

L - - - LY21-0571-6 - - -- - ---- -- File No. S38-36 - ---- - - ---- _ .. -- - " - THIS DOCUMENT CONTAINS RESTRICTED
MATERIALS OF IBM CORPORATION.

IBM System/3S

IBM System/3S
Control Program Facility
Logic Overviews and
Component Description

Program Number 5714-551

Seventh Edition (September 1985)

This major revision makes obsolete, LY21-0571-5. New components have been added:
System/38 Finance Support, Network Facilities, Office Systems, and SNA Distribution
Services. Other changes and additions are indicated by a vertical line to the left of the
change or revision.

This edition applies to release 7, modification level 0, of the IBM System/38 Control
Program Facility (Program Number 5714-SS1) and to all subsequent releases and
modifications until otherwise indicated in new editions or Technical Newsletters. Changes
are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

Use this publication only for the purposes stated in About This Manual.

The numbers at the bottom right of illustrations are publishing control numbers and are not
part of the technical content of this manual.

Publications are not stocked at the address below. Requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for
Reader's Comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to IBM Corporation, Information Development,
Department 245, Rochester, Minnesota, 55901. IBM may use and distribute any of the
information you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

This document contains restricted materials of International Business Machines Corporation.
©Copyright International Business Machines Corporation 1980, 1981, 1982, 1983, 1984,

1985
All Rights Reserved.

J

ABOUT THIS MANUAL . . .
What You Should Know
If You Need More Information
Summary of Changes

INTRODUCTION ..

ACCESS PATH MANAGER
Introduction
General Overview

Access Path Manager Modules
Access Path Manager Operation

3270/5250 INFORMATION DISPLAY SYSTEM
VERIFICATION.

Introduction
General Overview

3270/5250 Information Display System
Verification Modules

Router Modules
Printer Verification Modules .
Display Verification Modules
ERAP Modules
Link Test Modules
Configuration Modules . . .

5250 Overview and Relationship to Other
Components

xiii
xiii
XIII

XIII

xv

AP-1
AP-1
AP-1
AP-1
AP-2

AR-1
AR-1
AR-1

AR-1
AR-1
AR-2
AR-2
AR-3
AR-3
AR-3

AR-4

BINARY SYN.CHRONOUS COMMUNICATIONS . BS-1
Introduction
General Overview

Binary Synchronous Communications Modules
Binary Synchronous Communications Overview

COMMAND ANALYZER
Introduction

Validity Checking . . .
Parsing a Command

Example of Work Area
Command Processing . .

General Overview
Command Analyzer Modules
Command Analyzer Overview
Command Analyzer as Used by Spooling,

CL Compiler, Prompter, Command Definition,
and the Source Entry Utility.

Command Analyzer as Used by a CL Program
Command Analyzer as Used by a CL Program

with Prompting
Command Analyzer as Used by the Subsystem

Controller without Prompting .
Command Analyzer as Used by a

High- Level Language Program
Command Analyzer as Used by the Subsystem

Controller with Prompting

BS-1
BS-1
BS-1
BS-3

CA-1
CA-1
CA-1
CA-1
CA-1
CA-4
CA-4
CA-5
CA-5

CA-7
CA-8

CA-9

CA-lO

CA-11

CA-12

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Contents

COMMAND DEFINITION
Introduction

Command Definition Source Statements .
Command Definition Objects

Building a Command Definition Object
General Overview

Command Definition Modules
Create Command Command Overview

CONTROL LANGUAGE COMPILER ..
Introduction
General Overview

CL Compiler Modules . . .
Compile-Time Modules.
Execution-Time Modules

Control Language Command with
Independent Command Processing Program

CL Program Call and Transfer Control Commands
Call Command
Transfer Control Command (Generic
Description)

Delete Program Command . . .
Retrieve Job Attribute Command
Convert Date Command
List Command Usage Command
Retrieve CL Source Command
Display Program Command
Change Program Command .

CONSOLE FUNCTION MANAGER.
Introduction
General Overview

Console Function Manager Modules
Console Function Manager External

Interfaces
Console Function Manager Internal

Interfaces
Put Operation
Put to Subfile Record (Data Flow)
Put to Subfile Control Record (Data Flow)
Get Operation
Get from Subfile Record (Data Flow)
Pass Option of the Suspend Module
Get (or Put-Get) Nowait Function.
Subfile Record (Module Flow)

COpy
Introduction
General Overview

Copy Modules
Copy File Operation Overview

5424 FUNCTION MANAGER
Introduction
General Overview

5424 Function Manager Modules
5424 Function Manager Operation

CD-1
CD-1
CD-1
CD-2
CD-4
CD-6
CD-6
CD-6

CL-1
CL-1
CL-3
CL-3
CL-3
CL-5

CL-6
CL-7
CL-7

CL-7
CL-8
CL-8
CL-9
CL-9

CL-10
CL-11
CL-12

CO-1
CO-1
CO-1
CO-1

CO-2

CO-3
CO-4
CO-6
CO-8

CO-lO
CO-12
CO-14
CO-14
CO-16

CP-1
CP-1
CP-1
CP-1
CP-2

CS-1
CS-1
CS-1
CS-l
CS-2

Contents iii

DATA BASE
Introduction

Entry to Data Base Functions
General Overview

Data Base Modules
Data Base Definition Modules
Data Base Manipulation Modules
Data Base Member Modules
Data Base Extraction Modules. .
Data Base Recovery Modules . .
Data Base Event Handling Modules
Data Base Generic File Handling Modules .
Data Base Save/Restore and Reclaim

Generic File Handling Modules . . .
The Structure of Data Base Files
Structure of an Open Data Base Member

Data Base Recovery .
Data Base Object Locking

DEVICE CONFIGURATION
Introduction
General Overview

Device Configuration Modules
Create Logical Unit Description, Control Unit

Description, and Network Description
Add Device Mode Entry to a Peer Device

Description
Delete Logical Unit Description, Control Unit

Description, and Network Description
Change Logical Unit Description, Control Unit

Description, Network Description, and
Device Mode Entry

Create, Delete, and Display Edit Codes and
Edit Macro Interface

Create, Delete, and Display
Edit Code Commands . .

Edit Code Macro Interface
Create and Delete Print Images and Tables

Print Image
Tables

Device Configuration Display Commands
Communication Status Display Commands
Power and Vary Devices-Start CPF and
Termination Procedures.

Start CPF Procedure .
Termination Procedure
Power Commands
Vary Commands

DATA DESCRIPTION
Introduction
General Overview . .

iv

Data Description Modules
Device Related Modules
Data Base Related Modules
Modules Related to Both Device

and Data Base
DDS Single Line Syntax Checker

Creating Files With a Source Description
Provided.

Creating a File or Adding a File Member
Without Supplying A Source Description

Changing Device Files.

DB-'
DB-1
DB-2
DB-6
DB-6
DB-6
DB-6
DB-7
08-7
DB-8
DB-8
DB-9

DB-9
DB-10
DB-14
DB-16
DB-18

DC-1
DC-1
DC-1
DC-1

DC-6

DC-8

DC-lO

DC-12

DC-14

DC-14
DC-14
DC-16
DC-16
DC-16
DC-18
DC-20

DC-22
DC-22
DC-22
DC-22
DC-23

00-'
DD-1
DD-1
DD-1
DD-1
DD-2

DD-3
DD-3

00-3

DD-4
DD-4

Single Line Syntax Checking Through
Source Entry Utility

Multiple Line Syntax Checking Through

Screen Design Aid. . . .
Create Device File Overview
Create Physical File/Add

Physical File Member Overview
Create Physical File/Create Source File
Add Physical File Member

Create Logical File/Add Logical File Member
Overview

Create Logical File

Add Logical File Member
Change Device File/Remove Member Overview

Change Device File
Remove File Member.

Single Line Syntax Checker Overview
Screen Design Aid DDS Parser .

DEVICE FILE DEFINITION
Introduction
General Overview

Device File Definition Modules
Device File Definition Overview

Create Device File Definition .
Change Device File Definition
Delete Device File Definition .

Device File Definition Extract Operation
Convert Device File Definition
Device File Definition Subset Operations.
Duplicate Device File Operation. . .

Save/Restore of an Online Save File

DISKETTE FUNCTION MANAGER
Introduction
General Overview . . .

Diskette Function Manager Modules
Diskette Operation

COMMON DATA MANAGEMENT.
Introduction
General Overview

Common Data Management Modules
Open
Close
Device File Definition
Data Base File Definition
Structure of the Common Data Management

Objects after Opening a Device File . . .
Structure of the Common Data Management

Objects after Opening a Multi-Device File
Common Data Management Macros
Overrides
Acquire Program Device
Release Program Device
Locking/Unlocking
Accept Input
Pass Device . . .

DD-4

DD-4
DD-6

DD-8

DD-8
DD-8

DD-lO

DD-lO
DD-lO
DD-12

DD-12
DD-12

DD-13
DD-14

DF-'
DF-1
DF-1
DF-1

DF-3
DF-4
DF-6
DF-7

DF-8
DF-10
DF-12
DF-14

DF-15

DK-'
DK-1
DK-1

DK-1
DK-2

DM-'
DM-1
DM-1
DM-1

DM-3

DM-3
DM-3
DM-4

DM-4

DM-6
DM-8
DM-8
DM-8
DM-8
DM-8
DM-8

DM-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

~

L

Routing Common Function.
Install Object.
Data Management Communications Queue
Machine Interface Request Queue
Device Definition
Device File Definition . . .

Inactive Open Data Path

3270 EMULATION

Introduction

General Overview .

Display Emulation Modules

Printer Emulation Modules

FINANCE SUPPORT

Introduction

General Overview . .

Finance I/O Managers

Submit Finance Job (SBMFNCJOB)

Command Interface

Finance I/O Manager Interface

GRAPHICS.

Introduction

GDDM Routines

PG R Routines

General Overview

Graphics Modules

Al Modules.

PGR Modules

FSM Modules

ESI Modules .

TSI Modules .

CSI Modules .

INSTALLATION.

Introduction

General Overview

Installation Modules

Installation Process Overview

JOURNAL MANAGEMENT

Introduction

Entry to Journal Functions

General Overview

Journal Management Modules

Command Processing Modules

Event/ Exception Handling Modules

Save/Restore Object Modules.

Recovery Modules

Journal 10 Generation .

Receiver Directory Management

Journal Object Locking

Process Event Masking

DM-8
DM-8

DM-l0
DM-l0
DM-l0
DM-l0
DM-ll

EM-'
EM-l

EM-l

EM-l

EM-8

FN-'
FN-l

FN-l

FN-l

FN-2

FN-2

GD-'
GD-l

GD-l

GD-l

GD-l

GD-l

GD-3

GD-3

GD-4

GD-7

GD-7

GD-7

IN-'
IN-l

IN-l

IN-l

IN-2

JO-,

JO-l

JO-2

JO-4

JO-4

JO-4

JO-5

JO-6

JO-6

JO-6

JO-7

JO-7

JO-7

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982, 1983, 1984, 1985

KANJI

Introduction

General Overview

Kanji Modules

LIBRARIAN.

Introduction

General Overview

Librarian Modules

Object

Library

Library List

Check an Object

Delete an Object

Move an Object

Rename an Object

Create Duplicate Object

Other Generic Functions .

Clear a Library .

Delete a Library

Create a Library

Object Information Repository and its

Manipulation

Display a Library List

Displaying an Object Description

Display the Contents of a Library

Librarian Relationships to Other CPF

Components

Replace Library List Command

Clear Library Command .

Create Library Command

Delete Object Commands

Delete Library Commands

Display Library Command

Display Object Description Command

List Objects

Move Object Command . .

Rename Object Command .

Library Clean-Up During IPL

Check Object Command . .

Add Library List Entry and Remove Library

List Entry Commands

Create Duplicate Object Command . .

Display Library List Command

Change System Library List Command

System Library Cleanup During Installation

Library Cleanup and Conversion

During Reclaim Storage

Library Conversion During Installation

KJ-'
KJ-l

KJ-l

KJ-l

LI-'
LI-l

LI-l

LI-l

LI-3

LI-3

LI-3

LI-3

LI-4

LI-4

LI-4

LI-4

LI-4

LI-4

LI-4

LI-4

LI-4

LI-4

LI-5

LI-5

LI-6

LI-8

LI-9

LI-l0

LI-12

LI-14

LI-15

LI-16

LI-17

LI-18

LI-19

LI-20

LI-21

LI-22

LI-23

LI-24

LI-25

LI-25

LI-26

LI-28

MESSAGE HANDLER MH-1

MH-l

MH-2

Introduction

Message Creation, Storage, and Retrieval

Contents v

Message Routing and Queuing

Message Routing

Request

Scope ...

Completion .

Diagnostic and Exception

Information

Inquiry ...

Reply

Sender Copy

Message Queue Types

Message Queue Processing

Send Message Processing

System Reply list

Display Messages

Receive Message Processing

Move Message from One Program

Queue to Another.

Remove Message from Queue .

Break/Notify Message Delivery

Error Detection and Reporting. . .

Exception Messages

Sending Exception Messages

Monitoring Exception Messages

Default System Error Handling .

Exception Handling

Un monitored Message Handling

Requester Interface

Initial Program Processing . . .

Program Message Display . . .

Interpretive Request Processing Overview

Batch Request Processing Overview

Scope Message Processing

System Logs

System Log Structure and Processing

System Log Display.

MENU

I ntrod Ilction

Program Call Menu

Command Selection Menus

Command Grouping Menu

Configuration Menu. .

System Operator Menu

Programmer Menu . .

System Request Menu

General Overview

vi

Menu Modules

Program Call Menu Overview

Command Selection Menu Overview

Configuration Menu Overview

System Operator Menu Overview

Programmer Menu Overview . . .

MH-4

MH-4

MH-4

MH-4

MH-4

MH-4

MH-4

MH-4

MH-4

MH-4

MH-4

MH-6

MH-6

MH-6

MH-8

MH-8

MH-8

MH-8

MH-8

MH-10

MH-10

MH-10

MH-10

MH-10

MH-ll

MH-11

MH-16

MH-16

MH-16

MH-18

MH-20

MH-20

MH-20

MH-20

MN-1

MN-1

MN-1

MN-:1

MN-1

MN-2

MN-2

MN-2

MN-2

MN-2

MN-2

MN-3

MN-4

MN-5

MN-6

MN-7

System Request Menu Overview

Build Menu Text Space Object Overview

NETWORK FACILITIES

Introduction

Network File Queues

Network Job Entry Table

General Overview

Network Job Entry Management Modules

Distribution Modules

Transaction Program Modules . .

Network File Processing Modules .

Recovery Modules

Distribution Commands and Processing

OFFICE SYSTEMS

Introduction

General Overview .

Terminal Node Attachment

Distribution Services Modules

Library Services Modules

OFFICE/38-Personal Services/38 Interface

Modules

SNADS Subsystem Modules

Command Language (CL) Command Processing

Programs

Restore Document Command (RSTDOC) . .

Delete Document Command (DL TDOC) . . .

Delete Document List Command (DL TDOCL)

Grant Document Authority Command

(GRTDOCAUT)

Revoke Document Authority Command

(RVKDOCAUT)

Display Document Authority Command

(DSPDOCAUT)

Display Document Owner Command

(CHGDOCOWN)

Grant Access Code Authority

(GRTACCAUT)

Revoke Access Code Authority Command

(RVKAACCAUT)

Display Access Code Authority Command

(DSPACCAUT)

Add Access Code Command (ADDACC)

Remove Access Code Command (RMVACC)

Display Access Code Command (DSPACC)

Manage Directory Command (DNGDIR)

Display Directory Command (DSPDIR)

Manage Distribution List Command

(MNGDSTL)

5211/3262/3203 FUNCTION MANAGER

Introduction

MN-8

MN-9

NF-1

NF-l

NF-l

NF-1

MN-1

NF-1

NF-l

NF-2

NF-2

NF-2

NF-4

OS-1

OS-1

OS-1

OS-2

OS-4

OS-6

OS-8

OS-10

OS-12

OS-12

OS-12

OS-12

OS-14

OS-14

OS-14

OS-14

OS-16

OS-16

OS-16

OS-16

OS-16

OS-16

OS-18

OS-20

OS-22

PN-1

PN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

General Overview

5211/3262/3203 Function Manager Modules

5211/3262/3203 Print Operation. .

PROGRAM RESOLUTION MONITOR

Introduction

Input To The PRM . .

Output From The PRM

General Overview

Program Resolution Monitor Modules

PRM as Used by the RPG Compiler.

PRM Source Input and Its Associated

Program Template

PROMPTER

Introduction

General Overview

Prompter Modules

Prompter Invocation Paths

Prompter Invocation and Control Overview .

Initial Parameter Display, List of Values Display,

and Permissible Values Display Overview

Function Key Processing. . . .

Error Message Display Overview . .

RECLAIM/DAMAGE NOTIFICATION

Introduction

General Overview of Reclaim

Reclaim Modules

Reclaim Storage Function

Object Addressability . .

Reclaim Overview

General Overview of Damage Notification

Damage Notification Modules

Damage Notification Function

Concepts

Assumptions

Exception Handling Program Assumptions

Event Handling Program Assumptions

Damage Notification During IMPL Overview

Damage Notification Overview . . .

Logging of Damaged Objects on the

History Log Overview

Special Case Programs Overview

SERVICE

Introduction

General Overview

Service Modules

Alert Messages

Dumps

Trace

Interjob Servicing

PN-1

PN-1

PN-2

PR-1

PR-1

PR-1

PR-1

PR-1

PR-1

PR-4

PR-6

PT-1

PT-1

PT-2

PT-2

PT-3

PT-4

PT-5

PT-6

PT-8

RC-1

RC-1

RC-1

RC-1

RC-3

RC-3

RC-4

RC-7

RC-7

RC-8

RC-9

RC-9

RC-9

RC-9

RC-10

RC-11

RC-12

RC-13

SC-1

SC-1

SC-1

SC-1

SC-5

SC-6

SC-6

SC-7

This document contains restricted materials of IBM. L Y21-0571·6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Programming Changes SC-7

Program Patches SC-8

Programming Change Log SC-8

APAR Data Preparation SC-8

Internal Service Facilities SC-9

System Verification Procedures . SC-9

Service Relationship to Other CPF

Components SC-lO

Dump Current Job SC-12

Dump Serviced Job . SC-13

Service Job Command SC-14

Dump Object or Dump System Object . SC-15

Dump Serviced Job Object or System Object SC-16

Dump Job Command Executed in a

Serviced Job SC-18

Get System Object SC-20

Dump Object SC-22

Service Alert Event Handler SC-23

Service Request Event Handler SC-24

Service Data Handler SC-26

Trace Job Command .. SC-27

Trace Job Command in a Serviced Job SC-28

Trace Internal Command SC-28

Prepare APAR Command SC-30

Display Service Status Command SC-32

Patch Program Command SC-34

Patch Program Command Support SC-36

Apply, Remove, and Load Programming

Changes SC-38

Apply Program Change . SC-38

Remove Program Change SC-38

Load Program Change SC-38

Apply or Remove Programming Changes

Through the Start CPF Interface SC-38

Display Programming Change Command . SC-40

Dump Current Job Internal Command . SC-42

Dump Serviced Job Internal Command SC-43

Dump Job Internal Command in Serviced Job SC-44

List Internal Data Command SC-45

Display CSNAP Attributes Command SC-45

Change CSNAP Attributes Command SC-46

List CSNAP Data Command SC-46

List CSNAP History Command SC-47

ADVANCED PROGRAM-TO-PROGRAM

COMMUNICATIONS FUNCTION MANAGER SI-1

I ntrod uction SI-1

General Overview SI-1

Advanced Program-to- Program Communications

Function Manager Modules . SI-1

Advanced Program-to-Program Communications

Function Manager Operation SI-2

Contents vii

SECONDARY LOGICAL UNIT SL-1

Introduction SL-1

General Overview SL-1

Secondary Logical Unit Modules SL-1

Secondary Logical Unit Operation . SL-2

CONCURRENT SERVICE MONITOR. SM-1

Introduction SM-1

Initialization SM-1

Response Queue Handler SM-1

Data Available Event Handler. SM-1

General Overview SM-1

Concurrent Service Monitor Modules SM-1

Concurrent Service Monitor Initialization SM-3

Concurrent Service Monitor Response Queue

Handling SM-4

Data Available Event Handler

and Cancel Event Handler SM-6

Control Cancel Event SM-7

SPOOLING SP-1

Introduction SP-1

Spooling Queues SP-1

Job Queue SP-1

Output Queues SP-1

General Overview SP-1

Spooling Modules SP-1

Start CPF and Termination Modules SP-1

Queue Command Modules SP-3

Reader Function Modules . SP-3

Execution With Spooling Modules SP-4

Writer Function Modules SP-4

Queue Management Module SP-5

Display Spool Data Modules SP-5

Job/File Command Modules SP-5

Convert Data Function Modules SP-6

Spooling A Jobstream Into the System SP-6

Spooling a Jobstream Into the System

Using a Submit Jobs Command . SP-8

Job Selection by Work Monitor SP-10

Executing a Program That Receives

Spooled Inline Files SP-12

Processing of Named Inline Data Files SP-12

Processing of Unnamed Inline Data Files SP-12

Executing a Program That Produces

Spooled Output SP-14

Writer Producing Spooled Output . SP-16

Writer Redirection SP-18

Interrelationship of Spooling Control Blocks SP-20

Large Record SP-22

Header. SP-23

Output Data . SP-24

viii

SAVE/RESTORE SR-1

Introduction SR-1

Save Function SR-1

Restore Function SR-1

General Overview SR-1

Save/Restore Modules SR-1

Save Modules . SR-1

Restore Modules SR-3

Display Modules . SR-4

Save Commands Overview. SR-4

Save System Command SR-4

Save Object Command/Save

Changed Object Command. SR-5

Save Library Command . SR-5

Save Data Base Files . SR-5

Save Journals and Journal Receivers SR-5

Save Job/Output Queue and Message

Queue Descriptions SR-5

Free Object Storage SR-5

Restore Commands Overview SR-8

Restore Library Command SR-8

Restore Object Command . SR-8

Restore User Profile SR-8

Restore Authority SR-9

Composite Object Interface SR-10

Standard Composite Objects SR-1O

Standard Composite Objects-Save Function . SR-1O

Standard Composite Objects- Restore

Function. SR-1O

Nonstandard Composite Objects SR-1O

Save/Restore Function Manager SR-11

SWITCHED LINES SW-1

Introduction SW-1

General Overview SW-1

Communications Modules SW-1

Logical Unit Services Modules SW-2

Communications Services Events Signaled

by Other CPF Components SW-4

Events Handled by QSWCPFEV SW-4

Communications Services Events Signaled

by the Machine SW-4

Events Handled by QSWCPFEV SW-4

Events Handled by QSWCUDEV . SW-4

Events Signaled by QSWDAMGE SW-5

Events Signaled by QSWLUDEV . SW-5

Events Signaled by QSWNDEV SW-5

Logical Unit Services Events Signaled

by Other CPF Components SW-5

Event Signaled by QSWCNSCP SW-5

Event Signaled by QSWLCH1 SW-5

Events Signaled by QSWLCH2 SW-5

Events Signaled by QSWLSH1 SW-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

J

Event Signaled by QSWTALC ..

Logical Unit Services Events Signaled

by the Machine

Event Signaled by QSWIDLES .

Event Signaled by QSWNOSES

Communications Overview. .

Logical Unit Services Overview

SECURITY . ..
Introduction

User Profile .

User Profile Associated Space

User Password

Authorized User Table.

Object Authorization

Rights of Use

General Overview . . .

Security Modules . .

Create User Profile and Change User

Profile Commands

Display User Profile Command . . .

User Profile Associated Space Recovery

Retrieve User Profile Command

Delete User Profile Command

Grant Object Authority Command .

Display Object Authority Command

Revoke Object Authority Command

Change Object Owner Command .

Grant User Authority Command

Display Authorized Users Command

Verify System Entry Authorization

Retrieve Authorized Libraries

Convert Authority.

Save Authorized User Table .

Restore Authorized User Table

Handle Authority Violation .

Authorization Event Handler

Grant Same Authority . .

Grant Duplicate Authority .

Revoke Data Rights. . . .

Program Check for Adopted Profile

Access Interactive Profile

Change Interactive Profile Entry

Copy Interactive Profile

Create Interactive Profile

Remove Interactive Profile Entry

Retrieve Interactive Profile Entry

Check Command Authority

Extract User Name and Password

Revoke Space Authority

Extract Group Members

SW-5

SW-5

SW-5

SW-5

SW-6

SW-7

SY-1
SY-1

SY-1

SY-2

SY-2

SY-2

SY-4

SY-4

SY-5

SY-5

SY-6

SY-7

SY-8

SY-9

SY-10

SY-11

SY-12

SY-13

SY-14

SY-15

SY-16

SY-17

SY-18

SY-18

SY-19

SY-19

SY-20

SY-20

SY-21

SY-21

SY-22

SY-22

SY-23

SY-24

SY-25

SY-26

SY-26

SY-27

SY-27

SY-28

SY-28

SY-29

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

TAPE FUNCTION MANAGER TA-1
Introduction TA-1

General Overview TA-1

Tape Function Manager Modules TA-1

Tape Operation. TA-2

TESTING TE-1
Introduction TE-1

General Overview TE-1

Testing Modules TE-1

Command Processing Modules TE-1

Support and Event Handler Modules TE-2

Master Debug Communication Object TE-3

Debug Communication Object TE-3

Enter Debug Command TE-4

Add Program Command . TE-5

Remove Program Command TE-6

End Debug Command . TE-7

Add Breakpoint Command . TE-8

Remove Breakpoint Command TE-9

Add Trace Command TE-10

Remove Trace Command TE-11

Change Debug Command TE-11

Display Debug Command TE-12

Display Breakpoint Command TE-13

Display Trace Command . TE-14

Display Program Variable Command TE-15

Change Program Variable Command TE-16

Change Pointer Command TE-17

Display Trace Data Command TE-18

Clear Trace Data Command TE-19

Resume Breakpoint Command TE-20
Cancel Request Command. TE-21

Instruction Reference Event Handler TE-22

Instruction Reference Trace Handler. TE-24
Verify Object References TE-25
Get Variable Value TE-26

Locate Object TE-27

Default Exception Breakpoint. TE-28

COMMITMENT CONTROL TN-1
Introduction TN-1

General Overview TN-1

Commitment Control Modules TN-1

Begin Commitment Control Command . TN-2

Commit Command TN-2

Rollback Command TN-2

End Commitment Control Command TN-2

Commitment Display Support Using

the Display Job Command TN-3

Establishing Commitment Control Overview TN-3

Open Processing Overview. TN-4
Commit Overview TN-5

Contents ix

Rollback Overview

Display Support Overview .

End Commitment Control Overview

Notify Object Overview

Initial Program Load Recovery Overview

Close Processing Overview

SNA-T3

Introduction

General Overview

SNA-T3 Modules

Functional Overviews

Wait Operation Overview

Nowait Operation Overview

Unsolicited Data Operation Overview

WORK CONTROL.

Introduction

General Overview .

Work Control Modules

Start CPF Function Modules

System Arbiter Process Modules

Logical Unit Services Process Modules

Start Subsystem Modules.

Subsystem and System Termination

Modules.

Allocate Object and Deallocate Object

Modules.

Display Status Information Modules

Class Support Modules .

System Value Support Modules . .

Network Attributes Support Modules

Data Area Support Modules. .

Sign-Off Support Module.

System Timer Support Modules

System Date and Time Support Modules

System Resource Support Module .

WCBT Maintenance Support Module

Machine Event Handling Modules

Reclaim Resource Module

Start CPF

AIPL ..

IMPL

Initial CPF Process

Start CPF Process .

Work Control Displays Used

During the Start CPF Process

Sign-On Display .

Start CPF Prompt. . . .

Basic System Arbiter Process

System Arbiter Overview . .

Logical Unit Services Process Overview

Start Subsystem Function

x

TN-6

TN-7

TN-S

TN-S

TN-10

TN-11

T3-'
T3-1

T3-1

T3-1

T3-2

T3-2

T3-3

T3-4

WC-'
WC-1

WC-1

WC-1

WC-l

WC-2

WC-2

WC-2

WC-2

WC-2

WC-3

WC-3

WC-4

WC-4

WC-4

WC-4

WC-4

WC-4

WC-5

WC-5

WC-5

WC-5

WC-5

WC-5

WC-6

WC-6

WC-7

WC-S

WC-S

WC-S

WC-10

WC-l0

WC-11

WC-12

System/Subsystem Termination Function.

Allocate/Deallocate System Object.

Display Functions For Work Control

Classes

System Value Functions

Network Attributes Support

Data Areas

Sign-Off Function

System Date/Time Support .

System/3S Clock Layout

System Timer Support

Storage Pool/ M PL Resource Management

Work Control Block Table Maintenance

Machine Event Handling . .

Reclaim Resources Function

SUBSYSTEM DESCRIPTION

Introduction

Subsystem Attributes . . .

Storage Pool Descriptions

Routing Entries

Work Entries

IBM - Supplied Subsystem Descriptions

Subsystem Description External Controls

General Overview

Subsystem Description Modules

Subsystem Description Overview

Subsystem Description Internal Structure

Changing a Subsystem Description

Inactive Subsystem Description

Active Subsystem Description .

Packing ...

Extending a Subsystem Description

Subsystem Description Recovery .

Recovery Information

Subsystem Description Control Information

Entries

Subsystem Description Entry Structure

Work Entries

Routing Entries

Resolved Names Table

Resolved Names Table

Flow of Subsystem Description Modules That

Change the Subsystem Description

FilE REFERENCE FUNCTION

Introduction

General Overview

File Reference Function Modules

File Reference Function Overview

WORK STATION PRINTER FUNCTION

MANAGER

WC-15

WC-1S

WC-1S

WC-22

WC-22

WC-24

WC-24

WC-25

WC-26

WC-26

WC-27

WC-27

WC-32

WC-33

WC-34

WD-'
WD-1

WD-1

WD-l

WD-1

WD-1

WD-2

WD-3

WD-3

WD-3

WD-5

WD-6

WD-S

WD-S

WD-8

WD-8

WD-lO

WD-12

WD-12

WD-13

WD-14

WD-14

WD-14

WD-16

WD-16

WD-18

WHO'
WH-1

WH-l

WH-1

WH-2

wp-,

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Introduction

General Overview

Work Station Printer Function Manager Modules

Print Operation

Work Station Printer Function Manager

Internal Interfaces

5251 DISPLAY FUNCTION MANAGER

Introduction

General Overview

5251 Function Manager Modules . .

5251 Function Manager External Interfaces

5251 Function Manager Internal Interfaces

Put Operation

Put to Subfile Record (Data Flow)

Put to Subfile Control Record (Data Flow)

Get Operation

Get From Subfile Record (Data Flow)

Pass Option of the Suspend Module

Get (or Put-get) Nowait Function

Subfile Record (Module Flow)

I/O Error Flow

WORK MONITOR

Introduction

General Overview .

Work Monitor Modules

Subsystem Startup Modules

Subsystem Control Modules

Subsystem Termination Modules.

Job Initiation Modules .

Job Control Modules

Job Termination Modules

Work Station Support Modules

Advanced Program-to- Program

Support Modules

Create Temporary Job Structure

Support Module

Subsystem Functions .

Subsystem Startup .

Subsystem Control .

Subsystem Termination. . .

Abnormal Subsystem Termination

Cleanup After Next IMPL

Job Functions

Job Initiation

Job Control

Batch Job Creation

Routing Control

Job Termination

Work Station Support

System Request Support

Attention Key Support

WP-1

WP-1

WP-1

WP-4

WP-6

WS-1

WS-1

WS-1

WS-1

WS-2

WS-4

WS-6

WS-8

WS-lO

WS-12

WS-14

WS-16

WS-16

WS-18

WS-20

WT-1

WT-1

WT-1

WT-1

WT-1

WT-1

WT-1

WT-2

WT-2

WT-3

WT-3

WT-4

WT-4

WT-4

WT-4

WT-5

WT-5

WT-5

WT-5

WT-5

WT-5

WT-6

WT-7

WT-7

WT-8

WT-8

WT-9

WT-9

This document contains restricted materials of IBM. L Y21-0571-6

,.cCopyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Group Job Support

Advanced Program-to- Program

Communications Support

Create Job Structure .

SNA Distribution Services

Il"]troduction

Distribution Services Queues .

General Overview

Distribute Data / Status Modules

Receive Distribution Modules

QSNADS Subsystem Modules

Distribution Services Router .

Distribution Services Sender .

Distribution Services LU 6.2 Receiver

Distribution Services Recovery. .

Distribution Services Reclaim

Distribution Services General File Server Modules.

Distribution Services Commands

Distribution Services Commands (DSPDSTSRV,

CFGDSTTTSRV)

Distribution Services Component Structure .

Distribute Data and Status Module Flow.

Receive Distribution Module Flow.

Router Director Module Flow.

APPC Receiver Module Flow . . .

Sender Module Flow

Display Distribution Status (DSPDSTSTS)

Command Module Flow

Display / Configure Distribution Services

APPENDIX A. INVOCATION EXAMPLE.

GLOSSARY.

INDEX . ..

WT-9

WT-10

WT-10

ZD-1

ZD-1

ZD-1

ZD-1

ZD-1

ZD-2

ZD-2

ZD-2

ZD-3

ZD-4

ZD-4

ZD-4

ZD-5

ZD-5

ZD-6

ZD-6

ZD-8

ZD-9

ZD-lO

ZD-12

ZD-13

ZD-16

ZD-18

A-1

G-1

X-1

Contents XI

xii

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

The purpose of this publication is to present CPF
(control program facility) component level information.
When this book is used in conjunction with What You
Should Know, CPF failures can be isolated to a failing
module.

This publication is intended for support level service
personnel (program support representatives and
technical support representatives). The personnel should
complete a customer engineering course in System/38
before attempting to use this document.

The Introduction provides general information about CPF.
The remaining sections provide specific component
information including:

• An overview of the components

• The relationship of the component to other
components

• A general description of each of the component
modules

Note: This publication follows the convention that he
means he or she.

WHAT YOU SHOULD KNOW

To use this publication, you should understand the
concepts in the following manuals:

• IBM System/38 Control Program Facility Concepts
Manual. GC21-7729

• IBM System/38 Control Program Facility
Programmer's Guide, SC21 - 7730

• IBM System/38 Control Language Reference Manual,
SC21-7731

• IBM System/38 Data Communications Programmer's
Guide, SC21-7825

About This Manual

IF YOU NEED MORE INFORMATION

For more information, refer to the following manuals:

• IBM System/38 Guide to Publications, GC21-7726

• IBM System/38 Guide to Program Product Installation
and Device Configuration, GC21-7775

• IBM System/38 Operator's Guide, SC21-7735

• IBM System/38 Messages Guide: CPF, RPG III, IOU,
SC21-7736

• IBM System/38 Control Program Facility Reference
Manual- Data Description Specifications, SC21-7806

• IBM System/38 Diagnostic Aids, SY21-0584

• IBM System/38 Functional Concepts Manual,
GA21-9330

• IBM System/38 Functional Reference Manual,
GA21-9331

• IBM System/38 Problem Determination Guide,
SC21-7876

SUMMARY OF CHANGES

The following changes have been made to this manual
for release 7, modification 0:

• Addition of new components:
- System/38 Finance Support
- Network Facilities
- Office Systems
- SNA Distribution Services

• Miscellaneous updates and technical changes

About This Manual xiii

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

xiv

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

The CPF (control program facility) is the system support
program product for the IBM System/38. The CPF is
designed to support the use of interactive work station
applications. To supplement the support of the
interactive environment, the CPF also provides support
for concurrent processing in the batch environment. The
CPF is designed to support a wide range of operating
environments. No single environment has the exclusive
use of a given set of functions. Thus, any user in any
operating environment has access to any of the
functions.

Some of the functions provided by the CPF are:

• Data base support to rapidly make available, to any
job, up-to-date data

• Work management support to schedule quickly and
independently the processing of all user requests

• Application development support that allows online
development of new applications concurrently with
normal production activity

• System operation support that allows the system
operator to control the system through the system
console or any of the work stations using a control
language that provides prompting support for all
commands

• Message handling support that allows communication
between the system, system operator, work station
users, and programs that are executing in the system

• Security support to protect data and other system
resources from unauthorized use

Introduction

• Service support that allows service personnel to
diagnose and repair problems or install new functions
with minimal impact on normal work flow

• Object management support that allows objects to be
grouped and located in the system

• Data management facilities that support both data
base files and device files

• Save/restore functions that allow applications and
data files to be backed up concurrently with unrelated
system operations

The CPF functions are accessed through the use of the
control language and the data description specifications.
In addition, other program products (such as high-level
languages and the interactive data base utilities) also use
the CPF functions.

The CPF has many components. These components,
processing separately or interactively, provide the
support for the CPF functions. Figure 1 shows the CPF
components and their identifiers.

The logic diagrams use a heavy line to indicate transfer
of control (~) and a light line to
indicate pointers and all other actions
(.).
The following sections contain descriptions and function
overviews for each of the CPF components. The
sections are arranged alphabetically by component
identifier.

Introduction xv

This document contains restricted materials of IBM. LY21-057t-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Component

Access Path Manager
5250 Information Display System Verification
Binary Synchronous Communications
Command Analyzer
Command Definition
Control Language Compiler
Console Function Manager
Copy
5424 Function Manager
Data Base
Device Configuration
Data Description
Device File Definition
Diskette Function Manager
Common Data Management
3270 Emulation
System/38 Finance Support
Graphics
I nstaliation
Journal Management
Kanji
Data Base Logging
Librarian
Message Handler
Menu
Network Facilities
Office Systems
5211/3262/3203 Function Manager
Program Resolution Monitor
Prompter
Reclaim / Damage Notification
Service

Identifier

AP
AR
BS
CA
CD
CL
CO
CP
CS
DB
DC
DO
OF
OK
OM
EM
FN
GO
IN
JO
KJ
LG

LI
MH
MN
NF
OS
PN
PR
PT
RC
SC

Advanced Program-to-Program Communications Function Manager SI
Secondary Logical Unit SL
Concurrent Service Monitor SM
Spooling SP
Savel Restore SR
Switched Lines
Security
Tape Function Manager
Testing
Commitment Control
SNA-T3
Work Control
Subsystem Description
File Reference Function
Work Station Printer Function Manager
5251 Display Function Manager
Work Monitor
SNA Distribution Services

Figure 1. CPF Components and Their Identifiers

xvi

SW
SY
TA
TE
TN
T3
WC
WD
WH
WP
WS
WT
ZD

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

INTRODUCTION.

The access path manager component of the CPF
(control program facility) provides a high-level, data
stream independent, and device file independent
interface to the APPC (advanced program-to-program
communications) support provided by the System/38 for
devices that operate as an SNA logical unit (type 6.2).
The APPC function manager, subsystem monitor, and
system arbiter interface with the access path manager to
perform all APPC-related operations.

GENERAL OVERVIEW

The APPC function manager, subsystem monitor, and
system arbiter create access path control blocks and
issue access path manager commands to allocate or
deallocate an APPC conversation, and transmit or
receive data. The access path manager builds a
source/sink request block containing the function
request code, option bit settings, transmission data
length, and transmission data. Information returned to
the APPC function manager, subsystem monitor, or
system arbiter includes the received data length,
received data type code, error information, and received
data, if any.

Access Path Manager Modules

The access path manager component consists of the
following modules:

Note: Modules identified with an arrow (--» are entry
modules into the component. Indentation of a module
shows its dependency on a previous module.

-->QAPALCON-Allocate Conversation: This module
allocates a conversation to an access path control
block.

-->QARALSND-Allow Send: This module formats a
request that allows the remote program to send
application data.

-->QAPCANCL-Cancel Receive Request: This module
cancels an outstanding receive request.

Access Path Manager

-->QAPCRTRB-Create Access Path Manager Request
Blocks: This module creates the request blocks used
by the access path manager for I/O requests.

-->QAPDLCON-Deallocate Conversation: This module
deallocates a conversation from an access path
control block.

QAPDEQUE-Dequeue Outstanding I/O Request:
This module waits for the completion of a Request
I/O instruction.

QAPERROR-Access Path Manager Error Handler:
This module handles errors resulting from damage
to the request block queue.

-->QAPEVOKE-Evoke Program: This module formats a
request to initiate a remote program.

QAPGTSES-Get Session: This module obtains a
session for an active conversation.

-->QAPIOCMP-Request I/O Complete Event Handler:
This module handles the request I/O complete event.

-->QAPRCV-Receive Input Data: This module requests
input data from the remote system.

QAPDEQUE-Dequeue Outstanding I/O Request:
This module waits for the completion of a Request
I/O instruction.

-->QAPRSPPS-Send Positive Response: This module
sends a positive response to the remote program.

-->QAPSNDER-Send Error Data: This module sends a
negative response and error data to a remote
program.

-->QAPSNDSG-Send Signal Data: This module sends
a signal code (such as a write request) to the remote
program.

-->QAPSNDTA-Send Application Data: This module
formats a request to send application data to a
remote program.

-->QAPUIEH-Unsolicited Input Event Handler: This
module handles the unsolicited data events.

Access Path Manager AP-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QAPWAIT-Wait for Input Data: This module waits
for input data from the remote system and returns
the input data, input data length, data description,
and associated indicators.

QAPDEQUE-Dequeue Outstanding I/O Request:
This module waits for the completion of a Request
I/O instruction.

QAPERROR-Access Path Manager Error Handler:
This module handles errors resulting from damage
to the request block queue.

-->QAPXMT-Transmit Data: This module transmits all
buffered data and requests.

QAPDEQUE-Dequeue Outstanding I/O Request:
This module waits for the completion of a Request
I/O instruction.

Access Path Manager Operation

Figure AP-1 and the following text describe the
operation of the access path manager.

a When an APPC network is varied on, QLUS
(logical unit services process) of the switched line
component uses the access path manager to
perform the I/O requests associated with
negotiating the change number of sessions.

II When a subsystem is started, the subsystem
monitor uses the access path manager to receive
program initiation requests from the remote
system, if the subsystem description contains a
communications entry for an APPC device.

II A high-level language program, through the
QDMCOPEN module of common data
management, calls QSIOPEN to open a
communications file for I/O processing. QSIOPEN
calls QAPALCON to allocate a conversation to the

QSIOPEN then calls QAPWAIT to wait for the
conversation to be allocated. QAPWAIT calls
QAPDEQUE to dequeue the allocated conversation
request, to set up the access path control block
necessary to support the conversation, and to
return the session information to QSIOPEN.

II After the file has been opened, the high-level
language program calls QSIPUT to evoke a remote
program. QSIPUT calls QAPEVOKE to format the
evoke request, and then calls QAPXMT to transmit
the evoke request.

II The access path manager on the remote system
receives the evoke request, and returns it to the
subsystem monitor, which initiates the requested
program. The remote program opens a
communications file, allocates its end of the
conversation, and calls QSIGET to receive
information from the source program.

QSIGET calls QAPRCV to issue the receive
request, and then calls QAPWAIT to wait for the
completion of the receive. QAPWAIT calls
QAPDEQUE to wait for the completion of the
receive request I/O.

II The source program calls QSIPUT to send data to
the remote program. QSIPUT calls QAPSNDTA to
format the request to send application data.

When one of the transmit buffers becomes full,
QSIPUT calls QAPXMT to transmit data to the
remote program. QAPXMT uses double buffering
during write requests; one buffer is filled while the
other is transmitted. When both buffers are full,
QAPXMT calls QAPDEQUE to wait for the first
transmission to complete processing.

II When data is received on the remote system, the
receive request I/O completes, and QAPDEQUE
returns control to QAPWAIT. QAPWAIT returns
the data to QSIGET, along with information

communications device. QAPALCON issues all describing the length of the data received, the type

AP-2

request 1/ Os necessary for conversation allocation. of data, and the current state of the conversation.
QSIGET returns the data to the target program.

iii A program may send unexpected data when there
is no receive request pending. When this occurs,
the APPC station I/O manager sends an event to
the access path manager, and QAPUIEH is
invoked. QAPUIEH calls the APPC function
manager to receive the unsolicited data and
process it.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

a The high-level language program may issue a put
with invite request. When a put with invite request
is issued, QSIGET calls QAPRCV to issue a receive
request. When the APPC station I/O manager
receives enough data to satisfy the request, an
event is sent to the access path manager and
QAPIOCMP is invoked. QAPIOCMP calls the
APPC function manager to process the completion
of the receive request.

II When one program is done communicating with
the other, it calls QSIPUT to detach the other
program. QSIPUT calls QAPDTACH to format the
detach request. QSIPUT then calls QAPXMT to
transmit the detach request. Once the detach
request has been transmitted, the programs can no
longer communicate with each other.

III After a communications file has been processed,
the high-level language program calls QSICLOSE
to close the file. If any data remains in the output
buffer at this time, QSICLOSE calls QAPXMT to
transmit the data to the remote system.
QSICLOSE then calls QAPDLCON to terminate the
conversation.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Access Path Manager AP-3

Logical Unit Sybsystem
Services High-Level Language Program Monitor
Process

APPC
Function
Manager

• Access Path Manager •
• I • II II II • ClAPALCON ClAPWAIT ClAPEVOKE QAPSNDTA QAPXMT ClAPRCV

Allocate Wait for Evoke Send Application Transmit Receive Input
Conversation Input Data Program Data Data Data

ClAPGTSES

Get
Session

II II II
QAPDLCON ClAPIOCMP

ClAPALSND
ClAPCRTRB ClAPUIEH

Request I/O Create Access Unsolicited
r-- Deallocate Complete

Allow Send
Path Manager Input

Conversation Event Handler Request Blocks Event Handler

ClAPCNCL

Cancel Receive
Request

ClAPDEQUE
Dequeue
Outstanding
I/O Request

Machine Unsolicited
Request Request I/O Interface Data
I/O Complete Event Response Event

Queue

------------~--- ---~-------- ------------
Machine Interface

APPC
I/O Manager

Figure AP-1. Access Path Manager Operation Overview

AP-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3270/5250 Information Display System Verification

INTRODUCTION

The 5250 information display system verification
component of the CPF (control program facility) provides
test request support for the IBM display stations and
the IBM work station printers when they are attached to
the IBM System/38. The following test request
functions are provided:

• Display verification

• Printer verification

• Configuration data

• 5250 ERAP

• Link test

Menus are presented to a work station user to allow
selection of these tests. As the selected test is being
performed, displays showing test status or additional
test instructions are presented to the user. Tests are
invoked from the prime option menu, which is presented
to the user when the Test Request key is pressed. In
addition, the printer verification tests may also be
invoked by entering the Verify Printer (VFYPRT)
command.

GENERAL OVERVIEW

3270/5250 Information Display System Verification
Modules

The modules in this component are divided into six
categories:

• Router modules-control the component and
determine which test to select.

• Printer verification modules-control verification of the
printer.

• Display verification modules-control verification of the
display.

• ERAP modules-control error recording analysis
procedures.

• Link test modules-control link testing and conversion
of console data to 5250 data.

• Configuration modules-display the configuration data
of the requesting work station and other work
stations and controllers on the work station's line or
work station controller.

The 3270/5250 information display system verification
component consists of the following modules:

Note: Modules identified by an arrow (--» are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

Router Modules

-->OARDRIVE-Test Request Driver: This module is
loaded when a test request event is processed. It
identifies the requesting terminal and opens a device
file for that terminal. OARDRIVE then calls
OAROPSEL. Upon completion of the requested tests,
OARDRIVE closes the device file and terminates the
process.

OAROPSEL-Test Selection Router: This module
determines if the requesting terminal is remote or
local and if there are any terminals associated with
it. It displays the prime option menu so that the
user can select a test.

3270/5250 Information Display System Verification AR-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Printer Verification Modules Display Verification Modules

AR-2

GARPSEL-Printer Selection: This module builds
a list of printers on the same controller as the
requesting terminal. This list is displayed to the
user so that a printer can be selected to verify.

GARPSTAT-Printer Test Selection and
Status: This module sends a menu to the
requesting terminal to allow the user to
choose how many times to print the test
pattern. It also displays completion and error
status messages.

QARPRNT -Printer Verification Control:
This module controls the printing of the
verification pattern.

GAR5256--5256 Print Command: This
module executes the print commands
common to the 5256 Printer.

QAR5219-5219 Print Command: This
module executes the print commands
common to all printers and unique to
the 5219 Printer.

GAR5225-5224/5225 Print Command:
This module executes the print
commands unique to the 5224/5225
Printer.

GARKCHAR-Displayable Character:
This module displays a chart of all the
ideographic characters in the character
set for the ideographic display.

QAREVINP-Terminal Input Event
Handler: This module monitors input
from the terminal while the printer is
printing the pattern.

GARDISP-Display Test Selection Router: This
module displays the display verification menu to
the user so that a function can be selected.

GARATTR-Display Attributes: This module
sends the display attributes pattern to the
Display. After the user selects an attribute to
be displayed. it is displayed on a portion of
the display.

GARCHAR-Displayable Character: This
module displays a chart of all of the
characters in the character set for this
device.

QARS2IGC-5553/5224-ModeI12
5225-Model 11/5225 Model 12 Print
Command: This module executes print
commands unique to ideographic printers.

QARSPINP-Specified Input Fields: This
module displays several types of field
validation to the user. The user can then
check for invalid input.

GARFUNKY-Command Function Keys: This
module allows the user to test the Roll Up
and Roll Down function keys as well as the
command function keys.

GARCATTR"":Color Display Attributes: This
module sends the color display att'ributes
pattern to the display. After the user selects
a color attribute to be displayed. it is
displayed on a portion of the display.

GARGMENU-Graphics Test Selection
Router: This module displays the graphics
verification menu so that the user can select
a test.

QARGDISP-Display Graphics: This
module displays five graphic patterns
designed to exercise the graphic
capabilities of the display.

GARGVDO-Video Device: This module
displays three patterns designed to be
used as an aid for calibration of the video
device.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

OARGPSEL-Graphics Plotter Verification Menu:
This module displays the graphics plotter
verification menu so that the user may select
either option 1 for the 7371 or option 2 for the
7372.

OARG7372-Plotter Graphics: This module
produces a test pattern on the IBM 7371
or 7372 corresponding to selection from
plotter verification menu.

QARGPRNT -Printer Graphics: This module
produces a test pattern on the graphics printer
to exercise the graphic printer functions.

ERAP Modules

OARERAP-Device Type Selection for Error
Statistics: This module displays the ERAP
option menu. It then allows the user to request
error history for a type of device (display,
printer, controller, or all devices).

OARDEVSL-ERAP Device Selection: This
module is used to select a device for which
error history information is desired.

QAROUTSL-Output Selection: This
module is used to select an output device
to which the error information is to be
sent.

QARERHST-Error History Table: This
module forces the logging of the
current data from the controller or work
station controller to the system error
log. This information (with the
information already in the log) and
controller (station) statistical data can'
then be retrieved.

Link Test Modules

OARLINK-Link Test Driver: This module
requests the concurrent service monitor to start
the link test service function.

OARCONVT -Console to 5250 Data
Conversion: This module converts data from
a format that can be displayed on the
console to a format that can be displayed on
an IBM 5250 Display.

OARWSCO-5250 to Console Data
Conversion: This module converts the format
of data received from an IBM 5250 Display
to a format that can be displayed on the
console.

Configuration Modules

OARCFIGR-Remote Configuration Data: This
module displays information that describes the
remote configuration environment of the
requesting terminal.

OARCFIGL-Local Configuration Data: This
module displays information that describes the
local configuration environment of the
requesting terminal.

3270/5250 Information Display System Verification AR-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5250 Overview and Relationship to Other
Components

Figure AR-1 and the following text describe the
operation of the 3270/5250 information display system
verification component and its relationship to other
components and processes.

• Pressing the Test Request key on a work station
causes a test request event to be signaled.

II The test request event handler runs in the system
arbiter process and notifies the appropriate
subsystem monitor process, which then creates a
job where QARDRIVE is the problem-state
program. This support is provided by the work
monitor component.

II

AR-4

The six options that can be selected from the
prime option menu are:

C

2

3

4

Terminate job

Display verification

Printer verification (only if a printer is
attached to the same controller as the
invoking terminal)

Configuration data

ERAP

5 Link test (only available from a remote
work station)

The router modules control the operation of the
5250 information display system component and
select the proper group of modules to use for the
test specified from the prime option menu.

•

• If option 1 is selected, the display verification
modules are used to present the display
verification menu. Those modules then
process any options selected from that menu
and present to the user any displays
associated with the options.

G If option 2 is selected, the printer verification
modules are used to present the printer
selection display so that a printer can be
selected for testing. Those modules then
process the request and present any displays
associated with the test. (This is only
available if there is a printer available with
the station.)

G If option 3 is selected, the configuration
modules are used to present the
configuration data displays, either local
station or remote station, depending on the
type of station that initiated the request.

e If option 4 is selected, the ERAP (error
recording analysis procedure) modules are
used to present error statistic displays to the
user.

o If option 5 is selected, the link test modules
are used to invoke the host SDLC link test
program. (This is only available from a
remote station.)

If option C is selected from the prime option
menu, the job is terminated.

In addition to option 2 (see II Gl. entry of the
Verify Printer (VFYPRT) command uses the printer
verification modules to print the test pattern.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L Test
Request
Event
Handler

D

Test
Request
Event

I--
SBS
Monitor

VFYPRT
Command

II

5256
Function
Manager

5251
Function
Manager

Create Process

Some
SIS
Device

r---------------------------~--------------,
3270/5250 Information r-....;;.;;;...z....-.......

!

Display System
Verification

1
Printer 0
Verification
Modules

Display
Verification
Modules

-

-

!
CD

ERAP
Modules

I

L _____________________ _

Concurrent
Service
Monitor

Router
Modules

Link
Test
Modules

G
!

Config- • uration
Modules

------ ---- ---- --------------------------t------------------------
Machine
Services
Control
Point

Test
.. Request

Key

Station
1/0
Manager

1
Line
1/0
Manager

Link Test

1

Service
Function
Driver

Service
Function
(link)

1
Service
Function ~
(ERAP)

ELC

.......
-< ~G

...... DSDR -

......

Figure AR-1. 3270/5250 Information Display System Verification Overview and Relationship to Other Components

3270/5250 Information Display System Verification AR-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

AR-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

INTRODUCTION

The BSC (binary synchronous communications)
component of CPF (control program facility) provides
applications written in RPG III, PL! 1, and COBOL a way
to transmit data between System/38 and the following
IBM systems and devices:

System/Device

Series 1

System/32

System/34

System/3

System/38

System/370

5280

5110/5120

3741 Model 2
5230 Model 2
5260

OS/6
6670

5520
3777, 3776

Operating With

RPS, EDX

RPG II BSC

RPG II BSC, ICF BSC

RPG II
Telecommunications
Support, BSCA
ML/MP Feature, CCP

RPG III, COBOL

DOS/VS BTAM,

OS/VS1
BTAM/TCAM,

OS/VS2
BTAM/TCAM

DE.RPG, COBOL

APL, BASIC

The application program uses DDS (data description
specifications) to describe the BSC files that are used to
communicate between a System/38 and any of the
above. Communication is supported on point-to-point
switched lines, point-to-point nonswitched lines, and
multipoint tributary lines. System/38 performs first level
error recovery if there are communication line errors.

Binary Synchronous Communications

The following data management functions are supported
by the BSC component:

• Open a BSC file

• Acquire a BSC device

• Put data to a BSC file

• Accept input from a BSC device

• Get data from a BSC file

• Release a BSC device

• Close a BSC file

• Provide error messages and exceptions

GENERAL OVERVIEW

Binary Synchronous Communications Modules

The BSC component consists of the following modules:

Note: An arrow (--» identifies a module as being an
entry into the component. Indentation of a module
shows its dependency on a previous module.

-->QBSINASP-Initialize LUD-Associated Space: This
module initializes the BSC device-dependent portion
of the LUD-associated space. It runs under the
device configuration component as part of the vary
device (VRYDEV *ON) process. This module does not
change any lock states, or signal or receive any
events. It does not receive or send any messages.

Binary Synchronous Communications BS-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QSSOPEN-Function Manager SSC Open: This
module completes the path for nonswitched lines

between common data management open and the
SSC 10M for sending or receiving data over a SSC
communication line. It also prepares the path and
completes it up to the point of making the actual line

connection for switched lines. This module performs
the following functions:

- Determines that the device and the ODP (open
data path) are available

- Ensures that the device is usable and not in
service mode

- Expands the ODP, if necessary
- Initializes the variables in the work area

- Initializes the pointers in the UFCS (user file
control block) to the user's buffer

- Calculates and stores, within the function manager
work area, addressability to structures and objects

required in the function manager
- Performs compatibility checks on various

user-specified parameters
- Creates a 23 K object to contain seven request

blocks with two source / sink data areas
- Activates the device for a nonswitched line
- Enables the REQIO complete event monitor if the

INVITE keyword is defined in the device file

-->QSSPUT-SSC Put: This module is used to pass

data, one record at a time, from the user to a buffer.
When the buffer is full, it is sent one record at a

time, to the SSC 10M for transmission across a line.
This module performs the following functions:

- Checks the connection FSM (finite state machine)
to determine if a line connection needs to be made

and calls QSSFSTIO to make the connection if
required

- Calls QSSSID to complete a bid to transmit data
- Obtains the record format for the put and obtains

the keywords selected on the put
- Uses the separate indicator area if specified in the

device file
- Moves the user's data and appropriate SSC

control characters to the source/sink data areas in
the request block

- Issues request blocks, one request block at a time,
to the SSC 10M

- Utilizes two request blocks (double buffers) to
optimize overlapped processing

- Dequeues and reuses request blocks as long as
the user continues issuing puts

BS-2

- Calls QSSPUTCP to issue the last request block
and EOT (end-of-transmission) to SSC 10M and

sets the connection FSM to contention
- Calls QSSGET, via the INVITE keyword or put or

get function, to prepare for receipt of data

-->QSSGET-SSC Get: This module is used to receive
data from the SSC 10M. It then passes the data, one
record at a time, to the user. This module performs
the following functions:

Checks the connection FSM to determine if a line
connection needs to be made and calls QSSFSTIO

to make the connection if required
Calls QSSSID to complete a bid to receive data

Sends receive request I/Os to the BSC 10M
Utilizes two request blocks (double buffers) to

optimize overlapped processing
Dequeues the next request block when data from

a previous request block has been exhausted
Finds the record format that it is to use to process
the received data, via record I D processing, a
default format, or user-defined format

- Sets response indicators as specified by the record
format

Uses the separate indicator area if specified in the
device file

Moves the received data to the user's input buffer
and updates the I/O feedback area

Receives an EOT and sets the connection FSM to
contention

- - >QBSFSTIO-First I/O: This module is used to

interface via the CPF LUD-opened event with the
switched lines component to establish a switched line

connection. The connection is made on the first put
or get operation after an open.

-->QBSBID-Sid for Line: This module sets the line

connection of the FSM to put or get. All outstanding
put and get request blocks are dequeued. It also

issues a request I/O for a bid and dequeues the bid
feedback record. If an error occurs in the feedback

record, this module calls QBSERP.

-->QBSPUTCP-Put Complete: This module is used to
issue the last request block (with proper ending and
EOT) and to dequeue all outstanding put request
blocks.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

-->OBSCLOSE-Function Manager BSC Close: This

module IS used to complete the I/O if required, by
calling OBSPUTCP, and to clean up the system

objects so that the BSC device can be reused. It
closes a BSC file or releases a BSC device.

o An argument list is passed that contains a

pointer to the U FCB (user file control block)
and an index into the device name list for the

device-dependent open.

() The message handler is called to signal
- - >OBSERP-Error Handler: This module is used for all exceptions to the user.

error handling within the BSC component. OBSERP
provides all of the error messages and exceptions
between the user or user programs for the BSC
component. When necessary, it does a request I/O
(continue) for the I/O modules. It also handles the
setting of certain areas in the ODP, function manager
work areas and LUD-associated space when
appropriate. These areas are:
- Device unusable flag
- File in error-set by QDMERRHP, which is called by

QBSERP
- Major-minor code for exceptions
- State of BSC FSM

-->OBSASYNC-BSC Asynchronous Input Request I/O
Handler: This module receives control when a bid or
data request I/O event completes. After dequeing
the request block, QBSASYNC signals the data
available event. Data management calls QBSGET to

process the data.

Binary Synchronous Communications Overview

Figure BS-1 and the follOWing text describe the
operation of the BSC function manager.

D OBSINASP is called by the device configuration
component and is part of the vary on process.
QBSINASP initializes the device-dependent portion
of the LUD-associated space and passes control
back to the device configuration component.

B A high-level language program, through the
QDMCOPEN module of common data
management, calis QBSOPEN to complete the
opening of a BSC or mixed device file.

QBSOPEN is also called by common data
management to perform subsequent acquires of a
program deVice.

II After the file has been opened, Information can be
passed by the user to the BIOM (BSC I/O
manager) or to the M 10M (M RJ E I/O manager) by
calling QBSPUT.

o An argument list is passed that contains a
pointer to the UFCB, a pointer to the option
list, and a pointer to the control list. The
option list is not used by the BSC
component. The control list indicates which
record format in the device file should be
used for this request.

QBSPUT checks the connection FSM to determine
if a line connection needs to be made. If a
connection does not exist, QBSPUT calls
QBSFSTIO to establish a connection. QBSFSTIO
sets the connection FSM to a contention state.
QBSPUT then calls QBSBID to complete a bid to
transmit data.

When one of the put buffers becomes full, or a
special function is requested through the use of
communications file keywords, QBSPUT issues a
request I/O t·o the BIOM or to the MIOM to send
data to the remote station. QBSPUT calls
QBSPUTCP to issue the final request I/O of the
session when the application requests via a file
keyword.

OBSPUT uses double buffering during put
requests; one buffer is being filled while the other
is being transmitted.

() The message handler is called to signal
exceptions to the user.

Binary Synchronous Communications BS-3

ThiS document contains restricted materials of IBM. L Y21-0571-6

(Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II After the file has been opened, information can be
received from the BIOM or from the MIOM by
calling QBSGET.

B5-4

o An argument list is passed that contains a
pointer to the UFCB, a pointer to the option
list, and a pointer to the control list. The
option list is not used by the BSC
component. The control list indicates which
record formats in the device file should be
used for this request.

QBSGET checks the connection FSM to determine
if a line connection needs to be made. If a
connection does not exist. QBSGET calls
QBSFSTIO to establish a connection. QBSFSTIO
sets the connection FSM to a contention state.
QBSGET then calls QBSBIO to complete a bid to
receive data. When the bid is complete, QBSGET
sends two receive request I/Os to the BIOM or to
the MIOM. QBSGET checks for any input data not
already deblocked from a previously received
request I/O before dequeuing the next RB.
QBSGET receives the data and passes it to the
user's input buffer.

QBSGET calls QBSPUTCP when the user issues a
get following a put, and the FSM indicates a put
state.

QBSGET uses double buffering during get
requests; one buffer is being emptied while the
other is being received.

o The message handler is called to signal
exceptions to the user.

II After a BSC file has been processed, QOMCLOSE
calls QBSCLOSE to close the file.

o An argument list is passed that contains a
pointer to the OOP control block, an index
into the OOP device name list, and the type
of close to perform. A temporary close is
invalid for BSC. If a temporary close is
encountered, an exception will be signaled.

If QBSCLOSE is processing a permanent close or
a nonreclaim TCLOSE (normal) and the
file-in-error bit is not set and the FSM indicates
put state, QBSCLOSE calls QBSPUTCP to transmit
any data remaining in the buffers and sends a
normal EOT.

o The message handler is called to signal
exceptions to the user.

iii When a put with invite request is specified, and
the INVITE keyword is defined in the device file,
the completion of a request I/O causes
QBSASYNC to execute. QBSASYNC dequeues a
request block and signals the data available event.
If an accept input to the 3SC device is issued,
data management calls QBSGET to process the
records in the block.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

Command
Language High-Level Language Program
Program

.. ~ 4 ~ ~ ~ .. ~ .. ~

~
,

" " QDCCRBSC QDMCOPEN QDMACCIN QDMCLOSE
Argument

Create Device Common Accept Common List
Description Open Input Close

~ ~ ~ ~ .. ~

, , D ~
, B ~

, II , , .. ~
, II

QBSINASP QBSOPEN QBSPUT QBSGET QBSCLOSE

Initialize SSC SSC SSC SSC

LUD ASP Open Put Get Close

II l l
QSSASYNC QSSFSTIO QSSSID QSSPUTCP
SSC Data
Available First I/O Sid for Line Put

Complete Complete

1 l 1

QSSERP

Error
Handler

~ SSC Function Manager

~O
Machine-

Request I/O Interface Request Message

Complete Event Response I/O Handler

Queue

Machi --r--ne Interface --~-~------------
SSC I/O Manager

Machine Services or
Control Point MRJE I/O
(MSCP) Manager

Figure BS-1. sse Function Manager Operation Overview

This document contains restricted materials of IBM. LY21-0571-6

<OCopyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Sinary Synchronous Communications SS-5

BS-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION

The command analyzer component of the CPF (control
program facility) processes all commands. Command
processing consists of parsing the command, validity
checking, transferring control to a command processing
program or to an application program, and returning to
the caller of command analyzer.

The command analyzer uses information contained in a
CDO (command definition object). which is created by
the command definition component, to perform validity
checking and to determine the format of parameters to
be passed to application programs or command
processing programs. The CDO contains a description
of the command, the name of any user-defined validity
check program, and the name of the command
processing programs that processes the command. Each
command has its own unique COO.

Validity Checking

Validity checking ensures that the required parameters
for a command are entered and that any values
specified are allowable values. If a command does not
meet its validity checking requirements, a message is
sent to the user describing the errors. The command
can then be corrected and reentered.

Validity checking standards for a single keyword allow
for:

• Values to be restricted to a list or range of values

Transformation (mapping) of an input value to
another value

• Values that meet the syntax requirements for NAME,
DATE, TIME, NUMERIC, GENERIC-NAME, and so
forth

Validity checking can be used to test the relationship of
multiple keywords by:

• The existence of a keyword

• Comparing a keyword value to
- Another keyword
- A constant

Command Analyzer

The user can also define validity checking programs to
supplement the validity checking of the command
analyzer.

Parsing a Command

Parsing a command consists of taking the command and
converting it into a format that can be used by the
application program or command processing program.

The command analyzer receives a work area from the
caller that contains the length of the command string
and the command string itself. The command string is
processed and a token list is created from it.

Length of
Command

!

I Command String I •
I

Example of Work Area

End of Cmd ID

The token list is a list of elements, with each element
containing information about a part of the command
(command name, keyword, keyword value, qualified
name, list, number of list elements, and length). A token
list element consists of three parts:

• Attribute byte: defines the command part (token)
being described

• Length: defines the length of the keyword value or
list of keyword values

• Value of the keyword or number of list elements if
the attribute byte defines a list of keyword values

The token list is then processed and, using information
contained in the CDO, a positional list is created.

Attribute Length , Value or Number of
i List Elements

Command Analyzer CA-l

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The positional list contains elements that further
describe the keyword values. Each element contains the
following information:

• Four bytes of attribute information

• A link to the next element

• A displacement value into the COO that locates the
information about the keyword value

• A displacement value into the work area where the
converted value will be placed

• The length of the value data or the displacement to
the first element if the value is a list of values

• The value data itself or the number of elements if the
value is a list of values

Attribute 0 CDO Work Area
Displacement Displacement

Length of
Data or
Displacement
to First
Element

Link to next element (0 when last element for a parameter)

If the command is to be processed, an argument list
containing a pointer to each of the converted data
values in the work area is passed to the application
program or command processing program. If the
command is to be processed at a later time, the
positional list is passed back to the caller.

Figure CA-1 shows an overview of command
processing.

CA-2

Data or Number
of Elements

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

Argument
List for

Caller Command

/ Analyzer

~ .. ,a
Positional IJ

., Work Area

List

~
Command
Analyzer ,.- Command

QCAPARSE ~~ String

Command
r-- D

String

~ Parser

--- Token --. .l-------V List

QCARULE

~~
Locate CDO

QCAPOS
Create
Positional

.... D
List ~~

QCAFLD ~~ Parameter
Validation and B
Conversion ~~ Argument IJ

List

t

Command at + Processing
Program User·Defined

Validity Check
Program

Figure CA·1. Command Processing Overview

This document contains restricted materials of 18M. LY21 -0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Definition
Object

Positional List
Vector Table

Work Area

r-..... Converted
Values

Argument
List

Command Analyzer CA-3

Command Processing

D The command analyzer is called, with a pointer to
the positional list passed as an argument. Within
the positional list is a pointer to a work area. The
work area contains the command string.

II QCAPARSE locates the command in the work area
and creates a token list from the various
parameters of the command. The command
parameters can be enterild in both positional and
keyword formats on a single command (each
parameter can be specified only once). The
parameter values can be simple scalars, qualified
names, or lists of values (not necessarily in the
order required by the COO). If a parameter is
entered in keyword format, the parameter value is
associated with the keyword name for use by
QCAPOS.

II QCARULE finds the command name in the token
list and locates the COO for this command. It also
validates the command environment and mode.

a QCAPOS reads the token list and creates a
positional list that will contain the keyword values
and defaults as specified by the COO. Oefaults are
provided by the COO for unspecified optional
parameters. A vector table containing
displacement values is built into the positional list
to provide ordering of the parameters as specified
in the COO.

III QCAFLO validity checks the parameter values
(scalar value checks, interparameter checks, and
user-defined validity checks) as specified in the
COO. The converted data values are then placed
in the work area.

II If specified in the COO, the user-defined validity
check program is called to perform extended
validity checking.

1,1 If the command is not to be executed immediately,
the command analyzer returns to the caller with
the positional list.

II If the command is to be executed immediately, the
command analyzer transfers control to the proper
command processing program passing an
argument list that contains pointers to the
converted data values.

CA-4

GENERAL OVERVIEW

Some CPF components use the command analyzer only
to parse and validity check commands. The parsed and
validity checked form of the command is placed in a
positional list. The positional list is then passed back to

the caller to be used when the command is executed at
a later time. Components that use the command
analyzer only to parse and validity check commands are:

• CL compiler (as the commands are being compiled)

• Command definition

• Spooling (for job commands)

• Prompter (for partial commands as they are entered
from the console or work station)

Some system functions and programs use the command
analyzer to parse, validity check, and immediately
execute commands. These are:

• Interpretive CL processor

• CL programs (to validity check and then execute the
commands)

• Prompter (to execute a command after it is
completely entered and processed)

• High-level language programs (to process commands
using the QCAEXEC interface); (see Command

Analyzer Modules for a description of the QCAEXEC
module functions.)

• Source entry utility (for validity checking only)

Two interfaces are provided to the command analyzer.
The QCAEXEC interface is used by all high-level
language programs. The parameters passed to
QCAEXEC, as seen from a high-level language
program, are:

• A command string to be processed

• A packed (15, 5) numeric value that specifies the
length of the command string

QCAORV is the interface for the other CPF components.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer Modules

The command analyzer component consists of the

following modules:

Note: An arrow (- - » identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCADRV-Command Analyzer Driver: This module

provides the interface between other CPF
components and the command analyzer. It controls
the module flow during the command analysis
process.

QCAPARSE-Command String Parser: This module
scans the command string and creates a token list
containing the keyword values.

QCAPRBLD-Parser Table Build Routine: This
module builds the parser tables needed by
QCAPARSE.

QCARULE-Locate Command Definition Object:
This module establishes addressability to the CDO
and validates the command environment and
command mode.

QCAPOS-Create Positional List: This module
creates a ·positional form (positional list) of the
command and adds defaults, as specified in the
CDO, if necessary.

QCAFSCAN-Scan Character Variable: This
module scans the contents of character
variables used on CL commands, classifies its
token type, and builds a token list element.

QCAFLD-Parameter Validation and Conversion:
This module uses information in the CDO to
convert and validate individual field data.

QCAFEXPR-Process Expression: This module
processes and validates control language
expressions.

QCAFBIF-Process Built-in Function: This
module processes and validates built-in
functions.

QCABIFV-Built-in Function Validity Checker:
This module validity checks the number and
value of built-in function arguments.

QCAFCM D-Process- Embedded Cornrr.ands:
This module processes embedded commands
on TYPE (*CMD) parameters.

QCAIFLD-Perform Interparameter Checks: This
module performs validity checking used to test the
relationship between keywords.

QCACALL-Interpretive Call Processing: This
module invokes an application program when a call
is encountered.

QCATRS-Create Argument List and Invoke
Command Processing Program: This module
invokes user-defined validity check programs and
command processing programs.

-->QCAEXEC-High-Level Language Interface to
Command Execution: This module provides the
interface between a high-level language program and
the command analyzer. It converts commands in a
high-level language program into a form that can be
used by the QCADRV interface. QCAEXEC moves
the command and command length into the work
area and passes this information to QCADRV.

QCADRV then processes the command.

The following module is used by most of the command
analyzer modules:

QCAXTND-Extend Command Analyzer Space Objects:
This module extends the space of a command analyzer
positional list or work area if additional space is needed.

Command Analyzer Overview

Figure CA-2 shows the components and functions that
use the command analyzer and the components and
functions used by the command analyzer to perform its
tasks. Following Figure CA-2 are other figures that
show specific component relationships to provide
command analyzer functions; with each figure is a
description of the relationship.

Command Analyzer CA-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Validity
Check,
Parse, and
Execute

Components and
Functions Using
Command Analyzer

Spooling

CL
Compiler

Command
Definition

Screen Design Aid

Source
Entry
Utility

Prompter

High-Level
Language
Programs

CL Programs

Subsystem
Controller

Batch
Subsystem
Controller

I nteracti ve
Subsystem
Controller

I--

-

-

I--

I--

I--

-

-

I--

f----

I--

Figure CA-2. Command Analyzer Overview

CA-6

Components and
Functions Used By

Command Analyzer

r-- Prompter

Command
I-- Processing

Program

f--
Appl ication
Program

Command
Analyzer

User-Defined
I-- Validity Check

Program

Message -
Handler

Work - Control

This document contains restricted materials of IBM. LY21-0571-6

© Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Command Analyzer as Used by Spooling, Cl
Compiler, Prompter, Command Definition, and the
Source Entry Utility

.. A command is read by one of the components
shown in Figure CA-3, and the command analyzer
is invoked to parse and validity check the
command. The component using command
analyzer moves the command string and its length
to the work area. An argument list containing a
pointer to the positional list space is passed. The
positional list contains a pointer to the work area,
the option bytes, and the return value. The work
area contains the command string and the length
of the command string.

II Command analyzer, using information in the COO,
validity checks the command.

II If specified in the COO, the user-defined validity
check program is called to perform extended
validity checking.

II Control is returned to the caller. A positional list
and work area containing the parsed commanc!
and assigned default values are passed back at the
completion of parsing and validity checking.

Positional
List

Work
Area

II

Spooling

CL Compiler
Prompter
Command Definition
Source Entry Utility

Argument
List

~ Command / Analyzer

y
Command
Definition
Object

4

IJ
1 ,

User-Defi ned
Validity Check
Program

Figure CA-3. Command Analyzer as Used by Spooling, CL
Compiler, Prompter, Command Definition,
and the Source Entry Utility

Command Analyzer CA- 7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer as Used by a Cl Program

Figure CA-4 and the following text describe how the
command analyzer is used by a CL program.

.. The CL program assigns values to the symbolic
variables and invokes the command analyzer. A
token list, which resides in the associated space of
the CL program, is passed.

II The command analyzer, using information in the
COO, validity checks the parameters and performs
interparameter checks in the command.

i CL prog~--l
I Associated Space I

I I I Token I
I List I
L ______ \

Command
Processing
Program

Argument
List

Command
Definition
Object

II

CL Program

..
Command
Analyzer

D

User-Defi ned
Validity Check
Program

Figure CA-4. Command Analyzer as Used by a CL Program

CA-8

D If specified in the CDO, the user-defined validity
check program is called to perform extended
validity checking.

II The command analyzer transfers control to the
proper command processing program. An
argument list containing pointers to the converted
data values in the work area is passed.

II If an error is detected during the command
analysis process, an exception is signaled and
control is passed back to the CL program.

II The command processing program returns control
to the CL program.

Argument
List

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Command Analyzer as Used by a CL Program with
Prompting

Figure CA-5 and the following text describe how the
command analyzer is used by a CL program with
prompting.

.. The CL program invokes the command analyzer. A
token list, which resides in the associated space of
the CL program, is passed.

II A positional list and work area are built, and
control is transferred to the prompter, passing this
positional list and work area.

II The prompter calls the command analyzer to
validity check the command being entered and to
execute the command if it meets the validity check
requirements.

Command
Processing
Program

D

Argument
List

CL Program
with
Prompting

Command
Analyzer

II

User-Oefi ned
Validity Check
Program

a Control is returned to the prompter if an error is
detected and an exception is signaled during
command validation, or to enter additional

command data.

II and a are repeated until the command is
completely entered and properly validity checked.

II If specified in the COO, the user-defined validity
check program is called to perform extended
validity checking.

II Control is transferred to the proper command
processing program, passing an argument list
containing pointers to the converted data values in
the work area.

D The command processing program returns control
to the CL program.

..
I CL'Progra;- - I

Associated Space I

Token
List

I
I
I
I

_____ J

Positional
List

Work
Area

Prompter

Figure CA-S. Command Analyzer as Used by a CL Program with Prompting

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Analyzer CA-9

Command Analyzer as Used by the Subsystem
Controller without Prompting

Figure CA-6 and the following text describe how the
command analyzer is used by the subsystem controller
without prompting.

.. The subsystem controller receives a command and
calls the command analyzer. An argument list
containing a pointer to the positional list space is
passed. The positional list contains a pointer to
the work area, the option bytes, and the return
level. The work area contains the command string
and the length of the command string.

II The command analyzer, using information in the
COO, validity checks the command.

Ii

Command
Processing
Program

Argument
List

II If specified in the COO, the user-defined validity
check program is called to perform extended
validity checking.

II Control is transferred to the proper command
processing program. An argument list is passed
that contains pointers to the converted data values
in the work area.

II Control is returned to the subsystem controller if a
null command is found, or an error is detected and
an exception is signaled.

II Control is returned to the subsystem controller
after completion of the application program or
command processing program.

Subsystem
Controller
without
Prompting

Argument

D List

Command
Command Definition
Analyzer Object

II

User-Defined
Validity Check
Program

Figure CA-S. Command Analyzer as Used by the Subsystem Controller without Prompting

CA-lO

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

J

Command Analyzer as Used by a High-Level
Language Program

Figure CA-7 and the following text describe how the
command analyzer is used by a high-level language

program.

II A compiled high-level language program invokes
the command analyzer by calling the high-level
language interface, QCAEXEC. An argument list is
passed that contains the command string and its
length. QCAEXEC creates space for a work area
and a positional list and moves the command
string and its length into the work area.

II QCAEXEC calls QCAORV, passing the work area
and positional list. QCAORV and other command
analyzer modules, using information in the COO,
validity check and analyze the command, complete
the positional list, and convert the data values in
the work area.

High-Level

Language
Program

II

QCAEXEC
1\1 High-Level

Language
Interface

II

QCADRV
Argument Command
List Analyzer

Driver a

Command

II If specified in the COO, the user-defined validity

check program is called to perform extended
validity checking.

a Control is transferred and an argument list
containing pointers to the converted data in the
work area is passed to the proper command
processing program.

II Control is returned to QCAEXEC if a null command
or an error is detected and an exception is
signaled.

1\1 Control is returned to QCAEXEC after completion
of the application program or command processing
program.

II QCAEXEC returns control to the high-level
language program.

II Argument
List

Positional List

B Work Area

Argument List

~ Command
Definition

II Object

... Processing User- Defined
Program Validity Check

Program

Figure CA-7. Command Analyzer as Used by a High-level language

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAAB050·0

Command Analyzer CA-11

Command Analyzer as Used by the Subsystem
Controller with Prompting

Figure CA-8 and the following text describe how the
command analyzer is used by the subsystem controller
with prompting.

D The subsystem controller receives a command and
calls the command analyzer, passing a positional
list space that contains a pointer to a work area.
The work area contains the command character
string and length of character string.

D The command analyzer, using information
contained in the COO, validity checks the
command.

D If the command is not valid, the positional list is
not built, an exception is signaled, and control is
returned to the subsystem controller.

a If the command is valid, a positional list is built
containing an entry for the command name.
Control is transferred to the prompter passing the
positional list and work area. Only scalar validity
checking is performed; no interparameter checks
or user-defined validity checking has occurred.
The prompter will prompt for missing keywords,
values, or entry errors.

CA-12

II The prompter calls the command analyzer with
prompted data in the positional list. The command
analyzer validity checks the individual scalar values
and performs interparameter checks as requested
by the prompter. Errors are returned to the
prompter.

a and II are repeated until the command is
completely entered and properly validity checked.

II Interparameter checks are performed and, if
specified in the COO, the user··defined validity
check program is called to perform extended
validity checking.

1.1 If the command analyzer was called to only validity
check the command, as in the case of entering
command parameters one at a time, or an error
was found in the command, control is returned to
the prompter.

iii If the command analyzer was called to execute the
command and no errors were found, control is
transferred to the proper command processing
program. An argument list containing pointers to
the converted data values in the work area is
passed.

II The command processing program returns control
to the subsystem controller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem

D It. Controller

4 ~
... with

~ Prompting

.. ~
Positional
List

D

~/
Work

Positional Area

List
~

Work
Area

D ~
.....

~ 0
Prompter Command D Command .. Analyzer Definition

D / Object

Positional I List

Work
Area

~

v' ~ Argument 0 , ,
List

User-Defined
1 , Validity Check

D Program
Command ... Processing
Program

Figure CA-S. Command Analyzer as Used by the Subsystem Controller with Prompting

This document contains restricted materials of IBM. L Y21-0571-6

(i)Copyright IBM Corp. 1980,

Command Analyzer CA-13

CA-14

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

L

INTRODUCTION

The command definition component of the CPF (control
program facility) provides command processing
programs for the following CL (control language)
commands:

• Create Command (CRTCMD)

• Change Command (CHGCMD)

• Displav Command (DSPCMD)

• Delete Command (DL TCMD)

Note: The command definition component owns the
command syntax, but the librarian component supplies
the command processing program for the Delete
Command command, the generic delete module
QUDLOBJ.

Using these commands, along with their associated
command definition source statements, users can create,
change, display, or delete their own commands. This is
accomplished by creating, changing, displaying, or
deleting the CDO (command definition object) of the
specified command.

Command Definition Source Statements

The command definition source statements and their
functions are as follows:

• Command statement-CMD: This statement defines
the prompt text to be associated with the command
being defined. There must be one and only one CMD
statement in the source file referred to by the Create
Command command.

• Parameter statement-PARM: This statement defines
the attributes of command parameters. The order of
the PARM statements in the source file specifies the
order in which the parameters are passed to the CPP
and validity check routine. At least one PARM
statement must precede all element, qualifier, or
dependent statements. There can be a maximum of
75 PARM statements associated with a command.

Command Definition

• Element statement-ELEM: This statement defines the
attributes of elements in a list. If a command
parameter consists of a list of elements that are of a
different type, each element in the list must be
described by an element statement.

• Qualifier statement-QUAL: This statement defines
qualified names. If a parameter or list element is a
qualified name, that qualified name must be
described by QUAL statements.

• Dependent statement-DEP: This statement defines
which parameters are dependent on each other. The
presence or absence of a parameter and the value of
a parameter determine dependency.

Command Definition CD-1

This document contains restricted materials of IBM. LY21-0571-6

(l) Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Definition Objects

Each command has its own unique COO (command
definition object). The COO contains information about
the command. Figure CO-1 shows the contents of a
COO.

a The description of the parameters is in the form of
a binary tree (see Figure CO-2, which follows).
There is a node for each PARM (parameter), ELEM
(element), and QUAL (qualifier) statement. The
parameters are linked together in order;
specifically:

• Parameters are linked together in the order they
were specified in the COS (command definition
source) statement.

• A PARM node may specify a link to a QUAL
or ELEM

• An ELEM node may specify a link to a QUAL
or ELEM

• ELEMs of a list are linked together

• QUALs of a qualified name are linked together

• A QUAL may not specify a link to another
QUAL or ELEM at a lower level. For example:

QUAL TYPE(Q1)
Q1 : QUAL

There is also a linked list in which each node in
the list represents interparameter dependencies.

II Each of the nodes in the binary tree and linked list
have displacements to converted data that is used
to describe each parameter.

II Each node in the binary tree has a displacement to
the prompt information associated with that node.

CD-2

Example:

Command definition statements:

PARM TYPE (E1) List of two elements

PARM TYPE (*CHAR) Scalar

PARM TYPE (E2) List of three elements

E1 : ELEM TYPE (*INT2) List element

ELEM TYPE (*INT2) List element

E2: ELEM TYPE (*CHAR) List element

ELEM TYPE (Q1) List element qualified
name of three
qualifiers

ELEM TYPE (*CHAR) List element

Q1 : QUAL TYPE (*NAME) Qualifier

QUAL TYPE (*NAME) Qualifier

QUAL TYPE (*NAME) Qualifier

Displacement to the address of the
command processing program in the
system-wide entry point table

Name of the command processing program

Displacement to the address of the validity
check program in the system-wide entry
point table

Name of the user-supplied validity check
program

Mode and environment in which the
command is allowed

Name of the dependency message file

Maximum number of parameters that may
be coded positionally

Uniqueness verification field

Number of keywords in the command
definition object

Description of each parameter in a
positional order

Description of interparameter
relationships

~----------------------------
Converted data that describes each II
parameter

r----------------------------
Prompt information-message IDs and II
text

Name of the prompt file

Figure CD-1. Command Definition Object

Fixed
Portion

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

The following is a binary tree representation of the
preceding statements:

PARM

E1

ELEM PARM

ELEM

E2

ELEM

Q1

QUAL

PARM

ELEM

QUAL

Figure CO·2. Example of Command Parameters in a Binary Tree Format

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ELEM

QUAL

Command Definition CD-3

COOs, as created or changed, are used by the following
CPF components:

• Command analyzer-to validity check commands, to
identify the command processing program associated
with a command, and to determine the format of
parameters passed to that command processing
program.

• CL compiler-to identify the name of the command
processing program to be called and the format of
the parameters passed to that command processing
program.

• Data management-to determine the parameter name
and prompt text for use by the Display Override
(oSPOVR) command.

• Prompter-to determine the prompt text and the
format of the parameters used in prompting for
command parameters.

• Menu-to determine the command prompt text for use
in the all-commands menu display.

• Security-to determine that the user is authorized to
the command function that is requested from a
display.

CD-4

Bui/ding a Command Definition Object

Figure CO-3 shows an example of how command
definition source statements are used to build a COO.

a The command definition source statements
describe a command that has three parameters, A,

B, and C. Parameter A is defined to be one of
three restricted character values; each value can
be four characters long. Parameter B must be a
decimal value in packed decimal 5,2 format and
must be a value between 1 and 500. Parameter C
is an integer 2 value with a default value of *ONE.
*ONE is a special value that maps to an integer
value of 1.

II QCoRPAS1 puts information about the parameters
into the COO. The data describing the parameters
is put into a data table. The displacements to
parameter information in the data table are also
put into the COO.

II QCoRPAS2 takes the information in the data
table, converts the data into the type specified by
the command definition source statements, and
puts it at the end of the COO. The displacement
values in the COO are changed to reflect the
displacements to the parameter information that is
now in the COO.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

D
Command Definition Source Statements

LABEL: CMD
PARM KWD(A) TYPE(*CHAR) LEN(4) +

RSTD(*YES) VALUES (BOB JIM MARK)
PARM KWD(B) TYPE(*DEC) LEN(5 2) RANGE(1 500)
PARM KWD(C) TYPE(*INT2) DFT(*ONE) SPCVAL((*ONE 1))

D Command Definition Object

Command Definition Object and Data Table
as Built by QCDRPASl

o Number of restricted values

o Displacements into the Data Table to
the restricted values

Fixed Portion

(description of parameter A)

CD 0 IT] @]
, , .

e Displacements into the Data Table to
the lower and upper range values " 0 Type-CHAR

C!) Displacement into the Data Table to
the default value

o Displacements into the Data Table to
the special F ROM and TO val ues

II
Command Definition Object as Built by QCDRPAS2

" Number of restricted values

G Displacements into the CDO to the restricted
values

e Displacements into the CDO to the lower and
upper range values

C!) Displacement into the CDO to the default
value

o Displacements into the CDO to the special
F ROM and TO values

o BIN(15) length followed by character data

e Value in packed decimal (52) format

., BIN(15) Integer 2 value

(description of parameter B)

@] @]
e Type-DEC

Len -5 2

(description of parameter C)

@JC!)

CillO@] Type-INT2

Data Table Information
(converted values)

Figure CD-3. Comllland Definition Object Build Overview

ThiS clocument contains restricted materials of IBM. LY21-0571-6

, Copyright IBM Corp 1980, 1981, 1982, 1983, 1984, 1985

100
105
110
116
119
122
128

Data Table (unconverted)

o
6

12
19
23
29
36
43

Attribute

CHAR
CHAR
CHAR
NUMERIC
NUMERIC
CHAR
CHAR
NUMERIC

Length

03
03
04
01
03
04
04
01

Value

BOB
JIM
MARK
1
500
*ONE
*ONE
1

Command Definition Object

Fixed Portion

(description of parameter A)

[2J 11001 11051 §1
, ,

"
.

0 Type-CHAR

(description of parameter B)

~ ~
e Type-DEC

LEN -5 2

(description of parameter C)

11221 C!)

\1221 G 11281 Type-INT2

0003 BOB }
0003 JIM G
0004 MARK

00100F }e
50000F
0004 *ONE •
0001.,

Command Definition CD-5

GENERAL OVERVIEW

Command Definition Modules

The command definition component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCDCCMD-Change Command (CHGCMD)': This
module is used to modify the attributes of an existing
CDO. The following attributes of a command can be
changed:

CPP name
- Validity checker program name
- Command mode
- Command environment

Text information

-->QCDDCMD-Display Command (DSPCMD)': This
module is used to display or print the following
information specified on the Create Command
(CRTCMD) command:
- Qualified command name
- Qualified command processing program name
- Qualified source file name (if data base source file)
- Source file member name (if data base source file)

Qualified validity checking program name
- Valid modes for the command that is displayed

Valid environments for the command that is
displayed

- Maximum number of parameters that may be
coded positionally
Qualified prompt message file name

- Qualified DEP message file name
- Text associated with the command that is

displayed

-->QCDRCMD-Create Command (CRTCMD)': This
module, along with the following modules, read
command definition source statements from the
specified data base file, device file, or inline file and
create a CDO.

'This module is a CPP (command processing program).

CO-6

QCDRPAS1-Create Command Pass One: This
module reads the command definition source
statement file and builds a CDO. QCDRPAS1 also
calls the command analyzer to syntax check the
command definition source statements.

QCDRPAS2-Create Command Pass Two: This
module scans the CDO, validity checks all entries,
converts data into an internal format, and moves
the converted data to an area near the end of the
COO.

-->QLlDLOBJ-Delete Command (DLTCMD)': This
module is used to remove a command from the
library in which it resides. It uses the librarian generic
delete function command processing program to
delete a command. Only the CDO is removed. The
validity check program, the command processing
program, and the CDS (command definition source)
statements are not deleted.

QCDRPAS3-Create Command Pass Three: This
module links the parameters in the CDO into the
order in which the parameters are to be prompted.
The prompt information (text and message
identifiers) is then placed at the end of the CDO.

Create Command Command Overview

Figure CD-4 and the following text describe a Create
Command (CRTCMD) command overview.

.. The command analyzer decodes the Create
Command command, processes it, and transfers
control to the command definition module
QCDRCMD. A parameter list is passed that
contains the Create Command command
parameters.

II QCDRCMD calls QCDRPAS1 to build a CDO and
unconverted data table using the information
contained in the command definition source
statements.

II QCDRPAS1 calls the command analyzer to validity
check the command definition source statements.
The command analyzer returns control to the
command definition module.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

II OCDRCMD calls OCDRPAS2 to validity check the

information in the CDO and to convert the data in
the table into an internal format. The converted
data is moved to an area near the end of the CDO.

II OCDRCMD produces a command definition listing
that consists of the following:

OCDRCMD calls OCDRPAS3 to link the
parameters in the CDO into the order in which
they are to be prompted and puts the prompt
information at the end of the CDO.

Parameter Command Definition
List

CRTCMD QCDRCMD

Command D
Create Command

II
QCDRPAS1

Command Pass 1
Analyzer

QCDRPAS2

Command
Definition Pass 2

Source
Statements

QCDRPAS3

Pass 3

Figure CD-4. Create Command Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• Listing of the source statements

• Cross reference listing

• Error messages, if any

Command
Definition
Object

Unconverted
Data Table

Validity
Checked
CDO
Converted
Data

Validity
Checked
CDO
Converted
Data

Prompt
Text and
Prompt

IDs

Command
Definition
Listing

Command Definition CD-7

CD-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION

The CL (control language) compiler component of the
CPF (control program facility) provides the command
processing programs for the Create Control Language
Program (CRTCLPGM) command, Retrieve Job
Attributes (RTVJOBA) command, List Command Usage
(LSTCMDUSG) command, Convert Date (CVTDAT)
command, Retrieve Control Language Program Source
(RTVCLSRC) command, Retrieve Data Area
(RTVDTAARA) command, and Display Program
(DSPPGM) command.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Control Language Compiler

Control Language Compiler CL-l

The Create Control Language Program (CR;rCLPGM)
command is the CL compiler. The CL compiler performs

the following functions:

.. Reads CL commands from a source file.

IJ Performs intracommand and intercommand validity
checking. The command analyzer is used for

individual command syntax checking and parsing.
A positional list and work area is passed.

II Generates the code for an object program. The
generated code is called an I RP (intermediate
representation of a program).

Positional
List

Work

Area

CRTCLPGM
Command

Command
Analyzer

CL
Compiler

Program
Resolution

Monitor

Figure CL-1. CL Compiler System Overview

CL-2

II Calls the PRM (program resolution monitor) to
generate a machine interface template from the

IRP.

II Produces a listing of all commands read from the
source file, along with any errors and

cross-reference listings of labels and variables.

Figure CL-1 shows the relationship among the CL
compiler and the command analyzer and program

resolution monitor during execution of the Create
Control Language Program command.

Compiler

IRP

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GENERAL OVERVIEW

CL Compiler Modules

The CL Compiler component consists of the following
modules:

Note: An arrow (- - » identifies a module as an entry
module into the component. Indentation of a module

shows its dependency on a previous module.

Compile-Time Modules

-->QCLENTR-CL Compiler Driver: This module is the

entry to the CL compiler. It performs the following
functions:

Processes the Create Control Language Program
command keywords
Calls other CL modules to perform initialization,
process source commands, and create the
program

- Handles terminal exceptions occurring during
compilation
Prints the compiler listing from the compiler print

space
- Destroys compiler tables
- Closes files

QCLlNIT-lnitialization: This module creates spaces
and indexes needed by the CL compiler. It also

initializes the communications area used by CL
modules, opens the files used during compilation,

and reads all source into the compiler source
space.

QCLCM DPR-Command Processing: This module

retrieves source commands from the compiler
source space, puts them in the compiler listing
space, and calls the command analyzer to parse
and syntax check them. It calls other compiler

modules to process commands and to do cleanup
work. QCLCMDPR contains the main processing

loop for the compiler. QCLCMDPR also puts
diagnostic messages produced by the command
analyzer and lower-level CL compiler modules into
the compiler print space. ThiS module saves
source information for inclusion in the program's
associated space,

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QCLlCP1-lnitial Command Processing 1: This
module handles labels and invokes the

compile-time processor for the Declare CL
Variable command, Declare Data Area
command, Declare File command, and Program
command. This module saves command
information for inclusion in the program's
associated space.

QCLDSVST -Declare Data Area and Build

Symbol Table: This module processes the
Declare Data Area command.

QCLDECST -Declare and Symbol Table Build:

This module processes the Declare CL
Variable command.

QCLDMDCL-Data Manipulation Declare:

This module processes the Declare File
command. It also produces a list of variable

names and attributes for vanables implicitly
declared by the Declare File command.

QCLPRCMD-Program Command: This
module processes the Program command.

QCLlCP2-lnitial Command Processing 2: This
module handles the Do, Enddo, Return, and End

Program commands. It also generates code for
the end of the THEN clause of an If command,

the end of the ELSE clause, and the end of the
MONMSG EXEC clause. This module saves
command information for inclusion in the
program's associated space,

QCLGTCMD-Goto Command: This module

processes Goto commands in CL programs.

QCLSSVRC-Send Data Area: This module
processes the Send Data Area command.

QCLlFCMD-lf Command: This module

processes If commands in CL programs,

QCLGNEVL-Generate Evaluation Code:
This module processes expressions for the
If and Change Variable commands in CL
programs.

QCLBIFCN-Built-In Functions: ThiS
module processes the built-in functions,

Control Language Compiler CL-3

CL-4

QCLRSVRC-Receive Data Area: This module
processes the Receive Data Area command
in CL programs.

QCLMNMSG-Monitor Message Command:
This module processes the Monitor Message
command in CL programs.

QCLXCCMD-Transfer Control: This module
processes the Transfer Control command in
CL programs.

QCLDMWC-Data Manipulation Wait/Cancel:
This module processes the Cancel Receive
and Wait commands in CL programs.

QCLDMCMD-Data Manipulation Commands:
This module processes the Send File,
Receive File, and Send Receive File
commands in CL programs.

QCLCLCMD-Call Command: This module
processes Call program commands in CL
programs.

QCLCHVAR-Change Variable: This module
processes the Change Variable command in
CL programs.

QCLGNEVL-Generate Evaluation Code:
This module processes expressions on the
Change Variable command.

QCLBI FCN-Built-In Functions: This
module processes the built-in functions.

QCLREGCL-Regular Commands: This
module processes all commands that are not
compiled inline.

QCLWUIS-Where Used Information Save:
This module analyzes the commands
processed by QCLREGCL, and saves
information about any value (that the CDO
for the command indicates is a file). This
information is saved in a structure for
inclusion in the OIR for the CL program.

QCLLSCMD-Else Command: This module
processes the Else command in CL
programs.

QCLDMFIN-Data Manipulation Finish: This
module generates the following tables:

UFCB (user file control block)
- Data manipulation table containing pointers to

all data tables, corresponding record format
names, and other I/O information

- Data manipulation tables, one table for each
record format name that was referred to in the
program

This module saves information from the data
manipulation table for inclusion in the program's
associated space.

QCLSTOUT-Symbol Table Output: This module
declares variables in IRP format. puts variables,
labels, and any corresponding attributes and
cross-references in the CL program listing.

This module saves information from the symbol
and parameter tables for inclusion in the program's
associated space.

QCLMSFIN-Monitor Message Code Completion:
This module processes tables built by
QCLMNMSG. It generates code to declare,
enable, and disable message monitors in a CL
program.

QCLlRPC-IRP Completion: This module generates
the epilogue code for all CL programs. This
module formats saved command information for
inclusion in the program's associated space.

QCLCRPGM-Create Program: This module sets CL
compiler attributes that, when passed to the PRM will
be used in defining and creating a CL program.
QCLCRPGM then invokes the PRM to create the CL
program. This module copies information saved
during compilation into the created program's
associated space.

QCLCMPXH-Compiler Exception Handler: This
module is called by other CL modules to handle the
space-addressing violation exception during
compilation.

This document contains restricted materials of IBM. LY21-0571-6

<!:)Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

The following module is used by QCLCLCMD,
QCLXCCMD, QCLDMCMD, and QCLDMWC:

QCLMAP-Resolution of Special Value Mappings:

This module extracts a special FROM value from the

CDO on commands that are compiled to inline code
when a variable is coded on a keyword with special
value mapping.

The following module is used by QCLlCP1, QCLlCP2,
QCLWUIS, QCLREGCL, QCLDMCMD, and QCLDMWC:

QCLERROR-Error routine: This module is called by
compile-time modules to send diagnostic and escape
messages.

Execution- Time Modules

-->OCLRSLV-Resolve: This module is called at the
start of every CL program. It performs the following

functions:
- Allocates a positional list and work area, if needed.

- Checks to see if the CL program is compatible
with the current release/modification level.

Checks to see if the command logging is in effect
for the current execution of the CL program.

-->QCLCLCPR~Call (CALL,TFRCTL)': This module is
called to handle the interface to an application
program. OCLCLCPR also performs logging for the

compiled Call and Transfer Control commands. For

the Transfer Control command, QCLCLNUP is
invoked to perform cleanup before the CL program
relinquishes control.

-->QCLDMIO-Data Manipulation I/O (SNDF, RCVF,
SNDRCVF, CNLRCV, WAIT)': This module performs

the functions of the Send File, Receive File,
Send / Receive File, Cancel Receive, and Wait

commands. This module also performs the logging
functions for these commands.

-->QCLRTNE-Return Execution Module: This module is

invoked by the CL program on a normal return.
QCLRTNE performs logging for a compiled Return
command and normal end-of-program logging
functions. This module invokes QCLCLNUP to

perform cleanup for a CL program.

'This module is a CPP (command processing program).

-->QCLCLNUP-Clean-up: This module is invoked when

the invocation of a CL program is ended by exception

processing. QCLCLNUP deallocates the space objects

of the program, and closes the data manipulation files
used by the program. This module is also invoked by

QCLCLCPR and QCLRTNE to perform clean-up.

-->QCLRSVRE-Receive Data Area (RCVDTAARA)': This

module processes the Receive Data Area command,
and performs the logging function for the Receive
Data Area command.

-->QCLSSVRE-Send Data Area (SNDDTAARA)': This

module processes the Send Data Area command, and

performs the logging function for the Send Data Area
command.

-->QCLRTVJA-Retrieve Job Attributes (RTVJOBA)':

This module processes the Retrieve Job Attributes
command.

-->QCLXCEXC-Transfer Control Exception Handler:
This module receives control if the code generated

for a CL program Transfer Control command gets a
machine exception. QCLXCEXC then invokes

QCLRSLV, which creates work spaces needed by the
program, sends an appropriate CPF message, and
signals a CPF exception. This causes the call and
transfer control diagnostic interfaces to appear

consistent to the user.

-->QCLCMXRF-List Command Usage (LSTCMDUSG)':

This module processes the List Command Usage
command.

-->OCLCNVNC-Convert Numeric to Character: This

module is invoked by CL programs to perform
numeric to character conversions, when required by

the Change Variable command.

-->QCLCNVCN-Convert Character to Numeric: This

module is invoked by CL programs to perform
character to numeric conversions, when required by
the Change Variable command.

-->QCLCNVDT-Convert Date (CVTDAT)': This module

processes the Convert Date command.

-->QCLXERR-Execution Time Error Handler: This
module is invoked when a function check occurs in a
CL program which does not have a Monitor Message

command to handle the function check. QCLXERR
sends an inquiry message and processes the reply.

Control Language Compiler CL-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QCLXDUMP-Dump CL Program (DMPCLPGM)':
This module processes the Dump CL Program
command. QCLXDUMP is invoked by QCLXERR
when a dump is requested.

.. The CL program invokes the command analyzer. A
token list which resides in the associated space of
the CL program, is passed.

II The command analyzer performs the validity
-->QCLRTVDA-Retrieve Data Area (RTVDTAARA)': checking and interfaces with the prompter, if

This module processes the Retrieve Data Area necessary. If the command analyzer detects any
command. errors, it signals an exception to the CL program.

- - >QCLSCAN-Scan for a Pattern in a String: This
module, called from a high-level language program,
finds the position where a character string occurs
within another string of characters.

Control Language Command with Independent

Command Processing Program

Figure CL-2 shows the relationship between a CL
command with an independent command processing
program, the command analyzer, and the command

processing program.

I CL Progra;--l

I Associated Space I
I
I Token
I List

I I L _____ J

CDO

..

II

CL
Program

Command
Analyzer

Prompter

If no errors are detected, control is transferred to
the command processing program.

If logging is requested, the command string is
rebuilt in a keyword format and sent to the calling
CL program as a command message. The
command then appears in the job log.

II The command processing program performs its
function and returns control to the CL program.

Positional
List

Work
Area

Command
Processing
Program

Figure CL-2. Control Language Command with Independent CPP Overview

'This module is a CPP (command processing program).

CL-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

CL Program Call and Transfer Control Commands

Figure CL-3 shows an overview of the operation of the
CL Call (CALL) and Transfer Control (TRFCTL)

commands.

Call Command

.. The CL program initializes a control block,
initializes a work area, and calls QCLCLCPR. If the
control language program does not have a pointer
to the application program, QCLCLCPR resolves
addressability to the application program.
QCLCLCPR sets up an argument list and transfers
control to the application program. If the program
name or library name was coded as a variable in
the CL program, QCLCLCPR validity checks the
contents of the variables for type name.
QCLCLCPR also translates any machine interface
exceptions on the call or the resolve of
addressability to command processing program
exceptions for the CL program. If logging is
requested, QCLCLCPR logs the Call command.

Transfer Control Command (Generic Description)

II If the CL program does not have a pointer to the
application program, QCLCLCPR resolves
addressability to the application program for the
CL program. If logging is requested, QCLCLCPR
logs the Transfer Control command. The CL
program then transfers control to the application
program.

.. CALL

~ Command

... CL ... Program

A • Work

~ , Area

QCLCLCPR

Call Command i'. Processing
Program

II TRFCTL
Command

CL
Program

.4 •
~ r

QCLCLCPR

Call Command
Processing
Program

Application
Program

... Application .. Program

Figure CL-3. CL Program Call and Transfer Control
Command Overview

Control Language Compiler CL-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Delete Program Command

The Delete Program (DL TPGM) command deletes a
program from the specified library along with the
corresponding OIR (object information repository) data.
See Figure CL-4 for the Delete Program command
overview.

Retrieve Job Attribute Command

The Retrieve Job Attribute (RTVJOBA) command
retrieves certain job attributes and puts them in a CL
variable. OCLRTVJA extracts the values requested by
the Retrieve Job Attribute command from the work
control block, process attribute template, and job
message queue, and returns these values to the CL
program. See Figure CL-5 for the Retrieve Job Attribute
command overview.

CL-8

DLTPGM
Command

Command
Analyzer ,

OLiDLOBJ
Librarian l

Generic Delete
Function

1 See the librarian component (LI) for further detail.

Figure CL-4. Delete Program Command Overview

RTVJOBA

~ CL Program
r--- Command

~ ~

, r

Command
Analyzer

~ ~

1 r
'-- OCLRTVJA WCB for Job

~ - Executing

Retrieve Job RTVJOBA

Attributes Command

Figure CL-S. Retrieve Job Attribute Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Convert Date Command

The Convert Date (CVTDA T) command converts a date
from one format to another. Figure CL-6 and the
following text describe the operation of the Convert
Date command.

.. QCLCNVDT calls QWCSVRDR to verify that the
date is correct.

II QCLCNVDT calls QWCSCDFR to convert the date
to the proper format.

II QCLCNVDT returns the converted date to the CL
program.

Converted
Date

II

II

CVTDAT

CL Program
Command

Command
Analyzer

QCLCNVDT

Convert Date

QWCSCDFR

Convert Date

CVTDAT

Command Values

QWCSVRDR

Verify Date

Figure CL-6. Convert Date Command Overview

list Command Usage Command

The List Command Usage (LSTCMDUSG) command
generates a report showing which CL programs use one
or more of the commands entered on the List Command
Usage command. Figure CL-7 and the following text
describe the operation of the List Command Usage
command.

.. QCLCMXRF calls the librarian module QLlLlST to
obtain a list of programs matching the value
specified on the List Command Usage command.

II QCLCMXRF examines each program to determine
if it is a CL program.

II QCLCMXRF examines each CL program in the list
to determine if the program uses any of the
commands specified on the List Command Usage
command.

LSTCMDUSG '"
Command

Command
Analyzer

II
Command QCLCMXRF

Usage List Command
Usage

List Object

Programs to
be Examined

~

List of
Programs

• • •

in Requested
Libraries

Figure CL-7. List Command Usage Command Overview

Control Language Compiler CL-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Retrieve Cl Source Command

The Retrieve Cl Source (RTVClSRC) command retrieves
the source and other information about the program,
saved in the Cl program object, and places it in a data
base source file. Figure Cl-8 and the following text
describe the operation of the Retrieve Cl Source
command.

.. QClRTVDR invokes subroutines to perform the
retrieve function and sends appropriate escape and
completion messages to the caller of QClRTVDR.

B QCLRTVVI performs the following:

II QClRTVEI performs the following:

• Extracts the Cl program's source from the Cl
program associated space.

• Extracts the patch / no patch option from the C l
program associated space.

• Extracts original source file information from the
Cl program OIR.

• Extracts the user modification flag from the CL
program OIR.

II QCLRTVFS formats the CL program source and
• Verifies that the program exists and is a CL other information and puts it in the data base

B

program. source file member.

• Verifies authority to the CL program.

• Locks the CL program.

II QCLRTVCU is used in the Retrieve CL Source
command processing. QCLR-ptCU performs the
following:

• Verifies that the file exists, that the file is a data
base source file, and that it has a proper record
length.

• Unlocks any programs that are locked.

• Destroys any work spaces.

• Adds the member to the file, if necessary.

• Opens and clears the data base source file
member.

~
, II

QCLRTVVI

Verify
Input

..
~ r

QCLRTVEI

Extract

RTVCLSRC
Command

Command
Analyzer

~
QCLRTVDR

Retrieve
CL Program

~ ~

~
,

II

Information

• Closes any files.

~
, II ~ r

QCLRTVFS QCLRTVCU

Format Clean

Source Up

Figure Cl-S. Retrieve Cl Source Command Overview

CL-10

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Program Command

The Display Program (DSPPGM) command produces a
display showing the attributes of a program. Figure
CL-9 and the following text describe the operation of
the Display Program command.

D The command analyzer decodes a Display Program
command, and control is transferred to
QCLDSPPG.

II The program specified on the command is
accessed to obtain its attributes.

11 The program attributes are formatted and
displayed or printed.

Printer

DSPPGM
Command

1 II

Command
Analyzer

QCLDSPPG

Figure CL-9. Display Program Command

B Program to
Be Displayed

This document contains restricted materials of IBM. LY21-0571-6

~)Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Control Language Compiler CL-11

Change Program Command

The Change Program (CHGPGM) command modifies the
attributes of one or more programs. Figure CL-10 and
the following text describe the operation of the Change
Program command.

D OCLCHGPG calls the librarian module OULIST to
obtain a list of programs matching the value
specified on the CHGPGM command.

Changed
Programs

CHGPGM Command

Command
Analyzer

II

II OCLCHGPG makes the changes to each program.
If the text is being modified, module OLiMROIR is
called to change the text. If the program must be
re-encapsulated, a new program object is created,
and the old program is replaced with the new
program.

II If any errors are encountered, OCLCHEXT is called
as an invocation exit program to back out any
changes that are not complete.

Programs to
Be Changed

D II II

OLiLIST OUMROIR

List of
Programs

Figure CL·10. Change Program Command Overview

CL-12

QCLCHEXT

PAABOO'·O

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION

The console function manager component of the CPF
(control program facility) provides the interface between
the console and display operations. This interface
causes the console to appear similar to the interface of
the 5251 display function manager. Unlike the 5251
function manager, the console function manager uses
module QCOREQIO to perform its own I/O operations,
instead of the SNA-T3 component.

The console function manager runs independently of
processes or devices active on the system, and is
capable of running in several processes simultaneously.

GENERAL OVERVIEW

Console Function Manager Modules

The console function manager component consists of
the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCOOPEN-Console Open: This module opens a
display file.

-->QCOPUT -Put to Display: This module performs the
write-to-display function.

QSFPUT -Put to Subfile: This module puts and
updates subfile records and subfile message
records.

QSFCRT -Create Subfile: This module creates the
subfile and sets up necessary subfile controls.

QCOSFLCT -Console Subfile Control Records
Function: This module displays the subfile and
performs functions on the subfile as specified in
the subfile control record: clear, delete, and so
forth.

Console Function Manager

QSFMQDSP-Message Queue Display: This
module handles the program message queue
display functions.

- - >QCOG ET -Console Get Function: This module

performs the read from display as well as several
operator-requested operations, such as field
validation, print display, and second level text.

QSFGET-Get From Subfile: This module retrieves
records from a subfile.

QSFHSFL-Help Key Support: The module
prompts QCOGET to display the second level text
for a message in a message subfile.

QCORTSFL-Roli/Truncate!Fold Subfile Support:
This module performs subfile roll and fold/truncate
functions.

QCOVLFLD-Field Validation: This module handles
field validation functions.

-->QCOCLOSE-Console Close: This module closes a
display file.

-->QCORST-Restore File: This module restores a
suspended file on a display device.

-->QCOMEEH-Console Nowait Event Handler: This
module handles the machine-signaled event (REQIO
complete) that follows a nowait operation.

-->QCOSPEND-Suspend File: This module suspends a
file on a display device.

-->QCOMSG-Console Message Function: This module
turns the console Message Waiting light on or off.

-->QCOPTMSG-Special Put Message: This module is
used by CPF work management to display an
operator message independent of the device file
open.

-->QCODSMSG-Special Display Status Message: This
module is used by CPF to display a message with the
status of an active display file.

Console Function Manager CO-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The following module is used by QCOREQIO.

QCOERROR-Console Exception Handling Routine:
This module handles exceptions signaled by
QCOREQIO.

The following module is used by QDCCRLUD,
QWCISCFR, and QDCVALUD.

QCOLUDIN-LUD Initialization: This module
initializes the LUD (logical unit description)
associated space for the console and is normally
invoked only at CPF start time.

The following module is used by QCOOPEN, QCOPUT,
QCOGET, QCOSPEND, QCORST, QCOMSG,
QCOCLOSE, QCOPTMSG, QCODSMSG, and
QCOMEEH.

QCOREQIO-Request I/O: This module issues the
console I/O requests.

Console Function Manager External Interfaces

Figure CO-l and the following text describe the external
interfaces to the console function manager. An external
interface is defined as a call from the using program to
a module within the function manager.

o Function manager users: The function manager
does not distinguish one external user from
another. A call from an external user identifies a
requested function. The function manager
performs that function regardless of who the
caller is.

II Upward interface: All execution time requests and
controls from the user program are provided
through this interface. The program provides
information to the modules through the UFCB
(user file control block). the option list, the control
list, and the user output buffer. Information is
returned in several ways: through the ODPCB
(open data path control block) feedback areas, the
UFCB buffer pointers, events, exceptions, and the
user input buffer.

II Function manager modules: Each call to a console
function manager module is specified through an
ODP (open data path) to the console display.

J

oJ
Applications. Utilities, and CPF Components

/:COMEEH
I

Machine --
Event Handler II
! ODMCOPEN ODMCLDSE

I
Common Common

I
Open Close

I
I

I
I II I

I

I /

OCOMSG aCOCLOSE
I aCOGET I aCOPUT aCOOPEN f aCOSPEND aCORST aCODSMSG aCOPTMSG
I Console Console Console Suspend Restore Display Special

Console

I Message Console Close
Get Put Open File File Message Put Message Function

I
I L L I I I I
I ((I I
I

aCOREalO I
I

Subfile I Reque;, 1/0
I Modules'}

I
I
I Machine Interlace

Console
Request 1/0 Completion Event L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____________ _ 1/0

1 See Figures CO-2 and CO-8 for detail.
2See Figures CO-9 and CO-10 for detail.

Manager

Figure CO-1. Console Function Manager External Interfaces

CO-2

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager Internal Interfaces

Figure CO-2 and the following text describe the internal
interfaces to the console function manager.

D The REQIO complete event is signaled whenever a
put nowait or get nowait operation is completed.

II QCOMEEH dequeues the completed request block
from the machine interface response queue and
calls QCOREQIO to process the request block.
When control returns to QCOMEEH, it then
determines if the request type is a put or a get. If
the request is a put nowait. the put nowait
complete event is signaled to the user.

II If the request is a get nowait, QCOGET is called to
process the input data. The get routines in
QCOGET can: detect an operator error, send a
message, and reissue the get nowait; handle an
operator request-help or print; print user data. If
the get routines do process good user input data,
QCOMEEH signals a data available event to the
user, but that event will not be signaled if the get
nowait had to be reissued.

Machine
Signaled
Events

Machine

REQIO
Complete

Nowait
Operation
Complete

QCOMEEH

Nowait

Console

D

II
Event Handler

Process
Request ., ,

QCOREQIO

Request I/O

Process

I nput Data" II
QCOGET

Console Get
Function

Figure CO-2. Console Function Manager Internal Interfaces

Console Function Manager CO-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980

Put Operation

Figure CO-3 and the following text describe a normal
put operation.

U For a field-level put request, the user buffer
contains the opt:on indicators followed by all
hidden and output fields as described in the device
file. Field data is processed one field at a time and
is put into the source / sink data area along with
the necessary controls to display the data. Hidden
fields are saved in the function manager work
area.

A nonfield-Ievel put user buffer contains a
character string that is treated by the function
manager as a single field of data to be sent to the
display. The character string is moved from the
user buffer to the source / sink data area without
being examined or altered. All necessary controls
to display the data are supplied by the function
manager.

The user buffer for a user-defined data stream
request contains the complete console-dependent
data stream. As in a nonfield-Ievel put, the data is
moved into the source/sink data area just as it
was passed to the function manager. With a
user-defined data stream request, the function
manager does not add display controls to the data.

II Message file: The user can optionally specify a
message from the message file as output data.
QCOPUT retrieves the message and sends it to
the console user.

II Device file: Default data and constants from the
device file can be sent to the console. The data is
taken from the device file, processed and placed in
the source / sink data area.

CO-4

a Source/sink data: The source/sink data (part of
the request block) is where the function manager
builds the console-dependent data stream that is
to be transmitted to the console. The data stream
contains all of the controls needed to display the
user record as described in U.

II Function manager work area: The function
manager work area is a part of the ODPCB (open
data path control block). As the function manager
builds the output data stream in the source / sink
data area, it also builds a user buffer image in the
function manager work area. This work area
contains an image for each active record on the
console screen.

II Job log: The device file record, as seen in the
user buffer, can optionally be sent to the job log
as well as to the console.

D I/O feedback area: This area is updated at various
times while the function manager is performing the
put operation.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Message File

Messages

Device File

Field
Descriptions

Figure CO-3. Put Operation

D
User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

OCOPUT

Build Output
Stream

II
Source/Sink

Data
Console Data

Stream

Open Data Path

I/O Feedback
Area

Job Log

Logged
Records

FM Work Area

Record Save
Area

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager CO-5

Put to Subfile Record (Data Flow)

Only field-level files provide subfile functions. The
subfile functions do not support nonfield-Ievel files.
User data is treated the same as if the request were to
a nonsubfile record by the put routines. QCOPUT
determines that the record is a subfile record and
transfers control to QSFPUT.

Figure CO-4 and the following text describe a put to a
subfile record operation.

.. For a subfile record put request, the user buffer (or
a separate indicator area) contains the option
indicators followed by all hidden and output fields
as described in the device file.

II The field descriptions for the subfile record are
received from the device file and placed in the
subfile.

II QSFPUT takes the data and its attributes, one field
at a time, and saves them in the subfile. All of the
information needed to display the record as part of
the subfile is maintained in the subfile, except for
constants that are kept In the device file. The
record remains in the subfile until the using
program requests that it be displayed.

II QSFPUT calls QSFCRT during the first subfile
record put operation to create the subfile space
that will receive all the data from the user buffer
or the program message queue if the subfile is a
message subfile.

CO-6

II The user can optionally specify a message key and
a program message queue as a source of data for
message subfiles. The subfile modules receive a
copy of the messages specified from the message
queue and place these into the subfile.

III QSFPUT calls QSFMQOSP when the put operation
to the subfile record specifies that the data to be
placed in the subfile should come from a program
message queue instead of the user buffer.

II The subfile is where all subfile information from
the user buffer is stored. The subfile record
remains in the subfile until the using program
requests that it be displayed.

II The record, as seen in the user buffer, can
optionally be sent to the job log as well as to the
subfile. This is done independent of the subfile
functions.

II The I/O feedback area is updated at various times
while the function manager is performing the put
operation. Additional information, such as the
relative record operated on, is put in the I/O
feedback area for subfile functions.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

II
Device File

Field
Descri ptions

a
QSFCRT

D
User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

QCOPUT

Build Output Data
Stream Call Subtile

II
QSFPUT

Place Record
in Subfile

II
QSFMQDSP

Creates
Subfile Space

Message
Queue Display

Figure CO-4. Put to Subfile Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open Data Path

I/O Feedback
Area

Job Log

Logged
Records

Subtile

Subfile
Records

II
Program Message
Queue

Messages

Console Function Manager CO- 7

Put to Subfile Control Record (Data Flow)

Only field-level files provide subfile functions. The
subfile functions do not support nonfield-Ievel files.
User data is treated the same as if the request were to
a nonsubfile record by the put routines. QCOPUT calls
QCOSFLCT if a put is done to the subfile control record,
and a subfile function is requested (such as initialize,
delete, and so forth). Operations to the subfile control
record only cause I/O to the console if the display
subfile or display subfile control record function is
indicated.

Figure CO-5 and the following text describe a put to a
subfile control record operation.

.. For a subfile control record put request, the user
buffer contains the option indicators followed by
all hidden and output fields as described in the
device file.

II The function manager processes a put to the
subfile control record in two passes. First, the
function manager processes a put to the subfile
control record as if it were a nonsubfile record.
This includes preparing any fields contained in the
subfile control record for display by building a data
stream, if the display subfile control record
keyword is specified. Second, the function
manager checks if the display subfile keyword is
specified, and if so calls QCOSFLCT to add the
subfile records to be displayed to the data stream.

II If the subfile initialize keyword is specified for the
subfile control record, and the subfile space has
not been created, QCOPUT calls QSFCRT to
create the subfile space for the subfile records.
QCOPUT then calls QCOSFLCT to initialize the
subfile records from the device file description.

a The constants are used from the device file to
build subfile records in the data stream.

II The user can optionally specify a message key and
a program message queue as a source of data for
a subfile of messages. The subfile modules
receive a copy of the messages specified from the
message queue and place these into the subfile.

CO-8

II The subfile is where all subfile information from
the user buffer is stored. The subfile record
remains in the subfile until the using program
requests that it be dispiayed.

II The source/sink data, which is a part of the
request block, is where the subfile and console
function managers build the console-dependent
data stream that is to be transmitted to the
console. The data stream contains all of the
controls needed to display the user record as
defined in the device file, and is built only when
displaying the subfile via a put to the subfile
control record.

II The function manager work area is a part of the
OOPCB (open data path control block). As the
function manager builds the output data stream in
the source / sink data area, it also builds a user
buffer image in the function manager work area.
This work area contains as many buffer images as
there are records with input capable fields on the
console screen, except for subfile records. A
single record buffer image is maintained for each
subfile description, regardless of the number of
records displayed.

II The record, as seen in the user buffer, can
optionally be sent to the job log as well as to the
subfile. This is done independent of the subfile
functions.

IE The I/O feedback area is updated at various times
while the function manager is performing the put
operation. Additional information, such as the
relative record operated on, is put in the I/O
feedback area for subfile functions.

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

~

QSFCRT

Creates
Subfile Space

..
Device File

Field
Descriptions

II
Program Message
Queue

Messages

II

II User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

QCOPUT

Build Output
Data Stream
Call Subfile

II
QCOSFLCT

Subfile
Control
Operations

QSFMQDSP

Message Queue

Display

Figure CO-5. Put to Subfile Control Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

II

II

Open Data Path

I/O Feedback
Area

Job Log

Logged
Records

FM Work Area

Source/Sink
Data

Console Data
Stream Subfile

Subfile

Subfile
Records

Console Function Manager CO-9

Get Operation

Figure CO-6 and the following text describe a normal
get operation.

II Actual data does not come from the device file
during a get operation, but record and field
descriptions from the device file are used to
process the input information.

II To initiate the read operation, a Read Modified
command is put in the source/sink data area and
transmitted to the console. To satisfy the read, the
console user must press a command key or the
Enter /Record Advance key.

II When the read operation is completed, all fields
with the modified data tag on are returned to the
function manager in the same source/sink data
area that contained the Read Modified command.

II If the field description specifies validity checks
(such as range or list check) during field
processing, QCOGET calls QCOVLFLD to perform
those checks.

B Input records can optionally be logged in the job
log.

III If subfile records are received from the console,
QCOGET alters its normal field process to handle
the subfile records. When the first subfile field
data is received, QCOGET retrieves the proper
record from the subfile and places it in the record
save area of the function manager work area. All
fields received for that subfile record are then
processed in the normal manner. When all fields
are processed, the subfile record is returned to the
subfile with the new data. This process is
repeated for each subfile record that is modified
by the console user.

CO-1O

II When QCOPUT builds the output data stream in
the source/ sink data area, it also builds a user
buffer image in the function manager work area.
These buffer images are updated as QCOGET
processes each modified field returned from the
console. At the completion of the get operation,
all of the modified data on the display screen will
be represented in the record save area of the
function manager work area, in the subfile, or in
both places.

III The I/O feedback area is updated at various
points in the function manager during the get
operation.

II For the normal field-level get operation, the user
buffer contains response indicators followed by all
of the input fields (including any hidden fields) as
described in the device file. The data is moved
from the record save area in the function manager
work area to the user buffer.

During a normal nonfield-Ievel or a user-defined
data stream get operation, the input data is moved
directly from the source/sink data area to the user
buffer.

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

II
Device File

Field
Descriptions

OCOREOIO

Handles I/O

Figure CO-6. Get Operation

User Program

User Buffer
Response Indicators
Hidden Fields
Input Fields

Issue
Read
Command

II
Source/Sink Data

Console Data
Stream

This document contains restricted materials of IBM. LY21-0571-6

(D Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open Data Path

I/O Feedback
Area

FM Work Area

a

Subfile

Subfile
Records

Job Log

Logged
Records

OCOVLFLD

Field Validation

Console Function Manager CO-11

Get From Subfile Record (Data Flow)

Figure CO- 7 shows an overview of the data flow for a
get from subfile record operation.

a Actual data does not come from the device file
during a get from subfile operation.

II Input records can optionally be logged. The data
is taken from the user buffer, after being put there
by OSFGET, and sent to the job log.

D A get from subfile operation does not cause an
I/O console operation. Instead, control is
transferred to OS FG ET to retrieve the requested
record from the subfile.

a OSFGET locates the correct record and moves it
to the user buffer. All field processing and
validating was done when the data was received
from the console (see Figure CO-6). Because the
records are stored in the subfile with the controls
to redisplay them, the fields are placed in the user
buffer one field at a time.

Output only fields are also returned to the user
buffer when the record is a subfile record.

The I/O feedback area is updated at various
points by the function manager while performing
the get operation. In addition to the normal
information, certain subfile information, such as
relative record number returned, is also included in
the I/O feedback area.

CO-12

I Device File

Field

I a
\ Descriptions 1

I

\

Job Log

Logged
Records

User Program

\

User Buffer
Response Indicators
Hidden Fields
Input Fields
Output Fields

I Open Data Path I II

I/O Feedback

\ Area \

II
OCOGET

Call Subfile Module
to Retrieve
Subfile Record

a

I

\

, ..
OSFGET

Get from
Subfile

Subfile

Subfile
Records

I

\

Figure CO-7. Get from Subfile Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

This page is intentionally left blank.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager CO-13

Pass Option of the Suspend Module

The pass option of QCOSPEND indicates that the
console user intends to pass across processes this
display device and the unformatted data that was
received on the last input request.

QCOSPEND places a pointer to the last request block
used by the get operation. A pointer to this new request
block is placed in the LUD (logical unit description)
associated space. This is how the actual request block
is passed to the new process. By passing the logical
unit description lock, the new process has addressability
to the request block, which contains the unformatted
data that was last read. QCOCLOSE always checks to
see if a passed request block exists and, if one is found,
destroys it along with the regular file request block.

Get (or Put-get) Nowait Function

The get (or put-get) nowait request involves functions
by several console function manager modules. Figure
CO-8 and the following text describe the get (or
put-get) nowait function.

D The using program requests a get (or put-get)
nowait operation.

B QCOGET (or QCOPUT) processes the user request
similar to a wait request, except that, before
calling QCOREQIO to do the request I/Os, it
indicates in the request block that this a nowait
request. When QCOREQIO returns, QCOGET (or
QCOPUT) returns to its caller.

II QCOREQIO recognizes the nowait request and
performs the REQIO instruction but does not wait
for the request to complete nor does it do the
dequeue of that request. Instead, QCOREQIO
returns to its caller.

II The machine issues the request I/O to the display
as usual.

II Up to this step, each module has processed the
user request and returned to its caller. No module
has waited for a response from the console
device. The invocation stack contains only the
using program.

CO-14

II When the operator responds to the get or the
console device acknowledges the put, the machine
enqueues the corresponding request block on the
machine interface response queue in the normal
manner. Because the nowait flag is set on in the
request block, the machine signals the REQIO
complete event.

II The REQIO complete event invokes the nowait
event handler module, QCOMEEH, which does a
dequeue of the completed request block.

1'1 QCOMEEH calls QCOREQIO to process the
dequeued request block.

II If the request was a get nowait, QCOMEEH calls
QCOGET to process the input data. QCOGET
recognizes the event handler call and processes
just the user input data. If the operator requested
a function- manager function, such as print or help
text, QCOGET handles the request and reissues
the nowait request.

III When control is returned to QCOMEEH from
QCOREQIO, QCOMEEH checks to see if valid data
was entered. If valid data was entered, the data
available event is signaled to the user. In an
operator requested function, the nowait event
handler module will not see any valid operator data
and QCOMEEH terminates without signaling the
data available event (flow returns to II).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

User Program

a

.4 ~ , ,
OCOGET

II orOCOPUT

Console Get or Put

~
,

OCOREOIO

D
Request I/O

II Machine I/O to the Console

II

II Machine Response from the Display

Event Signaled

OCOMEEH

Nowait
Event Handler

OCOREOIO OCOGET

Request I/O Console Get

Figure CO-So Get (or Put-get) Nowait Function

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager CO-15

Subtile Record (Module Flow)

Figures CO-9 and CO-10 show the module flow for a
put to subfile and a get from subfile record.

QCOPUT

- Put Subfile Record
- Update Subfile Record
- Put Subfile Control Record

r
QSFPUT QSFCRT

- Put New Record in Subtile - Create Subfile Object
- Call QSFCRT if First Put - Initialize Header Area
- Initialize Control Tables
- Update Subfile Record

I
J !

QSFMQDSP

- Initialize Message Subfile

Notes:
1. QSFPUT is invoked only for operations directed at the subfile record.
2. QCOSFLCT is invoked only for control record operations.

Figure CO-9. Put to Subtile Record (Module Flow)

CO-16

1
QCOSFLCT

- Initialize Subfile
- Display Subfile
- Delete Subfile
- Clear Subfile

j

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

L

L

QCOGET

- Get Subfile Record
- Operator Response

1 1

QSFGET QCORTSFL
QSFHSFL - Roll Function
- Help for Subfile - Get Relative Record - Fold Function

Messages - Get Next Changed - Truncate
From Subfile Function

Notes:
1. QSFHSF L is called only if the operator puts the cursor in a displayed subfile of messages and presses the Help key.
2. QCORTSFL is called only if a subfile is displayed and the CA/CF key is pressed for fold/truncate or roll.

Figure CO-10. Get from Subfile Record (Module Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Console Function Manager CO-17

CO-18

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION

The copy component of the CPF (control program
facility) provides the copy file function. This function is
used to copy all or part of a device file, spool inline, or
data base file to another device file or data base file.
Records to be copied can optionally be selected on the
basis of data content, relative record number, or key. If
a source file is being copied, new sequence numbers,
zero dates, or both can be inserted in the source fields.
As part of the copy file function, the records being
copied, the records being excluded, or both can be
printed in either a hexadecimal and character format or
in character-only format.

GENERAL OVERVIEW

Copy Modules

The copy component consists of the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCPEXOFL-Copy File (CPYF,CPYFRMDKT,
CPYTODKT, CPYFRMTAP, CPYTOTAP, CPYSRCF)':
This module error checks user input and calls other
copy modules to complete the copy file function.

Copy

QCPEXCON-Copy File Execution: This module
opens the files, calls a module to perform the I/O
operations, and closes the files. QCPEXCON uses
the copy control block, and other tables to control
its processing. QCPEXCON uses the following
modules:

QCPFRMBR-Process Members and Labels:
This module is called if the from-file and the
to-file are both data base files, or if a multiple
data base member or diskette label copy is
requested. It builds a member table containing
a list of from-file members or labels to be
copied.

QCPCREAT-Create a To-File and Members: If
the from-file is a data base file, CRTFILE
(*YES) is specified and the to-file does not
exist, this module is called to create a physical
file and members with the same record format
and access path as the from-file. If the to-file
exists, but the member(s) copied do not, then
QCPCREAT is called to add the necessary
members.

QDBFFCPY-Fast Copy: This module performs
fast physical data base file to physical data
base file I/O, when individual records do not
have to be processed.

QCPGENIO-General I/O Routine: This module
performs blocked record I /0 for a II copy
functions.

QCPFLD-Field-Level Processor: This module is
called if both the from-file and the to-file are data
base files with formats that are not identical. It
compares the difference between record formats
and the FMTOPT parameter option specified, and
sends diagnostic and escape messages as
appropriate. It builds a field mapping table
containing attribute information for each field to be
mapped from the input buffer to the output buffer.
QCPFLD also validates the selection parameters
specified, and sets fields in the copy control block
based on user-defined record selection values for
the FROMKEY, TOKEY, INCCHAR, and INCREL
parameters. If INCREL is specified, a record
selection table is built.

The following module is used by QCPEXCON and
QCPGENIO.

'This module is a CPP (command processing program).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QCPPRINT-Copy File Print: This module is
called when TOFILE (*LlST) or the PRINT
parameter is specified, to print headings and
messages on the listings.

QCPCLNUP-Copy File Clean-Up: This module
gets control from QCPEXOFL for normal copy
completion, or by machine functions as an
invocation exit for an error termination.
QCPCLNUP closes files (if necessary), releases file
locks, and destroys the temporary spaces created
by copy for use as workareas.

Copy CP-1

Copy File Operation Overview

Figure CP-1 and the following text show the copy file
operation.

D The copy file function may be invoked by CL input
of the Copy File (CPYF), Copy From Diskette
(CPYFRMDKT), Copy to Diskette (CPYTODKT),
Copy From Tape (CPYFRMTAP)' Copy to Tape
(CPYTOTAP)' and Copy Source File (CPYSRCF)
commands.

The copy file function may also be invoked by
another CPF component using a macro interface.
The macro interface offers only a limited subset of
the parameter options that are available to the CL
user.

Each command is syntax checked by the command
analyzer before OCPEXOFL is passed the
command parameters. OCPEXOFL performs
validity checking and preexecution setup, then calls
an execution module. Record selection and
copying, and the print function are performed
based on the file characteristics and user options
specified.

II Based on information about the from-file and
to-file, OCPEXOFL performs command validity
checks to detect errors that were not discovered
by command analyzer syntax checking. The
following types of errors can be detected:

CP-2

• Library, file, or format cannot be found.

• From -file or to-file is not a valid type.

• User not properly authorized.

• Parameters supplied were not appropriate for
the file characteristics.

• Parameters required by the file characteristics
were not supplied.

• Conflicting parameters were entered.

The from-file and to-file are locked and various
file extracts are done to determine file attributes.
If an error is detected, the copy component
terminates the command and issues the
appropriate exception message. If the command is
valid, OCPEXOFL calls another module to do
further preexecution setup and then calls the
execution module. A copy work space and two
temporary spaces (for use by file and member
extracts) are created by OCPEXOFL, updated by
OCPEXOFL and other modules. The copy work
space contains the copy control block, and all
other control blocks and tables built by copy to
control execution. A pointer to the copy control
block is passed to the execution module for use in
controlling the copy operation. Pointers to the
tables created are stored in the copy control block.

OCPEXOFL transfers control to OCPCLNUP, and
OCPCLNUP performs normal copy completion.
OCPCLNUP may also be invoked by machine
function as an invocation exit.

II If the from-file and the to-file are both data base
files with nonidentical record formats, OCPFLD will
build a field mapping table. This table indicates
how fields are mapped (moved and converted).

OCPFLD is also called to validity check and set
fields in the copy control block, based on the
selection parameters entered on the copy
command. If INCREL is specified, a field selection
table is built for use during the copy execution
phase.

a OCPEXCON controls the actual data copy. The
from-file can be a diskette, card reader, tape,
spool, inline file, physical file, or logical file. The
to-file can be a diskette, card punch, tape, printer,
physical file, or special value *LlST.

