of optional words allowed 2-6

OMITTED phrase of LABEL RECORDS 4-12

ON OVERFLOW phrase

and STRING statement execution 5-105

and UNSTRING execution 5-112

CALL statement 6-59

one operand, varying 5-124

OPEN INPUT statement

indexed file considerations 5-49

relative file considerations 5-49

OPEN OUTPUT statement

LINAGE clause 4-14

OPEN statement

access considerations 5-48

CLOSE statement 5-35

description 5-47

device considerations 5-48

for TRANSACTION file 7-47

formats 5-48

initializes LINAGE-COUNTER 4-15

organization considerations 5-48

sets current record pointer 5-29

OPEN-FEEDBACK mnemonic-name

and ACCEPT statement 5-33

description 1-11

operand length

relational comparisons 5-11

operands

overlapping 5-81

operation order for arithmetic expressions 5-7

operational sign

description 4-22

in an elementary MOVE statement 5-100

in class test 5-9

in numeric item 4-47

S PICTURE symbol specifies 4-42

SIGN clause 4-35

operator response

ACCEPT statement 5-30

STOP statement 5-133

OPTIONAL phrase of SELECT clause

description 3-19

format 3-17

optional word

detailed description 2-6

OR as logical connective 2-6

printed as capitals 1-4

options, PROCESS statement 8-13

OR condition, multiple UNSTRING 5-109

OR NOT as logical connective 2-6

order of clauses

I-O-CONTROL paragraph 3-27

order of paragraphs, Identification Division 3-3

order of symbols in PICTURE clause 4-45

ordering records using sort/merge 6-25

ORGANIZATION clause

default is SEQUENTIAL 3-22

formats 3-17

Organization of Manual, description Xl

output device, DISPLAY statement 5-43

output file

SAME clause and 3-28

OUTPUT phrase

and data base files 5-49

EXCEPTION/ERROR Declarative 5-21

OPEN statement 5-48

output procedure for sort/merge

description 6-34

overflow condition

and UNSTRING execution 5-112

in a STRING statement 5-105

overlapping delimiters in UNSTRING 5-109

override file command 9-3

packed decimal item

storage occupied 4-33

USAGE clause considerations 4-32

padding of numeric-edited items 4-21

padding with spaces

and DISPLAY statement 5-44

in a move 5-98

incompatible record lengths 4-11

nonnumeric items 4-22

page advancing rules, WRITE statement 5-75

page body, definition 4-14

page ejecting 2-16

page end, LINAGE clause specifies 5-76

page margins in LINAGE clause 4-14

page overflow

WRITE END-OF-P AGE considerations 5-77

PAGE phrase of WRITE ADVANCING

statement 5-76

page positioning

LINAGE-COUNTER 4-15

page size, LINAGE clause specifies 4-13

paragraph

description 5-2

paragraph header, specification 2-14

paragraph-names

X·I6

and PERFORM statement 5-121

description 5-2

formation rules 2-5

GO TO statement 5-119

qualification format 2-18

restriction on duplication 2-19

parentheses

separators, rules for using 2-11

PERFORM statement 5-119

coding example 5-124, 5-128, 5-132

common exit point 5-121

conditional PERFORM 5-122

description 5-119

equivalent to sort/merge 6-35

for table search 6-20

formats 5-119

initializes index 6-7

range of 5-120

segmentation considerations 6-53

TIMES phrase 5-122

VARYING phrase 5-123

performance considerations 9-53

performed procedures

common exit point valid 5-117, 5-121

execution rules 5-120

period (.)

character, definition 2-3

in Configuration Section 3-4

in data description entry 4-26, 4-27

in File-Control entry 3-18

in I-O-CONTROL paragraph 3-28

separator, rules for using 2-11

permanent segment, definition 6-50

permanent segments

ALTER statement 5-117

permissible comparisons

relation-condition 5-11

PGR

See graphics routines

phrase, description 2-2

physical file 3-13

physical page size

logical page size 4-13

physical record size

BLOCK CONTAINS clause 4-10

specifications 4-10

physical record, definition 4-1

PICTURE character-string

DECIMAL-POINT IS COMMA clause 3-12

description 2-4

item size 4-22

punctuation characters 2-10

PICTURE clause

character-string representation 4-44

data categories 4-46

description 4-41

editing 4-49

editing sign function 4-22

fixed insertion editing 4-50

floating insertion editing 4-51

format 4-41

simple insertion editing 4-49

special insertion editing 4-50

symbol order 4-45

symbols used 4-42

VALUE clause considerations 4-39

zero suppression and replacement 4-52

plural figurative constant 2-8

plus sign

character definition 2-3

in numeric literal 2-9

SIGN clause 4-35

when required in formats 1-5

POINTER phrase

and STRING statement execution 5-105

and UNSTRING execution 5-112

positive data, and sign control symbols 4-51

positive numeric data

SIGN clause 4-35

unsigned 4-22

prerequisite publication Xlll

Presentation Graphics Routines
See graphics routines

PRIOR phrase, READ statement 5-54

problem determination 11-1

procedure

Declarative

EXCEPTION/ERROR 5-21

for de bugging 6-68

general description 5-20

general format 5-20

description 5-1

procedure branching statement

ALTER statement 5-116

GO TO statement 5-118

in IF statement 5-24

PERFORM statement 5-119

STOP statement 5-133

Procedure Division 5-1

arithmetic expressions 5-6

arithmetic statements 5-80

conditional expressions 5-8

conditional statements 5-23

data manipulation statements 5-90

data references 2-22

Declaratives 5-20

example 5-3

general description 2-1

input/output statements 5-27

LINAGE-COUNTER 4-15

organization 5-2

procedure branching statements 5-116,5-118

punctuation 2-17

procedure-name

ALTER statement operand 5-117

description 5-1

GO TO statement operand 5-118

PERFORM statement operand 5-122

PROCESS statement

compiler options specified in 8-13

description 8-13

Index X-17

format 8-13

in batch compile environment 8-16

options 8-13

using COpy within 8-15

processing a program 8-1

processing associated card files D-2

processing of files, initiating 5-47

program (executable)

and table values 6-8

description 3-1

execution suspension (STOP) 5-133

PROGRAM COLLATING SEQUENCE clause

alphabet-name clause 3-9

condition-name condition 3-6

description 3-6

format 3-5

relation condition 3-6

SPECIAL-NAMES paragraph 3-6

program described files

considerations for using 9-8

description 9-8

externally defined by DDS with Create File

commands 9-20

program device

ACQUIRE operation 7-46

ACQUIRE operation failure 7-46

attributes of 7-46

invited 7-51

name

specification (see TERMINAL phrase)
used by last 1-0 operation (see

CONTROL-AREA clause)