OCPEXCON performs the file open and close
functions. Get, record selection, field mapping,
and put operations are performed by OCPGENIO
or ODBFFCPY. A pointer to the copy control block
is passed as a parameter for use in controlling I/O
operations.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

II If the from-file and the to-file are both data base
files, or if a multiple data base member or diskette
label copy is requested, QCPFRMBR is called to
extract member information. A member table is
built that contains the list of from-file members or
diskette labels to be copied.

II If the to-file does not exist. QCPCREAT will create
a physical file and members with the same record
format and access path as the from-file, provided
CRTFILE (*YES) has been specified. If the to-file
exists, QCPCREAT will create any member in the
to-file that does not exist, using the name of a
corresponding member in the from-file.

II
QCPFLD

Field-Level
Processing

II
QCPFRMBR

Process Mem bers
and Labels

Copy I
.. Commands.

II

..

Command
Analyzer

~
,

QCOEXOFL

Copy File

QCPEXCON

Copy File
Execution

QCPCREAT

Create
Members

QCPPRINT

Copy File
Print

Figure cpo'. Copy File Operation Overview

• QCPGENIO performs I/O operations for all types
of files, including printing record data on the
*LlST, *COPIED, and EXCLD listings. Records are
printed in hexadecimal and character format or
character-only format, 100 characters to a print
line.

II Print Function: QCPPRINT is called by
QCPEXCON and QCPGENIO to print headings and
messages on the *LlST, *COPIED, and *EXCLD
listings. A listing block is allocated and initialized
by QCPPRINT, and used by QCPPRINT and
QCPGENIO.

.. ..

QDBFFCPY

Fast Copy

QCPCLNUP

Copy Clean-Up

D
QCPGENIO

General I/O
Routine

Copy CP-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CP-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

INTRODUCTION

The 5424 function manager component of the CPF
(control program facility) provides the support for the
5424 MFCU (multifunction card unit) on System/38.

The following MFCU functions are supported by the
5424 function manager:

• Open MFCU file for processing

• Close MFCU file to processing

• Read data from an MFCU input file

• Write data to an MFCU output file

• Read and write data to MFCU I/O files

GENERAL OVERVIEW

5424 Function Manager Modules

The 5424 function manager consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCSCLOSE-Card Close: This module closes a file
to processing on the 5424 MFCU.

-->QCSGET-Card Get: This module reads records from
the 5424 MFCU.

-->QCSOPEN-Card Open: This module opens a file to
processing by the 5424 MFCU.

5424 Function Manager

- - >QCSPTGT -Card Put/Get: This module performs
both put and get operations for I/O operations on
the 5424 MFCU.

-->QCSPUT -Card Put: This module sends records to
the 5424 MFCU to be punched and/or printed on the
cards.

-->QCSXGERR-Exception Generator and Error Handler:

This module handles all exceptions and generates all
CPF messages.

-->QCSFEOD-Forced End-of-Data: This module forces
the write of internally-buffered data or read to an
EOF end-of-file).

-->QCSEVT-Event Handler: This module handles the
operator intervention required event.

-->QCSLUDIN-Card LUD Initialization: This module
initializes the 5424 MFCU LUD (logical unit
description) associated space.

5424 Function Manager CS-1

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5424 Function Manager Operation

Figure CS-1 and the following text describes the
operation of the 5424 function manager.

.. A high-level language program or the spooling
component, through the QDMCOPEN module of
common data management, calls QCSOPEN to
open a card device file for I/O processing.

CS-2

o An argument list is passed that contains a
pointer to the UFCB (user file control block)
and an index into the ODPCB (open data
path control block) for the device being
opened.

o Record lengths and the hopper to be used
for the I/O operations are determined and
appropriate messages or exceptions are
generated.

The type of operation to be performed on the
5424 MFCU is determined and the necessary
objects for that operation are created and
initialized.

G Two request 1/ Os are issued to fill the two
buffers used when nondevice-dependent
input operations are requested, one REQIO is
needed to feed a card from the specified
hopper to the wait station when output
operations are requested, and one REQIO is
needed to read a card for input on all
combined files.

II After a file has been opened for input or I/O
operations, the interface to QCSGET is valid.

o An argument list is passed that contains a
pointer to the UFCB, a pointer to a control
list, and a pointer to an option list.

o If the option list does not specify option
wait, an exception is signaled.

A card is read from the MFCU and the data is
returned to the user for I/O files and
device-dependent input operations. For
nondevice-dependent input operations, records are
returned, one at a time, for each get from the
buffers that were filled by the open operation.

G When a buffer is empty, cards are read to
refill it. If an I/O error is detected, error
recovery is attempted.

o When EOF (end-of-file) is detected, an
exception is signaled.

II When a file has been opened for output or I/O
operations, the interface to QCSPUT is valid.

o An argument list is passed that contains a
pointer to the UFCB, a pointer to a control
list, and a pointer to an option list.

o If the option list does not specify option
wait, an exception is signaled.

G An I/O operation to punch cards, print cards,
or both is performed for output
device-dependent control operations. If an
I/O error is detected, error recovery is
attempted. For nondevice-dependent control
operations, data is accepted from the user
and put into a buffer. When the buffer is
full, an I/O operation is performed and a
buffer switch takes place. A full buffer is
immediately sent to the 5424. If an I/O error
is detected, error recovery is attempted.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

II When a file has been opened for I/O operations,
the interface to QCSPTGT is valid.

o An argument list is passed that contains a
pointer to the UFCB, a pointer to a control
list, and a pointer to an option list.

o If the option list does not specify option
wait, an exception is signaled.

G The first operation to an I/O file defaults to
a read operation; subsequent operations
cause first an output operation and then a
read operation to occur. The output
operation is performed on the card that was
previously read. If an I/O error is detected,
error recovery is attempted.

o When an EOF is detected, an exception is
signaled.

II The interface to QCSFEOD is valid for any type of
open.

o An argument list is passed that contains a
pointer to the UFCB.

G For either input or I/O operations, reads are
performed until an EOF is detected. An EOF
exception is then signaled. For output files,
any blocked data is sent to the device.

II When a high-level program or the spooling
component is finished with a file, it closes the file
by calling QCSCLOSE through the QDMCLOSE
module of common data management.

o An argument list is passed that contains a
pointer to the ODPCB, an index to the device
being closed, and the type of close that is to
be performed on the file.

G Normal and permanent type close for output
files causes partially filled buffers to be sent
to the M FCU. If an error is detected, error
recovery is attempted. The objects created
by the open to support the output functions
are destroyed. Control is returned to
QDMCLOSE.

D

II

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Normal and permanent type close for input files
causes any requests for input data sent to the I/O
manager to be recalled. The objects created by
the open to support the input functions are
destroyed. Control is returned to QDMCLOSE.

Normal and permanent type close for I/O files
causes the objects created by the open to support
the I/O functions to be destroyed. Control is
returned to QDMCLOSE.

Temporary type close is the same as a normal and
permanent type close, except that the objects
created to support the functions are not destroyed.

Abnormal type close causes all I/O activity to
stop. All objects are destroyed and control is
returned to QDMCLOSE.

G QCSEVT is called whenever an intervention
required event is signaled by the 5424 I/O
manager.

0 A message is sent to the operator console
telling the operator that the 5424 is not
ready.

0 QCSXGERR is called to send error messages
and exceptions.

G When an I/O error is detected, error
recovery is attempted.

5424 Function Manager CS-3

High-Level Language Program or Spooling Component

0 I
QDMCOPEN

Argument
QDMCLOSE

Common Open
List

Common Close

1
D IJ II II II II II
QCSOPEN QCSGET QCSPUT QCSPTGT QCSFEOD QCSCLOSE QCSEVT

Card Open Card Get Card Put Card Put/Get Forced Card Close Event Handler
End·of·Date

Ell
QCSXGERR

Exception

Generator and

Error Handler

J 5424 Function Manager
I

f /
Machine

Message Interface e Event
Handler Request

Cueue

0
Job Operator

Log Console

Machine Interface

54241/0
Manager

Figure CS-1. 5424 Function Manager Overview

CS-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982. 1983. 1984. 1985

INTRODUCTION

The data base component of the CPF (control program
facility) controls the existence of data-containing files,
provides information about those files, and allows
access to the data in their members,

The types of data base files supported are physical,
logical, logical join files, and logical derived files.
Physical files can actually hold data records. logical
files and logical join files access data from one or more
physical files by means of record formats, access path,
or both (they are different from the physical file record
formats and access path). logical derived files access
the data through another logical or a physical file's
keyed access path.

The functions that make up the data base component
fall into the following categories:

• Definition: The creation, change, and destruction of
data base files and the addition, change, rename, and
removal of members of ,data base files.

• Manipulation: Operations on the data in a data base
file member, including open and close, copy,
reorganize, get/ put/ update / delete / release, clearing
or initializing a member, forcing end-of-data for a
member, and querying.

• Extraction: Retrieval of information on the structure,
interrelationship, and status of data base files and
members. Check file existence and authority (for
librarian), calculate file size (for librarian), dump file
object (for service)' display data object locks (for
Display Object lock, Display Active Job, and Display
Job commands), and display record locks (for Display
Record lock, and Display Job commands).

Data Base

• Data base recovery: Recovery of the data base from
cancellation of jobs or from a system failure; that is,
completing or backing out interrupted crash-sensitive
functions, handling physical file members that have
their data changed, and rebuilding access paths as
necessary.

• Data base event handling: Response to system-wide
events involving the data space indexes that are part
of keyed data base file members and the data spaces
that are part of physical data base file members.

• Data base file handling for generic operations that
change an entire file: Completion of functions such as
move or rename object, grant or revoke authority to
an object, and change object owner.

• Data base file handling for save/restore and reclaim:
Data base reclaim storage: lost data is recovered
and placed in the GRCl library, and lost data base
control blocks are eliminated if data is not being
addressed. This function is performed during the
execution of the reclaim storage facility.

- Data base save/restore: Handles part of the
processing for those objects in a save or restore
request that are data base files.

Data Base DB-1

This document contains restricted materials of IBM. lY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Entry to Data Base Functions

All of the previously named categories, except the
recovery and event handling functions are visible to
users of data base files. The recovery and event
handling functions of the data base component appear
automatic to users of the component. The recovery
function is invoked by the work control component
when it is performing its start CPF function. The event
handlers are invoked by monitors that listen for
asynchronous system-wide events as long as CPF is
running.

The user entry to most of the data base functions is
through the common data management component.
Figure DB-1 and the following text describe the paths
of invocation of the data base modules.

.. QDBCLOSC, QDBCLRPF, QDBINZPF, QDBOPENC,
QDBRNMME, QDBRGZPF, QDBCHGFI,
QDBRGZPF and QDBCHGME are command
processing programs.

Note: QDBCLRPF may also be invoked by
QDBOPEN.

II The open / close and I/O functions are entered
through macros of the common data management
component.

OB-2

o There are open and close functions common
to data base and device files that are
performed by QDMCOPEN and QDMCLOSE
before the data base open and close are
invoked.

o An I/O macro determines which data base
module to invoke for its function by using a
table in the open members' open data path.
There is an element in this table for each
operation that is valid for the open member;
that element is an offset into the system
entry point table so that it identifies the entry
that addresses the data base I/O module.

G The query functions are entered through data
base macros. QDBQUERY creates the
queries and the open or close is performed
by existing I/O support.

II The QDMROUTE module of common data
management is the interface to the definition,
extraction, and generic functions of both the data
base and the device file definition components. It
transfers control to a data base module after
determining that the file for which it was invoked
is a data base file (as opposed to a device file).

G) The generic functions, such as rename or
grant authority, are reached through the
general object interfaces of the components
responsible for the function.

The command interface to data base
definition function is provided by the data
definition component. The command
interface to data base extraction functions is
provided by the file reference function
component.

G The data base reclaim function is reached
through the reclaim storage facility.

The data base check object function is
reached through the librarian component
Check Object (CHKOBJ) command.

The data base save/restore function is
reached through the Save Object (SAVOBJ),
Save Changed Object (SAVCHGOBJ), Save
Library (SAVLlB), Restore Object (RSTOBJ),
Restore Library (RSTLlB), and Save System
(SAVSYS) commands.

The data base display lock function is
reached through the Display Object Lock
(DSPOBJLCK), Display Active Job
(DSPACT JOB), and Display Job (DSPJOB)
commands.

The data base display record lock is reached
through the Display Record Lock
(DSPRCDLCK) and Display Job (DSPJOB)
commands.

The data base create duplicate file function is
reached through the librarian component
Create Duplicate Object (CRTDUPOBJ)
command.

The data base convert file function is
reached through the install component or
data base reclaim function.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

II

The data base dump file function is reached

through the service component.

The data base size file function is reached
through the librarian component.

Copy is a manipulation function. The data base
fast copy and reorganize function is reached
through the copy component and the data base
module QDBRGZPF.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base DB-3

Command
Analyzer

..

., QDMCOPEN

....-+ Common Open

., QDMCLOSE

f--=. Common Close

• Applications,
.--- Utilities, and

CPF Components

Data

e Definition
CPPs

~
D

QDMROUTE

..
Common Data
Management

T 4 CPPs of Other
CPF Components

Copy II
Component

Figure DB·1 (Part 1 of 2). Entry to Data Base

DB-4

~----------------------------------l I Data Base
I
1 QDBINZPF

1
~ l Initialize Physical

File Member QDBRNMME

Rename

QDBCHGME Member

~ Change
Member QDBRGZPF

Reorganize Physical
~ File Member

QDBCHGFI

f-t Change
File QDBCLRPF

Clear Physical
File Member

QDBOPENC

f+
Open File

r+- QDBCLOSE ..
r+-

I
1
1
I
I

rr
I
I

!

I
I
I

l
.... Close File

QDBOPEN \
\
\

I
Data Base \.--------- ...
Open

QDBSOPEN

Data Base
Shared Open

0 Data Base Data Base

I/O Modules) Manipulation
Modules

G QDBQUERY

.
Data Base

QDBCLOSE Query

r ,~

Data Base I
I

Close I
_oJ Data Base

Extraction
Modules

Data Base Definition
Modules

Data Base .. Generic
Modules

QDBFFCPY

Fast Copy

PAAB036~O

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

Reclaim

Component

Installation
Component

Librarian
Component

Save/Restore
Component

Work Control

Component r------

Command

Analyzer

Service
Component

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

I

I
I

:

Data Base (continued)

Data Base

Reclaim r---
Modules

ODBCNVFI

Convert I---
File

Data Base
Ch k FI ec Ie

Modules

ODBSIZFI

Size
File

ODBDUPFI

Create Dupl icate
File

Data Base

Save/Restore
Modules

ODBJOBLK

Display Job Locks

ODBOBJLK

Display
Object Locks

ODBRCDLK

Display

Record Locks

ODBDMPFI

Dump
File

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I I

I

L __________________ ~

Figure OB-1 (Part 2 of 2). Entry to Data Base

This document contains restricted materials of IBM. LY21-0571-6

[)Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base DB-5

GENERAL OVERVIEW

Data Base Modules

The data base components' functions are performed by
the following modules. They are grouped by the
previously mentioned functional categories.

Note: An arrow (- - » identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Data Base Definition Modules

-->QDBCRTFI-Create Data Base File: This module
creates a new data base file with no members.

QDBCRTFS-Create File Select! Omit Processing:
This module processes the select! omit
specification, if any, for the creation of a logical
file with select! omit.

-->QDBCRTME-Create Data Base File Member: This
module creates a new member in a data base file.

QDBCRTMO-Create Member Ownership: This
module changes ownership of the new member to
the file owner.

-->QDBDLTFI-Delete Data Base File: This module
destroys a data base file, including all its members. If
damage to the file or its members is detected, a
message is sent and the deletion continues.

- - >QDBDl TM E-Delete Data Base File Member: This
module removes a member from a data base file. If
damage to the members is detected, a message is
sent and the deletion continues.

The following module is used by QDBCHGFI,
QDBDLTFI, QDBCRTME, and QDBDLTME.

QDBISHRX-Implicit Access Path Sharing: This
module does all the processing necessary for
implicitly shared access paths.

The following module is used by QDBCRTFI,
QDBCRTME, QDBDLTFI, QDBDLTME, and QDBISHRX.

OB-6

QDBDIRUP-Update Data Base Directory: This
module adopts a user profile to add!remove a file
or member from a data base directory.

-->QDBCHGFI: Change Data Base File: This module
changes the attributes of a data base file.

-->QDBCHGME: Change Data Base Member: This
module changes the attributes of a data base
member.

-->QDBRNMME-Rename Data Base Member
(RNMM)': This module renames a data base
member.

-->QDBDUPFI-Create Duplicate Data Base File: This
module creates a data base file which is a duplicate
of another data base file,

Data Base Manipulation Modules

-->QDBOPEN-Data Base Open: This module is called
by QDMCOPEN to complete the setup of a data base
file member so that its data can be accessed by a
program. It performs checks such as expiration date,
initializes sections of the ODP (open data path), and
activates cursor copy of the member. If the
member's data space index is invalid (in a
nonmaintained state) and is to be used for this open,
it is rebuilt. If the member is to be cleared,
QDBCLRPF is called to clear the member.

-->QDBOPENC-Data Base Open CPP (OPNDBF)': This

module invokes the common data management open
function to open a data base file (results in call to
QDBOPEN).

-->QDBSOPEN-Data Base Shared Open: This module
performs open option consistency checking on a
shared data base open.

-->QDBGETSQ-Data Base Get Sequential: This module
performs the get of a record from a data base file
member for the options of FIRST, LAST, NEXT,
PREVIOUS, and SAME.

-->QDBGETM-Data Base Get Sequential Multiple: This
module performs the get of a group of records from
a data base file member for the option NEXT.

-->QDBGETDR-Data Base Get Direct: This module
performs the get of a record from a data base file
member for the relative record options.

'This module is a CPP (command processing program).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDBGETKY-Data Base Get by Key: This module
performs the get of a record from a data base file
member for the options that specify a key and for get
next/previous unique.

-->QDBSEQMP-Data Base Sequential Member
Processing: This module opens the next member if
OVRDBF MBR (*ALL) has been specified.

-->QDBPUT -Data Base Put: This module inserts a
record into a data base file member and handles
force write, inhibit write and file increments.

-->QDBPUTM-Data Base Put Multiple: This module
inserts a group of records into a data base file
member and handles force write, inhibit write, and
file increments.

QDBPUTMX-Data Base Put Multiple Exception
Handler: This module forces all records in the
group, up to the record in error, and then signals
the exception to the user.

-->QDBUDR-Data Base Update/Delete/Release: This
module performs the update, delete, or release of a
record that was locked for update by a get against
the same data base file member.

The following module is used by QDBOPEN,
QDBGETSQ, QDBGETDR, QDBGETKY, QDBPUT,
QDBUDR, QDBGETM, QDBPUTM, and QDBPUTMX.

QDBSIGEX-Data Base I/O Signal Exception: This
module signals any status, notify, or escape
message from open and I/O operations. It also
handles the response to a notify message.

-->QDBFEOD-Data Base Force End of Data: This
module sends an end of file message and forces
changes in a member to secondary storage. If there
are any records in a SEQONLY (*Yes) output buffer,
they are added to the member and forced.

-->QDBCLOSE-Data Base Close: This module
permanently sets an open data base file member to a
state that prevents the program from accessing its
data.

-->QDBCLOSC-Data Base Close CPP (CLOF)': This
module invokes the common data management close
function to close a data base file (results in a call to
QDBCLOSE).

-->QDBQUERY-Data Base Query: This module creates
a query member for use by I/O modules.

QDBEXIT-Data Base Exit: This module handles
cleanup during invocation cancelation.

Data Base Member Modules

-->QDBINZPF-Data Base Initialize Physical File Member
(INZPFM)': This module is used to add either default
or deleted records to a member of a physical file,
placing them after existing records in the member.

- - >QDBCLRPF-Clear Physical File Member (CLRPFM)':
This module is used to empty a physical file member
of records.

-->QDBRGZPF-Reorganize Physical File Member
(RGZPFM)': This module performs the entire
reorganize physical file function, including the removal
of deleted records, the resequencing of records by
key, and the updating of the source file sequence
number and date fields.

QDBFFCPY-Fast Copy: This module performs the
compress and optional reorganize function.

Data Base Extraction Modules

-->QDBEXDFI-Extract from Data Base File: This
module provides the list of a file's members, the
definition of a file, a format, a field in a format. a list
of a file's formats, or the definition of a file's keys.

-->QDBEXDME-Extract Data Base File Member: This
module provides the definition of a member of a data
base file and such status information as its size and
deleted record count.

-->QDBEXTWU-Extract Data Base Where-Used: This
module provides either a list of files using a format, a
list of files sharing the data or access path of a file,
or a list of members sharing the data or access path
of a member.

QOBEXTEX-Data Base Extract Invocation Exit
Program: This module handles a cancel request
and unlocks locked files anti members.

-->QDBDMPFI-Dump Data Base File: This module
dumps the constituent objects of a data base file and
its members.

'This module is a CPP (command processing program).

Data Base DB-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDBSIZFI-Data Base File Size: This module
calculates the size of a data base file, including its
members.

-->QDBCHKFI-Check Existence and Authority to Data
Base File: This module checks the existence of and
authorization to a data base file and / or member.

-->QDBOBJLK-Display Object Locks: This module is
invoked to extract information on locks held on parts
of a data base file.

-->QDBJOBLK-Display Job Locks: This module is
invoked to extract information on locks held by the
job on parts of a data base file.

-->QDBRCDLK-Display Record Locks: This module is
invoked to extract information on locks held on data
base records.

Data Base Recovery Modules

-->QDBRCIPS-Data Base Synchronous Recovery: This
module runs during the start CPF process. It invokes
a recovery function for each create, change, delete,
move, rename, grant, revoke, transfer, or restore that
was in process at crash. It also displays all indexes
requiring recovery at IMPL and the recovery options.
The user may override the displayed recovery option
for this IMPL. It rebuilds indexes which were defined
as synchronous recovery indexes, and locks other
immediate or delayed maintenance indexes. It sends
messages about damage to objects that constitute
data base files.

08-8

QDBCDFIR-Data Base File Create Recovery: This
module recovers from an interrupted create file
operation by deleting all pieces of the file. It is
called either by QDBRCIPS, by exception handling
in QDBCRTFI, or by QDBFIXIT.

QDBCDMER-Data Base File Member
Create/Delete Recovery: This module recovers
from an interrupted create or delete member
operation by deleting all pieces of the member.
It is called either by QDBRCIPS, by exception
handling in QDBCRTME, or by QDBFIXIT.

QDBMVRFR-Data Base Move/Rename File
Recovery: This module recovers from an
interrupted move or rename file operation by
completing it. It is called either by QDBRCIPS or
QDBFIXIT.

QDBAUTFR-Data Base Authorization Recovery:
This module recovers from an interrupted grant or
revoke of authority to a data base file or transfer
of ownership of a data base file. It recovers the
function by completing it. It is called either by
QDBRCIPS or QDBFIXIT.

QDBRSRCV-Data Base Restore Mending: This
module ensures the linkage among internal objects
for data base files, which are involved in
interrupted restore operations. It is called either by
QDBRCIPS or QDBFIXIT.

QDBCHGFR-Data Base Change File Recovery:
This module recovers from an interrupted file
change operation by attempting to complete the
change. It is called either by QDBRCIPS or
QDBFIXIT.

-->QDBRCDYN-Data Base Asynchronous Recovery:
This module rebuilds the indexes locked by
QDBRCIPS.

- - >QDBFIXIT -Data Base Logical Damage Recovery:
This module recovers online from any interrupted
file-level operation.

Data Base Event Handling Modules

-->QDBIVLlX-Data Base Invalid Index Event Handler:
This module handles the invalid index event by
rebuilding the index (if it was defined as immediate or
delayed maintenance) and sending a message.

-->QDBCMPTH-Data Base Compression Threshold
Event Handler: This module handles the data space
compression threshold exceeded event by sending a
message to the system operator.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base Generic File Handling Modules

-->QDBMOVFI-Move Data Base File: This module
transfers addressability of a data base file and its
members from one library to another.

-->QDBRNMFI-Rename Data Base File: This module
changes the name of a data base file.

-->QDBGRTFI-Grant Authority to Data Base File: This
module grants to a user some authority to a data
base file and its members.

-->QDBRVKFI-Revoke Authority to Data Base File:
This module revokes from a user some authority to a
data base file and its members.

- - >QDBXFRFI-Transfer Ownership of Data Base File:
This module transfers the ownership of a data base
file and its members from one user to another.

-->QDBCNVFI-Convert Data Base File: This module
converts a data base file to the current
release/modification level of CPF.

Data Base Save/Restore and Reclaim Generic File
Handling Modules

-->QDBRCLMA-Data Base Reclaim Storage: This
module finds all pieces of a data base file, and
ensures that all have consistent authorizations,
ownership, names, and addressability.

- - >QDBRCLM B-Data Base Reclaim Lost Cursors,
Indexes, and Data Spaces: This module reclaims the
storage for cursors and indexes that no longer are
part of a data base file. If lost data is found, a data
base file is created into the QRCL library to enable
the user to recover the data.

-->QDBRCLMC-Data Base Reclaim Lost Directories and
Formats: This module reclaims the storage previously
used for directories or formats that no longer are part
of a data base file.

-->QDBSVPRE-Data Base Save Predump Processing:
This module extracts file, format, and member
definitions to be saved, and lists the machine

instruction objects for data and access paths to be
dumped. It handles all the data base files in a save
request, sorting them so they appear on the media in
an order that, if used to re-create the objects,
satisfies all dependencies (that is, logical or physical)
between the files.

-->QDBSVPST -Data Base Save Postdump Processing:
This module cleans up after the objects have been
dumped.

-->QDBRSPRE-Data Base Restore Preload Processing:
This module is invoked once for all files (in a library)
in a restore request before loading objects. It selects
members to load, creates files and / or members if
they do not exist, restores authorities, and lists
machine objects to load.

- - >QDBRSPST -Data Base Restore Postload Processing:
This module is invoked once for all files (in a library)
in a restore request after loading objects in order to
complete restore processing.

Data Base DB-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The Structure of Data Base Files

Figure OB-2 and the following text describe the
structure of data base files. In the figure, the dotted
outlines represent the composite objects that are visible
to users of the data base component: files and
members. The solid outlines are the machine interface
objects that implement the data base. Within them, the
unshaded areas contain pointers relating the machine
interface objects (as represented by arrows in the
figure).

In general, a data base file consists of a file definition
plus its members. Data base design objects (formats
and directories) implement sharing between files. The
objects that compose files and members and the
contents of their control blocks vary depending on
whether a file is keyed or arrival sequence, and on
whether it is physical, logical, or derived. In Figure
OB-2, there are three files.

A) File A is a physical, unkeyed file with one member.

B) File B is a keyed logical file based on three physcial
files; one of its based-on files is File A. which it views
through the same format. It is shown with one of its
members, which is based on the single member of file A
and two other physical members.

C) File C is a derived file that shares the access path of
File B but views records from the based-on physical
files of File B (its parent) through three new formats.
File C is shown with two members; each of them has as
its parent member a member of file B.

D) File 0 is a keyed join logical file that implicitly shares
an access path for one of its secondary indexes (second
member of file B). File 0 is based on three physical files
that it views through its format.

D The FCB (file control block) contains several
segments of information. The primary portion is
the file description template (WWOBFOT include),
which holds such information as file type, key
definitions and all linkage pointers. The FCB of a
logical file contains a scope list: an array that
addresses the based-on physical files and relates
each of them to a format that describes the logical
view of its records. In the FCB of a logical derived
file, the parent file (the file whose access path is
being shared) is identified. The scope list entries
point to the formats used for records from the
corresponding based-on files of the parent file.

D8-10

The remainder of the FCB consists of templates for the
machine interface objects that constitute the members
of the file. These templates are derived from
information in the file and format descriptions, and are
used at member creation time.

II The format object contains a record format
definition (WWOOFMTO include) consisting of a
series of field descriptions. A format can be used
by one or more data base files and can serve as
both a physical and a logical record format. It can
be addressed only through the FCB scope list of a
file that uses it.

II The machine interface object th3t is addressed
when a data base file member is addressed is the
cursor. It is through an activated copy of the
cursor that records in the member are accessed
and the current record position is maintained. The
inactive cursor in a member is built either directly
over a single data space (physical member) or over
a data space index, which is over one or more
data spaces (keyed physical or logical member).

The OOP (open data path) is the primary control
block. of the member and is contained in the
associated space of the cursor. It contains linkage
pointers (to the other objects constituting the
member to the FCB, and to other members). and
information used by manipulation functions of both
the common data management and the data base
components.

II Every physical file member contains a data space,
which is a machine interface object that holds
records in arrival order sequence. (When
describing the fields of the data space entry to the
machine interface, the data base component uses
the format description linked to the physical file.)
A pointer back to the member· s primary object
(the cursor) is maintained in the associated space
of the data space.

III Every member of a keyed file (physical or logical)
contains a data space index, created according to
the file's access path specifications (keys, alternate
collating sequence, select/omit specifications, and
so forth). For a physical member, the index
creates an apparent keyed sequence for the
records in the member's data space; for a logical
member, the index appears to merge and
sequence the records from all the based-on
physical members in its scope list. In the
associated space of the data space index there is
a pointer to the cursor.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

II A file's members form a doubly linked chain from
the FCB, in the order of their addition to the file,
The FCB has first- and last-member pointers;
each member has a previous- and a next-member
pointer.

D Directory objects contain indications of the sharing
(dependencies) between data base files. A file. a
format or a member can have a directory that
contains a list of pointers to files or members that
depend on it. There are five kinds of directories:

o A format directory belongs to a format and
addresses all files that use that record
format. If a format is issued by only one file.
a directory is not created for that format.

o A file shared-data directory belongs to a
physical file and addresses all logical and
derived files that are based on that physical
file.

II Join logical files are joined together using data
space indexes, There is one DSI for each
secondary piece of a joined logical file. Join
logical files will use existing indexes by implicitly
sharing existing indexes.

Note: If a joined logical file is keyed. it will have
an additional access path ordering the primary.

G A member shared-data directory belongs to
a physical member and addresses all logical
and derived members that are based on that
physical member,

e A file shared-access-path directory belongs
to a keyed file and addresses all derived files
that are defined to share the access path of
that keyed file.

G A member shared-access-path directory
belongs to a keyed member and addresses
all derived members that use the index of
that member.

o An implicit-shared-access path directory
belongs to an access path and addresses all
of the members which implicitly share an
index.

Data Base DB-11

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

I

~------------------~ ----,

"'Fi~ A - - -r-------TI------------. fFiieS- ---------:
+ : 1 I I

I Fo,ma' l -I A. J I FCB I II I W' I FCB I

II ~ ~ t-L -~==::!~----.J=~=~O~'h~e~' F~o';;;m~a,~s ~~~~~~§~ !e

~ Other Physical 't:!==;' list

'--r- 1----, F"es I I""lr--
1 I

[£3=1=1 ===~~~=s~--~- I G) ·~t, ... _1
-----j------

: :-~~-F---:
I I .. _-----1.. __ -.---;-+__--.
1 I I I I CurSOr I

I : :

,--

----11-1-;:::==1j::=~t=t:::c- :.:- ~] il
t---+----~---+-------1--+--' Q T- ,- ----j-----if----,

O,he, I I
Physical

Members

.------~~- : II I
Data

Space

Index

I
I
I

.. 0+-------1-+--- I

... ~ I I
I I _____ -- j-' ____ ~ Ano,h., I

Member

n~~=t=t=:===+======-= ~: - I 0 ~ ---- -~ --1------~===--W-l-_----=' =-= ----------__ J

1------------- , r-=-.-rn File C

L::J : l r-
I -- .. FCB

G 1'---"'0
Fo,mat: ... r_---. ~

~- t---':" f---c:J i . '---j ___ -+.....J

II 1------- -II
I Member

I
I I I
I I Cu,"O< I

I I :
1 : I

----1,,---lf-e ODP e-t---t--~

r----------
I File D I
I ~B I

'",ma' J I
I
I
I
I
I
I
I
I

----I
.------- ---- --- I
I Membe, I
I ...----....... --, --
I Cursor I
I I
I ODP I

'-----t- -L----_ f-: Scope ::: ==--- I
",- r-- Lllos, -~~-t-t---j--+-----1I_----,

Other I

Physical

Files

Data

Space

Index II I II .-~
I • I

L __ --·-t...... I

I
I
I
I
I
I
I
I
!

I L_______ I

: r ________ ~r- III
I : Membe, I :

I I Cu<so, I I
I I I

I : : I
1-- ______ -L-i--... ODP. I I

I I II ... --!- I

L~~-~~~-~~~ __ ~_J
Figure DB-2. The Structure of Data Base Files

OB-12

Data

Space

Index

I
I
I
I
I
I
I
I
I
I
I

'--------------- -,
i-______________ J

PAAB049·Q

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base DB-13

Structure of an Open Data Base Member

Figure DB-3 shows the general structure of a data base
ODP after a data base file member has been opened.
The ODMCOPEN module of common data management
creates the ODP by issuing a machine interface Create
Duplicate Object instruction while referencing a
permanent data base member. The entire data base
ODP is implemented in the associated space of the
cursor. To aid in performance, the ODP and cursor are
copied into the process access group by ODMCOPEN.
A field in the root section of the ODP (WWODPROT)
tells ODMCOPEN how much of the associated space of
a permanent data base member (cursor) to copy. This
length can be longer or shorter than the actual
permanent copy of the ODP in the member. This length
will include enough storage for one I/O buffer; buffer
allocation is not performed until open. The figure shows
the exact physical location of each section. Because all
sections are located by offsets saved in the root section,
any section could appear in any place with no effect on
the code.

D WWODPROT: ODP-ROOT Section. This section
contains offsets from the start of the associated
space to the following sections.

• WWODPOFB

• WWODPIOF

• WWODPLKL

• WWDBODP

It also contains flags and fields common to all devices
and data base.

II WWODPOFB: Open Feedback. This is both a
user area (referenced by a pointer set in the UFCB)
and a system implementation area. The second
half of the open feedback area defines the offsets
to the data base I/O module pointers within the
system entry point table.

II WWODPIOF: I/O Feedback Area. This is a user
area (referenced by a pointer set in the UFCB) that
contains information about each get and put
issued to the file.

II WWODPDBF: Data Base Specific I/O Feedback.
This section is located by an offset saved in the
common I/O feedback area WWODPIOF.

DB-14

For a non-keyed data base file, this area is a fixed
length. It contains the relative record number and
member number of the record just manipulated by
the get and put modules.

For a keyed data base file, a key buffer is
provided. The buffer is large enough to hold the
largest key value for the file. The relative record
number and member number are also provided.

II WWODPLKL: ODP Lock List. This section exactly
matches the machine interface template for the
machine instruction Lock and Unlock.

Each data space associated with this data base
member has a system pointer in the lock list. In
addition, one system pointer to the permanent
member is provided. The default lock states for ali
the data spaces and the member are set by
ODMCRODP. The default is LSRD if open for
input and LSUP if open for update, delete, or
output. If an entry for a data space is inactive, the
associated format name was moved out to the
open data space.

II WWDBODP: Data Base Section ODP. This
section is the key area referred to by all of the
data base manipulation modules.

An overlay include (WWDBSTCR) defines the
machine interface template for the machine
instruction Set Cursor. Enough storage is always
provided for a cursor option list (machine interface
template) to have 32 data space numbers in the
data space search list.

Save areas are provided for the I/O modules to
save the current set of inputs (get and put option
list and the control list).

An array of record format names is provided with
corresponding associated data space numbers.
The data space search list provides sets of data
space numbers for each record format that spans
more than one data space.

a Record Buffers: One record buffer is automatically
allocated by the Create Duplicate Object instruction
in ODMCOPEN. If additional buffer space is
needed (indicated by opening for input and output
or by specifying SEOONLY(*YES)), ODBOPEN
extends the associated space to compensate
for this.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Associated
Space of
Cursor

Cursor

(machine interface)

Open Flags

Offsets to
All Sections

User Open
Feedback

Offsets into

System EP Table

Common I/O
Feedback

Get and Put Counts

Current Record
Format Name

Data Base
I/O Feedback

Key Feedback

Lock List

SYP to All
Data Spaces

Record Ivlanipulation
Flags and Save Area

Record Format Names

Data Space Search
List

Record Buffers

Figure 08-3. Open Data Path (After Open)

D

fJ
•

D

II

D

iii
•

II

Include Name

WWODPROT (fixed length)

WWODPOFB (fixed length)

WWODPIOF (fixed length)

WWODPDBF (variable length)

WWODPLKL (variable length)

WWDBODP (variable length)
(WWD BSTC R-overlay)

This document contains restricted materials of IBM. LY21-0571-6

[)Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base 08-15

Data Base Recovery

Data base recovery, which is performed during IMPL
(internal microprogram load), recovers from an abnormal
system termination by doing the following:

1. Completes, backs out, or ensures objects'
soundness for any data base definition or generic
function that was in progress at system failure.

2.

3.

Sends messages to the history log about members
that were open (partially updated) at system failure
and about damaged members.

Displays all indexes needing recovery and allows
the user to override the recovery option for this
IMPL.

4. Rebuilds the data space indexes of keyed
members whose access paths were defined as
immediate or delayed maintenance, and are in
need of recovery.

Information about functions and members requiring
recovery is found in objects in the ORECOVERY library.
The following includes describe the contents of those
objects:

WWWCMISR: This include duplicates the structure of
the MISR (machine initialization status record), which
contains a list of partially updated and damaged data
spaces and data spaces indexes. The MISR (machine
initialization status record) is materialized into a space
object in ORECOVERY by work control at IMPL, before
its call to data base recovery. Also, pseudo-MISR
objects are created by ODBFFCPY to list data space
indexes that it invalidates and plans to rebuild. Then, if
they are interrupted by a system failure, data base
recovery finds the pseudo-MISR and rebuilds the
indexes.

08-16

DBDRCB:. This include describes a space object in
ORECOVERY that is called a data base definition
recovery object. It is created by an invocation of a data
base definition or generic function and is left in
ORECOVERY if the function is interrupted. In the object,
data base recovery finds the recovery program to call for
the function. The recovery program receives the data
base definition recovery object, uses its identification of
the target file to complete or back out the function, and
destroys the data base definition recovery object.

WWDBRCOB: This include describes a permanent
object in ORECOVERY named ODBMISR. Its logical
counter field is used to generate unique names for MISR
objects. It also contains addressability to a temporary
space used for communication between the two phases
of data base recovery.

WWDBRBLD: This describes an independent index
created by ODBRCIPS and processed by ODBRCDYN.
It contains a list of data space indexes to be rebuilt
(those of keyed members with RECOVERY
[*AFTSTRCPF)) and MISR objects to destroy (those
that data base recovery has finished recovering).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

QRECOVERY
(context)

QDBM ISR (name)
WWDBRCOB include ..

-4-
name=QDBMIM II number

Rebuild List
(independent index)

--+-- WWDBRBLD include

II

-10--10-
name = QDBDBDROBJ II filename Illibraryname

DBD RCB include

II

Figure DB-4. Data Base Recovery Objects

This document contains restricted materials of IBM. LY21-0571-6

<0Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base DB -17

Data Base Object Locking

When two operations refer to and update the same
control blocks, concurrent invocations of the operations
must be controlled to prevent unpredictable results.
Oata base modules control concurrency by obtaining
machine interface locks on the objects that constitute
data base files and members and on the various related
objects. Locking is a complex topic for the data base
component because files and members are composite
objects and because of the interrelationships maintained.
Not all data base modules need to lock objects; the
following covers only the modules that obtain locks.

The definition and extraction functions of the data base
component lock only the external user data base
objects: files, formats, and members. Figure OB-5
shows the levels of locks obtained by definitional
functions on particular objects. When a file is locked,
the machine interface lock is actually obtained on the
file control block space object; a member lock is a lock
on the member's primary object, the machine interface
cursor.

Figure OB-5 also shows the generic functions locking
machine interface objects that they operate on and that
may be shared by members of dependent files.

The manipulation, recovery, and event handling functions
of the data base component do their locking on the
internal objects that are linked to form a data base file
member as well as the FCB. Figure OB-5 and the
following text explain the locks they obtain on data
spaces, data space indexes, cursors, and FCBs.

Of the open / close and I/O functions, only open obtains
object locks. These locks are held until the member is
closed and therefore are in force during the I/O
operations against the open member. The open locking
and close unlocking are performed by modules of the
common data management component.

D8-18

Many of the locks shown in Figure OB-6 are necessary
for handling machine interface data space indexes,
which exist one-for-one with keyed members. At the
machine interface, an index is either valid or invalid; a
valid index is one whose keyed access path reflects all
the latest record changes to the underlying data spaces.
An invalid index can become valid by rebuilding the
index. The data base component sees the index as a
piece of a member whose maintenance is defined as
either immediate, rebuild, or delayed, where immediate
or delayed maintenance means the index should never
remain invalid.

• OWCISCFR detects the invalid index event when an
index has become invalid and invokes OOBIVLlX to
rebuild it if it is part of an immediate or delayed
maintenance member.

• Oata Base Recovery processes those indexes that
were marked invalid because they were being
updated when the crash occurred. It rebuilds those
with immediate or delayed maintenance members and
recovery of *STRCPF or *AFTSTRCPF.

• A cursor cannot be activated over an invalid index, so
OOBOPEN will rebuild the index of a member with
rebuild maintenance or a member whose index is in
need of recovery.

• The copy of a physical member's data space is
performed by machine interface instructions that
cannot succeed when there are valid indexes over the
data space. Therefore, OOBFFCPY, if necessary,
invalidates indexes and then rebuilds them after
copying.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Member Parent or
Based-Ons

Data
Library File Cursor Index Space File Member

QOBCHGFI LENR LEAR14 LEAR14

QOBCHGME LSRO LEAR

QOBCHKFI LSRO

QOBCLRPF LSRO LSRO LENR

I QOBCRTFI LSUP LENR LSRO

QOBCRTME LEAR LEAR17 LSRO LSRO

QOBDIRUP

QOBDLTFI LSUP LENR LEAR 19

QOBDLTME LSUP LEAR LENR LEAR18

QOBOMPFI LSRO

QOBDUPFj14 LENR LSRO

QOBEXOFI LSRO

QOBEXOME LSRO

QOBEXTWU LSRO

QOBFFCPY 2 2 3

QOBGRTFI LENR LSUpl.7

QOBINZPF LSRD LSRD LEAR

QOBISHRX LEAR

QOBIVLlX LSRO LENR LSRO -
QOBMOVFI LSUP LENR

QOBOPEN LEAR

QOMCOPEN LSRO LSRO 4.6

QOBQUERY LSRO LSRO LEAR 4.6

Figure DB-5 (Part 1 of 2). Data Base Functions Locking

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Owner

Format
Share Directory To
File Pointer Old New Library

LEAR15

LSR013

LSRO

LEAR

LEAR

LEAR

LSRO

LSRO

LEAR16

LSUP

Data Base OB-19

Member
Parent or

Owner Based-Ons

:., I,n.ex
Format

Data Share Directory To
Library File Space File Member File Pointer Old New Library

OOBRCIPS
through
OOBRCOYN 5 LSRO LSRO LSR04

1--- - - f-..

OOBRCOLK 2 2 3
.-

OOBRNMFI LSUP LENR LENR8 LENR17
r---'~---- -.

OOBRNMME I LEAR LENR LENR LENR'

OOBRSPRE LENR" ----
OOBRVKFI LENR LENR1.7

.~ -
OOBSIZFI LSRO -------
OOBSVPRE LSRO '3 LSR0 9,11

OOBXFRFI LENR LSUP8 LSUP' ,7 LSUP LSUP

1 This function locks the member's sole data space for a physical member (for each member of the file if the function is file
oriented), If it operates on a logical file, it locks no data spaces.

2 Before this function is invoked, the member must be open (see OOMCOPEN locks); then locking for data base copy may occur.
3 This function locks the to-member's-data-space (LENR) and the from-member's-data-space (LEAR),
4 This function locks data spaces under the member (physical or logical).
5 The locks necessary for data base recovery are obtained by OOBRCIPS during IMPL and are held by the start CPF process until

OOBRCOYN completes the recovery function (after CPF is up and running).
6 Data space lock states obtained by OPEN for a given data space under the member:

~ If the UFCB or override explicitly specifies a lock state for the format associated with the data space (RCOFMTLCKl.
that lock state is obtained;

~ If open for update, delete, and/or output, then the data space is locked (LSUP) as a default;
~ Otherwise the data space is locked (LSRO) as a default,

7 The security functions lock the data spaces of a physical file's members only if there are logical files over the physical files.
8 OOBXFRFI also locks the data space indexes of a keyed file's members only if there are logical derived files over the keyed file.
9 Dependent files are also locked (LENR).
10 The file and data space are locked (LENR) if saved with storage freed and there is logical dependency on the file.
11 Save/restore locks the library, file, and potentially the data spaces or dependent logical files. If the system is in a restricted

state during the save/restore, nothing is locked.
12 This function locks the data space index only if the file is nonderived and keyed.
13 Directory is only locked if EXPOATE or FRCRATIO is changing for nonderived and keyed members.
14 The data spaces are locked (LEAR) only if the data space attributes are changing (SIZE,ALLOCATE,UNIT, and OLTPCT

parameters). The data space indexes are locked (LEAR) only if the data space index attributes are changing (MAINT,
FRCACCPTH, RECOVER. and UNIT parameters),

15 Directory is locked (LEAR) if EXPOATE or FRCRATIO is changing for nonderived and keyed members. Implicit access sharing
directory is locked (LEAR) if any of the indexes are implicitly shared.

16 When called by OOBCRTME to find a sharable index, if a sharable index is found, the OSI is locked (LEAR) and the SPP to the
implicit access sharing directory is locked (LEAR),

17 All newly created logical indexes are locked (LEAR).
18 If the OSI is implicitly shared, it is locked (LEAR).
19 All logical indexes are locked (LEAR).

Figure DB-5 (Part 2 of 2). Data Base Functions Locking

OB-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The device configuration component of the CPF (control
program facility) has the following functions:

• Describes the features and characteristics of control
units, communications lines, and devices to the
system. These descriptions are supplied by
user-defined parameters that have passed from the
command analyzer to a command processing
program in device configuration. The command
processing programs can create, change, delete, and
display the descriptions.

• Describes the installation-dependent tables, such as
translate tables, collating sequence tables, and print
belt image tables to the system. Tables can be
created (from user-defined source files) or deleted by
device configuration command processing programs.

• Describes the five user-defined edit codes to the
system. Device configuration command processing
programs can create, delete, and display the edit
code descriptions.

• Controls the power status of some devices and
control units and the online or offline status of
devices, control units, and lines through the use of
other device configuration command processing
programs and modules.

GENERAL OVERVIEW

Device Configuration Modules

To provide the previously mentioned functions, the
following device configuration modules are used. The
modules are grouped by the functions that they provide.

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Device Configuration

-->ODCCRlUD-Create Device Description (CRTDEVD)l:
This module checks the input parameters and routes
the input to the proper module to build the lUD
(logical unit description) template.

ODCCCARD-Create Device Description for Card
Devices: This module builds the template and
creates the device description for a card device.

ODCCDSKT -Create Device Description for
Diskette Device: This module builds the template
and creates the device description for diskette
devices.

ODCCINST -Create Device Description for Install
From Save/Restore: This module creates the
device description from save/restore through the
install function.

ODCCPRNT -Create Device Description for Printer
Devices: This module builds the template and
creates the device description for a system printer.

ODCCSDLC-Create Device Description for a
Remote SDLC Device: This module builds the
template and creates the device description for
remote SDLC work station display and printer
devices.

ODCCSLU1-Create Device Description for LU-1
Secondary: This module builds the template and
creates the device description for a secondary
LU-1 device.

ODCCTAPE-Create Device Description for Tape
Devices: This module builds the template and
creates the device description for tape devices.

ODCCWSC-Create Device Description for WSC
Devices: This module builds the templ$te and
creates the device description for work station
display and printer devices attached to.a local
WSC (work station controller) or WSC-E (work
station controller extended).

lThis module is a CPP (command processing program).

Device Configuration DC-1

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ODCCRBSC-Create Device Description for BSC
Device: This module builds the template and
creates the device description for BSC and BSCT
(BSC multipoint tributary) devices.

ODCCPEER-Create Device Description for Peer
Device: This module builds a template and creates
a device description for peer devices (for advanced
program-to-program communications). An event
is signaled to the logical unit services process for
each successfully created device description.

- ->ODCCRCD-Create COFltrol Unit Description
(CRTCUD)': This module checks the input parameter
and routes the input to the proper module to build
the CD template.

ODCCDWSC-Create Control Unit Description for
WSC: This module builds the template for WSC
(or WSCE) and signals the create CD event to
invoke ODCCTCND to create the CD.

ODCCDWS-Create Control Unit Description for
Remote Work Station: This module builds the
template for remote work station control units, and
signals the create CD event to invoke ODCCTCND
to create the CD.

ODCCDTAP-Create Control Unit Description for
Tape Controller: This module builds the template
for tape controllers and signals the create CD
event to invoke ODCCTCND to create the CD.

ODCCDSLU-Create Control Unit Description for
PU2 Secondary: This module builds the template
for PU2 secondary controllers and signals the
create CD event to invoke ODCCTCND to create
the CD.

ODCCDINS-Create Control Unit Description for
Install from Save/Restore: This module creates the
control unit description from save/restore through
the install function, and signals the create CD
event to invoke ODCCTCND to create the CD.

ODCCDBSC-Create Control Unit Description for
BSC Controller: This module builds the template
for BSC and BSCT controllers and signals the
create CD event to invoke ODCCTCND to create
the CD.

'This module is a CPP (command processing program).

DC-2

ODCCDPER-Create Control Unit Description for
Peer Controller: This module builds a template for
peer controllers and signals the create CD event to
invoke ODCCTCND to create a CD.

ODCCTCND-Create CD Event Handler: This
module performs the actual create CD using the
template built by the CD type-dependent modules.
ODCCTCND runs under the system arbiter
process.

-->ODCCRND-Create Line Description (CRTLlND)':

This module changes the system configuration to
include a new teleprocessing line.

-->ODCADMOD-Add Device Mode Entry
(ADDDEVMODE)': This module adds a device mode
entry to an existing peer device.

-->ODCCHLUD-Change Device Description
(CHGDEVD)': This module changes the attributes of
a device.

ODCCGLUD-Change Device Description Event
Handler: This module handles any events signaled
by the change device description module. It also
changes the actual device description.
ODCCGLUD runs under the system arbiter
process.

-->ODCCHCD-Change Control Unit Description
(CHGCUD)': This module changes the attributes of a
control unit.

-->ODCCHND-Change Line Description (CHGLlND)':
This module changes the attributes of a
teleprocessing line.

-->ODCCHMOD-Change Device Mode Entry
(CHGDEVMODE)': This module changes the
attributes of a peer device's mode entry.

-->ODCDLLUD-Delete Device Description (DLTDEVD)':
This module removes a device from the system
configuration.

ODCDTLUD-Delete Device Event Handler: This
module handles any events signaled by
ODCDLLUD. It also does the actual delete. For
peer devices, it signals an event to the logical unit
services process.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

L

-->QDCDLCD-Delete Control Unit Description
(DL TCUD)1: This module removes a control unit from
the system configuration.

QDCDTCD-Delete Control Unit Event Handler:
This module handles any events signaled by the
QDCDLCD. It also does the actual delete.

-->QDCDLND-Delete Line Description (DLTLlND)1: This
module removes a teleprocessing line from the
system confil;luration.

-->QDCDSLUD-Display Device Description
(DSPDEVD)1: This module displays the description of
a device to the requestor.

-->QDCDSCD-Display Control Unit Description
(DSPCUD)1: This module displays the description of a
control unit to the requestor.

-->QDCDSCST-Display Channel Status (DSPCHLSTS):
This module displays the logical channel status for
X.25 lines.

-->QDCDSLST-Display Link Status (DSPLNKSTS): This
module displays the logical link status for X.25 lines.

-->QDCDS~D-Display Line Description (DSPLlND)1:
This module displays the description of a
teleprocessing line to the requestor.

-->QDCDSCFG-Display Device Configuration
(DSPDEVCFG)1: This module displays the
configuration of the entire system to the requestor.

-->QDCDSMOD-Display Mode Status (DSPMODSTS)1:
This module displays status information related to a
peer device's mode entry.

-->QDCDSSTS-Display Network Status (DSPLINSTS,
DSPCTLSTS, and DSPDEVSTS)1: This module
displays the status of selected device configurations
on a system, displays the jobs using active devices,
and allows input to request additional displays, vary
capability, and job cancellation.

QDCHNCMD-Handle Command Input: This
module handles the functions requested from input
to the screen displayed by QDCDSSTS.

1This module is a CPP (command processing program).

QDCVANET-Vary Network: This module
handles line name or control unit name input,
and calls QDCVALUD, QDCVARCD. and
QDCVARND to vary an entire network online
or offline.

QDCCHPMT-Change Prompt: This module
provides a prompt for the Change Line
Description (CHGLlND) command, Change
Control Unit Description (CHGCUD)'
command, or Change Device Description
(CHGDEVD) command with existing and valid
values.

-->QDCCRTBL-Create Table (CRTIBL)1: This module
defines a 256-byte table to the system.

-->QDCCRPRI-Create Print Image (CRTPRTIMG)1: This
module defines the print image for a print belt to the
system. If the BELTNBR parameter is used" the
appropriate translate table is also built by QPNCPITI.

-->QDCXLATE-High-Level Language Interface to
Translate Tables: This module issues the machine
instructions to perform byte-by-byte translation of
fields passed to it by a high-level language,

-->QDCCRECD-Create Edit Description (CRTEDTD)1:
This module creates the description of a user-defined
edit code as specified by the command parameters.

- - >QDCDSECD-Display Edit Description (DSPEDTD)1:
This module displays the edit code description to the
requestor.

-->QDCEDITS-Edit Code Expansion for Stanclard Edit
Codes: This module creates an edit mask for
standard edit codes. The mask is used by _he
machine edit instructions.

QDCEDITU-User Edit Code Expansion: This
module creates an edit mask for user-defined edit
codes. The mask is used by the machine edit
instructions.

-->QDCEDITW-Edit Word Expansion: This module
creates an edit mask to be used by the machine edit
instructions.

-->QDCINIT-Device Initialization Interface: This module
builds a parameter list and calls the appropriate CPPs
for the devices, teleprocessing lines, and control units
attached to the system.

Device Configuration DC-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QDCSHUTD-Device Shutdown Interface: This
module builds lists of the active online or
powered-on device descriptions, control units, and
teleprocessing line descriptions for use by
QDCVALUD, QDCPWLUD, QDCVARCD,
QDCPWCUD, and QDCVARND.

-->QDCLUDCF-LUD Device Failure Event Monitor: This
module runs under the system arbiter process. If the
LUD device failure event occurs, this module
performs error recovery and sends the appropriate
messages.

-->QDCLUDRC-LUD Device Failure Message Reply
Handler: This module runs in the system arbiter
process. QDCLUDRC processes replies to any inquiry
message sent by QDCLUDCF and performs the
appropriate recovery actions.

-->QDCPWLUD-Power Device: This module passes a
list of device names that are to have their power
status changed to QDCPRLUD.

QDCPRLUD-Power LUD: This module is an event
handler that executes under control of the system
arbiter to change the power status of devices
specified in the Power Device command.

-->QDCPWCUD-Power CUD: This module changes the
power status of control units specified in the Power
Control Unit command.

-->QDCLRFMT-LUD ASP Reformat Modules: This
module is used to reformat the LUD associated space
(ASP) to extend the device dependent spaces without
requiring the user to delete and re-create the existing
device descriptions. This module is called by
QDCINIT at start CPF time.

-->QDCRSCDR-Reset IGC Controller RAM: This
module is used by macro RSCDRAM. It is an
interface provided for character generation utility
(CGU). It resets WSC-E with IGC RAMs and the
5294 control unit.

DC-4

-->QDCVALUD-Vary Device (VRYDEV)': This nlodule
places the specified device in an online or offline
state. It also does the actual vary off.

QDCVRLUD-Vary Device Event Handler: This
module handles the events signaled by
QDCVALUD. It also does the actual vary on.

-->QDCVARCD-Vary Control Unit (VRYCTLU)': This
module places the specified control unit an online or
offline state.

QDCVARND-Vary Line (VRYLlN)': This module
places the specified teleprocessing line in an online or
offline state.

Note: When creating device configuration descriptions,
the following sequence should be followed. The
descriptions can be created out of sequence, but any
references to names of descriptions not yet created will
be rejected.

1. Create line descriptions.

2. Create control unit descriptions.

3. Create device descriptions.

'This module is a CPP (command processing program).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration DC-5

Create Logical Unit Description. Control Unit
Description. and Network Description

Figure DC-1 shows an overview of the device
configuration create commands operation.

.. The command analyzer decodes a Create Device
Description (CRTDEVD) command and control is
transferred to ODCCRLUD.

D ODCCRLUD calls the proper device
type-dependent module to build a LUD (logical
unit description) template from the user-defined
command parameters. It also issues the Create
LUD instruction to build the LUD on the system.

DC-6

o The associated space is initialized.

., For all LUDs. except peer LUDs. the lock is

passed to the system arbiter process.

e For peer LUDs only. an event is signaled to
the logical unit services process.

II The command analyzer decodes a Create Control
Unit Description (CRTCUD) command and control
is transferred to ODCCRCD.

II ODCCRCD calls the proper device type-dependent
module to build a control unit description template
from the user-defined command parameters.
ODCCRCD signals the create CD event to invoke
ODCCTCND.

e ODCCTCND is invoked to issue the Create
CD instruction to build the control unit
description on the system. ODCCTCND is an
event handler that runs under control of the
system arbiter process.

II The command analyzer decodes a Create Line
Description (CRTLlND) command and control is
transferred to ODCCRND.

II ODCCRND builds a network description template
from the user-defined command parameters and
then issues the Create N D instruction to build the
network description on the system.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983, 1984. 1985

L

D
CRTDEVD ~
Command II

CRTCUD ,
Command II

CRTLIND ~
Command

Command Command Command
Analyzer Analyzer Analyzer

~ ~ .4 ~ ~ ~

B ., , II ~
, II ~ ,

QDCCRLUD ODCCRCD ODCCRND

Create Device Create Control Create Line
Descri ption Unit Description Description

Device- CD Type-
Dependent Dependent
Modules Modules

•
Associated ODCCTCND

• r--- Space
Initialization Create Control
Routines Description

OSYSARB

0 - System Arbiter
Process

OLUS

• - Logical Unit
Services Process

---- --------- ---- r---- ----~----
Machine I nterf ace

Logical Unit Control Unit Network

Descri ption Description Description

Figure DC-1. Create Logical Description, Control Unit Description, and Network Description Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration DC-7

Add Device Mode Entry to a Peer Device
Description

Figure DC-2 shows an overview of the device
configuration Add Device Mode Entry (ADDDEVMODE)
command.

.. The command analyzer decodes an Add Device
Mode Entry command and control is transferred to
ODCADMOD.

II ODCADMOD locates the specified peer device
description and adds a mode entry to the LUD
base on the user-defined command parameters .

• ADDDEVMO E D

~ Command
~

Command
Analyzer

~ ~

II ., ,
ODCADMOD

Add Device
Mode Entry

---- r----
Machine Interface

Logical Unit
Description

Figure DC-2. Add Device Mode Entry to a Peer Device
Description

DC-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration DC-9

Delete Logical Unit Description. Control Unit
Description. and Network Description

Figure DC-3 shows an overview of the device
configuration delete commands operation.

a The command analyzer decodes a Delete Device
Description (DLTDEVD) command and control is
transferred to OLiDLOBJ.

B OLi DLOBJ determines the proper list of
parameters to be deleted, based on the
user-defined command parameters. and calls
ODCDLLUD for each device.

II ODCDLLUD sets up parameters for ODCDTLUD to
delete the associated LUD (logical unit description)
from the system.

o If the LU D to be deleted is for a display
device, the ?DL TMSGO macro is issued to
OMHDLMSO to delete the message queue.

o ODCDTLUD is invoked to actually delete the
LUD. ODCDTLUD is an event handler that
executes under control of the system arbiter
process. For peer devices only, an event is
signaled to the OLUS process to notify it
that the peer device has been deleted.

DC-l0

a

II

II

II

II

II

The command analyzer decodes a Delete Control
Unit (DL TCUD) command and control is
transferred to OLiDLOBJ.

OLiDLOBJ determines the proper list of control
unit descriptions to be deleted. based on the
user-defined command parameters. and calls
ODCDLCD for each control unit description.

OOCDLCD deletes the associated CD control unit
description from the system.

G ODCDTCD is invoked to actually delete the
CD. ODCDLCD is an event handler that runs
under control of the system arbiter process.

The command analyzer decodes a Delete Line
Description (DLTLlND) command and control is
transferred to OLiDLOBJ.

OLiDLOBJ determines the proper list of line
descriptions to be deleted. based on the
user-defined command parameters, and calls
ODCDLND for each line description.

ODCDLND deletes the specified network
description from the system.

This document contains restricted materials of IBM.' L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982. 1983, 1984, 1985

~

J

.. DLTDEVD,
Command

Command
Analyzer

~ ~

II ~ r

OLiDLOBJ

Delete Object

~ ~

• ~

ODCDLLUD

Delete Device
Description

• ?DLTMSGO
Macro

0

1
OMHDLMSO

r-
Message Handler

ODCDTLUD

Delete LUD

OLUS

Logical Unit
Services Process

DLTCUD

II Command

Command
Analyzer

II

II

OLiDLOBJ

Delete Object

ODCDLCD

Delete Control
Unit Description

•
ODCDTCD

Delete Control
Unit Description

-------- -------------

Logical Unit
Description

Machine Interface

Control Unit
Description

II
DLTLlND,
Command

Command
Analyzer

~ to

B ., r

OLiDLOBJ

Delete Object

•
II , r

ODCDLND

Delete Line
Description

Network
Description

Figure DC-3. Delete logical Unit Description, Control Unit Description, and Network Description Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration DC-11

Change logical Unit Description. Control Unit
Description. Network Description, and Device Mode
Entry

Figure DC-4 shows an overview of the device
configuration change commands operation.

.. The command analyzer decodes a Change Device
Description (CHGDEVD) command and control is
transferred to ODCCHLUD.

II ODCCHLUD invokes ODCCGLUD to modify the
specified LUD (logical unit description) using
information in the user-defined command
parameters that are passed to it by ODCCHLUD.
ODCCGLUD is an event handler that executes
under control of the system arbiter process.

D The command analyzer decodes a Change Control
Unit (CHGCUD) command and control is
transferred to ODCCHCD.

DC-12

II

II

II

II

II

ODCCHCD modifies the specified control unit
description using information in the user-defined
command parameters.

The command analyzer decodes a Change Line
Description (CHGLlND) command and control is
transferred to ODCCHND.

ODCCHND modifies the specified line description
using information in the user-defined command
parameters.

The command analyzer decodes a Change Device
Mode Entry (CHGDEVMODE) command and
control is transferred to ODCCHMOD.

ODCCHMOD modifies the peer device's mode
entry using information in the user-defined
command parameters.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

.. CHGDEVD +
Command II

CHGCUD
Command

Command
Analyzer

~ t.

II ~
,

ODCCHLUD

Change Device
Description

---- ---

Logical Unit
Descri ption

ODCCGLUD

Change LUD

a
0

Command
Analyzer

DCCHCD

C hange Control
nit Description U

1--------
Machine Interfa ce

Control Unit
Description

II CHGLlND +
Command II

CHGDEVMOIj)E"
Command

Command Command
Analyzer Analyzer

~ ~ ~ ~

II ~
, II ., ,

ODCCHND ODCCHGMOD

Change Line Change Made
Description Entry ,

I

----- ---- ----- ------

Network Logical Unit
Description Description

Figure DC-4. Change logical Unit Description, Control Unit Description, and Network Description Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration DC-13

Create, Delete, and Display Edit Codes and Edit
Macro Interface

Figure DC-5 shows an overview of the device
configuration edit code commands as well as the edit
code macro interfa~e operation.

Create. Delete. and Display Edit Code Commands

D The command analyzer decodes a Create Edit
Code Description (CRTEDTD) command and
control is transferred to ODCCRECD.

II ODCCRECD; using information from the command
parameters, creates a user-defined edit code.

II The command analyzer decodes a Delete Edit
Code Description (DL TEDTD) command and
control is transferred to OLiDLOBJ.

II OLiDLOBJ deletes the edit code description from
the system.

II The command analyzer decodes a Display Edit
Code Description (DSPEDTD) command and
control is transferred to ODCDSECD.

II ODCDSECD displays information about the
specified edit code to the user.

DC-14

Edit Code Macro Interface

• The ?CRTEDTMS macro provides the macro
interface to build the edit masks required for the
edit function.

III ODCEDITS builds edit masks from edit codes
passed through the ?CRTEDTMS macro for edit
codes other than 5 through 9.

II If edit codes 5 through 9 are passed. ODCEDITU
is called to build an edit mask from the
user-defined edit code in the OSYS library.

III ODCEDITW builds edit masks from edit words
passed to it by the ?CRTEDTMS macro.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984, 1985

~

L

D
CRTEDTD
Command II

Command
Analyzer

II II
ODCCRECD

Create Edit
Code Description

DLTEDTD
Command

Command
Analyzer

OLiDLOBJ

Delete Object

Edit Code
Description
Codes
5 through 9

II
DSPEDTD
Command

Command
Analyzer

II
ODCDSECD

Display Edit
Code Description

Figure DC-5. Edit Code Commands and Macro Interface Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II

?CRTEDTMS
Macro

ODCEDITS

Edit Code for
Standard Edit

ODCEDITU

Codes
5 through 9

ODCEDIITW

Edit Wo~d
ExpansiQn

Device Configuration DC-15

Create and Delete Print Images and Tables

Figure DC-6 shows an overview of the device
configuration print image and table commands
operation.

Print Image

a The command analyzer decodes a Create Print
Image (CRTPRTIMG) command and control is
transferred to ODCCRPRI.

o ODCCRPRI creates a print belt image from
user-defined source files, in either
hexadecimal or character format, as defined
by the header record. The print image can
be of various sizes and, unless specified
differently, is stored in the OGPL library.

Note: IBM supplies default print images for
common print belts. If the BEL TNBR parameter is
specified, control is transferred to OPNCPITI,
which builds the appropriate print image and
translate table from the default values for that
particular belt number.

a The command analyzer decodes a Delete Print
Image (DL TPRTIMG) command and control is
transferred to OUDLOBJ.

4) OUDLOBJ deletes the print image from the
specified library.

DC-16

Tables

a The commmand analyzer decodes a Create Table
(CRTIBL) command and control is transferred to
ODCCRTBL.

G ODCCRTBL creates 256-byte tables as
specified by user-defined command
parameters. The tables are in hexadecimal
format and can be used as translate tables,
alternate collating sequence tables, and so
forth.

a The command analyzer decodes a Delete Table
(DL TIBL) command and control is transferred to
OUDLOBJ.

e OUDLOBJ deletes the table from the
system.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

D

Command
Analyzer

., + 0 ~ ~ G ~
ODCCRPRI OLiDLOBJ ODCCRTBL

Create Print Delete Object Create Table

Image

I I BELTNBR I I

1 .., r
OPNCPITT

Print Print Image

Image and Translate
Table

Figure DC-6. Create/Delete Print Image and Tables Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

!

e +:
OLiDLOBJ

Delete Object
,

I
1

Table

Device Configuration DC-17

Device Configuration Display Commands

Figure DC-7 shows an overview of the device
configuration display commands operation.

a The command analyzer decodes a Display Device
Description (DSPDEVD) command and control is
transferred to ODCDSLUD. ODCDSLUD then
obtains information from the specified LUD (logical
unit description) and displays or prints it to the
user.

II The command analyzer decodes a Display Control
Unit Description (DSPCUD) command and control
is transferred to ODCDSCD. ODCDSCD then
obtains information from the specified CD (control
unit description) and displays or prints it to the
user.

II The command analyzer decodes a Display Line
Description (DSPLlND) command and control is
transferred to ODCDSND. ODCDSND then obtains
network description information from the specified
ND (network description) and displays or prints it
to the user.

II The command analyzer decodes a Display Device
Configuration (DSPDEVCFG) command and control
is transferred to ODCDSCFG. ODCDSCFG then
displays or prints information about all of the
devices on the system. There is one record for
each ND, showing name, address, and if the
description is not for a switched network, the
attached control units. There is one record for
each CD showing name, address, type, attached
devices, and if applicable, the attached lines.
There is also one record (or more) that shows LUD
information: name, address, type, model number,
and if applicable, the attached control unit.

DC-18

II The command analyzer decodes a Display Mode
Status (DSPMODSTS) command and control is
transferred to ODCDSMOD. ODCDSMOD then
obtains information from the specified LUD and
displays or prints it to the user.

II The command analyzer decodes a Display Channel
Status (DSPCHLSTS) command and control is
transferred to ODCDSCST. ODCDSCST then
obtains the channel status information from the
specified ND (network description) and displays or
prints it to the user. Channel status can only be
displayed for X.25 lines.

II The command analyzer decodes a Display Link
Status (DSPLNKSTS) command and control is
transferred to ODCDSLST. ODCOSLST then
obtains the link status information from the
specified NO (network description) and associated
CDs (controller descriptions). The module displays
or prints the link status information to the user.
Link status can only be displayed for X.25 lines.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

~

a
ODCDSLUD

Display Device
Description

II

D ODCDSCD

Display Control
Unit Description

Command
Analyzer

II
ODCDSND

Display Line
Description

II ODCDSCFG

Display Device
Configuration

ODCDSMOD

Display Mode
Status

II ODCDSCST

Display Channel
Status

1
ODCDSLST

Display Link
Status

-----t--Machine- ------- -------- -------1-------- ------- 1-----

Interface

~

4--
Network
Description

4--

4--

Control Unit 4--

Description 4--

Logical Unit I+-
Description

Figure DC-7. Device Configuration Display Commands Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAAB037·0

Device Configuration DC-19

Communication Status Display Commands

Figure DC-8 shows an overview of the communication
status display commands.

.. The command analyzer decodes a Display Line
Status (DSPLINSTS) command, Display Control
Status (DSPCTLSTS) command, or Display Device
Status (DSPDEVSTS) command, and control is
transferred to ODCDSSTS. ODCDSSTS then
displays information about the following:

• All lines and their attached control units and
devices

• A specific line and its attached control units and
devices

• All control units and their attached devices

• A specific control unit and its attached line, if
applicable, and devices

• All devices

• A specific device and its attached line and
control unit, if applicable

There is one record for each ND and CD, showing
name and status. There are one or more records
for each LUD showing name, status, and using job
name if the status is active.

DC-20

II If the output is displayed, then ODCDSSTS calls
ODCHNCMD to handle any input. ODCHNCMD
calls the following functions based on the
command input:

• Display the job using the Display Job,
Display Reader, and Display Writer
(DSPJOB, DSPRDR, DSPWTR) commands.

G Display the device configuration object in
detail (ODCDSND, ODCDSCD, ODCDSLUD)

• Prompt the Change Device Description,
Change Control Unit Description, and Change
Line Description (CHGDEVD, CHGCUD,
CHGLlND) commands for the device
configuration object (ODCCHPMT).

G) Vary the network off or on starting with an
NO or CD (ODCVANET) or vary a single LUD
off or on (ODCVALUD)

o Cancel the job using the Cancel Job, Cancel
Reader, and Cancel Writer (CNLJOB,
CNLRDR, CNLWTR) commands.

Any messages generated by the above are built
into a message subfile, and this subfile is returned
to ODCDSSTS.

o Display the mode status for a peer device
(ODCDSMOD).

e Stop or resume communications recovery for
the Stop Line Recovery, Resume Line
Recovery, Stop Control Unit Recovery,
Resume Control Unit Recovery, Stop Device
Recovery, Resume Device Recovery
(STPLlNRCY, RSMLlNRCY, STPCTLRCY,
RSMCTLRCY, STPDEVRCY, RSMDEVRCY)
commands.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

• • , J

Command DSPJOB DSPRDR
Analyzer Command Command

G
II
,

l ,
ODCDSSTS ODCDSLUD ODCDSCD

Display Display Device Display Control
Network Status Description Unit Description

ODCHNCMD • ODCCHPMT
r----

Handle Change
Command Input il. Prompt

l l
ODCVALUD ODCVANET

Vary Vary
Device Network

1 1
ODCVARCD

Vary Control
Unit Description

G
l l

CNLJOB CNLRDR
Command Command

• QDCSMOD

Display Mode
Status

e , ,
STPLlNRCY/ STPCTLRCY/
RSMLlNRCY BSMCTLRCY
Command Command

0 , ~

HLDCMNDEV RSMCMNDEV
Command Command

Figure DC-B. Communication Status Display Commands Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

,
DSPWTR
Command

~

ODCDSND

Display Line
Description

ODCVARND

Vary Line
Description

t

CNLWTR
Command

l

STPDEVRCY/
RSMDEVRCY
Command

Device Configuration DC-21

Power and Vary Devices-Start CPF and Termination
Procedures

Figure DC-9 shows an overview of the device
configuration vary and power commands operation as
well as the start CPF and termination procedures.

Start CPF Procedure

a During start CPF, the system arbiter calls ODCINIT

to control the status of line descriptions, control
units, and devices.

o A list of all NDs is obtained from the
machine context. Each N D is checked for
the auto vary flag being set on in the

associated space. A list of all N Ds with the
vary flag on is sent to ODCVARND.
ODCVARND varies those NDs online.

G A list of all CDs is obtained. Each CD is
checked for the power control feature and
the auto vary flag. A list of CDs with the
power control feature is sent to ODCPWCUD
to be powered on.

G) A list of the CDs with the auto vary flag on
is sent to ODCVARCD to be varied online.

o A list of all LUDs is obtained. Each LUD is
checked for the power control feature and
auto vary flag. A list of the LUDs with the
power control feature is sent to ODCPWLUD
to be powered on.

G A list of LUDs with the auto vary flag on is
sent to ODCVALU D to be varied online.

DC-22

Termination Procedure

D ODCSHUTD provides the termination interface to
control the status of line descriptions, control
units, and devices.

G A list of all LUDs is obtained from the
machine context. Each LUD is checked for
being online and having the power control
feature. A list of all LUDs that are online is
passed to ODCVALUD to be varied offline.

o A list of all LUDs that have the power
control feature is sent to ODCPWLUD to be
powered off.

G) A list of all CDs is obtained and a list of
those CDs that are online is passed to
ODCVARCD to be varied offline.

G A list of all CDs that have the power control
feature and are powered on is sent to
ODCPWCUD to be powered off.

o A list of all NDs is obtained and a list of
those NDs that are online is sent to
ODCVARND to be varied offline.

Power Commands

II The command analyzer decodes a Power Device
(PWRDEV) command and control is transferred to
ODCPWLUD.

CD ODCPWLUD passes a list of device names
to ODCPRLUD, an event handler that
executes under control of the system arbiter
process, to change the power status of those
devices that are specified in the status
parameter of the Power Device command.

11 The command analyzer decodes a Power Control
Unit (PWRCTLU) command and control is
transferred to ODCPWCUD.

G ODCPWCUD changes the power status of
the control units with the power control
feature as specified by the status parameter
of the Power Control Unit command.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Vary Commands

II The command analyzer decodes a Vary Device
(VRYDEV) command and control is transferred to
ODCVALUD.

o For non-peer devices, ODCVALUD passes a
list of device names to ODCVRLUD, an event
handler under control of the system arbiter
process, to change the online status of the
devices as specified in the Vary Device
command. If the device is varied offline, the
rock on the LU D is passed to the system
arbiter.

• For peer devices, an event is signaled to the
logical unit services process to change the
online status of the peer device, and to
initiate initial session negotiation.

II The command analyzer decodes a Vary Control
Unit (VRYCTLU) command and control is
transferred to ODCVARCD.

e ODCVARCD processes a list of control unit
names to be varied online or offline as
specified in the Vary Control Unit command.

II The command analyzer decodes a Vary Line
(VRYLlN) command and control is transferred to
ODCVARND.

o ODCVARND processes a list of line
description names to be varied online or
offline as specified by the Vary Line
Description command.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device Configuration DC-23

0

e

a
OWCAMNAR
(system arbiter)

Start CPF

1
ODCPWLUD

Power
Device

1
ODCPRLUD

Power LUD

~

ODCINIT

Initialize
Control

o

o

1
ODCVALUD

Vary Device

1
ODCVRLUD

Vary LUD

OLUS

II

G

Command
Analyzer

ODCPWCUD

Power Control
Unit Description

B

1
ODCVARCD

Termination

1
ODCSHUTD

Shut Down
Control

I
o

Vary Control
Unit Description

ODCVARND

Vary Line
Description

Logical Unit
Services Process

-------------- ------ ---------- ------ -- ----- - ---- -- --.,.-
Machine Interface

Logical Unit
Description

Figure DC-9. Power and Vary Device Overview

DC-24

Control Unit
Description

Network
Description

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

INTRODUCTION

The data description component of the CPF (control
program facility) is the user interface to create, change,
or delete the files and members for devices and the data
base. In the data base, a physical and logical file can be
created or deleted; physical file members and logical file
members can be added or removed. Device files can be
created, changed, or deleted for displays, the MFCU
(multifunction card unit), printers, diskette, tape, save,
communications (LU-l, peer, BSC) and mixed files.

The physical file, logical file, and device files for
displays, printers, communications, and mixed files let
the user enter a source description of the file using the
data description specification forms. The source
description is usually entered using the source entry
utility, the copy component, or by spooled in line data.
After the description is entered, a create command is
used to process the source description and to create the
specified type of file.

The data base file members and the MFCU, diskette,
save, and tape device files do not use a source
description. The parameters on the appropriate
commands provide the information needed to create the
file, add the member, or modify the device file.

Data Description

GENERAL OVERVIEW

Data Description Modules

The data description component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Device Related Modules

-->QDDCDPF-Create Device File (CRTDSPF,
CRTPRTF)': This module processes the create
commands for display and printer.

-->QDDCDF-Create Device File (CRTCRDF, CRTSAVF,
CRTDKTF, CRTIAPF)': This module processes the
create commands for MFCU, diskette, tape, and save.

-->QDDCCMF-Create Communications/BSC/Mixed
File (CRTCMNF, CRTBSCF, CRTMXDF)': This
module processes the create command for secondary
LU-l, peer, BSC, and mixed files. It also controls the
invocation of other data description component
modules used to process the required data
description specifications.

QDDREAD-See Modules Related to Both Device
and Data Base.

QDDSPRDV-Device File Syntax Processor: This
module syntax processes the data description
source and builds the IMS, which is used by
QDDCDFDV and QDDPRINT.

QDDCKDV-Device File Syntax Checker: This
module performs low-level syntax checking,
one line at a time.

QDDREFER-See Modules Related to Both Device
and Data Base.

'This module is a CPP (command processing program).

Data Description DD-1

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ODDINIT-See Modules Related to Both Device
and Data Base.

ODDCDFDV-Device IMS Processor: This module
processes the intermediate source into another
intermediate source format, input to the device file
definition component, which is used to create the
device file. Also, this module performs validity
checking not performed by the syntax
processor/checker.

ODDPRINT-See Modules Related to Both Device
and Data Base.

-->ODDMDF-Change Device File (CHGDSPF,
CHGSAVF, CHGPRTF, CHGCRDF, CHGDKTF,
CHGTAPF)': This module processes the change
device file commands for display, printer, card,
diskette device, save, and tape files.

-->ODDMCMF-Change Communications File
(CHGCMNF,CHGBSCF, CHGMKDF)': This module
processes the Change Communications/BSC/Mixed
File command.

-->ODDADDDV-Add Device File (ADDBSCDEVE,
ADDCMNDEVE, ADDDSPDEVE)': This module
processes the mixed file add device entry commands
for BSC, communications, and display devices.

-->ODDRMVDV-Remove Device File (RMVBSCDEVE,
RMVCMNDEVE, RMVDSPDEVE)': This module
processes the mixed file remove device entry
commands for BSC, communications, and display
devices.

Data Base Related Modules

-->ODDCPF-Create Physical File (CRTPF and
CRTSRCPF)': This module is used to create a
physical file from the Create Physical File and Create
Source File commands and, optionally, using a
specified source file containing additional descriptive
information about the record format and the file.

ODDREAD-See Modules Related to Both Device
and Data Base.

'This module is a CPP (command processing program).

DD-2

ODDSPRDB-Data Base File Syntax Processor:
This module syntax processes the data description
specification source for a data base file.

ODDCKDB-Data Base File Syntax Checker:
This module performs the low-level syntax
checking functions on a single line basis for a
data base file.

ODDREFER-See Modules Related to Both Device
and Data Base.

ODDINIT-See Modules Related to Both Device
and Data Base.

ODDPFFLD-Physical File Field Processor: This
module processes field descriptions for creation of
a physical file record format.

ODDPRINT-See Modules Related to Both Device
and Data Base.

-->ODDCPFM-Add Physical File Member (ADDPFM)':
This module is used to add a member to a physical
file.

-->ODDCLF-Create Logical File (CRTLF)': This module
is used to create a logical file from a source
description and the information in the call parameter
list.

ODDREAD-See Modules Related to Both Device
and Data Base.

ODDSPRDB-Data Base File Syntax Processor:
This module syntax processes the data description
specification source for a data base file.

ODDCKDB-Data Base File Syntax Checker:
This module performs the low-level syntax
checking functions on a single line basis for a
data base file.

ODDREFER-See Modules Related to Both Device
and Data Base.

ODDINIT-See Modules Related to Both Device
and Data Base.

ODDLFFLD-Logical File Field Processor: This
module processes field descriptions for creation of
a logical file record format.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ODDPRINT-See Modules Related to Both Device
and Data Base.

-->ODDCLFM-Add Logical File Member (ADDLFM)1:
This module is used to add a member to a logical
file.

-->ODDDMBR-Remove Member (RMVM)': This
module is used to delete physical or logical data base
file members.

Modules Related to Both Device and Data Base

-->ODDREAD-Common DDS Read: This module
contains the function necessary to read the DDS into
a source space (102-byte records) for processing by
the syntax processor and ODDPRINT. It also
performs some initialization functions such as space
and index creation, and opening and closing the
source input file.

-->ODDPRINT-Common DDS Print: This module
contains the function necessary to print the DDS
source listing, the expanded source listing, and the
error summary. The original source listing is derived
from the information read (ODDREAD) and from error
information accumulated while the source was being
processed. The expanded source listing is generated
from the IMS built by the syntax processors. The
error summary shows the identifier number of the
diagnostic message, its severity, and its text. A
completion message is also generated. When the file
is not created, additional messages will exist with
explanations as to why the file was not created.

-->ODDINIT-Keyword Table Initialization: This module
is invoked to store the appropriate keyword table in
the syntax processor's program associated space.
This reduces the initialization time required to invoke
the syntax processor, and is done only once per
installation.

-->ODDESPEH-Extend Space Exception Handler: This
module is used to handle the MCH0601 (space
addressing violation) exception. It increases the size
of the space object and then returns to retry the
instruction causing the exception.

-->ODDREFER-Field Reference Processor: This module
processes reference-related specifications. It extracts
field reference information from a data base file or
the current source, and is called from the syntax
processor.

'This module is a CPP (command processing program).

DDS Single Line Syntax Checker

- - >ODDSEU-Single Line Syntax Checker Bridge
Module: This module is used to invoke the
appropriate checker:

• Check Physical File Description: The module
interfaces with ODDCKDB.

• Check Logical File Description: The module interfaces
with ODDCKDB.

• Check Display File Description: The module
interfaces with ODDCKDV.

• Check Printer File Description: The module interfaces
with ODDCKDV.

• Check Communications/BSC File Description: The
module interfaces with ODDCKDV.

• Mixed File Description: The module interfaces with
ODDCKDV.

ODDINIT-See Modules Related to Both Device and

Data Base.

Creating Files With a Source Description Provided

Data description has a separate call interface to create a
physical file, logical file, display file, printer file,
communications file, or BSC file. These calls are
generated from the corresponding create command. The
command analyzer checks the create command
parameters for errors. If no errors are found, the
parameters are passed to data description using its call
interface. Data description then performs additional
error checking on the create command parameters. If
any errors are found, diagnostic messages are issued
and an escape message is sent.

Common data management is invoked to open the file
containing the source description and to get each record
in the file. Data description scans each record for
errors; if any errors are found, an error indication line is
generated to be printed on the source listing. An
internal form of the source description is also generated
to be passed to data base or device file definition to
create the file.

Data Description DD-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

In addition to the source listing, a second listing is
produced that shows any defaults that were made, to let
processing continue and also to show any retrieved
information from referenced field descriptions that were
used to create the file.

The error messages and error statistics are printed on
the source listing.

Data management is called, which then invokes data
base or device file definition to create the file from the
internal form created by data description. If data
management, data base, or device file definition detects
any additional errors, an escape message is sent to data
descri ption.

Creating a File or Adding a File Member Without
Supplying a Source Description

Physical files, physical file members, logical file
members, and device files (excluding communications,
mixed files, and binary synchronous communications
files) can be created without supplying a source
description by using the call interface to data
description. The calls are generated by using the
corresponding create file command or add member
command. The command analyzer checks the command
parameters for errors. If no errors are found, the
command analyzer passes the parameters to the data
description component.

Data description performs additional error checking and
generates appropriate input for data base or device file
definition. Common data management is then called to
create the file or add the file members. If any errors are
detected by either common data management, data
base definition, device file definition, or data description,
an escape message is sent.

00-4

Changing Device Files

Data description can change device files by using a
change file command. The command analyzer checks
the command parameters for errors. If no errors are
found, the change parameters are passed to the data
description component. Data description performs
additional error checks on the parameters and calls
common data management, which invokes device file
definition to modify the device file. If any errors are
detected by either common data management or data
description, an escape message is sent.

Single line Syntax Checking Through Source Entry
Utility

The data description component syntax checks single
lines of the data description source specifications as
they are being entered. A routine is provided to syntax
check each of the types of source specifications:
physical file, logical file, printer device file,
communications device file, BSC device file, mixed
device file, and display device file. If errors are
detected, they are returned to the caller in the form of a
message string containing message IDs and any
replacement text.

Multiple line Syntax Checking Through Screen
Design Aid

The data description component provides a callable
routine to syntax check multiple lines of display data
description source specifications. The parsed output
provided by the data description component is returned
to the caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1980, 1981, 1 982, 1983, 1984, 1985

Data Description 00-5

Create Device File Overview

Figure DD-1 and the following text describe how a
device file is created.

D The command analyzer transfers control to
QDDCDF, QDDCCMF, or QDDCDPF. It is passed
pointers to command parameters that were
entered on the Create Display File, Create Printer
File, Create Diskette File, Create Card File, Create
Save File, Create Tape File, or Create
Communications/BSC/Mixed Device File
command. The file attributes entered on the
command are placed in a create-input space.

III If the file to be created is a diskette, card, save, or
tape file, or if it is a display or printer device file
without a source description, the ?CRTDEVF macro
calls the QDMROUTE module of common data
management, which invokes device file definition
to create the device file. A pointer to a structure
that contains the qualified name of the file being
created and a pointer to the space that contains
the input for the new file are passed to
QDMROUTE.

D If the Create command also specifies a DDS
source file (required for communications, BSC, and
mixed files), then QDDREAD is called to open the
source file and read the source records.
QDDREAD also provides other initialization
functions, such as space and index creation.

e QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

II QDDSPRDV (see Figure DD-1) is called once to
syntax check the DDS source specification.
QDDSPR DV (see Figure DD-1) is passed a pointer
to a data structure that contains addressability to:
the source input space, intermediate source space,
and error summary space.

00-6

o QDDINIT is called to initialize the device file
keyword table (once per install).

o QDDREFER is called to retrieve field
description information from a previously
defined field in a record format in the data
base or from the current source. QDDREFER
is passed a pointer to a data structure that
contains addressability to the intermediate
source space, the source error index, and
work spaces so that field information can be
extracted. The ?EXTFILED macro in
QDDREFER calls QDMROUTE, which invokes
data base definition to extract the field
description from the data base file.

G QDDCKDV (see Figure DD-1) is called by
QDDSPRDV for each logical line of DDS
source for the file.

e QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

II QDDCDFDV (see Figure DD-1) is called to process
the intermediate space. Further syntax processing
takes place (location processing) from the IMS,
and the created input space is updated to contain
information to be used to create the device file.

e QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

II If the file to be created is a display or printer
device file with a source description, or a
communications, BSC, or mixed file, the
?CRTDEVF macro calls the QDMROUTE module of
common data management, which invokes device
file definition to create the device file. A pointer to
a structure that contains the qualified name of the
file being created and a pointer to the space that
contains the input for the new file are passed to
QDMROUTE.

II QDDPRINT is called to open the DDS printer file
(QPDDSSRC) to print the source listings (original
source with diagnostics and expanded source
showing defaults, external/source references, and
buffer positions) and the error summary.

e QDDESPEH is called to extend spaces as the
result of handling an out-of-space exception.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QDMROUTE

Command
Analyzer

II U
H

Command
Processing
Program a

II
QDDCDFDV

Common Data
Management

QDDSPRDV
Device File
Syntax
Processor

Device File
IMS Processor

II
QDDREAD

DDS Common
Read

QDDINIT

Initialize
Keyword Table

QDDCKDV
Device File
Syntax
Processor

QDDREFER

Field Reference
Processor

QDDESPEH
Extend Space
Exception
Handler

a ODDeDF for card. tape. save. and diskette: ODDeeMF for communications (LU-l. peer. BSe).
and mixed file: ODDeDPF for display and printer.

Figure 00-1. Create Device File Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QDMROUTE

Common Data
Management

QDDPRINT

DDS Print

PAAB042-0

Data Description DD-7

Create Phys!cal File/Add Physical File Member
Overview

Figure DD-2 and the following text describe the create
physical file, create source file, and add physical file
member functions.

Create Physical File/Create Source File

.. The command analyzer transfers control to
ODDCPF. It is passed pointers to the physical file
attributes that were entered as command
parameters. If a record length is specified on the
Create Physical File (CRTPF) command (defaulted
on the Create Source Physical File command). a
record format is generated using the record length.
Control is then passed to the ODMROUTE module
ot' common data management (see 0). If,
however, a source file is specified on the Create
Physical File command, that file is opened, read,
and processed.

DD-8

., ODDREAD is called to open the source file
and read the source records. It also provides
other initialization functions, such as space
and index creation.

G ODDSPRDB is called to syntax check the
DDS source specifications. ODDSPRDB is
passed a pointer to a data structure that
contains addressability to a space for the
new record format definitions, the
intermediate source space, the error
summary space, and so forth. ODDCKDB,
the data base file syntax checker, is called by
ODDSPRDB for each logical line of DDS
source for a physical file.

ODDREFER is called to retrieve field
description information from a previously
defined field in a record format in the data
base or from the current source. ODDREFER
is passed a pointer to a data structure that
contains addressability to the intermediate
source sj)ace, the source error index, and
work spaces so that field information can be
extracted. The ?EXTFILED macro in
ODDREFER calls ODMROUTE, which invokes
data base definition to extract the field
description from the data base file.

ODDINIT is called to initialize the data base
file keyword table (once for install).

• ODDPFFLD is called to process all of the
field specifications for a new record format.
It is passed a pointer to a data structure that
contains addressability to a space for the
new record, to the error summary space, and
so forth.

e If an out-of-space exception is signaled,
ODDESPEH is called to extend the space.

o The ?CRTDBF macro in ODDCPF is used to
call the ODMROUTE module of common
data management. which invokes data base
definition to create the new physical file.
ODMROUTE is passed a pointer to a data
structure that contains the name of the file
to be created as well as a pointer to the file
definition template.

o ODDPRINT is called to open the printer file
(OPDDSSRC) to print the source listings
(original source with diagnostics and
expanded source, showing defaults,
references, and buffer positions) and the
error summary.

II If the physical file is successfully created and the
Create Physical File or Create Source File
commands indicate that a physical file member is
also to be added, ODDCPFM is called and pointers
are passed to the appropriate command
parameters (see II).

Add Physical File Member

II The command analyzer and ODDCPF transfer
control to ODDCPFM. It is passed pointers to the
physical file member attributes that were entered
as command parameters.

e The ?CRTDBM macro in ODDCPFM is used
,to call the ODMROUTE module of common

data management, which invokes data base
definition to add a member to the physical
file. ODM ROUTE is passed a pointer to a
data structure that contains the file name,
member name, and a pointer to the member
definition template.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
Command
Analyzer

CRTPF/CRTSRCPF .. ~ ADDPFM

Commands Command

II~ , ~ ,11
ODDCPF ODDCPFM

II ...
Create Physical Add Physical

File File Member

~ ~ ~ ~

0 ODDSPRDB ODDINIT
.....
~ ... Data Base File ... Keyword Table

Syntax Processor
~

Initial ization ,
-

0 ODDREAD ODDREFER

• ...
DDS Read Field Reference "'-Processor

~
G ODDPFFLD ODDCKDB

.
... Logical File Data Base File

Field Processor I- Syntax Checker

~ e ODDESPEH

... Extend Space

.... Exception
Handler

G ODMROUTE e ... ~ ... Common Data

I
Management

0 ODDPRINT
DDS Print

Figure 00-2. Create Physical File/Create Source File/Add Physical File Member Overview

This document contains restricted materials of IBM. L Y21 -0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Description 00-9

Create Logical File/Add Logical File Member
Overview

Figure DD-3 and the following text describe the create
logical file and add logical file member functions.

Create Logical File

.. The command analyzer transfers control to
ODDCLF. It is passed pointers to the file
attributes that were entered as command
parameters.

o See Create Physical File/Create Source File.

o ODDSPRDB is called, to syntax check the
DDS source specifications. ODDSPRDB is
passed a pointer to a data structure that
contains addressability to the source input
space, intermediate source space, error
summary space, and so forth.

ODDCKDB is called by ODDSPRDB for each
logical line of DDS source for a logical file.

ODDINIT is called to initialize the data base
file keyword table (once per install).

G ODDLFFLD is called to process field
specifications for a new record format, and is
passed a pointer to a data structure that
contains addressability to a space for new
record format descriptions, intermediate
source data, error summary space, and so
forth.

e If an out-of-space exception is signaled,
ODDESPEH is called to extend the space.

DD-1O

o The ?CRTDBF macro in ODDCLF is used to
call the ODMROUTE module of common
data management, which invokes data base
definition to create the logical file.
ODMROUTE is passed a pointer to a data
structure that contains the name of the
logical file to be created and a pointer to the
file definition template.

o See Create Physical File/Create Source File.

II If the logical file is successfully created and the
Create Logical File (CRTLF) command indicates
that a logical file member is also to be added,
ODDCLF transfers control to ODDCLFM. It is
passed pointers to the appropriate command
parameters (see II).

Add Logical File Member

II The command analyzer and ODDCLF transfer
control to ODDCLFM. It is passed pointers to the
logical file member attributes that were entered as
command parameters.

e The ?EXTFILED macro in ODDCLFM is used
to call the ODMROUTE module of common
data management, which invokes data base
definition to extract file definitions.

The ?CRTDBM macro in ODDCLFM is used to call
the ODMROUTE module of common data
management. which invokes data base definition
to add a member to the logical file. ODMROUTE
is passed a pointer to a data structure that
contains the file name and member name, as well
as a pointer to the member definition template.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Analyzer

CRTLF .4 ~ ADDLFM
Command Command

a~ ,
ODDCLF

II ...
Create Logical JIll'

File

.j ~

0 ODDREAD
ODDINIT

.... ..
"" .. Keyword Table

DDS Read
Initialization

0 ODDSPRDB ODDCKDB
... Data Base File,...

Data Base File
Syntax Processor Syntax Checker

G ODDLFFLD Logical File
Field Processor I-

~ G ODDESPEH .. Extend Space .. Exception
Handler

0.., ODMROUTE e Common Data
Management

I

0 ODDPRINT
DDS Print

Figure 00-3. Create logical File/Add logical File Member Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982.1983. 1984. 1985

~ rEI
ODDCLFM

Add Logical
File Member

~ ~

Data Description 00-11

Change Device File/Remove Member Overview

Figure DD-4 and the following text describe the change
device file and remove member functions.

Change Device File

D The command analyzer transfers control to the
command processing program. It is passed
pointers to the file attributes entered on the
Change Display File, Change Printer File, <;hange
Diskette File, Change Card File, Change Tape File,
Change Communications File, Change BSC File,
Change Mixed File, or Change Save File command.

o The ?MDFDEVF macro in ODDMDF or
ODDMCMF is used to call device file
definition to change the device file.

Remove File Member

D~
,.

Command
Processing
Program!

Command
Analyzer J

~ ~

II~ r

ODDDMBR

Remove
Member

O~ ,
ODMROUTE

Common Data
Management II The command analyzer transfers control to

ODDDMBR. It is passed a pointer to the file and
member name that is to be deleted. In the case of
a *GENERIC remove, an alphabetical list of names
is retrieved, using the EXTFILED macro. The
DL TDBM macro is invoked for each member name
that meets the generic name criteria.

1 ODDMDF handles the CHGDSPF, CHGPRTF, CHGDKTF, CHGSAVF, ..J'., ..
CHGCRDF, and CHGTAPF commands. OODMCMF handles the
CHGCMNF, CHGBSCF and CHGMXDF commands.

o The ?DL TDBM macro in ODDDMBR is used
to call the ODM ROUTE module of common
data management which invokes data base
to remove the member from the file.

00-12

ODM ROUTE is passed a pointer to a data
structure that contains the qualified name of
the member that is to be removed.

Figure 00-4. Change Device File/Remove Member
Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Single Line Syntax Checker Overview

Figure DD-5 and the following text describe the syntax
check file description function.

.. The caller specifies the type of single line syntax
check desired via the ?CALLDDS macro. The caller
passes a logical source line. Returned to the
source entry utility are:

• A return code that indicates if any errors were
found.

• A message stack for the errors, if any, that
were detected.

• A string, highlighted on the display, indicating
the fixed columns that were in error.

The ?CALLDDS macro invokes the module QDDSEU
and, based upon the type of checker desired, one of the
following single line syntax checkers is invoked with a
transfer of control.

o ODDCKDB is called to perform the actual
syntax check.ing functions for physical file
and logical file DDS source.

«) ODDCKDV is called to perform the actual
syntax checking functions for device file DDS
source.

II ODDINIT-The ODDINIT module stores the device
and data base keyword tables in the
program-associated space of ODDSEU.

Source
Entry
Utility

ODDSEU ODDINIT

Single Line
Syntax Checker

Keyword Table
Initialization

ODDCKDB

Data Base File
Syntax Checker

0, ,

ODDCKDV

Device File
Syntax Checker

Figure 00-5. Syntax Check File Description Overview

Data Description 00-13

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Screen Design Aid DDS Parser

Figure DD-6 and the following text describe the screen
design aid DDS parser function.

D The caller specifies if printing is desired via the
?CALLDDSI macro, along with other required
information. This operation allows the caller to
block an entire set of DDS source into one space,
providing the caller has described the space by
specifying the number of records and the length of
each (92 to 102 characters).

The information returned is a parsed space
described by the ?WWDFDDSI macro.

The screen design aid uses this interface to ignore
invalid DDS and build from the parsed output back
to the source file.

D The module ODDSIDP is invoked via the
?CALLDDSI macro. This module emulates the
DDS create display command processing program
and the ODDREAD module function.

ODDSIDP provides an interface to the function
described in II, II, and IJ of Figure 00-1.

OD-14

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Screen
Design
Aid

.. " ~
.. ,

ODDSIDP

Interface to
Display and Print

11.4 ~

JII ~ ,a
ODDSPRDV ODDCDFDV

..oL

... Device File Device IMS
Syntax Processor Processor

0, ~ ~ ~
«)

.. ~

ODDINIT ODDREFER

Keyword Table Field Reference
Initialization Processor

.. ,e
ODDCKDV

Device File
Syntax Checker

, ,
ODDESPEH
Extend Space ...
Exception
Handler

Note: See Figure DD-1 a, II, and II for a description of II , a, and II above.

Figure 00-6. Screen Design Aid DDS Parser Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

'II ODDPRINT

DDS Print

..

E)
""" ...

Data Description 00-15

DD-16

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The device file definition component of the CPF (control
program facility) creates, changes, deletes, and extracts
information from device files. It also retrieves the
current release/modification level for device files, and if
necessary, converts device files to the current
release/modification level. Device file definition also
provides the following subset of operations:

• Move device files from one library to another library

• Retrieve the size of a specific device file

• Rename a device file

• Grant authority to a device file

• Revoke authority to a device file

• Transfer ownership of a device file

• Add and remove device entries from a mixed file

• Save/restore an online save file

• Create a duplicate online save file

• Dump a device file

GENERAL OVERVIEW

Device File Definition Modules

The device file definition component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QDFCDF-Create Device File: This module creates a
device file.

QDFVDlST -Validate Device List: This module
ensures that the device descriptions match the
device file type.

QDFBLDDF-Build Device File: This module
controls the building of the device file.

Device File Definition

QDFDFTPR-Build Nonfield-Level Device File: This
module controls the building of device files that
are created without data description specifications.

QDFLVLGN-Level Check Generator: This module
generates Ins :evel check values for the ~evice file.

QDFCDFPR-Create Printer Device File: This
module processes the record formats for, printer
files created with data description specifilcations.

QDFRCDPR-Record Processor: This module
processes the record formats for display,
communications, and mixed files created with data
description specifications.

QDFKWDPR-Keyword Processor: This
module processes the keywords specified
through the data description specifications
for device files.

QDFCRTWU-Create Where-Used Section:
This module creates the extract and
where-used section for device files.

-->QDFMDF-Modify Device File: This module changes
the attributes of a device file.

QDFVDLST -Validate Device List: This module
ensures that the device descriptions match the
device file type.

- - >QDFDDF-Delete Device File: This module deletes
the device file.

-->QDFEDF-Extract Device File: This module extracts
file attributes, the format name list, field descriptions,
and record formats from a device file.

- - > QDFCNVPP-Retrieve / Update Current
Release/Modification Level: This module either
retrieves or updates the release/modification level
used for creating and converting files.

-->QDFMOVE-Move Device File: This module transfers
addressability from one library to another library.

-->QDFRENAM-Rename Device File: This module
changes the name of a device file.

Device File Definition DF-l

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-- >ODFSIZE-Device File Size: This module retrieves
the size of a device file for the Display Object
Description command.

- - >ODFGRANT -Grant Authority: This module is used
to grant authority to a device file.

-->ODFREVOK-Revoke Authority: This module is used
to revoke the authority of a user to a device file.

ODFCHKFL-Check File Status: This module is
called by ODFMOVE, ODFRENAM, ODFDDF,
ODFSIZE, ODFRSTDF, ODFDUPDF, and ODFMDF
to handle the status checking of the device file as
well as locking and unlocking.

-->ODFXOWNR-Transfer Ownership: This module
transfers device file ownership from one owner to
another owner.

-->ODFCVALL-Convert Files: This module controls the
conversion of files that are not at the current
release / modification level.

ODFCNVPP-Retrieve/ Update Current File
Release / Modification Level: This module retrieves
and updates the release / modification level used
for file creation and file conversion.

-->ODFCNVF-Convert Device File: This module
converts a device file to the current
release / mod ification level.

DF-2

ODFMATR1-Materialize Display and Printer Files:
This module materializes display and printer files
to provide source for file creation process.

ODFMATR2-Materialize Communications and BSC

Files: This module materializes communications
and BSC files to provide source for the file
creation process.

ODFBLDDF-Build Device File: This module
controls the building of the device file.

ODFDFTPR-Build Nonfield-Level Device File: This
module controls the building of device files that
are created without data description specifications.

QDFLVLGN-Level Check Generator: This module
generates the level check values for the device file.

ODFCDFPR-Create Pnnter Device File: ThiS
module processes the record formats for printer

files created with data description specifications.

ODFRCDPR-Record Processor: This module
processes the record formats for display,
communications, and mixed files created with data
description specifications.

ODFKWDPR-Keyword Processor: This module
processes the keywords specified through the
data description specifications for device files.

ODFCRTWU-Create Where-Used Section: This
module creates the extract and where- used
section for device files.

-->ODFDMPDF-Dump Device File: This module dumps
a device file. For an online save file, it dumps the
dump space also.

-->ODFDUPDF-Duplicate Device File: This module
creates a duplicate of an online save file. The
contents of the dump space are not duplicated.

-->ODFSAVDF-Save Device File: This module saves
the description of an online save file. The contents of
the dump space are not saved.

-->ODFRSTDF-Restore Device File: This module
restores an online save file. If the file does not
already exist on the system, an empty dump space is
created.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Device File Definition Overview

Figure DF-l shows an overview of the relationship of

other CPF components to the device file definition
component.

D Common data management is invoked during
create and change to build the prototype ODP
(open data path).

II Data description: The data description component
is the primary user of device file definition. It uses
the device file definition component to complete
the creating, and changing of device files.

II Librarian: The librarian component uses the device
file definition component to delete, move, and
rename files. It also is used to retrieve the size of
device files and to create a duplicate of an online
save file.

II Security: The security component uses the device
file definition component to grant and revoke
authority for device files and to transfer ownership
of device files.

II High-level languages and utilities: They use the
device file definition to extract, create, change, and
delete device files.

II Service: The service component is used by the
device file definition component to build the
service information stored with the device file
object.

II Common data management invokes device file
definition to retrieve the current
release/modification level for device files.

III Save / restore, reclaim / damage notification, and
installation invoke device file definition to
determine if a device file is at the current
release/modification level, and if not, device file
definition will convert the device file when
necessary. Save/restore also invokes device file
definition to handle the save and restore of online
save files.

Components that
Use Device File
Definition

Common
Data
Management

Data
Description

Librarian

Security

High-Level
Languages
and Utilities

Service

Save / Restore
Reclaim / Damage
Notification and
Installation

D
II

Device
File
Definition

II

II

II

II

II
iii

III

PAAB046-0

iii Service invokes device file definition to dump the
device file.

Figure DF-1. Device File Description Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File Definition DF-3

Create Device File Definition

Figure DF-2 and the following text describe the device
file definition create operation.

.. ODMROUTE is called by the ?CRTDEVF macro. A
parameter list is passed that contains pointers to
the file attributes and if a field level file is being
created, the record formats and file-level keyword
information. The qualified name of the file to be
created is also passed.

D When a device file is to be created, ODMROUTE
transfers control to ODFCDF to create the file.

II ODFCDF calls ODFBLDDF to build the device file.

II If any device descriptions are associated with this
file, ODFCDF call ODFVDLST to validate the list.

II Control is returned to the caller.

III Common data management is invoked to initialize
the prototype ODP (open data path) contained in
every device file.

IJ Librarian is invoked to assign the authority of the
file and build the OIR (object information
repository) information.

II Service is invoked to build the service information
stored in the OIR for a device file.

DF-4

II

III

II

II

II

III

I II

ODFBLDDF calls ODFLVLGN to generate the level
check values for the device file.

ODFBLDDF calls ODFRCDPR to process the
record formats.

ODFRCDPR calls ODFKWDPR to process any
keywords specified through the data description
specifications.

ODFRCDPR calls ODFCRTWU to create the
where-used section used by extract.

ODFLVLGN calls ODFINIT to initialize keyword
tables.

ODFBLDDF calls ODFCDFPR to create and
process the record formats, fields, and keywords
for the externally described printer files.
ODFCDFPR also builds the where-used section
used by the extract function.

ODFBLDDF calls ODFDFTPR to build files that are
not externally described.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

..J

Caller --..
--..

1-

Parameter
List D , II

I~ ODMROUTE

II Common Data
Management

IJ
B t ,---.

ODFCDF f+-----

II Create Device
ODFVDLST File iii

L. ~~ Validate
Device List II U

ODFBLDDF ...
IE Budd Device II

ODFDFTPR File

Build Non-field
Level Device File

IE IE!
ODFRCDPR ODFCDFPR

Record Create Printer
Processor Device File

I
Jm IIIJ

ODFCRTWU ODFKWDPR

Create Where- Keyword
Used Section Processor

Figure DF-2. Create Device File Definition Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Created
Device ~
File

ODMROUTE

Common Data f+-
Management

Librarian I+--

Service +--

ODFLVLGN

Level Check
Generator

IElH
ODFINIT

Initialize
Keyword Table

r'AAR043-0

Device File Definition DF-5

Change Device File Definition

Figure DF-3 and the following text describe the device
file definition change operation.

II ODFMDF is called by the ?MDFDEVF macro. A
parameter list is passed that contains a pointer to
the modify information and the qualified name of
the device file being changed.

II Control is returned to the caller.

Caller

Parameter

List II
ODFMDF

Librarian

II
ODFVDLST

ODFCHKFL

Check File
Validate List

Status

Figure DF-3. Change Device File Definition Overview

DF-6

II

II Common data management is invoked to build a
new prototype ODP.

II Librarian is invoked to change OIR information.

II ODFMDF calls ODFCHKFL to check authority and
lock the object involved in the change device file.

II ODFMDF calls ODFVDLST to ensure the device
descriptions specified for this file are valid.

Modified
Device
File

Common

II Data
Management

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

Delete Device File Definition

Figure DF-4 and the following text describe a delete
device fils definition operation.

II The librarian or some other function calls the
ODMROUTE module of common data
management. A parameter list is passed that
contains a pointer to the qualified name of the file
being deleted.

II If a device file is to be deleted, ODMROUTE calls
ODFDDF to delete the device file. A resolved
system pointer to the file is passed to ODFDDF.

Parameter
List

Parameter
List

11
ODFCHKFL

Check File
Status

II

Caller

ODMROUTE

Common Data
Management

ODFDDF

Delete Device
File

Figure DF-4. Delete Device File Definition Overview

II

III ODFDDF calls ODFCHKFL to check file status and

lock the object involved in the delete.

II The?DL TOIR macro is issued to invoke the
librarian component to delete the OIR entry and
update the library.

II Control is returned to the caller.

r-------,
I Deleted I I I

-------1 Device I
: File I

?DLTOIR
Macro

L _______ J

Device File D2flnition DF-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File Definition Extract Operation

Figure DF-5 and the following text describe a device file
definition extract information operation.

.. The file reference function component, high-level
languages, and other functions call the
QDMROUTE module of common data
management via the ?EXTFI LED macro. A
parameter list is passed that contains a pointer to
a structure that contains either a null pointer or a
user-defined pointer. When control is returned to
the caller, this pointer will point to a space that
contains the extracted information. The input

structure must identify the type of extract to be
processed:

• File attributes

• Name list of all record formats in the file

• Specific record format description

• Specific field description in a record format

The qualified name of the file from which the
information is to be extracted is also in the
parameter list.

II If information is to be extracted from a device file,
QDMROUTE calls QDFEDF to extract the
information. The parameter list that was passed to
QDMROUTE is passed to QDFEDF as well as a

resolved system pointer to the file that contains
the information to be extracted.

II Librarian is invoked to extract the file text from
the OIR.

DF-8

Caller

/ ~ ~
Parameter
List .. ~ Ir

~ QDMROUTE

Common Data
Management

Parameter
List

II ~ Ir

~ QDFEDF ~

Extract

Device File

II

Librarian
Extracted
Data

Figure DF-5. Device File Definition Extract Operation
Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Device File Definition DF-9

Convert Device File Definition

Figure DF-6 and the following text describe the device
file definition convert operation.

a ODFCVALL is called by the ?CNVFILES macro. A
parameter list is passed that contains pointers to
the files to be converted. This generally occurs at
installation time.

II ODFCNVPP is invoked to maintain the current
release / modification level for the device files on
the system.

II ODFCNVF is called by the ?CNVDF macro.
ODFCNVF is invoked for each device file that is
converted to the current release/modification level.
This is generally performed by save/restore and
reclaim / damage notification.

II ODFMATR1 or ODFMATR2 is invoked to
materialize device files not at the current
release/modification level into a form that can be
used in the remainder of the process. ODFMATR1
is invoked for display and printer files.
ODFMATR2 is invoked for communications and
SSC files.

III ODFCNVP calls ODFBLDDF to build the device
file.

II Common data management is invoked to initialize
the prototype ODP (open data path) contained in
every file.

DF-l0

D ODFSLDDF calls ODFLVLGN to generate the level
check values for the device file.

a ODFBLDDF calls ODFRCDPR to process the
record formats.

iii ODFRCDPR calls ODFKWDPR to process any
keywords specified through the data description
specifications.

IE ODFRCDPR calls ODFCRTWU to create the
where-used section used by extract.

III ODFLVLGN calls ODFINIT to initialize keyword
tables.

IE ODFBLDDF calls ODFCDFPR to create and
process the record formats, fields, and keywords
for the externally described printer and display
files. ODFCDFPR also builds the where-used
section used by the extract function.

ODFBLDF calls ODFDFTPR to create non-field
level device files.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Caller

1-

Parameter
List .. ;

,---- 1---. ODFCVALL

EI , l- Convert Files

ODFCNVPP

Update File II U

I Level ODFCNVF

Convert Device
ODFMATR1 File l Materialize II ~ Display and
Printer Files II H

ODFBLDDF

ODFMATR2 Build Device II Materialize File
Communications
and Mixed Files

II 111 112
ODFRCDPR ODFDFTPR ODFCDFPR

Record Create Non-field Create Printer
Processor Level Device File Device File

ml II' ODFCRTWU ODFKWDPR

Create Where- Keyword
Used Section Processor

Figure DF-S. Convert Device File Definition Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Converted
Device File ~

II
ODMROUTE

Common Data +--
Management

ODFLVLGN

Level Check
Generator

III~
ODFINIT

Initialize
Keyword Table

PAAB044-0

Device File Definition DF-ll

Device File Definition Subset Operations

Figure DF-7 and the following text describe the
functions of the subset of operations for device file
definition.

.. The security, librarian, or service component and
other functions call the ODMROUTE module of
common data management. If the operation is to
be performed on a device file, ODMROUTE
transfers control to:

e ODFMOVE if a device file is to be moved

o ODFRENAM if a device file is to be renamed

a ODFSIZE if the size of a device file is to be
determined

e ODFGRANT if authority is to be granted to a
device file

G ODFREVOK if authority is to be revoked to a
device file

G ODFXOWNR if ownership of a device file is
to be transferred

G ODFDDF if a device file is to be deleted

o ODFDMPDF if a device file is to be dumped

II QDFMOVE, ODFRENAM, QDFSIZE, and QDFDDF,
calls QDFCHKFL to status check and
obtain/release locks on objects involved in the
requested operation.

11 Control is returned to the caller.

DF-12

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Caller

t II
ODMROUTE

Common Data
~

Management

• ODFMOVE ~
I-- 1----Move Device I--

File ~ l-

0 ODFRENAM ~
I-- - --1-+

Rename Device I-- - -
File ~ I-

e ODFSIZE ~
Device File I--- - ---+
Size ... I-

e ODFGRANT ~
Grant I-- - --1---
Authority

G ODFREVOK ~
Revoke I-- - --1---
Authority

0 ODFXOWNR
~

Transfer I-- - --1----
Ownership I-- - -

e ODFDDFa ,...
Delete Device I-- - 1-

File ~ I-

0 ODFDMPDF ,...
·1

Dump Device
File

a See Figure DF-4.

Figure DF-7_ Device File Definition Subset Operations Overview

This document contains restricted materials of IBM_ LY21-0571-6
©Copyright IBM Corp_ 1980, 1981, 1982, 1983, 1984, 1985

OIR
Manipulation

Device File
Moved

EI ODFCHKFL

Check File Status

Device File
and Lock File

Renamed

Size of Device
File

Authority
Granted

Authority
Revoked

Ownership
Transferred

File Dumped

I
PAAB038-0

Device File Definition DF-13

Duplicate Device File Operation

Figure DF-8 and the following text describe a duplicate
device file operation.

a The librarian calls QDFDUPDF to duplicate an
online save file. A parameter list is passed that
contains a pointer to a structure containing a

pointer to the file to be duplicated and the new file
and library names.

IJ The ?EXTFILED macro is invoked to extract the file
level attributes of the online save file.

II The ?CRTDEVF macro is invoked to create a new
online save file.

II QDFDUPDF calls QDFCHKFL to return a lock on
the newly created file.

II Control is returned to the caller.

Caller

a II
Parameter List

QDFDUPDF

Duplicate Device
File

IJ II
? EXTFILED ? CRTDEVF

Macro Macro

Figure OF-B. Duplicate Device File Operation

DF-14

Duplicate Device
File

II
QDFCHKFL

Lock the File

PAAB002-0

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Save/Restore of an Online Save File

Figure DF-9 and the following text describe the
savel restore handling of an online save file.

II Save calls ODFSAVDF to save the file level
attributes of an online save file. A parameter list is
passed that contains a pointer to a structure
containing the file and library names and a pointer
to the file.

II The ?EXTFILED macro is invoked to extract the file
level attributes of the online save file.

II Control is returned to the caller. The parameter list
structure is updated to contain a pointer to the
extract space.

a Restore calls ODFRSTDF to create a new or to
modify an existing online save file. A parameter
list is passed containing a pointer to the file (if it
exists)' a pointer to the new owner's user profile,
and a pointer to the extract space.

Caller
Parameter List

t---

III 111
~ ODFSAVDF

? EXTFILED
II Save Device

Macro File

Caller

Parameter List al m
ODFRSTDF

Restore Device
File -

II III II

II The ?CRTDEVF macro is invoked to create a new
online save file.

II ODFRSTDF calls ODFCHKFL to lock the newly
created file. This lock will be returned to the
caller.

II ODFRSTDF calls ODFREVOK to revoke all
authority from the process user profile and private
authority of the original owner.

II ODFRSTDF calls ODFXOWNER to transfer
ownership to the requested owner.

II ODFRSTDF calls ODFGRANT to grant public
authority, if any, to the file.

m Control is returned to the caller. The parameter list
structure is updated to contain a pointer to the
newly created file.

Updated
Parameter
List

Updated
Parameter
List

II II
? CRTDEVF ODFCHKFL ODFREVOK ODFXOWNR ODFGRANT

Macro Lock File Revoke
Authority

Figure OF-9. Save/Restor of an Online Save File

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Transfer Grant Public
Ownership Authority

PAAB003-0

Device File Definition DF-15

DF-16

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The diskette function manager component of the CPF
(control program facility) provides the support for the
diskette device on System/38.

The diskette is a magnetic diskette storage device that
is supported as a system I/O device. data interchange
device. and save/restore device. It contains two
magazines. each of which can contain ten diskettes. and
three slots for individual diskettes.

The following diskette functions are supported by the
diskette function manager:

• Initialize volume

• Display volume

• Duplicate a volume

• Rename volume

• Clear volume

• Delete diskette file

• Check volume for a specific volume and file label

• Open diskette file for processing

• Close diskette file to processing

• Read data from a diskette file

• Write data to a diskette file

• End-of-volume processing

Diskette Function Manager

GENERAL OVERVIEW

Diskette Function Manager Modules

The diskette function manager component consists of
the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QDKDSPY-Display Volume (DSPDKT)': This module
displays the diskette volume and file labels.

-->QDKDUP-Duplicate Diskette (DUPDKT)': This
module duplicates diskette volume(s).

-->QDKOPEN-Diskette Open: This module opens a file
VTOC or opens a file for input or output processing.

-->QDKINZFY-This module is called by ODKOPEN to
initialize a diskette during volume open. It will check
for active files and initialize the diskette to a usable
format and volume identifier.

-->QDKGET -Diskette Get: This module retrieves one or
more records from a BASIC or H exchange file for
the user.

ODKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->ODKGETI-Diskette Get: This module retrieves one
or more records from an I exchange file for the user.

QDKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

'This module is a CPP (command processing program).

Diskette Function Manager DK-l

This document contains restricted materials of IBM. LY21-0571-6

(i; r:opyright I BM Corp. 1980. 1981, 1982. 1983. 1984, 1985

-->ODKPUT-Diskette Put: This module writes one or
more records of user data to a BASIC or H exchange
file on the diskette.

ODKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->ODKPUTI-Diskette Put: This module writes one or
more records of user data to an I exchange file on
the diskette.

ODKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->ODKCLOSE-Diskette Close: This module closes a
file to input or output processing.

ODKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->ODKFEOD-Forced End-of-Data: This module
signals the end-of-file for an input file. It has no
function for an output file.

ODKEOV-Diskette End-of-Volume Processing:
This module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

-->ODKUTIL-Diskette Utilities': This module provides
the support for the following commands:

• Initialize a Diskette (lNZDKT)

• Rename a Diskette (RNMDKT)

• Clear a Diskette (CLRDKT)

• Delete a Diskette File Label (DL TDKTLBL)

'This module is a CPP (command processing program)

DK-2

ODKERROR-Diskette Errors: This module signals
exceptions and sends messages for conditions
detected by the diskette function manager.

ODKLUDIN-Diskette LUD Initialization: This
module resets the user-defined portion of the
LUD-associated space.

-->ODKCHECK-Check Diskette (CHKDKT)1: This
module is used to check for the first occurrence of a
specific diskette volume, file label. or file on a
specified volume within a given diskette.

ODKCHEXT-Diskette Invocation Exit Program:
This module is invoked to close a diskette file if
ODKCHECK is bypassed because of normal
exception handling, or process termination.

Diskette Operation

Figure DK -1 and the following text describe a diskette
operation.

D A high-level language program, the spooling, copy,
or save/restore component, through the
ODMCOPEN module of common data
management. calls ODKOPEN to open a diskette
file for input or output processing.

o An argument list is passed that contains a
pointer to the UFCB (user file control block).

The diskette to be used is selected by the value in
the LOC parameter specified by the caller of
common data management. The volume label
identifier field is verified if the caller specified a
volume ID.

If the file is being opened for input:

• The diskette file labels are searched for a match
to the file name specified by the caller. If a
creation date is specified, the labels are
searched for a match of both the file name and
creation date specified by the caller.

«) A message is sent to the system operator
console if the file cannot be found. The
operator can insert another diskette and retry
the operation or the job can be canceled.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• The file record length, as specified in the file
HDR1 label, is compared to the value specified
by the caller. If the record length specified by
the caller is longer than the record length of the
file, a diagnostic is signaled to the caller.
Processing of the file continues, but each record
read will be padded with blanks on the end. If
the record length specified by the caller is
shorter than the record length of the file, a
diagnostic is not signaled to the caller.
Processing of the file is continued, but each
record read will be truncated.

Note: For files in basic exchange and H-exchange,
the file record length is determined by the block
length field in the file label. For files in I-exchange
and E-exchange, the file record length is determined
by the record length field in the file label.

G Request 1/ Os are issued to fill both buffers.

• Two buffers are used by the diskette function
manager. Each buffer holds one diskette track
of data. For I-exchange files, additional space
preceding or following the buffer may be used
to hold spanning records.

If the file is being opened for output:

• All expired files are deleted from the VTOC
(volume table of contents) of the selected
diskette. A file is considered to be expired if
the file expiration date (in the file H DR1 label) is
less than or equal to the system date.

o If space is not available for the new file, a
message is sent to the operator. The
operator can insert another diskette and retry
the operation or the job can be canceled.

• A label for the new file is built for the diskette
VTOC but is not written to the diskette until the
file is closed or an EOV (end-of-volume)
occurs. Space allocated for the file is noted in
the label BOE (beginning of extent) and EOE
(end of extent) fields as occupying all of the
space from the last unexpired file to the end of
the diskette. When the file is closed, the EOE
field is updated to show the actual end of the

file.

• For files in basic exchange or H-exchange, the
diskette sector size is compared to the record
length specified by the caller. If that record
length is longer than the diskette sector size, a
diagnostic message is signaled to the caller.
Processing of the file continues, but each record
written will be truncated. If the record length is
shorter, a diagnostic message is not signaled.
Processing is continued, but each record written
is padded with zeros. For files in I-exchange,
the records span sectors up to a record length
of 4 096. Records are written contiguously in a
sector, regardless of the size of the record or
the size of the sector.

II After the file has been opened, information is
written to the file by calling ODKPUT or ODKPUTI.

• An argument list is passed that contains
• The file labels on the diskette are searched to pointers to the UFCB, an option list, and

verify that the name of the file to be written control information.
(specified by the caller in the LABEL parameter)
is unique.

• If a file name having the same name as the
file to be written is found on the diskette, a
message is sent to the system operator
queue. The operator can insert another
diskette and retry the operation or the job
can be canceled.

• Space for the new file is allocated immediately
following the last unexpired file on the diskette.
(The last unexpired file is the one having the
highest diskette address.)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

o The option list and control information are
ignored to the extent that a put wait
operation can be requested; other requests
result in an error message being sent to the
caller.

G Request I/Os are issued to the diskette I/O
manager when the user has sent the diskette
function manager enough records to write a
diskette track of data.

Note: The save/restore component does not use
this interface. Save / restore issues special request
1/ Os to put data to a diskette. See Save/Restore.

Diskette Function Manager DK-3

• After the file has been opened, information can be
retrieved from the file by calling OOKGET or
OOKGETI.

• An argument list is passed that contains
pointers to the UFCB, an option list, and
control information.

G The option list and control information are
ignored to the extent that a get next wait
operation can be requested; other requests
result in an error message being sent to the
caller.

e Request 1/ Os are issued when the caller has
emptied a buffer. There are two buffers;
each buffer contains a diskette track of data.

Note: The save/restore component does not use
this interface. Save/restore issues special request
I/Os to retrieve data from a diskette. See
Save / Restore.

.. After a file has been processed, it is closed by
calling OOKCLOSE through OOMCLOSE.

DK-4

• An argument list is passed that contains
pointers to the OOP (open data path), an
index to the device being closed, and the
type of close to perform (permanent or
temporary).

If the file being closed had been opened as an
output file:

• The data remaining in the buffers is written to
the file.

• The file HOR1 label in the VTOC buffer is
updated to reflect the true end of the file, and
is written to the diskette. (This frees up space
past the end of the file being closed so that the
space remaining can be allocated to subsequent
output files.)

If the file being closed had been opened as an
input file:

• The diskette I/O manager is instructed by a
Reset command to stop processing any current
or pending request 1/ Os.

• The VTOC is not updated because it is not
necessary to do so for an input file.

If a permanent close is requested, all objects
created by the diskette function manager are
destroyed.

II When a forced end of data is requested,
OOKFEOO is called and the following occurs:

• An argument list is passed that points to the
UFCB.

G If the file is opened for input, an end-of-file
exception is signaled to the user. (For
multivolume files, the end-of-file exception
is signaled after the last volume of the file
has been located.)

If the file is opened for output, the operation is
ignored.

II End-of-volume switching occurs automatically
within the diskette function manager when it is
processing a multivolume file.

If a file is open for output, OOKPUT or OOKPUTI
calls OOKEOV to perform the volume switch. If a
file is open for input, OOKGET or ODKGETI calls
OOKEOV to perform the volume switch. If a file is
being closed, OOKCLOSE calls OOKEOV to
perform the volume switch when there is not
enough space to write the data remaining in the
buffers.

The save/restore component calls OOKEOV when
it detects an end-of-volume condition during input
or output save/restore operations or if a media
error occurs during output.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

If a file is open for output, ODKEOV:

• Calls ODKCLOSE to update the file label in the
VTOC of the current volume to reflect that the
file is being continued on another diskette
volume.

• Calls ODKOPEN to increment the diskette
magazine and load the next diskette.
ODKOPEN performs the checks as described
for output files and builds the file HDR1 label in
the VTOC. The HDR1 label also contains a
volume sequence number that will be one unit
higher than the number written in the previous
volume of the file.

• The portion of the buffer that could not be
written to the previous volume is now written to
the new volume.

If the file is open for input, ODKEOV:

• Calls QDKOPEN to increment the diskette
magazine and load the next diskette. The VTOC
of the new diskette is searched for the HDR1
label of the continued file.

• The volume sequence number in the HDR1
label is checked to verify that the next volume
of the file is in proper sequence.

G A message is sent to the operator console if
the test fails. The operator can insert
another diskette and retry the operation,
ignore the condition and process the diskette
with incorrect volume sequence number, or
the job can be canceled.

• QDKOPEN causes a seek to the start of the file.

• The record obtained from the new diskette
volume is returned to the caller of QDKGET.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

End-of-volume processing causes a notify
message to be sent to the caller of get or put.
The message, which can be ignored, informs the
user that a volume switch occurred and processing
continued on the next diskette.

End-of-file processing causes a status message to
be sent to the caller of get. If this message is
ignored, an escape message is sent to the caller of
get.

G The message handler is called to send
messages to the operator console and to
signal exceptions to the user. Information is
also written to the job log that pertains to a
particular error or exception.

• Request 1/ Os communicate to the diskette
I/O manager the desired action. The
diskette I/O manager indicates its success or
failure in performing the request by returning
a message in the machine interface response
queue.

QDKERROR signals all operator messages and
program exceptions. It is also called to analyze
I/O errors to determine what recovery action is to
be performed.

Diskette Function Manager DK-5

High-Level Language Program, System Utility, or Save/Restore

/. ~~ ~ ~ ~ j

1 t 1 t
ODMCOPEN ODMCLOSE

Argument
list Common Common

Open Close

\
~,. ~ ~

D n II 1 II 1 • II ~t II 1

ODKOPEN ODKPUT ODKGET ODKCLOSE ODKFEOD
or or

Diskette ODKPUTI ODKGETI DISkette Forced
Open Diskette Put Diskette Get Close End-ai-Data

~ I I ~ ~

1 t

....
1 ~

ODKEOV
QDKINZFY .. End-ai-Volume II

Save I A es tore Processing

lnitialize
Diskette

ODKERROR

Diskette Error

Handler

,
Message
Handler

/ G "" Machine

Job Operator Interface

G
Request

Log Console Response I/O

Queue

------------------------ ----\ - -1-- ---
Machine Interface

Figure DK-1. Diskette Operation Overview

DK-6

DISkette I/O
Manager

This document contains restricted materials of IBM, LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The common data management component of the CPF
(control program facility) is used to help manage data
that is to be processed by programs. Common data
management can be used to format data into records,
organize data records into files, and transfer the records
of a file between a program and the file.

The functions that make up the common data
management component are:

• The common parts of open and close that are
common across device support and the data base or
across different devices

• The common data management macros-70PEN,
?CLOSE, ?GET, ?PUT, ?UFCB and so forth

• ODPs (open data paths)

• Overrides

• Acquire program devices

• Release program devices

• Locking

• Unlocking

• Accept input

• Routing common functions

• Pass device

Common data management is first invoked during
device file and member creation to construct the inactive
ODP. The inactive ODP is created as a part of the
complete device file or as a part of the interactive data
base cursor/member. Figures DM-1 and DM-2 show
the ODP structure after file or member creation.

Common Data Management

GENERAL OVERVIEW

Common Data Management Modules

The common data management component consists of
the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QDMACQDV-Acquire Program Device: This module
activates a program device in an open device file
ODP and creates a lock acknowledgement event
handler.

-->QDMNODEV-Signal Program Device Not Found:
This module signals an escape exception if the
program device specified on an I/O macro cannot be
found in the device name list in the ODP.

-->QDMACCIN-Accept Input: This module accepts
input from the first invited program device in an open
device file that has data available.

-->QDMACQDP-Acquire Display: This module adds
and activates a display device to an open display file
ODP.

-->QDMACKEH-Lock Acknowledgement Event Handler
Program: This module handles the lock
acknowledgement event for QDMACQDV and
QDMLOCK, cancels the event monitor that invoked
QDMACKEH, and unlocks the associated device.

-':'>QDMCOPEN-Data Management Common Open:
This module establishes an ODP between the calling
program and a data base file, physical device, or
logical (spooled) device.

QDMGETOV-Get Overrides: This module is
used to find any overrides that might exist for
the file being opened.

Common Data Management DM-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QDMEHDES-Resolve Processing: This module
gets addressability to devices for device files
after the device file has been saved and
restored or after the device has been destroyed
and re-created.

QDMMINIT-Merge Initialization: This module
initializes the tables necessary to merge
parameters from the UFCB (user file control
block) or an override when a file is opened.

QDMSIGNL-Send Escape Message: This
module sends an escape message to the caller
of QDMCOPEN. if an error occurs while
opening a file.

-->QDMOVERD-Create Override Control Block
(OVRBSCF. OVRCMNF. OVRCRDF. OVRDBF.
OVRDKTF. OVRDSPF. OVRMSGF. OVRMXDF.
OVRSAVF. OVRPRTF. OVRTAPF)': This module
creates an OCB (override control block) with the
parameter values specified on the command.

-->QDMDSPOV-Display Override (DSPOVR)': This
module displays the override information and the
invocation level in which the command was
submitted. It displays either the override parameters
for a single OCB or a list of all the override file
names. This module is also invoked when option 11
is taken on the DSPJOB display.

- - >QDM DELOV-Delete Override (DL TOVR)1: This
module deletes either a single OCB or all the OCBs
specified in the same invocation level or in a CL
program.

-->QDMLOCK-Lock Data Management and System
Objects: This module allocates to a process any
system object or all of the required objects to
process a data base file member or a device file. and
creates a lock acknowledgement event handler.

-->QDMTCLSE-Data Management Termination Close:
This module closes all open files at process
termination and re~ets the OMCQ (data management
communications queue) and MIRQ (machine interface
request queue).

'This module is a CPP (command processing program).

DM-2

-->QDMUNLCK-Unlock Data Management and System
Objects: This module deallocates any system object
or all of the required objects needed to process a
data base file member or a device file.

-->QDMCRODP-Create ODP: This module creates an
inactive OOP.

-->QOMROUTE-Extract Override and Route: This
module provides a single common data management
interface used for creating. modifying. deleting.
renaming. moving. transferring ownership of. granting
authority to. and extracting both data base and device
files.

-->QDMIFERR-Interface Error: This module gets
control and signals an exception when an operation
that is not valid is attempted to a file.

-->QDMPASS-Pass Device: This module transfers the
allocation of a device from one process to another
process.

-->QDMBKOUT-Backout: This module closes files or
releases program devices after an error is detected
and the escape message was not monitored.

-->QDMRLSDV-Release Program/Display Device: This
module releases a program or display device from an
open device file ODP.

-->QDMCLOSE-Data Management Common Close:
This module closes the files specified by the ?CLOSE
macro.

-->QDMERRHP-Error Handler Program: This module
supplies message data for all escape and notify
messages and sets the ODP to the error state for all
escape messages.

-->QDMRCLSE-Reclaim Close: This module closes all
files open in a process that were opened at an
invocation number greater than the invocation number
passed to the module.

-->QOMDSPOF-Oisplay Open Files: This module
displays information about the files that are currently
open in the specified routing step. This module is
invoked when option 10 is used on the DSPJOB
display.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

J

L

Open

Open is the process of making an inactive ODP active
and preparing it so that it can perform I/O operations.
When a file is opened, common data management
performs the following functions:

• Determines if overrides are to be applied to the file

• Gets addressability to the file to be opened

• Creates a copy of the inactive ODP in the process
access group

• Applies the parameters from the UFCB and the
override, if they exist

• Allocates a device or data spaces to the process for
the file

• Performs level checking

• Sets the event monitors for those files that have been
specified NOWAIT(*YES) or were created with the
I NVITE keyword

• Updates the UFCB and open feedback area

• Invokes the device or data base open routine

Close

Close is the process of deactivating an active ODP and
destroying the temporary objects. There are three
interfaces to the close routines. One is invoked in a
program by the ?CLOSE macro (ODMCLOSE). The
second one is invoked either by the user via the Reclaim
Resources (RCLRSC) command or by the system via the
?RCLFILE macro (ODMRCLSE). The third one is invoked
on behalf of the user by the system (ODMTCLSE).
Close performs the following functions:

• Invokes the device or data base close routines

• Signals switched lines closed event

• Deallocates the objects allocated by open

• Cancels the event monitors for those files that have
been specified NOWAIT (*YES) or were created with
the INVITE keyword

• Updates the UFCB to show the file is closed if the
interface is through the ?CLOSE macro or the
RCLRSC command

Device File Definition

The Create Device File commands (CRTBSCF,
CRTSAVF, CRTCMNF, CRTCRDF, CRTDKT, CRTDSPF,
CRTMXDF, CRTTAPF) cause a device file to be created.
The first section of a device file space object is the
inactive ODP. Figure DM-1 shows a device file space
object.

Device File

Inactive ODP

Device File Attributes

Record Format Descriptions

Extract Information

Figure OM·'. Device File Space Object (Before Open)

Common Data Management DM-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data Base File Definition

The Create Physical File (CRTPFl. Create Logical File
(CRTLFl. Add Physical File Member (ADDPFM) and Add
Logical File Member (ADDLFM) commands create the
FCB (file control block) and the prototype
cursor / ODP / member. Figure DM - 2 shows the structure
of a data base file or member before open.

FCB

..

Structure of the Common Data Management Objects
after Opening a Device File

Figure DM-3 and the following text describe the
structure of the common data management objects after
a device file is opened.

The UFCB for the file can reside in a separate space
that is either permanent or temporary, or it can be
declared in the program and reside in static (PSSA) or
automatic (PASA) storage.

Includes for the ODP for all file types are provided by
common data management. Data description
specifications provide includes for device file attributes
section of the ODP (existing includes for device file

Prototype Cursor Cursor Associated Spac e attributes).

~

I Inactive ODP

~ ~ Member Control
Block

Prototype Cursor Cursor Associated Spac

Inactive ODP

~ r- Member Control
Block

The space objects that contain the source/sink request
and the source/sink data should specify a transfer size
based on the number of source/sink requests and
source/sink data in the object.

The MIRQ is an extendable queue that is outside the
process access group because it is referenced by both
CPF tasks and the machine. File-dependent opens get
addressability to the queue for the source/sink requests

e from the WCB (work control block).

Figure DM-2. Data Base File/Member Structure (Before
Open)

DM-4

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

WCBT

WCBTE

Process Access Group

I
I
I
I

PCS -------

'"'-------..1

PCS Associated
Space (WCB)
1-------1
I I
I I

~------J
DMCQ t I L _____ _

I MIRQ t I ______ J

I
I
I L... ______ -'

MIRQ

SCB

PSSA

UFCB

'- ________ .J

Management
EPTAB Indexes

LUD

D1

LUD
Associated
Space or Dump
Space for Online
Save Files

Figure DM-3. Structure after Opening a Device File)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ODP

Device
File

From
Prototype
ODP

I
I
I
I
I
I
I
I
I
I
I

r-------"
I From I
I Device I
I Attributes I
~------,
I User I I Buffer I

iF~cti~;-~
I Manager I
I Work Area I L _____ _

Source/
Sink
Requests

Source/
Sink
Data

PAAB04B-O

Common Data Management DM-5

Structure of the Common Data Management Objects
after Opening a Multi-Device File

Figure DM-4 and the following text describe the
structure of the common data management objects after
a multi-device file is opened.

The number of devices that can be attached to a device
file is specified on a create command and can be
changed by a Change Device File command. A change
in the number of devices causes a re-creation of the
ODP. This number is used at open time and when a
device is added to the file.

The device open routines calculate the space for the
function manager work areas and must get one user
buffer for the file, one function manager work input
area, and optionally a user output buffer for each device
connected to the file.

The device-dependent open routines will be called for
each device specified in the open parameters. Devices
are activated one at a time to an open device file using
acquire program device. Acquire program device will
attach the specified program device if the file is open.

DM-6

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

l,

WCBT

I
WCBTE •

I
Process Access Group

MIRO

PCS

PCS Associated
Space (WCB)

,

SCB

'I 1

PSSA

PASA

! UFCB
r-------,~/ ...

File(X)

DMCO \

LUD

D 1

LUD
Data

Asso-
Management

ciated
EPTAB

Space
Indexes

Figure DM4. Structure after Opening a Multi-Device File)

t

Source/
Sink
Requests

Source/
Sink
Data

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ODP

From
Prototype

/

From
Device
Attributes

User
Input
Buffer

Function
Manager

l

......

Work Area 1 and
~utPut Buffer

Function
Manager

Work Area 2 and
Output Buffer ...

LUD /
D2

LUD
Asso-
ciated
Space

Device
File

'\
~

v

\
Source/
Sink
Requests

Source/
Sink
Data

Common Data Management DM-7

Common Data Management Macros

The common data management macros are used to
invoke the related common data management functions.
The ?OPEN, ?CLOSE, and ?UFCB macros interface with
common data management functions directly. The
?GET, ?PUT, ?PUTGET, and similar macros interface
with the function managers for the file. These macros
are common data management macros because they
interface to more than one type of file.

Override

The override commands (OVRBSCF, OVRCMNF,
OVRCRDF, OVRDBF, OVRDKTF, OVRDSPF, OVRMSGF,
OVRMXDF, OVRPRTF, OVRSAVF, OVRTAPF, DSPOVR,
and DLTOVR) provide a full range of functions to let the
user control overrides active in the invocation or CL
program.

Acquire Program Device

Acquire program device adds a program device to an
opened file and opens the device.

Release Program Device

Release program device will disconnect a device from an
opened ODP. To release a device, the device is closed.
All devices of a file can be released, leaving the ODP
opened but set to a condition where I/O operations are
not allowed. Releasing a device can also deallocate the
device from the process.

locking/Unlocking

Common data management locking provides an interface
for a user to lock/ unlock the complex objects of
common data management as an atomic operation. (An
atomic operation is an operation that, once started, must
continue to completion without interruption.) Also, if a
device belongs to another process and that device can
be obtained, the lock function will obtain the device.

DM-8

Accept Input

The common data management accept input waits on
data. The data arrives from a request by a get nowait, a
put-get nowait, or a put with invite. The nowait
functions overlap program execution with the user I/O
requests.

Pass Device

The pass device is used to transfer a device from one
process to another process without losing allocation to a
third process.

Routing Common Function

The common data management routing function allows
all CPF commands that have a generic function for data
management objects to be routed to the correct module
to perform the function.

Install Object

Common data management will ship with the system an
install object that contains the file-dependent indexes to
the system entry point table. This object is the data
management entry point table. The install object is a
space object that contains a header and an entry for
each type of file and device supported by the system.

The install object is created by common data
management and accessed by common data
management open to provide file redirection and device
independence. It is also accessed when devices are
defined. Addressability to the install object is provided
through a pointer in the header of the DMCQ.

Figure DM-5 shows how this object fits with the system
EPTAB (entry point table).

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

L
ODMEPTB

Table 1 Data Base

(Funct 1) (Funct 2) (Funct 3)
I Index 7, Index 2, Index 4,

Table 3 Work Station

Table 2 Console

(Funct 1) (Funct 2)
Index 3, Index 3,

Table 4 Printer

The data management entry point table consists of multiple file-dependent tables.
Each table contains indexes corresponding to data management functions (for
example, put, get) and are used to index into OINSEPT(system entry point table).

OINSEPT

1 SYS PTR
2 SYS PTR (ODBGETDR)
3 SYS PTR (ODMIFERR)
4 SYS PTR (ODBGETKY)
5 SYS PTR
6 SYS PTR
7 SYS PTR (ODBGETSO)
8 SYS PTR
9 SYS PTR
A SYSPTR

The system entry point table is an
array of system pointers for all
CPF modules.

Figure OM-5. Entry Point Table Structure

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Common Data Management DM-9

Data Management Communications Queue

During the start CPF process, work management invokes
the common data management ?CRTDMOS macro to
create the DMCO (data management communications
queue) and the MIRQ (machine interface request queue).
The DMCO is a temporary space object created inside
the PAG (process access group). It is used to keep
track of all the files opened or temporarily closed in the
process, and to also keep track of devices passed to the
process, file overrides that exist in the process, and
common data management information for the process.
The DMCQ consists of a header section and a number
of fixed length entries that are chained together based
on the type of entry.

The DMCO header contains:

• A pointer to the PAG (used by common data
management open)

• A pointer to the process control space

• A pointer to the install object containing EPTAB
indexes

• A pointer to the PASA header

• A pointer to the data base logging control block

• A pointer to the data base space containing the list
of UFCBs for the OPNDBF command

• An offset to open entries-not shared

• An offset to open entries-shared

• An offset to the user file override entries

• An offset to the spool file override entries

• An offset to passed device entries

• An indicator that the process is monitoring the I/O
completion event for the console

• An indicator that the process is monitoring for the
controlled cancel event

The type of entries that can be on the DMCO are:

• Open files-shared ODPs

• Open files-nonshared ODPs

• User file overrides

• Spool overrides

• Passed devices

DM-10

Machine Interface Request Queue

The MIRO (machine interface request queue) is a
machine interface queue used by all of the devices in a
process that perform I/O. The queue is created
extendable, with four initial entries and resides outside
the PAG (process access group). The I/O feedback
record is retrieved from the queue by a keyed dequeue.
The key is 16 characters in length that contains:

• Component lD-char(2)

• Device name-char(10)

• Request I/O sequence number-char(2)

• Reserved-char(2)

Addressability to the MIRQ is provided by a pointer in
the WCB (work control block).

Device Definition

The create device description commands create an LUD
(logical unit description) and an associated space for
each device. The LUD contains machine information, as
defined by the machine. CPF materializes and modifies
selected fields in the LUD. The associated space
contains CPF-defined information. That information
consists of two parts: common information and
device-dependent information. The common information
consists of a pointer to the process control space to
which the device is allocated, obtain flags, the
temporary close count, active session count, an offset
(into the data management install object) to the index
for the device, and so forth. The device-dependent
information consists of a pointer to source/sink requests
and source/sink data for passed data, the record
format, and device suspended flag for display devices.
For printer devices it contains the current print image,
forms type, lines per inch to print, and so forth.

Device File Definition

The Create Device File command creates one space
object consisting of two p~;ts. The first n bytes are the
inactive ODP (open data path) and the remainder of the
object contains device file information.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

Inactive Open Data Path

The inactive ODP (open data path) consists of the
following:

Root Section

• Length of the inactive ODP

• Pointer to the buffer area

• Offset to lock list

• Offset to open feedback section

• Offset to I/O feedback

• Offset to spooling area

• Offsets to output BPCA (buffer processing
communications area)

• Offsets to input BPCA

• Offsets to device file information

• ODP status bits

• Offset to DMCQ entry

• Open/close completion level

• Failing device number

• Source sequence number

Open Feedback Section

• File open count

• File type

• File Name

• Library name

• Spooling file number

• Device name and linkage list

• Overflow

I/O Feedback Section (Common)

• Offset to component-dependent section

• I/O statistics (number of gets, puts, and so forth)

• Record format name

• Device class (display)

• Device type (5251)

• Program device name

• Transaction identifier and data (80 bytes)

I/O Feedback Section (component-dependent)

Spoolable Device Spooling Area

• Variable area of the UFCB (user file control block)
with parameters specified by the create device file
command

Input BPCA

• Blocked record input

Output BPCA

• Blocked record output

Lock List For the File

The information contained in the device file consists of:

File attributes

• Image name

• Lines per inch

Record format descriptions

Note: The layout of the Data Base open data path is
described in Section DB under The Structure of Data
Base Files.

Common Data Management DM-11

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

DM-12

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION

The 3270 device emulation component allows the
System/38 to appear as a 3270 Control Unit with
attached devices to a remote host computer. When
attached to a BSC 3270 network, the System/38
appears as a 3271 Model 2 Cluster Control Unit with
attached devices. When attached to an SNA network,
the System/38 appears as a 3270 controller with
attached devices. The System/38 supports 50
emulation sessions for SNA, but only 32 for BSC.

System/38 emulates a 3270 Control Unit on
SNA/SDLC lines. Using this support, a user at a 5250
Display Station on a System/38 may be connected to
an application in a System/370 by nonswitched or
switched PU2 lines.

System/38 emulates the 3271 Model 2 Control Unit on
BSC multipoint lines. Using this support, a user at a
5250 Display Station on a System/38 may be
connected to an application in a System/370.

System/38 emulates the 3277 Model 2 (1920 character)
keyboard/display. In addition, it emulates the 3270 PF
keys 13 through 24.

The 3284, 3286, and 3288 Printers are emulated as
printers associated with the 3271 Model 2 Control Unit
on BSC lines.

The 3284, 3286, 3287, and 3288 Printers are emulated
as printers associated with the 3270 Control Unit on
SNA lines.

GENERAL OVERVIEW

3270 emulation consists of two functions; display
emulation and printer emulation. The interface with
3270 emulation is primarily by commands.

3270 Emulation

DISPLAY EMULATION MODULES

The 3270 emulation component consists of the following
modules:

Note: Modules identified by an arrow (--» are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

-->OEM3270-Display Emulation Main Routine: This
module starts 3270 emulation using parameters
entered on the EM L3270 command.

OEMWSEH-BSC Work Station Data Available Event
Handler.

OEMSWSEH-SNA Work Station Data Available
Event Handler: These modules handle most input
entered by the user and pass it along to the host
after translating the 5250 data streams into a 3270
data stream. It handles the HELP key and presents
the HELP text. This module also allows the user to
terminate the 3270 display emulation session.

OEMATTN-Attention Event Handler: This module
handles the Attention Key Event (signaled when the
Attention key is pressed) by unlocking the work
station keyboard. This module can execute only when
the process is not masked by another module. If the
process is masked, the request is stacked and will
execute when the process is unmasked.

OEMBSCEH-BSC Host Data Event Handler: This
module receives 3270 data from the BSC host
system, translates it to 5250 format, and sends it to
the work station. It also recognizes 3270 Read Buffer
and Read Modified commands, translates the
contents of the 5250 Display Station to the proper
3270 response, and sends the response to the host
system.

3270 Emulation EM-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QEMSNAEH-SNA Host Data Available Event
Handler: This module receives 3270 data from the
SNA host system, translates it to 5250 format, sends
it to the work station, and sends a positive response
to the host. QEMSNAEH also recognizes 3270 Read
Buffer, Read Modified, and Read Modified All
commands, translates the contents of the 5250
display to the proper 3270 response, and sends the
response to the host system. In addition, keeps track
of the BIND/UNBIND status of the LU-LU session,
keeps track of the ownership of the CD bit, sends the
CD bit to the host when the host requests it, and
sends negative responses to the host when errors are
detected.

QEMTSTRQ-BSC Test Request Event Handler: This
module handles the 5250 Test Request Key Event for
BSe 3270 display emulation. It reads the work
station screen, translates the 5250 data stream to a
3270 Test Request Read format, and sends it to the
host.

QEMSYSRQ-SNA Test Request Handler: This
module handles the 5250 Test Request Key Event for
SNA 3270 display emulation. It switches the user
back and forth between the SSCP-SLU and LU-LU
sessions on the SNA device.

QEMSPEND-Suspend Emulation Display File Routine:
This module is invoked by the work station function
manager when the 3270 emulation display file is
about to be suspended. It saves the contents of the
work station screen.

QEMRST -Restore Emulation Display File Routine:
This module is invoked by the Work Station FM
when the 3270 emulation display file has been
restored. It writes any new host data to the work
station.

EM-2

QEMIOERR-I/O Error Message Routine: This module
is invoked by the display and printer emulation
mainline routines when an I/O error occurs. It
handles errors from the host, work station, and
printer files and issues the correct error message.

QEM I EXIT -Invocation Exit Routine, Display: This
module cleans up after display emulation when it is
terminated by a cancel job, cancel request, or an
escape message.

QEMWFCEH-Work Station Function Complete Event
Handler: This module completes writing any data to
the work station that was temporarily held up due to
an extended work station function in progress (such
as, handling the print key).

Figure EM -1 shows the Display Emulation operation.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

...
___ E_M_L_3_2_70 __ ~~----------------~'l ___ Q_E_M_3_2_70 __ ~r---------Command .

Establish All Event Handlers
and Write the 'I n Progress' Screen

Quit Emulation Event
(from any event handler
including Option 99
on the key map screen)

ATTN Key Event
(from display)

Unlock the
Work Station 'I

Call
QEM3270

... QEMIOERR ...
If Any
Unrecoverable
I/O Errors

QEMATTN

Write New Data to
Work Station

OEMBSCEH " Id ... !com ho"l r
------- 3270 BSC Data Available Event

Read Work Station Screen ... --------1
QEMBSCEH

t-: ------. Host INVITE'd

1-______ 3270 BSC Data Available Event
(READ type command from host)

Data Sent to Host and
Screen Contents L...-_____"t-------Host INVITE'd

Figure EM-' (Part' of 51. Display Emulation Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

3270 Emulation EM-3

Read Work
Station Screen

Screen Contents

Write New Data
to Work Station

Write New Data
to Work Station

,

.,

Figure EM-' (Part 2 of 51. Display Emulation Overview

EM-4

OWSPEND

.4

,

OEMSPEND

OWSRST

~

r

OEMRST

~

..

(before suspending the
emulation display file)

(after restoring the
emulation file)

SNA Unsolicited Expedited
Flow Data Event

OEMSNAEH r·------ ~~~~~~~~~D~DT,CLEAR
CD Sent to Host 1-------
(if signal request to send)

I
3270 SNA Data Available Event

OEMSNAEH I-"'~~~~~~~~~~~~ (data from host)

: • + RSP Sent to Host

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
Read Work
Station Screen

Screen Contents

Work Station Data
Available Event
(from display)

.1

Figure EM-1 (Part 3 of 5). Display Emulation Overview

I'
3270 SNA Data Available Event
(read type command)

OEMSNAEH

Data and CD Sent to Host and
Host INVITE'd

OEMSNAEH r·------ 3270 SNA Data Available Event

- RSP Sent to Host
1--------, (if errors detected)

and Host INVITE'd

OEMSNAEH ... ------ (CD bit, no data) I
3270 SNA Data Available Event

OEMWSEH or
OEMSWSEH

:t-------~. + RSP Sent to Host

Data Sent to Host
t-------~. (SNA: if BETB or we have CD)

and Host INVITE'd

3270 Emulation EM-5

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Station Data for
HELP Text
(from display)

HELP or Other Menus
Written to Display

QEMWSEH or
QEMSWSEH

TEST REQUEST Event r--------.
(from display) -----------.1'1 OEMTSTRO Test Request Read Data

1--------> Sent to Host and Host
INVITE'd

TEST REQUEST Event 1"'-------
(from display) -----------'1 QEMSYSRQ

LUST A T Sent to Host

Clear Display .
Screen

1-______ (when returning to LU·LU
session if BETB or we
have CD)

Given Control by
the Machine When
the Invocation Level
is Destroyed Due to
Normal Exception
Handling or Due to

--------1,1 OEMIEXIT
1-______ Clean Up After Abnormal

Termination or Cancel Request

Any Process Term ination

Figure EM-' (Part 4 of 51. Display Emulation Overview

EM-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Work Station
Print Key
Function in
Progress

Attempt to Write
Data to Screen Fails

Due to Extended Work
Station Function
(activates OEMWFCEH)

OEMBSCEH or
OEMSNAEH

I
I
I
I

I
I Work Station Print Key

Function Completes
------------------1

Write New Data to
Work Station When
Extended Work
Station Function
Is Completed

Figure EM-1 (Part 5 of 5). Display Emulation Overview

I
I
I
I
I
I

OEMWFCEH

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Data from Host

INVITE Host

3270 Emulation EM-7

Printer Emulation Modules

3270 Printer Emulation consists of the following
Modules:

Note: Modules identified by an arrow (--» are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

-->QEMPESTR-Start Printer Emulation CPP: This
module checks the input parameters and uses them
to start printer emulation by one of the following
methods:

• Transfer control to either the printer emulation
BSC or SNA routines to request emulation in the
current job.

• Submit a batch job request with the request data
to call either the printer emulation BSC or SNA
routines.

-->QEMPCNTL-Terminate Printer Emulation, Eject
Emulation Output, and Emulate Printer Keys CPP:
This module signals the terminate accept input event
to the process that is performing printer emulation to
end printer emulation, to eject the printer emulation
output, or to emulate a PA 1 or PA2 key.

-->QEMPEBSC-Printer Emulation BSC Routine: This
module checks the existence of specified devices and
files, initializes printer emulation, and repeatedly
accepts input from the BSC file, translating the data
to System/38 format. When the write control
character indicates Start Print, OEM PRINT is called.
If a 3270 read type command is received,
QEMPEBSC sends the proper response to the host.
When the terminate accept input event is received,
QEMPEBSC performs the requested functions. On
any type of termination request (TRMPRTEML or
CNWOB controlled), QEMPEBSC will close files and
end printer emulation.

QEMPRINT -Printer Emulation 3270 Print Routine:
This module is called by OEMPEBSC or QEMPESNA
to print data sent by the host (in a 3270 data stream
format).

EM-8

-->QEMPESNA-Printer Emulation SNA Routine: This
module checks the existence of specified devices and
files, initializes printer emulation, and then accepts
input from the communications file, translating the
data to System/38 format. If the session type is
LU-1, QEMPESCS is called to print the data. If the
session type is LU3, QEMPRINT is called to print the
data when the Write Control character indicates Start
Print. If a read command is received during an LU-3
session, a negative response is sent to the host.
When the CD bit is received during an LU-1 session,
it is treated as a request from the host for a PA-1 or
PA-2 key. If the terminate accept input event is
received, QEMPESNA performs the requested
function. When an I/O error is detected, OEMIOERR
is called. On any type of termination request
(TRMPRTEML or CNLJOB controlled), QEMPESNA
will close files and end printer emulation.

OEMPESCS-Printer Emulation SCS Print Routine:
This module is called by QEMPESNA to print the
SCS data stream sent by the host.

QEMPESEH-3270 Printer Emulation SNA Event
Handler: This module handles the SNA unsolicited
data available event (expedited flow). The SNA
commands that are handled by this module are BIND,
UNBIND, SIGNAL, and SHUTD. The CLEAR and SOT
commands are ignored.

QEMPEXIT -Invocation Exit Routine, Printer: This
module cleans up after printer emulation.

Figure EM-2 shows the printer emulation overview.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

STRPRTEML
Command

~
,

OEMPESTR

I Submit Job

~ r
JObieue

BSC Data
from Host or
Terminate
Accept Input
Event

Data to a
System/38
Printer File

~ r

OEMPEBSC

~ ,.

~
,.

~ r ~ r

OEMPRINT

Unrecoverable
I/O Errors

~

Figure EM-2 (Part 1 of 2). Printer Emulation Overview

,
~ r ~

OEMIOERR

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

~ ,
OEMPESNA

.4 ~

~ ,.

~
,

~

OEMPESCS

Unrecoverable
I/O Errors ,

~

SNA Data
from Host or
Terminate
Accept Input
Event

Data to a
System/38
Printer File

3270 Emulation EM-9

TRMPRTEML
Command

EMLPRTKEY
Command

~

QEMPCNTL

EJTEMLOUT
Command

Terminate Accept Input Event
Signaled to the Printer
Emulation Process
(QEMPEBSC/QEMPESN A)

SNA Unsolicited Data
Available (expedited flow)
Event

--------t.1 QEMPESEH

Figure EM-2 (Part 2 of 2). Printer Emulation Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The Finance Support (FN) component of CPF provides
for the attachment of 4701 and 3694 finance control
units to the System/38 on an SNA/SDLC
communications link. The communications link can be
point-to-point or multipoint and can be switched or
nonswitched.

The 4701 and 3694 control units can share the same
communications line with APPC sessions, 5251 Model
12, 5294, and 3274 remote control units. Control unit
descriptions can be created for the 4701 and 3694.
Device descriptions can be created for the 4704, 3624,
and 3694.

The Finance Support offers a choice of interfaces:

• Submit Finance Job command (SBMFNCJOB)

• Finance I/O Manager (FIOM)

• User Defined Data Stream (UDDS)

• System/38 3270 SNA Remote Attach Support

GENERAL OVERVIEW

The following modules make up the Finance Support
component.

-->OFNMNTBL-Manage Tables: This is the
command-processing program invoked for any of the
Finance Support manage table commands
(MNGDEVTBL, MNGPGMTBL or MNGUSRTBL). It
also handles the table selection display, allowing
users to select a table to be added, updated, or
removed. When a new table name is entered or
when an existing table name is selected for update,
OFNMNTBL invokes OFNMNMBR to display the
requested table.

OFNMNMBR-Manage Table Member: This
program is responsible for managing a specific
finance device, or program, or the user table
requested for update by any of the manage table
commands (MNGDEVTBL, MNGPGMTBL or
MNGUSRTBL). It displays table entries currently
defined and provides additional fields for input of
new entries.

Finance Support

-->OFNSBMJB-Submit Finance Job (SBMFNCJB):
This is the command-processing program for the
SBMFNCJOB command. This program verifies that
the finance device, or program, and the user tables
specified as parameters on the SBMFNCJOB
command do in fact exist, and that the user is
authorized to objects given as command parameters.
It then submits a batch job to the OFNC subsystem.
This job calls OFNROUTE to establish and manage
communications with the finance devices, as
explained below.

OFNROUTE-Finance Router: This program
provides a router function for the SBMFNCJOB
interface. It acquires devices specified in the
finance device table, invites those devices, accepts
and verifies user IDs received with SNA
INIT-SELFs, and calls the requested System/38
application programs to process financial
transactions. Upon receiving a TERM-SELF, this
module releases and then reacquires the device
requesting session termination, allowing a new
session to be established with that device.

Finance I/O Managers

The following modules constitute FIOM support; these
modules are the Finance I/O Managers. They are
provided as an alternative to UDDS communications for
those Finance Support users who desire direct
communications between their System/38
transaction-processing programs and the finance control
unit application.

Note: An arrow (--» identifies the modules that can be
called as external subroutines of the user's application
program.

-->OFNWRT-Write: This program will allow users to
write up to 512 bytes of application data to a
specified finance device. The user supplies as input
to OFNWRT an indicator relating the type of data to
be written, the length of that data, the data itself, and
the finance device to which to write. OFNWRT
accepts these input parameters and invokes
OFNIOMGR to handle the I/O operation.

Finance Support FN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->OFNWRTI-Write Invite: This program will write up
to 512 bytes of application data to a specified finance
device in a manner similar to that of OFNWRT. In
addition, OFNWRTI wi" invite the device for
communications. This program should be used in
conjunction with the program OFNREAD or
OFNREADI to allow reading of the data received as a
result of the write invite issued to the finance device.

-->OFNREAD-Read: Reads up to 512 bytes of data
from a specified finance device. Prior to calling
OFNREAD, the device must be invited by the
program OFNWRTI. The user supplies as input to
OFNREAD the name of a device from which to read.
This program calls OFNIOMGR to perform the read
operation, then returns to the user's application
program the data received, along with the length and
the type of that data.

-->OFNREADI-Read From Invite: This program wi"
read up to 512 bytes of data from any invited finance
device. Prior to calling OFNREADI, the devices must
be invited by the program OFNWRTI. This module
functions in a manner similar to that of OFNREAD,
with the name of the finance device, from which data
is received, returned as an additional output
parameter to the user's application program, rather
than supplied as input to OFNREADI.

OFNIOMGR-Finance I/O Manager: This is the
primary finance I/O manager. It acts as an external
subroutine of OFNREAD, OFNREADI, OFNWRT and
OFNWRTI. This program accepts any input
parameters supplied by the user and performs the
requested input or output operation to the finance
devices.

FN-2

Submit Finance Job (SBMFNCJOB) Command
Interface

Figure FN-1 and the following text describe the module
flow for the SBMFNCJOB interface.

.. OFNSBMJB is the command processor for the
SBMFNCJOB command. This module submits a
batch job that calls OFNROUTE to establish and
manage communications with finance devices.

II OFNROUTE provides a router function for the
SBMFNCJOB interface. It acquires and releases
devices, and handles communications between
your System/38 transaction processing programs
and the finance control unit application.

II OFNMNTBL is the command processor for the
Manage Table commands. It handles the table
selection display and invokes OFNMNMBR when a
specific table is selected.

II OFNMNMBR manages the specific device
program, or the user table selected for display or
update.

..

II

SBMFNCJOB
Command

I
OFNSBMJB

Command
Processor

OFNROUTE

Router

II

II

Figure FN-1. Submit Finance Job Interface

MNGDEVTBL
MNGUSRTBL
MNGPGMTBL
Commands

I
OFNMNTBL

Command
Processor

OFNMNMBR

Manage
Tables

PAAB004·0

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Finance I/O Manager Interface

Figure FN-2 and the following text describe the Finance
I/O Manager interface.

II QFNWRT accepts user parameters such as
devices, data type, data length, and the data itself,
and then invokes QFNIOMGR to handle I/O
operations.

II QFNWRTI handles writes similar to QFNWRT. In
addition, it invites the device for communications.

II QFNREAD reads data from a finance device. The
device must be previously invited by QFNWRTI.
The user program supplies the name of the device.

II QFNREADI reads similar to QFNREAD except that
the name of the device, from which data was
received, is returned to the user program.

• QFNIOMGR acts as an external subroutine for the
read and write commands. It performs the
requested I/O operations to finance devices.

User's Application
(CALL)

QFNWRT

f---
Write

QFNWRTI

-
Write
Invited

QFNREAD

f---
Read

QFNREADI

L--

Read
Invited

III

II -

III

II -=-

Figure FN-2. Finance I/O Manager Interface

• QFNIOMGR

Finance
I/O Manager

PAABOO5·0

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Finance Support FN-3

FN-4

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

L

INTRODUCTION

CPF graphics allows the user to add color and pictures
to application programs. High level language programs
call CPF graphic routines to help construct the pictures.
Each of the routines is like a small, self-contained
program. The routines are organized in two groups:

• Graphic data display manager routines (GDDM)

• Presentation graphics routines (PGR)

GDDM Routines

GDDM routines perform basic graphic tasks, such as
drawing a line from point A to point B. A series of
these line drawing routines in an application program
can produce a more complex picture. Also, GDDM
routines are called in an application program to perform
such tasks as initializing and terminating the graphics
environment, defining characteristics for functions that
other GDDM routines will perform (such as setting the
color and width of a line that !mother GDDM routine will
drawl. and sending the picture to the work station.

PGR Routines

PGR routines provide a fast and efficient way to convert
numeric data into color charts in an application program.
One PGR routine will specify the type of chart used to
present the data, while other PGR routines will label the
data and specify chart headings.

PGR routines are built with sets of GDDM routines. An
application can have any mixture of GDDM and PGR
routines.

Graphics

GENERAL OVERVIEW

Graphics Modules

Figure GD-1 and the following text show the structure
of the graphics component.

.. The purpose of the application interface (AI) is to
provide the interface between the user and
GDDM. This includes:

• Conversion of application calls to an internal format

• Invocation of the appropriate GDDM unit to process
application calls

• Building and sending of error messages

• Invocation of specified user error exit

• Initialization

• Normal termination

The application interface is the top layer within GDDM
and PGR. All GD and entry point PGR modules are in
this unit.

B The full screen manager contains the
subcomponents responsible for graphic data
manipulation and control.

II The presentation graphics routines are a set of
routines that access the GDDM primitives but
allow a higher level interface. For example, a
single PGR routine will draw a VENN diagram by
calling several other GDDM routines.

II The terminal services interface is a subset of
GDDM that provides subsystem/device dependent
functions such as I/O.

Graphics GD-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• The common services interface (CSI) performs
general functions such as allocation and
deallocation.

II The environmental services interface (ESI) is a
subset of GDDM that provides subsystem
dependent control functions such as storage
management.

D

II

Application Interface (AI)

Full Screen Manager (FSM)

1--------,
I General Device :
: Supervisor I
I (GDS) : L ________ J

II
I

Terminal
Services
Interface (TSI)

1--------,
I Graphic Device :
: Processor I
I (GDP) :
L ________ J

---------,
I I
I Data Stream I
: Processor I
I (DSP5) : L ________ J

• Common
Services
Interface (CSI)

Figure GO-1. Graphics Component Structure

GD-2

.. Presentation
Graphics
Routines
(PGR)

I
II

Environment
Services
Interface (ESI)

PAAB047·0

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

AI Modules

-->QGDACFP-Control Function Processor: This module
is the control function processor for the application
interface and routes control to the appropriate AI
module based on the RCP code.

-->QGDACIN-Initialization: This module creates a
graphics control space object and storage space
object. The control blocks in the control space are
initialized.

A scope message is sent to the first invocation below
the request level processor/receiver or to the first
invocation in the current request level if no
processor / receiver exists. This scope message will
cause the scope message handler module.
QGDASCPH. to be invoked if the target invocation of
the scope message is removed from the invocation
stack.

-->QGDACTRM-Termination Function: This module
terminates a graphics instance. The exact processing
depends on the reason that termination is invoked.

-->QGDACO-Controller Router: This module handles all
GDDM and PGR application calls. The application
program codes calls to the GDDM entry modules.
such as FSINIT. and GSLINE.

When an entry module has been called by an
application program. it in turn calls QGDACO. passing
all the user-supplied parameters.

-->QGDAEP-Error Processor: This module handles the
error notification and feedback. It is called to process
the graphics function FSEXIT and FSQERR. It is also
called to signal an error that has occurred somewhere
in graphics processing.

-->QGDAINVP-Invoke User Error Exit Program: This
module transfers control to the specified user error
exit program.

When an error occurs in GDDM. the user is notified
via diagnostic messages. If the user has specified an
error exit. with FSEXIT. GDDM will also give control
to that module with sufficient information to allow the
program to perform processing based on the
particular error. The purpose of this module is to
invoke that program and pass a control block with
the error information.

-->QGDASCPH-Scope Message Handler: This module
ensures the cleanup of GD referenced objects and
spaces.

PGR Modules

-->QGDBADTM-Datum Reference or Datum Line: In
state 1. this module invokes ADMBSET to store the
datum reference. In state 2. this module draws the
datum line.

-->QDBARS-Draw Bar Graphs and Place Values: This
module draws a bar graph.

-->QGDBASEL-Select the Current Axis: This module
processes both CHXSEL and CHYSEL calls.

-->QGDBATT-Set the Current Attributes: This module
calls general graphics to set the attributes to the
desired value.

-->QGDBBGS-Business Graphics Supervisor: This
module is the main routine for the reentry portion of
PGR. It is entered by the PGR entry modules and
after some preliminary processing invokes the
appropriate procedure.

-->QGDBBLNK-Blank Area Under Character String:
This module shades an area whose boundaries are
supplied by the parameters with a solid background
shading pattern so that the characters are more
legible.

-->QGDBCHRT-Route to Plotting Routine: This module
will draw the axis and then draw the type of chart
that was requested.

-->QGDBCHSG-Set the Character Attributes: This
module sets the current color. mode. set number. and
multiplier.

-->QGDBCHVU-Set the Viewport and Window: This
module sets the viewport and window based on the
input parameters.

-->QGDBCRNG-Set Range Values for Autoscaling:
This module determines if the range has been set to
either axis. The minimum and maximum values are
passed as parameters. After setting the range. the
axis will be drawn.

-->QGDBDKEY-Legend Construction: This module
constructs a legend of specified format at a specified
position within the chart area.

Graphics GO-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

-->QGDBDOAX-Draw Component: This module draws
axes, tick marks, grids, datum lines, reference lines,
and titles.

-->QGDBDRAW-Draw Heading and Determine Plot
Boundaries: This module sets processing to state 2
and draws the headings for the chart.

-->QGDBDRAX, QGDBDSAX, QGDBDSDO-Draw
Complete Axes, Titles, and Labels: Draw all
components of the plot area other than the plot itself.
This includes axes, axis title, labels, tick marks,
datum reference lines, and grid lines.

-->QGDBDTTL-Draw Axis Title: This module
determines the position for a title of either a vertical
or horizontal axis and draws it.

QGDBEDTX-Edit Text Strings

-->QGDBGFMT-Generate Format for Numeric Labels:
This module determines the number of integer
positions, fraction positions, sign, and if necessary,
E-format positions required for conversion to EBCDIC
and display of a label.

-->QGDBGFTX-Get/Free Storage for Text Strings:
This module frees existing storage, obtains needed
storage, and fills the storage with the text string and
header information.

-->QGDBGLBS-Generate Labels: This module
generates the EBCDIC representation of an input
value.

-->QGDBHIST-Draw Histogram

-->QGDBLABL-Label an Axis: This module defines the
labeling parameters according to the type of labels
required by the specifications and parameters
received. It then draws each label next to the axis.

-->QGDBMAX-Determine Minimum and Maximum Axis
Values: This module finds the minimum and
maximum values passed in the array by the calling
program. If the array is composed of multiple
components, then the maximum value will be the
sum of the individual items for that component.

-->QGDBMOVE-Process Draw Requirements for Charts

GD-4

-->QGDBNOTE-Chart Annotation: This module
constructs the required notation at the location
specified by the position code and the note offset
values.

-->QGDBPIE-Draw Pie Chart

-->QGDBPLOT -Draw Line and Surface Charts

-->QGDBRNIT-Set PGR Control Blocks

-->QGDBSET-Set Values in Control Blocks

- - >QG DBSTRT -PG R Supervisor

-->QGDBVENN-Draw Venn Diagram

FSM Modules

- - >QG DDBCRT -Create Partition Set

-->QGDDBDEF-Create Default Partition Set

-->QGDDBDEL-Delete Partition Set

-->QGDDBFN1-Process Partition Calls

-->QGDDBSEL-Select Partition Set

-->QGDCAS-Allocate Symbol Set Table Entry: This
module is part of the FSM common device processor
(COP). It is called by the load/define symbol set
modules to allocate a suitable entry in the symbol set
table.

-->QGDDCCD-Convert Call Definitions: This module is
called to convert call images from one format to
another.

-->QGDDCDS-Release Symbol Set: This module
handles the release symbol set functions. It is one of
the main entry points of the common device
processor. It is invoked by the main supervisor
router, and processes the GSRSS routine.

-->QGDDCES-Release Symbol Set: This module is
called by the load/define symbol set modules and by
the delete symbol set module to release a symbol
set. It is also called by the graphics device processor
to release a symbol set that is no longer required for
graphics.

-->QGDDCGS-Load/Define Graphics Symbol Set: This .~

module processes the GSLSS routine. ...,.,

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

-->QGDDC05-Get Symbol Set: This module handles
an internal request to get access to symbol set
definitions. It satisfies the request either by invoking
ESI to read the symbol set or it may remember that
the required symbol set is one of the most recently
queried. In this case, this module already has access
to it.

-->QGDDCPC-Page Control: This module handles most
of the page control routines.

-->QGDDCPU-Query Unique Page: This module is
invoked to process a query unique page number
request. This returns a page number that is not
currently in use.

-->QGDDCQD-Query Device Characteristics: This
module handles the FSQDEV routine.

-->QGDDCQS-This module handles all the query
symbol set functions of the GDDM FSM.

-->QGDDCR5-Read!Write Symbol Set

-->QGDDCTE-Initialize!terminate

-->QGDDCVS-Validate Symbol Set: This module
validates a set of symbol set definitions passed to it.

-->QGDDCWIN-Control Page Window

-->QGDDECRT-Create Partition: This module creates a
new partition block.

- ->QGDDEDEF-Create Default Partition

-->QGDDEDEL-Delete Partition

-->QGDDEFN1,2-Process Partition Functions

-->QGDDESEL-Select Partition

-->QGDDGAR-Buffer Manager

-->QGDDGCE-Arc Simplification: This module breaks
arcs into a monotonic arc.

-->QGDDGCL-Line Clipping: This module clips a line to
the viewport boundaries.

-->QGDDGCR-Correlation Module

-->QGDDGGI-Query Input Device Data

-->QGDDGIG-IDF Generator: This module generates
IDF orders to set the attributes of a graphic primitive.

..

-->QGDDGIO-Initialization: This module controls the
initialization and termination of the GOP. Initialization
is triggered internally by the GOP when the graphics
field is created. Termination is invoked by DSCLS.

This module is responsible for the loading and
unloading of the dependent modules and their
initialization and termination.

-->QGDDGI5-5292 Display Initialization: This module
handles initialization, field creation, termination, and
field deletion for the 5292 Model 2 display.

-->QGDDGI6-Plotter Initialization: This module handles
initialization, field creation, termination, and field
deletion for the 737x plotter.

-->QGDDGMM-Matrix Multiplier: This module
multiplies two matrices of given dimensions.

-->QGDDGPA-Primitive Attribute Module: This module
handles color, line width,' paint. pattern, character
mode, set. box, angle, and direction.

-->QGDDGPC-Character String Module: This module
processes GSCHAP, GSCHAR, and GSQTB character
string calls.

-->QGDDGPE-Arc Primitive Module: This module
handles arc requests. Arcs may be specified by
GSARC, GSELPS, and GSPFL T. The external form of
these functions is processed and a common GDF
order is generated from them.

-->QGDDGPI-GDF Interpreter: This module interprets a
GDF string .

-->QGDDGPM-Image Processor: This module
processes image calls including GSIMG and
GSIMGS.

-->QGDDGPO-GDF Exporter: This module returns GDF
data to the application. This includes the handling of
the GSGETS, GSGET, and GSGETE functions.

-->QGDDGI4-Printer Graphics Initialization: This
module handles initialization, field creation,
termination, and field deletion for printer graphics.

Graphics GO-5

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->OGDDGP1-GDF Generator: This module accepts
GDF orders and saves them for GDF retrieval.

-->OGDDHI06-737x Plotter Table Builder: This module
is called by OGDDGI6 to return the graphics default
module index for plotter support.

-->OGDDHI04-522x, (10 CPl) Printer Table Builder:
This module is called by OGDDGI6 to return the
graphics default module index for 522x, printer
support.

-->OGDDHI14-4214 Printer Table Builder: This module
is called by OGDDGI6 to return the graphics default
module index for 4214 printer support.

-->OGDDHI24-15 CPI Printer Table Builder: This
module is called by OGDDGI6 to return the graphics
default module index for printer support.

-->OGDDGCTF-Color Table Definition Selection
Function.

-->OGDDGS1-Display Segment Buffer Manager for
producing GDF.

-->OGDD1C-Data Stream Processor for Dummy Device
Support.

-->OGDDGPR-Primitive Operations: This module,
which is one of the entry points to the GOP, handles
moves, line, vector, marker, area, and end area calls.

-->OGDDGPS-Default Picture Space: This module
calculates a default picture space and converts it into
32 K bytes coordinates.

-->OGDDGP5-Data Stream Generator: This module
accepts GDF orders and generates 5292 Model 2
display data stream orders from them.

-->OGDDGP6-737X Plotter Data Stream Generator:
This module accepts GDF orders and generates 737X
plotter (lBM-GL) data stream orders from them.

-->OGDDGOC-Ouickcell Routine: This module allocates
and frees storage for bundles of control blocks.

-->OGDDGOI-Ouery Character Spacing: This module,
which is called internally, computes the relative
coordinates of the bottom right and top left corners
of a character box by considering current character
angle, mode, direction, and box attributes.

GO-6

•

-->OGDDGSE-Segment Operations Module: This
module, which is one of the entry points to the GDP,
handles segment creation, closure, deletion, and clear
calls. It is also invoked by the CDP to handle page
deletion.

-->OGDDGSO-Segment Ouerying Module: This
module, which is one of the entry points to the GDP,
handles the following calls: GSOCUR, GSOMAX,
GSOCEL, GSOCLP, and GSCLP.

-->OGDDGS5-5292-2 Display Segment Buffer
Manager: This module manages (creates, allocates,
deallocates, and destroys) segment buffers. A
segment buffer is the buffer into which the data
stream generators (OGDDGP5 and OGDDGP6) place
actual device graphics orders.

-->OGDDGWI-Window Definition: This module, which
is one of the entry points to the GDP, handles
segment window defining, viewport defining, picture
space defining, picture space querying, and graphics
field defining.

-->OGDDGXC-Character String and Marker Expansion:
This module expands a character string or marker
order into a series of lines.

-->GODDGXE-Arc Expansion: This module expands
circular and elliptic arcs to a series of straight lines.

-->OGDDHI05-5292-2 Display Table Builder: This
module is called by OGDDGI5 to return the graphics
default module index.

-->OGDDM-AIC Alternate Entry Point: This module
serves as an entry point to GDDM/PGR, which can
be called with parameters to indicate the function
required.

-->OGDDSDO-Ouery Reply Processor: Provides a
common service to the processing modules for
decoding a query reply.

-->OGDDSDS-Device Services: This module handles
all device services (DS) calls to FSM. This module
interfaces with TSI adapters for device initialization
and termination.

-->OGDDSEH-Error Handler: This module handles an
error detected by any GDDM GSM module.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

-->QGDDSF1-Device Family 1 Processor: This module
performs family specific processing for DSOPEN,
DSCLS, and DSRNIT.

-->QGDDSOO-Split Open Option: This module
converts between external parameters of DSOPEN
and DSQDEV (processing options and name list), and
the internal option lists.

-->QGDDSRO-Control Router: This module is the only
entry point to GDS and FSM. This module controls
the routing of external calls to the appropriate FSM
processor and performs basic processing for
initialization and termination.

-->QGDD5C-Data Stream Processor: This module
builds the data stream buffers for output to the
device. It appends all control commands for the start
and the end of the graphics mode as well as all
control commands required for each buffer sent to
the device.

ESI Modules

-->QGDEABND-Abend Termination: This module
processes the abend conditions for GDDM.

-->QGDEOSDO-Load/release GSS: This module is
called to get or release a graphics symbol set.

-->QGDEROOF-Router and Storage Manager

TSI Modules

-->QGDILASP-LUD Initialization: This module initializes
a portion of the GD device dependent section of a
display LUD associated space.

This module is called by the DC component during
vary-on processing for 5292 Model 2 devices.

-->QGDLAR1 F-Acquire/release buffers: This module
acquires and releases buffers required by TSI.

-->QGDLlN1 F-TSI Initialization: This module initializes
the GD component for a particular device. Each
device used has its own control blocks. This module
processes the DSOPEN routine.

Initialization functions include validity checking the
DSOPEN options, locking the specified device,
opening the QDGDDM display file, error handling and
back-out, and terminal query functions.

-- >QGDLRN 1 F-Reinitialization: This module reinitializes
GDDM for a particular device. This occurs when the
DSRNIT or FSRNIT routines are called. For FSRNIT,
GDS generates internal DSRNIT requests for each
open device.

-->QGDLROOO--Dummy Device Router: This module
serves as the router for GDDM requests to dummy
devices.

-->QGDLR01 F-Function Module and I/O Services:
This module routes all TSI requests and performs I/O
processing.

-->QGDLTM1 F-Termination Function

-->QGDLTQOO--Query Device Function: This module
returns information about the device.

-->QGDNUMER-Numerical Preprocessor: This module
generates smooth curves.

CSI Modules

-->QGDYGQC-Quickcell Routine: This module allocates
and frees storage for bundles of control blocks.

-->QGDYINTM-Initialization/termination: This module
provides initialization and termination for the common
services interface (CSI).

-->QGDYROOO--CSI Router: This module routes the
CSI request to the appropriate module.

-->QGDYRSRL-CSI Reserve/Release Resource Handler

-->QGDYTRIG - CSI Trigonomic Functions: This
module returns the sine and cosine for the specified
angle.

Graphics GD-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GD-8

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

J

INTRODUCTION

The installation component of CPF (control program
facility) is responsible for installing and initiating CPF on
the IBM System/38.

To invoke the installation component, an operator
performs an AIPL (alternative initial program load).

GENERAL OVERVIEW

Installation Modules

The installation component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->OINIT-lnstaliation Loader: This module loads
OINSTALL into the system when the installation is
from diskette.

OINSTALL-Stand-Alone Portion of Installation:
This module loads all CPF objects except for
subsystem descriptions and data base files. It also
initiates the initial CPF process.

OINCPF-lnitialization Requiring CPF: This module
is executed during the start CPF process. It
controls I/O reconfiguration, the loading of
subsystem descriptions and data base files, and
controls any release/ modification-dependent
initialization. To control the I/O reconfiguration, a
prompt is sent to the system console asking if the
I/O descriptions on the save/restore medium are
to be restored. OINRIO is called if the response is
affirmative.

OINRIO-Restore I/O Configuration: This
module deletes all existing I/O descriptions
except for the system console and save / restore
device(s). The save/restore component is called
to restore the I/O descriptions from the
save/restore medium.

Installation

OINRIOOH-Restore I/O Description Object
Handler: This module, after initial processing
by the save/restore component, receives the
I/O description data and creates the
appropriate logical unit description, control
unit description, or network description.

OINFIXUP-Release Dependent Initialization: This
module creates job and output queues and grants
private authorities. In addition, this module
performs other functions that are dependent upon
the specific CPF release/modification level.

-->OINITT-lnstaliation Loader: This module loads
OINSTALL into the system when the installation is
from magnetic tape.

OINSTALL-Stand-Alone Portion of Installation:
This module loads all CPF objects except for
subsystem descriptions and data base files. It also
initiates the initial CPF process.

OINCPF-lnitialization Requiring CPF: This module
is executed during the start CPF process. It
controls I/O reconfiguration, the loading of
subsystem descriptions and data base files, and
controls any release/modification-dependent
initialization. To control the I/O reconfiguration, a
prompt is sent to the system console asking if the
I/O descriptions on the save / restore medium are
to be restored. OINRIO is called if the response is
affirmative.

OINRIO-Restore I/O Configuration: This
module deletes all existing I/O descriptions
except for the system console and save/restore
device(s). The save/restore component is called
to restore the I/O descriptions from the
savel restore medium.

OINRIOOH-Restore I/O Description Object
Handler: This module, after initial processing
by the save / restore component, receives the
I/O description data and creates the
appropriate logical unit description, control
unit description, or network description.

Installation IN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QINFIXUP-Release Dependent Initialization: This
module creates job and output queues and grants
private authorities. In addition, this module
performs other functions that are dependent upon
the specific CPF release/modification level.

Installation Process Overview

Figure IN-1 and the following text describe the
relationship of the installation component to other CPF
components and functions. It also gives an overview of
the installation process.

D The AIPL machine interface source data consists
of the initial user profile template, the program
template for QINIT or QINITT, and the initial
process definition template. This data resides on
the save/restore medium as the first file. The
AIPL procedure uses this source data to create an
initial process and transfers control to the
encapsulated form of QINIT or QINITT.

IN-2

The purpose of QINIT and QINITT is to load the
second file on the save/restore medium,
QINSTALL. To perform this, a logical unit
description for the diskette device is created. The
QINSTALL module is then created and loaded into
no context; control is transferred to it. Also, an
ICO (installation communication object) is created.
The ICO is used to save error messages and trace
information for QINIT, QINITT, and QINSTALL,
and contains data and pointers used by QINCPF.

If a termination error occurs, this object can be
located and displayed to provide further debugging
information along with any console mes~ages. The
existence of the ICO indicates to the start CPF
process module that an installation is in progress
and special CPF initialization must take place. This
object is destroyed by QINCPF.

II QINSTALL initially resolves to the QSYS context.
If this context is not found or is damaged, a new
one is created. The ICO is inserted into this
context.

An logical unit description for the console is
created, and some initialization of the associated
spaces for both this logical unit description and
the diskette logical unit description is performed.

QINSTALL then creates the following objects, if
they do not already exist or are damaged:

• Required system user profiles

• Authorized users table that contains entries for
the system user profiles

• Required system libraries (with the exception of
the spooling library which is created in the start
CPF process)

After the preceding objects are created, QINSTALL
displays a prompt screen requesting the type of
installation to be performed. The user may request
the destruction of existing noninstalled
CPF-created objects (cold start request) and/or
request that no objects be loaded from the
load/dump media. When objects are loaded from
the media, this is called a normal install;
otherwise, it is referred to as an abbreviated install
(it should be apparent that abbreviated installs can
only be performed on a system already containing
CPF).

If the installation is from magnetic tape, a control
unit description and a logical unit description for
the tape controller and device are created.
Initialization of the associated spaces is performed
for both the control unit description and logical
unit description.

If objects are to be loaded, QINSTALL loads or
creates and loads the CPF objects on the fourth
save/restore file and places them into the
appropriate libraries. Each object is owned by the
profile that owned it when the Save System
command was executed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

The system-wide entry point table is created. Any
previous entry point table is destroyed. This table
is a space object containing resolved system
pointers to those programs whose names are
specified in the space object QUNMTBL.

Finally, QINSTALL creates the process definition
template for the initial CPF process. This process
definition template is stored into the machine
attributes area and is used to both initiate CPF
during AIPL and for subsequent IMPLs. The initial
CPF process is initiated and, when QINSTALL
receives a process-initiated event from the
hardware, terminates itself.

II When an installation is in progress, the ICO will
exist on the system. As a result, the start CPF
process performs some extra initialization. One of
the modules called is QINCPF.

II QINCPF calls common data management to send
a display to the system console, requesting
whether or not the operator wants to restore the
I/O configuration file to that configuration saved
with the system on the save/restore medium. If
the response is yes, QINRIO is called (see II).
QINCPF then deletes certain system-supplied data
base files and subsystem descriptions through an
interface to the librarian component. It calls
save/restore to restore data base files and
subsystem descriptions. Following this, QINFIXUP
is called (see lib. QINCPF then returns control to
its caller.

II QINFIXUP creates job and output queues. Private
authorities are granted for certain system objects.
For objects created by QI NST ALL, information text
is retrieved from the CPF message file and stored
in the QSYS library. Additionally, this module
performs other functions that are dependent on
the specific CPF release/modification level.

II QINRIO is called by QINCPF when the I/O
descriptions are to be restored from the
save/restore medium. The librarian component is
called to provide a list of logical unit descriptions,
control unit descriptions, and network descriptions.
All descriptions except the system console and
save/restore device(s) are deleted through an
interface to the device configuration component.
The save/restore component is then invoked to
restore the I/O descriptions saved on the
save/restore medium.

II QINRIOOH is called for each I/O description being
restored. It interfaces with the device
configuration component to create the device
description passed from save/restore. The
security component is called to grant appropriate
authorities and to transfer ownership of the
descriptions as necessary. Save/restore is
informed of the final disposition of the description,
and control is returned to the caller.

Installation IN-3

This document contains restricted materials of IBM. L Y21-0571:..6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

AIPL

'II OINIT or
OINITT

Installation
Loader. ,.

OINSTALL
Stand-Alone
Portion of ...
Installation

YES

...

, '11
OINCPF

Installation
Requiring CPF

II , , II
--OINFIXUP

OINRIO
Release
Dependent

Restore I/O
Installation

I I
• , t

Spool Librarian
Message
Handler

Figure IN-1. Installation Process Overview

IN-4

J:
OWCIINSR II OWCISCFR

--'"
Initial CPF ... Start CPF

Process Process

I

'I nstallation
in Progress

NO

Continue

with IPL

, , f J
Common

Message
Data Save/Restore Librarian Handler
Manage-ment

, , ,
Device

Savel Restore Libranan
Configuration ., . • • • OINRIOOH

Device Message
Security

Restore 1/0 Configuration Handler

Object Handler

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The journal management component of the CPF (control
program facility) provides the user a means of recording
changes made to data base files in an object.

The system creates a journal entry in a journal receiver
when a change is made to a physical data base file,
when a change is made to a journal object, or when the
user requests that an entry be added. Only changes to
physical files are recorded in a journal. regardless of
how the journal operation is performed.

The user controls, via commands, the following
functions:

• Command processing program: Executing the create,
change, delete, or display of a journal, and the create,
delete, or display of a journal receiver. Beginning and
ending the journaling of a physical file. Reapplying
journal entries, sending a user defined journal entry,
retrieving a journal entry, comparing journaled images,
and displaying the journal menu.

• Event/exception handling: Handling events or
exceptions associated with journaling.

• Save/restore objects: Saving and restoring a journal
or a journal receiver.

• Recovery: Recovering from an incomplete journal
operation.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Journal Management

•

Journal Management JO-1

Entry to Journal Functions

The command processing program functions are visible
to the users of journal management. The
event/ exception handling functions. save/restore object
functions. and recovery functions appear automatic to
the users.

The user entry to most of the journal functions is
through the command analyzer. Figure JO-1 and the
following text describe the paths of invocation of the
journal management modules that provide the command
processing program functions. event/exception handling
functions. save/restore object functions. and recovery
functions.

.. The command analyzer calls the command
processing programs.

• OJODL T IN and OJODL TRC are called by
OUDLOBJ.

D The event/ exception handling functions.
save/restore object functions. and recovery
functions are entered via a macro of the journal
component or a call from the data base or

JO-2

save / restore component.

() ODBRCIPS calls OJOJEJRC if a
corresponding data base recovery object is
found in ORECOVERY. If an entry for a
journal receiver is found on the machine
initialization status record the ?JORECVR
macro may call OJOCDRJR. OJOCHJNR. or
OJORRDIR. The ?JORECVR macro
determines if a journal entry should be
recovered by checking information stored in
the journal control block and the receiver
directory. If a create. delete. or restore of a
journal was in progress. QJOCDRJR is
called. If a change journal was in progress.
OJOCHJNR is called. If an operation on the
receiver directory was in progress.
OJORRDIR is called.

ODBRCIPS calls QJORTHRS if an entry for a
journal receiver is found on the machine
initialization status record that indicates the
receiver threshold value was exceeded.

• CPF data base modules monitor for the
vertical microcode entry-not-journaled
exception. The handler defined is
OJOXENNJ.

8 ODBMOVFI. ODBRNMFI. ODBMVRFR. or
ODBRNMME calls OJOCHGJD and
OJOSNDJE.

o The CPF save/restore component calls
save/restore object modules to handle the
saving and restoring of a journal or a journal
receiver.

o The event handling modules are called to
handle events and send the messages to the
appropriate message queue.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBI'y'I Corp. 1980. 1981. 1982. 1983. 1984. 1985

,-------
I Journal

Management .. I Comand
Command I Processing
Analyzer

I
Program

Modules

I
I
I QJODLTJN

I Delete

OLIDLOBJ " I
Journal

'---
Delete

f-- I
Object I QJODLTRC

I
Delete Journal

I Receiver

I
QJOCDRJR

I Create/Delete

I Restore Journal

I
Recovery

0
I

Applications,
ODBRCIPS I QJOCHJNR

Utilities. and
Data Base

CPF Components II
Synchronous I Change Journal
Recovery I Recovery

I
I OJORRDIR

I Receiver

I
Daectory
Recovery

I
I
I OJOJEJRC

Journal/End

I Journal

I Recovery

I
I OJORTHRS

Threshold-

limit-Exceeded

I Event

I

G I
CPF

OJOXENNJ

Data Base I Entry-Not-

Modules I Journaled Excep-

I
tion Handler

E)
I
I

QJOCHGJD and
ODBMOVFI OJOSNDJE
ODBRNMFI Change Journal
ODBMVRFR I

10 and Send
ODBRNMME I Journal Entry

I

0 I
I

Save/Restore
CPF

Object
Save/Restore I Modules

I
I 0 I Event

Events
I

Handling

Modules

I
I L _______ --1

Figure JO-1. Entry to Journal

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Journal Management JO-3

GENERAL OVERVIEW

Journal Management Modules

The journal management component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry into the component. Indentation of a module
shows its dependency on a previous module.

Command Processing Modules

-->OJOCRTJN-Create Journal (CRTJRN)': This module
creates a journal object and attaches journal receivers
to it.

OJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJODLTJN-Delete Journal (DLTJRN): This module
detaches receivers, stops journaling on them, and
deletes a journal.

- ->OJOCRTRC-Create Journal Receiver (CRT JRNRCV)':
This module creates a journal receiver.

-->OJODLTRC-Delete Journal Receiver (DLTJRNRCV):
This module deletes a journal receiver.

-->OJOCHGJN-Change Journal (CHGJRN)': This
module changes the operational and/or creational
attributes of a journal. Changing the operational
attributes involves detaching the currently attached
journal receivers and attaching new journal receivers.

OJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

OJOCRTRC-Create Journal Receiver
(CRTJRNRCV): This module creates a journal
receiver.

-->OJODSPJA-Display Journal Attributes (DSPJRNA)':
This module displays the operational and creational
attributes of a journal to the work station or to a
spooled printer.

'This module is a CPP (command processing program).

JO-4

QJODSPRC-Display Journal Receiver Attributes
(DSPJRNRCVA): This module displays the
attributes of a journal receiver.

QJODL TRC-Delete Journal Receiver
(DLTJRNRCV): This module deletes a journal
receiver.

-->QJODSPJE-Display Journal (DSPJRN)': This
module displays the journal entries contained on one
or more of the journal receivers to the work station,
or a spooled printer output, and/or a data base
output file.

QJODJEHP-Display Journal Help Processor: This
module displays the help screens for the Display
Journal command.

-->OJOJNMNU-Display Journal Menu
(DSPJRNMNU)': This module displays the primary
journal menu, and processes user requests.

QJOJMNHP-Journal Help Processor: This module
is called to display the help screen.

OJ OJ STAT-Journal Status: This module
processes the request for journal status, and
displays the status of a journal.

QJOJNRCY-Journal Recovery: This module
processes the request for recovery functions, and
displays the journal recovery menu.

QJOJMNHP-Journal Help Processor: This
module is called to display the help screen.

OJORYFIL-Recover File: This module
processes the request for forward or back-out
recovery from the journal recovery menu.

OJOJMNHP-Journal Help Processor: This
module is called to display the help screen.

OJORYJRN-Recover Damaged Journal: This
module processes the request for recovery of
damaged journals from the journal recovery
menu.

QJORYDIR-Recover Directory: This module
reassociates all applicable receivers on the
system with the recovered journal.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QJORYRCV-Recover Journal Receiver: This
module processes the request for recovery of
damaged journal receivers from the journal
recovery menu.

QJOJMNHP-Journal Help Processor: This
module is called to display the help screen.

QJOJNLST -Journal Selection List: This module
processes the request for the journal selection list
from the primary journal menu.

QJOJNCMD-Journal Command: This module
processes the request for the journal commands
menu from the primary journal menu or journal
recovery menu.

-->QJODSPRC-Display Journal Receiver Attributes
(DSPJRNRCVA)': This module displays the attributes
of a journal receiver.

QJODSPRC-Display Journal Receiver Attributes
(DSPJRNRCVA): This module displays the
attributes of a journal receiver.

-->QJOJRNPF-Journal Physical File (JRNPF)': This
module begins journaling changes for a specific
physical file to a journal.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJOENDJN-End Journal (ENDJRNPF)': This
module ends journaling changes for a physical file.

-->QJORTVJE-Retrieve Journal Entry (RTVJRNE)': This
module retrieves a journal entry from a journal and
places it into a set of user-defined CL variables.

QJODSPJE-Display Journal Entry: This module
retrieves the requested journal entry from the
journal, converts the entry from internal to external
format, and returns the converted entry to
QJORTVJE.

-->QJOSNDJE-Send Journal Entry (SNDJRNE)': This
module places a journal entry on a journal.

QJOGENJD-Generate Journal ID: This module
updates the journal ID cross-reference table.

'This module is a CPP (command processing program).

-->QJOREAPY-Reapply Journal Changes
(APYJRNCHG/RMVJRNCHG)': This module
applies/removes journal changes to/from a specified
file.

QJOREEXT-Reapply Invocation Exit: This module
provides an invocation exit for module QJOREAPY.

-->QJOCMPJE-Compare Journal Images
(CMPJRNIMG)': This module compares images of
record level changes recorded for a file.

The following module is invoked by the data b,se object
handler for the Move Object (MOVOBJ), Rename Object
(RNMOBJ), and Rename Member (RNMM) commands:

-->QJOCHGJD-Change Journal ID: This module
updates object names in a journal ID cross-reference
table that exists in the associated space of a journal
receiver.

Event/Exception Handling Modules

-->QJONJEVT-Entry-Not-Journaled Event: This
module handles the entry-not-journaled events and
sends the messages to the system operator.

-->QJORTHRS-Threshold-Limit-Exceeded Event: This
module handles the threshold-limit-exceeded events
and sends the messages to the user specified
message queue. This module is also invoked by
QDBRCIPS during recovery.

-->QJORUEVT-Receiver-Unusable Event: This module
handles the receiver-unusable events and sends the
messages to the system operator.

- - >QJOXEN NJ-Entry-Not-Journaled Exception
Handler: This module sends an inquiry to the system
operator.

Journal Management JO-5

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Save/Restore Object Modules

-->QJORSTJN-Restore Journal: This module performs
the object handler function necessary to restore a
journal.

QJOCRTRC-Create Journal Receiver
(CRTJRNRCV): This module creates a journal
receiver.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJORSTRC-Restore Journal Receiver: This module
performs the object handler function necessary to
restore a journal receiver.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJOSAVJN-Save Journal: This module performs.
the object handler function necessary to save a
journal.

-->QJOSAVRC-Save Journal Receiver: This module
performs the object handler function necessary to
save a journal receiver.

Recovery Modules

-->QJOCDRJR-Create/Delete/Restore Journal
Recovery: This module performs the recovery of an
interrupted create. delete. or restore journal operation.

-->QJOCHJNR-Change Journal Recovery: This module
performs the recovery of an interrupted change
journal operation.

QJOGENJD-Generate Journal ID: This module
generates a journal ID and starts journaling.

-->QJOJEJRC-Journal/End Journal Recovery: This
module performs journal recovery. including the
backout or completion. of an interrupted journal
physical file or end journal physcial file operation.

QJOGENJD-Generate Journal 10: This module
generates a journal ID and starts journaling.

-->QJORRDIR-Receiver Directory Recovery: This
module performs the recovery of an interrupted
modification of the receiver directory.

JO-6

Journal 10 Generation

A journal 10 is generated the first time an object is
journaled. The journal ID associates journal entries to
the appropriate object name. This association is
maintained in a journal ID cross-reference table
contained in the associated space of a journal receiver.
A journal ID is assigned to an object for the object's life
on the system; if journaling is ended and restarted for
the object. the same journal 10 will be used. The journal
10 for an object is also preserved across a save/restore
for the object.

A journal 10 is generated by using a compressed version
of the machine serial number. the segment identifier of
the journal. and a 4-byte number that automatically
increases by one. This generation scheme is used to
provide journal ID to object uniqueness for each object
journaled to a given journal. for each journal on a given
system. and for each system.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

Receiver Directory Management

A directory of all journal receivers associated with a
journal is maintained in the associated space of the
journal. This is called the receiver directory. When a
journal receiver is associated with a journal through a
Create Journal command, a Change Journal command,
or a Restore Journal command, an entry for that journal
receiver is added to the receiver directory. An entry will
also be added to the receiver directory when a journal
receiver is restored on the system and a directory entry
does not yet exist for that journal receiver. If a journal
receiver that is associated with a journal is deleted, its
corresponding entry is removed from the appropriate
receiver directory.

Each entry in the receiver directory contains a receiver
identifier that is used to determine where each journal
receiver belongs in the receiver chain. Multiple receiver
chains are found in the receiver directory when one of
the following conditions occur:

• A journal is restored.

• A journal receiver is restored that was previously
saved while attached to the journal.

• A journal receiver is restored and its next receiver is
not on the system.

• A journal receiver is restored, without storage freed,
and its next receiver is restored, with storage freed.

• A journal receiver from another system is restored.

• A damaged journal receiver is deleted from the
middle of a receiver chain.

• An unusable set of journal receivers is detected
during journal operations.

Journal Object Locking

During journal operations, locks are obtained on the
objects involved in the operation. This ensures the
integrity of the object or the information presented
concerning the object. Figure JO-2 shows the journal
object locks, and the space location locks.

When multiple routing steps are performing operations
that reference or modify the journal ID cross-reference
table or the receiver directory table, the operations must
be controlled so that there is no conflict in modification
or reference. These operations are synchronized across
routing steps by symbolic locking. Any operation that
modifies one of the tables obtains an exclusive, no read,
space location lock on the table. Any operation that
references one of the tables obtains a shared,read only,
space location lock on the table.

If two routing steps concurrently attempt an operation
on the same table, one of the routing steps will obtain
the lock. The other routing step will enter a lock wait,
time-out loop until the first completes its operation. The
second routing step will then obtain the lock so the
desired operation can be performed.

Process Event Masking

In order to prevent undesired interruptions and
cancellation during critical journal operations, the routing
step is masked from interruption by an asynchronous
system condition. The routing step is masked only for
interruptions that could cause inconsistencies in journal
object information. Masking the routing step is
performed by OJOCRTJN, QJODLTJN, QJOCRTRC,
QJODL TRC, QJOCHGJN, OJOJRNPF, QJOENDJN,
OJORSTJN, QJOSAVRC, QJORSTRC, QJOCHGJD,
OJOGENJD, and QJORYDIR. In addition, the event
handlers OJORTHRS and OJORUEVT perform their
operations with the process masked. The event handler
OJONJEVT performs its operations with the process
unmasked since it may process several events in one
invocation.

When information is being gathered that requires a
space pointer lock on the journal ID cross-reference
table or the receiver directory table, QJOREAPY,
OJODSPJA, and QJODSPJE prohibit cancel request.
When a space pointer lock is not held, these operations
are always interruptible and a cancel request will be
allowed.

Journal Management JO-7

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Object Locks Space Location Locks

Journal Receiver Journal ID

Library Journal Receiver File Member Directory Cross-Reference

QJOCHGJD LSUP LSRO LENR

OJOCHGJN LENR LENR4 LENR

OJOCMPJE LSRD LSRD LSRO LSRD LSRO

QJOCRTJN LENR LENR LENR

QJODLTJN LSUP LENR LENR

OJODLTRC LSUP LSRD2 LENR LENR

OJODSPJA LSRD LSRO LSRO

OJODSPJE LSRD LSRD9 LSRO LSRO

OJODSPRC LSRD

OJOENDJN LEAR LENR3

QJOGENJD LSUP LENR LSRO LENR

QJOJNLST LSRD

OJOJNRCY LENR

OJOJRNPF LSUP LENR3 LENR

QJ OJ STAT LENR

OJOREAPY LSR06 LSRD LSR06 LSRD7 LSRO

OJORSTJN LSUP LENR LENR LENR

QJORSTRC LSUP LSUp2 LENR LENR2 LENR

OJORUEVT LENR

QJORYDIR LENR LENR

OJORYFIL LSR08 LSRO

QJORYJRN LENR LENR LENR

QJORYRCV LENR

OJ OSAVJN LSRO

OJOSAVRC LSUp2 LSRO' LENR2

QJOSNDJE LSUP LSR05

, If save with storage freed is requested, LSRO will be LEN R.
2Locks only acquired and receiver directory is updated if journal exists. The receiver directory will be locked LSRO during the
reading of QJORSTRC.

3A series of data spaces or logical file control blocks may be locked LENR if logical files exist over this physical file.
4Both receivers to be attached and detached are locked.
5File is locked only if a specific file was requested on the command.
6Lock is changed to LSRD after parameter processing in QJOREAPY is completed.
7Member's data space is locked LENR to prevent a logica! defined over the member from changing entries.
BEach file selected for recovery is locked LSRO. If a damaged file is selected, its dependent logicals are locked LENR.
9Each receiver in the receiver range is locked LSRD and the receivers in the chain from the receiver range up to and including the
first receiver in the chain are also locked LSRD.

Figure JO-2. Journal Locking

JO-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The Kanji component provides the function to perform
ideographic conversion, manage ideographic dictionaries,
and provide some of the functional support for the
ideographic tables.

The first function that the Kanji component provides is
the ideographic conversion interface. The ideographic
conversion facility enables a user to enter ideographic
data to an ideographic work station with either an
alphameric or ideographic keyboard. The ideographic
conversion function extends the data entry capability of
an ideographic work station.

The second function that the Kanji component provides
is the ideographic dictionary management functions. A
user may create, display, edit, or delete an ideographic
dictionary.

The third function that the Kanji component provides is
the ideographic table support. A user may copy in or
copy out an ideographic table from or to a diskette,
check for an ideographic table, or delete an ideographic
table. The editing capability of an ideographic table is
supported through the EDTIGCTBL command function
which is part of the character generation utility function.

Kanji

GENERAL OVERVIEW

Kanji Modules

The Kanji component consists of the following modules:

-->QKJCPTBL-Copy Ideographic Table: This is an
entry point module for the CPYIGCTBL command.
This module allows a user to copy an ideographic
table from or to a diskette or to copy an ideographic
table from or to the system.

-->QKJCRDCT-Create Ideographic Dictionary: This is
an entry point module for the CRTIGCDCT command.
This module allows a user to create an ideographic
dictionary.

-->QKJDSDCT-Display Ideographic Dictionary: This is
an entry point module for the DSPIGCDCT command.
This module displays the entries and their related
words from the specified ideographic dictionary.

-->QKJEDIT-Edit Ideographic Dictionary: This is an
edit module for the EDTIGCDCT command. This
module allows a user to edit the related words of an
entry in an IGC dictionary.

-->QKJEDSEL-Display Dictionary Entries: This is a
select module of the EDTIGCDCT command. This
module displays the dictionary entries that may be
operated on by the user. The user can add entries to
the dictionary, display entries in the dictionary, and
remove entries from the dictionary.

-->QKJEROOT-Perform Normal Completion Operations:
This is the ideographic conversion module. This
module works in conjunction with the work station
component (through the IGCCNV macro) to allow a
user to perform ideographic conversion on an
ideographic work station using either an alphameric
or ideographic keyboard.

Kanji KJ-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QKJHNTBL-Delete Ideographic Table: This is an
entry point module for the DL TIGCTBL and the
CHKIGCTBL commands. The DL TIGCTBL command
will delete an ideographic table. The CHKIGCTBL
command will check for the existence of an
ideographic table.

-->QKJMDWRD-Add or Replace Dictionary Entries:
This is the modify word module. This module will
either add a new entry (and related words) or replace
an existing entry (and related words) for an
ideographic dictionary. This module is invoked
through the MODWORD macro.

-->QKJRMENT-Remove Dictionary Entry: This is the
remove entry module. This module will remove an
entry (and its related words) from an ideographic
dictionary. This module is invoked through the
RMVENTRY macro.

-->QKJRTENT-Retrieve Dictionary Entry: This is the
retrieve entry module. This module will retrieve the
entries from an ideographic dictionary. This module is
invoked through the RTVENTRY macro.

-->QKJRTWRD-Retrieve Dictionary Words: This is the
retrieve word module. This module will retrieve the
related words for an ideographic dictionary. This
module is invoked through the RTVWORD macro.

-->QUDLOBJ-Delete Dictionary from Library: This is
an entry point module for the generic delete function.
The DL TIGCDCT command will use this module as its
command processing program. This module will
delete an ideographic dictionary from a library. The
librarian component owns and maintains this module.

KJ-2
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The librarian component of CPF (control program facility)
lets the user group objects into named sets called
libraries. An object becomes a member of a library
when the object is created. The object can be moved
between libraries or renamed. It is always a member of
a library until it is deleted.

The librarian component provides the following
functions:

• Address resolution-related functions
Resolves the address of an object
Fast intermodule linkage
Library search list

• Object manipulation functions
- Check an object

Delete an object
Move an object

- Rename an object
Duplicate an object

- Other generic functions
- Clear a library
- Delete a library

Create a library
Object information repository and its manipulation

• Display functions
- Display the libraries on a library list
- Display an object description

Display a library's contents

Librarian

GENERAL OVERVIEW

Librarian Modules

The librarian component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->OLlCHLBL-Change Library List Entry
(CHGSYSLIBL/ ADDLIBLE/RMVLlBLE)': This module
adds a library to, or removes a library from, the
system or user portion of the library list.

-->OLlCHLlB-Change (replace) Library List (RPLLlBL)':
This module replaces the user portion of the library
list that is associated with a job, with a list specified
on the Replace Library List command.

-->OLlCLLlB-Clear Library (CLRLlB/DLTLlB)1: This
module lets users delete all of the objects in a library
and the library if they have authority.

OLlDLFIL-Delete Files: This module deletes files
from a library.

-->OLlCRDUP-Create Duplicate Object (CRTDUPOBJ)':
This module creates duplicate objects in a different
library or it creates duplicate objects with different
names in the same library as the original object.

-->OLlCRLlB-Create Library (CRTLlB)': This module is
used to create user-defined libraries.

'This module is a CPP (command processing program).

Librarian LI-1

This docu,nent contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985 .

-->QUDOBJD-Display Object Description (DSPOBJD)l:
This module is used to display the description of
objects to the user.

QUOUTFL-Create/Validate Outfile: This module
creates an outfile and outfile member, or validates
an existing outfile for any display commands in the
librarian which support the OUTFILE and OUTMBR
parameters.

-->QUDSUB-Display Library (DSPUB)l: This module
lets the user obtain a listing of all the objects in each
of a list of libraries. The list contains the names of
the objects as well as their basic attributes.

QUHNCMD-Execute Display Options: This
module gets all the objects selected from a
librarian selection display and calls the module(s)
necessary to process the option chosen for each
selected object.

-->QUDSPLL-Display Library List (DSPUBL)l: This
module processes the Display Library List command
to display the library list.

-->QUUST-List Object: This module provides the way
to obtain information about the contents of libraries.

-->QUMVOBJ-Move Object (MOVOBJ)l: This module
moves an object from one library to another library.

QUMOVE-Move Object Under Adopted User
Profile: This module moves an object from one
library to another library or removes an object from
a library while running under QSYS.

-->QUMVOIR-Move OIR Record: This module moves
the OIR source records of an object from the OIR of
the source library to the OIR of the target library.

-->QUDLOIR-Delete OIR Record: This module deletes
OIR records from the OIR of a library.

-->QUMROIR-Modify/Retrieve OIR Record: This
module adds, modifies, and retrieves object
information to or from an OIR.

-->QURNOBJ-Rename Object (RNMOBJ)l: This
module is used to change the name of an object.

lThis module is a CPP (command processing program).

U-2

-->QURNOIR-Rename OIR Entries: This module
renames the OIR entries for an object.

-->QUCNV-Convert Object Type: This module converts
symbolic object type to machine interface
type/subtype codes and converts machine interface
type/subtype codes to symbolic object types.

-->QUINSRT-Insert Object in Library: This module
inserts an object and its OIR data into a library.

-->QUCLNUP-Library Clean-Up Routine: This module
cleans up incompletely created or damaged libraries
caused by system malfunctions that occur during
execution of create library function.

-->QUDLOBJ-Delete CPF Object Module: This module
processes all LU delete commands to delete CPF
objects from the system.

QUFITYP-File Type Identification: This module
determines the file type of each file (device,
physical, logical. or derived).

-->QUCKOBJ-Check Object (CHKOBJ)l: This module
checks the existence of an object, and optionally,
checks the authorization the user has for the object.

-->QUADOPT-Set Space Authority in System Pointer
Under Adopted User Profile: This module sets space
authority in a system pointer while running under
QSYS.

-->QURCUB-Reclaim Library: This module cleans up
damaged libraries found during execution of the
RCLSTG command.

QUCNVD-Convert Library OIR: This module
converts the OIR of a library to the current
release/modification level during the RCLSTG
command. The library requiring conversion will
previously have been a floating library.

-->QUVLOIR-Validate OIR: This module removes OIR
entries for which no object exists in the library.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Object

An object is a named, separately addressable unit that
has a set of attributes, a value, and a unique set of
operational characteristics. The attributes associated
with an object describe that object. The value of an
object is the contents of the object itself. The
operational characteristics of an object define how an
object can be used and what operations can be
performed against it.

Library

A library is a special type of object that is used to group
other objects into named sets. The purpose of libraries
is to provide a directory for the objects that the user
creates. All objects, other than libraries, are required to
reside in libraries. An object can only reside in one
library at a time. Duplicate named objects cannot reside
in the same library unless they have different object
types. Object type is an additional qualification on an
object.

Library List

A library list is an ordered list of libraries that is
associated with each job during its execution. The
library list determines which libraries are searched, and
controls the order in which they are searched to resolve
a reference to an object.

The library list is made up of two parts: a system part
and a user part. The system part of the library list
always precedes the user part, so it is always searched
first. The user part of the library list can be changed by
using the Replace library list (RPLLlBL) command, the
Add Library List Entry (ADDLIBLE) command, the
Remove Library List Entry (RMVLI BLE) command, or the
Change System Library list (CHGSYSLlBL) command. It
can also be displayed using the Display Library List
(DSPLlBL) command. Whenever the library list is
changed, the change made in the list remains in effect
for the duration of the job or until another Replace
Library list command, Add library List Entry command,
Remove Library List Entry command or Change System
Library List command is processed.

Check an Object

The existence of an object, and optionally, the
authorization a user holds for the object can be checked
using the Check Object (CHKOBJ) command.

Librarian LI-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Delete an Object

An object can be deleted from a library by one of the
delete object commands. The librarian supports the
DELETE generic function definition table.

Move an Object

An object can be moved from one library to another
using the Move Object (MOVOBJ) command. Control
unit descriptions, device descriptions, line descriptions,
edit descriptions, user profiles, and libraries cannot be
moved.

Rename an Object

The name of an existing object can be changed by the
Rename Object (RNMOBJ) command. However, the
IBM-supplied library (OSYSl, job temporary library
(OTEMP), control unit descriptions, device descriptions,
line descriptions, and user profiles cannot be renamed.

Create Duplicate Object

An existing object can be duplicated by the Create
Duplicate Object (CRTDUPOBJ) command; however,
unit descriptions, device descriptions, edit descriptions,
journals, journal receivers, libraries, line descriptions, and
user profiles cannot be duplicated.

Other Generic Functions

The librarian component supports internal tables defining
operation applicability, object structures, and routines
performing the operations for other generic functions,
such as grant, revoke, allocate, deallocate, save, restore,
dump, suspend, display object locks, and change object
ownership.

Clear a Library

The Clear Library (CLRLlB) command is used to delete
objects from a library. The Clear Library command only
deletes objects for which the user has object existence
authority.

LI-4

Delete a Library

The Delete Library (DLTLlB) command is used to delete
a library. The library to be deleted is deleted only if all
objects in it can be deleted.

Create a Library

The user can create as many libraries as desired and use
them to hold other objects. After a library has been
created, other objects can be created or moved into it.

Object Information Repository and its Manipulations

Some of the attributes of an object are not kept with
the object. There are six types of information in this
category:

• Text information

• Service information

• Save / restore information

• Special attribute information

• File reference function information

• Journal information

The information is stored in an OIR (object information
repository). Every library has an OIR associated with it.
The librarian provides ways to add, delete, modify, and
retrieve information in the OIR. Function is also
provided to rebuild an OIR that is damaged.

Display a Library List

The Display Library List (DSPLlBL) command displays
the name, attribute, and text of each library on the
library list. This display also distinguishes the system
and user portions of the library list from each other.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display an Object Description

This function displays the attribute information
associated with an object or a set of objects. A basic,
full, or service description of an object can be
requested. The Display Object Description (DSPOBJD)
command displays descriptions for all objects of a
specified type, for all objects with a given generic name,
or for objects with a given generic name and given type.

Display the Contents of a Library

This function displays all the objects contained in each
of a list of libraries. The list of libraries can be specific
libraries or the libraries contained in the user's library list
or all the libraries the user is authorized to use, including
those libraries publicly authorized.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian U-5

Librarian Relationships to Other CPF Components II All CPF components use the macros provided by
the librarian to resolve an object address, to pass

Figure LI-1 shows the relationship between the librarian control to a module, and to convert symbolic
component and other CPF components. The following object types to their internal representations.
components use the librarian for the indicated purposes:

II Installation uses WWLlCNVO to convert a library .. Security uses the GRANT/REVOKE/TRANSFER OIR if it is in an old format. It uses WWLlVOIR to
generic function definition tables to control the check for and recover from damage to libraries
operation of its grant object authority, revoke OSYS, OSPL, OSRV, OGPL, and ORECOVERY. It
object authority, and change object ownership also uses OIR manipulation functions to restore
CPPs (command processing programs). OIR information for objects that are installed.

II Save/restore uses the SAVE/RESTORE generic Reclaim uses OLlRCLIB to check for and recover
function definition tables to control the save and from damage to all libraries. It uses OLlCNVO to
restore functions. It uses OULIST to obtain convert any library OIR that is in an old format. It
objects from a library, and it uses OIR (object uses OLlVLOIR to delete old OIR entries that do
information repository) manipulation functions to not have an object in the library.
save / restore 0 I R information along with objects.

II Librarian commands use the command analyzer to
II Service uses the DUMP generic function definition pass command parameter to the librarian CPPs.

table to perform the dump system object function.
It also uses OLiLIST to obtain information about II Librarian uses work management to gain access to
objects in a library. library OTEMP and to job structure control blocks,

such as WCB, WCBT, and so forth.
II Work management uses the

ALLOCATE/DEALLOCATE generic function iii Librarian uses security to verify, grant, and revoke
definition table to perform allocate and deallocate authorizations.
functions. Work management also uses OLiDSPLL
to display the library list of the job displayed by II Librarian uses the message handler to signal
the Display Job (DSPJOB) command. It uses the exceptions, send messages, move messages, and
create library function to create the OTEMP library. to retrieve exception data.
It uses OLlCLNUP to check for and recover from
damage to libraries during an IMPL. III Librarian uses data management functions to

perform I/O operations to support the display
commands in the librarian component.

L\-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

j

Users of
Librarian

Security

Save/Restore

Service

Work
Management

CPF

Installation

Reclaim

..
I---

D
I---

II
f--

II r--

II
I---

II --=-

I---

A

II:=

f- Librarian I---

II
~

1m
1-=

JIt

Figure LI-1. Relationship of Librarian to Other CPF Components

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Used by
Librarian

Command
Analyzer

Work
Management

Security

Message
Handler

Data
Management

Librarian LI-7

Replace Library List Command

Figure LI-2 and the following text describe the operation
of the Replace Library List (RPlLlBL) command.

.. The command analyzer decodes a Replace Library
List command and control is transferred to
QLlCHLIB.

II QLlCHLIB verifies that the library names specified
by the user are unique and that the user is
authorized to access these libraries.

II QLlCHLIB replaces the user portion of library list
with the new list, if the libraries are unique. exist.
are not damaged. and if the user is authorized to
access them. Otherwise. the library list remains
unchanged.

II Control is returned to the caller.

Return to

RPlllBL Caller

Command II

Command .. QlICHLIB

Change
Analyzer library

list CPP

II

II

WCB

t t ••••
... .,

library list

Figure LI-2. Replace library List Command Overview

U-8

,

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

J

Clear library Command

Figure U-3 and the following text describe the operation
of the Clear Library (CLRUB) command.

D The command analyzer decodes a Clear Library
command and control is transferred to QUCLUB.

II OUCLUB obtains a list of objects from the library.

II If there are files in the library, OUCLUB calls
OUDLFIL to delete the files.

CLRUB ,
Command

Command D
Analyzer

...
PO'

II

Return to
Caller

til
OLiCLUB

Clear
Library Cpp

• For other objects in the library, QUCLUB calls
QUDLOBJ to delete the objects.

II Delete MPCI (master programming change index),
if any.

II Control is returned to the caller.

II Context

I OIR

I MPCI

Library

II ..
OUDLFIL QLlDLOBJ

Delete Delete
File(s) Object CPP

Figure U-3. Clear Library Command Overview

This document contains restricted materials of IBM. L Y21 -0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian U-9

Create Library Command

Figure LI-4 and the following text describe the operation
of the Create Library (CRTLlB) command.

.. The command analyzer decodes a Create Library
command and control is transferred to OLlCRLlB.

II OLlCRLlB creates a library recovery object in
ORECOVERY.

II The context and the OIR of a library are created.

II Text. special attribute. and service records are
added to the OIR of the library.

II Grant public authorization to the library. Grant
authority for the library to the process group
profile.

II OLlCRLlB deletes the library recovery object from
ORECOVERY.

• Control is returned to the caller.

Return to
Caller

CRTLIB , t. Command .. OLlCRLlB
Command ..
Analyzer ... Create

Library CPP

'II II II

Library
Context

OIR

Figure LI-4. Create Library Command Overview

LI-10

II

II
Library
Recovery
Object

ORECOVERY Library

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM·Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian U-11

Delete Object Commands

Figure U-5 and the following text describe the operation
of the following commands:

Delete Class (Dl TClS)
Delete Command (DlTCMD)
Delete Control Unit Description (Dl TCUD)
Delete Device Description (Dl TDEVD)
Delete Data Area (DlTDTAARA)
Delete Edit Description (Dl TEDTD)
Delete File (Dl TF)
Delete Forms Control Table (Dl TFCT)
Delete Job Description (Dl T JOBD)
Delete Job Oueue (Dl T JOBO)
Delete Journal (Dl T J RN)
Delete Journal Receiver (DlTJRNRCV)
Delete line Description (DLTUND)
Delete Message File (Dl TMSGF)
Delete Message Oueue (Dl TMSGO)
Delete Output Oueue (Dl TOUTO)
Delete Program (DLTPGM)
Delete Print Image (Dl TPRTIMG)
Delete Subsystem Description (Dl TSBSD)
Delete Session Description (Dl TSSND)
Delete Table (DlTTBl)

• OUDlOBJ obtains control from the command
analyzer.

II OUDlOBJ compares the type of the object against
the DELETE generic function definition table to
determine whether to invoke a program to perform
the delete function.

LI-12

II OUDlOBJ calls ODCDlCD to delete a control unit
description.

II OUDlOBJ calls ODCDlLUD to delete a device
description.

• OUDlOBJ calls ODCDlND to delete a line
description.

II OUDlOBJ calls OSPHNSPO to delete a job queue
or an output queue.

II OUDlOBJ calls OMHDlMSO to delete a message
queue.

II If multiple files are being deleted, OUDlOBJ calls
OUFITYP to determine the file type (device,
physical, logical, or derived).

II OUDlOBJ calls ODMROUTE to delete a file.

II OUDlOBJ calls OJODl T IN to delete a journal.

III OUDlOBJ calls OJODl TRC to delete a journal
receiver.

II OUDlOBJ deletes the object and its associated
OIR records if the object type is ClS, CMD,
JOBD, DTAARA, EDTD, FCT, MSGF, PGM,
PRTIMG, SBSD, SSND, CHTFMT, SPADCT, GSS,
or TBl.

II Control is returned to the caller.

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

Return
To Caller

~

....
II

Command
Analyzer

,. , II

' QUDLOBJ 1

II ...

DELETE
,General
Function
Table

QUDLOIR

Delete Object
, Information

II
QDCDLCD

Delete Control
Unit Description

II
QSPHNSPQ

Delete Job Queue
and Output Queue

II
QDMROUTE

Delete
File(s)

• ill
'QDCDLLVD • QDCDLND

Delete Device I Delete Line
Description , Description

II II
QMHDLMSQ QUFITYP

Delete Message File Type
Queue Identification

II I • I
OJODLTJN OJODLTRC

Delete Delete Journal
Journal Receiver

1 Delete class, command, data area, edit descriPtion, forms control table, job description, message file, program, print image, session
description, subsystem description, chart format, spelling aid dictionary, or graphic symbol set.

Figure U-5. Delete Object Commands Overview

This do<.ument contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985.

Librarian LI-13

Delete library Commands

Figure LI-6 and the following text describe the operation
of the Delete Library (DLTLlB) command.

• The command analyzer decodes a Delete Library
command and control is transferred to OLlCLLlB.

II OLlCLLlB verifies that the library to be deleted is
not one of the libraries in any job library list and
the user has existence authority over the library.

• OLlCLLlB calls OUDLOBJ to delete objects other
than object type FILE from the library being
deleted.

II OLlCLLlB calls OLlDLFIL to delete object type FILE
objects.

• If the library is cleared, the OIR and the context
are destroyed. Otherwise, the library is not
deleted.

II Control is returned to the caller.

Return to
I DLTUB , Cal er

Command • II OUCLUB
Command ...
Analyzer .. Clear/Delete

Library CPP •
a •

OUDLFIL OUDLOBJ

Delete Delete

Files Object

DELETE
Generic
Function
Table

Figure U-6. Delete Library Commands Overview

L1-14

DLI I
WCB

t I .. ·
, . I

Library List

Context

I OIR
Library

I MPCI

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

Display Library Command

Figure U-7 and the following text describe the operation
of the Display Library (DSPUB) command.

D The command analyzer decodes a Display Library
command and control is transferred to OUDSUB.

II OUUST is called to retrieve basic information for
the objects in a library when the output is to
printer, or for an object selection display of a
library's contents.

II The output is formatted and then printed or
displayed. Displayed output can be a library
selection display or an object selection display of a
library's contents. Printed output can be basic
information for all objects in all specified libraries.

OLiLIST

List
Objects

DSPLIB
Command

Command
Analyzer

a
OLlDSLIB

II OUHNCMD is called to process records selected
from a library or object selection display. If the
records selected are from a library selection
display, OUHNCMD calls OUDSUB to display an
object selection display for each library.

II OUDOBJD is called to display ·FULL or ·SERVICE
information about each object selected from an
object selection display.

iii Control is returned to the caller.

Display
Library CPP

II Return
__ "~To

Printer

..
OLlHNCMD

Process Commands
From Displays

OLiDOBJD

Display Object
Description Cpp

Figure LI·7. Display library Command Overview

Caller

This document contains restricted. materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian LI-15

Display Object Description Command

Figure LI-8 and the following text describe the operation
of the Display Object Description (DSPOBJD) command.

.. The command analyzer decodes a Display Object
Description command and control is transferred to
OLiDOBJD.

II Invoke OLiLIST to obtain descriptions for the
specified objects.

D Information about the object or objects is
formatted and displayed or printed.

B OLlHNCMD is called to process records selected
from an object selection display. OLlHNCMD calls
OLiDOBJD to display *FULL or *SERVICE
information about each selected object.

II OUTFILE and OUTMBR are created/validated if
specified on command.

II OLiOUTFL creates an empty output file.

II OLiDOBJD puts data in the output file.

II Control is returned to the caller.

OLiLIST

List
Objects

Printer

·DSPOBJD
Command

Command
Analyzer

a

OLiDOBJD

Display Object
Description CPP

II
OLlHNCMD

Process Commands
From Displays

Figure LI-S. Display Object Description Command Overview

LI-16

•
•

Return
To
Caller

OLiOUTFL

CreatelValidate
Output Data Base
File and Member

II

Output
Data Base
File/Member

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

L

L

List Objects

Figure U-9 and the following text describe the operation
of the list objects function.

.. OUUST is invoked by the ?LSTOBJ macro.

II The requested information is retrieved from the
library(s) or object(s).

II A system pointer is returned to the caller of the
macro pointing to the requested information.

II Control is returned to the caller.

Return to
Caller

t II .. OLiLIST
?LSTOBJ
Macro list

Objects

II

I-- I--

Library ~ Object l-

I I
I

Figure U-9. List Objects Overview

II

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

I nformation Space -
library I--

Information

Object
Information

Object
Information

•
•
•
•
•

I
I

librarian U-17

Move Object Command

Figure U-10 and the following text describe the
operation of the Move Object (MOVOBJ) command:

.. The command analyzer decodes a Move Object
command and control is transferred to OUMVOBJ.

B The move generic function definition table is
checked to determine function applicability. object
structure. and the routine to be called to perform
the function.

II OUMVOBJ calls ODMROUTE to move a file.

MOVOBJ
Command

Command
Analyzer

B
Move
Generic Function
Definition
Table

,
..

...

II

ODMROUTE

Move File

II
OSPHNSPO
Move Job
Oueue or
Output Oueue

Figure U-10. Move Object Command Overview

LI-18

Return to
Caller

tEl
OUMVOBJ

Move
ObjectCPP

II OUMVOBJ calls OSPHNSPO to move a job queue
or an output queue.

II OUMVOBJ calls OMHMRCHK to move a message
queue.

II If the object is a standard object and does not
need special processing. the object and its OIR
records are moved to the target library.

II OUMVOBJ calls OUMOVE to back out any move
not completed.

II Control is returned to the caller.

II

Object

II
OMHMRCHK

Move
MessageOueue

.. ,...

L

II

OUMOVE

Move Object

Object
OIR
Records

Target
Library

I-

r-

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

Rename Object Command

Figure U-11 and the following text describe the
operation of the Rename Object (RNMOBJ) command.

.. The command analyzer decodes a Rename Object
command and control is transferred to QURNOBJ.

B The rename generic function definition table is
checked to determine function applicability, object
structure, and the routine to be called to perform
the function.

II QURNOBJ calls QDMROUTE to rename a file.

RNMOBJ

~ Command

Command
Analyzer

B

Rename
Generic Function
Definition Table

II

QDMROUTE

Rename File

..
Return to
Caller

ta
QLlRNOBJ

... .. Rename
Object CPP

D
QMHMRCHK

Rename
Message Queue

Figure U-11. Rename Object Command Overview

II QURNOBJ calls QMHMRCHK to rename a
message queue.

II QURNOBJ calls QSPHNSPQ to rename a job
queue or an output queue.

II If the object is a standard object and does not
need special processing, the identification of the
object and its OIR (object information repository)
records are renamed as requested.

a Control is returned to the caller.

II

Object

II
QSPHNSPQ
Rename
Job Queue or
Output Queue

Librarian LI-19

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Library Clean-Up During IPL

Figure U-12 and the following text describe the
operation of the library clean-up function during IMPL.

D Control is passed to OUCLNUP from OWCISCFR
during IPL (initial program load).

111 OUCLNUP examines ORECOVERY to determine if
there are library recovery objects in it. The
presence of a library recovery object indicates that
a library was not completely created.

II OUCLNUP deletes those libraries that are not
completely created.

II OUCLNUP removes library recovery objects from
ORECOVERY.

III OUCLNUP checks each library and pieces of that
library on the system for marked damage. and
recovers the damaged pieces where possible.

II OUCLNUP sets on the immediate update flag in
the OIR index of each library on the system.

II Control is returned to the caller.

OWCISCFR

Start CPF
Process

QRECOVERY

Recover
Library

D
II

Library

Figure LI-12. Library Clean-Up During IPl

U-20

OLlCLNUP

Clean-Up
Library

Library
OIR

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

J

Check Object Command

Figure LI-13 and the following text describe the
operation of the Check Object (CHKOBJ) command.

.. The command analyzer decodes a Check Object
command and passes control to OLiCKOBJ.

II OLICKOBJ resolves both the address of the
addressing library of the object whose existence is
to be verified, and the address of the object itself,
to verify that the object does exist in the library.

II OLICKOBJ verifies the authorization the user has
to the object (if authorization verification is
requested and the object is not a data base file or
a member).

a OLICKOBJ calls OLIADOPT to set space authority
(*SPCAUT) in the system pointer to an object.

II OLICKOBJ calls ODBCHKFI if the member is to be
checked or authorization verification against a data
base file is requested.

II Control is returned to the caller.

CHKOBJ
Command

Command
Analyzer

QLlCKOBJ

Check Object
cpp

•
ODBCHKFI

Check Data
Base File

•

OLiADOPT

Adopt
Profile

Return
to
Caller

II

I Library

II

Object

Figure LI-13. Check Object Command Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Librarian u-21

Add library list Entry and Remove library list Entry
Commands

Figure LI-14 and the following text describe the
operation of the Add Library List Entry (ADDLIBLE) and
Remove Library List Entry (RMVLlBLE) commands.

.. The command analyzer decodes an Add Library
List Entry or Remove Library List Entry command
and passes control to OLlCHLBL.

II A library is added to or removed from the user
portion of the process's library list.

II Control is returned to the caller.

ADDLIBLE/ Return to Caller

RMVLlBLE "
Command t.

• OLlCHLBL
Command ..
Analyzer ... Add/Remove

Library List

II

WCB

t t ' .
,

•
Libray List

Figure U-14. Add Library List/Remove Library List
Command Overview

U-22

I

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

Create Duplicate Object Command

Figure U-15 and the following text describe the
operation of the Create Duplicate Object (CRTDUPOBJ)
command.

.. The command analyzer decodes a Create Duplicate
Object command and passes control to
OUCRDUP.

II OUCRDUP creates a duplicate object in a different
library or with a different name in the same library
as the original object. OIR records are duplicated
as well as authorizations.

II OUCRDUP calls ODBDUPF1 to duplicate data
base files.

R8turn to
Caller

CRTDUPOBJ , t. Command

OLlCRDUP
Command

II OUCRDUP calls OSPDUPO to duplicate job
queues and output queues.

II OUCRDUP calls OMHDUPMO to duplicate
message queues.

II OUCRDUP calls OUDLOBJ to delete any duplicate
objects it cannot complete.

D Control is returned to the caller.

OLIDLOBJ

Delete Object

II

Context

Analyzer Create Duplicate
OIR

Objects

/
~/~

f-- ODBDUPFI

Object I--

Library

II
OMHDUPMO

Duplicate

I File

Duplicate
Message Oueue

I

•
OSPDUPO

Duplicate Spool
Oueues

Figure LI-15. Create Duplicate Object Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

I

Librarian LI-23

Display Library List Command

Figure U-16 and the following text describe the
operation of the Display Library List (DSPUBL)
command.

.. The command analyzer decodes a Display Library
List command and passes control to QUDSPLl.

D QUDSPLL formats and prints the names,
attributes, and text for the libraries on the
process's library list. both system and user portion.
The attribute field gives the type of the library and
whether it is on the system or user portion of the
list.

II QUDSPLL calls QUDSUB to format and display
the names, attributes and text for the libraries on
the process's library list, both system and user
portions.

II Control is returned to the caller.

DSPLIBL
Command

Command ..
Analyzer

Return to
Caller ..

QLlDSPLL

Display
Library List

II
QLlDSLIP

Display
Library

Figure LI-16. Display library List Command Overview

U-24

II Printer

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Change System Library List Command

Figure LI-17 and the following text describe the
operation of the Change System Library List command.

.. The command analyzer decodes the command,
and control is transferred to QLlCHLIB.

II A library is added to or removed from the system
portion of the process library list.

• Control is returned to the caller.

Command
Analyzer

.. •
QLlCHLIB

Change System
Library List

II

WCB

t t
Library List

Figure LI-17. Change System Library List Overview

System Library Cleanup During Installation

Figure LI-18 and the following text describe the
operation of the library cleanup function during
installation.

.. Control is passed to WWLlVOIR from QINSTALL
during installation.

II The OIR of the system libraries QSYS, QSPL,
QSRV, QGPL, and QRECOVERY are checked for
marked damage. The damaged OIR is recovered if
possible.

• Control is returned to the caller .

QINSTALL .. WWLlVOIR
.... ...

Installation Cleanup System
Process •• Library

II

r--
Library -
OIR

I
I

Figure LI-18. System Library Cleanup During Installation

Librarian u-25

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

library Cleanup and Conversion During Reclaim
Storage

Figure LI-19 and the following text describe the
operation of the library cleanup and conversion during
Reclaim Storage.

.. Control is passed to OLlRCLIB from ORCLAIM
along with a list of all libraries on the system.

D ORECOVERY is checked to see if any library
recovery objects are in it. The presence of a
library recovery object indicates that a library was
not completely created.

II OLlRCLIB deletes those libraries that are not
completely created.

II OLlRCLIB removes library recovery objects from
ORECOVERY.

II Each library on the list passed from ORCLAIM,
plus its OIR and MCP!, is checked for marked
damage. Damage recovery is performed, saving
the information if possible.

II Control is returned to ORCLAIM.

II At some later time, determined by the libraries that
have not been checked, control is again passed to
OLlRCLlB, this time from ORCOMPST, from which
a pointer to an individual library is passed. At this
time the libraries passed to this module could
include libraries which were previously not
addressable through the machine context. These
libraries have not yet been checked for damage.
Only libraries not previously checked for damage
are passed at this time.

1'1 OLlCNVO is called to convert the library to the
current release/modification level if needed.

iii If conversion is not required, the library, plus its
OIR and MPCI, is checked for marked damage.
Damage recovery is performed, saving the
information if possible.

II Control is returned to ORCOMPST.

LI-26

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Library
Recovery
Object

QRCLAIM

Reclaim

QRECOVERY Library

QLlRCLIB

Reclaim
Library

II II II

Context

I

QRCOMPST

Convert

OIR

I MPCI

Library

Figure LI-19. Library Cleanup and Conversion During Reclaim Storage

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QLlCNVO

Convert
Library OIR

Context

I OIR

I MPCI

Converted Library

Librarian U-27

Library Conversion During Installation

Figure U-20 and the following text describe the
operation of the library conversion function during
installation.

D Control is passed to WWUCNVO from OINSTALL
during installation.

II Each library on the system is checked to ensure
that it is at the current release/modification level.
Any down level libraries are converted.

II Control is returned to the caller.

OINSTALL .. WWLlCNVO
.... --.

Installation Convert
Process II Library

I--
Context

II

I--

l OIR

l MPCI

Converted Library

Figure U-20. Library Conversion During Installation

L1-28

Library

-
Context -

I OIR

l MPCI

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Message Handler

INTRODUCTION • Message creation, storage, and retrieval

The message handler component of the CPF (control
program facility) provides communications between the
system operator and work stations, system users and
programs, work stations and other work stations, and
programs and the system. In order to supply those
types of communications, the message handler provides
the following functions:

• Message routing and queuing

• Error detection and reporting

• Requester interface

• System log handling

Figure M H -1 shows an overview of the message
handler functions.

Message

Handler

Message Message Error

Creation Routing Detection

Storage and and and

Retrieval Queuing Reporting

Exception

Message Message
I--

Message I--I--
Files Queues Signaling and

Monitoring

Exception
StOred - Sending r-- Message -
Message Messages

Handling

Process Default
Message Receiving Exception r--Retrieval r---- Messages - Message

Handler

System
Reply r--
List

Figure MH-1. Message Handler Functional Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System
Requester

Log
Interface

Handling

Interpretive
System

Command I-- Log I--
Language

Processor
Processor

Job Log
System

r- Log -Output
Displays

Program System
Message r-- History >--
Display Log

Command
Entry I--
Display

Message Handler MH-1

MESSAGE CREATION, STORAGE, AND RETRIEVAL

The two basic types of messages handled by the
message handler components are predefined messages
and impromptu messages. Predefined messages are
stored in a message file and impromptu messages are
messages whose text is generated at the time the
message is sent.

Predefined messages are actually message descriptions
that are stored in a message file under a message
identifier. A message description can contain: first and
second level message text, message severity, default
reply, reply validity checking information, definition of
variable data that can be sent with the message, and
escape message handling and dump information.

When a stored message is sent, the message identifier
and the message file name both must be specified. The
message identifier is sent to the specified message
queue or queues. When the message is received from
the message queue, the receiver of the message can
specify that he wants the text of the message returned.
The message handler then retrieves the message text
from the message file specified when the message was
sent. The following modules support the interactive
display of predefined stored messages:

OMHDSMSF-Display Message File: This module is the
command processing program for the Display Message
File (DSPMSGF) command, which supports displays of
message ID, severity, and first level text, for a range of
messages descriptions contained in a message file. If
the output is to be printed, message descriptions in the
specified range are located in the message file and are
sent to print file OPMSGD. If the output is to be
displayed on a screen, this module manages a subfile
display of all message descriptions having IDs in the
specified range.

OMHDSMSD-Display Message Descriptions: This
module is the command processing program for the
Display Message Description (DSPMSGD) command,
which provides detailed displays of the message
descriptions contained in a message file. Displays for
both printer and interactive work station are supported.

OMHMSSFL-Message Subfile Manager: This module
provides flexible support for the display of error
messages to a message subfile record, for the message
handler display management modules OMHDSMSD and
OMHDSMSF.

MH-2

Figure MH-2 and the following text describe message
creation, storage, and retrieval functions.

.. OMHCRMSF-Create Message File: This module
creates a stand-alone index with an associated
space. The size of the space and extension
attributes are determined by the size parameter of
the Create Message File (CRTMSGF) command.

II A message file is deleted without special
processing. The librarian delete object function is
called to delete message files.

II OMHCRMSD-Create Message Description: This
module adds messages to the message file. The
message ID, severity, and offsets to text and
control information are stored in the index portion.
First level text, second level text, and message
data formats, along with other data, are stored in
the associated space.

.. OMHCHMSD-Change Message Description: This
module changes a message description contained
in a message file.

II OMHDLMSD-Delete Message Description: This
module removes aU entries in the associated space
for the message specified. When entries are
removed, the space is made available for reuse
and the index entry is deleted.

II OMHMFSRH-Message File Search: This module
builds a list of message files based on the
message file overrides and it also searches the list
of files for the requested message identifier. This
module is invoked when a stored message is sent
to obtain a system pointer to a message file based
on the overrides at send time. The message file
system pointer is stored as part of the message
entry on the message queue. For messages on the
message queues, the message file system pointer
is used to retrieve the message. On other
message queues the system pointer is used as a
backup if the retrieve using the message file name
fails.

II OMHRTVMS-Retrieve Message CPP Interface:
This module is the interface to the Retrieve
Message (RTVMSG) command. After doing some
preliminary command checking, OMHRTVMS calls
OMHRTMSS to perform the retrieve message
function.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II OMHRTMSS-Retrieve Message Description: This
module finds the specified message file and file
override. The files are then searched in override
order for the requested message identifier. Once
found. the offsets contained in the index are used
to find information about the message in the
associated space. OMHRTMSS returns the
requested message. substituting message data as
replacement values in the message text. .. Message File

OMHCRMSF Index

Create
Message File MSG ID and Offset

a: 1"----------
III MSG I D and Offset

II!
Librarian Delete f----------
Delete II
Message File MSG I D and Offset

r--- f----------
,.. MSGID and Offset

OMHCRMSD f----------
Create Message -
Description

1--------,-

OMHCHMSD 1----------
Change Message -
Description

OMHDLMSD
Delete Message
Description

OMHMFSRH II
Message File
Search • Message Data

OMHRTVMS.OMHRTMSS f-

III Message Information Return Fields Retrieve Message

I

Figure MH·2. Message Creation. Storage. and Retrieval

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

Associated Space

Header Information

1"---------
MSGID. Text and
Information

1----------
MSGID •••

f----------

Free Space

1----------
MSGID . . .

1---------
Free Space

1---------,-

Message Handler MH-3

MESSAGE ROUTING AND QUEUING

Message Routing

The valid message types are: request, scope,
completion, diagnostic, exception, information, inquiry,
reply, and sender's copy.

Request

This type of message requests a function to be
performed. Generally request messages in CPF are
commands.

Scope

This message specifies a program to be invoked when a
program invocation of a job terminates processing. This
type of message is used by CPF to back out certain
environmental changes at the termination of the program
invocation that requested the change.

Completion

The completion message provides information on the
status of work performed.

Diagnostic and Exception

The diagnostic message provides information about
input or processing errors. Generally, an exception
message is also sent to indicate that diagnostic
messages were sent.

There are three types of exception messages: escape,
notify, and status.

• Escape: Notification of an error and unconditional
surrender of control.

• Notify: Notification of an error or exceptional
condition to which a reply can be sent. If unhandled,
the default reply is sent and control is returned to the
sender. If handled with an external handler, a reply
can be sent; control is returned to the sender.

MH-4

• Status: Notification of one program to a previous
program of some condition but no message is placed
on the message queue. If unhandled, control returns
to the sender.

Information

This type of message provides general information.

Inquiry

This type of message requires a reply.

Reply

This type of message is an answer to inquiry or notify
messages.

Sender Copy

This type of message is a copy of the inquiry or notify
message. The copy is placed on the reply to message
queue.

Message Queue Types

There are five types of message queues: user, work
station, system operator, system log, and job. The
message queues are space objects that contain a
message queue header and a control entry, followed by
variable length message entries or free space, or both.

User message queues are created, deleted, and
accessed by using the command interface of the
message handler component.

Each work station defined to the system has a message
queue associated with it. This work station message
queue is allocated to the same job or session as the
work station. The work station message queue is
created when its associated work station is defined to
the system. The message queue is also deleted or
renamed when its associated work station is deleted or
renamed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

The system operator message queue is created by the
system. It can be allocated by a user with system
operator authority to a job, either at the console or a
work station, by changing its delivery mode to break or
notify.

The system creates a system log message queue
associated with each system log (QHST, QCHG, QSVC).
The Send Program Message (SNDPGMMSG) command,
Send Message (SNDMSG) command, and ?SNDPMSG
macro are used to send messages to the system log
message queue. The Display Log (DSPLOG) command
causes the messages in the system log message queue
to move to the log file before they are displayed. The
Delete Message Queue (DL TMSGQ) command deletes
the system log message queues and automatically
re-creates them.

A job message queue is created for each job. Each job
message queue consists of a set of logical message
queues (program message queues) which are created as
needed. There is one program message queue for each
active program invocation of a job to which a message
has been sent, and one *EXT message queue which is
used to communicate with the external requester of the
job. The job message queue is the job log.

When the job ends, the messages in the job message
queue are written toa spool output file for subsequent
printing as the job log.

The following diagralTl shows the message type that can
be issued for each message queue type.

Message Queue Type

Message Type *EXT Program QSYSOPR Work Station

Information X X X

Inquiry X X

Reply X X

Completion X X

Diagnostic X X

Escape/ Exception X

Notify / Exception X X

Request X X

Scope X X

Sender Copy X X

Status / Exception X X

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

X

X

X

X

User

X

X

X

X

Message Handler MH-5

Message Queue Processing

Figure MH-3 and the following text describe message
queuing operations.

.. QMHCRMSQ-Create Message Queue: This
module processes the Create Message Queue
(CRTMSGQ) command by creating the space for
the message queue. QMHCRMSQ initializes the
header with the queue name, type, size, and limits.

QMHDLMSQ-Delete Message Queue: This
module processes the Delete Message Queue
(DL TMSGQ) command. Before the message queue
is deleted, an attempt is made to answer all
outstanding inquiry messages. If errors occur, they
are ignored and the queue is deleted.

QMHMODQS-Extend Message Queues: This
module is called when a message queue or
message file needs extending. The limits of
extendability are user-defined by the size
parameters of the create commands. This module
adopts the QSYS user profile to assure authority
to extend the space.

QMHALMSQ-Allocate Message Queue: This
module is called by the Allocate Object (ALCOBJ)
command to verify that message queues can be
allocated. This is required because not all message
queue types can be allocated. Work station
message queues cannot be allocated by the
allocate command; they are implicitly allocated
wherever the work station is allocated. System log
message queues can not be allocated.

II QMHCHMSQ-Change Message Queue: This
module processes the Change Message Queue
(CHGMSGQ) command. Some of the attributes of
a message queue that can be changed are the
name of the break handling program, queue
severity, and queue delivery mode. These
attributes are all placed in the message queue
header.

MH-6

Send Message Processing

II The following modules are used to place message
entries on the message queue:

QMHSNMSG-Send Message (SNDMSG)l: This
module does preliminary parameter checking and
setup for the message queueing modules. If the
message type is inquiry, this module calls
QMHSNINQ to process the inquiry message. If
the message type is informational, QMHSNSTQ is
called to process the information message.

QMHSNPGM-Send Program Message
(SNDPGMMSG)l: This module does preliminary
parameter checking and setup for the message
queueing modules. If the message type is inquiry
or notify, QMHSNINQ is called; if the message
type is status, QMHSNSTA is called. If the
message type is not one of those types but is
being sent to a program message queue,
QMHSNJMQ is called. In any other case,
QMHSNSTQ is called.

QMHSNBRK-Send Break Message
(SNDBRKMSG)l: This module processes
information messages to work station message
queues. If the message type is inquiry, QMHSINQ
is called to process the inquiry message.

QMHRSEXC-Send Resignal: This module is called
via the ?RSGEXC macro. This module moves an
escape message to the next program above the
program issuing the resignal. If the next program
is not monitoring for the message, QMHUNMSG
is called to handle the unmonitored escape
message condition.

QMHSNEVT-Send Event: This module sets up
and signals an event for one of the following
conditions:

• Break message sent via the Send Break
Message command to an active work station

• Message sent to a queue in break or notify
delivery mode

lThis module is a CPP (command processing program).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

• Message sent to a queue in wait for a message,
because of a Receive Message command with
wait

• Message sent to a system log, causing the log
threshold to be exceeded

QMHSNSTQ-Send Message to Specified Queue:
This module finds the specified message queue(s).
The message is placed on the queue, and the
control entry is updated. If an event needs to be
signaled, QMHSNEVT is called to signal the event.
An alert event is signaled if an alert message is
sent to QHST while alert processing is active.

QMHSNINQ-Send Inquiry to Queue: This module
finds the to message queue and the reply to
message queue. A sender's copy message is
placed on the reply to queue. The inquiry or notify
message is placed on the to message queue. If an
event should be signaled, QMHSNEVT is called to
signal the event. QMHSNINQ also performs
automatic reply processing with the INQMSGRPY
job attribute and the system reply list.

QMHSNJMQ-Send Message: This module
handles all message types, except for the inquiry
to a program message queue. If the message is to
be sent to a standard message queue,
QMHSNSTQ is called. If the message type is
escape, the receiving program exception monitors
are examined for enqueuing and handling
instructions. If an escape message is unmonitored,
QMHUNMSG is called to perform problem
analysis and send *FC. An alert event is signaled
if an alert message is sent to QHST while alert
processing is active.

QMHSNSTA-Send Status Message: This module
handles the message if the message to be sent is
a status message. If the message is being sent to
a program that has a monitor to handle the
message, an exception is signaled to that program.
If not, control is returned to the sender and
processing continues. If the message is sent to
*EXT (directly or indirectly by way of PREY to top
program) the status message is displayed on the
error line and processing continues.

QMHSNRQ-Send Request: This module sends a
request message to a job message queue. The
request is always placed on the *EXT message
queue. This is primarily used for spooled job input
or by the submit job function.

QMHSNRPL-Send Reply: This module processes
the Send Reply (SNDRPY) command. This
function is used by programs to reply to inquiry
and notify messages.

System Reply List

When an inquiry message is sent to a message queue
and the inquiry message reply job attribute is set to
system reply list INQMSGRPY (*SYSRPYL), the system
reply list is searched for the same message ID. The
system reply list entry specifies the message reply that
is automatically sent to the message queue.

QMHCRTRL-Create Reply List: This module
creates the system reply list space.

QMHADRLE-Add Reply List Entry: This module
processes the Add Reply List Entry (ADDRPYLE)
command. Reply list entries contain data for
sequence numbers to be search ordered, a
message identifier, reply text, dump indication, and
compare data.

QMHCHRLE-Change Reply List Entry: This
module processes the Change Reply List Entry
(CHGRPYLE) command. All attributes of a reply
list entry can be changed except the sequence
number.

QMHRMRLE-Remove Reply List Entry: This
module processes the Remove Reply List Entry
(RMVRPYLE) command. Single entries or all
entries can be specified for removal. If all entries
are specified and the reply list is damaged, then
the reply list is deleted and created again.

QMHDSPRL-Display Reply List: This module
processes the Display Reply List (DSPRPYL)
command. Entries are displayed or printed.

QMHRPYLO-Handle Display Reply List Options:
This module is called to handle any reply list
functions user-defined from the display.

Message Handler MH-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Messages

II OMHDSMSS-Display Messages: This module
processes the Display Messages (DSPMSG)
command, displays messages from the user, work
station, and the system operator message queues.
It will not display system log messages or
messages on the job message queue. It is also
used as the default program to handle break
messages.

Receive Message Processing

II OMHRCVMS-Receive Message Interface: This
module is the interface to the Receive Message
(RCVMSG) command. It does preliminary
command checking. then calls OMHRCMSG to
perform the receive function.

OMHRCMSS-Receive Message: This module
receives the message from the message queue.
Messages can be received by type or by key.
Various information can be returned including
resolved first and second-level text. There is also
an option on the Receive Message command to
remove the message after it has been received.

Move Message from One Program Queue to Another

II OMHMVM5-Move Message: This module is
invoked by the ?MOVPMSG macro. It moves
diagnostic, escape, informational, and completion
messages from the program invocation issuing the
macro, to an invocation above it. Escape
messages that are moved become diagnostic
messages on the new program message queue.

Remove Message from Queue

II OMHDLMS-Delete Message: This module
processes the Remove Message (RMVMSG)
command. It removes messages from a message
queue. Messages can be removed individually by
key or all old messages can be removed or all new
messages can be removed or all messages can be
removed.

MH-8

Break/Notify Message Delivery

When a message is sent to a message queue in break
or notify delivery mode, an event is signaled to the
process that has the message queue allocated. The
event is handled by the process control event handler
which calls OMHDLVMS to handle the break or notify
message delivery.

OMHDLVMS-Deliver Message: This module checks
the message severity to determine if the severity
satisfies a break or notify condition. This module
also activates the work station and alarm if the
message is to cause a notify condition. If the
message is to cause a break condition, the program
identified by the message queue is called to handle
the break message. When the break or notify
condition is complete. control is returned to the event
handler and normal processing continues.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982. 1983, 1984. 1985

L

Message Queue

QMHCRMSQ, QMHMODQS,
..

Message Queue Header
QMHDLMSQ, QMHALMSQ,

Delivery, Severity, • . .
Create or Delete Message
Queue Control Entry (*EXTl

-~- ---- -- --"

Offsets to First and Last

II Count of Messages, . . .
QMHCHMSQ ~

Message Entry
Change Message Queue

II
Message Entry

QMHSNMSG,
QMHSNPGM,

Message Entry
QMHSNSTA,
QMHSNRQ,
QMHSNRPL, - Free Space
QMHSNINQ,
QMHSNJMQ,
QMHSNBRK,

Message Entry QMHRSEXC,
QMHSNEVT,

,Put Messages on Queue
Free Space

D
QMHDSMSS

Display Messages

QMHRCVMS, ..
QMHRCMSS
Receive Message
from Queue

QMHMVMS II
Move Message
from One Program
Ql,leu'e to Another

• QMHDLMS
Remove Message
from Queue

Figure MH·3. Message Queues

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Message Handler MH-9

ERROR DETECTION AND REPORTING

Exception Messages

There are three exception message types: escape,
notify, and status. The primary difference between
these messages and others is that control can be
transferred when an exception message is sent. In other
words, the sender of the message may not get control
back after sending the message.

Sending Exception Messages

Exception messages can be sent by the machine, by
CPF, or by user programs. Messages sent by the
machine are presented as MCHnnnn messages and
indicate an exceptional condition was encountered by a
System/38 instruction or function. Exception messages
sent by CPF or user programs are sent by way of the
send message interface.

Exception messages communicate status and conditions
between programs within a job. As such, they are not
normally sent to standard message queues (except as
system information to the service or history log). Escape
and notify messages are first placed on the job message
queue; then an exception is signaled to the program
invocation specified by the sender.

• Escape

For escape messages, control will not return to the
sender regardless of how the receiving program
handles the escape message.

• Notify

For notify messages, which are basically inquiry
messages, control can return to the sender with a
reply message available to the sender.

• Status

For status messages, no messages are placed on the
job message queue. If the receiving program does
not monitor and handle a status message, control
returns to the sender.

MH-10

Monitoring Exception Messages

Exception messages can be listened for by declaring
exception / message monitors. If an exception message
is sent to a program with a corresponding monitor,
control is directed as specified by the monitor. If there
is no monitor, default system action is taken depending
on the type of message sent.

Default System Error Handling

When exception messages are sent to programs that do
not have a corresponding monitor, the default action is
dependent on the type of message sent.

• Escape

If an escape message is unmonitored, automatic
problem determination is performed to take dumps,
log the error condition to the service log, and call the
default program, if appropriate.

• Notify

If a notify message is unmonitored, ignored, or
deferred, the default reply for the message is placed
on the sending program's message queue and control
is returned to the sender.

• Status

If a status message is unmonitored, ignored, or
deferred, control is returned to the sender. No
message is placed on the job message queue, no
dumps are taken, and no message is sent to the
service log.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Exception Handling

The following modules handle exceptions:

QMHPDEH-Process Default Exception Handler: This
module is invoked by the machine whenever there is an
unmonitored machine interface exception. The primary
functions of QMHPDEH are to convert raw machine
interface exceptions to MCHnnnn messages. If the
MCHnnnn message is unmonitored, QMHUNMSG is
called.

QMHUNMSG-Unmonitored Message Handler: This
module is invoked to handle unmonitored escape
messages to programs. If problem determination is
required, QMHAPD is called. The invocations stack is
then searched until a program is found that is
monitoring CPF9999. If no such program is found, the
process is terminated.

QMHAPD-Automatic Problem Determination: This
module is called by QMHPDEH when escape messages
are unmonitored. It checks to see if logging and/or
dumps are appropriate for the program receiving the
exceptional condition. If dumps are appropriate, the
priority of the job is lowered; and, if trace is active,
trace is suspended while the dump is being taken. The
default program, if specified on the message
description, is called. When the dump has completed,
trace is resumed. The priority of the job is reset by the
scope handling program OMHRSTPR.

QMHRSTPR-Reset Priority: This command processing
program is the scope handling program for message
CPF2468, which is sent by QMHAPD. This module will
reset the job priority that had previously been lowered
by QMHAPD.

QMHRTNEX-Return From External Exception: This
module is invoked only to return from an external
exception handler. It verifies the type of handler and the
type of exception. If the return is to the sender of a
notify message, a reply is sent before control is returned
to the sender.

Un monitored Message Handling

Figures MH-4, MH-5, and MH-6 and the following text
describe the handling of unmonitored messages.

.. Program B sends escape message CPF2450 to
Program A. QMHSNJMQ is invoked to send the
message.

II Program A did not monitor for a CPF2450
message, so QMHUNMSG is invoked to handle
the unmonitored escape message.

II QMHAPD is invoked to send the error message to
the service log and take dumps.

II CPF9999 (the general function check message) is
sent to Program A by QMHUNMSG.

II Program A did not monitor for CPF9999 so
QMHUNMSG sends the function check message
to the invocation which called Program A in this
case QCL.

II QCL has a monitor for CPF9999 and receives
control to handle the exception.

Message Handler MH-ll

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Invocations

OCL II
Interpretive
CL Processor

Program A

..
Program B - CPF2450

OMHSNJMO

Send Message

OMHUNMSG

CPF9999
Unmonitored
Message Handler . CPF9999

OMHAPD
II

Automatic Problem
Determination

Figure MH-4. Unmonitored Escape Message

MH-12

r-

Message Monitors

CPF9999

CPF5720 f--

II

II

II

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980,1981, 1982, 1983, 1984, 1985

a Program B sends notify message CPF2460 to
Program A.

II OMHSNINO is invoked to send the notify
message. Program A did not monitor for a
CPF2460 so the default reply is sent.

• Control is returned to Program B, the sender.

Program Invocations Message Monitors

OCl CPF9999

Interpretive
Cl Processor

Program A CPF5720

r-

a
Program B

CPF2460

• II

OMHSNINO

Send Inquiry/Notify
Message

Figure MH-5. Unmonitored Notify Messages

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Message Handler MH-13

.. Program B sends status message CPF2470
to Program A.

II Program A did not monitor for a CPF2470
message so control is returned to Program B, the
sender. No message is put on the message queue,
no error is logged, and no dumps are taken.

Program Invocations

ael

I nterpreti ve
Cl Processor,

Program A

..
Program B CPF2470

aMHSNSTA II

Send Status Message

Figure MH-6. Unmonitored Status Message

MH-14

r--

Message Monitors

CPF9999

CPF5720

This document contains restricted materials of IBM. lY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982. 1983. 1984. 1985

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980,1981, 1982,1983, 1984, 1985

Message Handler MH-15

REQUESTER INTERFACE

The requester interface consists of the command entry
display, QCL (the interpretive command language
processor), and the job message queue. QCL receives
requests and commands from the job message queue
and passes them to the command analyzer. In the batch
environment. requests and commands are sent to the
job message queue by the spool reader when the job is
read in. In the interactive environment, commands and
requests are entered by using the command entry
display and are then sent to the job message queue. If
specific criteria are met. then a message expansion
display will be invoked.

The following are requestor interface modules:

QCL-Interpretive Command Language Processor: QCL
is initially invoked when a process is initiated. If an
initial program is specified in the user profile, QCL
invokes it. QCL then receives a request message from
*EXT and calls the command analyzer to process the
request.

QMHGSD-General Session Display: This module
presents the command entry display. Requests entered
by way of the display are put on the job message
queue. Requests already processed are displayed along
with messages that may have been sent to the request
processor. These requests and messages are the job
log.

QMHJLOG-Write Job Log: This module is called to
write the messages on the job message queue to a
spool output file.

QMHFLTR-Job Log Filter: This module filters the
previous request and its messages, when a new request
is received, according to the logging and severity levels
specified in the job description.

QMHCLOSE-Close QDGENDSP: This module is called
to close the command entry display when a request
receiving program terminates. It is invoked by
QMHIREH (the invocation reference event handler).

QMHRPRQ-Replace Request: This module is called to
replace the old request in the job message queue when
prompting is requested and a new request is built by the
prompter.

MH-16

Initial Program Processing

When a job is initiated, QCL is invoked. QCL checks the
user profile of the job; if there is an initial program
specified, QCL gives it control. If there is no initial
program or the initial program returns control to QCL,
QCL goes on to receive a request message to process.

Program Message Display

Program message display allows a user to view the
external message queue through the normal processing
of a request. The processing of a request occurs in the
interactive environment to allow the user access to
messages.

The following module displays program messages:

QMHDSEXT-Display External Message Queue: This
module displays the external message queue. Any
informational or inquiry messages sent to the external
program message queue from an interactive job can be
displayed on the screen.

Interpretive Request Processing Overview

Figure MH-7 and the following text describe interactive
request processing.

a QCL-The interpretive CL processor issues a
receive request message.

II QMHRCMSS and QMHGSD-If no request
message is in the job message queue (normal
condition for interactive), the command entry
display is presented for request entry. When a
request is entered, it is put on the job message
queue.

• Receive message returns the request to QCL.

B QCL calls the command analyzer to process the
request.

II The command analyzer syntax checks the CL and
sends any diagnostic messages to QCL. If the
command is executable, control is transferred to a
command processing program.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II Control is returned to QCL when the command
processing program is complete. QCL then
receives another request message which causes
the command entry display to be presented again.
This display will show the previous command with
any messages sent to QCL and allow a new
request to be entered.

• QMHJLOG-When the work station operator signs
off, the filtered job message queue messages are
written to the job log.

II QMHDSPJL-The user can display requests and
related messages for a partially completed job by
using the DSPJOBLOG command or selecting the
Display Job Log option from the Display Job
command.

QCL .. QMHRCMSS D

Interpretive • Receive
CL Processor Message ~

II I II
I

Command II Command ""-

Analyzer
Processing
Program

I

Job Log II QMHJLOG -
Write Job Log

.....

Figure MH-7. Request Processing Interactive

Work Station

QMHGSD

General Session Display

Job Message
Queue

Request Message ...

QMHDSPJL

Display Job
Log

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PAAB040·0

Message Handler MH-17

Batch Request Processing Overview

Figure MH-8 and the following text describe batch
request processing.

.. The spooling reader process reads the job input
stream, syntax checks it. and then sends a
message to the job message queue.

II The batch monitor starts QCL. It receives a
request message from the job message queue and
calls the command analyzer.

II The command analyzer and the command
processing programs can send or receive
messages from the program queues.

.. If there are no more request messages on the job
message queue, QCL terminates the process.

• Filtered messages are sent to the job log when the
process is terminated.

MH-18

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Input Job
Stream I_

'--__ "'T'" __ ~I-

r----------------------------,
Spooling Reader Process

Syntax
Checker

a

Reader

Job
CPP

i

L _____________________________ ~

- -

Job
Queue

Batch
Monitor

II
Job
Message
Queue

r------------- -------------
Subprocess

Program
Message
Queue

II
Job
log

1

!
.. --f"

Command
Analyzer

QCl

Interpretive
Cl Processor

Command
Processing
Programs

II

- L. ___________________________ _

-

Figure MH·S. Batch Request Processing Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Message Handler MH-19

SCOPE MESSAGE PROCESSING

When a scope message is sent to an invocation, the
invocation reference event is set to be signaled when
the invocation terminates. A scope message is placed
on the program message queue of the invocation, and
may be associated with either the program invocation or
with the invocation level. When the invocation
terminates, the event is signaled and OMHIREH is
invoked.

OMHIREH-Invocation Reference Event Handler: This
module gets control when the invocation reference event
is signaled. If an invocation was terminated by a
transfer of control, any scope messages associated with
the invocation level are moved to the program message
queue of the invocation to which control was
transferred. For all remaining scope messages, the
program specified in the scope message is called. As
each scope message is handled, it is removed. When all
scope messages have been processed, control exits the
event handler and processing continues.

SYSTEM LOGS

System Log Structure And Processing

System logs consist of system log message queues and
data base files called log versions. The message queue
is used as a temporary repository for messages until
there is a sufficient number to justify writing them to a
log version. During start CPF a check is made to ensure
all the system log message queues are available and
undamaged. An event monitor is created under the start
CPF process to listen for the write system logs to data
base event. The modules to handle system logging are:

OMHLlNIT-System logging Initializer: This module is
invoked during IPl processing. It assures the system
log message queues are available and undamaged.
When the number of messages sent to a system log
message queue reaches a predefined threshold or a
system log is displayed, an event is signaled to
indicate the messages in the system log are to be
written to a log version. An event description is set
up by OMHLlNIT to monitor for this event.

MH-20

OMHlOGER-logger: This module is an event
handler and is invoked when the write system logs
event is signaled. All entries in the system log
message queue are written to a log version and
removed from the message queue. When the queue
is empty, the module ends.

OMHClVER-Create log Version: This module sends
a message to the system operator to inform him of
the full log version and creates a new log version.

System Log Display

The following module handles system log displays:

OMHlDISP-Display log: This module processes the
Display log (DSPlOG) command. Before a system
log is displayed, OMHlDISP signals an event to have
all current messages in the system log message
queue sent to the log version. When logging is
complete, the log versions are searched to find the
log entries requested.

This document contains restricted materials of IBM. l Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

INTRODUCTION

The menu component of the CPF (control program
facility) provides six menu displays that interface with
the CPF. The menus are as follows:

• Program call menu

• Command selection menus

• Configuration menu

• System operator menu

• Programmer menu

• System request menu

Program Call Menu

The program call menu supports the execution of four
commands:

• Call Program (CALL)

• Display Messages (DSPMSG)

• Send Message (SNDMSG)

• Sign-Off (SIGNOFF)

A call to QCALLMENU will cause the menu to be
displayed. The QCALLMENU program is the initial
program for the QUSER profile provided with the
system.

Menu

Command Selection Menus

The command selection menus provide access to lists of
command names and command selection menu names
grouped by verb or subject functions.

Command Grouping Menu

The default menu, the command grouping menu,
displays a list of command selection menus that identify
major functions available on the System/38. The default
menu is displayed when prompting is requested without
entering a command name, when a question mark is
entered, or when the Display Menu (DSPMNU)
command is entered or selected off the programmer or
system operator menu without specifying a menu name.
An option may be selected, a command name or a
menu name may be entered, or up to 10 characters of a
command name may be specified to obtain a list of
partial command names. Succeeding displays depend
on the option selected from the command grouping
menu.

Menu MN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Configuration Menu

The configuration menu supports the execution of a
group of commands during the start CPF process or
during the execution of the concurrent service monitor
component. If the configuration option is specified on
the start CPF prompt or on the service function menu,
the configuration menu is displayed. Command entry is
limited to the commands shown on the display.

System Operator Menu

The system operator menu supports the execution of
three commands through function keys, 13 other
commands via option number, and general command
entry through option 5. The menu is the initial program
'or the QSYSOPR user profile. A call to QOPRMENU
program will cause the menu to be displayed.

Programmer Menu

The programmer menu supports the execution of the
display message command through CF6, ten options
corresponding to several commands commonly used by
programmers, and general command entry through
option 5. Several of the options result in an
asynchronous batch job submission. Option 7 supports
a display of the jobs submitted from the menu. The
menu is supported on the 24x80 display only.

The menu is the initial program for the QPGMR user
profile. A call to QPGMMENU program will cause the
menu to be displayed.

System Request Menu

The system request menu supports the execution of five
commands and through option 1 provides the function
of transferring to a secondary interactive job. The menu
is displayed with the system request key.

MN-2

GENERAL OVERVIEW

Menu Modules

The menu component consists of the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QCALLMENU-Program Call Menu: This module
displays the program call menu and processes the
function selected.

-->QMNCMDPM-Command Selection Menu Facility:
This module displays the command selection menus
and processes commands through the command
analyzer. QMNCMDPM is also the command
processing program for the Display Menu (DSPMNU)
command.

-->QMNCONFG-Configuration Controller and Menu:
This module displays the configuration menu and
processes any of the commands selected.

-->QPGMMENU-Programmer Menu: This module
displays the programmer menu and processing of the
commands selected.

-->QMNSYSRQ-System Request Menu: This module
displays the system request menu and processes any
of the commands selected.

-->QOPRMENU-System Operator Menu: This module
displays the system operator menu and processes
any of the commands selected.

The following module is only used within the menu
component:

QMNTXTBL-Build Menu Text Space Objects: This
module is used to build text for the command
selection menus and configuration menu displays.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Call Menu Overview

Figure MN-1 describes the function of the program call
menu.

II QCALLMENU is a program without any parameters
and may be invoked as the initial program in a
user profile or by the Call (CALL) command.
QCALLMENU is coded in CL to serve as a sample
menu program.

B The program call menu is shown on the user
display by using the QMNCALLM display device
file and the Send/Receive File (SNDRCVF)
command. The user selects the desired option and
enters any necessary parameters.

•

Program
Call Menu

QCAEXEC

Command
Analyzer

Called
Program

)

B

•
DSPMSG
Command

Figure MN-1. Program Call Menu Overview

Initial Program
or

CALL Command

IIf
QCALLMENU

Program
Call Menu

II

II Depending on the option selected, one of the
following is executed:

• Option 1: Call QCAEXEC, the high-level
language interface module of command
analyzer, to execute a call program. If the
program name is not qualified and no
parameters are used, the program is called
directly without the use of QCAEXEC.

• Option 2: Execute the Display Messages
(DSPMSG) command.

• Option 3: Execute the Send Message to
System Operator (SNDMSG) command.

CD Option 90: Execute the Sign-Off (SIGNOFF)
command.

II If an exception message is sent as a result of
executing the user-defined option, the exception
message is displayed in the error message line at
the bottom of the program call menu.

II

•
SNDMSG
Command

Queue

Program
Message

SIGNOFF
Command

Menu MN-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command Selection Menu Overview

Figure MN-2 and the following text describe the
function of the command selection menus.

.. OMNCMDPM is called when prompting is
requested without entering a command name,
when a question mark is entered, or when the
Display Menu (DSPMNU) command is entered or
selected off the programmer or system operator
menu. The command analyzer may have been
called for interactive command execution or for CL
source entry.