obtaining information about 7-51

release operation 7-47

status of 7-46

program execution debugging switch 6-66

program segments

description 6-50

fixed

permanent 6-50

independent 6-51

program structure, general 2-1

program switch

ALTER statement 5-117

program syntax, debugging line 6-72

program termination 8-26

PROGRAM-ID paragraph

description 3-2

format 3-3

program-name

description 3-2

formation rules 2-5

pseudo-text

replacement rules 6-47

pseudo-text delimiter

(= =) separator, rules for using 2-11

placement rules for 2-11

publication, prerequisite xiii

publications, list of related xiii

punctuation character

defined as separator 2-3

enclose nonnumeric literal 2-9

list of 2-3
 J
with nonnumeric literal 2-9

punctuation rules 2-16

Purpose of Manual xi

qualification

CORRESPONDING phrase rules 5-82

detailed description 2-17

of UPSI condition-names 3-9

rules 2-19

qualifier connectives 2-6

qualifier, definition 2-17

quotation mark

and QUOTE figurative constant 2-7

description 2-4

placement rules for 2-15

rules for using 2-11

specified in PROCESS statement 8-14

QUOTE, QUOTES figurative constant 2-7

quotient, in division 5-86

random access

DELETE statement 5-40

description 3-15

indexed files 3-23

READ statement 5-52

relative files 3-23

WRITE statement 5-74

read from invited program devices 7-51

controlled job termination 7-52

invited program device errors 7-51

name of program device read

See CONTROL-AREA clause

no data available

See NO DATA phrase

no program devices invited

See AT END phrase

operation 7-51

record format name read

See CONTROL-AREA clause

time out on wait for data 7-52

READ statement

access considerations 5-54

description 5-52

device considerations 5-54

for TRANSACTION file 7-50

formats 5-52

INTO identifier phrase 5-28

organization considerations 5-54

X-18

sets current record pointer 5-29
receiving field

alignment rules and 4-21

in group MOVE statement 5-101

in STRING statement 5-105

in UNSTRING statement 5-111

MOVE statement 5-98

record
See logical record

RECORD CONTAINS clause

description 4-11

format 4-11

record description entry

as RENAMES clause qualifier 4-54

COpy statement, DDS format 4-5

description 4-1, 4-23

sort/merge output file 6-34

record format

fields 7-2

record format specifications

example 9-12, 9-13

use of DDS keywords 9-11

RECORD KEY

for a format 3-25

function of in indexed file 3-16

REWRITE statement 5-63

START statement 5-68

RECORD KEY clause

description 3-24

format 3-18

record level concepts 4-17

record locking

updating data base records 9-5

record sequencing using sort/merge 6-25

record size

ACCEPT statement 5-30

DISPLAY statement 5-44

established at file creation time 5-73

incompatible lengths 4-11

RECORD CONTAINS clause specifies 4-11

REWRITE statement considerations 5-61

sort/merge output file considerations 6-34

record storage, WRITE statement 5-73

record-description level-number concepts

description 4-18

illustration 4-20

record-name

formation rules 2-5

RELEASE statement operand 6-36

REWRITE statement 5-61

WRITE statement considerations 5-73

RECORDS phrase of RERUN clause

format 3-27

REDEFINES clause

description 4-28

format 4-28

redefining item

description 4-29

moving to a redefined item 5-98

reference number 8-17, 8-24

reference to data 2-18

register 6-70

relation character

list of 2-3

relation condition

description 5-11

format 5-11

nonnumeric operand comparisons 5-13

numeric operand comparisons 5-13

PROGRAM COLLATING SEQUENCE

clause 3-6

relational operator meanings 5-11

table handling rules 6-14

relational operator

in abbreviated combined relation condition 5-19

meaning 5-11

relative and direct index usage 6-20

relative file organization, description 3-15

relative files

File-Control entry

description 3-16

format 3-18

RELATIVE 1-0 module, 1974 Standard 1-2

relative indexing, description 6-7

RELATIVE KEY

FILE-CONTROL paragraph
considerations 3-18

START statement 5-68

SUBFILE phrase considerations 7-49

WRITE statement considerations 5-75

release program device
See DROP statement

RELEASE statement

description 6-36

format 6-36

REMAINDER phrase of DIVIDE statement

execution rules 5-87

format 5-87

RENAMES clause

data-name-2 phrase 4-54

data-name-2 THRU data-name-3 phrase 4-54

description 4-54

format 4-54

general format 4-24

level-66 item 4-20

specification examples 4-56

repetitive execution of PERFORM statement 5-122

replacement editing

description 4-52

replacement of file records 5-61

replacement rules for library-text 6-39

REPLACING phrase

of COpy statement 6-47

of INSPECT statement 5-94

reporting COBOL problems 11-5

required items indicated by braces 1-4

required words, detailed description 2-6

RERUN clause

description 3-28

formats 3-27

RESERVE clause 3-17

Index X-19

reserved word multiple display file creation 7-30

detailed description 2-5

list G-l

printed as capital letters 1-4

retrieving/saving source entries 6-39

RETURN statement for sort/merge

description 6-36

format 6-37

sets current record pointer 5-29

REVERSED phrase of OPEN statement 5-48

REWRITE statement

access considerations 5-62

description 5-61

device considerations 5-62

for TRANSACTION file 7-58

format 5-61

FROM identifier phrase and 5-28

organization considerations 5-62

right parenthesis ())