II The command selection menu is built using an
index object, OMNCMDPM, that contains the text
for all command selection menus.

• Each line of the command selection menu is sent
to a subfile in the OMNCMDPM display device
file. After all lines have been sent, they are
displayed. The user may select an option, enter a
command name or a command selection menu
name, or specify up to 10 characters of a
command name to obtain a list of partial
command names. The command name or
command selection menu name does not have to
be one of those on the command selection menu.

Command
Selection
Menu Name

II

•
II
II

OMNCMDPM

Menu Text

OMNCMDPM

Command
Selection Menu

Figure MN-2. Command Selection Menu Overview

MN-4

II The command selection menu is built according to'
the user-defined inputs and options.

II If a command is selected, the command name is
passed to the command analyzer for further
processing. If a command selection menu is
selected, the command selection menu is built
using OMNCMDPM.

II Control is returned to OMNCMDPM if a command
selection menu was selected or OMNCMDPM was
called via the Display Menu command. Otherwise,
control is returned to the caller.

• The command analyzer then calls the prompter to
prompt for any required parameters that are
missing (unless the CF16 key was pressed at the
command selection menu). Depending on the
environment. the command analyzer may call the
command processing program to execute the
command.

Command
Name or
Command

II

II

II

Prompter

Command
Analyzer

Command
Processing
Program

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Configuration Menu Overview

Figure MN-3 and the following text describe the
functions of the configuration menu.

.. QMNCONFG is called by the start CPF program
when configuration is requested on the start CPF
prompt display or by the concurrent service
monitor when the configuration option is selected.

II The configuration menu is built using a space
object, QMNCONFG, that contains the menu text.

II Each line of the configuration menu is sent to a
subfile in the QMNCONFG display device file.
After all lines have been sent, they are displayed.
The user then selects the command name of the
command to be executed. The command
processing program for the command selected
must be one of those on the configuration menu.
A command other than one on the menu cannot
be entered.

Concurrent
Service Monitor

- or -

• QMNCONFG calls the command analyzer and
passes to it the command name or command
along with the prompt/no prompt and execute
options. The command analyzer validity checks the
command, optionally calls the prompter to prompt
for any required parameters that are missing, and
then calls the appropriate CPP to execute the
command;

II If an exception message is sent as the result of
executing the user-defined command, the
exception message is displayed in the error
message line at the bottom of the configuration
menu.

Start CPF .. Command
Name or
Command

II

QMNCONFG

Menu Text

QMNCONFG

Configuration
Menu

Queue

Program
Message

Figure MN-3. Configuration Menu Overview

•

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Prompter

Command
Analyzer

Command
Processing
Program

Menu MN-5

System Operator Menu Overview

Figure M N -4 and the following text describe the
functions of the operator menu.

.. QOPRMENU is called by QCL when it is an initial
program, or it is invoked as a result of a call
command.

II The system operator menu is displayed, and the
user selects an option.

B When option 5, execute a command, is selected
QOPRMENU calls the command analyzer and
passes the command to it, 310ng with the
prompt/no prompt and execute options.

The command analyzer validity checks the
command, optionally calls the prompter, and then
calls the appropriate command processing program
to execute the command. When finished, the
prompted string is returned to the command line
of the menu, if prompting was requested.

Initial Program
or

Call QOPRMENU

II
QOPRMENU

System Operator

When option 6, submit job, is selected and the
CF4 key is pressed, QOPRMENU calls the
command analyzer to prompt for the command,
and the request data. The command is not
executed; instead, the request data is submitted as
a batch job. If the CF4 key is not pressed, and the
enter key is pressed, the request data is syntax
checked by the command analyzer before it is
submitted as a batch job. The CF15 key allows
submitting jobs with syntax errors.

II For all other options, QOPRMENU calls the
command processing program directly.

II If executing the command causes an exception
message to be sent, the exception message is
displayed in the error message line at the bottom
of the system operator menu.

II

II

Command

Analyzer

Command
Processing
Program

System Operator
Batch Job
Creation

Prompter
Command
Processing
Program

Queue

Program
Message

Figure MN-4. System Operator Menu Overview

MN-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Programmer Menu Overview

Figure MN-5 and the following text describe the
function of the programmer menu.

II QPGMMENU is called when it is an initial
program, it is invoked as a result of a call
command or it is invoked by the command display
program menu (DSPPGMNNU).

D The programmer menu is displayed, and the user
selects an option.

• When option 5, execute a command, is selected
QPGMMENU calls the command analyzer and
passes the command to it, along with the
prompt/ no prompt and execute options. The
command analyzer validity checks the command,
optionally calls the prompter, and then calls the
appropriate command processing program to
execute the command. When finished, the
prompted string is returned to the command line
of the menu, if prompting was requested.

Initial Program or
Call QPGMMENU or
DSPPGMNNU command

11 ____ ...
QPGMMENU

Programmer
Menu

II

When option 6, submit job, is selected and the
CF4 key is pressed, QOPRMENU calls the
command analyzer to prompt for the command,
and the request data. The command is not
executed; instead, the request data is submitted as
a batch job. If the CF4 key is not pressed, and the
enter key is pressed, the request data is syntax
checked by the command analyzer before it is
submitted as a batch job. The CF15 key allows
submitting jobs with syntax errors.

.. For the create command, QPGMMENU submits a
batch job to perform the create function requested.'

II For all other options QPGMMENU calls the
command processing program directly.

II If executing the command causes an exception
message to be sent, the exception message is
displayed in the error message line at the bottom
of the programmer menu.

..

Command
Analyzer

Command
Processing
Program

Programmer Menu
Batch Job
Creation

Prompter
Command
Processing
Program

II
Queue

Program
Message

Figure MN-S. Programmer Menu Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Menu MN-7

System Request Menu Overview

Figure MN-6 and the following text describe the
functions of the system request menu.

.. QMNSYSRQ is called by QWTPMSRQ when the
system request key is pressed.

II The system request menu is displayed. The user
can select an option number and key in
parameters. The user can bypass displaying the
system request menu on a work station by keying
in, on the input line at the bottom of the screen,
an option and the parameters that are desired
and/or needed. The system request menu is
displayed again if no information was keyed in, if
an invalid option number or incorrect parameters
were keyed in, or if a message resulted when the
option was processed. If no messages result from
the requested operation when parameters are
passed in, the system request menu is not
displayed.

QMNSYSRQ

System Request
Menu

Program
Message

Command
Name or
Command

Figure MN-6. System Request Menu Overview

MN-8

II QMNSYSRQ calls the command analyzer and
passes the command or command name to it.
along with the prompt/no prompt and execute
options, optionally calls the prompter to prompt for
any required parameters that are missing, and then
calls the appropriate command processing program
to execute the command.

II If executing the command causes an exception
message to be sent, the exception message is
displayed in the error message line at the bottom
of the system request menu.

Prompter

Command
Analyzer

Command
Processing
Program

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Build Menu Text Space Object Overview

Figure MN-7 and the following text describe the
functions of the build menu text space object.

II QMNTXTBL is called to build the menu index for
the selection menus display and the menu space
for the configuration menu displays.

II QMNCMDTX is used to build the displays. It
contains the names of the commands and
command selection menus, formatting information,
message IDs for the headings and menus, and
optionally, message IDs for commands' prompt
text.

II If the device file contains a command name
without any message IDs, the command definition
object for that command is used to obtain the
prompt text.

, ~II
QMNCMDTX

fJ
QMNTXTBL

Command Menu Text
Text Build

II II

Command -
Definition I'-

Message

Objects ~
File

I
I

I

Figure MN·1. Build Menu Text Space Objects Overview

II A message is retrieved from QCPFPMT for each
message 10 in the device file.

II A listing is produced that contains the text
received from the device file, the text for each
menu line, and error information such as,
command definition object not found, too many
options specified, or prompt text truncated.

III A space object is created that contains the menu
text for either the command name prompt or
configuration menu.

Listing of
IIi Text and

Errors -
II

Menu Text
Space Object

-or-

Menu Text
Index Object

Menu MN-9

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

MN-l0

This document contains restricted materials of IBM. LY21-0571-6

[)Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

INTRODUCTION

The Network Facilities (NF) component of the CPF is
used to provide local and remote distributions of data
files, save files, job streams, spooled files, and
messages. The NF component relies on the system
distribution directory provided by the Office Systems
(OS) component to determine the destination of the
distributions, and on the SNA Distribution Services
(SNADS) component to perform the remote
distributions.

Network File Queues

When the distribution of a network file arrives for a
user, it is placed on the network file queue. The
network file queue consists of entries on the
distribution / recipient queue created by the directory
management services of the OS component. Each entry
on the network file queue points to a network file
object, which is a space object containing the file data
plus the control information.

Network Job Entry Table

The network job entry table is used to control the
disposition of job streams sent to the system. It
contains an entry for each user or group of users who
may submit jobs to the system. It consists of a keyed
physical data base file, QANFNJE, in library QUSRSYS.

Network Facilities

GENERAL OVERVIEW

The NF component consists of the following modules:

Note: An arrow (--» identifies a module as being an

entry module into the component. Indentation of a
module shows ,hat it is dependent on a previous
module.

Network Job Entry Management Modules

-->QNFJOBAU-Network Job Entry Management
(ADDNETJOBE, CHGNETJOBE, RMVNETJOBE): This
module processes the Add Network Job Entry,
Change Network Job Entry, and Remove Network
Job Entry commands.

-->QNFJOBDS-Display Network Job Entries
(DSPNET JOBE): This module processes the Display
Network Job Entries command.

Distribution Modules

-->QNFSNDTA-Send Network File ISBMNETJOB,
SN DN ETF): This module verifies that the request is
valid, builds the necessary distribution control blocks,
creates the network file object, and invokes the OS
component distribution function to perform the
distribution.

-->QNFSNSPL-Send Network Spooled File
(SNDNETSPLF): This module verifies that the request
is valid, builds the necessary distribution control
blocks, invokes the copy spooled file function to copy
the spooled file data into a data base file, creates the
network file object, and invokes the OS component
distribution function to perform the distribution.

Network Facilities NF-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QNFSNMSG-Send Network Message
(SNDNETMSG): This module verifies that the request
is valid, builds the necessary distribution control
blocks, and invokes the as component distribution
function to perform the distribution.

The following modules are referenced by several
other modules. More detail on these modules is
shown in the command overviews later in this
section.

QNFDSTRB-Perform Local Distribution: This module
is invoked by the as component distribution function
once for each destination user. For local distributions,
QNFDSTRB is invoked in the process in which the
distribution is initiated. For remote distributions, it is
invoked in the transaction program process that runs
in the QSNADS subsystem on the remote system.
Depending on the type of distribution, the module
creates a copy of the network file object for the
recipient, submits the job stream, writes the spooled
file to an output queue, or sends the network
message to the recipient's message queue. It also
sends messages to notify the originator and the
recipient of the arrival of the distribution.

QNFPACK-Create Network File Object: This module
reads the file and creates the network file object,
using the SNADS general file server write functions.

QNFUNPAK-Unpack Network File Object: This
module is invoked to write the data from the network
file object into the spooled output file.

Transaction Program Modules

- - >QN FSBMTP-Submit Transaction Program: This
module is invoked when the QSNADS subsystem is
started. It submits a job to the QSNADS job queue
to execute the transaction program, QNFTPDTA.

- - >QNFTPDT A-Network Facilities Transaction Program:
This module executes in the SNADS subsystem and
processes incoming remote distributions received via
SNADS.

NF-2

Network File Processing Modules

-->QNFDSPRC-Display Network Files (DSNPETF): This
module processes the Display Network File
command.

-->QNFRCDTA-Receive Network Files (RCVNETF) and

Cancel Network Files CNLNETF): This module
processes the Receive Network Files command and
the Cancel Network Files command.

-->QNFBROWS-Browse Physical File Member
(BRWPFM): This module processes the Browse
Physical File Member command. It is also invoked by
QNFDSPRC to browse a network file object directly
when the browse option is selected from the display.

Recovery Modules

-->QNFRBLDQ-Rebuild Recipient Queue Message:
This module is invoked by the as component module
that rebuilds damaged recipient queues. It
determines, based on the existence of network file
objects, which messages must be enqueued on the
new recipient queue for network files.

-->QNFRCLNF-Reclaim Network Files: This module is
invoked during execution of the RCLSTG command.
It ensures that all network file objects have a
corresponding message on the correct recipient
queue, and that all messages for network file objects
on the recipient queues have corresponding network
file objects. Damaged recipient queues are rebuilt,
and damaged network file objects are destroyed.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Network Facilities NF-3

Distribution Commands and Processing

Figure NF-1 and the following text describe the
distribution function.

.. The SNDNETF and SBMNETJOB commands
invoke ONFSNDTA to perform the distribution.

o ONFSNDTA opens the file to be distributed,
and invokes ONFPACK to create the network
file object.

o The OS general distribution module is
invoked. If there are any remote
distributions, this module invokes the
SNADS distribute data function to perform
the remote distribution Q.

• For each local distribution, ONFDSTRB is
invoked. ONFDSTRB creates a copy of the
network file object and updates the message
to be put on the recipient queue. The
general distribution module puts the message
on the queue upon return from ONFDSTRB.

II The SNDNETSPLF command invokes ONFSNSPL
to perform the distribution.

o ONFSNSPL invokes the spool component to
copy the spooled file data into a data base
file. ONFPACK is then invoked to create the
network file object.

o The OS general bistribution module is
invoked. If there are any remote
distributions, this module invokes the
SNADS distribute data function to perform
the remote distribution Q.

• For each local distribution, ONFDSTRB is
invoked. ONFDSTRB opens the spooled
output file.

G QNFUNPAK is invoked to write records from
the network file object into the spooled
output file.

II The SNDNETMSG command invokes ONFSNMSG
to perform the distribution.

NF-4

o The OS general distribution module is
invoked. If there are any remote
distributions, this module invokes the
SNADS distribute data function to perform
the remote distribution Q.

• For each local distribution, ONFDSTRB is
invoked. ONFDSTRB sends the network
message to the recipient's queue.

II ONFTPDTA is invoked when the OSNADS
subsystem is started, and until the subsystem is
terminated. It invokes the SNADS receive
distribution function, which waits for an incoming
remote distribution. If the distribution is a status
distribution, it sends a message to the recipient's
message queue.

o If the distribution is a data distribution, the
OS general distribution module is invoked.

• For each local distribution, ONFDSTRB is
invoked. ONFDSTRB does one of the
following, depending on the type of
distribution:

• For network files, creates a copy of network
file object and updates the recipient queue
message, which will be put on the queue by
the general distribution module upon return.

• For job streams, determines the action to be
taken. If the job stream is to be filed, the
action is the same as for network files. If
the job stream is to be submitted, ONFPACK
G is invoked to copy the data from the
network file object into a data base file.
Spooling is then invoked to submit the job
stream to a job queue.

• For spooled files, a spooled output file is
opened. ONFPACK G is invoked to write
records from the network file object into the
spooled file.

• For messages, the message is sent to the
recipient's message queue.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
SNDNETF

SBMNETJOB SNDNETSPLF SNDNETMSG
Commands Command Command .. 1 B 1 II 1

QNFSNDTA QNFSNSPL QNFSNDTA

01 1
QNFPACK

0
os General
Distribution
Module

G

G
QNFDSTRB ,...,.-

0

QNFUNPAK

Figure NF-1. Distribution Commands and Processing

This document contains restricted materials of IBM. LY21-0571-6

«~Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

a r--

QNFTPDTA

SNADS Link to
Remote System

PAAB006·0

Network Facilities NF-5

Figure NF-2 and the following text describe the
operation of the Network File Processing commands,
DSPNETF, RCVNETF, CNLNETF and BRWPFM.

.. The DSPNETF command invokes QNFDSPRC to
perform the display function.

o If the RCVNETF or CNLNETF option is

II The RCVNETF and CNLNETF commands invoke
QNFRCDTA to receive or cancel a network file.

o For the RCVNETF only, QNFUNPAK is
invoked to copy the data from the network
file object into the user-specified data base
or save file. For both commands, the
network file object is deleted and the

selected from the display, QNFRCDTA is corresponding message is removed from the

..

invoked. Processing continues as described recipient queue.
below for these commands.

o If the Browse option is selected from the
display, QNFBROWS is invoked.
QNFBROWS directly accesses the network
file object and displays the data in the
network file.

G If the Submit option is selected from the
display, QNFUNPAK is invoked to copy the
data from the network file object into a
temporary data base file. Spooling is then
invoked to submit the job stream to a job
queue.

DSPNETF
Command

1
QNFDSPRC

T

G 10
QNFUNPAK

RCVNETF
CNLNETF
Commands

IIjO

QNFRCDTA

T

II

II The BRWPFM command invokes QNFBROWS to
display the contents of a data base file member.

BRWPFM
Command

0

QNFBROWS

PAABOO7·0

Figure NF-2. Network File Processing Commands

NF-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Figure NF-3 and the following te)<t describe the
operation of the ADDNETJOBE, CHGNE:TJOBE,
RMVNETJOBE, and DSPNETJOB commands.

L a Module QNFJOBAU is invoked by the
ADDNETJOBE, CHGNETJOBE, and RMVNETJOBE
commands.

II QNFJOBAU adds, deletes, and updates records in
the Network Job Entry Table, which is in file
QANFNJE.

II Module QNFJOBDS is invoked by the
DSPNET JOBE command.

II QNFJOBDS reads records from the Network Job
Entry Table, which is in file QANFNJE, and either
displays or prints the records.

II When the option to add, change, or remove a
network job entry is selected from the display,
module QNFJOBAU is invoked to perform the
requested function.

ADDNETJOBE
CHGNETJOBE
RMVNETJOBE
Commands

II

DSPNETJOBE
Command

l II
Network Job

QNFJOBDS - Entry Table
QANFNJE

T
a 111 II

Network Job
QNFJOBAU - Entry Table

QANFNJE

PAAB008-0

Figure NF-3. Network Job Commands

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Network Facilities NF-7

Figure NF-4 and the following text describe the
processing performed to rebuild the messages on the
recipient queue.

D When a module detects a damaged recipient
queue, it invokes OOSRCVRO.

D OOSRCVRO creates a new recipient queue and
performs the recovery for the OS component.

II ONFRBLDO is invoked to perform the recovery for
the N F component.

II ONFRBLDO obtains a list of all network file
objects for the recipient queue being recovered.

II A message is put on the recipient queue for each
network file object found for the recipient.

Function
Detecting
Damage

a
OOSRCVRO

II
New
Recipient
Oueue

II II

II Network
ONFRBLDO File

Objects I-

PAAB009·0

Figure NF·4. Rebuild Messages Processing

NF-8

Figure NF-5 and the following text describe the
operation of the network file recovery during reclaim
storage processing.

a During reclaim storage processing, ONFRCLNF is
invoked by ORCLENUP.

D ONFRCLNF obtains a list of all network file objects
on the system.

II ONFRCLNF ensures that there is a message on
the recipient queue for each network file object. A
message is put on the queue if necessary.

II ONFRCLNF obtains a list of all recipient queues on
the system. It checks each message on the queue
to determine if a network file object exists for
each message. If not. the message is removed
from the queue.

ORCLENUP

..
II Network

ONFRCLNF File
Objects

l-
I-

II

II
Network
File
Objects

I-

PAAB010·0

Figure NF·5. Network File Recovery

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The office systems component of the CPF provides
support for the Document Interchange Architecture
(DIAL provides an interface to the SNA Distribution
Services (SNADS) support for cross system DIA
services, and a variety of CL commands to set up,
maintain, and manage an office network environment.
Support is provided for the attachment of the IBM
Display Writer system, the IBM Personal Computer, and
other Office System Nodes such as System/36, other
System/38s, the 5520 Administrative System, and the
Distributed Office Support System (DISOSS) licensed
program product. DISOSS executes on System/370,
43xx, and 30xx processors. In addition, the OS
component provides these services to the
OFFICE/38-Personal Services/38 licensed program
product, which supports the 5250 and 3270 family of
display terminals that can be attached to the
System/38.

Office Systems

GENERAL OVERVIEW

The office system component functions in a variety of
environments. CL commands can be used interactively
or in batch programs to enroll, configure, authorize, and
manage the system. The primary interface to these
utilities is through the System/38 Command Analyzer.
Another group of services is provided whereby an
interactive session can be established with terminal
nodes that support the Document Interchange
Architecture. These services are provided for DIA
commands sent to the System/38 by the terminal
nodes. Devices may be attached through the Advanced
Program-to- Program Communications (APPC) support
(LU 6.2) or as emulating 5250 devices through the
System/38 Host Router Support. In a network
environment, office system component modules execute
in jobs that run within the SNADS subsystem when DIA
services are provided between various Office System
Nodes.

Office Systems OS-1

This document contains restricted materials of IBM. LY21-0571-6

@Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Terminal Node Attachment II As the Document Interchange Unit is received by
the I/O modules, it is parsed by calling

Figure OS-l shows the module flow to support a OOSPARSE to break the data data stream down
terminal node such as the IBM DisplayWriter system or into its constituent parts. When the entire DI U has

the Personal Computer when' those devices request been parsed, control returns to OOSCTRLR to

Document Interchange Services. proceed with the execution of the DIA command
just received. (OOSPARSE may call QOSPRASP to

D A terminal node sends an LU 6.2 Evoke to the initialize tables in the program associated space of

System/38, which causes the QOSAPPC module
OOSPARSE).

to be started as the Problem Phase Program in the lEI OOSIGNON is called to process a DIA Sign-On
process initiated for the Evoke request. QOSAPPC command and allow the session to continue.
opens a communications file to communicate with OOSIGNON uses information from the command
the device. to establish the session environment that will be

used while communicating with the terminal node.

II A terminal node attached as an emulating 5250 It also changes the accounting code associated

device sends a request to the Host Router to with this process to the accounting code of the

initiate a process for DIA services. The Host user profile identified for the user who is

Router starts a process and provides a module signed on.

that is the Problem Phase Program in the process. IE OOSSETCV is called to process a DIA Set Control
This module calls OOSSERVR to establish the

Value command. This will provide a user with a
environment for DIA. document password, change an existing document

II
password, or delete a user's document password.

OOSIEXIT is set up as the invocation exit for
either OOSAPPC of OOSSERVR. III QOSCHKAF is called by QOSCTRLR to perform

temporary sign on processing of affinity

a QOSINIT is called to create a space object, which processing. This is determined by the presence or

contains the Office System Session Control Block absence of the password and source/recipient

and perform other process initialization. address operands on some of the DIA commands.
QOSCHKAF calls QOSVFUSR to perform

II Once the environment is initialized, QOSAPPC or
validation of the password (if present) and to
validate that the user is enrolled in DIA services.

QOSSERVR calls OOSCTRLR. OOSCTRLR is the QOSVFUSR may also lock the identified user's
Session Controller. Its function is to manage the distribution / recipient queue to prevent its deletion
flow of data in and out of the system and to while a DIA command is being processed.
manage the flow of control within the process.

IE Distribution Services commands are processed by

II If the attached device communicates using DIA command processing programs shown in

Advanced Program-to-Program Communications, Figure OS-2.

QOSSIIO is called to send or receive data to/from
III the device. This module interacts with the Library Services commands are processed by DIA

Advanced Program-to- Program Communications command processing shown in Figure OS-3.

Function Manager. II The DIA session and the System/38 process is

IJ If the attached device communicates using 5250
terminated when the DIA Sign Off command is
received. This command is processed by

emulation, OOSPCIO is called to send or receive OOSCTRLR.
data to/from the device. This module interacts
with the System/38 Host Router. II If the user is enrolled in DIA services but the

user's Distribution/Recipient Queue (DRQ) is
damaged or destroyed, OOSRCVRQ is called to
re-create the queue. All messages that were on
the queue that point to distributions in progress
are re-created and put on the queue.

OS-2

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

• QOSSITO

APPC I/O
Handler

APPC Evoke ,
II QOSAPPC

APPC Session
Startup

t

t
III QOSHKAF

Sign-on/ Affinity
Checking

II

II

II

II QOSIGNON

QOSIEXIT

Invocation
Exit

QOSINIT

Create/lnit
Control Blocks

QOSCTRLR

Session
Controller II

Distribution
Services
See 05-20

II

11&

II QOSSETCV

Host
Router

~

QOSSERVR

PC Session
Startup

t

•
Library
Services
See 05-30

DIA Sign-on
Processor

DIA Set-Control
Value Processor

APPC
Function
Manager

QOSVFUSR

Verify DIA
Enrollment

Figure 05-1. Terminal Node Attachment

QOSRCJRQ

Re-create
Queue

II QOSPARSE

DIU Parser

QOSPRASP

Init Parser

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

.. t
QOSPCIO

PC I/O
Handler

Host
Router

PAABOll-0

Office Systems OS-3

Distribution Services Modules II QOSREQDS is called by the session controller to
execute the DIA Request Distribution command.

Figure OS-2 is a continuation of Figure 05-1. It shows QOSREQDS creates a permanent space object to
the support provided for Function Sets 2 and 5 of the save the document while it is being distributed. It

Document Interchange Architecture-Distribution calls QOSDSTRB to perform fan out of distribution

Services. lists, validate the recipients of the distribution, and
complete the distribution function. QOSDSTRB .. QOSOBTAN is called by the session controller to places a message on the distribution/recipient

execute the DIA Obtain command. It processes
queue of each local recipient. The message points

any distributions waiting to be delivered to the
to the document being distributed.

recipient and delivers them to the terminal node by • QOSDSRCV is set up as the invocation exit
setting up the appropriate control blocks to allow for the QOSDSTRB module. It performs
the I/O modules to send the data to the Terminal cleanup functions if the process abnormally
Node. terminates.

II QOSOBTAN serves as an interface with the 0 QOSDSTRB calls QOSVFUSR to verify that

SNADS component to send status back to the each local recipient is enrolled in the system

originator of a distribution that was sent with distribution directory,

Confirmation-of- Delivery and the originator of the 11 QOSDSTRB serves as an interface with the
distribution was on a remote system. SNADS component to send a distribution to a

• QOSOBTAN calls QOSCKDLT once the distribution
recipient on a remote Office System Node .

is complete to determine if the objects used in II QOSRDRCV is set up as the invocation exit for the
controlling the distribution can be deleted from the QOSREQDS module. It performs cleanup
system. The distribution and the object used to functions if the process abnormally terminates.
manage the distribution may both be deleted.

II QOSREQDS calls QOSCKDL T if there are no valid

II QOSOBRCV is set up as the invocation exit for the recipients to determine if the objects used in

QOSOBTAN module. It performs cleanup controlling the distribution can be deleted from the

functions should the process abnormally terminate.
system. The object used to manage the
distribution may be deleted as well as the

II QOSLIST is called by the session controller to
distribution data.

execute the DIA List command. It processes II QOSCNLDS is called by the session controller to
distribution information about items sent or waiting execute the DIA Cancel Distribution command.
for delivery. It calls QOSLSTPT to build the The module cancels either a distribution that is
formatted response to the List command. It calls waiting to be delivered to the recipient or it
QOSLSTUF to build the summary response to the cancels the tracking of a distribution that was sent

List command. to someone else.

a QOSLIST calls QOSCKDL T once the status is II QOSCNRCV is set up as the invocation exit for the

complete to determine if the objects used in
QOSCNLDS module. It performs cleanup functions

controlling the distribution can be deleted from the
if the process abnormally terminates.

system. The object used to manage the III QOSCNLDS serves as an interface with the
distribution may be deleted. SNADS component to send status back to a

II
remote recipient when a distribution was sent with

QOSLSTIX is set up as the invocation exit for the Confirmation-of-Delivery and the originator of the
QOSLIST module. It performs cleanup functions if distribution was on a remote system.
the process abnormally terminates.

II QOSRCVRQ is called when a user's
Distribution/Recipient Queue is damaged or
destroyed. It re-creates the queue and rebuilds
messages to put back on the queue for
distributions that are still in progress.

05-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

~

L

QOSCTRLR

Session
Controller

t
J f , .. QOSOBTAN II QOSLIST II QOSREQDS

DIA Request
DIA Obtain DIA List Distribution
Processor Processor Processor

II til lilt
II D II

QOSOBRCV QOSLSTIX QOSRDRCV

Invocation Invocation Invocation
Exit Exit Exit , , ,
QOSLSTPT QOSLSTUF QOSDSTRB 0
Formatted Summary Generalized
List Response List Response Distribution

t to
III , ,

QOSRCVRQ QOSCKDLT QOSVFUSR

Re-create Delete Verify DIA
Queue Objects Enrollment

II II

SNADS Component

Figure OS-2. Distribution Services Modules

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

f
IE QOSCNLDS

DIA Cancel
Distribution
Processor

QOSCNRCV

Invocation
Exit

QOSDSRCV

Invocation
Exit

II

PAAB012-O

Office Systems OS-5

Library Services Modules

Figure OS-3 is a continuation of Figure OS-1. It shows
the support provided for Function Set 8 of the
Document Interchange Architecture-Library Services.

.. QOSFILE is called by the session controller to
execute the DIA File command. It creates an
object within the QDOC library and moves the
document being sent by the terminal node to this
object. It calls QOSIDPUP to perform document
profile processing.

fJ QOSIDPUP parses the Interchange Document
Profile and adds searchable data to the System/38
data base files that make up the search index.

.. QOSFBKOT is set up as the invocation exit for the
QOSFILE module. It performs cleanup functions if
the process terminates abnormally. It is also called
to perform cleanup functions when QOSFILE
terminates normally.

II QOSRETRV is called by the session controller to
execute the DIA Retrieve command. Its function is
to locate the named document, using the supplied
Library Assigned Document Name or the Search
Results List name and index, and deliver it to the
terminal node.

II QOSRETRV may call QOSCTDOC if the request is
for a Document Descriptors Document. The
requestor can name a document list and request
that Interchange Document Profile parameters for
documents within the list be returned.
QOSCTDOC builds the response.

III QOSRTRCV is set up as the invocation exit for the
QOSRETRV module. It performs cleanup functions
if the process abnormally terminates.

II QOSEARCH is called by the session controller to
execute the DIA Search Command. QOSEARCH
builds a data base query request template and
invokes the query support to determine which
documents satisfy the selection criteria. Once the
documents are selected, the Library ASSigned
Document Names (LADNs) are saved in a
document list object. If the requestor does not
want Interchange Document Profile parameters
returned, QOSEARCH builds a response with a
count of the number of documents selected.

05-6

D QOSEARCH calls QOSCTDOC if Document
Descriptors (lDP parameters) are to be returned as
output from the search. QOSCTDOC builds the
response called a document descriptors document.

II QOSSBKOT is set up as the invocation exit for the
QOSEARCH module. It performs cleanup functions
if the process abnormally terminates. It is also
called to perform cleanup functions when
QOSEARCH terminates normally.

II QOSTLMIT is a timer event handler that is set up
if the requestor of Search puts a time limit on the
search request. If time expires before the search
completes, the event handler is invoked. It sends
an escape message to QOSEARCH to let it know
that it should terminate processing.

III QOSDELET is called by the session controller to
execute DIA Delete command. It locates the
named document in the document library and
deletes the requestor's ownership of the
document.

II QOSCKDL T is called by QOSDELET to determine
if the document object can be deleted from the
document library. If the primary owner and all
secondary owners have deleted their ownership
and the document and the document is not being
distributed to anyone, the object is deleted.

II QOSDLRCV is set up as the invocation exit for the
QOSDELET module. It performs cleanup functions
if the process abnormally terminates.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

..

II

QOSFllE

DIAFile
Processor

II QOSFBKOT

Invocation
Exit

QOSIDPUP

IDP Modify

.. QOSRETRV

DIA Retrieve
Processor

II

t

QOSRTRCV

Invocation
Exit

QOSCTRlR

Session
Controller

t
II

t

QOSEARCH

DIA Search
Processor

II QOSSBKOT

Invocation
Exit

II QOSCTDOC II II QOSTlMIT
Build Document
Descriptors
Document

Time limit
Event Handler

Figure 05-3. Library Services Modules

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980,1981, 1982, 1983, 1984, 1985

III
I

QOSDElET

DIA Delete
Processor

QOSDlRCV

Invocation
Exit

II QOSCKDlT

Delete
Objects

PAAB013-0

Office Systems OS-7

OFFICE/38-Personal Services/38 Interface Modules

Figure OS-4 shows the modules that present the
Document Interchange interface of CPF to the
OFFICE/38-Personal Services/38 licensed program
product. These modules form a layer that is invoked
through macros and map the requests to the interface
used by the DIA command processing programs. To
simplify the interface between the two System/38
products, a Document Interchange Unit (DIU) is not
exchanged. Instead, macros are used that provide
similar types of information as the DIU.

.. QOSMSCTL is called to establish a session
environment between CPF and the OS/38 product.
QOSMSCTL sets up control blocks and identifies
the user who requests DIA services. It also is
invoked when the session environment is to be
terminated. QOSMSCTL simulates the support
provided for the DIA Sign On and Sign Off
commands.

o QOSVFUSR is called to verify that the
person signing onto DIA for services is
enrolled in the system distribution directory.

II QOSINIT is called to create a space object that
contains the Office Systems Session Control Block
and perform other process initialization.

(» QOSIEXIT is called to delete the Office
Systems Session Control Block when the
DIA session terminates.

II QOSMLDOC is called for either a DIA Retrieve
function or a DIA Delete function. This module
determines which function is being requested by
parameters passed from the calling module. It
maps these parameters into the interface used by
the DIA Delete or DIA Retrieve command
processing program and transfers control to the
appropriate command processing module to
perform the requested function. Figure OS-3
describes the flow of control when QOSRETRV or
QOSDELET are invoked.

OS-8

II QOSMDISP is called for a DIA File function, DIA
Request Distribution function, or an Interchange
Document Profile modify function. This module
determines which function is being requested by
the parameters passed from the calling module. It
maps these parameters into the interface used by
the DIA File or DIA Request Distribution or Modify
command processing program and transfers
control to the appropriate command processing
module to perform the requested function. Figures
OS-2 and OS-3 describe the flow of control when
QOSFILE, QOSREQDS, or QOSIDPUP are invoked.

.. QOSMRECV is called for either a DIA Obtain
function or a DIA Cancel Distribution function.
This module determines which function is being
requested by parameters passed from the calling
module. It maps these parameters into the
interface used by the DIA Obtain or DIA Cancel
Distribution command processing program and
transfers control to the appropriate command
processing module to perform the requested
function. Figures OS-2 and OS-3 describe the
flow of control when QOSOBTAN or QOSCNLDS
are invoked.

II QOSMSRCH is called for the DIA Search function.
It sets up the interface to QOSEARCH and invokes
that module to start the search request. The
interface between CPF and OFFICE/38-Personal
Services/38 allows a search to return some of the
information before the search actually completes.
To continue the search request,
OFFICE/38-Personal Services/38 invokes
QOSMSRCH again. QOSMSRCH can complete
returning the data without calling QOSEARCH.

II QOSMLlST is called for the DIA List function. It
sets up the interface to QOSLIST and invokes that
module to perform the request. Figure OS-2
describes the flow of control when QOSLIST is
invoked.

III QOSCHKAF is called by the macro processors to
verify that one person is authorized to work in
place of another person.

II QOSVFUSR is called to verify that an individual is
enrolled in the system distribution directory.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Office/38-Personal Services/38
Licensed Program Product ,

II
,

II II
, .. OOSMSCTL OOSMLDOC OOSMRECV OOSMRCH

Sign-on/Sign-off Delete / Retrieve Obtain / Cancel Search
Macro Processor Macro Processor Macro Processor Macro Processor

oct t ~ ~ ~ I. II
OOSINIT OOSIEXIT

Create/lnit Invocation
Control Blocks Exit ,

OOSRETRV OOSDELET OOSOBTAN

DIA Retrieve DIA Delete DIA Obtain
Processor Processor Processor

II OOSMDISP
File, Modify and
Request- Distribute
Macro Processor

1
OOSFILE OOSIDPUP

....
DIAFile Modify lOP
Processor Processor

Figure 05-4. OFFICE/38-Personal Services/38

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

OOSEARCH

DIA Search
Processor ,
OOSCNLDS
DIA Cancel
Distribution
Processor

1
OOSREODG
DIA Request
Distribution
Processor

I
all OOSMLlST

List
Macro Processor

G
OOSLIST

DIA List
Processor

0

II, ~
OOSCHKAF

Affinity
Checking

H

IIH
OOSVFUSR

Verify DIA
Enrollment

PAABOl4-0

Office Systems OS-9

SNADS Subsystem Modules

Figure OS-5 shows the modules that execute within the
SNADS subsystem in support of the Document
Interchange services.

.. QOSSBMTR is called during the start up of the
SNADS subsystem. It submits a job to the
SNADS job queue to start execution of the DIA
transaction program. The submitter module allows
DIA dependent parameters to be set up
independently of SNADS.

II QOSDIATP runs in the SNADS subsystem as a
never-ending job. It interfaces with the SNADS
support to accept and process incoming
distributions intended for DIA. It accepts
documents and status information, then calls the
appropriate module to process the data. The job is
started when the SNADS subsystem starts and the
job terminates when the SNADS subsystem is
terminated.

• QOSIEXIT is set up as the invocation exit for
QOSDIATP. It performs cleanup functions if
the process abnormally terminates.

o QOSMSCTL is called to perform process
initialization for the SNADS environment.

G QOSINIT is called to create the Office
Systems Session Control Block and perform
some common initialization.

II QOSRCVDC is called when a document has been
received that must be delivered to users that are
local to this system. Its function is to perform
distribution of the document to each of the local

.. QOSDSTRB is called by QOSRCVDC to expand
distribution lists into their individual entries and to
put messages on distribution/recipient queues that
point to the document being distributed. If the
expanded recipient list has remote users, SNADS
is not called to send to these remote users.
Expansion of distribution lists in the SNADS
environment does not support remote users.
Remote users are treated as invalid users.

• QOSVFUSR is called to verify that local
recipients are enrolled in the system
distribution directory.

II QOSRCVDC may serve as an interface to the
SNADS support if some error status must be
returned to the originator of the distribution.

II QOSRCVST is called to process status being
returned to the originator of the distribution. When
a distribution is sent with Confirmation-of- Delivery
or when errors are detected, status is returned to
the originating system. This module updates the
Distribution Tracking Object with the status.

II QOSRCRCV is set up as the invocation exit
module for both QOSRCVDC and QOSRCVST. It
will be invoked to perform cleanup if the process
terminates abnormally.

II QOSPARSE is invoked by the SNADS component
to parse SNADS Distribution Interchange Units.

II QOSIFLSV is invoked by QOSPARSE to handle
incoming distributions. It creates an internal
document object to store the distribution.

III QOSOFLSV is invoked by the SNADS component
recipients identified on the distribution. when a DIA distribution is sent to another system.

05-10

QOSOFLSV moves the data to be sent into the
SNADS I/O buffer so that it can be transmitted.

III QOSLFLSV is invoked by the SNADS component
to lock and unlock document objects to manage
them while they are in the process of being
distributed. System/38 locks are not used but a
usage count within the object serves as a logical
lock.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
a QOSSBMTR

Submit
DIA Job

QOSMSCTL

~ Sign-on / Sign-off ~

QOSIFLSV

Input File
Server

D

II

QOSDIATP

DIA Transaction
Program

QOSRCVDC

Receive
Document

0 Macro Processor

~
QOSIEXIT

Invocation • Exit

II
I

QOSRCVST

Receive
Status

QOSPARSE .. QOSDSTRB QOSRCRCV III QOSLFLSV

DIU
Parser

•

Generalized
Distribution

H

H

QOSVFUSR

Verify DIA
Enrollment

Figure OS-5. SNADS Subsystem Modules

Invocation
Exit

SNADS Component

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Lock/Unlock
Distributions

II

"
QOSINIT

-.... Create/lnit
Control Blocks

QOSOFLSV

Output File
Server

PAAB01S-C

Office Systems 05-11

Command language (Cl) Command Processing
Programs

Figure OS-6 shows the flow of control for Cl
commands.

Save Document Command (SAVDOC)

D QOSSAVCP is called by the command analyzer for
the SAVDOC command. It identifies and locks the
documents to be saved.

II QOSSRIXT is set up as the invocation exit for the
QOSSAVCP module. It performs cleanup functions
if the process abnormally terminates.

II QOSOPEN is called to open data base files that
contain the search index information associated
with the document.

a If a search is required to identify the documents to
be saved, QOSSAVCP serves as an interface to
the data base query component to determine
which documents satisfy the selection criteria.

II The Save/Restore component is called to save the
document objects to tape or diskette. Once the
documents are saved, control returns to
QOSSAVCP. If STG(*DElETE) was specified on
the command, the document and its data base
search index information are deleted. If
STG(*FREE) was specified on the command,
storage for the document object is freed. All
document object locks are released and a printed
listing is produced if requested.

05-12

Restore Document Command (RSTDOC)

II QOSRSTCP is called by the command analyzer for
the RSTDOC command.

II QOSSRIXT is set up as the invocation exit for the
QOSRSTCP module. It performs cleanup functions
if the process abnormally terminates.

II The Save/Restore component is called to restore
the document objects from tape or diskette into
the QTEMP temporary library. When the
documents are restored, control returns to
QOSRSTCP where the documents are moved one
by one from the QTEMP library to the QDOC
library and search index information is updated to
match the information associated with the restored
document. If for some reason the document
cannot be moved into QDOC, a diagnostic
message is sent and the document is deleted from
QTEMP.

Delete Document Command (DLTDOC)

lEI QOSDlDCP is called by the command analyzer for
the Dl TDOC command. It verifies the validity of
the request and locks the document objects to be
deleted.

II QOSMSCTL is called to set up DIA session control
blocks that are used to perform an IPl recovery if
the system fails in the middle of the delete
document request.

III If a search is required to identify the documents to
be deleted, QOSDLDCP serves as an interface to
the data base query component to determine
which documents satisfy the selection criteria.

II Once the documents have been identified, the
documents are deleted from the QDOC library and
any information residing in the data base search
indexes is deleted.

Delete Document List Command (DLTDOCL)

II QOSDLLCP is called by the command analyzer for
the DL TDOCL command. It identifies the
document list objects to be deleted and deletes
them from the QUSRSYS library. In addition, it
removes records from a cross-reference file for a
data base name.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

..

SAVDOC
Command

Command
Analyzer

QOSSAVCP

Save
Document

II

II ..
II

QOSOPEN

Open
Files

1Ir---___ _
Data Base
Query
Support

QOSSRIXT

Invocation
Exit

Save / Restore
Component

RSTDOC
Command

Command
Analyzer

II QOSRSTCP

II

Restore
Document

Figure 05-6. CL Command Processing Programs

II
II

QOSMSCTL

DLTDOC
Command

Command
Analyzer

QOSDLDCP

Delete
Document

Sign-on/Sign-off
Macro Processor

This document contains restricted materials of IBM. LY21-0571-o

©Copyright IBM Corp. 1980, 1981. 1982, 1983. 1984, 1985

II

III

Data Base
Query
Support

DLTDOCL
Command

H

Command
Analyzer

H

H

QOSDLLCP

Delete
Document List

PAAB016·0

Office Systems OS-13

Figure OS-7 shows the flow of control for the CL
commands.

Grant Document Authority Command (GRTDOCAUT)

a QOSGDACP is called by the command analyzer for
the GRTDOCAUT command. It sets up the
authorization for one person to work on behalf of
another person. Both individuals must be enrolled
in the system distribution directory. The
authorization is maintained in data base records.

II QOSVFUSR is called to verify that the users
named on the command are enrolled in the system
distribution directory.

Revoke Document Authority Command (RVKDOCAUT)

II QOSSRDACP is called by the command analyzer
for the RVKDOCAUT command. It revokes the
authorization for one person to work on behalf of
another user by deleting records from a data base
file where the authorization is stored.

II QOSVFUSR is called to verify that the users
named on the command are enrolled in the system
distribution directory.

05-14

Display Document Authority Command (DSPDOCAUT)

II QOSDDACP is called by the command analyzer for
the DSPDOCAUT command. It reads some data
base files to find the information that indicates
which users are authorized to work on behalf of
other users and either formats a display or a
printed listing with the information.

II QOSVFUSR is called to verify that the users
named on the command are enrolled in the system
distribution directory.

Change Document Owner Command (CHGDOCOWN)

II QOSCHGCP is called by the command analyzer for
the CHGDOCOWN command. It updates two
objects where DIA document ownership is stored.
First, it updates the document object, then it
updates data base files where the document
search index information is stored.

II QOSVFUSR is called to verify that the users
named on the command are enrolled in the system
distribution directory.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

..
II

GRTDOCAUT
Command

H

Command
Analyzer

H

H

QOSGDACP

Grant Document
Authority

QOSVFUSR

Verify DIA
Enrollment

•

..

RVKDOCAUT
Command

~

Command
Analyzer

H

H

QOSRDACP
Revoke
Document
Authority

~

QOSVFUSR

Verify DIA
Enrollment

Figure 08-7. CL Command Processing Programs

•

II

DSPDOCAUT
Command

,
Command
Analyzer

~~

H

QOSDDACP
Display
Document
Authority

H

H

QOSVFUSR

Verify DIA
Enrollment

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

•

II

CHGDOCOWN
Command

,
Command
Analyzer

H

0

QOSCHGCP
Change
Document
Owner

~

QOSVFUSR

Verify DIA
Enrollment

PAAB017-O

Office Systems 05-15

Figure OS-8 shows the flow of control for the CL
commands.

Grant Access Code Authority (GRT ACCAUT)

• QOSGAACP is called by the command analyzer for
the GRTACCAUT command. It verifies that both
the access codes and the users involved are
defined on the system. It then authorizes use of
the access codes by updating a data base record
for each of the users being authorized to the
access codes.

Revoke Access Code Authority Command (RVKACCAUT)

II QOSRAACP is called by the command analyzer for
the RVKACCAUT command. It verifies that the
users involved are defined on the system. It then
revokes use of the access codes by updating a
data base record for each of the users whose
authorization is being revoked.

Display Access Code Authority Command (DSPACCAUT)

II QOSDAACP is called by the command analyzer for
the DSPACCAUT command. It reads data from
data base files to determine the access code each
user is authorized to and formats the data on a
display or a printed listing.

05-16

Add Access Code Command (ADDACC)

a QOSADACP is called by the command analyzer for
the ADDACC command. It determines that the
access code is a valid number and that the access
code is not currently defined on the system. It
then adds the access code to a data base file.

Remove Access Code Command (RMVACC)

II QOSRMACP is called by the command analyzer
for the RMVACC command. It determines that the
access code is a valid number and that the access
code is currently defined in the system. It then
removes the access code from all documents filed
on the system that used this code, from all users
who are authorized to this code, and finally from
the data base files where the access code is
defined.

• QOSRMIEX is set up for the invocation exit
for QOSRMACP. It performs cleanup
functions if the command terminates
normally or abnormally.

Display Access Code Command (DSPACC)

II QOSDATCP is called by the command analyzer for
the DSPACC command. It reads a data base file
where the definition of the access codes is stored
and formats the information into a display or a
printed listing.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

..

GRTACCAUT
Command

Command
Analyzer

H

H

QOSGAACP

Grant Access
Code Authority

DSPACC
Command

0

Command
Analyzer

H

H

QOSDATCP

Display
Access Code

II

RVKACCAUT
Command

Command
Analyzer

H

H

QOSRAACP

Revoke Access
Code Authority

Figure OS-8. CL Command Processing Programs

DSPACCAUT
Command

Command
Analyzer

Display Access
Code Authority

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II

ADDACC
Command

~

Command
Analyzer

H

H

QOSADACP

Add Access
Code

Ii1IIII

•

RMVACC
Command

Command
Analyzer

QOSRMACP

Remove
Access Code

U

QOSRMIEX

Invocation
Exit

PAABOl8-0

Office Systems OS-17

Manage Directory Command (MNGDIR)

• OOSENTCP is cal.led by the command analyzer for
the MNGDIR command.

II OOSDIRSM is called from OOSENTCP when a
user requests to view all the entries within the
system distribution directory.

II OOSRTENT is called to build the subfile that
contains all the entries within the system
distribution directory.

.. OOSDLUSR is called from OOSDIRSM when the
user wishes to delete an entry from the system
distribution directory.

• OOSVFUSR is called from OOSENTCP to verify

II OOSVFUSR is called from OOSDIRDL to verify
that the user profile associated with a new entry
being added is defined on the system.

II OOSDLUSR is called from OOSDIRDL when the
user wishes to change the user ID associated with
an entry or when a local user is changed to a
remote user. Under these conditions, a user ID
may have to be deleted from the system to keep
the data base files synchronized.

II OOSVFUSR is called from OOSDLUSR to place an
exclusive lock on the user's distribution/recipient
queue in order to lock out all other operations
while the user is being deleted.

III OOSUSRDP is called from OOSDIRDL when the
user wants to view all the user profiles on the

that a user is enrolled in the system distribution system.
directory.

II OOSDIRDL is called from QOSENTCP when a
user's name is entered on the command. It
produces a display of the detailed information
about an entry within the system distribution
directory.

• OOSDIRDL is called from OOSDIRSM when the

II OOSSYSDP is called from OOSDIRDL when the
user wants to view all the node IDs that have been
defined on the system.

II OOSCRTRO is called from OOSDIRDL when a
new local user is being enrolled in the system
distribution directory. It creates an internal queue
object that is used to manage distributions as they

user wishes to view the detailed information about are in progress.
an entry within the system distribution directory.

05-18

III OOSDIEXT is set up as the invocation exit for the
OOSENTCP module. It performs cleanup functions
when the command terminates either normally or
abnormally.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

•
QOSRTENT

Subfile
Builder

QOSDIRSM
Directory
Summary
Display

II

II

QOSVFUSR

Verify DIA
Enrollment

MNGDIR
Command

Command
Analyzer

QOSENTCP

Manage
Directory

t

II

II. QOSDLUSR

Figure 05-9. Manage Directory Command

Delete DIA
Enrollment

II

'III QOSUSRDP
User Profile
Selection
Display

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QOSDIEXT

Invocation
Exit

QOSDIRDL
Directory
Detail
Display

t

III
QOSSYSDP
NodelD
Selection
Display

I·
QOSCRTRQ
Create
Recipient
Queue

PAABOl9-0

Office Systems 05-19

Diaplay Directory Command (DSPDIR)

.. QOSDSDCP is called by the command analyzer for
the DSPDIR command. It determines which
function was requested by the user, opens the
appropriate data base files, and calls the next
module to perform the request.

II QOSDIEXT is set up as the invocation exit for the
QOSDSLCP module. It performs cleanup functions
when the command terminates either normally or
abnormally.

II QOSDIRSM is called from QOSDSDCP when the
request is to show all the users enrolled in the
system distribution directory.

II QOSRTENT is called to build the subfile that
contains all the users enrolled in the system
distribution directory.

II QOSVFUSR is called from QOSDSDCP to
determine if a user is enrolled in the system
distribution directory.

II QOSDIRDL is called from QOSDSDCP when a
user wants to view the details of a particular entry
within the system distribution directory. The user's
name was entered in the command.

II QOSDIRDL is called from QOSDIRM when a user
wants to view the details of a particular entry
within the system distribution directory. The user
is selected from the list of users in the directory.

OS-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II
QOSDIRSM
Directory
Summary
Display

~ .. . ,
QOSRTENT

Subfile
Builder

DSPDIR
Command

H

Command
Analyzer

IIH
'0

QOSDSDCP

Display
Directory

II
QOSVFUSR

Verify DIA
Enrollment

II

Figure 05-10. Display Directory Command

II
QOSDIEXT

Invocation
Exit

II
QOSDIRDL
Directory
Detail
Display

PAAB020-O

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Office Systems 05-21

Manage Distribution List Command (MNGDSTL) II QOSDIRDL is called from QOSLSTDL when a user
wants to view the details of a system distribution .. QOSDSLCP is called by the command analyzer for directory entry.

the ANGDSTL command. It determines which
function was requested by the user, opens the II QOSDIRDL is called from QOSSELDP when a user
appropriate data base files, and calls the next wants to view the details of a system distribution
module to perform the request. directory entry.

• QOSLSTSM is called by QOSDSLCP when a list of II QOSSELDP is called from QOSLSTDL when a user
all distribution lists currently defined on the system wants to use a list of system distribution directory
is requested. It produces the Manage Distribution users to build a new distribution list or to add
Lists Display. users to an existing list.

II QOSRTENT is a common function module that II QOSLSTDL is called from QOSLSTDP when a user
builds subfiles. In this case, it is called by wants to view the details of a distribution list.
QOSLSTSM to build the subfile for the Manage
Distribution Lists display. II QOSRTENT is called from QOSLSTDP to build the

subfile that contains all the distribution lists on the .. QOSLSTDL is called from QOSLSTSM when a system.
user wants to view the details of a distribution list.
It displays the members of a distribution list. II QOSRTENT is called from QOSSELDP to build the

subfile that contains all the users enrolled in the • QOSLSTDL is called from QOSDSLCP when the system distribution directory.
name of a distribution list is entered on the
MNGDSTL command. QOSLSTDL produces a III QOSDlEXT is set up as the invocation exit for the
display showing the members of the list. QOSDSLCP module. It performs cleanup functions

when the command terminates either normally or
II QOSRTENT is called from QOSLSTDL to build the abnormally.

subfile that contains the members of the
distribution list.

• QOSLSTDP is called from QOSLSTDL when a user
wants to use another distribution list as a base for
building a new distribution list or when an existing
list is to be added to the current list being
worked on.

OS-22

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

.J

..)

al
QOSLSTSM

List Summary
Display

II ,
QOSRTENT

Subfile
Builder

t

MNGDSTL
Command

H

Command
Analyzer

IIH
'H

QOSDSLCP

Manage
Distribution List

t

II

II

II

II
QOSDIEXT

Invocation
Exit

I-
QOSLSTDL II
List Detail
Display

t t
II II
QOSLSTDP

List Selection
Display

Figure 05-11. Manage Distribution List Command

III

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980,1981, 1982, 1983, 1984, 1985

QOSDIRDL
Directory
Detail
Display

II

QOSSELDP
Directory
Selection
Display

t
PAAB021-O

Office Systems 05-23

OS-24

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The 5211/3262/3203 function manager component of
the CPF (control program facility) provides the support
for the 5211/3262/3203 Printer on System/38.

The following printer functions are supported by the
5211/3262/3203 function manager:

• Open printer file for processing

• Close printer file for processing

• Write data to a printer file

GENERAL OVERVIEW

5211/3262/3203 Function Manager Modules

The 5211/3262/3203 function manager consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry into the component.

-->QPNOPEN-Printer Open: This module prepares an
output file for processing by'a 5211/3262/3203
Printer. The printer is initialized and the LUD (logical
unit description) is modified if any of the following
are changed:

Print image
Forms length
Translate table name
Forms width
Lines per inch to print

If the print belt is to be changed, a message is sent
to the default message queue to change it. Open
modifies the common data management entry point
table, when field level support is specified, entering
the address for QPNPTFLD in place of QPNPUT.

When the spool writer is printing data from the spool
output queue, open modifies the common data
management entry point table, entering the address
of QPNREQIO instead of QPNPUT.

5211/3262/3203 Function Manager

QPNALLOC-Continuation of Open: This module is
part of the open process and performs those
functions common to open processing for printer
files. It is called by the 5211/3262/3203 function
manager open, the 5224/5225/5256 function
manager open, and the spool open to validate the
open parameters and establish the function manager
work area.

QPNOERRS-Error Handler: This module is called by
QPNALLOC, QPNOPEN, or QWPOPEN when an open
parameter error occurs.

-->QPNCLOSE-Printer Close: This module closes a file
to the 5211/3262/3203 Printer. Blocked records are
printed if the close is normal; records are purged if
the close is not normal. If the close is not temporary,
the space objects are destroyed.

-->QPNPUT-Put Records: This module places a single
data record into a 5211/3262/3203 printer output
file. Page formatting can be controlled by QPNPUT,
by the user program, or from information in the
device file depending on whether data records are
described in the user program, outside the user
program in a device file, or in both places. When
print records are folded or truncated, a message is
sent to the program and the job log indicating that
occurrence.

- - >QPN FEOD-Forced- End-of- Data: This module
causes the printer function manager to print all data
that has been blocked in the data buffer but not yet
printed.

-->QPNEVT-Event Handler: This module handles the
operator intervention required event.

QPNLUDIN-LUD-Associated Space Initialization:
This module initializes the device-dependent area
of the LUD.

-->QPNPTFLD-Put Records: This module works the
same as QPN PUT but is used when field level
support is specified. This module formats a single
line, field by field, according to the specifications in
the device file and has the capability of editing those
fields.

5211/3262/3203 Function Manager PN-1

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QPNPERRS-Error Handler: This module is invoked by
the put modules or spool intercept modules when a
put parameter error occurs.

QPNXTANZ-Error Handler/Forms Alignment: This
module handles exception conditions and hardware
I/O errors as well as forms alignment.

-->QPNREQIO-REQIO Processor: This module is the
interface to the 10M. It issues the REQIO instruction
and its related processing for the put modules. and
interfaces directly with the spool writer when a put
operation is performed.

5211/3262/3203 Print Operation

Figure PN-1 and the following text show an overview of
a 5211/3262/3203 print operation.

D A high-level language program or the spooling
component. through the QOMCOPEN module of
common data management, calls QPNOPEN to
prepare a file and. if necessary. to initialize the
printer for a print operation.

• An argument list is passed that contains a
pointer to the UFCB (user file control block)
and an index into the OOPCB (open data
path control block) for the device-dependent
open.

o A message is sent to the default message
queue if a different print belt is to be put on
the printer.

If the lines per inch. print image. translate table. or
forms length is changed from the previous file. an
MOOLUO is issued to the I/O manager.

II After the file has been opened and the printer
initialized. the information to be printed can be
sent to the printer. This is done by a high-level
language program or the spooling component
invoking QPNPUT. Page formatting information
can be found either in a device file or the user
program.

PN-2

• An argument list is passed that contains
pointers to the UFCB. option list. and to
control information.

o If an error is detected or the forms need to
be positioned at line 1. a message is sent to
the default message queue. When print
records are folded or truncated. a message is
sent to the job log indicating that occurrence.

• Request 1/ Os are issued to the I/O manager
to print the records. Up to an entire page of
print lines can be loaded into the data buffer
before a print operation is performed.

When the spool writer is putting data to the
printer. data blocks of 512 or 4096 bytes in SNA
(systems network architecture) character stream
format (data including control characters) are sent
to the function manager.

II QPNFEOO is called to perform a print operation on
print lines that have been blocked in the data
buffer but not yet printed.

• An argument list is passed that contains a
pointer to the UFCB.

o If an error is detected or the forms need to
be positioned at line 1. a message is sent to
the default message queue.

II An event is signaled by the I/O manager if the
printer Stop/Reset switch is pressed.

o QPNEVT causes an intervention-required
message to be sent to the default message
queue. After the appropriate action has been
taken by the default message queue and the
Ready switch on the printer has been
pressed. printing is resumed.

• After all print records have been passed to the
5211/3262/3203 function manager. QPNCLOSE.
through QOMCLOSE of data management, is
called to close the file to further processing.

• An argument list is passed that contains a
pointer to the UFCB. the type of close to
perform. and an index into the OOPCB for
the device-dependent close.

o If an error is detected or the forms need to
be positioned at line 1. a message is sent to
the default message queue.

• A print operation is performed to print those
lines that have been blocked in the data
buffer but not yet printed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

High-Level Language or Spooling Component

•
~ ~ A ~ ~ ~

OOMCOPEN OOMCLOSE
Argument
list Common Common

Open Close

e • a • • II • ~
, r r

5211/326213203
r ~ , Function Manager

OPNOPEN OPNPUTI OPNFEOO OPNEVT OPNCLOSE

Printer
OPNPTFLO

Forced Event I- Printer
Open Printer Put End-of-Oata Handler Close

I L
'---

1 1
OPNALLOC OPNXTANZ OPNPERRS

Error Error Continuation Handler IForms
of Open Alignment

Handler

J , I
OPNREOIO OPNOERRS

Request Error
1/0 Handler

Message 5211/32621
3203 Receive Event Handler
Oueue

e G
Job Operator Request 1/0 Log Console

-- ----------- ------------- -------
Machine Interface

Figure PN-1. 5211/3262/3203 Print Operation Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

521113262/3203
1/0 Manager

5211/3262/3203 Function Manager PN-3

,

PN-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The PRM (program resolution monitor) component of
the CPF (control program facility) converts programs in
the I RP (intermediate representation of a program)
language into machine interface templates, which can
then be translated into executable modules by the
machine.

The PRM supports a symbolic interface to the create
program instruction template. The PRM also supports
the CPF symbol table and the break offset mapping
table components of the program template.

The PRM does not support symbolic interfaces to the
OIR (object information repository) and associated
space. The caller of the PRM is responsible for
formatting the file reference function and user-text
information for the OIR and any information that is to go
into the associated space.

Input To The PRM

Input to the PRM is a pointer to a control block
containing data that controls the execution of the PRM.
That control block contains pointers that point to other
control blocks and data areas. They are:

• A pointer to the IRP text string to be processed

• A pointer to the UFCB (user file control block), which
describes the listing file

• Pointers to areas that describe data targeted for the
OIR

• A pointer that will contain addressability to the
program being created

• Options that control the PRM and Create Program
instruction

Program Resolution Monitor

Output From The PRM

The output from the PRM is dependent upon the
options specified. Output can consist of any or all of the
following:

• A program module suitable for execution with
addressability to the program module returned in a
control block

• An instruction stream listing and an ODT (object
definition table) summary with diagnostics

• A cross reference listing

• A dump of the machine interface program template
produced by the PRM

GENERAL OVERVIEW

Program Resolution Monitor Modules

The PRM component consists of the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QPRROOTP-PRM Root: This module is the interface
routine to the PRM. It creates and destroys work
areas and handles exceptions that are signaled from
other PRM modules.

QPRPH01 P-Phase 1 of the PRM: This module
performs all lexical and syntactical analysis on the
IRP source text string and it begins semantic
analysis on the IRP source text string. QPRPH01 P
builds internal tables to be used by QPRPH02P in
building the ODT, symbol table, and break offset
mapping table portions of the program template. It
also builds the instruction stream portion of the
program template. This version of phase 1
supports 8191 ODT entries and builds the
version 0 program template.

Program Resolution Monitor PR-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PR-2

QPRPH11 P-Alternate Phase 1 of the PRM: This
module performs all lexical and syntactical analysis
on the IRP source text string and it begins
semantic analysis on the IRP source text string.
QPRPH11 P builds internal tables to be used by
QPRPH02P in building the ODT. symbol table. and
break offset mapping portions of the program
template. It also builds the instruction stream
portion of the program template. This version of
phase 1 supports 32 767 ODT entries and builds
the version 1 program template.

QPRPH02P-Phase 2 of the PRM: This module
builds the break offset mapping table of the
program template and the symbol table.
QPRPH02P also uses modules QPRISTCK.
QPRODTBL. QPRISTSM. QPRMICK. QPRMICK1.
and QPRXRF.

QPRISTCK-Check Internal Symbol Table
Semantics: This module performs semantic
checks on the 1ST built by the QPRPH01 P
module. It checks for inconsistent entries and
relational errors between entries. All program
objects have definitions in the 1ST.

QPRODTBL-Build ODT from 1ST: This module
builds the ODT portion of the program template
from the internal symbol table.

QPRISTSM-Produce Object Summary: This
module produces a summary listing of all
program objects from the internal symbol table.
It also lists any program object errors that were
found in QPRPH01 P or QPRISTCK.

QPRMICK-Check Machine Interface Instruction
Operand Semantics for Version 0 Program
Template: This module performs semantic
checks on the instruction stream portion of the
program template before the Create Program
instruction is issued. QPRMICK takes each
instruction in turn and checks the operands of
that instruction for the required attributes.

QPRMICK1-Check Machine Interface
Instruction Operand Semantics for Version 1
Program Template: This module performs
semantic checks on the instruction stream
portion of the program template before the
Create .Program instruction is issued.
QPRMICK1 takes each instruction in turn and
checks the operands of that instruction for the
required attributes.

QPRXRF-PRM Cross Reference Listing: This
module produces the cross reference listing for
the named program objects in the IRP source.

QPRPH03P-Phase 3 of the PRM: This module
completes the program template header. issues the
Create Program instruction. adds any OIR data.
and inserts the created program's addressability
into a library.

The, following two service modules are used by
QPRPH01 p. QPRISTCK. QPRODTBL. QPRISTSM.
QPRMICK. QPRXREF. and QPRPH03P:

QPRCRASH-PRM Fatal Termination: This module is
called whenever the PRM finds an internal error. The
parameter passed to this module describes the error
condition; QPRCRASH signals an exception that
indicates a PRM failure.

QPRLlST -Output Routine for the PRM: This module
is the PRM interface to the Common Data
Management component. Depending on the input to
QPRLlST. either it will print a line or it will eject a
page and print two headings.

Figure PR-1 shows the components and functions that
use the PRM and the components used by the PRM to
perform its tasks.

This document contains restricted materials of IBM. LY21-0571 ... 6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

L

Components and
Functions Using
the PRM

High-Level
Language
Compilers

Interactive
Data Base
Utilities

Control
Language
Program
Compiler

Data
Definition

Program
Resolution
Monitor

Figure PR-1. PRM and CPF Component Relationship Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Components Used
by the PRM

Work
Control

Message
Handler

Common
Data
Management

Librarian

Program Resolution Monitor PR-3

PRM as Used by the RPG Compiler

Figure PR-2 and the following text describe an example
of how the PRM would be used by. the RPG compiler.

II The RPG compiler calls QPRROOTP, passing a
pointer to a control block. The control block
contains pointers to other control blocks and data
areas (lRP text string. options for the PRM).
QPRROOTP performs the initialization procedures
and calls QPRPH01 P.

II QPRPH01 P parses and analyzes the IRP text string
and builds tables to be used by QPRPH02P to
build the program template. QPRPH01 P produces
an IRP text code listing. Control is returned to
QPRROOTP. which then calls QPRPH02P.

If QPRPH01 P determines that there are more than
8191 ODT entries, control is returned to
QPRROOTP with an error indication. QPRROOTP
then calls QPRPH 11 P to build the larger version 1
program template which supports 32 767 entries.

II QPRPH02P, depending on the options specified
and using other modules in the PRM. performs the
following:

PR-4

• Relational semantics checking of the symbol
table

• Builds the ODV (object directory vector) and
OES (object entry string) portions of the ODT
using information from the internal symbol table
and related areas

• Produces an object summary table listing for
the objects in the symbol table

• Produces an IRP source cross reference listing

• Performs semantic checking on the operands,
extender fields. and branch or indicator targets
of the machine interface instructions

• Builds program template symbol table entries
for each symbol table entry not noted by the
compiler as having a temporary name

• Builds a program template break offset mapping
entry for each entry in the breakpoint table

Control is returned to QPRROOTP, which then
calls QPRPH03P.

II QPRPH03P. if requested. resolves a system pointer
to the library. It also completes the program
template header. issues the Create Program
instruction to build the encapsulated program,
adds any OIR data. and inserts the program's
addressability into the library. Control is returned
to QPRROOTP, which in turn returns control to its
caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982, 1983. 1984. 1985

Program Resolution
Monitor

RPG
QPRROOTP

Compiler PRM Root ..
Control • Block QPRPH01P,

l.-----
QPRPH11P

V-- Phase 1, ---- Alternate Phase 1

IRP • Text
String QPRPH02P

Phase 2

III
QPRPH03P

Phase 3

Figure PR-2. PRM as Used by the RPG Compiler

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Listing

/l---

Tables

Program
Template

~ Listing

l---

~
Error

Encapsulated
Summary

Program

~

Program Resolution Monitor PR-5

PRM Source Input and Its Associated Program
Template

Figure PR-3 shows a formatted listing of the source
input (lRP) to the PRM and the template produced by
the PRM from that source. Figure PR-4 shows a dump
of the machine interface program template produced by
the PRM from the IRP shown in Figure PR-3.

5714SS1 R01MOl GENERATED OUTPUT
SEQ INST OFFSET GENERATED CO OF.

00001
00002
00003
00004
00005
00006
o (}0·Q7
00008
00009
00010
00Q11
00012
00013
00014
00015
00016
OOQ17
0001S
00019
00020
00021
00022
000.23
00024
00025
00026
00027

00028
00029

00030

00031
00032
00033

000311

00035
00036
00037
00038

00039

00040
00041
00Q42

00043

00044
00045
00046

00047

Program
Template

0001 000004
0002 QOOOOC

0003 00001 E

00011 00002A
0005 000032
0006 000036

0007 00001111

0008 000052
0009 00005A
OOOA 000060
OOOB 000066

OCOC 0000711

DODD 000080
OOOE 000088
OOOF 00C08E

0010 00009A

0011 OOOOAII
0012 OOOOH
0013 OOOOBO

0014 OOOOBA

30113
lC23
0014
001C
lAII3
21B7
1193
1011
lcc2
OOlC
lC46
OOlC
10A3
10S6
1096
lC42
OOlC
lAIIF
2004
10E3
10CE
lc9S
0014
1802
0008
0112
0162
0164
0009
0260

0007 0007
1472 0014
OOle OOlC

1000 0016
0008
801S 0003
OOlC
12110 0014
OOlC OOlC
12110 0007
OOlC OOlC
0014 2009
0007 2005
0007 001F.
1240 0015
OOlC OOlC
1000 0015
0008
0014 OOlF
0015 oooc
4000 00111
OOlC
11000 0004

0002 0003
0002 0021
0002 0011

0007 B:
0014
001C

2004

0014

0007

0015

OOlu

0016

200A

0020

0014

00011

0000

••• 1 •••••• 2 •••••• 3 •••••• 4 •••••• 5 •••••• 6

1* DECLArtATIONS
DCL DTAPT? PO I~IT('B21')

DCL SYSPTR PS INIT('$PHYROO l')
~CL SPCPTR PP INIT(C)
DCL I~SPTR PI INIT(S)
DCL PTR PTR
DCL SPCPTR APP(10)
DCL DO I IHN(4)
DCL DO COl CHAR(l)
DCL DO C02 CHAH(2)
DCL DO CO] CHAR(3)
DCL DO C04 CHAR(4)
DCL DO cos CHAR(S)
DCL DO C07 CHAR(7)
DCL DO cos CHAR(a)
DCL DO C16 CHAR(16)
DCL DO C32 CHAR(32)
DCL DO C34 CHAR(34)
DCL DD CIIA CHAR(4A)
DCL DO C64 CHAR(64)
DCL DO C CHAR(128)
DCL DO Z ZNn(S,O)
DCL DD P PKD(5,0)
OCL DD AN(lO) B1N(4)
DCL DO AC(lO) CHAR(S)
DCL UO AI(10) BIN(4)
DCL DI) BI iHN(2) BAS(PP)
DCL DO BC C~AR(128) BAS(*)
1* SAMPL~ INSTRUCTIONS
ADDN 1,1,1
ADDLC(S) C,C,C 1 7C(B),ZNTC(b),NTZC(B),NTZNTC(B)

ADDN(RI) P,4,01139 1 ze(C01)

AND(S) Pl'-oBC,C
B B
CMPBLA(R) C,I I HI(B),LO(B),EO(B)

CMPNV(S) I,7 1 HI(B),LO(B),E~(B)

CVTNC C,9~X'02001FOOOOOOOO'
CPYBRA I,S
CP'{I!EXNZ I,'4'
CPYNV(B) Z,P 1 PUS(R),NEG(B),ZER(~)

DIU(I) Z,lO,1I I POS(C01)

EDIT C,Z'99.99','B1R2'
EXCHBY Z,C05 _
XOH(B) C,C,C 1 ZER(B)

CMPPTRA(I) PI,PI 1 EQ(C01)

CRT('"TX PS,PP
RENAME PS.'CHAR'
R~LVSP PS,C311,o,C02

PEND

Figure PR-3 (Part 1 of 3). Output and IRP Listing of the PRM

PR-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5714SS1 H01MOl
ODT OOT NAME

0001 PD

0002 PS

0003 PP ODV

0004 PI

0005 PTR

0006 APP

0007 I

0008 COl

0009 CO2

OOOA C03

OOOS C04

OOOC cOS

0000 C07

OOOE C08

OOOF C16

0010 C32

0011 C34

0012 C4S

0013 c64

0014 C

0015 Z

0016 P

0017 AN

0018 AC

0019 AI

001A BI

Symbolic Explanation of ODV!OES

ATTRIBUTES AND ODV/OES ENTRIES 1
POINTER OBJECT.STATIC,INITIAL VALUE, DATA P0INTER.
18.030iLOLI 0400010003C2F2Fl
FOINTER OBJECT,STATIC,INITIAL VALUE, SYSTEM POINTER.
1802000C/0400010201000000085BD7D9E8D9FOFOFl
POINTER OBJECT, STATIC, INITIAL VALUE,SP'C! POINTER.
1801001D/040014
POINTER OBJECT,STATIC,INITIAL VALUE, INSTRUCTION POINTER.
18040020~04QJllcl OES portion of program template
POINTER OBJECT. STATIC.
10000000/
POINTER OBJECT,STATIC,ARRAY(10),SPACE POINTER.
18010023/200000000AOOOO
DATA OBJECT,STATIC.BINARY(U),INTERNAL.
00000004/
DATA OBJECT,STATIC,CHARACTEH(I),INTERNAL.
00040001/
DATA OBJECT,STATIC,CHARACT~H(2),INTERNAL.
00040002/
DATA OBJECT,STATIC,CHARACTV,R(3),INTERN'L.
00040003/
DATA OBJ~CT,STATIC,C~ARACTER(4),INTERNAL.
00040004/
DATA OBJECT,STATIC,CHARACTER(S),INTERNAL.
00040005/
DATA OBJECT,STATIC,CHARACTER(7),INT!RNAL.
00040007/
DATA OBJECT,STATIC,CHARACTFR(8),INTERNAL.
00040008/
DATA OBJECT,STATIC,CHARACTER(16),IHTERNAL.
00040010/
DATA OBJECT,STATIC,CHARACTER(32),INTERNAL.
00040020/
DATA OBJECT,STATIC,CHARACTER(34),INTERNAL.
00040022/
DATA ODJECT,STATIc,cnARACTER(48),INTFRNAL.
00040030/
DATA OBJECT,STATIC,CHARACT!R(64),INTERNAL.
00040040/
DATA OBJECT,STATIC,CHARACTER(128),INTERNAL.
00040080/
DATA OBJECT,STATIC,ZONED(S,O),INTERNAL.
00020005/
DATA OBJECT,STATIC,PACKED(5,0),INTY,R~AL.
00030005/
DATA OBJECT,STATIC,BI~'RY(4),INTERNAL,ARRAY(10).
0800002A/6000040000000AOOOO
DATA OBJECT,STATIC,CHARACTERtS),INTEQNAL,ARRAY(10).
08040033/6000050000000AOOOO
DATA OBJECT,STATIC,BINARY(4),INTERNAL,ARRAY(10).
0800003C/6000040000000AOOOO
DATA OBJECT,BASED(PP),BINARY(2),INTERNAL.
OA000045/S000020003

Figure PR-3 (Part 2 of 3). Output and IRP Listing of the PRM

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Resolution Monitor PR-7

5714551 R01MOl
OIJT ODT NAME

0018 AC 24*
0019 AI 25*
0017 AN 23*
0006 APP 6* Cross Reference
001C B 4 28* 29 29 29 29 32 33 33 33 34 34 34 38 38 38 42
001B BC 27* 31
OOlA BI 26*
0014 C 3 20* 29 29 29 31 33 35 40 42 42 42
0008 COl 8* 30 39 43
0009 CO2 9* 46
OOOA C03 10*
OOOB C04 11 *
OOOC COS 12* 41
OOOD C07 13*
OOOE C08 14*
OOOF C16 15*
0010 C32 16*
0011 C34 17* 46
0012 C48 18*
0013 C64 19 ~,
0007 I 7* 28 28 28 33 34 35 n
0016 P 22* 30 38
0001 PD 1 ':'
0004 PI 4':' 43 43
0003 PP 3'~ 26 31 44
0002 PS 2* 44 45 46
0005 PTR S~,

0015 Z 21* 34 38 39 41

Figure PR-3 (Part 3 of 3). Output and IRP Listing of the PRM

PR-8
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

...J

L

L

57111SS1 R01HOl GENERATED OUTPUT
OFFSET HI TEMPLATE DISPLAY

00000000 OOOOOCBD 00000000 0201D7D9 D4E3C5E2 E3!104040
00000020 IIOII040!lO 1101104040 40000000 00000000 00000039
00000040 00000000 00000000 00000000 00000000 00000000
00000060 OOOOOOFC 00000000 00000000 00140021 0000(1100
00000080 00000000 00000000 00000000 000009Fl 000002CC
OOOOOOAO 00000000 00000000 00000000 00000000 00000000
OOOOOOCO 00000000 ·00000000 00000000 00000000 OOOOO{)OO
OOOOOOEO 00000000 00000000 00000000 00000000 oooooono
00000100 OOOOOOBC 30Q30007 00070007 lC231472 00140014
00000120 10000016 200421B7 00081193 801BOO03 001!11011
000001!10 001C001C lC!l612!10 00070015 001C001C 001Cl0A3
00000160 10960007 001£lC1I2 12400015 0016001C 001C001C
00000180 10E30014 00lF0020 10CEOO15 000C1C9B 400000111
ooooono 00040008 01120002 00030162 00020021 01640002
000001CO 18030004 1802000C 1801001D 18040020 10000000
000001EO 00040002 000llOO03 00040004 00040005. 00040007
00000200 00040022 00040030 00040040 00040080 00020005
00000220 0800003c OAOOOO!l5 02040080 3000(>001 6804004A
00000240 68040081 00000088 04000100 03C2F2F1 04000102
00000260 F1040014 04001C20 OOOOOOOA 00006000 04000000
00000280 60000400 OOOOOAOO 00500002 00034200 0702001F
000002AO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO FOFOFOFO
000002CO 04C2F1C2 F2420004 C3C8C1D9 00000233 FFHFFFF
000002EO FfFFFFH FF1'FFHF 1'FFFFFFF FFFFFFFF FFFFFFFF'
00000300 FFFFFFFF 1'FFFFFFF FF1'FFFFF FFFFFFFF FFFf1'FFF
00000.320 FFFFFFFF FFFFFFFF FF1'FFFFF FFFFFFFF FF1'F1'FFF
00000340 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000360 00000922 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000380 FFFFFFFF FFFFFFFF 1'FFFFFFF FFFF1"FFF FFFFFFFF
000003AO FFFFFFFF FFFl'FFFF FF'FFFFFF FFFfFFFF l"FFFFFFF
000003CO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000003EO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000400 FFFFFFFF FFFFFFFF' FFFFFFFF FFFfFFFF FFFFFFFF
00000420 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000440 FFFFFFFE' FFFFFfFF FFFFFFFF FFFFFFFF FFFFFFFF
000001160 000009E8 FFFFFFFF FF1"FFFFF FFFFFFFF FFFFFFH
000001180 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000004AO F.FFFFFFF F.FFFFFFF FFFFFFFF FFFFFF'FF FFFFFFFF
000004CO FFFFFFFF FFFFFFFF FFFFFFFF FFFfFFFF FFFFFFFF
OOOOOIlEO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000500 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF. FFFFFF1'F

Figure PR-4 (Part 1 of 21. Machine Interface Program Template

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

4040!l040 !lO!lO!l040 4040!l040
00000000 00000000 00000000
00000000 00000000 00000000
000001BC 00000244 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 00000000
00000000 00000000 0000(1000
0014001C 001C001C 001C1A!l3
001C1CC2 12!100014 0007001C
00142009 001&10B6 00072005
184Fl000 0015200A 20040008
00140014 001C18!)2 4000000ll
00110000 00090260 00000088
18010023 00000004 00040001
00040008 00040010 00040020
0003(1005 0800002A 08040033
68040054 68020058 6804007A
01000000 085BD7D9 ESD9FOFO
OAOOO060 00050000 OOOAOOOO
00000000 4200011"4 42021FFO
FOFOF01"O F01"OF9F9 F9F9l1200
FFFFFFFF FFFFFFFF FFFFFFFF
FFl'FFFFF 1'FFFFFFF 1"F1'FFF1'F
1'FFFFFFF 1'FFFFFFF FFFFFF1'F
FFFFFFFF FFFFFFFF FFFFFFFF
1'FFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFF1"FFF FF1"FFF1"F
FFFFFFFF FFFFFFFF FF1"FFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFf'FFFF FFFFFFFF
FFFFFFFF FFFFFFFF FF1'FFFFF
FFFFFFFF FFFFFFFF FFFFFF1"F
FF1"FFFFF FFFFFFFF FFF1'FFFF
1"FFFFFFF' 0OOO097A 1'FFFFF1'F
FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
000009DE FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF
1'F1"F1'FFF FFFFFFFF FFFFFFfF

Program Resolution Monitor PR-9

00000520 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFfFFF FFFFFFFF
00000540 FFFFFFFF 0OOO096F FfFFFFFF FFFFFFFF FFFFFFFF FfFFFFFF 00000964 FFFFFFFF
00000560 FFFFfFFF FFfFFFfF FF'F'FFFFF nFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000560 FFFFFFFF FFFFFFFF FFFfFFFF FFFFFFFF FFFFFFFF 000009AD 00000903 FFFFFFFF
000005AO FFFFFFFF FFFFFFFF FfFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000005CO FFFFFFFF FFFFFrFF 0000094E FrFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000005EO FFFFFFFF FFFFFFFF FFFFFFFF FrFFFFFF FFFFFFFF FFFFFFFF FFFrFFFF FFFFFFFF
00000600 FrFFFFFF FFFFFFFF FrFfFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFr
00000620 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFf'FFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000640 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000990
00000660 FFFFFFFF FFFFFFFF FFFFFFFF FFFfFFFF 00000965 FFFFFFFF FFFF'f.FFF FFFFFFFF
00000660 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 00000943 FFFFFFFF 000009A4
000006AO FFFFFFFF FFFFFFFF FFFt'FFFf FFFFFFFF FFFFFFFF FFFfFFFF FFFFFFFF FFFFFFFF
000006CO FFFFFFFF FFFFFFFF FFFFFFFf FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000006EO FFFFFFFF FFFFFFFF 000008£4 FFFFFFFF FfFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000700 FFFFFFFF FFFFFFF}' FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000720 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000740 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000760 0000092D FfFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFF!'F
00000780 FFFFFFFF FFFFFl"FF FFFFFFFF FFFFFFFF FrFFFFFF FFFfFP'f FFFFFFFF FFFFFFFF
00OO07AO FFFFFFFF FFFFFFFF FFFFFFFF F!Fn'FFFF FFFFFFFF 0OOO09CO FFFFFFFF FFFFFFFF
000007CO FFFFFFFF FFFFFFFF FFFFFFFF FfFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000007£0 FFFFFFFF FFFFFfFF FfFFFFFf FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF!"FFF
00000800 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000820 FFFFFFFF FFFFFFFF FcFFFFFF 00000917 FFFFFFFF FFFr'FFFF FFFFFFFF FFFFFFFF
00000840 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFF"FFFF
00000860 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000880 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFfFF FFFFFFFF FFFFFFFF 000009D4
000008AO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FtFFFrrF FFFFFFFF FFFFFFFF
000008CO FFFFFFFf FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
000008EO FFFfFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000900 FFFFFFFF FFFfFFFF FFFfFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFf
00000920 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000940 FFFFFFFF FFl"FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000960 FFFFFFFt' FFFFFFFF FFFFFFFt' FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000980 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE' FFFFFFFF 000008DO FFFFFFFF
000009AO FFFFFFFF F:f'FFFF FF Ff'FFFFFF FF'FFfFFF FFFFFFFF FFFFFFFF FFFFFFFf' FFFFFFFF
000009CO FFFFFFFF FFFFFFFF 00000959 FFFE'FFFF 000008EE FFFFFFFF FFFFFFH FHFFFFF
000009EO FFFFFFFE' FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF "'FHFFFF FrFFFFFF
OOOOOAOO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFl"FFf" FFFFFFFF FFFFFFFF FFFFFF!"F
00000A20 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000A40 000009S6 FFFFFFFF un'FFFF 00000998 FfFFFFFF FFF'FFFFF FrFFFFFF FFFFFFFF
00000A60 FFFFFFFF FFFFFFH FFFfFFFF FFFFFFFF FFFFF.FFF FFFFFFFF FFFFFFFF FFFFFFFF
00OOOA60 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
OOOOOAAO FFFFFFFF 0000090E FFFFFFFF FFFFFFFF 000008F8 FFFFFFFF FFFFFFFF FFFFFFFF
OOOOOACO FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFfFF FFFFFFFF FFFFFFFF
OOOOOAEO FFFFFFFF FFFFFFFF 0000080A FFFFFFFF FFFFFFFF FFrFFFFF FFFFFFFF FFFFFFFr
00000800 FFFFFFFf FFFFFFFF FFFFFFFF FFFFFfFF FFFfFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000B20 FFFFFFFF FFFE'FFFf' FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
00000840 FFFFFFFF FFFFFfFF FFFt'FFFF FZ'FFHFF FFFFFfFF FFFfFFFF FFFFFfFF FFFFFFFF
00000s60 00000936 FFFFFFFF FFFFFfFF FrFFFFFF FFFFFfFF FFFFFFFF FFFFFFFF 000009('A
00000380 FFFFFFFF FfFFFFFF HFFFFFF FFFFFfFF FrFFFFFF FFFFFFFF FFFFFFFF FFFFFFH
000006"0 0001C002 D7C4FFFF FFFt'0002 C002D7E2 F'FFFFFFF 0003C002 D7D7FFFf FFFFOOO4
OOOOOBCO C002D7C9 FFFFFFFF 0005COOJ D7E3D9FF FFFfFFOO 06C003Cl 1)7D7FFFF FFFFOO07
OOOOOrlEO COOlc9Ff FFFFFF 00 08COO3C3 FOF1FFFF FFPFOO09 C003C3FO F2FFFFFF FFOOOAI":O
OOOOOCOO 03C3FOF3 FFFFFFFF OOOSC003 C3FOF4FF FFFFFFOO OCC003C3 FOF5FFFf FFFFOOOD
OOOOOC20 C003C3FO F7FFFfH FFOOOECO 03C3FOF8 FFFFF'FF'F 000FC003 c3F1F'6FF FFFFFFOO
0000 OC4 0 10C003C3 F'3F2FFFF PFFF0011 C003c3F3 F4 FFFFFF FFOO12CO 03C3F4FB FFFFFFFF
00000c60 0013C003 C3F6F4FF FFFFFFOO 14C001C3 FFF'FFFFF 0015COOl E9FFHFF noo l6CO
00000C80 01D7FFFF FFFFOO 17 COOLC1D5 FFFFFFFF 0016C002 C1C3FFFF FFFFOO19 C002C1C9
OOOOOCAO FFFFFFFF 001AC002 C2C9FFFF FFFF001S COO2C2C3 FFFFFfFF 00014001 C2000000

Figure PR-4 (Part 2 of 2), Machine Interface Program Template

PR-l0
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

..)

INTRODUCTION

The prompter component of the CPF (control program
facility) presents prompt displays to be used in building
valid CL commands. To do this. the prompter uses the
information that is in the CDO (command definition
object) of the command being entered. Pressing the
CF4 Key. entering a question mark before the command
name. or ·entering selective prompt characters before a
parameter invokes the prompter.

The prompter interfaces with the command analyzer to
build and validate a command that conforms to the
user-defined options. The command is usually entered
in a string format. The prompter and command analyzer.
however. build the command internally in a variable
length positional list and validate the user-defined
parameter values in that format. The prompter can then
convert the positional list back to a string format for
insertion. system logging. and displaying.

The prompter provides the following services to the
user:

• A display of each command and its parameters from
the CDO with display space provided so that the user
can enter the desired parameters

• A display of any parameter values entered. either
initially with the command or during prompting and
value entry

• An automatic or user-defined entry of default
parameter values from the CDO

Prompter

• Separate display list to enter values for parameters
that can accept a variable length series of values. and
the insertion of a user-defined list of values into the
command parameter display and command analyzer
positional list

• Separate display lists of allowable values from the
CDO for parameters that can have one or more fixed
values. and provides for entering and the insertion of
those values into the command parameter display and
command analyzer positional list

• A display showing a list that the prompter recognizes
of the console function keys and their assigned
values

• A display showing a list of each command analyzer
message pending on the command currently being
prompted for

• A response to pressing a function key. The function
keys provide the following services:

CF1 Terminate the prompting cycle

CF2

CF4

CF13

CF14

CF15

CF16

CF18

HELP

Back up to previous display

A parameter display for a command
embedded within the command being
entered

A display of function key assignments

A display of the command in string
format

An error message display

Enter the completed command

A redisplay of the initial parameter
display with all default parameter values
shown. For selective prompting. a
redisplay of the initial parameter display
with all the initial rules

A display of function key assignments

Prompter PT -1

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

GENERAL OVERVIEW

Prompter Modules

The prompter component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->OPTPARML-Prompter Control: This module controls
the prompting cycle by calling OPTSETUP for
initialization, OPTPRCSS for the user interface cycle,
OPTCHECK for validity checking, and then transfers
control to the command analyzer for command
execution if in execute mode, otherwise returns
control to the caller.

PT-2

OPTSETUP-Main Processor Setup Routine: This
module initializes a prompting list space that
contains addressability to command definition,
positional list, and user-entered data required for
the prompting cycle.

OPTCHECK-Command Check Routine: This
module is called to housekeep the command
positional list. delete all error messages in the
queue, and to call OPTSTRNG to generate the
string form of the command. It also interfaces
with the command analyzer ,to validity check the
command.

OPTPRCSS-Parameter and List Screen Processor:
This module generates the parameter and list
screens for the user to enter the desired values. It
calls OPTPERMV to generate the permissible
values display. OPTPRCSS calls OPTGTINP to get
the user-defined values and OP1VLlNP to
housekeep the positional list and to call the
command analyzer to syntax check the command.
OPTPRCSS calls OPTERMSG to process any error
messages.

OPTPERMV-Permissible Value Display
Processor: This module generates the
permissible value display. It calls OPTGTINP,
OP1VLlNP, and OPTERMSG for the same
purposes that OPTPRCSS called them.

OPTGTINP-Get Input from Device and
Process: This module acquires user input
from the display and updates the positional
list.

OPTDFT -Build Default Entry in Positional
List: This module builds a default entry in
the positional list and supplies a default
value for the entry.

OPlVLlNP-Validate Display Input Via
Command Analyzer: This clears the
positional list flags, deletes obsolete error
messages, and interfaces with the command
analyzer to validity check the command in its
current form.

OPTERMSG-Error Message Processor: This
module retrieves error messages from the
queue that are pertinent to the current
command.

OPTKYPRC-Function Key Processor: This module
responds to any user-function key by providing
the requested function, or by calling OPTPFKRV to
generate the function key review display,
OPTERREV to generate the error message review
display, or OPTCMSRV to generate the command
string review display.

OPTPFKRV-Function Key Review Screen
Processor: This module generates the function
key review display to remind the user of the key
functions available. OPTPFKRV also reminds
the user of special prompter operators.

QPTERREV-Error Message Review Display
Processor: This module calls OPTERMSG to
retrieve error messages pertinent to the current
command status and displays these messages
to the user.

OPTCMSRV-Command String Review Display
Processor: This module calls OPTSTRNG to
build the string form of the command and
displays this string form to the user.

QPTSTRNG-Command String Creation: This
module builds a string form of the command
based on the current command positional list.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Prompter Invocation Paths

Figure PT -1 shows the three possible paths to invoke
the prompter component; it also shows the CPF
components that support access to the console device
and to message handling.

CL Program
Executed from
the Console
or Work Station

Console
Function
Manager

5251
Function
Manager

Figure PT-1. Prompter Overview

Command Entry
with Prompt
Request

Command
Analyzer

Prompter Message Handler

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Prompter PT -3

Prompter Invocation and Control Overview

Figure PT -2 and the following text describe the module
relationship in the invocation and control of the
prompter component.

• No matter how the prompter is invoked,
QPTPARML is called by command analyzer to
control the prompter processing. QPTPARML calls
QPTSETUP to perform initialization procedures.

• When QPTSETUP gets control. it creates and
initializes a prompting list space. The prompting
list provides access to the command definition and
positional list information needed to drive all
prompter displays. It also contains a history of
user-defined data and error messages associated
with the parameter values entered.

..

QPTSETUP- inserts any initial command analyzer
messages in the prompting list and establishes
pointers to the positional list passed by the
command analyzer and to the COO for the
command being built. QPTSETUP also saves the
initial input values for selective prompting.

Command
Analyzer

A ~ .. II , ,
QPTPARML

Prompter
Control

.. ~

~ ,a , ,.
QPTCHECK QPTPRCSS .. Parameter and

Command Check List Screen

Routine Processor

.. •
, ,

QPTSTRNG

Command String
Creation

Figure PT-2. Prompter Invocation and Control Overview

PT-4

• After the prompting list has been initialized,
QPTPARML begins the prompting cycle by calling
QPTPRCSS. QPTPRCSS generates the primary
command prompt displays (see Figure PT -3).

• When the prompting cycle is finished, QPTPARML
calls QPTCHECK to reset certain flags in the
command analyzer positional list, and deletes all
error messages in the queue for the command just
built. QPTCHECK then calls QPTSTRNG to rebuild
the command in string format from the current
command analyzer positional list. QPTCHECK calls
the command anlayzer to perform a final validity
check on the command.

II Control is returned to QPTPARML to destroy the
prompting space and close the console device file.
If specified by the user, control is transferred to
the command analyzer to execute the command.

~ , .
QPTSETUP
Mainline
Processor
Setup Routine

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Initial Parameter Display. List of Values Display. and
Permissible Values Display Overview

Figure PT -3 and the following text show the module
relationship to control the primary prompt display
generation and to read and validate user-defined
parameter values and value lists.

.. QPTPARML calls QPTPRCSS to generate the
parameter display based on the command
definition of the command being entered. If
requested, the list of values display is generated
by OPTPRCSS so that a list of values can be
entered for the parameter.

II The permissible values display for a keyword can
be requested by using the special display symbol
input. OPTPRCSS calls QPTPERMV to generate
this display.

• Both OPTPRCSS and OPTPERMV process
user-defined values by first calling QPTGTINP to
get the user-defined values from the device file
and to update the parameter positional list.

.. QPTPRCSS and QPTPERMV then call QPTVLlNP
to delete the current positional list flags, to delete
any messages on the queue for the parameter
values being changed, and to call command
analyzer to validate the updated command
positional list. QPTVLlNP will supply the default
value or the initial value for parameters that are
blanked out. OPTDFT is invoked to supply the
default values for all parameters that are not
selectively prompted.

II Both OPTPRCSS and OPTPERMV call OPTERMSG
to process any error messages resulting from the
command build cycle.

The preceding processing cycle continues until one of
the following is signaled by pressing a function key (see
Figure PT -4):

• The user is satisfied with the command as entered.

• The user wants to abort the processing cycle.

• The user wants to invoke a prompter support
function.

• The user wants to reset all command parameters to
their default values or their original values.

OPTPARML

Prompter
Control

+-
OPTPRCSS
Parameter and
List Screen
Processor

~ ~

, ,
to IJ

OPTPERMV OPTGTINP
Permissible r+ Get Input + Display Value from Device
Processor and Process

II
.. OPTVLlNP Validate

Display Input

, , +
OPTDFT

Supply
Command

Parameter
Analyzer

Default

II
OPTERMSG

--.. i+-... Error Message
Processor

Figure PT-3. Initial Parameter Display. List of Values
Display. and Permissible Values Display
Overview

Prompter PT-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984. 1985

Function Key Processing

QPTKYPRC is called whenever a user interrupts the
prompt display cycle by pressing a function key. It
intercepts the key and either performs the requested
function or indicates to the calling module what function
is to be performed.

iii If CF14 is pressed, QPTKYPRC calls QPTCMSRV
to generate the command string review display.
QPTCMSRV then calls QPTSTRNG to build the
string format from the current positional list, and
displays the command being entered in string
format.

III If CF15 is pressed, QPTKYPRC calls QPTERREV to
Figure PT -4 and the following text show the module generate an error message display.
relationship when a function key is pressed.

a If the Enter key is pressed and the last parameter
screen is displayed, QPTKYPRC performs the
same function as when CF16 is pressed. If the
last parameter screen is not displayed, QPTKYPRC
determines the next screen to be displayed.

II If CF1 is pressed, QPTKYPRC calls QPTSTRNG to
rebuild the command string, and then signals
exception CPF6801 to the caller of the prompter.
If the command being prompted for is to be
logged, a type command message must be sent to
the program's message queue that invoked the
command analyzer with command prompting
requested. The type command message contains
the rebuilt command string.

II If CF2 is pressed, QPTKYPRC indicates that
QPTPRCSS is to display the previous screen.

.. If CF4 is pressed, QPTKYPRC calls the command
analyzer. The command analyzer re-invokes the
prompter to prompt for the embedded command.

II If CF13 or the Help key is pressed, QPTKYPRC
calls QPTPFKRV to generate a display of the
function key options available to the user.

PT-6

II If CF16 is pressed, QPTKYPRC checks all
previously displayed screens for errors. If an error
is found, QPTKYPRC indicates that QPTPRCSS is
to display the first screen that has an error. If no
errors are found, QPTKYPRC indicates that
prompting is complete, and that QPTPRCSS is to
return to QPTPARML for a final check of the
command by QPTCKECK.

II If CF18 is pressed, QPTKYPRC calls QPTDFT to
supply default values for all parameters that are
not selectively prompted. The defaults for
selectively prompted parameters are obtained from
user-defined values stored in the positional list by
QPTKYPRC.

III If the Roll Up key is pressed and a list screen is
displayed, QPTKYPRC indicates that the next list
screen is to be displayed. If not on a list screen,
QPTKYPRC indicates that the same screen is to be
displayed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

a ,Enter Key
t

Indicate
Prompting
Complete

• CF14

QPTCMSRV

Command
String Review

QPTSTRNG

Command
String
Creation

Or t

Determine
Next
Screen

II CF15

QPTERREV

Error Message
Review

Figure PT-4. Function Key Processing

Function
Key

QPTKYPRC

Function Key
Processor

D CF1

QPTSTRNG
Command
String
Creation

Escape
Message
CPF6801

II CF16

Indicate
Prompting
Complete

.!CF2

Indicate
to Show
Previous
Screen

[
Restore Initial
Value for
Selective
Prompt
Parameter

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

a1CF4

Command
Analyzer

III CF18

1
QPTDFT

Build Default
Entry

... CF13

.. or Help

QPTPFKRV
Function Key
Review Screen
Processor

II Roll Up

Indicate
Next List
Screen

Prompter PT - 7

Error Message Display Overview

Figure PT -5 and the following text show the module
relationship during the display of error messages.
During the command build cycle, the prompter
processes errors detected in the user-defined display
and function key use, syntax errors detected by the
command analyzer, and system errors signaled for the
prompter. The prompter makes the error messages
available to the user in two ways:

.. Each display includes an error message line at the
bottom of the display; the modules and displays
are:

QPTPRCSS

QPTPRCSS

QPTPERMV

QPTCMSRV

QPTPFKRV

QPTERREV

Initial parameter display

List of values display

Permissible values display

Command string review
display

Function key review display

Error message review display
(This uses the entire display,
for the error message display,
not just the bottom line.)

QPTPRCSS calls QPTERMSG to retrieve all the
error messages associated with the current display
and writes them to the error block for the current
display. The top message in the error block is
displayed at the bottom of the current display. The
roll function can be used to view additional
messages associated with the display. The error
block is a message subfile.

II If all messages associated with the current display
are to be viewed, the CF15 key is pressed, which
invokes QPTERREV through QPTKYPRC to
generate the error message review display (see
Figure PT -4). QPTERREV in turn calls
QPTERMSG, which retrieves all messages from
the queue.

PT-8

QPTPRCSS
Parameter and
List Screen
Processor ..

-- QPTPERMV

QPTERMSG

Error Message
Processor

Function
Key

II

QPTKYPRC

Function Key
Processor

QPTERREV

Error Message
Review

Figure PT-S. Error Message Display Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
INTRODUCTION

The reclaim/damage notification component of the CPF
(control program facility) is responsible for recovery of
data at the object level. The component's primary
purpose is to give the user information on both
relational and physical object damage. To provide this
facility, this component is divided into the following
functions:

• The reclaim storage function gives the user an
interface to clean up object relationships and to
recover storage for permanent objects no longer
addressable through the CPF command interface. In
some cases, damaged objects will be deleted
(subsystem descriptions, for example), while other
damaged objects will be repaired to minimize
potential data loss for the user (libraries or data base
files, for example). Unnecessary or duplicate
IBM-supplied objects will be eliminated to free
physical auxiliary storage.

• Damage notification and logging provides the user
with identification information and probable recovery
procedures upon reference to physically damaged
objects.

GENERAL OVERVIEW OF RECLAIM

Reclaim Modules

The reclaim portion of this component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QRCLAIM-Reclaim Driver: This module is
responsible for controlling the overall reclaim utility. It
creates the necessary space and index objects used
by the other modules, forms the controlling routine
for most status messages, and verifies the initial
condition requirements for undamaged libraries and
system quiesced status.

Reclaim/Damage Notification

-->QURCUB-Handle Damaged libraries: This module
checks the recovery library for library recovery objects
and deletes the partially completed libraries and their
library recovery object. It also rebuilds any library
whose context associated space is damaged. All
other objects that comprise a library will be checked
for damage. If damage is detected, the object will be
deleted and re-created, saving any usable
information.

QRCALOWN-Guarantee All Objects Are Owned:
This module verifies that all objects have a valid
owner. To perform this, all profiles are checked
for damage and are either deleted or the function
is terminated, depending on the profile that is
found to be damaged. After damaged profiles
have been eliminated, the module issues the
Reclaim Vertical Microcode instruction to return a
list of all ownerless and any duplicate machine
context objects. Duplicate machine context objects
that are libraries and profiles are deleted. Logical
unit descriptions, control unit descriptions, and line
descriptions that are not addressable through the
machine context are also deleted, and all
ownerless objects are given an owner. For most
objects the owner is determined from a table
(reclaim definition table); for message queues,the
owner is determined based on the type of
message queue. Other objects are given to the
security officer profile.

Reclaim/Damage Notification RC-l

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

RC-2

ORCSEPOB-Separate Objects Into Classes: This
module separates the owned objects in a particular
profile into the various classes for handling.
Objects that are formats and directories are
processed by storing information on them into a
table which is processed after all other objects
have been handled. Information on the secondary
pieces of composite objects are stored into an
index for handling when the primary piece of the
object is processed. Those objects that have an
invalid subtype are destroyed and the system
operator is informed. Primary pieces of composite
objects are handled by passing information on the
object to the ORCOMPST module. All other
objects are classified as simple object~ and are
processed by the ORCSIMPL module.

ORCSIMPL-Simple Object Handling: This
module verifies that objects are properly
addressable through the correct context.
Duplicates are deleted or inserted into a special
reclaim library (ORCL). depending on the
type/subtype of the object, the owner of the
object, and the necessity to retain the object on
the system (for example, save restore authority
objects can be deleted).

ORCOMPST-Composite Object Handling: This
module verifies that primary pieces of
composite objects are properly addressable and
contain the necessary pieces to be valid objects.
Improperly addressable primary pieces are
moved into a library or are deleted if they were
last in temporary libraries. The secondary
pieces are checked and information on them is
used to update the index of secondary objects.
Damaged objects are either repaired (as in the
case of libraries and certain files) or deleted (as
in the case of subsystem descriptions).
Ownership and authorities of all secondary
pieces are updated to be consistent with their
primary pieces.

OLlRCLlB-Handle Damaged Libraries: This
module is called to repair damaged libraries.

ODBRCLMA-Verify Secondary Pieces of
Files: This module returns a list of all
secondary pieces found for a file. It updates
the ownership and authorities of all
secondary pieces to be consistent with the
primary. Also, any member control blocks
that are not in the correct library are moved
and renamed to be consistent with the
primary.

ORCLENUP-Clean Up Dangling Pieces and
Process Format and Directories: This module
processes the secondary pieces of composite
objects that do not have a primary piece
associated with them. With the exception of files,
dangling secondary pieces are deleted. For files,
those secondary pieces that contain meaningful
information are rebuilt into valid file structures that
the user can access to retrieve the data. After
dangling secondary pieces are processed, the
formats and directories are processed. Those that
no longer contain meaningful data are deleted.

ODBRCLMB-Process Dangling Pieces of Files:
This module creates valid file structures for
those pieces that contain lost user data (data
spaces or members that address indexes / data
spaces).

ODBRCLMC-Process Formats and Directories:
This module determines whether the formats
and directories contain valid file information and
deletes those that do not. Any remaining file
recovery objects that could not be processed
successfully by data base recovery are deleted
from the system.

ORCINSRT-Insert Object Into the Reclaim Library:
This module inserts object into the reclaim library.
For those objects that are duplicates in this library,
the name is changed to an alias, and the original
name information is saved as object description
text information.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QRCDEBUG-Debug Dump for Reclaim: This
module outputs a dump of the actions taken for all
objects that are destroyed, that change owners, or
that change libraries. Additionally, the profile and
libraries in the system are listed. This information
is used only for problem determination on the
reclaim function. As such, it is invoked only when
the system is servicing the arbiter process
(documentation requests that the user not use the
facility as it only provides information useful to
IBM).

Reclaim Storage Function

The reclaim storage function is used to recover physical
storage that has become unaddressable through normal
CPF interfaces. This may be due to damage to libraries
and composite objects, or due to APAR (authorized
program analysis report) conditions that cause incorrect
addressability and conditions through which certain
objects cannot be deleted from the system.

The recovery of physical storage results in two possible
object conditions. One is the case in which an object
either was residing in the wrong library, or has become
lost from a library and has been reinserted into the
proper library or inserted into a library designated by the
reclaim function. The second case occurs when
duplicate objects or certain types of damage are
detected; internal duplicate objects are deleted from the
system.

Object Addressability

Objects on the System/38 are addressable by using one
of the following schemes:

• Context interface: This scheme provides
addressability through libraries. The user (via
resolves) states what library or list of libraries are to
be searched to find and return the address of an
object in a system pointer.

• Addressing an object indirectly through an object in a
library: An object addressed through a library
contains system pointer(s) to other objects not usually
addressable through the library. This scheme is used
by composite objects; they are a collection of objects
that are logically tied together to provide some
function (for example, libraries are composite objects
consisting of the context, which is addressable
through the machine context, the object description
storage objects, and a programming change object).

• Addressing objects through the owning-user profile:
To assist in this, vertical microcode provides a
function by which any objects that are unowned can
be found (Reclaim instruction). Using the output from
this instruction and a list of owned objects for all
profiles, any object in the machine can be addressed.
This scheme is used by the reclaim storage utility to
clean up objects that are not properly addressable by
the first two schemes.

Those objects that should be addressed through a
context and are not will be placed back into the
appropriate context or a special reclaim context.
Non-context addressable pieces of composite objects
will be relinked to either the piece that is addressable or
to a reconstructed piece, or will be deleted. These
pieces are referred to as dangling.

After running the CPF reclaim utility, all objects created
prior to the last IMPL (internal microprogram load)
should be addressable through the first two schemes.

Reclaim/Damage Notification RC-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Reclaim Overview

Figure RC-l and the following text describe the flow of
control when running the reclaim function. All
subsystems must be terminated; this restriction allows
the function to avoid any of the normal locking
problems.

.. The reclaim driver QRCLAIM gets control, checks
to determine if the system is quiesced, and if
commitment control is active; the message handler
is called to inform the user if the subsystem is not
quiesced, and if commitment control is active. The
data base and librarian components are called to
perform any recovery actions. The librarian
component is called to return a list of the libraries
on the system, and these are checked for damage.
Upon encountering a damaged library (context).
the message handler is called to inform the user.
QLlRCLIB is invoked to check all of the objects
that comprise a library for damage. If damage is
detected, the object will be deleted and
re-created. QLlRCLIB will also rebuild any library
whose associated space is found damaged. The
objects required by the reclaim function are
created next. They include a communication object
which is passed between the modules, and they
contain object processing information and pointers
to other objects. Also created is the QRCL library.
During all stages of processing, the user is
informed with status messages on the progress of
the function.

II QRCLAIM calls QRCALOWN, passing a pointer to
the communication object. This module calls the
librarian component to return a list of the profiles
on the system. These are checked for damage,
and the user is informed if QSYS, QDBSHR,
QSNADS, QDOC, QSPL, or QSECOFR are
damaged. If any other profile is damaged, it is
deleted, and the operator message queue has a
message placed on it for the profile deletion. All
profiles are now undamaged. The vertical
microcode reclaim function is called to return a list
of ownerless objects. This list is processed and a
default owner is given to any object without an
owner. Additionally, duplicate profiles and
libraries, logical unit descriptions, control unit
descriptions, and line descriptions that are not
addressable through the machine context are
deleted. Control is then returned to QRCLAIM.

RC-4

.. QRCLAIM processes the list of valid profiles that
was materialized in QRCALOWN. The current
profile pointer is stored in the communication
object. Control is then passed to QRCSEPOB.
module.

II QRCSEPOB materializes the owned objects for the
current profile. Each object is then processed and
placed into one of five classifications. Objects that
are formats or directories are handled by entering
information on them into a list. The primary part
of a composite object is handled by passing
control to QRCOMPST. Information on the
secondary pieces of a composite object is saved in
an index for processing. Objects with types that
are invalid to vertical microcode or subtypes that
are invalid to CPF are handled by transferring the
invalid-typed objects to the security officer and
deleting the invalid-subtype objects. All other
objects are processed in QRCSIMPL. After all
owned objects for a profile are handled, control is
then returned to QRCLAIM.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II When QRCSIMPL gets control from QRCSEPOB,
the object is verified as being in the proper library.
Objects previously in a temporary library are
deleted, and any whose context cannot be found
or are duplicates of objects in a library are moved
to QRCL. This excludes internal CPF objects and
objects owned by QSYS, which are considered as
IBM-supplied system objects. These are deleted
when encountered as duplicates.

II When QRCOMPST gets control from QRCSEPOB,
QURCUB is called if the object is a library, to see
if the objects that comprise this library have been
checked for damage. If not, they will be checked
and, if found damaged, the object will be deleted
and re-created. If the associated space is
damaged, the library will be rebuilt. Next, the
object is verified as being in the proper library.
Objects previously in a temporary library are
deleted, and any whose context cannot be found
or are duplicates of objects in a library are moved
to QRCL. The secondary pieces of the object are
then processed, and information on the pieces is
stored into an index for later processing. For data
base files, QDBRCLMA is invoked to return a list
of secondary pieces. As secondary pieces are
processed, the ownership and authority is made
consistent with the primary piece.

II Objects are inserted into the QRCL library by
calling QRCINSRT. This module inserts the object
that was passed and renames the object to an
alias if a duplicate object already exists in QRCL.
The OIR text description is updated to inform the
user of the original name and library of the object
that was inserted.

II After all profiles are processed, QRCLENUP is
invoked to handle the secondary pieces of
composite objects having no associated primaries.
The list of these objects is obtained from the index
containing secondary piece information. Those
pieces of a library or subsystem description are
deleted. For files, QDBRCLMB is called to create
file structures for those pieces still containing lost
user data. After all secondary pieces are handled,
QDBRCLMC is called to clean up formats and
directories no longer containing valid information.
Extraneous data base recovery objects are also
deleted. Control is returned to QRCLAIM.

II All objects on the system should be properly
addressable. QUVLOIR is invoked for each library
to remove object description information for those
objects no longer in the library. After control is
returned to QRCLAIM, the module deletes the
internal objects created and also deletes the QRCL
library if it is empty. The message handler is
called to output completion information and the
function is terminated.

II If a job is being serviced during execution of this
function, a series of dumps will be taken based on
calls from the various modules to QRCDEBUG.
The profiles and libraries on the system are listed.
Any object that is ownerless is listed with who the
default owner was. Objects moved to QRCL will
result in a call to output the information.
Secondary pieces that are not attached to a
primary are listed prior to their deletion or
recreation back into valid files. Any object being
deleted from the system is listed. This information
is also listed in the system operator's message
queue, for those objects known to the user
(external). QRCDEBUG also outputs information
for those objects internal to the system of which
the user has no knowledge.

Reclaim/Damage Notification RC-5

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Li brarian
Message Data .. Handler Base

Function
ORCLAIM

Support t
Reclaim Driver

ORCDEBUG III
~ II

Security
Debug Dump
for Reclaim

II ~ 'II 'II 1a
QRCALOWN ORCSEPOB ORCLENUP OLIVLOIR
Guarantee

Objects Separate Objects Cleanup Remove

Are Owned into Classes Dangling Pieces OIR Record

t ~ ~

~I\I 'II ' . l
OLiRCLIB ORCSIMPL ORCOMPST ODBRCLMB ODBRCLMC

~ Handle Damaged Simple Object Composite Process Process Formats

Libraries Handling Object Handling Dangling Pieces and Directories

~ -t- ~ ~ I
rll iF

,
ORCINSRT ODBRCLMA OLiRCLIB
Insert Object
into Reclaim Verify Secondary Handle Damaged
Library Pieces of Files Libraries

Figure RC-1. Reclaim Overview

RC-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GENERAL OVERVIEW OF DAMAGE NOTIFICATION

Damage Notification Modules

The damage notification portion of this component
consists of the following modules:

Note: An arrow (- - » identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Damage notification modules may fail due to the
conditions they are running in; however, a failure in
these programs is handled by the calling program and
will have no further effect on existing processes.

-->QRCIMPLN-Logging of Damaged Objects During
IMPL to the History Log: This module receives
control from the work control component during an
IMPL. QRCIMPLN searches the object recovery list
for damaged object entries placed on it by vertical
microcode. A CPF message is created for each entry
and sent to the history log. QRCIMPLN places
message CPF8197 on the system operator message
queue if it has sent any messages to the history log.
If there is not enough auxiliary storage to send all of
the damaged object messages, QRCIMPLN will send
message CPF8196 to the system operator message
queue.

-->QRCDMGLG-Logging of Damaged Objects to the
History Log: This module handles machine interface
event hex 0017-0401 for the event monitor, which is
established in the system arbiter. QRCDMGLG
retrieves the event data for the damage set event,
and using this data creates a CPF message.
QRCDMGLG places the message on the system
operator message queue. It also places message
CPF8198 on the system operator message queue.
This automatically places the messages on the
system history log. It returns to the system arbiter.

-->QRCPDMGL-Logging of Partially Damaged Objects
to the History Log: This module receives control from
the switched line component to handle the hex 0017
0801 event for all objects excluding I/O descriptions
(logical unit, control unit, and line) using the data
passed. A CPF message is created using the data
passed via a parameter. QRCPDMGL places the
message on the system operator message queue. It
also places message CPF8198 on the system
operator message queue. This automatically places
the messages on the system history log. Control is
returned to the switched line component.

-->QRCDMGNT-Default Program for Damage
Notification: This module acts as the default program
for any unhandled MCH1604 escape messages. It is
available to other CPF programs for use in damage
notification. When called, QRCDMGNT retrieves the
exception data from the message queue. It
determines what type of message to send, builds the
correct corresponding message data, and sends this
message to the message queue of the program that
received the original damage exception.

-->QRCPDMGN-Default Program for Partial Damage
Notification: This module acts as the default program
for any unhandled MCH1668 escape messages. It is
available to other CPF programs for use in damage
notification. When called, QRCPDMGN retrieves the
exception data from the message queue. It
determines what type of message to send, builds the
correct corresponding message data, and sends this
message to the message queue of the program that
received the original damage exception.

The following programs are called by QRCIMPLN,
QRCDMGLG, QRCDMGNT, QRCPDMGL, and
QRCPDMGN:

QWDDMGNT -Subsystem Description Damage
Notification Program: This module is called by the
damage notification programs to determine the
subsystem description of which the damaged
object is a piece. QWDDMGNT creates the
message data and indicates which message to
send. It returns to the calling program.

Reclaim/Damage Notification RC-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

RC-8

OUDMGNT-Librarian Damage Notification
Program: This module is called by the damage
notification programs to determine the library of
which the object is a part. OUDMGNT then
creates the message data and indicates which
message to send. It returns to the calling program.

ODBDMGMB-Data Base File-Member Damage
Notification Program: This module is called by the
damage notification programs to determine which
file member has been damaged. It also determines
the type of piece (cursor, data space, or data
space index for example). ODBDMGMB creates
the message data and indicates the message to be
sent. It returns to the calling program.

ODMDMGNT-Data Management File Damage
Notification Program: This module is called by the
damage notification programs to determine the file
and the type of file that is damaged.
ODMDMGNT creates the message data and
indicates the message to be sent. It returns to the
calling program.

OMHDMGNT-Message Oueue Damage
Notification Program: This module is called by the
damage notification programs to determine the
type of message queue that is damaged.
OMHDMGNT creates the message to be sent. It
returns to the calling program.

OSPDMGNT-Spool Control Block Damage
Notification Program: This module is called by the
damage notification programs to determine the job
that is using the damaged spool control block.
OSPDMGNT creates the message data and
indicates the message to be sent. It returns to the
calling program.

OJODMGNT-Journal Receiver Damage
Notification Program: This module is called by the
damage notification programs to determine full or
partial damage of the damaged journal receivers.
OJODMGNT creates the message data and
indicates the message to be sent. It returns to the
calling program.

OWCDMGNT-Local Data Area Damage
Notification Program: This module is called by the
damage notification programs to determine the
name of the job that is using the damaged local
data area. OWCDMGNT creates the message data
and indicates the message to be sent. It returns to
the calling program.

ODFDMGNT-Save File Damage Notification: This
module is called by the damage notification
programs to determine which save file is damaged.
ODFDMGNT controls the message to be sent. It
returns to the calling program.

Damage Notification Function

The CPF damage notification and logging functions
handle the entry of damaged objects placed on the
object recovery list if the system went through directory
recovery during 1M PL, and the signaling of machine
interface damage events and exceptions. This results in
the following facilities:

• During IMPL, a damage notification module searches
the object recovery list for entries placed on it by
vertical microcode. This module creates and sends a
message to the history log for each damaged object
entry it encounters.

• The damaged object event is signaled when the
machine interface object is marked as damaged by
the machine. A damage notification module handles
this event and sends two damage messages to the
system operator message queue and two damage
messages to the history log.

• When the machine signals an object-damaged
exception that is not handled by the proper program
in a process, a module is invoked to interrogate and
notify the system user of the damaged object
(internal or external).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Concepts

Most CPF components are not expecting to find
damaged objects. Therefore, most of the
machine-signaled damage exceptions go unmonitored.
This causes the message handling component to issue
the function check escape message to the process. This
usually causes the process to forego normal completion
of the function being performed. From the information
returned with the machine exception, an operator or
user may be unable to determine which object is
damaged or what corrective actions to take.

• Some CPF objects are composite, that is, composed
of more than one machine interface object. Only the
primary machine interface object of the composite is
addressed through a context and only the primary
object must follow naming standards. The end user
may not be aware of the use of a composite object.
Returning the name of any piece of the composite
would only confuse the user.

• The machine interface exception data contains a
pointer to the damaged object. From the pointer, the
name of the object, its type and subtype codes, the
name of the library that contains the object, and the
owning user profile can be found.

• Many of the objects are known only to CPF. These
objects can also become damaged and cause
processes in the system to behave in unusual ways.
The user must be notified in these cases to determine
the proper corrective procedures.

• The user must be able to relate a particular object's
damage to the means of correcting the damage.

Assumptions

If any of the assumptions are not met, it is possible that
the damage notification modules will not be invoked
properly. Therefore, the results in these cases are
unpredictable.

Exception Handling Program Assumptions

• The input parameters are correct regardless of the
method of invocation; that is, there is always a valid
message queue and it contains the message
identified on the invocation of the program.

• The message queue that contains the message is not
the damaged object.

• The damaged object is not the message file being
used for message handling in the process.

• The damage is not to any module that may be
involved in determining the damaged object or
sending the resulting messages.

• The resulting messages exist in the specified CPF
message file and contain the proper data.

Event Handling Program Assumptions

• The program only executes when the machine
interface damage set event occurs.

• The system history log or system operator message
queue is not the damaged object.

• The messages appear on the appropriate CPF
message file and contain the proper text and data.

• The same messages are placed on the history log as
appear for damage notification.

Reclaim/Damage Notification RC-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Damage Notification During IMPl Overview

Figure RC-2 shows an overview of the logging of
damage notification during IMPL.

a During an IMPL, OWCISCFR calls ORCIMPLN.

II When ORCIMPLN is called, it searches the object
recovery list for physically damaged object entries
placed on it by vertical microcode during directory
recovery. ORCIMPLN then determines which
message to send and then sends it to the history
log. If ORCIMPLN has sent any messages to the
history log, it also sends message CPF8197 to the
system operator message queue. If there is not
enough auxiliary storage to send all of the
damaged object messages, ORCIMPLN will send
message CPF8196 to the system operator
message queue.

OWCISCFR

Start CPF
Process

~

II ORCIMPLN calls ODBRCIPS to handle data base
recovery.

a After ODBRCIPS has completed data base
recovery, it returns control to ORCIMPLN.

lEI ORCIMPLN calls OTNIPL to handle commitment
control initial program load recovery.

II After OTNIPL completes recovery, it returns
control to ORCIMPLN.

II ORCIMPLN then returns control to OWSISCFR.

a History Log and
II

r
ORCIMPLN

D
IMPL
Notification

y.~
....----=----""

ODBRCIPS
Data Base
Synchronous
Recovery

OTNIPL

Commitment
ControllPL

System Operator
Message Oueue

Messages

Figure RC-2. Damage Notification During IMPL Overview

RC-10

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982. 1983, 1984. 1985

Damage Notification Overview

Figure RC-3 shows an overview of damage notification
for damage exceptions.

.. A process is executing all kinds of instructions and
suddenly incurs a damaged machine interface
object. The machine signals a hard damage
exception (hex 1004). The same would hold for
partial damage except that control would pass to
ORCPDMGN instead of ORCDMGNT.

• The process does not listen for any machine
interface exceptions directly, so the exception gets
to the PDEH (process default exception handler).
PDEH places the exception data in the message
queue and signals an MCH1604 escape message
to the proper invocation of the process.

II If this exception is not handled by the program,
and depending on the module, message severity,
and the setting of the service log indicator in the
message description, PDEH may send the
unhand led escape message to the service log.

.. PDEH invokes the default program identified in the
message file for this unhandled exception, in this
case ORCDMGNT.

II ORCDMGNT obtains addressability to the
damaged object and determines the user or
system object that has been damaged as a result.
Then ORCDMGNT sends an escape message to
the message queue of the program that was
originally signaled for the damage exception. This
places another escape message on the message
queue, a message that defines the damage by the
use of symbolic names. The user can listen
explicitly for this CPF message.

II If the user does not listen for the new message,
PDEH signals a function check back through his
program.

II II
Service
Log

Process
Any

Exception Default
Process

(hex 1004) Exception .. Handler I--•
..
~

--------r-----------
Machine Interface

Oblect Damaged

Figure RC-3. Default Program for Damage Notification Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QRCDMGNT
II

Message
Queue

Damage
Notification New Message

Reclaim/Damage Notification RC-11

Logging of Damaged Objects on the History Log
Overview

Figure RC-4 shows an overview of the logging of
damaged objects on the history log.

.. As the system is brought up and the system
arbiter process is established, the system arbiter
starts monitoring for the machine interface event
for the system object damage set event. Once the
arbiter establishes QRCDMGLG as the program to
handle this event, QRCDMGLG will be executed.
In the case of partial damage events, the arbiter
establishes QRCPDMGL as the handling program
to be executed.

II When QRCDMGLG is invoked, it retrieves the
event-related data and use it to obtain
addressability to the damaged object. QRCDMGLG
then determines which message to send to the
system operator and system history log. It also
sends message CPF8198 to the system operator
and system history log.

After sending the messages, the program returns to the
system arbiter.

Partial damage events (hex 0017 0801) are handled
similarly; the damage notification module is
QRCPDMGL, and QSWERP, the switched line module,
is called between the system arbiter and QRCDMGLG.
QSWERP handles the partial damage event for logical
unit, control unit, and line descriptions.

RC-12

System Operator
Message Queue

New
Message

II

QRCDMGLG

Damage
Log ..

System
Arbiter

-- r---
M achine Interface

Event (hex 0017 0401 and 0017 0801)

Figure RC-4. Damaged Objects on the History Log
Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Special Case Programs Overview

Figure RC-5 shows an overview of special case
programs.

D Each of the special case modules is invoked in the
same way. One of the damage notification
programs (QRCIMPLN, QRCDMGLG, QRCPDMGL,
QRCDMGNT, or QRCPDMGN) is notified of
damage.

B It calls one of the special case programs to
determine the proper message and data to send.

When the program has determined which message
and data to send, it returns these values to the
calling routine and returns in the normal way.

QMHDMGNT D

(message
queues) Damage

Notification
Program

QWDDMGNT

(subsystem
descriptions)

QDBDMGMB
B

(data base
members)

QDMDMGNT

(data base
files)

Figure RC-5. Special Case Programs Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QWCDMGNT

(local data
areas)

QJODMGNT

(journal
receivers)

QSPDMGNT

(spool control
blocks)

QDFDMGNT

(save files)

PAAB034-0

Reclaim/Damage Notification RC-13

RC-14

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The service component of the CPF (control program
facility) provides aids and tools to assist the user
(primarily the service personnel) in problem
determination, analysis, reporting, and repair of system
program troubles within the CPF. An interface to the
internal machine product diagnostics and service aids is
also provided by the concurrent service monitor
component.

The service aids and tools are accessible through CL
commands and an internal macro interface. They are:

• Alert messages

• Dumps

• Trace

.Interjob servicing

• Programming changes

• Programming patches

• APAR (authorized program analysis report) data
preparation

• Programming change log

• Service log

• Internal service facility

• System verification facilities

Service

GENERAL OVERVIEW

Service Modules

The service component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QSCAEVTH-Alert Event Handler: This module
formats and sends an alert to the network host.

-->QSCAPAR-Prepare APAR (PRPAPAR)l: This module

saves objects needed for the resolution of CPF
programming problems on the save/restore device. It
builds a list of objects to be saved along with the
system logs and programs, data base files, and
spooled files that were specified on the Prepare
APAR command.

QSCCOPY-Copy APAR Files: This module
performs the copy function which copies spool
files into data base files.

-->QSCAPC-Apply Programming Change
(APYPGMCHG)l: This module performs the validity
checking and program change prerequisite checking
prior to calling QSCARPC to apply the program
change.

QSCARPC-Apply/Remove Programming Change:
This module is used by all of the programming
change and patch functions. QSCARPC performs
the apply program change or remove program
change function (if programming change exit
programs exist, they are called after the
programming change is applied or removed). It is
called by QSCAPC, QSCLPC, QSCPP, QSCRPC, or
QSCCPFI.

lThis module is a CPP (command processing program).

Service SC-l

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QSCAUTCK-Authority Checker: This module
checks if the user is authorized to perform
programming changes in the library chosen.

-->QSCCLNPT-Clean Print Train (CLNPRT)1: With the
print train ribbon removed on the 3203, this module
causes a ripple pattern to be imprinted on a special
form, which cleans the print train.

-->QSCCCNPA-Change CSNAP Attributes
(CHGCNPA)': This module changes the CSNAP short
term statistics attributes which are set in the system.

-->QSCCPFI-Start CPF Interface: This module is
invoked during the start CPF process. It lets the user
apply or remove deferred programming changes. A
display, containing the modifiable deferred
programming changes, is presented to the user. The
user can then modify the status of the program
changes. QSCARPC is called to perform any
changes.

-->QSCCPYLG-List Error Log (LSTERRLOG)': This
module causes error log information to be written to
a spooled printer file.

-->QSCCRTPG-Encapsulate Program: This module is
invoked to create a program from the materialized
program template in a data base file.

-->QSCDCNPA-Display CSNAP Attributes
(DSPCNPA)': This module displays or lists the
CSNAP short term statistics attributes set in the
system.

-->QSCDJI-Dump Job Internal (DMPJOBINT)': This
module gets an SCO (service communications object),
by creating one or resolving to one if it already exists,
to determine if a different job is being serviced. If a
different job is being serviced, a message is sent to
the other job and QSCDH is called. If a different job
is not being serviced, control is transferred to
QSCGJI to produce the dump.

'This module is a CPP (command processing program).

SC-2

-->QSCGJI-Get Internal Job Dump: This module
performs an internal job dump and sends a message
to the requestor containing the dump identifier.

-->QSCDJOB-Dump Job (DMPJOB)': This module
gets an SCO by creating one or resolving to one if it
already exists, and it copies the command parameters
to the SCO of the job being serviced. If another job
is being serviced, a message is sent to the other job
and QSCDH is called. If a different job is not being
serviced, control is transferred to QSCGJOB to
produce the dump.

QSCDH-Service Data Handler: This module opens
and closes the printer device file when a job is in
service mode. It also sends, to the printer dump,
data that was sent to a servicing job by its
serviced job.

QSCGJOB-Get Job Storage Dump: This module
opens and closes the printer device file, sends out
dump heading lines, creates a common
materialization space, and then calls QSCJSDMP.

-->QSCDOBJ-Dump Object (DMPOBJ)': An object to
be dumped can be selected by qualified object name,
and object type. This module gets an SCO by
creating one or resolving to one if it already exists,
and copies the command parameters to the SCO of
the job being serviced. If another job is being
serviced, a message is sent to that job and QSCDH is
called. If another job is not being serviced, control is
transferred to QSCGSO to produce the dump.

QSCDH-Service Data Handler: This modules
opens and closes the printer device file when a job
is in service mode. It also sends, to the printer
dump, data that was sent to a servicing job by its
serviced job.

QSCGSO-Get System Objects: This module gets
system objects for the Dump System Object and
Dump Object commands. QSCGSO opens and
closes the printer device file, outputs dump
heading lines, creates a common materialization
space, and calls QSCOBJDM to dump the
specified objects.

-->QSCDMPPS-Dump Pointer in a Space: This module
dumps materialization of the pointer in a space for
the ?DMPDTA macro.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

-->QSCDSO-Dump System Object (DMPSYSOBJ)1:
A system object to be dumped can be selected by
context, generic name, and type. The object to be
dumped can also be selected by specifying a base
object and a list of offsets to pointers which chain to
the object to be dumped. A portion of the object's
associated space can be selected instead of a dump
of the full object. This module gets an SCO by
creating one or resolving to one if it already exists,
and copies the command parameters to the SCO of
the job being serviced. If a different job is being
serviced, a message is sent to it and QSCDH is
called. If a different job is not being serviced, control
is transferred to QSCGSO to produce the dump.

QSCDH-Service Data Handler: This module opens
and closes the printer device file when a job is in
service mode. It also sends, to the printer dump,
data that was sent to a servicing job by its
serviced job.

QSCGSO-Get System Objects: This module gets
system objects for the Dump System Object and
Dump Object commands. QSCGSO opens and
closes the printer device file, outputs dump
heading lines, creates a common materialization
space, and calls QSCOBJDM to dump the
specified objects.

-->QSCDSS-Display Service Status (DSPSRVSTS)':
This module displays the names of the serviced and
servicing jobs, and information about the CPF trace if
it is active.

-->QSCEND-End Service (ENDSRV)': This module
takes a job out of the service mode by destroying the
SCO, the service queues, and resetting the flags in
the work control block.

-->QSCFSODD-Format and Send Out Dump Data: This
module formats and sends out lines of hexadecimal
data.

-->QSCINTDD-Internal Dump Data: This module
performs an internal job dump for the ?DMPDTA
macro.

'This module is a CPP (command processing program).

-->QSCJSDMP-Dump Job Storage Area: This module
dumps the PASA. PSSA, object mapping table for
observable programs, job structure objects, and all
spaces addressed by space pointers in the PASA and
PSSA for a specific job.

-->QSCLCNPD-List CSNAP Data (LSTCNPDTA)': This
module lists the CSNAP short term data in the
system.

-->QSCLCNPH-List CSNAP History (LSTCNPHST)1:
This module lists the CSNAP history data in the
system.

-->QSCLID-List Internal Data (LSTINTDTA)': This
module lists the requested internal machine data
areas.

-->QSCLCPR-Load Programming Change Authority
Checking (LODPGMCHG)': This module checks if the
user is authorized to load programming changes to
the library specified.

QSCLPC-Load Programming Change:
Programming changes are read into the system
from the program change media by a restore
operation requested by this module. It is called by
QSCLCPR.

-->QSCMATPG-Materialize Program: This module is
called to materialize a program, and place the
materialized program template in a data base file.

-->QSCMMCTX-Materialize and Dump Machine
Context: This module materializes and dumps the
attributes of the machine context, including the
identifications of all objects addressed through the
context.

Service SC-3

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->OSCOBJDM-Object Dump: This module routes a
dump object or dump system object request to the
proper materialize and dump routine. OSCOBJDM
also outputs the object heading, dumps the object's
associated space (if it has one) and dumps the
object's OIR (object information repository) data.

SC-4

OSCMAG-Materialize and Dump Access Group:
This module dumps the attributes of an access
group and the identification of all objects
contained in that access group.

OSCMCB-Materialize and Dump Commitment
Block: This module materializes and dumps the
attributes of a commitment block, including the
commitment block status, the commitment
description, and objects associated with the
commitment block.

OSCMCD-Materialize and Dump Controller
Description: This module materializes and dumps
the attributes of a controller description, including
backward and forward object lists and the network
description candidate list if one is present.

OSCMCTX-Materialize and Dump Context: This
module materializes and dumps the attributes of a
context and the identification of the objects
addressed through the context.

OSCMCUR-Materialize and Dump Cursor: This
module materializes and dumps the attributes and
operational statistics of a cursor, including the
identification of all data space indexes that the
cursor is over.

OSCMDMPS-Materialize and Dump Dump Space:
This module materializes and dumps the attributes
and size values for a dump space.

OSCMDS-Materialize and Dump Data Space: This
module materializes and dumps the attributes and
operational statistics of a data space, including the
identification of the data space index if there is
one over the data space.

OSCMDSI-Materialize and Dump Data Space
Index: This module materializes and dumps the
attributes and operational statistics of a data space
index, including the identification of any data
spaces addressed by the index.

OSCMIDX-Materialize and Dump Index: This
module materializes and dumps the attributes and
entries in an independent index.

OSCMJPRT -Materialize And Dump Journal Port:
This module materializes and du the attributes of a
journal port, including attached journal spaces and
objects being journaled.

OSCMJSPC-Materialize and Dump Journal Space:
This module materializes and dumps the attributes
of a journal space, including the associated journal
port.

OSCMLUD-Materialize and Dump Logical Unit
Description: This module materializes and dumps
the attributes of the logical unit description
including the identification of the object addressed
by the forward object pointer.

OSCMND-Materialize and Dump Network
Description: This module materializes and dumps
the attributes of a network description, including
the identifications of objects in the backwards
object list.

OSCMPGM-Materialize and Dump Program: This
module materializes and dumps the program
template. Only the program components that can
be materialized as observable will be dumped.

OSCMO-Materialize and Dump Oueue: This
module materializes and dumps the attributes of a
machine interface queue.

OSCMSP-Materialize and Dump Space: This
module materializes and dumps the attributes of a
system space.

OSCMUP-Materialize and Dump User Profile: This
module materializes and dumps a user profile and
its list of authorized objects.

-->OSCSPCDM-Space Dump Routine: This module
dumps a space or part of a space for dump system
object.

-->OSCPCSYS-Display Programming Changes on the
System (DSPPGMCHG)': This module gathers
information on programming changes, then produces
programming change and patch status displays and
listings.

OSCDSPPC-Display Detailed Information for a
Programming Change: This module creates the
detailed information display or listing for a
programming change.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QSCOIR-Retrieve Service OIR: This module is used
by application development routines to retrieve the
service OIR (object information repository) data.

-->QSCONEOB-Single Object Dump: This module
provides a dump of a single machine interface object.
The module is called by QDMROUTE to dump a
single non-standard object.

-->QSCPDPC-Start Problem Determination Procedure
(STRPDP)': This module executes the specified
problem determination procedure.

QSCPDPXH-Problem Determination Procedure
Exception Handler: This module handles the
service function terminated exception (CPF7206).

-->QSCPP-Patch Program (PCHPGM)': This module is
used to patch a program and then re-encapsulates
the program to create a new program as a local
programming change.

-->QSCPUTR-Service Open/Close: This module opens
and closes the printer device file for dump
operations.

-->QSCRH-Service Request Handler: This module
handles the service request messages sent between
jobs engaged in interjob servicing.

-->QSCRPC-Remove Programming Change
(RMVPGMCHG)': This module checks that the
program change being removed is not a prerequisite
for some other installed program change, and then
calls QSCARPC to remove the programming change.

QSCAUTCK-Authority Checker: This module
checks if the user is authorized to perform
programming changes in the library chosen.

-->QSCSVJOB-Service Job (SRVJOB)': This module
places a specified job in service mode.

- - >QSCTEVTH-Trace Job Event Handler: This module
builds the trace records.

-->QSCTI-Trace Internal (TRCINT)': This module
activates or deactivates the specified internal trace.

- - >QSCT JOB-Trace Job (TRCJOB)': This module
activates the trace function for the specified job.

QSCPTREC-Trace Record Output Formatter: This
module formats trace records and then prints th
formatted output.

QSCT JOBR-Trace Job Remote Setup: This module
initiates the CPF trace in the serviced job as a result
of the Trace Job command and the initialization
performed by QSCT JOB.

-->QSCVFYPT-Verify Printer (VFYPRT)': This module
processes the Verify Printer command.

-->QSCWMINT-Service/Work Management Interface:
This module is called by the process termination and
process initiation functions of work management to
perform necessary service functions, including set
trace on, set trace off, and terminate service mode.

Alert Messages

All messages to the history log (QHST) that have an
alert ID other than *NONE are forwarded to the network
host when alert messages are being processed. The
message handler component invokes QSCAEVTH to
send the alert messages to the network host. The
following command is used to initiate alert messages
processing:

• Change Network Attributes (CHGNETA): This
command initiates alert processing by changing the
network attributes.

Service SC-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Dumps

Dump commands provide hexadecimal dumps of
individual system objects, objects that make up a job
structure, and combinations of job structure and related
system objects. An internal macro, interface is also
available· to the system default escape message handler
to take dumps when an unmonitored escape message is
sent. Dumps are written to a spooled print file that can
be held after printing for submission with an APAR. The
following commands are used to perform dumps:

• Dump Object (DMPOBJ): This command is used to
dump an external object that is stored in a library.

• Dump System Object (DMPSYSOBJ): This command
is used to dump any machine interface object that is
stored in a context or can be indirectly addressed
through an object stored in a context.

• Dump Job (DMPJOB): This command is used to
dump the job structure and related objects.

Trace

Invocations and invocation terminations of machine
interface programs can be traced. The Trace Job
(TRCJOB) command is used to turn trace on or off, to
specify the trace table storage area size, the action to
take if the trace tabl~ becomes full (wrap or stop), the
type of tracing to be done, and, optionally, the name of
a user exit program to be invoked for each trace record
generated. The trace can also be cancelled without
printing the trace records.

In addition to the flow trace, there is a data trace that
generates specific program data instead of the normal
trace record.

A flow trace record contains the following information:

• Time stamp of when the trace record was generated

• Trace record sequence number

• Record type-call, transfer control, event handler
invocation, external exception handler invocation,
invocation due to an invocation exit routine, return,
invocation terminated, internal or branchpoint
exception handler invocation, invocation terminated
for intervening invocation, internal exception handler
return, external exception handler return, process
termination phase terminated, and process terminated
for unhandled exceptions.

SC-6

• Program name-the name of the program

• The name of the library addressing the program

• Instruction number of the last entry to the program

• Instruction number of the exit from the program

• Invocation number

A data trace record contains the following:

• Time stamp of when the trace record was generated

• Trace record sequence number

• Record type-data

• Trace point data

A user exit program gives a trace user an opportunity to
perform additional functions to those provided by the
CPF trace. For example, the exit program could
suppress a trace record by blanking it out, or it could
invoke the dump commands.

• CPU time used

• Non-data-base page reads

• Data base page reads

• Pages written

• Transitions to wait state

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Interjob Servicing

Normally service dump and trace commands apply to
the job in which they are entered; however, one job may
service another job. When a job is in service mode
(servicing another job). dump and trace commands
entered in the job cause dumps and traces to be
performed in the serviced job. The following commands
are used to perform interjob servicing:

• Service Job (SRVJOB): This command specifies the
job to be serviced and establishes service mode.

• End Service (ENDSRV): This command ends service
mode.

• Display Service Status (DSPSRVSTS): This command
displays the service status of a job-whether servicing
another job or being serviced by another job, and the
status of the job being traced.

The following commands are affected by service mode:

• Dump Job (DMPJOB)

• Dump Job Internal (DMPJOBINT)

• Dump Object (DMPOBJ)

• Dump System Object (DMPSYSOBJ)

• Trace Job (TRCJOB)

• Trace Internal Data (TRCINT)

Programming Changes

Programming changes are created in an IBM laboratory
and placed on a diskette for distribution. These
programming changes are in response to an APAR and
consist of those system objects that must replace the
failing system objects to correct the programming
problem.

Programming changes are installed with the Load
Program Change (LODPGMCHG) command. All
immediate programming changes can be applied
temporarily with the Apply Program Change
(APYPGMCHG) command. If a temporarily applied
program change does not solve the problem, it can be
removed with the Remove Program Change
(RMVPGMCHG) command. If the user is confident that
the programming change is going to solve the problem,
the programming change can be permanently applied.
Once a program change has been permanently applied
to the system, it cannot be removed and becomes a
permanent part of the system.

Almost all CPF programming changes are deferred, in
special situations only can CPF programming changes be
temporarily applied to the system as it is running. There
are, however, some special programming changes,
although loaded into the system with the others, that
must be applied when the system is not fully operating.
These deferred program changes can be applied at the
start CPF process time. A display is presented to the
operator to allow the selection of those program
changes. Once these deferred changes are permanently
applied, they cannot be removed.

Programming changes remain valid when a save system
operation takes place and a corresponding restore takes
place.

Service SC-7

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program Patches

Emergency repairs to a program can be made by
patching the program. The Patch Program (PCHPGM)
command is used to create a patched copy of a
program. The resulting patched program is handled by
service as a locally generated program change. If the
job is an interactive job, a display can be requested that
shows selected portions of the program template. Patch
data can then be entered on the display screen. If the
job is a batch job, patch data can be entered through
the QPCHSRC source file. Patch data can be verified by
checksum checking. Verification is specified by
specifying the CHKSUM parameter on the Patch
Program command.

A log record is built for each program patch. It is
printed and logged to the CPF service log.

The status and attributes of all programming changes
and patches on the system can be displayed with the
Display Programming Changes (DSPPGMCHG)
command.

Programming Change Log

The programming change log is a system log used to
track the loading, application, and removal of
programming changes and program patches. Each entry
is a message that was sent to QCHG. A message is
sent to the log for the following reasons:

• Program changes loaded in the system

• Programs patched

• Program changes or patches applied temporarily

• Program changes or patches applied permanently

• Program changes or patches removed temporarily

• Program changes or patches removed permanently

• Messages sent by the system operator or service
personnel to explain the action taken

SC-8

APAR Data Preparation

Information pertaining to a CPF programming problem
can be saved on a save I restore device volume for later
analysis by laboratory personnel. This information can
include data base files, programs suspected of being in
error, an MTR (machine trouble report) and spooled print
files that contain dump and trace output as well as the
user output necessary to show the type of program
failure. The Prepare APAR (PRPAPAR) command is used
to gather and save this information.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Internal Service Facilities

The internal service facility provides aids and tools to
service the internal machine product. The commands
used to provide this support are:

• List Error Log Data (LSTERRLOG): Information about
machine checks. device errors. and volume statistical
data is recorded by the machine in a log that is not
normally accessible above the machine interface. This
command allows selected log data to be listed to a
special printer file.

• Trace Internal (TRCINT): This command allows
tracing of various activities below the machine
interface.

• List Internal Data (LSTINTDTA): This command prints
the contents of internal machine data areas.

• Dump Job Internal (DMPJOBINT): This command
dumps the machine data structures related to the
machine process in which the current job is
executing.

• Change CSNAP Attributes (CHGCNPA): This
command allows the user to change the CSNAP
short term statistics attributes in the system.

• Display CSNAP Attributes (DSPCNPA): This
command displays the CSNAP short term statistics
attributes which are set in the system.

• List CSNAP Data (LSTCNPDTA): This command lists
the CSNAP data in the system.

• List CSNAP History (LSTCNPHST): This command
lists the CSNAP history in the system.

System Verification Procedures

The following are the system verification procedures:

• Start Problem Determination Procedure (STRPDP):
This command provides the user access to a set of
diagnostic procedures that run below the machine
interface to determine if CPF can function.

• Verify Printer (VFYPRT): This command is used to
produce a print pattern on a 5219/5224/5225/5256
Printer for a specified number of times.

Service SC-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982, 1983, 1984, 1985

Service Relationship to Other CPF Components

Figure SC-1 shows the relationship between the service
component and other CPF components. The following
components use service for the indicated purpose:

.. Work control uses service during the start CPF
process to allow programming change application
or removal. Work control also uses service to
terminate and clean-up alert message processing.

II Message handler uses service to forward an alert
message to the network host.

II Work monitor uses service to clean-up alert
message processing in the QLUS process (when
terminating). Work monitor also invokes servic.e to
handle service request events.

The following components are used by service for the
indicated purpose:

II Service uses spooling to save spooled files for the
APAR function.

II Service uses the command analyzer component to
pass command parameters to the service CPPs
(command processing programs).

II Service uses the save / restore component to save
and restore objects for the APAR function and the
programming change function.

II Service uses the librarian component to obtain
addressability and system object information.

II Service uses the concurrent service monitor
component to provide access to the machine
service functions.

SC-lO

II Service uses the message handler component to
signal exceptions, send messages, and to receive
message data.

II Service uses the work control component to gain
access to job structure components, such as the
work control block and work control block table.

III Service uses the security component to check the
user's authorization to dump objects, to apply,
remove, and display programming changes, to
patch programs, and to materialize and
encapsulate programs.

II Service uses the common data management
component to output dumps, traces, and displays.

II Service uses console function manager component
subfile support to display the deferred
programming change screen at start CPF time, to
display the programming change and patch status
displays, and to display the programming change
detailed information display.

Service may also use other components' special
object dump routines to dump objects such as files.
These routines use service to format and output
the dumps. Service gets addressability to the
special object dump routines through the librarian
component.

•

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Used by Service

II
Spooling

• Command
Analyzer

Users of Service

Work III II Savel

Control Restore

Message II Service II
Librarian

Handler

Work III II Concurrent

Monitor Service
Monitor

II Message
Handler

II Work
Control

III
Security

II Common
Data
Management

II Console
Function
Manager

Figure SC-1. Service Relationship to Other CPF Components

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-11

Dump Current Job

Figure SC-2 shows an overview of the dump current job
operation.

.. The Dump Job (DMPJOB) command is decoded
by the command analyzer and control is
transferred to QSCDJOB.

II QSCDJOB obtains addressability to the SCO
(service communications object) and determines if
the job is in service mode.

II If the job is not in service mode, control is
transferred to QSCGJOB.

DMPJOB a Command

..

Command
Analyzer

QSCDJOB

Dump Job

II
QSCGJOB

Get Job
Storage Dump

QSCPUTR

Service
Open/Close

QSCJSDMP

Dump Job
Storage Area

OSCFSODD

Format and Send
Out Dump Data

II Service
Communications
Object

.. Material ization
Space

Job Dump

Heading
I nvocation List
Activation List
PASA
Object Mapping Table
PSSA
Job Structure
Associated Spaces
End of Dump

Figure SC-2. Dump Current Job Overview

SC-12

.. QSCGJOB, using QSCPUTR, opens the printer
device file, sends the dump heading information,
initializes the default materialization space, and
calls QSCJSDMP.

• QSCJSDMP, using QSCFSODD, sends out the
invocation list, activation list, PASA. PSSA, and
the job structure objects. Control is returned to
QSCGJOB.

II QSCGJOB sends out the ending dump record,
uses QSCPUTR to close the printer device file,
destroys the default materialization space, and
destroys the SCO.

II Control is returned to the caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

J

L

L

Dump Serviced Job

Figure SC-3 shows an overview of a dump serviced job
a

operation.

a The command analyzer decodes the Dump Job
..

(DMPJOB) command and transfers control to
QSCDJOB.

B QSCDJOB obtains addressability to an SCO
(service communications object) and determines if
the job is in service mode. If the job is in service
mode, a service message is sent to the serviced
job and is transferred to QSCDH.

II QSCDH receives service data from the serviced
job through the service reply queue. QSCDH tells
the serviced job to send more data through the
service command queue. The service command
queue and the service reply queue are addressable
through the SCO. Service data can be in four
forms: open file request, data put request,
program message request, and close file request. -After a closed file request is serviced, control is
returned to the CPP caller. An escape program
message request results in an escape message
being sent to the caller of QSCDJOB.

II Control is returned to the caller.

DMPJOB ,
Command

Command
Analyzer

a
~ ,.

QSCDJOB

Dump Job

~ ,. II
QSCDH

Service Data
Handler

~

,
QSCPUTR

Service
Open/Close

II

II

Service
Communications
Object

/
Service
Command
Queue

Service
Reply
Queue

Job Dump

Heading
Invocation List
Activation List
PASA
Object Mapping Tables
PSSA
Job Structure
Associated Spaces
End of Dump

Figure SC-3. Dump Serviced Job Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-13

Service Job Command

Figure SC-4 shows an overview of the Service Job
(SRVJOB) command operation. The Service Job
command is used to put a job in service mode so that
other service commands can be entered into the
specified job.

II The Service Job command is decoded by the
command analyzer and control is transferred to
QSCSVJOB. The job name is passed as an input
parameter.

IJ The WCBT (work control block table) is searched
for the job name. The service index is located and
the job name is inserted. An SCO (service
communications object) is obtained (by creation or
resolution to an existing one) and the service,
command, and reply queues are created; the
command queue for routing commands to the
serviced job, and the reply queue for receiving
responses from the serviced job are addressed
through the SCO. An event is signaled to the
serviced job, passing a pointer to the SCO in that
job as event data. The servicer goes into a wait on
the reply queue. A response completes the
operation.

II Control is returned to the caller .

Job
Name

. SRVJOB

II Command

Command
Analyzer

II

QSCSVJOB

Service Job

IJ

Service
Index

Figure SC-4. Service Job Command Overview

SC-14

Service
Command
Queue

Service
Reply
Queue

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Dump Object or Dump System Object

Figure SC-5 shows an overview of a dump object or
dump system object in a current job operation.

.. The command analyzer decodes a Dump Object
(DMPOBJ) or Dump System Object (DMPSYSOBJ)
command and transfers control to QSCDOBJ if an
external object is to be dumped or to QSCDSO if
a system object is to be dumped.

II An SCO (service communications object) is
obtained (either created or resolved to) and a
pointer to it is put in its parameter area. The
command input parameters are also put into the
SCO parameter area.

II Control is transferred to QSCGSO with the pointer
to the SCO passed as an argument.

II QSCGSO gets a specific object or a list of objects.
dumps each object. and then control is returned to
the caller.

Parameter
List

DMPOBJ
D Command

Command
Analyzer

II

QSCDOBJ

Dump Object

•

II
QSCGSO

Get System
Objects

Figure SC-5. Dump Object/System Object Overview

D

•

This document contains restrictad materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

DMPSYSOBJ
Command

Command
Analyzer

QSCDSO

II

Parameter
List

Communications
Object

Service SC-15

Dump Serviced Job Object or System Object

Figure SC-6 shows an overview of a dump object or
system object in a serviced job operation.

a The command analyzer decodes a Dump Object
(DMPOBJ) or Dump System Object (DMPSYSOBJ)
command and transfers control to QSCDOBJ if an
external object is to be dumped or to QSCDSO if
a system object is to be dumped.

II The SCO (service communications object) that was
set up by the QSCSVJOB module is located and
because another job is being serviced, a message
is sent to the serviced job.

II QSCDH handles data and messages sent from the
serviced job. QSCDH issues a dequeue with wait
against the reply queue. The serviced job then
puts the information in the associated space of the
service reply queue (data queue for the serviced
job) and the service message is enqueued to the
reply queue by the serviced job to satisfy the
dequeue executed by QSCDH. QSCDH, using
QSCPUTR to open and close the printer device
file, writes the dump data to the printer file.
QSCDH returns to the caller of QSCDOBJ or
QSCDSO after a close message or an escape
program message is processed.

II Control is returned to the caller.

SC-16

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

DMPOBJ DMPSYSOBJ
II Command II Command

Command
Analyzer

Parameter
List

II

QSCDOBJ

Dump Object

II

II
OSCDH

II

Service
Open/Close

Figure SC-6. Dump Serviced Job Object/System Object Overview

II

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Command
Analyzer

II
OSCDSO

Dump System
Object

Service
Command
Queue

Service
Reply
Queue

Dump of
System
Object

Parameter
List

Service SC-17

Dump Job Command Executed in a Serviced Job

Figure SC-7 shows an overview of the execution of the
Dump Job command in a serviced job.

.. QSCGJOB is called by QSCRH. The SCO (service
communications object) is passed as input.

II A materialization space is set up and addressability
to it is put into the SCO. Service messages are
put into the associated space of the service data
queue. These messages are used to open the
printer device file and to print out dump heading
lines.

II QSCJSDMP is called to dump the job storage
areas. The dump data is sent to the servicing job
through the associated space of the service data
queue. When the space is full, a dummy message
is enqueued to the service data queue and
QSCJSDMP waits for a reply on the service
request queue. After processing the data, the
servicing job enqueues a response on its command
queue (request queue for the serviced job).

.. QSCFSODD is called to format and dump the
hexadecimal data using the data queue. Control is
then returned to QSCJSDMP.

• QSCJSDMP returns control to QSCGJOB.
End-ot-dump lines and a message to close the
print device files are sent to the servicing job and
the materialization space and SCO are destroyed.

II Control is returned to the caller.

SC-18

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
From
QSCRH .. II

QSCGJOB

Get Job
Storage Dump

II

Format and Send
Out Dump Data

Materialization
Space

Request
Service
Queue

Service
Data
Queue

Figure SC-7. Dump Job Execution in a Serviced Job Overview

Service
Communications
Object

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-19

Get System Object

Figure SC-8 shows an overview of the get system
object operation.

.. OSCGSO is called and receives the SCO (service
communications object) as input. The command
parameters for the dump are in the SCO.

II A materialization space is created, initialized, and
its address put in the SCQ. Pointers to the objects
to be dumped are obtained by resolving to the
object or, for generic dumps, by invoking the
librarian component.

II If the request is not generic and a list of offsets is
specified, OSCGSQ determines the object to be
dumped. The first offset is combined with the
addressability of the base object to determine the
addressability of the next object. Each succeeding
object's addressability is similarly determined until
the last offset is used; the last object addressed is
dumped.

II OSCPUTR is called to open the printer device file
and OSCGSQ provides the dump heading.

SC-20

II If the space parameter is specified or the final
pointer located in II is a space pointer, OSCGSO
determines the length of the space to be dumped
and OSCSPCDM is called to dump the space.

lEI OSCOBJDM is called to dump each object
specified other than spaces and the machine
context. The pointer to the object is put into the
SCQ and the materialization space is used for each
object.

• OSCMMCTX is called instead of OSCOBJDM if
the machine context is to be dumped.

II OSCFSODD is called by OSCMMCTX,
OSCOBJDM, and OSCSPCDM to format and
dump data in hexadecimal and EBCDIC formats.

II OSCPUTR is called to close the printer device file;
the SCO and materialization space are destroyed.

II If an error is detected during the dump, OSCGSO
sets up exception data and signals an exception to
OSCGSO's caller.

III Control is returned to the caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

OSCPUTR

Service
Open/Close

Caller

II

1111

II

a

OSCGSO

Get System
Objects

II

II

II

Exception

OSCSPCDM

Space Dump

OSCOBJDM

Object Dump

OSCMMCTX
Materialize and
Dump Machine
Context

OSCFSODD

Format and Send
Out Dump Data

Figure SC-S. Get System Object Overview

This document contains restricted materials of IBM. LY21-0571-6

© Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service
Communications
Object

Materialization
Space

Dump of
Space

Dump of
System
Objects

Dump of
Machine
Context

Service SC-21

Dump Object

Figure SC-9 shows an overview of the object dump
operation.

a OSCOBJDM is called. The SCO (service
communications object) is passed as input. The
SCO contains a pointer to a common
materialization space and a pointer to the object to
be dumped.

II OSCOBJDM checks the user's authority to dump
the object and locks the object, if necessary. The
object heading line is sent to the printer device
file.

II The specific dump routine for each machine
interface object type is called to materialize and
dump that machine interface object. OSCFSODD
is called by the dump routines to put out the
materialized data. The dump routines are:

• OSCMAG-Materialize and dump access group

• OSCMCB-Materialize and dump control block

• OSCMCD-Materialize and dump controller
description

• OSCMCTX-Materialize and dump context

• OSCMCUR-Materialize and dump cursor

• OSCMDMPS-Materialize and dump dump space

• OSCMDS-Materialize and dump data space

• OSCMDSI-Materialize and dump data space
index

• OSCMIDX-Materialize and dump independent
index

• OSCMJPRT-Materialize and dump journal port

SC-22

• OSCMJSPC-Materialize and dump journal
space

• OSCMLUD-Materialize and dump logical unit
description

• OSCMND-Materialize and dump network
description

• OSCMPGM-Materialize and dump program

• OSCMO-Materialize and dump machine
interface queue attributes

OSCMSP-Materialize and dump space
attributes

• OSCMUP-Materialize and dump user profile

Note: If the object to be dumped is a composite
object, OSCOBJDM calls itself to dump each
component object of the composite. If the object
is not standard, the designated dump routine for
the object is called.

a If present, the OIR (object information repository)
data is dumped. OSCFSODD is called to dump
the byte space of space objects and the
associated space of system objects.

II Control is returned to the caller.

Caller

~ ~II
a , , Object Heading Line

Object Dump

OSCOBJDM
II Associated Space

of Object
OIR Data

Object Dump

~ ~

vi OSCMAG

... Materialize and
... Dump Access

Group

I I

II I I
I I
I I

OSCMUP
Materialize and
Dump User
Profile

~ ~ , ,
a OSCFSODD

...

.... Format and Send
Out Dump Data

Figure SC-9. Dump Object Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service Alert Event Handler

Figure SC-1O shows an overview of service alert event
handler.

D Message handler signals an alert event to the
OLUS if alert processing is active and the message
is to be alerted.

II OSCAEVTH builds a temporary space for the alert
event.

II OSCAEVTH issues a REOIO instruction to have the
vertical microcode send the alert message to the
network host.

• OSCAEVTH dequeues the REOIO feedback record
from the machine interface response queue of the
OLUS process, and returns control.

II Work control signals an alert termination event if
alert processing is terminated via the Change
Network Attributes command. This allows
OSCAEVTH to destroy the REOIO spaces and to
remove from the queue any feedback records for
alert REOIOs from the machine interface response
queue. Any alert processing REOIOs that have
been sent to the vertical microcode but have not
been finished are canceled.

• Work monitor calls OSCAEVTH if alert processing
is active and the OLUS process is termina~.
OSCAEVTH then performs clean-up as in II.

Work
Control

Message Work
Handler Monitor

•
Machine Interface
Response Oueue .. OSCAEVTH

Alert Event
Handler

•
Vertical
Microcode

Figure SC-10. Service Alert Event Handler Overview

II

• •

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

REOIO
Instruction

Service SC-23

Service Request Event Handler

Figure SC-11 shows an overview of the service request
event handler.

.. A service event is signaled to the serviced job by
CPPs (command processing programs) executing in
the servicing job. The event data is passed to
QSCRH in a service message.

D Work monitor's process control event handler
invokes QSCRH to process the service request
event. QSCRH, depending on the event data sent
by the signaler, performs one of the following:

II Using a pointer to the SCO of the servicing job,
addressability to the service queues is obtained
and set in the new SCO. The service command
queue becomes the service request queue and the
service reply queue becomes the service data
queue in the serviced job. The address of the new
SCO is put into the SCO of the servicer and a
completion message is sent using the service data
queue.

II The SCO is destroyed.

SC-24

II QSCT JOBR is called to activate the CPF
call/return trace.

II QSCGJOB is called to execute the dump job
functions.

II QSCGSO is called to execute the dump system
object functions.

III QSCGJI is called to execute the dump job internal
function.

II QSCWMINT is called to perform process initiation
time service functions, including activation of the
CPF call/return trace using QSCTJOBR.

II In addition, if the serviced process terminates,
QSCRH is called in the service process to
terminate service mode and send a process
terminated message to the user.

III Control is returned to the caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

..
OSCRH Get

Service III II Service
Message Service Request Communications

Handler Object

~ ~ .
Destroy

Work ... II II Service

Monitor '" Communications
Object

II ..
OSCTJOBR

... Trace Job
Remote Setup

II..
OSCGSO

.... Get System

Objects

EI
OSCGJI

... Get Internal

Job Dump

II
QSCGJOB

... Get Job
Storage Dump

Send

IE Serviced Job
Terminated
Message to
User

L Figure SC-11. Service Request Event Handler Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

! OSCWMINT
Service/Work -.. Management
Interface

Service SC-25

Service Data Handler

Figure SC-12 shows an overview of the service data
handler functions.

D QSCDH is transferred by a dump CPP.

B A dequeue with wait from the service reply queue
is executed. WheQ the dequeue is satisfied, data
put in the associated space of the reply queue is
processed as follows:

II If the message type is open or close, QSCPUTR is
called to open or close the printer device file.

.. If the message type is put, the data is sent to the
printer to be dumped. If the end of the associated
space is reached, the offset to the next message is
reset to the start of the associated space, a
mess!2,e is enqueued to the command queue and
step II is reexecuted. The serviced job, after
filling up the associated space, sends its data
queue message, and waits on a reply at its request
queue.

II If the message type is send program message,
then the specified program message is sent to the
program message queue of the program which
called CPP and QSCDH.

II If the message type is close or send program
message and the program message type is escape
or completion, then control is returned to the
caller.

SC-26

Command
Analyzer

II

Dump
Command
Processing
Program

D
. QSCDH

II
OSCPUTR

Service
Open/Close

a
Dump
Output

II

Program
Message

Service
Command
Queue

Service
Communications
Object

Service
Reply
Queue

Associated
Space

Figure SC-12. Service Data Handler Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Trace Job Command

Figure SC-13 shows an overview of the Trace Job
(TRCJOB) command operation.

.. The command analyzer decodes the Trace Job
command and control is transferred to QSCT JOB
passing the command parameters as input.

II An SCO (service communications object) is
obtained and, depending on whether trace is to be
set on, set off, or canceled, the following happens:

• If trace is to be set on:
A trace table is created, dependent on the
storage size parameter.
If a trace exit program is specified, locate it.
Set trace control flags in the SCQ and work
control block.
If not servicing another process, turn on the
invocation reference trace.
If servicing another process, send a service
message to the process that is being
serviced.

• If trace is to be set off:
The trace environment is terminated in the
related processes.
Trace records are retrieved from the trace
table, formatted and sent to a spooled file or
a data base output file, or both, and then the
trace table is destroyed.

TRCJOB
Command

Command
Analyzer

II ..
asCTJOB

Trace Job

Service
Communications
Object

Trace
Table

Service
Index

TRINV/
CANTRINV
Instructions

- If servicing another process, a message is
sent to that process. That process can then
perform any necessary functions.

Figure SC-13. Trace Job Command Overview

• If trace is to be canceled:
The trace environment is terminated in the
related process.
The trace table is destroyed (no output
records).
If servicing another process, a message is
sent to that process, which can then perform
any necessary functions.

II Control is returned to the caller.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-27

Trace Job Command in a Serviced Job

Figure SC-14 shows an overview of a Trace Job
(TRCJOB) command operation in a serviced job.

.. QSCRH calls QSCTJOBR passing a pointer to a
SCO as input.

II Depending on whether the flag in the SCO has
been set on or off by the CPP in the servicing job,
one of the following happens:

If the flag is set on:
The Trace Invocations instruction is executed
for each invocation in the invocation stack.

• If the flag is set off:
The Trace Invocations instruction is canceled
for each invocation in the invocation stack.

From
QSCRH

lit
QSCTJOBR

Trace Job
Remote Setup TRINV/

CANTRINV

II Instructions

Figure SC-14. Trace Job Command in a Serviced
Job Overview

SC-28

Trace Internal Command

Figure SC-15 shows an overview of the Trace Internal
(TRCINT) command operation.

.. The command analyzer decodes the Trace Internal
command and control is transferred to QSCTI
passing command parameters as input_

II A command string is built using the input
parameters. The internal macro ?CALLS is invoked
to establish a link to the concurrent service
monitor.

II The machine internal trace is executed under the
concurrent service monitor using REQIOs to the
machine service component.

Parameter
List

..

II

II

TRCINT
Command

Command
Analyzer

QSCTI

Trace
Internal

?CALLSF
Macro

Concurrent
Service
Monitor

Figure SC-1S. Trace Internal Command Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-29

Prepare APAR Command

Figure SC-16 shows an overview of the Prepare APAR
(PRPAPAR) command operation.

.. The command analyzer decodes the Prepare APAR
command and control is transferred to QSCAPAR
passing the command parameters as input.

B If spooled file members are to be included,
QSCCOPY is invoked to create physical data base
file copies for each member.

• Save/restore is invoked to save all files from
unique libraries first and then to save all programs
from unique libraries. Spooled files are saved as
separate data base files; the objects are saved by
the save/restore component.

II Any data base files and spaces that were created
are destroyed.

II Control is returned to the caller.

SC-30

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PRPAPAR I
D Command ..

Command

/ __ A_n..,arly_z_er __1

II
Parameter
List

, ,
~ OSCAPAR

Prepare APAR

OSCCOpy ...

/
Copy APAR
Files D

Data Base
Spooled Spooling
Files

Figure SC-16. Prepare APAR Command Overview

...
.....

B

Save/Restore

Save/Restore
Media

o
I

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Libraries

Objects to
Be Saved

Service SC-31

Display Service Status Command

Figure SC-17 shows an overview of the Display Service
Status (DSPSRVSTS) command operation.

.. The command analyzer decodes the Display
Service Status command and control is transferred
to QSCDSS passing the job name as input.

B The WCBT (work control block table) is searched
for the named job. If the name is not found or
more than one job has that name, an exception is
signaled. A uniquely named SCO (service
communications object) is located in the QSYS
library. If it is not located, an exception is
signaled.

Job Name

DSPSRVSTS
.. Command

Command
Analyzer

II

Display
Service Status

II II

Figure SC-17. Display Service Status Command Overview

SC-32

II The display device (console or work station
display) is opened and the job name is placed in
the output buffer. Using the WCBTE (work control
block table entry) offsets for the servicing and
serviced jobs contained in the SCO, the job names
are extracted from the WCBTE and also put into
the output buffer. If trace is active, the trace table,
addressed through the SCO, is accessed for trace
information. That trace information is also put into
the output buffer.

II Service status is then displayed to the user.

II Control is returned to the caller.

Work Control
Block Table
Entry

Service
Communications
Object

...... ----_ ...

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-33

Patch Program Command

Figure SC-18 shows an overview of the Patch Program
(PCHPGM) command operation.

a The command analyzer decodes the Patch
Program command and control is transferred to
QSCPP. The command parameters are passed as
input.

II Using the program name parameter, the program
to be patched is addressed and materialized into a
created space.

II The materialized program template is patched as
follows:

• The patch data (offset, old data, new data,
and check data) may be specified as
command parameter input.

o The QPCHSRC source file may be specified
as the source of the patch data.

G If neither patch data nor a source file is
specified and the job is an interactive job,
portions of the program template are
displayed to the user. The patch data can
then be entered on the display. This also lets
the user randomly scroll and patch the
program template. Command function keys
are provided to end or cancel the patch
session.

SC-34

E) A log record is built for each patch and then
enqueued to a temporary machine interface
queue.

For both command and source file input, old data
entered is compared with old data currently at the
specified offset. The new data will overlay the old
data at the specified offsets. Each offset specifies
a separate patch and each row of the interactive
display specifies a separate patch.

G A new program is created (encapsulated)
using the patched program template. This
occurs for command input when all offsets
are processed, for source file input when all
input records are processed, and for
interactive input when the CF3 key is
pressed. The new program is inserted into
the programming change index for testing by
QSCARPC.

o The materialization space is destroyed, the
patch log records are dequeued, logged to
the change log and printed, and then the
queue is destroyed.

e Control is returned to the caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Parameter
List

QPCHSRC

Source
File

PCHPGM
.. Command

Command
Analyzer

e

Patch

Apply/Remove
Programming
Change

Programming
Change Log

Figure SC-18. Patch Program Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Program

Material ization

Log
Records

Temporary
Queue

New
Program

Service SC-35

Patch Program Command Support

Figure SC-19 shows an overview of the support used
by the Patch Program command.

II QSCPP invokes the macro ?LOCPGM. The
command parameters are passed as input.

II ?LOCPGM calls QSCARPC to locate the program
object as specified by the Patch Program
command. The address of the program object is
resolved.

II QSCARPC returns to QSCPP with the resolved
address. If QSCARPC is unable to locate the
specified program, a null system pointer is
returned.

II QSCPP invokes the macro ?INSPGM to replace
the patched program.

II ?INSPGM calls QSCARPC to insert the patched
program into the system. This object is now a
local programming change.

II Control is returned to the caller.

SC-36

OSCPP

/

Patch ~
Program

L...~'T".------'~~

Parameter
List

I...--_--..-_----J II

\
?LOCPGM
Macro

II "
OSCARPC
Apply/Remove
Programming
Change

II "

.... 11

Parameter
List

11'"----...,...-----

/
?INSPGM
Macro

Figure SC-19. Patch Program Command Support Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-37

Apply, Remove, and load Programming Changes

Figure SC-20 shows an overview of the Apply
Program Change (APYPGMCHG) command, Remove
Program Change (RMVPGMCHG) command, and Load
Program Change (LODPGMCHG) command, as well as
an overview of applying programming changes at start
CPF time.

Apply Program Change

II The command analyzer decodes an Apply Program
Change command and control is transferred to
QSCAPC to execute the command.

o QSCAPC calls QSCAUTCK, which verifies
user authorization to make programming
changes in the specified library. Control is
then returned to QSCAPC.

II QSCAPC checks if the programming change
prerequisites have been met. If the prerequisite
check fails, an exception message is sent.

II If the prerequisite check is successful. QSCARPC
is called to perform the application of the
programming change. If any programming change
exit programs exist. they are called. Control is
returned to QSCAPC upon successful completion
of the change; QSCAPC in turn returns control to
the caller.

Remove Program Change

II The command analyzer decodes a Remove
Program Change command and control is
transferred to QSCRPC to execute the command.

o QSCRPC calls QSCAUTCK, which verifies
user authorization to make programming
changes in the specified library. Control is
then returned to QSCRPC.

II QSCRPC determines if the programming change to
be removed is a prerequisite that is required to
support another programming change. If it is, an
exception message is sent.

II If the prerequisite check is successful. QSCARPC
is called to remove the programming change. If
any programming change exit programs exist. they
are called. Upon successful completion of the
removal, control is returned to QSCRPC, which in
turn returns control to its caller.

SC-38

Load Program Change

• The command analyzer decodes a Load Program
Change command and control is transferred to
QSCLCPR to execute the command.

• QSCLCPR verifies user authorization to load
programming changes into the specified
library. Control is then transferred to
QSCLPC.

II QSCLPC determines if the prerequisites for the
programming changes about to be loaded are
already loaded. If they are not already loaded, an
exception message is sent.

• If the prerequisite check is successful. the program
change objects are loaded from the save/restore
device. Upon completion of a successful load,
(QSCARPC is called to perform the internal load)
control is returned to QSCLPC, which in turn
returns control to its caller.

Apply or Remove Programming Changes Through the
Start CPF Interface

II The start CPF procedure of work control. using the
7TSTSRV macro expansion, calls QSCCPFI.

III QSCCPFI determines if there are any deferred
programming changes available for the user to
perform action upon. These programming changes
are displayed to the user. QSCCPFI then monitors
the console to determine if the user requests that
any of the programming changes be applied. The
programming changes that are requested are
validity checked. If there are any errors, a
message is displayed to the user. All changes
must be valid before any processing can take
place.

.. When all programming changes are valid,
QSCCPFI calls QSCARPC to perform the changes.
If any programming change exit programs exist,
they are called. Upon successful completion of the
changes, control is returned to QSCCPFI, which in
turn returns control to its caller.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

APYPGMCHG I
Command •

Command
Analyzer

a

, ,
OSCAPC
Apply
Programming
Change

o o

OSCAUTCK

Authority
Checker

RMVPGMCHG I
Command •

Command
Analyzer

II

, ,
OSCRPC
Remove
Programming
Change

II~ ~
OSCARPC

LODPGMCHG I
Command •

Command
Analyzer

II , ,
OSCLCPR
Load Program·
ming Change
Authority Checker

OSCLPC
Load
Programming

Change

III

II Apply/Remove II Programming

Changes

~ ~
~~

Programming
Change Exit
Program

Figure SC-20. Apply, Remove, and Load Commands Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Start CPF

, r
OSCCPFI

Start CPF
Interface

Service SC-39

Display Programming Change Command

Figure SC-21 shows an overview of the Display
Programming Change (DSPPGMCHG) command
operation.

.. The command analyzer decodes the Display
Program Change command and control is
transferred to QSCPCSYS. The command
parameters are passed as input.

B QSCPCSYS gathers the status and attributes for
all programming change and patches, requested on
the command parameters, using the master
programming change indexes.

II QSCPCSYS then produces a status display or a
printer listing for the requested programming
changes and patches.

.. QSCDSPPC is called if the user requests
information regarding programming changes on the
status display, or on the command parameters.

II QSCDSPPC produces a detailed information
display or a printer listing for the programming
change. When all detailed information displays
have been displayed, QSCDSPPC returns control
to QSCPCSYS.

III QSCPCSYS then returns control to the caller.

SC-40

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Parameter
List

.. DSPPGMCHG
I Command

Command
Analyzer

•

Display Detailed
Programming
Changes

Master
Programming
Change
Indexes

Programming
Change

Figure SC-21. Display Programming Change Command Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-41

Dump Current Job Internal Command

Figure SC-22 shows an overview of the Dump Current
Job Internal (DMPJOBINT) command operation. .. The Dump Current Job Internal command is

decoded by the command analyzer and control is
transferred to QSCDJI.

II QSCDJI obtains addressability to the SCO (service
communications object) and determines if the job
is in service mode.

II If the job is not in service mode, control is
transferred to QSCGJ I . .. QSCGJI executes a diagnose instruction to cause
an internal process dump to be taken. The dump
is written to the internal vertical microcode log by
the diagnose instruction. .. The diagnostic instruction returns the dump ID to
QSCGJI.

II QSCGJI sends the dump ID in the completion
message to the requester, and destroys the SCO.

II Control is returned to the caller.

SC-42

DMPJOBINT ~
.. Command

Command Completion
Analyzer Message

II II
, r

II QSCDJI
Service

Dump Job r-- Communications
Object

Internal

~ , II
QSCGJI

Get Internal "' .. Job Dump

Dump ID ..
Internal ,/ Vertical
Microcode Log

Figure SC-22. Dump Current Job Internal Command
Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

.J

..)

L
Dump Serviced Job Internal Command

D
Figure SC-23 shows an overview of the Dump Serviced
Job Internal (DMPJOBINT) command.

D The command analyzer decodes the Dump
Serviced Job Internal command and transfers
control to QSCDJI.

D QSCDJI obtains addressability to the SCO (service
communications object) and determines if the job
is in service mode.

II If the job is in service mode, a service message is
sent to the serviced job and QSCDH is transferred.

II QSCDH receives the completion message
containing the dump identifier from the serviced
job through the service reply queue.

II QSCDH sends the completion message to the
requester and returns control to QSC DJ I.

II Control is returned to the caller.

DMPJOBINT
Command

Command
Analyzer

II

QSCDJI

Dump Job
Internal

II

QSCDH

Service Data
Handler

II

Completion
Message

Service
Communications
Object

Service
Reply
Queue

Figure SC-23. Dump Serviced Job Internal Command
Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-43

Dump Job Internal Command in Serviced Job

Figure SC-24 shows an overview of the Dump Job
Internal (DMPJOBINT) command in a serviced job.

D QSCGJI is call~d by QSCRH. The SCO is passed
as input.

II QSCGJI executes a diagnostic instruction to cause
an internal process dump to be taken. The
diagnostic instruction writes the dump to the
internal vertical microcode log and returns the
dump identifier to QSCGJI.

II QSCGJI sends the dump identifier in the
completion message to the servicing process by
enqueuing it to the service data queue, and control
is returned to the caller.

D

Internal
Vertical
Microcode Log

From
QSCRH

QSCGJI

Dump ID

Figure SC-24. Dump Job Internal Command Overview

SC-44

Service
Communications
Object

Service
Data
Queue

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

List Internal Data Command

Figure SC-25 shows an overview of the List Internal
Data (LSTINTDTA) command.

.. The command analyzer decodes the List Internal
Data command and control is transferred to
QSCLID. The command parameter is passed as
input.

B QSCLID builds a command string using the input
parameters. QSCLID invokes the internal macro
?CALLSF to establish a link to the concurrent
service monitor.

II The concurrent service monitor lists the requested
internal data using REQIOs to the machine service
component.

Parameter
List

LSTINTDTA
.. Command

B

II

Command
Analyzer

QSCLID

List Internal
Data

?CALLSF
Macro

Concurrent
Service
Monitor

Figure SC-25. List Internal Data Command Overview

Display CSNAP Attributes Command

Figure SC-26 shows an overview of the Display CSNAP
Attributes (DSPCNPA) command operation.

.. The command analyzer decodes the Display
CSNAP Attributes command and control is passed
to QSCDCNPA. The command parameter is
passed as input.

B QSCDCNPA builds a command string using the
input parameter. QSCDCNPA invokes the internal
macro ?CALLSF to establish a link to the
concurrent service monitor.

II The concurrent service monitor returns to
QSCDCNPA the CSNAP short term statistics
attributes set in the system. Then QSCDCNPA
displays or lists the CSNAP short term statistics
attributes set in the system.

Parameter
List

DSPCNPA
.. Command

II

Command
Analyzer

QSCDCNPA

Display CSNAP
Attributes

Concurrent
Service
Monitor

Figure SC-26. Display CSNAP Attributes Command
Overview

Service SC-45

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981, 1982. 1983, 1984. 1985

Change CSNAP Attributes Command

Figure SC-27 shows an overview of the Change CSNAP
Attributes (CHGCNPA) command operation.

D The command analyzer decodes the Change
CSNAP Attributes command and control is passed
to QSCCCNPA. The command parameters are
passed as input.

B QSCCCNPA builds a command string using the
input parameters. QSCCCNP invokes the internal
macro ?CALLSF to establish a link to the
concurrent service monitor.

II The concurrent service monitor updates the
appropriate CSNAP short term statistics attributes.

Parameter
List

CHGCNPA
D Command

II

Command
Analyzer

QSCCCNPA

Change CSNAP
Attributes

Concurrent
Service
Monitor

Figure SC-27. Change CSNAP Attributes Command
Overview

5C-46

List CSNAP Data Command

Figure SC-28 shows an overview of the List CSNAP
Data (LSTCNPDTA) command operation.

D The command analyzer decodes the List CSNAP
Data command and control is passed to
QSCLCN PD. The command parameter is passed
as input.

B QSCLCNPD builds a command string using the
input parameter. QSCLCNPD then invokes the
internal macro ?CALLSF to establish a link to the
concurrent service monitor.

II The concurrent service monitor lists the requested
internal data using REQIOs to the machine service
component.

Parameter
List

LSTCNPDTA·

D Command

II

Command
Analyzer

QSCLCNPD

List CSNAP
Data

Concurrent
Service
Monitor

Figure SC-28. List CSNAP Data Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

List CSNAP History Command

Figure SC-29 shows an overview of the List CSNAP
History (LSTCNPHST) command operation.

.. The command qnalyzer decodes the List CSNAP
History command and control is passed to
OSCLCNPH. The command parameter is passed.

II OSCLCNPH builds a command string using the
input parameter. OSCLCNPH then invokes the
internal macro ?CALLSF to establish a link to the
concurrent service monitor.

II The concurrent service monitor lists the requested
internal data usin REOIOs to the machine service
component.

Parameter
List

LSTCNPHST
.. Command

II

Command
Analyzer

OSCLCNPH

List CSNAP
History

Concurrent
Service
Monitor

Figure SC-29. List CSNAP History Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Service SC-47

SC-48

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Advanced Program-to-Program Communications Function Manager

INTRODUCTION

The APPC (advanced program-to-program
communications) function manager component of CPF
(control program facility) provides System/38
applications written in RPG III and COBOL a way to
communicate using the SNA logical unit (type 6.2)
protocols. The APPC function manager provides the
interface between the application program and the APPC
access path manager component. Using the SNA logical
unit (type 6.2) protocols. the RPG III and COBOL
applications programs running on the System/38 can
communicate with an application program on another
system.

The application program uses DDS (data description
specifications) to describe the communications or mixed
device files that are used to communicate between the
System/38 and another device implementing SNA
logical unit (type 6.2).

The following data management functions are supported
by the APPC function manager:

• Open a file

• Acquire a device

• Send data

• Receive data

• Wait for receipt of data

• Release a device

• Close a file

The ?SIRVPIP and ?SIRSPAT macros are supplied as an
ease-of-use interface to the access path component for
use by the attach manager function.

GENERAL OVERVIEW

Advanced Program-to-Program Communications
Function Manager Modules

The APPC function manager component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry into the component. Indentation of a module
shows its dependency on a previous module.

-->QSICLOSE-APPC Close: This module is used to
close a communications or mixed device file to input
or output processing.

-->QSIEFEVH-Expedited Flow Unsolicited Data
Processor: This module is called to process any
expedited flow data received by the access path
manager unsolicited data event handler.

QSIERP1-I/O Error Processor: This module is
used to process I/O errors returned to the APPC
function manager.

QSIERP2-Detected Error Processing: This module
is used to build and send all messages for errors
detected by the APPC function manager.

QSIFMH7-Error Header Processor: This module is
called when an error header (FMH-7) is received
in the input buffer. QSIFMH7 performs all
processing for the error header and any associated
error log or error data.

Advanced Program-to- Program Communications Function Manager 81-'

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

-->OSIGET -APPC Get: This module handles the get
data management macro functions for the APPC
function manager. OSIGET receives data blocks from
the access path component and passes them, one
record at a time, to the user program. It performs the
associated validity checks, deblocks the data using
the record format retrieved from the device file,
moves data to the users input buffer, and processes
routing and response indicator keywords. OSIPUT
transfers control to OSIGET to complete the
processing of a put with invite function. OSIGET also
performs the get portion of a put-get request.

OSIINASP-Initialize Associated Space: This
module is used to initialize the associated space of
OSIPUT.

-->OSIIOCMP-REOIO Complete Event Processor: This
module is called by the access path component when
it receives a REOIO complete event. OSIIOCMP is
called to process a portion of a put with invite
function. When a put with invite function is received,
the APPC function manager requestes a REOIO
complete event to be issued when the data is
received. OSIIOCMP processes that event and issues
a data available event when required.

-->OSINFEVH-Normal Flow Unsolicited Data
Processor: This module is called to process all
normal flow data received by the access path
manager unsolicited data event handler.

-->OSIOPEN-APPC Open: This module opens a
communications or mixed device file. The file can be
opened for input, output, or input and output. As
part of the open process, a request is made to the
access path component to allocate a conversation.

-->OSIPUT-APPC Put: This module performs the put
function for the put and put-get macro interfaces.
Data is taken from the user buffer and moved to the
output buffer. Communications functions requested
by option keywords are performed. OSIPUT transfers
control to OSIGET to complete the processing of a
put with invite function, or to do the get portion of a
put-get request.

SI-2

OSIRSP-Respond to Request: This module is
used to send a positive response, negative
response, forward abort, or put failure from a send
state. If a negative response or a forward abort is
sent, OSIRSP also sends the error header and
error data.

-->OSIRSPAT-Respond to Attach: This module is used
to send a positive or negative response to the attach
header (FMH-5).

-->OSIRVPIP-Receive Program Initialization Parameters:
This module is used to receive the program
initialization parameters data necessary to start a
target program.

- ->OSITPP-Target Termination Phase Program: This
module handles the deallocating of a target
conversation that is still allocated to a process when
the job terminates.

-->OSIVRYOF-APPC Vary Off: This module is called at
LUD vary off time to destroy the request block
spaces, the assembly area space objects, and the
associated queue.

-->OSIVRYON-APPC Vary On: This module performs
the following functions when the LUD is varied on:
- Initializes the LUD-associated space
- Creates a queue to manage the REOIO blocks and

record assembly areas
Creates space objects for the record assembly
areas used by the get function

Advanced Program-to-Program Communications
Function Manager Operation

Figure SI-1 and the following text describe the
operation of the APPC function manager.

.. OSIVRYON is called as part of the LUD vary on
process.

II A high-level language program, through the
QDMCOPEN or ODMACODV modules of common
data management, calls OSIOPEN. OSIOPEN
completes the open or acquire of a device file.

" An argument list is passed that contains a
pOinter to the UFCB (user file control block),
and an index into the array of LUD pointers
in the ODP (open data path). This argument
list determines which files are opened to the
device.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

As part of the open or acquire request, the
following functions are performed:

The size of the user I/O buffer, allocated in the
ODP, is determined.
The ODP is extended, as necessary, to allocate
a user I/O buffer or function manager work
area.
The function manager work area is initialized.
An APCB (access path control block) is
allocated for the file. The APCB is the interface
to the access path manager.
A request is made to the access path manager
to allocate a conversation.

II After the file has been opened, information may be
sent to the remote program or received from the
remote program. If this is a source program,
QSIPUT may be called to start the desired
program on the remote system.

fa An argument list is passed that contains
pointers to the UFCB, the option list, and the
control list. The option list contains
information as to whether the request is a
put, get, or put-get. The control list
indicates which record format in the
communications or mixed device file should
be used for this request.

QSIPUT will build an attach header and transmit
the data to the remote system. The attach
manager on the remote system will start the
requested program. The remote program opens a
communications or mixed file to the *REQUESTER

device.

The source program may continue to issue put
requests. QSIPUT will block the data into the
transmit buffers. Two transmit buffers are used,
one buffer will fill as the other buffer is
transmitted. The buffer is transmitted when one
buffer is filled and another put or get is performed,
or when a keyword is issued that ends the data
(ALWWRT, DETACH, FAIL, INVITE, CONFIRM).
When the program requests data, the ALWWRT
keyword is issued to cause the SNA change
direction indicator to be sent.

o The message handler is called to signal
exceptions.

.. After the file has been opened, information may be

sent to the remote program or received from the
remote program. If this is a target program,
QSIGET may be called to receive the data.

fa An argument list is passed that contains
pointers to the UFCB, the option list, and the
control list. The option list contains
information as to whether the request is a
put, get, or put-get. It also indicates
whether QSIGET was called via the
QDMACCIN module of common data
management, as a result of a read by file
request. The control list indicates which
record format in the communications or
mixed device file should be used for this
request.

QSIGET will receive the data from the remote
program and assemble the record in one of two
data assembly areas. QSIGET uses one data
assembly area as the user input buffer while
assembling data in the other assembly area.

If QSIGET receives control because of a read to a
specific device, QSIGET will deblock a record,
place it in the user buffer (data assembly area),
and return control to the user.

If QSIGET receives control from QSIPUT due to a
put with invite request, QSIGET checks for a
complete record. If a record is available, the CPF
data available event is issued and control returns
to the user. If no record is available, QSIGET
issues a receive request to the access path
component and returns to the user. When the
receive request completes, QSIIOCMP is called by
the access path component. If QSIIOCMP
determines a complete record is available, the CPF
data available event is issued.

If a read by file is issued, QDMACCIN issues a
wait-on-event. This wait-on-event is satisfied by
a CPF data available event. QDMACCIN calls
QSIGET when it determines that the CPF data
available event belongs to advanced
program-to-program communications.

The user continues to issue read requests until the
TRN RN D response indicator is received.

o The message handler is called to signal
exceptions to the user.

Advanced Program-to-Program Communications Function Manager SI-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II The remote system may send unexpected data to
the local system when read requests are pending.
When this occurs, the access path component
receives an unsolicited data event. The access
path component calls OSINFEVH or OSIEFEVH to
process the data. The user is informed of the
received information on the next read or write,
depending on the type of information received.

II After a communications or mixed device file has
been processed, the application may issue a close
file or release device. ODMCLOSE or ODMRLSDV
will then call OSICLOSE to close the file.

o An argument list is passed that contains a
pointer to the ODP control block, an index
into the array of LUD pointers in the ODP
that determines to which device the file is to
be closed, and the type of close to perform.
A temporary close is invalid for APPC. If a
temporary close is encountered, an exception
will be signaled.

If the conversation is in a send state, all buffered
data will be transmitted. If this is a target
program, the conversation may be reallocated with
another open request; if this is a source program,
a detach will be sent to end the conversation.

If the conversation is in a receive state and is a
target program, no I/O is performed and the
conversation can be reallocated with another open
request. If in receive state and it is a source
program, an SNA negative response is sent
followed by an error header indicating program
abend. A detach is then sent to end the
conversation. For either target or source, the
conversation will be deallocated.

G The message handler is called to signal
exceptions to the user.

II OSIVRYOF is called as part of the LUD vary off
process.

SI-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Attach Control
High-Level Language Program Manager Language , • A !t' • l ~ !t' • , r-

" ..
ODMCOPEN/ ODMCLOSE/ ODMRCLSE ODCVALUD
ODMACODV Argument ODMRLSDV

Common Data List Common Data Reclaim Vary On
Management Management Resource Device

.. • ~ , ,
ODMACCIN ODMTCLSE ODCVALUD

Accept Termination Vary Off
Input Phase Program Device

.III II. ~ .III

II II ~ .. II ~ ,
OSIOPEN OSIPUT OSICLOSE OSIVRYON

SIOpen SI Put SI Close SI Vary On

I II ~ , II ~ ..
OSIINASP OSITPP

OSIGET OSIVRYOF
r--- Initialize

Associated Termination
SI Get SI Vary Off

Space Phase Program

j
OSIERP1/ OSIFMH7
OSlERP2

Error Error Header ..
Handlers Processor

I
OSIRSPAT OSIRVPIP

Respond Receive
To Attach PIP Data

OSIRSP

Send
Response

II II
OSIIOCMP

\

OSINFEVH/OSIEFEVH

I/O Complete Normal/Expedited Flow
Event Handler Unsolicited Event Handler

APPC Function Manager

G 1
Access

Message Path
Handler Manager

Figure 51-1. APPC Function Manager

Advanced Program-to-Program Communications Function Manager 51-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

51-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
INTRODUCTION

The LU-1 (secondary logical unit type 1) component of
CPF (control program facility) provides a means by
which the System/38 is able to communicate with a
primary logical unit (type 1). Using standard SNA
protocols, RPG III and COBOL application programs
running on the System/38 can communicate with
application programs of a host system that uses
CICS!VS or IMS!VS.

GENERAL OVERVIEW

Secondary Logical Unit Modules

The LU-1 component consists of the following modules:

Note: Modules identified by an arrow (--» are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

-->QSLOPEN-Open for LU-1: This module opens a
communications file for input and output processing.

QSLERBLD-Message Builder for LU-1: This module
builds messages.

QSLlNLLS-lnitializes the LU-LU SNA session and
creates the GET/PUT request blocks.

-->QSLPUT-Put for LU-1: This module writes data to
a communications file. It performs the associated
validity checks, blocks the data using the record
format retrieved from the device file, and processes
keywords. It also performs the put portion of a
put-get or a put with invite request.

QSLERBLD-Message Builder for LU-1: This module
builds messages.

Secondary Logical Unit

-->QSLGET-Get for LU-1: This module retrieves
records transmitted from the host system. It
performs the associated validity checks, deblocks the
data with the record format retrieved from the device
file (based on the format selection type), moves the
data to the user input buffer, and processes
keywords. It also performs the get portion of a
put-get or a put with invite request.

QSLERBLD-Message Builder for LU-1: This module
builds messages.

-->QSLCLOSE-Close for LU-1: This module closes a
communications file to input and output processing.

QSLERBLD-Message Builder for LU-1: This module
builds messages.

-->QSLlNASP-lnitialization Routine for LU-1: This
module initializes the LUD-associated space and
creates indexes for SNA state machines.

-->QSLUSMON-Unsolicited Event Handler for LU-1:
This module handles the unsolicited data events by
calling QSLSNA to process the data. QSLUSMON
also handles the REQIO complete events. Data
transmitted from the host system is retrieved and
then processed by calling QSLSNA. The data is
deblocked with a record format retrieved from the
device file, and based on the format selection type,
moved to the user input buffer. When the record is
complete, the CPF data available event is signaled.

QSLSNA-SNA Protocol Enforcer for LU-1: This
module provides the SNA control interface for the
communication of data, commands, and
responses, between the caller of this module and
the communications device.

-->QSLSPEND-Suspends I/O Activity for LU-1: This
module quiesces and suspends I/O activity for a
previously opened device.

-->QSLRST-Restore I/O Activity for LU-1: This
module restores I/O activity for a previously
suspended device.

Secondary Logical Unit SL-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Secondary Logical Unit Operation

Figure SL-1 and the following text describe the
operation of the LU-1 function manager.

.. A high-level language program, through the
QDMCOPEN or ODMACQDV module of common
data management, calls QSLOPEN to open a
communications (LU-1) file for I/O processing, or
acquire a device for a mixed file.

., An argument list is passed that contains a
pointer to the UFCB (user file control block).

QSLOPEN calls QSLSNA to request that a session
be initiated with the host system. QSLSNA issues
all request I/Os necessary for session initiation:

• Receives BIND parameters, if available without
sending LOGON text

• Sends LOGON text found in the
communications file, if BIND parameters are not
available

• Receives Bind command from host

• Receives Start Data Traffic command from host

G The message handler is called to signal
exceptions to the user.

D After the file has been opened, information may be
transmitted to the host by calling QSLPUT.

SL-2

., An argument list is passed that contains
pointers to the UFCB, an option list, and
control information. The option list contains
information as to whether this request is a
put or a put-get, and the control information
indicates which record format in the
communications file or mixed file should be
used for this request.

When one of the put buffers becomes full, or a
special function is requested through the use of
communications file keywords, QSLPUT calls
QSLSNA to issue a request I/O to the secondary
station I/O manager to send data to the host
system.

QSLPUT uses double buffering during write
requests; one buffer is being filled while the other
is being transmitted.

G The message handler is called to signal
exceptions to the user.

II After the file has been opened, information may be
received from the host system by calling QSLG ET
or QDMACCIN.

., An argument list is passed that contains
pointers to the UFCB, an option list, and
control information. The option list contains
information as to whether this request is a
get or a put-get, and the control information
indicates which record format in the
communications file should be used for this
request.

When the get buffer is empty, QSLGET calls
QSLSNA to issue a request I/O to the secondary
station I/O manager to receive data from the host
system. If this is a put with invite request,
QSLGET calls QSLSNA to issue a request I/O that
causes an event to be signaled when the request
I/O completes. If QSLGET can complete the
request without calling QSLSNA, QSLGET will
signal the CPF data available event. QSLGET
passes the data to the application program one
record at at time.

G The message handler is called to signal
exceptions to the user.

II The application program may issue a put-get or
put with invite request. If this occurs, control is
passed to QSLPUT .

After QSLPUT performs the put operation,
QSLPUT transfers control to QSLGET for the get
portion of the operation. QSLPUT does not regain
control.

G The message handler is called to signal
exceptions to the user.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II The host system may, on occasion, send

unexpected data or SNA command to the
secondary logical unit while there is no read
request pending. When that occurs, the secondary
station I/O manager sends an event to the LU-1
function manager, causing QSLUSMON to be
invoked. QSLUSMON calls QSLSNA to issue a
request I/O to the secondary station I/O manager
to receive the unsolicited data.

For put with invite requests, the request I/O issued
causes an event to be signaled when the request I/O
completes. This request I/O complete event invokes
QSLUSMON. QSLUSMON then calls QSLSNA to
process the data and deblock the data using a record
format in the device file. If more data is required,
QSLUSMON calls QSLSNA to issue another request
I/O. When the record is complete, the CPF data
available event is signaled.

II After a communications file has been processed,
QDMCLOSE or QDMRLSDV calls QSLCLOSE to
close the file or release a device from a mixed file.

o An argument list is passed that contains
pointers to the ODP (open data path). an
index to the device being closed or released,
and the type of close or release to perform.
In this case, only a permanent close or
release is valid; if a temporary close or
release is specified, an exception will be
signaled.

If any data remains in the put buffers at this point,
QSLCLOSE calls QSLSNA to issue a request I/O
to transmit this data to the host system.
QSLCLOSE then recalls QSLSNA to request
session termination. QSLSNA issues all request
1/ Os necessary for session termination:

• Sends Request Shut Down command

• Receives Unbind command from host system

• Sends LOGOFF text found in communications
file

o The message handler is called to signal
exceptions to the user.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Secondary Logical Unit SL-3

/0
Argument
List

ODMCOPEN/
ODMACODV

Common Open

High-Level Language Program

ODMACCIN ODMCLOSE/

ODMRLSDV
Accept

Input Common Close

~ ..

OSLPUT • OSLGET OSLCLOSE

\ ~ ..
I~' ..

OSLOPEN

Request I/O
Complete Event

...
Open for LU-1 Put for LU-1 Get for LU-1 Close for LU-1

CPF
Data
Available
Event

OSLUSMON
Unsolicited
Event Handler

Unsolicited
Data Event

., ,
_ ... OSlSNA

I.-...... --~... SNA Protocol
Enforcer

Machine
Interface
Response
Oueue

Request
I/O

LU-1 Function Manager

Message
Handler

Mac~i:~terf:e~-~--- - -/- -------------

~ Secondary
I/O Manager

Figure SL-1. LU-1 Function Manager Operation Overview

SL-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The CSM (concurrent service monitor) component of the
CPF (control program facility) provides service personnel
with an interface to various service functions. Through
this interface, CSM handles requests and responses
entered by service personnel from the operator console,
as well as requests and responses from service
functions (through the request I/O response queue).

CSM consists of three parts: initialization, response
queue handler, and data available event handler.

Initialization

CSM is invoked as the result of a service person signing
on the operator console. This starts the initialization
process of the CSM, which provides the following
functions:

• Validates CSM

• Creates and initializes CSM objects

• Establishes a service session with the service function
driver

• Opens the operator console

• Displays the primary CSM menu

Response Queue Handler

Part of the CSM task is to process the requests of
various service functions. A service function requests
that CSM perform a function by enqueuing a message
on the response queue. CSM then dequeues the
response, handles the request, and notifies the service
function of the results.

Concurrent Service Monitor

Data Available Event Handler

Another part of the CSM task is to process the requests
of the service personnel using CSM. CSM presents a
display to the user and then gives control to the
response queue handler. When a service person
responds to the display, control is given to the data
available event handler, which processes the display,
puts up the next display, and returns control to the
response queue handler.

GENERAL OVERVIEW

Concurrent Service Monitor Modules

The CSM component consists of the following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous level
module.

-->QSMCCNLE-Control Cancel: This module handles
the control cancel event.

-->QSMCSMSU-CSM Startup: This module receives
control when CSM is invoked. It validates and
initializes CSM.

QSMSTART-Start CSM: This module creates and
initializes the objects used by CSM and establishes
a session with the service function driver.

QSMCSMML-CSM Mainline: This is the
controlling module when CSM is running.

QSMRQDQR-Response Queue Dequeue
Routine: This module dequeues and handles
responses from the service functions.

QSMDIAGD-Devices and Diagnostic Mode:
This module sends a message to the console
for all system devices that are in diagnostics
prior to actual sign-off from CSM.

Concurrent Service Monitor SM-1

This docurnent contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QSMSTOP-Stop CSM: This module performs a
cleanup operation and then destroys the CSM
objects.

-->QSMDAE-CSM Data Available Event Handler: This
module receives control when a service display has
been responded to. It does the initial processing
required to call other CSM modules to handle the
response.

SM-2

QSMSFDR-Service Function Display Response
Handler: This module processes the response to
the service function displays.

QSMPSMR-Primary Menu Response Handler:
This module processes the response to the
primary menu.

QSMSFMR-Start Service Function Menu
Response Handler: This module processes the
response to the start service function menu.

QSMPSPR-Printer Selection Prompt Response
Handler: This module processes the response to
the printer selection prompt.

QSMASFDR-Active Service Function Prompt
Response Handler: This module processes the
response to the active service function prompt.

QSMSUIR-Service Utility Interface Display
Response Handler: This module processes the
response to the service utility interface display.

QSMVPUTY-Vary / Power Utility: This module
processes the vary / power displays.

QSMELUTY-Error Logging Utility: This module
allows service personnel to specify error logging
for all errors or for threshold level errors where
applicable.

The following CSM modules are used by other CSM
modules to perform specific functions:

QSMREQIO-Request I/O: This module is used
to initialize and issue the service request I/O
instruction.

QSMDPM-Display Pending Message: This
module presents the service displays to the
service personnel.

QSMADDSF-Add a Service Function Area: This
module adds a service function area to the
CSM status area chain of active functions.

QSMDELSF-Delete a Service Function Area:
This module deletes a service function area
from the CSM status area chain of active
service functions.

QSMCFKEY-Command Function Key Table
Manager: This module handles the
asynchronous command function key table.

QSMAVPR-Allocate, Vary, and Power Devices:
This module is used to allocate, vary, and
power devices as requested by the service
person or service function.

QSMSFEX-Service Function End Exception
Handler: This module handles the service
function end exception.

QSMSSFX-Start Service Function Exception
Handler: This module handles the start service
function exception.

QSMOODE-Obtain Offline Device Event
Handler: This module is an event handler that
runs under control of the system arbiter
process. It obtains offline devices for the CSM
process.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Concurrent Service Monitor Initialization

Figure SM-1 and the following text describe the CSM
initialization process.

D The service person signs on the console with the
assigned password. (CE is the password shipped
with the system.) Because OSMCSMSU is the
initial program specified in the CE profile,
OSMCSMSU is invoked to validity check, initialize,
and execute CSM.

II OSMSTART is invoked to initialize CSM. A space
object for the CSM status area is created and
initialized. The CSM active bit is set on in the
WCB (work control block). OSMREOIO is invoked
to start the service session.

II OSMDPM is invoked to present the primary menu.

II Control is transferred to OSMCSMML (see Figure
SM-2).

\
Sign-On)

J
D
, ,

OSMCSMSU II OSMCSMML
--'100.

CSM Startup
..

CSM Mainline

II~ ~ ~ , II

OSMSTART OSMDPM
Display Pending

Start CSM Message

+
OSMREOIO \

Primary
Menu

Request I/O

---- --------~~----Machine Interface

Service
Function
Driver

Service
Function

Figure SM-1. Concurrent Service Monitor Initialization
Overview

Concurrent Service Monitor SM-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Concurrent Service Monitor Response Queue
Handling

Figure SM-2 and the following text describe the
handling of messages placed on the response queue by
the SFD (service function driver) and other service
functions.

D After the validitY checking and initialization of
CSM, control is transferred to QSMCSMML. The
printer device files are overridden with a printer
name that is not valid. This forces any printer that
is opened to fail until the service person selects a
printer.

II QSMCSMML then calls QSMRQDQR to handle
the response queue. QSMRQDQR dequeues
responses from the response queue. If the
response is:

SM-4

• Unexpected error, CPF7204 exception is
signaled.

• Service function is unable to start, the CPF7207
exception is signaled.

• Force return request from QSMDAE, control is
returned to QSMCSMML.

• Service session stopped, control is returned to
QSMCSMML.

• Service function destroyed, the service function
is cleaned up and control is returned to
QSMCSMML.

• Service function terminated, the completion
code is checked. If the completion code is not
zero, the CPF7206 exception is signaled.
QSMREQIO is invoked to issue the destroy
service function.

• Open display, a display I/O, or a close display,
control is returned to QSMCSMML.

• Open data path, a data path I/O, or a close
data path, control is returned to QSMCSMML.

• Open printer request, the printer is opened and
QSMREQIO is invoked to notify the service
function.

• Printer output request, the records are printed
and QSMREQIO is invoked to notify the service
function.

• Close printer response, the printer is closed and
QSMREQIO is invoked to notify the service
function.

• Open diskette request, the VTOC (volume table
of contents) is opened and the buffer size is
calculated based on the sector size. The
diskette is opened and QSMREQIO is invoked
to notify the service function.

• Diskette I/O request, the I/O request is
performed and QSMREQIO is invoked to notify
the service function.

Close diskette request, the diskette is closed,
the U FCB (user file control block) and I/O
buffer space are destroyed, and QSMREQIO is
invoked to notify the service function.

• Modify source/sink object request,
addressability to the object is obtained and
QSMAVPR is invoked to modify the object.
QSMREQIO is invoked to notify the service
function.

• Activate command function key request,
QSMCFKEY is invoked to activate the command
function keys. QSMREQIO is invoked to notify
the service function.

• Deactivate command function key request,
QSMCFKEY is invoked to deactivate the
command function keys. QSMREQIO is invoked
to notify the service function.

• Convert time request, QSMREQIO is invoked to
notify the service function of the converted
time.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

When OSMCSMML regains control, the CSM
status area is checked to see if a printer has been
selected. If one has been selected, the printer
device files are overridden. The reason that control
was returned to OSMCSMML is checked. If the
response is:

• Service function destroyed and there are no
service function errors to display, OSMDELSF is
invoked to clean up the service function objects.

• Open display, a space object is created to
contain the display buffer. The address of the
buffer is put into the service function status
area and OSMREOIO is invoked to notify the
service function.

D
QSMCSMML

CSM Mainline

D ~
QSMRQDQR

QSMREQIO
OSMDELSF

Response Queue
Request I/O

Delete Service
Dequeue Function Area

!
QSMREQIO OSMAVPR

Allocate, Vary,
r-

Request I/O
and Power
Devices

OSMAVPR

f-- Allocate, Vary,
and Power
Devices

QSMCFKEY
Command - Function
Key Table

• Display I/O, the pending display is put in the
service function status area. If the display
terminal is available, OSMDPM is invoked to
present the display.

Close display, the display space buffer object is
destroyed and OSMREOIO is invoked to notify
the service function.

• Data path open, I/O, or close, OSMREOIO is
invoked to notify the service function of an
error condition.

• Service session stopped, OSMDIAGD is
invoked to display the devices that remain in
diagnostic mode, and OSMSTOP is invoked to
clean up the CSM objects and set off the CSM
active bit in the WCB (work control block).

! T !
QSMDPM QSMDIAGD

OSMSTOP
Devices and

Display Pending Diagnostic
Stop CSM

Message Mode

1 ~
Service

\ OSMDELSF

Function I
Display Delete Service

J Function Area

~
QSMAVPR
Allocate, Vary,
and Power
Devices

Figure SM-2. Concurrent Service Monitor Response Queue Handling Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Concurrent Service Monitor SM-5

Data Available Event Handler and Cancel Event
Handler

Data Available Event Handler

Figure SM-3 and the following text describe what
happens when the data available event is signaled and
QSMDAE is invoked.

.. QSMDAE is invoked to process the data available
event. Addressability to the CSM status area is
resolved and the input data is obtained. One of
the following then occurs:

• If the CF1 key was pressed, QSMDPM is
invoked to present the primary menu.

• If the CF3 key was pressed, QSMDPM is
invoked to erase and redisplay the display.

• If an asynchronous key was pressed,
QSMCFKEY is invoked to process the key and
then QSMDPM is invoked to redisplay the
previous display.

II If the display that was responded to was a service
function display requiring input, QSMSFDR is
invoked to process the response:

• QSMREQIO is invoked to notify the service
function.

• QSMDPM is invoked to present the next
display.

• If the display was a service function write-only
display QSMDPM is invoked to present the next
display.

II If the display that was responded to was the
primary menu, QSMPSMR is invoked to process
the response and one of the following occurs:

SM-6

• If the CF2 key was pressed, QSMDPM is
invoked to present the primary menu.

• If the response was null, QSMDPM is invoked
to resume interactive processing with an active
service function, if one exists.

• If option 1 was selected, QSMREQIO is invoked
to issue the stop service session request I/O.

• If option 2 was selected, QSMDPM is invoked
to present the start service function menu.

• If option 3 was selected, QSMDPM is invoked
to present the active service function prompt.

• If option 4 was selected, QSMDPM is invoked
to present the active CF key display.

• If option 5 was selected, QSMDPM is invoked
to present the printer selection prompt.

• If option 6 was selected, a space is created for
the printer U FCB (user file control block), the
printer is opened, and an indicator is set on in
the CSM status area that indicates all displays
are to be printed. QSMDPM is then invoked to
present the next display.

• If option 7 was selected, the printer is closed,
its UFCB space is destroyed, the print indicator
in the CSM status area is set off, and
QSMDPM is invoked to present the next
display.

• If option 8 was selected, the interactive
subsystem is started and QSMDPM is invoked
to present the next display. If CSM is operating
on an ISF system, the module QWCIINSR is
destroyed to prevent any CPF start up attempt.

• If option 9 was selected, the command entry
option is saved in the CSM status area, and
QSMDPM is invoked to present the service
utility interface display. The command entry
screen is displayed after the response to the
service utility interface display.

II If the display that was responded to was the start
service function menu, QSMSFMR is invoked to
process the response and the following occurs:

• If the CF2 key was pressed, QSMDPM is
invoked to present the primary menu.

• If the response was null, QSM DPM is invoked
to resume interactive processing with an active
service function if one exists.

• If display / alter / dump was selected, a message
is sent to the history log to record that event.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• If service function was selected, QSMREQIO is
invoked to issue the start service function
request I/O.

• If a service utility was selected, the option
selected is saved in the CSM status area and
QSMDPM is invoked to present the service
utility interface display.

II If the display that was responded to was the
active service function prompt, QSMASFDR is
invoked to process the response and one of the
following occurs:

• If CF2 was pressed, QSMDPM is invoked to
present the primary menu.

• If the response was null, QSMDPM is invoked
to resume interactive processing with an active
service function if one exists.

• If the requested function was to cancel a
service function, QSMREQIO is invoked,to abort
the service function.

• If the function requested was to select one
service function for interaction, the interacting
with all indicators in the CSM status area is set
off and the service function to interact with is
indicated.

• If the requested function was to select all
service functions for interaction, the interacting
with all indicators in the CSM status area is set
on.

• QSMDPM is invoked to present the next
display.

II If the display that was responded to was the
printer selection prompt, QSMPSPR is invoked to
process the response and one of the following
occurs:

• If the response was not valid, QSMDPM is
invoked to redisplay the printer selection prompt
with an error message.

• If the response was valid, the response is put
into the CSM status area and a message is
enqueued on the response queue. This forces
QSMRQDQR to return to QSMCSMML (see
Figure SM-2). QSMCSMML does an override
of the device files to the printer name specified
or to a spool file. The spool option is not
presented or recognized on an ISF system.
QSMDPM is then invoked to present the next
display.

II If the display that was responded to was the
service utility interface display, QSMSUIR is
invoked to start the service utility and one of the
following occurs:

• If CF1 was pressed, QSMDPM is invoked to
present the start service function menu.

• The service utility indicated in the CSM status
area is invoked.

II If the display that was responded to was the
active command function key display or one of the
CSM error displays, QSMDPM is invoked to
resume interaction.

II If QSMDAE function checks, then QSMDIAGD is
invoked to display the device(s) in diagnostic mode
prior to sign-off.

Control Cancel Event

II When the control cancel event is signaled,
QSMCCNLE receives control and calls QSMREQIO
to issue the service request I/O instruction, which
terminates each active service function. An
indicator is set on in the CSM status area to
prevent the service person from starting any new
service functions.

Concurrent Service Monitor SM-7

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

a

fJ

II

a

II

II

D

II
QSMDIAGD
Devices and
Diagnostic
Mode

Data Available Event

QSMDAE

CSM Data
Available
Event Handler

QSMSFDR
Service Function
Display Response
Handler

QSMPSMR
Primary Menu
Response
Handler

QSMSFMR
Service Start
Function Menu
Response Handler

QSMASFDR
Active Service
Function Prompt
Response Handler

QSMPSPR
Printer Selection
Prompt Response
Handler

QSMSUIR
Service Utility
Interface Display
Response Handler

QSMDPM

Display Pending
Message

QSMDELSF

Delete Service
Function Area

Control Cancel Event

II] QSMCCNLE

Control

1
Cancel

QSMREQIO

Request I/O

1
QSMADDSF

QSMREQIO

Add a Service
Function Area Request I/O

QSMVPUTY QSMELUTY
Next) Display Vary/Power Error Loggi ng

Utility Utility

QSMAVPR
Allocate, Vary,
and Power
Devices

Figure SM-3. CSM Data Available Event Handler and Cancel Event Handler

SM-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

.;

..J

INTRODUCTION

The spooling component of the CPF (control program
facility) is used to put batch job programs and their
input data from a data base file member, a diskette, or
the MFCU (multifunction card unit) into the system for
processing. In turn, during processing the user can have
printer, diskette, or MFCU output. The writer can then
be started to a device (printer, MFCU, or diskette) for
output from the output file.

Spooling Queues

A queue is an independent index. Each entry on the
queue consists of a key portion and a data portion (job
queue entries have only key portions). Individual queue
entries are accessed by using the machine interface
independent index support.

There are two types of queues: job and output.

Job Queue

The job queue is used to hold jobs that were entered
into the system by a reader, a Submit Job
(SBMJOB) command, a Submit Card Jobs
(SBMCRDJOB) command, a Submit Data Base
Jobs (SBMDBJOB) command, a Submit Diskette Jobs
(SBMDKJOB) command, or jobs that have been moved
by the Transfer Job (TRFJOB) command and are waiting
to be executed. The job queues are used by the
subsystems to handle the job requests.

Job queues can be manipulated by commands Clear Job
Queue (CLRJOBQ), Hold Job Queue (HLDJOBQ),
Release Job Queue (RLSJOBQ), Display Job Queue
(DSPJOBQ), and Delete Job Queue (DL T JOBQ).
Internally, job queues can be manipulated by macros
that provide functions like put, delete, get highest
priority job, and so forth. Job queues can be externally
manipulated only by users that have the authority to use
the job queues.

Spooling

Output Queues

The output queue contains spooled output file entries
created by an executing program that has specified
spooling when the output file was opened. A writer,
attached to the output queue, processes files as they
become available.

Output queues can be manipulated and displayed by
commands Clear Output Queue (CLROUTQ), Display
Output Queue (DSPOUTQ), Hold Output Queue
(HLDOUTQ), Release Output Queue (RLSOUTQ), Change
Output Queue (CHGOUTQ), and Delete Output Queue
(DL TOUTQ). Internally, output queues are manipulated
by macros that provided functions such as put, delete,
get output file, and so forth. Output queues can be
externally manipulated only by users authorized to use
the output queues.

GENERAL OVERVIEW

Spooling Modules

The spooling component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Start CPF and Termination Modules

-->QSPSTCPF-Start CPF: This module, if requested to
do so, clears queues at start CPF time. All job
queues or output queues can be cleared.

Spooling SP-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QSPCLNUP-Clean-Up RWCB, Job Queues, and
Output Queues: This module performs the following
operations:

• Clears the RWCB (reader/writer control block)' job
queues, and output queues if the user specified
*CLEAR for both the job queues and output
queues on the start CPF prompt, or if the WCBT
(work control block table) had been rebuilt by work
control earlier in the IPL sequence.

• Clears from the RWCB entries for readers and
writers that are not being left on a job queue
through IPL.

• Calls QSPDAMGE if damage to job queues or
output queues is detected; QSPDAMGE sends
messages about the lost jobs or files (depending
on the queue type). and destroys the queue.

• Removes entries from output queues for files that
were being written and reentered into the system;
changes the file status to not-being-written, and
places undamaged entries back on the queue.

• Updates the status entry of each job queue to
show no active subsystem, and updates the status
entry of each output queue to show only writers
waiting on a job queue during IPL.

• Grants authority to QSPL (spool profile) for each
queue, if the spool profile was changed during the
install.

SP-2

-->QSPFFACB-Spooled Object Verify Routine: This
module verifies the existence of the spooled objects,
QSPL (library). QSPRWCB, QSPFACB, and data base
file members. If they do not exist, QSPFFACB will
create them. This module also clears the RWCB and
resets all data base file members, if the user
specified *CLEAR on the start CPF prompt for all job
queues and all output queues, or if the WCBT was
rebuilt. This module transfers object ownership of the
spool objects to QSPL (spool profile) if the spool
profile was changed during the install.

QSPDAMGE-Handle Damaged Objects: Performs
the following operations:

• For damaged object QSPFACB, QSPDAMGE
sends a lost job message for all jobs on the
system, as well as a lost file message for every
output file for the lost jobs.

• For damaged object QSPRWCB with readers
and writers on a job queue, QSPDAMGE:
- Removes the reader /writer entry from the

job queue
- I ndicates to work control an active job in

need of cleaning up
Sends the appropriate lost reader or writer
message

• For each job on a damaged job queue,
QSPDAMGE sends a lost job message, and
indicates to work control an active job in need
of cleanup.

• For each file on a damaged output queue,
QSPDAMGE sends a lost file message, and
reclaims the file member for reuse.

-->QSPTRMRW-Terminate Reader/Writer: This
module is called by work monitor to clean up
inline/output files and the RWCB entry, for
reader/writer jobs in the termination phase.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Oueue Command Modules

-->QSPCRSPQ-Create Queue (CRTJOBQ, CRTOUTQ)':
This module processes the Create Job Queue and
Create Output Queue commands.

-->QSPCHSPQ-Change Queue (CHGOUTQ)': This
module processes the Change Output Queue
command.

- - >QSPH NSPQ-Delete / Move / Rename, Revoke
Authority To Queue (DLT JOBQ, DLTOUTQ)': This
module processes the Delete Job Queue and Delete
Output Queue commands. It provides special
handling for Move Object. Rename Object. and
Revoke Authority commands when they involve
spooling queues.

-->QSPHLSPQ-Hold Job/Output Queue (HLDJOBQ,
HLDOUTQ)': This module processes the Hold Job
Queue and Hold Output Queue commands.

-->QSPRLSPQ-Release Queue (RLSJOBQ, RLSOUTQ)':
This module processes the Release Job Queue and
Release Output Queue commands.

-->QSPCLSPQ-Clear Queue (CLRJOBQ, CLROUTQ)':
This module processes the Clear Job Queue and
Clear Output Queue commands and is also called
from QSPSTCPF in the IPL sequence.

-->QSPDUPQ-Duplicate Job/Output Queue: This
module provides handling for the Create Duplicate
Object command when it involves spooling queues.

-->QSPSAVQ-Save Job/Output Queue: This module
provides handling for the Save Object. Save Changed
Objects, Save Library, and Save System commands
when they involve spooling queues.

-->QSPRSTQ-Restore Job/Output Queue: This module
provides handling for the Restore Object and Restore
Library commands, and the install system procedure
when they involve spooling queues.

'This module is a CPP (command processing program).

Reader Function Modules

-->QSPSTRDR-Start Reader (STRCRDRDR,
STRDBRDR, STRDKTRDR)': This module prOee&S8S
the Start Card Reader, Start Data Base Reader, and
Start Diskette Reader commands.

QSPFILES-Get Data Base File Member: This
module provides a data base file member to the
reader (for inline spooled files) or to spooling open
(for spooled output) if a file member was not
available in the FACB (file availability control
block).

QSPRDR-Reader: This module uses the start
reader command parameters to process the job
stream.

QSPRDRAP-Spool Reader Adopt File: This
module adopts the owner's authority and
returns a pointer to the QSYS profile that
contains that authority.

QSPDATAH-Reader Inline File Handler: This
module reads into the system the inline files
contained within a job.

-->QSPCTRDR-Control Reader Hold/Release (HLDRDR,
RLSRDR)': This module processes the Hold Reader
and Release Reader commands.

-->QSPCNRDR-Cancel Reader (CNLRDR)': This
module processes the Cancel Reader command.

-->QSPSBMJB-Submit Jobs (SBMCRDJOB,
SBMDBJOB, SBMDKTJOB)': This module processes
the Submit Card Jobs, Submit Data Base Jobs, and
Submit Diskette Jobs command and reads the job
stream from the appropriate device (or data base file).

QSPSBMEX-Submit Jobs Exit Program: This
module provides error exit cleanup for
QSPSBMJB.

-->QSPDFTCP-Default CPP (DATA, ENDJOB, and
ENDINP): This module issues an escape when / / is
not found in front of the Data, End Job, or End Initial
Process commands.

Spooling SP-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Execution With Spooling Modules

-->QSPOPEN-Spooling Open: This module opens
spooled output files to processing.

QSPCKPRM-Check Card and Diskette Open
Parameters: This module is called to validate the
card and diskette open parameters.

QSPIERRS-Issue Spool Intercept Error Messages:
This module is used to send error messages from
spool open and intercept modules.

-->QSPCLOSE-Spooling Close: This module is used to
close spooled output files during the execution of a
user program.

-->QSPFEOD-Force End of Data: This module
performs a full close and open on a file.

-->QSPBPCRD-Spooling MFCU Put Intercept: This
module is used to put intercepted MFCU records to a
data base file member.

-->QSPBPPRT-Spooling Printer Put Intercept: This
module is used to put intercepted print records to a
data base file member.

- - >QSPLSCPRT -Spooling SCS Print Intercept: This
module intercepts SCS print commands and data,
blocks them, and then calls QSPBPPRT to put the
data to the intercept data base member.

- ->QSPBPDSK-Spooling Diskette Put Intercept: This
module intercepts user put diskette records, blocks
them, and then puts the records to the intercept data
base file member.

-->QSPRCMBR-Reclaim Spool Data Base Member:
This module is used to make spool data base
members available for reuse. It also releases job
structures after the last spool file of a job is
reclaimed.

Writer Function Modules

The functions of QSPPRTWT, QSPCRDWT, and
QSPDKTWT are identical; only the devices are different.
The functions consist of the following:

• Retrieve an available file from the output queue.

• Get data from the associated data base file member
and put it to the device.

SP-4

• If the AUTOTRM parameter on the Start Writer
command is NO, wait on the spooled file available
event when all available files are processed.

• If the AUTOTRM parameter is YES, transfer control
to QSPWTRM2 at the appropriate time.

-->QSPSTWTR-Start a Writer (STRPRTWTR.
STRCRDWTR, STRDKTWTR)': This module
processes the Start Printer Writer, Start Card Writer,
and Start Diskette Writer commands.

QSPWTRM1-Writer Mainline Start: This module
initializes the writer work space, allocates the
device, addresses the output queue, and then
transfers control to the appropriate writer module:
QSPPRTWT for print, QSPCRDWT for card, and
QSPDKTWT for diskette.

-->QSPWTREH-Stop Writer Event Handler: This
module is invoked when the stop writer event is
signaled by the hold spooled file command
processing program, the cancel spooled file command
processing program, or the hold writer command
processing program. It sets indicator on or off in the
writer work space to indicate if the current file being
processed is to be held or canceled or if the writer is
to be held.

QSPSCAN-Scan Spool Large Record: This module
scans a spool large record to reconstruct the page
profile environment of an enhanced function print file.
This module is only used by QSPPRTWT.

-->QSPACCLG-Log Spool and Printer Job Accounting
Data: This module logs the print job accounting data
for the DP (direct print) and SP (spool print) entries to
the QACGJRN.QSYS journal.

-->QSPHLWTR-Hold a Writer (HLDWTR)': This
module processes the Hold Writer command.

-->QSPRLWTR-Release a Writer (RLSWTR)': This
module processes the Release Writer command.

-->QSPCNWTR-Cancel a Writer (CNLWTR)': This
module processes the Cancel Writer command.

-->QSPCHWTR-Change a Writer (CHGWTR)': This
module processes the Change Writer command.

'This module is a CPP (command processing program.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Queue Management Module

-->QSPGPJOB-Get/Put/Delete Job: This module is
used to get jobs from, put job entries into and delete
job entries from a job queue.

Display Spool Data Modules

-->QSPDSPQ-Display Queue (DSPJOBQ, DSPOUTQ)':
This module processes the Display Job Queue and
Display Output Queue commands.

-->QSPDSPJ-Display Job: This module displays the
spool portion of the Display Job command.

-->QSPDSPF-Display Spooled File (DSPSPLF)': This
module processes the Display Spooled File Data
command.

QSPDSPFX-Display Spooled File Exit Program:
This module provides exit clean-up for QSPDSPF.

-->QSPDSPFA-Display Spooled File Attributes
(DSPSPLFA)': This module processes the Display
Spooled File Attributes command.

QSPHNCMD-Handle Commands From Displays:
This module processes the options from various
displays to hold, release, cancel, or display specific
files or jobs from spool displays that list files or
jobs. This module also handles the messages
associated with the execution of the display
commands, and presents the messages on the
updated display.

QSPPMTFA-Prompt with Spool File Attributes:
This module produces a prompt of the CHGSPLA
command with the current spool file attributes
filled in as defaults.

-->QSPDSPRW-Display Reader/Writer (DSPRDR,
DSPWTR)': This module handles the RDR/WTR
(*ALL) portion of the Display Reader and Display
Writer commands. It produces a display of all
readers or writers on the system, or transfers control
to QSPDSPR or QSPDSPW for a display of a specific
reader or writer.

'This module is a CPP (command processing program).

-->QSPDSPR-Display Reader: This module handles the
specific name portion of the Display Reader
command, producing a display of the particular
reader.

-->QSPDSPW-Display Writer: This module handles the
specific name portion of the Display Writer
command, producing a display of the particular
writer.

Job/File Command Modules

-->QSPCPYF-Copy Spooled File (CPYSPLF)': This
module processes the Copy Spooled File command.

-->QSPHLSPF-Hold Spooled File (HLDSPLF)': This
module processes the Hold Spooled File command.

-->QSPRLSPF-Release Spooled File (RLSSPLF)': This
module processes the Release Spooled File
command.

-->QSPCNSPF-Cancel Spooled File (CNLSPLF)': This
module processes the Cancel Spooled File command.

-->QSPCHSPF-Change Spooled File Attributes
(CHGSPLFA)': This module processes the Change
Spooled File Attributes command.

-->QSPCNJOB-Cancel Job (Spooled Files): This
module is called by work monitor to handle a portion
of the Cancel Job command.

-->QSPCHJOB-Change Job (Spooled Files) EOJ, Hold,
Release, or Change: This module is called by work
monitor to handle a portion of the functions for the
Hold Job, Release Job, and Change Job commands,
as well as part of termination phase processing. It is
also called by work control to handle a portion of IPL
job clean-up.

Spooling SP-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Convert Data Function Modules

QSPCNVRT -Convert Printer/Diskette / Card Large
Records: This module unblocks large records to
individual print lines or records. This module is used
by QSPCPYF and by the writers.

QSPCVDSP-Convert Printer / Diskette/ Card Large
Records: This module unblocks large records to
individual print lines or records. This module is used
by QSPDSPF.

QSPCVPRT-Convert SCS Print Records: This module
unblocks large records to create individual print lines
preceded by either a first character forms control
character or a 4-character control code. This module
is used by QSPCPYF and the print writer.

Spooling a Jobstream Into the System

Figure SP-1 and the following text describe what
happens when a start reader command, which executes
in the interactive subsystem, is entered from the
console.

a A start reader command (STRCRDRDR,
STRDBRDR, or STRDKTRDR) is entered from the
console. The command invokes QSPSTRDR,
which puts a job entry on the appropriate job
queue (spool subsystem queue).

II An entry for the specified enqueued reader is put
into the RWCB (reader/writer control block) along
with the required reader input parameters.

II The spool subsystem monitor then requests a job
from its queues and allocates a temporary job
structure. It then creates the reader process as
specified by the user.

II The reader process begins reading from the
appropriate input device and obtains a complete
JOB statement (job A).

II The reader invokes the command analyzer to
validity check the JOB statement.

SP-6

" If the JOB statement is not valid, the reader
receives control and puts the job in error to a
specially created error job to hold all CL
commands until a valid JOB statement is
found.

G If the JOB statement is valid, the Command
Analyzer transfers control to the proper
command processing program to process the
Job command.

G The command processing program allocates
a permanent job structure: WCBT (work
control block table entry), JMQ (job message
queue), and SCB (spooling control block).

II After the JOB command processing program
completes its function, control is returned to the
reader, which sends the CL associated with the
JOB statement previously processed to the
external message queue of the new job (part of its
job message queue) as requests.

G If syntax checking was specified on the JOB
statement, each CL command is sent to the
command analyzer to be validity and syntax
checked. All commands are put on the
external message queue of its new job as
requests.

o If inline data is encountered, the reader
obtains a data base file member (XX) for the
data and puts the file and member names
(XX) into an inline control block entry in the
SCB of the job. Named files contain the
name provided on the DATA statement.
Unnamed files contain the name QINLlNE,
which are put in the SCB in the order that
they were encountered, and are made
available for use by the user program.

• On completion of the input, the reader invokes the
spool queue management, which puts an entry for
the job on the appropriate job queue. If the new
batch job that was just put on the job queue is
available for execution and if a subsystem is
attached to that same queue, an event is signaled
to the subsystem telling it that a batch job is
available for selection to execute.

II If Job A were found to be nonexecutable (an error
of severity higher than the maximum allowed), the
reader produces the joblog for Job A.

At the completion of a job, the reader returns to
step 4 to read in the next job. The reader will
continue to repeat this cycle until end-of-file or
the reader is canceled. Note that the reader is only
active for data base and magnetic media devices
until end-of-file but is active for the MFCU until
the reader is specifically canceled.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

RWCB

Figure SP-1. Spooling a Jobstream into the System

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Job Queue

Spooling SP-7

Spooling a Jobstream Into the System Using a
Submit Jobs Command

Figure SP-2 and the following text describe what
happens when a submit jobs command, which executes
in the interactive subsystem, is entered from the
console.

.. A submit jobs command (SBMCRDJOB,
SBMDBJOB, or SBMDKTJOB) is entered from the
console. The command invokes QSPSBMJB,
which begins reading from the appropriate input
device and obtains a complete JOB statement
(job A).

II QSPSBMJB invokes the command analyzer to
validity check the JOB statement.

o If the JOB statement is not valid, the submit
jobs command processing program receives
control and puts the job in error to a
specially created error job to hold all CL
commands until a valid JOB statement is
found.

o If the JOB statement is valid, the command
analyzer transfers control to the job
command processing program to process the
Job command.

G The job command processing program
allocates a permanent job structure: WCBT
(work control block table) entry, JMQ (job
message queue). and SCB (spooling control
block).

II After the Job command completes its function,
control is returned to the submit jobs command
processing program, which sends the CL
associated with the JOB statement previously
processed to the external message queue of the
new job (part of its job message queue) as
requests.

SP-8

G) No syntax checking will be performed on the
submit jobs commands, except for / /
commands. All commands are placed on the
external message queue of their new jobs.

G If inline data is encountered, the submit jobs
command processing program obtains a data
base file member (XX) for the data and puts
the file and member names (XX) into an
inline control block entry in the SCB of the
job. Named files contain the name provided
on the DATA statement. Unnamed files
contain the name QINLlNE, which are put in
the SCB in the order that they were
encountered, and are made available for use
by the user program. (See Figure SP-4.)

II On completion of the input, the submit jobs
command processing program invokes the spool
queue management, which puts an entry for the
job on the appropriate job queue. It the new batch
job that was just put on the job queue is available
for execution and if a subsystem is attached to
that same queue, an event is signaled to the
subsystem telling it that a batch job is available for
selection to execute.

II If Job A were found to be nonexecutable (an error
of severity higher than the maximum allowed), the
submit jobs command processing program
produces the joblog for Job A.

At the completion of a job, the submit jobs
command processing program attempts to read in
the next job. The command processing program
will continue to repeat this cycle until the
end-of-file. Note that the command processing
program is only active for data base and magnetic
media devices until EOF (end-of-file) but is active
for the MFCU until the job/request is specifically
canceled or until the End Initial Process command
is encountered in the jobstream.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

MFCU

Diskette

o 1------1--1 FM/DBDM II

Spooled
Data Base
File
Handler

G JMQ

Job
CPP

CL

Figure SP-2. Spooling a Jobstream into the System Using a Submit Jobs Command

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II Spool
Queue
Management

Message
Handler

GWCBT

Job Queue

Job A

Output Queue

GO
SCB

Inline
File
Info

Job A
(joblog)

Spooling SP-9

Job Selection by Work Monitor

Figure SP-3 shows an overview of how a job is selected
for execution by work monitor.

After the job is placed on a job queue and when the
available job event is signaled by spooling job queue
management, the monitor attached to that job queue (if
a new job can be scheduled) calls spooling queue
management to get the next job scheduled for
execution. In order to get the next job, the job queue
and the job itself must not be in a held state. Work
monitor makes two calls to the spooling queue
management to get the next job.

a First Call-The first call gets a pointer to the
WCBTE (work control block table entry) of the
selected job.

o The first call request from work monitor is to
select an available job.

G The response to work monitor after the first
call is a pointer to the selected job's WCBTE.
The job queue entry is removed.

SP-10

II Second Call-If the selected job has any inline files,
the override statements are built in the DMCQ
(data management communioations queue) of the
job such that when the job begins to execute and
opens one of the in line files, common open can
find the real data base file member to open for the
program. The override statement in the DMCQ
does the mapping of the inline file name of the
user or QINLINE (the name assigned by spooling
for unnamed data files) to the file member where
spooling put the in line data records.

e The request of the second call from work
monitor is to build into the DMCQ of the job
structure any overrides that are needed by
inline data files.

E) The response to work monitor after the
second call implies that all work was done
for all inline data files in the job.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Request

o
Batch Monitor
Controller

Spooling Job
Queue
Management

Response

Figure SP-3. Job Selection by Work Monitor

Job
Queue

JMQ

*REQ (Cll

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

WCB

WCBT

SCB

If the SCB for a job
shows that inline files
exist, the DMCQ for that
job will contain the
appropri ate overri de
statements.

Spooling SP-11

Executing a Program That Receives Spooled Inline
Files

Figure SP-4 and the following text describe the
operation of a program that receives spooled inline files.

If an inline data file is opened during execution, one of
the following occurs:

Processing of Named Inline Data Files

The ODMCOPEN module of common data management
is invoked to perform an open of a named inline data
file. It looks on the DMCO to locate a message for the
named file. Finding the message, it obtains a pointer to
the data base file member. For named inline data files,
common data management does not remove the
message from the DMCO. ODMCOPEN invokes the
data base open to process the named spooled file.
Named spooled inline files can be reused.

SP-12

Processing of Unnamed Inline Data Files

The ODMCOPEN module of common data management
is invoked to perform an open of an unnamed inline
data file. It looks on the DMCO to locate a message for
the OINLlNE file. Finding the message, it obtains a
pointer to the data base file member. For unnamed
inline data files, common data management removes the
message from the DMCO. ODMCOPEN invokes the
data base open to process the unnamed spooled file.
Unnamed spooled inline files cannot be reused.

Data base get support is used to obtain records from
the data base file for inline files. ODMCLOSE is used to
close both unnamed and named inline files.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

WCBT

Job A
.",. ~--- ,

" , , , ,
\
\ ,

\
\

WCB SCB \

Subprocess
Controller

.IMQ

*REQ (CL)

DMCQ

(lnline
File
Over
rides)

User
Program

OPEN XX

GET XX

CLOSE XX

Figure SP-4. Executing a Program that Receives Spooled Inline Files

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

I
I
I
I

I

Common
OPEN

Common
Close

Data Base

DB
OPEN

DB
GET

DB
CLOSE

Spooling SP-13

Executing a Program That Produces Spooled Output

Figure SP-5 and the following text describe the
operation of a program that produces spooled output.

When QDMCOPEN opens an output device file with the
parameter SPOOL=YES, it calls spooling open. Spooling
open obtains a spooled data base file member to hold
the spooled output of the program. Spooling open will
put into the SCB (spooled control block) of the job the
following:

• OFCB (output file control block)

• Writer-time UFCB

• Update the SCB to reflect that another spooled file
belongs to the job

The appropriate output queue receives a new entry for
this spooled output file. Then spooling open will open
the data base file member used to store intercepted
records. The application program (job J) puts records,
using the spooling put intercept routines that block the
data (see Spooled Large Records). to the spooled data
base file member.

SP-14

Upon completion of the user spooled output file,
spooling close marks the file complete and available (if
not already marked). and if the file is to be available
before end-of-job for output on the spooling output
queue. Spooling close closes the data base file member,

If the program closes the spooled file with a temporary
close, the following events happen:

• The current large record is put to a data base file
member.

• The next open will not let spooling get a new data
base file member but will let new records be added
to this file.

If FEOD (forced end-of-data) is used by the program
the following events happen:

• The current data base file or member is closed.

• The same device file is used to open a new spooled
file, creating a new data base file member for
intercepted records.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

JobJ

Device File (PI

SpooloYES

Queue=A

User Program

OPEN P

PUT P

CLOSE P

Common

Open

One Card or Diskette
Output Record

Spooling
Open

Spooling
DB File
Handler

Spooling
Put
Intercept

Interface

Common

Close

Spooling
Close

Figure SP-S. Executing a Program that Produces Spooled Output

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Printer

Put

Output Queue (AI

JobJ,File P

Spooling
Intercept

Put

Offset
to

WCBT

WCBTE

Offset
to
Entry

Entry SCB

" " I
I

"
"

\'"

One
Large
Record

" ,
" " "

"

OFCB

UFCB

" " , ,
" , ,

"

Data Base

" " "

,
\
I
I

,/

Spooling SP-15

Writer Producing Spooled Output

Figure SP-6 and the following text describe the
operation of a writer that produces spooled output.

Writer output is initiated by a user entering a start writer
command. This command invokes the start writer CPP,
which generates an entry on the appropriate job queue
(spool subsystem queue). An entry for the specified
enqueued writer is put into the RWCB (reader/writer
control block) along with necessary writer input
parameters (such as writer name, device to use for
output, identity of the command submitter, and so
forth). The output queue is flagged as active to a writer
(that a writer has been started to it) so that there is no
chance that another writer can be started to the same
output queue. Also, events are then sent to active
writers for hold or cancel files.

The spool subsystem monitor then requests a job from
its job queue. A temporary job structure is allocated and
the user-named writer process is created. The writer
process is then started to an identified device and
output queue. The output queue is flagged as active, so
events are sent to active writers for hold or cancel files.
When the writer is set up and ready to start producing
output files, it obtains the files in a priority and job
sequence. However, if the writer is to start with a
specific file on the output queue, it will process that file
first. The writer then selects the first available file on
the queue, processing it and all remaining files in a
priority and job sequence. In order for a file to be made
available to a writer, the associated queue, job, and the
file itself, must not be in a held state. When the writer
has obtained the output file, the file is flagged as active
to a writer.

SP-16

Before the selected output file can be sent to the
device, the writer must look at the associated OFCB
(output file control block) and UFCB (user file control
block) of the file, which is within the SGB of the job.
The OFCB has information such as the number of
copies, the type of form to use, save attribute, the
number of file separators, and so forth that is needed. by
the writer. If the form type is to be changed, the writer
issues a message to the system operator. When the
forms have been changed, output of the file is
begun by:

• Opening the device file with the new output file
attributes (done by copying in the attributes from the
UFCB of the file's associated SCB)

• Opening the data base file or member that contains
the intercepted records

When the preceding has been done, the spooling writer
goes into a loop doing data base gets and device
function manager puts so that the actual intercepted
records can be produced. If the intercepted output goes
to the device to which the program intended it to go,
the spooling writer does the following:

• If the output is to go to a printer, an entire large
record is given to the printer fUnction manager. (If
the large records are only 512 bytes long, then eight
of them will be combined before they are given to
the printer functiQn manager.)

• If the output is to go to the MFCU, the large record
is broken up and single puts are done to the MFCU
function manager.

• If the output is to go to a diskette, the large record is
broken up and single puts are done to the diskette
function manager.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Start
Writer
CPP

Job Queue

Spool
Subsystem
Monitor

RWCB

Writer

Open De\lIce X

Get Next File
(Internal Include)

Open Fl

IDB Fdel
Get Fl

IDB F;lel
Deblock Large
Record If Not
Printer
(Not Redirection)

Put Device F M

Close F1
lOB Filel

Figure SP-6. Overview of a Spooled Writer Producing Output

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SCB

OFCB --_~

UFCB

DB
Get

Device
FM

Output

Queue IAI

Device
10M

Diskette
o

Printer

Spooling SP-17

Writer Redirection

If the intercepted output from the program is directed to
a writer started to a device other than the device
originally intended, the writer must perform a
redirection. The writer does the following for each type
of output:

Intended
Output
Device

Printer

Printer

Printer

MFCU

SP-1S

Actual
Output
Device

MFCU

Diskette

Printer

Printer

Results

Undo the SCS (standard
character set); expand
back to the original full
record and do single
puts to the MFCU
function manager.

Undo the SCS; expand
back to the original full
record and do single
puts to the diskette
function manager.

Undo the SCS; expand
back to the original full
record preceded by a
4-character control code
and do single puts to
the printer function
manager, passing both
data and control codes.

Work through the large
record and do single
puts to a printer function
manager. If there is any
control information in
the large record, it is not
used with the printer
function manager puts.
(SCS is not sent to the
printer function
manager.)

Intended
Output
Device

MFCU

Diskette

Diskette

Notes:

Actual
Output
Device

Diskette

Printer

MFCU

Results

Work through the large
record and do single
puts to the diskette
function manager.
Control information is
not passed to the
diskette function
manager.

Work through the large
record and do single
puts to the printer
function manager.

Work through the large
record and do single
puts to the MFCU
function manager.

1. When redirection is performed by the writer, the
output that goes to the device does not carry control
information with it except for printer-to-printer
redirection. The control information is stripped off the
record before the put to the actual output device
function manager. The print function manager
receives SCS input from the writer only when the
program output and the device are both PRINTER.

2. Printer-to-printer redirection is only done when the
printer used by the writer does not support all
functions (LPI, CPI, form size) as the intended printer.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983. 1984, 1985

Spooling SP-19

Interrelationship of Spooling Control Blocks

Figure SP-7 and the following text describe how the
parts of a job fit together with the various
spooling-related control blocks and job structures.

The job queues contain entries for batch jobs that are
waiting to execute. They are arranged by priority and
date, and by time stamp. Every job, batch active, has a
WCBTE (work control block table entry) associated with
it. The WCBTE contains system information and status
of the job throughout the life of the job in the system. It
also contains pointers to the SCB (spooling control
block) and JMQs (job messages queues) of that
particular job. The SCB contains information needed by
spooling. That information includes:

• The number of spooled files in the job.

• Status information.

SP-20

• Information for each inline data file.

• Each spooled output file has associated with it in the
SCB:
- An OFCB (output file control block) that contains

file information-file name, file status, data base
file member name, and so forth.
A UFCB (user file control block) that is a copy of
the variable portion of the device file UFCB used
by the program at open time so that the writer can
produce the file as intended.

Each time that a device file is opened for output and the
SPOOL=YES parameter has been specified, another
spooled output file is created (unless the previous close
was a temporary close) and is put into the SCB of the
job. When the file is canceled or the writer is finished
with the file, the data base file member is reclaimed for
reuse and the entry for the file in the SCB is marked as
this file is done, member is reclaimed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Job Queues

, , ,
• -"'\
• I' •

I " •

, I
, I •
',-- •

•
\ • , ,

*REQ (Cl)

Figure SP-7. Interrelationship of Spooling Control Blocks

WCBTE

•
•
•
•
•

5CB
Header

Inline
File
Overrides

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Output Queues

•
•
•

, , ,
-~ I'

• • •
•

1 \

Offsets

,

Spooling SP-21

The user can have up to 9 998 spooled output files plus
one file for the joblog making 9 999 total output files for
a job. Each output file has an entry placed on an output
queue when the file is opened. The entry that resides in
an output queue contains an offset into the WCBTE of
the job and the offset into the SCB of the job where the
OFCB of the file can be found. Thus, when a queue
entry is found, the job can quickly be found in the
WCBT and the OFCB of the file can quickly be found in
the SCB.

Large Record

When an executing program has its card or diskette
output records spooled, the spooling intercept routines
accept the put records and block them into a large
record. Spooled printer output records are blocked into
the large record by a printer (PN) module, which gives
control to QSPBPPRT, which in turn puts the large
record to the data base file member or updates the file
header information. This improves spooling performance
because there will be fewer puts to the data base
intercept file and fewer gets at write time to obtain the
file's large records. For all spooled output, printer,
diskette, and MFCU, the output is packed into a large
record. Figure SP-8 shows the layout of a large record.
It consists of two parts, a header and output data.

Output Data

Figure SP-S. Large Record Layout

SP-22

Header

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Header

Figure SP-9 shows the layout for the header portion of
the large record. The header contains all of the required
information for the large record.

a This number is the number of used/valid bytes
within this large record. This number reflects the
number of bytes that the writer and printer
function manager will process for this large record.

II This represents the attribute bits for advanced
print function files. These bits indicate the
presence of a page profile and LAC (load alternate
character) commands.

II This number is the number of pages or records
contained in this large record. If the output is to
be printed, the number is the number of pages
ending within the large record. If the output is to
the MFCU or a diskette, it is the number of output
records within the large record.

II This number is the number of pages or records
contained in this large record. If the output is to
be printed, the number is the number of pages
beginning within the large record. If the output is
to the MFCU or a diskette, it is the number of
output records within the large record.

II II ..

II This number is the page number or record number
of the first page or record within this large record.
This is used by the writer so that finding the
correct large record is easier and faster.

1\1 This number is the offset to the page profile if the
page profile exists in the large record.

II This number is the relative record number of the
previous large record which contained a page
profile.

II This number is the number of nonblank lines in the
first page which ends in the large record.

II This is the number of non blank lines in the large
record.

II This number is the offset to the specified page
(first, second, third, and so forth).

III This number is the number of the first line where
user data can start on this page relative to the
start of the file.

II II ..
Page Number of First Number of Pages Number of Pages Number of
Profile Page or Record or Records or Records
Offset Within (beginning) (ending)

I

III II II
Number of First
Line Where User Offset to Number of

Data Can Start First Page Nonblank Lines in

on This Page Large Record
(

)

Figure SP-9. Large Record Header Layout

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Attribute UsedNalid
Bits Bytes

III II
Number of Releative Record
Nonblank Lines in Number Where
First Page Ending Page Profile
in Large Record will Be Found

~ ,

III II
Number of First
Line Where User Offset to
Data Can Start nth Page
on This Page

Spooling SP-23

Output Data

The output data contains the intercepted output records
for the printer, MFCU, or diskette. Output records are in
the following formats:

• Printer records are in SCS (standard character set)
format.

• MFCU records are all of equal length with punch
information padded with hex 40s if necessary.

• Diskette records are all equal length, 4096 bytes or
less.

Figure SP-10 shows the layout of the output records for
print data, MFCU data, and diskette data.

Note: Print output-The print record would be converted
to SCS before going into the large record. All printer
control language is in SCS; some trailing blanks are
eliminated.

Print Data

s s s s s
C C C C C
S DATA S S S DATA S

MFCU Data

MFCU output-At file open time it is determined if a
control list will accompany the puts. If it does, every
output record will have a 12-byte control list; if not
there will not be any control list in the large record.
From put to put, the user can vary: punch, no punch
with print, no print. Therefore, once spooling open has
determined print record length (96 or 128). the record is
set in the large record as maximum and padding with
hex 40s is done to ensure accurate writer output to the
MFCU function manager.

s s
C C
S S

CI PUNCH PRINT I CI PUNCH PRINT

~UNCH I PRINT

or

PUNCH PRINT

Diskette Data

RECORD RECORD

Figure SP-10. Device Output Record Format Layout

SP-24

PUNCH PRINT

I RECORD I

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The save/restore component of CPF (control program
facility) provides the functions needed to save objects
offline and later restore those objects to the system.
These functions can be used to back up the system,
save seldom-used objects to free space for other
objects, and to store critical objects offline to prevent
unauthorized access to them. Two functions are
provided to do this:

• Save objects by writing a copy of the objects to
offline storage, or online storage, and optionally free
the space occupied by those objects for use by other
objects

• Restore saved objects to the system

The use of these functions allows backup copies of
entire libraries or individual objects. They also allow a
system to recover from failures quickly and easily.

Save Function

The save function writes a copy of an object onto tape
or diskettes or to a save file. The object is not removed
from the system; it still exists on the system and is
available for normal system use. A copy of 1 to 50
libraries, all user libraries, a single object. or a group of
objects in one library can be saved in one operation; a
single changed object, or a group of changed objects in
one library can also be saved in one operation.

A save / restore history about each object saved is
maintained by CPF. This information tells when and
where each object was last saved and when it was last
restored. The information is from the most recent
save/restore operation; this lets CPF check that objects
restored are the latest copy and not an outdated copy of
the object.

The storage space for file, program, and journal receiver
objects can also be freed when it is saved. After an
object's space is freed, the object is considered to be
offline. When an object is offline, its description and
offline location are still rnaintained in the system.
However, space from the contents of the object is freed
and can be used by other objects.

Save/Restore

Freeing an object's space is not the same as deleting an
object. When an object is deleted, all information about
that object is also deleted from the system. That object
must be created or restored to be used again.

Restore Function

The restore function of save/restore copies saved
objects back into the system. These restore functions
are used to restore any saved objects except certain
critical objects in the system library, which are copied
back into the system by the installation component.

GENERAL OVERVIEW

Save/Restore Modules

The save/restore component consi'sts of the following
modules:

Note: A module identified by an arrow (--» is an entry
module into the component. Indentation of a module
shows its dependency on a previous module.

Save Modules

-->QSRPSCPR-Save System (SAVSYS)l: This module
performs the save system functions as specified by
the Save System command. It controls the
generation and writing out of the save/restore files
included in a system save.

QSRSVIPL-Save Initial Installation: This module
resolves to an object specified in the parameter
list, builds an SSR (source/sink request) entry for
that object. and then calls QSRSVRQI to issue a
machine REQIO to save that object.

lThis module is a CPP (command processing program).

Save/Restore SR-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980,1981, 1982, 1983, 1984, 1985

QSRSVIOC-Save I/O Configuration: This module
is the nonstandard object handler for an I/O
object (line description, device description, and
control unit description).

QSRSVUPR-Save User Profile: This module is the
nonstandard object handler for a user profile.

QSYSVAUT-Save Authorized User Table: This
module is the nonstandard object handler that
extracts the user name and password entries from
the authorized user table and saves them.

-->QSRSOCPR-Save Object/Save Changed Object
(SAVOBJ/SAVCHGOBJ)': This module interfaces
with the command analyzer to perform the Save
Object command or the Save Changed Object
command. It sets up the save/restore control block
to communicate input parameters and environment
information between the save / restore modules.

QSRSOCP2-Save Object Processing: This module
performs the save object processing. It checks the
parameters for validity, interfaces with the librarian
for objects to be saved, calls QSRSVCHK, and
issues completion messages.

-->QSRSLCPR-Save Library (SAVLlB)': This module
performs the save library functions as specified by
the Save Library command. It sets up the
save/restore control block to communicate input
parameters and environment information between the
save / restore modules.

QSRSLCP2-Save Library Processing: This module
performs the save library processing. It performs
all library level processing, including building
save/restore descriptors, retrieving a list of objects
in the library, and performing OIR (object
information repository) maintenance.

'This module is a CPP (command processing program).

SR-2

The following modules are used by QSRSOCPR and
QSRSLCPR:

QSRSVCHK-Object Authority Checks for Save:
This module checks that the user has sufficient
authority to save each object.

QSRFROBJ-Free Object: This module determines
which objects from a list of saved objects are valid
to be freed and frees the storage for those
objects. (Data base files are freed by QDBSVPST
and journal receivers are freed by QJOSAVRC.)

QSRADOPT -Adopt User Profile: This module
adopts the QSYS user profile to allow any
modules under it to execute with that user profile.
This module is also used by QSRRLCPR and
QSRROCPR.

The following modules are used by QSRPSCPR,
QSRSOCPR, and QSRSLCPR:

QSRSVPRE-Save Pre-I/O module: This module
creates a space that will contain a list of all of the
objects to save. It locks the objects to be saved if
the system is not in restricted state. It interfaces
with object handling modules for processing of the
pieces of composite objects. It also creates the
operand (a source/ sink request) that causes the
machine REQIO or REQPO function to dump the
specified objects.

QDBSVPRE-Save Data Base File Pre-Dump:
This module performs the composite object
handling needed prior to saving a data base file.
It is called once by save/restore for each library
that contains data base files.

QDBSVPST-Save Data Base File Post-Dump:
This module performs the composite object
handling needed for data base files after the
data base files have been placed on the
save/restore media.

QJOSAVJN-Save Journal: This module
performs the object handler function necessary
to save a journal.

QJOSAVRC-Save Journal Receiver: This
module performs the object handler function
necessary to save a journal receiver.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
QMHSAVMQ-Save Message Queue: This
module performs the object handler function
necessary to save the descriptions of
user-defined message queues.

QSPSAVQ-Save Job/Output Queue: This
module performs the function necessary to save
the descriptions of job queues and output
queues.

QDFSAVDF-Save Save File: This module
performs the object handler function necessary
to save the description of the save file.

QSRSVRQI-Save REQIO: This module reads
the VTOC (volume table of contents) for saves
to diskette from the specified volume and then
constructs a unique name for the file.
QSRSVRQI then issues the machine REQIO or
REQPO instructions for the save function.

QSRSVDEQ-This module handles various return
codes (other than end of volume) which are in the
feedback record from the request I/O performed by
QSRSVEOV. It also handles opening and closing of
files.

QSRSVPST-Save PosHO module: This module
updates the save/restore history of the object in its
OIR, invokes object handlers, and unlocks the objects
locked in Pre-IO.

QSRSVEOV-This module performs the dequeue of
the request, checks for end of volume, and checks
for recoverable error media conditions.

Restore Modules

-->QSRROCPR-Restore Object Command Processor
(RSTOBJ)': This module is called by the command
analyzer to perform the Restore Object command. It
sets up the save/restore control block to
communicate input parameters and environment
information between the save / restore modules.

QSRROCP2-Restore Object Processing: This
module performs the restore object processing. It
also does validity, lock, and authority checking at
the library level, and performs clean-up and
completion notification.

'This module is a CPP (command processing program).

-->QSRRLCPR-Restore Library (RSTLlB)': This module
performs the restore library functions as specified by
the Restore Library command. It sets up the
save/restore control block to communicate input
parameters and environment information between the
save/restore modules.

QSRRLCP2-Restore Library Processing: This
module controls restoration of libraries. Processing
includes authority checking, locking, retrieving the
contents of a library, clean-up, and completion
notification.

-->QSRRUCPR-Restore User Profile (RSTUSRPRF)':
This module restores user profiles previously saved
by a save system command. Processing includes
creating an authorization table to be used by
QSRRACPR.

-->QSRRACPR-Restore Authorizations (RSTAUT)': This
module restores the private authorizations to the user
profiles using the authorization table built by
QSRRUCPR.

The following modules are used by QSRROCP2 and
QSRRLCP2:

QSRRSCUR-Restore Current: This module uses
save/restore history information from the OIR to
open a file with the most recent version of the
saved objects.

QSRRSFIL-Find File to Restore: This module finds
the appropriate file to restore. It searches for a file
on the volume matching the criteria specified on
the command.

QSRRSLlB-Restore Librarian Interface: This
module has two functions depending on how it is
called. If it is called and passed a null descriptor
pointer, it functions as an interface to the librarian.
If it is passed a descriptor pointer, QSRRSLIB
builds a list object space and processes the
descriptors. It also does validity, lock, and
authority checking at the object level.

Save/Restore SR-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The following module is used by QSRRSCUR and
QSRRSFIL:

QSRRSOPN-Open for Restore: This module
performs the open functions for restore operations.

The following module is used by QSRRSLlB:

QSRRSOBJ-Restore Object Handling Routine:
This module performs the actual restore of the
objects. It interfaces with object handling modules
for processing of the pieces of composite objects.
It builds the source sink request that causes the
machine REQIO or REQPO function to load the
specified objects. It also optionally generates a
listing of objects successfully restored and not
restored.

The following modules are used by QSRRSOBJ:

SR-4

QDBRSPRE-Data Base File Preload: This
module performs the object handler function
necessary prior to restoring a data base file.
QDBRSPRE is called once by save/restore for
each restored library that contains data base
files.

QDBRSPST-Data Base File Post Load: This
module performs the object handler function
necessary after the data base files are read in
from the media and placed on the system.

QJORSTJN-Restore Journal: This module
performs the object handler function necessary
to restore a journal.

QJORSTRC-Restore Journal Receiver: This
module performs the object handler function
necessary to restore a journal receiver.

QMHRSTMQ-Save Message Queue Object
Handler: This module performs the object
handler function necessary to restore the
descriptions of user-defined message queues.

QSPRSTQ-Restore Job/Output Queue: This
module performs the object handler function
necessary to restore the descriptions of job
queues and output queues.

QDFRSTDF-Restore Save File: This module
performs the object handler function necessary
to restore the descriptions of save files.

The following module is used by QSRRSOPN and
QSRRSOBJ:

-->QSRRSRQI-Restore REQIO: This module issues the
machine REQIO or REQPO instruction for restore
operations. It performs end-of-volume processing
and closes the file when the I/O operation is
complete.

Display Modules

QSRDSVOL-Display Volume: This module is invoked as
the result of a Display Diskette (DSPDKT) command
requesting information about objects contained in a
save/restore diskette file. Information is displayed for
volume, file, or objects within a file.

QSRDSPY-Display Tape: This module is invoked as the
result of a Display Tape (DSPTAP) command requesting
information about objects contained in a save/restore
tape file. Information is displayed for the file or for the
objects within the file.

QSRDSAVF-Display Save File: This module is invoked
as the result of a Display Save File (DSPSAVF)
command. Information is displayed for the file and for
objects within the file.

QSRTUNE-Save/Restore Performance Tuning: This
module is called by the tape, diskette, and save file
function managers when a media is opened for a save,
restore, or display operation. It obtains the execution
priority of the save/restore job and determines the
buffer size to be used by the machine.

Save Commands Overview

Figure SR-1 and the following text describe the
functions of the save commands in the save/restore
component.

Save System Command

.. The Save System (SAVSYS) command calls
QSRPSCPR to save the system.

., QSRPSCPR calls QSRSVIPL to save the AIPL
(alternative initial program load) source and
the install program.

o QSRSVRQI is called to write the library
LI B-ALL save / restore descriptor.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

G) OSRSVPRE is called to save the simple
objects. The simple objects to be saved are
determined from a list obtained from the
librarian component.

o OSRSVIOC is called by OSRSVPRE to
perform additional processing of I/O
configuration objects.

G) OSRSVPRE is called to save the complex
objects as defined in a list obtained from the
librarian.

G OSRSVUPR and OSYSVAUT are called by
OSRSVPRE to perform additional processing
of each user profile and user-profile
authorizations.

Save Object Command/Save Changed Object Command

II Save Object/Save Changed Object
(SAVOBJ/SAVCHGOBJ) command transfers
control to OSRSOCPR. If the process user profile
has save system special authorization, OSRADOPT
CD is called to adopt the OSYS user profile.
OSRADOPT then calls OSRSOCP2.

II OSRSOCP2 is called directly by OSRSOCPR if the
process user profile does not have save system
special authorization.

G) OSRSOCP2, in turn, calls OSRSVCHK to
process the save object request. Information
about the objects to be saved is obtained
from the librarian.

o OSRSVCHK calls OSRSVPRE to build the
save/restore descriptors and REOIO SSR.
OSRSOCP2 calls OSRSVROI to issue the
REOIO, OSRSVDEO to handle return codes
and file open / close, OSRSVPST to update
SIR history, and OSRSVEOV to handle end
of volume and dequeue the REOIO.

o OSRSVDEO calls OSRSVEOV to handle end
of volume and dequeue the REOIO or
REOPO.

Save Library Command

D Save Library (SAVLlB) command transfers control
to OSRSLCPR. If the process control user profile
has save system special authorization, OSRADOPT
is called to adopt the OSYS user profile.
OSRADOPT then calls OSRSLCP2.

II OSRSLCP2 is called directly by OSRSLCPR if the
process user profile does not have save system
special authorization.

G) OSRSLCP2 calls the librarian to get a list
space and then calls OSRSVCHK.

o OSRSVCHK calls OSRSVPRE to build the
save/restore descriptors and REOIO SSR.
OSRSLCP2 calls OSRSVROI to issue the
REOIO or REOPO.

Save Data Base Files

o OSRSVPRE calls ODBSVPRE and
ODBSVPST to save data base files.

Save Journals and Journal Receivers

o OSRSVPRE calls OJOSAVJN for each journal
found in the list obtained from the librarian
component.

• OSRSVPRE calls OJOSAVRC for each
journal receiver found in the list obtained
from the librarian component.

Save Job/Output Queue and Message Queue Descriptions

o OSRSVPRE calls OMHSAVMO for each
user-defined message queue found in the
list obtained from the librarian component.
OSRSVPRE calls OSPSAVO for each job
queue or output queue found in the list
obtained from the librarian component.

• OSRSVPRE calls ODFSAVDF for each save
file found in the list obtained from the
librarian component.

Free Object Storage

CD OSRSVPRE calls OSRFROBJ if storage is to
be freed for the saved object.

Save/Restore SR-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SAVCHGO BJ ,

II Commands

OSRSOCPR

Save Object
CPP

~ ,

, H

a SAVSYS .. Command H

OSRPSCPR OSRSOCP2

Save System Save Object
CPP Mainline

n
n

OSRSVCHK

Save Check

H

e H

OSRSVPRE

Save Pre-I/O
Module

" OSRSVIPL 0 OSRSVROI

Save Initial Save REOIO
Installation

OSRSVDEO

Handle Dequeue

I
43 OSRSVEOV

End of Volume

OSRSVPST

Save Post-I/O
Module

Figure SR-1_ Save Commands Overview

SR-6

SAVLlB ,
II Command

OSRSLCPR

Save Library
CPP

H

e H

OSRADOPT

Adopt OSYS
Profile

H

ull
OSRSLCP2

Save Library
Mainline

•
G ODBSVPRE .. OOBSVPST

Save Data Base
File Modules

43 OMHSAVMO
OSPSAVO
Save Message and
Job/Output Oueues

0 OSRSVIOC

Save I/O
Configuration

0 OJOSAVJN

Save Joumal

• OSRSVUPR

~
OSYSVAUT
Save User Profile
and Authorization

• OJOSAVRC

Save Journal
Receiver

0 OSRFROBJ

~ Free Object

~
Storage

• ODFSAVDF

Save
Save File ..

PAAB045-0

This document contains restricted materials of I BM_ LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Save/Restore SR-7

Restore Commands Overview

Figure SR-2 and the following text describe the restore
commands functions.

Restore Library Command

.. The Restore Library (RSTLlB) command transfers
control to QSRRLCPR. If the process user profile
has save system special authorization, QSRADOPT o is called to adopt the QSYS user profile.
QSRADOPT then calls QSRRLCP2. QSRRLCP2 is
called directly by QSRRLCPR if the process user
profile does not have save system special
authorization.

II If the SAVLlB parameter is *NONSYS, a list of
libraries to be restored must be read. If the VOL
parameter is *SAWOL, QSRRSCUR is called;
otherwise QSRRSFIL 0 is called. Both
QSRRSCUR and QSRRSFIL calls QSRRSOPN 0
to open the files and read the list of libraries.
QSRRSOPN calls QSRRSRQI e to read the list of
libraries. Control is returned to QSRRLCP2. For
each library in the library list, QSRRSFIL 0 is
called to find the library's savel restore file.

If the SAVLlB parameter names a library, a list of
libraries does not have to be read. If the VOL parameter
is *SAWOL, QSRRSCUR • is called; otherwise
QSRRSFIL is called. Both QSRRSCUR and QSRRSFIL
call QSRRSOPN to open the file. Control is returned to
QSRRLCP2.

For each library to be restored, QSRRLCP2 calls
QSRRSLIB e to perform common processing (that is,
find the object in the library, option check, authority
check, and locking). QSRRSLIB calls QSRRSOBJ G to
perform object-type specific processing and to build the
I/O request.

QSRRSOBJ calls QSRRSRQI e to perform the I/O
operation and, if necessary, to handle any I/O errors.

Object handlers" are called to perform the object
handler functions as necessary.

SR-8

Restore Object Command

II The Restore Object (RSTOBJ) command transfers
control to QSRROCPR. If the process user profile
has save system special authorization, QSRADOPT o is called to adopt the QSYS user profile.
QSRADOPT then calls QSRROCP2. QSRROCP2 is
called directly by QSRROCPR if the process user
profile does not have save system special
authorization.

II QSRROCP2 calls QSRRSCUR • if the VOL
parameter on the Restore Object command is
*SAVVOL. If the VOL parameter is not *SAVVOL,
QSRRSFIL 0 is called.

Both QSRRSCUR and QSRRSFIL call QSRRSOPN 0 to
open the file and read the description of the file's
objects. QSRRSOPN calls QSRRSRQI e to restore the
object descriptions. Control is returned to QSRROCP2.

QSRROCP2 calls QSRRSLIB e to perform the object
type not specific processing. QSRRSLIB calls
QSRRSOBJ G to perform the object type specific
processing and to build the I/O request.

QSRRSOBJ calls QSRRSRQI e to perform the I/O
operation and, if necessary, to handle any I/O errors.

Object handlers" are called to perform the object
handler functions as necessary.

Restore User Profile

II The Restore User Profile (RSTUSRPRF) command
transfers control to QSRRUCPR.

o QSRRSFIL is called by QSRRUCPR to
identify the save/restore file to be used in
the restore user profile operation.

o QSRRSOPN is called by QSRRUCPR to open
the save / restore file.

e QSRRSRQI is called to perform the I/O
operations and, if necessary, to handle any
I/O errors.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Restore Authority

III The Restore Authority (RSTAUT) command
transfers control to QSRRACPR. QSRRACPR
restores the private authorizations to the user
profiles using the authorization table built by
QSRRUCPR II.

RSTAUT
III Command

OSRRACPR

Restore
Authority Cpp

a

RSTUSRPRF,
II Command

QSRRUCPR

Restore User
Profile CPP

~ ~

II

..
......

e ' , e
QSRRSFIL

Find File

~ ~

0 , ,
QSRRSOPN

Restore
Open

RSTLIB ,
Command

QSRRLCPR

Restore
Library CPP

~ l ~ ~
~ ~

~ ~ , , , ,
QSRRLCP2

Restore
Library
Mainline

.4 l

' ,
QSRRSCUR

Restore
Current
Version

~ ~

~~ e ~

,~ -QSRRSRQI

Restore
REQIO

Figure SR-2. Restore Commands Overview

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

RSTOBJ ,
II Command

QSRROCPR

Restore
Object CPP

~ ~ ~ ~ • , ,
QSRADOPT

Adopt QSYS
Profile

~ ~

, ~ .. ' ,
OSRROCP2

Restore
Object
Mainline

~ ~

e ~
QSRRSLIB

Librarian
Interface

l

0 ' ,
QSRRSOBJ

Restore
Object

~ ~ , , CD

Object
Handlers

Save/Restore SR-9

Composite Object Interface

This interface provides two functions: save and restore
for both standard composite objects and nonstandard
composite objects.

Standard Composite Objects

A standard composite object, for save/restore purposes,
has the following characteristics:

• Is structured as a composite object (see Figure SR-3.
Standard Composite Object Structure).

• The primary and secondary objects are valid
save / restore objects.

• The secondary object cannot be the primary object.

• The object will be restored in exactly the same state
that it was at the time of the save and with the same
secondary objects in the same order.

• Only the primary object needs to be locked to reliably
perform a save, restore, or suspend function.

Primary
Object

A - Offset to the pointer list.

B - Number of pointers in the list.

Figure SR-3. Standard Composite Object Structure

SR-1O

Standard Composite Objects - Save Function

The save function saves the primary object and all
secondary objects.

Standard Composite Objects-Restore Function

The restore function restores the primary object, all the
secondary objects, and resets the pointers to the
primary and secondary objects. If the secondary objects
on the system do not match the secondary objects on
the save media with respect to name, type, subtype, and
position, the objects will not be restored.

Nonstandard Composite Objects

A nonstandard composite object is an object whose
internal structure is not known by save/restore. To save
or restore it requires an object handler, which is
normally supplied by the component responsible for the
object.

Secondary
Object

Secondary
Object

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

!!Jave/Restore Function Manager

Figure SR-4 and the following text describe the
structure and the functions of the modules.

II QSROPEN, Open Online Save File, is responsible
for the file specific operations needed to open an
online save file. The functions performed are:

• Ensure exclusive file allocation by checking the
DMCQ for other open file ODPs to this online
save file.

• Allocate and initialize the SR work area and the
record buffers in the ODP.

• Validate all file open parameters from the save
file, UFCB, and overrides.

• Adjust the ODP Entry Point Table and fill the
Common Open Feedback area information,
including the current file record count.

• Clear the save file, if necessary, for an output
file.

• Establish a load/dump session for the dump
space object if the file was opened for use with
a save or restore operation.

II QSRCLOSE, Close Online Save File, is responsible
for the file specific operations needed to close an
online save file. The functions of this module are:

• Flush output data by writing all buffered records
into the dump space.

• Terminate the load/dump session for the dump
space object that was established when the file
was opened for use with a save or restore
operation.

• Modify the dump object to release all possible
unused allocated space in the dump space
object, and ensure that all records are safely
written to non-volatile storage.

II QSRGET, Get Record, is responsible for retrieving
a block of records from the dump space part of
the file, optionally deblocking them, and passing
the records to the using program. The functions
performed by this module are:

• Retrieve a block of records from the dump
space object whenever the current buffer is
exhausted.

• Deblock the input records and pass them to the
using program.

II QSRPUT, Put Record, is responsible for blocking
records received in the output buffer from the user
and inserting them into the dump space object
part of the file. The functions performed by this
module are:

• Receive records from the using program and
block them in the output buffer.

• Insert a block of records into the dump space
object whenever the current buffer is full.

QSRFEOD, Force End of Data is responsible for
forcing any buffered output records into the dump
space object part of the file, and for signaling end
of file for an input file. The functions performed
by this module are:

• Signal end of file for an input file.

• Insert any buffered output records into the
dump space object part of the file.

• Ensure that all output records are safely written
to non-volatile storage.

II QSRFMERR, Function Manager Error Handler, is
invoked to build the replacement text and send
any message that must be sent by the
Savel Restore function manager.

Save/Restore SR-11

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Macro:
OPEN

1
COM
Open File

Macro: Macro:
Processor

GET PUT .. 1 II 1 II 1
OSROPEN OSRGET OSRPUT

Open Get Put
Save Record Record
File

I I

OSRFMERR

Error/
Message
Handler

Figure SR-4. SR Function Manager Structure

SR-12

Macro:
FEOD

II 1
OSRFEOD

Force
End of
Data

I

Macro:
CLOSE
(all forms)

1
COM
Open File
Processor

fJ 1
OSRCLOSE

Close
Save
File

I

Invoked to send any
messages necessary
to report errors or
status.

PAABQ22·Q

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

INTRODUCTION

The switched lines component of the CPF (control
program facility) is composed of two major functions:

• Communications services

• Logical unit services

The communications services consist of a group of
event handlers that run under the system arbiter process
(QSYSARB), and provide the following functions:

• Switched line connection and disconnection:
Establishing manual autoanswer switched line
connections, establishing manual and auto-dial
switched line connections, disconnecting switched
lines, and allowing devices to be obtained prior to
successful contact.

• Error recovery: Automatically recovering ND (network
description), CD (control unit description)' and LUD
(logical unit description) errors, and stopping and
resuming error recovery.

The logical unit services consist of a group of event
handlers that run under the logical unit services process
(QLUS), and provide the following functions (for
advanced program-to-program communications only):

• Establishment of event monitors at LUD (logical unit
description) creation and IPL (initial program load
time)

• Vary on LUD and vary off LUD

• Disconnection of switched connections

• Change the maximum number of allowed sessions
with the remote system

Switched Lines

GENERAL OVERVIEW

Communications Modules

The switched lines component consists of the following
communications services modules:

Note: An arrow (--» identifies a module as being an
entry into the component. Indentation of a module
shows its dependency on a previous module.

-->QSWALLOC-Switched Line LUD Allocate: This
module is called to signal the LUD-allocated event to
the system arbiter process.

-->QSWANSWR-Answer Line (ANSLlN)1: This module
processes the Answer Line command.

-->QSWCDCPP-Stop/Resume Control Unit Recovery
(STPCTLRCY / RSMCTLRCY)1: This module processes
the Stop Control Unit Recovery and Resume Control
Unit Recovery commands.

-->QSWCUDEV-CD Event Handler: This module routes
and handles the event and calls the CD event
processor for all machine interface CD events.

QSWCDCR-CD Unsuccessful Contact Event
Processor: This module processes unsuccessful
CD contact events, and sends a message to the
system operator message queue.

QSWCDFR-CD Failure Event Processor: This
module processes CD failure events, and sends a
message to the system operator message queue.