description 2-3

rules for using 2-11

right-padding of items 4-21

ROLLBACK statement

description 5-65

format 5-65

sets current record pointer 5-29

ROUNDED phrase

ADD statement 5-84

COMPUTE statement 5-84

description 5-83

DIVIDE statement 5-84

execution rules 5-83

MULTIPLY statement 5-84

routine-name

formation rules 2-5

in ENTER statement 5-134

SUBTRACT statement 5-84

rules for qualification 2-19

rules, punctuation 2-16

run unit

CALL statement transfer control 6-56

SAME clause
and SAME SORT/SORT-MERGE AREA

clause 6-27

description 3-28

format 3-27

RELEASE statement and 6-36

sample programs

See also examples

commitment control 9-47

error recovery procedure 9-55

FORMATFILE file creation 9-22

indexed file creation F-6

indexed file updating F-8

mixed file creation 7-30

relative file creation F-11

relative file retrieval F-15
 Jrelative file updating F-13

sequential file creation F-2

sequential file updating and extension F-4

TRANSACTION file processing 7-50

TRANSACTION program 7-67

work station support 7-66

SD entry

and MERGE statement file-name 6-29

and RELEASE statement record-name 6-36

and RETURN statement file-name 6-37

and SORT statement file-name 6-28

description 6-28

FILE-CONTROL paragraph 3-18

format 6-28

SEARCH statement

coding example 6-20

description 6-15

execution considerations 6-18

formats 6-15

section header

description 5-1

in Declarative procedures 5-20

specification of 2-14

section-name

ALTER statement and 5-116

as qualifier 2-19

description 5-1

formation rules 2-5
 JGO TO statement 5-118

PERFORM statement 5-122

restriction on duplication 2-19

section, description 5-1

SECURITY paragraph

format 3-1

syntax checker restriction 8-4

SEGMENT-LIMIT clause 3-6

segment-number

description 6-50

formation rules 2-5

logic of specification 6-51

segment-number, in Declaratives 5-20

segmentation feature

concepts

program segments 6-50

Procedure Division 6-53

special considerations 6-53

segmentation information

ALTER statement 6-53

calling and called programs 6-54

GO TO statement 6-53

PERFORM statement 6-54

SORT and MERGE statements 6-54

SEGMENTATION module, 1974 Standard 1-2

SELECT clause

formats 3-17

order of specification 3-19

sort/merge considerations 6-26

X-20

sending field

in group MOVE statement 5-101

in STRING statement 5-105

in UNSTRING statement 5-109

MOVE statement 5-98

sentence

categories 5-3

description 5-2

SEPARATE CHARACTER phrase of SIGN clause

description and format 4-35

separator

description 2-3

detailed description 2-10

sequence number, detailed description 2-11

sequence of clauses, required 1-5

sequence of execution, performed procedures 5-122

sequencing records using sort/merge 6-25

sequential access

DELETE statement 5-40

READ statement and 5-52

relative key option for 3-24

WRITE statement 5-74

sequential access mode

description 3-15

indexed files 3-23

relative files 3-23

sequential files 3-16

sequential file

description 3-16

EXCEPTION/ERROR Declarative phrases 5-21

FILE-CONTROL Paragraph 3-16

format 3-16

OPEN statement considerations 5-48

organization 3-14

READ statement and 5-55

REWRITE statement 5-62

SEQUENTIAL 1-0 module, 1974 Standard 1-2

series connectives, detailed description 2-6

service information, compiler A-I

SET statement

and conditional variables 5-103

and external switches 5-103

and multidimensional table search 6-20

description 5-103, 6-22

formats 5-103,6-22

initializes index 6-7

TO phrase 6-22

UP/DOWN BY phrase 6-24

valid field combinations 6-23

SEU
See source entry utility (SEU)

sharing storage
file records 3-27

SI attribute 3-21, 7-5

sign character, in numeric literal 2-9

SIGN clause

description 4-35

format 4-35

operational sign representation 4-22

S PICTURE symbol 4-42

sign condition

description 5-14

format 5-14

sign control, fixed insertion editing 4-50

sign in numeric literal, position of 2-9

SIGN IS SEPARATE CHARACTER clause

description and format 4-35

signed numeric item

SIGN clause specification 4-35

simple condition

negation of 5-15

simple insertion editing 4-49

singular figurative constant equivalent to

plural 2-8

SIZE ERROR phrase

COMPUTE statement 5-84

description 5-84

DIVIDE statement 5-84

MULTIPLY statement 5-84

SUBTRACT statement 5-84

size of DEBUG-CONTENTS 6-71

size of operands in nonnumeric comparisons 5-13

SIZE, STRING statement delimiter 5-104

small letters, user-defined words printed in 1-4

SORT statement

description 6-29

format 6-29

phrases 6-31

segmentation considerations 6-53

sort/merge OUTPUT procedure 6-35

SORT-MERGE module, 1974 Standard 1-2

Sort/Merge

concepts 6-25

considerations 6-37

Data Division - SD entry 6-28

Environment Division 6-27

File Description (SD) entry

description 6-28

FILE-CONTROL paragraph required

for 3-18

format 6-28

File-Control entry 6-26

I-O-Control entry 6-27

or System/38 logical file support 6-25

Procedure Division

MERGE statement 6-29

RELEASE statement 6-36

RETURN statement 6-36

SORT statement 6-29

SORT/MERGE statement phrases 6-31

source entry utility (SEU)