QSWCDLST -CD Lost Contact Event Processor:
This module processes lost CD contact events,
and sends a message to the system operator
message queue.

1This module is a CPP (command processing program).

Switched Lines SW-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QSWCDNAV-CD Unavailable Event Processor:
This module processes CD unavailable events, and
sends a message to the system operator message
queue.

QSWCDPRV-CD Protocol Violation Event
Processor: This module processes CD protocol
violation events, and sends a message to the
system operator message queue.

QSWCDSUC-CD Successful Contact Event
Processor: This module processes successful CD
contact events, and sends a message to the
system operator message queue.

-->QSWDIAL-Switched Line Dial Out: This module
issues a machine interface Modify CD (Dial)
instruction to perform a manual or auto-dial
operation.

-->QSWDL TLD-Switched Line Delete LUD Entry: This
module is used to delete an existing LUD entry in the
CD-associated space.

-->QSWHRCMN-Hold/Release Communications Device
(HLDCMNDEV /RLSCMNDEV)': This module
processes the Hold Communications Device and
Release Communications Device commands.

-->QSWINTQ-Initialize Message Queue: This module
initializes the message queue.

-->QSWINTSP-Initialize CD-Associated Space: This
module initializes the CD-associated space.

-->QSWLDCPP-Stop/Resume Device Recovery
(STPDEVRCY /RSMDEVRCY)': This processes the
Stop Device Recovery and Resume Device Recovery
commands.

-->QSWLOCLD-Locate LUD Entry: This module is
used to locate an existing LUD entry in the
CD-associated space.

-->QSWLUDEV-LUD Event Handler: This module is
used to process successful and unsuccessful LUD
contact events, and LUD failure events.

'This module is a CPP (command processing program).

SW-2

- - > QSWN DC PP-Stop / Resume Line Recovery
(STPLlNRCY /RSMLlNRCY)': This module processes
the Stop Line Recovery and Resume Line Recovery
commands.

-->QSWNDEV-ND Event Handler: This module routes
and handles the event and calls the ND event
processor for all machine interface ND events.

QSWNDFR-ND Failure Event Processor: This
module processes N D failure events, and sends a
message to the system operator message queue.

QSWNDNOR-ND Disconnect Event Processor:
This module processes ND disconnect events, and
sends a message to the system operator message
queue.

-->QSWUNUSE-Switched Line Unusable: This module
is called to mark a CD and its attached LUD vary on
unusable. This is done when an error occurs that
requires the CD to be varied off in order to recover.

Logical Unit Services Modules

The switched line component consists of the following
logical unit services modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QSWCNSCP-Change Session Maximum
(CHGSSNMAX)': This module processes the Change
Session Maximum command.

-->QSWIDLES-Switched Line LUD Idle Sessions Event
Handler: This module handles the LUD idle session
event, and initiates the unbinding of sessions.

-->QSWILUSM-Initial Logical Unit Services Monitor:
This module creates the event monitors for the LUDs
that exist at start CPF time.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

-->QSWLCH1-Logical Unit Services LUD Control Event
Type 1 Handler: This module handles the LUD control
event type 1 (vary on, vary off, and LU D successful
contact).

QSWILC5-Logical Unit Services LUD Successful
Contact Event Processor: This module processes
the successful LUD contact event.

QSWIVOFF-Logical Unit Services LUD Vary Off:
This module performs the LUD vary off.

QSWIVON-Logical Unit Services LUD Vary On:
This module performs the LUD vary on.

-->QSWLCH2-Logical Unit Services LUD Control Event
Type 2 Handler: This module deletes and creates the
event monitors for LUD support and control event
type 1 handlers.

-->QSWLSH1-Logical Unit Services LUD Support Event
Type 1 Handler: This module handles the LUD
support event type 1 (change number of sessions
request).

QSWCNSC-Logical Unit Services Change Number
of Sessions Complete: This module is the REQIO
completion program for REQIO change number of
sessions.

QSWIOCMP-Logical Unit Services I/O
Completion: This module provides routing when
the logical unit services REQIOs complete.

QSWSALC-Logical Unit Services Source Program
Conversation Allocation: This module allocates a
source conversation on the reserved modename to
send change number of sessions requests to the
target program.

QSWSLCC-Logical Unit Services Program
Allocation Complete: This module builds and
sends the change number of sessions request after
the reserved modena me is allocated.

QSWSRCVC-Logical Unit Services Source
Program Change Number of Sessions Receive
Complete: This module handles the change
number of sessions request reply sent by the
target program.

-->QSWNOSE5-Switched Line CD No Sessions Event
Handler: This module handles the CD no sessions
event, and calls QSWABAND to disconnect the
switch connection.

-->QSWSWERP-Miscellaneous Error Handler: This
module is called to handle miscellaneous errors in the
logical unit services process, and sends escape
and/or information messages to the system operator
message queue.

-->QSWTALC-Logical Unit Services Target Program
Conversation Allocation: This module receives change
number of sessions requests from the source
program and sends the reply.

QSWTALCC-Logical Unit Services Target Program
Conversation Allocation Complete: This module
monitors for successful and unsuccessful
completion of REQIOs used to send the change
number of sessions request reply.

-->QSWABAND-Disconnect a Switched Line
Connection: This module issues a machine interface
Modify CD (Abandon) instruction to disconnect an
active switched line connection.

QSWCDMAN-CD Manual Intervention Event
Handler: This module processes CD manual
intervention events, and sends a message to the
system operator message queue.

-->QSWDAMGE-Partial Damage Recovery: This
module serves as the event handler for the partial
system object damage set event. Source/sink objects
are handled here and other objects are handled by
QRCPDMGL. The source/sink objects will be marked
as failed, and a message will be sent to the system
operator.

-->QSWCPFEV-CPF Switched Line Event Monitor: This
module will route the switched line events and the
lock events to the proper handlers. The decisions,
about which module is invoked, are based on
whether the event can possibly cause the
disconnection of a remote switched CD.

QSWDISC-CPF Event Processor: Disconnecting.
This module handles some of the requests of the
CPF switched line request event and the object
locked event. The object locked event and specific
switched line requests are handled here because
they could possibly cause the disconnection of a
switched CD.

Switched Lines SW-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QSWNDISC-CPF Event Processor:
Non-disconnecting. This module handles all the
switched line CPF signaled events that cannot
cause the disconnection of a switched CD and the
object lock time-out event.

-->QSWREPLY-Inquiry Message Reply Routing
Module: This module serves as the break message
handling program for the switched line message
queue. Any inquiry message replies received in this
queue are routed to the appropriate message handler.

QSWCDCRH-CD Contact Unsuccessful Message
Reply Handler: This module handles replies to the
CD contact unsuccessful messages. This module
performs either a machine interface Modify CD
(Cancel) or Modify CD (Continue) depending upon
the reply.

QSWCDFRH-CD Failure Reply Handler: This
module handles replies to inquiry messages sent
as the result of a CD failure event. This module
performs either a machine interface Modify CD
(Cancel) or Modify CD (Continue) depending on
the reply.

QSWCDMRH-CD Miscellaneous Message Reply
Handler: This module handles replies to messages
not covered by another reply handler.

QSWLUDRH-LUD Bind Queued Reply Handler:
This module handles replies to the LUD bind
queued inquiry message. This module may
perform a machine interface Modify LUD (Cancel)
depending on the reply.

QSWNDFRH-ND Failure Reply Handler: This
module handles replies to ND failure messages.
This module performs either a machine interface
Modify ND (Cancel) or a Modify ND (Continue)
depending upon the reply.

-->QSWSNDMS-Send Message Module: This module
will determine and send the appropriate message to
the system operator or history log. The appropriate
message depends on whether the object is an ND or
a CD and what the error code is.

SW-4

Communications Services Events Signaled by Other
CPF Components

The information communicated by communications
services events signaled by other CPF components to
the switched line component include:

Events Handled by QSWCPFEV

• Obtain device

• Obtain device response

• Switched request

Communications Services Events Signaled by the
Machine

The information communicated by communications
services events signaled by the machine to the switched
line component include:

Events Handled by QSWCPFEV

• Object lock request granted

• Asynchronous lock time-out

Events Handled by QSWCUDEV

• CD contact successful

• CD contact unsuccessful

• CD lost contact

• CD failure

• CD protocol violation

• CD unavailable

• CD manual dial required

• CD switched connection required

• CD leased contact required

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Event Handled by QSWDAMGE

• Object partial damage

Events Handled by QSWLUDEV

• LUD contact successful

• LUD contact unsuccessful

Events Handled by QSWNDEV

• ND synchronous data link control connection failure

• ND binary synchronous communications connection
failure

• ND disconnection failure

• ND mUlti-leaving telecommunications access method
connection failure

• ND peer device connection failure

• ND failure

• N D protocol violation

Logical Unit Services Events Signaled by Other CPF
Components

The information communicated by logical unit services
events signaled by other CPF components to the
switched line component include:

Event Handled by QSWCNSCP

• Change Session Maximum command completion

Events Handled by QSWLCH 1

• Vary on

• Vary off

• Contact successful

Events Handled by QSWLCH2

• Peer device creation

• Peer device deletion

Events Handled by QSWLSHl

• Change Session Maximum command issued

• Peer device negotiation required

Event Handled by QSWT ALC

• Peer device pass conversation

Logical Unit Services Events Signaled by the
Machine

The information communicated by logical unit services
events signaled by the machine to the switched line
component include:

Event Handled by QSWIDLES

• Peer device idle session

Event Handled by QSWNOSES

• Peer device no sessions

Switched Lines SW-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Communications Overview

Figure SW-1 shows an overview of the communications
services.

CPF
Components

Machine

CPF Events

Machine
Event

QSWREPLY

Handle Operator
Replies

Figure SW-1. Communications Overview

SW-6

QSYSARB

System Arbiter
Process

Message
Queue

QSWANSWR

Answer Line

Controller
Description
Associated
Space
(device entries)

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
Logical Unit Services Overview

Figure SW-2 shows and overview of the logical unit
services.

QLUS
CPF Events

CPF Components
Logical Unit
Services Process

Machine
Machine
Events

QSYSOPR

System Operator
Message Queue

Figure SW-2. Logical Unit Services Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyri~ht IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

\Device
!Description
Associated
:Space

i(peer device entries)

Switched Lines SW-7

SW-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

INTRODUCTION

The security component of the CPF (control program
facility) provides the controls in System/38 that ensure
data integrity and data security. Data integrity is the
protection of programs and data from accidental
alteration or destruction. Security is the prevention of
access to and use of programs and data by unauthorized
users. Directly related to integrity and security is the
need for user identification. User identification ensures
that the programs and data which the user is authorized
to use are made available to the user by the system.
The security component provides user profiles as the
means of user identification and also provides the
means for authorizing user access to specific objects.

User Profile

The user profile is an object that identifies and
represents a specific user to the CPF. The user profile is
a collection point for all of the security information
related to a user. If a new user wants to use the
system, a user profile must be created or made available
for that user to use. The user profile contains:

• User name: This is the name by which the user is
known to the system. Each name must be unique.
Authorizations are made to the user name.

• Owned objects: This is a list of all of the objects that
the user owns.

• Authorized objects: This is a list of the objects that
the user is authorized to use and includes the rights
of use authorized for those objects.

• Authorized users: This a list of the users authorized
to use the objects owned by this profile and includes
the rights of use explicitly authorized.

Security

• Attributes: This is a list of the special attributes
which the user is authorized to use. The attributes of
a user profile determine which special authorizations
are assigned to that user. Special authorizations are
required by the system to execute certain functions.
The two attributes that can be authorized to a
user are:

Save system attribute: The save system attribute
authorizes the user to save, restore, and free
space for any object on the system.
Job control attribute: The job control attribute is
the authority needed to change, cancel, display,
hold, and release jobs other than the user's own.
It also lets the user change, clear, display, hold,
and release all spooling queues that allow operator
control.

• Storage: This is the maximum amount (in K-bytes) of
auxiliary storage that can be allocated for the storage
of permanent objects owned by the user and the
amount of storage currently being used.

• Privileged instruction authorization: The security
officer is the only user profile authorized to use the
privileged instructions needed to create and change
user profiles. All user profiles are authorized to use
the privileged instructions needed to create devices
(device descriptions, control unit descriptions, and
line descriptions).

Note: The security officer is the only one able to delete
user profiles and to display the list of authorized users,
even though these operations are not tied to privileged
instructions. He is the only one authorized to access the
AUT (authorized user table).

Security SY-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

User Profile Associated Space

Each user profile has an associated space containing the
following information:

• Initial Program: This is the name of the initial
program to be invoked whenever the user signs on
the system.

• Priority Limit: This is the priority limit authorized to
the user.

• Job Description: The name of the job description to
be used to set the attributes for the user's job.

• Accounting Code: This is the accounting code to be
used to set the attributes for the user's job.

• Message Queue: The name of the message queue
associated with the user.

• Output Queue: The name of the output queue
associated with the user.

User Password

Access to a user profile and its use is controlled by the
user password. The CPF uses a user password to
determine which user profile represents that particular
user. A user password should be known to only the
people who use it. To prevent unauthorized use of a
password, the security officer can change it periodically.

SY-2

Authorized User Table

User passwords are maintained in a system object
(independent index) called the AUT (authorized user
table). Addressability to the AUT is maintained in QSYS
and the name of the AUT is QSYUPTBl. It is a cross
reference list of user passwords to user profiles. The
AUT contains the following information about each user:

• User password: This is the key to the user profile by
which the user is identified to the system. Each
password must be unique and each can only be
associated with one user profile.

• User name: This is the name of the user profile for
which this password is the key.

• User profile address: This is a pointer to the user
profile for which this password is the key.

• Group profile: The name of the user profile to be
used in conjunction with this user profile to determine
a job's authority to an object.

• Group attribute: An indicator of what authority is to
be granted to the group profile when this user profile
creates an object.

• Office administrator definition: This is a special right
given to the user who is defined to be the
administrator for the OFFICE/38-Personal
Services/38 product.

• Document Password: This is the password that
allows an affinity user to obtain personal
distributions.

Figure SY -1 shows the relationships between user
passwords, AUT, and the user profiles.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Authorized User Table

............ , ----------1 , ,
I

I , , ,
I

I ,
/ Key

A '"

P Password User Name Group Name

N User Name Password Group Name

\

Note: P=password, N=name so that it can
be found by name or by password.

Group Attribute
Office
Administrator

Group Attribute
Office
Administrator

'" Argument

User Name
Owned Objects
Authorized Objects
Authorized Users
Attributes
Storage
Privileged Instructions

Figure SY-1. Authorized User Table/User Profile Relationship

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

PTR
Document
Password

PTR
Document
Password

I

User Profile
Associated Space

Initial Program
Priority Limit
Job Description
Accounting Code
Message Queue
Output Queue

PAAB024·0

Security SY-3

Object Authorization

Because all of the functions and the data available on
the system exist as objects, their use can be controlled
by authorizing system users to use them. Object
authorization is the process of controlling which
individuals are authorized to use an object and of
assigning the rights of use each individual has in relation
to that object. Authorization to use an object is usually
administered by the owner of the object (the creator)
and is enforced by the security component when any
attempt is made to use the object.

The requirement that each object known to the system
must be named and that each object must have an
identified owner is basic to the concept of object
authorization. The initial owner of an object is defined
as the individual who created that object. Ownership of
an object lets that individual authorize other users the
right to use the object. transfer ownership of the object
to another user, and display the authorized users and
their rights of use for his object.

User authorization is the method by which the owner of
an object can specify the users that can use his object.
The owner of an object can authorize the use of his
object in the following ways:

• Private: Only the owner of an object can use that
object.

• Explicit: The owner of the object can identify. by user
name, the system users that can use the object.

• Public: The owner of the object can specify that all
system users are authorized to use the object. Public
authority is kept with the object rather than being put
in each user profile.

SY-4

Rights of Use

How a user can use an object depends on what rights
of use are included in the authority of the user. The
owner of an object and the system security officer have
all rights to the use of an object. Other system users
can be granted some or all of the rights of use either
through public authority or explicitly granted authority.

The rights of use supported by security and a brief
description of those rights are as follows:

Object Rights: These rights apply to an object in its
entirety. These rights are applicable to all objects and
control the major functions available in the system at an
object level.

• Object existence: This right provides the authority to
control object ownership and existence.

• Object management: This right provides the authority
to manage access and availability of objects.

• Operational: This right provides the authority to look
at the description of an object and operate with the
object. If additional data rights apply to an object,
they further control what operations can occur. For
example, to compile a program using an externally
described data base file, only operational authority is
required to the file. To actually read data from the
file, read authority is also required.

Data Rights: These rights apply to the contents of an
object. These rights are only applicable to objects that
contain elements of information.

• Read: This right provides the authority to retrieve or
materialize the contents of an object entry.

• Update: This right provides the authority to modify or
replace an object entry.

• Add: This right provides the authority to add an
object entry.

• Delete: This right provides the authorization to
destroy or remove an object entry.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

GENERAL OVERVIEW

Security Modules

The security component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QSYUP-Create/Change User Profile (CRTUSRPRF,
CHGUSRPRF)': This module is used to create or
change a user profile.

-->QSYDSUP-Display User Profile (DSPUSRPRF)':
This module is used to display user profile
information to the user.

-->QSYDLUP-Delete User Profile (DLTUSRPRF)': This
module is used to delete a user profile from the
system.

- ->QSYGRAUT -Grant Object Authority (GRTOBJAUW:
This module is used to grant authority to use an
object to a specific user, to the public, or from a
reference object.

- - >QSYDSAUT -Display Object Authority
(DSPOBJAUW: This module is used to display who
has what type of authority to the use of a specific
object.

-->QSYRVAUT-Revoke Object Authority
(RVKOBJAUW: This module is used to take object
authority away from a user or the public.

-->QSYCHONR-Change Object Owner
(CHGOBJOWN)': This module is used to change the
ownership of an object from one user to another
user.

QSYPGMCH-Program Check For Adopted Profile:
This module checks program objects to see if they
adopt their owner's user profile. This module is
called by QSYCHONR.

'This module is a CPP (command processing program).

QSYRVKDR-Revoke Data Rights: This module
revokes data rights from the new owner of a data
base logical file, since data rights have no meaning
for a logical file. This module is called by
QSYCHONR.

-->QSYDSUSR-Display Authorized Users
(DSPAUTUSR)': This module is used to display the
contents of the AUT (passwords and user names).

- ->QSYGRUSR-Grant User Authority (GRTUSRAUW:
This module is used to grant the authority of one
user profile to another user profile.

-->QSYVERFY-System Entry Verification: This module
verifies the authority of the user to the system and its
resources.

-->QSYAULlB-Retrieve Authorized Libraries: This
module gets a list of all the libraries to which the
process has *READ authority.

-->QSYCNV-Convert Authority: This module converts
the CPF authorization keywords to bit strings.

-->QSYSVAUT-Save Authorized User Table: This
module extracts the user name and password entries
from the authorized user table and saves them.

-->QSYRSAUT-Restore Authorized User Table: This
module restores the authorized user table by inserting
the user name and password entries into it.

-->QSYHNAUT-Handle Authority Violation: This
module provides a standard logging of CPF-detected
authorization violations to the system history file and
optionally signals an authorization violation exception.

-->QSYGRTSA-Grant Same Authority: This module is
used to authorize an internal object the same as
another internal object on the system.

- - >QSYAUTEV-Authorization Event Handler: When an
authorization violation occurs, this module handles the
various authorization events that can be signaled and
logs their occurrence to the system history file.

-->QSYGRSME-Grant Same Authority: This module is
used to authorize an external object the same as
another external object on the system.

Security SY-5

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QSYACCIP-Access Interactive Profile: This module
copies the function level entries specified from the
permanent interactive profile in QSYS library to the
temporary interactive profile in QTEMP library.

QSYCPYIP-Copy Interactive Profile: This module
copies the permanent entries in the temporary
interactive profile in QTEMP library to the
permanent interactive profile in QSYS library and
deletes the temporary interactive profile.

QSYCRTIP-Create Interactive Profile: This module
creates the permanent interactive profile in QSYS
and the temporary interactive profile in QTEMP.

-->QSYCHGIP-Change Interactive Profile Entry: This
module changes the specified entry in the temporary
interactive profile in QTEMP library.

-->QSYEXGRM-Extract Group Members: This module
extracts the names and numbers of group members
for the associated user profile.

-->QSYRMVIP-Remove Interactive Profile Entry: This
module tags an entry in the temporary interactive
profile in QTEMP to indicate the corresponding entry
in the permanent interactive profile in QSYS is to be
deleted.

-->QSYRTVIP-Retrieve Interactive Profile Entry: This
module retrieves an entry from the temporary
interactive profile in QTEMP.

-->QSYCKCMD-Check Command Authority: This
module checks to see that the process is authorized
to the command whose function is being requested
from a display or menu.

-->QSYEXUNP-Extract User Name and Password: This
module retrieves the process user profile name from
the work control block table entry and its associated
password from the authorized user table.

-->QSYRVSPC-Revoke Space Authority: This module
revokes space authority from the old owner of a
composite object when that object's ownership is
changed.

QSYUPASR-User Profile Associated Space Recovery:
This module does recovery from a damaged or
missing user profile associated space and assigns
IBM-supplied defaults to the user profile.

-->QSYRTVUP-Retrieve User Profile Values: This
module retrieves the values of the specified user
profile attributes and places them into CL variables in
a CL program.

SY-6

Create User Profile and Change User Profile
Commands

Figure SY-2 and the following text describe the
operation of a Create User Profile (CRTUSRPRF)
command and a Change User Profile (CHGUSRPRF)
command.

.. The command analyzer decodes either a Create
User Profile command or a Change User Profile
command. and control is transferred to QSYUP.

II The AUT (authorized user table) is checked for a
duplicate password. If there is not a duplicate
password. the appropriate entries are added or
changed.

II The user profile is created or changed.

.. An entry in the OIR (object information repository)
is added or changed for the QSYS library.

II Control is returned to the caller.

II

CRTUSRPRF
CHGUSRPRF
Commands

Command
Analyzer

Authorized
User
Table

QSYS
OIR

..

..

Return to
Caller

II
OSYUP

Create/Change
User Profile

II

User
Profile

Figure SV-2. Create/Change User Profile Command
Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

..J

L

L

Display User Profile Command

Figure SY-3 and the following text describe the
operation of the Display User Profile (DSPUSRPRF)
command.

.. The command analyzer decodes a Display User
Profile command and control is transferred to
QSYDSUP.

II The required information is retrieved from the
AUT, the user profile, and the OIR for the QSYS
library. The information can be printed or
displayed.

II When the information is displayed, the user
(security officer only) may press the CF3 key from
the *BASIC display to change the user profile.
QSYUP is called via the command analyzer to
change the user profile.

II Control is returned to the caller.

DSPUSRPRF
Command

~ ~

Command •
Analyzer ,...

II

Authorized
User
Table

D

QSYS
OIR

Return to
Caller

~ ~ •
QSYDSUP

Display
User Profile

D

User
Profile

Figure SY-3. Display User Profile Command Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

•
QSYUP

Change User
Profile

Security SY-7

User Profile Associated Space Recovery

Figure SY -4 and the following text describe the
operation of the user profile associated space recovery
function.

.. OSYUPASR is called via the ?EXTUPAS or
?CHGUPAS macro.

II A new user profile associated space is appended
to the user profile and the associated space is
initialized with IBM-supplied defaults.

?EXTUPAS

Macro
..

OSYUPASR
User Profile
Associated

?CHGUPAS Space Recovery

Macro II

User Profile

PAAB023-0

Figure SY-4. User Profile Associated Space Recovery

SY-8
This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Retrieve User Profile Command

Figure SY-5 and the following text describe the
operation of a Retrieve User Profile (RTVUSRPRF)
command. The RTVUSRPRF command can only be
executed from a CL program.

.. The command analyzer decodes a Retrieve User
Profile command and control is transferred to
QSYRTVUP, or the module is called by the
?EXTU PI macro.

II The required information is retrieved from the
AUT, the user profile, and the OIR for the QSYS
library.

II The requested information is then returned to CL
variables in a CL program.

RTVUSRPRF

l CL Program
Command

Command II
Analyzer

QSYRTVUP ..
Retrieve

?EXTUPI User Profile

Macro

II II
1

User Profile
Authorized
User Table

Figure SY-5. Retrieve User Profile Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II
!

QSYS

OIR

PAAB025'()

Security SY-9

Delete User Profile Command

Figure SY-6 and the following text describe the
operation of a Delete User Profile (DLTUSRPRF)
command.

D The command analyzer decodes a Delete User
Profile command and control is transferred to
QSYDLUP.

II The user profile is deleted.

II The password and user name entries are deleted
from the AUT (authorized user table).

II Delete the interactive profile associated with this
user profile. if one exists.

a Information relating to the user profile is deleted
from the OIR of the QSYS library.

II Control is returned to the caller.

DLTUSRPRF I
Command ..

Command
Analyzer

D

II

User
Profile

.. ...

Return to
Caller

~ ~II
OSYDLUP

Delete
User Profile

II

Authorized
User Table

Figure SY-6. Delete User Profile Command Overview

SY-l0

III al
Interactive QSYS
Profile OIR

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

L

Grant Object Authority Command

Figure SY - 7 and the following text describe the
operation of a Grant Object Authority (GRTOBJAUT)
command.

D The command analyzer decodes a Grant Object
Authority command and control is transferred to
aSYGRAUT, or the module is called by the
?GRTOBJ macro.

II The grant GFDT (generic function definition table)
is checked to determine function applicability,
object structure, and the routine to be called to
perform the function.

II aLiLIST is called to locate the names and
addresses of the objects to be authorized.

GRTOBJAUT
Command

Return
to
Caller

II

•
II

II

II

III

OSYGRAUT
Command
Analyzer .. Grant Object

?GRTOBJ
Macro

aLi LIST

If authority is being granted from a reference
object, the authorized users of the reference object
are materialized.

The aDMROUTE module of common data
management is called if the object type for the
object to which authority is being granted is FILE.

If public authority is being granted, it is kept with
the object.

If explicit authority is being granted, an authorized
object entry is made in each user profile of the
users being authorized. An authorized user entry is
also made in the user profile of the user owning
the object for each user authorized to use the
object.

Control is returned to the caller.

•

II

•

User
Profile

Object

aDMROUTE

Grant
GFDT List

Objects

Reference
Object Common Data

Management

Figure SY-7. Grant Object Authority Command Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Security SY -11

Display Object Authority Command

Figure SY-8 and the following text describe the
operation of a Display Object Authority (DSPOBJAUT)
command.

D The command analyzer decodes a Display Object
Authority command and control is transferred to
QSYDSAUT.

II The public authority for the object is retrieved from
the object and the explicit authority of the
authorized users is retrieved from the user profile
owning the object. The information can be either
displayed or printed.

II The user with *OBJMGT authority for the object
may press the CF3 key to change the authority for
the displayed object. QSYGRAUT is called to
grant authority. QSYRVAUT is called to revoke
authority.

.. Control is returned to the caller.

DSPOBJAUT I
Command

~ ~

Command II
Analyzer

II

Object

Return to
Caller

~ ~ •
QSYDSAUT

Display
Object Authority

II

Owning
User
Profile

Figure SY-S. Display Object Authority Command Overview

SY-12

II
QSYGRAUT

Grant
Object Authority

II
QSYRVAUT

Revoke
Object Authority

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Revoke Object Authority Command

Figure SY -9 and the following text describe the
operation of a Revoke Object Authority (RVKOBJAUT)
command.

.. The command analyzer decodes a Revoke Object
Authority command and control is transferred to
OSYRVAUT, or the module is called by the
?RVKOBJ macro.

II The revoke GFDT (generic function definition table)
is checked to determine the function applicability,
object structure, and the routine to be called to
perform the function.

II OLiLIST is called to locate the names and
addresses of the objects to have authority revoked.

II The ODMROUTE module of common data
management is called if the object type for which
authority is to be revoked is FILE.

RVKOBJAUT
Command

II

Command
Analyzer

?RVKOBJ
Macro

Revoke
GFDT

QSYRVAUT

OLiLIST

List
Objects

Figure SV-9. Revoke Object Authority Command Overview

• The OSPHNSPO module of spooling is called if
the object type for which authority is to be
revoked is JOBO or OUTO.

II If public authority is being revoked, it is removed
from the object.

II If explicit authority is being revoked, the authorized
object entry for the object is removed from the
profile of each user being revoked and the
authorized user entry for each user being revoked
is removed from the user profile owning the
object.

II Control is returned to the caller.

ODMROUTE

Common Data
Management

User
Profile

Object

OSPHNSPO

Spooling

•

II

•

Security SV-13

This document contains restricted materials of IBM. L V21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Change Object Owner Command

Figure SY -10 and the following text describe the
operation of a Change Object Owner (CHGOBJOWN)
command.

II

II

II

The command analyzer decodes a Change Object
Owner command and control is transferred to
QSYCHONR, or the module is called by the
?CHGONR macro.

The transfer GFDT (generic function definition
table) is checked to determine function
applicability, object structure, and the routine to be
called to perform the function.

The QDMROUTE module of common data
management is called if the object type of the
object for which ownership is being changed is
FILE.

CHGOBJOWN
Command

Command
Analyzer

II
OSYCHONR

•

II

II

II

II

?CHGONR
Macro Change

Object Owner

II
Transfer Generic
Function Definition
Table

ODMROUTE

Common Data
Management

OSYPGMCH

Program Check for
Adopted Profile

Figure SY-10. Change Object Owner Command Overview

SY-14

QSYPGMCH is called to determine if the program
adopts its owner's user profile, if object type PGM
is the object type for which ownership is being
changed. Only the security officer can change
ownership of a program that adopts its owner's
profile.

QSYRVSPC is called to revoke space authority
from the old owner of the object for which
ownership is being changed.

The name of the object owner is changed in the
object.

The owned object entry is removed from the
current owner and is put in the user profile of the
new owner.

Control is returned to the caller.

II

OSYRVSPC

Revoke

User
Profile

Space Authority

II

Object

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

..J

Grant User Authority Command

Figure SY -11 and the following text describe the
operation of a Grant User Authority (GRTUSRAUT)
command.

.. The command analyzer decodes a Grant User
Authority command and control is transferred to
QSYGRUSR.

I B An authorized object entry is made in each user
profile of the users being authorized. An
authorized user entry is also made in the user
profile of the user owning the object for each user
authorized to use the object.

I II Control is returned to the caller.

GRTUSRAUT
Command

1
Command
Analyzer

..
Return to
Caller

til
QSYGRUSR

Grant User
Authority

L Figure SY-l1. Grant User Authority Command Overview

B

User Profile

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

r-

PAAB041-0

Security SY -15

Display Authorized Users Command

Figure SY -12 and the following text describe the
operation of a Display Authorized Users (DSPAUTUSR)
command.

.. The command analyzer decodes a Display
Authorized Users command and control is
transferred to QSYDSUSR.

II The entries are retrieved from the AUT (authorized
user table). The user names and their associated
passwords, along with an indication whether the
user profile is a group profile, are displayed or
printed in alphabetical order, either by user name
or password.

II Control is returned to the caller.

DSPAUTUSR,
~ ~

Return to
Command Caller

II ..
QSYDSUSR

Command Display
Analyzer ... Authorized

Users

II
Authorized
User
Table

Figure SY -12. Display Authorized Users Command
Overview

SY-16

II

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Verify System Entry Authorization

Figure SY -13 and the following text describe the
operation of the verify system entry authority function.

.. QSYVERFY is called by the ?VERIFY macro.

II The AUT (authorized user table) is checked to:

• Verify the validity of the password

• Retrieve the user profile name, the pointer to
the user profile, and the priority limit of the user

II The following objects are checked to see if the
user is authorized to use them (explicitly or
publicly):

• Job description

• Job input queue and the library in which it
resides

• Output queue and the library in which it resides

• Subsystem description

• Work station

• Message queue and the library in which it
resides

• Libraries on the library list

II The following indicators are returned to the caller
of the ?VERIFY macro:

II

• User password found

• User name found

• Authorized to use the job description

• Authorized to use the job input queue

• Authorized to use the subsystem description

• Authorized to use the work station

• Authorized to use the message queue

• Authorized to use the output queue

• Authorized to the libraries on the library list

?VERIFY
Macro

Authorized
User
Table

User
Profile

..
II

II

QSYVERFY

Verify System
Entry Authority

II

Object

Figure SY-13. Verify System Entry Authority Overview

/

Security SY -17

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Retrieve Authorized libraries

Figure SY -14 and the following text describe the
retrieve authorized libraries function.

.. QSYAULIB is called by the ?RTVALIB macro.

II All of the libraries are retrieved from the machine
context.

II Each library is checked to see if the authority to
use it has been publicly granted.

II If the authority to use a library has not been
publicly authorized, the process user profile and
any adopted user profiles are checked for explicit
authority to use the library.

II A list of pointers to al/ of the libraries that the
process is authorized to use (either public or
explicit *READ authority) is returned to the caller
of the macro.

II

?RTVALIB
Macro

Machine
Context

User
Profile

..
II

II

QSYAULIB
Retrieve
Authorized
Libraries

Library

Figure SY-14. Retrieve Authorized Libraries Overview

SY-18

Convert Authority

Figure SY -15 and the following text describe the
operation of the convert authority function.

.. QSYCNV is called by the ?CNVAUT macro.

II QSYCNV converts CPF authorization keywords to
their equivalent machine interface bit strings.

II The bit string representation of the authorization
keyword(s) is returned to the caller of the macro.

II
QSYCNV

?CNVAUT ..
Macro II Convert

Authority

Figure SY-15. Convert Authority Function

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Save Authorized User Table

Figure SY -16 and the following text describe the
operation of the save authorized user table function.

.. QSYSVAUT is called by QSRSVOBJ as part of
save system.

II All of the user name and password entries are
extracted from the AUT (authorized user table) and
saved in a space.

II A space containing all the AUT entries is returned
to the caller of the module.

OSRSVOBJ II QSYSVAUT

Save Save Authorized
Object II User Table

II

Authorized
User Table

Figure SY-16. Save Authorized User Table Function

Restore Authorized User Table

Figure SY -17 and the following text describe the
operation of the restore authorized user table function.

II QSYRSAUT is called by QSRRSOBJ as part of
restore system.

II All of the user name and password entries are
inserted into the AUT (authorized user table)
unless they already exist. The user profiles are
resolved to and the pointers in the entries are
updated.

II Control is returned to the caller.

OSRRSOBJ II OSYRSAUT
Restore

Restore Authorized
Object II User Table

II

Authorized
User Table

Figure SY-17. Restore Authorized User Table Function

Security SY -19

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Handle Authority Violation

Figure SY -18 and the following text describe the
operation of the handle authority violation function.

D QSYHNAUT is called by the ?CHKAUT, ?SECLOG,
or ?EXTIPGM macro.

II If QSYHNAUT is called by the ?CHKAUT or
?SECLOG macros, an authorization violation
message is logged to the history file, and
optionally the user not authorized to object
exception (CPF2209) or the user not authorized to
nonobject exception (CPF2206) is signaled.

II If QSYHNAUT is called by the ?EXTIPGM macro,
the initial program to be invoked following a
successful logon is extracted from the AUT
(authorized user table) for return to the caller.

.. Control is returned to the caller.

?SECLOG
Macro

?CHKAUT
Macro

?EXTIPGM
Macro

Authorized
User Table

QSYHNAUT
Handle
Authority
Violation

II

History
File

Figure SY-1B. Handle Authority Violation Function

SY-20

Authorization Event Handler

Figure SY -19 and the following text describe the
operation of the authorization event handler function.

D QSY AUTEV is invoked in the system arbiter
process: whenever the machine interface detects
an authorization violation, it signals an
authorization event (hex 0002 0000).

II The following authorization violation messages are
logged to the history file depending on the event
signaled:

Event

00020101

00020201

00020301

CPF
Module

Message

JOB _____ NOT

AUTHORIZED TO OBJECT
_____ TYPE
_____ (CPF2218)

JOB _____ NOT

AUTHORIZED TO
PRIVILEGED INSTRUCTION
(CPF2219)

JOB _____ DOES NOT
HAVE SPECIAL AUTHORITY
(CPF2220) ~

A h . ut onzatlon
Event QSYAUTEV ..

....
D Authorization

Event Handler

III

History
File

Figure SY-19. Authorization Event Handler Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

\
" \

Grant Same Authority

Figure SY-20 and the following text describe the
operation of the grant same authority function.

.. QSYGRTSA is called by the ?GRTSAMEA macro.

II Any existing authorizations for the object (new
internal object) to be authorized are revoked.

II The users of the old internal object and the
authority they have for that object are materialized.

.. All of the authorized users of the old internal
object are granted the same authority for the new
internal object as they had for the old internal
object.

II Control is returned to the caller.

.. QSYGRTSA
?GRTSAMEA
Macro Grant Same

Authority

II

II II

New Old
Object .. Object

Figure SY-20. Grant Same Authority Overview

Grant Duplicate Authority

Figure SY-21 and the following text describe the
operation of the grant duplicate authority function.

....

.. QSYGRSME is called by the ?GRTDUPAU macro.

II Any authorization that currently exists for the new
external object is revoked.

II The authorized users of the old external object and
the authorization they have for the object are
materialized.

.. The authorizec.i users of the old external object are
granted the same authOfization for the new
external object as they had for the old extern~
object.

II Control is returned to the caller .

.. QSYGRSME
?GRTDUPAU
Macro Grant Same

II Authority

II II

New Object Old Object ..
Figure SY-21. Grant Duplicate Authority Overview

Security SY-21

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

,

Revoke Data Rights

Figure SY-22 and the following text describe the
operation of the revoke data rights function.

II QSYRVKDR is called by the ?TFROBJO macro if
the transferred object is a data base logical file.

II All data rights of use for the file are revoked from
the user to whom the file ownership has just been
transferred.

II Control is returned to the caUer.

,II QSYRVKDR

?TFR0BJO
Macro Revoke Data

II Rights

II

User
Profile

Figure SY-22. Revoke Data Rights Overview

SY-22

Program Check for Adopted Profile

Figure SY-23 and the following text describe the
operation of the program check for adopted profile
function.

II QSYPGMCH is called via the ?CALL macro.

II The program is materialized to check if it adopts
its owner's user profile.

II An indicator as to whether the program adopts its
owner's user profile or not is returned to the caller.
As an alternative function, transfer ownership of
the program to the group profile.

?CALL
II QSYPGMCH

Macro Program

II Check

II

Program

Figure SY-23. Program Check for Adopted Profile
Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

/
j
r

J

L

Access Interactive Profile

Figure SY-24 and the following text describe the
operation of the access interactive profile function.

a QSYACCIP is called via the ?ACCIP macro.

II QSYCRTIP is called to create a permanent
interactive profile in QSYS library and a temporary
interactive profile in QTEMP library, if they do not
exist.

II The entries in the permanent interactive profile are
copied to the temporary interactive profile.

a A scope message, CPF2250, is sent to the caller
of the module to have QSYCPYIP invoked when
the caller's invocation is terminated. QSYCPYIP
copies the temporary interactive profile (with
additions, deletions, and changes) back to the
permanent interactive profile.

II Control is returned to the caller.

?ACCIP
Macro

L...--___ ----III

Create
Interactive
Profile

a QSYACCIP
Access
Interactive
Profile

Permanent
Interactive
Profile

Figure SY-24. Access Interactive Profile Overview

a

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

CPF2250

Temporary
Interactive
Profile

QSYCPYIP
Copy
Interactive
Profile

Security SY-23

Change Interactive Profile Entry

Figure SY-25 and the following text describe the
operation of the change interactive profile entry function.

.. QSYCHGIP is called via the ?CHGIPE macro.

II If the temporary interactive profile does not exist
in QTEMP, QSYACCIP is invoked via the ?ACCIP
macro to create it.

II QSYCHGIP changes the specified entry in the
QTEMP library.

II Control is returned to the caller .

.. OSYCHGIP
?CHGIPE Change
Macro Interactive

II Profile

II II

QSYACCIP Temporary
Access Interactive
Interactive Profile
Profile

Figure SY-25. Change Interactive Profile Entry Overview

SY-24

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Copy Interactive Profile

Figure SY-26 and the following text describe the
operation of the copy interactive profile function.

.. QSYCPYIP is invoked when the invocation that
called QSYACCIP is terminated. QSYCPYIP is
called as a result of the scope message CPF2250
sent from QSYACCIP to its caller.

II If the permanent interactive profile in the QSYS
library cannot be found or is damaged, QSYCRTIP
is called to create it.

II The permanent entries in the temporary interactive
profile are copied into the permanent interactive
profile, and the temporary interactive profile is
deleted from QTEMP.

II Control is returned to the caller.

QSYACCIP a
Access CPF2250
Interactive
Profile

Figure SY-26. Copy Interactive Profile Overview

II~ ~

QSYCPYIP
Copy
Interactive
Profile

B

QSYCRTIP
Create
Interactive
Profile

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II Temporary
Interactive
Profile

II

Permanent
Interactive
Profile

Security SY - 25

Create Interactive Profile

Figure SY-27 and the following text describe the
operation of the create interactive profile function.

D QSYCRTIP is called via the ?CALL macro.

II QSYCRTIP creates the permanent interactive
profile in the QSYS library if it does not exist and
transfers ownership of it to the security officer,
and/or creates the temporary interactive profile in
the QTEMP library if it does not exist.

II Control is returned to the caller.

D QSYCRTIP
?CALL Create
Macro Interactive

• Profile

II II
Permanent Temporary
Interactive Interactive
Profile Profile

Figure SV-27. Create Interactive Profile Overview

SY-26

Remove Interactive Profile Entry

Figure SY-28 and the following text describe the
operation of the remove interactive profile entry
function.

D QSYRMVIP is called via the ?RMVIPE macro.

II If the temporary interactive profile in QTEMP
library does not exist, QSYACCIP is invoked via
the ?ACCIP macro to create it.

• QSYRMVIP tags an entry in the temporary
interactive profile for deletion. The tag indicates
the corresponding entry in the permanent
interactive profile is to be deleted and therefore is
not available for use.

II Control is returned to the caller.

D QSYRMVIP
?RMVIPE Remove
Macro Interactive

II Profile

II •
QSYACCIP Temporary
Access Interactive
I nte racti ve
Profile

Profile

Figure SV-28. Remove Interactive Profile Entry Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Retrieve Interactive Profile Entry

Figure SY - 29 and the following text describe the
operation of the retrieve interactive profile entry
function.

a aSYRTVIP is called via the 7RTVIPE macro.

II If the temporary interactive profile in aTEMP
library does not exist, aSY ACCI P is invoked via
the 7ACCIP macro to create it.

II The specified entry is retrieved from the temporary
interactive profile.

II Control is returned to the caller.

.. asVRTVIP
?RTVIPE Retrieve
Macro Interactive

II Profile

II •
aSVACCIP

Temporary
Access
Interactive

Interactive
Profile

Profile

Figure SY-29. Retrieve Interactive Profile Entry Overview

Check Command Authority

Figure SY -30 and the following text describe the
operation of the check command authority function.

.. aSYCKCMD is called via the 7CHKCMDA macro.

II A check is made to see if the process is
authorized to the command. The public authority,
process user profile, and adopted user profile are
also checked for proper authority.

• An indicator is returned to the caller of the macro
that states whether the process is authorized to
the command or not.

I. asVCKCMD

?CHKCMDA
Check

Macro
Command '. Authority

• I • I
Command User Profile

Figure SY-30. Check Command Authority Overview

Security SY - 27

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Extract User Name and Password

Figure SY-31 and the following text describe the
operation of the extract user name and password
function.

a QSYEXUNP is called via the ?EXTUNAP macro.

D The process user profile name is retrieved from
the work control block.

II The user profile name's associated password is
retrieved from the authorized user table.

II The user profile name and password are returned
to the caller.

.. QSYEXUNP
?EXTUNAP
Macro Extract User Name

a and Password

II II 1
Work Authorized

Control User

Block Table

Figure SY-31. Extract User Name and Password Overview

SY-28

Revoke Space Authority

Figure SY -32 and the following text describe the
operation of the revoke space authority function.

a QSYRVSPC is called via the ?CALL macro when a
composite object changes ownership.

D Space authority is revoked from the old owner of
the object.

II Control is returned to the caller.

.. QSYRVSPC

?CALL Revoke
Macro Space

II Authority

II

User
Profile

Figure SY-32. Revoke Space Authority Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Extract Group Members

Figure SY -33 and the following text describe the
operation of the extract group members function.

D QSYEXGRM is called via the ?EXTGRPM macro.

II The number and names of the members of the
group are retrieved from the authorized user table.

• The number and names of the members of the
group are returned to the caller.

?EXTGRPM D QSYEXGRM

Macro Extract Group

• Members

II
Authorized
User Table

Figure SY-33. Extract Group Members

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Security SY-29

SY-30

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
INTRODUCTION

The tape function manager component of the CPF
(control program facility) provides the support for the
tape device on System/38.

The tape is a magnetic storage device that is supported
as a system I/O device. data interchange device. and
save / restore device. It contains a control unit and up to
four drives.

The following tape functions are supported by the tape
function manager:

• Initialize volume

• Display volume

• Dump volume

• Check volume

• Open tape file for processing

• Close tape file for processing

• Read data from a tape file

• Write data to a tape file

• End-of-volume processing

Tape Function Manager

GENERAL OVERVIEW

Tape Function Manager Modules

The tape function manager component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->OTADSPY-Display Tape Volume (DSPTAP)': This
module displays the tape volume and file labels.

-->OTAOPEN-Open Tape File: This module opens a
tape file for input or output processing.

OTAVOPEN-Open Tape Volume: This module
opens a tape volume. for input or output
processing. at file opening or end-of-volume.

OTAOPCHK-File Open Parameter Ched<:ing: This
module performs parameter checking on an open
file.

-->OTAGET-Tape Get: This module retrieves one or
more records for the user.

-->OTAPUT-Tape Put: This module writes one or more
records of the user data to the tape.

-->OTACLOSE-Close Tape File: This module closes a
tape file to input or output processing.

OTAVCLOS-Close Tape Volume: This module
closes a tape volume. to input or output
processing. at file closing or end-of-volume.

OTAEOV-Tape End-of-Volume Processor: This
module closes the current volume when an
end-of-volume condition is detected and then
opens the next volume for a multivolume
operation.

'This module is a CPP (command processing program).

Tape Function Manager TA-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980. 1981. 1982. 1983. 1984. 1985

-->QTAFEOD-Force End of Data: This module
positions to the end-of-file for an input file and
signals the end-of-file. For an output file, it writes
buffered records onto the tape.

-->QTAFEOV-Force End-of-Volume: This module
forces an end-of-volume condition which causes the
current volume to be closed and a continuation
volume, if any, to be opened.

-->QTAINIT-Initialize Tape Volume (lNZTAP)1: This
module initializes a tape volume by writing a volume
label and/or tape marks at the beginning of the reel.

-->QTALUDIN-Tape LUD Initialization: This module
performs the tape-specific processing required to
vary on a tape device description. It initializes the
tape part of the LUD-associated space.

-->QTADUMP-Dump Tape Volume (DMPTAP)1: This
module dumps tape labels and file data to the printer.

QTADMPIO-Dump Tape I/O Processor: This
module reads data from the tape, formats it, and
writes the data to the printer.

QTAERR-Tape Error Handler: This module
performs all message handling (send and receive
message functions) for the tape support
component. It also handles unexpected I/O
feedback responses by signaling an appropriate
escape message.

QTAERRIN-Error Table Initialization: This module
is called to initialize tables in the associated space
of QTAERR.

-->QCHKTAP-Check Tape (CHKTAP)': This module
checks mounted volumes for a specific tape volume
and / or a specific file.

'This module is a CPP (command processing program).

TA-2

Tape Operation

Figure TA-1 and the following text describe a tape
operation.

.. A high-level language program, system utility, or
save/restore component, through the QDMCOPEN
module of common data management, calls
QT AOPEN to open a tape file for input or output
processing.

• An argument list is passed that contains a
pointer to the UFCB (user file control block).

The tape to be used is selected by the values in
the volume/reels parameters specified by the
caller of common data management. QTAOPCHK
is called to perform parameter checking.

QTAVOPEN is called and the volume label
identifier field is verified if the caller specified a
volume ID and if the tape contains standard labels.

• A message is sent to the system operator
console if the volume identifier cannot be
found. The operator can load another tape
and retry the operation or the job can be
canceled.

If the file is being opened for input or output
EXTEND (*YES):

• The tape file labels are searched for a match to
the file sequence number and optionally, to the
label name specified by the caller.

If the file cannot be found, the operation is
terminated, and an escape message is signaled.

• The tape is positioned at either the beginning of
data for files to be read forward, or at the end
of data for files to be read backward.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

If the file is being opened for output EXTEND
(*NO):

• The file SEONBR indicates where the new file
starts.

• Expired files on tape are written over on output.
A file is considered to be expired if the file
expiration data (in the file HDR1 label) is less
than or equal to the system date.

• For standard label files (H DR 1, H DR2) header
labels are written at the beginning of the file.

Two buffers are used by the tape function
manager. Each buffer holds a multiple of tape
blocks up to a sum of approximately 8 K bytes if
the block size is less than 8 K bytes. Otherwise,
each buffer is the same size as the block length.

For fixed-length records, where the block size is
less than 8192 bytes, as many blocks as will fit
into 8192 and still number 100 blocks or less for
an output file, or 256 blocks or less for an input
file, constitutes a full buffer. Where the block size
is greater than 8192 or for variable-length records
of any size, one block constitutes a full buffer.

II Control is returned to OTAOPEN. If the file has
been opened for output, information is written to
the file by calling OTAPUT.

• An argument list is passed that contains
pointers to the UFCB, an option list, and
control information.

G The option list is checked for a put wait
operation, and the control list is used (for
variable-length files only) to access the
record length. If no control list is specified
for variable files, maximum record length is
assumed.

• Request I/Os are issued to the tape I/O
manager when the user has sent the tape
function manager enough records to write a
buffer full of data.

If the end-of-tape is encountered, OTAEOV is
called to switch output volumes.

Note: The save/restore component does not use
this interface. Save/restore issues special request
I/Os to put data to a tape. See Save/Restore.

II If the file has been opened for input, information
can be retrieved from the file by calling OTAGET.

• An argument list is passed that contains
pointers to the UFCB, an option list, and
control information.

G The option list is checked, and only get next
wait is allowed for forward-read files or get
previous wait for backward-read files; other
requests result in an error message being
sent to the caller. The control information is
ignored.

Request I/Os are issued to the tape I/O manager
when buffers become empty.

If there is no more data on the volume, OTAEOV
is called to switch input volumes or signal
end-of-file.

Note: The save/restore component does not use
this interface. Save/restore issues special request
1/ Os to retrieve data from a tape. See
Save/Restore.

.. After a file has been processed, it is closed by
calling OTACLOSE through ODMCLOSE.

• An argument list is passed that contains
pointers to the ODP (open data path), an
index to the device being closed, and the
type of close to perform (permanent or
temporary).

OTAVCLOS is called and if the file being closed
had been opened as an output file:

• The data remaining in the buffers is written to
the tape.

• For standard labeled tape an EOF1, EOF2, and
double tape marks are written. Nonlabeled tape
will have two tape marks written.

Tape Function Manager TA-3

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

If the file being closed had been opened as an
input file:

• The tape I/O manager is instructed, by a
MODLUD instruction to suspend, deactivate,
and reactivate the LUD (logical unit description)
session state, to stop processing any current or
pending request I/Os.

• If the reel is positioned at the tape mark and all
blocks on the reel were processed prior to
close, the count of blocks read is compared to
the trailer label block count for an *SL file. If a
block is missing / extra, an escape message is
sent.

If a permanent close is requested, objects created
by the tape function manager are destroyed.

• When a forced end of data is requested,
QTAFEOD is called and the following occurs:

., An argument list is passed that points to the
UFCB.

o QTAEOV is repeatedly called to switch
volumes until an end-of-file exception is
signaled to the user. (For multivolume files,
the end-of-file exception is signaled after
the last volume of the file has been located.)

If the file is opened for output. buffered data is
written to tape. QT AEOV is called when the
end-of-tape is encountered, to switch output
volumes.

II When a forced end-of-volume is requested,
QTAFEOV is called and the following occurs:

TA-4

., An argument list is passed that points to the
UFCB.

o QTAEOV is called to switch volumes. If the
file is opened for input, the file is spaced to
the end of the current volume. If end-of-file
is detected, it is signaled to the user and if
end-of-volume, the next volume is opened
for input. Subsequent gets retrieve data from
this new volume.

If the file is opened for output. all buffered
I/O is written to the current volume, ending
tape marks (and labels) are written, and next
volume is opened. Subsequent puts output
data to this new volume.

II End-of-volume switching occurs automatically
within the tape function manager when it is
processing a multivolume file.

If a file is open for output, QTAEOV:

• Calls QTAVCLOS to write an EOV1 and EOV2'
labels.

• Calls QTAVOPEN to request the mounting of
the next volume. QTAVOPEN performs the
checks as described for output files. The HDR1
label also contains a volume sequence number
that will be one higher than the number written
in the previous volume of the file.

If the file is open for input, QTAEOV:

• Calls QTAVCLOS to finish processing of the
previous volume; QTAVCLOS checks the trailer
label for end-of-volume or end-of-file.

• Calls QTAVOPEN to request the mounting of
the next volume if the volume closed was not
the final one. The labels are checked to verify
that the next volume of the file is in proper
sequence.

QT AEOV causes an exception to be signaled to its
caller. Either an end-of-volume notify message or
an end-of-file status message is sent to the using
program.

• Request I/Os communicate to the tape I/O
manager the desired action. The tape I/O
manager indicates its success or failure in
performing the request by returning a
message in the machine interface response
queue .

QTAERR sends operator messages and program
exceptions. It is also called to analyze I/O errors
to determine what recovery action is to be
performed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

High-Level Language Program, System Utility, or Save/Restore I
At

QDMCOPEN QDMCLOSE
Argument
List Common Common

Open Close

I A

• ~ • • • • • QTAOPEN QTAPUT QTAGET QTACLOSE QTAFEOD QTAFEOV

Open Tape Tape Tape Close Tape Force End- Force End-
File Put Get File of-Data of-Volume

t t t •
QTAOPCHK QTAVOPEN QTAVCLOS
File Open

~ Parameter Open Tape Close Tape
Checking Volume Volume

QTAEOV

Tape End-
of-Volume

•
QTAERR QTAERRIN

Tape Error .. Build Error
Handler Table

Message
Handler

/ ~ • Machine e
Job Operator Interface Request
Log Console Response I/O

Queue

wi:ln;;:e--· ------------------------~---/- ------------------

Figure TA-1. Tape Operation Overview

This document contains restricted materials of IBM_ LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Tape I/O
Manager

Tape Function Manager TA-5

TA-6
This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
INTRODUCTION

The testing component of the CPF (control program
facility) is used to test and debug programs under a test
environment that is similar to the actual production
environment. Special statements do not have to be
inserted into the program. The test component provides
the special tools needed to debug and test a program.

When testing is requested, a special environment called
debug mode is created. This mode prevents
unintentional modification to data base files in the
production libraries. Only data base files in test libraries
can be updated. To establish a debug mode, an Enter
Debug (ENTDBG) command is issued. Once in a debug
mode, the testing commands can be used to test and
debug programs. The debug mode is ended by the End
Debug (ENDDBG) command.

GENERAL OVERVIEW

The testing component consists mainly of CPP
(command processing program) modules. These CPPs
let the user:

• Add or remove programs from debug mode

• Add or remove breakpoints

• Add or remove traces

• Change program variables and pointers

• Change the Enter Debug command parameters

• Display debug, breakpoint. program variable, and
trace information

• Resume program execution at a breakpoint

• Cancel a request that was entered at an earlier
request level.

In addition to these CPPs, there are also support and
event handler modules in the Testing component.

Testing

Testing Modules

The testing· component consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

Command Processing Modules

-->QTECADBP-Add Breakpoint (ADDBKP)': This
module is used to establish one or more breakpoints
in a program that is being debugged.

-->QTECADPG-Add Program (ADDPGM)': This module
prepares debugging operations for the specified
programs.

-->QTECADTR-Add Trace (ADDTRC)': This module
processes a request to establish a trace operation in
a program that is being debugged.

-->QTECCHDB-Change Debug (CHGDBG)': This
module is used to change debug options for the
current debug session.

-->QTECCHHP-Change Hll Pointer (CHGHllPTR)':
This module changes the addressability of HLL
pointers.

-->QTECCHPT-Change Pointer (CHGPTR)': This
module changes the addressability and type of
system or space pointers.

-->QTECCHVR-Change Program Variable
(CHGPGMVAR)': This module changes the value of a
program data object.

-->QTECCLTD-Clear Trace Data (CLRTRCDTA)': This
module causes the trace data area to be cleared.

'This module is a CPP (command processing program).

Testing TE-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QTECCNRQ-Cancel Request (CNLRQS)': This
module cancels a previous request. It causes
termination and deletion of all invocations associated
with the request.

-->QTECDSBP-Display Breakpoint (DSPBKP)': This
module displays to the user which breakpoints are set
in the programs being debugged. and the variables to
be displayed at those breakpoints.

-->QTECDSDB-Display Debug (DSPDBG)': This
module displays to the user the current status of the
debug session.

-->QTECDSTD-Display Trace Data (DSPTRCDTA)':
This module displays trace data to the user.

-- >QTECDSTR-Display Trace (DSPTRC)': This module
displays to the user the trace ranges that have been
set and the variables that have been specified for
those ranges.

-->QTECDSVR-Display Program Variables
(DSPPGMVAR)': This module displays a maximum of
ten specified variables from the program that is being
debugged.

- ->QTECENDB-End Debug (ENDDBG)': This module is
used to terminate the debug mode.

-->QTECNTDB-Enter Debug Mode (ENTDBG)': This
module is used to establish the debug mode within a
process.

-->QTECRMBP-Remove Breakpoint (RMVBKP)': This
module is used to remove breakpoints in a program
that is being debugged.

-->QTECRMPG-Remove Program (RMVPGM)': This
module is used to remove programs from the debug
mode.

-->QTECRMTR-Remove Trace (RMVTRC)': This
module is used to remove all traces from a program
or to remove just the trace ranges that were specified
in a program being traced.

-->QTECRSBP-Resume Program Execution at a
Breakpoint (RSMBKP)': This module causes a
program that is stopped at a breakpoint to resume
execution.

'This module is a CPP (command processing program).

TE-2

Support and Event Handler Modules

The following modules provide support and handle
events for the CPPs:

QTEMBKCU-Breakpoint Cleanup: This module is
invoked if either QTEVIREF or QTEMDEBP is
terminated in an abnormal manner. The module
adjusts the breakpoint count and destroys any
associated created space.

QTEMFMT-Format Data: This module converts
the attributes and data to displayable characters.
This module can be called by QTECDSVR and
QTEVIREF.

QTEMGTHL-Get High-Level Language Statement
Identifier: This module gets the high-level
language statement identifier associated with a
given machine interface instruction number.

QTEMGTVR-Get Program Variables: This module
gets the attributes and values of the program
variables. QTEMGTVR can be called by
QTECDSVR. or QTEVIREF.

QTEMLOBJ-Locate Program Objects: This module
determines the address of variables within the
program. It can be called by QTECCHHP.
QTECCHPT. QTECCHVR. and QTEMGTVR.

QTEMVFOR-Verify ODV References: This module
performs checks in the ODV (object directory
vector) for specified variables. It can be called by
QTECADBP. QTECADTR. QTECCHHP.
QTECCHPT. QTECCHVR. and QTECDSVR.

-->QTEVIREF-Instruction Reference Event Handler:
This module handles the instruction reference event
when it is signaled. If the instruction passed to it is
at a breakpoint. this module formats and displays the
instruction number and variable data. If the
instruction passed to it is being traced. this module
formats and stores the instruction number and
variable data.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

-->OTEMDEBP-Default Exception Breakpoint Module:
This module is invoked if an un monitored escape
message occurs in an interactive debug job. The
module displays the message and provides optional
command entry capability similar to a normal,
user-defined breakpoint.

The following module is called during a cancel request
operation:

OTEMRCLM-Reclaim Resources: This module is
invoked during execution of a Cancel Request
command. It invokes the reclaim files and reclaim
PSSA (process static storage area) functions for
the invocations that have been eliminated during
the request cancelation.

The symbol table entry for any variable can contain a
format segment to identify a program that is provided
by the HLL to process the variable. Modules
OTEMVFOR, OTEMGTVR OTEMLOBJ, OTECCHVR,
OTECCHPT, and OTECCHHP all can call a format
program to perform such functions as locating the
variable or formatting its current value for display.

Master Debug Communication Object

The MDCO (master debug communication object) is one
of the principle control blocks used by the testing
component. There is one M DCO for each debug job. It
is created by OTECNTDB and destroyed by OTECENDB.
The MDCO contains information about the debug
session. This information includes:

• Values of the various debug job parameters

• Names of all the programs currently being debugged

• Pointers to the DCO (debug communication object)
for programs currently being debugged

• Pointers to other objects, such as trace data spaces,
PSSA (process static storage area) header, and PASA
(process automatic storage area) header.

• When a breakpoint occurs, information about it is put
into the MDCO. That information includes:
- Program name
- Invocation level
- Breakpoint instruction number

Debug Communication Object

The DCO is the other principal object used by the
testing component. There is one DCO for each program
currently being debugged. They are created by
OTECADPG and destroyed by OTECRMPG. The DCO
contains:

• A system pointer to the program being debugged

• A system pointer to a space for the program template
materialization

• Space pointers for basing based views of program
template components

• Pertinent count and length fields and indicators

Testing TE-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Enter Debug Command

Figure TE-1 and the following text describe an Enter
Debug (ENTDBG) command operation.

.. The command analyzer decodes an Enter Debug
command and control is transferred to
OTECNTDB. OTECNTDB then creates space for
the MDCO and puts the addressability to it in a
pointer located in the job's WCB (work control
block). The appropriate MDCO fields are also
updated.

II OTECNTDB establishes an event monitor for the
instruction reference event. identifying OTEVIREF
as the event handler program.

ENTDBG
Command

Command
Analyzer

..

OTECNTDB

Enter
Debug Mode

OTECADPG

Add
Program

Figure TE-1. Enter Debug Command Overview

TE-4

II OTECNTDB gets addressability to the WCB, finds
the job type (interactive or batch) to set the
indicator in the MDCO, and then sets the debug
mode indicator on in the WCB.

.. If the PGM parameter is specified in the Enter
Debug command, OTECADP is called to put the
program in debug mode. Prior to calling
OTECADPG, a function check monitor is enabled.
If a function check occurs, everything that has
occurred is undone (the event monitor is canceled,
the WCB is changed to its original format, the
M DCO is destroyed) and the function check is
resignaled.

MDCO

Instruction
Reference
Event
Monitor

Work
Control
Block

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

~

Add Program Command

Figure TE-2 and the following text describe an Add
Program (ADDPGM) command operation.

.. The command analyzer or OTECENTB calls
OTECADPG. OTECADPG locates the MDCO. It
checks each name in the PGM parameter list for
validity, program found, not already under debug,
program observable, and so forth. If all checks are
okay, OTECADPG proceeds.

II A DCO space is created for each program.

II A program template materialization space
(OTESPTSP) is created for each program, and the
programs are materialized.

II The appropriate M DCO fields are updated.

iii The appropriate DCO fields are updated.

ADDPGM
Command

Command
Analyzer

OTECADPG

MDCO

II
DCO ---

Add
Program

OTESPTST

Program
Template

Figure TE-2. Add Program Command Overview

D ---

DCO

OTESPTST

Program
Template

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

t----

1----

DCO

OTESPTST

Program
Template

Testing TE-5

Remove Program Command

Figure TE-3 and the following text describe a Remove
Program (RMVPGM) command operation.

.. The command analyzer decodes a Remove
Program command and control is transferred to
OTECRMPG or OTECRMPG is called by
OTECENDB. OTECRMPG locates the MDCO and
checks all of the names in the PGM parameter for
validity.

II OTECRMPG gets addressability to the DCO for
each program to be removed.

II From the DCO of each program to be removed,
OTECRMPG gets addressability to and then
destroys each created space used by the other
debug CPPs.

II OTECRMPG destroys each DCO and updates
pertinent fields in the MDCO, nulls pointers to the
DCOs, nulls name fields, and decrements the
count of programs in the debug mode.

RMVPGM
Command

Command
Analyzer

Remove
Program

II

II

MDCO

DCO

Figure TE-3. Remove Program Command Overview

TE-6

OTESBVST
Breakpoint
Variable Storage
Table

OTESPTST

Program
Template

Created
Spaces

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

End Debug Command

Figure TE-4 and the following text describe an End
Debug (ENDDBG) command operation.

• The command analyzer decodes an End Debug
command and control is transferred to
QTECENDB. QTECENDB locates the WCB and
changes the mode bits to normal.

II QTECENDB cancels the event monitor for the
instruction reference event.

II The MDCO is located and the count of programs
in debug mode is checked.

• If the program count is not zero, QTECRMPG is
called to perform a cleanup operation.

II If there are trace data spaces, QTECCL TO is called
to destroy them.

II The MDCO is destroyed, and the pointer to it in
the WCB is nulled.

ENDDBG
Command

Command
Analyzer

~.
OTECENDB

End Debug

~ ~

II, ,
OTECRMPG

Remove
Program

,
Work
Control 1/ Block

II
Instruction
Reference
Event
Monitor

~ MDCO

~II
OTECCLTD

Clear Trace
Data

Figure TE-4. End Debug Command Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Testing TE-7

Add Breakpoint Command

Figure TE-5 and the following text describe an Add MDCO
Breakpoint (ADDBKP) command operation. .. The command analyzer decodes an Add ADDBKP

Breakpoint command and control is transferred to Command

OTECADBP. OTECADBP locates the MDCO and
uses the PGM parameter value to locate the DCO. Command

Analyzer
DCO

B From information in the DCO, OTECADBP
determines if breakpoint table spaces exist.

II If spaces do not exist, they are created in the
breakpoint definition table for instructions where
breakpoints will be added, and in OTESBVST for
variables to be displayed at breakpoints. Add

II OTEMVFOR is called to validity check the input
from the PGMVAR parameter. If any high-level
language names are used, the BOM (break offset

OTESBVST mapping) and the symbol table of the program
template are used in the validity checking II Breakpoint

operation. Variables
OTEMVFOR Storage

II If the validity check is okay, instruction data is Verify ODV
added to the breakpoint definition table in the

References
DCO and variable data is added to QTESBVST.
These tables are used by OTEVIREF when an II Program
instruction reference event is signaled. Template

II
II The instructions to be traced are sent to machine

observation support.
Machine

Figure TE-5. Add Breakpoint Command Overview

TE-8

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

;)

..)

L

Remove Breakpoint Command
RMVBKP

Figure TE-6 and the following text describe a Remove Command iMDCO
Breakpoint (RMVBKP) command operation.

D The command analyzer decodes a Remove
Command

Breakpoint command and control is transferred to
Analyzer

OTECRMBP. OTECRMBP locates the MDCO and
the DCOs for the program specified by the PGM

D parameter or all programs as specified by *ALL.

II From information in the DCO, OTECRMBP deletes OTECRMBP III
entries from the breakpoint definition table as DCO
specified by the STMT parameter. Remove

II
Breakpoint

OTECRMBP removes machine traces from all
specified instructions.

Machine

II

Figure TE-6. Remove Breakpoint Command Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Testing TE-9

Add Trace Command

Figure TE-7 and the following text describe an Add
Trace (ADDTRC) command operation.

.. The command analyzer decodes an Add Trace
command and control is transferred to
QTECADTR. QTECADTR locates the MDCO and
the DCO for the specified program.

B After validity checking all parameter values, a
QTESTIO is created to contain information about
instructions to be traced and a QTESTDO is
created to contain information about variables to
be monitored and displayed.

ADDTRC
Command

,
j. Command

Analyzer

D , '. C---;
QTECADTR

Add Trace

~ ~ ~

II

II'
, II

OTEMVFOR

Machine
Verify ODV
References

II

Figure TE-7. Add Trace Command Overview

TE-10

II If any high-level language names are used, the
BOM (break offset mapping) and symbol table of
the program template are used in the validity
checking operation. QTEMVFOR is also used to
validate ODV numbers.

II If all validity checks are okay, the DCO, QTESTIO,
and QTESTDO are updated. The instructions to be
traced are then sent to the machine support.

MDCO

DCO

QTESTDO

Trace Data
Object

OTESTIO

Trace Instruction
Object

Program
Template

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Remove Trace Command

Figure TE-8 and the following text describe a Remove
Trace (RMVTRC) command operation.

.. The command analyzer decodes a Remove Trace
command and control is transferred to
QTECRMTR. QTECRMTR locates the MDCO and
the DCO for the requested program.

II From information in the DCO, the QTESTIO is
located.

II QTECRMTR searches QTESTIO for the ranges to
be removed and when found, deletes them.

II The breakpoint instruction reference table in the
DCO is searched to see if there are any
breakpoints for the instructions being removed.

II QTECRMTR removes the machine support for all
instructions that had trace only (no breakpoint) in
effect for them.

RMVTRC
Command

Command
Analyzer

QTECRMTR

Remove
Trace

Machine

..
MDCO

..
II

DCO

11 _______ ----'

QTESTIO

Trace Instruction
Object

Figure TE-S. Remove Trace Command Overview

Change Debug Command

Figure TE-9 and the following text describe a Change
Debug (CHGDBG) command operation.

.. The command analyzer decodes a Change Debug
command and control is transferred to
QTECCHDB. QTECCHDB locates the MDCO and
changes the debug job parameters as specified in
the CHGDBG command.

CHGDBG ,
Command

Command
Analyzer

, , ..
QTECCHDB

Change
MDCO

Debug

Figure TE-9. Change Debug Command Overview

Testing TE-ll

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Debug Command

Figure TE-l0 and the following text describe a Display
Debug (DSPDBG) command operation.

D The command analyzer decodes a Display Debug
command and control is transferred to
OTECDSDB. OTECDSDB locates the MDCO.
which provides information about the job type and
the debug session parameters for the display.

II OTECDSDB opens the appropriate device file.

• OTECDSDB uses the PASA (process automatic
storage area) chain to gather the information about
the invocation stack, including the high-level
language statement identifier from OTEMGTHL.
and builds a record for each program in the stack.

II The data to display is sent to the device file.
Information about other programs under debug but
not invoked is built and sent to the device file and
then the device file is closed.

DSPDBG ,
Command

D
Command

MDCO
Analyzer

/-~ ,D
OTECDSDB •
Display

PASA

Debug

A

II
Devic.e
File

II

~
,.

QTEMGTHL
Get High-Level Program

Language Template

Identifier •
Figure TE-10. Display Debug Command Overview

TE-12

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981. 1982. 1983. 1984. 1985

Display Breakpoint Command

Figure TE-11 and the following text describe a Display L Breakpoint (DSPBKP) command operation.

L

.. The command analyzer decodes a Display
Breakpoint command and control is transferred to
OTECDSBP. OTECDSBP locates the MDCO and
the DCOs as specified by the PGM parameter.

IJ The appropriate device file is opened.

• Using information in the DCO, OTECDSBP
processes the breakpoint data for the programs as
requested by the command. OTESBVST is
accessed and information records are built.

.. The information records are sent to the device file.
OTECDSBP checks breakpoint data in the MDCO
for program levels stopped at breakpoints and
builds and sends those information records to the
device file. After all of the information has been
sent to the device file, it is closed.

DSPBKP ,
Command

Command ..
MDCO

Analyzer ..
~ r .. V. OTECDSBP QTESBVST

Breakpoint
Display Variables
Breakpoint Storage

IJ

Device
File

a
~-

Figure TE-11. Display Breakpoint Command Overview

D

This document contains restricted materials of IBM. l Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

DCO

Testing TE-13

Display Trace Command

Figure TE-12 and the following text describe a Display
Trace (DSPTRC) command operation.

II The command analyzer decodes a Display Trace
command and control is transferred to
OTECDSTR. OTECDSTR locates the MDCO and
the DCOs as specified by the PGM parameter.

II The appropriate device file is opened.

II From information in DCO, OTESTIO and
OTESTDO are located. OTECDSTR then builds
records of the traces in effect and the variables to
be displayed. This information is sent to the
device file. After all records have been sent, the
device file is closed.

DSPTRC ,
Command

II
Command
Analyzer

MDCO

, '11
OTECDSTR II
Display

DCO

Trace

~
II II

II OTESTDO
Device
File Trace Data ~"-

Object

Figure TE-12. Display Trace Command Overview

TE-14

'-
"-"-

II

"'-

OTESTIO
Trace
Instruction
Object

OTESTDO

Trace Data
Object

f-

OTESTIO
Trace
Instruction
Object

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982. 1983. 1984. 1985

Display Program Variable Command

Figure TE-13 and the following text describe a Display L Program Variable (DSPPGMVAR) command operation.

L

a The command analyzer decodes a Display Program
Variable command and control is transferred to
OTECDSVR. OTECDSVR locates the MDCO and
then the DCO for the requested program.

II OTECDSVR calls OTEMVFOR to validity check the
requested variables and verify the ODVs.

• If all checks are okay, OTEMGTVR is called to get
values for all of the variables.

• OTEMFMT is called to output records for each
variable from the information returned by
OTEMGTVR. The appropriate device file is
opened, the information records sent to it, and
then the device file is closed.

II
OTEMVFOR

Verify ODV
References

DSPPGMVAR
Command

Command
Analyzer

OTECDSVR

Display Program
Variables

•
OTEMGTVR

Get Program
Variables

• MDCO

DCO

OTEMFMT

III

Device
File

Figure TE-13. Display Program Variable Command Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Testing TE-15

Change Program Variable Command

Figure TE-14 and the following text describe a Change
Program Variable (CHGPGMVAR) command operation.

.. The command analyzer decodes a Change Program
Variable command and control is transferred to
OTECCHVR. OTECCHVR locates the MDCO and
then the DCO for the requested program.

MDCO
a

DCO •

II OTEMVFOR

Verify ODV
References

II OTEMLOBJ

Locate Program
Object

CHGPGMVAR,
Command

Command
Analyzer

, ~ D

OTECCHVR

Change Program
Variable

....
'"",'

~

Figure TE·14. Change Program Variable Command
Overview

TE-16

II The variables to be changed are validity checked
using OTEMVFOR.

II OTEMLOBJ is called to get the address of the
current instance of the object.

.. OTECCHVR validity checks the values in the
VALUE parameter with respect to the attributes of
the object and then modifies the variable value.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Change Pointer Command

Figure TE-15 and the following text describe a Change
Pointer (CHGPTR) command operation.

.. The command analyzer decodes a Change Pointer
command and control is transferred to OTECCHPT.
OTECCHPT locates the MDCO and then the DCO
for the requested program.

II The pointer variable to be changed is validity
checked using OTEMVFOR.

CHGPTR ,
Command

Command
Analyzer

, • 1111
OTECCHPT

Change
Pointer

~ ~

II OTEMVFOR
~

Verify ODV
References

II OTEMLOBJ
.....

Locate Program
Object

Figure TE·15. Change Pointer Command Overview

..

..

• OTEMLOBJ is called to get the address of the
current instance of the pointer object.

.. The command parameters are validity checked
against the pointer type and if there are no errors,
the pointer values are modified.

MDCO

DCO

Testing TE-17

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Trace Data Command

Figure TE-16 and the following text describe a Display
Trace Data (DSPTRCDTA) command operation.

.. The command analyzer decodes a Display Trace
Data command and control is transferred to
QTECDSTD. QTECDSTD locates the MDCO and
checks the pointer to the active trace data space.
If it is not null, QTECDSTD continues processing.

II The appropriate device file is opened.

II QTECDSTD searches the trace data space(s) to the
end of the chain and sends trace records to the
device file. The device file is then closed.

II If the command requests that the trace data be
cleared, QTECCL TD is called.

DSPTRCDTA
Command

Command
Analyzer

, , ..
QTECDSTD

Display Trace
Data

• ~
~ '11

QTECCLTD

Clear Trace
Data

..
MDCO

II

II

Device File

Figure TE-16. Display Trace Data Command Overview

TE-18

Active Trace
Data Spaces

-------- --.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Clear Trace Data Command

Figure TE-17 and the following text describe a Clear
Trace Data (CLRTRCDTA) command operation.

.. The command analyzer decodes a Clear Trace
Data command and control is transferred to
OTECCL TO. OTECDSTD or OTECENDB can also
call OTECCLTD. OTECCLTD locates the MDCO
and checks the pointers to the active and available
trace data chains. If at least one of the chains is
not null, processing proceeds.

II OTECC LTD proceeds through the active chain.
destroying all spaces.

II All spaces on the available chain are destroyed by
OTECCLTD.

.. OTECCLTD updates the MDCO fields. setting the
pointers to null and the counters to zero.

CLRTRCDTA ,
Command ------ --

Command a MDCO
Analyzer

II

, 'a
OTECCLTD II
Clear Trace
Data

II

Figure TE-17. Clear Data Command Overview

Active Trace
Data Spaces

------- ----

Available Trace
Data Spaces

------- ----.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982, 1983, 1984, 1985

Testing TE-19

Resume Breakpoint Command

Figure TE-18 and the following text describe a Resume
Breakpoint (RSMBKP) command operation.

.. The command analyzer decodes a Resume
Breakpoint command and control is transferred to
QTECRSBP. QTECRSBP locates the MDCO and
checks to ensure that the program is stopped at a
user-defined or trace full breakpoint.

II An exception is signaled. If the program is at a
proper breakpoint, the CPF1901 no error exception
is signaled. This exception causes a folding up of
the invocation stack. If the program is not at a
proper breakpoint. an error exception is signaled.

RSMBKP
Command

Command
Analyzer

..
/

MDCO
~, ..

r-----L--=----, ~
QTECRSBP -

Resume
Breakpoint

II
~----- Signal Exception

CPF1901

Figure TE-18. Resume Breakpoint Command Overview

TE-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

L

Cancel Request Command

Figure TE-19 and the following text describe a Cancel
Request (CN LRQS) command operation.

II The command analyzer decodes a Cancel Request
command and control is transferred to
QTECCNRQ. QTECCNRQ can also be called by
QTEVIREF or QTEMDEBP if CF1 key is selected
from a breakpoint display, or an unmonitored
message breakpoint display, respectively.
QTECCNRQ gets addressability to the head entry
of the PASA (process automatic storage area) and
from there gets addressability to the invocation
entry for the current invocation (QTECCNRQ).

II QTECCNRQ searches invocation entries in the
PASA from its own toward the top of the stack,
looking for the request level that is to be canceled.
The request level is contained in the invocation
control entry of the JMQ (job message queue!.
which is located by adding the offset value in the
PASA invocation entry to the address of the JMQ.
The address of the JMQ is obtained from the
WCB. While searching, a count of the invocations
above this module is maintained. When the proper
invocation entry is found, the proper relative
invocation to signal to is known.

II Before performing the cancel function, QTECCNRQ
sends CPF1966 (a scope message) to the
invocation just below the one to be returned to
and passes a system pointer to QTEMRCLM. This
tells the system to invoke QTEMRCLM, when the
invocation to which the scope message was sent,
is destroyed. QTEMRCLM issues instructions to
close files and reclaim static storage associated
with destroyed invocations.

.. CPF1907, not an error exception, is signaled by
QTECCNRQ to the proper request processor
program invocation.

III
CPF
1966

-
ill
CPF
1907

Request Level
to be Canceled

One Invocation
Level Below the
Request Level to
be Canceled

CNLRQS ,
Command

Command
Analyzer

III ~

QTECCNRQ

Cancel Request

I
Exception

Job
Message
Queue

III
Work
Control
Block

III
III

PASA

Figure TE-19. Cancel Request Command Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Testing TE-21

Instruction Reference Event Handling

Figure TE-20 and the following text describe the
operation of the instruction reference event handler.

.. OTEVIREF is invoked by machine event
management when an instruction reference event
occurs.

B Addressability to the MDCO is obtained.

II The machine event data, including a pointer to the
program from which the event was signaled, is
obtained.

II OTEVIREF uses the program pointer to find the
DCa for the program that contains the breakpoint
or trace point.

II The breakpoint instruction table in the DCa is
searched for the instruction number that was part
of the machine event data. If the instruction
number is found, all of the following steps (II
through II) occur. If the instruction number is not
found, it is assumed to have been a trace point.

II A request message is sent to and received from
the program message queue. This ensures that
OTEVIREF is considered as a request receiving
program and that the message is in the job log.

If OTEVIREF is terminated abnormally (it does not
itself execute a return), OTEMBKCU is invoked by
the machine to clean up the breakpoint data,
decrement the breakpoint count, and destroy
temporary spaces that may have been created.

TE-22

II If there are variables to display, their ODT
numbers are retrieved from OTESBVST.
OTEMGTVR is invoked to get the variable values.
The values returned by OTEMGTVR are passed to
OTEMFMT, which presents the breakpoint display.

II When the display is terminated, OTEVIREF does
one of the following:

• If in batch mode and a breakpoint program is
specified, invoke the program. After the
program returns, return to the interrupted
program.

• If in batch mode and a breakpoint program is
not specified, return to the interrupted program.

If in interactive mode and the display is terminated
by the Enter key, return to the interrupted
program. Before returning, OTEVIREF does its
own cleanup and clears the invocation exit so that
OTEMBKCU is not invoked.

If in interactive mode and the display is terminated
by the CF3 key, perform the command entry
function (receive a message from the requestor
and pass the data to the command analyzer for
execution).

If in interactive mode and the display is terminated
by the CF1 key, the last request entered before
this breakpoint occurred is canceled, by invoking
OTECCNRO.

This documel'1t contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Machine Event B
Management

1- /
MDCa

II
QTEVIREF
Instruction
Reference Trace r----Event Handler

~ ~ ~ Jo
D
II DCa

QTEMFMT ..
~ .. Format Data

III II Job
Message
Queue

QTEMGTVR II
.......

Get Program "'"
Variables

OTESBVST II Return

Breakpoint II L Invoke Breakpoint Program,
Perform Command Entry Function

Variable
Storage Table

QTECCNRQ

... .. Cancel Request

Figure TE-20. Instruction Reference Event Handler Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Machine
Event
Data

Device
File

Testing TE-23

Instruction Reference Trace Handling

Figure TE-21 and the following text describe the
operation of the instruction reference trace handler.

.. Addressability to the MDCO and DCO is obtained.

II All OTESTIOs, one for each active trace range, are
searched for the instruction number. When the
instruction is found, a trace record for the
instruction is formatted and put in the trace data
space.

OTEMGTVR

Get Program
Variables

OTEVIREF
I nstruction Ref
erence and Trace
Event Handler ..

OTEMFMT

Format Data

II

II

Figure TE-21. Instruction Reference Trace Handler Overview

TE-24

• If there are variables defined for the trace range,
as indicated by the presence of a OTESTDO,
OTEMGTVR is invoked to get the current values of
the variables.

II If OUTVAR (*CHG) was specified as a parameter
on the ADDTRC (add trace) command, the new
values are compared to the old values, which were
saved in a corresponding OTESTVO.

II If this is the first tracepoint or if a value has
changed, so that the values are new, OTEMFMT is
called to format and save the values as additional
records into trace data spaces.

MDCO

ill
DCO

Trace
Data
Space

OTESTIO
Trace
Instruction
Objects

aTESTDO
Trace
Instruction
Objects

OTESTVO
Trace
Instruction
Objects

---B
---~ QTESTDO I

---~ QTESTVO I

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Verify Object References

Figure TE-22 and the following text describe the
operation of the verify ODV (object directory vectors)
reference operation.

.. QTEMVFOR can be called by QTECADBP,
QTECADTR, QTECCHVR, QTECCHPT,
QTECCHHP, or QTECDSVR. The calling module
passes the list of program variable and basing
pointer names (or ODV numbers) to be verified to
QTEMVFOR as well as a pointer to a space that
will contain the return areas for all of the specified
variables.

II Using pointers in the DCO, QTEMVFOR accesses
the symbol table, ODV, OES and OMT portions of
the program template.

II QTEMVFOR analyzes each ODV reference, variable
name, or basing pointer name from the list that
was passed to it. The appropriate return space for
each ODV reference is filled in. For variables that
pass the verification test, other fields in the return
area are filled in. These fields describe the
attributes of the variables.

~II
QTEMVFOR

Verify ODV
References

II

Return
Space

..
Variable
List

DCO

Program
Template

Figure TE-22. Verify Object Directory Vector References
Overview

Testing TE-25

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Get Variable Value

Figure TE-23 and the following text describe the get
variable value operation.

II OTEMGTVR can be called by OTECDSVR. or
OTEVIREF, to get the current value of variables.
OTEMGTVR is passed pointers to the MDCO, the
DCO, and descriptors of the specified variables.
Also, a system pointer is returned to the space
used for returned data.

II

OTEMLOBJ
II

Locate Object

Figure TE-23. Get Variable Value Overview

TE-26

MDCO

DCO

Variable
Values
Return
Space

II OTEMGTVR calls OTEMLOBJ to obtain
addressability to the specified variables.

II OTEMGTVR creates a space for the return data.
Addressability to this space is put in the pointer
that was passed to OTEMGTVR (see II). The
attributes and values are put in the return space,
for use by the callers of OTEMGTVR.

II Variable
Descriptor
Table

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Locate Object

Figure TE-24 and the following text describe a locate
object operation.

D OTEMGTVR calls OTEMLOBJ to get the addresses
of those variables whose values are to be
determined, or OTECCHPT, OTECCHHP, or
OTECCHVR calls OTEMLOBJ to get the address
of the pointer or variable that is to be changed.
OTEMLOBJ is passed pointers to the variable
descriptor table, the DCO, and PSSA, and PASA
entries for the program.

II Using a pointer from the DCO, OTEMLOBJ locates
the OMT (object mapping table) of the program
template. OTEMLOBJ locates the address of the
specified object using the OMT, the variable, base,
and subscript information in the descriptor table. If
an error prevents the finding of the address, one
or more message identifiers are returned in the
descriptor table to report the errors.

OTEMLOBJ

Locate Object

.. Variable
Descriptor
Table

PSSA

PASA

DCO

Program
II Template

L Figure TE-24. Locate Object Overview

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Testing TE-27

Default Exception Breakpoint

Figure TE-25 and the following text describe the
overview of the exception breakpoint.

.. When OMHPDEH (of the message handler)
determines that there is an unmonitored escape
message in an interactive debug job, it calls
OTEMDEBP. OTEMDEBP is passed the name of
the message queue to which the message was
sent and the message reference key.

II OTEMDEBP, using the information passed to it,
receives the message. OTEMDEBP examines the
message ID to ensure that it is not one of the
internal messages used by the test component. If
it is an internal test message, OTEMDEBP returns
control to its caller. If the message is not an
internal message, all of the following steps (II
through II) are performed.

II OTEMGTHL retrieves the high-level statement
identifier associated with a given machine interface
instruction number.

II A request message is sent to and received from
this invocation program message queue. This
ensures that OTEMDEBP is considered as a
request receiving program and the message is in
the job log.

11 The MDCO is modified to indicate that a
breakpoint has occurred.

II OTEMFMT is invoked to display the breakpoint
message.

TE-28

II If the display is terminated by the Enter key,
OTEMDEBP returns control to its caller. Before
returning, OTEMDEBP does its own cleanup and
cancels the invocation exit so that OTEMBKCU is
not invoked. If the display is terminated by the
CF3 key, the command entry function is provided.
If the display is terminated by the CF1 key, the
last request entered is canceled by invoking
OTECCNRO.

Also, OTEMDEBP sets OTEMBKCU as an
invocation exit. If OTEMDEBP is terminated
abnormally (it does not itself execute a return),
OTEMBKCU is invoked to clean up the breakpoint
data, decrement the breakpoint count, and destroy
temporary spaces that may have been created.

Job Message Oueue

II Program Message
Oueue

.. D r
OTEMDEBP

... Default II MDCO Exception
Breakpoint

a
11 ~

,
OTEMGTHL Display
Get High-Level II Device
Language File
Identifier

OTEMFMT ... Program
-,. Format Data II

Template

Figure TE-25. Exception Breakpoint Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

INTRODUCTION

The commitment control component of the CPF (control
program facility) provides the user a means of defining
and processing a number of changes to data base files
as a single unit of work (or transaction). A transaction is
defined as a group of changes made to data base files
that appear to be a single change.

When data base files are placed under commitment
control, all changes associated with a single transaction
are completed before any of the changes are written
permanently to auxiliary storage.

The following functions make up the commitment
control component:

• Command processing programs:
Establish commitment control
Commit data base changes
Rollback data base changes
End commitment control
Display job (commitment display support)

• I PL (initial program load) recovery processing

• Open processing

• Close processing

GENERAL OVERVIEW

Commitment Control Modules

The commitment control component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QTNCLOSE-Commitment Control Close Processing:
This module does close processing related to
commitment control.

Commitment Control

-->QTNCMT-Commit (COMMIT)': This module
commits entries and saves new commitment IDs.

-->QTNCTL-Establish Commitment Control
(BGNCMTCTL)': This module establishes a
commitment control environment from the parameters
on the Begin Commitment Control command.

QTN NTRS-Resolve to Notify Object and Check
Authority: This module resolves to the notify
object and verifies that the user is authorized to
add data to the notify object.

-->QTNDSPY-Commitment Control Display: This
module is invoked by display job support to present
commitment control information for the specified job.

-->QTNEND-End Commitment Control (ENDCMTCTL)':
This module terminates the commitment control
environment from the parameters on the End
Commitment Control command, or as part of process
termination.

QTNNTFY-Commitment Control Notify Object
Handler: This module places a commitment ID in
the user-defined notify object. The notify object
may be message queue, data area, or data base
file.

QTNNTRS-Resolve to Notify Object and Check
Authority: This module resolves to the notify
object and verifies that the user is authorized to
add data to the notify object.

-->QTNIPL-Commitment Control Initial Program Load
Recovery Handler: This module performs initial
program load clean-up for machine interface
commitment blocks.

QTNNTFY-Commitment Control Notify Object
Handler: This module places a commitment ID in
the user-specified notify object. The notify object
may be a message queue, data area, or data base
file.

'This module is a CPP (command processing program).

Commitment Control TN-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QTNOPEN-Commitment Control Open Processing:
This module does open processing related to
commitment control.

-->QTNROLLB-Rollback (ROLLBACK)': This module
removes changes that have been made to files
related to commitment control.

Begin Commitment Control Command

A Begin Commitment Control (BGNCMTCTL) command
establishes commitment control. All data base files
placed under commitment control must be journaled to
the same journal. When changes are made to these
data base files, entries are placed in the journal for each
change generated by the transaction. When the
transaction is completed, the program executes a
commit operation that places a separate entry on the
journal to identify that the changes generated by the
transaction are committed.

Commit Command

A Commit (COMMIT) command causes all of the data
base changes that have occurred since the last commit
operation to be written permanently to the file member.
When a Commit command is executed the following
occurs:

• All records that were locked during the processing of
the transaction are released.

• All changes to access paths that were updated to
re-flect data base changes are made permanent.

• The commitment ID if specified is saved for use at
recovery time.

• Entries are placed on the journal to indicate that the
changes under commitment control have been made.

• I/O feedback area and I/O buffers are unchanged.

'This module is a CPP (command processing program).

TN-2

Rollback Command

A Rollback (ROLLBACK) command removes changes
that have been made to files under commitment control
since the last commit operation. When a Rollback
command is executed the following occurs:

• All changes made since the last commit boundary are
removed from the data base.

• All data base records that were locked are unlocked
and made available to other users.

• An entry is placed on the journal to indicate that a
rollback operation occurred.

• I/O feedback area and I/O buffers remain
unchanged.

End Commitment Control Command

An End Commitment Control (ENDCMTCTL) command
ends the use of commitment control. If there are any
uncommitted changes when the End Commitment
Control command is executed, an escape message is
sent.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Commitment Display Support Using the Display Job
Command

The Display Job (DSPJOB) command provides a screen
interface to commitment display support. The display
job interface locates the job requested on the Display
Job command and provides job information and a
pointer to the work control block table entry for that job.

Commitment display support provides information
pertaining to a process under commitment control. This
information includes:

• Journal information
- Name and library
- Commitment 10

• Commitment control environment
Notify object name, library, member name, and
type
Lock level

• Commitment control current status
Total number of commit operations performed

- Total number of rollback operations performed

• Files under commitment control
Name, library, member name, and status
Current number of committed data base changes
Current number of rolled back data base changes
Current number of pending data base changes

BGNCMTCTL f.
Command

Command
Analyzer

.. ~
, • OTNCTL ..
~

~
Establish
Commitment r--. Control II

Notify Object .. ~
Parameter List II ~ ~

OTNNTRS

~ Resolve to
Notify Object
Handler

Figure TN·'. Establishing Commitment Control Overview

Establishing Commitment Control Overview

Figure TN -1 and the following text describe an overview
of establishing commitment control.

D The command analyzer decodes a Begin
Commitment Control (BGNCMTCTL) command and
control is transferred to OTNCTL.

D OTNCTL calls OTNNTRS and a pointer to the
notify object parameter list is passed. OTNNTRS
resolves to notify object and verify authority.

II OTNCTL then creates a commitment definition and
copies information from the command to the
commitment definition.

II A pointer is set in the work control block to point
to the commitment definition, for use by other
commitment control modules.

II Control is returned to the caller.

Work
Control
Block

Commitment
Definition

Commitment Control TN-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open Processing Overview

Figure TN-2 and the following text describe an overview
of open processing for commitment control.

D The user program requests a data base open via
the ODMCOPEN module of common data
management. When a data base member is
opened, the UFCB (user file control block) which
points to the active cursor in the ODP (open data
path) is passed to OTNOPEN.

II OTNOPEN processes the user request and saves
the file name, member name, and library name.
The commitment definition is updated to indicate
that the file is open.

II On the first call to OTNOPEN, the commitment
definition is journaled to the same journal as the
member passed in the input, and attached to the
machine interface process.

.. Control is returned to the user program.

User
Program

ODMOPEN

..
Common Data
Management Open

User File Data Base
Control Block Open

.. ~ Work Control

Open Data
Path

~ ___ ~~, ____ ~ B~~_B_IOC_k~ __ ~
OTNOPEN V-

I---..j Commitment

Control ~
Open Processing

~II
Commitment
Definition

Figure TN-2. Open Processing Overview

TN-4

This document contains restricted materials of IBM. LY21-0571-6

© Copyrig ht IBM Corp. 1980, 1981, 1 982, 1983, 1984, 1985

Commit Overview

Figure TN-3 and the following text describe an overview
of a commit transaction.

.. The command analyzer decodes a Commit
(COMMIT) command and control is transferred to
QTNCMT, or the module is called by the
?COMMIT macro.

II QTNCMT provides the CPF interface to the
machine interface commit instruction, updates the
number of committed changes for each file, and
increments the total commitment count.

II QTNCMT will also save positioning information for
each ODP, in case a rollback is performed by the
user.

.. Control is returned to the caller.

COMMIT ,
Command

Command ?COMMIT
Analyzer Macro

.. II A ~ ..
Work

~ , II ~ ,
~

Control

QTNCMT
Block

Commit Command 1
Processor

~ Commitment
Definition

Figure TN-3. Commit Overview

This docu'Tlent contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II Open Data
Path

I

Commitment Control TN-5

Rollback Overview

Figure TN-4 and the following text describe an overview
of a rollback operation.

.. The command analyzer decodes a Rollback
(ROLLBACK) command and control is transferred
to QTNROLLB, or the module is called by the
?ROLLBACK macro.

II QTNROLLB provides the CPF interface to the
machine interface rollback instruction. It also
updates the number of rollbacks for each file, and
removes closed files from the file list.

II Information saved by QTNCMT is used to
reposition each ODP.

.. Control is returned to the caller.

ROLLBACK ,
Command

Command ?ROLLBACK
Analyzer Macro

II a Ii l II

Work

~ r II ~ r

~
Control

QTNROLLB
Block

Commitment 1
Control Roll back

~ Commitment
Definition

Figure TN-4. Rollback Overview

TN-6

II Open Data
Path

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Display Support Overview

Figure TN-5 and the following text describe an overview
of display support.

.. OTNDSPY is invoked by the ?TNDSP macro.

II The requested information is retrieved by the
display job structure from the commitment
definition.

II OTNDSYP formats the display screen and/or
prepares to print the commitment information.
OTNDSYP uses the display job print file to print
the information.

?TNDSP
Macro

~ ~ .. ~ ,
OTNDSPY

DisplayJob II
Structure Commitment

Control Display

Work II Commitment
Control

Definition
Block

Figure TN-5. Display Support Overview

Display

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

I

Commitment Control TN-7

End Commitment Control Overview

Figure TN-6 and the following text describe an overview
of ending a transaction.

.. The command analyzer decodes the End
Commitment Control (ENDCMTCTL) command and
control is transferred to OTNEND, or the module is
called by process termination.

D OTNEND removes all ODPs from the commitment
definition, detaches the commitment definition
from the process, and destroys it.

II OTNEND calls OTNNTFY to handle the processing
of the commitment control notify object.

.. Control is returned to the caller, or toprocess
termination.

ENDCMTCTL,
Command

Command
Analyzer

..
II ~

,
~ OTNEND

II., Process End
Term ination Commitment

Control

~ j ~

II , ,
OTNNTFY

Commitment
Control
Notify Object

Figure TN-S. End Commitment Control Overview

TN-8

Work
Control
Block

1
Commitment Open Data
Definition Path

L

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Notify Object Overview

Figure TN-7 and the following text describe an overview L of notify object processing.

L

L

.. OTNEND or OTNIPL calls OTNNTFY.

D OTNNTFY calls OTNNTRS and a pointer to the
notify object parameter list is passed.

II OTNNTFY updates the user-defined notify object
with the last user-defined commitment ID. The
notify object may be a message queue. data area.
or data base file.

II Control is returned to the caller.

OTNEND

End Commitment
Control Event
Handler

User-Defined
Notify Object

Notify Object
Parameter List

II

a

OTNNTFY

Commitment
Control
Notify Object

OTNNTRS

Notify to Resolve
Object and
Check Authority

Figure TN-7. Notify Object Overview

OTNIPL
Commitment
Control IPL
Recovery
Handler

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

Commitment Control TN-9

Initial Program Load Recovery Overview

Figure TN-8 and the following text describe an overview
of initial program load recovery.

a ORCIMPLN calls OTNIPL. A parameter list is
passed that contains a pointer to the object
recovery list.

IJ Commitment definitions are accessed via the
object recovery list and destroyed.

II OTNIPL calls OTNNTFY for each commitment
definition on the object recovery list. OTNNTFY
handles the processing of the notify objects.

II ORECOVERY is searched for any remaining
commitment definitions. If any are found they are
also destroyed.

II Control is returned to the caller.

ORCIMPLN

IMPL
Notification

A ~ ..
II ., r

OTNIPL II Object

Commitment Recovery

ControllPL List

~ ~

II ., r ..
OTNNTFY ORECOVERY

Commitment
Control
Notify Object

Figure TN-S. Initial Program Load Recovery Overview

TN-l0

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Close Processing Overview

Figure TN-9 and the following text describe an overview
of close processing for commitment control.

.. The user program requests a data base close via
the ODMCLOSE module of common data
management.

II OTNCLOSE processes the user request, removes
all ODPs from the commitment definition, and
updates the commitment definition to indicate the
file is closed.

II Control is returned to the user program.

User
Program

~ ~ B .. ~
,

ODMCLOSE

Common Data
Management
Close

4 ~ Work

II ~ r

~
Control
Block

OTNCLOSE

Commitment
1 Control Close

Processing

~ Commitment
Definition

Figure TN-9. Close Processing Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open Data
Path

Commitment Control TN-11

TN-12

This document contains restricted materials of IBM. LY21-0571-6

© Copyright IBM Corp. 1 980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The SNA-T3 component of the CPF (control program
facility) provides SNA (system network architecture)
support for devices that operate as SNA logical unit
types 4 (IBM 5256) or 7 (IBM 5251). The 5251 Display
Terminal and the 5256 Printer are the devices attached
to the System/38 that operate as SNA logical unit types
4 or 7. Therefore. the 5251 function manager and the
5256 function manager components interface with
SNA-T3 to perform all of their I/O operations.

GENERAL OVERVIEW

The device support functions manager. either 5251 or
5256. creates request blocks that are used to pass
information to and receive information from SNA-T3.
The information in the request block that is passed to
SNA-T3 from one of the function managers includes a
function request code. option bit settings. transmission
data length. and the actual transmission data.
Information returned to the function manager by

~ SNA-T3 includes the received data length. received data
type code. error information. and the received data.
if any.

SNA-T3 Modules

The SNA-T3 component consists of the following
module:

-->QT3REQIO-SNA-T3 Request I/O: This module
provides the SNA control interface for the
communication of data, commands. and responses
between the caller of this module and the SNA
device.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982. 1983, 1984. 1985

SNA-T3

SNA-T3 T3-'

FUNCTIONAL OVERVIEWS

Wait Operation Overview

Figure T3-1 and the following text describe a wait
operation.

II The user program calls the function manager to
perform a function.

" If the function is an open or close operation,
common data management is called by the
function manager user prior to calling the
function manager.

B The function manager performs its requested
function and calls QT3REQI0 to issue all of the
REQIO instructions.

II In addition to issuing REQIO instructions,
QT3REQI0 finishes setting up the source/sink
request and also enforces SNA protocols. The
REQIO instruction is issued to the device I/O
manager and QT3REQI0 also issues a dequeue
with wait to the machine interface response queue.

II The REQIO is completed and a completion
message (feedback record) is placed on the
machine interface response queue by the device
I/O manager (a machine function).

• The dequeue instruction is now satisfied.

T3-2

QT3REQI0 processes any input data and status
received from the feedback record. Control is
returned to the function manager. The requested
function is finished and control is returned to the
function manager user.

User
Program

II~ ~ QDMOPEN or .. QDMCLOSE

"
.... Common

Open or Close

B~ r

5251 or 5256
Function
Manager

II '
,

QT3REQI0 Machine • Interface .
SNA-T3 Response
Request I/O Queue

---- -~---- - ----
Machine Interface

II

5251 or 5256
I/O Manager

Figure T3-1. Wait Operation Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp_ 1980,1981, 1982. 1983, 1984, 1985

Nowait Operation Overview

Figure T3-2 and the following text describe a nowait
operation.

.. The user program calls the function manager to
perform a function.

" If the function is an open or close operation,
common data management is called by the
function manager user prior to calling the
function manager.

II The function manager performs its requested
function and calls QT3REQI0 to perform all of the
REQIO instructions.

II In addition to issuing REQIO instructions,
QT3REQI0 finishes setting up the source/sink
request and also enforces SNA protocols. The
REQIO instruction is issued to the device I/O
manager, and control is returned to the function
manager.

II When the I/O manager is finished with the REQIO
instruction, it sends a feedback record to the
machine interface response queue.

II The I/O manager also signals an REQIO complete
event to the function manager REQIO complete
event handler module.

III The function manager REQIO complete event
'handler module is invoked. It dequeues the
feedback record from the machine interface
response queue.

..
II

User
Program

5251 or 5256
Function
Manager

II
OT3REOI0

SNA·T3
Request I/O

5251 or 5256
I/O Manager

QOMOPEN or
OOMCLOSE
Common
Open or Close

5251 or 5256
Function Manager

14t-1IIIIII~ REOIO Complete

Mach i ne Interface

II QT3REQI0 is then called to process any incoming
data and to continue enforcing SNA protocols.
After all requested functions have been performed,
control is returned to the function manager REQIO
complete event handler module. Figure T3-2. Nowait Operation Overview

iii The function manager REQIO complete event
handler invokes the proper function manager
modules to process the data. Control is returned
to the event handler.

iii The event handler signals a put-wait or a get
nowait complete event to the user.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SNA-T3 T3-3

Unsolicited Data Operation Overview

Figure T3-3 and the following text describe the handling
of unsolicited data.

D An unsolicited data event is signaled by the I/O
manager when unexpected data is received from
the I/O device. This event causes the function
manager unsolicited data event handler module to
be invoked.

II The unsolicited data event handler module calls
QT3REQI0 to get the unsolicited data.

II QT3REQI0 builds an REQIO instruction and issues
it. A dequeue with wait is also issued to the
machine interface response queue.

• The REQIO instruction is completed and a
feedback record is put on the machine interface
response queue.

II The dequeue is satisfied and QT3REQI0 processes
the incoming data as well as enforcing the SNA
protocols. Control is returned to the unsolicited
data event handler module.

T3-4

5251 or 5256
D Function Manager - Unsolicited Data

Event Handler

~ l

II' ,
QT3REQI0 Machine

II Interface
SNA·T3 Request
Request I/O Queue

Machine Interface
~--- - ---- ----

• II

"--
5251 or 5256
I/O Manager

Figure T3-3. Unsolicited Data Operation Overview

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

L

L

INTRODUCTION

The work control component of the CPF (control
program facility). unlike other CPF components that

provide a common function, is instead a collection of
miscellaneous and separate functions. The functions
that are provided by work control are:

• Start CPF

• System arbiter process

• Logical unit services process

• Commands
Start a subsystem

- Terminate a subsystem or system
Allocate or deallocate an object
Display information about jobs, subsystems,
system, system status, and object locks
Class
Data areas

- System values
Sign-off

- Network attributes

• System date and time support

• System timer support

• Storage pool and multiprogramming-level resource
management

• Work control block table and work control block
maintenance

• Machine status and resource event handling

• Reclaim resources function

Work Control

GENERAL OVERVIEW

Work Control Modules

The work control component consists of the following
modules:

Note: Modules identified by an arrow (--» are entry
modules into the component. Indentation of a module
shows its dependency on a preceding module.

Start CPF Function Modules

-->QWCIINSR-Initial CPF Process: This module creates
a standard CPF job structure and then initiates the
start CPF process into that job structure.

QWCIPDEH-Initial CPF Process Default Exception
Handler: This module provides the initial CPF
process with the default exception handling for all
unplanned exceptions that might occur.

QWCSCRLR-Create/Convert System Value Object
Routine: This module converts the system value
object to a new release / modification level
following installation of CPF. It adds new system
values without affecting any changes made by the
user to existing system values. QWCSCRLR also
re-creates the system value object if it becomes
damaged or destroyed.

QWCISCFR-Start CPF Process: This module is
the start CPF process problem phase program.

QWCICLSR-WCBT Cleanup Routine: This
module ensures that the WCBT (work control
block table) and related objects that constitute
the permanent job structure are in a condition
to support normal operation.

Work Control WC-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System Arbiter Process Modules

-->QWCAINAR-System Arbiter Initiation Phase
Program: This module is the initiation phase program
of the system arbiter process (QSYSARB). It creates
the monitors for events handled in the system arbiter
process.

QWCAMNAR-System Arbiter Problem Phase
Program: This module is the mainline program of
the system arbiter process and basically waits to
be interrupted by an event.

-->QWCAHNAE-System Arbiter Input Event Handler:
This module is the event handler for the system
arbiter input event. It determines what function is to
be performed and calls the appropriate module.

Logical Unit Services Process Modules

-->QWCLlNSR-logical Unit Services Initiation Phase
Program: This module creates the monitors for
events handled in the logical unit services process
(QlUS).

QWClMNSR-logical Unit Services Problem Phase
Program: This module waits to be interrupted by
an event.

Start Subsystem Modules

-->QWCCSUUC-Start Subsystem (STRSBS)': This
module is the command interface for starting a
subsystem.

QWCASUUM-Start Subsystem Message.
Processor: This module starts a subsystem
monitor process and executes in the system arbiter
process.

Subsystem and System Termination Modules

-->QWCCSDUC-Terminate Subsystem (TRMSBS)':
This module performs the portion of the terminate
subsystem function that is executed in the requester
process.

'This module is a CPP (command processing program).

WC-2

-->QWCCSDSC-Terminate System (TRMCPF and
PWRDWNSYS)': This module handles the portion of
the terminate system function that is executed in the
requester process.

QWCASDUM-Terminate Subsystem Message
Processor: This module is a message processor
that performs the serial portion of the Terminate
Subsystem command and executes in the system
arbiter process.

QWCAT1TE-Terminate Subsystem Timer Event
Handler: This module handles the timer event that
indicates the expiration of the specified delay time
associated with the Terminate Subsystem
command. This module executes in the system
arbiter process.

QWCASCUE-Monitor Process Termination Event
Handler: This module handles the process
terminate event for a subsystem monitor process
or the logical unit services process, and the
CPF-defined event that indicates the controlling
subsystem has reached the restricted state. This
module executes in the system arbiter process.

QWCASDSM-Terminate System Message
Processor: This module performs the serial portion
of a terminate system type command. This
module executes in the system arbiter process.

QWCAT2TE-Terminate System Timer Event
Handler: This module processes the timer event
that indicates the expiration of the specified delay
time associated with a terminate system type
command. This module executes in the system
arbiter process.

QWCITRSE-System Arbiter Process Termination
Event Handler: This module handles the process
termination event for the system arbiter process.
This module executes in the start CPF process.

Allocate Object and Deallocate Object Modules

-->QWCCAlOC-Aliocate Object (AlCOBJ)': This
module processes the Allocate Object command.

-->QWCCDAOC-Deallocate Object (DlCOBJ)': This
module processes the Deallocate Object command.

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The following module is used by the Allocate Object and
Deallocate Object modules:

QWCSADVR-Allocate/ Deallocate Input Validity
Check Routine: This module validity checks the
command input to the allocate and deallocate
object commands.

Display Status Information Modules

-->QWCCDSJC-Display Job (DSPJOB)': This module
processes the Display Job command.

QWCCDSIC-Display Program Stack Module: This
module is called by the Display Job command; it
handles the program stack option of the Display
Job command.

QWCSDSIM-Display Program Stack Message
Processor: This module obtains information
necessary to display the program stack and
executes in the process of the job being displayed.

QWCSDSKS-Display Job Locks Setup: This
module is called by QWCCDSJC to perform setup
for the Display Job command.

QWCSDSKC-Display Job Locks Routine: This
module displays the locks held by the job for the
Display Job command.

-->QWCCDSSC-Display System (DSPSYS)': This
module processes the Display System command.

-->QWCCDSTC-Display System Status (DSPSYSSTS)':
This module processes the Display System Status
command.

-->QWCCDSUC-Display Subsystem/Submitted Jobs
(DSPSBS/DSPSBMJOB)': This module processes
the Display Subsystem/Submitted Jobs command.

QWCSHNCR-Handle Command: This module is
called by the Display Subsystem/Submitted Jobs
CPP module, and the Display System CPP module;
it handles options selected on the CPPs interactive
displays.

L 'This module is a CPP (command processing program).

QWCSDSFR-Display Spooled Files Interface: This
module is called by QWCSHNCR to display
spooled files.

-->QWCCDSKC-Display Object Locks (DSPOBJLCK)':
This module processes the Display Object Locks
command.

QWCSDSKR-Additional Lock Display Routine: This
module displays shared member locks for data base
files.

-->QWCCDSAC-Display Active Jobs (DSPACTJOB)':
This module processes the Display Active Jobs
command.

QWCSHACR-Handle Command: This module is
called by the Display Active Jobs Cpp, the Display
Object Locks Cpp, and QWCSDSKC to handle
options selected on the interactive displays.

QWCSDSAR-Display Active Jobs Exclude Routine:
This module is called by QWCSHACR to exclude a
job from the active jobs display. This module is
also called by the Display Active Jobs CPP to
rebuild the subfile without excluded jobs.

QWCSHCFR-Handle Commands from CF Keys:
This module is called by Display Active Jobs CPP,
Display System CPP, and Display System Status
CPP to handle commands invoked by CF keys.

Class Support Modules

-->QWCCCRCC-Create Class (CRTCLS)': This module
creates and initializes a class object.

-->QWCCDSCC-Display Class (DSPCLS)': This module
processes the Display Class command.

Work Control WC-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System Value Support Modules

-->QWCCCHLC-Change System Value (CHGSYSVAL)':
This module processes the Change System Value
command.

QWCAUPRM-Update System Values Message
Processor: This module is invoked whenever the
user changes the system part of the library list,
user part of the library list, time of day (to collect
statistics on communications lines!. total number
of additional jobs, number of additional active jobs,
job spool area, additional spool area, date, year,
month, day, time, hour, minute, or second system
value. QWCAUPRM executes in the system arbiter
process.

-->QWCCDSLC-Display System Value (DSPSYSVAL)':
This module processes the Display System Value
command.

-->QWCSRTLR-Retrieve System Value Routine
(RTVSYSVAL)': This module is used to retrieve
information relating to a particular system value. It
also processes the Retrieve System Value command.

Network Attributes Support Modules

-->QWCCCHNC-Change Network Attributes
(CHGNETA)': This module processes the Change
Network Attributes command.

-->QWCCDSNC-Display Network Attributes
(DSPNETA)': This module processes the Display
Network Attributes command.

Data Area Support Modules

-->QWCCCRVC-Create Data Area (CRTDTAARA)':
This module processes the Create Data Area
command.

-->QWCCCHVC-Change Data Area (CHGDTAARA)':
This module processes the Change Data Area
command.

lThis module is a CPP (command processing program).

WC-4

-->QWCCDSVC-Display Data Area (DSPDTAARA)':
This module processes the Display Data Area
command.

-->QWCSRTVR-Retrieve Data Area Pointer Routine:
This module retrieves the address of the particular
data area.

Sign-Off Support Module

-->QWCCLFEC-Sign-Off (SIGNOFF)': This module
processes the Sign-Off command.

System Timer Support Modules

-->QWCAROTE-System Timer Rollover Event Handler:
This module maintains the occurrence of a timer
event at a 24 hour interval. records the time of day
clock value for the start of the next day, and updates
the date system value.

System Date and Time Support Modules

-->QWCSVRDR-Verify Date System Support Routine:
This module verifies that an input date is valid.

-->QWCSVRTR-Verify Time System Support Routine:
This module verifies the elements of an input time
value.

-->QWCSCDFR-Change Date Format Support Routine:
This module converts a date from one specified
format to another specified format and optionally
inserts separators in the date.

-->QWCSCVDR-Convert System Date Routine: This
module converts a date-time value in some standard
format to a time of day value in machine clock
format.

-->QWCSCVTR-Convert System Time Routine: This
module converts a machine clock binary value to a
character date-time format.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System Resource Support Module

-->QWCARQRM-Request Resource Message
Processor: This module processes the system arbiter
input event with the request resources subtype.
QWCARQRM allocates system resources (storage
pools, storage, and M pL) to requesting subsystems.

WCBT Maintenance Support Module

-->QWCAHNTM-Handle WCBT Message Processor:
This module handles the condition of no available
WCBT entries or job numbers available for
assignment to incoming jobs. This module executes
in the system arbiter process.

Machine Event Handling Modules

-->QWCAMCKE-Machine Event Handler: This module
handles machine-signaled events, such as the
machine check event, process events of maximum
CPU time, maximum storage exceeded, and power
switched to/from auxiliary events.

-->QWCARSRE-Reserved Storage Released Event
Handler: This module handles the reserved storage
released event. QWCARSRE executes in the system

\...,.. arbiter process.

-->QWCATARE-Machine Resources and Resources
Timer Event Handler: This module handles
machine-signaled events, such as the auxiliary
storage threshold reached event. machine ineligible
state event, and MPL class threshold event.
QWCATARE also handles the repeating timer event
for the auxiliary storage threshold notification.

Reclaim Resource Module

-->QWCCRCRC-Reclaim Resources (RCLRSC)': This
module processes the Reclaim Resources command.

START CPF

The CPF can be started in one of two ways: either an
AIPL (alternative initial program load) or an IMPL (initial
microprogram load). With the rotary switches set at
either of these two types, pressing the Load Key (or
Power key, if not powered on) causes the initialization of
the machine and the starting of the CPF.

AIPL

The AIPL method of starting the CPF causes the
machine to initialize itself and then start the CPF
installation function. The CPF installation function
executes in a machine interface process and installs the
CPF on the system. The installation function then
establishes the PDT (process definition template) needed
for the initial CPF process. A copy of this PDT is stored
as a machine attribute, to be used during IMPL. The
CPF installation function then initiates the initial CPF
process and terminates itself.

Work Control WC-5

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

IMPL

The IMPL method of starting the CPF causes the
machine to initialize itself and then initiate the initial CPF
process using the PDT that was installed during an
earlier AIPL. IMPL is the common method of starting
the CPF.

INITIAL CPF PROCESS

The initial CPF process is a transition from the machine
execution environment to that of the CPF. Normal
operation of the CPF requires the CPF process data
structures, such as the WCB (work control block). JMQ
(job message queue) and, DMCQ (data management
communication queue). The initial CPF process
establishes a standard CPF job structure and the
necessary environment for a standard CPF process. The
start CPF process is then initiated using the previously
established environment and job structure.

The initial CPF process attempts to establish contact
with the basic CPF structures that are required to allow
this part of the CPF to function. Among these necessary
CPF structures are libraries, programs, LUDs, (logical
unit descriptions), and data structures. The necessary
CPF data structures fall into two categories: those data
structures that cannot be re-created if they do not exist
and those data structures that can be re-created if they
do not exist. The re-creation of a data structure might
mean the loss of some operational data, but the system
can be assisted in the recovery of such data by the user.

If, during the execution of the initial CPF process, a
required CPF structure cannot be located and it cannot
be recreated (it must be reinstalled in an AIPL
sequence). the initial CPF process will terminate machine
processing. If an error condition occurs that cannot be
handled by the initial CPF process, machine processing
is terminated.

The normal function of the initial CPF process initiates
the start CPF process using the standard CPF job
structure and then terminates itself. Figure WC-1
shows the relationships of the elements of starting
the CPF.

WC-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

AIPL Machine CPF

Switch ---- Load ---- Initialization -------------- Installation
Setting Process

IMPL
Switch
Setting

Machine
Load ---- Initialization ---.. PDT ---+

Process

Figure WC-1. Functional Relationships of Starting the CPF

START CPF PROCESS

The start CPF process controls the execution and directs
the functions that actually bring up the CPF. These
functions, listed in the order that they are executed, are:

1. Call the system logging function to initialize the
system log queues and to establish the necessary
event monitors to provide the system log support
during the start CPF function.

2. Determine if the system was started by an
operator that pressed the Load or Power key, or if
the system was automatically restarted. If the
system was started by an operator pressing a key,
determine if the system console is available for a
user session and vary it on if it is operational.

Function

Initiate Process
I

1
QWCIINSR

Initial CPF
Process

I
I
I

Initiate' Process
I
I

l
QWCISCFR

Start CPF
Process

3.

4.

Determine if the start CPF portion of the CPF
installation is required, and call the routine to
perform the final CPF installation functions. This
function requires an interface with the user
through the system console. This function is
necessary only after the user has performed the
CPF installation function.

Present the sign-on display to the user on the
system console (assuming a user-initiated system
start) and verify that the user sign-on is authorized
to perform the start CPF process.

Work Control WC-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5.

6.

7.

8.

9.

After a user has signed on, determine if there are
any system program changes to be installed (this
also includes the removal of program changes that
were installed earlier and remain in the system)
and call the service component to perform this
function. To perform this function will require that
the service component interface with the user
through the system console.

Display the start CPF prompt so that the user can
set the initial system date, time, and the control
indicators that are used during the rest of the start
CPF process.

Call the configuration menu routine if it was
requested by the user on the start CPF prompt.
This menu is used to establish or alter the system
I/O configuration, or to change some system
values before the system is activated.

Call the data base recovery routine to process any
data base objects that might have been damaged
during the previous system termination (if the
system terminated abnormally). If data base
recovery is needed, a prompt is displayed allowing
the operator to specify when recovery should be
performed.

Initialize the WCBT (work control block table) for
all of CPF and establish the initial number of CPF
job structures as specified by the user through the
system value QTOTJOB.

10. Set up a list of pointers to CPF objects to be used
to obtain data for a VSSD (virtual storage
standalone dump). This includes such objects as
the WCBT, system operator message queue, and
job message queues.

11. Allocate a CPF job structure for the system arbiter
process and initialize that process. Synchronize the
start CPF process with the system arbiter process
so that the system devices can be initialized by the
device configuration component.

12. Allocate a CPF job structure for the user session (if
this is an attended start CPF process) so that a
subprocess can be initiated in the controlling
subsystem when that subsystem becomes
operational.

WC-8

13. Initiate the start of the controlling subsystem
monitor process. At this point. the STRSBS
function will attempt to obtain a storage buffer of
one megabyte. If that is not possible, a message
(CPF0996) is sent to the QSYSOPR message
queue, informing the user that storage usage has
reached a critical point and must be reduced. The
system is then brought up in the restricted state.
No subsystem can be started during this state until
storage is reduced one half megabyte beyond the
one megabyte required for the buffer. If the
initiation of the controlling subsystem fails,
terminate the system.

14. Call the second data base recovery routine to
process any damaged data base objects that are
recovered after the start CPF process.

15. Produce the job logs of the start CPF process and
the logs of any jobs that were active or being
transferred at the time of previous system
termination (if *KEEP was specified for the
incomplete job logs option of the start CPF
prompt).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

WORK CONTROL DISPLAYS USED DURING THE
START CPF PROCESS

The sign-on display is displayed during the start CPF
process if a user pressed the Load or Power key and
the hardware test indicates that the system console is
functioning.

Enter password to sign on: System:xxxxxxxx

Sign-On Display

The user password input field is a nondisplay field; that
is, the contents of the field do not appear on the display
while it is being entered nor will they appear on a
redisplay as the result of an error condition. The user
must enter a valid password. The user password is used
to determine the associated user ID (the user profile
under which the functions are performed). If the
verification of a user password fails, the sign-on display
is redisplayed with the invalid password - reenter
password message appearing on the message line.

Once a password had been received and verified, the
user ID is first tested to determine if the user has job
control authority.

If the signed on user does not have job control
authority, the sign-on display is redisplayed with the not
authorized to start CPF message on the message line.

The start CPF function also verifies that the user has the
authorization to use the system console. If the user
does not have that authorization, the user not authorized
to console - reenter password message is displayed on
the message line of the sign-on display.

The number of attempts to enter into a start CPF
session is also monitored. This number is compared to
the system value QSCPFSIGN. If the number of start
CPF sign-on attempts exceeds the value of the system
value, the system records that fact in the history file and
terminates machine processing.

After a valid user has signed on in a start CPF session,
the start CPF prompt is displayed. This prompt contains
the current system estimates for date and time as well
as the defaults for the other input fields.

Start CPF Prompt

START CONTROL PROGRAM FACILITY PROMPT
ENTER THE FOLLOWING:

System date 01DYl: ;Q; / g / 2Q;
System time: ;Q; : 12 : ~
Job queue (_KEEP -CLEAR): *KEEP
OUtput queue (-KEEP -CLEAR): _KEEP
Incomplete job logs (_KEEP "'CLEAR): _KEEP
ConfiQuration menu (*NO *YES) _NO

Last termination was XXXXXXXX

where:

(MDY) Specifies the system date format (month,
day, year)

xxx XXX Normal or abnormal to indicate the
condition of the previous system
termination.

The MAIN STORAGE FRAMES HAVE FAILED line is an
optional line that will not appear if, during the IMPL
sequence hardware tests, there were no failed main
storage frames detected. If this number is greater than
the value of system value QBADPGFRM, the system will
be terminated unless the operator selects the
configuration menu option and changes the system
value QBADPGFRM to a value larger than the number of
bad frames.

Work Control WC-9

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

BASIC SYSTEM ARBITER PROCESS

The system arbiter is the central process within the CPF.
It is initiated during the start CPF processing and
remains active until the system is terminated. The
system arbiter consists of an initiation phase program
(OWCAINAR), a problem phase program
(OWCAMNAR). and many event handlers.

The system arbiter is the process in which most
system-wide event handlers work. Therefore, the
system arbiter is mainly a collection of event handlers
for many of the CPF components. Some of the
components that have event handlers in the system
arbiter process are:

• Device configuration-to vary and power non-peer
LUDs

• Work station-device control and user interface

• Work control-timer events, system arbiter input,
process initiation, and process termination

• Work monitor-system request, 5250 test request,
and unsolicited data

• Switched lines-intercomponent communication
concerning switched line logical unit description,
control unit descriptions, and network descriptions.

OWCAINAR

SYSTEM ARBITER OVERVIEW

Figure WC-2 and the following text describe the system
arbiter process.

OWCAINAR establishes the necessary event monitors
for the overall system functions. The event monitor
module is resolved to as a part of establishing an event
monitor. OWCAINAR also initiates the logical unit
services process.

Control is passed to OWCAMNAR by the machine when
OWCAINAR returns to the machine. OWCAMNAR calls
ODCINIT to power on and vary on devices that have
been configured on the system as auto vary devices. As
part of the synchronization with the start CPF function,
an event is signaled back to the start CPF process.

When processing of the system devices has finished,
control is returned to OWCAMNAR. OWCAMNAR then
goes into a wait, waiting for a very low priority event
that will never be signaled. The system arbiter is now in
its operational configuration, waiting to be interrupted so
it can process any of the events for which it has
established a monitor.

Initiation
Machine OWCAMNAR

Phase Problem
Phase

Event
Handler

The event handler ~" can optionally call
a processing function.

Figure WC-2. System Arbiter Process Overview

WC-10

Function
Processing
Routine

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Logical Unit Services Process Overview

The logical unit services process supports peer devices.
The logical unit services process in initiated by
OWCAINAR during the start of the system arbiter
process. Operationally, it is similar to the system arbiter
in that most of the functions are provided by event
handlers. The logical unit services process consists of
an initiation phase program (OWCLlNSR), and a problem
phase program (OWCLMNSR).

Event handlers that run in the logical unit services
process support LUD vary on, LUD vary off, and LUD
contact events if the LUD is a peer device. An event
handler in the logical unit service process changes the
number of sessions allowed on a peer device. The
logical unit services process also handles modes of peer
devices that are not allocated by a subsystem.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Control WC-11

START SUBSYSTEM FUNCTION

Several processes, modules, and events are involved in
starting a subsystem. The start subsystem function can
be invoked in one of the following ways:

• During the start CPF process

• By CSM (concurrent service monitor) while it is in the
restricted state

• As a result of the requester entering the Start
Subsystem (STRSBS) command

The basic configuration of the processes, modules, and
events involved in the start subsystem process are
shown in Figures WC-3 and WC-4.

QWCCSUUC executes in the user process, and
performs some initial checks to determine if the
requested start subsystem can be processed. The
command processing program determines if the system
is in the restricted state and (if it is) whether there is
sufficient storage remaining to acquire the storage buffer
that is needed by the system. If there is insufficient
storage, an exception (CPF1050) is displayed to the
user. The command processing program then verifies
that the subsystem description exists, is not already
active, is not locked by the requester or any other
process, and checks to see if the subsystem description
has been damaged. If processing is continued, the
command processing program signals the system arbiter
input event with the start subsystem subtype ID to the
system arbiter process. If the start subsystem occurs
during the start CPF process, QWCISCFR signals the
system arbiter input event. QWCAHNAE handles the
event, checks the event ID, and calls QWCASUUM.
QWCASUUM performs some final checks to determine
if the requested start subsystem command can be
executed. If the start subsystem command has
proceeded to this point, QWCASUUM obtains the
system's storage buffer if it has not yet been acquired.
It also checks to see if the system is in termination. If it
is, the subsystem cannot be started. The message
processor searches through the chain of subsystem
descriptions that are chained off of the system control
block to determine if a subsystem by the specified name
is already active. Two subsystems with the same name
cannot be active simultaneously.

WC-12

If all of the checks are passed and the subsystem is not
being started from the restricted state, the message
processor allocates and assigns the job structure for the
new subsystem monitor process. The process is then
initiated and QWCASUUM waits for the machine
interface to signal the process event. The status of the
initiation is checked and sent to QWCCSUUC.

If a Terminate CPF (TRMCPF) or Terminate Subsystem
(TRMSBS) *ALL command has been executed, the
controlling subsystem is considered to be in the
restricted state because all activity except for one job in
the subsystem has been terminated. This case is
handled separately because the subsystem monitor is
already active.

If the subsystem is the controlling subsystem and it is
being started from the restricted state, the monitor's
problem phase event is signaled to the monitor that is
already active. In this case, the monitor problem state
program gains control immediately, rather than the
initiation state program intervening. The status is then
sent to QWCCSUUC by QWCASUUM.

In order to tell QWCCSUUC or QWCISCFR the results
of the start subsystem request, the message processor
signals the subsystem message event. The
event-related data contains an indicator showing the
status of the start subsystem request.

QWCCSUUC handles the subsystem message event,
checks the event-related data, and then sends a
message to the requester (for example, subsystem
started or subsystem not started).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L User
Subprocess

OWCCSUUC

Start Subsystem

System
Arbiter
Process

System Arbiter
Input Event

Subsystem
Monitor

Subsystem
Message Event

...... _____ - Monitor

Problem
Phase
Program

Figure WC-3. Start the Controlling Subsystem from the Restricted State

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

OWCAHNAE

System Arbiter
Event Handler

OWCASUUM

Start Subsystem
Message Processor

Monitor
Problem Phase
Program Event

Work Control WC-13

User
Subprocess

OWCCSUUC

Start Subsystem

Figure WC-4. Start Subsystem

WC-14

System Arbiter
Input Event

Subsystem Message Event

Machine Interface
Initiate Process
Instruction

Subsystem
Monitor

L.... ____ ...,._ Monitor

Initiation
Phase
Program

System
Arbiter
Process

Monitor
Problem

OWCAHNAE

System Arbiter
Event Handler

OWCASUUM

Start Subsystem
Message Processor

Process Event .

Phase Program

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
SYSTEM/SUBSYSTEM TERMINATION FUNCTION

There are four types of CPF terminations performed by
commands. They are:

• Terminate Subsystem (TRMSBS): By specifying the
name of a subsystem to be terminated, only that
subsystem will be terminated.

• Terminate Subsystem (TRMSBS): By specifying
*ALL, all active subsystems will be terminated, except
the controlling subsystem. This command leaves only
the requester's session active in the controlling
subsystem.

• Terminate CPF (TRMCPF): This command terminates
all active subsystems except the controlling
subsystem. This command leaves only the system
console active in the controlling subsystem.

• Power Down System (PWRDWNSYS): This
command powers down the entire system.

Note: TRMSBS *ALL and TRMCPF are valid only from
interactive jobs in the controlling subsystem.

There are keywords on the terminate commands that
specify the method of termination, controlled or
immediate, and an allowable delay before termination
begins. The delay time applies only to a controlled
termination.

A controlled subsystem termination is one in which the
subsystem monitor process signals an event to each
subprocess in the subsystem. An event handler in each
subprocess sets a flag in the WCB of the process.

An immediate subsystem termination is one in which the
subsystem monitor process executes a terminate
process against each subprocess in the subsystem. This
does not let the user control the termination of the
subprocess but the system will provide a basic cleanup
that will close opened files.

Figure WC-5 and the following text describe the
configuration of the processes, modules and events
involved in the termination function.

.. The terminate function command processing
program (QWCCSDSC or QWCCSDUC), which
executes in the user process, checks to determine
if the requested terminate was entered from a job
from an acceptable environment. TRMSBS *ALL
and termination of the controlling subsystem are
allowed only from interactive jobs initiated from
*SIGNON work station entries in the controlling
subsystem. TRMCPF is allowed only from an
interactive job running in the controlling
subsystem.

II If processing is continued, the command
processing program signals the system arbiter
input event to the system arbiter process.

II QWCAHNAE handles the event and calls the
appropriate terminate message processor
(QWCASDSM or QWCASDUM). The terminate
message processor performs the final checks to
determine if the requested terminate command can
be executed. If command processing continues
and if a delay time was specified with a controlled
termination, a timer event monitor is established to
correspond to the delay time as specified on the
command. If PWRDWNSYS *IMMED is specified,
a timer event monitor, determined by system value
QPWRDWNLMT, is set up.

II The subsystem control event is signaled to the
monitor processes involved in the termination.
QWTMESBC is the event handler for the
subsystem control event.

1.1 If a timer event was established, at the expiration
of the time interval, a timer event will occur. The
timer event handler (QWCATHE or QWCAT2TE)
will be invoked in the system arbiter process.

Work Control WC-15

This document contains restricted materials of IBM. LY21-0571-6

©Copyright I BM Corp. 1980, 1981, 1982, 1983, 1984, 1985

iii For a controlled termination, the timer event
handler signals the subsystem control event to the
monitor processes involved in the termination (if
they have not already completed the termination
processing) or indicates immediate termination for
PWRDWNSYS *IMMED, if the timer event occurs
(machine processing is immediately terminated).

II When a process terminates, a machine process
event (signaled by the machine) is signaled to the
process that initiated the terminated process. The
system arbiter process is the process that initiates
all of the subsystem monitor processes so it will
be signaled when these processes terminate.
QWCASCUE processes the event data, updates
the system control block, and terminates the
QLUS process and itself (the system arbiter
process). if the system is being terminated, after
the last subsystem monitor process has
terminated.

II When the system arbiter process terminates, a
machine process event i signaled to the start CPF
process. QWCITRSE processes the event data and
terminates machine processing.

WC-16

There are conditions, other than by command, that will
cause CPF to automatically terminate the system.
During start CPF these conditions range from the
inability to locate a system program, to invalid user
sign-on attempts in excess of the specified limit, and to
system arbiter process initiation failure.

If the controlling subsystem unexpectedly terminates,
the CPF automatically initiates system termination.

When the CPF does terminate the system automatically,
it does not cause the machine to power itself completely
down; rather, it terminates to a checkstop state. In
terminating to this state, the console LED lights display
four hex digits as an indication to the reason for the
termination.

The machine has allocated a subset of values for the
CPF to use in indication of system terminating error
conditions. If the CPF terminates the system to a
checkstop state, the console LEDs will display a hex
09ZZ where ZZ is the CPF termination reason code. ZZ
will be a value from hex 80 through hex FF.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

L

User
Subprocess

System
Arbiter

Process
Terminate
Event

Process
Terminate
Event

IJ

III

..
II

QWCCSDUSC or
QWCCSDUC
Terminate
Subsystem

Timer

II

QWCAT1TE or II
QWCAT2TE
Terminate Timer

System
Arbiter
Process

System Arbiter
Input Event

Subsystem
Message Event

Subsystem
Control Event

System
Arbiter

QWCASCUE
Monitor Process
Termination
Event Handler

Start
CPF

QWCITRSE
Process
Termination
Event Handler

Figure We-5. System/Subsystem Termination Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QWCAHNAE

System Arbiter II
Event Handler QWCASDSM

Subsystem
Monitor

or QWCASDUM
Terminate
Subsystem
Message Processor

Subsystem
II Control Event

QWTMESBC

Subsystem Control
Event Handler

Work Control WC-17

Allocate/Deallocate System Object

Certain types of system objects can be allocated for use
by a job step through the Allocate Object (ALCOBJ)
command. This allocation involves obtaining internal
locks upon the objects. Allocated system objects can be
explicitly deallocated through the Deallocate Object
(DLCOBJ) command, or at the end of the job step the
objects will be implicitly deallocated.

The work control portion of allocate object and
deallocate object support consists of three modules:

• QWCSADVR-allocate/deallocate input validity
checker

• QWCCALOC-allocate object command processing
program

• QWCCDAOC-deallocate object command processing
program

QWCSADVR is called by the command analyzer to
validity check the input for the Allocate Object (ALCOBJ)
and Deallocate Object (DLCOBJ) commands.

For each object specified on the command,
QWCSADVR does the following:

• Check if the object type specified is valid and
allocatable.

• If a library name was specified for an object, check if
QSYS or *UBL is specified if QSYS is the only valid
library.

• Check if a member name was specified for an object.
(Member names are allowed only for data base files.)

• Check if the specified lock state is applicable for the
specified object type.

If any errors in the specifications for objects on the
command are detected by QWCSADVR, it will send
diagnostic messages to the program queue of its caller
(the command analyzer) and then signal exception
CPFOOO2 after completing its processing of the
command input. If no errors are detected by
QWCSADVR, the module returns normally.

WC-18

If no errors are detected by QWCSADVR, the command
analyzer transfers control to QWCCALOC for an Allocate
Object command, or to QWCCDAOC for a Deallocate
Object command. The processing done by these
modules, up to the locking or unlocking of objects, is
basically the same.

For each object specified on the command, QWCCALOC
and QWCCDAOC will do the following:

1.

2.

3.

If the object type specified is FILE and a member
name is specified, resolve to the member. If the
member is found, copy the file name, member
name, library name, and lock state into a list of
files. If the object type specified is FI LE and a
member name is not specified, resolve to the file.
If the file is found, check the file control block to
determine if the file is a data base file or a device
file (device files are not allocatable). If the file is a
data base file, check if the file currently has any
members. If the file has members, copy the file
name, library name, and lock state into the list of
files. If the object type is DEVD, resolve to the
device LUD. If the device type is peer, reject the
command for QWCCALOC. If the device is found,
copy the pointer to the LU D and the lock state to
a machine lock list. Save the index of the device
entry in the lock list in an array of indexes, to be
used when invoking the SWHLUD macro, later.