browsing a compiler listing 8-4

entering a source program 8-2

source language debugging

compile-time switch 6-66

DEBUG-ITEM special register 6-70

debugging lines 6-72

execution-time switch 6-67

USE FOR DEBUGGING procedures 6-68

source program

batch entry 8-1

Index X-21

compiling 8-5 level-number 4-25

COPY statement considerations 6-39

description 3-1

interactive entry 8-1

using SEU to enter 8-1

WITH DEBUGGING MODE switch and

compilation 6-66

source program library feature 6-39

SOURCE-COMPUTER paragraph

DEBUGGING MODE as compile-time
switch 6-66

format 3-4

Syntax Checker restriction 8-4

treated as documentation 3-6

space fill

example using INSPECT 5-97

in an elementary MOVE statement 5-100

space punctuation character, description 2-3

space separator

rules for using 2-10

SPACE/SPACES figurative constant

description 2-7

spaces

BLANK WHEN ZERO clause causes

insertion 4-37

spacing

of pages and LINAGE clause 4-13

special collating sequences, specifying 3-6

special features

debugging 6-66

inter-program communication 6-54

segmentation 6-50

sort/merge 6-25

table handling 6-1

special insertion editing 4-50

special level-number concepts 4-20

special registers

DATE 5-33

DAY 5-33

DB-FORMAT-NAME 5-30,7-48

DEBUG-ITEM 6-70

need not be defined 2-6

TIME 5-33

use of 2-6

SPECIAL-NAMES paragraph

ACCEPT statement 5-30

description

alphabet-name clause 3-11

CURRENCY SIGN clause 3-12

DECIMAL-POINT IS COMMA clause 3-12

function-name-1 clause 3-7

function-name-2 clause 3-8

example 3-9

format 3-5

PROGRAM COLLATING SEQUENCE

clause 3-6

Syntax Checker restriction 8-4

specification order

data description clauses 4-25

data-name or FILLER clause 4-25

REDEFINES 4-25

subscripts 6-5
 J

spooling files
inline data files 9-4

output files 9-4

square brackets ([J) indicate optional items 1-5

standard alignment rules

alphabetic items 4-21

alphanumeric items 4-21

JUSTIFIED clause modifies 4-37

numeric edited items 4-21

numeric items 4-21

standard COBOL format

description 2-11

standard data format

description 4-22

numeric literal size 2-9

ST ANDARD phrase of LABEL RECORDS

clause 4-12

STANDARD-1 phrase

of alphabet-name clause 3-10

SEQUENCE phrase 6-31

standards, COBOL xiv

START statement

access considerations 5-67

description 5-66

device considerations 5-67

format 5-67

INVALID KEY phrases 5-68

organization considerations 5-67
 Jrelative key 3-24

sets current record pointer 5-29

starting line number

duplicate record keys, DUPLICATES

phrase 3-24

formula 7-61

WRITE statement, for TRANSACTION file 7-60

statement

categories 5-4

description 5-2

summary J-1

static values of a table 6-7

status key values 1-5

STATUS KEY, file processing

description of use 5-28

OPEN statement 5-52

WRITE statement 5-73

STOP RUN statement

description and format 5-133

inter-program communication 9-61

STOP statement

ALL literal figurative constant restrictions 2-7

description 5-133

format 5-133

storage allocation, calling and called
programs 6-57

storage format, USAGE clause specifies 4-31

storage layout of table, example 6-2

storage of records

X-22

REDEFINES clause and 4-28

storage of records illustrated 4-20

STRING statement

ALL literal figurative constant restriction 2-7

description 5-104

examples 5-106

format 5-104

structvre of COBOL program, general

description 2-1

subfield contents of DEBUG-ITEM special

register 6-71

subfile

access 7-23, 7-50

special register DB-FORMAT-NAME 7-24

specified in DDS 7-22

use of 7-24

valid operations 7-23

SUBFILE phrase 7-49

subject

of abbreviated combined relation-condition 5-19

of OCCURS clause, definition 6-9

of relation condition

description 5-11

subscripting

and PROCESS statement 6-5

description 6-4

example 6-5

invalid for File-Control entry data-names 3-18

restriction for qualifiers 2-20

substitution field of INSPECT REPLACING 5-94

SUBTRACT statement

common phrases 5-82

CORRESPONDING phrase 5-89

description 5-89

formats 5-89

subtraction operator 5-7

summary of clauses and statements J-1

summary of updates xii

suppression of sequence checking 2-11

switch-status condition

description 5-14

format 5-14

symbol order in PICTURE clause 4-45

symbols used in PICTURE clause 4-42

SYNCHRONIZED clause

description 4-36

format 4-36

syntax of program

debugging lines 6-72

detailed description 2-3

system console

ACCEPT statement 5-30

DISPLAY statement 5-44

system information transfer, ACCEPT

DATE 5-33

DAY 5-33

TIME 5-33

system input device, ACCEPT statement 5-32

system-dependent considerations

DATA DIVISION considerations

BLOCK CONTAINS clause 4-10

COpy DDS statement 6-40

index literals 6-7

item size 4-10

LINAGE clause 4-14

OCCURS clause 6-9

RECORD CONTAINS clause 4-11

SORT/MERGE statement 6-30