If the object type requires a special object handler,
call the special handler to find the object and
perform any special processing on it. If the special
object handler indicates successful completion,
copy the pointer returned by the special object
handler and the lock state into the machine lock
list.

If the object type does not meet the conditions in
items 1 or 2 above, resolve to the object. If it is
found, copy the pointer and lock state into the
machine interface lock list.

If any exceptions were detected during the processing
of the input (such as object not found, library not found,
etc.), diagnostic messages will be sent by QWCCALOC
or QWCCDAOC, followed by an exception indicating
that the allocation or deallocation was not performed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

If no exceptions are detected during the processing of
the input and the command is:

• Allocate Object: QWCCALOC sets up the type of
lock request and the length of time to wait for the
lock request to be granted from what was specified
on the WAIT parameter of the Allocate Object
command. QWCCALOC then invokes the ?LOCK
macro with the file list and the machine lock list as
input. The ?LOCK macro calls the QDMLOCK module
of common data management to obtain the locks on
the objects.

• Deallocate Object: QWCCDAOC invokes the
?UNLOCK macro with the file list and machine lock
list as input. The ?UNLOCK macro calls the
QDMUNLCK module of common data management
to unlock the object locks.

QWCCALOC, if the locks are successfully obtained,
invokes the ?SWHLUD macro with the machine
interface lock list and the array of indexes to device
entries in the lock list as input. The ?SWHLUD macro
performs the special processing necessary for switched
line devices.

If the locks are not obtained, QWCCALOC signals an
exception identifying the problem.

If the locks are not released, QWCCDAOC signals an
exception identifying the problem.

DISPLAY FUNCTIONS FOR WORK CONTROL

The display functions of work control present to the
requester information pertaining to the system in
general, the subsystems, and jobs that are in the system
and on queues. A display can be directed to either the
requester display device, if interactive, or to a print file.
The following displays are included:

• Display system status: This display presents a view
of the operational aspects of the system as a whole.
It shows the effect of the current processing load on
the system. The major parts of this display are:

Current system date and system time
CPU use during the interval. as a percent of the
elapsed time
Number of user and system jobs that are currently
active in the system or on queues

- Percentage of auxiliary storage that is currently in
use and total amount of auxiliary storage
Percentage of the maximum possible addresses
currently in use

- Detailed performance information about each
storage pool

For each storage pool:
System pool I D
Total size in K-bytes
Amount of storage in K-bytes, reserved for
machine functions
Rate, in faults per second, of page faults against
data space pages and data space index pages
Rate, in pages per second, that data base pages
are being brought into main storage
Rate, in faults per second, of page faults against
nondata base pages
Rate, in pages per second, that nondata base
pages are brought into main storage
Maximum activitY level for the pool

- Rate, in transitions per minute, of transitions from
an active to a waiting state
Rate, in transitions per minute, of transitions from
a waiting to an ineligible state
Rate, in transitions per minute, of transactions
from an active state to an ineligible state

• Display system: This display shows which
subsystems are active, the status of each subsystem,
and the load being processed within each subsystem.

• Display subsystem: This display presents all of the
jobs that are active in the system or residing on
spooling job and output queues.

Work Control WC-19

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• Display submitted job: This display presents a list of:
All jobs submitted by this job, by this user, or at
this work station.

• Display job: This display presents a detailed display
of a particular user job that is active or on queues.
The following is presented for each job:
- Job status attributes
- Job definition attributes
- Job execution attributes (if active)
- Program invocation stack (if active)

Spooled files
- Locks (if active)

Commitment control status (if active)
- Library list (if active)

Open files (if active)
- File overrides (if active)
- Job log (if active or on job queue)

• Display object locks: This display presents all object
locks in the system for a specified object, including
held locks and locks being waited for.

I • Display active jobs: This display presents
performance and problem information for the active
jobs in the system. The number of active jobs and
the CPU use during the interval are also presented.

WC-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

The following diagram shows the module relationship of
the work control display modules:

QWCCDSTC

,...---00

Display System
Status

QWCCDSSC

Display System

QWCCDSUC
Display
Subsystem
Submitted Jobs

QWCCDSJC
QWCSDSKC

Display Job
Display Job
Locks

1

QWCCDSIC QWCCDSKC
Display Job f.--
Invocation Display Object
Stack Locks

QWCCDSAC r---

------- Display
Active Jobs

Work control is also responsible for data area, system
value, class, and network attribute displays.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Control WC-21

CLASSES

A class is an object that contains a set of resource
management information. This information controls the
operational characteristics of the process that supports
the routing step. These characteristics include:

• Timeslice: The length of time during which the job
step is allowed to process when selected for
execution.

• Machine execution priority: A selection criterion.

• Purge option: Indicates whether the process and its
associated structures should be paged out of main
storage during a long wait or at timeslice end.

• Default wait time-out: The amount of time that an
instruction, which goes into a wait, remains in that
wait if the instruction specifies that the default is to
be used.

A class is associated with each routing entry in a
subsystem description by the Add Routing Entry
(ADDRTGE) command or Change Routing Entry
(CHGRTGE) command. When a job is routed through
the entry, the subsystem monitor copies the values
contained in the class into the PDT (process definition
template) for the initiation of the process that supports
the job step.

Supported operations on a class are create, delete and
display. The delete operation is supported by the
librarian's delete object command processing program.
Operations on a class are internally serialized through
the use of locks to avoid inconsistencies or contention
due to concurrent operations.

SYSTEM VALUE FUNCTIONS

System values are IBM-defined entities that are used to
control system actions and to provide information to the
user. The user can change the value of most system
values to tell the system what to do in case a particular
situation arises, such as what to do if the system
console cannot be brought up during the start CPF
process. The user can also change other system values
that determine such things as the format of the system
date, the date separator character, the system time, and
the format in which numeric data is to be presented.
Certain system values cannot be changed by the user,
but are to be used only to display information or to use
in if-else clauses in user CL procedures.

WC-22

QWMSYSVAL is installed with the system and is a
permanent object. It contains the names of all of the
system values and their current values as well as the
values for all of the Network Attributes. The system
value object consists of two parts.

• Header: This consists of entries of equal length for
each system value. Each entry contains the name of
the system value, the displacement to the value's
entry in the value area and a special code indicating
special type characteristics of the value.

• Value area: This area contains the value for each
system value. The displacement to a particular
value's entry is in the header entry.

• Network Attribute value area: This area contains the
value for each network attribute.

SYP
SPP

Spp+

SPP+

Offset 1 ----

Offset 2 ----

System Value Object

Header

Value Area

Network Attribute

PAAB035·0

The user is allowed to perform the following functions
with system values:

• QWCCDSLC-Display System Value: This module
presents to the requester the name of the value
requested and its current value. The display can be
directed to either the interactive device of the
requester or to the job default spooling queue.

• QWCSRTLR-Retrieve System Value: This function
can be invoked in one of two ways: work control
provides a macro interface by which the type, length,
and value of the system value can be retrieved in an
area provided by the requester or through the
Retrieve System Value (RTVSYSVAL) command in a
CL program, in which the value is retrieved into a CL
variable provided by the requester. The type and
length of the CL variable are checked before the
value is retrieved to verify that they are the same as
the type and length of the system value.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
• QWCCCHLC-Change System Value: This module

changes the value of the requested system value,
provided that the value can be changed by the user,
and the new value is of the correct type and length
for the requested value. Some values can take on
only a limited number of different values, so these
are also checked for in those particular cases. If the
system date or system time values are changed, the
actual system clock is changed. The processing for
some system values involves more than just the
command processing program. As a result,
QWCAUPRM executes in the system arbiter process
that handles these cases.

• QWCAUPRM-Update Processor Rollover Message:
This module gains control in the following manner:
QWCCCHLC sets up event related data and then
signals the system arbiter input event with the event
subtype indicating that QWCAUPRM is to be called.
QWCAHNAE gains control in the system arbiter
process, and calls QWCAUPRM, passing the event
data. Depending on the system value being changed,
event monitors can be canceled and reestablished
with new compare values, the system clock can be
changed, addressability to a new prototype NRL
(name resolution list) created by QWCCCHLC can be
established, and values in the WCBT can be updated.
QWCCCHLC waits for a response from
QWCAUPRM.

• QWCSCRLR-Create/Convert System Value Object
Routine: This module converts the system value
object to a new release/ modification level following
installation of CPF. It adds new system values
without affecting any changes made by the user to
existing system values. QWCSCRLR also re-creates
the system value object if it becomes damaged or
destroyed.

System Arbiter

User Process

Subprocess
QWCAHNAE

QWCCCHLC System Arbiter
Input Event System Arbiter

Change System Event Handler

Value QWCAUPRM

Update Rollover

V
Message Processor

System
Clock

Figure WC-S. Module Interrelations for Changing a Date or Time on the System

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Control WC-23

Network Attributes Support

Network attributes describe characteristics of a system
that may exist in a network of systems. For example,
the system name, which is a unique identifier of a
system within a network, is a network attribute.

The user is allowed to perform the following functions
within network attributes:

• QWCCDSNC-Display Network Attributes: This
module displays the names of all the network
attributes and their current values. The display can be
directed to either the interactive device of the
requestor or to the job default spooling queue.

• QWCCCHNC-Change Network Attributes: This
module changes the network attributes. Some
attributes require certain values, or cannot be
changed in certain environments. If all of the values
are valid, the requested changes are made; if any of
the values are invalid, no requested changes are
made.

WC-24

DATA AREAS

A data area is an object that can be used to store and
retrieve information. It is most commonly used to
contain information that the user wants to communicate
between executing programs.

Create Data Area-QWCCCRVC: The user can create a
data area through the Create Data Area (CRTDTAARA)
command.

Change Data Area-QWCCCHVC: A data area or a
substring of a data area can be changed through the
Change Data Area (CHGDTAARA) command .

Display Data Area-QWCCDSVC: The attributes and
value of a data area can be displayed through the
Display Data Area (DSPDTAARA) command.

Retrieve Data Area Pointer-QWCSRTVR (RTVSVAR
macro): An external interface to the retrieve data area
pointer routine (QWCSRTVR) is provided through the
?RTVSVAR macro. The ?RTVSVAR macro will return to
the invoker the system pointer to the data area object
(other than local data areas and group data areas).

There are also data area commands in the CL
component: Send Data Area (SNDDTAARA). Receive
Data Area (RCVDT AARA). Retrieve Data Area
(RTVDTAARA). and Declare Data Area (DCLDTAARA).

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SIGN-OFF FUNCTION

The sign-off function terminates an interactive job or
group of interactive jobs (group jobs). The sign-off
function can be obtained by entering the Sign-Off
(SIGNOFF) command interactively or in a control
program procedure. It is also used internally by the
concurrent service monitor component, through the
sign-off macro interface.

On the Sign-Off command, the user can specify the
dial-up line disposition of the device that is being
signed off, through the use of the DROP keyword. (The
keyword is ignored if the device is not a dial-up device.)
The user can request that the dial-up line be dropped,
that the dial-up line connection be retained, or that the
dial-up line disposition parameter, which is specified in
the device description of the work station, be used as
the default.

Subsystem
Monitor

Subprocess
Controller

The LOG keyword on the Sign-Off command
determines if the job log is to be spooled or deleted. If
*NOLIST is specified or defaulted, the ?CHGJMO macro
is executed, which sets indicators in the JMO so that no
job log file is created in the termination phase program.
If *LlST is specified, the job log is spooled.

The sign-off command processing program is called by
the sign-off macro interface or by the command
analyzer if the user enters the Sign-Off command. The
sign-off command processing program invokes the work
monitor terminate process macro and issues a Terminate
Process Machine Instruction instruction. The termination
code is set to indicate an abnormal signoff if an
exception exists or there is an event in the invocation
stack. Otherwise, the termination code is set to indicate
a normal sign-off.

OWCCLFEC Terminate
Process
Instruction Sign-Off

Figure WC-7. Sign-Off Overview

This document contains restricted materials of IBM. L Y21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Control WC-25

SYSTEM DATE/TIME SUPPORT

The work control component provides the system
date/time function for the CPF. The system clock is set
and maintained based on the date/time algorithms
established for CPF. The understanding of the handling
of time is based on knowing how the system time is
setup. The following describes how time is kept in the
system.

The system clock is an 8-byte counter that is
incremented at a rate equivalent to 1024 microseconds
at bit position 41. Even though this is the bit position
that is incremented in the system, this does not have to
be so, as long as the time interval at bit 41 is equal to
1024 microseconds. CPF does not work with bits in the
system clock after bit 41 (bits 42 through 63).

The basic layout of the clock is shown with some of the
important bit positions designated:

o 7 Bits 15

where:

C = Century bit
H = Approximate hour bit
M = Approximate minute bit
S = Approximate second bit
I = Clock increment bit

System/3S Clock Layout

H M

20 23 25 31

With the clock being stepped at the specified rate, the
total time interval that can be contained in the clock
(before it rolls over) is about 142 + years. CPF has
established the system time such that at the start of the
year 2000 the clock will contain only the century bit set
(8000000000-- ---X; --- indicates unused so that it
can not be stated exactly what these bits may contain).
By picking the clock setting for the start of the century,
this leads to an epoch on around August 27, 1928.

WC-26

39 41 47 55 63

This implementation of the system time combined with
the duration of the clock, leads to the condition where
some years are redundant. An arbitrary rule is set up to
remove this redundancy, where a test is made such that
a year value equal to or greater than 40 results in a year
from 1940 through 1999. A year value of less than 40
results in a year value from 2000 through 2039.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System Timer Support

Work control maintains a system date and time. At the
start CPF process, an estimate of the date and time is
made, based on whether the last termination was
normal or abnormal.

If the system was terminated normally the system's
estimate of the date and time is the date following that
on which the system was terminated at zero time
(00:00:00). For example, if the termination occurred on
07/13/80 at 18:30:00, the date and time presented to
the user at the next start, if attended, is 07/14/80 at
00:00:00.

If the system was terminated abnormally, the system's
estimate of the date and time is the date and time at
which termination occurred, plus a small amount of time
to ensure that there is no overlap with the system time
prior to termination.

In order to support these estimates and to increment the
date system value (QDATE) when necessary, the system
arbiter establishes an event monitor for a 24-hour
rollover event. The handler for this event is QWCAROTE
(24-hour).

The rollover handling maintains the date system value
and saves the system timer value for the start of the
current day and the start of the next day. At each 24
hour interval and at system start, a timer event is
established that will expire at the end of the next 24
hour interval. The start of these intervals corresponds to
zero hours according to the timer epoch fixed by CPF.
The saved time-of-day clock value for the next
occurrence of zero hours is used at the next system
start to compute the estimated date and time.

STORAGE POOL/MPL RESOURCE MANAGEMENT

The following explanation of CPF storage pool/MPL
resource management deals basically with the system
arbiter functions. For a discussion of the subsystem
monitor functions in CPF system resource management,
see Work Monitor.

The machine defines 16 storage pools and MPL
(multiprogramming level) classes, numbered from 1
through 16. Storage pools are used to partition main
storage into discrete and independent areas, in which
processes can run and contend for storage only with
processes running in the same storage pool. MPL
classes are used to set the numb~r of processes that
can concurrently be eligible for execution in that MPL
class. These storage pools and MPL classes are used in
a one-to-one correspondence by CPF. Each storage
pool in the system is said to have an activity level
associated with it. This storage pool activity level is the
multi-programming level of the associated MPL class.

Machine storage pools 1 and 2 are defined by the CPF
to be the machine pool and *BASE pool. respectively.
These pools will always be allocated while CPF is in
normal operation. The attempted minimum size of the
machine pool is set to a system value, QMCHPOOL.
Non-nucleus machine code will run in the machine pool.
The attempted minimum size of the *BASE pool is set
to the system value, QBASPOOL. The system arbiter
process runs in the *BASE pool. Pool descriptions in
subsystem descriptions can be set to the *BASE pool,
so an individual pool is not allocated and processes will
be initiated into the *BASE pool by the subsystem
monitor.

The apportionment of storage, storage pools, and MPL
is controlled by QWCARQRM. Subsystem monitors
make requests for resources (storage, storage pools,
MPL) by signaling the system arbiter input event with
the request resources subtype. QWCAHNAE will be
invoked and will call QWCARQRM with a pointer to the
event related data from the system arbiter input event.
The event related data consists of a pointer to a request
resourCes message space.

This message space contains information about the
monitor that signaled the system arbiter input event and
a number of requests for resources. Each request in the
message consists of a request type, a subsystem
description storage pool ID, machine storage pool ID, a
requested MPL, a requested storage pool size, and a
status of request indicator.

Work Control WC-27

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

A pool reduction or deallocation causes a machine
exception. If a machine exception is signaled, the
reserved storage released event monitor is enabled, a
message is sent to the system operator message queue
telling which system pool could not be reduced, and the
pool request is stored in the resource management
control block.

Before processing any of the requests, OWCARORM
first determines the amount of storage required for
machine interface pool 1 (machine pool) and machine
interface pool 2 (*BASE pool) and satisfies their
requirements first (if there is sufficient storage available
to do so). Any nonallocated storage is then available to
satisfy monitor requests. After all the requests are
processed, any remaining storage is allocated to the
*BASE pool.

Subsystem
Monitor

OWTMEAST

Allocate Storage I System Arbiter
Storage Available Input Event

The individual requests are processed sequentially by
OWCARORM and if sufficient resources are available,
each request will be granted in turn and the status of
the request will be set to request granted. If the request
cannot be granted, the requested MPL and requested
storage pool size will be set to whatever was actually
obtained for the request and the status of the request
will be set to an appropriate failure condition.

When a subsystem is started, storage pools (and MPL
classes) can be allocated for the subsystem, depending
upon the pool descriptions in the subsystem description
and the number of storage pools and amount of storage
available for allocation (see Figure WC-8).

System
Arbiter

OWCAHNAE

System Arbiter
Input Event
Handler OWCARORM

Event Handler

~ (s· vent Request Resources
Ignaled MaCh' Message Processor me-Wide)

ROSTMSG

Request Resources
Message Space

Figure WC-S. Monitor Start-Up, Outstanding Requests, Change Subsystem Description (Active SBS) and Initialize Pool and
Increase Size of Pool Request

WC-28

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
If the monitor PCS pointer in the header portion of the
request resources message space is null, the requesting
monitor does not need to have a storage allocated event
signaled to it. This is true if the monitor is making
MPL-only changes, decreasing pool sizes, or
deallocating pools. These requests are always granted,
so the monitor does not need a status of request
response. In this case, OWCARORM will destroy the
request resources message space at the end of its
processing. These types of requests are possible
through a Change Subsystem Description command,
executed against an active subsystem (see Figure
WC-91. or the termination of the last active process in a
storage pool that was set to a size of zero by a previous
Change Subsystem Description command, executed
against an active subsystem (see Figure WC-1 0).

Subsystem
Monitor

OWTMESBC

Subsystem Control

System
Arbiter
Process

Event Handler System Arbiter
OWTMMCSD Input Event

Change Subsystem
Message Processor

ROSTMSG

Request Resources
Message Space

OWCAHNAE

System Arbiter
Input Event
Handler OWCARORM

Request Resources
Message Processor

Figure WC-g. Change Subsystem Description (Active SBS), MPL-Only, Decrease Pool Size, and Deallocate Pool (Only if No
Processes Active in the Pool) Requests

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Control WC-29

Subsystem
Monitor

L-______ ~--~ QWTMETRP

System
Arbiter
Process

'--------'"""T--~ QWCAHNAE
System Arbiter System Arbiter

Terminate Process t------~-----__I
Input Event Input Event Event Handler

ROSTMSG

Request Resources
Message Space

L..-_H_a_nd_l_er_...,._~ QWCARQRM

Request Resources
Message Processor

Figure WC-10. Termination of the Last Process Running in a Deallocated Pool

we-30
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

If the monitor PCS pointer in the request resources
message space is not null, the storage allocated event is
signaled to the requesting monitor, with the pointer to
the request resources message space as event related
data (see Figure WC-11). This is the case whenever an
initialize pool or increase pool size request is made.

System
Arbiter
Process

QWCAHNAE

System Arbiter
Input Event
Handler .--_.L.. ____ -,

If there is not enough storage available to grant all the
requests of a monitor after the monitor has received its
response from the system arbiter, it monitors for a
storage available event (see Figure WC-8).

If there is any storage available at the end of processing
an entire message, QWCARQRM signals a
machine-wide storage available event to any monitors
that are listening for it (see Figure WC-8). If the storage
available is greater than or equal to the minimum
amount required to initalize a storage pool and at least
one storage pool is available for initialization, the storage
available event is signaled with a compare value of one.
Otherwise, the event is signaled without a compare
value.

When reserved storage is released, the reserved storage
released event is signaled, and QWCARSRE is invoked.
QWCARSRE retrieves the event data that has the pool
10. QWCARSRE then checks to see if there is a
pending reduction or deallocation for the pool. If so,
QWCARSRE reduces or deallocates the pool. places
extra storage in the *BASE pool, and signals the storage
available event.

Subsystem
Monitor

'-----......04 QWCARQRM Storage Allocated
Request Resources 1-------------

Event

QWTMESTA
Storage
Allocated
Event Handler Message Processor

RQSTMSG

Request Resources
Message Space

Figure We-11. Response to the SBS Monitor From the System Arbiter

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Control WC-31

WORK CONTROL BLOCK TABLE MAINTENANCE

The WCBT (work control block table) is one of the
primary objects to the operation of CPF. It is a
permanent space in which entries are initialized at
system start. When a job enters the system, a WCBT
entry is assigned to the job and it is released from the
job when the job leaves the system. Available entries
are selected from the WCBTEQ, (the WCBT entry
queue, which is a temporary queue associated with the
WCBT). When the system terminates, the queue is
automatically destroyed. In the start CPF process, the
table is compressed and the queue is rebuilt.

Subsystem
Monitor

System
Arbiter
Process

During system operation, if an attempt is made to
assign an entry (a job has entered the system) but none
are available, an event is signaled to the system arbiter
(the system arbiter input event with WCBT subtype) to
indicate that the table requires expansion. This event is
handled by QWCAHNAE which in turn calls
QWCAHNTM. QWCAHNTM then performs the
necessary operations (initialize new entries, extend the
space if necessary, and add entries to the WCBTEQ).
This event can be signaled from a subsystem monitor (in
the case of an interactive job or an auto-start job) or
from the spool reader (in the case of a batch job).
Figure WC-12 shows a subsystem monitor trying to
assign an entry for a job when there are no entries
available.

Note: The table handling function is complete before
another process can signal the WCBT event, although
QWCAHNTM has not necessarily returned.

L...-____ --' QWCAHNAE

Monitor Attempts To
Assign Entry, but No
Entries Are Available

WCBTEQ

The Queue Messages
Are Displacements to
Available Table Entries

WCBT

System Arbiter
Event Handler

L...-___ --,~ ... awCAHNTM

HandleWCBT
Message Processor

New Entries Are Made
Available and their
Displacements Are Put
on the Queue

Figure WC-12. Subsystem Monitor Trying to Assign a -!ob Entry with No Entries Available

WC-32

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

MACHINE EVENT HANDLING

QWCAMCKE is an event handler designed to provide

system support for the processing of the machine
status, and some process events. The system arbiter
process provides event monitors for the following events
that QWCAMCKE handles:

Machine Status Events:

• Hex 0000 0101-Machine check

• Hex 0000 0201-Utility power failure

• Hex OOOD 0202-Utility power restored

• Hex 0000203-Utility power restored (BASE UPS)

CSNAP Timer Event:

• Hex 0014 0101-CSNAP absolute time of day

Process Events:

• Hex 0010 0701-Maximum CPU time for a process
was exceeded

• Hex 0010 0801-Maximum temporary storage for the
process was exceeded

In the processing of the machine status events (hex
0000). QWCAMCKE sends a message to the system
operator message queue and the history file. If the
event was a machine check, the event data is saved in
the SCPF data object.

If the event was a utility power failure, an indicator is
set in the system control block, and the system value
QUPSMSGQ is inspected for a message queue name.
Further checks are made as to the type, allocation, and
delivery mode of the message queue. An attempt is
made to send to the message queue a message
informing of the power failure. If send fails for any
reason or if the checks indicate the message queue is
not properly set up or the system value was *NONE, the
system is terminated to power off with messages sent
to the system operator indicating why.

If the event was a utility power restored, an indicator is
reset in the system control block, and the system value
QUPSMSGQ is inspected for a message queue name.
An attempt is made to send a message to the message
queue, and the system operator is informed of the event
and send failure (if occurred) by messages.

The CSNAP absolute time of day event is handled by

issuing an MI diagnose instruction with the CSNAP op
code and then re-creating the timer event for 24 hours
later. The new CSNAP time is saved in the system
control block.

The process events are handled by terminating the
process that caused the event to be signaled (the PCS
pointer for this is in the event data). The terminate
process macro is invoked with the TRMCOOE parameter
set to indicate the type of termination (maximum CPU or
temporary storage). The macro generates the code that
does the actual Terminate Process instruction.
QWTPITPP checks the termination code and sends the
appropriate message to the job's job log (to explain why
the routing step was canceled).

QWCARSRE is an event handler designed to provide
system support for the processing of the reserved
storage released machine event. The system arbiter
process provides the event monitor for the following
event that QWCARSRE handles:

Machine Resource Event:

• Hex OOOC 0601-Reserved storage released

The reserved storage released event is handled by
returning the released storage to machine pool when
needed in the machine pool and all unneeded storage to
the base pool. A storage available event is then signaled
machine wide if base pool size is greater than the
required minimum.

QWCATARE is an event handler designed to provide
system support for the processing of the machine
resource and resource timer events. The system arbiter
process provides event monitors for the following events
that QWCATARE handles:

Machine Resource Events:

• Hex OOOC 0201-Machine auxiliary storage limit
reached

• Hex OOOC 0301-Machine ineligible state threshold

• Hex OOOC 0401-M PL class ineligible state threshold

Timer Events:

• Hex 0014 0301-Auxiliary storage limit reached,
repeating notification timer

Work Control WC-33

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

There is no action that the CPF can take to reduce the
system load that caused a machine resource event
(event IDs that start with OOOC). The system operator
may be able to help the condition by canceling some
jobs, terminating a subsystem, or changing the operating
characteristics of one or more subsystems. Therefore,
the only action taken in response to a machine resource
event is to send a message to the system operator and
the history file. In the case of a machine auxiliary
storage limit reached event, a repeating timer is

established to send a message to the system operator
every 60 minutes until the auxiliary storage usage is
reduced below the limit.

RECLAIM RESOURCES FUNCTION

The reclaim resources function is available through the
Reclaim Resources (RCLRSC) command, which
interfaces to machine support. Machine support enables
the static storage of a process (routing) step to be reset
to any desired level. This function is used by compilers,
where large amounts of static storage are used by
non-reentrant programs. The amount of static storage
could grow in an unbounded manner if not released at
natural breakpoints in a process's execution. The
reclaim resources function reclaims the static storage for
use by the process, and thereby improves the
performance of the process. The Reclaim Resources
command reclaims the static storage associated with all
activations after the level is designated on the
command. The reclaimed static storage is then available
for use by subsequent activations.

The command processing program invokes the
?RCLPSSA macro that will chain through the PSSA and
deactivate all activations with no associated invocations
that have an activation mark greater than the level
specified on the macro invocation. The message handler
QCL invokes the macro after every call to user or CPF
program.

WC-34

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

INTRODUCTION

The SBSD (subsystem description) component of the
CPF (control program facility) is used to create an object
called a subsystem description. The subsystem
description is used by the work monitor component to
create the operational environment known as a
subsystem. A subsystem description describes the
environment in which a user's work is processed.
Several subsystems can be concurrently active, each
managing its own separate operational environment and
controlling the processing of its work.

The SBSD is a standard composite object containing
(1) composite object structure, (2) definitional
information, (3) recovery information, and (4) working
space for work control and work monitor. The
definitional information consists of three parts:

• Subsystem attributes
- Storage pool descriptions (sizes and activity levels)
- Maximum number of jobs that can concurrently

run in a subsystem

• Routing entries

• Work entries

Subsystem Attributes

The subsystem attributes are supplied through the
Create Subsystem Description (CRTSBSD) command
and can be modified by the Change Subsystem
Description (CHGSBSD) command. A subsystem
description can also be deleted using the Delete
Subsystem Description (DLTSBSD) command.

Storage Pool Descriptions

A storage pool is a logical division of main storage.
Routing steps running in a storage pool compete .for
main storage space only within their logical division of
storage. Therefore, contention between programs for
main storage resources can be reduced through the use
of storage pools.

Subsystem Description

The attributes of a storage pool are its size and activity
level. An activity level defines how many jobs can be
processed concurrently within the storage pool.

In addition to storage pools that are user-defined in
subsystem descriptions, the -BASE storage pool can be
shared across subsystems. The -BASE storage pool is
defined through system values: the size by OBASPOOL
and the activity level by OBASACTLVL.

Routing Entries

A routing entry defines how a routing step is to be
initiated for a job. A routing entry contains the
following:

• Routing entry sequence number

• Routing data compare value

• The name of the application program to invoke for
this entry

• The name of the class used for the routing step

• The maximum number of routing steps that can
concurrently be active for this entry

• The identifier of the storage pool in which the routing
step is to be initiated

Work Entries

Work entries are used to identify the sources for jobs
that are processed in a subsystem. There are four types
of work entries:

• Autostart job-The job is automatically started when
the subsystem is started.

• Job queue-The job to be processed is taken from the
specified job queue.

Subsystem Description WD-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• Work station-The job is processed when a work
station user signs on or when a user transfers from
one subsystem to another subsystem.

• Communications-The job is started as a result of an
attach (evoke) request.

The descriptions of these work entries (which are
included in the subsystem description) are:

• For an autostarted job entry:
Job name

- Job description name

• For a job queue entry:
Job queue name
Maximum number of jobs that can be concurrently
active from the job queue

• For a work station entry:
Work station name or work station type
Job description name
Maximum number of jobs that can be concurrently
active for the entry
Name of the display file and record format used to
obtain the routing data if the routing data is not
specified in the job description
Whether a user may sign on to a sign-on screen
to enter the subsystem or only transfer in from
another subsystem

• For a communications entry:
Communications device description name
Job description name
Default user profile name for an attach that
contains no password
Maximum number of jobs that can be concurrently
active through this communications entry

WD-2

IBM-Supplied Subsystem Descriptions

The following subsystem descriptions are shipped with
the system:

• GCTL-controlling subsystem

• GINTER-interactive subsystem

• GBATCH-batch subsystem

• GPGMR-programmer subsystem

• GSPL-spooling subsystem

GINTER supports all of the interactive jobs processed
through the display work stations on the system. Either
GCTL or a user-defined subsystem can be the
controlling subsystem.

GBATCH supports all batch jobs processed on the
system. Any batch subsystem must be started by a
Start Subsystem (STRSBS) command and terminated by
a Terminate Subsystem (TRMSBS). Terminate CPF
(TRMCPF), or Power Down System (PWRDWNSYS)
command.

GSPL supports reading jobs and job streams and then
writing the output from the jobs.

Note: See Work Monitor for additional information
about subsystems and subsystem descriptions.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Subsystem Description External Controls

A subsystem description can be controlled externally by
CL commands. There are commands to create, display,
and delete subsystem descriptions. They are:

• Create Subsystem Description (CRTSBSD)

• Display Subsystem Description (DSPSBSD)

• Delete Subsystem Description (DLTSBSD)

There are also CL commands to change the contents of
a subsystem description. Those commands are:

• Change Subsystem Description (CHGSBSD)

• Add Autostart Job Entry (ADDAJE)

• Change Autostart Job Entry (CHGAJE)

• Remove Autostart Job Entry (RMVAJE)

• Add Communications Entry (ADDCMNE)

• Change Communications Entry (CHGCMNE)

• Remove Communications Entry (RMVCMNE)

• Add Job Queue Entry (ADDJOBQE)

• Change Job Queue Entry (CHGJOBQE)

• Remove Job Queue Entry (RMVJOBQE)

• Add Work Station Entry (ADDWSE)

• Change Work Station Entry (CHGWSE)

• Remove Work Station Entry (RMVWSE)

• Add Routing Entry (ADDRTGE)

• Change Routing Entry (CHGRTGE)

• Remove Routing Entry (RMVRTGE)

GENERAL OVERVIEW

Subsystem Description Modules

The subsystem description component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QWDCADA-Add Autostart Job Entry (ADDAJE)':
This module processes the Add Autostart Job Entry
command.

-->QWDCADC-Add Communications Entry
(ADDCMNE)': This module processes the Add
Communications Entry command.

-->QWDCADJ-Add Work Station Entry (ADDWSE)':
This module processes the Add Work Station Entry
command.

-->QWDCADQ-Add Job Queue Entry (ADDJOBQE)':
This command processes the Add Job Queue Entry
command.

-->QWDCADR-Add Routing Entry (ADDRTGE)': This
module processes the Add Routing Entry command.

-->QWDCCHA-Change Autostart Job Entry (CHGAJE)':
This module processes the Change Autostart Job
Entry command.

-->QWDCCHC-Change Communications Entry
(CHGCMNE)': This module processes the Change
Communications Entry command.

-->QWDCCHD-Change Subsystem Description
(CHGSBSD)': This module processes the Change
Subsystem Description command.

-->QWDCCHG-Change Job Description (CHGJOBD)':
This module processes the Change Job Description
command.

-->QWDCCHJ-Change Work Station Entry (CHGWSE)':
This module processes the Change Work Station
Entry command.

'This module is a CPP (command processing program).

Subsystem Description WD-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QWDCCHQ-Change Job Queue Entry
(CHGJOBQE)': This module processes the Change
Job Queue Entry command.

-->QWDCCHR-Change Routing Entry (CHGRTGE)':
This module processes the Change Routing Entry
command.

-->QWDCCRD-Create Subsystem Description
(CRTSBSD)': This module processes the Create
Subsystem Description command.

- - >QWDCCRG-Create Job Description (CRT JOBD)':
This module processes the Create Job Description
command.

-->QWDCDLJ-Remove Work Entry (RMVAJE,
RMVCMNE, RMVWSE, RMVJOBQE)': This module
processes the Remove Autostart Job Entry. Remove
Communications Entry, Remove Work Station Entry.
and Remove Job Queue Entry commands.

-->QWDCDLR-Remove Routing Entry (RMVRTGE)':
This module processes the Remove Routing Entry
command.

- - >QWDCDSD-Display Subsystem Description
(DSPSBSD)': This module processes the Display
Subsystem Description command.

-->QWDCDSG-Display Job Description (DSPJOBD)':
This module processes the Display Job Description
command.

QWDGMSG-Send Messages and Signal Exceptions:
This module sends messages and signals exceptions
for job description CPPs.

QWDJDVF-Check Validity of a Specified Device File:
This module checks the validity of the device file and
record format specification.

QWDJFNE-Find Job Entry: This module finds the
specified subsystem description job entry.

'This module is a CPP (command processing program).

WD-4

QWDMMSG-Send Messages and Signal Exceptions:
This module sends messages and signals exceptions
for subsystem description CPPs.

QWDMXTND-Extend the Subsystem Description:
This module extends the size of the subsystem
description objects that are extendable.

The following modules are invoked by the ?PCKSBSD
and ?WDRSLOBJ macros, respectively:

QWDMPACK-Pack Subsystem Oescription: This
module performs the pack function for the subsystem
description.

QWDMRSLV-Resolve to External Objects: This
module performs the resolve function for the
subsystem description modules.

The following modules are invoked by the ?RCRSBSD
macro:

QWDMCNVT-Convert Subsystem Description: This
module converts the subsystem description internal
format to support multiple job queue entries and
communications entries.

QWDMRCVR-Recover Subsystem Description: This
module performs the recovery procedures for
subsystem description objects.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982, 1983. 1984. 1985

L

Subsystem Description Overview

Figure WD-1 and the following text describe a
high-level overview of the subsystem description
component.

.. Operations on a subsystem description are
command-driven.

B The command processing program process takes
care of removes, creates, displays, and changes.
The command processing program makes changes
to an inactive subsystem description.

II The monitor process makes changes to active
subsystem descriptions.

.. Messages are sent as appropriate.

Data From
Command
Analyzer

Monitor
Process

D

CPP
Process

To
Requester

II

Informed if the
subsystem description
is active.

Subsystem
Description

L Figure WD-1. High-Level Overview of the Subsystem Description Component

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

History
File

Subs\,stem Description WD-5

Subsystem Description Internal Structure

Although the user sees the subsystem description as a
single object and operates on it as such. the internal
structure of a subsystem description is that of a
standard composite object. whose pieces are spaces.
Figure WD-2 shows the structure of a subsystem
description. including the names of the includes that
specify the declare structure for each of the objects.

WO-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

Subsystem Description

Primary
Object

Basic
Information
and
Attributes

WDSBSD L WDSDATR

Secondary Objects

Work Station
Name Entries

WDJOBE

Work Station
Type Entries

WDJOBE

Autostart
Job Entries

WDJOBE

Job Queue
Entries

WDJOBE

Routing
Entries

WDRTGE

Resolved Names
Table

WDNMTBL

Communications
Entries

WDJOBE

L Figure WD-2. Internal Structure of a Subsystem Description

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-7

Changing a Subsystem Description

Figures WD-3 and WD-4 show how an inactive and an
active subsystem description can be changed.

Inactive Subsystem Description

If a subsystem description is inactive. the change is
made by the appropriate command processing program.

Active Subsystem Description

If a subsystem description is active. the change is made
by the subsystem monitor.

• The appropriate command processing program
signals the monitor.

II The monitor process makes the change to the
subsystem description.

II The monitor signals the command processing
program when the change to the subsystem
description has been made.

Inactive

CPP Subsystem
Process Description

Figure WD-3. Changing an Inactive Subsystem
Description

WD-8

cpp
Process

D

II

Monitor
Process

Figure WD-4. Changing an Active Subsystem
Description

Active

Subsystem
Descri ption

In both cases of changing a subsystem description
(inactive and active subsystems) the code to change the
subsystem description is contained in an include
segment that is invoked from either the command
processing program or the monitor process. as
appropriate.

Packing

When a subsystem description work entry or routing
entry is flagged as being changed or deleted. a
packing-is-required flag is turned on for the affected
object. This flag indicates that space can be reclaimed
by eliminating the changed or deleted object entry(s).

Reclaiming of this space occurs at the following times:

When a subsystem is started: All areas of the subsystem
description are packed. because once the subsystem is
active, packing is inhibited.

When there is not enough room left in the subsystem
description to accommodate a new entry or a change to
an existing entry: Only that area of the subsystem
description affected by the change or addition is packed.
The packing operation is inhibited when the subsystem
description is active. It is inhibited so as not to disturb
the present location of entries presently being used by
the monitor.

Figure WD-5 shows the objects in a subsystem
description that can be packed and those objects that
are not subject to packing.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982. 1983. 1984. 1985

L

Subsystem Description

Basic
Information
and
Attributes

The objects
containing
these entries
can be
packed.

The objects
containing these
entries are not
subject to packing.

Work Station
Name Entries

Work Station
Type Entries

Autostart
Job Entries

Job Queue
Entries

Routing
Entries

Communications
Entries

Resolved
Names Table
Entries

Figure WD-S. Subsystem Description Objects That Can and Cannot Be Packed

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-9

Extending a Subsystem Description

Whenever a subsystem description entry is added or
changed, the possibility exists that there will not be
enough room left in the subsystem description to
accommodate the added or changed data in the affected
object.

Should there not be enough space, packing is first
attempted. However, the packing-is-required flag must
be on and the subsystem description must be inactive.
If these two conditions are not met or if insufficient
space was freed by packing, extension takes place.

There are rules governing extension. They are:

• Only the actual number of bytes required is
requested. (The system will probably return more
than is needed.)

• Only that area of the subsystem description that is
actually affected is extended.

• All extensions are permanent. (if at a later time the
extended object no longer needs the space assigned
to it by the extension, that extra space is not returned
to the system.)

Figure WO-6 shows the subsystem description objects
that can be extended and those objects that can not be
extended.

WO-1O

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983. 1984. 1985

Subsystem Description

The primary object
is not subject
to extension.

Basic
Information
and
Attributes

The objects
containing
these entries
can be
extended.

Work Station
Name Entries

Work Station
Type Entries

Autostart
Job Entries

Job Queue
Entries

Routing
Entries

Resolved
Names Table
Entries

Communications
Entries

Figure WD-6. Subsystem Description Objects that Can and Cannot Be Extended

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-11

Subsystem Description Recovery

The recovery procedures for subsystem descriptions
preserve the usability of a subsystem description without
requiring that the subsystem description be restored or
reinstalled.

All of the data needed to change a subsystem
description and to restore it (should the system fail in
the middle of a change-in-progress) is contained in a
fixed area within the subsystem description primary
object.

_~~~~f~{i~~~~~~=~~~~~~~~~~~~P~~~===== }
Information to restore a subsystem description

Code (type of change)

Status of change

WWDXCHG

WWDXCHGS

Change-in-progress flag WWDXCHGP

Recovery-in-progress flag WWDXRCVP

Recovery Information

Before changing a subsystem description, all relevant
data is placed in a fixed area. When the data is ready to
be moved into the affected area of the subsystem
description, a change-in-progress flag is turned on.
This flag is turned off when the change is complete.

Should a system failure occur while the
change-in-progress flag is on, a subsystem recovery
module is invoked when the subsystem description is
next referenced (after system operation is restored).
This module backs out the aborted change (except for
removes and attribute changes, which will be carried
forward). The recovery-in-progress flag is turned on
whenever recovery is in process. The code and status
data inform the recovery module what actions are
necessary for recovery.

A system failure or any other failure occurring while the
recovery-in-progress flag is on results in a damaged
object condition for that subsystem description.

WO-12

Contents of
these fields
vary according
to the type of
change to be
performed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Subsystem Description Control Information Entries

The control information specified in many of the CL
commands, which affect subsystem descriptions, exist in
the form of a series of entries.

Entry 1

Entry 2

Entry 3

•
•
•
•
•
•

Entry n

Work Station Name
Work Station Type
Autostart Job
Job Queue
Routing
Communications

One byte in each entry is a status byte. The
setting of the bits tells if the entry is:

Active-Valid for use
Deleted-Not to be used
Changed-An update to the entry exists further
down in the list (this entry is not to be used)
Last-The end of the list

Entries that are deleted or changed are not removed
from the list. Rather, their changed or deleted status is
flagged. Later, when additional space is needed to add
or change an entry, or when a subsystem is started
using the subsystem description, the flagged entries are
eliminated and the remaining entries are packed. If an
entry is changed, its replacement can be found further
down the list.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-13

Subsystem Description Entry Structure

Work Entries

Routing Entries

The routing entries in a subsystem description have
somewhat different characteristics than work entries.
Routing entry characteristics are as follows:

The work entries contained in a subsystem description
have the following characteristics: • Order does matter

• Order does not matter

• Entries are not frequently referenced

Entry 1

Entry 2

•
•
•

Entry n

Fixed Length

Note: The length is fixed by the kind of work entry
(work station name, autostart, etc.).

WD-14

• Entries more frequently referenced

(cant)

Entry 7

Routing entries are variable length to reduce the amount
of space required. Some information (that which is not
immediately required by a monitor) is kept in a separate
resolved names table object.

Note: Routing entries are linked in ascending sequence
number order. No deleted or changed entries (required
to be present within the object because of restrictions
imposed by active subsystems) are present on the chain.

Figure WO-7 shows the organization of routing entries.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

First character
is always hex F F .

FF

FF

FF

WWDRSTRT

Offset to First Routing Entry

(
Offset to Next Routing Entry

This field is within the variable C V I
(. . - ompare a ue

length portIon of a routing entry.
WWDRBSPO WWDRCMPV

This field is
within the fixed

-----Iength portion of -- Compare Value Length

a routing entry.

WWDRRTGE

Routing entries are chained
together in sequence number order.

WWDREOF
'----- '1' on Last Entry

(last entry is empty)

True Length of a
Routing Entry Equals

length (WWDR RTGE)
-length (WWDRCMPV)
+WWDRCMPL

Figure WO-7. Organization of Routing Entries

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-15

Resolved Names Table

In order to save space in the routing entries secondary
object, all information related to external objects is kept
in another secondary object called the resolved names
table.

Resolved Names Table

Index Number

Pointer Object Name

,-__ S_im_p_le_N_am_e __ ... 1 & LI __ L_i_b_ra_r_y_N_a_m_e __ 1 & rn Type and
Subtype

Resolved Names Table

When entries are added to a subsystem description, an
attempt is made to resolve to the objects named in the
command. Routing entries contain index numbers to
resolved names table entries. In the resolved names
table entry will be found:

• A pointer to the named object.

• The object name. (If the command indicated that an
NRL search was to be performed to locate the object,
the library name field will be filled in with the
information returned from the resolve.)

During subsystem operation, the monitor normally uses
only the pointer to the object. However, this pointer
could be unusable (perhaps the resolve attempt made
when the entry was added was not successful or
perhaps the object originally resolved to no longer
exists, as happens when programs are recompiled). If
the pointer is unusable, the subsystem monitor will
attempt to resolve, using the object name information
stored in the resolved names table entry. If this fails, a
diagnostic message is issued.

WO-16

Note: Only active routing entries refer to resolved
names table entries. If a routing entry is changed or
deleted, its name table entries are made available for
reuse. Moves and renames of programs and classes
specified in routing entries do not make the pointer
unusable. The Display Subsystem Description command
displays the name that will be used to resolve and the
names that were originally specified in the routing entry
rather than the name of the program and class as they
might exist at present.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Figure WD-8 shows an overview of available entries in
the resolved names table.

Subsystem Description
Primary Object

IWWDXNAVLI

First Available
Entry (top of
the chain)

Entry Number 1

Entry Number 2

Entry Number i

Entry Number i + 1

Entry Number i + 2

Entry Number n

Each available entry
is flagged.

Once an entry is put into use, it
is removed from the available chain.
The entry will be added back on to
the chain at the time it is again
made available. Entries are taken
from and put back onto the top of
the chain.

Subsystem Description
Names Table Object

FF 2

FF n

/ / / / /

/ / / / /

/ / / / /

/ / / / /

index number of the next avail
able entry. The last entry in the
chain will specify an index
number of zero.

Figure WO-S. Resolved Names Table-Available Entries

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-17

Flow of Subsystem Description Modules That
Change the Subsystem Description

Figure WD-9 and the following text describe the general
module flow of subsystem description modules that
change the subsystem description.

.. Initialization functions-This includes copying into
the CPP (command processing program) the data
from the command analyzer and setting up the
replacement text and message flags that will be
passed to QWDMMSG later.

B Locate the subsystem description-A separate
module performs all resolve functions for this
component. Difficulties encountered in locating the
subsystem description are noted for later message
issuance.

II Lock the subsystem description-The subsystem
description is locked according to protocol. If the
subsystem description is not active and it is found
that a change-in-progress flag is on in the
subsystem description (an indication of possible
damage), a separate module is invoked to attempt
recovery. Difficulties with the locking protocol are
noted for later message issuance.

II Validation-The data that was passed from the
command is analyzed to uncover as many error or
warning conditions as is practical. This often
involves references to existing data in the
subsystem description. External objects specified
in the command are located. Data within those
objects is used as appropriate to the validation
process. An image of the entry to be placed into
the subsystem description is built. Both serious
and warning conditions are noted for later
message issuance.

WD-18

III Change the subsystem description-If no serious
errors were detected so far, the command
processing program proceeds to change the
subsystem description. Any remaining data
required to change or recover the subsystem
description is filled in. If the present size of the
subsystem description cannot accommodate the
change, then the pack, and if required, the extend
modules are invoked to provide the required
space. If the subsystem description is not active,
the CPP makes the changes to it. Otherwise, the
monitor presently using the subsystem description
is signaled to make the changes. Difficulties in
changing the subsystem description are noted for
later message issuance.

II Unlock the subsystem description.

II The final step is to invoke the module that will
send out the messages indicated by the message
flags and, if necessary, to signal an exception to
the caller of the CPP. In addition to messages
sent to the requester, a record of change activity is
sent to the history file. The system operator is
also notified if an active subsystem description is
changed.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
Data From
Command
Analyzer

QWDMRSLV

Resolve to
External Objects

II
QWDMRCVR
Recover
Subsystem
Description

Command
Analyzer Data

Replacement
Text

II

.. Replacement
Text and
Message Flags

Subsystem
Description

II
QWDMRSLV

Resolve to

Replacement
Text and
Message Flags

If Routing Entry

Class

-

External Objects
--------~~ ~------~ Program

Data for
Change and
Recovery

Subsystem
Description

If Job Entry

QWDJDVF

Validity Check
~---' Device File

QWDJFNE

-

If Job Entry

Device
Description

Job Queue
I--

__ F_in_d_J_O_b_E_nt_r.:.y---,~ Job Description -

File I--

User Profile

L Figure WD-9 (Part 1 of 2)_ General Flow of Modules That Change a Subsystem Description

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Subsystem Description WD-19

If Short on Space

QWDMXTND II Extend
Subsystem

Description 10-

QWDMPACK ~
Pack
Subsystem
Descri ption

Cpp

(unlock)

Replacement
Text and
Message Flags

II

Data for
Change and
Recovery

Subsystem
Description

Subsystem
Description

II
QWDMMSG
Send Messages
and Signal
Exceptions

History
File

Figure WD-9 (Part 2 of 2). General Flow of Modules That Change a Subsystem Description

WD-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

L

INTRODUCTION

The file reference function component of the CPF
(control program facility) processes four CL commands.
Each command requests the extraction and display of
information concerning various system object attributes.
This information can be printed, displayed on a work
station, or inserted in a data base file specified by the
user. The commands processed by the file reference
function component are:

• Display Data Base Relations (DSPDBR)

• Display File Field Description (DSPFFD)

• Display File Description (DSPFD)

• Display Program References (DSPPGMREF)

GENERAL OVERVIEW

File Reference Function Modules

The file reference function component consists of the
following modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QWHCLEAN-File Reference Clean-Up: This module
is called to cancel any spool files created
QWHDSDBR, QWHDSFFD, QWHDSPFD, or
QWHDSPPR. when the file reference function is not
allowed to complete normally.

-->QWHDSDBR-Display Data Base Relations
(DSPDBR)': This module determines the file
dependency relationships for the file requested by the
user.

'This module is a CPP (command processing program).

File Reference Function

QWHOUTFL-Verify/Create Outfile: This module
verifies the outfile specified on the Display Data
Base Relations, Display File Field Descriptions,
Display File Description, and Display Program
References commands. If the file or member does
not exist, QWHOUTFL will create them.

-->QWHDSFFD-Display File Field Descriptions
(DSPFFD)': This module determines the file field
level descriptions for each field of the file requested
by the user.

QWHOUTFL-Verify / Create Outfile: This module
verifies the outfile specified on the Display Data
Base Relations, Display File Field Descriptions,
Display File Description, and Display Program
References commands. If the file or member does
not exist. QWHOUTFL will create them.

-->QWHDSPFD-Display File Description (DSPFD)':
This module determines the file description for the
file requested by the user and processes information
that is displayed or printed.

QWHFDOUT-Display Outfile Description: This
module processes the file description information
to be placed in a data base output file.

QWHOUTFL-Verify / Create Outfile: This module
verifies the outfile specified on the Display Data
Base Relations, Display File Field Descriptions,
Display File Description, and Display Program
References commands. If the file or member does
not exist. QWHOUTFL will create them.

-->QWHDSPPR-Display Program References
(DSPPGMREF)': This module determines the device
files, data base files, and CL variables, which are to
be device files or data base files, that are referenced
by the program requested by the user.

File Reference Function WH-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QWHFDCHK-Display File Description Validity
Checker: This module is a validity check program for
the Display File Description command. QWHFDCHK
verifies that invalid combinations of parameters have
not been specified.

QWHOUTFL-Verify /Create Outfile: This module
verifies the outfile specified on the Display Data
Base Relations, Display File Field Descriptions,
Display File Description, and Display Program
References commands. If the file or member does
not exist, QWHOUTFL will create them.

File Reference Function Overview

Figure WH-1 and the following text show the two
invocation paths to the file reference function
component. It also shows the CPF components involved
in an invocation and those components supporting the
file reference function access to data base file
descriptions, device file descriptions, and library data.
File reference function also uses the 5211/3262/3203
function manager to print the requested information,
spooling to display the information, data base and
common data management to send the information to a
file, and the message handler to handle messages and
exceptions.

D The invocation paths are identical for each of the
four commands. Each command, with the desired
parameters, can be entered from a console or
work station, with or without prompting, or from a
batch processing CL job or CL program. Each
command is syntax checked by the command
analyzer before it is processed by the appropriate
file reference function command processing
program.

II OWHFDCHK performs additional checks on the
Display File Description command that are not
performed by the command analyzer.
QWHFDCHK also signals the following errors:

WH-2

• Multiple TYPEs specified with OUTFILE.

• FILEATR (*MXD) not allowed with TYPE (*ATR)
when OUTFILE is specified, or multiple
FILEATRs specified with OUTFILE and TYPE
(*ATR).

• TYPE does not have a valid FILEATR
specification.

• FILEATR does not have a valid TYPE
specification.

II QWHDSDBR extracts, formats, and either prints,
displays, or puts in a file, dependency relationships
for the displayed data base files. The actual
displayed information depends on the file
characteristics and the parameter options specified
by the user. The three types of dependency lists
that can result are:

A list of all files using the specified format or
formats.

• A list of all files sharing a data or access path
with the specified file or files.

• A list of all members that share a data or
access path with the specified member.

If the information is to be put in a data base file,
as specified by the user. and that file does not
exist, QWHOUTFL will create the file.
OWHDSDBR signals the appropriate exception if
any of the following errors are detected:

• The library, file. member, or format was not
found.

• The file specified is a device file.

• An error occurred while extracting the file
definition, record formats, or member names.

• The output file is not a sequential physical file
with record format QWHDRDBR.

• The output file is OADSPDBR.OSYS.

• An output file error occurred during file or
member creation, open, put, or close.

• An error occurred while clearing a member of
an existing output file.

• The user is not authorized to the file or outfile.

• An error occurred when a display was
attempted or when a display was canceled.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II QWHDSFFD extracts, formats, and either displays,
prints, or puts in a file, field level descriptions for
each field of the specified data base file or files.
The actual displayed information depends on the
file characteristics.

If the information is to be put in a data base file,
as specified by the user, and that file does not
exist, QWHOUTFL will create the file.
QWHDSFFD signals the appropriate exception if
any of the following errors are detected:

• The library or file was not found.

• An error occurred while extracting the file
definition or record formats.

• The output file is not a sequential physical file
with record format QWHDRFFD.

• The output file is OADSPFFD.QSYS.

• An output error occurred during file or member
creation, open, put, or close.

• An error occurred while clearing a member of
an existing output file.

• The user is not authorized to the file or outfile.

• An error occurred when a display was
attempted, or when a display was canceled.

• The overflow value or form size width for the
print file is too small.

II QWHDSPFD extracts, formats, and either displays
or prints the file descriptors for the data base or
device file specified. The actual displayed
information depends on the file characteristics and
the parameters specified. Any of the following
types of file data can be displayed if the type
requested is appropriate to the specified file:

• File attributes

• File access paths and key descriptions

• Select and omit specifications

• Collating sequence specifications

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• Record format descriptions

• Member descriptions

• Spooling attributes

• Member list

QWHDSPFD signals the appropriate exceptions if
any of the following errors are detected:

• The library or file was not found.

• An error occurred while extracting the file
attributes, record format names, member
names, member attributes or record format
attributes.

• An invalid option was entered on the TYPE or
FILEATR parameters for the type of file.

• The user is not authorized to the file.

• An error occurred while opening, closing, or
writing information to the output file.

• An error occurred when a display was
attempted, or when a display was canceled.

• The overflow value or form size width for the
print file is too small.

QWHFDOUT performs the same functions as
QWHDSPFD, except QWHFDOUT places the
output data in a data base file.

QWHFDOUT signals the appropriate exceptions if
any of the following errors are detected:

• The library or file was not found.

• An error occurred while extracting file attributes,
record format names, member names, .member
attributes, or record format attributes.

• An invalid option was entered on the TYPE or
FILEATR parameters for the type of file.

• The user is not authorized to the file.

• An error occurred while creating, opening,
closing, or writing information to the output file.

File Reference Function WH-3

• The output file is not a sequential physical file
with the correct record format.

• The output file is the system supplied file in
QSYS.

• An error occurred while clearing a member of
an existing output file.

II QWHDSPPR extracts, formats, and either displays,
prints, or puts in a file, a listing of the device files,
data base files, and CL variables, which are to be
device files or data base files, that are referenced
by the displayed program. The actual displayed
data depends on the characteristics of the
displayed program.

If the information is to be put in a data base file,
as specified by the user, and that file does not
exist, QWHOUTFL will create the file.

QWHDSPPR signals the appropriate exceptions if
any of the following errors are detected:

• The library or program was not found.

• An error occurred while extracting the program
references.

• The output file is not a sequential physical file
with record format QWHDRPPR.

• The output file is QADSPPGM.QSYS.

• An output file error occurred during file or
member creation, open, put, or close.

• An error occurred while clearing a member of
an existing output file.

• The user is not authorized to the program or
outfile.

• An error occurred when a display was
attempted, or when a display was canceled.

WH-4

II QWHOUTFL extracts the outfile to verify that it is
the correct type of file and has the correct record
format. If the output file and member does not
exist, QWHOUTFL creates them. QWHOUTFL
signals the appropriate exception to the command
processing program if any of the following errors
are detected:

• The system supplied outfile description is not
available.

• The correct record format name is not found in
the outfile.

• The outfile is not a physical arrival file.

• The outfile library is not found, authorized, or
accessible.

• An error occurred while creating the output file
or member.

• The file is a where-used system file.

• An error occurred while clearing a member of
an existing output file.

iii QWHCLEAN cancels any spool files created by the
file reference command processing program when
the command processing program is not allowed
to complete execution. QWHCLEAN signals an
error occurred when canceling the display.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
, DSPDBR

DSPFFD
DSPFD r---

Prompter
DSPPGMREF

or_

DSPDBR
II DSPFFD

r-- II ~ DSPFD
DSPPGMREF Command - Analyzer

~
File Reference Function

QWHDSDBR

Security • Display Data
Base Relations

QWHDSFFD

II
Display File

Librarian Field
Descriptions

QWHDSPFD

Message • Display File
Handler Description

QWHFDOUT

QWHOUTFL II Display File
Description

Verify /Create For Outfile

Outfile

QWHDSPPR

II Display Program
References

Figure WHo'. File Reference Function Overview

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

?DSPDBR " ?DSPFFD
?DSPFD
?DSPPGMREjI

QWHFDCHK
Display File
Description
Validity Checker

QWHCLEAN

Cancel Spooled
Output

Data
Base

Common Data
Management

Device
Support

Spooling

File Reference Function WH-5

WH-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

INTRODUCTION

The work station printer function manager component of
the CPF (control program facility) provides the support
for the work station printers on System/38. The
following printer functions are supported by the work
station printer function manager:

• Open printer file for processing

• Close printer file to processing

• Write data to a printer file

Work Station Printer Function Manager

GENERAL OVERVIEW

Work Station Printer Function Manager Modules

The work station printer function manager component
consists of the following modules:

Note: An arrow (--» identifies a module as being an
entry into the component. Indentation of a module
shows its dependency on a previous module.

-->QWPOPEN-Printer Open: This module prepares an
output file for processing by a work station printer.
The printer is initialized and the LUD (logical unit
description) is modified for the following:
- Forms length
- Forms width
- Lines per inch to print
- Characters per inch to print

If the lines per inch to print is to be changed on the
5256 only, a message is sent to the default message
queue to change it.

Open modifies the common data management entry
point table when field level support is specified,
entering the address for QPNPTFLD in place of
QPNPUT. When the spool writer is printing data
from the spool output queue, open modifies the
common data management entry point table by
entering the address of QWPREQIO instead of
QPNPUT.

QPNALLOC-Continuation of Open: This module is
part of the open process and performs those
functions common to open processing for printer
files. It is invoked by the work station printer
function manager open, the 5211 /3262/3203
function manager open, and the spool open to
validate the open parameters and establish the
function manager work area.

Work Station Printer Function Manager WP-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

1

-->OWPCLOSE-Printer Close: This module closes a file
to the work station printer. Blocked records are
printed if the close is normal; records are purged if
the close is not normal. If the close is not temporary,
the space objects are destroyed.

-->OWPGRCLS-Printer Graphic Close: This module
begins the process of closing a printer graphic file.
OWPGREOP is called to process any remaining
graphic data. Graphic work space is destroyed and
OWPCLOSE is called to complete the closing of the
printer graphics file.

-->OPNPUT /OPNPTFLD/OWPGRAPH-Put Records:
This module places a single data record into a work
station printer output file. Page formatting can be
controlled by OPNPUT /OPNPTFLD/OWPGRAPH, by
the user program, or from information in a device file
depending on whether data records are described in
the user program, outside the user program in a
device file, or in both places.

When print records are folded or truncated, a
message is sent to the job log indicating that
occurrence.

OWPORDER-GDF Order Header: This module
processes GDF orders when called by the put level
printer module OWPGRAPH.

OWPGREOP-Graphic End of Page Handler: This
module is called by OWPORDER or OWPGRCLS
to move graphic data to a work station printer
output file.

- - >OWPFEOD-Forced End of Data: This module sends
print lines to the work station printer that has been
put into the printer ouput file but have not yet been
printed.

WP-2

-->OWPUSEVH-Unsolicited Event Handler: This
module handles any unsolicited input from the work
station printer.

-->OWPNWEVT-REOIO Complete Event Handler: ;rhis
module handles the REOIO complete event that is
signaled by the machine after a nowait I/O operation.

OWPERROR-Error Handler: This module handles
exceptions signaled by the SNA-T3 component,
I/O managers, and hardware.

OWPLUDIN-LUD Associated Space Initializer:
This module initializes the SNA-T3 dependent
areas of the LUD-associated space for the work
station printer.

OPNOERRS-Error Handler: This module is called
by OWPOPEN when an open parameter error
occurs or when an open message must be sent to
the default message queue.

OPNPERRS-Error Handler: This module is called
by OPNPUT /OPNPTFLD when a put parameter
error occurs.

OWPXPRMA-Error Handler/Forms Alignment:
This module handles exception conditions and
hardware I/O errors as well as forms alignment.

-->OWPREOIO-REOIO Processor: This module is the
interface to OT3REOI0 when blocked data is to be
sent to the work station printer. It completes the
control blocks needed by OT3REOI0 to issue the
REOIO instruction.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Station Printer Function Manager WP-3

Print Operation

Figure WP-1 and the following text describe a work
station print operation.

D A high-level language program or the spooling
component. through the QOMCOPEN module of
common data management. calls QWPOPEN to
prepare a file and. if necessary. initialize the printer
for a print operation.

o An argument list is passed that contains a
pointer to the UFCB (user file control block)
and an index into the OOPCB (open data
path control block) to the device being
opened.

o A message is sent to the default message
queue if a different lines per inch to print is
specified.

• If the lines per inch or the forms length are
initialized, a request I/O is issued through
the SNA-T3 to the I/O manager. Control is
returned to the caller.

B After the file has been opened and the printer
initialized. the information to be printed can be
sent to the printer. This is accomplished by calling
QPNPUT /QPNPTFLO/QWPGRAPH. Page
formatting information can be found either in a
device file or the user program.

o An argument list is passed that contains
pointers to the UFCB. option list. and to
control information.

o If an error is detected or the forms need to
be positioned at line 1. a message is sent to
the default message queue. A message is
sent to the job log if print lines are to be
truncated or folded.

WP-4

• Request 1/ Os are issued through the
SNA-T3 to the I/O manager to print the
records. Up to an entire page of print lines
can be loaded into the data buffer before a
print operation is performed.

II QWPFEOO is called to perform a print operation
on print lines that have been blocked in the data
buffer but not yet printed.

o An argument list is passed that contains a
pointer to the UFCB.

o If an error is detected or the forms need to
be aligned, a message is sent to the default
message queue.

II After all print records have been passed to the
work station printer function manager.
QWPCLOSE, through the QOMCLOSE module of
common data management. is called to close the
file to further processing.

o An argument list is passed that contains a
pointer to the OOPCB. the type of close to
perform, and an index to the device being
closed ..

o If an error is detected or the forms need to
be aligned, a message is sent the default
message queue.

• A printer operation is performed to print
those lines that have been blocked in the
data buffer but not yet printed.

II When intervention required is detected by
QWPUSEVH. a message is sent to the default
message queue. When the appropriate action has
been performed and the ready switch on the
printer has been pressed. a printer available
message is sent to the default message queue and
printing resumes.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983, 1984. 1985

L

L

L

1
Argument

List

D +

Job Log

High-Level Language or Spooling Component

QDMCOPEN

Common

Open

Message

Handler

0

II II

1
Requester

Work Station Printer

G
QT3REOI0

SNA-T3

Request I/O

QDMCLOSE

Common
Close

--~--------------
Machine Interface

I Figure WP-1. Work Station Print Operation

This document contains restricted materials of IBM. L Y21 -0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Work Station

Printer
I/O Manager

PAA8039-O

Work Station Printer Function Manager WP-5

Work Station Printer Function Manager Internal
Interfaces

Figure WP-2 and the following text describe the work
station printer function manager internal interfaces. The
internal interfaces are defined as those events that
invoke a work station printer function manager module.

.. The REQIO complete event is signaled whenever
an REQIO instruction is completed (direct I/O
only).

II QWPNWEVT dequeues the completed request
block from the machine response queue and calls
QT3REQI0 to process the request block. If the
request is a put nowait, a put nowait complete
event is signaled to the SNA-T3 component.

II The unsolicited input event is signaled by the
machine whenever it receives data and does not
have a request block from SNA-T3 to put the
data in.

II QWPUSEVH handles unsolicited data from the
work station printer. It calls SNA-T3 to retrieve
the unsolicited input from the machine.

.. Machine
Events

REQIO
Complete
Event II

Unsolicite

II II Input Eve

OWPNWEVT OWPUSEVH

Request I/O Unsolicited
Event Handler Event Handler

, , , ~
OT3REOI0 OT3REOIO

SNA-T3 SNA-T3
Request I/O Request I/O

Figure WP-2. Work Station Printer Function Manager
Internal Interfaces

WP-6

d
nt

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The 5251 display function manager component of the
CPF (control program facility) provides the interface
between the display user and display operations. Both
sizes of display screens are handled by the 5251 display
function manager.

The 5251 display I/O operations are performed through
the SNA-T3 component. SNA-T3 actually issues the
REQIO instructions and interfaces with the 5251 I/O
manager, which is below the machine interface.

The method by which the display is attached to the
system (native or remote) is transparent to the function
manager. The function manager is responsible for
issuing the SNA-T3 requests in the proper sequence,
but SNA protocol is enforced by the SNA-T3
component.

Because a process can use multiple displays
concurrently, modules of the 5251 display function
manager can appear many times in the invocation stack.
Each invocation of a function manager module deals
with a single display. A user request always identifies
the display and a file. Therefore, with those two items
being identified, the function manager can perform its
functions to the correct device without being aware of
the other displays on the system.

GENERAL OVERVIEW

5251 Function Manager Modules

The 5251 function manager consists of the following
modules:

Note: An arrow (--» identifies a module as being an
entry module into the component. Indentation of a
module shows its dependency on a previous module.

-->QWSCLOSE-Display Close: This
module closes a display file to further processing.

5251 Display Function Manager

QWSERROR-Display Exception Handling Routine:
This module handles exceptions signaled by the
SNA-T3 component.

-->QWSTSTR-Test Request: This module handles the
Test Request key.

QWSLUDIN-LUD Initialization: This module
initializes the 5251 display and the SNA-T3
dependent areas of the LUD (logical unit
description) associated space. This module is
invoked only at vary on and LUD creation time.

-->QWSMEEH-Display Nowait Event Handler: This
module handles the REQIO Complete event that is
signaled by the machine after a nowait I/O operation.

-->QWSMSG-Display Message Function: This module
turns on or off the display Message Waiting light.

-->QWSOPEN-Display Open: This module opens a
display file to processing.

-->QWSPUT-Put to Display: Thi.s module performs the
write-to display functions. These functions include
writing new data, erasing data on the screen, and
unlocking the keyboard.

-->QWSGET-Display Get Function: This module
performs the read-from display functions. These
functions include such operator requested operations
as field validation, printing the display, and second
level text.

-->QWSPTMSG-Special Put Message: This module is
used by CPF work management to display an
operator message independent of the device file
open.

-->QWSRST -Restore File: This module restores a
suspended file on a display device.

-->QWSSPEND-Suspend File: This module suspends a
file on a display device.

QSFPUT -Put to Subfile: This module puts and
updates subfile records and subfile message
records.

5251 Display Function Manager WS-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QSFCRT-Create Subfile: This module creates the
subfile and sets any necessary controls for the
subfile.

QSFGET-Get From Subfile: This module retrieves
records from a subfile.

QSFHSFL-Help Key Support: This module
performs the Help key support for a subfile
message.

QWSRTSFL-Roll/Truncate/Foid Subfile Support:
This module performs the roll and fold or truncate
functions.

QWSSFLCT -Display Subfile Control Records
Function: This module performs subfile control
functions, such as display subfile, display subfile
control record, clear subfile, delete subfile, and so
forth.

-->QWSUIEH-Unsolicited Input Event Handler: This
module handles unsolicited input from the 5251
display.

QSFMQDSP-Message Queue Display: This
module handles subfile messages on a program
message queue.

-->QWSDSMSG-Display Status Message: This module
displays a status message to the display operator.

-->QWSCRTRB-Create Request Block: This module
creates the request blocks that are used by the 5251
display function manager.

-->QWSLUDRS-LUD Reset: This module resets
portions of the 5251 display dependent area of the
LUD-associated space. This module is invoked only
at LUD vary off time.

WS-2

5251 Function Manager External Interfaces

Figure WS-1 and the following text describe the
external interfaces to the 5251 function manager. An
external interface is defined as a call from the using
program to a module within the function manager.

a Function Manager Users: The function manager
does not distinguish one external user from
another. A call from an external user identifies a
requested function. The function manager
performs that function independent of the caller.

II Upward Interface: All execution time requests and
controls from the using program are provided
through this interface. The program provides
information to the modules through parameters on
the call, the UFCB (user file control block), the
option list, and the control list. Information is
returned in several ways: through the open data
path control block (feedback areas), the UFCB
(buffer pointers), events, exceptions, and the user
input buffer.

• Function Manager Modules: Each call to a
function manager module specifies a single 5251
display. Each invocation of the function manager
deals with a single display. Each display is
handled as though it was the only display in use.

.. Downward Interface: The downward interface is
strictly between the function manager and the
SNA-T3 component. It is a controlled interface
that is also used by the 5256 function manager
component.

• The 5251 function manager always has the
SNA-T3 handle the sending of responses to the
5251 requests.

• The function manager only deals with complete
chains of data, both sending and receiving.

• Exceptions signaled by SNA-T3 are handled by
an external exception handler, QWSERROR.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

I Applications, Util'ties, and CPF Components I} ..
~l------.....-------....------~------------r~----.--------'

ODMOOPEN

Common
Open

:::~:SE } II
Close

r - - - - - - - -- - - - - - - - - - - - - - - - - - ""F'::ti-;; - -- - - Man;;;r - - - - - -,

I
OWSOPEN

Display
Open

OWSPUT

Put to
Display

! I
Subfile
Modules'

OWSGET OWSDSMSG

Display
Get

Display
Message

!
OTSHELP

3270
Keymapping

OWSSPEND

Suspend
File

r---------
OWSERROR

Exception
Handling

I
I
I

I
I
I L ______ J

lSee Figures WS-9 and WS-10 for detail,

OT3REOIO

SNA-T3
-Request I/O

5251 Display
I/O Manager

Figure WS-1. 5251 Function Manager External Interfaces

This document contains restricted materials of IBM. LY21-0571-6

©Copyright fBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

OWSRST

Restore
File

OWSMSG

Display
Message

OWSPTMSG

Special Put
Message

OWSCLOSE

Display
Close

I
I
I
I
I
I
I
I
I
I

----------------~

Machine Interface

II

5251 Display Function Manager WS-3

5251 Function Manager Internal Interfaces

The internal interfaces are defined as those events that
invoke the 5251 function manager modules.

Figure WS- 2 and the following text describe the
function manager internal interfaces.

a The REQIO complete event is signaled whenever
put or a get nowait instruction is completed.

II QWSMEEH dequeues the completion message
(feedback record) from the machine interface
response queue and calls QT3REQIO to process
the T -3 request block. QWSMEEH then
determines if the request type was a put or a get.
If the request was a put nowait, a put nowait
complete event is signaled to the user. If it is a
get nowait request, QWSMEEH calls QWSGET to
process the input data. QWSGET can do several
things: detect an operator error, send a message,
and reissue the get nowait request, or they can
handle an operator request-help or print. If the
get routines process errorless user data,
QWSMEEH signals the data available event to the
user. If the get routines reissued the get nowait,
the data available event is not signaled.

WS-4

II The unsolicited input event is signaled by the
machine when it receives data and does not have
a request block from SNA-T3 to put the data in.
This could be from the Help key or the Sys
Req/ Attn key, which is unsolicited data. Or, it
could be that the SIOM received more data than
there was room allowed for.

II QWSUIEH is called by work monitor as a result of
the machine unsolicited data event from the 5251
Display as well as from the 5256 printer. It calls
SNA-T3 to retrieve the unsolicited input from the
machine.

II QWSTSTR is called by work monitor as a result of
the display operator pressing the Test Req key and
the display being in the signed-on state.
QWSTSTR calls SNA-T3 to retrieve the
unsolicited input. QWSTSTR displays a command
key not valid message to allow the operator to
continue.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Machine
Events

D

REOIO Unsolicited II
Complete Input

II OWSMEEH
Work

Nowait Event Monitor

Handler

~ ~

, ,
OT3REOI0 II OWSUIEH

.......
SNA-T3-

Unsolicited Input
Request I/O Event Handler

.....
, ~,..

OWSGET OT3REOI0

.......
Display """I(" SNA-T3

Get Request I/O

Figure WS-2. 5251 Function Manager Internal Interfaces

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

., r
II OWSTSTR

Test
Request

I

5251 Display Function Manager WS-5

Put Operation

Figure WS-3 and the following text describe a put
operation.

II For a field-level put request, the user buffer
contains the option indicators followed by all
hidden and output fields as described in the device
file. Field data is processed one field at a time and
is put in the source/sink data area of the SNA-T3
request block, along with the necessary controls to
display the data. Hidden fields are saved in the
function manager work area.

A nonfield-Ievel put user buffer contains a
character string that is treated by the function
manager as a single field of data to be sent to the
display. The character string is moved from the
user buffer to the source/sink data area of the
SNA-T3 request block without being looked at or
altered. All necessary controls to display the data
are supplied by the function manager.

The user buffer for a user-defined data stream
request contains the complete 5251
display-dependent data stream. As in a
nonfield-Ievel put, the data is moved into the
source/sink data area just as it was passed to the
function manager. With a user-defined data
stream request, the function manager does not add
display controls to the data.

II Message File: The user can optionally specify a
message from the message file as output data.
QWSPUT retrieves the message and sends it to
the display user.

WS-6

II Device File: Default data and constants from the
device file can be sent to the display. The data is
taken from the device file, processed and placed in
the source/sink data area of the SNA-T3 request
block.

.. Source/Sink Data: The source/sink data, which is
part of the SNA-T3 request block, is where the
function manager builds the 5251-dependent data
stream that is to be transmitted. The data stream
contains all of the controls needed to display the
user record as described in II.

• Function Manager Work Area: The function
manager work area is a part of the open data path
control block. As the function manager builds the
output data stream in the source/ sink data area of
the SNA-T3 request block, it also builds a user
buffer image in the function manager work area.
This work area contains a buffer image for each
active record on the display screen.

iii Job Log: The device file record as seen in the
user buffer can optionally be sent to the job log as
well as to the display device.

• I/O Feedback Area: This area is updated at
various times while the function manager is
performing the put operation.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

D
User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

Message File
II

Messages
QWSPUT

Build Output

Device File
Data Stream

Field
Descriptions

II
Source/Sink Data

5251 Data
Stream

Figure WS-3. Put Operation

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open Data Path

I/O Feedback
Area

Job Log

Logged
Records

FM Work Area

Record Save
Area

5251 Display Function Manager WS-7

Put to Subfile Record (Data Flow)

Only field-level files provide subfile functions. The
subfile functions do not support nonfield-Ievel files. •
User data is treated the same as if the'"request were to
a nonsubfile record by the put routines. QWSPUT
determines that the record is a subfile record and
transfers control to QSFPUT.

Figure WS-4 and the following text describe a put to a
subfile record operation.

D For a subfile record put request, the user buffer (or
a separate indicator area) contains the option
indicators followed by all hidden and output fields
as described in the device file.

II The field descriptions for the subfile record are
received from the device file and placed in the
subfile.

II QSFPUT takes the data and its attributes, one field
at a time, and saves them in the subfile. All of the
information needed to display the record as part of
the subfile is maintained in the subfile, except for
constants that are kept in the device file. The
record remains in the subfile until the using
program requests that it be displayed.

.. QSFPUT calls QSFCRT during the first subfile
record put operation to create the subfile space
that will receive all the data from the user buffer
or the program message queue if the subfile is a
message subfile.

WS-8

II The user can optionally specify a message key and
a program message queue as a source of data for
message subfiles. The subfile modules receive a
copy of the messages specified from the message
queue and place these into the subfile.

II QSFPUT calls QSFMQOSP when the put operation
to the subfile record specifies that the data to be
placed in the subfile should come from a program
message queue instead of the user buffer.

II The subfile is where all subfile information from
the user buffer is stored. The subfile record
remains in the subfile until the using program
requests that it be displayed.

II The record, as seen in the user buffer, can
optionally be sent to the job log as well as to the
subfile. This is done independent of the subfile
functions.

II The I/O feedback area is updated at various times
while the function manager is performing the put
operation. Additional information, such as the
relative record operated on, is put in the I/O
feedback area for subfile functions.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

•
Device File

Field
Descriptions

•
QSFCRT

..
User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

iQWSPUT

Build Output Data
Stream Call Subfile

QSFPUT

Place Record
in Subfile

II
QSFMQDSP

Creates
Subfile Space

Message
Queue Display

Figure WS-4. Put to Subfile Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II

Open Data Path

I/O Feedback
Area

Job Log

Logged
Records

Subfile

Subfile
Records

&I

Program Message
Queue

Messages

5251 Display Function Manager WS-9

Put to Subfile Control Record (Data Flow)

Only field-level files provide subfile functions. The
subfile functions do not support nonfield-Ievel files.
User data is treated the same as if the request were to
a nonsubfile record by the put routines. OWSPUT calls
OWSSFLCT if a put is done to the subfile control record
and a subfile function is requested (such as initialize,
delete, and so forth). Operations to the subfile control
record only cause I/O to the console if the display
subfile or display subfile control record function is
indicated.

Figure WS-5 and the following text describe a put to a
subfile control record operation.

.. For a subfile control record put request, the user
buffer contains the option indicators followed by
all hidden and output fields as described in the
device file.

B The function manager processes a put to the
subfile control record in two passes. First, the
function manager processes a put to the subfile
control record as if it were a nonsubfile record.
This includes preparing any fields contained in the
subfile control record for display by building a data
stream, if the display subfile control record
keyword is specified. Second, the function
manager checks if the display subfile keyword is
specified, and if so calls OWSSFLCT to add the
subfile records to be displayed to the data stream.

II If the subfile initialize keyword is specified for the
subfile control record, and the subfile space has
not been created, OWSPUT calls OSFCRT to
create the subfile space for the subfile records.
OCOPUT then calls OWSSFLCT to initialize the
subfile records from the device file description and
displayed by the subfile modules.

II The constants are used from the device file to
build subfile records in the data stream.

II The user can optionally specify a message key and
a program message queue as a source of data for
a subfile of messages. The subfile modules
receive a copy of the messages specified from the
message queue and place these into the subfile.

WS-1O

II The subfile is where all subfile information from
the user buffer is stored. The subfile record
remains in the sub'file until the using program
requests that it be displayed.

II The source/sink data, which is a part of the
request block, is where the subfile and console
function managers build the console-dependent
data stream that is to be transmitted to the
console. The data stream contains all of the
controls needed to display the user record as
defined in the device file, and is built only when
displaying the subfile via a put to the subfile
control record.

II The function manager work area is a part of the
ODPCB (open data path control block). As the
function manager builds the output data stream in
the source / sink area, it also builds a user buffer
image in the function manager work area. This
work area contains as many buffer images as
there are records with input capable fields on the
console screen, except for subfile records. A
single record buffer image is maintained for each
subfile description, regardless of the number of
records displayed.

II The record, as seen in the user buffer, can
optionally be sent to the job log as well as to the
subtile. This is done independent of the subfile
functions.

II The I/O feedback area is updated at various times
while the function manager is performing the put
operation. Additional information, such as the
relative record operated on, is put in the I/O
feedback area for subfile functions.

This document contains restricted materials of 18M. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

QSFCRT

Creates
Subfile Space

..
Device File

Field
Descriptions

•
Program Message
Queue

Messages

•

D User Program

User Buffer
Option Indicators
Hidden Fields
Output Fields

QWSPUT

Build Output
Data Stream
Call Subfile

II
QWSSFLCT

Subfile
Control
Operations

QSFMQDSP

Message Queue
Display

Figure WS-5. Put to Subfile Control Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II

Open Data Path

I/O Feedback
Area

Job Log

Logged
Records

FM Work Area

Source/Sink
Data

Console Data
Stream Subfile

Subfile

Subfile
Records

5251 Display Function Manager WS-11

Get Operation

Figure WS-6 and the following text describe a get
operation.

a Actual data does not come from the device file
during a get operation, but record and field
descriptions from the device file are used to
process input information.

II To initiate the read operation, a Read-Modified
command is put in the source/sink data area and
transmitted to the display. To satisfy the read, the
display user must press a command key. If the
record the display user wants was read and
processed during a prior get operation, a
Read-Modified command is not issued. Operation
steps 3 through 7 are not performed, in such
cases.

II When the read operation is completed, all fields
with the modified data tag set on are returned to
the function manager in the same source/sink
data area that contained the Read-Modified
command.

.. If the field description specifies validity checks,
such as range or list check, during field
processing, QWSGET calls QCOVLFLD to perform
those checks.

II Input records can optionally be logged in the job
log.

II If subfile record fields are received, QWSGET
alters its normal field process to handle the subfile
records. When a subfile field is received,
QWSGET retrieves the proper record from the
subfile and puts it in the record save area of the
function manager work area. All fields received for
that subfile record are processed in the normal
manner. When all fields are processed, the subfile
record is returned to the subfile with the new data.
This process is repeated for each subfile record
that is modified by the display user.

WS-12

II When the function manager builds the output data
stream in the source/sink data area, it also builds
a user input buffer image in the function manager
work area. These input buffer images are updated
as QWSGET processes each field. At the
completion of the get operation, all of the modified
data on the display screen will be represented in
the record save area of the function manager work
area, in the subfile, or in both places.

II The I/O feedback area is updated at various
points in the function manager during the get
operation.

II For the normal field-level get operation, the user
buffer contains response indicators followed by all
of the input fields (including any hidden fields) as
described in the device file. The data is moved
from the record save area in the function manager
work area to the user buffer.

During a nonfield-Ievel get operation, the input
data is moved directly from the source/sink data
area to the user buffer.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

..
Device File

II
User Program

User Buffer
Response Indicators
Hidden Fields
Input Fields

Field
Descriptions

1-------.. Issue

QT3REQI0

Request I/O

Figure WS-6. Get Operation

Read
Command

II
Source/Sink Data

5251
Data Stream

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Open Data Path

I/O Feedback
Area

FM Work Area

Subfile

Subfile
Records

Job Log

Logged
Records

QCOVLFLD

Field
Validation

5251 Display Function Manager WS-13

Get from Subfile Record (Data Flow)

Figure WS-7 and the following text describe a get from
subfile operation.

a Actual data does not come from the device file
during a get operation, but record and field
descriptions from the device file are used to
process input information.

II Input records can optionally be logged. The data
is taken from the user buffer, and sent to the job
log.

II A get from subfile operation does not cause an
I/O display operation. I nstead, control is
transferred to QSFGET to retrieve the requested
record from the subfile.

II QSFGET locates the correct record and moves it
to the user buffer. All field processing and
validating was done when the data was received
from the display (see Figure WS-6, II). Because
the records are stored in the subfile with the
controls to redisplay them, the fields are put in the
user buffer one field at a time.

II Output-only fields are also returned to the user
buffer when the record is a subfile record.

II The I/O feedback area is updated at various
points in the function manager while performing
the get operation. In addition to the normal
information, certain subfile information, such as
relative record number returned, is also included in
the I/O feedback area.

WS-14

Device File

Field
Descriptions

Job Log

Logged
Records

User Program

User Buffer
Response Indicators
Hidden Fields
Input Fields
Output Fields

Open Data Path

I/O Feedback
Area

QWSGET
Call Subfile
Module to Retrieve
Subfile Record

QSFGET

Get From
Subfile

II

Subfile

Subfile Records

Figure WS-7. Get From Subfile Record (Data Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

This page is intentionally left blank.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5251 Display Function Manager WS-15

Pass Option of the Suspend Module

The pass option of the OWSPEND indicates that the
console user intends to pass across processes this
display device and the unformatted data that was
received on the last input request.

OWSPEND places a pointer to the last request block
used by the get operation. A pointer to this new request
block is placed in the LUD (logical unit description)
associated space. This is how the actual request block
is passed to the new process. By passing the logical
unit description lock, the new process has addressability
to the request block, which contains the unformatted
data that was last read. The function manager close file
always checks to see if a passed request block exists
and, if one is found, destroys it along with the regular
file request block.

Get (or Put-Get) Nowait Function

The get (or put-get) nowait request involves functions
by several console function manager modules. Figure
WS-8 and the following text describe the get (or
put-get) nowait function.

.. The using program requests a get (or put-get)
nowait operation.

II OWSGET (or OWSPUT) processes the user
request similar to a wait request, except that,
before calling the OT3 REOIO module of SNA-T3
to do the request 1/ Os, it indicates in the request
block that this is a nowait request. When
OT3REOI0 returns, OWSGET (or OWSPUT)
returns to its caller.

II OT3REOI0 recognizes the nowait request and
performs the REOIO instruction but does not wait
for the request to complete nor does it do the
dequeue of that request. Instead, OT3REOI0
returns to its caller.

II The machine issues the request I/O to the display
as usual.

.. Up to this step, each module has processed the
user request and returned to its caller. No module
has waited for a response from the console
device. The invocation stack contains only the
using program.

WS-16

II When the operator responds to the get or the
console device acknowledges the put, the machine
enqueues the corresponding request block on the
machine interface response queue in the normal
manner. Because the nowait flag is set on in the
request block, the machine signals the REOIO
Complete event.

II The REOIO complete event invokes the nowait
event handler module, OWSMEEH, which does a
dequeue of the completed request block.

II OWSMEEH calls OT3REOIO to process the
dequeued request block.

II If the request was a get nowait, OWSMEEH calls
OWSGET to process the input data. OWSGET
recognizes the event handler call and processes
just the user input data. If the operator requested
a function-manager function, such as print or help
text, OWSG ET handles the request and reissues
the nowait request.

II When control is returned to OWSMEEH from
OT3REOIO, it checks to see if valid data was
entered. If valid data was entered, the data
available event is signaled to the user. In an
operator requested function, the nowait event
handler module will not see any valid operator data
and OWSMEEH terminates without ~naling the
data available event (flow returns to II).

This document contains restricted materials of IBM. L Y!\-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

User Program

D

OWSGET

D or OWSPUT
Display Get or Put

~ ~

~
,

OT3REOI0
II

Request I/O

II Machine I/O to the Display

II Machine Res ponse from the Display

Event Signaled

OWSMEEH

II Nowait Event
Handler

t
a'4 , II ., ~
OT3REOI0 OWSGET

IE
Request I/O Display Get

Figure WS-S. Nowait Function

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5251 Display Function Manager WS-17

Subfile Record (Module Flow)

Figures WS-9 and WS-10 show the module flow for a
put to subfile and a get from subfile operation.

QWSPUT

- Put Subfile Record
- Update Subfile Record
- Put Subfile Control Record

l
QSFPUT QSFCRT

- Put New Record in Subfile - Create Subfile Object
- Call QSFCRT if First Put - Initialize Header Area
- Initialize Control Tables
- Update Subfile Record

QSFMQDSP

- Initialize Message Subfile

Notes:
1. QSFPUT is invoked only for operations directed at the subfile record.
2. QWSSFLCT is invoked only for control record operations.

Figure WS-9. Put to Subfile Record (Module Flow)

WS-1B

!
QWSSFLCT

- Initialize Subfile
- Display Subfile
- Delete Subfile
- Clear Subfile

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

OWSGET

- Get Subfile Record
- Operator Response

1 1
OSFHSFL OSFGET aWSRTSFL

- Help for Subfile Messages - Get Relative Record - Roll Function
- Get Next Changed - Fold Function

From Subfile - Truncate Function

Notes:
1. aSFHSFL is called only if the operator puts the cursor into a displayed subfile of messages and presses the Help key.
2. aWSRTSFL is called only if a subfile is displayed and the CA/CF key is pressed for fold/truncate or roll.

Figure WS-10. Get from Subfile Record (Module Flow)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5251 Display Function Manager WS-19

I/O Error Flow

I/O errors are detected by the T3 component and
processed by the 5251 function manager. The process
consists of mapping the I/O error to a CPF message 10
and sending the message to the program requesting the
display data management service (see Figure WS-1).
The user may monitor for these I/O error messages and
perform local clean-up and recovery. If the user does
not monitor for an I/O error message, the default action
for most errors is to close the file.

The 5251 function manager modules are separated into
two classes for the purpose of error handling:

• File-oriented modules (open, close, get, and put)

• Device-oriented modules (suspend, restore, and
device event handlers)

I/O errors are presented to the user differently
depending on whether the error is detected by a
file-oriented module or a device-oriented module. The
reason for the difference is that device-oriented
modules do not have access to the file. File clean-up is
therefore impossible for the device-oriented modules.

Figure WS-11 shows the I/O error processing flow for
an error detected by a file-oriented module. Figure
WS-12 shows the I/O error processing flow for an
error detected by a device-oriented module.

Figure WS-11 describes the message and control flow
(for an I/O or other request I/O detected error) when
detected by a file-oriented module (open, close, get,
put, or put-get).

.. The file-oriented function manager may be called
by another CPF module or by a high-level
language program.

II The function manager module receives control and
sets up message monitors for CPF5502 and
CPF5601. During the _se of its processing, the
function manager module calls OT3 REOIO.

D OT3 REOIO detects an abnormal condition and
sends one or more diagnostic messages to its own
program message queue. When OT3 REOIO
finishes its processing it sends escape message
CPF5502 to its caller. This causes QWSERROR to
be invoked.

WS-20

.. QWSERROR is invoked by exception CPF5502.
QWSERROR processes the first condition detected
by OT3REOI0, which is an error processing
function and not an error recovery function. Only
the first abnormal condition is processed by this
module. All unprocessed conditions result in a
message sent to the program message queue, and
will be displayed in the job's message log.

The error routine receives and deletes the first
diagnostic message from QT3REQI0's message
queue. The information from this message is
decoded, and a unique message 10 is assigned.
The device may be marked unusable, or other
exception dependent processing done.

The message 10 and message type are used to
build a CPF5601 escape message, which is sent to
the function manager module.

II The CPF5601 internal exception handler in the
function manager module uses the CPF message
10 and message type to send the I/O error
message to the display function manager user.
The user may handle the error and continue
processing, or ignore the error. If the error is
ignored, the default action is taken (generally
consisting of closing the file) and a function check
is signaled to the user.

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

D

User

D

Function
Manager

~ ~

1 ,

OT3REOI0

Detects Error

I
CPF5502
Escape Message

1
OWSERROR

Decodes Error

I
CPF5601
Escape

MeSrge

II

II

1
I/O Error
Message Decoded

RROR by OWSE

CPF55 06
Diagno stic with

Data Error

Figure WS-11. I/O Error Processing Flow-Errors
Detected by a File-Oriented Module

Thi:> document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5251 Display Function Manager WS-21

Figure WS-12 describes the initial message and control
flow (for an I/O or other REOIO-detected error) when
detected by a device-oriented module (suspend, restore,
or device event handlers).

.. The device-oriented function manager module may
be invoked by the System/38, as in the case of
device event handlers, or may be called by another
CPF module.

II The function manager module receives control and
sets up message monitors for CPF5502 and
CPF5601. During the course of its processing, the
function manager module calls OT3 REOIO.

II OT3 REOIO detects an abnormal condition and
sends one or more diagnostic messages to its own
program message queue. When OT3 REOIO
finishes its processing, it sends n~tify message
CPF5502 to its caller. This, causes OWSERROR to
be invoked.

II OWSERROR is invoked by exception CPF5502.
OWSERROR processes the first condition detected
by the OT3REOIO, which is an error processing
function and not an error recovery function. Only
the first abnormal condition is processed by this
module. All unprocessed conditions result in a
message sent to the program message queue, and
will be displayed in the job's message log.

WS-22

The error routine receives and deletes the first
diagnostic message from OT3REOIO's message
queue. The information from this message is
decoded, and a unique message ID is assigned.
The device may be marked unusable, or other
exception-dependent processing may be done.

The message I D and message type are used to
build a CPF5503 diagnostic message containing
the exception data. This diagnostic message is
sent to the function manager module. The
CPF5601 escape message contains a pointer to
the CPF5503 diagnostic message and invokes an
internal exception handler in the function manager
module.

II The CPF5601 internal exception handler in the
function manager module sets the pointer to the
CPF5503 diagnostic message describing the error
into the function manager work area, where it may
be retrieved later. Clean-up is done and a request
failed notify message (not shown) is sent if the
function manager module is not an event handler.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L·

L

L

System/38
Event

a

..
~
,

Function
Manager

~ ~

II

~
,

OT3REOIO

Detects Error

I
CPF5502
Escape
Message

1
OWSERROR

Decodes Error

C.)5601
Escape

MT"

FM User

/ FM Work Area I

@@@@

~ FM ",., e~o, me'
in FM work area.

1-----CPF5506 Diagnostic
with Error Data

II

CPF5503 Diagnostic _.J
t--C-=-----with Error Data

OWSERROR saves error
data in diagnostic message.

Figure WS-12. I/O Error Processing Flow-Errors Detected by a Device-Oriented Module

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

5251 Display Function Manager WS-23

Figure WS-13 describes the final message and control
flow (error notification) for an I/O or other
module-detected error when detected by a
device-oriented module (suspend, restore, or dev;ce
event handlers).

.. The file-oriented function manager module may be
invoked by another CPF module or by a high-level
language program. This is the first invocation of a
file-oriented function manager module after an
error has been detected.

II The function manager module detects that an error
condition has occurred, by checking for an error
message saved in the function manager work area.

B The function manager module retrieves the error
message saved in the function manager work area
and uses the exception data from that error
message to build a previous error message, which
is sent to the display function manager user. The
user may either handle the error and continue
processing or ignore the error. If the error is
ignored, the default action is taken (generally
consisting of closing the file) and a function check
is signaled to the user .

.. User Previous Error
Message

f FM Work Area

II
@@@@

Function \
Manager

B !

I

\

CPF5503 Diagnostic
with Error Data

Figure WS-13. I/O Error Notification-Errors Detected by a Device-Oriented Module

WS-24

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

INTRODUCTION

The work monitor component of the CPF (control
program facility) provides support for initiating,
controlling, and terminating user jobs in the system.

The functions provided by the work monitor are:

• Subsystem startup, control and termination

• Job initiation, control and termination

• Work station support

• Work management support of APPC (advanced
program-to-program communications)

• Create job structure support

• Batch job creation, routing control

• System request support

• Attention key support

• Group job support

GENERAL OVERVIEW

Work Monitor Modules

Each module listed below performs a function.

Subsystem Startup Modules

-->QWTMCACE-Allocate Communications Entries: This
module requests allocation of peer devices from the
logical unit services (LUS) process to a subsystem.

-->QWTMCAJE-Analyze Job Entry: This module
analyzes and processes both auto start job entries
and the console job after the start CPF processing.

-->QWTMCDFT-Create Monitor Device and File Table:
This module creates data structures to support work
stations and peer devices.

Work Monitor

-->QWTMCOAL-Allocate Job Queue: This module
attempts to allocate job queues to a subsystem.

-->QWTMCSTP-Subsystem Startup: This module
creates the subsystem environment.

-->QWTMEAST-Allocate Storage Event: This module
requests allocation of storage pools from the arbiter
process to a subsystem.

-->QWTMEJOA-Job Queue Available Event: This
module allocates a job queue to a subsystem when it
becomes available.

-->QWTMESTA-Storage Allocated Event: This module
allocates storage pools to a subsystem.

-->QWTMMALM-Peer Device Allocated: This module
allocates a peer device to a subsystem.

Subsystem Control Modules

-->QWTMESBC-Subsystem Control Event: This
module handles all subsystem control requests and
invokes subsystem control functions.

-->QWTMMCSD-Change Active Subsystem: This
module changes an active subsystem environment.

Subsystem Termination Modules

-->QWTAMABT-Abnormal Subsystem: This module
handles subsystem termination under abnormal
conditions.

-->QWTCLNUP-Abnormal System: This module
handles subsystem and user job termination after an
abnormal system termination.

-->QWTMCDCE-Deallocate Communications Entries:
This module deallocates peer devices from a
subsystem.

-->QWTMCQDA-Deallocate Job Queues: This module
allocates job queues from a subsystem.

Work Monitor WT-1

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

-->QWTMCSTD-Subsystem Shutdown: This module
performs the last functions before a subsystem
terminates.

-->QWTMMTRS-Subsystem Termination: This module
performs the initial termination function in a
subsystem.

Job Initiation Modules

-->QWTMCATT-Peer Device Evoke Request: This
module processes any evoke requests received on a
peer device allocated to a subsystem. QWTMCA TT
also sets up any APPC batch jobs for initiation.

-->QWTMCMNL-Subsystem Mainline Program: This
module initiates user processes.

-->QWTMEATR-525X Test Request Event: This
module handles a test request on a 525X work
station and sets up a test request job for initiation.

-->QWTMEJIN-Job Queue Job Initiation: This module
processes jobs on job queues and sets up batch jobs
for initiation.

-->QWTMERQD-Routing Data Available Event: This
module processes data from the manual routing
prompt.

-->QWTMESGN-Sign-on Data Available Event: This
module processes data from the sign-on prompt and
sets up an interactive job for initiation.

-->QWTMMERH-Job Initiation Error: This module
handles errors encountered when a subsystem
attempts to initiate a user process.

-->QWTPCRJA-Retrieve Job Attributes: This module
retrieves the attributes of a user job.

-->QWTPIIPP-Process Initiation Phase Program: This
module completes initialization of a subsystem or
user process.

-->QWTPIPPP-Evoke Program Parameter: This module
handles the parameters for the user program of an
APPC job.

WT-2

Job Control Modules

Each module listed below processes the command listed
next to the module.

-->QWTCCCHJ-Change Job (CHGJOB command)

-->QWTCCCNJ-Cancel Job (CNLJOB command)

-->QWTCCHDJ-Hold Job (HLDJOB command)

-->QWTCCJOB-Job (JOB command)

-->QWTCCRLJ-Release Job (RLSJOB command)

-->QWTCCRRJ-Reroute Job (RRTJOB command)

-->QWTCCRTN-Return (RETURN command)

-->QWTCCSBJ-Submit Job (SBMJOB command)

- - >QWTCCTFJ-Transfer Job (TFRJOB command)

-->QWTCCTBJ-Transfer Batch Job (TFRBCHJOB
command)

Each module listed below performs a function.

-->QWTMMCHJ-Change Job: This module performs
the change function for an active job.

-->QWTMMCNJ-Cancel Job: This module performs
the cancel function for an active job.

-->QWTMMHDJ-Hold job: This module performs the
hold function for n active job.

-->QWTMMRLJ-Release Job: This module performs
the release function for an active job that is on hold.

-->QWTPECTL-Process Control Event: This module
handles all process control requests and invokes
process control functions.

-->QWTPMCNJ-Controlled Cancel Job: This module
performs the controlled cancel function for an active
job.

-->QWTSCSBJ-SBMJOB/JOB Command Processor:
This module handles the common function of the
SBMJOB and JOB command.

-->QWTSETME-Controlled Cancel Job Time-out: This
module terminates a user job when the controlled
cancel job timer expires. ...J

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Job Termination Modules

-->QWTMEOJ-End-of-Job: This module performs
end-of-job functions in a subsystem or user job.

-->QWTMETRP-Process Termination: This module
handles user process termination in a subsystem.

-->QWTMMBJT-Batch Job Termination: This module
handles job termination for all batch jobs.

-->QWTMMIJT-Interactive Job Termination: This
module handles job termination for all interactive
jobs.

-->QWTMMTJT-Transfer Job Termination: This
module handles job termination for all transfer jobs.

-->QWTPITPP-Process Termination Phase Program:
This module performs termination functions for a
subsystem or user process.

Work Station Support Modules

-->QWTCCSTA-Set Attention Program (SETATNPGM)
CPP: This module processes the SETATNPGM
command.

-->QWTSEATN-Attention Key Event Handler: This
module calls the user-defined attention key handler
when the A TIN key is pressed.

-->QWTSCOPR-Attention Key Scope Handling Routine:
This module cleans up attention key handling when
an invocation using the SETATNPGM command has
completed.

-->QWTSCPSH-Push Attention Key Routine: This
module pushes an entry onto a stack that controls
attention key handlers.

-->QWTSCPOP-Pop Attention Key Routine: This
module pops an entry off of a stack that controls
attention key handlers.

-->QWTAESRQ-Work Station: This module indicates if
the system request or test request key has been
pressed or if there is unsolicited work station data.

- - > QWTCCSRQ-Transfer to Secondary Job
(TFRSECJOB command): This module processes the
Transfer to Secondary Job command.

-->QWTMCDSP-Sign-On Prompt Display: This module
displays the sign-on prompt at a work station or at
the console.

-->QWTMCDVX-Work Station Device Error: This
module handles work station device errors.

-->QWTMCERP-Work Station Error Recovery: This
module handles a work station that has recovered
from an error.

-->QWTMEOBD-Obtain Work Station: This module
reassigns a work station from one subsystem to
another.

-->QWTMEPDA-Work Station Allocation: This module
allocates a work station to a subsystem when it
becomes available.

-->QWTMESRQ-Process Suspended: This module
performs the transfer to the secondary job function
(option 1 on the system request menu).

-->QWTPCSRQ-Transfer to Secondary Job: This
module requests the transfer to the secondary job
function.

-->QWTPMSRQ-System Request: This module
processes a system request in a user job.

Work Monitor WT -3

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Advanced Program-to-Program Support Modules

-->QWTLCALC-Peer Device Contact: This module
processes a peer device when a remote system is
contacted.

-->QWTLCAMS-Allocate Peer Device to Subsystem:
This module allocates a peer device to a subsystem.

-->QWTLCATT-Peer Device Evoke Request: This
module processes evoke requests that are received
on the peer devices allocated to the logical unit
services process.

-->QWTLCRDT-Create Peer Device Table: This module
creates a data structure for peer device allocation to
subsystems.

-->QWTLCVOF-Peer Device Vary Off: This module
processes a peer device when it is varied off.

-->QWTLCVON-Peer Device Vary On: This module
processes a peer device when it is varied on.

-->QWTLEARM-Evoke Request Maximum Exceeded:
This module handles evoke requests when no
conversations are available.

-->QWTLEDRQ-Peer Device Request: This module
processes a peer device request from a subsystem.

-->QWTLEOLK-Peer Device Allocated: This module
processes a peer device when it is returned from a
subsystem to the logical unit services process.

Create Temporary Job Structure Support Module

-->QWTAMCJS-Create Temporary Job Structure: This
module creates temporary job structures when the
system is started and after all the temporary job
structures are used.

WT-4

Subsystem Functions

Subsystem Startup

A subsystem is started when the controlling subsystem
is automatically started during start CPF processing or
when the Start Subsystem (STRSBS) command is
entered. In either case, the system arbiter starts a
process in which the subsystem modules will execute.
The following functions are performed during subsystem
startup:

• The initiation phase module (QWTPIIPP) for the
process will perform common CPF process
initialization functions.

• The subsystem problem phase program
(QWTMCSTP) will perform specific initialization
functions and set up the subsystem environment as
specified in the subsystem description. The following
functions are performed (unless the subsystem is
started from the restricted state):

Create and initialize data structures used by the
subsystem modules.
Request to allocate the storage pools defined in
the subsystem description. When a storage pool is
allocated, the allocated module (QWTMCSTA) is
invoked to complete allocation.
To initiate autostart jobs, the analyze job entry
module (QWTMCAJE) is invoked to process each
autostart job specified in the subsystem
description. QWTMCAJE will initialize a job
structure for the autostart job and notify the
subsystem when the job is ready for initiation.
To support work stations, the create work station
device and file table module (QWTMCDFT) is
invoked to create data structures to support the
work stations and the sign-on and manual-routing
display files. For each work station specified as
*SIGNON in the work station entry in the
subsystem description, the device description
associated with the work station is allocated to the
subsystem and the sign-on display file appears. If
a work station cannot be allocated during
subsystem startup, the subsystem will allocate the
device when it becomes available.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

- To support job queues, a data structure is created.
The job queue allocation module (OWTMCOAL) is
invoked to allocate each job queue specified in the
subsystem description. If a job queue cannot be
allocated, the subsystem will allocate the job
queue when it becomes available. The job queue
available module (OWTMEJOA) is invoked to
complete allocation.
To support peer devices, OWTMCDFT is invoked
to create a data structure to support peer devices.
The peer device allocation module (OWTMCACE)
is invoked to request allocation of each peer
device specified in the subsystem description.
When a peer device is allocated, the peer device
allocated module (OWTMMALM) is invoked to
complete allocation.

Subsystem Control

The initial subsystem environment as defined in the
subsystem description (pool size, MPL classes and
number of maximum active jobs) can be changed with
the change subsystem description command
(CHGSBSD). When this command is invoked, the
subsystem control module (OWTMESBC) is invoked in
the subsystem to be changed. This module can change
the subsystem environment. OWTMESBC invokes the
change-active subsystem module (OWTMMCSD) to

If the subsystem is terminating to the restricted state,
OWTMCSTD deallocates the subsystem storage pools
and MPL classes so that the remaining subsystem data
structures are not destroyed. When this module
completes, the termination phase program (OWTPITPP)
is invoked to complete the subsystem process
termination.

Abnormal Subsystem Termination

If a subsystem process abnormally terminates (cannot
perform the normal termination function as described
above) the abnormal subsystem termination module
(OWTAMABT) is invoked in the system arbiter process.
This module terminates any user jobs that are still active
and waiting to be terminated.

Cleanup After Next IMPL

The subsystem cleanup module (OWTCLNUP) is invoked
at the next IMPL for each job that was active when the
system terminated. If the log for each job has not been
written, this module invokes the end-of-job cleanup
module (OWTMCEOJ). OWTMCEOJ performs normal
end-of-job functions other than spooling the job log to
an output queue, which is done later in start CPF
processing.

\.,.... perform the requested changes.

L

Subsystem Termination

There are three commands to terminate a subsystem:
the power down system command (PWRDWNSYSI. the
terminate CPF command (TRMCPF) and the terminate
subsystem command (TRMSBS). These commands will
cause the subsystem termination module (OWTMMTRS)
to be invoked in the subsystem. All work stations
allocated to the subsystem are deallocated. All job
queues allocated to the subsystem are deallocated by
the deallocate job queue moduie (QWTMCDOA). All
peer devices allocated to the subsystem are deallocated
by the deallocate communications entries module
(OWTMCDCE). All jobs active in the subsystem are
either terminated (if the subsystem termination is
immediate) or notified of termination (if the termination
is controlled). If there are no active jobs in the
subsystem or when all jobs have terminated, the
subsystem shutdown module (OWTMCSTD) is invoked.

Job Functions

Job Initiation

Work initiation describes the functions performed by the
subsystem prior to initiating the processes that perform
the user work. These functions include the processing
of autostart job entries contained in a subsystem
description, the processing of sign-on, test and evoke
requests received by a subsystem, and the selection of
batch jobs from a job queue. The main function
performed for each type of job is to allocate and
initialize a job structure for the user job. After the job
structures are initialized the subsystem is told the job is
ready for initiation.

• The analyze job entry module (OWTMCAJE) is
invoked to process each autostart job specified in the
subsystem description.

Work Monitor WT-5

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• The sign-on data available module (QWTMESGN)
and, optionally, the manual routing data available
module (QWTMERQD) are invoked to process work
station jobs.

• The test request module (QWTMEATR) is invoked to
process test request jobs.

• The attach manager module (QWTMCA TT) is invoked
to process APPC batch jobs. If the evoke request
specifies that parameters will be passed to the user's
problem phase program, QWTMCATT sets up
QWTPIPPP as the problem phase program for the
job. QWTPIPPP receives the parameters for the
problem phase program for the evoke request and
invokes that program with the parameters.

• The job queue job initiation module (QWTMEJIN) is
invoked to process batch and interactive jobs on a
job queue. A job can be placed on a job queue due
to the submit job command (SBMJOB), the job
command (/ / JOB). the transfer job command
(TFRJOB) or the transfer batch job command
(TFRBCHJOB).

Once a job structure is initialized, the subsystem is told
that a job is ready to be initiated. The process initiation
module (QWTMCMNL) is invoked in the subsystem and
QWTMCMNL uses the routing data specified with the
job to find the appropriate routing entry for the user job.
(The routing entry is listed in the routing table defined in
the subsystem description.) The routing entry data tells
QWTMCMNL to initialize the process definition template
and set up the process initiation phase program
(QWTPIIPP) and termination phase program
(QWTPITPP) to run before and after the user's problem
phase program. The process is initiated if no errors
have been detected. If an error is detected, the
subsystem error handling module (QWTMMERH) is
invoked to recover from the error.

When the process is initiated, QWTPIIPP is invoked to
initialize the process for user work. If this is a batch job
that was submitted to a job queue by the Submit Job
(SBMJOB) command, the retrieve job attributes module
(QWTPCRJA) is invoked to get the current job attributes
for an information message that is sent to the job log.
After QWTPII PP completes, the user's problem phase
program is invoked.

WT-6

Job Control

Job control is performed by the Hold Job command
(HLDJOB), Release Job command (RLSJOB), Change
Job command (CHGJOB), Change Accounting Code
command (CHGACGCDE) and Cancel Job command
(CNLJOB). The following functions are performed by
each job control command:

• When the HLDJOB command is invoked, the hold job
command processing program (QWTCCHDJ) is
invoked in the user's process. QWTCCHDJ confirms
that the user can hold the job and determines the
state of the job to be held. A user can request
QWTCCHJD to hold the spooled output. If the job is
queued, QWTCCHDJ holds the job. If the job is
active, QWTCCHDJ tells the subsystem to hold the
job and invokes the subsystem control module
(QWTMESBC) in the subsystem. QWTMESBC
invokes the hold job module (QWTMMHDJ) to hold
the active job in the subsystem. QWTMMHDJ
confirms that the job is in the right state to be held
and suspends the job process.

• When the RLSJOB command is invoked, the release
job command processing program (QWTCCRLJ) is
invoked in the user's process. QWTCCRLJ confirms
that the user can release the job and determines the
state of the job to be released. QWTCCRLJ releases
the spooled output if it is on hold. If the job is
queued, QWTCCRLJ releases the job. If the job is
active, QWTCCRLJ tells the subsystem to release the
job and invokes the subsystem control module
(QWTMESBC) in the subsystem. QWTMESBC
invokes the release job module (QWTMMRLJ) to
release the job that is on hold in the subsystem.
QWTMMRLJ confirms that the job is in the right
state to be released and resumes the job process.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• When the CHGJOB command is invoked, the change
job command processing program (OWTCCCHJ) is
invoked in the user process belonging to the user
who requested the change. OWTCCCHJ confirms
that the user can change the job and determines the
state of the job to be changed. If the job is queued
or if it is the user's job, OWTCCCHJ changes the
requested job attributes. If the job is active and is
not the user's job, OWTCCCHJ tells the subsystem
to change the job and invokes the subsystem control
module (OWTMESBC) in the subsystem.
OWTMESBC invokes the change job module
(OWTMMCHJ) to change an active job in the
subsystem. OWTMMCHJ confirms that the job is in
the right state to be changed and changes the
requested job attributes.

OWTCCCHJ is also used by the change accounting
code command (CHGACGCDE), which performs the
same function as CHGJOB except the accounting
data is the only data changed. The current
accounting data is journaled.

• When the CNLJOB command is invoked, the cancel
job command processing program (OWTCCCNJ) is
invoked in the user's process. OWTCCCNJ confirms
that the user can cancel the job and determines the
state of the job to be canceled. A user can request
OWTCCCNJ to cancel the spooled output. If the job
is queued, OWTCCCNJ cancels the job. If the job is
active, OWTCCCNJ tells the subsystem to cancel the
job and invokes the subsystem control module
(OWTMESBC) in the subsystem. OWTMESBC
invokes the cancel job module (OWTMMCNJ) to
cancel the active job on the subsystem.
OWTMMCNJ confirms that the job is in the right
state to be canceled and the subsystem terminates
the process. If the job is to be canceled with the
controlled option, OWTMMCNJ tells the job that it is
being canceled. This results in the process control
module (OWTPECTL) being invoked in the user's
process. OWTPECTL invokes the cancel job
controlled module (OWTPMCNJ), which sets up a
timer for the amount of time specified on the
CNLJOB command. When the time expires, the timer
module (OWTSETME) is invoked and terminates the
process.

Batch Job Creation

A user can use the submit job command (SBMJOB) or
the job command (/ / JOB) to create a batch job and
place it on a job queue. The following functions are
performed by each batch job creation command:

• When the SBMJOB command is invoked, the submit
job command processing program (OWTCCSBJ) is
invoked in the user's process. OWTCCSBJ confirms
that the user can create a batch job and invokes the
batch job creation module (OWTSCSBJ) to set up the
job. OWTSCSBJ initializes a job structure and
OWTCCSBJ places the job on a job queue.

• When the / / JOB command is found in a file by a
reader or by a SBMCRDJOB, SBMDBJOB or
SBMDKTJOB command, the job command
processing program (OWTCCJOB) is invoked.
OWTCCJOB invokes the batch job creation module
(OWTSCSBJ) to set up the job. OWTSCSBJ
initializes a job structure for the job and OWTCCJOB
tells the invoking function to place the job on a job
queue.

Routing Control

The routing steps of a job can be controlled by the
transfer job command (TFRJOB), the transfer batch job
command (TFRBCHJOB). the reroute job command
(RRT JOB) and the return command (RETURN). The
following functions are performed by each routing
control command:

• When the TFRJOB command is invoked, the transfer
job command processing program (OWTCCTFJ) is
invoked in the user's process. OWTCCTFJ confirms
that the user can transfer to another job queue and
that the transfer is made in the right environment. If
the transfer is allowed, OWTCCTFJ terminates the
user's process and invokes the process terminated
module (OWTMETRP) to complete termination of the
process in the subsystem. OWTMETRP invokes the
transfer job termination module (OWTMMTJT) to
place the job on a job queue.

Work Monitor WT-7

This document contains restricted materials of IBM. L Y21 -0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• When the TFRBCHJOB command is invoked, the
transfer batch job command processing program
(OWTCCTBJ) in invoked in the user's process.
OWTCCTBJ performs the same function as
QWTCCTFJ except that specific job information is
stored in a permanent object so that if the system
terminates after transferring a batch job to a job
queue, the job can be initiated following an IMPL.
The TFRJOB command does not have this function.

• When the RRTJOB command is invoked, the reroute
job command processing program (OWTCCRRJ) is
invoked in the user's process. OWTCCRRJ confirms
that the user can change routing steps within the
subsystem. If the reroute is allowed, OWTCCRRJ
terminates the user's process and invokes the
process terminated module (OWTMETRP) to
complete the termination of the process in the
subsystem. OWTMETRP invokes the process
initiation module (OWTMCMNL) in the subsystem to
initiate the user's process again.

• When the RETURN command is invoked, the return
job command processing program (OWTCCRTN) is
invoked in the user's process. OWTCCRTN tells the
command language request processing program
(OCL) to end the current request. If OCL is the
highest level invocation in the user's process, OCL
will complete, the process will terminate, and the
process terminated module (OWTMETRP) is invoked
to complete the termination of the process in the
subsystem. OWTMETRP causes the process initiation
module (OWTMCMNL) to be invoked in the
subsystem to initiate the user's process again.

Job Termination

When the user's problem phase program completes, the
process termination phase program (OWTPITPP) is
invoked to perform process clean-up functions. This
includes closing all files that were opened by the
process. If the process is terminating due to an
end-of-job condition, the end-of-job clean-up module
(OWTMCEOJ) is invoked. OWTMCEOJ performs
functions that are specific to the end-of-job condition,
which includes cleaning up the spool files and spooling
the job log to an output queue.

WT-8

The user process is completed when OWTPITPP has
completed the clean-up functions. Next, the process
terminated module (OWTMETRP) is invoked in the
subsystem that initiated the process. OWTMETRP
determines the type of job terminated and invokes the
appropriate module to perform the specific process
termination function. If a batch or autostart job was
terminated, the batch job termination module
(OWTMMBJT) is invoked. If the job type is interactive,
the interactive job termination module (OWTMMIJT) is
invoked. If the job terminated due to a Transfer Job
command (TFRJOB or TFRBCHJOBl. the transfer job
termination module (OWTMMTJT) is invoked.
OWTMETRP also handles job termination because of a
Reroute command (RRT JOB) or a Return command
(RETURN or CF1 key from highest invocation).

Work Station Support

• If a subsystem cannot allocate a work station at
startup, the subsystem sends a request to allocate
the work station when it becomes available. Once it
is available, OWTMEPDA is invoked in the subsystem
to handle work station allocation.

If a work station is allocated to a subsystem and the
sign-on prompt appears, the work station can be
reallocated to another subsystem or user job using
the OWTMEOBD module.

• If an error is found during a work station device
function that involves the sign-on prompt or the
manual routing prompt. the work station error
handling module (OWTMCDVX) is invoked.
OWTMCDVX determines the error type and takes
appropriate action. If the error occurred because the
work station was powered off. OWTMCDVX sets up
a module (OWTMCERP) to be invoked if the work
station is powered on. When the work station is
powered on, OWTMCERP is invoked in the
subsystem. OWTMCERP then invokes the display
sign-on prompt module (OWTMCDSP) to display the
sign-on prompt on the work station. (OWTMCDSP is
also invoked from OWTMCSTP and OWTMEPDA
when a work station is allocated to a subsystem and
from OWTMESRO for system request.)

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

System Request Support

• When the system request key is pressed ata work
station, the work station module (OWTAESRO) is
invoked in the system arbiter. OWTAESRO
determines the job associated with the work station
and tells the job about the system request. A module
is invoked in the work station job (OWTPECTL) to
handle the notification. OWTPECTL invokes the
system request handler (OWTPMSRO), which invokes
the system request menu handler. If option 1 is
selected from the menu, the menu handler invokes
the transfer to secondary job functions (OWTPCSRO).
OWTPCSRO suspends the process of the job that
invoked the transfer to secondary job function and
invokes the process suspended module
(OWTMESRO) in the subsystem. OWTMESRO either
displays the sign-on display on the work station, if
no secondary job exists, or resumes the secondary
job. The transfer to secondary job function can also
be performed by invoking the transfer to secondary
job command (TFRSECJOB). When the TFRSECJOB
command is invoked, the transfer to a secondary job
processing program (OWTCCSRO) is invoked.
OWTCCSRO performs the same functions that are
performed in OWT AESRO, OWTPMSRO, and
OWTPCSRO.

Group Job Support

The following text describes the support for group jobs
for the various CL commands.

• Change Group Attributes (CHGGRPA)
Command-When the CHGGRPA command is
invoked, the change group attributes command
processing program (OWTCCCHG) is invoked in the
user's process. This module verifies that the user can
change the attributes of the job. If the interactive job
is to be changed into a group job, changed back into
a non-group job, or if the group job text is to be
changed, OWTCCCHG notifies the job's subsystem
that the job is to be changed. This results in the
subsystem control module (OWTMESBC) being
invoked in the job's subsystem. OWTMESBC
determines that the function is to change the group
attributes of a job in the subsystem and invokes the
change group attributes module (OWTMMCHG) to
perform the requested function. All other attributes
are changed by OWTCCCHG.

\..,... Attention Key Support

• Retrieve Group Attributes (RTVGRPA)
Command-When the RTVGRPA command is invoked,
the retrieve group attributes command processing
program (OWTCCRVG) is invoked in the user's
process. This module verifies that the user can
retrieve the attributes of the group job. If the list of
jobs in the user's group is to be retrieved,
OWTCCRVG notifies the job's subsystem that the
job's group job list is to be retrieved. This results in
the subsystem control module (OWTMESBC) being
invoked in the job's subsystem. OWTMESBC
determines that the function is to retrieve the list of
group jobs for a group job and invokes the retrieve
group attributes module (OWTMMRVG) to perform
the requested function. All other attributes are
retrieved by OWTCCRVG.

L

When the Set Attention Program (SETATNPGM)
command is invoked, OWTCCSTA is invoked in the
user's process. This module locates the user specified
attention key handling routine and verifies the user's
authority to call that program. It then uses the attention
key routines to set up attention key handling as
requested so that the correct program will be invoked
when the attention key is pressed.

When the A TIN key is pressed, the attention key event
handling routine (OWTSEATN) is invoked in the user's
process. This routine invokes the user specified
attention key handling program and also handles any
errors that may occur.

When an invocation that uses the SETATNPGM
command returns, the attention key scope handling
routine is invoked. This routine invalidates attention
handling set up by the invocation, and restores any
attention handling that may have been used in the
previous invocation.

• Transfer Group Job (TFRGRPJOB) Command-When
the TFRGRPJOB is invoked, the transfer to group job
command processing program (OWTCCTFG) is
invoked in the user's process. This module verifies
that the user can transfer to a group job.
OWTCCTFG suspends the process of the job that
issued the transfer to group job command, which
causes the process suspended module (OWTMESRO)
to be invoked in the job's subsystem. If the specified
group job does not exist, this module allocates and
initializes a job structure for a group job and notifies
the subsystem that the job is ready to be initiated. If
the group job does exist, this module resumes the
specified group job.

Work Monitor WT-9

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

• Terminate Group Job (TRMGRPJOB)
Command-When the TRMGRPJOB command is
invoked, the terminate command processing program
(QWTCCTRG) is invoked in the user's process. This
module verifies that the user can terminate a group
job. QWTCCTRG notifies the job's subsystem that a
group job is to be terminated. This results in the
subsystem control module (QWTMESBC) being
invoked in the job's subsystem. QWTMESBC
determines that the function is to terminate a group
job in the subsystem and invokes the terminate group
job module (QWTMMTRG) to perform the requested
function.

Advanced Program-to-Program Communications Support

The work monitor support for APPC involves the
reallocation of APPC peer devices from a subsystem
with communications work entries and involves initiating
jobs upon receipt of an evoke request from a peer
device. The modules involved in reallocating peer
devices are as follows:

• At the IMPL for the System/38, a system process is
initiated to handle peer devices. This process is
called the logical unit services (LUS) process. As part
of process initialization, the create peer device table
module (QWTLCRDT) is invoked to create a data
structure to handle the reallocation of peer devices.

• When a peer device is varied on, CPF modules are
invoked in the LUS process to perform the vary on
function. One of these modules is QWTLCVON,
which updates the LUS peer device table to keep
track of the peer device as it is allocated from the
LUS process to a subsystem and back again.

• After the peer device is varied on, CPF modules are
invoked in the LUS process to perform the peer LUD
contact function. One of these modules is
QWTLCALC, which sets up the evoke handling
program (QWTLCATT) to handle any system or user
evokes sent to the peer LUD. QWTLCATT receives
the evoke request and examines it for validity. The
LUS process is told about any system evokes and all
user evoke requests are rejected.

WT-10

• When a subsystem with communications work entries
is started, the subsystem sends one or more requests
to the LUS process to allocate a peer device. Each
request is handled in the LUS process by the peer
device request module (QWTLEDRQ). which sets up
a peer device request in the peer device table and, if
the requested peer device is available, invokes the
allocate peer device to the subsystem module
(QWTLCAMS). QWTLCAMS performs the allocation
function and tells the subsystem of the allocation.

• When a subsystem with allocated peer devices is
terminated, the peer devices are allocated to the LUS
process again and the peer device allocated module
(QWTLEOLK) is invoked in the LUS process.
QWTLEOLK tries to allocate the peer device to
another subsystem or, if no subsystem request is
available, QWTLEOLK sets up the evoke handling
program (QWTLCATT) to handle any system or user
evoke requests that are sent to the peer device.

• If an evoke request is received at a peer device, but
no conversation is available to receive the data, the
evoke request maximum exceeded module
(QWTLEARM) is invoked in the LUS process.
QWTLEARM rejects the evoke request.

• When a peer device is varied off, CPF modules are
invoked in the LUS process to perform the vary off
function. One of these modules, QWTLCVOF,
removes data regarding the peer device from the peer
device table so that the peer device cannot be
allocated by a subsystem.

Create Job Structure

Each job initiated in CPF must have an associated set of
objects referred to as the job structure. These objects
are divided into two groups: objects that remain after
an IMPL (such as spool control block and job message
queue) and temporary objects that are destroyed after
an IMPL (such as process control space and program
automatic storage area). The temporary part of the job
structure is created by the create job structure module
(QWTAMCJS). QWTAMCJS is invoked in the start CPF
process during an IMPL to create a pool of the
temporary job structures and is also invoked whenever
the pool of temporary job structures become empty.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

INTRODUCTION

The Distribution Services (ZD) component of CPF
supports the Systems Network Architecture Distribution
Services (SNADS). SNADS provides an asynchronous
(delayed delivery) data distribution capability for data
such as documents, messages, files, or objects.
Distribution Services provides the transport mechanism
so that the end user can distribute data objects to
recipients that are located at the same node (same
system) or other nodes that have been configured in the
SNADS network. Distribution Services provides an
internal interface that allows different applications above
it, for example DIA, to be able to use its functions.
Distribution Services transports data objects to other
systems using the LU 6.2 interfaces.

Distribution Services Queues

All of the Distribution Services queues are represented
by an internal object. Each entry on a SNADS queue
represents a distribution. The entries reference
Distribution Control Blocks that contain information
about the distribution, such as the recipients, the service
level, and the originator.

The three main Distribution Service queues are:

• Router Director Queue

• Local Delivery Queue

• Next System Queue

There is one Local Delivery queue for each application
program (or transaction program) supported by
Distribution Services and two Next System Queues for
every next system that is configured in the Next System
Table data base file. As distributions are received from
other systems or from local application programs, they
are put on the Router Director Queue. Distribution
queue entries are represented by Distribution Control
Blocks while they are on Distribution Services Queues.
Distribution queue entries on the Router Director Queue
are removed by the Distribution Services Router and
routed to a Local Delivery Queue, Next System Queues,
or both. A single distribution queue entry may be routed
to multiple queues if it has recipients that require
multiple destinations. The process of splitting up the
distribution queue entry is known as fanout.

SNA Distribution Services

Distribution queue entries on the Next System Queues
may be rerouted, held, deleted, or have their queue
changed. These operations are provided by the
DSPDSTSTS command. Distribution Services allocates
Distribution Control Blocks as needed. When a
Distribution Control Block is no longer needed to
represent a distribution queue entry on a SNADS queue,
it is moved to a queue that pools them so that they may
be reused when needed.

GENERAL OVERVIEW

Note: An arrow identifies the module as being an entry
module into the component. Indentation shows its
dependency on a previous module.

Distribute Data/Status Modules

-->QZDDDTST-Distribute Data and Status: This
module validates parameters passed on macros
ZDDSTDTA and ZDDSTSTS, and uses the
ZDLCKREL macro to lock any data objects. It also
builds a Distribution Control Block and queues it on
the Router Director Queue.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services Queue to another.

QZDEN DQX-Enqueue Request/ Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDDDSIX-Distribute Data/Status Invocation Exit:
This module does any needed cleanup on an
abnormal exit of QZDDDTST module.

SNA Distribution Services ZD-1

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Receive Distribution Modules

- - >QZDRCVDT -Receive Distribution: This module is
invoked by an application program (or transaction
program), using the ZDRCVDST macro. This module
retrieves the next Distribution Control Block to be
received by the application program (or transaction
program) from its local Delivery Queue. It builds the
distribution structure used by the application program
or transaction program, using the Distribution Control
Block contents, and passes the distribution structure
back to the invoking module.

QZDDEQRQ-Dequeue Request: This module
retrieves the next Distribution Control Block to be
processed on any Distribution Services queue,
moves Distribution Control Blocks from any
Distribution Services Queue back onto the queue
of free Distribution Control Blocks, and sets the
queue state of any Distribution Control Block to
READY.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QSNADS Subsystem Modules

-->QZDSTRUP-Distribution Services Subsystem
Startup: This module is an autostart job, started
automatically when the SNADS subsystem is started
by the STRSBS CL command. This module calls
submitters to start the application or transaction
program jobs that receive distributions from the Local
Delivery Queues, and starts the Router and a Sender
for every next system configured by the Next System
Table data base file. Startup will also do some
cleanup on the internal object representing the
Distribution Services queues if necessary.

ZD-2

QZDSTRIE-Startup Invocation Exit: This module
does any needed cleanup on an abnormal exit of
QZDSTRUP module.

Distribution Services Router

QZDROUTR-Distribution Services Router-Director:
This module routes distribution queue entries,
represented by Distribution Control Blocks on the
Router Director Queue, to their destination Local
Delivery Queues or Next System Queues. It gets
the next Distribution Control Block to be routed
from the Router Director Queue, determines what
queues the distribution must be put on to reach its
recipients and puts the distribution on those
queues. It logs the distribution as being routed
along with any routing found while routing it.

QZDEXTRT -Extract a Distribution Route: This
module uses the Distribution Control Block
distribution recipients along with the Directory,
Routing Table, and Secondary Node ID Table data
base files to determine which queues the
Distribution Control Block should be put on, and to
determine any routing time errors.

QZDDEQRQ~Dequeue Request: This module
retrieves the next Distribution Control Block to be
processed on any Distribution Services Queue,
moves Distribution Control Blocks from any
Distribution Services Queue back onto the queue
of free Distribution Control Blocks, and sets the
queue state of any Distribution Control Block to
READY.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services queue to another.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDASNFB-Generate Asynchronous Feedback:
This module generates a new distribution queue
entry to send the errors detected while processing
a distribution back to the recipient specified by the
distribution.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services queue to another.

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

QZDNQDOX-Enqueue Request/ Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDAFBIX-Asynchronous Feedback Invocation
Exit: This module does any needed cleanup on an
abnormal exit of the QZDASNFB module.

QZDROUTX-Router-Director Invocation Exit: This
module does any needed cleanup on an abnormal
exit of QZDROUTR modules.

Distribution Services Sender

-->QZDSNDEH-Sender Event Handler: This module is
invoked when an event is signaled to a sender
process due to a DSPDSTSTS operation or a
distribution being routed to that sender's Next
System Queue. It signals a Start Sending event to
the QZDSENDR module. QZDSNDEH also calls
QZDCKCND to create new event monitors when the
entry representing the sender in the Next System
Table is changed due to operations being performed.

QZDCKCND-Check Senders Conditions: This
module is called to create timer event monitors for
the sender's Next System Queues Start, Stop, and
Force times. It checks, using the sender's Next
System Table entry, if the time and / or queue
depth conditions that would require the sender to
start sending have been met. If any of the
conditions have been met, QZDCKCND signals a
Start Sending event to the QZDSENDR module.

-->QZDTIMEH-Sender Time Event Handler: This
module is the monitor that handles sender time
events created by QZDCKCND. It determines what
the timer event was and calls QZDCKCND to signal a
Start Sending event to the QZDSENDR module.

QZDCKCND-Check Senders Conditions: This
module is called to create timer event monitors for
the sender's Next System Queues Start, Stop, and
Force times. It checks, using the sender's Next
System Table entry, if the time and/or queue
depth conditions that would require the sender to
start sending have been met. If any of the
conditions have been met, QZDCKCND signals a
Start Sending event to the QZDSENDR module.

-->QZDSTSND-Start Sender: This module is invoked
when a sender process is started either at the startup
of the QSNADS subsystem or due to an Evoke
request to start the sender from another SNADS
node. It calls the QZDSENDR module to get the
sending process going. It handles errors returned to
it by QZDSENDER and if the error reported to it is
recoverable it will call the QZDSENDR module again
to start the sending process over again. If the error
reported to it is not recoverable, it will terminate the
process for this sender.

QZDSENDR-Send Distributions to the Next
SNADS Node: This module is invoked to send
queued distribution requests to another SNADS
node. QZDSENDR calls the QZDCKCND module
to determine if the current time and queue depth
conditions are such that it should start sending.
QZDSENDR will wait for a Start Sending event and
upon receiving it will call QZDDEQRQ to get the
next distribution queued on its Next System
Queues. It calls QZDBLDRQ to build the IU form
of the distribution queued and to send this IU to
another SNADS node.

QZDCKCND-Check Senders Conditions: This
module is called to create timer event monitors for
the sender's Next System Queues Start, Stop, and
Force times. It checks, using the sender's Next
System Table entry, if the time and/or queue
depth conditions that would require the sender to
start sending have been met. If any of the
conditions have been met, QZDCKCND signals a
Start Sending event to the QZDSENDR module.

QZDBLDRQ-Build Distribution Interface Unit (lU)
for the Next SNADS Node: This module uses the
information in a Distribution Control Block to build
the IU command and data object. It sends the IU
to the receiving SNADS node and handles any
Negative Acknowledge IUs received as a result of
errors detected by the receiving SNADS node.

QZDDEQRQ-Dequeue Request: This module
retrieves the next Distribution Control Block to be
processed on any Distribution Services queue,
moves Distribution Control Blocks from any
Distribution Services Queue back onto the queue
of free Distribution Control Blocks, and sets the
queue state of any Distribution Control Block to
READY.

SNA Distribution Services ZD-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

ZD-4

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDASNFB-Generate Asynchronous Feedback:
This module generates a new distribution queue
entry to send the errors detected while processing
a distribution back to the recipient specified by the
distribution.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services queue to another.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDAFBIX-Asynchronous Feedback Invocation
Exit: This module does any needed cleanup on an
abnormal exit of the AZDASNFB nodule.

QZDDEQRQ-Dequeue Request: This module
retrieves the next Distribution Control Block to be
processed on any Distribution Services queue,
moves Distribution Control Blocks from any
Distribution SerVices Queue back onto the queue
of free Distribution Control Blocks, and sets the
queue state of any Distribution Control Block to
READY.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDSNDIX-Sender Invocation Exit: This module
does any needed cleanup on an abnormal exit of
QZDSENDR modules.

Distribution Services LU 6.2 Receiver

-->QZDRCVR-Distribution Services lU 6.2 Receiver:
This module receives data from a communications
line and validates values in the IU. It calls the DIA
parser to decode the IU and invokes the file server
macro ZDFSWRIT to store any data objects. If the IU
is received successfully it is acknowledged and
logged. A Distribution Control Block is built to
contain the information about the distribution received
and queued on the Router Director Queue.

QZDNKSF2-Generate Negative Acknowledge IUs
and Handle Suffix Type 2s: This module generates
negative acknowledge IUs to report errors found
when receiving an IU. The Negative Acknowledge
IU is sent back to the system sending the IU. It
also handles Suffix Type 2s received from a
sending system that report errors found by the
sending system.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services queue to another.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDRCVIX-lU 6.2 Receiver Invocation Exit: This
module does any needed cleanup on an abnormal
exit of QZDRCVR modules.

Distribution Services Recovery

-->QZDRECOV-Distribution Services IPl Recovery:
This module is called on an abnormal IPl or install
IPl. On an abnormal IPl it will re-create the
Distribution Services queues and update the Sender
status in the Next System Table. On an install IPl it
will create the Distribution Services queues.

Distribution Services Reclaim

-->QZDREClM-Distribution Services Reclaim: This
module is called on an RClRSCS command. It calls
file server reclaim modules for all the file servers
currently supported on the system to clean up any
unused file server objects using the ZDFSRECl
macro.

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

Distribution Services General File Server Modules

QZDGFSWT -Distribution Services Write General
File Server Data Object: This module generates
Distribution Services file server objects. It is
invoked by the Distribution Services LU 6.2
Receiver via the ?ZDFSWRIT macro when storing
Distribution Services generated file server data
objects. The Distribution Services General File
Server is automatically invoked when an attempt is
made to store a data object from a IU with a file
server (as specified by the IU) that is not
supported on the receiving system.