subscript literals 6-4

ENVIRONMENT DIVISION considerations

ASSIGN clause 3-19

RECORD KEY clause 3-24

RESERVE clause 3-21

SAME AREA or SAME RECORD AREA

clause 3-28

SAME SORT-MERGE AREA clause 6-27

general considerations

indexed file 3-23

library-name 2-19

program-name 3-2

relative file 3-23

source program library 6-39

source statements 8-2

text-name 2-19

user-defined words 2-4

PROCEDURE DIVISION considerations

arithmetic statements 5-80

CALL statement 6-59

GO TO DEPENDING ON statement 5-118

INSPECT statement 5-90

STOP statement 5-133

UNSTRING statement 5-109

system-error routine 5-22

system-independent binary items 4-33

system-name

description 2-5

SYSTEM-SHUTDOWN as function-name 3-9

System/36

accessing data files on remote 3-13

field definitions on remote 3-13

System/38

accessing data files on remote 3-13

field definitions on remote 3-13

SYSTEM/38 file name

in ASSIGN clause· 3-21

in COpy statement 6-39

SYSTEM/38 library name

and Library-name 6-39

in COPY statement 6-39

table

definition 6-2

length 6-10

table element

definition 6-1

length 6-10

Index X-23

table handling

Data Division 6-9

OCCURS clause 6-9

Procedure Division 6-14

reinitializing index-names 6-22

relation conditions 6-14

SEARCH statement 6-15

SET statement 6-22

table definition 6-2

table initialization 6-7

table references 6-4

UP/DOWN BY phrase 6-24

USAGE IS INDEX clause 6-13

table handling concepts

table definition 6-20

table initialization 6-7

table references

indexing 6-6

subscripting 6-4

TABLE HANDLING module, 1974 Standard 1-2

table layout, example 6-2

table of valid and invalid moves 5-102

table references

and SEARCH ALL results 6-20

indexing 6-6

subscripting 6-4

table values, defining 6-7

table, definition 6-2

TALLYING phrase

INSPECT statement 5-94

UNSTRING statement 5-110

TERMINAL phrase

description 7-49

with READ (nonsubfile), description 7-58

with READ statement, formats 7-50

with READ SUB FILE, description 7-56

with REWRITE statement, description 7-58

with REWRITE statement, format 7-58

with WRITE (nonsubfile), description 7-60

with WRITE statement (nonsubfile),

format 7-60

with WRITE SUB FILE, description 7-63

with WRITE SUBFILE, format 7-63

termination of execution

EXIT PROGRAM statement 6-63

STOP RUN statement 5-133

termination, program 8-26

test library 10-1

testing function, CPF 10-1

text-name

COpy statement operand 6-39

formation rules 2-5

qualification format 2-18

THEN phrase

format 5-24

used as separator 5-24

TIME, ACCEPT statement 5-30

TIMES phrase of PERFORM statement 5-122

TO phrase, SET statement 6-22

top page margin in LINAGE clause 4-14

traces

considerations 10-11

description 10-8

example 10-9

TRAILING phrase of SIGN clause

description 4-35

TRANSACTION files

Boolean data facilities 7-44

data description specifications for 7-1

Data Division Considerations 7-43

Environment Division considerations 7-39

externally described 7-1

language extensions for 7-1

Procedure Division considerations 7-44

processing externally described 7-4

program described 7-39

sample programs 7-66

TRANSACTION organization 7-40

transfer of control

ALTER statement change 5-117

and sort/merge OUTPUT PROCEDURE 6-35

explicit and implicit 2-22

sort INPUT PROCEDURE 6-33

transfer of data

in a STRING statement 5-105

into DEBUG-ITEM special register 6-71

truncation

in numeric items 4-21

JUSTIFIED clause 4-37

truncation of data

ACCEPT statement 5-30

in an elementary MOVE statement 5-100
 J
in floating insertion editing 4-52

incompatible record lengths 4-11

ROUNDED phrase 5-83

VALUE clause restrictions 4-39

truth value, description 5-15

twos complement form 4-34

unary operator

list 5-7

use 5-7

unblocked files, BLOCK CONTAINS clause 4-10

unblocking input records/blocking output records

conditions 9-6

file status values 3-27

OPEN statement 5-52

updating the I-O-FEEDBACK area 1-11

unblocking, automatic 5-27

unconditional GO TO statement 5-119

underlined capital letters, keywords as 1-4

underscores, translated to hyphens 6-40

unsigned numeric literal considered positive 2-9

unsigned operand

considered positive or zero 4-22

X-24

UNSTRING statement

data receiving fields 5-110

description 5-109

examples 5-114

execution rules 5-111

figurative constant length 2-8

format 5-109

sending field 5-109

UNTIL phrase of PERFORM statement 5-122

UP/DOWN phrase, SET statement 6-22

I updates to manual xii

UPON phrase of DISPLAY statement 5-44

UPSI switches

and SET statement 5-103

and switch-status condition 5-14

SPECIAL-NAMES paragraph 3-9

UPSI-O through UPSI-7 as function-names 3-8

USAGE clause

and numeric items 4-32

computational options 4-32

description 4-31

DISPLAY phrase 4-31

format 4-31

operational sign representation 4-22

REDEFINES clause and data values 4-30

zoned decimal items 4-32

USAGE IS INDEX clause

description 6-13

format 6-13

USE statement

EXCEPTION/ERROR 5-21

EXCEPTION/ERROR for TRANSACTION

file 7-66

FOR DEBUGGING 6-68

user-defined word

detailed description 2-4

formation rules 2-4, 2-5

printed in lower case 1-4

user-name

as function-name 2-5

in VALUE OF clause 4-13

USING phrase

SORT/MERGE statement

description 6-32

USING phrase, inter-program communication

format 6-60

valid and invalid elementary move table 5-102

valid characters in CURRENCY SIGN clause 3-12

valid execution sequence, PERFORM

statement 5-122

validity checking, automatic 5-27

VALUE clause

description 4-38

example of condition-name entries 4-41

format 4-38

VALUE OF clause 4-12

value, of numeric literal 2-9

variable length table

description 6-11

format 6-10

varying operands in PERFORM statement 5-123

VARYING phrase

PERFORM statement 5-123

SEARCH statement 6-15

verbs

as keyword 2-6

lists 5-5

WHEN phrase of SEARCH ALL statement 6-18

WITH FOOTING phrase of LINAGE clause

description 4-14

WITH NO REWIND phrase of CLOSE 5-36

word

description 2-3

detailed description· 2-4

reserved, detailed description 2-5

words, reserved G-1

work station support

See also TRANSACTION files

general description 7-1

Working-Storage Section

general description 4-5

general format 4-3

level-77 and level-01 names unique 4-20

VALUE clause considerations 4-38

WRITE ADVANCING statement

description 5-75

LINAGE clause and 4-15

WRITE statement

access considerations 5-74

ADVANCING phrase 5-74

description 5-72

device considerations 5-74

END-OF-PAGE phrase 5-74

for TRANSACTION file 7-60

format 5-72

FROM identifier phrase 5-28

INVALID KEY phrase 5-74

mnemonic-names and 3-7

modifies LINAGE-COUNTER 4-15

organization considerations 5-74

ROLLING phrase 7-61

STARTING phrase 7-61

Index X-25

zero (0)
as unique value 4-22
insertion symbol 4-43

zero filling
INSPECT statement 5-97

zero suppression and replacement editing 4-52
ZERO, ZEROES, ZEROS figurative constant

description 2-7

used as Boolean literal 7-44

zoned decimal item
description 4-32
RECORD KEY data item 3-25

I Numerics I

00-99 segment-numbers, formation rules 2-5
01 level-number

description 4-18
illustration 4-20

01-49 level-numbers, formation rules 2-5

02-49 level-number concepts
description 4-18 \
illustration 4-20 ...",

1974 Standard COBOL
description xiv
1975 FIPS COBOL and 1-3

1975 FIPS COBOL flagging
full 1-3
high-intermediate 1-3
low 1-3
low-intermediate 1-3

5424 MFCU D-1
66 level-number

concepts 4-20
formation rules 2-5
general description 4-26
general format 4-24

77 level-number
concepts 4-20
formation rules 2-5

88 level-number
concepts 4-20
formation rules 2-5
general description 4-20
general format 4-24

J

X-26

READER~COMMENTFORM
IBM System/38 SC21-7718-7

COBOL
Reference Manual
and Programmer's Guide

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that I BM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate_

Note: Copies of IBM publicztions are not stocked at the location to which this form is addressed. Please direct
any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative
or to the IBM branch office serving your locality.

Please use this form only to identify publication errors or to request changes in publications.

Possible topics for comment are:

Clarity Accuracy Completeness Organ ization Retrieval Legibility

D If your comment does not need a reply (for example, pointing out a typing error) check this box

and do not include your name and address below. If your comment is applicable, we will include it
in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page nu mber (s): Comment(s) :

Please print

Name ___

Company or

Organization _____________________________________

Address ___

No postage necessary if mailed in the U.S.A. City State Zip Code

-------- -- ---

SC21-7718-7

I

I

U

~
»
0
:::J
to

r
:::J
C1)

Fold and tape Please do not staple Fold and tape

NO POSTAGE
NECESSARY IF III II
MAl LED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N_ Y.

POSTAGE WILL BE PAID BY ...

International Business Machines Corporation
Development Laboratory
Information Development, Department 532
Rochester, Minnesota 55901

-----------~------------------ a.
Fold and tape Please do not staple Fold and tape

-~--.... --_- -. ------- I~-----,
® t-.l

I~
International Business Machines Corporation

liP
I
I
I

~
~
CD

----- - ------- - ---- - - --------

--...-

---,-
®

International Businell Machines Corporation

til
~
en
<

'"
~

3
w -

IX)

(")

o
til
o
r
Jl
~

::J '"
~

C'l

'" ~
0>

::J

c:
0>

0>
::J
a.
"lI o
co
iil
3
3
~ .,
c;)
c:
a:
'"
"
'" z
o
en w
IX)

,:"

en
(")

~
....
IX)-

~

SC 2 1-7718-07

SC21-7718-7 11111111111111