QZDGFSLR-Distribution Services Lock/Release
General File Server Data Object: This module
increments or decrements the SNADS usage count
in Distribution Services generated file services
objects. The Distribution Services General File
Server is automatically invoked by Distribution
Services modules via the ?ZDLCKREL macro when
an attempt is made to lock or release a file server
data object that was generated by using the
SNADS general file server module. QZDGFSWRT.
The SNADS usage count is an indication of how
many times the file server data object is
referenced by Distribution Control Blocks on all of
the Distribution Services queues.

QZDGFSRD-Distribution Services Read General
File Server Data Object: This module retrieves
data from Distribution Services generated file
server objects. The Distribution Services General
File Server is automatically invoked by the
Distribution Services Sender via the ZDFSREAD
macro when an attempt is made to read a file
server data object that was generated by using the
SNADS general file server module. QZDGFSWRT.

QZDGFSRC-Reclaim Distribution Services General
File Server Data Objects: This module will find all
the Distribution Services General file server objects
and delete those found that are no longer
referenced by Distribution Services. This module is
invoked only during the Distribution Services
reclaim function via the ZDFSRECL macro to
reclaim general File Server Data Objects.

Distribution Services Commands

-->QZDDSPST-Distribution Services Display
Distribution Status (DSPDSTSTS) Command
Processing Program: This module processes the
DSPDSTSTS command. It generates the screens.
and the printed output. and performs operations that
allow a user to Hold. Release. and Reroute Next
System Queues. It provides support for the
operations that allow the Hold. Release. Remove.
Reroute. and Change queues for individual
distributions on the Next System Queues. It also
allows the user to print the contents of the Next
System Queues.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services queue to another.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDDEQRQ-Dequeue Request: This module
retrieves the next Distribution Control Block to be
processed on any Distribution Services queue.
moves Distribution Control Blocks from any
Distribution Services Queue back onto the queue
of free Distribution Control Blocks. and sets the
queue state of any Distribution Control Block to
READY.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

QZDASNFB-Generate Asynchronous Feedback:
This module generates a new distribution queue
entry to send the errors detected. while processing
a distribution. back to the recipient specified by
the distribution.

QZDENQRQ-Enqueue Request: This module
retrieves the next free Distribution Control Block
entry and moves Distribution Control Blocks from
one Distribution Services queue to another.

QZDNQDQX-Enqueue Request/Dequeue Request
Invocation Exit: This module does any needed
cleanup on an abnormal exit of QZDDEQRQ or
QZDENQRQ modules.

SNA Distribution Services ZD-5

This document contains restricted materials of IBM. LY21-0571-6
© Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

QZDAFBIX-Asynchronous Feedback Invocations
Exit: This module does any needed cleanup on an
abnormal exit of the QZDASNFB module.

QZDDSPSV-Distribution Services Display
Distribution Services: (See Distribution Services
DSPDSTSRV /CFGDSTSRV commands.)

QZDHELPT -Display Distribution Status Help Text:
This module displays the help text for the
Distribution Services command menu.

QZDDSPIX-Display Distribution Status Invocation
Exit: This module does any needed cleanup on an
abnormal exit of the QZDDSPST module.

Distribution Services Commands (DSPDSTSRV,
CFGDSTSRV)

-->OZDDSPSV-Distribution Services Display/Configure
Distribution Services Command Processing Program:
This module provides the interface to the internal
modules that allow the user to display, print, or
configure the Routing Table, Next System Table, and
the Secondary Node-ID Table.

ZO-6

QZDDSPNM-Display Secondary Node ID Table:
This module provides the user interface that allows
the user to display, print, or configure the
Secondary Node-ID Table.

QZDDSPRT-Display Routing Table: This module
provides the user interface that allows the user to
display, print, or configure the Routing Table.

QZDDSPCF-Display Next System Table: This
module provides the user interface that allows the
user to display, print, or configure the Next
System Table.

OZDDSPST -Distribution Services Display
Distribution Status: See DSPDSTSTS command
description.

OZDHELPT-Display Distribution Status Help Text:
This module displays the help text for the
Distribution Services command menu.

OZDDSPIX-Display Distribution Status Invocation
Exit: This module does any needed cleanup on an
abnormal exit of the OZDDSPST module.

Distribution Services Component Structure

Figure ZD-1 and the following text show the overall
structure of the Distribution Services Component.

.. Distribute Data and Distribute Status is invoked by
a locally supported application or transaction
program to distribute Data Objects or Status, using
the Distribution Services component.

II Receive Distributions is invoked by a locally
supported application program or transaction
program to receive Data Objects or Status
Distributions from the Distribution Services
Component.

II The Router Director routes distribution queue
entries to the proper Distribution Services queues
in the SNADS network.

II The APPC Receiver receives distributions from
other SNADS nodes in the form of Distribution
Interface Units.

II The Sender sends distributions to other SNADS
nodes in the form of Distribution Units (IUs).

II Display Distribution Status provides a user
interface to display and operate on distribution
queue entries on Distribution Services Next
System Queues.

II Display / Configure Distribution Services provides a
user interface to allow the configuration of the
SNADS network. Information about the network is
kept in the Distribution Services Routing Table,
Secondary Node-ID Table, and Next System
Table.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L ..
Distribute- Data
(Macro ZDDSTDTA)
Distribute-Status
(Macro ZDDSTSTS)

Distribute
Data and
Status

---, DeB r-Rc;'uter
~ ~:-' t Irec or

Queue • Router
Director

I
Nonlocal
DCBs

+ Next

System I ~CB I I
Queue(s)

•

II

..
PC AP

Rec eiver

IU from Another
SNADS Node

~

Sender

IU to Another
SNADS Node

~

Receive- Distribution
(Macro ZDRCVDST)

Receive
Distribution

---, DeB rLocal
~ ~'''r

I
e Ivery

Local Queue
DCBs

Routing
Table

Secondary
Node-ID
Table

Next
System
Table

II
Display
Distribution
Status

Figure ZD-1. Distribution Services Component Structure

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

:l-II Configu,"

Distribution

- Services

-

PAAB026·0

SNA Distribution Services ZD-7

Distribute Data and Status Module Flow

Figure ZD-2 and the following text describe how a
locally supported application program or transaction
program distributes data objects or status, using the
Distribution Services component.

II QZDDDTST is called by the ZDDSTDT A macro to
distribute data objects or by ZDDSTSTS to
distribute status. A parameter list is passed, which
contains a pointer to a space containing the
distribution requests description. This description
includes information about the distribution requests
originator, the destination application program or
transaction program, the name of the data object
that is being distributed and its file server, and a
list of the recipients that are to receive the
distribution.

II AZDDDTST validates the values passed as part of
the distribution request description including the
user I D of the originator of the distribution. It
validates the originator's user ID by resolving it to
the user ID's recipient queue. This object must
exist for every local SNADS user capable of
originating a distribution.

ZDDSTDTA ZDDSTSTS
(macro) (macro)
Call SNADSto Call SNADSto

• If the distribution request is to distribute a data
object, the data object IS locked (its SNADS usage
count is incremented). using the ZDLCKREL macro.
The data object and file server names that were
passed in the distribution request description are
used as parameters to this macro invocation.

.. When all the parameters have been validated and
the data object is locked using the file server
specified, QZDDDTST builds a Distribution Control
Block (DCB) that will contain the information about
the distribution queue entry while it is queued on
the Distribution Services queues. QZDDDTST calls
QZDENQRQ to queue this DCB on the Router
Director Queue so that it will be routed by the
Router Director.

Distribute Data Distribute Status

f
Call ..

1 !
II QZDDDTST

File Server ZDLCKREL Distribute
Data Object (macro) Data and

Status

f
Call

.. 1

Router
Director
Queue

Figure ZD-2. Distribute Data and Status

ZO-8

QZDENQRQ

Enqueue
Request

T
Call

II
Originating
User IDs
Recipient
Queue

PAAB027-O

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

..J

Receive Distribution Module Flow

Figure ZD-3 and the following text describe how a
locally supported application program or transaction
program receives Data Objects or Status from the
Distribution Services component.

D QZDRCVDT is called by the ZDRCVDST macro
invoked by a locally supported application program
or transaction program to receive a distribution
queue entry from a Distribution Services Local
Delivery Queue. A parameter list, passed to the
OZDRCVDT, contains the name of the Local
Delivery Queue. This queue receives the entries
sent by the Distribution Services Router Director.

II OZDRCVDT calls QZDDEQRQ to retrieve the next
distribution queue entry (in the form of a DCB)
from the Local Delivery Queue for this application
program or transaction program. Using information
in the DCB removed from the Local Delivery
Queue, QZDRCVDT builds and returns to the caller
the information about the distribution queue entry.

D

II

Local
Delivery
Queue

ZDRCVDST
(macro)
Call SNADS
to Receive
Distribution

T
Call
~

QZDRCVDT

Receive
Distribution

i
Call
~

QZDDEQRQ

Dequeue
Request

PAAB02B·O

Figure ZD-3. Receive Distribution Module Flow

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SNA Distribution Services ZD-9

Router Director Module Flow

Figure ZD-4 and the following text describe how
Distribution Services routes distribution queue entries to
their destinations.

II The Router Director module QZDROUTER is
started when the QSNADS subsystem is started.
QZDTOUTR will continue to route distribution
queue entries until the QSNADS subsystem is
cancelled.

B QZDROUTR calls QZDDEQRQ to retrieve the next
distribution queue entry to be routed from the
Router Director Queue. If the Router Director
Queue is empty, QZDROUTR will wait until a
distribution queue entry is queued on the Router
Director Queue and then proceed to route it.

II QZDROUTR then calls QZDEXTRT. Based on the
list of recipients of the distribution queue entry
being routed and its service level. QZDEXTRT will
use information in the Routing Table, Secondary
Node-ID Table, and Directory to determine which
Distribution Services queue the distribution must
be put on to reach its destination. It is possible
that a distribution queue entry has to be routed to
many destinations and therefore put on many
queues. QZDEXTRT will also detect any routing
errors that are the result of the distribution queue
entry not being able to reach a destination as
specified in the distribution queue entry list of
recipients. QZDEXTRT returns this information to
QZDROUTR.

II If the distribution being routed references a file
server data object, QZDROUTR invokes the
ZDLCKREL macro to lock the data object.
QZDROUTR will lock the data object once for
every queue that it has been routed to as
determined by QZDEXTRT.

ZO-10

II QZDROUTR builds a Distribution Control Block
(DCB) to represent the distribution on each queue
that the distribution queue entry must be routed
to. QZDROUTR attaches a list of the distributions
recipients that required the distribution queue entry
to be routed to this queue. QZDROUTR calls
QZDENQRQ once for every DCB built to put it on
the Local Delivery Queue or Next System Queue to
which it was routed. It uses the Next System
Table to obtain data to signal a Start Sending
event to the Sender that services the Next System
Queue when a DCB is queued on a Next System
Queue.

II The distribution queue entry being routed may
request that an Asynchronous feedback
distribution be generated to report any errors
encountered during routing. If it is a distribution
entry of this type and errors were found during the
routing process, QZDROUTR calls QZDASNFB to
generate a new Status feedback Distribution to be
sent to a feedback destination specified by the
distribution being routed. QZDASNFB builds a
DCB to contain the information about the routing
errors found. It calls QZDENQRQ to queue the
DCB on the Distribution Services Router Director
Queue so that it will be routed by the Router
Director.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

Started by
OZDSTRUP
at Subsystem
Startup

Router
DirectorLr
Queue

B QZDDEQRQ

Dequeue
Request

T
Call .. 11.....----......

Nex~

System
Table

II

Directory

Secondary
Node-ID
Table

Routing
Table

~
QZDEXTRT

Extract
Route

I---

I-----

QZDROUTR
SNADS
Router
Director

Call Call Call

II
I

OZDASNFB
Generate
Asynchrono
Feedback

I

us

1

ZDLCKREL

(macro)

•

cfll

QZDENQRQ

Enqueue
Request

Figure ZD-4. Router Director Module Flow

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

File Server
Data Object

Router
Director
Queue for
Asynchronous
Feedback

(AND/OR) (AND/OR)
Local Next
Delivery System
Queue for Queue for
Local Nonlocal

PAAB029·0

SNA Distribution Services ZO-11

APPC Receiver Module Flow

Figure ZD-5 and the following text describe how
Distribution Services receives distributions from other
SNADS nodes.

a QZDRCVR is initiated by an EVOKE request from
another node in the SNADS network. It opens a
communications file to the *REQUESTER device.
The *REQUESTER device is identified as being the
device which received the EVOKE request.
QZDRCVR uses this communications file to send
and receive Document Interchange Units (IUs) to
another node.

II QZDRCVR receives information about a
distribution queue entry in the form of an IU by
issuing a get to the communications file.

II QZDRCVR invokes the IU parser through the
OSPARSE macro to decode the incoming IU.
QZDRCVR validates the presence and contents of
parts of the IU.

Evoke Request
from Another
SNADS Node

IU a 1

II If the IU contains data, the file server requested by
the IU to save the data is invoked, using the
ZDFSWRIT macro. If the requested file server is
not supported, the SNADS General file server will
automatically be used to store the data object.

II QZDRCVR will build a Distribution Control Block
that will store information about the distribution
queue' entry while it is queued on the Distribution
Services queues. It calls QZDENQRQ to queue
this DCB on the Router Director Queue so that it
will be routed by the Router Director.

II If any errors are encountered during the previous
steps QZDRCVR calls QZDNKFS2 to send a
Negative Acknowledge IU to report the error found
to the sending node. This module is also called if
QZDRCVR receives a Type 2 IU Suffix from the
sending node indicating that the sending node
detected an error while sending an IU. QZDRCVR
does not build or queue a Distribution Control
Block in either case.

from Another
II QZDRCVR II

SNADS Node

NACK IU
to Another
SNADS Node

II
OZDNKFS2

Send NACK and
Handle Suffix T2

Call

SNADS APPC
Receiver

f
OSPARSE

- (macro)

II !
IU
Parser
Routine

Figure ZO-S. APPC Receiver Module Flow

ZO-12

ZDFSWRIT File Server
(macro) Data Object

L- Call

OZDENQRQ

Enqueue
Request

Router
Director~
Queue

PAAB030-0

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Sender Module Flow

Figure ZD-6 and the following text describe how
Distribution Services sends distribution queue entries
queued on Next System Queues to other SNADS nodes.

.. The Sender startup module QZDSTSND is started
during QSNADS subsystem startup. There is a
sender started in the QSNADS subsystem for
every sender configured in the Next System Table.
It is also possible for a sender to be started due to
an EVOKE request from another SNADS node.
QZDSTSND calls QZDSENDR to begin the process
of sending distribution to another SNADS node.
QZDSTSND handles errors reported to it from
QZDSENDR, restarting the sending process if it
determines the error is recoverable. If the error is
not recoverable, QZDSTSND will end the sending
process.

D This module is called by QZDSTSND to begin the
process of sending distribution queue entries to
another SNADS node. It establishes a
conversation with the APPC communications
device (specified in its Next System Table entry)
over which it will send distribution queue entries to
that node. It then calls QZDCKCND to check the
current send conditions to determine if
QZDSENDR should start sending. QZDSENDR will
wait for a Start Sending event. Upon receiving
such an event, QZDSENDR will call QZDDEQRQ
to retrieve the next distribution queue entry to be
sent from the Next System Queue that it serves
and then calls QZDBLDRQ to send the distribution
queue entry to the next node. When QZDBLDRQ
returns after successfully having sent the
distribution queue entry, QZDSENDR will invoke
the ZDLCKREL macro to unlock the data object
(decrement its usage count) for the distribution
queue entry that was sent.

II QZDCKCND is called by the QZDSENDR module
to check the current time and queue depth
conditions against those that are specified by the
sender's Next System Table entry. If QZDCKCND
determines that the conditions are such that the
sender should start sending distribution queue
entries to another SNADS node, it signals a Start
Sending event to the QZDSENDR module.
QZDCKCND will also set up event monitors for the
sender's Next System Queue Start, Stop, and
Force times as configured in the sender's Next
System Table entry.

II QZDDEQRQ is called by QZDSENDR to retrieve
the next distribution queue entry to be sent from
the Next System Queues that it serves.

II QZDBLDRQ is called by QZDSENDR to build the
Distribution Interface Unit (lU) form of the
distribution queue entry and send it, via an APPC
line, to another SNADS node. QZDBLDRQ uses
the information about the distribution queue entry
kept in the Distribution Control Block to build
the IU.

II If the distribution references a file server data
object, QZDBLDRQ invokes the ZDFSREAD macro
to retrieve the data object's data. QZDBLDRQ
sends this data as part of the IU.

II QZDBLDRQ will handle a Negative Acknowledge
IU (NACK) sent by the receiving SNADS node to
report any errors detected by that node while
receiving the IU being sent to it. QZDBLDRQ will
also detect and report errors found while sending
an IU to the receiving node by generating a Type 2
Suffix and sending it to that node.

II If QZDBLDRQ detects an unrecoverable error in
sending an IU for a distribution queue entry, it will
not attempt to send that distribution. The
distribution being sent may request that an
asynchronous feedback distribution be generated
to report any errors encountered during sending. If
a distribution requests an asynchronous feedback,
unrecoverable errors were found during the
sending QZDBLDRQ then calls QZDASNFB to
generate a new Status feedback Distribution to be
sent to a feedback destination specified by the
original distribution queue entry. QZDASNFB
builds a DCB to contain the information about the
routing errors found. It calls QZDENQRQ to queue
the DCB on the Distribution Services Router
Director Queue so that it will be routed by the
Router Director. QZDBLDRQ will then invoke the
ZDLCKREL macro to unlock the data object
(decrement its usage count) that was being sent
when the error was found.

SNA Distribution Services ZD-13

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

II QZDSNDEH is the sender event handler module
that handles events sent to a sender process when
a DCB is queued on one of the Next System
Queues it serves. QZDSNDEH also receives
events when the sender's configuration, such as
Start, Stop, or Force time, is changed due to a
change made to that sender's Next System Table
entry. QZDSNDEH calls QZDCKCND to check the
current conditions and to signal an event to
QZDSENDR to start sending if those conditions
are met. If the event received by QZDSNDEH
indicates that a Start Sending operation was done
using the DSPDSTSTS interface, QZDSNDEH will
send a Start Sending event to QZDSENDR to start
the sending process.

IE QZDTIMEH is the sender event handler module
that handles timer events sent to a sender
process. These timer event monitors were set up
by QZDCKCND, using the configuration
information in the sender's Next System Table
entry. When a timer event is received, QZDTIMEH
calls QZDCKCND to check the current conditions
and to signal an event to QZDSENDR to start
sending if those conditions are met.

ZO-14

This document contains restricted materials of IBM. LY21-0S71-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
Start Sender
Job at Subsystem
Startup or by
an Evoke from
Another Node ..

QZDSTSND

Sender
Check Conditions
Event

QZDSNDEH
Sender
Event
Handler

Call

Start

Next
System
Table

QZDCKCND

II

Sender
Timer Event

QZDTIMEH
Sender Time
Event
Handler

Start Sender
Processing

Sending -----\
Event

,--Call~

II
Check Sender rr-- Call

Conditions

II QZDSENDR II
-Call____.

SNADS
Sender

ZDLCKREL

(macro)
File Server
Data Object

IU to Next
SNADS Node

Call Call

II,

ZDFSREAD
(macro)

ZDLCKREL
(macro)

QZDBLDRQ III
Build IU NACK IU from I II Command and --------1111!--.. ~ Data Object

14----Call-----lN

QZDASNFB
Generate
Asynchronous
Feedback

Next SNADS Node

+
II C:II
~~----.,

QZDDEQRQ

Dequeue
Request

Figure ZO-6. Sender Module Flow

Next
System
Queue

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Call
+

OZDENQRQ

Enqueue
Request

Router
DirectorLr
Queue

PAAB031-0

SNA Distribution Services ZD-15

Display Distribution Status (DSPDSTSTS) Command II If the distribution queue entry removed by a
Module Flow remove operation references a file server data

object, the ZDLCKREL macro is invoked to unlock
Figure ZD-7 and the following text describe the (decrement the SNADS usage count) the file
execution of the DSPDSTSTS command. server data object referenced.

a If the distribution queue entry removed by a II The distribution queue entry removed from a Next
remove operation references a file server data System Queue by a remove operation could be
object, the ZDLCKREL macro allows the Hold, one that requests that an Asynchronous feedback
Release, Remove, Reroute, and Change of queues distribution be generated. If it is, QZDASNFB is
for individual distribution queue entries on the called to generate a new Status feedback
Nex.t System Queues. It allows the user to distribution queue entry that will report its removal
Display, Hold, Release, Send, and Reroute the back to the destination specified by the
Next System Queues. It also provides the support distribution removed. QZDASNFB builds a DCB to
that allows the user to print the contents of the contain information regarding the distribution
Next System Queues. QZDDSPST validates the removal. It calls QZDENQRQ to queue the DCB on
command parameters as entered. the Distribution Services Router Director Queue so

that it will be routed by the Router Director.
II When the user requests a Hold, Release, Change,

or Reroute operation, an individual distribution II QZDDSPST provides an interface into the
queue entry or reroute of the queue, QZDDSPST operations support that allows the user to
calls QZDENQRQ to change the state of the configure Distribution Services. This is described in
distribution queue entry from one Distribution the overview of the DSPDSTSRV /CFGDSTSRV
Services queue to another. commands earlier in this chapter.

II When the user requests that a distribution queue II QZDHELPT provides the support for help text
entry be removed, then QZDDSPST calls available to the user of the DSPDSTSTS
QZDDEQRQ to remove the distribution queue operations.
entry's DCB from the Distribution Services Next
System Table queue it is on.

ZD-16

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

~

..J

Next
System
Table

I ..

DSPDSTSTS
Command

1
Call SNADS to
do Queue
Operations

QZDDSPST

II

I--- Call--l

Configure
Distribution
Services

• Display

ZDLCKREL Distribution
Status I--- Call

1Ir-----......,
OZDDEORO

D

File Server
Data Object

OZDHELPT
DSPDSTSTS

Help Text

II

I f

CllI Call

QZDASNFB
Generate
Asynchronous
Feedback

Call II
QZDENQRQ

Enqueue
Request

Router L-J Director
Queue

Figure ZD-7. Display Distribution Status

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Dequeue
Request

Next L-J System
Queue

PAAB032·0

SNA Distribution Services ZD-17

Display/Configure Distribution Services

Figure ZD-8 and the following text describe the
execution of the Display Distribution Services
(DSPDSTSRV) or Configure Distribution Services
(CFGDSTSRV) commands.

.. The DSPDSTSRV and CFGDSTSRV commands
invoke module QZDDSTSV that provides the user
interface to the Next System Table, Routing Table,
and Secondary Node-ID Table. QZDDSTSV
validates the command parameters as entered,
displays and processes the distribution services
menu if requested, and calls the appropriate
module to process the selected Distribution
Services Table.

II If the user selects a menu or command option to
display or configure the Routing Table,
QZDDSTSV calls module QZDDSPPRT. This
module provides the support for the screens and
options that allow the user to display, print, or
configure the Routing Table.

II If the user selects a menu or command option to
display or configure the Secondary Node-ID Table,
QZDDSTSV calls module QZDDSPNM. This
module provides the support for the screens and
options that allow the user to display, print, or
configure the Secondary Node-ID Table.

ZO-18

II If the user selects a menu or command option to
display or configure the Next System Table then
QZDDSTSV calls module QZDDSPCF. This
module provides support for the screens and
options that allow the user to display, print, or
configure the Next System Table.

II QZDDSTST provides an interface with the
operations support that allows the user to display
and perform operations on distributions queued on
the Distribution Services Next System Queues.
This module can be called through the QZDDSPSV
menu screen or the QZDDSPCF screens.

II QZDHELPT provides the support for help text for
the user of the DSPDSTSRV!CFGDSTSRV
operations. It is called on response to a user
request from any distribution services command
module.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

QZDHELPT
Configure
Distribution
Services
Help Text

1
II QZDDSPRT

Display/
Configure
Routing
Table

I
Routing
Table

B

CFGDSTSRV
DSPDSTSRV
Commands

Call SNADS to
Display or
Configure the
Network

D
QZDDSTSV
Configure
Distribution
Services

Call Call Call
I

QZDDSPNM
Display/
Configure
Secondary
Node-IDs

Secondary
Node-ID
Table

L

Figure ZD-S. Display/Configure Distribution Services

II
Call -----.

Display
Distribution
Status

II

t
Call

1
QZDDSPCF
Display/
Configure
Next System
Table

I
Next
System
Table

PAAB033·0

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

SNA Distribution Services ZD-19

ZD-20

This document contains restricted materials of IBM. LY21-0571-6
©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

L

L
This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Appendix A. Invocation Example

Appendix A. Invocation Example A-1

INVOCATION EXAMPLE

The following is an example of the invocation of
programs within a process. For each invocation there is
an associated activation and invocation entry.

a Program A is invoked as the first invocation in the
process phase.

fJ Program A executes a Transfer Control command
to pass control to B. The invocation for A is
destroyed (but not the activation) and program B is
invoked and given control.

II A Call External instruction is executed in B to
invoke C.

.. An exception is signaled in C. Execution of C is
suspended in order to process the exception. The
external exception handler, EX1, is invoked based
on the associated exception description.

II EX1 executes a Call External command to
invoke EX2.

II EX2 executes a Return External instruction to
cause its invocation to be destroyed and control to
be passed to EX1 at the instruction following the
Call External instruction.

II The Return From Exception instruction is executed
in EX1. This causes its invocation to be destroyed
and control to be returned to C at an instruction
based on the instruction address specified by the
return target.

II A Call External instruction is executed in C.

A-2

II A Transfer Control command is executed in D.
E is invoked.

III A Call External instruction in E is executed to
invoke F.

II During the execution of F, an event occurs that is
monitored within the process. Execution of F is
suspended and the event handler, EV1, is invoked.

II A Return External instruction in the event handler
is executed. Invocation EV1 is destroyed and
control is passed to F at the instruction following
the instruction which completed execution prior to
the invocation of the event handler.

II A Return External instruction in F is executed to
cause its invocation to be destroyed and control
passed to the instruction following the Call
External instruction in E.

II A Return External instruction in E is executed.
Control is passed to the instruction following the
Call External instruction in C.

II A Return External instruction in C is executed. The
invocation of C is destroyed and control returns to
the instruction following the Call External
instruction in B.

II A Return External instruction in B is executed. The
invocation of B is destroyed and since it is the
highest level invocation within the process, control
returns to the process. If the process is in the
initiation or problem phase, execution continues in
the next phase. If the process is in the termination
phase the process is terminated.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

A

D
B

fJ!

XFRCTLB-'"

;
.. ---....... To Next Phase

CALLC- 1m
-t~.

EX 1

RETUR~ J

II
II

...

_.RETURN

D

r:

CALLEX~2.""

~.

"J inN ••

II
EX 2

~ ·, ... RETURN mL....---------

E II .r--.---_
~

XFRCTLE
CALLF~

~.
~

.. ______ ~ .. -I.RETURN

__ .Im

~, ,._-----.
. ____ ... 11 EVENT

......... a---.... ~~.
~_RIE1"URN

"-I-RETURN

Appendix A. Invocation Example A-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

A-4

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
*ClS: See Class.

*CMD: See command definition.

*CUD: See control unit description.

*DEVD: See device description.

*DTAARA: See data area.

*EDTD: See edit description.

*FllE: See file.

*JOBD: See job description.

*JOBQ: See job queue.

*UB: See library.

*UBl: See library list.

*UND: See line description.

*MSGF: See message file.

*MSGQ: See message queue.

*OUTQ: See output queue.

*PGM: See program.

*PRTIMG: See print image.

*QTEMP: See temporary library.

*SBSD: See subsystem description.

*TBl: See translate table.

*USRPRF: See user profile.

abbreviated install: A process in which the object
verification and damage correction part of CPF
installation is done without replacing the previously
installed version of CPF. Contrast with normal install.

access group: A system object that is a collection of
other system objects, which are transferred to/from
auxiliary storage as a group. The access group is used
to improve storage management efficiency by specifying
which system objects are used together.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

Glossary

access path: The means by which CPF provides a
logical organization to the data in a data base file so
that the data can be processed by a program. See also
arrival sequence access path and keyed sequence access
path.

active file: A diskette file, or tape file whose expiration
date is greater than the system date.

active group job: A group job that has not been
suspended by the Transfer to Group Job (TFRGRPJOB)
command.

activity level: An attribute of a storage pool or the
system that specifies the maximum number of jobs that
can execute concurrently in the storage pool or the
system.

ACTlU: An SNA command used to activate the logical
unit.

ACTPU: An SNA command used to activate the
physical unit.

add rights: The authority to add an entry to an object.

addressability: The ability to locate an object in online
storage.

ADM: See administrative management.

administrative management: An IBM-supplied
OFFICE/38 program that facilitates such common office
tasks as the creation and maintenance of document
logs, calendar, message-processing, and dictionary
functions. Abbreviated ADM.

adopted user profile: The user profile that owns the
program that has been created with the adopt user
profile attribute. The adopted user profile supplements
the process with its authorities as long as the process is
executing that program. See also propagated user
profile.

Advanced Program-to-Program Communications:
Data communications support that allows a System/38
to communicate with other systems having compatible
communications support. APPC is the System/38
implementation of the SNA/SDlC lU6.2 protocol.
Using APPC, System/38 can start programs on another
system, or another system can start programs on the
System/38.

AIPl: See alternative initial program load.

Glossary G-1

alternative initial program load: A process, when
combined with the IMPL sequence, that prepares the
system for operation and installs CPF from the diskette
magazine drive. Abbreviated AIPL on the
operator / service panel.

APAR: See authorized program analysis report.

APPC: See advanced program-to-program
communication.

application program: A program used to perform a
particular data processing task such as inventory control
or payroll.

argument list: A program object that provides a means
of transferring object addressability from an invoking
program to an invoked program. It contains a list of
OOT references that specify the objects whose
addressability is to be passed and the order in which the
arguments are to be associated with their corresponding
parameters. See also parameter.

arrival sequence access path: An access path that is
based on the order in which records are stored in a
physical file.

atomic function: An operation that, once started, must
continue to completion without interruption.

attribute: Information that describes the characteristics
of system objects or program objects; for example,
attributes of a field include its length and data type, and
attributes of a job include its user name and job date.

AUT: See authorized user table.

authority: The right to access objects, resources, or
functions. Two kinds of authority exist, special authority
and object authority.

authorization: The process of giving a user either
complete or restricted access to an object, resource, or
function.

authorized program analysis report: A request for
correction of a problem caused by a defect in a current
unaltered release of a program. A APAR.

authorized user table: A system object that contains
user profile information.

automatic variable: A variable that is allocated during
the invocation of the program containing the variable.
Every time a program is invoked a new copy of the
variable is placed in storage. Contrast with static
variable.

autostart job: A job that is automatically initiated when
a subsystem is started.

G-2

autostart job entry: A work entry in a subsystem
description that specifies a job to be automatically
initiated each time the subsystem is started.

auxiliary storage: All addressable storage other than
main storage. Auxiliary storage is located in the
system's nonremovable disk enclosures.

base pool: A storage pool containing all unassigned
main storage on the system and whose minimum size is
specified in the system value OBASPOOL.

batch job: A group of processing actions submitted as
a predefined series of actions to be performed without a
dialog between the user and the system.

batch subsystem: A subsystem in which batch jobs are
to be processp.d. IBM supplies one batch subsystem:
OBATCH.

beginning of extent: A field in a label listed in a
diskette volume table of contents, which notes the
beginning of a file; corresponds with end of extent.

binary synchronous communications: A form of
communications line control that uses transmission
control characters to control the transfer of data over a
communications line. Abbreviated BSC.

BIND: An SNA command used to define the protocols
for a session.

block: A set of adjacent logical records recorded as a
unit on a diskette or magnetic tape.

BOE: See beginning of extent.

BOM: Break offset mapping.

BOMT: See break offset mapping table.

break delivery: When delivering messages sent to a
message queue, the method that interrupts the job
associated with that message queue as soon as the
message arrives.

break offset mapping: See break offset mapping table.

break offset mapping table: A table used to validity
check high-level language command names.

breakpoint: A place in a program (specified by a
command or a condition) where the system halts
execution and gives control to the work station user or
to a specified program.

breakpoint program: For a batch job, a user program
that can be invoked when a breakpoint is reached.

BSC: See binary synchronous communications.

BSCT: Binary synchronous communications multipoint
tributary.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

call: To instruct that a program is to begin execution.

called program: A program whose execution is
requested by another program, a calling program.

calling program: A program that controls the execution
of another program, a called program.

card device file: A device file description that contains
the description of a card device file. The description
identifies the device to be used and specifies the
attributes of the device file.

CD: See control unit description.

coo: Command definition object.

cos: See command definition source statement.

CE: Customer engineer.

CF: Command function.

CI: Card image.

CL: See control language.

CL variable: A program variable that is declared in a
control language program and is available only to that
program.

class (CLS): A CPF object that specifies the execution
parameters for a routing step. The class object i3
specified in the routing entry in a subsystem description.
*CLS is the system-recognized identifier for this type of
CPF object.

close: A data manipulation function that ends the
connection between a file used in a program and the
data or I/O device specified in the file. Contrast with
open.

CLS: The system-recognized identifier for class, a type
of CPF object. (See class.)

CMO: The system-recognized identifier for the
definition of a command, a CPF object type. (See
command definition.)

cold start: A process in which ill! noninstalled objects
(CPF objects created by CPF after installation) are
deleted and recreated as a group.

command: A statement used to request a function of
the system. A command consists of the command
name, which identifies the requested function, and
parameters.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

command definition: An object that contains the
definition of a command (including the command name,
parameter definitions, and validity checking information)
and identifies the program that performs the function
requested by the command. The system-recognized
identifier is *CMD.

command definition source statement: A source
statement used in creating a command definition.
Command definition statements define key words and
parameter values, qualified names, elements in a list,
parameter dependencies, and prompt text for a
command.

command processing program: A program that
processes a command. This program performs some
validity checking and executes the command so that the
requested function is performed. Abbreviated CPP.

commitment control: A means of grouping file
operations that allows the processing of a group of data
base changes as a single unit through the COMMIT
statement or the removal of a group of data base
changes as a single unit through the ROLLBACK
statement.

commitment definition: Information used by the
system to maintain the commitment control environment
throughout a routing step and, in the case of a system
failure, throughout an IMPL (initial microprogram load).
This information is obtained from the Begin
Commitment Control command, which establishes the
commitment control environment, and the file open
information in a routing step.

communications file: A device file associated with a
remote data processing system that describes the record
formats sent to or received from that system.

completion message: A message that conveys
completion status of work.

context: A system object that contains addressability to
system objects by name. It is used in system pOinter
resolution to obtain system pointers to system objects.

control language: The set of all commands with which
a user requests functions. Abbreviated CL.

control language program: An executable object that
is created from source consisting entirely of control
language commands.

Control Program Facility: The system support licensed
program for the IBM System/38. It provides many
functions that are fully integrated in the system such as
work management, data base data management, job
control, message handling, security, programming aids,
and service. Abbreviated CPF.

Glossary G-3

control unit description: An object that contains a
description of the features of a control unit that is either
directly attached to the system or attached to a
communications line. The system-recognized identifier
is *CUD. Abbreviated CD.

controlling subsystem: An interactive subsystem that
is started automatically when the system is started and
through which the system operator controls the system.
IBM supplies one controlling subsystem: QCTL.

conversation: The interaction between a computer and
a user through a keyboard. (2) A temporary connection
between an application program and an APPC session.

CPF: See control program facility.

CPP: See command processing program.

CSM: Concurrent service monitor.

CUD: See control unit description.

data area: An object that is used to communicate data
such as CL variable values between the programs within
a job and between jobs. The system-recognized
identifier is *DT AARA.

data base: A structure of files and indexes that holds
data and the relationship among the data. In
System/38, a data base is composed of a combination
of the following system objects:

• Data space-file of entries (records)

• Data space index-provides logical ordering of entries
in data spaces

• Cursor-path to entries in data spaces

data base file: An organized collection of related
records in the data base. See also physical file and
logical file.

data communications: The transmission of data
between systems and / or remote devices over a
communications line.

data description specifications: A description of the
user's data base or device files that is entered using a
fixed-form syntax. The description is then used to
create files. Abbreviated DDS.

data file: The major unit of data storage, consisting of
one or more file members which contain a collection of
data records stored in a user-specified format.

data management communications queue: A
temporary extendable space object created outside the
process access group (PAG), used to keep track of all
files opened and temporarily closed during the process,
file overrides that exist in the process, and common
data management information for the process.

G-4

data rights: The authority to read, add, update
(modify). or delete data contained in an object.

data space: A system object in which data space
entries (records) are stored. Once a data space has
been created, new entries can be inserted and existing
entries can be updated, retrieved, or deleted.

data space entry: An ordered set of fields (record) that
is contained within a data space (file). All entries within
a data space have the same number of fields and
identical attributes.

data space index: A system object that is used to
logically order entries in one or more data spaces.

data transformation: Changing the form of data
according to specific rules as data is moved between
the data base and the using program. Includes changing
the data type and length.

data type: An attribute used for defining data as
numeric, character, or logical.

DCO: Debug communications object.

DDS: See data description specifications.

debug communications object: One of two principal
objects used by the testing component. Unique to the
program currently being debugged, the DCD contains
information pertinent to the program's user-created
spaces and program template components.

debug mode: The mode in which programs can be
tested.

default delivery: The method of delivering messages
sent to a message queue in which messages are ignored
and the default reply is sent for any messages requiring
a reply.

default program: A user-specified program that is
assumed when no other program is specifically named
on a debug. command.

default record: A record in which fields are initialized
with zeros if it is a numeric field or with blanks if it is a
character field.

delayed maintenance: The method in which access
paths are maintained that specifies that an access path
is not updated when the file is closed, but updates are
remembered in a delayed form so that they can be
quickly applied at the next open, avoiding a complete
rebuild. Contrast with rebuild maintenance and immediate
maintenance.

delete rights: The authority to delete an entry from an
object.

dequeue: An operation for removing messages from
queues. Contrast with enqueue.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

DEVD: See device description.

device description: An object that contains information
describing a particular device that is attached to the
system. The system-recognized identifier is *DEVD.
Abbreviated DEVD.

device emulation: The programming that allows one
device to appear to the user or to a system as another
device. See also display emulation, printer emulation, and
3270 emulation.

device file: A file that is processed as an external input
or output device attached to the system, such as a work
station, a card reader/punch unit, a printer, or the
diskette magazine drive. (A device file does not contain
data records.)

DHCF: See distributed host command facility.

DIA: See document interchange architecture.

DIA document distribution services: The set of
services that enables office users to send and receive
electronic mail.

diagnostic message: A message about errors in the
execution of an application program or a system
function.

diskette file: A device file description that contains the
description of a diskette device file. The description
identifies the device to be used and specifies the
attributes of the device file and of the data file on
diskette.

display: A visual presentation of information on a work
station screen, usually in a specific format.

display file: A device file associated with a display
work station or console that describes the content of
one or more displays.

display station: An input/output device containing a
screen and an attached keyboard that is used as a work
station to communicate with the system.

distributed host command facility: That part of a
System/38 that helps to create the communications link
between a System/370 terminal and a System/38
application. Abbreviated DHCF.

distribution description: A description (1 through 44
characters long) assigned to a document being
distributed. It is made by the originator of the
distribution and usually describes the item that is being
distributed.

distribution list: A collection of system distribution
directory entries. A distribution list can include users
who are enrolled at any office system node. This allows
users to send messages, memos, and documents to a
group of users in one step.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

distribution queue: In document distribution services, a
list that keeps track of documents to be distributed.

distribution queue entry: In SNADS, an entry on the
distribution queue indicating that an item has been
passed to SNADS for distribution to one or more
recipients in the SNADS network.

distribution request: See distribution queue entry.

distribution service level: In SNADS, the combination
of priority, capacity, and protection requirements that
must be satisfied to receive or route a distribution.
SNADS has service levels of fast, status, data high, and
data low. Items distributed with a service level of fast,
status, or data high are put on the priority queue. Items
distributed with a service level of data low are put on
the normal queue.

distribution service unit: In SNADS, any of the nodes
in a SNADS network. Abbreviated DSU.

distribution services: The support provided by CPF to
receive, route, and send distributions in a SNADS
network.

Document Interchange Architecture: The specification
of rules and a data structure that is necessary for the
predictable, coherent exchange of information between
application processes. Document interchange
architecture includes document library services and
document distribution services. Abbreviated DIA.

document interchange session: In document
interchange, the environment that allows an office
system node to process requests.

document library: The system repository for filed
documents and related information. Documents can be
filed and retrieved by office users. On System/38, the
document library is library QDOC. Contrast with archive
and text library.

document library services: The set of services that
enables office users to manage the contents of a
document library.

document list: (1) In working with text documents, a
display that lists the names of the documents contained
in a particular file and allows the PS/38 user to select a
document to process. (2) A logical grouping of filed
documents that have common document attributes. The
document list identifies which documents satisfy search
criteria specified by an office user at the time the search
is executed. The system-recognized identifier for the
object type is *DOCL.

document name: The 1- through 44- character name
of a document, assigned by the user when filing the
document. Contrast with library-assigned document
name and document object name.

Glossary G-5

document number: The number PS/38 assigns to a
hardcopy document when a user logs that document.
The first two digits of the document number are the
year of logging, and the last five are in sequence, with
the most recent documents having the highest number.
For example, the fifth hardcopy document filed in 1985
would have the number 85-00005.

document object name: The 10-character name of a
document assigned by the system when a user files the
document. Contrast with library-assigned document
name and document name.

OMeQ: Data management communications queue.

os: See data space.

OSI: See data space index.

OTAARA: The system-recognized identifier for data
area, a type of CPF object. (See data area.)

dump: To copy data in a readable format from a
computer's internal storage onto an external medium
such as tape, diskette, or printer.

edit: To modify a numeric field to an external format by
suppressing zeros and inserting commas, periods,
currency symbols, the sign status, or other constant
information.

edit code: A letter or number indicating what kind of
editing should be done before a field is displayed or
printed.

edit description: An object that contains a description
of a user-define edit code. The system-recognized
identifier is *EDTD.

edit word: A word with a specific format indicating
how editing should be done.

editing instructions: Instructions that are designed to
allow the programmer to change the format of data
items.

EOTO: The system-recognized identifier for edit
description, a type of CPF object. (See edit description.)

element: A parameter value in a list of parameter
values.

end of extent: A field in a label listed in a diskette
volume table of contents, which notes the end of a file;
corresponds with beginning of extent.

enqueue: An operation for placing messages on a
queue. Contrast with dequeue.

entry job: A job that is the result of a user transferring
from one subsystem to another.

G-6

entry point: A program object used to define the target
instruction in an instruction stream.

entry point table: Contains pointers to functions or
modules.

EOE: See end of extent.

EOF: End of file.

EOP: External object pointer.

EOT: End of transmission.

EPTAB: See entry point table.

ERAP: Error recording analysis procedure.

error log: A record of machine checks, device errors,
and volume statistical data.

escape message: A message that can be monitored for
and that describes a condition for which a program
terminates without completing the requested function.

event: An asynchronous signal that a process can
intercept.

event handler: A program, specified in an event
monitor, that is to receive control when the event
occurs.

event monitor: A specification of events(s) tobe
intercepted by a process and the event handler program
to be invoked as a result.

exception: The occurrence of a monitorable machine or
user-defined condition directly associated with the
execution of a particular function within a program.
Exceptions generally represent an abnormality detected
by machine or by a program.

exception description: A program object that is used
to contain information pertaining to the handling of an
exception.

exclusive allow read lock state: The allocation a
routing step has for an object in which other routing
steps can read the object if they request a shared for
read lock state for the same object. The predefined
value for this lock state is *EXCLRD.

exclusive lock state: The allocation a routing step has
for an object in which no other routing steps can use
the object. The predefined value for this lock state is
*EXCL.

external: One of the attributes of a named data
program object indicating that it can be referred to by a
program other than the program in which it is defined.
Data pointers are used to refer to external program
objects.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

external entry point: Defines the first instruction to be
executed in a program when it is invoked.

external message queue: A message queue that is
part of the job message queue and is used to
communicate between an interactive job and the work
station user. For batch jobs, messages sent to the
external message queue appear in the job log.

external object pointer: A pointer to an object that
does not compile to inline code.

external storage: Data storage other than main or
auxiliary storage.

externally described data file: A file containing data
for which the fields in the records are described to CPF,
by using data description specifications, when the file is
created. The field descriptions can be used by the
program when the file is processed. Contrast with
program-described data file.

FCB: File control block.

FEOD: Forced end of data.

field: An area that is reserved and used for a particular
item of information.

field reference file: A physical file whose record format
describes the fields used by a group of files but which
contains no members. The field descriptions in the field
reference file can be referred to when data description
specifications for other files are written. Therefore, data
attributes need to be specified only once for fields used
in multiple files.

file: An object that contains a description of a set of
related records treated as a unit and, optionally, those
records. The system-recognized identifier is *FILE.

file description: The information contained in the file
that describes the file and its contents.

file overrides: The file attributes that can be specified
at execution time that will override the attributes
specified in the file description or in the program.

file reference function: A CPF function that lets the
user track file usage on the system.

first-level message: The initial message presented to
the user containing general information or designating
an error.

FSM: Finite state machine.

function check: A notification (by a message) that an
unexpected condition has stopped the execution of a
program.

This document contains restricted materials of IBM. L Y21- 0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

general purpose library: The library provided by CPF to
contain user-oriented, IBM-provided objects and
user-created objects that are not explicitly placed in a
different library when they are created. Named OGPL.

generic name: A set of characters that identifies a
group of objects and ends with an * (asterisk). For
example, ORD*.

get operation: An I/O operation that obtains a record
from an input file and passes it to a program.

GFDT: Generic function definition table.

group job: One of up to sixteen interactive jobs that are
associated in a group with the same work station device
and user. These jobs can be manipulated using the
Change Group Attributes (CHGGRPA), Retrieve Group
Attributes (RTVGRPA), Transfer to Group Job
(TFRGRPJOB), and Terminate Group Job (TRMGRPJOB)
commands.

group job name: A name that is assigned to an
interactive job when it is changed into a group job using
the Change Group Attributes (CHGGRPA) command or
when a group job is started using the Transfer to Group
Job (TFRGRPJOB) command. This name is used within
the group to identify the job.

group job transfer: An operation performed by the
Transfer to Group Job (TFRGRPJOB) command that will
either start a new group job or resume an existing group
job. In both cases, control is passed to the specified
group job.

high-level language: A programming language that
relieves the programmer from the rigors of machine level
or assembler level programming; for example: RPG III
and COBOL. Abbreviated HLL.

history log: A log of information about system status
and events. Named OHST.

HLL: See high-level language.

hold delivery: The method of delivering messages sent
to a message queue that holds the messages until the
user asks for them.

host system: The controlling or highest level system in
a data communications configuration. For example, a
System/38 is the host system for the work stations
connected to it.

host c.ommand facility: An IBM program product on a
System/370 host system that enables a user on the
System/370 to access applications on a System/38 or
other systems. Abbreviated HCF.

ICO: Installation communications object.

Glossary G-7

ideographic: Pertaining to 2-byte characters consisting
of pictograms, symbolic characters, and other types of
symbols.

ideographic dictionary: A collection of alphameric
entries with the ideographic entries that correspond to
the alphameric entries.

immediate maintenance: The method by which access
paths are maintained that specifies that an access path
is to be updated regardless of whether the file is open.
Contrast with rebuild maintenance and delayed
maintenance.

impromptu message: A message created when it is
sent. Contrast with predefined message.

information display: A display presenting information
such as the status of the system to a user, but that
rarely asks for a response.

informational message: A message that conveys
information about the condition of a function.

initial program: A program specified in a user profile
that is to be executed when the user signs on and the
command processor QCL is invoked. QCL invokes the
initial program.

initialize: To set to a starting position or value.

inline data file: A data file that is included as part of a
job when the job is read from an input device by a
reader program.

input: Information (or data) to be processed.

input field: A field in a display in which data can be
entered and that is passed from the device to the
program when the program reads a record.

input file: A file that contains data that is used by a
program.

input stream: A group of records submitted to the
system as batch input that contains CL commands for
one or more jobs and / or the data records of one or
more inline data files.

inquiry message: A message that conveys information
but also asks for a reply.

interactive: Pertaining to a program or system that
alternately accepts input and then responds. An
interactive system is conversational; that is, a continuous
dialog exists between the user and the system.

interactive job: A job in which the processing actions
are performed in response to input provided by a work
station user. During a job, a dialog exists between the
user and the system.

G-8

interactive subsystem: A subsystem in which
interactive jobs are to be processed. IBM supplies three
interactive subsystems: QCTL, QINTER, and QPGMR.

intermediate representation of a program: The code
for an object program generated by the CL compiler.
The PRM (program resolution monitor) converts this
code into machine interface templates, which in turn are
translated into executable modules by the machine.

internal storage: All main and auxiliary storage in the
system.

internal symbol table: A list formed during Phase 1 of
the program resolution monitor component function,
derived through lexical, syntactical. and semantic
analysis of the intermediate representation of the
program (lRP) source string, for use by PRM Phase 2.
All program object have definitions in this table.

invocation: The execution of a program.

invocation level: Identifies the occurrence of the same
program in the job's invocation stack. An invocation
level is used in debug mode only. The first occurrence
of a program in a job has an invocation level of 1.

invocation nesting: When more than one invocation of
a specific program exists in an invocation stack.

invocation number: Identifies each program invocation
in an invocation stack. The highest level program has an
invocation number of 1.

invocation stack: A series of invocations.

invoke: To instruct that a specific program is to start
executing.

IPL: Initial program load.

IRP: Intermediate representation of a program.

1ST: See internal symbol table.

JMQ: Job message queue.

job: A single identifiable sequence of processing actions
that represents a single use of the system. A job is the
basic unit by which work is identified on the system.

job description: An object that contains the attributes
of a job. The system-recognized identifier is *JOBD.

job log: A record of requests submitted to the system
by a job and the messages related to them. The job log
is maintained by CPF.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

job message queue: A type of message queue used
for receiving job requests to be processed (such as
commands) and for sending messages that result from
processing the job requests. A job message queue
consists of a set of logical message queues that
includes the external message queue. See also external
message queue and program message queue.

job name: The name of a job as identified to the
system. For an interactive job, the job name is the name
of the work station at which the job was initiated; for a
batch job, the job name is specified in the command
used to submit the job.

job number: A number assigned to a job as it enters
the system to distinguish the job from other jobs.

job priority: The order in which batch jobs on a job
queue are to be processed. More than one job can have
the same priority.

job queue: An object on which batch jobs are placed
when they are submitted to the system and from which
they are selected for execution by CPF. The
system-recognized identifier is *JOBQ.

job queue entry: A work entry in a subsystem
description that specifies the job queue from which the
subsystem can accept batch jobs.

job structure queue: A temporary extendable machine
interface queue that is a job structure control object. It
is created during each start CPF process.

JOBD: The system-recognized identifier for job
description, a type of CPF object. (See job description.)

JOBQ: The system-recognized identifier for job queue,
a type of CPF object. (See job queue).

join logical file: A logical file that combines (in one
record format) fields from two or more physical files. In
the record format, not all the fields need to exist in all
the physical files.

journal: (1) An object through which entries are placed
in a journal receiver when a change is made to a data
base file. The system uses the journal to record
information about the journal receivers and data base
files that are associated with the journal. The
system-recognized identifier for the object type is *JRN.
See also journal entry and journal receiver. (2) To place
entries in a journal.

journal entry: A record in a journal receiver that
contains information about data base files being
journaled.

journal receiver: An object that contains journal entries
that are generated when a change is made to a data
base file being journaled. The system-recognized
identifier for the object type is *JRNRCV. See also
journal.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

journaling: The process of recording changes made to
a physical file member in a journal. Journaling allows
the programmer to reconstruct a physical member by
applying the changes in the journal to a saved version of
the physical file member.

JSQ: See job structure queue.

Kanji: (1) The ideographic character set used by the
Japanese to represent their native language. (2) A single
character within that set.

key field: A field of a record whose contents are used
to sequence the records of a particular type within the
file.

keyed sequence access path: An access path to a
data base file that is based on the contents of key fields
contained in the individual records.

keyword: A name that identifies a parameter.
Keywords are used in commands and in DDS.

label: (1) The name of a file on a diskette or tape. (2)
An identifier of a command generally used for
branching.

left-adjust: To place an entry in a field or to move the
contents of a field so that the leftmost character of the
data is in the leftmost position of the field.

level checking: A function that compares the record
format level identifiers of a file to be opened and the file
description that is part of a compiled program to
determine if the file record format has changed since
the program was compiled.

LIB: The system-recognized identifier for library, a type
of CPF object. (See library.)

library: An object that serves as a directory to other
objects. A library is used to group related objects and to
find objects by name when they are used. The
system-recognized identifier is *LlB.

library list: An ordered list of library names used to
find an object. The library list indicates which libraries
are to be searched and the order in which they are to be
searched. The system-recognized identifier is *LlBL.
*LlBL specifies to the system that a job's current library
list is to be used to find the object.

LIND: See line description.

line description: An object that contains a description
of a communications line to the system. The
system-recognized identifier is *LlND. Abbreviated
LIND. See also network description.

list element: One of several values specified in a list
parameter.

Glossary G-9

local work station: A work station that is connected
directly to a System/38 without need for data
transmission facilities. Contrast with remote work
station.

lock: A control applied to a system object (in behalf of
a process) that guarantees the ability for a process to
perform certain types of operations while prohibiting
other processes from performing certain types of
operations. The five types of locks are:

• LSRD-Lock for shared read

• LSRO-Lock for shared read only

• LSUP-Lock for shared update

• LEAR-Lock for exclusive use but allow read in other
processes

• LENR-Lock for exclusive use with no read in other
processes

lock state: A lock state defines how an object is
allocated, which includes the use of the object (read or
update) and whether the object can be shared (used by
more than one job).

log version: A system log that contains enqueued
system log messages.

logical file: A data base file through which data that is
stored in one or more physical files can be accessed by
means of record formats and/or access paths that are
different from the physical representation of the data in
the data base. Contrast with physical file.

logical file member: A logical grouping of data records
in a logical file.

logical unit: In SNA, one of three types of network
addressable units. It is a port through which an end
user accesses the SNA network in order to
communicate with another end user and through which
the end user accesses the functions provided by the
system services control point. Abbreviated LU. See also
physical unit, system services control point, primary
logical unit, and secondary logical unit.

logical unit description: An object that contains
information describing a logical unit that is attached to
the system. Abbreviated LUD.

LUO: See logical unit description.

machine attribute: Information pertaining to the overall
system; for example, date, time of day, and machine
configuration.

machine check: A type of exception that indicates a
malfunction of the machine.

G-10

machine context: A system object implicitly created
and maintained by the machine for maintaining
addressability to certain types of system objects.

machine interface: The instruction set interface to the
machine. The instruction set is called the System/38
instruction set. Abbreviated MI.

machine interface request queue: A queue used by all
of the devices in a process that perform I/O. The queue
is extendable, resides outside the process access group,
and is addressable through the work control block.

machine pool: A storage pool used by the machine and
certain highly shared CPF programs.

machine services control point: The machine
component that provides services and coordinates the
processing of supervisory services.

machine termination: The termination of all processes
in the machine with the intent of turning power off or
performing an initial microprogram load (lMPL).

main storage: The high-speed portion of machine
storage used for objects and processes when they are
being referred to or when they are being executed.
Main storage cannot retain data while machine power is
off. Contrast with auxiliary storage.

mapping: The reordering, conversion and selection of
fields in data space entries when referred to by a
program through the use of a cursor.

master debug communications object: One of two
principal objects used by the testing component. Unique
to the program currently being debugged, the MDCO
contains information about the debug session.

MOCO: Master debug communications object.

member: An identifiable group of records that is a
subset of the data base file to which it belongs. Each
member conforms to the characteristics of the file and
has its Own access path.

menu: A type of display in which a list of options is
shown.

message: A communication sent from one person or
program to another person or program.

message description: The descriptive information
about a message and the text of the message.

message field: An output field that is treated as a
message.

message file: An object that contains message
descriptions. The system-recognized identifier is
*MSGF.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

message identifier: A 7-character code that identifies
a predefined message and is used to retrieve its
message description from a message file.

message queue: An object on which messages are
placed when they are sent to a person or program. The
system-recognized identifier is *MSGQ.

message reference key: A key assigned to every
message on a message queue, which is used to remove
a message from a message queue, to receive a
message, and to reply to a message.

MFCU: The abbreviation for the IBM 5424 multifunction
card unit.

MI: See machine interface.

MICO: Machine interface communications queue.

MIRO: Machine interface request queue.

MPCI: Master programming change index.

MPL: See multiprogramming level.

MRJE: See multi-leaving remote job entry.

MRK: See message reference key.

MSGF: The system-recognized identifier for message
file, a type of CPF object. (See message file.)

MSGO: The system-recognized identifier for message
queue, a type of CPF object. (See message queue.)

MTR: Machine trouble report.

mUlti-leaving remote job entry: The fully synchronized,
two-directional transmission of a variable number of
data streams between two computers using BSC
facilities.

multiprogramming level: A resource management
control used by CPF to provide storage pool support, by
limiting the number of processes that can compete for
processor cycles within the machine.

multivolume file: A file that is contained on more than
one diskette or tape.

name resolution: (1) The function of resolving
addressability to system objects. An unresolved system
pointer specifies the symbolic name of a system object.
At first reference, an unresolved system pointer is
resolved as follows. The machine searches for the
symbolic name in contexts until it is found and then sets
addressability to the corresponding system object into
the pointer, thereby making it a resolved system pointer.
The contexts to be searched are contained in the name
resolution list. (2) Also, the function of resolving
addressability to external program objects defined in
programs within a process.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

name resolution list: A process attribute that is a
vector of resolved system pointers to the contexts that
are searched for name resolution. See also name
resolution.

NO: See network description.

network description: A system object that defines and
describes an I/O port and communications line for
remotely attached I/O devices. The network description
logically represents the I/O port to the system. The
system-recognized identifier is *UND. Abbreviated ND.

next system: In SNADS, a node in the SNADS
network that is physically connected to the local system
and through which distribution queue entries can be
routed.

next system queue: In SNADS, a queue that is used
to hold distribution queue entries that are being routed
to a next system. See also normal queue and priority
queue.

next system table: In SNADS, a table identifying all
the next systems connected to the local system.

node: One of the systems or devices in a network.

node 10: (1) In communications, a unique string of
characters that identifies a node to your system. (2) In
SNADS, a two-part name by which a node is known
within a SNADS network.

normal install: A process in which the CPF contained
on diskettes is installed in auxiliary storage, replacing the
CPF (if any) that is currently in the system. Contrast
with abbreviated install.

notify delivery: The method of delivering messages
sent to a message queue in which the work station user
is notified that a message is on the queue.

notify message: A message that describes a condition
for which a program requires a reply from its caller or a
default reply will be sent to the program.

notify object: A message queue, a data area, or a data
base file that can be used to contain information
identifying the last successful commitment operation.
This information can be used by the programmer to
establish a restarting point for an application following
an abnormal system or routing step termination. See
also commit identifier.

NRL: See name resolution list.

object: A named unit that consists of a set of attributes
(that describe the object) and, in some cases, data. An
object is anything that exists in and occupies space in
storage and on which operations can be performed.
Some examples of objects are programs, files, and
libraries.

Glossary G-11

object authority: The right to use a system object.
There are eight object authorities:

• Object control-to control existence

• Object management-to control access and use

• Authorized pointer-to allow storing authority in a
system pointer

• Space-to control access to the associated space

• Retrieve-to allow retrieving elements

• Insert-to add new e1ements

• Delete-to remove old elements

• Update-to modify existing elements

Contrast with lock.

object authorization: A specification that indicates
which system objects a user can access and what rights
of use have been granted relative to those system
objects. See also object authority.

object definition table: A part of the definition of a
program that defines the program objects associated
with the instructions in its instruction stream. Operands
of an instruction refer to entries in this table.
Abbreviated OOT.

object description: The attributes (such as name, type,
and owner name) that describe an object.

object existence rights: The authority to delete, save,
free the storage of, restore, and transfer ownership of
an object.

object information repository: An area associated
with every library, containing object attributes not
necessary for inclusion in the object itself. The OIR
includes text service, save/restore, special attribute,
and file reference function information.

object management rights: The authority to move,
rename, grant authority to, revoke authority from, and
change the attributes of an object.

object owner: The user profile that owns a permanent
system object. The storage occupied by the system
object is charged against the owner's storage resource
authorization. The owner also retains certain implied
authorization rights to the system object.

object rights: The authority that controls what a
system user can do to an entire object. For example,
object rights can let a user delete, move, or rename an
object.

object user: A user who has been authorized by the
object owner to perform certain functions of! an object.

G-12

OCB: Operation control block.

OOP: See open data path.

OOPCB: Open data path control block.

OOT: See object definition table.

OOT directory vector: One of the components of the
object definition table (OOT). The OOV consists of a
series of 4- byte entries. These entries are referred to by
the operands of instructions and provide a description of
the program object. The OOT entry string (OES) is used
to complete the description when it cannot be
completely described with the 4-byte OOV entry.
Abbreviated OOV.

OOT extender string: One of the components of the
object definition table (OOT). The OES contains
variable-length entries specifying attributes, initial
values, and other items necessary for defining program
objects. OES entries are not directly referred to by
System/38 instructions, but are referred to via the OOT
directory vector (OOV) entries. Abbreviated OES.

OOV: See oor directory vector.

OES: See oor extender string.

OFCB: Output file control block.

OIR: See object information repository.

omit function: A CPF function that determines which
records from a physical file are to be omitted from a
logical file's access path.

OMT: Object mapping table.

open: The function that connects a file to a program for
processing. Contrast with close.

open data path: The path through which all I/O
operations for the file are performed. Abbreviated OOP.

operational rights: Any combination of data rights
authorized to a user.

output file: A file in which information (the results of
processing) is placed or displayed.

output priority: The order in which spooled output files
produced by the job are to be written. More than one
file can have the same priority.

output queue: An object that contains a list of output
files to be written to an output device by a writer. The
system-recognized identifier is ·OUTO.

PAG: See process access group.

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

parameter: Identifies an individual value or group of
values to be used by a command to tailor a function
requested through the command.

parameter list: A list of values that provides a means
of associating addressability of data defined in a called
program with data in the calling program. It contains
parameter names and the order in which they are to be
associated in the calling and called program.

parse: To convert a command into a format that can be
used by the application or command processing
programs.

PASA: See process automatic storage area.

password: A unique string of characters that a system
user enters to identify himself to the system.

pc: See programming change.

PCE: Process control event.

pco: See process communications object.

PCS: See process control space.

PCSAS: See process control space associated space.

PDT: See process definition template.

PDTPLLSP: See process definition template/process
lock list space.

PGM: The system-recognized identifier for a program,
a type of CPF object.

physical file: A data base file that contains data
records. All the records have the same format; that is,
they are all fixed-length records and they all contain the
same fields in the same order. Contrast with logical file.

physical file member: A subset of the data records in
a physical file.

PID: Program information department.

PLL: See process lock list space.

PNRL: Process name resolution list.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

pointer: A special kind of data contained in a space
which is distinguishable from ordinary data by the
machine. A pointer can be generated only by specific
machine instructions. If the contents of a pointer are
altered, the machine no longer recognizes it as a pointer.
There are four types of pointers:

• System pointer-addresses system objects

• Space pointer-addresses a byte location in a space

• Data pointer-describes and addresses a byte location
in a space

• Instruction pointer-addresses an instruction in a
program

positional list: A list of elements that further describe
keyword values created by parsing a command. This list
is passed to the command analyzer.

predefined message: A message whose description is
created independently of when it is sent and is stored in
a message file. Contrast with impromptu message.

primary logical unit: In SNA, the logical unit that
contains the primary half-session for a particular LU-LU
session. Abbreviated PLU. See also logical unit.
Contrast with secondary logical unit.

print image: An object that contains a description of
the print belt or train on a printer. The
system-recognized identifier is ·PRTIMG.

printer file: A device file description that contains the
description of a printer device file. The description
identifies the device to be used and specifies the
attributes of the device file.

priority: The relative significance of one program to
other programs. Priority specifies the relative order of
resource allocation when competition for a resource is
experienced.

private authority: The object authority to a system
object granted to a specific user profile.

process access group: A temporary access group
object that contains other temporary objects of the
temporary job structure.

process automatic storage area: A space that is used
for automatic program allocation when a program is
invoked.

process communications object: A user convention
that can be used to pass information from one process
to another, outside the conventional interfaces of queues
or events.

process control space: A temporary job structure in
the process access group that is used by the machine
as a process work area.

Glossary G-13

process control space associated space: Contains
temporary job-related information and pointers to the
other objects that make up the temporary job structure,
also contains the job's name resolution list.

process definition template: Contains information
used by CPF and the machine to initiate processes for
the job. This information defines the process attributes.

process lock list space: Initialized to contain the
address of the work station associated with the
interactive job, the process lock list is used to transfer
locks on the device (held by the monitor process) to the
subprocess being initiated.

process static storage area: A space that is used for
static program object allocation during program
activation.

production library: A library containing objects needed
for normal processing. Contrast with test library.

program: An object that contains a set of instructions.
that tell a computer where to get input, how to process
it, and where to put the results. A program is created as
a result of a compilation. The system-recognized
identifier is *PGM.

program-described data: Data contained in a file for
which the fields in the records are described in the
program that processes the file. Contrast with externally
described data.

program-described data file: A file for which the fields
in the records are described only in the program that
processes the file. Contrast with externally described
data file.

program message queue: A message queue used to
send messages between program invocations of a
routing step.

program object: One of two MI object classifications.
It includes those objects used in programs that get their
definition from ODT entries. (Contrast with system
object.

program resolution monitor (PRM): The system
program that translates programs from the intermediate
representation of a program (which is produced by the
compiler) into program modules that can be executed
under the Control Program Facility.

program variable: A named changeable value that can
only exist within programs. Its value is destroyed when
the program that contains it is no longer invoked.

programmer subsystem: An interactive subsystem in
which programmers can perform online programming
through 5251 and 5252 display stations. IBM supplies
one programmer subsystem: QPGMR.

G-14

programming change: A modification to an
IBM-supplied program.

programming change log: A log of information about
the application of program changes and patches to IBM
products. Named QCHG.

prompt: A request for information or user action. The
user must respond to allow the program to proceed.

propagated user profile: An adopted user profile
whose authority is propagated to other invocations.
Propagation is determined by an attribute that is
specified when the program is created.

protected field: A field on a display in which data
cannot be keyed, changed, or erased.

PRTIMG: The system-recognized identifier for print
image, a type of CPF object. (See print image.)

PSSA: See process static storage area.

public authority: The authority to an object granted to
all users unless overridden by specific user authority.

put operation: An I/O operation that writes a record to
an output file.

QBATCH: The IBM-supplied default batch subsystem
that is used to process batch jobs.

QCE: The IBM-supplied user profile for the customer
engineer (CE) who services the system hardware.

QCL: The IBM-supplied control language processor that
accepts CL commands so that they can be interpreted
and executed by the system.

QCTL: The IBM-supplied subsystem that can be used
to process interactive jobs. (See also interactive
subsystem and controlling subsystem.)

QGPL: See general purpose library.

QPGMR: The IBM-supplied user profile for the
programmer(s) of the system.

QPSR: The IBM-supplied user profile for the
programming support representative (PSR) who services
the system programming.

QSECOFR: The IBM-supplied user profile for the
system's security officer.

QSPL: The name of the spooling subsystems job queue
and the user profile used by readers and writers. (See
also spooling subsystem.)

QSRV: See service library.

QSRVLOG: See service log.

This document contains restricted materials of IBM. L Y21-,0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

QSYS: See system library.

QSYSOPR: The IBM-supplied user profile for the
system operator and the name of the system operator's
message queue.

QTEMP: See temporary library.

qualified job name: A job name and its associated user
name, or a job name and its associated user name and
a system-assigned job number.

qualified object name: An object name and the name
of the library containing the object.

queue: A line or list formed by items in the system
waiting for service; for example, work to be performed
or messages to be displayed.

quiesce: In source/sink operations, the process of
completing all outstanding source/sink operations and
freeing the device for a new use.

QUSER: The IBM-supplied user profile that is the
default user profile for all users not having their own
profiles.

read rights: The authority to read the entries in an
object.

reader: A program that reads jobs from an input device
and places them on a job queue.

rebuild maintenance: The method in which access
paths are maintained that specifies that an access path
is updated only while the file is open, not when the file
is closed; the access path is rebuilt when the file is
opened. Contrast with immediate maintenance and
delayed maintenance.

record: An ordered set of fields that make up a single
occurrence of a record format. A record is the basic unit
of data transferred between a file and a program.

record format: The definition of how data is structured
in the records contained in a file. The definition includes
the record name and field descriptions for the fields
contained in the record. The record formats used in a
file are contained in the file's description.

recovery library: The library containing information
related to recovery of data base operations from system
failures. Named QRECOVERY.

relative record number: A number that specifies the
location of a record in relation to the beginning of the
file. For example. the first record in a file has a relative
record number of 1.

remote device: A device whose control unit is
connected to a System/38 through a data link.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981, 1982. 1983. 1984, 1985

remote work station: A work station whose
connection to the processing system uses modems and
common carrier or private data transmission facilities.
Contrast with local work station.

reply message: A message that is a response to a
received inquiry or notify message.

REQDTA: Request data save area.

request data: Data to be put in a job message queue
that is used by a job. For example. a single command
or group of commands:

request message: A message that requests a function
from the receiving program.

response indicator: A 1-character field passed from
CPF to a program with an input record to provide
information about the data record or actions by the work
station user.

restore: To transfer specific objects or libraries from
magnetic media such as diskettes or tape to internal
storage by duplicating them in internal storage. Contrast
with save.

roll back: To remove changes that have been made to
files under commitment control since the last
commitment boundary.

routing data: A character string that CPF compares
with character strings in the subsystem description
routing entries to select the routing is to be used to
initiate a routing step. Routing data can be provided by
a work station user. specified in a command, or
provided through the work entry for the job.

routing entry: An entry in a subsystem description that
specifies the program to be invoked to control a routing
step that executes in the subsystem.

routing step: The processing performed as a result of
invoking a program specified in a routing entry.

RSHUTD: An SNA command used to request an
orderly session shutdown.

RUTDTA: Routing data save area.

RWCB: Read write control block.

save: To transfer specific objects or libraries from
internal storage to magnetic media such as diskettes or
tape by duplicating them on magnetic media. Contrast
with restore.

save system rights: The authority to save all objects.
(The system operator has these rights.)

save/restore rights: The authority to save and restore
all objects. (The system operator has these rights.)

Glossary G-15

SBSO: The system-recognized identifier for subsystem
description, a type of CPF object. (See subsystem
description.)

SCB: Spooling control block.

SCO: Service communications object.

SCS: Standard character set.

SOlC: Synchronous data link control.

SOT: An SNA command used to start data traffic.

second-level message: Provides additional information
to that already provided in a first-level message. To
obtain second-level messages, the work station user
presses the Help key while a first-level message is
being displayed.

secured file: A file that is protected from being
overridden by an override command.

security: The control of access to or use of data or
functions.

security officer: The individual at an installation who is
designated to control the authorization of functions and
data in the System/38.

security officer user profile: The CPF-supplied user
profile that has authority to control the authorization of
functions and data used in the installation. Named
OSECOFR.

select function: A CPF function that determines which
records from a physical file are to be selected for a
logical file's access path.

select/omit field: A field in a logical file record format
whose value is compared with a constant, the contents
of another field, a range of values, a list of values to
determine if a record is to be omitted from the access
path of the logical file or selected for use by the logical
file.

sequential file: A file into which records are entered
one after the other. If the file is keyed, the records are
processed in the sequence of the access path.

service library: The library provided in CPF that is used
temporarily for loading IBM-supplied programming
changes and assembling data for APAR submission.
Named OSRV.

service log: The system log that contains information
about the application of program changes and program
patches, and the symptom strings resulting from errors.
Named OSRVlOG.

G-16

session: (1) The period of time during which
communication is established between the system and a
user. (2) The formal bound pairing that must be
established between two network addressable units
before their users can communicate.

SEU: Source entry utility.

shared access path: An access path used by more
than file to provide access to data common to the files.
The access path specifications are contained in the
description of each file that uses the access path.

shared file: A file whose ODP can be shared between
two or more programs executing in the same routing
step.

shared for read lock state: The allocation a routing
step has for an object in which the object can be shared
with another routing step if the routing step does not
request exclusive use of the object. The predefined
value for this lock state is *SHRRO.

shared for update lock state: The allocation a routing
step has for an object in which the object can be shared
either for update or for read with another routing step.
The predefined value for this lock state is *SHRUPD.

shared no update lock state: The allocation a routing
step has for an object in which the object can be shared
with another routing step if the routing step requests
either a shared no update lock state or a shared for read
lock state. The predefined value for this lock state is
*SHRNUP.

shared record format: A record format that is used in
more than one externally described data file.

simple OOT reference: A single 2-byte operand entry
that refers to a program object defined in the OOT.

SNA: See systems network architecture.

source: In advanced program-to-program
communications, the system or program that starts jobs
on another system.

source file: A file created to contain source statements
for such items as high-level language programs and
data description specifications.

source/sink: Devices capable of originating or
accepting data signals to or from a transmission device
and the data management components supporting such
devices. Source/sink device include locally and remotely
attached, batch and work station devices, but not the
internal storage of the system.

source/sink request: The operand of a source/sink
Request I/O instruction that specifies the I/O operation
to be performed, the characteristics of the data to be
used in the operation, and the data to be used in the
operation.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

source/sink resource: A system resource allocated and
deallocated in units described by logical unit descriptions
(device descriptions) to the process requiring the
resource.

space: (1) The associated space of a system object.
This is a byte-addressable region of storage that is
addressed through ODT entries. space pointers. or data
pointers. (2) A system object that has no functional part
but is used only for its associated space.

space pointer: Contains addressability to an MI space
object.

special authority: The right to perform certain system
control operations. such as save / restore. save system.
and job control operations.

spooled file: A device file that provides access to data
processed by readers or causes output data to be saved
for later processing by a writer.

spooling: The CPF-provided execution-time support
that reads and writes input and output streams on an
intermediate device in a format convenient for later
processing or output.

spooling subsystem: A subsystem that provides the
operating environment needed by the CPF programs that
read jobs onto job queues and write files from the
output queues. A subsystem description for a spooling
subsystem is provided as part of the CPF and is named
QSPL.

SPP: See space pointer.

SSR: See source/sink request.

static: One of the attributes of a program object.
Objects having the static attribute are allocated space
and are initiated when the program containing the
program object is activated.

static variable: A variable that is allocated when a
program is first invoked in a routing step and exists in
storage for subsequent invocations of the same program
until the program is de-activated. Contrast with
automatic variable.

status message: A message that describes the status
of the work done by a program.

storage pool: A quantity of main storage available for
use by jobs executing in the storage pool. The storage
pool does not consist of a given block of storage; rather
it specifies an amount of storage that can be used.

subfile: A group of records of the same record format
that can be displayed concurrently at a work station.
The system sends the entire group of records to the
work station in a single operation and receives the group
in another operation.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

subsystem: A predefined operating environment
through which CPF coordinates work flow and resource
usage.

subsystem attributes: Specifications in a subsystem
description that specify the amount of main storage
available to the subsystem and the number of jobs that
can execute concurrently in the subsystem.

subsystem description: An object that contains the
specifications that define a subsystem and that CPF
uses to control the subsystem. The system-recognized
identifier is *SBSD.

suspend: (1) A system object is suspended if its
storage is truncated to a minimum required to maintain
its existence in the machine. A suspended system
object is not functionally usable until it is loaded. (2) A
source/sink session is suspended to terminate
outstanding I/O operations. (3) A process is suspended
if it is made ineligible to compete for processor or main
storage resources.

symbolic name: The name of a system object or an
external program object. The input to a name resolution
function whereby an instruction operand referring to an
object by name outside its program is bound to the
actual object. System pointers are resolved to system
objects; data pointers are resolved to externally defined
program objects.

SYP: See system pointer.

system arbiter: A system job that provides overall
control of the work being done on the system.

system console: The keyboard and display screen on
the system unit that serve as a work station for
communicating with and controlling the system. See
also operator/service panel and work station.

system library: The library provided by CPF to contain
system-oriented objects provided as part of CPF.
Named QSYS.

system log message queue: A message queue used
for sending information to the system history log.
service log. or change log. from any job in the system.

system object: One of two MI object classifications. It
includes those M I objects whose formats are not visible
above MI and all objects that are defined during
execution time from attribute template operands on
create instructions. These objects are referred to
through system pointers. Contrast with program object.

system operator: The individual who operates the
system and looks after the peripheral equipment
necessary to initiate computer runs or finalize the
computer output in the form of completed reports and
documents.

Glossary G-17

system operator message queue: The message queue
used by the system operator to receive and reply to
messages from the system, work station users, and
application programs.

system pointer: Contains addressability to an MI
system object.

system termination: Putting the system in the state in
which all processing is stopped. Depending on the
cause of the termination, system power could be shut
off (such as by a power interruption or by entering the
PWRDWNSYS command) or could remain on (such as
caused by a machine error condition). See also abnormal
termination and normal termination.

system value: A value that contains control information
for the operation of certain parts of the system. A user
can change the system, or tailor the system to his
working environment. System date and library list are
examples of system values.

systems network architecture: The total description
of the logical structure, formats, protocols, and
operational sequences for transmitting information units
through the communications system. Abbreviated SNA.

table: See translate table.

target: In advanced program-to-program
communications, the program or system to which a
request for processing is directed.

TBL: The system-recognized identifier for a table, a
type of CPF object.

TOO: Trace data object.

template: A contiguous string of bytes that defines the
attributes or values of an MI object.

temporary library: A library that is automatically
created for each job to contain temporary objects that
are created by that job. The library is deleted when the
job ends. Named QTEMP.

temporary object: A system object that is
automatically destroyed at machine termination.

termination: Putting the system or an element of the
system (such as CPF or a subsystem) in the state where
it no longer performs its normal function. See also
system termination.

test library: A library to be used in debug mode and
that does not contain objects needed for normal
processing. Contrast with production library.

TIO: Trace instruction object.

G-18

token list: A list of elements, each element containing
information about a part of a command. It is created by
parsing a command, and is used to create a positional
list.

trace: The process of recording the sequence in which
the statements in a program are executed and,
optionally, the values of the program variables used in
the statements.

transaction: (1) In a batch or remote batch entry, a job
or job step. (2) An exchange between a work station
and another device that accomplishes a particular action
or result; for example, the entry of a customer's deposit
and the updating of the customer's balance. (3) A
specific set of input data that triggers the execution of a
specific processor job; a message destined for an
application program. (4) A unit of processing (consisting
of one or more application programs) initiated by a
single request. In many cases, the request will originate
at a work station. (5) For commitment control, a gloup
of changes made to data base files that appear to the
work station user to be a single change but that require
multiple operations by the application program.

translate table: An object that contains a set of
hexadecimal characters used to translate one or more
characters of data. For example, unprintable characters
can be translated to blanks, and lowercase alphabetic
characters can be translated to uppercase characters.
The system-recognized identifier is *TBL.

TRCO: Trace communications object.

TVO: Trace value object.

UFCB: User file control block.

UNBIND: An SNA command used to terminate a
session.

update rights: The authority to change the entries in an
object.

user file control block: The programmer's interface to
common data management. The UFCB contains
information described within the current program.
Common data management uses this file and override
information to create the open data path.

user identification: The ability to recognize a system
user so that only the facilities and data he is authorized
to use are made available to him.

user message queue: A user-created message queue
used to send messages to system users and between
application programs.

user name: The name by which a particular user is
known to the system.

user password: A unique string of characters that a
system user enters to identify himself to the system.

This document contains restricted materials of IBM. LY21-0571·6

©Copyright IBM Corp. 1980, 1981. 1982, 1983, 1984, 1985

user profile: An object that contains a description of a
particular user or group of users. A user profile contains
a list of authorizations to objects and functions. The
system-recognized identifier is *USRPRF.

user-defined edit code: A number (5 through 9)
indicating that editing should be done on a numeric
output field according to a pattern predefined to CPF.
User-defined edit codes can take the place of edit
words. so that repetitive coding of the same edit word
is not necessary.

USRPRF: User profile.

validity checker: A user-written program that tests
commands for errors in the parameter values. Validity
checking is done in addition to the checking done by the
command analyzer.

variable: A named modifiable value. The value can be
accessed or modified by referring to the name of the
variable.

view: The definition or description of a program object.
See object definition table and program object.

VSSD: Virtual storage standalone dump.

VTOC: Volume table of contents.

WCB: Work control block.

WCBT: Work control block table.

WCBTE: Work control block table entry.

WCBTEQ: Work control block table entry queue.

work entry: An entry in a subsystem description that
specifies a source from which jobs can be accepted to
be executed in the subsystem.

work station: Elements of data processing equipment
through which a system's end user has access to a
computer as required for the performance of this job
(work) at the physical location (station) where he
performs job tasks. Examples are display/keyboard
devices and printer/keyboard devices. See also local
work station and remote work station.

work station controller: A device in the system unit
that provides for a direct connection of local work
stations to the system.

work station entry: A work entry in a subsystem
description that specifies the work stations from which
users can sign on to the subsystem or from which
interactive jobs can transfer to the subsystem.

work station message queue: A message queue used
for sending and receiving messages between work
station users and between work station users and the
system operator.

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982. 1983. 1984. 1985

writer: A CPF program that writes spooled output files
from an output queue to an external device. such as a
printer.

X.25: In data communications, a specification of the
CCITT that defines the interface to an X.25
(packet-switching) network.

X.25 feature: The feature that allows System/38 to
connect to an X.25 network.

XIOM: X.25 input-output manager.

Glossary G-19

G-20

This document contains restricted materials of IBM. L Y21 - 05 71-6

©CopyrightlBM Corp. 1980, 1981, 1982, 1,983, 1984, 1985

L

*ClS (class), definition G-3
*CMO (command definition), definition G-3
*CUO (control unit description),
definition G-3

*OEVO (device description),
definition G-5

*OTAARA (data area), definition G-4
*EOTO (edit description), definition G-5
*FllE (file), definition G-6
*JOBO (job description), definition G-8
*JOBQ (job queue), definition G-8
*LlB (library), definition G-9
*LlBl (library list). definition G-1,G-9
*LlNO (line description), definition G-9
*MSGF (message file), definition G-11
*MSGQ (message queue), definition G-11
*OUTQ (output queue), definition G -12
*PGM (program), definition G-13
*PRTIMG (print image), definition G-13
*QTEMP (temporary library),
definition G-18

*SBSO (subsystem description),
definition G-17

*TBl (translate table). definition G-19
*USRPRF (user profile), definition G-19

A

abbreviated install, definition G-1
access group, definition G-l
access interactive profile SY -22
access path manager

introduction AP-1
modules AP-2
operation AP-2
overview AP-1

access path, definition G-1
acquire devices OM-8
active file, definition G-1
active subsystem description WO-8
activity level, definition G-1
add auto start job entry WO-3
add breakpoint TE-1
add breakpoint command TE-8
add device mode entry OC-8
add job queue entry WO-3
add library list entry LI-22
add logical file member 00-3,00-10
add physical file 00-3,00-8
add program TE-1
add program command TE-5

This document contains restricted materials of IBM. lY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

add rights, definition G-1
add routing entry WO-3
add trace TE-1
add trace command TE-10
add work station entry WO-3
adding a file member 00-4
AOONETJOBE NF-7
addressability

definition G-1
to objects RC-3

adopted user profile, definition G-1
advanced program-to-program
communication AP-1,SI-1

function manager SI-1
AIPl (see alternative initial program load)
algorithm for conversion of time-of-day
clock to date-time WC-26

all commands command menu MN-l
allocate/ deallocate system object WC-18
allocate object modules WC-2
alternative initial program load (AIPl)

definition G-l
description WC-7
saved SR-4

answer line SW-1
APAR (see authorized program analysis
report)

application program, definition G-1
apply programming change SC-1,SC-38
argument list, definition G-2
arrival sequence access path,
definition G-2

atomic function, definition G-2
attributes

user profile SY-1
AUT (see authorized user table)
authority, definition G-2
authorization event handler SY -19
authorization, definition G-2
authorized program analysis report (APAR)

data preparation SC-7
definition G-1
description SC-7

authorized user table (AUT)
description SY-2

automatic variable, definition G-2
autostart job

definition G-2
entry, definition G-2

auxiliary storage, definition G-2

Index

Index X-1

B

base pool, definition G-2
basic system arbiter process WC-11
batch job, definition G-2
batch request processing overview M H -18
batch subsystem, definition G-2
beginning of extent (BOE)

definition G-2
use OK-3

binary synchronous communications (BSC)
definition G-2
general BS-1

modules BS-1
overview BS-3

introduction BS-1
block, definition G-2
blocking DDS source 00-14
BOE (see beginning of extent)
BOM (see break offset mapping)
BOMT (see break offset mapping table)
break delivery, definition G-2
break/notify message delivery MH-8
break offset mapping (BOM),
definition G-2

break offset mapping table (BOMT),
definition G-2

breakpoint
BRWNETF NF-6
BSC (see binary synchronous communications)
build menu text space object
overview MN-9

building a command definition object CO-4

c

call
command CL-7
program CL-7

called program, definition G-3
calling program, definition G-3
cancel event handler SM-6
cancel reader SP-3
cancel receive CL-4
cancel request TE-1
cancel request command TE-21
cancel spooled file SP-5
cancel writer SP-5
card device file, definition G-3
CO (see command definition)
COO (see command definition objects)
COS (see command definition source
statement)

change autostart job entry WO-3
change card file 00-2
change command CO-6

X-2

change control unit
description OC-2,OC-12

change CSNAP attributes command SC-46
change data area WC-4,WC-2S
change debug TE-1
change debug command TE-12
change device description OC-2
change device file 00-2,00-12
change device file definition OF-6
change diskette file 00-2
change display file 00-2
change interactive profile entry SY - 23
change job queue entry WO-3
change line description OC-2
change logical unit description OC-12
change message queue MH-6
change network description OC-12
change object owner SY-S
change object owner command SY -13
change output queue SP-3
change pointer TE-1
change pointer command TE-17
change printer file 00-2
change program command CL-12
change program variable TE-1
change program variable command TE-16
change routing entry WO-3
change spooled file attributes SP-S
change subsystem description WO-3
change system value WC-3
change tape file 00-2
change user profile SY-5
change user profile command SY - 7
change variable CL-4
change work station entry WO-3
changing device files 00-4
changing subsystem description WO-8
check an object LI-2
check command authority SY-26
CL (see control language)
class (CLS)

definition G-3
description WC-22
support modules WC-3

clear diskette OK-2
clear job queue SP-3
clear library command LI-9
clear output queue SP-3
clear physical file member OB-7
clear trace data TE-1
clear trace data command TE-19
clearing library LI-3
clock, system time of day WC-26
close

definition G-3
description OM-3

CLS (see class)
CNLNETF NF-6
cold start, definition G-3

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
command

ACCIP (access interactive
profile) SY-22
AOOAJE (add autostart job entry) WO-3
AOOBKP (add breakpoint) TE-1
AOOJOBQE (add job queue entry) WO-3
AOOLFM (add logical file member) 00-3
AOOLIBLE (add library list entry) LI-1
AOOPFM (add physical file) 00-3
AOOPGM (add program) TE-1
AOORTGE (add routing entry) WO-3
AOOTRC (add trace) TE-1
AOOWSE (add work station entry) WO-3
ALCOBJ (allocate object) WC-2
ANSLIN (answer line) SW-l
APYPGMCHG (apply programming
change) SC-1
CALL (call external) SY-25
CALL (call program) CL-5,CL-7
CHGAJE (change autostart job
entry) WO-3
CHGCMO (change command) CO-6
CHGCNPA (change CSNAP attributes) SC-2
CHGCROF (change device file) 00-2
CHGCUO (change control unit
description) OC-2
CHGOBG (change debug) TE-1
CHGOEVO (change device
description) OC-2
CHGOKTF (change diskette file) 00-2
CHGOSPF (change display file) 00-2
CHGOTAARA (change data area) WC-4
CHGIPE (change interactive profile
entry) SY-23
CHGJOBQE (change job queue entry) WO-3
CHGLlNO (change line description) OC-2
CHGMSGQ (change message queue) MH-6
CHGOBJOWN (change object owner) SY-5
CHGOUTQ (change output queue) SP-3
CHGPGMVAR (change program
variable) TE-1
CHGPRTF (change printer file) 00-2
CHGPTR (change pointer) TE-1
CHGRTGE (change routing entry) WO-3
CHGSBSO (change subsystem
description) WO-3
CHGSPLFA (change spooled file
attributes) SP-5
CHGSYSVAL (change system value) WC-3
CHGTAPF (change tape file) 00-2
CHGUSRPRF (change user profile) SY-5
CHGVAR (change variable) CL-4
CHGWSE (change work station entry) WO-4
CHKOBJ (check object) LI-2
CLROKT (clear diskette) OK-2
CLRJOBQ (clear job queue) SP-3
CLRLI B (clear library) LI-1
CLROUTQ (clear output queue) SP-3
CLRPFM (clear physical file
member) OB-7

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

command (continued)
CLRTRCOTA (clear trace data) TE-1
CNWOB (cancel job) SP-6
CNLRCV (cancel receive) CL-4,CL-5
CNLROR (cancel reader) SP-3
CNLRQS (cancel request) TE-1
CNLSPLF (cancel spooled file) SP-5
CNLWTR (cancel writer) SP-5
CPYF (copy file) CP-2
CPYSPLF (copy spooled file) SP-5
CRTCLPGM (create control language
program) CL-3
CRTCLS (create class) WC-3
CRTCMO (create command) CO-6
CRTCROF (create card file) 00-1
CRTCUO (create control unit
description) OC-2
CRTOEVO (create device
description) OC-1
CRTOKTF (create diskette file) 00-1
CRTOSPF (create display file) 00-1
CRTOTAARA (create data area) WC-4
CRTEOTO (create edit description) OC-3
CRT JOBO (create job description) WO-4
CRT JOBQ (create job queue) SP-3
CRTLF (create logical file) 00-3
CRTLIB (create library) LI-1
CRTLINO (create line description) OC-2
CRTMSGQ (create message queue) MH-6
CRTOUTQ (create output queue) SP-3
CRTPF (create physical file) 00-2
CRTPRTF (create printer file) 00-1
CRTPRTIMG (create print image) OC-3
CRTSBSO (create subsystem
description) WO-4
CRTTAPF (create tape file) 00-1
CRTTBL (create table) OC-3
CRTUSRPRF (create user profile) SY-5
CVTOAT (convert date) CL-5
OCL (declare CL variable) CL-3
OCLOTAARA (declare data area) CL-3
OCLF (declare file) CL-3
OLCOBJ (deallocate object) WC-2
DLTCLS (delete class) LI-2
DLTCMD (delete command) CD-6
DL TCUD (delete control unit
description) DC-2
DL TDEVD (delete device
description) DC-2
DLTDKTLBL (delete diskette .Iabel) DK-2
DLTDTAARA (delete data area) LI-2
DLTEDTD (delete edit description) LI-2
DLTF (delete file) LI-2
DL TFCT (delete forms control
table) LI-2
DL T JOSD (delete job description) LI-2
DL T JOBQ (delete job queue) SP-3
DLTLIB (delete library) LI-1
DLTLIND (delete line description) DC-2
DLTMSGF (delete message file) LI-2

Index X-3

command (continued)
DLTMSGQ (delete message queue) MH-6
DL TOUTQ (delete output queue) SP-3
DLTOVR (delete override) DM-2
DLTPGM (delete program) CL-8,LI-2
DLTPRTIMG (delete print image) LI-2
DL TSBSD (delete subsystem
description) LI-2
DLTSSND (delete session
description) LI-2
DL TIBL (delete table) LI-2
DLTUSRPRF (delete user profile) SY-5
DMPCLPGM (dump CL program) CL-6
DMPJOB (dump job) SC-2
DMPJOBINT (dump job internal) SC-2
DMPOBJ (dump object) SC-2
DMPSYSOBJ (dump system object) SC-2
DO (do group) CL-3
DSPACTJOB (display active jobs) WC-3
DSPAUTUSR (display authorized
users) SY-5
DSPBKP (display breakpoints) TE-2
DSPCLS (display class) WC-3
DSPCMD (display command) CD-6
DSPCNPA (display CSNAP attributes) SC-2
DSPCUD (display control unit
description) DC-3
DSPCUDSTS (display control unit
description status) DC-3
DSPDBG (display debug) TE-2
DSPDBR (display data base
relations) WH-1
DSPDEVCFG (display device
configuration) DC-3
DSPDEVD (display device
description) DC-2
DSPDEVSTS (display device status) DC-3
DSPDKT (display volume) DK-1
DSPDTAARA (display data area) WC-4
DSPEDTD (display edit description) DC-3
DSPFD (display file description) WH-1
DSPFFD (display file field
description) WH-1
DSPJOB (display job) WC-3
DSPJOBD (display job description) WD-4
DSPJOBQ (display job queue) SP-5
DSPLIB (display library) LI-1
DSPLlBL (display library list) LI-1
DSPLIND (display line description) DC-3
DSPLINSTS (display line status) DC-3
DSPLOG (display log) MH-20
DSPMSG (display message) MH-7
DSPOBJAUT (display object
authority) SY - 5
DSPOBJD (display object
description) LI-1
DSPOBJLCK (display object locks) WC-3
DSPOUTQ (display output queue) SP-5
DSPOVR (display override) DM-2
DSPPGM (display program) CL-11

X-4

command (continued)
DSPPGMREF (display program
references) WH-1
DSPPGMVAR (display program
variable) TE-2
DSPSBS (display subsystem) WC-3
DSPSBSD (display subsystem
description) WD-4
DSPSPLF (display spooled file) SP-5
DSPSPLFA (display spooled file
attributes) SP-5
DSPSRVSTS (display service status) SC-2
DSPSYS (display system) WC-3
DSPSYSVAL (display system value) WC-3
DSPTAP (display tape) TA-1
DSPTRC (display trace) TE-2
DSPTRCDTA (display trace data) TE-2
DSPUSRPRF (display user profile) SY-5
DUPDKT (duplicate diskette) DK-1
ELSE (else) CL-4
ENDDBG (end debug) TE-2
ENDDO (end DO group) CL-3
ENDPGM (end program) CL-3
ENDSRV (end service) SC-3
ENTDBG (enter debug) TE-2
GOTO (go to) CL-3
GRTOBJAUT (grant object authority) SY-5
GRTUSRAUT (grant user authority) SY-14
HLDJOB (hold job) SP-5
HLDJOBQ (hold job queue) SP-3
HLDOUTQ (hold output queue) SP-3
HLDRDR (hold reader) SP-3
HLDSPLF (hold spooled file) SP-5
HLDWTR (hold writer) SP~5

IF (if) CL-3
INZDKT (initialize diskette) DK-2
INZPFM (initialize physical file
member) DB-7
INZTAP (initialize tape) TA-1
LODPGMCHG (load programming
change) SC-3
LSTCMDUSG (list command usage) CL-5
LSTERRLOG (list error log) SC-2
LSTINTDTA (list internal data) SC-3
MONMSG (monitor message) CL-3
MOVOBJ (move object) LI-2
OVRBSCF (override with binary synchronous
communications files) DM-2
OVRCRDF (override with card file) DM-2
OVRDBF (override with data base
file) DM-2
OVRDKTF (override with diskette
file) DM-2
OVRDSPF (override with display
file) DM-2
OVRMSGF (override with message
file) DM-2
OVRPRTF (override with print file) DM-2
OVRTAPF (override with tape file) DM-2
PCHPGM (patch program) SC-4

This document contains restricted materials of IBM. LY21-0S71-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

command (continued)
PGM (patch program) CL-3
PRPAPAR (prepare APAR) SC-1
PWRCUD (power control unit) DC-3
PWRDEV (power device) DC-3
PWRDWNSYS (power down system) WC-2
RCLRSC (reclaim resources) WC-4
RCVDTAARA (receive data area) CL-3,CL-5
RCVF (receive file) CL-4,CL-5
RCVMSG (receive message) MH-7
RETURN (return) CL-3
RLSJOBQ (release job queue) SP-3
RLSOUTQ (release output queue) SP-3
RLSRDR (release reader) SP-3
RLSSPLF (release spooled file) SP-5
RLSWTR (release writer) SP-5
RMVAJE (release autostart job
entry) WD-4
RMVIPE (remove interactive profile
entry) SY-26
RMVJOBQE (remove job queue entry) WD-4
RMVM (remove member) DD-3
RMVMSG (remove message) MH-7
RMVPGM (remove program) TE-2
RMVPGMCHG (remove programming
change) SC-4
RMVRTGE (remove routing entry) WD-4
RMVTRC (remove trace) TE-2
RMVWSE (remove work station entry) WD-4
RNMDKT (rename diskette) DK-2
RNMOBJ (rename object) LI-2
RPLLlBL (replace library list) LI-1
RSMBKP (resume breakpoint) TE-2
RSTAUT (restore authority) SR-3
RSTLIB (restore library) SR-3
RSTOBJ (restore object) SR-3
RSTUSRPRF (restore user profiles) SR-3
RTVDTAARA (retrieve data area) CL-6
RTVIPE (retrieve interactive profile
entry) SY-26
RTVJOBA (retrieve job attribute) CL-8
RTVMSG (retrieve messages) MH-2
RTVSYSVAL (retrieve system value) WC-3
RVKOBJAUT (revoke object
authority) SY-5
SAVLlB (save library) SR-2
SAVOBJ (save object) SR-2
SAVSYS (save system) SR-l
SIGNOFF (sign-off) WC-4
SNDDTAARA (send data area) CL-3,CL-5
SNDF (send file) CL-4,CL-5
SNDRCVF (send/receive file) CL-4,CL-5
SNDRPY (send reply) MH-7
SRVJOB (service job) SC-4
STRCRDRDR (start card reader) SP-3
STRCRDWTR (start card writer) SP-4
STRDBRDR (start data base reader) SP-3
STRDKTRDR (start diskette reader) SP-3
STRDKTWTR (start diskette writer) SP-3
STRPDP (start PDP) SC-4

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

command (continued)
STRPRTWTR (start printer writer) SP-4
STRSBS (start subsystem) WC-2
TFRCTL (transfer control) CL-5,CL-7
TRCINT (trace internal) SC-4
TRCJOB (trace job) SC-4
TRMCPF (terminate control program
facility) WC-2
TRMSBS (terminate subsystem) WC-2
VFYPRT (verify printer) SC-5
VRYCUD (vary control unit) DC-4
VRYDEV (vary device) DC-4
VRYLIND (vary line) DC-4
WAIT (wait) CL-4,CL-5

command analyzer
general overview CA-4
introduction CA-1
modules CA-5
overview CA-5
used by

CL compiler CA-7
CL program CA-8
CL program, prompting CA-9
command definition CA-7
high-level language CA-11
prompter CA-7
source entry utility CA-7
spooling CA-7
subsystem controller with
prompting CA-12
subsystem controller without
prompting CA-1O

command definition
definition G-3
general overview CD-6
identifier (CMDI. definition G-3
introduction CD-1
modules CD-6
object information to prompter PT-1
objects (CDO)

definition G-3
description CD-2,PT-1

source statement (CDS), definition G-3
statements

definition G-3
description CD-5

using command analyzer CA-7
command grouping menu MN-1
command menu, all commands MN-1
command name menu overview MN-4
command name selection menu MN-l
command processing

description CA-4
modules TE-1
program (CPP), definition G-3

commands, distribution services ZD-5
commitment control

initial program load TN-10
introduction TN-1
open processing TN-4

Index X-5

commitment control (continued)
overview TN-1
rollback TN-6

common data management
general overview OM-1
introduction OM-1
macros OM-8
modules OM-1

communication with other systems SL-1
communications file, definition G-3
compile-time modules CL-3
compiler CA-7
completion message

definition G-3
description MH-4

component identifiers xiv
composite object interface SR-10
composite objects RC-3
concurrent service monitor (CSM)

general overview SM-1
initialization SM-1,SM-3
introduction SM-1
modules SM-1
response queue handler SM-1
response queue handling SM-4

configuration menu
description MN-2
overview MN-5

configuration modules AR-3
console function manager

external interfaces CO-2
general overview CO-1
internal interfaces CO-3
introduction CO-1
modules CO-1

context, definition G-3
control cancel event SM-7
control language (CL)

definition G-3
description CL-1
variable, definition G-3

control language commands, independent
command processing program CL-6

control language compiler
commands CL-3
general overview CL-3
introduction CL-1
modules CL-3

control language program
definition G-3
use of command analyzer CA-8

control program facility (CPF)
definition G-3

control unit description (CUO)
definition G-3
failure SW-2
switched SW-1

controlling subsystem
definition G-3

X-6

conversion, time of day clock to date
time WC-26

convert authority SY -17
convert data CL-5
convert data function modules SP-6
convert date CL-9
convert device file definition OF-10
copy

copy interactive profile SY-24
copy spooled file SP-5
file CP-1
file function CP-1
general overview CP-1
introduction CP-1
module relationship CP-4
modules CP-1

CPF (see control program facility)
CPP (see command processing program)
create a library LI-3
create card file 00-1
create class WC-3
create command CO-6
create control language program CL-3
create control unit description OC-2,OC-4
create data area WC-25
create device description OC-1
create device file

description OM-3
overview 00-6

create device file definition OF-4
create diskette file 00-1
create edit

codes OC-14
description OC-3
macro interface OC-14

create file control block OM-4
create interactive profile SY-25
create job description WO-3
create job queue SP-3
create library command LI-10
create line description OC - 2
create logical file 00-3,00-10
create logical unit description OC-4
create message queue MH-6
create network description OC-4
create output queue SP-3
create physical file 00-2,00-8
create print image OC-3
create print images and tables OC-16
create printer file 00-1
create source file 00-8
create subsystem description WO-3
create table OC-3
create tape file 00-3
create user profile SY-5
create user profile command SY - 7
create / validate outfile LI-1
create, delete, and display edit
codes OC-14

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

creating files
adding a file member 00-4
changing device files 00-2
source description provided 00-4

CSI modules GO-7
CSM (see concurrent service monitor)
CUD (see control unit description)

o

damage
addressability RC-3
backup copies SR-1
composite RC-3
composite, nonstandard SR-10
composite, standard SR-10
dump SC-15,SC-22
notification during IMPL overview RC-10
notification overview RC-11
ownership SY-4
rights of use SY -4
save/restore SR-1

data area support modules WC-4
data areas (OTAARA)

definition G-4
description WC-25

data available event handler SM-1,SM-6
data base

definition G-4
definition modules 08-6
entry to DB functions OB-2
event handling modules OB-8
extraction modules OB-7
file handling for generic
operations OB-8,OB-9
general overview OB-6
introduction OB-1
manipulation modules OB-6
modules OB-6
object locking, data base 0 B -18
recovery modules OB-8
recovery, data base OB-16
save/restore and reclaim modules OB-9
structure of DB files OB-10
structure of open DB member OB-14

data base/device related modules 00-3
data base file

definition G-4
description OM-3

data base logging
data base related modules 00-2
data communications, definition G-4
data description

add physical file member 00-8
create device file 00-6
create physical file 00-8
create source file 00-8
creating files 00-4

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

data description (continued)
general overview 00-1
introduction 00-1
modules 00-1
modules, data base related 00-2
modules, device related 00-1
single line syntax checking 00-4
specifications (DDS), definition G-4

data file, definition G-4
data management communications queue

definition <3-4
install object OM-8

data recovery RC-3
data rights

definition G-4
description SY-4

data space entry, definition G-4
data space index, definition G-4
data space, definition G-4
data transformation, definition G-4
data type, definition G-4
DB (see data base)
DCa (see debug communications object)
DDS (see data description specifications)
deallocate object modules WC-2
debug communications object (DCa)

definition G-4
description TE-3

debug mode, definition G-4
declare CL variable CL-3
declare data area CL-3
declare file CL-3
default delivery, definition G-4
default exception breakpoint TE-28
default program, definition G-4
default record, definition G-4
definition, data base OB-6
delayed maintenance, definition G-5
delete a library U-3
delete an object U-3
delete class U-2
delete command CO-6
delete control unit description OC-2,OC-6
delete data area U-2
delete device description OC-2
delete device file definition OF-7
delete diskette label OK-2
delete edit codes OC-14
delete edit macro interface OC-14
delete file U-2
delete job description U-2
delete job queue SP-3
delete library U-14
delete library command U-14
delete line description OC-2
delete logical unit description OC-9
delete message file U-2
delete message queue M H-6
delete network description OC-9
delete object U-12

Index X-7

•

delete output queue SP-3
delete override DM-2
delete print images and tables DC-16
delete program CL-8
delete rights, definition G-5
delete subsystem description LI-2
delete user profile SY-5
delete user profile command SY-9
dequeue, definition G-5
DEVD (see device description)
device configuration

change control unit description DC-12
change logical unit description DC-12
change network description DC -12
create and delete print images and
tables DC-16
create control unit description DC-4
create logical unit description DC-4
create network description DC-4
create, delete, and display edit
codes DC-14
delete control unit description DC-9
delete logical unit description DC-9
delete network description DC-9
display commands DC-18,DC-20
edit codes and macro interface DC-14
general overview DC-1
introduction DC-1
modules DC-1

function 1 DC-1
function 2 DC-3
function 3 DC-3
function 4 DC-3

power commands DC-22
start CPF procedure DC-22
termination procedure DC-22
vary commands DC-23

device/data base related modules DD-3
device definition DM-10
device description (DEVD)

definition G-5
use SW-1

device file
definition G-5
object structure after open DM-4

device file definition DM -1 0
definition G-6
extract operation DF-8
general overview DF-1
in common data management DM-4,DM-10
introduction DF-1
modules DF-1
subset operations DF-12

device related modules DD-1
diagnostic messages

definition G-5
escape MH-4
notify MH-4
status MH-4

diskette file, definition G-5

X-8

diskette function manager
general overview DK-1
introduction DK-1
modules DK-1

diskette operation DK-2
display

authorized users command SY -15
breakpoint command TE-13
commands DC-18
data area WC-25
debug command TE-12
definition G-5
edit codes DC-14
edit macro interface DC-14
functions for work control WC-20
library command LI-15
library list LI-3
object authority command SY-11
object description command LI-15
program variable command TE-15
service status command SC-32
spooling data modules SP-4
status information modules WC-3
system log M H - 20
trace command TE-14
trace data command TE-18
user profile command SY - 7
verification modules AR-2

display authorized users SY-5
display breakpoints TE-2
display class WC-4
display command CD-6
display control unit description DC-3
display CSNAP attributes command SC-45
display data area WC-4
display data base relations WH-1
display debug TE-2
display device configuration DC-3
display device description DC-2
display diskette DK-1
display edit description DC-3
display file description WH-1
display file, definition G-5
display job WC-3
display job description WD-3
display job queue SP-5
display library LI-15
display library list LI-1
display line description DC-3
display log MH-20
display message MH-7
display object authority SY-5
display object description LI-15
display object locks WC-3
display output queue SP-5
display override DM-2
display program references WH-1
display program variable TE-2
display programming change
command SC-4,SC-40

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

display service status SC-2
display spooled file SP-5
display station, definition G-5
display subsystem description WD-3
display system, status WC-3
display tape TA-1
display trace TE - 2
display user profile SY-5
display volume DK-1
displaying contents of library U-5
displaying object description U-5
displays used during the start of
CPF WC-10

distribution modules NF-1
distribution services OS-4
DMCQ (see data management communications
queue)

do group CL-3
document interchange OS-6
driver modules

link test AR-l
test request AR-1

DS (see data space)
DSI (see data space index)
DSPNETF NF-6
DTAARA (see data areas)
dump current job SC-12
dump current job internal SC-42
dump job SC-2
dump job command executed in a service
job SC-18

dump job internal SC-2
dump job internal command SC-44
dump object SC-2,SC-15,SC-22
dump serviced job SC-13
dump serviced job internal command SC-43
dump serviced job object SC-16
dump serviced system object SC-16
dump system object SC-2,SC-15
dump, definition G-5
dumps SC-5
duplicate device file DF-14
duplicate diskette DK-1

E

edit code, definition G-5
edit codes and macro interface DC-14
edit description (EDTD), definition G-5
edit word, definition G-5
edit, definition G-5
editing instructions, definition G-5
EDTD (see edit description)
element, definition G-5
else CL-4
EML3270 «ommand EM-3
emulation, display modules EM-1
emulation, printer modules EM-8

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

end debug TE-2
end debug command TE-7
end do group CL-3
end of extent (EOE)

definition G-5
use DK-3

end of transmission (EOT)
definition G-6
use BS-2

end program CL-3
end service SC-3
enqueue, definition G-5
enter debug TE-2
enter debug command TE-4
entry job, definition G-5
entry point table structure DM-9
entry point table, definition G-5
entry point, definition G-5
entry to data base functions D8-2
EOE (see end of extent)
EOT (see end of transmission)
EPTAB (see entry point table)
ERAP (see error recording analysis
procedure)

error detection and reporting M H -1 0
error log, definition G-6
error message display PT-8
error recording analysis procedure

definition G-5
modules AR-3

escape message, definition G-6
ESI modules GD-7
event handler

definition G-6
modules TE-2

event handling program assumptions RC-9
event ilandling, data base DB-8
event monitor, definition G-6
event, definition G-6
events handled

by QSWCPFEV SW-2
by QSWCUDEV SW-2
by QSWLUDEV SW-2
by QSWNDEV SW-3

events signaled
by other CPF components SW-2
by the machine SW-2

exception description, definition G-6
exception handling modules MH-ll
exception handling program
assumptions RC-7

exception messages
escape MH-l0
notify MH-l0
status MH-10

exception, definition G-6
exclusive allow read lock state,
definition G-6

exclusive lock state, definition G-6

Index X-9

executing a program that produces spooled
output SP-14

executing a program that receives spooled
inline files SP-12

execution time modules CL-5
execution with spooling modules SP-4
extending a subsystem description WD-1O
external entry point. definition G-6
external message queue, definition G-6
external object compiles, definition G-6
external storage, definition G-6
external, definition G-6
externally described data file,
definition G-6

extract operation DF-8
extract user name SY - 26
extraction, data base DB-7

F

FCB (see file control block)
field reference file, definition G-6
field, definition G-6
file control block (FCB)

create DM-3
definition G-6

file description, definition G-6
file overrides, definition G-6
file reference function

definition G-6
general overview WH-1
introduction WH-l
modules WtI-1

file, definition G-6
finance support FN-1

I/O managers FN-1
finite state machine (FSM)

definition G-6
use BS-2

first-level message, definition G-6
flow of subsystem description
modules WD-18

FSM (see finite state machine)
FSM modules GD-4
function check, definition G-6
function key processing PT-6
function managers

console CO-1
diskette DK-1
invoked by prompter PT-3
tape TA-l
5211/3262/3203 PN-1
5224/5225/5256 WP-1
5251 display WS-1
5254 CS-l

function 1 modules DC-l
function 2 modules DC-3
function 3 modules DC-3

X-10

function 4 modules DC-3
function, get (or put-get) nowait WS-16

G

GDDM routines GD-1
general purpose library (OGPL),
definition G-7

generic name, definition G-7
get from subfile record (data flow)
WS-014, CO-1O

get operation CO-8,WS-12
get operation, definition G-7
get or (put-get) nowait

function CO-14, WS-14
get (or put-get) function WS-16
operation overview T3-3

get system object SC-20
get variable value TE-26
go to CPP CL-3
grant

duplicate authority SY-20
object authority SY-5
object authority command SY -10
same authority SY-20
user authority command SY-14

graphics GD-1

H

handle authority violation SY-19
header, large record SP-23
high-level language (HLL)

definition G-8
use of command analyzer CA-11

history log, definition G-7
HLL (see high-level language)
hold delivery, definition G-7
hold job queue SP-3
hold output queue SP-3
hold reader SP-3
hold spooled file SP-5
hold writer SP-5
host system, definition G-7

I/O error flow WS-20
I/O manager, finance FN-3
IBM supplied subsystem descriptions WD-2
ICO (see installation communications
object)

immediate maintenance, definition G-7
IMPL (see initial microprogram load)

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

L

impromtu messages
definition G - 7
description MH-2

inactive subsystem description WD-8
information display system verification

configuration modules AR-3
display verification modules AR-2
ERAP modules AR-3
general overview AR-1
introduction AR-1
link test modules AR-3
modules AR-1
printer verification modules AR-2
relationship to other components AR-4
router modules AR-1

information display, definition G-7
information message MH-4
informational message, definition G-7
initial CPF process WC-7
initial microprogram load (lMPL) WC-7
initial parameter display PT-5
initial program processing MH-16
initial program, definition G-7
initialization SM-1
initialize diskette DK-2
initialize physical file member OB-7
initialize tape TA-1
initialize, definition G-7
inline data file, definition G-7
input field, definition G - 7
input file, definition G-7
input stream, definition G-7
input to the PRM PR-1
input, definition G-7
inquiry message

definition G-7
description MH-4

install object DM-8
installation

general overview IN-1
introduction IN-1
modules IN-1
process overview IN-2

installation communications object (lCO)
definition G-7
use IN-2

instruction reference event handler TE-22
instruction reference trace handler TE-24
integrity of data

definition G-7
description SY-1

interactive job, definition G-7
interactive subsystem, definition G-7
interactive, definition G-7
intercepted output SP-18
interjob servicing SC-7
intermediate representation of a program
(lRP)

definition G-7
pointer from PRM PR-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

internal service facilities SC-9
internal storage, definition G-8
internal symbol table (1ST).
definition G-8

interrelationship of spooling control
blocks SP-20

invocation A-1
definition G-8
example A-1
level. definition G-8
nesting, definition G-8
number, definition G-8
stack, definition G-8

invoke, definition G-8

J

JMQ (see job message queue)
job description (JOBO), definition G-8
job/file command modules SP-5
job log, definition G-8
job message queue (JMQ)

definition G-8
types MH-4

job name, definition G-8
job number, definition G-8
job priority, definition G-8
job queue (JOBQ)

allocation
definition G-8
entry, definition G-8
use SP-1

job selection by work monitor SP-8
job structure

queue (JSQ)
definition G-8

job, definition G-8
JOBO (see job description)
JOBQ (see job queue)
journal

functions, entry to JO-2
general overview JO-4
10 generation JO-6
introduction JO-1
management JO-1
modules JO-4
object locking JO-7
process event masking JO-7
receiver directory management JO-7

Index X-11

K

Kanji KJ-l
modules KJ-1

key field, definition G-9
keyed sequence access path,
definition G-9

keyword, definition G-9

L

label, definition G-9
large record SP- 22
left-adjust, definition G-9
level (invocation), definition G-8
level checking, definition G-9
LIB (see library)
L1BL (see library list)
librarian

general overview L1-1
introduction L1-1
modules L1-1
relationships to other CPF
components L1-5

libraries, backup SR-1
libraries, damage to RC-3
library (LIB)

definition G-9
description L1-2

library clean-up during IPL L1-20
library commands menu MN-l
library list (L1BL)

definition G-9
description L1-2

line description (LIND), definition G-9
link test modules AR-3
list command usage CL-5,CL-9
list CSNAP data command SC-46
list CSNAP history command SC-47
list element, definition G-9
list error log SC-9
list internal data SC-3
list internal data command SC-45
list objects L1-17
load programming change SC-3,SC-38
LOC parameter DK-2
local work station, definition G-9
locate object TE-27
lock state, definition G-9
lock, definition G-9
locking DM-8
log version, definition G-9
logging (see data base logging)
logging of damaged objects on history
log RC-12

X-12

logical file member, definition G-9
logical file, definition G-9
logical unit description (LUD)

definition G-10
save/restore device IN-2

LU-1 (see secondary logical unit)
LUD (see logical unit description)

M

machine attribute, definition G-10
machine check, definition G-10
machine context, definition G-10
machine event handling modules WC-4
machine interface communications queue
(MICQ), definition G-l0

machine interface program template PR-9
machine interface request queue (MIRQ)

create DM-10
definition G-9

machine interface, definition G-10
machine pool, definition G-10
machine services control point,
definition G-10

machine status/resource event
handling WC-33

machine termination, definition G-10
macros DM-8
main storage, definition G-10
manipulation, data base DB-6
mapping, definition G-l0
master debug communications object '(MDCO)

definition G-10
description TE-3

member, definition G-10
menu

all commands command MN-1
command grouping MN-1
command name selection MN-1
configuration MN-2
definition G-l0
general overview MN-3
introduction MN-1
modules MN-3
object and library commands N-001
program call MN-1
programmer MN-2
system operator MN-2
system request MN-3

message creation, storage, and
retrieval MH-2

message description, definition G -1 0
message field, definition G-l0
message file identifier (MSGF),
definition G-10

message file, definition G-10

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

L

message handler
break/notify message delivery MH-8
default system error handling MH-10
error detection and reporting MH-10

default system error handling M H -1 0
exception messages MH-10

exception handling modules MH-11
exception messages

monitoring exception messages MH-10
sending exception messages MH-10

introduction MH-1
message routing MH-4
receive message processing modules MH-7
remove message processing modules M H-7
requestor interface

initial program processing M H -16
requester interface modules M H -16

send message processing modules MH-6
message identifier, definition G-10
message queue (MSGQ)

definition G-10
processing modules MH-6
types MH-4

message reference key (MRK),
definition G-11

message routing MH-4
message routing and queuing MH-4
message types MH-4
message, definition G-10
MFCU (see multiple function card unit)
MICQ (see machine interface communications
queue)

MIRQ (see machine interface request queue)
monitor message CL-3
move an object LI-3
move message from one program queue to
another M H - 7

move object LI-2
move object command LI-18
MPL (see multiprogramming level)
MRK (see message reference key)
MSGF (see message file identifier)
MSGQ (see message queue)
multiple function card unit (MFCU)

definition G-10
function manager CS-1
use CS-1

multiprogramming level (MPL)
definition G-11
description WC-26

multivolume file, definition G-11

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

N

name resolution list (NRL)
definition G-11

name resolution, definition G-11
NO (see network description)
network description (NO). definition G-11
network facilities NF-1
nonstandard composite objects SR-1Q
normal install, definition G-11
notify delivery, definition G-11
notify message, definition G-11
NRL (see name resolution list)

o

object
check LI-2,LI-21
definition G-11
delete LI-3,LI-12
display description LI-15
list LI-17
move LI-3,LI-18
rename LI-19

object and library commands menu MN-1
object authority, definition G-11
object authorization

definition G-11
description SY-4

object definition table (OOT)
as PRM output PR-1
definition G-11
RPG compiler PR-4

object description, definition G-12
object existence rights, definition G-12
object information repOSitory (OIR)

damage recovery RC-7
definition G -12
dump SC-22
manipulations LI-3
user profile SY-9

object locking, data base OB-18
object management rights, definition G-12
object mapping table (OMT) TE-27
object owner, definition G-12
object rights

definition G-12
description SY-4

object structure after device file
open OM-4

object structure after multi-device file
open OM-6

object user, definition G-12
OOP (see open data path)
OOT directory vector, definition G -12
OOT extender string, definition G-12

Index X-13

ODV (object directory vector),
definition G -12

OES, definition G-12
office systems OS-1
OFFICE/38 OS-8,OS-12

I/O managers OS-12
OIR (see object information repository)
omit function, definition G -12
OMT (see object mapping table)
open

definition G -12
description DM-2

open data path (ODP)
close DM-3
create DM-3
definition G-12
re-create conditions DM-6
release device DM-8
structure DB-14

operational rights, definition G-12
output data SP-24
output file, definition G-12
output from the PRM PR-1
output priority, definition G -12
output queues (OUTO)

definition G -12
description SP-1

output records SP-24
output, spooled SP-22
OUTO (see output queues)
override with file DM-2
overrides DM-8

p

packing WD-8
PAG (see process access group)
parameter list, definition G -12
parameter, definition G -12
parse, definition G-13
parsing a command CA-1
parsing a command, example of work
area CA-1

PASA (see process automatic storage area)
pass device DM-8
pass option CO-14
pass option of the suspend module WS-16
password, definition G-12
patch CL-3,SC-4
patch program command SC-34
patch program command support SC-36
PC (see programming change)
PCE (see process control event)
PCO (see process communications object)
PCS (see process control space)
PCSAS (see process control space associated
space)

X-14

PDT (see procflss definition template)
PGM (see program identifier)
PGR routines GD-1
physical file member, definition G-13
physical file, definition G-13
physical object damage RC-3
pointer, definition G -13
positional list

definition G-13
information to prompter PT-4

power commands DC-22
power control unit DC-3
power device DC-3
power down system WC-2
predefined messages

definition G-13
description MH-2

prepare APAR SC-7
prepare APAR command SC-30
primary logical unit, definition G-13
print image, definition G-13
print operation WP-2
printer file, definition G-13
printer verification modules AR-2
priority, definition G-13
private authority, definition G -13
PRM (see program resolution monitor)
process access group (PAG)

definition G-13
process automatic storage area (PASA)

definition G-14
process communications object (PCO),
definition G-14

process control event (PCE)
definition G -13

process control space (PCS)
definition G-14

process control space associated space
(PCSAS)

definition G-14
process definition template

created at install IN-2
definition G-14
for AIPL WC-7

process lock list space, definition G-14
process static storage area (PSSA)

definition G-14
processing of named inline data
files SP-12

processing of unnamed inline data
files SP-12

production library, definition G-14
program call menu MN-1
program call menu overview MN-3
program che.ck for adopted profile SY-21
program-described data file,
definition G-14

program-described data, definition G-14
program identifier (PGM). definition G-13

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L
program message display

description MH-16
modules MH-16

program message queue. definition G-14
program object. definition G-14
program patches SC-7
program resolution monitor (PRM)

definition G -14
general overview PR-2
introduction PR-1
modules PR-2
source input and its associated program
template PR-6
used by RPG compiler PR-4

program variable. definition G-14
program. definition G-14
programmer menu MN-2
programmer request menu overview MN-7
programmer subsystem. definition G-14
programming change (PC)

definition G-14
description SC-7

programming change log
definition G-14
description SC-7

prompt. definition G-14
prompter

general overview PT-2
introduction PT -1
invocation and control PT-4
invocation paths PT-3
modules PT-2
start CPF WC-10
use of command analyzer CA-7

propagate user profile. definition G -14
protected field. definition G-14
PSSA (see process static storage area)
public authority. definition G-14
put-get function. nowait WS-16
put operation CO-4.WS-6
put operation. definition G-14
put to subfile record (data flow) CO-6.
WS-S

Q

QBATCH (default batch subsystem).
definition G-14

QCE (customer engineer user profile).
definition G-14

QCl (control language processor),
definition G-15

QCTl (controlling subsystem),
definition G-15

QGPl (general purpose library).
definition G-15

QPGMR (programmer user profile).
definition G-15

This document contains restricted materials of IBM. l Y21-0571-6

©Copyright IBM Corp. 1980. 1981. 1982. 1983. 1984. 1985

QPSR (programming support rep. user
profile). definition G-15

QSECOFR (security officer user profile).
definition G-15

QSPl (spooling subsystem).
definition G-15

QSRV (service library). definition G -15
QSRVlOG (service log). definition G-15
QSYS (system library). definition G -15
QSYSOPR (system operator profile).
definition G-15

QTEMP (temporary library).
definition G -15

qualified job name. definition G-15
qualified object name. definition G-15
queue command modules SP-3
queue management module SP-5
queue. definition G-15
queues SP-1
quiesce. definition G -15
QUSER (default user profile).
definition G-15

R

RCVNETF NF-6
read rig hts. definition G -15
reader function modules SP-3
reader. definition G-15
rebuild maintenance. definition G-15
receive data area Cl-3
receive file Cl-4
receive message M H - 7
receive message processing modules MH-7
recipient queue NF-S
reclaim and save/restore. data base OB-9
reclaim resource

description WC-4
function WC-33
module WC-4

reclaim storage RC-3
record format. definition G -1 5
record length OK-2
record. definition G -15
recovery

data base OB-S
information WO-12
library. definition G -15
object addressability RC-3
reclaim modules RC-1
reclaim overview RC-4
reclaim storage function RC-3

redirecting a writer SP-1S
relational object damage RC-3
relative record number. definition G-15
release autostart job WO-3
release devices OM-S
release queue SP-3

Index X-15

remote device, definition G-15
remote work station, definition G-15
remove breakpoint TE-2
remove breakpoint command TE-9
remove file member 00-12
remove interactive profile entry SY-26
remove job queue entry WO-3
remove member 00-3
remove message from queue MH-7
remove program TE-2
remove program command TE-6
remove programming changes SC-4,SC-38
remove routing entry WO-3
remove trace TE-2
remove trace command TE-11
rename diskette OK-2
rename object U-2
rename object command U-19
replace library list U-1
replacing library list command U-8
reply messages

definition G -15
description MH-4

request data, definition G-15
request message

definition G-15
description MH-4

requester interface modules MH-16
resolved names table WO-16
response indicator, definition G-16
response queue handler SM-1
restore

definition G -16
description SR-3

restore authority SR-9
restore authorized user table SY -18
restore commands SR-8
restore function SR-1
restore library command SR-8
restore modules SR-3
restore object command SR-8
restore user profile SR-8
resume breakpoint TE-2
resume breakpoint command TE-20
retrieve authorized libraries SY -17
retrieve CL source CL-10
retrieve data area WC-25
retrieve interactive profile entry SY-26
retrieve job attribute CL-8
retrieve message MH-2
retrieve system value WC-3
return CL-3
revoke data rights SY-21
revoke object authority SY-5
revoke object authority command SY -12
revoke space authority SY - 26
rights of use SY-4
router modules AR-1
routing common function OM-8
routing data, definition G -16

X-16

routing entries WO-1,WO-14
routing entry, definition G-16
routing step

definition G-16
routing test selection AR-1
RSHUTO, definition G-16

s

save
authorized user table SY -18
commands SR-4
data base files SR-5
definition G-16
description SR-1
function SR-1
journals and journal receivers SR-5
library command SR-4
modules SR-1
object command SR-4

save / restore
save restore SR-11

display modules SR-4
function manager SR-11
general overview SR-1
introduction SR-1
modules SR-1
reclaim modules, data base OB-9
restore commands SR-8
save commands SR-4

save/restore and reclaim, data base OB-9
save/restore online file OF-15
save / restore rights, definition G -16
save system command SR-4
save system rights, definition G -16
SBMNETJOB NF-4
SBSO (see subsystem description identifier)
SCB (see spooling control block)
scope message M H-4
scope message processing MH-20
screen design aid

DDS parser 00-14
syntax checking 00-4

SCS (see standard character set)
SOA (see screen design aid)
SOLC (see synchronous data link control)

. SOT, definition G-16
second-level message, definition G-16
secondary logical unit

introduction SL-1
modules SL-1
operation SL-1

sector size OK-3
secured file, definition G-16
security

definition G-16
general overview SY-5
introduction SY -1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

security (continued)
modules SY-5
officer profile (QSECOFR),
definition G -14
officer, definition G -16

security officer user profile,
definition G -16

select function, definition G-16
select/omit field, definition G-16
send data area CL-3
send file CL-4
send message processing modules MH-6
send/receive file CL-4
send reply MH-7
sender copy message MH-4
sequential file, definition G-16
service

data handler SC-26
general overview SC-1
introduction SC-1
job SC-4
job command SC-14
library (QSRV). definition G-16
log (QSRVLOG). definition G-16
modules SC-1
relationship to other CPF
components SC-lO
request event handler SC-24

service alert event handler SC-23
session, definition G-16
shared access path, definition G-17
shared file, definition G-17
shared for read lock state,
definition G-17

shared for update lock state,
definition G-17

shared no update lock state,
definition G-17

shared record format, definition G-17
sign-off

description WC-4
function WC-25
support modules WC-4

sign-on display WC-10
simple OOT reference, definition G -17
single line syntax checking 00-4
SNA (see systems network architecture)
SNA distribution services ZO-l

commands ZO-5
receive modules ZO-2
router ZO-2
sender ZO-3
subsystem modules ZO-2

SNAOS OS-10
SNONETF NF-4
source entry utility

syntax checking 00-4,00-13
use of command analyzer CA-7

source file, definition G-17
source input to the PRM PR-6

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

source/sink request, definition G-17
source/sink resource, definition G-17
source / sink, definition G -17
source statements CO-1
space pointer (SPP), definition G-17
space, definition G-17
special authority, definition G-17
spool writer

program execution SP-14,SP-16
SNA format PN-2
with printer PN-1

spooled file, definition G -17
spooled output, improved
performance SP-22

spooling
definition G -17
general overview SP-1
introduction SP-1
modules SP-1
queues SP-1
subsystem (QSPL), definition G-17
use of command analyzer CA-7

spooling a jobstream into the system SP-6
SPP (see space pointer)
SSR (see source/sink request)
standard character set (SCS) SP-24

definition G-16
description SP-24

standard composite objects
restore function SR-10
save function SR-10

start CPF
function modules WC-1
procedure OC-22
process WC-7
prompt WC-10

start CPF and termination modules SP-1
start PDP SC-4
start reader SP-3
start subsystem

description WC-2
function WC-12
modules WC-1

start writer SP-4
static variable, definition G-17
static, definition G -17
status message, definition G-17
storage pool

definition G-18
storage pool/MPL resource
management WC-27

STRPRTEML command EM-9
structure of common data management
objects OM-4

after opening device file OM-4
after opening multidevice file OM-6

structure of data base files OB-10
structure of open data base member OB-14

Index X-17

subfile
definition G-18
description WS-8
example WS-14

subfile module flow CO-14,WS-18
submit finance job FN-2
submitted jobs display MN-3
subset operations OF-12
subsystem

attributes WO-1
description

control information entries WO-13
definition (SBSO) G-18
entry structure WO-14
external controls WO-2
general overview WO-4
internal structure WO-6
introduction WO-1
modules WO-4
recovery WO-12

subsystem and system termination
modules WC-2

subsystem controller use of command
analyzer CA-12

support modules TE-2
suspend module CO-14
suspend, definition G-18
switched control unit description SW-1
switched lines

events SW-3
general overview SW-1
introduction SW-1
modules SW-1

symbolic name, definition G-18
synchronous data link control (SOlC)

definition G-16
description SW-1

syntax checking
reader MH-18
with data description specifications
(DDS) 00-14
with screen design aid (SOA) 00-4
with source entry utility (SEU) 00-5,
00-13

SYP (see system pointer)
system arbiter overview WC-11
system arbiter process modules WC-2
system arbiter, definition G -18
system clock WC-26
system console, definition G -18
system date and time support modules WC-4
system date/time support WC-26
system library (QSYS), definition G-18
system logs

description MH-20
message queue, definition G-18
system log structure and
processing MH-20

X-18

system object
allocate WC-2,WC-18
deallocate WC-2,WC-18
definition G -18

system operator menu MN-2,MN-6
system operator message queue

definition G -18
description M H-4

system operator, definition G-18
system pointer (SYP), definition G-18
system reply list MH-7
system request menu MN-3,MN-8
system resource support module WC-4
system / subsystem termination
function WC-15

system termination, definition G-18
system timer support WC-26
system timer support modules WC-4
system value

definition G-18
functions WC-22
support modules WC-3

system values list WC-24
system verification procedures SC-9
System/38 clock layout WC-26
systems network architecture (SNA)

definition G -18
format to printer PN-2
functional overviews T3-2
general overview T3-1
introduction T3-1
modules T3-1

T

table, definition G-18
tape function manager

general overview TA-1
introduction TA-1
modules TA-1
operation TA-2

TBl, definition G-18
TOO (see trace data object)
template, definition G-19
temporary job structure
temporary library, definition G-19
temporary object, definition G-19
terminal node OS-2
terminate CPF WC-2
terminate subsystem WC-2
termination modules SP-1
termination procedure OC-22
termination, definition G -19
test library, definition G-19
test request functions

configuration data AR-1
display verification AR-1
link test AR-1

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981. 1982, 1983, 1984. 1985

test request functions (continued)
printer verification AR-1
5250 ERAP AR-1

test selection, routing AR-1
testing

general overview TE-1
introduction TE-1
modules TE-1

TIO (see trace instruction object)
token list, definition G-19
trace

definition G-19
description SC-5

trace communications object (TRCO)
definition G-19
use TE-24

trace data object (TDO)
definition G-18
use TE-24

trace instruction object (TIO)
definition G -19
use TE-24

trace internal SC-4
trace internal command SC-28
trace job SC-4
trace job command SC-27
trace job command in a serviced job SC-28
trace value object (TVO)

definition G-19
use TE-24

transfer control CL-4
transfer control command CL-7
translate table, definition G-19
TRCO (see trace communications object)
TSI modules GD-7
TVO (see trace value object)

u

UNBIND, definition G-19
unlocking DM-8
unsolicited data operation overview T3-4
update rights, definition G-19
user damage notification and logging

assumptions RC-7
concepts RC-7
general overview RC-7
introduction RC-1
modules RC-1
special case programs RC-13

user-defined edit code, definition G-19
user file control block, definition G -19
user identification, definition G-19
user message queue

definition G-19
description MH-4

user name, definition G-19

This document contains restricted materials of IBM. L Y21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

user password
definition G-19
description SY-2

user profile (adopted), definition G-1
user profile (USRPRF)

definition G-19
description SY-1

USRPRF (see user profile)

v

valid message types MH-4
validity checker, definition G-19
validity checks CA-1
values display, list of PT-5
values display, permissible PT-5
variable, definition G-19
vary commands DC-23
vary control unit DC-4
vary device DC-4
vary line DC-4
verify object directory vector
references TE-25

verify printer SC-5
verify system entry authorization SY -16
view, definition G-19
virtual storage standalone dump (VSSD)

definition G-19
description WC-9

volume table of contents (VTOC)
definition G-19
description DK-3

VSSD (see virtual storage standalone dump)

w

wait for devices DM-8
wait operation overview T3-2
WCB (see work control block)
WCBT (see work control block table)
WCBTE (see work control block table entry)
WCBTEQ (see work control block table entry
queue)

work control
block (WCB)

definition G-9
block table (WCBT)

definition G-19
maintenance WC-26
maintenance support module WC-4

block table entry (WCBTE)
definition G-20

block table entry queue (WCBTEQ),
definition G - 20
displays used during the start CPF
process WC-10

Index X-19

work control (continued)
general overview WC-1
introduction WC-1
modules WC-1

work entry
definition G-20
description WO-1,WO-14

work monitor WT-1
job functions WT-5
modules WT-1
subsystem monitor WT-4

work station controller, definition G-20
work station entry, definition G-20
work station message queue

definition G-20
description MH-4

work station, definition G-20
writer

definition G-20
function modules SP-4
producing output SP-16
redirection SP-18

3203 printer PN-1
3262 printer PN-1
3270 emulation EM-1
5211/3262/3203 function manager

general overview PN-1
introduction PN-1
modules PN-1

5211/3262/3203 print operation PN-2
5211/3262/3203 printer PN-1
5224/5225/5256 function manager

general overview WP-1
internal interfaces WP-6
introduction WP-1
modules WP-1

5250 (see information display system
verification)

5251 display function manager
external interfaces WS-2
general overview WS-1
internal interfaces WS-4
introduction WS-1
invoked by prompter PT-3
modules WS-1

5424 function manager
general overview CS-1
introduction CS-1
modules CS-1
operation CS-2

X-20

This document contains restricted materials of IBM. LY21-0571-6

©Copyright IBM Corp. 1980, 1981, 1982, 1983, 1984, 1985

L

IBM System/38
Control Program Facility Logic Overviews
and Component Description LY21·0571-6

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in publications. Direct
any requests for additional publications. technical questions about IBM systems. changes in IBM
programming support. and so on. to your IBM representative or to your nearest IBM branch office. You
may use this form to communicate your comments about this publication. its organization. or subject
matter. with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error) check this box
and do not include your name and address below. If your comment is applicable. we will
include it in the next revision of the manual.

D If you would like a reply. check this box. Be sure to print your name and address below.

Page number(s): Comment(s) :

No postage necessary if mailed in the U.S.A.

Please contact your nearest IBM branch office to request
additional publications.

Name

Company or
Organization

Address

Phone No.

City State Zip Code

Area Code

Folddnd tdpe. Pl do not lltapl •.

---,

BUSINESS REPLY MAn..
FIRST CLASS / PERMIT NO. 40 / ARMONK. NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
Rochester, Minnesota, U.S.A. 55901

I NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

---~
Fold dnd tdpe. Pl do not lltapl ..

--------- - ------- - ---- -- ----------_.-
(f

